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CHAPTER 1  

TARGETED THERAPY AND PERSONALIZED MEDICINE IN CANCER 

Targeted Therapy in Cancer  

Cancer is one of the leading causes of death in the world [1] and in the United States 

[2]. The incidence of cancer is on rise in the last few decades owing to recent advancements in 

cancer screening and diagnosis. In the next decade, the new cancer cases worldwide are 

projected to increase by 50% [3]. In the United States alone, 1.6 million new cancer cases and 

600,920 cancer deaths are projected to occur in 2017 [2]. These numbers are staggering 

worldwide [1]. Significant percentage of cancer incidence and mortality occur in developing 

countries in Asia, Africa and South America [3]. 

Recent progress in basic translational science has added more treatment options for 

cancer patients; however, cancer still remains as largely untreatable disease. Traditionally, 

cytotoxic chemotherapy and radiation therapy have been the standards of care for different 

cancers [4]. In early decade of 2000, a genomic revolution [5] led to a massive genomic 

characterization of tumors. This characterization steered treatment options from cytotoxic 

chemotherapies to more specific gene directed therapy. These “Targeted therapies” refer to a 

class of drugs that interfere with specific molecular targets that have a significant role in tumor 

progression and maintenance [6]. In contrast to chemotherapy which targets all dividing cells, 

targeted therapy is more specific to cancer cells with a distinct gene aberration. The scope and 

research interest in targeted therapy have increased considerably after the early success of 

imatinib in chronic myeloid leukemias (CML) and gastrointestinal stromal tumors (GIST). 
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The rationale for using targeted inhibitors of specific proteins or kinases relies on the 

idea of “oncogene addiction,” [7] which posits that cancer cells, despite having multiple genetic 

and epigenetic alterations, depend on a few genes for rendering different hallmarks of cancers 

and are often susceptible to impairment of such oncogenes [8].  Experimental evidence of 

oncogene addiction has been obtained in diverse systems: genetically engineered mouse 

models, mechanistic studies on human cancer cell lines, and clinical trials [9]. With the use of 

transgenic mice, researchers found that expression of c-myc oncogene in the hematopoietic 

cells led to the tumor growth, while its inhibition led to growth arrest and apoptosis [10]. 

Colomer et. al. used erbB-2 antisense oligonucleotides and inhibited the proliferation of human 

breast cancer cell lines with an amplified erbB-2, providing support for the dependence of 

breast cancer cells on this oncogene [11]. The use of targeted inhibition of oncogenes either 

through antibodies or drugs has significantly improved patient outcomes, further validating the 

importance of such oncogenes in tumor maintenance [12,13].  

Translation of this dependence to therapeutic exploit has not always been easy 

because of pleiotropic distribution and action of some of these oncogenes. The earliest clinical 

targeting of oncogene addiction came in the form of trastuzumab (monoclonal antibody 

targeting HER2) for treatment of patients with HER2 amplified breast cancer [12,14–16]. 

Human epidermal growth factor receptor (HER2) is overexpressed in 20-30% of breast 

cancers, and trastuzumab improved progression free survival in both the adjuvant and 

metastatic settings [12,17]. Fast-track Food and Drug Administration (FDA) approval of multi-

kinase inhibitor imatinib in treating CML [18–20] subsequently led to the approval of imatinib (in 

KIT-mutated GIST) [21,22], erlotinib [23] and gefitinib [24,25] (in EGFR-mutated Non-Small 

Cell Lung Cancer (NSCLC)), vemurafenib (in BRAF-mutated melanoma) [26,27] and crizotinib 

(in ALK-fusion positive NSCLC) [28,29]. Currently, there are numerous targeted agents 
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available to treat different cancers (Table 1.1). This list is expected to increase in the next few 

years as our understanding of the molecular basis of cancer becomes clearer. Current 

targeted therapies can broadly be categorized into two types: (i) Monoclonal antibodies & (ii) 

Small molecules. Monoclonal antibodies are designed specifically against extracellular proteins 

or cell surface proteins, whereas small molecules, because of their ability to get into cells, 

target intracellular proteins or kinases. 

 

Table 1.1: FDA-Approved Targeted Therapies in Oncogene-Addicted Cancers. 

Drug Molecular target Cancer Type Category 

Imatinib BCR-ABLmutant CML1 Small Molecule 

Trastuzumab HER2amplification Breast cancer Monoclonal Antibody 

Erlotinib EGFRmutant NSCLC2 Small Molecule 

Gefitinib EGFRmutant NSCLC Small Molecule 

Vemurafenib BRAFmutant Melanoma Small Molecule 

Crizotinib ALKfusion NSCLC Small Molecule 

Dabrafenib BRAFmutant Melanoma Small Molecule 

Afatinib EGFRmutant NSCLC Small Molecule 

Olaratumab PDGFRα Soft tissue sarcoma Monoclonal Antibody 

 

 
Melanoma Biology and Therapy: Current Options and Challenges 

Skin cancer is the most common form of cancer in the United States and is broadly 

categorized into two groups: (i) Non-Melanomas and (ii) Melanomas [2,30]. Non-melanomas 
                                                
1 Chronic myeloid leukemia (CML) 
2 Non-small cell lung cancer (NSCLC)	
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are comprised of Basal Cell Carcinoma (BCC) and Squamous Cell Carcinoma (SCC) based on 

their cell of origin. Non-melanoma skin cancers are considered curable, mostly through 

surgical resection [2]. In contrast, melanoma is the most lethal form of skin cancer. Although it 

accounts for less than 3% of new skin cancer cases, melanoma is responsible for the vast 

majority (~80%) of skin cancer related deaths. The American Cancer Society (ACS) estimates 

87,100 new cases of melanoma diagnoses (~5% of total cancer cases) and 9,730 cancer 

deaths in 2017 [2]. Based on the recent statistics published by ACS, melanoma is among the 

top seven cancers in the United States among both male and female [2]. Over the years, 

among the top seven cancers in the United States, melanoma is the only cancer whose 

incidence is increasing at an alarming rate, partly due to better screening and diagnosis.  

Melanoma arises from melanocytes, pigment producing cells that are mostly found in 

the skin and eyes. Melanocytes originate from motile neural-crest progenitors that migrate to 

skin and eyes during embryonic development. Their function and homeostasis are regulated 

by keratinocytes, a cell type in the skin epidermis [31]. Melanomas are sub-divided into three 

groups based on their anatomical location: (i) Mucosal, (ii) Ocular and (iii) Cutaneous. Mucosal 

melanoma originates from melanocytes that line the epithelia of the nasal cavity, oropharynx, 

and gastrointestinal tract, and is a rare subtype of melanoma accounting for only 1-2% of total 

melanoma cases [32]. Ocular melanoma is the second most common type of melanoma, and 

accounts for about 5% of all melanoma cases and originates from melanocytes that line 

conjunctival membrane and uveal tract of the eye [32,33]. In contrast, cutaneous melanoma, 

also called melanoma of the skin accounts for a large portion of melanoma, representing >90% 

or more cases [32]. If diagnosed early, melanoma can be surgically removed. However, most 

melanomas are discovered after they have already metastasized, making metastatic 
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melanoma difficult to treat, with a dismal 5-year survival rate of less than <20%, depending on 

location [34].  

Up until the early 2000s, metastatic melanoma diagnosis essentially depended on 

pathology—which divided melanoma into four main clinical subtypes based on their growth 

pattern and associated risk factors: superficial spreading melanoma, nodular melanoma, 

lentigo maligna melanoma and acral lentiginous melanoma [35]. After the discovery of BRAF-

mutated melanoma in 2002 [36], different genomic subgroups of cutaneous melanoma have 

been identified. Recent molecular profiling and integrative analyses of genomic alterations 

show melanoma to be a heterogeneous group of malignancies driven by distinct patterns of 

oncogenic mutation. These studies have categorized melanoma into four groups: BRAF, 

NRAS, NF1 and Triple Wild-Type, based on their genotypes and known mutations mostly in 

MAPK signaling cascade [37]. Activating BRAF mutations are the most frequent genetic 

alterations in cutaneous melanoma, reported in 50% of all malignant tumors (7-8% of cancers) 

[36–38], about 80-90% of which involve the substitution of valine at codon 600 by glutamic acid 

(BRAFV600E) [39]. Mutations in NRAS comprise of the second major group, accounting for 30% 

of all cutaneous melanoma. The third most commonly observed mutations in melanoma 

samples is loss of function mutation in NF1, observed in 15% of all tumor samples. The 

remaining tumor samples, which lacked mutations in BRAF, NRAS and/or NF1 defined the 

Triple-WT subtype [37]. This classification did not only set the stage for accurate subtyping of 

cutaneous melanoma, but also has ignited plethora of research in development of targeted 

drugs for specific groups.  
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Figure 1.1: Deregulated MAPK signaling pathway in BRAF-mutated melanoma cells. (A) Missense mutations in 
BRAF lead to its constitutive activation, leading to enhanced phosphorylation of MEK, ERK and ultimately 
increased cell survival, proliferation and growth. (B) Small molecule inhibitors of BRAF (i.e. vemurafenib, 
dabrafenib) inhibit mutant-BRAF and its activity, leading to decrease in cellular proliferation and survival.  

 

Current Options: Success story so far  

The year 2011 marked an end to “dark ages” of melanoma as the FDA approved a 

targeted therapy for melanoma patients [27]. Before that, metastatic melanoma was 

considered largely incurable, and only FDA approved treatment options for melanoma were 

dacarbazine and high dose interleukin-2 [40]. Dacarbazine is the only FDA approved 

chemotherapy for metastatic melanoma; however, it has low response rates and poor 

progression free survival [26]. In contrast, interleukin-2 offers longer durable responses, but 

only benefits a minority of patients and is often associated with high toxicity [41]. The 
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identification of an activating missense mutation (V600E) in the BRAF kinase in majority of 

primary and metastatic melanoma has  provided an attractive target for targeted therapy [36–

38].  

Because a majority of melanomas harbor an activating missense mutation (V600) in the 

BRAF kinase [36], they have an activated MAPK signaling pathway. MAPK signaling pathway 

that consists of RAS-RAF-MEK-ERK signaling axis has a key role in regulating cellular 

responses to growth signals (Figure 1.1). Activating mutations in BRAF kinase involve 

missense mutations, approximately 90% of which involve the substitution of valine at codon 

600 by glutamic acid (V600E), although other mutations are also known (for example V600K, 

V600D, V600R) [36,38]. These missense BRAF mutations lead to constitutive activation of 

downstream signaling through MEK and ERK, leading to enhanced cell growth and 

proliferation [42]. Because of the importance of oncogenic BRAF in driving tumorigenesis in 

melanoma models [42], small molecule inhibitors were developed to specifically target 

activated BRAF. PLX4720 showed greater specificity and preferentially inhibited BRAFV600E 

compared to other broad kinases leading to cell cycle arrest and apoptosis exclusively in 

BRAFV600E positive melanoma cells (Figure 1.1) [43]. Subsequent studies led to the discovery 

of vemurafenib (PLX4032), structurally similar but with better pharmacokinetics properties, as 

inhibitor of mutated BRAF in melanoma models [13]. The approval of vemurafenib changed the 

treatment paradigm in melanoma [27]. Vemurafenib resulted in tumor regression and improved 

both overall and progression free survival in patients harboring BRAF mutations compared to 

dacarbazine [26,44,45]. The estimated median progression-free survival was reported to be 

5.3 months in the vemurafenib group and 1.6 months in the dacarbazine group [26].  

Despite exhibiting an improved clinical efficacy in patients with BRAFV600E mutations, 

vemurafenib resulted in adverse cutaneous side effects, especially the development of 
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cutaneous squamous cell carcinoma (SCC), keratocanthoma or both in 18% of patients 

[26,45]. Following the initial success of vemurafenib, the FDA approved second small molecule 

inhibitor dabrafenib as single agent therapy which showed higher specificity against activated 

BRAF compared to wild-type BRAF and CRAF [46,47] and lower cutaneous adverse effects 

compared to vemurafenib [26,45]. Because of an improved progression-free and overall 

survival compared to chemotherapy, trametinib, a selective MEK1/MEK2 inhibitor, was also 

granted FDA approval for metastatic melanoma in 2013 first as single agent [48–51]. Although 

trametinib resulted in inferior response rates compared to vemurafenib, it did not result in 

cutaneous squamous cell carcinomas, commonly observed adverse effects in vemurafenib 

and dabrafenib [50].  However, both preclinical and clinical evidences led to conclude that 

combination of BRAFi with MEKi showed higher response rates, and better clinical efficacy 

compared to single agents [52–54]. This combination soon replaced single agents as the 

preferred treatment regimen for patients with metastatic melanoma harboring BRAFV600 

mutations [52,54,55]. 

Concurrent to targeted therapies, immunotherapy also has had some success in 

melanoma patients. High-dose interleukin-2 (IL-2) was the first immune therapy that was 

granted FDA approval for metastatic melanoma [40]. Although high-dose interleukin-2 

benefited only a small fraction of melanoma patients, it produced durable partial and complete 

responses leading to long-term survival [41]. There is a considerable interest in melanoma 

immunotherapy because of length of durable responses observed in responding patients. 

Ipilimumab, a human monoclonal antibody specific for human cytotoxic T lymphocyte-

associated antigen 4 (CTLA4) showed improved median overall survival (10.1 months) 

compared to glycoprotein 100 (gp100) peptide vaccine (6.4 months) in patients with metastatic 

melanoma regardless of their genetic mutation [56] and was granted FDA approval in 2011. 
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This was followed by the approval of Pembrolizumab, antibody against human anti-

programmed-death-receptor-1 in 2014 [57,58]. Later studies showed Pembrolizumab to have 

higher overall survival and less toxic effects compared to ipilimumab [59]. Options in targeted 

therapies, immunotherapies and chemotherapies have significantly improved clinical care for 

patients with metastatic melanoma (Table 1.2). In recent years, immunotherapies are preferred 

as the first-line therapy for melanoma patients [60]. However, targeted therapies still show 

greater promise because of its higher response rates in patients with BRAF oncogenic 

mutations. Therapeutic failure to targeted therapies is attributed to tumor heterogeneity which 

will be discussed in detail in subsequent sections. The following section discusses the 

challenges in current targeted therapy in melanoma with development of various resistance 

mechanisms in both clinical and preclinical experimental system. 
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Table 1.2: A list of current FDA approved therapies for metastatic melanoma 

Drugs Class of Drugs Approved 

Dacarbazine Chemotherapy 1975 

High-dose Interferon Alfa-2b Immunotherapy 1986 

Interleukin-2 Immunotherapy 1998 

Ipilimumab Immunotherapy 2011 

Peginterferon Alfa-2b Immunotherapy 2011 

Vemurafenib Targeted Therapy 2011 

Dabrafenib Targeted Therapy 2013 

Trametinib Targeted Therapy 2013 

Pembrolizumab Immunotherapy 2014 

Nivolumab Immunotherapy 2014 

Talimogene laherparepvec “T-Vec” Immunotherapy 2015 

Trametinib + dabrafenib  Targeted Therapy 2015 

Cobimetinib + vemurafenib Targeted Therapy 2015 

Nivolumab +Ipilimumab  Immunotherapy 2016 

 

 
Challenges: Resistance Mechanisms 

Targeted small molecule inhibitors of BRAF show remarkable, short-term efficacy in 

melanoma patients with tumors harboring BRAFV600 mutations. However, clinical responses 

are variable (Figure 1.2), short-lived, and relapse is almost inevitable within few months of 

therapy initiation. Rapid acquisition of drug resistance still remains a major challenge for 

successful melanoma therapy. This treatment failure has subdued the excitement that targeted 
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therapies once brought to the field of melanoma and cancer in general. Broadly, the common 

resistance mechanism to targeted kinase inhibitors constitutes: (i) alterations in the target 

gene, (ii) dependence on the targeted pathway, (iii) activation of alternative pathway(s), and 

(iv) resistance mediated by the microenvironment. A list of known resistance mechanisms in 

BRAF-mutated melanomas is provided in Table 1.3.  

(i) Alterations in the target gene 

The most common resistance mechanism to ATP-competitive targeted kinase inhibitors 

constitutes the acquisition of second “gatekeeper” mutations in the target gene. While 

gatekeeper mutations have been discovered for imatinib [61] (T315I in BCR-ABL in CML), 

erlotinib [62] (T790M in EGFR in NSCLC), and trametinib [63] (Q60P in MEK2 in melanoma), 

no such mutation has yet been identified for BRAF-inhibitors (BRAFi). In addition to secondary 

mutations, amplification of the target gene can also confer resistance to targeted inhibitors. 

Villanueva et. al. [63] identified BRAF amplification in xenograft tumor model derived from 

patients resistant to the combination of dabrafenib and trametinib.  Poulikakos et. al. [64] 

showed that cells resistant to vemurafenib expressed splice isoforms of BRAFV600E that 

dimerized in a RAS-independent manner. Although different from gatekeeper mutations, both 

target gene amplification and splice variants underscore the reliance of cancer cells on the 

targeted oncogenic pathway.  

(ii) Dependence on the targeted pathway 

Because of their increased dependence on the targeted pathway, cancer cells reactivate 

the signaling axis under targeted inhibition through either modification of the target gene or 

alterations in downstream or upstream effectors of the signaling cascade. Some of the known 

resistance mechanisms under BRAFi that reactivate MAPK signaling pathway include: 



	 12	

elevated expression of CRAF [65], BRAF amplification [63,66], BRAF kinase domain 

duplication [67], expression of COT [68], upregulation of NRAS or RTK [69], mutations in 

MEK1/2 [70,71].  

(iii) Activation of alternative pathway(s) 

Cancer cells can also bypass the dependence on the targeted pathway by activating 

alternative pathway(s). In melanoma, upregulation of receptor tyrosine kinases (RTKs) as well 

as activation of parallel PI3K-AKT signaling pathways have been shown to confer resistance to 

BRAFi. Nazarian et. al. [69] showed elevated expression of PDGFRβ in patients whose tumors 

regressed on BRAFi. Villanueva et. al. [72] demonstrated increased expression of IGF-1R and 

pAKT level thus enhancing the signaling through PI3K-AKT signaling in BRAF inhibitor 

resistant human melanoma samples [72]. The role of PI3K-PTEN-AKT signaling pathway in 

acquired resistance to BRAFi was further corroborated from several recent studies [73–76]. 

(iv) Resistance mediated by the microenvironment  

The models of drug resistance discussed above are cell-autonomous. However, given the 

complexity of cancer, it is appreciated that cancer is not just the collection of cells. It is 

becoming increasingly clear that cancer cells work symbiotically with their environment, other 

cell types, and neighboring cells to tolerate external perturbations. A number of recent studies 

have suggested that the tumor microenvironment contributes to resistance to targeted 

therapies by creating a “safe heaven” for cancer cells. A systematic analysis of interactions 

between tumors and the microenvironment by Straussman et. al. uncovered the role of 

hepatocyte growth factor (HGF) secreted by stromal cells in conferring an innate/intrinsic 

resistance to BRAFi [77].  The study showed that HGF secreted by stromal cells, particularly 

fibroblasts, confer resistance to BRAF-inhibition in BRAF-mutated melanoma cells by 

activating MET, and downstream MAPK and PI3K/AKT signaling cascades. Subsequent 
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studies revealed the role of extracellular matrix (ECM) and cell adhesion molecules in 

facilitating resistance to BRAFi. Hirata et. al. showed that melanoma cells “paradoxically” 

activate fibroblasts and remodel their extracellular matrix by activating integrin β1/FAK/Scr 

signaling to survive BRAF-inhibition [78]. Fedorenko et. al. in a series of papers underscored 

the role of fibroblasts-mediated drug resistance in melanoma cells undergoing BRAF-inhibition. 

Vemurafenib-treated melanoma cells released transforming growth factor-β (TGFβ) which led 

to enhanced fibronectin deposition, upregulation of neuregulin (NRG) [79]. Mechanistically, it 

was shown that enhanced fibronectin remodeled a protective niche through integrin α5β1 and 

elevated signaling through PI3K/AKT pathway [80]. Together, increasing evidence suggests 

that melanoma cells cooperate with their microenvironment, other cell types and neighboring 

cells either through secretome or through ECM remodeling to survive drug exposure.  
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Table 1.3 Diversity of Known Resistance Mechanisms in BRAF-mutated Melanoma Cells Against BRAFi. 

Resistance Mechanism Type Mechanisms References 

 

Alterations in the target gene 

BRAF Splice Variants [64] 

BRAF Amplification [63,81] 

BRAF kinase domain duplication [67] 

Dependence on the targeted 

pathway 

Elevated CRAF Expression [65] 

COT Expression [68] 

NRAS up-regulation [69] 

MEK1/2 mutations [70,71] 

Activation of Parallel 

Pathways 

Elevated RTK expression [69] 

Signaling via PI3K/AKT [73,74] 

Mediated by 

Microenvironment 

HGF Secretion [77] 

FAK/Scr signaling [79,80] 

ECM remodeling [78] 

 

 
Heterogeneity: The Source of Tumor Recurrence 

It is now well appreciated that cancer is not one disease, rather a collection of multiple 

diseases. There is substantial variability among cancer cells in both their genetic and 

functional features. These differences (both genetic and phenotypic) exist not only between 

tumors (inter-tumor heterogeneity) but also within single tumors (intra-tumor heterogeneity). 

Inter- and intra-tumor heterogeneity have direct implications not only in the choice of 

biomarkers to guide treatment, but also on the outcome of cancer treatments. While some 

lesions undergo dramatic initial responses to therapy, other lesions in the same patient 
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continue to progress. Even within the same tumor, despite an impressive early regression, 

tumors invariably recur within a few months of therapy initiation. This partial or incomplete 

response observed in seemingly identical oncogene-driven tumors points to tumor 

heterogeneity responsible for tumor recurrence. In this subsection, I will discuss heterogeneity 

between tumors (inter-tumor) and within tumors (intra-tumor) and its implications for therapy. 

Inter-tumor Heterogeneity 

Tumors, depending on their tissue of origin or cell types, vary in their genomic 

landscapes. Tumors originating in different tissues exhibit varying degrees of mutational 

frequencies of oncogenes and tumor suppressor genes [82]. In addition, cell-intrinsic 

differences also affect the tumor composition which affect the therapeutic response of tumors 

to anti-cancer drugs. For instance, BRAFi are much more effective in BRAF-mutated 

melanoma cells than in BRAF-mutated colorectal cancer cells [83]. Recent experimental 

evidence suggests that diminished efficacy of vemurafenib in BRAF-mutated colorectal cancer 

is due to reactivation of epidermal growth factor receptor (EGFR) signaling in response to 

vemurafenib [84]. Mechanistically, BRAFi cause rapid feedback activation of EGFR, which 

supports continued proliferation even in the presence of BRAF-inhibition [84,85]. Since basal 

phospho-EGFR levels are higher in BRAF-mutated colorectal cancer cells than in BRAF-

mutated melanoma cells, colorectal cancer cells utilize EGFR-mediated resistance to 

vemurafenib [86]. Therefore, cellular context and inherent nature of cancer cells are highly 

relevant to therapeutic efficacy. However, considerable variation is also seen in genomic 

features of tumors that originate from the same tissue and cell type [87]. 

