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This dissertation presents the development of a monopropellant-based power 

supply and actuation system for human scale robots that is energy and power dense with 

the ability to be controlled accurately at a high bandwidth. This kind of actuation system 

is known to have an actuation potential an order of magnitude better than conventional 

battery-DC motor based actuation systems. Though a monopropellant-based actuator has 

the appeal of being simple in design, it is fairly complex in terms of the physics of its 

operation. The complex interaction between several energy domains and the nonlinear 

nature of many of them necessitates a model-based control design to provide adequately 

accurate, high-bandwidth, efficient, and stable operation as generally required of a mobile 

robot platform. In order to obtain a model-based controller, a physics-based model of this 

kind of a system is derived in this work. The control architecture of the centralized 

configuration is then presented which is shown to provide stable servo tracking of the 

system. This model-based controller is designed on the basis of Lyapunov stability-based 

sliding mode control theory to control the inertial mass. A model-based predictive 

controller is additionally implemented for the control of rate of pressurization and 



 

regulation of the supply pressure in the reservoir. Since the model-based control of the 

actuators necessitates the use of two high-temperature pressure sensors, these sensors add 

substantial cost to the monopropellant-based servo system. In order to make the 

chemofluidic system more cost effective and economically viable, a nonlinear pressure 

observer is developed in this work. This observer utilizes the available knowledge of 

other measurable states of the system to reconstruct the pressure states. The elimination 

of pressure sensors reduces the initial cost of the system by more than fifty percent. 

Additionally, the use of pressure observers along with the design of a robust controller 

results in lower weight, more compact and lower maintenance system. 

The development of two Lyapunov-based nonlinear pressure observers for 

pneumatic systems is also presented in this work. The implementation of pressure 

observers instead of expensive pressure sensors reduces the cost of the system by nearly 

thirty percent. These savings are achieved without any compromise on the quality of 

servo tracking of the system. The results presented demonstrate that the tracking 

performance using pressure observers versus using pressure sensors is in essence 

indistinguishable. 
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CHAPTER I 

 

INTRODUCTION AND MOTIVATION 

 

Introduction 

In recent years, we have witnessed the significant increase of robots in different 

areas of human life. The use of robots in manufacturing industries has not only resulted in 

the increase of productivity but it has also increased the quality of products. Today 

virtually all mass production industries rely heavily on robots to meet their production 

requirements. Robots are also increasingly employed in areas that are hazardous to 

humans. Waste removal in nuclear power plants, painting operations in car industries, 

forging operations are few areas where the environment is unhealthy and machines have 

successfully replaced humans. Realizing the potential of robots, this state of the art 

technology was extended to the development of mobile robots. Space exploration and 

rescue operations were amongst the few identified applications for the use of mobile 

robots. Last year NASA sent their mobile robots, Spirit and Opportunity, to the planet 

Mars for exploring the possibility of life there. Similarly, the use of mobile robots in 

rescue operations, such as to find trapped people from collapsed buildings, has been 

envisioned by engineers.  

Despite all of these developments, there are areas where the use of untethered 

robots is still considered only for the far term. The use of a robot in combat operations is 

one such example. Another example is a service robot for people who are in need of 

assisted living. Among other technical problems in the introduction of robots in these and 
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other areas, one problem that remains and will remain absolutely prohibitive until its 

solution is the short operational time of untethered robots. Most of the industrial robots 

use the combination of DC motor and electricity from the grid for actuation. Mobile 

robots typically use electrochemical batteries to power motors. However, these types of 

batteries cannot supply power long enough to meet the requirements of human scale and 

power comparable robots. A battery/motor power supply and actuation system lacks the 

fundamental energy and power density required for a useful human-scale service robot. 

This is perhaps most poignantly illustrated by the P3 humanoid robot (Figure 1-1) 

developed by Honda. The P3 is arguably the most advanced human-scale humanoid robot 

in the world and has a mass of about 130 kg, with its nickel-zinc batteries contributing a 

total mass of about 30 kg. This robotic system is capable of about 15-30 minutes of 

operation, depending on its workload. This illustrates the major technological barrier for 

the development of human-scale mobile robots which can operate power-autonomously 

for extended periods of time. 

 

 

Figure 1-1. Honda P3 Humanoid Robot 
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Literature Survey 

The problem of power limitation necessitates the development of an alternate 

power supply that can deliver power for an extended period of time. Some researchers 

have proposed proton exchange membrane fuel cells [1] or solid oxide fuel cells [2] as an 

alternative to batteries. These alternatives have significant power density limitations 

relative to the average power requirements of a human-scale robot. Some other authors 

suggested the use of internal combustion engines to power fluid-powered system, but 

such an approach is hampered by several issues, including the relative inefficiency of 

small engines, the loss of power necessitated by controlling power produced outside the 

control loop, noise problems, noxious exhaust fumes, and start-stop problems for a low 

duty cycle use. Further, such types of systems would be heavy and they require oxidizers 

for combustion that make it burdensome for some applications (such as space exploration 

or other non-oxygen environments).  

Another class of fuels is the monopropellants [3] that are energy dense and hence 

hold the promise of meeting the power requirements of autonomous robots. 

Monopropellants are a class of propellants that decompose when they come in contact 

with a catalyst material. Monopropellants were originally developed in Germany during 

World War II [4]. Since then they have been utilized in several applications involving 

power and propulsion, most notably to power gas turbine and rocket engines for 

underwater and aerospace vehicles. In recent years they are also used in the development 

of micro-propulsion systems in nanosats [5], reaction control thrusters for space vehicles 

[6], and auxiliary power turbo pumps for aerospace vehicles. For this study, hydrogen 

peroxide was selected amongst other monopropellants for the development of energy-
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dense actuators because it is ecological as the exhaust products are oxygen and steam 

which are safe for indoor use. Besides, hydrogen peroxide is a stable monopropellant and 

does not decompose on its own. It is also stable at relatively high temperatures. 

The development of chemofluidic actuators was first published by Goldfarb et al. 

[7] where they presented their preliminary results. Two configurations were shown by the 

authors to extract mechanical work from hot gaseous products. The first configuration, 

known as centralized system (Figure 1-2), is essentially based on the principle of standard 

pneumatic actuation systems. In this type of configuration, liquid hydrogen peroxide is 

stored in a pressurized blow-down tank. The flow of hydrogen peroxide through the 

catalyst pack is governed by the discrete valve. When hydrogen peroxide comes in 

contact with the catalyst, it decomposes into steam and oxygen. These resultant hot 

gaseous products are collected into a reservoir. The hot reservoir is in turn connected to 

the cylinder chambers via a pneumatic four-way proportional valve. A controlled amount 

of fluid is provided to either of the two chambers depending on the force and the load 

requirements. In the second configuration, called direct injection, the piston output is 

controlled by injecting the hot gaseous products directly into the chambers from the 

catalyst pack. Therefore, this configuration necessitates the use of two catalyst packs, one 

for each chamber of the cylinder. The output in this type of system is controlled with the 

help of valves that governs the flow of a monopropellant to the catalyst packs, as well as 

an exhaust valve that depressurizes each chamber by exhausting the gaseous products to 

the external environment.  

The centralized configuration of actuators was shown to have five times better 

actuation potential than conventional DC motors based actuators [7]. However, for the 
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control of centralized configuration, the authors used a non-model based position-

velocity-acceleration (PVA) controller for the servo control of the inertial load. It has 

been shown in the literature [8-10] that model-based control design is more robust, stable 

and provides high bandwidth. Therefore, to obtain a model-based controller for 

chemofluidic actuators, a model of the system is first derived. This model is based on the 

first principle constitutive relationships and it also validates the earlier derived 

empirical/analytical model by Barth et al. [11]. The servo control design based on this 

model is then formulated and is presented in this work. A pressure observer is also 

designed and implemented to reduce the initial costs of the system by more than 50 

percent. The earlier work on pressure observers by Pandian et al. [12] uses the 

assumptions of choked flow and known mass flow rate through the valve. Both of these 

assumptions are restrictive since at low pressure difference, the flow rate is not choked. 

Also, the mass flow rate is a function of pressure whose value is to be estimated. In this 

work, the observer uses the knowledge of other measurable states to reconstruct the 

pressure states. 

pressurized
inert gas

liquid
monopropellant

propellant line

liquid propellant valve

hot gas reservoir

catalyst pack

pressure
control loop hot gas line

4-way
proportional

valve

gas
actuator

actuator
output
shaft

V C

SOL

controlled
   volume

chamber 'a'

chamber 'b'

 
 

Figure 1-2. Schematic of the Centralized Configuration of Monopropellant Powered 
Actuators 
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Motivation and Contribution 

The primary motivation of this work is to develop a power source that is capable 

of providing energy and power appropriate for controlled actuation for extended periods 

of time. While the chemofluidic actuator has the appeal of being simple in design, it is 

fairly complex in terms of the physics of its operation. The complex interaction between 

several energy domains and the nonlinear nature of many of them necessitates a model-

based control design to provide adequately accurate, high-bandwidth, efficient, stable 

operation as generally required of a mobile robot platform. In order to obtain a model-

based controller, a model of this kind of a system was first derived in this work. The 

commonly used states that characterize such a system are the position, velocity, and 

pressures in both chambers of the cylinder. The sensors used in such a type of system are 

a potentiometer for measuring the position and two pressure sensors per axis to 

characterize the energy storage in each chamber. The problem with the pressure 

measurement is that the high-bandwidth, high-temperature, and high-pressure sensors 

required for the control of a servo system are expensive and large (relative to the 

actuator) with a typical cost between $400 and $1200. Since pneumatic actuation requires 

two pressure sensors per axis, these sensors add $800 to $2400 per axis of 

monopropellant based servo system. If the requirement of pressure sensors can be 

eliminated by constructing observers to estimate these states, it will result in an average 

savings of approximately 50 percent in initial costs. Since the other states (viz. motion 

output and velocity) are measurable, the possibility exists to reconstruct the cylinder 

pressures by using the available knowledge of other states of the system. 
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In order to eliminate the pressure sensors from the control of such systems, the 

work was commenced for the design of pressure observers. As noted earlier, the 

dynamics of a chemofluidic system are highly non-linear and fairly complex. In order to 

test the concept of controlling such a system using pressure observers instead of sensors, 

the theory was first conceptualized for pneumatic actuators. Pneumatic actuators were 

selected for the initial development for several reasons. First, the dynamics are similar to 

chemofluidic actuators and hence it is easy to derive conclusions based on the results of 

pneumatic actuators. Another reason was that it was desirable to reduce the cost of 

pneumatic systems since pressure sensors contribute approximately 30 percent in the 

initial cost of the system. The other less fundamental reason was the easy availability of 

the pneumatic actuator components because unlike chemofluidic actuators, the pneumatic 

system does not operate at elevated temperatures. 

The development of two Lyapunov-based pressure observers for the pneumatic 

actuator system is presented in this work. The first method shows that an energy-based 

stable pressure observer can be developed with the state equations. The other method 

incorporates the output error to control the convergence of the observed pressures. The 

stability, robustness, and convergence of both the observers are discussed in this work. 

The results presented demonstrate that the tracking performance using pressure observers 

versus pressure sensors is in essence indistinguishable. 

The observer design for the pneumatic actuators is then extended to chemofluidic 

actuators. A model-based controller is further developed, which uses a pressure observer 

for each chamber of the actuator, to provide adequately accurate, high-bandwidth, and 

stable servo control of a chemofluidic actuator. The control architecture for the 
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centralized configuration of the actuators is divided in two parts. The first part of the 

control problem is the pressurization and regulation of the hot gas reservoir. The 

functional requirement of the reservoir is to maintain a uniform desired pressure with 

minimum pressure fluctuations in it. Since transportation delay of 15 ms is present in the 

system, a predictive control design is selected. The second part of the control problem is 

the stable servo control of the inertial load. The Lyapunov-based sliding mode control is 

selected for the motion because of its robustness to deal with the model uncertainties as 

well as uncertainties due to the pressure observers. The results of the servo tracking are 

presented which show the effectiveness of the proposed control architecture for the 

actuators.   

 

Organization of the Document 

The dissertation is organized in four chapters. Chapter I presents the introduction 

and motivation of the complete project. Chapter II, III, and IV of this dissertation 

comprise different manuscripts that have been submitted for publication as independent 

journal papers. Chapter II is a journal paper that is submitted to the ASME Journal of 

Dynamic Systems, Measurement, and Control as a full paper. This part presents the 

detailed mathematical modeling of the monopropellant powered actuators. The modeling 

of a power and energy dense chemofluidic actuation system discussed herein is aimed at 

producing a model based on first principles. The model of the system should ideally be 

simple with the minimum number of states, but at the same time should capture all of the 

relevant dynamics of the system from a control standpoint. This model is intended to 
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provide a basis upon which the model-based controllers are to be developed for this 

actuation concept.  

Chapter III is the detailed description of the development of two nonlinear 

pressure observers and a model-based controller for pneumatic actuators. The pressure 

states are reconstructed with the available knowledge of the position of the spool valve in 

both the methods. The merits and demerits of both the developed observers are also 

discussed. The servo tracking results presented show that pressure observers can 

successfully eliminate expensive pressure observers. Conference papers based on this 

work has already been published [13, 14]. The journal version is submitted as a full paper 

to the ASME/IEEE Transactions on Mechatronics.  

Chapter IV presents the development of a model-based controller for the 

centralized configuration of monopropellant powered actuators. This control design is 

based on the model derived in Chapter II. A pressure observer is also developed to reduce 

the initial cost of the system. The control design constitutes a model-based predictive 

controller for pressurization loop and a sliding mode controller for the servo position 

control of the load. The design of pressure observer is the extension of the work on 

pressure observers presented in Chapter III. Simulation and experimental results are 

presented that validate the effectiveness of the proposed observer theory. The observer in 

this work is used to obtain a high-bandwidth and stable model-based control design. 

Chapter IV is submitted as a full paper to the IEEE Transactions on Robotics.. 
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Abstract 

This paper presents a dynamic model of a monopropellant based chemofluidic 

power supply and actuation system. The proposed power supply and actuation system, as 

presented in prior works, is motivated by the current lack of a viable system that can 

provide adequate energetic autonomy to human-scale power-comparable untethered 

robotic systems. As such, the dynamic modeling presented herein is from an energetic 

standpoint. Two design configurations of the actuation system are presented and both are 

modeled. A first-principle based lumped-parameter model characterizing reaction 

dynamics, hydraulic flow dynamics, and pneumatic flow dynamics is developed for 

purposes of control design. Experimental results are presented that validate the model. 

 

1. Introduction 

The modeling of a power and energy dense chemofluidic actuation system 

discussed herein is aimed at producing a model based on first principles. The model of 

the system should ideally be simple with the minimum number of states, but at the same 

time should capture all of the relevant dynamics of the system from a control standpoint. 

This model is intended to provide a basis upon which to develop model-based controllers 

for this actuation concept. While the chemofluidic actuator has the appeal of being simple 

in design, it is fairly complex in terms of its operation. The complex interaction between 

several energy domains and the nonlinear nature of many of them necessitates a model-

based control design to provide adequately accurate, high-bandwidth, efficient, stable 

operation as generally required of an untethered mobile robot platform. The modeling 

work for this kind of a system was started by Barth et al [1] where they presented a 
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preliminary model of the system that contained both first principle and empirical 

modeling elements. In this work, a purely first principle based model of the system is 

derived that utilizes known physical parameters or manufacturer provided parameters, 

and a minimal number of empirical parameters specific to the particular system 

components and configuration used. Furthermore, this model formalizes and validates the 

previously mixed derived/empirical model. 

In recent years, the use of robots has gained significant importance in many 

arenas. Whereas industrial robots are primarily powered by electricity from the grid and 

require little consideration regarding their supply of power, mobile robots typically use a 

combination of electrochemical batteries and DC motors for power supply and actuation. 

Given that a mobile untethered robot must not only carry its supply of power but must 

also carry its own mass, the operation time of mobile robots is limited by both the 

energetic capacity of the battery and the overall mass of the combined power supply and 

actuation system. A battery/motor power supply and actuation system lacks the 

fundamental energy and power density required for a useful human-scale service robot. 