Even with tumors harboring common BRAFV600 mutations, melanoma patients respond 

differently to vemurafenib, a potent small molecule inhibitor of mutated BRAF. The clinical 

responses are variable and differ from patient-to-patient in metrics such as time to response, 
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initial reduction in tumor size, progression-free survival and overall survival (Figure 1.2) 

[26,45]. This widespread patient-to-patient variability has led to increased efforts in 

identification of biomarkers to guide treatment options. Some strategies include identifying 

subset of patients that are likely to respond to particular therapy—an effort which not only 

maximizes treatment outcomes, but also saves time and resources.  
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Figure 1.2: Patient-to-patient variability in BRAF-mutated Melanomas. (A) Waterfall plot showing objective tumor 
responses with vemurafenib; RECIST criteria used to categorize patient clinical responses. A decrease of at least 
30% is defined as Partial Response (PR), 100% decrease—Complete Response (CR), an increase of 20% and 
more is Progressive Disease (PD), and tumor response between -30% and 20% is Stable Disease (SD). (B) 
Times to response (in months) and progression among 69 patients treated with vemurafenib. Reproduced with 
permission from Sosman et. al. NEJM. (2012), Copyright Massachusetts Medical Society.  
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Intra-tumor Heterogeneity 

Cancer cells within a tumor display profound variability in characteristics such as size, 

morphology, invasive and metastatic ability, mutations and mutant-oncogene expression 

[88,89]. Indeed, it is widely accepted now that at a fine-enough resolution, cancer cells will 

display widespread phenotypic differences [90]. It is, therefore, not surprising that cancer cells 

from seemingly identical cell populations or a uniform genetic lineage or a single tumor also 

exhibit differential sensitivity to anti-cancer drugs [91–93]. Thus, one challenge in biology is not 

to demonstrate that cancer cells are heterogeneous, rather to understand the origins of such 

variability. Broadly, the origins of intra-tumor heterogeneity can be traced to either genetic- or 

non-genetic sources.  

Genetic Sources  

Malignant tumors, at a given time, are expected to consist of numerous somatic 

mutations and are speculated to evolve over time. This idea of tumor evolution dates back to 

seminal work by Peter Nowell in 1976 which laid the foundation for evolutionary principles in 

cancer [94]. Tumors evolve through acquisition of a series of mutations over time as a result of 

high genomic instability broadly either through “linear” or “branched” evolution. In linear 

evolution, tumor progression is thought to result from acquired genetic alterations in a 

dominant clone which is selected over time leading to emergence of more aggressive tumors. 

While in branched evolution, multiple clones arise simultaneously and survive leading to co-

existence of heterogeneous mutations [95]. Regardless of the origin, the existence of clonal 

differences within a tumor provides a basis for Darwinian selection—which posits that fitter 

clones are “passively” selected over time under perturbations. The model assumes that while 

most clones die out under treatment, fitter clones because of their advantageous mutations 

survive an initial treatment, and expand during therapy leading to tumor recurrence.  
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Figure 1.3: Sources of Tumor Heterogeneity. Tumor heterogeneity arises from either genetic sources or non-
genetic sources. (A) Genetic sources usually refer to the clonal selection model; (B) While non-genetic sources 
encompass cancer stem cell hypothesis (B.a), stochastic process and epigenetic landscape and attractor theory 
(B.b), here U(x) represents quasi-potential energy and x is the reaction coordinate, arrows represent phenotypic 
state transitions between subpopulations. 

 

This type of intra-tumor heterogeneity forms the basis for intrinsic or innate resistance, 

where pre-existing genetic differences among cancer cells are speculated to contribute to 

treatment failure (Figure 1.3a). For instance, pre-existing amplifications of EGFR [96], 
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mutations in RAC1 [97], and MEK1/MEK2 mutations [98] were identified in drug-naïve tumors 

of BRAF-mutated melanoma patients, albeit in small frequency. With innovation in large-scale 

genetic screens, we are likely to find many more such alterations in drug naïve tumors that 

correlate to tumor recurrence. The central idea of Darwinian principle is that tumors undergo 

irreversible changes under perturbations such as drug selection such that subpopulations with 

advantageous mutations dominate the tumor size. This would require that cancer cells 

selected under treatment would be highly resistant to similar treatments in subsequent times. 

However, both preclinical and clinical evidence show that cancer cells can become re-

sensitized to therapy after an initial treatment [81,99–101]. Combination therapies have been 

proposed based on the nature of pre-existing or acquired mutations in tumors, with 

implications of co-targeting multiple pathways to achieve durable responses. However, 

combination therapies offer only modest improvements compared to monotherapies. This 

coupled with reversibility of drug-sensitivity observed in tumors suggest that genetic sources 

cannot explain the entire degree of variability seen in cancer cells.  

Non-Genetic Sources 

Accumulating evidence suggests that non-mutational processes play a significant role in 

the response of cancer cells to drugs [102–105]. Cancer cells employ a dynamic survival 

strategy governed by epigenetic alterations to survive lethal drug exposure [106,107]. 

Epigenetic alterations depend on the amount of drugs used—as the drug-tolerant state in 

cancer cell populations were reported in high concentrations [106,108]. In addition, the nature 

of alterations vary over different time scales—short-term changes involving histone (de-) 

modification dynamics, while long-term changes involving intrinsic differences due to cell 

division [109,110]. These strategies are reminiscent of survival strategies observed in bacterial 

cell populations [111,112]. Non-genetic sources, in broad terms, trace their origin to: (i) 
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Stochastic Processes, (ii) Differentiation Hierarchies, and (iii) Epigenetic Landscape and 

Attractor Theory. With the right use of high-throughput and high-content single-cell analyses 

and lineage construction assays, it may be possible to characterize and quantify the 

contribution of each of these non-genetic sources [93,102,113–115]. Non-genetic changes are 

reversible as compared to genetic clonal evolution model which is irreversible. Although they 

explain two different types of tumor progression, they are not mutually exclusive.  

(i) Stochastic Processes  

The stochastic model assumes that cancer cells within a clonal subpopulation are identical, 

and heterogeneity in their behaviors is influenced by stochasticity in both cell-intrinsic and 

extrinsic factors [116]. Cell intrinsic factors constitute random fluctuations in biochemical 

reactions within cells, transcriptional burst leading to cell-to-cell variation in mRNA and protein 

concentrations, cell fate decisions [102,117,118]. Similarly, cell extrinsic factors such as tumor 

microenvironment, growth factors, immune response also result in randomness among cells in 

expression of cell surface markers, tumor initiation capacity, and cell fate decisions. 

Irrespective of the nature of origin, stochastic model suggests that the cellular phenotype is not 

heritable and all cells are prone to such stochastic influences. All cancer cells in stochastic 

view of heterogeneity possess similar tumorigenic, invasive, metastatic potential.  

(ii) Differentiation Hierarchies  

In contrast, hierarchy model postulates that heterogeneity in cancers reflects differentiation 

hierarchies that exist in normal tissues. Within this view, cancer cells are hierarchically 

organized into majority of non-tumorigenic and small subpopulation of tumorigenic cells [119–

121]. In other words, tumors are composed of stem- and non-stem cells. Stem-ness is then 

referred to as an enhanced tumorigenicity and self-propagating capacity. Only cancer stem 

cells (CSCs) maintain their tumorigenic potential and can recapitulate initial tumor 
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heterogeneity even when the bulk of non-tumorigenic cancer cells die out under perturbations 

(Figure 1.3b). Numerous studies have described diagnostic markers to identify cancer stem 

cell populations. High expression of ABC transporters [122], ALDH expression [123,124], 

CD271 expression [125,126] are some well-described markers. Cancer stem cell hypothesis 

differs from stochastic model in terms of the fraction of tumor cells capable of self-renewal. 

While stochastic model assumes all cancer cells are capable of self-renewal, CSC model 

assumes only a minority of cells have tumorigenic potential. However, it is still controversial 

whether cancer exhibits such a hierarchy; therefore, tumorigenic cells are often described as 

cancer-stem-cell-like cells.  

(iii) Epigenetic Landscape and Attractor Theory  

Within genetically similar cancer cells, a network of genes can give rise to multiple 

metastable cellular phenotypes (Figure 1.3b) [127–131]. This is defined in terms of gene 

regulatory networks (GRN), where genetically distinct cell type possesses the same underlying 

GRN. The idea dates back to Waddington and his seminal essay which described cellular 

differentiation as a dynamical trajectory through an epigenetic landscape [132]. Kauffman 

formalized Waddington’s epigenetic landscape and linked phenotypic variability to a 

multidimensional dynamical-systems theory. He showed that given a network architecture, 

most random gene networks will ultimately settle into few stable basins of attraction called 

“attractors” [127]. Attractors represent distinct stable phenotypes in an epigenetic landscape. 

Epigenetic landscape is defined mathematically in terms of a quasi-potential energy surface 

[133], described with concepts from physical chemistry using either Arrhenius equation (for 

equilibrium systems or one-dimensional non-equilibrium systems) [134] or large deviations 

theory (for multidimensional non-equilibrium systems) [135]. Local minima or basins of 

attraction, within the potential surface constitute cell types and the relative stability of cell types 
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depends on the depths of the basins. Within this landscape, cells can transition between 

basins with rates dependent on the heights of local maxima or energy barriers separating 

basins. Within this framework, a cellular differentiation hierarchy is a special type of epigenetic 

landscape where transitions down a series of basins are more probable than up, although 

reverse transitions or dedifferentiation, are theoretically possible [136]. This framework allows 

for co-existence of multiple metastable phenotypes of comparable stability. A population of 

genetically similar cancer cells then driven by both intrinsic and extrinsic factors can transition 

in and out of these available phenotypes thus altering the proportions of cells that each state 

occupies. This phenotypic “drift” is postulated to be the source of non-genetic heterogeneity in 

cancer, which is known to influence therapeutic response [93,129]. Therefore, at a given time, 

cancer cells respond differently depending on the perturbations and fitness of each state.  

Approaches to Study Heterogeneity 

The rapid advancement in “omics” technology has made it possible to delineate inter- 

and intra-tumor heterogeneity. Heterogeneity, by its definition, refers to differences within a cell 

population with respect to specific features or properties. The degree of phenotypic 

heterogeneity is typically measured with respect to some trait X of individual cells. 

Heterogeneity is often defined with respect to gene expression (genomics), transcription 

factors, surface markers, protein expression (proteomics), and signaling. Recent studies have 

also demonstrated differences in how cancer cells respond to perturbations both in cell fates 

and clonal fitness [91,92,103]. Based on temporal information, current approaches applied to 

study heterogeneity can be classified into two types: stationary and dynamic.  

Methods that provide population snapshots and their variation at a given point in time 

fall under stationary approaches. High throughput flow cytometry and similar techniques such 

as mass cytometry/CyTOF provide an extensive phenotypic characterization of cancer cells 
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both at the cell surface and intracellular levels (signaling). While these techniques provide 

quantitative assessments of proteins or markers’ abundance, imaging-based tools such as 

immunofluorescence provide information on both the abundance and subcellular localization. 

Single cell RNA sequencing (scRNASeq) techniques also decipher intra-tumor heterogeneity 

within tumors [137–139]. Similarly, RNA-FISH (fluorescent in situ hybridization), although 

limited in number of probes, yields highly accurate RNA counts and localization data [140,141]. 

Highly multiplexed single-molecule RNA-FISH resolves numerous RNA species in different 

cellular context [140,142–145].  

Because tumors evolve over time, a single population snapshot, such as seen with 

stationary approaches will provide an incomplete and often, an inaccurate representation of 

phenotypic heterogeneity. Therefore, dynamic tools are employed to monitor expression of 

markers in individual cells over time. Usually, tools to infer dynamic information involve time-

lapse imaging which has been successfully used to examine live-cell reporters of signaling, 

transcription factor activity, and cell cycle phases [118,146,147]. Potential applications include 

single-cell tracking of cell fates and cell-lineage construction [148]. In addition, an extension of 

flow cytometry technology, FACS (fluorescence-activated cell sorting) can be used to sort cell 

populations into distinct subtypes and monitor their distributions and phenotypes over time to 

get dynamic insights. Existence of distinct subtypes within cell population, can be a biological 

strategy for adaptation to stressful environments. Heterogeneity within cell population can have 

profound effect on the cellular response to perturbations [149]. Recently, we proposed a high-

throughput approach called clonal Fractional Proliferation (cFP) assay to measure clonal 

fitness and cell fate heterogeneity in cancer cells during drug treatment [92]. Since clonal 

fitness is defined in terms of drug-induced proliferation rate, difference between rates of 

division and death within a clonal lineage, it provides a dynamic metric to study how cancer 
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cells change under perturbations. Furthermore, multiple single-cell derived clones can be 

isolated from within a genetically identical cell population [92]. These clones mimic the pre-

existing heterogeneity within cell populations and can be used to probe for molecular 

differences [92]. Additionally, these molecular differences could be correlated with their drug 

response dynamics and clonal fitness.  

Summary and Purpose of this study 

Targeted cancer therapies for melanoma show great promise because of their high 

response rates in BRAF-mutated tumors. As a result, mutant BRAF still remains an attractive 

target for melanoma treatment due to its oncogenic properties. However, the problems of 

treatment-refractory patient responses and drug resistance limit optimal drug efficacy. A 

tremendous amount of work has been done to understand a range of acquired resistance 

mechanisms in BRAF-mutated melanomas. Some of these studies have paved the way for 

combination therapies, currently the standard of care in clinic. However, even the current 

combination therapies offer only modest improvements over monotherapy, and clinical benefits 

remain transient and unpredictable. One of the main limitations in our knowledge in melanoma 

is that our understanding of tumor recurrence or resistance comes from post-resistant tumors 

or cells, and very little is known about what happens to tumor or cell populations during the 

early phase of response leading up to resistance. Traditional end-point assays often used to 

assess the drug’s action lead to incomplete and misleading information since cancer is highly 

heterogeneous and adaptive in nature.  

As part of my dissertation, I explored drug response variability within melanoma cell 

populations and quantified the range of clonal variation with recently proposed Drug-Induced 

Proliferation (DIP) rate [92,150]. The purpose of examining drug response variability at the 

clonal level is to probe the role of non-genetic differences in response dynamics, correlate 



	 26	

them with distinct molecular signals and identify the possible sources of variability within cell 

population. The fundamental goal of this study is to test the hypothesis that non-mutational 

variability among melanoma cells contributes to differential drug responses. Therefore, I 

employed a hybrid of experimentation and mathematical modeling, in a classical systems 

biology approach, to delineate the possible sources of cell-to-cell response variability. For this, 

I used BRAF-mutated human melanoma cell lines as model systems and a repertoire of live-

cell imaging, single-cell cloning, RNA sequencing and mathematical modeling to understand 

the drug response dynamics. In the following chapters, I describe a novel metric and a method 

to quantify dynamics of cellular fitness and heterogeneity within cell populations (CHAPTER 2), 

link therapeutic response variability with glycolytic reserve (CHAPTER 3), provide a unifying 

view and a framework for short- and long-term melanoma sensitivity to targeted drugs in terms 

of combined processes of clonal competition and phenotypic state transitions (CHAPTER 4), 

identify potential determinants of drug-response variability among isogenic clonal sublines 

(CHAPTER 5). On-going experiments and future directions will steer this project to find 

potential drug targets and combinations (CHAPTER 6).   
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CHAPTER 2  

A NOVEL METRIC TO QUANTIFY DYNAMICS OF CELLULAR FITNESS AND 

HETEROGENEITY IN RESPONSE TO PERTURBATION 

Adapted from:  

1. Frick PL, Paudel BB, Tyson DR, Quaranta V. Quantifying heterogeneity and dynamics 

of clonal fitness in response to perturbation. J. Cell. Physiol. 2015;230:1403–12. 

2. Harris LA, Frick PL, Garbett SP, Hardeman KN, Paudel BB, Lopez CF, Quaranta V, 

Tyson DR. An unbiased metric of antiproliferative drug effect in vitro. Nat. Methods. 

2016;13:497–500. 

Summary 

Cellular response to drug can be confounded by many complexities such as time 

dependency in measurements and heterogeneity within cell populations. The biases in 

exponential growth, delay in drug effect stabilization, differences in the cell division rates and 

clonal heterogeneity within cell populations could lead to erroneous conclusions about 

sensitivities of cells to drugs. In this chapter, I will describe two such approaches that take into 

account the differences in inter and intra-cell lines’ fitness under perturbation and how that 

fitness changes over time. These methods comprise a novel metric of measuring the anti-

proliferative effects of different perturbations and a high-throughput way of measuring pre-

existing heterogeneity within parental cell populations. My contributions in both the referenced 

manuscripts included experimental data collection and analyses in BRAF-mutated melanoma 

cells.  
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Abstract 

In vitro cell proliferation assays are widely used in pharmacology, molecular biology and 

drug discovery. Using theoretical modeling and experimentation, we show that current metrics 

of anti-proliferative small molecule effect suffer from time-dependent bias, leading to 

inaccurate assessments of parameters such as drug potency and efficacy. We propose the 

drug-induced proliferation (DIP) rate, the slope of the line on a plot of cell population doublings 

versus time, as an alternative, time-independent metric. Using the DIP rate to quantify the 

heterogeneous dynamics of clonal lineages within a cell population, we propose, for the first 

time, a method that enables a dynamic, global picture of clonal fitness within a mammalian cell 

population. This novel assay allows facile comparison of the structure of clonal fitness in a cell 

population across many perturbations. By utilizing high-throughput imaging, our methodology 

provides ample statistical power to define clonal fitness dynamically and to visualize the 

structure of perturbation-induced clonal fitness within a cell population. We envision that this 

technique will be a powerful tool to investigate heterogeneity in biological processes involving 

cell proliferation, including development and drug response.  

Introduction 

Evaluating anti-proliferative drug activity of cells in vitro is a widespread practice in basic 

biomedical research [151–153] and discovery of therapeutic molecules [154,155].  Typically, 

quantitative assessment relies on exposing cells to drugs over a range of concentrations and 

constructing dose-response curves from number of viable cells measured directly [147] or 

indirectly. The de facto standard metric is the number of viable cells 72 h after drug addition 

[152,156,157]. Being a single-time point measurement, we refer to this as a “static” drug effect 

metric. The data is then fit to the Hill equation [158], a four parameter log-logistic function, to 

produce a sigmoidal dose-response curve that summarizes the relationship between drug 
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effect and concentration. Parameters extracted from these curves include the maximum effect 

(Emax), the half-maximal effective concentration (EC50), the half-maximal inhibitory 

concentration (IC50), area under the curve (AUC) and activity area (AA) [152,156,157]. These 

are useful for quantitatively comparing various aspects of drug activity across drugs and cell 

lines. 

We contend that dose-response curves constructed using current standard metric of 

drug potency and effect can result in erroneous and misleading values of drug-activity 

parameters, skewing data interpretation. This is because of many complexities such as time-

dependent bias and pre-existing heterogeneity within cell populations. Time-dependent bias is 

when the metric value varies with the time point chosen for experimental measurement. We 

identify two specific sources of time-dependent bias: (i) exponential growth, and (ii) delays in 

drug effect stabilization. The former can lead to erroneous conclusions, e.g., that a drug is 

increasing in effectiveness over time, while the later requires shifting the window of evaluation 

to only include data points after stabilization has been achieved. Complementary to this idea, a 

recent report also highlights the bias due to different number of cell divisions during the course 

of an assay in various treatment conditions [159]. 

Another important aspect that confounds the traditional metrics is the heterogeneity that 

exists within cell populations. Historically, each data point in most in vitro assays is the 

average of the proliferative response of thousands of cells in a perturbagen-treated well, at 

single or few time points, in comparison to untreated control. However, it is becoming 

increasingly clear that heterogeneity within a cell population can have profound influence on 

outcomes [149]. It is well established that polyclonal cell populations, display variable fitness at 

the clonal level in certain microenvironments [94,160] and provides a mechanism for how cell 

populations adapt to stress. Heterogeneity itself, built in a cell population, can be a biological 
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strategy for adaptation to stressful environments. Well known cases include clonal 

subpopulations of tumor cells evading therapy [161], or bet-hedging bacteria [162]. These 

differences in clonal fitness could lead to a period of complex, non-linear dynamics (brief 

regression followed by rebound) observed for cell lines that exhibit wide variability in clonal 

responses. This kind of response behavior further corroborates the time-dependent bias in 

measuring the drug sensitivity in cell populations. However, differences in clonal fitness have 

also generally been considered in qualitative terms, relative to the size of the population. Thus, 

studies of clonal fitness variation would benefit from an approach that quantitatively assesses 

clonal differences over time, that is the dynamics and heterogeneity of polyclonal responses. 

The proliferation of a cell population (at both clonal and population level) describes, at 

its most basic level, the process of cell numbers changing over time. Thus, accurate metrics to 

quantify proliferation are essential to understanding perturbation-induced cellular responses. 

Since proliferation is a dynamic process that, by its very nature, would be best quantified as a 

rate (for example population doublings per unit of time). To this end, we propose as an 

alternative drug effect metric the drug-induced proliferation (DIP) rate, defined as the steady-

state rate of proliferation of a cell population in the presence of a given concentration of drug. 

Here, we show that DIP rate is an ideal metric of anti-proliferative drug effect because it 

naturally avoids the bias afflicting traditional metrics, it is easily quantified as the slope of the 

line on a plot of cell-population doublings versus time for both at the cell-population and clonal 

level. This metric facilitates the study of two key aspects of cell proliferation: heterogeneity and 

dynamics. To probe heterogeneity, we developed the clonal Fractional Proliferation (cFP), a 

high-throughput imaging method, and using the DIP rate as metric of drug response, we 

directly quantified the clonal fitness within a cell population as a rate of proliferation in 

response to perturbation. This approach builds on our previous studies that determine the 
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relative contribution of different cell fates to overall population dynamics [147]. We 

demonstrate that, by sparse plating and high-throughput measurements of colony size, cFP 

effectively captures clonal dynamics in a single novel metric of fitness, the drug-induced 

proliferation (DIP) rate. It is easily interpretable biologically as the rate of regression or 

expansion of a cell population or a clonal subpopulation. Measured in bulk, the DIP rate 

distributions reveal perturbation-induced changes to the structure of clonal fitness across 

various conditions. 

Materials and Methods 

Mathematical Model of Drug Action 

We propose a simple two state model of drug action on an exponentially proliferating 

cell population. We assume that cells can exist in two states, a ‘no-drug’ and a ‘drug-saturated’ 

state, and that cells in each state can experience two fates, division and death with kinetic rate 

constants that are characteristics of the state, i.e. reflecting the effect of the drug. In the 

presence of drug, cells can transition from the no-drug to drug-saturated state at a rate 

proportional to the concentration of drug. Reverse transitions occur at a rate independent of 

drug. If Cell is the number of cells in the no-drug state and Cell* is the number of cells in the 

drug-saturated state, then the temporal dynamics of the drug-treated cell population are 

described by the following pair of coupled ordinary differential equations,  
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where 𝑘$() 𝑘$()∗  and 𝑘$"+%ℎ(𝑘$"+%ℎ∗) are the rate constants for cellular division and death 

respectively, in the no-drug and drug-saturated state; 𝐷𝑟𝑢𝑔 is the drug concentration; 𝑘,- is 
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the rate constant for the transition from the no-drug to the drug-saturated state; and 𝑘,88 is the 

rate constant for the reverse transition.  

At a given drug concentration, a population of cell will eventually reach a dynamic 

equilibrium in terms of number of cells in each state. The effective Drug-Induced Proliferation 

(DIP) rate of a cell population is then the weighted average of the net proliferation rates (the 

difference between the division- and death rate constants). With increasing drug concentration, 

the equilibrium shifts increasingly toward the drug-saturated state, asymptotically approaching 

100% occupancy. The result is a sigmoidal dose-response relationship between DIP rate and 

drug concentration. Dynamic equilibrium between states is achieved immediately upon drug 

addition if the rate constants of interconversion between states are large. This is known as the 

partial equilibrium assumption (PEA) [163]. Mathematically, the PEA asserts that  

𝑘,- ∗ 𝐷𝑟𝑢𝑔 ∗ 𝐶𝑒𝑙𝑙 = 	𝑘,88 ∗ 𝐶𝑒𝑙𝑙∗       (3) 

Under this assumption, an analytical solution for the total number of cells, 𝐶𝑒𝑙𝑙; = 𝐶𝑒𝑙𝑙 +	𝐶𝑒𝑙𝑙∗, 

can be obtained as a function of time,  
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where 𝐶𝑒𝑙𝑙; 0  is the initial number of cells.  

The DIP rate is defined as the slope of the line on a semi-log2 plot of cell number vs time. 

Therefore, under the PEA, the DIP rate of our model is 
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     (5) 

At zero drug concentration, equation (5) reduces to 

𝐷𝐼𝑃> =
U
#-V
×(𝑘$() − 𝑘$"+%ℎ)        (6) 

At maximum drug concentration, equation (5) reduces to  
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𝐷𝐼𝑃W+X =
U
#-V
×(𝑘$()∗ − 𝑘$˵+%ℎ∗)       (7) 

Cell lines and Reagents  

The PC9 cell line was gift from William Pao (Vanderbilt University, Nashville, TN). 

WM115 cells were from Meenhard Herlyn (Wistar Institute, Philadelphia, PA). All other cell 

lines were obtained from American Type Culture Collection (ATCC) (http://www.atcc.org). PC9, 

MDA-MB-231, HCC1954 cells were cultured in RPMI 1640 (obtained from ATCC, Manassas, 

VA) media supplemented with 10% fetal bovine serum (FBS). All other cell lines were cultured 

in DMEM media (Gibco, Grand Island, NY) supplemented with 10% FBS. All cells were 

cultured in CO2, temperature-controlled and humidified incubators. Cells were confirmed 

mycoplasma negative before use. Cycloheximide was obtained from Sigma (Sigma-Aldrich, St. 

Louis, MO). Trametinib, SB2033580, and PLX4720 were obtained from Selleckchem (Houston, 

TX). Anisomycin was obtained from Abcam (Cambridge, MA). All reagents were solubilized in 

DMSO at a stock concentration of 10 mM and stored at -20oC until further use.  

Time-lapse Fluorescence Microscopy 

To facilitate automated image processing, cells were engineered to express fluorescent 

fusion proteins histone 2B monomeric red fluorescent protein (H2BmRFP; Addgene 

plasmind#18982) and geminin-monomeric azami green [164] using replication-incompetent 

recombinant lentiviral particles. Fluorophores integrated cells were flow sorted for highest 20% 

intensity. For cell population level studies, cells were seeded at ~2,500 cells per well in 96-well 

imaging plates (BD Biosciences) and fluorescent nuclei are imaged using a BD Pathway 855 

with a 20x objective in 3x3 montaged images per well. Alternatively, fluorescent cell nuclei are 

imaged twice daily using a Synentec Cellavita High End with a 20x objective and tiling of nine 

images.  
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clonal Fractional Proliferation (cFP) Assay 

Sub-confluent cells were split and seeded at optimized single-cell density into 96-well 

cell culture imaging plates. For PC9, the ideal conditions are 40 cells seeded per well in a final 

volume of 100 μL growth media. For A375 cells, ~20 cells are seeded per well in a final volume 

of 200 μL growth media. Plates are kept in tissue culture incubators for 6 days to allow single 

cells to expand into single cell-derived colonies. After this period, all wells are imaged and the 

experimental perturbation is added immediately thereafter. The plates are returned to the 

tissue culture incubators and all wells of the plates are imaged daily or twice daily until the end 

of the experiment.  

Image Registration and Processing  

To prepare raw images for analysis, images are sequentially organized into spatially 

organized image montages, and temporally assembled into stacks using the freely-available 

ImageJ [165] software (http://imagej.nih.gov/ij). Subsequent image processing scripts were 

applied on a per-colony basis.  

Statistical Analysis  

All statistical analyses were performed using the R statistical software (R-project.org). 

DIP rates were obtained as slope of a linear model of log2(cell number) ~time for time points 

greater than the observed delay. Linear model fits were performed using the lm function 

applied to the data points. Adjusted R2 values were calculated from the lm function. Pearson 

correlation coefficients were calculated using cor.test.  

Results 

Theoretical Illustration of Time-Dependent Bias 

To theoretically illustrate the consequences of time-dependent bias in standard drug 



	 35	

effect metrics, we constructed a simple mathematical model of cell proliferation that exhibits 

the salient features of cultured cell dynamics in response to drugs. The model assumes that 

cells experience two fates: division and death, and that the drug modulates the difference 

between the rates of these two processes, i.e., the net rate of proliferation. Drug action may 

occur immediately or gradually over time, depending on the chosen parameter values. In all 

cases, a stable DIP rate is eventually achieved, and when calculated over a range of drug 

concentrations a sigmoidal dose-response relationship emerges (Figure 2.1).  

 

 

Figure 2.1: Two-State Model of Fractional Proliferation. Two-state model of fractional proliferation predicts a 
sigmoidal relationship between proliferation rate and drug concentration (a) The model assumes two states, a 
drug-naïve state and a drugged state, each with its own characteristics rate of proliferation (DIP0 and DIPmax, 
respectively), which is the difference between the rates of cell division and death. The rate of transition from the 
drug-naïve state to the drugged state depends on the concentration of drug, while the reserve transition does not. 
Hence, as the concentration of drug increases, the dynamic equilibrium between states shifts increasingly in favor 
of the drugged state. (b) Since of the action of an anti-proliferative drug is to reduce, and perhaps reverse, the 
rate of proliferation of a cell population, we assume that the proliferation rate of the drug-naïve state is positive 
and greater than that of the drugged state (which may be positive or negative).  The DIP rate of the drugged state 
(DIPmax) is assumed to negative because we assume that in each case the drug is cytotoxic at saturating drug 
concentrations (i.e., causes regression of the cell population). (c) An example of dose-response curve predicted 
by the two-state model under the partial equilibrium assumption (PEA). The curve was generated from equation 
with EC50 = 1e-8 M, DIP0 = 0.06*ln(2) h-1, and DIPmax = -0.03*ln(2) h-1. (d) An example dose-response curves 
predicted by the two-state model in conditions where the PEA does not hold. The curve was generated by 
numerical integration of equations. 
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We model three scenarios: treatment of a fast-proliferating cell line with a fast-acting 

drug (Figure 2.2a), a slow-proliferating cell line with a fast-acting drug (Figure 2.2b) and a fast-

proliferating cell line with a delayed-action drug (Figure 2.2c,Figure 2.3). In each case, we 

generate simulated growth curves in the presence of increasing drug concentrations (Figure 

2.2, columns 1 and 2) and from these produce static dose-response curves by taking cell 

counts at single time points between 12h and 120h (Figure 2.2, column3). As expected, in 

each scenario the shape of the dose-response curves varies depending on the time of 

measurement. Consequently, parameter values extracted from these curves (EC50 and AA) 

also vary (Figure 2.2, columns 4 and 5). In contrast, DIP rates, being the slope of a line, is 

independent of measurement time. Using it as the drug effect metric gives a single dose-

response curve (Figure 2.2, columns 3 and 6) and single values of the extracted drug-activity 

parameters (Figure 2.2, columns 4 and 5). Similar results are obtained for an alternative drug 

effect metric proposed by the U.S. National Cancer Institute’s Development Therapeutics 

Program (DTP) (Figure 2.3) [166].  
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Figure 2.2: Theoretical Illustration of Bias in Dose-response Curves Based on Static Metrics of Drug Effect. 
Theoretical illustration of bias in dose-response curves based on static metrics of drug effect. Shown are 
computational simulations of the effects of drugs on (a) a fast-growing cell line treated with a fast-acting drug, (b) 
a slow-growing cell line treated with a fast-acting drug, and (c) a fast-growing cell line treated with a slow-acting 
drug. In all cases, in silico growth curves, plotted in linear (column 1) and log2 (column 2) scale, are used to 
generate static- (column 3) and DIP-rate-based (columns 3 and 6) dose-response curves, from which EC50 
(column 4) and AA (column 5) values are extracted. For DIP-rate-based values of EC50 and AA, the black triangle 
denotes the first time point used to calculate the DIP rate (i.e., after the drug effect has stabilized) and the trailing 
black line signifies that the value remains constant for all subsequent time points.  

 
 
 

 
Figure 2.3: Growth Curves for the Theoretical Fast-Growing Cell Line with Delayed Drug Effect. (a) Growth curves 
in the absence and presence of 630 nM drug for the theoretical fast-growing cell line with delayed drug effect 
(related to Fig. 2.2c). Dash-dotted lines are a visual illustration of the NCI DTP dynamic metric and the time-
dependent bias that it harbors. Depending on when cell count measurements are taken, the NCI DTP metric can 
indicate that the drug is partially cytostatic (<96 h), fully cytostatic (96 h), or cytotoxic (>96 h) at this concentration. 
(b) Comparison of dose-response curves for this cell line and drug type based on the NCI DTP dynamic effect 
metric and DIP rate. The vertical orange line corresponds to 630 nM drug concentration; circles correspond to 
those in part (a).  



	 38	

Experimental Illustration of Time-Dependent Bias in Drug-Treated Cancer Cells 

As a first confirmation of our theoretical findings, we subjected triple-negative breast 

cancer cells (MD-MB-231) to the metabolic inhibitors rotenone (Figure 2.4a) and phenformin 

(Figure 2.4b). Using fluorescence microscopy time-lapse imaging [92,147,167], we quantified 

changes in cell number over time for a range of drug concentrations. For both drugs, we 

observe a rapid stabilization of the drug effect (<24 h delay) and stable exponential 

proliferation thereafter, reminiscent of the growth dynamics of the theoretical cell lines treated 

with fast-acting drugs (Figure 2.2). We generated dose-response curves from these data using 

the standard static effect metric and DIP rate for various drug exposure times. Consistent with 

our theoretical results, the shape of the static-based dose-response curve strongly depends on 

the time point at which cell counts are taken, an illustration of time-dependent bias. The DIP 

rate, on the other hand, is free of time-dependent bias and produces a single dose-response 

curve in both cases.  

These DIP rate-based dose-response curves produce interesting insights (Figure 2.4a, 

b). For example, they indicate that while rotenone is much more potent than phenformin (EC50 

= 8.5 nM vs 25 μM), phenformin is more effective (Emax/E0 = -0.1 versus 0.1). The ordering of 

potencies (rotenone >> phenformin) could have been garnered from the static dose-response 

curves, but not the ordering of efficacies i.e., the static drug effect metric obscures the crucial 

fact that at saturating concentrations phenformin is cytotoxic (causes cell population 

regression) while rotenone is partially cytostatic (cell populations continue to expand slowly). 

This information is obviously critical to studies assessing drug mechanism of action. This 

example illustrates the perils of biased drug effect metrics and the ability of DIP rate to produce 

reliable dose-response curves from which accurate quantitative and qualitative assessments of 

anti-proliferative drug activity can be made.  
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To illustrate the confounding effects that a delay in the stabilization of the drug effect 

can have, we examined single-cell derived clones of the lung cancer cell line PC9, which is 

known to be hypersensitive to erlotinib [168], an epidermal growth factor receptor (EGFR) 

kinase inhibitor. Consistent with our previous report [147],  three drug-sensitive PC9-derived 

clones (DS3, DS4, DS5) each respond to 3 μM erlotinib with nonlinear growth dynamics over 

the first 48-72 h, followed by stable exponential proliferation thereafter (Figure 2.4c). These 

dynamics are reminiscent of those for the theoretical fast-proliferating cell line with a delayed-

action drug (Figure 2.2c). Due to the delay in drug action, all three clones have nearly identical 

population sizes 72 h after drug addition for all concentrations considered. The static 72 h 

metric thus produces essentially identical dose-response curves for all clones. In contrast, 

dose-response curves based on DIP rate make a clear distinction between the clones in terms 

of their long-term response to drug i.e., erlotinib is cytotoxic (negative DIP rate) for two of the 

clones but partially cytostatic (positive DIP rate) for the other (c). We then investigated the 

effects of erlotinib and lapatinib (a dual EGFR/human EGFR 2 (HER2) kinase inhibitor) on 

HER2-positive breast cancer cell lines (HCC1954; delay ~48 h; Figure 2.4d). In each case, DIP 

rate-based dose-response curves produce EC50 values more than five-fold larger than their 

static counterparts, i.e., by the static drug effect metric the drugs appear significantly more 

potent than they actually have. Taken together with the PC9 results (Figure 2.4c), these data 

illustrate the importance of accounting for delays in drug action when assessing 

antiproliferative drug activity and further emphasize the ability of the DIP rate metric to produce 

accurate drug-activity parameters and qualitative conclusions about drug-response dynamics.  
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Figure 2.4: Experimental Illustration of Time-Dependent Bias in Dose-Response Curves for Drug-Treated Cancer 
Cells. Population growth curves (log2 scaled) and derived dose-response curves (static- and/or DIP rate-based) 
for (a) MDA-MB-231 triple negative breast cancer cells treated with rotenone; (b) MDA-MB-231 cells treated with 
phenformin; (c) three single-cell derived drug-sensitive (DS) clones for the EGFR mutant-expressing lung cancer 
cell line PC9 treated with erlotinib; (d) HCC1954 HER2-positive breast cancer cells treated with erlotinib and 
lapatinib. Data for (a) and (b) are from single experiments with technical duplicates; data in (c) are from individual 
wells for two experiments containing technical duplicates (growth curves) and from a single experiment with 
technical duplicates (dose-response curves; data in (d) are sums of technical duplicates from a single 
experiments (growth curves) and mean values (circles) with 95% confidence intervals (gray shading) on the log-
logistic model fit (dose-response curves; n=4, 6 for erlotinib and lapatinib, respectively).  
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DIP Rate Overcomes Time-Dependent Biases in Drug Potencies 

Within the last several years, a number of studies have been published reporting drug 

responses for hundreds of cell lines to a large panel of drugs [156,169]. To investigate bias in 

these datasets, we treated four BRAFV600 expressing melanoma cell lines with various 

concentrations of the BRAF-targeted agent PLX4720, an analog of vemurafenib. We produced 

experimental growth curves (Figure 2.5a), static- and DIP rate-based dose-response curves 

(Figure 2.5b), and extracted IC50 values for each cell line and compared these to IC50 values 

obtained from CCLE and GDSC data sets (Figure 2.5c). In all cases, our IC50 values 

correspond closely to the value from at least one of the public data sets. While in three cases 

the static- and DIP rate-based IC50 values correspond within an order of magnitude, in one 

case (A375) they differ by nearly two orders of magnitude. This discrepancy can be traced to a 

period of complex, non-linear dynamics (brief regression followed by rebound) observed for 

this cell line between 24 h and 72 h post-drug addition (Figure 2.5a). This result is particularly 

intriguing because it shows that, based on DIP rate, this cell line is not much different in terms 

of drug sensitivity than the other three. Using the biased static drug effect metric, however, one 

would be led to the incorrect conclusion that it is significantly more sensitive. It is very likely 

that cases like this abound within these and other similar data sets [170,171] and illustrates the 

critical need for new anti-proliferative drug effect metrics. 
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Figure 2.5: Bias in Potency Metrics from Publicly Available Data Sets. (a) Population growth curves (log2 scaled) 
for four selected BRAF-mutated melanoma cell lines treated with various concentrations of the BRAF inhibitor 
PLX4720; (b) dose-response curves based on the static effect metric (colored lines) and DIP rate (black line; (c) 
static- (circles) and DIP rate-based (triangle + line) estimates of IC50 for each measurement time point. IC50 values 
obtained from public data sets (CCLE: Cancer Cell Line Encyclopedia; GDSC: Genomics of Drug Sensitivity in 
Cancer), based on the static 72 h drug effect metric, are included for comparison. The triangle denotes the first 
time point used in calculating the DIP rate and the black line signifies that the value remains constant for all 
subsequent time points. Data shown are from a single experiment with technical duplicates. Experiment has been 
repeated at least twice with similar results.  

 

Mean Cell Seeding Density Does Not Affect DIP Rate Estimates 

To examine how random variations in mean seeding density affect the measured values 

of drug effect metrics, we treated populations of a BRAF-mutated melanoma cell line, SKMEL5 

with 8 μM of the BRAF inhibitor PLX4720 for 150 h and calculated DIP rates based on all data 

points >72 h. Four time courses were obtained at each seeding density ranging from 312 to 

10,000 cells/well (Figure 2.6). As expected, the mean values are statistically indistinguishable 
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across seeding densities (p=0.47), however, the variance in the calculated DIP rates 

decreases with increasing seeding density (Levene’s test p =0.0082). These results indicate 

that reliable estimates of DIP rate can be obtained even at low seeding densities. 

  

 

Figure 2.6: Effects of Variations in Mean Cell Seeding Density on DIP Rate Estimation. (a) Population growth 
curves (log2 scaled) for each seeding density considered (n=4; seeding density is listed above each plot.) Vertical 
dashed line corresponds to ~72 h, the hand-chosen stabilization time; data to the right of this point were used to 
estimate DIP rate. (b) Population growth curves from part (a) normalized to the number of cells for each well at 
the first time point. Vertical dashed line corresponds to ~72 h. (c) Boxplots of estimated DIP rates (n=4) at each 
seeding density. Mean values were statistically indistinguishable across all seeding density (p=0.47); variances 
were not (Levene’s test, p=0.0082).  

 

High-Throughput Assay to Probe Clonal Heterogeneity 

Since cell lines exhibited a period of complex, non-linear dynamics (brief regression 

followed by rebound) for a period of 24 h to 72 h post-drug addition, we wondered whether all 

cells within a cell population respond uniformly to drug or whether the population level 

response is a composite of clonal subpopulation responses. To quantify clonal fitness globally 
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within a cell population, we devised the clonal Fractional Proliferation (cFP) assay, which 

tracks, in parallel, clonal proliferation in response to perturbation (Figure 2.7). We chose to 

represent clonal fitness by the proliferation of single-cell derived colonies, because this yields a 

dynamic metric based on direct measurements of clonal behavior using methods described 

elsewhere [147,167]. In setting up the cFP assay, we aimed to balance several prerequisites. 

We reasoned that if the cell population response to a perturbation is composed of clones with 

variable fitness, then it is imperative to quantify as many clones as feasible per experiment in 

order to obtain a representative sample of the range and frequency (or diversity) of clonal 

fitness. Additionally, individual colonies must contain a sufficiently high number of cells prior to 

treatment in order to minimize error introduced by small cell number counts, especially if the 

perturbation induces a decline in cell number within a clone. However, to ensure that colonies 

are in fact clonally derived, the cell population must be sparsely plated and the assay 

terminated prior to colony confluence or mixing. On balance, we found that using a 96-well 

plate format (Figure 2.7), and plating ~20-40 cells/well are optimal initial conditions to obtain 

single-cell derived colonies. After plating, the colonies are allowed to grow for ~6-7 days in 

complete growth media, and subsequently subjected to a continuous experimental 

perturbation, during which the entire well is imaged daily or twice daily for ~7-10 days. Plating 

efficiency is sufficiently high so that information on ~100-150 colonies per experimental 

condition can be obtained from 10-15 replicate wells.  
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Figure 2.7: Schematic of Clonal Fractional Proliferation Experimental Workflow. Cells are seeded at single-cell 
density into microtiter imaging plates. Single cells are allowed to proliferate for ~6-7 days in full growth media to 
expand into colonies. Once colonies have reached an optimal size, cells are imaged and then the experimental 
perturbation is immediately added. Sequentially, each well is imaged daily until the end of the experiment.  

 

Tracking of colonies throughout the duration of the perturbation requires that images 

must be both spatially and temporally registered (Figure 2.8). To this end, we use the freely 

available ImageJ [165] software (http://imagej.nih.gov/ij/, version 1.48i) to generate time-series 

image montages of individual wells. First, the subset of all images belonging to a single well at 

a single time point is considered. Then, images are spatially ordered based on acquisition time 

and converted to a stitched image montage of the entire well. This step is repeated for all time 

points and all the montages are ordered by acquisition time, resulting in an image stack of 

wells over the course of the experimental treatment (Figure 2.8).  
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Figure 2.8: Spatially- and Temporally Registered Images Facilitate Tracking of Individual Colonies. Time-ordered 
stacks of image montages allow sequential measurements of colony cell numbers during drug treatment.  

 

To quantify the proliferation dynamics of individual clones, we developed an image 

processing workflow using ImageJ to count the total number of cell nuclei at each time point 

from registered image stacks (Methods). Fluorescence intensity masks were generated for 

each colony by applying a use-defined threshold to the pixel intensity histogram computed 

from all images unique to that colony. These masks show that fluorescence from cell nuclei is 

sufficiently high above background to detect cells. However, colonies remain under-

segmented, compared to manual counting. To correct for this, the watershed segmentation 

algorithm was implemented to distinguish nearby nuclei. Then the “analyze particles” 

command scans the image stack for elements with optimized morphological parameters and 

returns the number of identical cell nuclei and the corresponding images (Figure 2.9). 
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Figure 2.9: Validation of cFP Image Processing.  (a) Top row: Images of a representative colony throughput 
cycloheximide (Chx, 500 ng/ml) treatment at the indicated days. Middle row: Binary mask generated in ImageJ 
using the same intensity threshold at all time points. Bottom row: Identified cells after image processing. 

 

This technique was used to serially identify cell nuclei throughout a representative 

experiment. To quantify how well the automated image segmentation represented the actual 

cell number at each time point, we manually counted the total cell nuclei per colony at 219 total 

time points. The manual counts are highly correlated (adjusted R2 = 0.99) with the automated 

cell counts (Figure 2.10,left) showing that automated cell counting is an efficient and faithful 

representation of changes in colony cell number. Additionally, the residual errors of the linear 

model fit do not show evidence of bias (Figure 2.10,right) and the standard deviation of the 

residuals is over fifty times smaller than the smallest cell number of any colony. 
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Figure 2.10: Automated Counting of Cell Nuclei Appropriately Quantifies Colony Cell Number. (left) Manual cell 
counts from colony from colony images at various time points (n=219) are used as a reference to validate the 
automatically measured colony cell numbers. The superimposed line represents the linear model fit for the data, 
with the corresponding adjusted R-squared value (adj. R2); (right) Q-Q plot of the residuals of the linear model fit 
used, there is insufficient bias to conclude that automated image analysis is inappropriate for colonies of certain 
size.  

 

Having validated the ability to quantify colony size by cFP, we set out to measure the 

clonal fitness variability within a population in response to drug treatments. We used drug-

induced proliferation (DIP) rate as an absolute metric for the fitness of clones in the presence 

of a perturbation, independent of comparison to untreated control. Because the DIP rate 

estimates the overall ability of a clonal lineage to survive, or perish, and expand, or regress, in 

size over time, it can be considered as a metric of clonal fitness. An advantage of using a 

single parameter to describe clone behavior is that it enables an easy display of the clonal 

variability within a cell population. In response to cycloheximide (Figure 2.11), clonal DIP rates 

within PC9 cells are well approximated by a skew-normal distribution (Kolmogorov-Smirnov 

test p=0.99; high p-value indicates insufficient statistical power to reject the fit), described by 

three parameters, μ, σ, α. Because cFP was designed to measure clonal variability within a 

cell population, we interpret μ as the average clonal fitness of the population, whereas σ and α 
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represent the variability of clonal fitness. Taken together, we interpret the distribution of DIP 

rates as the structure of clonal fitness of a cell population in the presence of a given 

perturbation.  

 

 

Figure 2.11: Histograms of DIP Rates for PC9 Colonies Treated with 500 ng/ml cycloheximide. Curves represent 
the estimated skew-normal probability distribution with the indicated values. Kolmogorov-Smirnov test p-values 
are shown.  

 

To visualize the changes in shape of clonal DIP rates directly, we overlaid the 

distribution fits for different perturbations. By comparing the fits alone, the effects of the DIP 

rate distribution shape can be easily seen relative to other conditions. The progressive 

decrease in both the clonal DIP rate mean and variability induced by increasing cycloheximide, 

Trametinib (trm), a MEK inhibitor, SB203580 (SB), and anisomycin (An) concentrations are 

evident by the DIP rate distribution shifting to the left and becoming narrower (Figure 2.12).  

 
 
 
 
 
 



	 50	

 
 
 
 

 

Figure 2.12: Skew-Normal Fits of Histograms of DIP Rates for PC9 Colonies. Histograms of DIP rates for PC9 
colonies treated with different cycloheximide (Chx), Trametinib (Trm), SB203580 (SB) and Anisomycin (An) 
concentrations.  

 

Similar trends were observed in BRAF-mutated melanoma cell line, A375 when treated 

with either PLX4720, a specific BRAF kinase inhibitor [43] or ABT-737 [172], a BH3 mimetic 

that sequesters pro-survival Bcl2 family member proteins (Figure 2.13). Thus, comparing the 

shapes of DIP rate distributions quickly summarizes how perturbations shape the clonal fitness 

profile within a cell population.  
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Figure 2.13: Skew-normal fits of histograms of DIP rates for A375 colonies treated with either ABT-737 (ABT) or 
PLX4720 (PLX). 