This is perhaps most poignantly illustrated by the P3 humanoid robot developed by 

Honda. The P3 is arguably the most advanced human-scale humanoid robot in the world 

and has a mass of about 130 kg, with its nickel-zinc batteries contributing a total mass of 

about 30 kg. This robotic system is capable of about 15-30 minutes of operation, 

depending on its workload. This illustrates a major technological bottleneck for the 

development of human-scale mobile robots that can operate power-autonomously 

(untethered) for extended periods of time. 
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Short operational times and limited power limits the introduction of mobile robots 

in applications where they can considerably improve the quality of human life or replace 

humans performing hazardous operations. As an example, a robot in a combat operation 

is expected to continue for sufficiently long enough time to complete the mission [2]. 

Similarly, a robot can be used in an environment that is hazardous by nature to the human 

health. One such situation is clearing the nuclear waste in a nuclear power plant where 

the environment is extremely unhealthy [3,4]. Another application that is currently being 

explored is the introduction of service robots for people who are in need of assisted 

living, such as the elderly or handicapped [5]. One of the principal purposes of such a 

robot assistant would be to provide handicapped people with the freedom to live and 

travel independently. A service robot should thus ideally travel nearly everywhere with 

its attendee and perform such tasks as reaching items from the upper shelves of a grocery 

store. Similarly, the use of robots in rescue operations is an active area of research. A 

mobile robot can be deployed to search the debris of collapsed structures to look for 

trapped victims [6]. Space exploration is another application where the robots are used, 

but their functionality is greatly limited [7]. In almost all the cases, the robots are 

required to have a power source that is capable of providing energy and power 

appropriate for controlled actuation for extended periods of time. To make use of the full 

potential of mobile robots, an alternative power source is needed. 

One of the alternatives to a battery is the use of liquid fuels for the power supply 

and actuation of self-powered robots. Liquid chemical fuels have high thermodynamic 

energy densities. In this case the stored chemical energy of the fuels can be converted to 

heat whereupon the resulting heat released is converted to mechanical energy by the 
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expansion of gaseous products. Among several possibilities, monopropellant liquid fuels 

offer several advantages for this type of system over other candidate fuels or energetic 

materials [8]. Monopropellants are a class of chemicals that rapidly decompose in the 

presence of a catalyst. Since no ignition is required to start the chemical reaction, it 

eliminates the need of an igniting mechanism and thereby results in a low weight energy 

converter system. Moreover, since the exposure of the monopropellant to the catalytic 

material can be controlled via an actuated valve, this form of energy transduction lends 

itself well to controlled compressible fluid power actuation systems. Additionally, this 

method of transduction and actuation provides a high energy density, a high power 

density, the ability to refuel, and the distribution of power through small and flexible 

liquid lines. For the experimental system presented here, hydrogen peroxide is selected 

from among other monopropellants (e.g., hydrazine or hydroxyl-ammonium-nitrate). The 

main reasons for this selection are hydrogen peroxide’s non-toxicity, relative ease of 

handing, its stability at high temperatures, and the safe exhaust products (oxygen and 

water) that allow it to be used indoors. 

Monopropellants were originally developed in Germany during World War II. 

Since then they have been utilized in applications such as power gas turbines and 

thrusters of Spacecrafts (e.g. [9]). Their potential has also been recognized for the 

development of micro-propulsion systems in nano-satellites [10]. However, unlike the 

servo-controlled chemofluidic actuators discussed in this paper, the exothermic reaction 

dynamics are typically not a part of the control loop in present applications of 

monopropellant based systems. The chemofluidic system also poses several unique low-

level (i.e., position, force, and impedance) control challenges unlike those present in the 
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control of other more standard actuators like DC motors or fluid-powered (i.e., hydraulic 

or pneumatic) actuators. The uniqueness of these challenges is due to several factors. 

First, the system is both hydraulic and pneumatic in nature. As described in the following 

section, the inlet flow to the direct-injection system is hydraulic, while the exhaust flow is 

pneumatic, and the control of the mechanical work output requires the cooperative 

control of both. Second, the exothermic reaction dynamics that provide the actuator work 

are contained inside the control loop. These dynamics are significant and cannot be 

neglected, and thus stable high-bandwidth control requires an appropriately constructed 

lumped-parameter dynamic characterization. In addition to the reaction dynamics, the 

thermal energy generated by the exothermic reaction is transduced to mechanical work 

via the thermodynamic constitutive behavior of the reaction products, which must also be 

dynamically characterized for stable, desirable, closed-loop behavior. 

Though the modeling and control of fluid powered actuation has been a topic of 

study present in the scientific literature (e.g. refer [11-14]) since the 1950’s, little 

modeling has been done for the hydraulic/pneumatic chemofluidic system described in 

this paper. Recent works by Barth et al. [1] have shown the modeling of the direct 

injection system. Some preliminary experimental findings on the energetic capability of 

the chemofluidic actuation system are presented in [15]. In their work, a first order 

dynamic model was assumed for the heat released. Similarly the heat loss was 

characterized by a first order dynamic equation. In this paper, the system model is 

extended to replace the assumptions with first principle constitutive relations.  

 



18 

2. Operating Principle 

The operating principle of the monopropellant powered system to extract 

mechanical work is shown in Figure 2-1. Hydrogen peroxide is fed from a pressurized 

blow-down storage tank into the catalyst pack via a solenoid-actuated valve. The storage 

tank is pressurized to 2070 kPa (300 psig) with an inert gas to create the necessary 

pressure drop across the valve required for fuel delivery. The duration of the valve 

opening governs the amount of hydrogen peroxide that flows into the catalyst pack. Upon 

contact with the catalyst, the monopropellant decomposes into steam and oxygen as per 

the following equation: 

 2 2 2 22 ( ) 2 ( ) ( )H O l H O l O g Heat→ + +  (1) 

The decomposition of hydrogen peroxide is highly exothermic. Two possible 

configurations to extract mechanical work from the hot gaseous products are shown in 

the figure. Figure 2-1(a) shows a centralized system in which the hot gaseous products 

are collected in a centralized reservoir. This hot reservoir is in turn connected to the 

actuator’s cylinder chambers via a voice-coil-actuated pneumatic four-way proportional 

valve. A controlled amount of compressible fluid is provided by the valve to either of the 

two chambers depending on the force and the load requirements to generate the desired 

mechanical work.  

In the second configuration (Figure 2-1.b), termed as direct injection, the work of 

the actuator piston is controlled by directly injecting the hot gaseous products from the 

catalyst pack into the chambers (i.e., no reservoir for storing hot gases). The output of 

this type of a system is controlled using liquid valves that govern the flow of 

monopropellant to the catalyst packs, as well as an exhaust valve that depressurizes each 
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chamber by exhausting the gaseous products to the external environment. The block 

diagram of both the configurations is shown in figure 2-2. 

 

3. System Modeling 

The modeling task here includes the modeling of a hydraulic inlet valve, a catalyst 

pack, a compressible fluid power actuator, and a pneumatic exhaust valve. An energy 

balance based approach is taken to model these components and their interaction. In the 

case of the catalyst pack and actuator chamber, a control-volume approach is taken. With 

the knowledge of the mass, energy, and heat crossing the boundary of the control-

volume, the system dynamic equation can be derived using the law of conservation of 

energy. 

 

3.1 Hydraulic Inlet Valve 

The hydraulic valve is one of the control elements of the actuation system. Precise 

control of the system requires the precision metering of monopropellant via the valve. 

The mass flow rate through the valve is a function of upstream and downstream pressures 

and the density of the fluid flowing through the valve, and is given as follows: 

 in inm Qρ= &&  (2) 

where, inm&  is the mass flow rate; ρ  is the density of the fluid; inQ&  is the volumetric flow 

rate. The volumetric flow rate can be derived using Euler’s and Continuity equations and 

is defined by: 

 1 2
2 ( )in d oQ C A P P
ρ

= −&  (3) 
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where, Cd is the discharge coefficient (a manufacturer provided, or easily measured, 

parameter); A0 is the orifice area of the valve; P1 and P2 are the upstream and downstream 

pressures respectively. Substituting equation (3) into equation (2) yields: 

 1 22 ( )in d om C A P Pρ= −&  (4) 

Equation (4) is a well accepted model in the literature for the liquid flow through a 

control valve. This model cannot be derived rigorously but instead is obtained by 

considering the control valve as analogous to a flat plate orifice (Figure 2-3). 

 

Since the density of the fluid passing through the control valve is constant for the system 

presented in this paper, equation (3) can be re-written in a simplified form as: 

 1 0 1 2( )inm C A P P= −& ,       where 1 2dC C ρ=  (5) 

 
 

3.2 Catalyst Pack 

The catalyst pack is the component where the energy conversion from stored 

chemical energy to heat takes place. The monopropellant enters into the catalyst pack 

from one end and the chemical reaction is triggered as it moves over the catalyst bed. As 

a result, hydrogen peroxide decomposes into steam and oxygen and heat energy is 

liberated. The catalyst bed offers resistance to the flow of both the reactant and the 

resultant gaseous products. The flow resistance can be modeled as the fluid passing 

through an orifice (Figure 2-4) and the governing equations can be obtained. The 

modeling of the catalyst pack is divided into two subsections. In the first subsection, the 

flow resistance offered by catalyst bed is modeled. The next subsection captures the 
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reaction dynamics and the energy released by the decomposition of the monopropellant 

hydrogen peroxide. 

 

3.2.1 Catalyst Pack Flow Resistance 

Since the inlet to the catalyst pack is a liquid and the output is gaseous products, the flow 

over the catalyst bed can be modeled as two extremes. In the first case, it is considered 

that the monopropellant decomposes at the end of the catalyst pack and hence the flow 

through the catalyst pack is a liquid throughout the length. In the second case, it is 

considered that the monopropellant decomposes at the start of the catalyst pack and hence 

the gaseous products flow across the length. With the first consideration, the derivation of 

mass flow rate through the catalyst pack is similar to the model of the hydraulic inlet 

valve and is given as: 

 2 2 3( )in catm C A P P= −&  (6) 

where 2P  and 3P  are the upstream and downstream pressures of the catalyst pack 

respectively, 2C  is the function of discharge coefficient ( dC ) of the catalyst pack and the 

density of the fluid ( ρ ) passing through it ( ρ22 dCC = ) , and Acat is the effective area 

of the catalyst pack. 

With the second assumption (decomposition at the beginning of the catalyst 

pack), the mass flow rate can be obtained as discussed in Section 3.4 of this paper. Both 

cases considered here are ideal and in reality, the phase transformation takes place 

somewhere along the length of the catalyst pack. In this paper, the first assumption 

(decomposition at the end of the catalyst pack) is used to calculate the mass flow rate 
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through the hydraulic inlet valve and the catalyst pack. Eliminating 2P  from equations (5) 

and equation (6) yields: 

 *
1 3( )inm C P P= −&        where, * 1 0 2

2 2
1 0 2

( )( )
( ) ( )

cat

cat

C A C AC
C A C A

=
+

 (7) 

This above equation characterizes the input-output relationship of the inlet hydraulic 

valve as shown in the block diagram (figure 2-2). The input to the block is the area of the 

valve and the output is the mass flow rate of the propellant. 

 

3.2.2 Catalyst Pack Thermal Modeling 

A control volume (CV) approach is taken to model the catalyst pack. As such, 

mass, heat, and work can cross boundaries of the control volume. A power balance 

equates the energy storage rate to the energy flow rate crossing the boundary. The rate 

form of the first law of thermodynamics is given as follows: 

 catcatcatcat WQHU &&&& −+=  (8) 

where catU&  is the rate of change of the internal energy of the catalyst pack, catH&  is the net 

rate of change of enthalpy entering the catalyst pack, catQ&  is the net rate of change of heat 

energy entering into the catalyst pack, and catW&  is the power or rate of work done by the 

system on the external environment. The potential and kinetic energy associated with the 

fluid/ gases entering and leaving the catalyst pack is assumed negligible in equation (8). 

This is because of the fact that these energies are negligible as compared to the heat 

energy of the gases that are leaving the controlled volume. In addition, uniform properties 

of the mass entering and leaving the CV are assumed.  
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The dynamic characteristics of the catalyst pack are obtained by solving equation 

(8). In the following part of this section, all the terms of equation (8) are evaluated and 

the resulting expressions are then substituted in the rate form of first law of 

thermodynamics (i.e., equation (8)) to obtain the input-output relationship of the catalyst 

pack block of figure 2-2. 

 

(a) Determining Rate of Change of Work Done 

Considering the fixed volume of the catalyst pack, the work done by the catalyst pack on 

a CV drawn around it is zero and hence,   

 catW& = 0 (9) 

 

(b) Determining Rate of Change of Enthalpy: 

The net rate of change of enthalpy is given by: 

 outcatincatcat HHH )()( &&& −=  (10) 

where incatH )( &  and outcatH )( &  are the rate of change of enthalpy entering and leaving the 

CV respectively. incatH )( &  in equation (10) is calculated by the expression: 

 incatH )( = inpin TCm  (11) 

where inm  is the mass of the fluid entering into the CV, Cp is the average specific heat of 

the liquid monopropellant at a constant pressure, and inT  is the temperature of the liquid 

entering into the CV.  

Differentiating equation (11) yields: 

 incatH )( & = inpin TCm&  + inpin TCm &  (12) 
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Since there is almost no variation in the temperature of monopropellant entering into the 

catalyst pack, inT  can be assumed as constant and the equation (12) reduces to the 

following: 

 incatH )( & = inpin TCm&  (13) 

Substituting incatH )( &  from equation (13) into equation (10) yields: 

 outcatinpincat HTCmH )( &&& −=  (14) 

 

(c) Determining Heat Energy Rate Entering the Controlled Volume: 

The rate of heat energy supplied to CV can be calculated as follows: 

 catQ&  = DQ& - EQ&  (15) 

where DQ&  is the rate of heat released by decomposition of hydrogen peroxide and EQ&  is 

the rate of heat lost to the environment. 

The decomposition of a monopropellant in the catalyst pack results in the release 

of heat. The chemical equation of hydrogen peroxide decomposition is given by the 

equation (1). The heat released by the reaction can easily be calculated using enthalpy of 

formation fh  and molecular weights of the reactants and the products: 

 )()( 22
lh OHf = -187.61 kJ/mol; 

2( ) ( )f H Oh l  = -285.83 kJ/mol; )( 2Ofh =  0; (16) 

The molecular weights of H2O2, H2O, and O2 are 34.016 g/mol, 18.016 g/mol, and 32 

g/mol respectively. 

Using heats of formation and molecular weights, equation (1) can be used to 

derive the heat produced in the reaction: 

 1 kg (H2O2) = 
2Ox kg (H2O) + 

2 2H Ox kg (O2) + ∆Hr (17) 
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where ∆Hr  is the heat released per kilogram of hydrogen peroxide. 

 
2Ox = 0.53, 

2 2H Ox = 0.47, ∆Hr = 2887.465 kJ for 100% H2O2 (18) 

 
2Ox  = 0.67, 

2 2H Ox  = 0.33, ∆Hr = 2020.615 kJ for 70% H2O2 (by volume) 

 

With known ∆Hr, DQ& can be calculated using the following equation: 

 DQ& = -∆Hr Dm&  (19) 

where Dm&  is the decomposition rate of hydrogen peroxide in the CV. The decomposition 

of hydrogen peroxide obeys a first order chemical kinetics law. The rate of 

decomposition is strongly dependent on the temperature, purity of the monopropellant, 

and the type of catalyst used. The rate of change of the concentration of hydrogen 

peroxide is given by the Arrhenius law (refer Khoumeri et al. [16]): 

 ][
][

22
22 OHeK

dt
OHd RT

E

o
D a−

−=  (20) 

where 
dt
OHd D][ 22  is the rate of change of concentration of hydrogen peroxide in the CV, 

Ea ( mol
J ) is the activation energy of hydrogen peroxide, T is the temperature inside the 

catalyst pack , oK  is the pre-exponential factor, and RT
Ea

e
−

 is the Boltzmann factor. 