 

 
Figure 2.14: Aggregate of clonal responses qualitatively matches population level response. The clonal composite 
(sum of cell counts from all colonies at each time point) closely corresponds to the short-term population-level 
response; mean shown as solid or dashed lines, 95% confidence intervals as shaded regions.  
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Furthermore, the aggregate of the clonal responses qualitatively matches the short-term 

population level response (Figure 2.14). This suggests that the population level response is 

composite of multiple clonal responses—which can be quantified in terms of DIP rates. 

Moreover, it also informs about the nature of clonal drug-response behaviors within the cell 

populations. For instance, an early regression indicates that the contribution of regressing 

clones is larger, whereas a rebound suggests positively expanding clones dominate the 

population size.   

Discussion 

Together, we present here a novel metric, Drug-Induced Proliferation (DIP) rate, which 

overcomes biases in traditional measure of drug sensitivities in cancer cells. From cellular 

response dynamics, we show that complex drug-response behaviors can be inferred. DIP 

rates faithfully encompass, within a single value, the long-term effect of a drug at cell 

population level. Using DIP rates to quantify cellular behavior, we present here a high-

throughput assay to monitor clonal fitness under perturbations. cFP assay captures pre-

existing heterogeneity within a cell population and with DIP rate, it is biologically interpretable.  

Current protocols for cell proliferation assays are based on informal ‘rules of thumb,” for 

example, counting cells at 72 h of treatment to ameliorate the impact of complex dynamics and 

delays in drug response. However, these de facto standards have no theoretical basis, and as 

demonstrated here, suffer from many complexities such as time-dependent bias and pre-

existing heterogeneity within cell populations. These factors lead to erroneous conclusions to 

cancer cells’ sensitivities to anti-cancer drugs. In light of the widespread applications of cell 

proliferation assays in oncology, pharmacology, and basic biomedical science [173], it is 

imperative that the quality of the metric for anti-proliferative assays be improved. Toward this 

end, we have proposed DIP rate as a viable, unbiased alternative anti-proliferative drug-effect 
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metric. DIP rate overcomes time-dependent bias by log-scaling cell count measurements to 

account for exponential proliferation and by shifting the time window of evaluation to 

accommodate lag in the action of a drug, changes that do not substantially alter experimental 

design. Moreover, DIP rate is an intuitive, biologically interpretable metric with a sound basis in 

theoretical population dynamics, and it faithfully captures, within a single value, the long-term 

effect of a drug of a cell population.  

Another important factor to consider while evaluating drug sensitivities in cancer cells is 

heterogeneity. Existence of diverse subpopulations within a cell type ensures that the cell 

population exhibits complex, non-linear drug response dynamics. Using DIP rate to quantify 

cellular responses, we devised a high-throughput clonal Fractional Proliferation (cFP) assay to 

measure the structure of clonal fitness of a cell population in response to perturbation. 

Heterogeneity can be observed at the single cell level—where individual cells exhibit multiple 

cell fates in response to perturbations. Tyson et. al. previously showed that live-cell 

microscopy can be used to resolve heterogeneous cell behavior dynamically. With method 

called Fractional Proliferation, they unveiled how multiple cell fates contribute to changes in 

population size over time. However, this approach cannot be easily employed to follow many 

individual clonal subpopulations nor to assess their fitness over longer time scales. By 

generating clonal subpopulations essentially from single cells and quantifying their clonal 

proliferation rates, cFP overcomes both of these limitations. This allows us to monitor dynamic 

colony growth, unravel the structure of clonal fitness that exists in a cell population, and how 

that changes across many conditions. The distribution of clonal fitness is key to understanding 

how a cell population will evolve under drug perturbations. Because clonal fitness is presented 

as rates, the output should be amenable to mathematical models of population dynamics [174] 

and studies of clonal competition. Since the obtained clonal fitness reflects the pre-existing 
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differences among subpopulations, it will help identify whether rare subpopulations exist within 

a cell population. In such scenario, the distribution will essentially be bimodal, one representing 

the rare clones with advantageous mutations, and the other sensitive subpopulations. A 

normal distribution implies that there is no clear hierarchy among subpopulations, and both 

non-genetic and stochastic processes might modulate the drug response behaviors. 

Distribution may also give insight into the adaptation of a cell population to stress and also 

informative to linking molecular signaling gradients to its shape.  

In summary, we describe a novel metric of measuring the anti-proliferative effects of 

different perturbations and a high-throughput way of measuring pre-existing heterogeneity 

within parental cell populations. The structure and distribution of clonal fitness reveal how 

multiple clonal subpopulations contribute to changes in population size over time.  
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CHAPTER 3  

GLYCOLYTIC RESERVE CORRELATES WITH DRUG RESPONSE VARIABILITY IN BRAF-

MUTATED MELANOMA CELLS 

Adapted from: 

Hardeman KN, Peng C, Paudel BB, Meyer CT, Luong T, Tyson DR, Young JD, Quaranta V, 

Fessel JP. Dependence On Glycolysis Sensitizes BRAF-mutated Melanomas For Increased 

Response To Targeted BRAF Inhibition. Sci. Rep. 2017;7:42604. 

Summary 

BRAF-mutated melanoma cells exhibit variability in response to targeted therapies. This 

heterogeneity mimics response variability seen in clinic. Recent studies link dysregulated 

metabolism to therapeutic resistance through activation of compensatory signaling. In this 

chapter, I will describe an approach of linking drug response variability among cancer cells 

with their metabolic phenotype measured by Seahorse flux analyzer and immunostaining of 

mitochondria in cells. My contributions in the above referenced manuscript included 

experimental data collection and analyses in quantifying drug response differences among 

melanoma cells and also in relating therapeutic response with metabolic phenotype.  

Abstract 

Dysregulated metabolism can broadly affect therapy resistance by influencing 

compensatory signaling and expanding proliferation. Given that many BRAF-mutated 

melanoma patients experience disease progression with targeted BRAFi, we hypothesized that 

therapeutic response is related to tumor metabolic phenotype, and that altering tumor 

metabolism could change therapeutic outcome. We demonstrated the proliferative kinetics of 
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BRAF-mutated melanoma cells treated with the BRAFi, PLX4720, fall along a spectrum of 

sensitivity providing a model system to study the interplay of metabolism and drug sensitivity. 

We discovered a relationship between glucose utilization and sensitivity to BRAF inhibition 

through characterization of metabolic phenotypes using a nearly a dozen metabolic 

parameters in Principal Component Analysis. Our results indicate metabolic vulnerability of 

melanoma cancer cells and may suggest ways to rationalize combination therapies of targeted 

therapies and metabolic inhibitors.  

Introduction 

Melanoma is the most malignant form of skin cancer, and roughly 50% of clinical 

isolates have a mutation in the BRAF-kinase of the mitogen-activated protein kinase (MAPK) 

pathway (Figure 1.1) [36,175]. Ninety percent of those BRAF mutations are missense 

mutations that change the valine at position 600 to glutamic acid (V600E) or aspartic acid 

(V600D) [176]. The mutation confers constitutive activation of the BRAF kinase and drives 

oncogenic signaling through MEK phosphorylation. Targeted therapies against mutant BRAF 

have prolonged progression-free survival and overall survival in Phase III clinical trials [26]. 

Unfortunately, most patients will exhibit some degree of disease progression while treated with 

a BRAF inhibitor, with nearly 50% of patients progressing after only 6 to 7 months of initial 

treatment (Figure 1.2) [177]. There have been a variety of mechanisms that underlie initial and 

acquired drug resistance described in the literature (Table 1.3). Generally, mechanisms of 

resistance to anti-BRAF therapies are put into MEK-dependent and MEK-independent 

categories. MEK-dependent mechanisms include mutations in NRAS, MEK1 and MEK2 [69], 

loss of RAS regulation by NF1 [178,179], COT overexpression driving MEK signaling [68], and 

genetic alterations in BRAF itself, such as truncation or amplification [64]. MEK-independent 
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mechanisms of resistance include receptor tyrosine kinase protein and ligand overexpression 

such as cMET, IGF1R and PDGFRβ [69], and signaling through PI3K [180]. Unfortunately, 

more than 40% of the resistance found in patients who progressed on targeted therapy cannot 

be attributed to any of these mechanisms (CHAPTER 1) [75]. One of the features common to 

all of the known pathways that contribute to resistance is that they exert direct or indirect 

control of multiple cellular metabolic pathways—contributing to the single “hallmark” of 

metabolic reprogramming.  

Dysregulated metabolism in cancer has been shown to affect treatment outcome via 

multiple pathways, including the activation of compensatory receptor tyrosine kinase signaling 

to bypass molecular targeted therapies, the repression of pro-apoptotic signaling, and 

limitation of drugs’ access to molecular targets through active and passive mechanisms [181]. 

Recently, it has been shown in BRAF-mutated melanoma that chronic treatment with a BRAF 

inhibitor induces glutamine dependence that correlates with drug resistance [182,183]. We 

wanted to examine whether the molecular landscape of any individual tumor has any 

relationship to its sensitivity to targeted therapies. Although metabolic pathways have been 

targets in BRAF-mutated melanomas, a consensus of the major metabolic programs exhibited 

by BRAF-mutated melanomas is lacking. BRAF-mutated melanomas have been characterized 

as exhibiting primarily aerobic glycolysis [184]  or oxidative phosphorylation [185,186]. 

However, the relationship between metabolic program and therapeutic response in BRAF-

mutated melanomas is poorly understood. As a result, we set out to probe the phenotypic 

relationship of metabolism and responses to the BRAF-inhibitor vemurafenib.  

In the present study, we used a panel of human BRAF-mutated melanoma cell lines to 

demonstrate in vitro variability in response to PLX4720, a BRAF inhibitor analogue of 
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vemurafenib. Utilizing drug-induced proliferation (DIP) rates as metrics of anti-proliferative 

effect under various treatment conditions [150], we ordered cell lines on a continuum of 

sensitivity to PLX4720. We also quantified metabolic profiles of our panel of BRAF-mutated 

melanomas for both their baseline glycolysis and oxidative metabolism. Our results show a 

relationship between reliance on glycolysis and sensitivity to PLX4720 and may suggest 

metabolic vulnerability of melanoma cancer cells.  

Materials and Methods 

Reagents 

PLX4720 (Cat# S1152) was obtained from Selleckchem. Glycolysis Stress Test and 

Mitochondrial Stress Test kits were obtained from Seahorse Biosciences and used according 

to manufacturer instructions. Dulbecco’s Modified Eagle Media (Cat# 11965-092) was obtained 

from Sigma.  

Cell Culture  

Cells were grown and cultured in DMEM media containing 2 mM glutamine, 4.5 g/L 

glucose, 10% FBS and no sodium pyruvate (Cat#11965-092), except where specified 

otherwise. Cells were split and seeded at ratios that allowed for splitting 1-2 times per week. 

For drug-response experiments, cells were plated the night before, then reagents/drug were 

prepared in fresh media and added to the cells immediately before the start of the experiment.  

Proliferation Assays 

Cells were labeled with a fluorescent, nuclear tag (Histone 2B monomeric Red 

Fluorescent Protein, H2BmRFP from Addgene), and flow sorted. Only top 10% bright cells 

were kept for further experiments. Cells were seeded onto 96-well plates (1000-5000 cells per 

well) and drug treatments applied the following day, including the DMSO or PBS control (all 
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concentrations contained equal percentage of DMSO or PBS solvent to be consistent). Images 

were taken every 8-12 hours with sufficient image alignment (montaging) in order to capture 

about 25-100 cells per well/treatment. Direct measurement of cell counts was made using 

Cellavista image processing software and ImageJ macros. Proliferation was log2 transformed 

and normalized to cell counts to time zero.  

Seahorse Metabolic Assays  

For measurement of Oxygen Consumption and Extracellular Acidification Rates, cells 

were plated onto 96-well plates (Seahorse Biosciences, Billerica, MA) at a density of 25,000-

40,000 cells/well before analysis on the Seahorse XFe extracellular flux analyzer. 

Mitochondrial Oxygen Consumption was quantified using the Mito Stress Test kit, and 

glycolytic rate quantified using the Glycolysis Stress Test kit, each according to manufacturer’s 

instructions. Briefly, assay medium was unbuffered DMEM containing either 10 mM Glucose, 2 

mM Glutamine, and 1 mM Sodium Pyruvate (Mito Stress Test) or none of the aforementioned 

(Glyco Stress Kit). No FBS was used in assay medium.  

Principal Component Analysis (PCA) and Linear Regressions  

Metabolic parameters were extracted for nine cell lines from two representative 

experiments, a glycolytic function experiment (Glyco Stress Test) and a mitochondria function 

experiment (Mito Stress Test) according to schematic shown. Bioenergetic Health Index was 

calculated as previously described by Chacko et. al. Pearson Correlation was used to estimate 

correlation between metabolic parameter and IC50. Before principal component analysis (PCA), 

each extracted parameter was Z-score normalized to minimize variation due to the different 

parameter scales. The first principal component was calculated using all possible combinations 

of parameters and each combination was correlated with the measured IC50 for nine cell lines 

in panel.  
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Generation of Single-Cell-Derived Subclones 

Single-cell derived subclones from SKMEL5 were isolated by seeding single-cell into 

96-well and expanded in complete media until frozen stocks were made. Each subclone was 

grown in each media for at least two weeks before treating them with PLX4720 (CHAPTER 4).  

Statistical Analyses  

Data are presented as either an average of 3+ separate experiments or a representative 

example; error bars are means+ or –SD and p-values were obtained using unpaired t-test.  

Results 

BRAF-mutated Melanoma Cell Lines Exhibit Varying Sensitivity to BRAF-inhibition 

To examine whether the variability in response to mutant BRAF-inhibition in patients 

could be modeled in vitro, we measured the cell lines’ proliferative responses to BRAF-

inhibition. We quantified the proliferative kinetics of the cell lines in the presence of PLX4720 

using our previously described metric of anti-proliferative drug effect, drug-induced proliferation 

(DIP) rates [150]. Based on DIP rates calculated at an intermediate concentration of PLX4720 

(8 μM) across the cell lines, BRAF-mutated melanoma cell lines fall along a response 

spectrum or a continuum (Figure 3.1a), from highly sensitive cell line (i.e. WM164) to largely 

insensitive (i.e. A2058). Similarly, we used the estimated DIP rates at each drug concentration 

and fitted a log-logistic curve to obtain the IC50 metric (Figure 3.1b), which termed DIP IC50, 

and observed that cell lines ranked along a similar spectrum (Figure 3.1c).  

We next confirmed that the measured variability in response to PLX4720 treatment was 

not due to phenotypic selection of drug-resistant subclones during the short 4-5-day time-

frame of our experiments. We leveraged a fluorescent ubiquitin-dependent cell cycle indicator 

(FUCCI; mAG-gem1-110) to detect cells that have committed to cell division (i.e. passed the 
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G1/S transition). Our hypothesis was if intrinsically resistant clones exist within the population, 

they would be enriched in cells that continue to proliferate in the presence of PLX4720 and 

would remain resistant after isolation. To test this possibility, we treated the BRAF-mutated 

melanoma lines with PLX4720 or DMSO for 72 hours and sorted actively divided FUCCI+ cells 

from both cells. We re-challenged the flow-sorted cells with PLX4720 after a drug holiday of 24 

hours, and observed that the proliferative responses of the two groups were essentially the 

same, indicating that PLX4720 does not appear to select for resistant populations in the short-

term (Figure 3.2). Similar results were obtained with FUCCI- cells when re-challenged with 

PLX4720 (Figure 3.2).  
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Figure 3.1: BRAF-mutated Melanoma Cells Exhibit Varying Sensitivities to BRAF-inhibition. (A) Drug-Induced 
Proliferation (DIP) rates are calculated as the slope of the line fitted to the log2 normalized population curve after 
48 h in 8 μM PLX4720. Bar plot shows the mean ±SEM; data shown are from >4 technical duplicates. (B) Dose-
response curves are generated using a 2-fold dilution of PLX4720 from 32 μM down to zero (DMSO). Log-logistic 
curve is then fitted to Drug-Induced Proliferation (DIP) rates calculated as the slope of the line fitted to the log2 
normalized population curve at each concentration after 48 h. (C) IC50 metric is extracted by fitting log-logistic 
curve is fitted to Drug-Induced Proliferation (DIP) rates calculated over a range of concentrations of PLX4720.  
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Figure 3.2: Response Variability is not Due to Phenotypic Selection of Drug-Resistant Subpopulations. Population 
growth curves (log2 normalized; 3+ replicates) for SKMEL5 cells pre-treated with PLX4720 and sorted for their 
FUCCI status with varying concentrations of PLX4720. SKMEL5 cells were pre-treated with 8 μM PLX4720 for 72 
h and flow-sorted based on their FUCCI status. Both FUCCI+ and FUCCI- cell populations were re-treated with 
different concentrations of PLX4720.  

 

BRAF-mutated Melanoma Cell Lines Exhibit Heterogeneous Metabolic Features 

To determine metabolic features exhibited by our panel of BRAF-mutated melanoma 

cell lines, we quantified lactate-producing glycolysis and mitochondrial oxidative metabolism 

using the Seahorse extracellular flux analyzer platform. Using a panel of 10 BRAF-mutated 

melanoma cell lines, we observed that most cells can variably utilize glucose and consume 

oxygen as part of mitochondrial respiration (Figure 3.3a). Notably, most cells have minor 

glycolytic reserve after the addition of oligomycin, indicating that most of the melanoma cells 

are functioning at or near their glycolytic capacity (Figure 3.3b). The basal respiration and 
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oxygen consumption also varied across cell lines. The subsequent decreases in oxygen 

consumption rate (OCR) after the addition of oligomycin (Figure 3.3a) suggest varying 

dependencies on ATP-linked respiration across the cell lines. Taken together, our data 

indicates that there is broad, intrinsic metabolic heterogeneity across BRAF-mutated 

melanoma cell lines.  

 

 
Figure 3.3: Metabolic Heterogeneity Among BRAF-mutated Melanoma Cells. (a) Oxygen consumption rates 
(OCR) indicative for oxidative metabolism for the cell lines indicated with sequential additions of oligomycin (1 
μM), FCCP (1 μM) and Rotenone/Antimycin (0.5 μM). (b) Extracellular acidification rate (ECAR) indicative of 
glycolysis for the cell lines with sequential additions of glucose (10 mM), oligomycin (1 μM) and 2-deoxyglucose 
(0.5 μM).  

 

Metabolic Phenotype Variability Correlates with Variability in Response to PLX4720 

Given the observed heterogeneity in sensitivities to PLX4720, and variabilities in the 

metabolic features of our panel of BRAF-mutated melanoma cell lines, we sought to examine 

more closely whether a direct relationship exists between metabolism and drug response. To 

quantify the relationship between the metabolic program of BRAF-mutated melanoma cell lines 

and their response to PLX4720, we extracted eleven metabolic parameters from 

measurements of mitochondrial oxygen consumption rate (OCR) and glycolytic function curves 
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for nine cell lines (parameters described in Figure 3.4). Each metabolic parameter was 

independently tested for correlation with the measured DIP IC50 for PLX4720 for each cell line 

(Figure 3.5). Of all the metabolic parameters, we observed that glycolytic reserve shows 

moderate positive correlation (Corr: 0.605) whereas, glycolysis showed an inverse correlation 

with DIP IC50 values (corr: -0.495). This suggests that increased glycolysis among BRAF-

mutated melanoma cell lines is indicative of greater sensitivity to BRAF-inhibition (lower DIP 

IC50). Conversely, higher glycolytic reserve is indicative of lesser sensitivity to BRAF-inhibition 

(higher DIP IC50).  

 

 

Figure 3.4: Schematic Diagram Describing the Components and Metrics from Seahorse Metabolic Assays used in 
the Principal Component Analysis (PCA). (A) Schema for example Glyco Stress Test Parameters. (B) Schema for 
example Mito Stress Test parameters.  

 

Next, we determined how different combinations of the metabolic parameters correlated 

with drug sensitivity using Principal Component Analysis (PCA). Of all possible combinations 
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of parameters, our results indicated that of a linear combination of glycolysis and glycolytic 

reserve accounts for ~70% of the variance in the parameter ensemble across the cell lines 

used (Figure 3.6). Since glycolysis inversely correlated with DIP IC50, while glycolysis reserve 

showed positive correlation, taken together, our data suggests that increasing the rate of 

glycolysis while depleting glycolytic reserve would sensitize BRAF-mutated melanoma cells to 

BRAF-inhibition (lower IC50 values).  

 

 

Figure 3.5: Metabolic heterogeneity correlates with sensitivity to BRAF-inhibition. Statistical test for correlation 
(Pearson) between metabolic parameters individually against sensitivity to BRAF-inhibition measured as DIP IC50 
of the panel of BRAF-mutated melanoma cells.  
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Figure 3.6: Glucose Utilization Strongly Correlates with Sensitivity to BRAF-inhibition. Principal Component of a 
linear combination of glycolysis and glycolytic reserve (Glucose utilization) correlates well with DIP IC50 in the 
panel of BRAF-mutated melanoma cells.   

 

Glucose Availability Enhances the Effect of BRAF Inhibition on BRAF-mutated 

Melanoma Cells 

To determine how glucose availability affects drug responses, we subjected BRAF-

mutated melanoma cells grown on three different growth conditions to varying concentrations 

of PLX4720. For this, we utilized three single-cell derived subclones of SKMEL5—SC01, SC07 

and SC10. We grew each subclone on three different growth media (DMEM, DMEM/F12 and 

F12), each with varying concentrations of glucose. While DMEM is high glucose containing 

media (4.5 g/L glucose), DMEM/F12 (3.15 g/L glucose) and F12 (1.80 g/L glucose) have low 

glucose concentrations. We grew each subclone in different media at least two weeks prior to 

subjecting them to drug treatment. For each subclone, we observed cells grown in high 

glucose (DMEM) media were consistently more sensitive to PLX4720, while cells grown in low 

glucose (F12) media were the least sensitive (Figure 3.7). Taken together, our results suggest 

that the effect of BRAF-inhibition is enhanced with increase in glucose availability in BRAF-

mutated melanoma cells, consistent with our results from Principal Component Analysis. 
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Figure 3.7: Glucose Availability Enhances the Effect of BRAF-Inhibition on BRAF-mutated Melanoma Cells.  
Drug-Induced Proliferation (DIP) rates calculated as the slope of the line fitted to the log2 normalized population 
curves for cells grown in three different media (DMEM, DMEM/F12 and F12) treated with varying concentrations 
of PLX4720 (32 μM and 2-fold-down). (A) SC01, (B) SC07 and (C) SC10. Color bars represent different 
concentrations of PLX4720 (32 μM and 2-fold-down).  
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Discussion 

All cells, both normal and tumor cells, have basic energy and metabolic needs for 

survival and proliferation. Cellular responses—such as adaptation, differentiation, proliferation 

and signal transduction—are inherently complex and dynamic in nature. Therefore, sustained 

proliferation in the presence of targeted therapies is likely shaped by a cells’ dynamic 

metabolic constraints. In this study, we investigated whether there exists a direct link between 

overall metabolic program and sensitivity to targeted BRAF inhibition. Our results indicate that 

over-reliance on glycolysis can sensitize BRAF-mutated melanoma cells to targeted BRAF 

inhibitor treatment. This finding is in agreement with earlier reports [184–186] suggesting 

BRAF-mutated melanoma cells undergo metabolic reprogramming under BRAF-inhibition and 

enhance their mitochondrial respiration. 

Melanoma patients harboring BRAFV600 mutations experience heterogeneous drug 

responses with BRAF-inhibition. Using a relatively large panel of BRAF-mutated melanoma 

cell lines and examining their drug sensitivities, we modeled such heterogeneity. With the use 

of DIP rates [92,150], a metric recently introduced by our group which overcomes time-

dependent bias prevalent in traditional end-point assays (CHAPTER 2), we categorized 

melanoma cells and their PLX4720 sensitivity on a continuum (Figure 3.1). Drug response 

variability in our melanoma panel is not due to selection of pre-existing resistant 

subpopulations (Figure 3.2), often attributed as the source of intrinsic or acquired resistance in 

cancer cells [94,187]. Because recent studies have highlighted the role of dysregulated 

metabolism in driving therapeutic response, we probed for metabolic phenotypes in our panel 

of melanoma cells. Although recent reports suggested that melanoma cells undergo metabolic 

reprogramming under BRAF-inhibition, questions remain about what physiological role 

glycolysis, oxidative phosphorylation, or mitochondria play for BRAF-mutated melanoma, in the 
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context of drug-treatment. Cancer cells, because of their high proliferative capacity, are 

glycolytic in nature, a phenomenon often termed as “Warburg effect.”[188] Clinical evidence 

suggests that BRAF-mutated melanoma tumors under targeted therapies exhibit reduced 

glucose uptake [189]. We used a systems approach to find correlation between several 

metabolic parameters and DIP rates of melanoma cells. Our analysis, for the first time, shows 

that over-reliance on glycolysis sensitizes melanoma cells to BRAF-inhibition. Specifically, 

dependence on glycolysis is defined in two terms which relate to how well the cells utilize 

glucose: glycolysis and glycolytic reserve. We show that sensitive melanoma cells (WM88, 

WM164) have high glycolysis and low glycolytic reserve. Consistent with relationship inferred 

from PCA, we observed cells grown in high glucose media were highly sensitive compared to 

cells grown in low glucose media. It is still to be determined what glycolytic reserve means in 

the context of cellular metabolism. Future experiments should focus on unraveling the 

molecular determinants of metabolic variability which will provide rational combination 

strategies for maximal therapeutic efficacy of BRAFi.  
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CHAPTER 4  

A NON-QUIESCENT “IDLING” STATE IN DRUG-TREATED BRAF-MUTATED MELANOMA 

CELL POPULATIONS 

Adapted from:  

Paudel BB, Harris LA, Hardeman KN, Abugable AA, Hayford CE, Tyson DR, & Quaranta, V. 

(2017). A Non-Quiescent “Idling” State in Drug-Treated BRAF-mutated Melanoma Cell 

Populations. Biophysical Journal. (in revision). 

Summary 

While many resistance mechanisms to BRAFi have been identified, very little is known 

about what happens to tumor or cell populations during the early phase of response that 

precede resistance. In this chapter, I use mathematical modeling coupled to experimentation to 

describe drug response dynamics of BRAF-mutated melanoma cells within the theoretical 

framework of epigenetic landscape and phenotypic state transitions. We propose that the 

observed population-level dynamics are the result of a re-equilibration process across the 

basins of attraction within a drug-modified phenotypic landscape, resulting in the emergence of 

a novel, non-quiescent idling state of balanced division and death under sustained BRAF-

inhibition. Our approach provides a generalizable approach to study drug response dynamics 

and a unifying view of how BRAF-mutated melanomas respond to continued BRAF-inhibition.  

Abstract 

Targeted therapy is an effective standard of care in BRAF-mutated malignant 

melanoma. However, tumor remission varies unpredictably among patients and relapse is 
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almost inevitable. In this chapter, we monitor the responses of several BRAF-mutated 

melanoma cell lines, including isogenic sublines, to BRAFi. We observe complex response 

dynamics across cell lines, with short-term responses (<100 h) varying from cell line to cell 

line. In the long term, however, we observe transition of all cell populations into a non-

quiescent state of balanced death and division, which we term “idling.” To our knowledge, the 

idling state has not been previously reported. Using mathematical modeling, we propose that 

the observed population-level dynamics are the result of a reequilibration of the cell population 

across basins of attraction within a drug-modified phenotypic landscape. Each basin is 

associated with a drug-induced proliferation (DIP) rate, a recently introduced metric that 

quantifies the dynamics of cell population responses to drugs. The idling state represents a 

new dynamic equilibrium in which cells are distributed across the landscape such that the 

population achieves zero net-growth. By fitting our model to experimental drug-response data, 

we infer the phenotypic landscapes of all considered cell lines and provide a unifying view of 

how BRAF-mutated melanomas respond to BRAF inhibition. We hypothesize that residual 

disease observed in patients following therapy may comprise a significant number of idling 

cells. Thus, quantifying the molecular determinants of the phenotypic landscape that idling 

cells occupy may lead to the development of novel therapies based on rational modification of 

the landscape to favor basins with greater drug susceptibility. 

Introduction 

Targeted small molecule inhibitors of BRAF [190] show remarkable, short-term efficacy 

in melanoma patients with tumors harboring BRAFV600 mutations [26,44]. However, clinical 

responses are variable, short-lived, and tumor recurrence is almost universal within a few 

months of therapy initiation [26,45]. Analyses of post-resistant tumors or cells provide most of 

our current knowledge of tumor recurrence in melanoma [75], which is usually attributed to 
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rare, resistance-conferring genetic alterations that either preexist [94,187,191] or develop 

during therapy [73,192]. However, accumulating evidence suggests that non-mutational 

processes play a significant role in the response of cancer cells to drugs [102–105]. For 

example, there is preclinical and clinical evidence that cancer cells can become re-sensitized 

to therapy after a brief “drug holiday” [81,99–101]. It has also been suggested that cancer cells 

employ a dynamic survival strategy governed by epigenetic alterations to survive lethal drug 

exposure [106,107], similar to strategies seen in bacterial cell populations [111,112]. 

Recently, the idea that networks of genes can give rise to multiple metastable cellular 

phenotypes has received considerable interest [127–131]. The idea dates back to Waddington 

[132], who posited that cellular differentiation can be conceptualized as a dynamical trajectory 

through an “epigenetic landscape.” Borrowing concepts from physical chemistry [134], the 

epigenetic landscape is defined mathematically in terms of a quasi-potential energy surface 

[133]. Local minima, or basins of attraction, within this surface constitute cell types and the 

relative stability of cell types depends on the depths of the basins. Cells can transition between 

basins with rates dependent on the heights of local maxima, or energy barriers, separating 

basins. Within this framework, a cellular differentiation hierarchy is a special type of epigenetic 

landscape where transitions down a series of basins are more probable than up, although 

reverse transitions, or dedifferentiation, are theoretically possible, as has been confirmed 

experimentally [136]. The concept of the epigenetic landscape has recently been extended to 

cancer cells [128,131,161]. In contrast to normal cellular development, a clear hierarchy of cell 

types is not generally believed to exist for many cancers [191,193]. Rather, multiple metastable 

phenotypes of comparable stability can coexist and a population of cancer cells, driven by both 

intrinsic (e.g., gene expression) [102] and extrinsic [103] stochastic forces, will tend to spread 

out across these available phenotypes [194,195]. This phenotypic “drift” is postulated to be the 
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source of non-genetic heterogeneity in cancer, which is known to influence therapeutic 

response [93,129].  

Here, we experimentally quantify drug-induced proliferation dynamics in BRAF-mutated 

melanoma cell lines at the cell population, clonal, and single-cell levels. We show that in all 

cases examined, treatment with BRAFi induces entry into a previously unrecognized, non-

quiescent state of balanced death and division, which we refer to as “idling.” To understand the 

nature of the idling state, we build a simple three-state model of cellular proliferation in terms of 

our recently proposed drug-induced proliferation (DIP) rate metric [92,150]. The model posits 

that the addition of drug alters the epigenetic landscape that melanoma cells inhabit. As a 

result, the cell population begins to re-equilibrate within the new, drug-modified landscape. 

Complex population-level dynamics observed immediately following drug addition reflects the 

re-equilibration process and the idling state represents the final, equilibrated state where cells 

are distributed across the landscape such that the population exhibits zero net growth. By 

calibrating the model to time-lapse imaging data, we infer the topographies of the drug-

modified landscapes for multiple BRAF-mutated melanoma cell lines and show that differential 

short-term dynamics from cell line to cell line can be explained in terms of slight topographical 

variations. Our analysis thus provides a simple theoretical explanation for the wide range of 

responses observed for different BRAF-mutated melanomas to BRAF inhibition. We discuss 

the potential clinical relevance of idling cancer cells as well as the possibility for novel 

therapies based on rational modification of the epigenetic landscape using therapeutic agents. 

Materials and Methods 

Reagents 

PLX4720 (Cat# S1152) and vemurafenib (Cat# S1267) were obtained from 

Selleckchem (Houston, TX). Dabrafenib (Cat# HY-14660) was obtained from MedChem 



	 75	

Express (Monmouth Junction, NJ) and solubilized in dimethyl sulfoxide (DMSO) at a stock 

concentration of 10 mM. BKM120 (Cat# S2247, buparlisib) was obtained from Selleckchem 

(Houston, TX) and solubilized in DMSO at a stock concentration of 10 mM. Trametinib (Cat# T-

8123) and BEZ235 (Cat# N-4288) were obtained from LC Laboratories (Woburn, MA) and 

solubilized in DMSO at stock concentrations of 1 mM. Cisplatin (Cat# 479306, cis-

Diamineplatinum(II) dichlorine) was obtained from Sigma-Aldrich and solubilized in phosphate 

buffered saline (PBS) at a stock concentration of 12.5 mM. All drugs were aliquoted and stored 

at -20°C until use except for cisplatin, which was stored at -80°C. Phospho-MEK1/2 antibodies 

(Cat#9121) were obtained from Cell Signaling (Danvers, MA). 

Cell culture 

BRAF-mutated melanoma cells (SKMEL5, A375, WM793, SKMEL19, SKMEL28, 

WM164, WM88, A2058) were grown and cultured in Dulbecco's modified Eagle’s medium and 

Ham's F-12 medium (DMEM:F12, 1:1, Cat# 11330-032). Media were obtained from Gibco 

(Grand Island, NY) and supplemented with 10% FBS. All cells were cultured in CO2, 

temperature-controlled (37°C), and humidified incubators. Cells were tested for mycoplasma 

before use and confirmed negative. Cells were passaged 1–2× per week and maintained as 

exponentially growing cultures for a maximum of less than 20 passages. Unless otherwise 

indicated, cells were seeded ~16–24 h prior to treatment to allow cells to adhere to culture 

plates. Reagents/drugs were prepared in complete medium immediately prior to adding to cells 

by replacement.  

Fluorescent imaging 

To facilitate automated image processing, cells were engineered to express fluorescent 

fusion proteins histone 2B monomeric red fluorescent protein (H2BmRFP; Addgene plasmid# 

18982) and geminin1–110 monomeric azami green [164] using replication-incompetent 
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recombinant lentiviral particles, as previously described [147,167]. Cells were seeded at 1000–

5000 cells per well in 96-well culture imaging plates (BD Biosciences, product# 353219). 

DMSO and PBS were used as vehicle controls, as appropriate. Images were acquired through 

a 10× or 20× objective with a CellaVista High End Bioimager (SynenTec Bio Services, 

Münster, Germany) every 6–12 hours as 3×3 or 5×5 montages for approximately two weeks. 

Media containing matching concentrations of drug or vehicle in each well were replaced every 

three days. Image processing to obtain counts of cell nuclei at each time point was performed 

as previously described [147,150]. SKMEL5 (including all clonal derivatives), A375, WM88, 

SKMEL19 and A2058 were all treated with 8µM BRAF inhibitor (BRAFi; PLX4720 unless 

otherwise stated); SKMEL28 was treated with 16µM BRAFi; WM164 and WM793 were treated 

with 32 µM BRAFi. Drug-naïve and post-idling (pre-treated with 8 μΜ BRAFi for two weeks 

followed by a brief 24 h drug holiday) cell populations of the SKMEL5 sublines SC01, SC07, 

and SC10 were treated with 1 μΜ trametinib, 5 μΜ cisplatin, 1 μΜ BKM120, and 2 μΜ BEZ-

235. In all cases, population growth curves are plotted as the ratio of cell counts to the initial 

cell counts (at the time of drug addition), in log2 scale (i.e., population doublings). 

clonal Fractional Proliferation assay 

Clonal Fractional Proliferation (cFP) was done as previously described (CHAPTER 2) 

[92]. Briefly, subconfluent cells are seeded at low density (~10–20 cells per well) in 96-well 

culture imaging plates. Plates are kept in humidified and CO2-controlled incubators for 

approximately one week with medium replacement every three days to allow single cells to 

expand into colonies of approximately 50 cells. Medium is then replaced with drug- or vehicle-

containing medium and cells are imaged every ~8–12 hours until the end of the experiment, 

with drug replacement every three days. Images are processed as previously described [92]. 

Raw images are sequentially organized into spatially registered montages and temporally 



	 77	

assembled into image stacks. Cell counts per colony were obtained using the freely-available 

ImageJ software (https://imagej.nih.gov/ij/) with a custom-written macro, as described 

previously [92]. Colony drug response was quantified in terms of DIP rate, obtained as the 

slope of a linear fit to the log2-scaled growth curve [92,150]. 

Single cell-derived sublines 

Sixteen SKMEL5 sublines were derived from single cells by serial dilution. Briefly, cells 

were serially diluted to less than 1 cell per well in 96-well imaging plates and imaged to identify 

wells containing a single cell. Cells were expanded in complete growth medium (in the 

absence of BRAFi) and sequentially transferred to 48-, 24-, and 6-well plates until sufficient 

numbers of cells were available for cryopreservation. All sublines were tested for their 

sensitivity to BRAFi prior to cryopreservation.  

Time-lapse single cell tracking 

Fluorescence images of cellular nuclei were obtained as previously described [167]. 

Briefly, images were acquired using a BD Pathway 855 in (spinning disk) confocal mode with a 

20× (0.75NA) objective in a CO2- and temperature-controlled environment every 20 min for 

260 h from the time of first drug addition. Medium was replaced with freshly prepared drug 

every three days. Images from each well were organized into stacks of time series. 

Fluorescent nuclei were manually tracked across sequential images to obtain cell lifespans 

and resultant cell fates (death or division), as previously described [147]. “Birth time” denotes 

the time at which a mitotic event occurred, resulting in two sister cells. “Lifetime” denotes the 

duration of single cell viability until the cell either died or underwent mitosis. End of Experiment 

(EOE) represents the cells that were born in drug but did not exhibit any cell fate during the 

remaining observation time. Data is displayed as two-dimensional plots of birth time vs. lifetime 

with death, division, and EOE signified with different markers.  
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Mathematical modeling and parameter calibration 

We consider three cell subpopulations, defined in terms of their net proliferation rates: R 

(regressing), S (stable), and E (expanding). Cells within each subpopulation can divide, die, or 

transition into “adjacent” subpopulations. The ordinary differential equations (ODEs) describing 

the temporal dynamics of the system are 
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where NR, NS, and NE are the numbers of cells in subpopulations R, S, and E, respectively; 

kpR, kpS, and kpE are the DIP (net-proliferation) rates of subpopulations R, S, and E, 

respectively; krs and ksr are the forward and reverse transition rate constants between 

subpopulations R and S, respectively; and kse and kes are the forward and reverse transition 

rate constants between subpopulations S and E, respectively. DIP rates were set to 𝑘[\ =

−0.055	hGU, 𝑘[_ = 0	hGU, and 𝑘[a = 0.015	hGU and a total initial cell population of 10,000 was 

assumed (see Supplementary Information). The remaining six parameters [krs, ksr, kse, kes, and 

the initial cell proportions R0 and S0 (≥0 and ≤1)] were determined by calibrating to 

experimental data (see below). The model was encoded in R (https://www.r-project.org/) and 

ODE simulations were performed using the ode function of the R package ‘deSolve’ [196].  

Parameter calibration was performed using Markov chain Monte Carlo (MCMC) 

sampling [197,198] (105 iterations) using the modMCMC function of the R package ‘FME’ 

[199]. Goodness of fit was quantified using the cost function 

 𝐶𝑜𝑠𝑡 = 	 (hEGȽE)i

jE
-
(kU         (4) 
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where n is the number of measured time points and Mi, Oi, and σi are the model prediction, 

experimentally observed value, and standard experimental error (automatically determined by 

modMCMC) at time point i, respectively. For the SKMEL5 cell line, the model was calibrated 

against an experimental time course for a 1:1:1 clonal mixture of three single cell-derived 

sublines (SC01, SC07, and SC10). Predictions for the dynamics of the SKMEL5 parental line 

and sublines were then made by selecting 1000 random parameter sets from the last 50% of 

iterations (accounting for burn-in) in the MCMC-generated parameter ensemble. Specifically, 

for each of the 1000 parameter sets, we recalibrated the model using MCMC keeping the 

transition rate constants (krs, ksr, kse, kes) fixed at the values for that particular iteration and 

allowing the initial cell proportions (R0 and S0) to vary as free variables. For other BRAF-

mutated melanoma cell lines (WM88, WM164, SKMEL28, SKMEL19, A375, WM793), model 

calibration was performed against experimental time courses for the parental lines. In all 

cases, we plot simulated time courses as one-standard-deviation envelopes around the mean 

from 1000 random samples of the MCMC-generated parameter ensemble. Additional details of 

the model and the MCMC calibration procedure, including MCMC-generated parameter 

distributions, are provided in the Appendix.  

Inferring quasi-potential energy landscapes 

We assume that the probability that a cell transitions from subpopulation X to Y follows 

Arrhenius’ equation [200,201]. Within this view, each subpopulation constitutes a basin of 

attraction within a quasi-potential energy landscape and transitions between subpopulations 

require traversal of an energy barrier separating adjacent basins. The height of this barrier, 

delUxy, is proportional to the negative logarithm of the transition rate constant, i.e., 

 ∆𝑈Xn	~ − ln	 𝑘Xn        (5) 
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Intuitively, the higher the barrier the less probable is the transition. For each cell line 

considered, we randomly select 2000 parameter sets from the MCMC-generated parameter 

ensemble (see above) and estimate barrier heights between basins for each set using Eq. (5). 

A pictorial representation of the inferred quasi-potential energy landscape is then generated as 

a one-standard-deviation envelope around the mean barrier heights from the 2000 sampled 

parameter sets. 

Results 

BRAF-mutated melanoma cell populations exhibit balanced death and division upon 

long-term exposure to BRAF inhibition 

To investigate the effects of BRAF inhibition on BRAF-mutated melanoma, we 

subjected populations of numerous BRAF-mutated human melanoma cell lines to the small 

molecule BRAFi PLX4720 for a period of approximately two weeks (~350 h; Figure 4.1a and 

Figure 4.2a). The proliferation dynamics immediately following drug addition (<100 h) varied 

from cell line to cell line, with some populations continuing to slowly expand while others 

experienced significant cell death (Figure 4.1a). Over longer time periods, however, all cell 

populations eventually settled into a state of near-zero net growth (Figure 4.1a). For the 

expanding cell populations, we confirmed that the zero-net-growth state is not trivially due to 

confluency (Figure 4.2b). Moreover, we observed that ~5-15% of cells continue to divide during 

this period, as indicated by an exogenous marker of the S, G2, and M cell cycle phases [164] 

(Figure 4.1b and Figure 4.2c). Cell death was also observed, as indicated by early nuclear 

morphological changes associated with apoptosis [202] (Figure 4.2d). Because cells continue 

to turnover (die and divide) during this period, but the cell population maintains a constant 

level, we refer to this state as “idling.” Other BRAFis (dabrafenib and vemurafenib) also caused 

idling, as did the combination of BRAFi and trametinib, an inhibitor of MEK (a downstream 
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target of BRAF in the MAPK signaling cascade; Figure 4.2e). Interestingly, we also observed 

that idling cells resume normal exponential proliferation when switched to drug-free media and 

exhibit similar drug-response dynamics when re-challenged with BRAFi (Figure 4.1c). The 

reversibility of the phenotype suggests that the idling state is non-mutational in nature [128]. 

Taken together, these results demonstrate that the idling state is drug-induced, reversible, and 

a common response of BRAF-mutated melanoma cell populations to continued, long-term 

MAPK pathway inhibition. 
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Figure 4.1: BRAF-Mutated Melanoma Cell Populations Idle Under Continued BRAF Inhibition. (a) Population 
growth curves (log2 normalized; 3+ technical replicates) for seven BRAF-mutated melanoma cell lines treated with 
saturating concentrations of BRAFi. (b) Percentage of FUCCI-positive cells (an indicator of cellular commitment to 
division) during 168-350 h of BRAFi treatment for the SKMEL5 and A375 cell lines. (c)  Idling cells return to 
normal, pre-drug function after a 24 h drug holiday: (left) drug-naive and post-idling cells (SKMEL5) expand at 
equal rates in complete-growth media; (right) drug-naïve and post-idling cells respond almost identically to BRAFi 
(mean responses are shown as solid lines, 95% confidence intervals as shaded regions). 
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Figure 4.2: BRAFi-Induced Responses of BRAF-Mutated Melanoma Cell Populations. (a) (left) Population growth 
curves (log2 normalized) for SKMEL5 parental cells treated with varying concentrations of BRAFi; (right) DIP rate-
based dose–response curve (red line is the EC50). (b) The idling state is not trivially due to confluence: (left) 
comparison of population growth curves (log2 normalized) for SKMEL5 cells treated with BRAFi and DMSO 
control; (right) representative images at 210 h post BRAFi treatment (nuclei are shown in blue, FUCCI-positive 
(cycling) cells in green). (c) Percentage of FUCCI-positive WM164 cells between 168-350 h of treatment with 32 
μM BRAFi. (d) Nuclear morphological changes leading to apoptosis observed in BRAFi-treated SKMEL5 cells. (e) 
Population growth curves (log2 normalized) for SKMEL5 parental cells treated with 16 μM vemurafenib, 4 μM 
dabrafenib, 0.125 μM trametinib, and a combination of 8μM BRAFi and 0.125 μM trametinib (mean responses are 
shown as solid lines, 95% confidence intervals as shaded regions). 
 

Short-term drug response reflects pre-existing clonal heterogeneity  

We investigated more closely the short-term drug response dynamics in the SKMEL5 

cell line by tracking ~200 single cell-derived colonies, or “clones” (~110 cells per clone), 

treated with BRAFi using the clonal Fractional Proliferation (cFP) assay (see Materials and 

Methods) [92]. Because the idling phenotype is reversible (Figure 4.1c), we assume that these 
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clones are non-mutational in nature, i.e., their differences are not based on genetic alterations 

(this differs from the conventional use of the term “clone,”. [203].  Drug responses were 

quantified in terms of DIP rate [150] and varied from clone to clone, encompassing a broad 

range of behaviors from expanding to regressing (Figure 4.3, a and b). Similar results were 

obtained for other drug concentrations (Figure 4.4a) and other BRAF-mutated melanoma cell 

lines (Figure 4.4b). We observed that the proliferation rate of a clonal lineage prior to treatment 

does not correlate to its DIP rate in BRAFi (Figure 4.3c), indicating a non-trivial relationship 

between drug-free and drug-induced proliferation (i.e., “fast” proliferators in the absence of 

drug are not necessarily fast proliferators in drug, etc.). Furthermore, the aggregate of the 

clonal responses qualitatively matches the short-term population-level response (Figure 4.3d). 

This suggests that the short-term dynamics is due to clonal competition [94], i.e., clones with 

negative DIP rates die out while clones with positive DIP rates expand and ultimately drive the 

population-level response. Thus, these results indicate that BRAF-mutated melanoma cell 

lines contain pre-existing, hidden non-mutational clonal heterogeneity that is only revealed 

upon drug exposure and drives the short-term drug response. 
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Figure 4.3: Short-Term Drug Response Dynamics Reveals Pre-existing Clonal Heterogeneity. (a) Population 
growth curves (log2 normalized) for BRAFi-treated SKMEL5 single cell-derived colonies (n=203) obtained using 
the cFP assay. (b) Distribution of clonal drug-induced proliferation (DIP) rates (doublings/h), obtained by linear fits 
to the growth curves. (c) Colony DIP rates do not correlate with untreated proliferation rates. (d) The clonal 
composite (sum of cell counts from all colonies at each time point) closely corresponds to the short-term 
population-level response (same data as in Fig. 1A; means are shown as solid or dashed lines, 95% confidence 
intervals as shaded regions). 
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Figure 4.4: Clonal Responses of Multiple BRAF-mutated Melanoma Cell Lines to Various Concentrations of 
BRAFi (a) Population growth curves (log2 normalized) obtained using the cFP assay for SKMEL5 single cell-
derived colonies treated with 2 μM BRAFi (n=106) and 16 μM BRAFi (n=95). (b) Population growth curves (log2 
normalized) obtained using the cFP assay for single cell-derived colonies of SKMEL19 (n=60) and WM88 (n=55) 
treated with 8 μM BRAFi.  
 