 

Multiplying equation (20) by molecular weight and the volume of hydrogen peroxide 

results in: 

 meKm RT
E

oD

a−

−=&  (21) 
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where m is the total mass of the monopropellant in the catalyst pack. The above equation 

shows that the rate of decomposition of hydrogen peroxide increases exponentially with 

an increase in temperature. The non-linear dynamic model presented by Khoumeri et al. 

for the change of hydrogen peroxide decomposition showed a good agreement with 

experimental results. The authors showed the results with a fixed initial amount of 

hydrogen peroxide. The same model is used in this paper and the mass of the 

monopropellant inside the catalyst pack as calculated as follows: 

 dtmmm D

t

in )(
0

&& −= ∫  (22) 

In the Laplace domain, equations (19), (21), and (22) can be more compactly represented 

by the following (with a slight abuse of notation due to the non-constant coefficient): 

 
1

D r

in

Q H
m sτ

∆
=

+

&

&
     where, 1

aE
RT

oK e
τ

−
=  (23) 

Equations (23) can be solved either analytically or numerically to calculate the rate of 

decomposition of hydrogen peroxide and for the resulting amount of heat released. 

 

(d) Determining Rate of Heat Loss: 

The energy released by the chemical reaction, DQ , increases the temperature of 

the fluid flowing through the catalyst pack. This results in the phase transformation of the 

reactants and the products from liquid to the gaseous state. A portion of the energy 

released is also lost to the catalyst pack walls. If linear heat conduction is considered, a 

unit analysis reveals that it can be cast in terms of energy flow rates. The linear heat 

conduction equation can be derived using Fourier’s law of heat conduction and is given 

in the following form, 
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 ( )E high atm
kAQ T T
l

= −&  (24) 

where k is the thermal conductivity of the material, l
A  represents the characteristic length, 

Thigh  represents the temperature inside the catalyst pack, and Tatm is the temperature of the 

surroundings. Though this equation gives a direct relationship for heat loss to the 

environment, it also necessitates the measurement of the temperature inside the catalyst 

pack. To avoid adding state variables relating to the temperature of the decomposed 

substance inside the catalyst pack, the temperature of the catalyst pack walls and the 

external environment, the temperature inside the catalyst pack Thigh is assumed to be 

constant. The alternate approach that relates the heat loss to previously established state 

variables regarding energy flow rate is as follows. 

The rise in temperature inside the catalyst pack is the direct result of the rate of 

heat released by the decomposition of hydrogen peroxide. As a consequence, the 

following approximation can be made: 

 high atm cp DT T k Q= + &  (25) 

where, kcp  is a proportionality constant. The above equation shows that a higher 

decomposition rate implies higher temperature inside the catalyst pack and hence higher 

heat losses. As per this assumption, there is no heat transfer to the environment when the 

decomposition rate of the monopropellant is zero. However, it should be noted that in the 

actual case, there is some heat transfer but it is negligible as compared to the losses from 

the actuator due to the larger surface area of the actuator as compared with the catalyst 

pack. 

 

Substituting equation (25) equation into equation (24) yields: 
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 cp D
E

kAk Q
Q

l
=

&
&  (26) 

Since cpkAk
l

 is a constant for a particular configuration of the catalyst pack, the above 

equation can be rewritten as: 

 E cat DQ k Q=& &  (27) 

Either of the two equations, equation (24) (with Thigh as constant) or equation (27), can be 

used to calculate the rate of heat transfer from the catalyst pack. The resulting inaccuracy 

due to the assumptions made here can be taken into account with the design of a model-

based robust controller. 

 

(e) Determining Rate of Change of Internal Energy: 

The internal energy of the catalyst pack is the energy stored by the fluid in the 

CV, where the walls are excluded from the CV. The amount of energy stored by the fluid 

is negligible as compared to the energy stored in the catalyst pack walls (modeled as heat 

loss). This can be seen by considering the steady state temperature condition of the 

catalyst pack. During the steady state condition, the fluid inside the catalyst pack and its 

walls are at the same temperature:  

 ∆Tcat = ∆Tw  (28) 

where ∆Tcat and ∆Tw represent the change of temperatures of fluid in the catalyst pack 

and the walls respectively from an arbitrary reference temperature. Using the 

relationship, ∆U = mC∆T, 

 
ww

w

cat

cat

Cm
U

Cm
U ∆

=
∆

 (29) 
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therefore, 

 w
w

cat

w
cat U

C
C

m
mU ∆=∆  (30) 

where wm  is the mass of the catalyst pack casing, catC  and wC  are the specific heats at 

constant volume of the fluid in the catalyst pack and casing respectively. Dividing both 

sides of the equation (30) by ∆t and taking the limit: 

 w
w

cat

w
cat U

C
C

m
mU && =  (31) 

The ratio 
wm

m
<<1 (approx. 10-4) and also 

w

cat

C
C

<1. Therefore,  

 0≈catU&  (32) 

Substituting catW& , catH& , catQ& , and catU&  from equations (9, 14, 15, 32) in equation (8): 

 outcatH )( & = inpin TCm&  + DQ& - EQ&  (33) 

With these substitutions, equation (33) can be reduced to the following compact 

representation (again with a slight abuse of notation): 

 ( )
1 1

cat out r r
p in cat

in

H H H
C T k

m s sτ τ
∆ ∆⎡ ⎤= + −⎢ ⎥+ +⎣ ⎦

&

&
 (34) 

The input-output relationship of the catalyst pack block in figure 2-2 is governed by 

equation (34). The control input to the block is the mass flow rate of the monopropellant 

and the output is the enthalpy rate flowing out of the catalyst pack. 

 

3.3 Actuator 

The schematic in Figure 2-1 shows the control volume with moving boundaries 

for the chamber. In this case, the control volume boundaries change with the position of 
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the piston. The energy balance equation is again applied, as per the first law of 

thermodynamics, to obtain: 

 chchchch WQHU &&&& −+=  (35) 

In the above equation, subscript “ch” shows that properties here stand for the chamber. 

The dynamic characteristics of the actuator are obtained by the use of the above equation. 

All of the terms of this equation are evaluated in the following subsections. 

 

(a) Rate of Change of Internal Energy 

By taking the average specific heat, Cv, in the temperature range of 300K to 450K, 

internal energy of the chamber is given by the expression: 

 )( chvchch TCmU =  (36) 

where mch is the mass of the gaseous products in the CV of the cylinder and Tch is the 

temperature in the cylinder. Therefore,  

 )( chvchch TCm
dt
dU =&  (37) 

Using the relationship, 
1−

=
γ

RCv  and substituting in the above equation results in: 

 )
1

(
−

=
γ

RTm
dt
dU ch

ch
&  (38) 

where γ  is the ratio of the specific heat at constant pressure to the specific heat at 

constant volume, 
v

p

C
C

=γ , and R is the gas constant. Using the ideal gas relationship PV 

= mRTch, equation (38) yields: 

 )
1

(
−

=
γ
PV

dt
dU ch

&  (39) 
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The above equation can be rewritten as follows: 

 
1

)(
−
+

=
γ

VPVPU ch

&&
&  (40) 

where P is the pressure in the CV; V is the volume of the CV. 

 

(b) Determining Rate of change of Enthalpy 

The rate of change of enthalpy is defined by the following relationship: 

 outchinchch HHH )()( &&& −=  (41) 

If the heat losses are neglected between the catalyst pack and the cylinder: 

 outcatinch HH )()( && =  (42) 

outchH )( &  in equation (41) can be calculated as follows:  

 
2 2 2 2

( ) [ ( ) ( )]ch out e O p O ex H O f fgH m x C T x h xh= + +& &  (43) 

where em&  is the mass flow rate from the exhaust valve and can be calculated using 

equation (52) discussed in the next section, 
2

( )p OC  is the average specific heat of oxygen 

at a constant pressure, hf is the specific enthalpy of saturated liquid, hfg is the specific 

enthalpy of vaporization, x is the dryness fraction of steam, 
2Ox  and 

2 2H Ox  are the fraction 

of oxygen and hydrogen peroxide per kilogram of the exhaust products (equation (18)), 

and Tex is the temperature of the exhaust products.  

 

(c) Determining Rate of Heat Loss 

The equation of heat loss to the environment is similar to equation (24) defined 

for the catalyst pack and is given as follows: 
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 ( )ch
high atm

k A
Q T T

l
= −&  (44) 

For this case also, Thigh is assumed as a constant for the purposes of calculating heat 

losses to the environment. 

 

(d) Determining Rate of Change of Work Done 

The rate of work done by the cylinder, chW& , can be calculated using the following 

relationship:  

 chW PV=& &  (45) 

Substituting the expressions for chU& , chH& , and chW&  into equation (36) results in: 

 VPQHHVPVP outchinch
&&&&&& −+−=+

−
)()()(

1
1

γ
 (46) 

Rearranging equation (46) yields: 

 
V

VPQHH
P outchinch )(])())[(1( &&&&
& γγ −+−−
=  (47) 

The rate of change of pressure inside each chamber can therefore be expressed as: 
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ba

bababaoutchinch
ba V

VPQHH
P

&&&&
&

γγ −+−−
=  (48) 

where ),( baP  is the pressure of the chambers “a” and “b” of the cylinder respectively, and 

),( baV  is the volume of each cylinder chamber. The volume in each chamber is related to 

the rod position y by: 

 a aV A y=  (49) 

 ( )b bV A L y= −  (50) 
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where, Aa and Ab are the piston effective areas, and L is the stroke length of the piston. 

The position, y, of the piston is in turn obtained from the equation of motion which can 

be expressed as: 

 f a a b b atm rMy By F P A P A P A+ + = − −&& &  (51) 

where M is the mass of the piston-load assembly, B is the viscous friction coefficient, Ff 

is the Coulomb friction force, Aa and Ab are the piston effective areas, and Ar is the area 

of the rod. 

The gas constant used in the above equations is the weighted average of gas 

constants of the steam and oxygen. This following relationship can be derived using 

Dalton’s law of partial pressures (see [17]): 

 
m

RmRm
R OOsteamsteam

m
22

+
=  (52) 

Similarly γ  is also the weighted average of the specific heat ratios of steam and oxygen.  

The equation (48) characterizes the input-output dynamic relationship of the 

actuator in figure 2-2. The same equation also characterizes the hot gas reservoir in the 

centralized configuration (Figure 2-2a). The output, P& , of this block is a function of two 

inputs. The first input, ( )ch outH& , is the enthalpy flow rate out of the chamber and the other 

input is the enthalpy flow rate, ( )ch inH& , entering the chamber. 

 

3.4 Pneumatic Exhaust Valve 

The mass flow rate through the pneumatic valve depends on the upstream and 

downstream pressures. The mass flow rate increases with the increase in the ratio of 

upstream to downstream pressure. The chocked condition occurs when the velocity of 
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flow through the valve orifice reaches the speed of sound, in which case the mass flow 

rate depends linearly on the upstream pressure. Below this velocity, the flow is unchoked 

and the mass flow rate is a non-linear function of upstream and downstream pressure. 

The flow rate under subsonic and sonic conditions are given as follows (refer [14,18]) 
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where Ce is the discharge coefficient of the valve (a manufacturer provided parameter), 

Ae is the exhaust area of the valve, Te is the exhaust temperature of the gaseous products, 

and Pu and Pd are the upstream and downstream pressures of the valve respectively, with 

Pd being atmospheric pressure in this case. Equation (52) characterizes the dynamics of 

the exhaust valve (refer to Figure 2-2), where the input to the block is the exhaust valve 

area and the output is the mass flow rate through the valve. 

 

4. Experimental Setup and System Identification 

Experiments were conducted to check the accuracy of the first-principles derived 

dynamic model. A schematic for the system setup is illustrated in Figure 2-1. The 

objective of the experiments was to measure the change of pressure in the cylinder for 

any given input to the binary on/off input valve or proportional exhaust valve as a 

function of time. These measured results were in turn compared to the corresponding 

output obtained by the derived dynamic model. The closeness of the response obtained 
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experimentally to the model based response will indicate the accuracy and correctness of 

the model. 

For the experiment, two significantly different volume cylinders of different 

geometries were selected to show the model invariance to design changes. In the first 

setup (dash-dotted line of Figure 2-1a), a 300 cubic centimeter fixed volume cylinder was 

used as a reservoir. The propellant was stored in a stainless-steel blow-down propellant 

tank which was equipped with a pressure transducer (Omega PX200-200 GV). Liquid 

hydrogen peroxide with 70% concentration pressurized to 690 kPa (100 psig) with inert 

nitrogen gas was used in the experiment. A single solenoid-operated binary on/ off valve 

(Parker General Valve model 009-581-050-2) was used for controlling the flow of 

propellant from the blow-down tank. The catalyst pack that immediately follows the 

binary on/off valve was constructed in house and consists essentially of a 5-cm-long 

stainless-steel tube packed with the Shell 405 catalyst material. A thermocouple (Omega 

K-type) was attached to the catalyst pack to measure the rise in temperature. The catalyst 

pack was in turn connected to the hot gas pressure reservoir. The pressure in the reservoir 

was measured using a pressure transducer (Omega PX202-200 GV) attached to the 

reservoir.  

In the experiment, hydrogen peroxide passes through the solenoid operated on/off 

inlet valve and the catalyst pack as commanded, and pressurizes the fixed volume 

cylinder. The inlet valve was opened for different time durations (from 1 second to 5 

seconds) to measure the rise of pressure in the fixed volume cylinder. The valve was 

commanded using a Pentium 4 PC with an A/D card (National Instruments PCI-6031E). 
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The change in the pressure inside the fixed volume cylinder was recorded and compared 

with the model response to the same input. 

In the second setup, the fixed volume cylinder was replaced with a variable 

volume (maximum volume of 58 cubic centimeters) pneumatic cylinder (Figure 2-1b) 

with a corresponding maximum stroke length of 4 inches. In addition, a 4-way solenoid 

valve (MicroAir Numatics) was modified to offer proportional operation and was utilized 

for discharging steam and oxygen from the cylinder to the atmosphere. Pressure sensors 

(EPXT Entran) were used to measure the pressures in the cylinder. For this experiment, a 

series of pulses of 50 milliseconds were given to the solenoid operated input valve. The 

corresponding rise of pressure in the chamber (chamber “a” of Figure 2-1b) was recorded 

and compared with the simulation results. Similarly, the exhaust valve was commanded 

to open for 120 milliseconds and the resulting drop in the pressure was recorded and 

compared to the simulation results. In this setup, relatively high supply pressure of 2.07 

MPa (300 psig) was used. In another set of readings, the piston was set at different 

positions (therefore different volumes) and the pressure data was collected for the same 

input signal. The experiment was also repeated by continuously changing the position of 

the piston. 

For evaluating the model response, the valve discharge coefficient of the 

hydraulic valve (Cd) was determined by measuring the mass of water flowing through the 

valve in a certain amount of time. The blow-down tank was filled with water and 

pressurized to 138 kPa (20 psig). The inlet valve was then commanded to open for 5 

seconds and the water flowing out was measured for mass flow rate calculations. With 

this value of flow rate, the valve discharge coefficient was determined using equation (4). 
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The experiment was repeated for different supply pressures and for different opening 

times of the valve. The average discharge coefficient of 0.78 was then calculated based 

on the readings. The solid line in Figure 2-5 shows the plot of mass flow rates that were 

observed experimentally and the dashed line shows the calculated mass flow rate with the 

average discharge coefficient. Similarly, the valve discharge coefficient of the exhaust 

valve was determined experimentally using a Hastings Mass Flow-meter. Compressed air 

was used as the medium for the measurement of mass flow rate at different valve 

openings of the valve (not shown). The average discharge coefficient (Cd = 0.39) was 

then calculated using equation (52). 

 

5. Results and Discussion 

Figure 2-6 shows experimental and simulation results for the fixed volume 

cylinder. The dotted line in the figure shows the simulation pressure while the solid line 

shows the actual pressure rise in the fixed volume cylinder. As seen in the figure, there is 

a good agreement between the simulation and experimental results in terms of the 

pressure and the rate of pressure. Figure 2-6a shows the change in pressure when the inlet 

hydraulic valve was commanded to open for 1 second. As can be seen, the pressure 

increases rapidly up to 1 second and then starts to decrease slowly. The increase in the 

pressure is the result of heat produced due to the decomposition of hydrogen peroxide 

that passes over the catalyst when the valve is opened. The decrease in pressure is 

primarily because of the heat losses to the walls of the cylinder and to the environment. 

The actual drop in the pressure is observed to be little different than the simulation 

results. This is mainly due to the assumption made for calculating heat losses. Other 
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contributing factors for the deviation may include the presence of minor leakages in the 

cylinder through fittings. Figures 2-6b through 2-6e show the rise in pressure with the 

solenoid operated on/off inlet valve commanded to open for 2, 3, 4 and 5 seconds, 

respectively. Figure 2-6f shows the change in the pressure when the valve was 

commanded to open for one second and close for one second in a cycle. 

The results for the variable volume cylinder are shown in Figures 2-7 and 2-8. 

Figure 2-7a shows the rise in the pressure when the position of the piston was set and 

held at 1 inch (volume: 14.5 cubic centimeters). The figure shows the rise in the pressure 

when a series of four 50 milliseconds pulses were given to the inlet hydraulic valve. The 

four series of data have been placed on the same figure for compactness, but each was a 

separate run where the initial pressure in the simulation was set to match the actual initial 

pressure. Figure 2-7b shows the drop in the cylinder pressure when the exhaust valve was 

opened for 120 milliseconds. Two separate cycles of the exhaust valve opening are 

shown in the figure. It was observed in the experiment that the recorded temperature of 

the exhaust products was close to the saturation temperature. This indicates that the 

quality of steam is between the saturated liquid and saturated steam. The enthalpy of 

steam flowing out of the cylinder was calculated using a steam look-up table. The best 

results were obtained when the dryness fraction of the steam was set to a value of 0.35. 

Similarly, figure 2-8 shows the simulation and experimental results when the 

length of the piston was set and held at 4 inches (volume: 58 cubic centimeters). Figure 

2-9 shows the change in pressure when the volume of the cylinder was changed 

continuously over a period of time by imposing a variable load on the output piston 
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during operation. A close agreement is observed between the simulation and 

experimental results.  

 

In the simulation, most of the parameters of the model were set as per the values 

found in the literature. Some of the parameters (e.g., valve discharge coefficient, kcat) 

were either identified experimentally or tuned for better results. For example, the value of 

the pre-exponential factor (Ko) ranges from 1014 to 1019 s-1 in literature. But the best 

results were obtained using the value of Ko as 10.1017 s-1. One major intent of this work 

was to formulate a model that had a minimum number of empirical parameters. Of the 

empirical parameters left in the model presented, all are intuitive quantities with intuitive 

and fairly well decoupled influences. It is in this manner that the model is useful: all 

parameters can either be found in the literature or are well understood parameters with 

intuitive effects that can be measured or estimated. As was not the case with prior 

modeling work on this system, the model presented is derived using first principles and 

therefore contains only physically meaningful parameters. The values of all the 

parameters used for this experiment are presented in Table 2-1. Finally, it should be noted 

that it was observed that the effective area of the catalyst pack changes slowly over a 

period of time. This results in a change in the mass flow rate behavior and consequently 

the pressurization rate behavior of the cylinder. This slowly varying plant behavior can be 

addressed either by implementing a robust controller or by adapting this parameter in the 

control design. 
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6. Conclusion 

The dynamic model of inlet hydraulic valve, catalyst pack, actuator, and the 

pneumatic exhaust valve was presented that is associated with a proposed 

monopropellant-based actuation system. This modeling effort was pursued using 

fundamental energetic principles in an effort to obtain a model with physically 

meaningful and well understood parameters. The motivation for obtaining the model was 

to describe the dynamics associated with either the centralized or direct injection 

configuration useful for purposes of control, and in part to aide in the development of 

such monopropellant-based actuation systems. An experimental verification of the model 

revealed good agreement with both dynamic and steady-state characteristics of the 

system.  
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Fig 2-1a. Schematic of the centralized monopropellant actuation system. 
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Fig 2-1b. Schematic of the direct injection monopropellant actuation system. 
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Fig 2-2a. Block diagram of the centralized configuration of the chemofluidic actuation 
system. 
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Fig 2-2b. Block diagram of the direct injection configuration of the chemofluidic 
actuation system 
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Fig 2-3. Steady flow of a liquid through an orifice. 
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Fig 2-5. Plot showing the mass flow rate of the inlet hydraulic valve as a function 
of the pressure drop across the valve. The points on the solid line are the 
measured mass flow rates, and the points on the dashed line are the 
modeled mass flow rates using the average discharge coefficient.  
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Fig 2-6a. Change in pressure inside the fixed volume cylinder with an inlet 
hydraulic valve opening time of 1 second. The solid line is the actual 
pressure and the dashed line is the modeled pressure. 
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Fig 2-6b. Change in pressure inside the fixed volume cylinder with an inlet 
hydraulic valve opening time of 2 seconds. The solid line is the actual 
pressure and the dashed line is the modeled pressure. 
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Fig 2-6c. Change in pressure inside the fixed volume cylinder with an inlet 
hydraulic valve opening time of 3 seconds. The solid line is the actual 
pressure and the dashed line is the modeled pressure. 
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Fig 2-6d. Change in pressure inside the fixed volume cylinder with an inlet 
hydraulic valve opening time of 4 seconds. The solid line is the actual 
pressure and the dashed line is the modeled pressure. 
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Fig 2-6e. Change in pressure inside the fixed volume cylinder with an inlet 
hydraulic valve opening time of 5 seconds. The solid line is the actual 
pressure and the dashed line is the modeled pressure. 
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Fig 2-6f. Change in pressure inside the fixed volume cylinder with a cyclic 
opening and closing of the inlet valve for 1 second. Solid = actual pressure, 
dashed = modeled pressure. 
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Fig 2-7a. Change in pressure inside the variable volume cylinder held at a 1 inch 
stroke length with a commanded inlet hydraulic valve opening time of 50 
ms for four separate runs. Solid = actual pressure, dashed = modeled 
pressure. 

Fig 2-7b.  Change in pressure inside the variable volume cylinder held at a 1 inch 
stroke length with a commanded exhaust valve opening time of 120 ms for 
two separate runs. Solid = actual pressure, dashed = modeled pressure.  
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Fig 2-8a. Change in pressure inside the variable volume cylinder held at a 4 inch 
stroke length with a commanded inlet hydraulic valve opening time of 50 
ms for four separate runs. Solid = actual pressure, dashed = modeled 
pressure. 
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Fig 2-8b. Change in pressure inside the variable volume cylinder held at a 4 inch 
stroke length with a commanded exhaust valve opening time of 120 ms for 
two separate runs.  Solid = actual pressure, dashed = modeled pressure.
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Table 2-1: Values of Parameters used in the Experiment 
 

Symbol Value 

Cd 0.78 
A0 7.3e-9 m2 
Acat 7e-9 m2 
ρ  1035 Kg/ m3 
Cp 725.1 cal/ Kg-0C 
Ko 10e17 s-1 
Ea 106.9 kJ/mol 
R 8.3145 kJ/ kmol-K 

Kcat 0.08  
γ  1.327 

Kch 0.1  
Rm 394.96 J/ Kg-K 
Ce 0.4 
Pcr 0.541 

 
 

Fig 2-9. Change in pressure inside the variable volume cylinder with an inlet 
hydraulic valve opening time of 50 ms and a variable stroke length 
imposed by a variable load on the piston. 
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Abstract 
 

Pneumatic actuators are highly non-linear by their nature. Thus, the robust 

precision dynamic control output of pneumatic systems requires model-based control 

techniques such as sliding mode and adaptive control. These controllers require full state 

knowledge of the system, viz. pressure, position, and velocity. For measuring two of the 

states, pneumatic servo systems require two expensive pressure sensors per axis, and 

hence it makes the system economically non-competitive with most electromagnetic 

types of actuation. This paper presents the development of two Lyapunov-based pressure 

observers for the pneumatic actuator system. The first method shows that an energy-

based stable pressure observer can be developed with the state equations. The other 

method incorporates the output error to control the convergence of the observed 

pressures. A robust observer-based controller is further developed to obtain a low cost 

precision pneumatic servo system. Simulation and experimental results are presented that 

demonstrate and validate the effectiveness of the proposed observers. 

 

1. Introduction 

A schematic of a pneumatic servo system is depicted in Figure 3-1. A typical 

setup consists mainly of a pneumatic cylinder, valves, and sensors. In this system, the 

output position is controlled by a force that arises from the pressure differential across the 

piston in the cylinder. The time derivative of the pressure differential is a non-linear 

function of the mass flow rate in the cylinder chamber via a spool valve, as well as the 

volumes and rates of change of the volumes of the two sides of the cylinder. The mass 

flow rate, in turn, is a nonlinear function of the valve position, which is also the control 
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input to the system, as well as the cylinder pressures, supply pressure and atmospheric 

pressure. As a result, the dynamics of such a system that relates control input to the 

position output is highly non-linear. An additional cause of non-linearity is the seal 

friction between the piston and the cylinder, and any friction that may be associated with 

the motion of the load. The prime cause of non-linearity is the compressibility of air, 

which results specifically in two non-linear components of the system dynamics. The first 

is the non-linear relationship that describes the compliance of an ideal gas in each side of 

the cylinder. The second hard non-linearity is due to the saturation of the mass flow rate 

through the valve at sonic flow conditions. The mass flow rate through the valve initially 

depends both on the upstream and downstream pressures and increases with the pressure 

difference. Once the velocity of air at the venturi of the valve orifice reaches the speed of 

sound, i.e. sonic, the mass flow rate is only a linear function of the upstream pressure. 

This is because pressure disturbances travel at the speed of sound and hence at a sonic 

flow condition, the changes in the downstream pressure cannot travel upstream quickly 

enough to affect the upstream flow. The transition of flow rate between choked and 

unchoked condition is inevitable for any reasonable operating regime of desired motion 

control. The only potential way of avoiding this transition is to reduce the supply pressure 

to a very low level (~200 kPa). However, this low supply pressure renders the system 

almost useless as such a system would suffer from an extremely low output impedance 

and severe power limitations. As such, pressure sensors are commonly employed in non-

linear model-based controllers of pneumatic servo systems in order to detect and 

compensate for the shift in dynamic behavior that occurs in the transition between 

chocked and unchoked flow through the valve.  
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Pressures in the cylinder are commonly used as states in precision pneumatic 

servo actuation systems. The other commonly used states to characterize this system are 

velocity of the piston, and the position. The measurement of pressures characterizes the 

energy storage in the cylinder mainly due to the compressibility of air. Similarly, 

measurement of velocity characterizes the energy stored in the load inertia. A typical 

pneumatic system employs two pressure sensors, and a linear potentiometer to measure 

the states of the system. In general, the velocity signals are obtained by numerical or 

analog differentiation of the position signals with a first or second order filter. The 

requirement for pressure sensing in a pneumatic servo system is particularly burdensome 

because high-bandwidth, high-pressure sensors required for the control of pneumatic 

servo systems are expensive and large (relative to the actuator), with a typical cost 

between $250 and $500. Since pneumatic systems require use of two pressure sensors per 

axis, these sensors add $500 to $1000 per axis of a pneumatic servo system. Coupled 

with valve and cylinder costs, pneumatic systems are not cost-competitive with power 

comparable electromagnetic types of actuation. If the requirement of pressure sensors can 

be eliminated by constructing observers to estimate these states, it will result in an 

average savings of approximately 30 percent in initial costs. Since the other states (viz. 

motion output and velocity) are measurable, the possibility exists to reconstruct the 

cylinder pressures by using the available knowledge of the inputs and the other states of 

the system. It should be noted that the requirement of pressure measurement can be 

avoided by the use of non-model based controllers, such as the position-velocity-

acceleration (PVA) controller structure [1]. Although such controllers have met with a 

certain amount of success, non-model based controllers cannot address the often 
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significant nonlinearities associated with pneumatic systems. It has been pointed out by 

Pandian et. al. [2] that for the precise and robust control performance, the use of pressure 

states is essential. 

Despite a number of prior publications on control methodologies that require full 

state measurement [3-9], few works explicitly consider the initial/operating cost 

associated with pneumatic systems. Pandian et. al. [4] presented a sliding mode controller 

for position control that showed good results at lower frequencies. Richer and Hurmuzlu 

[7] in their work presented the design of a sliding-mode force controller and showed a 

good response up to 20 Hz sinusoidal frequency. All these developed controllers 

concentrated on the position and/or force tracking accuracy and ignored the energetic 

efficiency and/or initial costs associated with the control system. Many authors focused 

on the development of more energy efficient controllers to reduce the operating cost of 

the system. Sanville [10] suggested a use of a secondary reservoir in an open-loop system 

to collect exhaust air. This air was in turn utilized as an auxiliary low-pressure supply. 

Al-Dakkan [11] et al. presented a control methodology that provides significant energy 

savings. They used two three-way spool valves, instead of a conventional four-way 

proportional spool valve, and introduced a dynamic constraint equation that minimizes 

cylinder pressures resulting in lower energy consumption. In other efforts to reduce initial 

costs, Ye et al. [12], Kunt and Singh [13], Lai et al. [14], Royston and Singh [15], Paul et 

al. [16], and Shih and Hwang [17] demonstrated the viability of servo-control of 

pneumatic actuators via solenoid on/off valves in place of proportional valves.  

Though all these efforts were made to reduce initial and operating costs, the 

components of the pneumatic system still remained expensive. In the continuing efforts 
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to achieve higher cost savings, Pandian et al. [2] in their work presented two methods for 

observing pressure in an effort to eliminate costly pressure sensors. In the first method, a 

continuous gain observer design, the pressure is measured in one chamber and the 

pressure in another chamber is observed – thereby eliminating one of the two pressure 

sensors. In this case, a choked flow condition is assumed by the authors. In addition, 

mass flow rate is assumed to be known while deriving the error equation. Both of these 

assumptions are restrictive since at a low pressure difference across the control valve, the 

flow rate is not choked. Also, the mass flow rate is a function of pressure whose value is 

to be estimated. In the second method, a sliding-mode pressure observer design, the same 

assumptions of the first method were used. In this method, the difference between the 

estimated and actual pressure in one chamber is treated as a disturbance and the pressure 

in another chamber is observed using a sliding-mode observer design. However the 

convergence of the error to zero is not clear, as the disturbance, which is the non-

homogenous part or driving term of the desired error dynamic differential equation, can 

lead to large steady state error. In another development, Bigras and Khayati [18] 

presented a design of a pressure observer for a pneumatic cylinder system for which the 

connection ports provide a considerable restriction to the air supply. The observer was 

based on the measurement of actual pressure outside the cylinder and hence pressure 

sensors cannot be eliminated from the system. Wu et al. [19], based on a rank condition 

test concluded that pressure states are not observable from the measurement of motion 

output alone because of the existence of singular points when the system is at rest.  

In this paper, two Lyapunov based pressure observer designs are presented. It is 

shown that the error between the observed and actual observed states converges to zero 
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by including knowledge of valve spool position as well as the motion states of the 

system. At singular points, it can be shown that the error will not diverge away from the 

actual values. At all other points, both observer designs are shown to have analytical 

convergence of the error between the actual pressure and the observed pressure. 

However, and inevitably, the observer experimentally shows some amount of inaccuracy 

in the observed values of the pressures. Therefore, a robust controller based on sliding 

mode control theory is developed in this paper to take into account observer error along 

with the uncertainties present in the system model, like friction, to obtain a low cost 

pneumatic servo system. The organization of this paper is as follows. In the next section, 

a model of the pneumatic system is presented. In section 3, the design and analytical 

properties of two observers, an energy-based Lyapunov observer and a force-error based 

observer is derived. Section 4 presents the design of a sliding mode controller for the 

servo control of pneumatic system shown in Figure 3-2. In section 5 and 6, the 

experimental setup, implementation, and results are discussed.  

 

2. Model of a Pneumatic Servo Actuator 

A model of the standard pneumatic servo actuator is reasonably standard and is 

derived in many texts and papers [20-23]. A complete model of the system was presented 

by Richer and Hurmuzlu [24], where they considered valve dynamics as well as the time 

delay and attenuation associated with pneumatic lines. The salient features of the 

standard dynamic model are summarized in this paper. The dynamic equation for the 

piston-rod-load assembly shown in Figure 3-1 is derived using a force balance equation 

(Newton’s second law) and can be expressed as: 
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 ratmbbaac APAPAPFxBxM −−=++ &&&  (1) 

where, M (kg) is the mass of the load; B is the viscous friction coefficient; Fc (N) is the 

Coulomb friction; Pa and Pb (N/m2 or Pa) are the absolute pressure in each chamber of 

the cylinder, Patm(N/m2 or Pa) is the absolute environmental pressure; Ar (m2) is the cross-

sectional area of the rod, and Aa and Ab (m2) are the effective piston areas in chambers 

‘A’ and ‘B’, respectively.  