Idling occurs within single cell-derived sublines with varying short-term drug 

sensitivities 

To reconcile the long-term population-level response (Figure 4.1, Figure 4.2) with the 

observed clonal heterogeneity (Figure 4.3, Figure 4.4), we sought to determine whether each 

clonal lineage enters an idling state independently or if the phenomenon is limited to select 

clones. To distinguish between these possibilities, we isolated 16 single cell-derived sublines 

from the SKMEL5 cell line (Figure 4.5a; Materials and Methods). As in the cFP assay (Figure 

4.3,Figure 4.4), upon exposure to BRAFi the short-term dynamics (<100 h) varied significantly 

across the clonal sublines, with some expanding, some regressing, and some maintaining a 

stable population (Figure 4.5b and Table 4.1). We selected three sublines representative of the 

range of observed short-term responses for further experimentation: SC01 (regressing), SC07 

(stable), and SC10 (expanding). Upon prolonged exposure to BRAFi, despite their initial 

divergent responses, both SC01 and SC10 converged to near-zero DIP rates, while SC07 
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maintained its initial zero-net-growth response (Figure 4.6a). Similar results were obtained for 

three other SKMEL5 sublines (Figure 4.5c). As before, we confirmed that entry into the idling 

state is not due to confluence (Figure 4.5d). Furthermore, by manually tracking the fates of 

multiple individual cells over time, we determined that all three clonal sublines experience 

death and division while in the idling state (Figure 4.6b), confirming that idling is not due to 

quiescence but rather due to balanced rates of death and division. These results suggest, 

therefore, that the idling state is a characteristic feature of BRAF-mutated melanoma that is 

accessible, in the continued presence of BRAF inhibition, to all clonal populations regardless of 

their initial sensitivities. 

 

 



	 88	

 

Figure 4.5: Responses of Single Cell-Derived SKMEL5 Clonal Sublines Treated with BRAFi (a) Schematic of 
single-cell-cloning technique used to isolate single cell-derived sublines. (b) 16 single cell-derived SKMEL5 
sublines treated with 8μM BRAFi: (left) population growth curves (log2 normalized); (right) bar-plot of BRAFi-
treated subline DIP rates calculated as linear fits to the growth curves. (c) Three additional SKMEL5 single cell-
derived sublines (SC03, SC04, SC08) idle after prolonged exposure to BRAFi. (d) (left) Representative images at 
190 h post drug addition of populations of SKMEL5 sublines SC01, SC07, and SC10 in DMSO and treated with 
BRAFi; (right) cell fractions in BRAFi relative to DMSO control. 
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Figure 4.6: Single Cell-Derived Clonal Sublines Idle Independent of Short-Term Drug Sensitivity. (a) Population 
growth curves (log2 normalized) for three single cell-derived SKMEL5 sublines treated with BRAFi (3+ technical 
replicates; means are shown as solid lines, 95% confidence intervals as shaded regions). (b) Single cell lifespans 
vs. birth times (time of first mitotic event) for the three sublines after a week in BRAFi (cells born during the 
experiment but reaching the end of the experiment (EOE) without a second mitotic event are plotted along the 
diagonal).  
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Table 4.1: Drug-Induced Proliferation (DIP) Rates for Single-Cell derived SKMEL5 sublines3. 

Subline Prolif. rate 
(doublings/h) 

Std. 
deviation 

SC01 -2.13E-02 1.07E-02 
SC02 4.20E-03 N/A 
SC03 1.05E-02 1.48E-03 
SC04 -6.51E-03 1.24E-03 
SC05 9.00E-04 N/A 
SC06 7.10E-03 N/A 
SC07 1.53E-03 3.53E-03 
SC08 -2.81E-03 3.65E-03 
SC10 1.16E-02 4.16E-04 
SC11 1.14E-02 N/A 
SC12 1.20E-03 N/A 
SC13 -2.40E-03 N/A 
SC15 -1.90E-03 N/A 
SC16 -2.50E-03 N/A 

 

 
BRAFi-induced idling cells are not multi-drug resistant and have reduced metabolic 

profiles 

Multi-drug resistance is the ability of cancer cells to withstand the effects of anticancer 

drugs and compounds that are structurally and/or functionally unrelated [204–206]. Recently, it 

was reported that when exposed to sub-lethal drug concentrations for multiple weeks, 

melanoma cells transition into a multi-drug-resistant state [207]. To determine whether our 

BRAFi-induced idling cells are multi-drug resistant, we re-challenged idling cell populations 

(“post-idling”) of three SKMEL5 clonal sublines (SC01, SC07, and SC10) with trametinib (a 

                                                
3 SC refers to sublines of SKMEL5; Drug-Induced Proliferation (DIP) rates for each subline are 
calculated from drug response dynamics between 24 h to 96 h in 8 μM PLX4720.  
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MEK inhibitor), cisplatin (a platinum-based chemotherapeutic), BKM120 (a PI3K inhibitor), and 

BEZ235 (a PI3K/mTOR dual inhibitor; see Materials and Methods) and compared their 

responses to those of drug-naïve populations of the same sublines. In all cases, the post-idling 

population exhibited significantly altered sensitivities relative to the drug-naïve populations 

(Figure 4.7).  

 

 

Figure 4.7: Idling melanoma cells show nearly uniform drug sensitivities regardless of their initial differences. 
Population growth curves (log2 normalized) for drug-naïve and post-idling (one week of BRAFi treatment; BRAFi 
removed less than 24 h prior to subsequent drug addition) single cell-derived SKMEL5 sublines treated with 
saturating concentrations of trametinib, cisplatin, BKM120, and BEZ235 (error bars represent one standard 
deviation). 

   

In particular, the least sensitive drug-naïve sublines (SC10 for trametinib, BKM120, and 

BEZ235; SC07 for cisplatin) were significantly more drug-sensitive after induction into idling. 

Furthermore, the responses of the post-idling populations were much more uniform across 

sublines (almost identical in BKM120 and BEZ235) than in the drug-naïve case, suggesting a 

homogenization of the cell population due to idling. Moreover, the least sensitive subline to 

three of the drugs (SC10 to trametinib, BKM120, and BEZ234) was the most sensitive to 

cisplatin, eliminating the possibility that this subline is intrinsically multi-drug resistant.  
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Since recent studies show melanoma cells undergo metabolic reprogramming in 

response to BRAF-inhibition [185,186,208,209], we characterized functional metabolic profiles 

of subclones at baseline and in idling state using the Seahorse extracellular flux analyzer 

platform. We quantified both the oxygen consumption rate (OCR) and extracellular acidification 

rate (ECAR) of isogenic SKMEL5 subclones (see Methods). At baseline, SC07 had higher 

oxygen consumption quantified in metrics such as basal mitochondrial respiration, ATP 

production, maximum mitochondrial respiration and spare capacity followed by SC10 and 

SC01 (Figure 4.8a). In idling state, we found that oxygen consumption rates of SC07 and 

SC10 are significantly reduced (Figure 4.8a, b), while SC01 exhibited little change from its 

already low initial metabolic profile (Figure 4.8). We also observed decreased glycolytic 

respiration, measured as extracellular acidification rate (ECAR) in subclones treated with 

PLX4720 (Figure 4.8c). Taken together, these results demonstrate that the short-term drug-

response dynamics of single cell-derived clonal melanoma populations are drug- and subline-

specific for drug-naïve populations and largely independent of initial clonal identity after 

induction into idling. Additionally, our results suggest that idling melanoma cells are not multi-

drug resistant and represent a state of reduced metabolism.  
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Figure 4.8: Sustained BRAF-inhibition leads to reduced metabolism in BRAF-mutated melanoma cells. (A) 
(left)Oxygen consumption profiles (OCR) of SKMEL5 sublines with sequential additions of oligomycin (1 μM), 
FCCP (1 μM) and Rotenone/Antimycin A (0.5 μM). (right) Extracellular pH (ECAR) profiles of cells with sequential 
additions of glucose (10 mM), oligomycin (1 μM), and 2-deoxyglucose (0.5 μM). (B) Various metabolic parameters 
calculated from OCR profiles (C) Various metabolic profiles calculated from ECAR profiles. (B) and (C) are 
estimated from 3+ replicates. 
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Mathematical modeling qualitatively reproduces complex, population-level drug-

response dynamics 

Our experimental observations can be summarized as follows: (i) BRAF-mutated 

melanoma cell populations are clonally heterogeneous, with initial clonal responses to BRAF 

inhibition varying over a wide range, from expanding to regressing (Figure 4.3, a and b); (ii) the 

short-term population level response is a composite of clonal responses (Figure 4.3d); (iii) all 

cell line and clonal subline populations eventually transition into a state of balanced death and 

division, termed idling, in the continued presence of drug (Figure 4.1a and Figure 4.6a); (iv) the 

idling state is reversible, with cell populations resuming normal exponential growth upon drug 

removal and responding like drug-naïve populations when re-challenged (Figure 4.1c); and (v) 

idling cells are not multi-drug resistant and exhibit near-uniform sensitivities to secondary drug 

treatment, regardless of initial drug-free response (Figure 4.7c). To mathematically formalize 

these observations, we constructed a simple kinetic model of cell proliferation that qualitatively 

captures the treatment responses of all BRAF-mutated melanoma cell lines considered here. 

Briefly, we defined three cell subpopulations: regressing (R), stable (S), and expanding (E), 

with negative, zero, and positive DIP rates, respectively (Figure 4.9a). We assume that cells in 

each subpopulation can die, divide or (reversibly) transition into “adjacent” subpopulations, 

thus changing the proportion of cells in each subpopulation over time (see Materials and 

Methods and Supplementary Information for further details). A similar formalism has been 

proposed to study cancer cell population dynamics [210]. With cells distributed across the 

three subpopulations, we expect a period of short-term, non-linear dynamics driven by 

differences in rates of death and division of each subpopulation (i.e., clonal competition), 

followed by phenotypic transitions of cells between subpopulations, resulting in idling. 

Intuitively, the nature of the short-term dynamics and the timescale for transition into idling will 
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depend upon the initial proportions of cells in each subpopulation and the values of the 

transition rate constants (Table 4.2). 

 

Table 4.2: Model Variables and Parameters 

Variable Definition 

𝑡 Time (h) 

𝑁\ Number of cells in state R  

𝑁_ Number of cells in state S  
𝑁a Number of cells in state E  

𝑇 Total number of cells 

Parameter Definition Units 

𝑘[\ Net proliferation rate of cells in state R hGU 
𝑘[_ Net proliferation rate of cells in state S hGU 
𝑘[a Net proliferation rate of cells in state E hGU 
𝑘M] Rate of transition of cells from state R to state S hGU 
𝑘]M Rate of transition of cells from state S to state R hGU 
𝑘]" Rate of transition of cells from state S to state E hGU 
𝑘"] Rate of transition of cells from state E to state S hGU 
𝑅> Initial proportion of cells in state R unitless 
𝑆> Initial proportion of cells in state S unitless 
𝐸> Initial proportion of cells in state E unitless 
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Figure 4.9: A three-state kinetic model qualitatively captures complex drug-response dynamics for numerous 
BRAF-mutated melanoma cell lines and sublines. (a) Graphical representation of the three-state model (arrows 
represent cell fates, i.e., death, division, and state transitions; growth dynamics for each subpopulation are 
illustrated in the lower plots). (b) BRAFi-induced response of a 1:1:1 clonal mixture of SKMEL5 sublines SC01, 
SC07, and SC10 used for model fitting (fit shown as a dark blue shaded region). (c) Model fits to the BRAFi-
induced responses of the SKMEL5 SC01, SC07, and SC10 sublines (Fig. 3A) and the parental line (Fig. 1A) 
using the rate constants inferred from the fit to the 1:1:1 clonal mixture. (d) Model fits to the BRAFi-induced 
responses of six additional BRAF-mutated melanoma cell lines (Fig. 1A). (e) Model-predicted proportions of cells 
in the regressing (Rid), stable (Sid), and expanding (Eid) subpopulations in the idling state. (f) Comparison of 
model-predicted and experimentally-derived proportions of cells in the regressing (R0), stable (S0), and expanding 
(E0) subpopulations at the time of drug addition (experimental estimates, based on cFP, are shown as red stars). 
For the box plots in E and F , the solid line is the median, the box spans the first and third quartiles, the whiskers 
extend to 1.5x the inter-quartile range, and outliers are shown as black circles. 



	 97	

For the SKMEL5 cell line, we estimated model parameters by fitting the mathematical 

model to experimental data for a 1:1:1 clonal mixture of the SC01, SC07, and SC10 sublines 

(Figure 4.9b) using Markov chain Monte Carlo (MCMC) sampling (see Materials and Methods). 

We then used the estimated transition rate constants (Figure 4.10a) to predict drug-response 

dynamics for individual SKMEL5 sublines as well as the parental line (allowing the initial cell 

proportions to vary). In each case, the model predictions match closely with the experimental 

time courses, capturing both the short-term dynamics and the transition into the idling state 

(Figure 4.9c). Importantly, the model cannot explain the observed dynamics if the transition 

rate constants are set to zero (Figure 4.10c). We also fit the model to experimental time 

courses for six additional melanoma cell lines (Figure 4.9d). In all cases, the model predicts 

that the idling state is comprised of very few cells in the R subpopulation but significant 

proportions of cells in both the S and E subpopulations, ranging between ~20−80% (Figure 

4.9e and Figure 4.10c). This is a significant result because it demonstrates that the idling state 

is not a state of an individual cell, but rather a state of the population as a whole. To further 

validate the model, we compared the predicted initial cell proportions (R0, S0, and E0=1-R0-S0) 

for the SKMEL5 parental line, sublines, and two additional BRAF-mutated melanoma cell lines 

to results of cFP assays (Figure 4.10d; see Materials and Methods). The cFP assay quantifies 

the short-term drug response and, therefore, is a reflection of the distribution of initial cell 

counts across subpopulations prior to drug exposure. In each case, the predicted proportions 

qualitatively match the experimental results (Figure 4.9f). In summary, our model, incorporating 

both clonal competition and phenotypic state transitions, captures the key features of the drug-

response dynamics of several BRAF-mutated melanoma cell populations, which differ 

significantly in the shape and duration of their short-term response but all eventually converge 

into an idling state. 
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Figure 4.10: Model Predictions and State Discretization for Multiple BRAF-mutated Melanoma Cell Lines and 
Sublines (a) Distributions of transition rate constants (krs, ksr, kse, kes) obtained by MCMC calibration of our three-
state model to experimental data for a 1:1:1 clonal mixture of sublines SC01, SC07, and SC10 (boxes extend 
from the first to third quartile, solid horizontal line is the median, whiskers extend to 1.5x the interquartile range, 
outliers are shown as empty circles). (b) Experimental population growth curves (black solid line with 95% 
confidence envelope) for SKMEL5 parental and single cell-derived sublines SC01, SC07, and SC10 overlaid with 
model predictions (red) if all transition rate constants are set to zero. (c) Model-predicted proportions of cells in 
the regressing (R), stable (S), and expanding (E) subpopulations in the idling state for SKMEL5 parental and 
single cell-derived sublines SC01, SC07, SC10. (d) Discretizing cFP distributions into three states: (left) Cutoffs (± 
m) of one doubling every two weeks (± 1/360 doublings/h) defines the regressing state R, the zero-net-growth 
state S, and the expanding state E; (right) cFP distributions for multiple BRAFi-treated melanoma cell lines with 
quantified cell state proportions.  



	 99	

Drug-response dynamics as a reequilibration over a drug-modified quasi-potential 

energy landscape 

Using the values of the transition rate constants from the MCMC-generated ensembles 

(Appendix 1), we inferred BRAFi-induced quasi-potential energy landscapes for all BRAF-

mutated melanoma cell lines considered here (Figure 4.11; see Materials and Methods). 

Within this formalism, each subpopulation is associated with a basin of attraction and 

transitions between subpopulations amount to traversals of energy barriers separating basins 

[210]. Our results show that the basin associated with the expanding subpopulation (E) is 

consistently the shallowest across cell lines, i.e., has the smallest exit barrier (kes). This makes 

intuitive sense, since for the cell population to reach the idling state (zero net growth) cells 

must rapidly evacuate the E basin (otherwise the cell population would continue expanding). 

However, at equilibrium a proportion of cells remain in this basin (Figure 4.9e and Figure 

4.10c), providing a source to counterbalance cell depletion occurring in the regressing 

subpopulation. The depths of the basins associated with the regressing (krs) and stable (ksr, 

kse) subpopulations are more variable than for the E basin (across the MCMC-generated 

parameter ensemble) but generally show the S basin to be deeper than the R basin 

(Appendix). Notable exceptions are the WM164 and WM88 cell lines, which exhibit significant 

short-term cell loss. Again, this makes intuitive sense since within this framework the only way 

for this to occur is for the exit barrier from the R to the S basin to be large enough so as to 

abate escape of cells into the S basin after drug exposure. For comparison, we also inferred 

the BRAFi-induced epigenetic landscape for the A2058 cell line, which is known to be largely, 

but not entirely, insensitive to BRAF inhibition (Figure 4.12) [211]. Unsurprisingly, in this case 

the E basin is significantly deeper than the other basins and simulations show that the system 

cannot achieve a long-term dynamic equilibrium. Hence, we do not observe idling in this cell 
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line within the time frame of our experiment and we do not expect it to ever idle regardless of 

duration of drug exposure. Overall, the inferred epigenetic landscapes are powerful theoretical 

tools for understanding the basis of the complex population-level dynamics observed in BRAF-

mutated melanoma cell populations and for reconciling differences seen across cell lines in 

terms of variations in landscape topography. 
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Figure 4.11: Inferred drug-modified quasi-potential energy landscapes provide insight into the drug-response 
dynamics. Quasi-potential energy landscapes for eight BRAF-mutated melanoma cell lines (seven from Fig. 1A, 
plus the largely BRAFi-insensitive A2058 cell line), inferred from model fits to the drug-response dynamics (shown 
to the right). U(x) is the quasi-potential energy, x is the “reaction coordinate.” Landscapes are based on 2000 
random samples of the MCMC-generated parameter ensemble. Mean basin depths and barrier heights are shown 
as red lines; the blue shaded regions correspond to one standard deviation around the mean. R, regressing; S, 
stable; E, expanding. 
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Figure 4.12: BRAFi-Induced Population Dynamics and Signaling Changes for the A2058 Cell Line. (a) Population 
growth curves (log2 normalized) for varying concentrations of BRAFi. (b) Western blots comparing levels of 
phosphorylated MEK in A2058 cells and three other cell lines after 96 h exposure to BRAFi (lanes correspond to 
drug concentrations in for the population growth curves). 

 

Discussion 

We report here that sustained BRAF inhibition (>100 h in vitro) induces entry of BRAF-

mutated melanoma cell populations into a non-quiescent idling state of balanced death and 

division, characterized by a near-zero proliferation rate. Idling occurs both at the population 

and clonal levels, independent of differences in initial short-term responses, and is both drug-

induced and reversible, consistent with non-mutational drug tolerance described in earlier 

reports [105,212,213]. Cells in the idling state are not multi-drug resistant and respond to 

secondary drug treatments (nearly) uniformly, independent of initial clonal identity. To our 

knowledge, the idling state has not been previously reported, possibly because drug-response 

assays tend to be performed over short observation times (72−96 h) and proliferation rates are 
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not usually measured [92,147,150,159], as we do in this work. Taken together, these 

observations are not easily explained within the frameworks of existing models of drug 

resistance or tolerance [106,191,193,207,214–216]. In particular, cell populations that initially 

expand but then transition into the idling state (SKMEL5 and A375 in Figure 4.1a; SC10 in 

Figure 4.6a) cannot be the result of selection of a rare pre-existing resistant clone or due to the 

acquisition of a resistance-conferring genetic mutation; nor, as we show, is it due to confluence 

(Figure 4.2b and Figure 4.5d) or quiescence (Figure 4.1b, Figure 4.6b, and Figure 4.2c). This 

begs the question, why an apparently thriving cell population would cease expanding and enter 

into a state of balanced death and division.  

To get a grasp on these confounding observations, we proposed a kinetic model (Figure 

4.9a) in which a cell population is comprised of multiple discrete subpopulations that can 

interconvert and each of which is characterized by a DIP rate [150] that quantifies its net 

proliferation in drug. The model is most easily understood within the framework of epigenetic 

landscapes, where cell subpopulations are associated with basins of attraction and phenotypic 

state transitions with traversals of quasi-potential energy barriers. An implicit assumption of the 

model is that an epigenetic landscape exists in the absence of drug, which is set by the genetic 

background of the cell [128], over which cells within an isogenic population (e.g., a cell line) 

stochastically diffuse in time. This drug-naïve “phenotypic drift” sets the initial cellular 

occupancies of each basin in a drug-modified epigenetic landscape that is drug- and dose-

dependent. The cFP assay [92] provides an experimental platform for quantifying these initial 

cell occupancies in terms of DIP rate distributions (Figure 4.3b and Figure 4.10d).  

The central hypothesis of this work is that drug-treated cell populations re-equilibrate 

over this new, drug-modified landscape; the short-term population-level drug response is a 
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reflection of this re-equilibration process; and the idling state constitutes the final, equilibrated 

state. This theoretical framework explains why populations of single cell-derived sublines 

respond differently to drug in the short term (different initial numbers of cells in each basin) but 

identically in the long term (exposure to the same landscape topography), as we report here 

(Figure 4.6a). Convergence to a common drug-induced equilibrium state also explains the near 

uniform drug responses in post-idling populations of single cell-derived sublines (Figure 4.7). 

The reversibility of the idling phenotype for parental cell populations (Figure 4.1c) is explained 

by a return to the drug-naïve epigenetic landscape upon drug removal and a re-equilibration 

back to the original cell occupancies. Differential dynamics across cell lines is explained in 

terms of variations in the topographies of drug-modified landscapes (Figure 4.11) due to 

variations in the genetic backgrounds of the cell lines. An important consequence of this is that 

each cell line (with one exception, i.e., A2058) achieves idling in a slightly different way, with 

varying proportions of regressing, stable, and expanding subpopulations (Figure 4.9), despite 

harboring a common BRAF-activating mutation, i.e., driving addicting oncogene. 

Cellular resistance to anticancer therapies is a complex, multi-faceted problem 

(CHAPTER 1) [204]. Genetic mutations obviously play a major role in the acquisition of 

irreversible drug resistance and ultimate treatment failure, but it is becoming increasingly clear 

that genetics is not the whole story [217]. We believe that the idling state presented here, and 

the relatively simple theoretical framework describing it, has potentially far-reaching 

implications for patient therapies. In particular, even in tumors with high therapeutic sensitivity, 

a minority of cells often survives and can persist for months or even years [217]. This “residual 

disease” is suspected to act as a reservoir from which resistance-conferring genetic mutations, 

and ultimately tumor recurrence, arises [106,207,214,215,218]. We speculate that idling 
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cancer cells may, in fact, constitute the bulk of the residual disease. Indeed, by continuing 

active progression through the cell cycle, idling cells are more prone to accumulate deleterious 

mutations and, hence, are a more fertile ground for acquiring resistance mutations, than 

quiescent [101,106,219,220] or senescent [221] cells. However, we have shown here that the 

idling state is not a property of individual cells but rather a property of the population as a 

whole. As such, idling cells cannot be eradicated by targeting one particular subpopulation. 

Rather, the landscape itself must be altered (e.g., using drugs) to favor regressing basins over 

stable and expanding basins. This is a significant departure from recent approaches that aim 

to identify and eliminate rare cell subtypes (e.g., cancer stem cells, drug-tolerant persisters) 

thought to be responsible for tumor progression and recurrence [106,204,216,222]. This type 

of cellular reprogramming will require deep knowledge of the molecular factors that shape and 

define the epigenetic landscapes and basins of attraction that cancer cells inhabit [223,224]. 