 

The dynamics of the chamber pressures Pa and Pb can be derived by utilizing the 

first law of thermodynamics and assuming no heat loss occurs in the cylinder. The 

resulting first order differential equation is as follows: 
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where γ is the ratio of the specific heat at constant pressure (Cp) to the specific heat at 

constant volume (Cv), P

v

C
Cγ = ; R (J/kg-K) is the gas constant; V (m3) is the volume of 

the chamber; subscripts ‘a’ and ‘b’ represents properties of chambers ‘A’ and ‘B’ 

respectively. As per the sign convention used in this paper, m&  is positive while charging 

the cylinder and negative during discharge to the atmosphere. 

 

The pressure dynamics are governed in part by the mass flow rate term, which in 

turn is directly influenced by the commanded flow orifice area of each valve. The 

relationship between the valve area and the mass flow rate of air is derived by assuming 

that the flow through the valve is an ideal gas undergoing an isentropic process, which 

leads to the commonly accepted mass flow rate expressions for a converging nozzle: 
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where Ce is the discharge coefficient of the valve – typically well characterized by the 

valve manufacturer; Av ( 2m ) is the flow orifice area of the valve; T (K) is the inlet 

temperature of the gas; pu and pd ( 2m
N or Pa) is the upstream and downstream pressure 

respectively. It should be noted that during the charging process pu is the supply pressure 

and pd is the chamber pressure of the cylinder. While in the case of the discharging, pu is 

the chamber pressure and pd is the atmospheric pressure. As previously described, the 

chocked condition occurs when the velocity of flow through the valve reaches the speed 

of sound (the conditional statement of equation (3)), in which case the mass flow rate 

depends linearly on the upstream pressure. Below this velocity, the flow is unchoked and 

the mass flow rate is a non-linear function of upstream and downstream pressure. 

 

The complete system dynamics of the pneumatic servo actuator are therefore 

characterized by the state vector ][ ba
T PPxx &=x  and the input ][

ba vv AA=u  and 

described by the combination of equations (1-3), where a positive valve area indicates a 

connection to the supply pressure (charge), and a negative valve area indicates a 

connection to the atmosphere (discharge). The volume and rate of change of volume are 

algebraically related to the displacement and velocity of the piston, and therefore do not 

give rise to independent states.  
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3. Observers 

 

3.1 Energy-Based Lyapunov Observer Design 

In this method, a Lyapunov function is chosen based on the pneumatic energy 

stored in the system. The pressure is estimated based on the following observer 

equations: 

 a
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where, P̂  in the above equations represents the estimated pressure and m̂& represents the 

estimated mass flow rate according to equation (3) based on the estimated pressure and 

the known valve orifice area 
( , )a bVA . Although equations (4) appear to be simply an open-

loop estimation based on an isothermal assumption of the pressure dynamics of equations 

(2), they are actually closed-loop observers due to the relationship between P̂  and m̂& . In 

order to show the convergence between the actual pressures and the estimated pressures 

obtained from the above equations, the following positive definite candidate Lyapunov 

function is chosen for this method: 

 22 )~(
2
1)~(

2
1

bbaa VPVPV +=  (5) 

where, aP% and bP%  represents the error between the actual pressure and the estimated 

pressure in chambers ‘A’ and ‘B’ respectively ( ),(),(),(
ˆ~

bababa PPP −= ). It should be noted 

that the Lyapunov function chosen is based on the energy stored in the cylinder of a 
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pneumatic system and represents the difference between the actual and observed stored 

energies. 

Equation (5) can be rewritten as: 

 22 )ˆ(
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bbbbaaaa VPVPVPVPV −+−=  (6) 

Differentiating equation (6) results in: 
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If the process of charging and discharging of air in the cylinder is considered as 

isothermal (i.e., γ = 1), then using equation (2) the following substitutions can be made in 

equation (7): 

 ),(),(),(),(),( bababababa mRTVPVP &&& =+    and   ),(),(),(),(),( ˆˆˆ
bababababa mRTVPVP &&& =+  (8) 

The thermodynamic process of charging and discharging a pneumatic actuator is an 

active area of research. There are number of publications that discuss extensively over the 

process of gas expansion and compression in the cylinder. It has been shown by some 

researchers that the charging process is dominantly isothermal (refer [25]) and many have 

concluded the discharging process also to be well approximated as isothermal (refer [25, 

26]). Therefore, an isothermal process is a reasonable assumption to make. 

 

Substitution of equation (8) in equation (7) yields: 

 )ˆ)(ˆ()ˆ)(ˆ( bbbbbaaaaa mmPPRTVmmPPRTVV &&&&& −−+−−=  (9) 

In the above equation, V&  is negative semi-definite. The term 

)ˆ)(ˆ( ),(),(),(),( babababa mmPP && −− is always non-positive for both the charging and discharging 
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process. During the charging process for a given known valve orifice area, if the actual 

pressure in the cylinder is higher than the estimated pressure, then the actual flow rate 

will be less than the estimated flow rate. This is because a higher downstream pressure 

always results in a lower mass flow rate in case of the unchoked flow. For the case of 

choked flow, m& and m̂& will be equal as the flow rate is only a function of known supply 

pressure. In contrast, for the discharging process with a known valve orifice area, a 

higher actual pressure in the cylinder will result in a higher mass flow rate than the 

estimated mass flow rate. However, as noted earlier, both m& and m̂& will be negative 

because of the sign convention of discharge, again resulting in a non-positive 

)ˆ)(ˆ( ),(),(),(),( babababa mmPP && −−  term. This term always being non-positive acts as a natural 

feedback correction between the actual and observed pressures. This of course hinges on 

a well characterized valve with an accurate, high bandwidth command of the flow orifice 

area – something typically well provided by the valve manufacturer – and the accuracy of 

equation (3) – which has been shown in the literature to be quite accurate. 

At singular points, i.e. when the velocity and control inputs are zero, the value of 

the scalar function V&  is zero. Consequently, it can be inferred that the error will not 

diverge away from the real values. Since V& is negative semi-definite, the equilibrium 

point of zero is stable.  

 

3.2 Force-Error based Observer Design 

In this method, the Lyapunov function is chosen based on the error between actual 

and estimated pressures of the cylinder as determined through an estimate of the force 
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(which is estimated from the motion of the load). The pressure is estimated based on a 

state equation with the corrective term as follows: 
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where,  )ˆˆ()(~
bbaabbaa APAPAPAPF −−−=∆  (11) 

This term, F∆ % , can be calculated using a manipulation of equation (1) 

( ratmcbbaa APFxBxMAPAP −++=− &&& ), and using estimates of pressures in chambers ‘A’ 

and ‘B’. The above equation can be rearranged as: 

 bbbaaa APPAPPF )ˆ()ˆ(~ −−−=∆  (12) 

The convergence of the pressure estimation error can be shown by using the following 

candidate positive definite Lyapunov function: 
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Differentiating equation (13) results in: 

 bbaa PPPPV &&& ~~~~
+=  (14) 

Substituting equation (10) in the equation (14) yields: 
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Rearranging equation (15): 
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It has already been shown in the previous section that first two terms in the above 

equation are negative semi-definite. Therefore, in order to make V&  negative definite, 

terms )( 1 a
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 should be positive along with the constraint: 
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The above equation is a quadratic equation and can be solved to get bounds on the value 

of k1 and k2 which will give real values of these two parameters. 

 

For analyzing the scalar function V& , consider three cases: 

Case I:  Velocity ( x& ) positive ( aV&  positive and bV&  negative) 

It can be shown by solving the quadratic equation (equation (18)) that selection of gains 
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Case II: Velocity ( x& ) negative ( aV&  negative and bV&  positive) 

The solution of the quadratic equation shows that selection of gains as 
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it can be shown that selection of gains as 21
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=2  will result in a 

negative definite V& for sufficiently high velocities. 

  

Case III: Velocity ( x& ) and control inputs zero (Singular points) 

Setting gains k1 and k2 equal to zero will result in V&  equal to zero (negative semi-

definite). This case is similar to the singularity condition of the energy-based Lyapunov 

observer. 

From a consideration of all three cases, at worst V& is negative semi-definite, and 

the equilibrium point of zero is stable.  

 

4. Sliding Mode Controller 

The proposed motion controller in this paper is based on sliding mode control 

theory. Sliding mode controllers are generally well suited for pneumatic servo actuators 
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due to the highly non-linear behavior and uncertainties present in the model. The 

equivalent control input is calculated such that the rate of change of a positive-definite 

( 21 ( )
2

V s t= ) Lyapunov scalar function is zero ( 0V =& ), where the manifold s = 0 is 

defined as the desired stable motion tracking error dynamics. A corrective term is then 

added to the equivalent control input to make V&  negative in the face of uncertainty, 

which implies robustness of the controller and provides uniform asymptotic stability. 

With this condition satisfied, all trajectories will move towards the surface s(t) = 0, and 

once they reach the surface, remain on it for all future time. 

For the system shown in Figure 3-2, the desired output is the position of the end-

effector. The control input to the system is the area of the valve. In order to derive the 

control law, define a time-varying sliding surface as: 

 e
dt
ds

n 1−
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⎜
⎝
⎛ += λ  (19) 

where, λ  is a strictly positive number, n is the number of times the output must be 

differentiated to get the input, and e is the error between the actual and desired position. 

 

The above equation can be rewritten as: 

 eexxs d
22)( λλ ++−= &&&&&  (20) 

Substituting the expression of x&&  from equation (1) in the equation (20), and neglecting 

friction: 

 eexxBAPAPAP
M

s dratmbbaa
22)(1 λλ ++−−−−= &&&&  (21) 

Differentiating equation (21) results in: 
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 eexxBAPAP
M

s dbbaa &&&&&&&& 2)3( 2)(1 λλ ++−−−=  (22) 

In the control of the pneumatic system shown in Figure 3-2, two four-way proportional 

spool valves were used. However, they were constrained to act as a one four-way 

proportional spool valve. Accordingly, the following constraint equation was imposed on 

the control input, which is the effective or signed valve area in this case: 

 
ba vvv AAA −==  (23) 

A positive valve area corresponds to the charging of chamber ‘A’ and discharging of the 

chamber ‘B’, while a negative area corresponds to charging of the chamber ‘B’ and 

discharging of the chamber ‘A’. 

Using constraint equation (23), substituting the value of aP&  and bP&  in equation 

(22) and equating s&  to zero yields the equivalent control law: 
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The function ψ  captures the shift in dynamic behavior that occurs in the transition 

between choked and unchoked flow through the valve. The switching condition in 

equation (24) ensures that the controller uses the right equivalent control law. This 

equivalent control input provides marginal stability in the sense of Lyapunov and uses 
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model and error information. As noted earlier, a robustness term is added to this control 

input to ensure uniform asymptotic stability. Thus the final control input is given by: 
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where k is a strictly positive gain and captures bounded uncertainties of the model and the 

pressure observer; Φ is the boundary layer thickness and selected such as to avoid 

excessive chattering across the sliding surface while maintaining the desired performance 

of the system. 

The saturation function in equation (25) is defined by the following: 
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5. Experimental Setup 

The sliding mode controller, along with the developed observers, was 

implemented for the servo control of a commercial two-degree of freedom pneumatic 

robot (manufactured by Festo Corporation). A schematic of the system setup is illustrated 

in Figure 3-1 and the actual setup is shown in Figure 3-2. For the results, only one degree 

of freedom is used, which is a double acting pneumatic cylinder (Festo SLT-20-150-A-

CC-B). Two four-way proportional spool valves (Festo MPYE-5-M5-010-B) constrained 

to operate together are used for controlling charging and discharging process of both 

chambers of the cylinder. A linear potentiometer (Midori LP-150F) with a travel length 

of 150 mm is used to measure the position of the load. The velocity signals are obtained 

by an analog differentiator with a first order roll-off at 50 Hertz. Similarly, acceleration 
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signals are obtained by an analog differentiation of the velocity signals with a first order 

roll-off at 50 Hertz. Two pressure transducers (Festo SDE-16-10V/20mA) are also used 

in the setup for the measurement of actual pressures. The control and the observer 

algorithms are implemented using Real Time Workshop (RTW) from Mathworks on a 

2.4GHz, 512MB RAM, Pentium IV processor based PC. The communication between 

the computer and the experimental setup is established through the digital input and 

analog output channels of an A/D card (National Instruments PCI-6031E). 

The maximum pressure supply used for this experiment is 620kPa (90 psig). 

Some of the parameters (example, area of piston, area of rod, stroke length, pay-load 

mass) for this experiment are known accurately. The discharge coefficient (Ce), which 

primarily represents frictional flow losses, is a function of the valve area among other 

parameters such as the size and shape of the valve opening, surface finish and similar 

parameters. For this experiment, the average discharge coefficient was calculated based 

on the volumetric flow chart provided by the valve manufacturer. Other parameters, like 

the viscous friction coefficient, are difficult to measure. Therefore, these parameters are 

estimated. 

The experiment was conducted in two stages. In the first stage of the experiment, 

pressure sensors signals were used in the control law to control the end-effector with a 

mass of 3.6 kilograms. For this, the robotic arm was controlled to execute a sinusoidal 

motion at different frequencies. The same experiment was then repeated for step inputs. 

In another set of readings, disturbances were introduced in the system by applying 

external forces (using our hand) to the robotic arm to ensure the robustness of the 

observer in presence of disturbances and uncertainties (such as friction) in the system. In 
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all the cases, the actual pressures in both the chambers were recorded and compared with 

the corresponding observed pressures. 

In the second stage of the experiment, to prove the effectiveness of the observers, 

the pressure sensors were disconnected from the system. The robotic arm was then 

controlled using the estimated pressures from the pressure observers. The end-effector 

was commanded for the same sinusoidal and step input as used for the first stage of the 

experiment. Subsequently, the tracking performance of the robotic arm was compared to 

the tracking obtained using pressure sensors.  

 

6. Results and Discussion 

Figure 3-3 shows a comparison of observed and actual pressures at a 0.5 Hz 

sinusoidal motion of amplitude 30 mm. In figure 3-3a, the solid line shows the actual 

pressure as measured with a pressure sensor in chamber ‘A’. The dotted line shows the 

observed pressure with the energy-based Lyapunov observer. Similarly, figure 3-3b 

shows the observed and actual pressures from the force-error based observer in chamber 

‘A’. Figure 3-3c and 3-3d shows the measured and observed pressures in chamber ‘B’. 

Figure 3-4 and Figure 3-5 shows the convergence of the observed pressure at 2 Hz 

and 3 Hz frequencies respectively. The initial conditions of the observed pressures in this 

case were set different from the actual initial values to check the convergence rate. As 

can be seen in Figure 3-4a, the initial pressure of the observer for chamber ‘A’ was set to 

atmosphere pressure (101 kPa) when the actual pressure in the chamber was 475 kPa. 

The observed value converges in nearly 0.3 seconds. For chamber ‘B’, the observed 
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pressure converges in 0.2 seconds (figure 3-4b). Similarly, figure 3-6 shows the observer 

results for a step motion. 

As shown in the figures, the observed pressures quickly converge toward the 

actual pressures. A maximum multiplicative error of +0.4 and -0.9 atmospheric pressure 

was observed for energy-based observers when the velocity of the piston is zero. 

Similarly, a maximum multiplicative error of ± 0.6 atmospheric pressure exists for force-

error based observers. More significantly for purposes of control, the phase delay of 

either observer method was similar or smaller than the actual pressure sensor signal. The 

prime cause of the error between the observed and measured pressure signal is the 

difference between the actual and calculated mass flow rates. The error between the flow 

rates is higher at small area openings of the valve. As noted earlier, the mass flow rate 

calculations are based on the average discharge coefficient which is a function of valve 

opening area among other parameters. At small valve openings, frictional flow losses are 

more dominant and hence the value of the discharge coefficient is much lower than the 

average value used in the experiment. This effect is dominant at lower frequencies when 

the valve openings are small. Another contributing factor in the error is the frictional flow 

losses in the pipes between the valve and the cylinder, which is neglected in the design of 

the observers. The length of the air tubes used in the experiment were kept fairly short to 

minimize this unmodeled effect. 