Future work will aim to identify the molecular actors that define the BRAF-mutated melanoma 

epigenetic landscape using, for example, single-cell RNA sequencing technologies [137–139]. 

Targeted landscaping, for example, therapeutic approaches that rationally modify the 

epigenetic landscape in order to suppress or eliminate the non-quiescent reservoir of idling 

cancer cells, could delay, perhaps indefinitely, tumor recurrence. 
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CHAPTER 5  

NADPH OXIDASE INHIBITION SENSITIZES BRAF-MUTATED MELANOMA CELLS 

TO BRAF-INHIBITION 

Adapted from:  

Paudel BB, Hardeman KN, Meyer CM, Harris LA, Tyson DR, Fessel JP, & Quaranta, V. 

(2018). NADPH Oxidase Inhibition Sensitizes BRAF-mutated Melanoma Cells to BRAF-

inhibition. (in preparation; to be submitted Spring 2018). 

Summary 

Identifying the molecular basis for intrinsic drug response variability of BRAF-mutated 

melanoma cells to BRAF-inhibition is an active area of research. In this chapter, I describe 

differences among single cell-derived isogenic sublines at the phenotypic and molecular level 

and identify the cumulative expression of PGC1α and NOX5 as potential determinant of 

intrinsic drug insensitivity. This study uncovers a potential biomarker for identification of tumors 

which are likely to respond to existing therapy and therapeutic combination that could 

maximize cell killing in BRAF-mutant melanoma cells.   

Abstract 

BRAF-mutated melanoma cells exhibit varying drug sensitivities with BRAF-inhibition, 

which are associated with clonal heterogeneity, molecular basis to which is still poorly defined. 

We therefore utilized single-cell derived isogenic sublines to probe for molecular determinants 

of short-term drug response variability. We discovered that the cumulative expressions of 

NOX5 and PGC1α show strong positive correlation to short-term drug sensitivity of melanoma 
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cells. We demonstrate that this could have direct clinical implications as we show that the high 

NOX5 expression correlates with poor treatment outcome in melanoma patients undergoing 

MAPK pathway inhibition. Using both chemical and siRNA-mediated knockdown approaches, 

we identified that NOX inhibition sensitizes melanoma cells and enhances the anti-proliferative 

effects of BRAFi. We demonstrate that inhibiting NOX5 in combination with BRAFi could 

improve current approaches to targeted melanoma therapy.  

Introduction 

Targeted small molecule inhibitors of BRAF [190] show remarkable, short-term efficacy 

in melanoma patients with tumors harboring BRAFV600 mutations [26,44]. However, clinical 

responses are variable, short-lived, and tumor recurrence is almost universal within a few 

months of initiation of therapy [26,45]. Overcoming inherent and acquired resistance to 

targeted therapy is a major goal of current melanoma research, which uncovered two 

categories of resistance mechanisms: (i) re-activation of mitogen-activated protein kinase 

(MAPK) signaling cascades [64–66,70,72], and (ii) activation of MAPK-pathway independent 

signaling pathways [69,70,73,75,179]. This has led to the development of combination 

therapies of BRAF inhibitors with other targeted agents [52–55,225,226] or with 

immunotherapy [227]. While these therapies improve clinical responses, variation in treatment 

outcomes persists and benefits remain transient and unpredictable (CHAPTER 1) [52]. 

Most of our knowledge of melanoma tumor recurrence is derived from analysis of post-

resistant tumors or cells [75]; the proliferation dynamics of drug-treated tumor cells prior to 

resistance is poorly understood [105]. Resistance is usually attributed to rare, resistance-

conferring genetic alterations that either preexist [94,187,191] or develop during therapy 

[73,192]. However, there is accumulating evidence that non-mutational processes play a 

significant role in the response of cancer cells to drug treatment [102–105]. It has been 
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suggested that cancer cells employ a dynamic survival strategy involving phenotypic state 

transitions, governed by epigenetic alterations to evade lethal external cues [106,107]. These 

observations are consistent with preclinical and clinical evidence suggesting that cancer cells 

can become re-sensitized to therapy after a brief “drug holiday” [81,99,100]. It is likely, 

therefore, that both genetic and non-genetic processes are involved in the acquisition of drug 

resistance and/or relapse of melanoma tumors (CHAPTER 4).  

The interplay between cancer cell metabolism and response to targeted therapies has 

gained considerable interest in recent years (CHAPTER 3). Recent studies have underscored 

the role of glycolysis and oxidative phosphorylation in melanoma cells responsiveness to 

BRAF-inhibition in different contexts [184,208,211,228–230]. Specifically, enhanced metabolic 

activity and metabolic switch have been implicated to affect treatment response outcomes via 

adaptive signaling within melanoma cells during therapy [231]. However, the relationship 

between metabolic states of cells and their therapeutic response still remains unclear. 

Recently, we reported a positive correlation between glucose utilization and sensitivity to 

BRAF-inhibition [211], sensitivities defined in terms of Drug-Induced Proliferation (DIP) rates 

[150]. Here, we extended our experimentation to quantify drug-response dynamics at the 

clonal and the single cell level, and show that drug sensitivity is linked to metabolic state of 

cells, defined with respect to their capacity to utilize both glycolysis and oxidative 

phosphorylation. Using single-cell derived isogenic clonal sublines, we identified PPARGC1A 

(or PGC1α) and NADPH Oxidase 5 (NOX5) as potential determinants of sensitivities to BRAFi. 

We show that NADPH Oxidase inhibition sensitizes melanoma cells to BRAF inhibition, 

including inherently resistant cell populations, using both genetic and chemical inhibition 

approaches. Our results suggest NADPH oxidase protects melanoma cells from anti-

proliferative effects of BRAF inhibition and may represent a potential therapeutic opportunity.  
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Materials and Methods 

Cell Culture and Reagents 

BRAF-mutated melanoma cells (SKMEL5, A375, WM793, SKMEL19, SKMEL28, 

WM164, WM88, A2058) were grown and cultured in Dulbecco's modified Eagle’s medium and 

Ham's F-12 medium (DMEM:F12, 1:1, Cat# 11330-032). Media were obtained from Gibco 

(Grand Island, NY) and supplemented with 10% FBS. All cells were cultured in CO2, 

temperature-controlled (37°C), and humidified incubators. Cells were tested for mycoplasma 

before use and confirmed negative. Cells were passaged 1–2× per week and maintained as 

exponentially growing cultures for a maximum of less than 20 passages. Unless otherwise 

indicated, cells were seeded ~16–24 h prior to treatment to allow cells to adhere to culture 

plates. Reagents/drugs were prepared in complete medium immediately prior to adding to cells 

by replacement.  

PLX4720 (Cat# S1152) and vemurafenib (Cat# S1267) were obtained from 

Selleckchem (Houston, TX) solubilized in dimethyl sulfoxide (DMSO) at a stock concentration 

of 10 mM. Diphenyleneiodonium chloride (DPI) (Cat# D2926) and Apocynin (Cat# 498-02-2) 

were obtained from Sigma-Aldrich and solubilized in DMSO at a stock concentration of 10 mM 

for DPI and at a stock concentration of 100 mM for Apocynin. GKT137831 (Cat# HY12298) 

was obtained from MedChemExpress (Monmouth Junction, NJ) and solubilized in DMSO at a 

stock concentration of 10 mM. All drugs were aliquoted and stored at -20°C until use.  

Fluorescent Imaging 

To facilitate automated image processing, cells were engineered to express fluorescent 

fusion proteins histone 2B monomeric red fluorescent protein (H2BmRFP; Addgene plasmid# 

18982) and geminin1–110 monomeric azami green [164] using replication-incompetent 

recombinant lentiviral particles, as previously described [147,167]. Cells were seeded at 1000–
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5000 cells per well in 96-well culture imaging plates (BD Biosciences, product# 353219). 

DMSO and PBS were used as vehicle controls, as appropriate. Images were acquired through 

a 10× or 20× objective with a Cellavista High End Bioimager (SynenTec Bio Services, Münster, 

Germany) every 6–12 hours as 3×3 or 5×5 montages. Media containing matching 

concentrations of drug or vehicle in each well were replaced every three days. Image 

processing to obtain counts of cell nuclei at each time point was performed as previously 

described [147,150]. 

Single-Cell Derived Sublines  

Sixteen SKMEL5 sublines were derived from single cells by serial dilution. Briefly, cells 

were serially diluted to less than 1 cell per well in 96-well imaging plates and imaged to identify 

wells containing a single cell. Cells were expanded in complete growth medium (in the 

absence of BRAFi) and sequentially transferred to 48-, 24-, and 6-well plates until sufficient 

numbers of cells were available for cryopreservation. All sublines were tested for their 

sensitivity to BRAFi prior to cryopreservation.  

RNASeq and Bioinformatics Analysis  

Total RNA was isolated from untreated SKMEL5 single-cell derived sublines, each in 

triplicate, using Trizol isolation method (Invitrogen) according to the manufacturer’s instructions 

[232].  RNA samples were submitted to Vanderbilt VANTAGE Core services for quality check, 

where mRNA enrichment and cDNA library preparation were done with Illumina Tru-Seq 

stranded mRNA sample prep kit. Sequencing was done at Paired-End 75 bp on the Illumina 

HiSeq 3000. Reads were aligned to the GRCh38 human reference genome using HISAT2 

[233] and gene counts were obtained using featureCounts [234]. All downstream analyses 

were performed in R (https://www.r-project.org) using the Bioconductor framework 

(https://www.bioconductor.org). Differential gene expression analysis was performed on genes 
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(after low count genes were removed) using DESeq2 pipeline [235]. Differentially expressed 

genes (DEGs) were selected based on a statistical cutoff of FDR < 0.01 and fold change of 2. 

Pathway enrichment analysis was done using WebGestalt 

http://www.webgestalt.org/webgestalt_2013/). DESeq2 rlog-values were used for visualization 

of gene expression levels in heat maps. Clustering was performed using the default settings of 

the heatmap.2 function in the gplots R package.  

RNA Isolation and Quantitative Real-Time PCR (qPCR) 

Total RNA was extracted using Trizol isolation method (Invitrogen) according to the 

manufacturer’s instructions [232]. cDNA synthesis was performed with QuantiTect Reverse 

Transcription Kit (Cat# 205311) from Qiagen. RT-qPCR was performed using the IQTM SYBR 

Green Supermix from BioRad (Cat# 1708880). Amplifications were performed in BioRad 

CFX96 TouchTM Real-Time PCR Detection System. All experiments were done at least in 3+ 

technical replicates. Log2 of the transcript expressions were normalized to their expressions to 

SKMEL5 subline SC01. HPRT was used as housekeeping gene in all the experiments. 

Primers used in RT-qPCR are listed in Table 5.1.  

siRNA Transfection and Knockdown 

For gene silencing experiments, ON-TARGETplus Human NOX5 siRNA SMARTPool 

(Cat# L-010195-00) was used. ON-TARGETplus Non-Targeting pool (Cat# D-001810-10-05) 

was used as scrambled control. Both were obtained from Dharmacon (Lafayette, CO) and 

stored at -20oC until use. Transfection was carried out according to manufacturer’s instructions 

using DharmaFECT1 Transfection Reagent (Cat# T-2001-02).  

Clinical Gene Expression Analysis 

Gene expression of drug-naïve patient samples were used from three published papers 

[75,107,236]. Gene expressions were quantile-normalized before comparison. RECIST criteria 
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reported in the papers were used as clinical outcomes, and are grouped into either 

Responders (partial and complete response) or Non-Responders (stable and progressive 

disease).  

Seahorse Metabolic Assays  

For measurement of Oxygen Consumption and Extracellular Acidification Rates, cells 

were plated onto 96-well plates (Seahorse Biosciences, Billerica, MA) at a density of 25,000-

40,000 cells/well before analysis on the Seahorse XFe extracellular flux analyzer. 

Mitochondrial Oxygen Consumption was quantified using the Mito Stress Test kit, and 

glycolytic rate quantified using the Glycolysis Stress Test kit, each according to manufacturer’s 

instructions. Briefly, assay medium was unbuffered DMEM containing either 10 mM Glucose, 2 

mM Glutamine, and 1 mM Sodium Pyruvate (Mito Stress Test) or none of the aforementioned 

(Glyco Stress Kit). No FBS was used in assay medium.  

Statistical Analysis 

All statistical analyses were done in RStudio, Version 1.0.136.  Two-sided Student’s t-

tests were used for pairwise comparisons for comparisons in gene expressions and metabolic 

differences.  

Results 

Identification of molecular determinants of short-term drug response variability using 

single-cell-derived isogenic sublines 

We recently reported that BRAF-mutated melanoma cell lines exhibit varying drug 

sensitivities to small molecule BRAFi [211,237]. Briefly, we show that cell lines can be ordered 

on a continuum based on their drug sensitivities using Drug-Induced Proliferation (DIP) rates, 

an unbiased metric of anti-proliferative effects of drug [92,150]. Since there is a lot of inter-cell 
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line variation, we looked into each specific cell line and reported that the short-term population 

level response in each cell line comprises of a wide range of clonal behaviors [237]. In this 

study, we utilized single-cell derived isogenic sublines of a BRAF-mutated melanoma cell line, 

SKMEL5, and performed RNASeq analysis on three sublines with distinct drug responses in 

the short-term to probe for the molecular determinants of short-term response variability 

(Figure 5.1). Selected sublines had divergent drug responses in the short-term: SC01 

(regressing), SC07 (stable) and SC10 (expanding). By performing pairwise comparisons 

between SC07 vs SC01, SC10 vs SC01, and SC10 vs SC07, we selected differentially 

expressed genes (DEGs) based on a statistical cutoff of FDR < 0.01. Among these genes, we 

focused on the subset differing in a degree of enrichment by twofold or more between the 

sublines (see Materials and Methods for details) (Figure 5.2a). The top KEGG pathways 

enriched in common set of upregulated DEGs included Metabolic pathways, Cell Adhesion 

Molecules, and Focal Adhesion (Figure 5.2b).  
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Figure 5.1: Identification of molecular determinants of short-term drug response variability using single-cell 
derived isogenic sublines. (A) Data from previous reports [211,237] showing drug-response variation among 
BRAF-mutated melanoma cells at the population level and among single-cell derived sublines of SKMEL5 cell line 
at the clonal level. For both population and clonal level, drug response is quantified as DIP rates (doublings/h) for 
cellular response at 8 μM PLX4720. (B) Heat map of differentially expressed genes determined after pairwise 
comparisons between SC07 vs SC01, SC10 vs SC01 and SC10 vs SC07. Three SKMEL5 sublines: SC01, SC07 
and SC10 were chosen for RNASeq analysis based on their divergent drug responses.  

 

We focused on genes involved in metabolic pathways, and identified PGC1α, a 

mitochondrial biogenesis transcriptional co-activator and NADPH Oxidase 5 (NOX5) as 

potentially important determinants of sensitivities to BRAFi. Based on our own results [211], 

and others [185,186,228], these are both plausible targets because of the metabolic and redox 



	 115	

regulatory functions that converge at the mitochondria. While the expression of PGC1α is 

significantly different in SC01 compared to SC07 and SC10, its expression in SC07 and SC10 

is comparable. Similarly, the expression of NOX5 is significantly different in SC10 compared to 

SC01 and SC07, while its expression in SC01 and SC07 is comparable (Figure 5.2c). Taken 

together, our results suggest metabolic differences between our isogenic sublines and identify 

NOX5 and PGC1α as potential determinants of drug-response variability in the short-term.  

 

 

Figure 5.2: RNASeq analysis identifies NOX5 and PGC1α as potential molecular determinants of short-term 
response variability. (A) Number of differentially expressed genes (DEGS) from pairwise comparisons between 
sublines; red represents upregulated, blue represents downregulated genes. (B) Top KEGG pathway enriched in 
common sets of upregulated genes among sublines. –log10 of adjusted p-valued is plotted along x-axis. (C) 
Volcano plots of differentially expressed genes from pairwise comparisons between sublines. Blue genes 
represent differentially expressed genes with FDR <0.001 and log fold change of 3 or higher. Indicated in 
magenta is NOX5 and indicated in red is PGC1α. log2 of fold change in expression is plotted along x-axis and –
log10 of adjusted p-value is plotted along y-axis.  
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Combined expression of PGC1α and NOX5 correlates to BRAFi DIP rates 

We next probed the expression of NOX5 and PGC1α in more detail in six of our 

isogenic sublines using quantitative PCR (qPCR). We observed heterogeneous expression of 

NOX5 among clonal sublines, with SC10 having the highest and SC01 with the least 

expression. NOX5 expression showed strong correlation (Corr: 0.754) with sensitivity of clonal 

sublines to BRAF-inhibition (Figure 5.3a). Similarly, we probed the expression of PGC1α 

among six of SKMEL5 sublines and observed heterogeneity in its expression among sublines 

(Fig. 3D). In contrast to NOX5, PGC1α expression showed moderate correlation (Corr: 0.526) 

with the DIP rates of clonal sublines (Figure 5.3b). Based on the results from volcano plots, we 

next wondered whether the combination of both NOX5 and PGC1α expression improves the 

correlation to drug sensitivity. Indeed, we observed that a linear combination of NOX5 and 

PGC1α expression showed best correlation (Corr: 0.824) to DIP rates among sublines, much 

higher than expression of NOX5 (Corr: 0.754) or PGC1α (Corr: 0.526) alone (Figure 5.3c). In 

other words, higher the combined expression of NOX5 and PGC1α in BRAF-mutated 

melanoma cell, the less sensitive the sublines are to BRAFi and vice-versa (Figure 5.3c).  
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Figure 5.3: Combined expression of NOX5 and PGC1α correlates with BRAFi DIP rates. (A) (left) Expression of 
NOX5 in sublines relative to its expression in SC01; (right) Correlation of NOX5 expression and DIP rates in 
SKMEL5 sublines. (B) (left) Expression of PGC1α in sublines relative to its expression in SC01; (right) Correlation 
of PGC1α expression and DIP rates in SKMEL5 sublines. (C) (left) Combined expression of NOX5 and PGC1α in 
sublines relative to SC01; (right) Correlation of combined NOX5 and PGC1α expression and DIP rates in 
SKMEL5 sublines. In all (A), (B) and (C), reported are the correlation coefficients from Pearson Correlation. 
Sublines are placed in order of their increasing DIP rates, from left to right. (D) Sublines are placed in 2D 
landscape based on expression of NOX5 and PGC1α. All expressions reported are relative to SC01.  

 

Additionally, examining the expression of both NOX5 and PGC1α distinguishes sublines 

and categorizes them based on their BRAFi sensitivity quantified in terms of DIP rates (Figure 

5.3d). Furthermore, to examine how the expression of these two genes (NOX5 and PGC1α) 

vary among BRAF-mutated melanoma cell lines, we probed five BRAF-mutated melanoma 

cells: sensitive (WM88 and WM164), stable (A375) and insensitive (WM115 and A2058), 

selected based on their BRAFi sensitivities. We observed that NOX5 but not PGC1α 

expression showed strong correlation (Corr: 0.92 vs Corr: 0.28) to BRAFi DIP rates. Similar to 

single-cell derived isogenic sublines, combined expression of NOX5 and PGC1α showed best 
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correlation (Corr: 0.94) to BRAFi sensitivities among cell lines. Thus, these results suggest that 

cumulative expression of NOX5 and PGC1α correlates with sensitivities of melanoma cell lines 

including isogenic sublines to BRAFi.  

NADPH Oxidase (NOX) inhibition synergizes with BRAF-inhibition in BRAF-mutated 

melanoma cells 

Because our data suggest that combined NOX5 and PGC1α expression correlates with 

the sensitivity of melanoma cells to BRAF-inhibition, we evaluated the possibilities of 

combination therapies. We examined how the expressions of these two genes (NOX5 and 

PGC1α) differ in normal skin compared to tumor skin tissues to examine whether targeting 

these genes in tumor is feasible. We observed that NOX5 expression is significantly higher in 

tumor skin tissues compared to normal tissues, whereas PGC1α expression was higher in 

normal tissues (Figure 5.4). Since PGC1α expression is higher in normal tissues and 

therapeutic targeting of mitochondria is challenging [186,238], we evaluated the effects of NOX 

inhibitors in combination with BRAFi. For this, we tested three different NOX inhibitors (DPI, 

Apocynin and GKT137831).  
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Figure 5.4: NOX5 mRNA expression is higher in skin tumor compared to normal skin but not PGC1α expression. 
(A) NOX5 mRNA expression levels were assessed in normal and cancer tissues of skin, (B) PGC1α mRNA 
expression levels were assessed in normal and cancer tissues of skin; both expression data retrieved from the 
Gene Expression Database of Normal and Tumor Tissues (GENT) database. Both expressions were significant, p 
<0.001.  

 

We examined the effects of this combination in cell lines that have higher expression of 

NOX5 in our panel, including one isogenic sublines: SC10 and A2058. Interestingly, these two 

are also the cells with positive DIP rates under BRAF-inhibition (CHAPTER 3). While NADPH 

Oxidase (NOX) inhibitors exhibited concentration-dependent anti-proliferative effects, their 

combination with BRAF-inhibitor, PLX4720 enhanced the effects of BRAFi. In all three NOX-

inhibitors used, we observed that the NOX-inhibition synergized with BRAF-inhibition and 

enhanced the anti-proliferative effects of BRAF-inhibition (Figure 5.5a, b). Since NOX-inhibitors 

we used are not only specific to NOX5, we examined whether NOX5 knockdown enhances the 

effects of BRAFi in melanoma cells.  
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Figure 5.5: NADPH Oxidase (NOX) inhibition synergizes with BRAF-inhibition. (A) Heat map of DIP rates in 
various concentrations of DPI (NOXi) and PLX4720 (BRAFi). Black solid line separates drug-effects with positive 
DIP rates (top left) from negative DIP rates (bottom right). (B) (left) Population growth curves (log2 normalized) for 
SC10 in three NOXi (DPI, Apocynin, and GKT137831) and BRAFi (PLX4720) and their combination; (right) DIP 
rates quantified from population growth curves shown for DMSO control, BRAFi, three NOXi and their 
combination with BRAFi. (C) (left) qPCR Quantification of NOX5 transcript expression in siRNA-mediated NOX5 
knockdown compared to Scrambled control. (right) Population growth curves (log2 normalized) for SC10 in either 
DMSO, Scrambled control, siRNA, BRAFi and BRAFi+siRNA; Quantified DIP rates in corresponding conditions. In 
both (B) and (C) concentration of PLX4720 used was 8 μM.  

 

For this, we used siRNA-mediated approach to knock down NOX5 and validated the 

knockdown by qPCR. We observed more than 80% knockdown of NOX5 and found that 

knockdown significantly slowed proliferation rates of cells compared to scrambled control 

(Figure 5.5c), consistent with previous studies that demonstrate the role of NOX5 in supporting 

cell proliferation and growth in different cancers including melanoma [239–241]. Consistent 

with our drug combination studies, we our results show that siRNA-mediated knockdown 

enhanced the effects of BRAFi (Figure 5.5c). Similar results were observed for both drug 

combination and NOX5 knockdown in A2058 cells (Figure 5.6). These results suggest, 
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therefore that NADPH Oxidase (NOX) inhibition, in combination with BRAFi, enhances the 

effects of anti-proliferative effects of BRAF-inhibition and may provide optimal outcomes in 

treatment of BRAF-mutated melanoma.  

 

 

Figure 5.6: NOX-inhibition enhances the anti-proliferative effects of BRAF-inhibition. (A) (top) Population growth 
curves (log2 normalized) for A2058 in either DPI (250 nM) or BRAFi (8 μM), or combination; (bottom) DIP rates 
quantified for corresponding conditions for respective growth curves. (B) (top) Population growth curves (log2 
normalized) for A2058 in either DMSO, Scrambled control, siRNA, BRAFi and BRAFi+siRNA; (bottom) Quantified 
absolute DIP rates or normalized DIP rates (normalized to the control in respective controls) in corresponding 
conditions. * denotes p < 0.05 and *** denotes p < 0.001. 