The results of the case when external disturbances are added to the system are 

shown in Figure 3-7. The disturbances were introduced in the system by applying 

external forces (by hand) to the robotic arm. The force was added between 1.2 to 2.8 

seconds and between 5.2 to 6.5 seconds. In this case also, the observed response closely 
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follows the actual response of the system. This shows the robustness of the observer in 

presence of disturbances and uncertainties (such as friction) in the system. 

Convergence using force-error based observer shows a dependence on the correct 

estimate of friction. In this experiment, a constant value of viscous friction coefficient 

and Coulomb forces is used which gives satisfactory results. However, an adaptive 

algorithm could be implemented to adapt these parameters to improve on the results. The 

friction of the proportional valve is not modeled in the observer design. Instead, a dither 

signal of 100 Hz frequency of small amplitude is used in the experiment to nullify the 

effect of static friction. A part of the error is also contributed by velocity and acceleration 

signals since these are obtained by differentiating the position and velocity signals 

respectively. As a consequence, these are noisy and hence add to the deviation of the 

observed pressures from the actual values.  

The design of the energy-based observer is independent of the frictional forces 

between the payload and the surface – or indeed independent of any model of the load 

dynamics. Furthermore, the convergence rate is unaffected if the payload varies, as might 

be the case with an industrial robotic manipulator. The only disadvantage associated with 

this observer is that the convergence rate cannot be influenced. It is however observed 

experimentally that convergence is faster at higher tracking frequencies.  

The motion tracking results of the controller with a mass of 3.6 kg at the end-

effector are demonstrated in Figures 3-8 and 3-9. In all the figures shown, the solid line 

shows the desired trajectory and the dashed line shows the actual trajectory followed by 

the end-effector. Figure 3-8a shows the tracking of the end-effector at a 0.25 Hz 

sinusoidal frequency when the controller uses pressure sensors present in the system. 
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Figure 3-8b shows the result of sinusoidal tracking when the controller uses the energy-

based pressure observers developed in this paper. It can be seen that the results obtained 

using pressure sensors versus pressure observers demonstrates essentially the same 

tracking performance. A small deviation in the tracking is observed in both cases when 

the velocity of the end-effector is zero. This is presumably because of the neglected 

Coulomb friction in the controller design. Figure 3-9 demonstrates the results at a 2.5 Hz 

sinusoidal frequency. At this frequency a phase lag and attenuation in the amplitude is 

observed in the response. The results of the step response are shown in Figure 3-10. The 

results are similar to the sinusoidal tracking where the response of the system is almost 

identical using pressure sensors (figure 3-10a) or using pressure observers (figure 3-10b). 

The observer/controller results presented here are obtained using the energy-based 

pressure observer. Results of the force-error based pressure observer are very similar and 

are not presented in this paper. The energy-based pressure observer is preferred here due 

to its structural simplicity, its independence on the change of load parameters (like 

payload mass), and its independence of acceleration. As commented earlier, the 

convergence rate of the observer error cannot be explicitly influenced in the energy-based 

pressure observer design. However, from the experimental tracking results, it appears that 

the convergence rate is adequate enough to provide motion control that appears 

indistinguishable from the motion control that utilizes pressure sensors. 

Figure 3-11 shows the measured closed-loop frequency response of the controlled 

system using the energy-based pressure observers. The bandwidth is observed to be about 

5 Hz. It should be noted that the 5 Hz bandwidth is not a limitation of the controller. At 

this frequency, saturation in the valve output was observed which limited the bandwidth. 
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The bandwidth can be increased with the use of valves with higher mass flow rates 

(larger maximum orifice sizes) or by reducing the mass at the end-effector. An increase 

in bandwidth can also be obtained by increasing the supply pressure. 

 

7. Conclusion 

In this paper, the designs of two Lyapunov based pressure observers for a 

pneumatic servo system were presented. The effectiveness of the proposed pressure 

observers was demonstrated using experimental results. It is shown in the paper that the 

proposed observers, along with a robust controller, can be implemented in lieu of 

expensive pressure sensors. The results presented demonstrate that the tracking 

performance using pressure observers versus using pressure sensors is in essence 

indistinguishable. This shows that the system can be accurately controlled using pressure 

observers resulting in a lower cost system, with no performance tradeoffs. Additionally, 

the use of pressure observers along with the controller developed results in a lower 

weight, more compact, and lower maintenance system. 
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Fig 3-1. Schematic of a pneumatic servo actuation system 

Fig 3-2. Experimental setup of a pneumatic actuator servo system 

Linear potentiometer 
Pressure sensor 

Valves 

Cylinder 



78  

0 1 2 3 4 5 6 7 8 9 10
100

200

300

400

500

600

700

Time (sec)

P
re

ss
ur

e 
(k

P
a)

 
Fig. 3-3a.  Actual (solid) and observed (dashed) pressure with energy-based observer at 

0.5 Hz sinusoidal tracking– chamber ‘A’ 
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Fig. 3-3b. Actual (solid) and observed (dashed) pressure with force-error based observer 

at 0.5 Hz sinusoidal tracking – chamber ‘A’ 
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Fig. 3-3c.  Actual (solid) and observed (dashed) pressure with energy-based observer at 

0.5 Hz sinusoidal tracking– chamber ‘B’ 
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Fig. 3-3d.  Actual (solid) and observed (dashed) pressure with force-error based observer 

at 0.5 Hz sinusoidal tracking – chamber ‘B’ 
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Fig. 3-4a.  Actual (solid) and observed (dashed) pressure with energy-based observer at 2 

Hz sinusoidal tracking– chamber ‘A’ 
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Fig. 3-4b.  Actual (solid) and observed (dashed) pressure with force-error based observer 

at 2 Hz sinusoidal tracking – chamber ‘A’ 
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Fig. 3-4c.  Actual (solid) and observed (dashed) pressure with energy-based observer at 2 

Hz sinusoidal tracking– chamber ‘B’ 
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Fig. 3-4d.  Actual (solid) and observed (dashed) pressure with force-error based observer 

at 2 Hz sinusoidal tracking – chamber ‘B’ 
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Fig. 3-5a.  Actual (solid) and observed (dashed) pressure with energy-based observer at 3 

Hz sinusoidal tracking– chamber ‘A’ 
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Fig. 3-5b.  Actual (solid) and observed (dashed) pressure with force-error based observer 

at 3 Hz sinusoidal tracking – chamber ‘A’ 



83  

0 0.5 1 1.5 2 2.5 3
100

150

200

250

300

350

400

450

500

550

Time (sec)

P
re

ss
ur

e 
(k

P
a)

 
Fig. 3-5c.  Actual (solid) and observed (dashed) pressure with energy-based observer at 3 

Hz sinusoidal tracking– chamber ‘B’ 
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Fig. 3-5d.  Actual (solid) and observed (dashed) pressure with force-error based observer 

at 3 Hz sinusoidal tracking – chamber ‘B’ 
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Fig. 3-6a.  Actual (solid) and observed (dashed) pressure with energy-based observer at 1 

Hz square wave tracking – chamber ‘A’ 
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Fig. 3-6b.  Actual (solid) and observed (dashed) pressure with force-error based observer 

at 1 Hz square wave tracking – chamber ‘A’ 
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Fig. 3-7a.  Actual (solid) and observed (dashed) pressure with energy-based observer at 2 

Hz sinusoidal wave tracking with disturbance– chamber ‘A’ 
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Fig. 3-7b.  Actual (solid) and observed (dashed) pressure with force-error based observer 

at 2 Hz sinusoidal wave tracking with disturbance – chamber ‘A’ 
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Fig. 3-8a.  Desired (solid) and actual (dashed) position at 0.25 Hz sinusoidal frequency 

tracking using pressure sensors 
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Fig. 3-8b.  Desired (solid) and actual (dashed) position at 0.25 Hz sinusoidal frequency 

tracking using pressure observers 



87  

0 0.5 1 1.5 2 2.5 3
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Time (sec)

P
os

iti
on

 (m
)

 
Fig. 3-9a.  Desired (solid) and actual (dashed) position at 2.5 Hz sinusoidal frequency 

tracking using pressure sensors 
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Fig. 3-9b.  Desired (solid) and actual (dashed) position at 2.5 Hz sinusoidal frequency 

tracking using pressure observers 
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Fig. 3-10a.  Desired (solid) and actual (dashed) position at 0.5 Hz square-wave frequency 

tracking using pressure sensors 
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Fig. 3-10b.  Desired (solid) and actual (dashed) position at 0.5 Hz square-wave frequency 

tracking using pressure observers 
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Fig. 3-11a.  Closed-loop magnitude plot of the system with the controller using pressure 

observers 
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Fig. 3-11b.  Closed-loop phase plot of the system with the controller using pressure 

observers 
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Abstract 

This paper presents a model-based control design architecture for the position 

control of energy and power dense monopropellant powered chemofluidic actuators. This 

type of actuation system has been shown to have an actuation potential an order of 

magnitude better than a conventional battery powered DC motor based actuation system 

of similar mechanical power output. However, for the full state closed loop control of 

such chemofluidic actuators, the requirement of two high-temperature pressure sensors 

per actuated degree of freedom increases the cost of the system by a non-trivial amount. 

In order to reduce the initial cost, of which a large share is due to the pressure sensors, a 

non-linear pressure observer previously developed by the authors for pneumatic actuators 

is further developed for use with chemofluidic actuators. Simulation and experimental 

results are presented that show the effectiveness of the pressure observer and the 

suitability of the proposed observer/controller for stable tracking of the load at a band-

width sufficiently high for many mobile robot applications.  

 

1. Introduction 

The increasing use of untethered mobile robots has necessitated the development 

of power supply and actuation systems that can deliver human-scale power for extended 

periods of time. Presently, mobile robots typically use a combination of electrochemical 

batteries and DC motors for their power supply and actuation system. It has been shown 

by the authors [1-3] that such actuation systems severely lack the fundamental energy and 

power density required for a useful human-scale service robot. As an example, the 

current state of the art humanoid robot (named P3) developed by Honda, while extremely 
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advanced in terms of its control and agility, is capable of 15 to 25 minutes of untethered 

autonomous operation, depending on its workload. Further, the nickel-zinc batteries are 

heavy and contribute about 30 kg in the total mass of 130 kg of the robot. This illustrates 

a major technological barrier to the development of power autonomous human-scale 

untethered mobile robots. To overcome this problem, some researchers have proposed 

proton exchange membrane fuel cells [4] or solid oxide fuel cells [5] as an alternative to 

batteries, but both have significant power density limitations relative to the average 

power requirements of a human-scale robot. Some other authors suggested the use of 

internal combustion engines to power fluid-powered systems, but such an approach is 

hampered by several issues, including the relative inefficiency of small engines, the loss 

of power necessitated by controlling power produced outside the control loop, noise 

problems, noxious exhaust fumes, and start-stop problems for a low duty cycle use. 

Additionally, such systems would be heavy and require oxidizers for combustion that 

make it burdensome for some applications (such as space exploration or other non-

oxygen environments). 

Another class of fuels, the monopropellants, are energy dense (relative to 

electrochemical batteries), and are capable of converting their stored chemical energy 

into pressurized gas within a small simple package – a catalyst pack. This energetic 

substance (fuel) and configuration has the potential to offer a higher system level energy 

density, and higher or comparable power density than current state of the art power 

supply and actuation systems and therefore hold promise in meeting the actuation 

requirements of autonomous untethered robots. Many monopropellants decompose when 

they come in contact with a catalyst material. The resulting heat energy can be transduced 
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to mechanical energy via the pneumatic domain within a pneumatic actuator. The 

development of this kind of chemofluidic actuator was first published by Goldfarb et al. 

[3] where they presented their preliminary results using hydrogen peroxide 

monopropellant. It was shown by the authors that chemofluidic actuators have five times 

better actuation potential than conventional battery / DC motor based actuators. Two 

configurations were shown by the authors capable of extracting controlled mechanical 

work from hot gaseous products. The first configuration known as the centralized system 

(Figure 4-1), which is pursued in this paper, is essentially based on the principle of 

standard pneumatic actuation systems. In this type of configuration, liquid hydrogen 

peroxide is stored in a pressurized blow-down tank. The controlled flow of hydrogen 

peroxide through the catalyst pack is governed by a discrete valve. When hydrogen 

peroxide comes in contact with the catalyst, it decomposes into steam and oxygen. These 

resultant hot gaseous products are collected in a reservoir. The hot reservoir then serves 

as a pressure source to one or more pneumatic actuators via pneumatic four-way 

proportional valves. A controlled amount of fluid is provided to either of the two 

chambers of the actuator depending on the force and the load requirements. In the second 

configuration, termed direct injection, the piston output is controlled by injecting the hot 

gaseous products directly into the chambers from the catalyst pack. Therefore, this 

configuration necessitates the use of two catalyst packs, one for each chamber of the 

cylinder. The output in this type of system is controlled with the help of valves that 

governs the flow of a monopropellant to the catalyst packs, as well as an exhaust valve 

that depressurizes each chamber by exhausting the gaseous products to the external 

environment.  
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The only work for the control of the centralized configuration was reported by 

Goldfarb et al. [3]. In their work, the authors used a non-model based PVA controller for 

the servo control of the inertial load. While this work did achieve position control without 

utilizing pressure sensors, the main motivation of their work was to determine an 

energetic figure of merit for the monopropellant-powered actuation system with an 

adequate precision of control. In the work presented in this paper, a model-based control 

methodology is presented for the position control of an inertial load. The motivation 

herein is thus to achieve precise robust and model-based control without adding further 

sensing requirements, namely pressure sensors, than the prior work by Goldfarb et al. [3].  

While the chemofluidic actuator has the appeal of being simple and compact in 

design, it is fairly complex in terms of the physics of its operation. The complex 

interaction between several energy domains and the nonlinear nature of many of them 

necessitates a model-based control design to provide accurate, high-bandwidth, efficient, 

stable operation as generally required of a mobile robot platform. The model of the 

system was derived and discussed in references [6, 7] and is stated in summary in the 

next section for completeness. The proposed control architecture for the centralized 

configuration of the monopropellant powered actuators is divided in two parts. The first 

part of the control problem is the pressurization and regulation of the hot gas reservoir 

(dotted area of Figure 4-1a). The functional requirement of the reservoir is to maintain a 

uniform desired pressure with minimum pressure fluctuations. Since a transportation 

delay of 15 ms is present in the experimental system investigated here, a predictive 

control based design is best suited for this system. It should be noted that the inlet liquid 

fuel channel has a binary on/off valve and hence techniques such as the Smith filter, 
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which deals with time delay, cannot be implemented. The binary on/off valve is selected 

because no commercially available valve could be identified that could meter the low 

flow rate of monopropellant required for this application. The second part of the control 

problem is the stable servo control of the inertial load. The Lyapunov-based sliding mode 

control technique is selected for the motion because of its robustness in dealing with 

model uncertainties, as well as uncertainties resulting from the pressure observers that 

will be implemented here.  

To prevent the addition of pressure sensors, which were not present in the initial 

control design by Goldfarb et al. [3] due to the non model-based nature of the controller, 

and to limit the initial cost of such chemofluidic actuators, a pressure observer is 

developed in this paper. By providing actuator pressures, a model-based control design 

can be pursued. The chemofluidic system is characterized by four states, viz. position, 

velocity, and pressures in both chambers of the actuator. Logical sensors to select for 

such a system would be a potentiometer for measuring the position and two pressure 

sensors per axis (one for each chamber of the compressible gas actuator). The velocity 

and acceleration signals can be obtained by differentiating the position and velocity 

signals respectively. The problem with the pressure measurement is that the high-

bandwidth, high-temperature, and high-pressure sensors required for the control of the 

servo system are expensive and large (relative to the actuator – see Figure 4-1c) with a 

typical cost between $400 and $1200. Since pneumatic actuation requires two pressure 

sensors per axis, these sensors add $800 to $2400 per axis of monopropellant based servo 

system. In order to make the chemofluidic system more cost effective, a Lyapunov-based 

nonlinear pressure observer is developed in this paper to dispense of the pressure sensors. 
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This observer design is an extension of the work on observes by the authors [8] for 

pneumatic actuation systems. In their work, the authors presented two design methods for 

pressure observers. In this paper, one of the two designs, the energy-based pressure 

observer, is extended for chemofluidic actuators due to its structural simplicity, ease of 

implementation, and its independence on acceleration of the load which reduces noise 

problems. This observer utilizes the available knowledge of other states and inputs of the 

system to reconstruct the pressure states. The elimination of pressure sensors reduces the 

initial cost of the system by more than 50 percent.  

The organization of the paper is as follows. In the next section, a model of the 

chemofluidic actuators is briefed. The subsequent section discusses the control 

architecture and the development of a feedback control law for the system. In section 4, 

the design of the pressure observer is presented. Section 5 and 6 discusses the 

experimental setup and experimental results of servo control and the pressure observer. 

 

2. Model 

Please refer to Figure 4-1a for component configuration of the system. 

 

2.a. Liquid Propellant Valve 

The liquid propellant valve is the control element of the actuation system’s high 

pressure reservoir. Accurate control of the system requires the flow of precise amount of 

monopropellant via the valve. The mass flow rate ( inm& ) through the valve is a derived 

using Euler’s equation and Continuity equations and is stated as follows: 

 )(01 iuin PPACm −=&  (1) 
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where, C1 is a function of fluid density and the discharge coefficient of the valve, and is a 

constant for a given fluid; A0 (m2) is the flow orifice area of the valve; Pu and Pi are the 

upstream and downstream pressures ( 2m
N or Pa) of the valve respectively. 

 

2.b. Catalyst Pack 

The catalyst pack is the component where the catalytic decomposition of the 

monopropellant takes place resulting in the liberation of heat. The catalyst bed also offers 

resistance to the flow of both the reactant and the resultant gaseous products. The catalyst 

pack is modeled in two parts. In the first part, the flow resistance offered by the catalyst 

bed is modeled. The other part captures the reaction dynamics and the energy released by 

the decomposition of hydrogen peroxide. 

The flow resistance of the hydraulic valve is modeled by the following equation: 

 )(2 dicatin PPACm −=&  (2) 

where, C2 is a constant for a given fluid; Acat (m2) is the effective flow orifice area of the 

catalyst pack; Pi and Pd are the upstream and downstream pressures ( 2m
N or Pa) of the 

catalyst pack respectively. Since the mass flow rate is same through the valve and the 

catalyst pack, eliminating Pi from the above equations: 

 )(*
duin PPCm −=& . where 
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The above equation describes the input-output dynamic behavior of the inlet valve as 

shown in Figure 4-1b. The control input of the block is the orifice area of the valve and 

the output is the mass flow rate of the propellant. 
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The heat released in the catalyst pack can be derived using the rate form of the 

first law of thermodynamics, and is given by the following relationship (with a slight 

abuse of notation where s represents the derivative operator in the usual Laplace domain 

sense): 
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where, outcatH )( &  is the rate of change of enthalpy leaving the catalyst pack; cp (
Kkg

J
⋅

) is 

the average specific heat of the liquid monopropellant at a constant pressure; inT  (K) is 

the temperature of the liquid entering the catalyst pack; ∆Hr (J) is the heat released per 

kilogram of hydrogen peroxide; and catk  is the heat transfer coefficient representing heat 

loss through the catalyst pack walls. 

 

The time “constant” in equation (4) is defined by the following: 

 

RT
EeK a

o
−

=
1τ  (5) 

where Ea (
mol

J ) is the activation energy of hydrogen peroxide; T is the temperature 

inside the catalyst pack ; oK  is the pre-exponential factor; and RT
Ea

e
−

 is the Boltzmann 

factor. 

The input-output relationship of the catalyst pack in Figure 4-1b is characterized 

by equation (4). The input to the catalyst pack is the mass flow rate of the 

monopropellant and the output is the enthalpy flow rate. 
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2.c. Hot Gas Reservoir and Actuator 

The dynamic equations of the actuator and the hot gas reservoir are similar and 

were derived using an energy balance equation as per the first law of thermodynamics to 

obtain: 
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In the above equation subscripts ‘a’ and ‘b’ represent the properties of chambers ‘a’ and 

‘b’ of the cylinder respectively, or in the case of the reservoir no subscript is needed. P  

(Pa) is the pressure in the chamber; V (m3) is the volume of the chamber; Q& (
s

J ) is the 

rate of heat lost to the environment; inchH )( &  and outchH )( &  are the rate of change of 

enthalpy entering and leaving the specified chamber respectively; γ  is the ratio of the 

specific heat at constant pressure to the specific heat at constant volume, 
v

p

c
c

=γ . The 

equation (6) above establishes the input-output dynamic behavior of the hot gas reservoir 

(where 0=V& ) and each pneumatic actuator chamber (refer Figure 4-1b). The inputs are 

the enthalpy rates flowing in and out of the specified actuator or reservoir chamber. The 

output of the block is the rate of change of the pressure in the chamber. 

 

2.d. Hot Gas 4-way Proportional Valve 

The mass flow rate, and hence the rate of change of enthalpy entering and leaving 

the actuator chambers as governed by the hot gas 4-way proportional valve, depends on 

the upstream and downstream pressures. The mass flow rate increases with the increase 

in the ratio of upstream to downstream pressure. The flow rate becomes saturated for a 
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given orifice area when the velocity of flow at the orifice reaches the speed of the sound. 

The flow rate through a given side of the 4-way proportional valve under subsonic and 

sonic conditions is given as follows and is based on Euler’s equation and the Continuity 

equation: 
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where Ce is the discharge coefficient of the valve; Av ( 2m ) is the flow orifice area of the 

valve; Pu (Pa) and Pd (Pa) are the upstream and downstream pressure of the valve 

respectively; Te (K) is the temperature of gaseous products; γ is the ratio of the specific 

heat at constant pressure (cp) to the specific heat at constant volume (cv), 
v

p

c
c

=γ . The 

input-output relationship of the valve in Figure 4-1b is given by the equation (7). The 

input to this block is the valve’s flow orifice area (where it is assumed that the 

proportional valve is furnished with an inner loop high-bandwidth closed-loop controller 

of the orifice area, i.e. closed-loop valve spool position), while the output is the enthalpy 

rate flowing into or out of each of the actuator’s chambers. 

 

2.e Inertial Load 

The dynamic equation for the piston-rod-load assembly shown in Figure 4-1 is 

derived using a force balance (Newton’s second law) and can be expressed as: 

 ratmbbaac APAPAPFxBxM −−=++ &&&  (8) 
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where, M (kg) is the mass of the load; B is the viscous friction coefficient; Fc (N) is the 

Coulomb friction; Pa and Pb (N/m2 or Pa) are the absolute pressure in each chamber of 

the cylinder, Patm (N/m2 or Pa) is the absolute environmental pressure; Ar (m2) is the 

cross-sectional area of the rod, and Aa and Ab (m2) are the effective piston areas in 

chambers ‘a’ and ‘b’, respectively.  

 

3. Control Design 

 

3.a Predictive Control Design for the Reservoir 

As mentioned previously, a transportation delay of 15ms is present between the 

opening of the valve and the monopropellant reaching the catalyst pack. The liquid 

propellant valve is a binary valve, therefore, a pulse width modulation (PWM) controller 

(as developed in references [9, 10]) could be implemented. However, the limited 

switching speed of the valve would severely limit the bandwidth of the controller and 

hence it renders PWM approach not as effective for this case. A predictive control 

approach has been shown to be effective for systems with time delays. To take into 

account the delay of 15ms, a predictive controller is implemented for pressurization and 

pressure regulation of the hot gas reservoir. The predictive controller theory was 

developed in references [11, 12] for the direct injection configuration and is adopted here. 

In this prior work, a predictor is implemented (using dynamics derived in references [6, 

7]) that at each time step convolves the effect of each next possible discrete control 

choices. It also takes in account the past control inputs that have occurred in the recent 

past but have not yet affected the system output due to the transportation delay present in 
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the system. The available control choice (open or close) that takes the system closest to 

the desired future state is the preferred choice of the controller. 

For the pressurization of the fixed volume reservoir (V&  =0), the dynamic equation 

(6) reduces to the following: 
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In this case, inH&  is the rate of enthalpy flowing in the hot gas reservoir. If the heat losses 

between the catalyst pack and the reservoir are neglected, then outcatin HH )( && = . In order 

to get a closed form solution of the above equation, a requirement to implement the 

predictive control design, outH&  and Q&  are treated as the disturbance present in the 

system. Therefore, the final equation for the rate of change of pressure without 

disturbances for control purposes reduces to 
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where sTue−  in the above equation represents the time delay of Tu seconds present in the 

system. 

The above equation can be represented in state-space form as follows: 

 )()()( uTtButAxtx −+=&  (11) 
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For each candidate control input [0, 1]iu ∈ , the predicted future states ˆ ( )
iu u dx t T T+ + can be 

described by (convolution integral): 
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The first term on the right hand side represents the unforced response, the second term 

accounts for all the inputs that have already occurred but have yet to affect the system 

due to the time delay (Tu), and the third term is the effect that the next input will have on 

the future state. Td in the above equation is the prediction horizon, Ts is the switching 

period (refer to Figure 4-2) or sampling frequency of the controller. 

Once the future states are predicted for each possible discrete-valued control input 

ui, the next control input corresponding to the minimum weighted future state (defined by 

)(
2
1 2

du TTtsV ++= , where )()( dpd PPPPs −+−= λ&& ) is selected. This procedure 

effectively minimizes the magnitude of the Lyapunov function ( 2

2
1 sV = ) on the 

prediction horizon. It is shown in references [11, 12] that the predictive controller is 

bounded-input bounded-output stable where the error dynamics is bounded by, 

1|| −≤ n
p

e
λ
ψ , where Ψ is the upper bound on the sliding surface, s, such that | |s ψ≤  and λp 

is a positive constant. 

 

3.b Sliding Mode Control Design 

In this paper, a Lyapunov based sliding mode controller structure was chosen due 

to its suitability and effectiveness for higher order nonlinear systems in the presence of 

bounded uncertainties on the parameters of the system’s dynamic model. In order to 

derive the control law, a time-varying sliding surface is defined in the typical fashion, 

which is the weighted sum of the error and its derivatives representing the desired error 
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dynamic. In this case, the error is the difference between the actual and desired position 

of the actuator. The general form of the time varying surface is as follows: 

 e
dt
ds

n 1−

⎟
⎠
⎞

⎜
⎝
⎛ += λ  (13) 

where, λ  is a strictly positive number, n is the number of times the output must be 

differentiated to get the input, and e is the error. Since the dynamics of the system are of 

3rd order, the above equation reduces to the following: 

 eexxs d
22)( λλ ++−= &&&&&  (14) 

Differentiating equation (14) and making the required substitutions and neglecting 

Coulomb friction results in: 

 eexxBAPAP
M

s dbbaa &&&&&&&& 2)3( 2)(1 λλ ++−−−=  (15) 

In the control of the flow of hot gaseous products to chambers of the cylinder, a four-way 

proportional valve is used. Therefore, the kinematic configuration of the 4-way spool 

imposes the following constraint regarding the flow orifice areas during charging / 

discharging of the actuator chambers, 

 
ba vvv AAA −==  (16) 

where the signed area is used to represent a connection to the supply reservoir (positive) 

or to the atmosphere (negative). In order to get the expression of equivalent control law, 

s&  is forced to zero providing marginal stability, in the sense of Lyapunov, to the system. 

The control input vA  then appears in both aP&  and bP& . In equation (6), chH& is calculated 

using the following relation: 

 )]()([)(
222 fgfOHexOpOoutinch xhhxTcxmH ++= &&  (17) 
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where m&  (
sec

kg ) is the mass flow rate through the 4-way proportional valve and can be 

calculated using equation (7) with appropriately defined upstream and downstream 

pressures;  
2

( )p Oc  (
Kkg

J
⋅

) is the average specific heat of oxygen at a constant pressure; hf 

( J
kg

) is the specific enthalpy of saturated liquid; hfg ( J
kg

) is the specific enthalpy of 

vaporization; x is the dryness fraction of steam. 
2Ox and

2 2H Ox are the fraction of oxygen 

and hydrogen peroxide per kilogram of the exhaust products; Tex (K) is the temperature of 

the exhaust products.  

Substituting the values of P& , imposing the constraint, and simplifying, results in 

the following equivalent control law: 
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where,  
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and 

 )]()([)(
222 fgfOHexOpO xhhxTcxT ++=φ  (20) 

In order to ensure robustness of the controller and for uniform asymptotic stability, the 

typical robustness term is added to the equivalent control term that yields: 
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 )(* φssatkAA
eqvv −=  (21) 

where k is a strictly positive gain and captures uncertainties of the model and the pressure 

observer; Φ is the boundary layer thickness and selected such as to avoid excessive 

chattering across the sliding surface while maintaining the desired performance of the 

system. 

 

4. Observer 

Energy-Based Lyapunov Observer Design 

In this method, a Lyapunov function is chosen based on the pneumatic energy 

stored in the actuator. The pressure is estimated based on the following observer 

equation: 
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where, P̂ in the above equations represents the estimated pressure and Ĥ& represents the 

estimated enthalpy flow rate based on the estimated pressure and a known valve orifice 

area 
( , )a bVA .  

In order to show the convergence between the actual pressures and the estimated 

pressures obtained from the above equations, the following positive definite candidate 

Lyapunov function is chosen for this method: 

 22 )~(
2
1)~(

2
1

bbaa VPVPV +=  (23) 

where, aP~  and bP~  represents the error between the actual pressure and the estimated 

pressure in chambers ‘a’ and ‘b’ respectively ( ),(),(),(
ˆ~

bababa PPP −= ). It should be noted 
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that the Lyapunov function chosen is based on the energy stored in the cylinders of a 

pneumatic actuator and represents the difference between the actual and observed stored 

energies. 

Equation (23) can be rewritten as: 

 22 )ˆ(
2
1)ˆ(

2
1

bbbbaaaa VPVPVPVPV −+−=  (24) 

Differentiating equation (24) results in: 

 )ˆˆ)(ˆ()ˆˆ)(ˆ( bbbbbbbbbbbbaaaaaaaaaaaa VPVPVPVPVPVPVPVPVPVPVPVPV &&&&&&&&& −−+−+−−+−= (25) 

If the process of charging and discharging of air in the cylinder is considered as 

isothermal (i.e., γ = 1), then using equation (6) following substitutions can be made in 

equation (25): 
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Substitution of equation (26) in equation (25) yields: 

+−−−−−= ])ˆ())[(ˆ(])ˆ())[(ˆ( aoutaoutaaa
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 ])ˆ())[(ˆ(])ˆ())[(ˆ( boutboutbbb
v

binbinbbb
v

HHPPV
c
RHHPPV

c
R &&&& −−−−−  

As noted earlier, a four-way proportional spool valve is used for charging and 

discharging of chambers of the actuator. Therefore, when it charges one chamber, it 

discharges the other chamber and vice versa. It should be noted that the same chamber 

cannot be charged or discharged simultaneously due to the constraint imposed by the 
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four-way proportional spool valve. With this constraint, the scalar function V&  can be 

shown as negative semi-definite with the following cases:  

 

Case I: Charging chamber ‘a’ and discharging chamber ‘b’ 

During the charging of chamber ‘a’ and discharging of chamber ‘b’, terms 

aoutH )( & , aoutH )ˆ( & , binH )( &  and binH )ˆ( &  are zero due to the constraint of the valve. The term 

])ˆ())[(ˆ( ainainaa HHPP && −−  is always non-positive for the charging process of chamber 

‘a’. During the charging process for a known valve orifice area, if the actual pressure in 

the chamber ‘a’ is higher than the estimated pressure, then the actual flow rate will be 

less than the estimated flow rate. This is because a higher downstream pressure results in 

a lower mass flow rate, and consequently in a lower enthalpy flow rate, in the case of 

unchoked flow. For the case of choked flow, H& and Ĥ& will be equal as the flow rate is 

only a function of known supply pressure. For the discharging of chamber ‘b’, the term 

])ˆ())[(ˆ( boutboutbb HHPP && −−  is always positive definite because a higher actual pressure 

will result in a higher mass flow rate than the estimated mass flow rate. Consequently, the 

enthalpy flow rate would be higher. Due to the pressure in ‘b’ being the driving pressure 

for the case of discharging, this will occur in the presence of either choked or unchoked 

flow. Therefore, it can be concluded that the scalar function is negative definite during 

the charging process of chamber ‘a’.  

 

Case II: Charging chamber ‘b’ and discharging chamber ‘a’ 
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During the charging of chamber ‘b’ and discharging of chamber ‘a’, terms 

boutH )( & , boutH )ˆ( & , ainH )( & and ainH )ˆ( & are zero because of the constraint of the valve. Using 

the similar arguments as used in Case I, it can be shown that terms 

])ˆ())[(ˆ( aoutaoutaa HHPP && −−  and ])ˆ())[(ˆ( binbinbb HHPP && −−  are positive definite and 

non-positive respectively. Hence, the scalar function V& is negative definite. 

 

Case III: No charging or discharging of the chambers 

This case will result in a singularity point. At these singular points, i.e. when the 

velocity and control input is zero, the value of the scalar function V&  is zero. 

Consequently, it can be inferred that the error will not diverge away from the real values. 

Since V& is negative semi-definite, the equilibrium point where V = 0 is stable.  

 

5. Experimental Setup 

Figure 4-1c shows the experimental setup developed for verification of the 

combined pressure observer and servo control of the inertial load. This prototype was 

fabricated in-house and is a representation of a single-degree-of-freedom translational 

motion of a robotic arm. A schematic of the system setup is illustrated in Figure 4-1a. 

The liquid monopropellant is stored in a pressurized blow-down stainless steel tank 

which in turn is connected to a catalyst pack via a solenoid actuated on/off valve (Parker/ 

General Valve model 009-581-050-2). The catalyst material used in this experiment is 

Shell 405 granules, which is iridium coated alumina, and is packed inside a 5 cm long 

and 1 cm diameter stainless steel tube trapped between screens at both ends. The output 

of the catalyst pack is directly connected to the hot gas reservoir of volume 75 cubic 
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centimeters. A high-temperature pressure transducer (Omega PX32B1-250GV) is 

connected to the reservoir for measuring the reservoir pressure. A four-way proportional 

spool valve is used to control the charging and discharging process of both chambers of 

the actuator cylinder. This proportional valve was customized for high-temperature 

applications. For this, the standard solenoid actuator of a commercially available 

solenoid-actuated 4-way valve (Numatics Microair model #M11SA441M) was replaced 

by a thermally isolated voice coil (BEI model #LA10-12-027A). A linear potentiometer 

(Midori model #LP10-FQ) is also incorporated in the valve for closed-loop control of the 

spool position. 

The pneumatic cylinder (BIMBA) of stroke length of 4 inches is connected to the 

inertial mass of 2 kilograms. Two pressure transducers (Omega PX32B1-1KGV) are used 

to measure the chambers pressure of the cylinder. The position of the inertial load is 

measured with the help of a linear potentiometer (Midori LP-150F) of travel length of 

100 mm, which enables closed-loop servo control. The velocity signals are obtained by 

an analog differentiator with a first order roll-off at 50 Hertz. Similarly, acceleration 

signals are obtained by analog differentiation of the velocity signals with a first order 

roll-off of 50 Hertz. The control and observer algorithms are implemented using Real 

Time Workshop (RTW) on a 256 MB RAM Pentium IV computer. An A/D card 

(National Instruments PCI-6031E) is used for the communication between the computer 

and the physical setup. 

For the experimental verification of the control design, initially the pressure 

sensors were used for position servo control of the load at sinusoidal frequencies between 

0.25 Hertz to 4 Hertz. Simultaneously, the pressure response in both chambers of the 
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actuator was compared to the response obtained with pressure observers. Similarly, the 

closed-loop position step response of the system was obtained. Thereafter, the pressure 

sensors were disconnected from the setup and the sinusoidal and step servo response of 

the system was obtained by utilizing the states constructed by the pressure observers. The 

tracking performance comparison of the system with and without pressure sensors are 

presented in the following section. 

 

6. Results and Discussion 

Figure 4-3a shows the position tracking results of the inertial mass using pressure 

sensors at a sinusoidal frequency of 0.5 Hertz and amplitude of 15 millimeters. The solid 

line in the figure shows the desired trajectory while the dotted line shows the actual 

trajectory followed by the mass. The result of the predictive controller for pressure 

regulation inside the hot-gas reservoir is shown in Figure 4-3e. The solid line in this 

figure shows the desired pressure and the dotted line represents the actual pressure in the 

hot gas reservoir. The pressure inside the hot gas reservoir quickly rises to the desired 

pressure and then it is regulated close to the desired pressure. The accurate tracking of the 

inertial mass and the adequate pressure regulation shows the overall effectiveness of the 

implemented model-based control structure.  

Figure 4-3b shows the position tracking results at 0.5 Hertz frequency of 15 

millimeters amplitude utilizing the pressure observers instead of the pressure sensors. In 

this experimental run generating Figure 4-3b, the pressure sensors in the chambers were 

physically disconnected from the system to completely ensure that no pressure sensor 

information was being used. As can be seen in comparing Figure 4-3b with Figure 4-3a, 
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the tracking performance is almost indistinguishable using pressure sensors or pressure 

observers. Figure 4-3c shows the results of monitoring the pressure observer in chamber 

‘a’ during the experimental run that generated Figure 4-3a. The solid line in the figure 

shows the actual pressure and the dotted line represents the observed pressure in the 

chamber. Similarly, Figure 4-3d shows the actual and observed pressure in the chamber 

‘b’ of the actuator. As seen from the figure, the observed pressure quickly converges to 

the actual pressure values. A phase lag between the observed and the actual pressure is 

noticeable in the figures (with the pressure observer information occurring slightly before 

the filtered pressure sensor information). This is presumably because of the 

implementation of a second order filter, with a roll-off frequency of 30 Hertz, for the 

conditioning of the noisy pressure transducer signals. 

 

In all of the experiments, a PID controller is implemented for the closed-loop 

control of the four-way proportional spool valve. The spool position is commanded by 

the sliding mode controller output which is controlling the inertial load position. A 

frequency bandwidth of 25 Hertz was achieved for the closed-loop spool position control 

of the valve. In order to overcome static friction, a dither signal of 0.65 mm amplitude 

and 100 Hertz frequency is used.  

 

Figure 4-6a shows the position step response of the system using pressure sensors. 

The corresponding response of the system using pressure observers is shown in the 

Figure 4-6b. In this case also, the closed-loop response of the system using pressure 

sensors or pressure observer is very similar and in essence identical in performance. The 
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pressure observer results of chambers ‘a’ and ‘b’ for this case are demonstrated in Figures 

4-6c and 4-6d. Similar results for 1 Hertz and 2 Hertz sinusoidal tracking frequencies are 

shown in figures 4-4 and 4-5 respectively. 

 

As observed from the figures, and other results not included in this paper, a 

maximum multiplicative error of ±0.6 atmospheric pressure exists between the actual and 

observed pressures. This error is conjectured to be mainly due to inaccuracies in the 

calculation of mass flow rates and thus the enthalpy flowing in or out of the chambers of 

the actuator. The mass flow rate is calculated based on the valve spool position which in 

turn is used to calculate the area of the valve. The resulting error due to these 

compounded calculations gets reflected in the results. The other contributing factor is the 

value of the discharge coefficient of the four-way proportional valve. The discharge 

coefficient is a function of the valve area among other factors. However, in this 

experiment a constant value of the discharge coefficient is used. This value was 

calculated based on the Cv value provided by the manufacturer. Frictional losses and time 

delay due to the connecting tubes are other contributing factors that add to the deviation. 

Despite the deviations seen between the actual and observed pressures, the phase 

response of the pressure observer is very good, and in fact arguably better than the 

filtered pressure sensor signals. In the context of control of the actuator, and as evidenced 

by the position tracking performance of the combined observer/controller system, the 

pressure observers appear to provide more than adequately quick and accurate estimated 

pressure states. 
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7. Conclusions 

A model-based control design for the centralized configuration of an energy and 

power dense chemofluidic actuation system is presented in this paper. Additionally, an 

energy-based pressure observer is developed in the paper. The implementation of 

pressure observers instead of expensive pressure sensors reduces the initial cost of the 

system by more than 50 percent, in addition to contributing to a more compact actuation 

system in the interest of utilizing the system in an untethered mobile robot application 

domain. These savings and advantages are achieved without any compromise on the 

quality of servo tracking of the system. Although the developed observer is used for the 

servo control of chemofluidic actuators, it could also be used for other purposes such as 

condition monitoring and fault detection without the need to add more sensors. The 

resultant actuators are energy dense, power dense, light weight, economical, and 

compact. Coupled with the advantages of the chemofluidic actuators along with the 

accurate, precise and stable control, it will be feasible to develop energetically 

autonomous robots that provide energy and power density an order of magnitude greater 

than that provided by existing electrochemical and electromagnetic motor based actuation 

systems. 
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Fig 4-1a. Schematic of the centralized monopropellant actuation system 
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Fig 4-1b. Block diagram of the centralized configuration 
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Fig 4-1c. Experimental setup of the centralized configuration 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4-2. Effect of time-delay on the states of the system 
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Fig 4-3a. Desired (solid) and actual (dashed) position at 0.5 Hz sinusoidal frequency tracking 
using pressure sensors 
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Fig 4-3b. Desired (solid) and actual (dashed) position at 0.5 Hz sinusoidal frequency tracking 

using pressure observers 
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Fig 4-3c. Actual (solid) and observed (dashed) pressure at 0.5 Hz sinusoidal tracking  
– chamber ‘a’  
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Fig 4-3d. Actual (solid) and observed (dashed) pressure at 0.5 Hz sinusoidal tracking  

– chamber ‘b’ 
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Fig 4-3e. Desired (solid) and actual (dotted) pressure in the hot gas reservoir at 0.5 Hz sinusoidal 
tracking 
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Fig 4-4a. Desired (solid) and actual (dashed) position at 1 Hz sinusoidal frequency tracking using 
pressure sensors 
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Fig 4-4b. Desired (solid) and actual (dashed) position at 1 Hz sinusoidal frequency tracking using 
pressure observers 
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Fig 4-4c. Actual (solid) and observed (dashed) pressure at 1 Hz sinusoidal tracking – chamber ‘a’ 
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Fig 4-4d. Actual (solid) and observed (dashed) pressure at 1 Hz sinusoidal tracking – chamber ‘b’  
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Fig 4-4e. Desired (solid) and actual (dotted) pressure in the hot gas reservoir at 1 Hz sinusoidal 

tracking 
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Fig 4-5a. Desired (solid) and actual (dashed) position at 2 Hz sinusoidal frequency tracking using 

pressure sensors 
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Fig 4-5b. Desired (solid) and actual (dashed) position at 2 Hz sinusoidal frequency tracking using 
pressure observers 
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Fig 4-5c. Actual (solid) and observed (dashed) pressure at 2 Hz sinusoidal tracking – chamber ‘a’  
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Fig 4-5d. Actual (solid) and observed (dashed) pressure at 2 Hz sinusoidal tracking – chamber ‘b’  
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Fig 4-5e. Desired (solid) and actual (dotted) pressure in the hot gas reservoir at 2 Hz sinusoidal 
tracking 
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Fig 4-6a. Desired (solid) and actual (dashed) position at 0.5 Hz square-wave frequency tracking 

using pressure sensors 
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Fig 4-6b. Desired (solid) and actual (dashed) position at 0.5 Hz square-wave frequency tracking 

using pressure observers 
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Fig 4-6c. Actual (solid) and observed (dashed) pressure at 0.5 Hz square-wave tracking – 

chamber ‘a’ 
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Fig 4-6d. Actual (solid) and observed (dashed) pressure at 0.5 Hz square-wave tracking – 
chamber ‘b’  



APPENDIX A 

 

MATLAB SIMULINK BLOCKS FOR MANUSCRIPT I 



130 

 

fro
m

 P
a 

to
 p

si

A
ct

ua
l v

al
ve

 P
os

iti
on

 -
fro

m
 E

xp
er

im
en

t

O
ffs

et

m
m

 to
 m

et
re

s

T
ra

ns
po

rt
D

el
ay

P
ul

se
G

en
er

at
or

 -
In

pu
t t

o 
H

yd
ra

ul
ic

 V
al

ve

x
ar

ea

P
os

iti
on

 to
 A

re
a

A
v

P
1

m
do

tv

P
ne

um
at

ic
 V

al
ve

 M
od

el

P
_s

im
ul

at
io

n 
V

s 
P

_a
ct

ua
l

M
as

s 
flo

w
 ra

te
 

th
ro

ug
h 

P
ne

ua
m

tic
 V

al
ve

P
a

A
v

m
do

tv

M
as

s 
flo

w
 ra

te
 

fro
m

 h
yd

ra
ul

ic
 v

al
ve

 

-K
-

-K
-

d_
x(

:,1
) x

d_
an

d

14
.7

0.
1

m
do

t
H

do
t

C
at

al
ys

t P
ac

k 
M

od
el

A
re

a 
of

 
P

ne
um

at
ic

 V
al

ve

[p
_p

si
_r

od
le

ss
]

A
ct

ua
l P

re
ss

ur
e

-fr
om

 E
xp

er
im

en
t

H
do

tin

P
a

m
do

t

P
1

 C
ha

m
be

r M
od

el

Fi
gu

re
 A

-1
. B

lo
ck

 d
ia

gr
am

 o
f t

he
 C

he
m

of
lu

id
ic

 A
ct

ua
to

rs
 M

od
el

 
 



131 

 

Mass Flow Rate from Hydraulic Valve

1
mdotv

rho

rho

rho

density

Ps

Psupply

sqrt

sqrt

u2

u2

sqrt

sqrt

sqrt

sqrt

Mass flow rate 
of Hydrogen Peroxide

Acat

Catalyst Area

C2

C2

C1

C1

Amax

Amax

2

2

2

1

2
Av

1
Pa

 
 
 
 
 
 

Energy released by the chemical reaction

Temperature
inside the Catalyst Pack

Catalyst Pack Model

Heat Transfer
Coefficient

1
Hdot-C-

Upper Heating Value 
of Hydrogen Peroxide

Rate of Enthalpy flowing out 
of the Catalyst Pack

eu1

u
-K-

Kch

1
s

-K-

Cp*T

350

|u|

Abs

HL-K-

-Ea/R

1
mdot

 

Figure A-2. Block diagram characterizing the dynamics of hydraulic valve and 
resistance of the catalyst pack 

Figure A-3. Block diagram characterizing the decomposition of hydrogen peroxide in 
the catalyst pack 



132 

CHAMBER MODEL

1
P1

-K-

gamma-1

gamma
gamma

[vol_rodless]

Volume of the Chamber -
from Experiment

Ta

Temperature inside 
the Chamber

Tatm

Room Temperature

Rate of enthalpy
flowing out of the Chamber

1

u

1
s

Integrator
H

Heat Transfer
Coefficient

mdot hdot_out

Enthalpy flowing 
out of the Chamber

du/dt

Derivative

3
mdot

2
Pa

1
Hdotin

 
 
 
 

Pressure inside 
the chamber 

Enthalpy flowing out of the Chamber

1
hdot_out

hfg
from steam table

hf
from steam table

0.671

fraction of steam

0.329

fraction of O2

-K-

-K-

-K-

dryness fraction
of steam

Saturation

-K-

Pa to MPa

[temp_ex]

[p_pa_rodless]

956

Cpsteam

273.15

1
mdot

 

Figure A-4. Block diagram characterizing the dynamics of actuator 

Figure A-5. Block diagram characterizing the rate of enthalpy leaving the chamber as 
a function of mass flow rate 
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Figure B-6. Block diagram for calculating the error between the observed and actual force 
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Figure B-9. Block diagram showing the calculation of dynamic gains for the force-

error based observer  
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Figure C-6. Block diagram demonstrating the model of the chambers of the actuator 
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Figure C-7. Block diagram demonstrating the model of the 4-way proportional valve 
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Figure C-8. Schematic of the circuit used for chemofluidic actuators 
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Figure C-9. Board layout of the circuit used for chemofluidic actuators 
 