 

High NOX5 expression correlates with poor clinical outcome 

To directly investigate NOX5 expression and its correlation to patient treatment 

outcome, we analyzed three published papers [75,107,236] for which gene expression of drug-

naïve patient samples and their clinical outcomes data were available. For this analysis, we 
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selected patients who underwent either BRAFi monotherapy or BRAFi combination with MEKi. 

We grouped clinical outcomes into two categories: Responders (includes complete and partial 

response) and Non-Responders (includes stable and progressive disease) using Response 

Evaluation Criteria in Solid Tumors (RECIST) categories reported in the papers. We observed 

that NOX5 expression was higher in patients whose tumors under treatment were classified as 

Non-Responders (n = 28) than in patients whose tumors responded (n = 13) (t-test, p = 0.004). 

Although there is some overlap in NOX5 expression between two groups, NOX5 expression is 

significantly higher in Non-Responders than in Responders (Figure 5.7), suggesting the role of 

NOX5 in limiting the therapeutic efficacy of MAPK-inhibitors. Overall, our analysis reveals that 

high NOX5 expression correlate with poor clinical outcome in BRAF-mutated melanoma 

patients treated with MAPK-inhibitors. In other words, these results indicate that NOX5 

expression could identify BRAF-mutated melanoma patients that are less likely to respond to 

conventional BRAF-inhibition or combinational approaches that target MAPK pathway.   
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Figure 5.7: NOX5 expression correlates with treatment outcome. Gene expression values from drug-naïve patient 
samples were obtained from three published reports and quantile normalized before comparison. Samples were 
placed in either Responders or Non-Responders category based on RECIST criteria reported in those papers. 
Responders included partial and complete response (PR, CR); and Non-Responders included stable and 
progressive disease (SD, SD). Two-sided t-test was performed for statistical comparison.  

 
Expressions of NOX5 and PGC1α in melanoma cells correlate to glycolytic reserve and 

mitochondrial respiration respectively  

To examine the metabolic roles of NOX5 and PGC1α in melanoma cells, we quantified 

and measured extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) in 

BRAF-mutated melanoma cells including isogenic sublines using Seahorse flux analyzer. From 

the metabolic parameters extracted from Seahorse assays, we observed that glycolytic 

reserve shows a strong correlation (Corr: 0.776) with NOX5 expression in the melanoma cells 

we tested (Figure 5.8a). Given the recognized roles of NOXs in regulating redox signaling, 

these results are interesting, however, are in agreement with recent reports that have 

implicated the novel roles of NOXs in supporting aerobic glycolysis in cancer cells with 
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compromised mitochondria [242]. Not surprisingly, we also observed that cells with higher 

glycolytic reserve were mostly insensitive to BRAF-inhibition. We speculate that higher 

glycolytic reserve due to an elevated NOX5 expression helps BRAF-mutated melanoma cells 

survive an initial BRAF-inhibition. Likewise, PGC1α expression showed moderate correlation 

(Corr: 0.638) with differences in mitochondrial function in melanoma cells quantified in terms of 

oxygen consumption rate (OCR) (Figure 5.8b). This is not surprising because induction of 

PGC1α has been shown to limit therapeutic efficacy of BRAFi in melanoma cells by redirecting 

metabolic program to mitochondrial respiration [185,186,208]. Because enhanced NOX5 

expression drives glucose utilization and PGC1α expression regulates mitochondrial 

respiration, collectively, our results suggest that BRAF-mutated melanoma cells may occupy 

distinct metabolic states defined by the combined expression of NOX5 and PGC1α. We 

postulate that these expressions, which define how robust different metabolic programs are in 

melanoma cells, explain an initial drug response variability in BRAF-mutated melanoma cells.  
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Figure 5.8: NOX5 and PGC1α expression define metabolic states of melanoma cells. (A) Correlation between 
expression of NOX5 in BRAF-mutated melanoma cells including isogenic sublines relative to SC01 and glycolytic 
reserve, indicative of glycolytic functions quantified from Seahorse assays. Pearson correlation coefficient: 0.776, 
p-value <0.05. (B) Correlation between expression of PGC1α in BRAF-mutated melanoma cells including isogenic 
sublines relative to SC01 and oxygen consumption rate, indicative of mitochondrial respiration quantified from 
Seahorse assays. Pearson correlation coefficient: 0.638, p-value not significant.   

 

Table 5.1: Primers used for RT-qPCR. 

Gene Forward Primer Reverse Primer 
NOX5 GGCTCAAGTCCTACCACTGGA GAACCGTGTACCCAGCCAAT 

PGC1α TGCCCTGGATTGTTGACATGA TTTGTCAGGCTGGGGGTAGG 
HPRT TGCTCGAGATGTGATGAAGGAG TGATGTAATCCAGCAGGTCAGC 

 
 

Discussion 

Here, we report that expressions of NADPH Oxidase 5 (NOX5) and PGC1α define 

distinct metabolic states in BRAF-mutated melanoma cells that correlate with their sensitivities 

to BRAFi. Extending our previous studies that show clonal heterogeneity within cell population 

[92,211], we utilized single-cell derived clonal lineages that presumably start from the same 

specific cancer genome (i.e. parental line) and identified NOX5 and PGC1α as key regulators 
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of non-mutational drug response variability within BRAF-mutated melanoma cells. By 

characterizing metabolic features of cells, our study, therefore, links the metabolic state of 

melanoma cells, defined with respect to their ability to utilize glucose and mitochondrial 

respiration, to intrinsic drug insensitivity to BRAFi. Links between metabolism and therapeutic 

responses in BRAF-mutated melanoma cells have been previously implicated [182,184–

186,211]; however, our results provide an overarching framework on how an overall metabolic 

phenotype of melanoma cells affects their sensitivities to BRAFi. Because targeting of 

mitochondrial respiration is challenging, we show that NADPH oxidase inhibition sensitizes 

BRAF-mutated melanoma cells to enhance anti-proliferative effects of BRAF-inhibition. 

Additionally, analyzing drug-naïve patient samples and their gene expression, we show that 

NOX5 expression correlates with poor clinical outcome. Taken together, our results indicate 

that NOX5 expression, which correlate with higher glycolytic reserve, protects melanoma cells 

from the effects of BRAF-inhibition and may represent a potential combination therapeutic 

opportunity in BRAF-mutated melanomas.  

Both mutational and non-mutational factors have been implicated to contribute to drug 

response differences [73,105]. We have previously reported that cancer cells exhibit drug 

response variability, with clonal subpopulations responding differently to perturbations [92].  

We and others have shown that drug-treated cells demonstrate the similar initial proliferation 

dynamics when re-challenged with drug after a brief drug holiday [99,101,211]. Collectively, 

these observations suggest that non-genomic factors, possibly at the transcriptional level, 

might regulate differential drug sensitivities within a cell population. To determine molecular 

determinants for short-term response variability, we utilized single-cell derived SKMEL5 

sublines and performed RNASeq analysis. Single-cell derived sublines are ideal for examining 

non-genetic sources of response variability because they presumably start from the same 
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specific cancer genome, thus minimizing any genetic variation. Three representative sublines 

were selected based on short-term drug response to represent the wide range of response 

behaviors observed at the clonal level. Pathway enrichment analysis on differentially 

expressed genes (DEGs) highlighted the drug-naïve metabolic differences among the 

sublines. We identified PGC1α, a mitochondrial biogenesis transcriptional co-activator and 

NOX5 as potentially important determinants of sensitivities to BRAFi, both of which are 

plausible targets because of their functional convergence at mitochondria. Our results are 

consistent with recent studies that have implicated PGC1α not only in defining melanomas with 

increased mitochondrial capacity [185], but also in modulating metabolic switch that help 

BRAF-mutated melanoma cells survive BRAF-inhibition [186,208]. Similarly, accumulating 

evidence indicate novel roles of NOXs in cancer cell metabolism [242,243]. Several other 

studies have revealed critical roles of NOXs in maintaining cell survival and proliferation [239–

241,244,245]. Consistent with these reports, we established metabolic link between 

expressions of NOX5 and PGC1α with respect to glucose utilization and mitochondrial 

respiration. We extended our findings from RNASeq analysis to probe the expressions of these 

genes in other single-cell-derived sublines and other BRAF-mutated melanoma cell lines and 

observed that their combined expression shows strong correlation to DIP rates in BRAFi, 

higher than correlation to expressions of single genes respectively.  

Since the combined expression of NOX5 and PGC1α was higher in cells with positive 

DIP rates, we reasoned whether therapeutic targeting of these targets sensitizes melanoma 

cells to BRAF-inhibition. Since targeting of mitochondria is challenging, we explored the 

possibility of inhibiting NOX5 expression and examining the effects in combination with BRAFi. 

NOX5 could be possible therapeutic target since a substantial overexpression of NOX5 in 

several cancers including melanoma, prostate, ovarian has recently been reported [244,245].  
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Interestingly, NOX inhibition sensitized SC10 and A2058 cells and enhanced the anti-

proliferative effects of BRAFi. Consistent with chemical inhibition, siRNA mediated knock down 

of NOX5 also enhanced the effects of BRAFi in both SC10 and A2058, cells that have positive 

DIP rates in BRAFi. In addition, we also observed that NOX5 knockdown alone also slowed 

cell proliferation rates, consistent with recent studies that highlight the roles of NOX5 in 

controlling cell proliferation in different cancer cell types including melanoma[239–

241,244,245]. Since the primary function of NADPH oxidases in cells is the production of 

intracellular Reactive Oxygen Species (ROS), we examined how the intracellular ROS levels 

changed in different conditions. Intriguingly, our preliminary data shows siRNA mediated 

knockdown of NOX5 did not alter the ROS production in cells (Appendix 3b)—suggesting other 

sources might also contribute to intracellular ROS in melanoma cells. It is also possible that 

there is compensatory activation of other NOX informs when NOX5 is inhibited.  Intracellular 

ROS levels were also higher in combination of NOXi and BRAFi compared to NOXi alone but 

not different from BRAFi alone, suggesting that an increased oxidative stress in melanoma 

cells is due to BRAFi. Similarly, intensity of ROS inversely correlated with DIP rates in different 

treatment conditions (Appendix 3a), consistent with reports that suggest below a sub-toxic 

level, ROS can act as intracellular signals, while too much ROS is deleterious to cells [246]. 

These results, taken together, show that combination of NOX-inhibitors with BRAFi maximizes 

the anti-proliferative effects of BRAF-inhibition in BRAF-mutated melanoma cells. While further 

investigation is warranted, our preliminary studies also indicate that the effects of NOX-

inhibition in melanoma cells are not due to its redox related signaling.  

Mechanistically, we observed glycolytic reserve in melanoma cells strongly correlated 

with their NOX5 expression and also with drug-induced proliferation (DIP) rates in BRAFi. 

Similarly, PGC1α expression strongly correlated with abilities of cells to utilize mitochondrial 
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respiration. Based on these results and earlier reports, we hypothesize that higher glycolytic 

reserve due to an elevated NOX5 expression helps BRAF-mutated melanoma cells survive an 

initial BRAF-inhibition, while PGC1α expression reprograms cellular metabolism to support 

cells adapting in drug. Although needs to be validated, we speculate that higher glycolytic 

reserve in NOX5-high cells could be due to higher accumulation of intracellular NAD+, a by-

product of NADPH oxidation. Furthermore, our clinical analysis on gene expression data from 

treatment-naïve patient samples undergoing MAPK-pathway inhibition (either BRAFi or 

BRAFi+MEKi) show significantly higher NOX5 expression in non-responders compared to 

responders. This is consistent with our hypothesis that enhanced NOX5 expression provides 

an initial survival advantage in BRAF-mutated melanoma cells, and also opens up clinical 

applications, with potential of using NOX5 expression as a biomarker in identifying BRAF-

mutated melanoma patients that are less likely to respond to MAPK pathway inhibition. 

Collectively, our results indicate that therapeutic approaches that reduce or suppress NOX5-

high cell populations could thus maximize therapeutic efficacy of BRAFi or delay tumor 

recurrence. Our studies may represent a potential combination therapy that would maximize 

cell killing in BRAF-mutated melanoma cells. Future studies should focus, therefore, on 

identifying the mechanistic insights on the role of NOX5 in melanoma cells and how the 

combination enhances the anti-proliferative effects in cells.  
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CHAPTER 6  

CONCLUSIONS AND FUTURE DIRECTIONS 

Conclusions 

Despite significant progress in the treatment of melanoma in recent years, a majority of 

melanoma cases is still largely incurable. Even in patients with similar genomic classification 

(i.e. BRAFV600 mutations), treatment responses are highly variable and often unpredictable. 

Several intrinsic or adaptive resistance mechanisms have been proposed to describe tumor 

recurrence in melanoma. However, still a large portion of recurrent tumors remain unexplained. 

The premise of this work is to understand what happens to tumors especially during early 

phase of drug response leading up to resistance. This requires detailed understanding of drug-

response variability that exists within melanoma tumors, and the quantification and 

characterization of the response dynamics under drug perturbations.  

To this end, we used an integrative approach and combined both experimentation and 

mathematical modeling to understand complex drug response behaviors in BRAF-mutated 

melanoma cells. First part of this work focused on describing a novel metric and a high-

throughput method to quantify drug response dynamics and its heterogeneity (CHAPTER 2). 

Utilizing Drug-Induced Proliferation (DIP) rates to measure drug sensitivity among cells, we 

addressed key problems that plague the traditional end-point assays (i.e. IC50)—biases due to 

exponential growth, differences due to drug effect stabilization, and inherent heterogeneity 

within cell population. DIP rate provides an unbiased metric to evaluate the anti-proliferative 

effects of drugs and also better resolves differences in drug sensitivity among cancer cells as 

opposed to metrics resulting from traditional end-point assays (i.e. IC50, EC50 etc.) (Figure 6.1). 
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Although the practice of using growth rates to measure sensitivity to drugs among cancer cells 

is at its infancy [92,150,159,211], it will likely become a de facto metric to assess drug 

potencies, efficacies and responses in the future. It will most likely also facilitate identification 

of molecular signature of drug-response variability that existing drug-sensitivity metrics would 

otherwise miss out (Figure 6.2). For instance, we observed that expression of NOX5 in BRAF-

mutated melanoma cells shows strong correlation to their DIP rates, and not with IC50 values 

reported in CCLE database. This result laid the foundation for CHAPTER 5, where we present 

experimental evidence to highlight the application of NOX5 as both biomarker and potential 

drug combination in BRAF-mutated melanomas. 

 

 

Figure 6.1: Drug-Induced Proliferation (DIP) rate is better metric to quantify drug sensitivity in cancer cells. BRAF-
mutated melanoma cell lines ranked in order of: (A) quantified DIP rates in 8 μM PLX4720. (B) IC50 values (C) 
EC50 values; both IC50 and EC50 values are extracted from database maintained by Cancer Cell Line 
Encyclopedia (CCLE).  
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Figure 6.2: NOX5 expression in CCLE Data correlates well with DIP rates and not with traditional IC50. (left) NOX5 
expression extracted from CCLE database for BRAF-mutated melanoma cell lines for which we had quantified 
DIP rates, correlated with either their DIP rates (Corr: 0.61) or IC50 values reported in CCLE (Corr: 0.19). 
Correlation coefficient obtained from Pearson Correlation.  

 

With the proposed DIP rate metric, we sought to determine the basis for drug-response 

variability among BRAF-mutated melanomas and established a mechanistic link between 

therapeutic response and cellular metabolism (CHAPTER 3). We identified that dependence 

on glycolysis sensitizes cells to BRAF-inhibition. Specifically, melanoma cells with higher 

glycolytic reserve were found to be less sensitive to BRAFi. In later chapters, we probed in 

more detail for molecular determinants of such metabolic differences in melanoma cells and 

provide a unifying framework to relate metabolic phenotype and therapeutic response.  

Because there is a lot of inter-cell line variation, we isolated single-cell derived sublines 

to probe for molecular determinants of short-term drug response variability at the clonal level 

within a cell population (CHAPTER 4 and CHAPTER 5). Single-cell derived sublines originate 

from presumably the same cancer genome and are about as genetically similar as it can 
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possibly exist, thus providing an ideal experimental system to probe non-genetic sources of 

response variability. In CHAPTER 4, we provide a theoretical framework to account for short-

term drug response sensitivity within the framework of multi-state epigenetic landscape and 

their relative occupancies. Our central hypothesis is that drug treatment alters the quasi-

potential landscape and cell population re-equilibrate over new drug-modified epigenetic 

landscape, result of the process giving rise to differential short-term response dynamics in 

melanoma cell lines. Interestingly, the major findings of this work is that multiple melanoma cell 

lines under BRAFi treatment, including isogenic sublines converge into a non-quiescent ‘idling’ 

state of balanced death and division (~near-zero proliferation rate) which constitutes the final, 

equilibrated state.  

The idling state represents a new dynamic equilibrium that is the property of the cell 

population, and not of individual cells. We show that idling state is drug-induced and reversible 

and is not necessarily multi-drug resistant—consistent with non-mutational drug tolerance 

reported in prior studies [105,212,213]. However, drug tolerant cells were reported to be 

quiescent [106] or slow dividers [212,214,215]. In contrast, by single-cell tracking, we show 

that idling cells continue to divide and die at moderate but balanced rates, leading to near 

zero-net-proliferation. To our knowledge, such drug-response phenotype has not been 

previously reported. Idling state may effectively model the clinical situation when residual 

disease persists for varying time-intervals prior to disease progression. Continued cell cycle 

progression without cell population expansion (i.e. idling state) make cancer cells more prone 

to accumulate deleterious mutations and, hence, a more fertile ground for acquired resistance 

than quiescent [101,106,219,220] or senescent cells [221].  

The differential sensitivity of melanoma cells has remained puzzling over the years. 

Herein, we provide a unifying view and theoretical framework for short- and long-term 
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melanoma sensitivity to targeted drugs within the mathematical concepts of phenotypic 

landscape and state transitions (Figure 6.3)—which relate to the combined effects of clonal 

competitions and phenotype switching in biological terms. Apparent differences seen across 

cell lines and extreme variability in the length of response and durability or lack of durability of 

clinical response in patients can be reconciled in terms of the variations in drug-modified 

landscape topography unique to a melanoma tumor. We propose targeted landscaping, i.e. 

therapeutic approaches that rationally modify the epigenetic landscape in order to suppress or 

eliminate the non-quiescent reservoir of idling cancer cells, could delay, perhaps indefinitely, 

tumor recurrence.  

In CHAPTER 5, through molecular and functional characterization (RNASeq analysis, 

PCR and Seahorse metabolic assays), we identified metabolic differences among isogenic 

sublines, and explored the possibility of defining distinct metabolic state that melanoma cells 

occupy. We constructed a two-dimensional landscape based on the expressions of NOX5 and 

PGC1α in melanoma cells that correlate to ability of cells to utilize glucose and mitochondrial 

respiration respectively. The molecular characterization of melanoma cells and their correlation 

to drug sensitivity further substantiates the theoretical epigenetic landscape proposed in 

CHAPTER 4—which assumes the co-existence of multiple phenotypic states even within the 

same genome. Although the role of metabolism in differential therapeutic response has been 

extensively discussed [182–186,208,211], for the first time, we provide a general framework 

which combines the role of both glycolysis and oxidative phosphorylation to the response 

variability and dynamics in BRAF-mutated melanoma cells (Figure 6.4). While these two 

metabolic pathways are described in the context of BRAFi resistance to be mutually exclusive, 

we provide an explanation on how melanoma cells utilize two critical energy producing 

pathways to bypass BRAF-inhibition. With identification of NOX5 and PGC1α, we provide 



	 135	

molecular links to differential metabolic profiles and ultimately therapeutic response variability 

in BRAF-mutated melanoma cells. We show that NOX5 expression correlate to poor clinical 

outcome for BRAF-mutated melanoma patients treated with MAPK-pathway inhibitors. We 

believe that melanoma cells utilize glycolytic reserve to survive an initial exposure to BRAFi, 

and then reprogram their metabolism to favor oxidative phosphorylation upon continuous drug 

exposure. These findings might lead to the use of NOX5 expression as a biomarker in 

identifying BRAF-mutated melanoma patients who are likely to respond to MAPK-pathway 

inhibition. In addition, NOX5 could be a potential therapeutic target in combination with BRAFi 

to maximize the fraction of cell killing and increase treatment efficacy.  
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Figure 6.3: Drug-induced and drug-free population dynamics are explained as re-equilibrations over epigenetic 
landscapes. (a) A cartoon representation of a drug-addition/drug-removal cycle for a cancer cell population: (top-
left) cells begin in complete growth medium and are in a dynamic equilibrium across basins of a drug-free 
epigenetic landscape; (top-left to bottom-left) exposure to drug modifies the landscape, taking the system out of 
equilibrium; (bottom-left to bottom-right) the population re-equilibrates over the new, drug-induced landscape by 
reducing cell proportions in the regressing (R) and expanding (E) basins and increasing the proportion in the 
stable (S) basin; (bottom-right) the idling state corresponds to the newly achieved dynamic equilibrium; (bottom-
right to top-right) removal of drug reestablishes the drug-free epigenetic landscape and, again, takes the system 
out of equilibrium; (top-right to top-left) the population re-equilibrates over the drug-free landscape, returning the 
system to the original dynamic equilibrium. Arrow thicknesses represent relative transition rates at each stage of 
the re-equilibration process. (b) Clonal (top) and population-level (bottom) drug-response dynamics illustrating the 
connection to the different stages of the drug-induced re-equilibration process. Numbers and colors (orange, 
regressing; green, stable; blue, expanding) correspond to those in the cartoon schematic above. 
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Figure 6.4: Metabolic 2-D landscape defined with respect to ability of cells to utilize glucose and mitochondrial 
respiration. Melanoma cells are hypothesized to occupy distinct metabolic state and undergo phenotypic state 
transitions under drug-treatment giving rise to differential short-term drug response.  

 

Overall, the findings of this work add to the growing body of literature on the role of non-

mutational sources of response variability and drug resistance in melanoma. The study 

contributes to our understanding of how seemingly identical melanoma cells might evade lethal 

drug exposure and ultimately lead to tumor recurrence. With drug response dynamics 

described in the context of isogenic quasi-potential landscape and phenotypic state transitions, 

our study is a significant departure from qualitative, mutation-centric thinking in cancer biology. 

Our quantitative approach integrating the cell-population, clonal and single-cell data captures 

the extent of cell-to-cell response variability while still explaining the cell population behavior. 

By linking phenotypic data with molecular signatures in a classical systems biology approach, 
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we identify novel regulators of initial drug response variation, which could lead to therapeutic 

combination for better clinical outcomes. Collectively, we provide an overarching framework to 

infer and quantify non-genetic clonal heterogeneity within cancer cell population, associate 

clonal drug sensitivity to molecular signals and link heterogeneity and dynamics to differential 

drug response outcomes. Through an appropriate combination of experimental and 

computational methods, in summary, we provide a powerful and a generalizable approach for 

analyzing response variability in cancer cells. We envision similar approaches could be applied 

in other systems beyond cancer.  

Future Directions 

Combination Therapy in BRAF-mutated Melanomas 

One of the major findings of this work is the identification of NOX5 as potential regulator 

of short-term drug response variability in BRAF-mutated melanomas. Recent studies suggest 

substantial NOX5 overexpression in several human cancers including melanoma [244]—

making it an attractive therapeutic target. Our in vitro data further corroborates the utility of 

targeting NADPH Oxidase in conjunction with BRAFi—as we show synergy in both potency 

and efficacy between NOX-inhibitors and BRAFi*. At the time of writing this dissertation, we 

are planning to carry out in vivo experiments with vemurafenib and GKT137831 in treatment-

naïve BRAF-mutated melanoma PDXs and human melanoma cell lines in collaboration with 

Dr. Ann Richmond’s Lab at Vanderbilt. Since NOX5 is not expressed in the genome of rodents, 

it has significantly reduced our understanding of its involvement in the development and 

progression of cancer [244]. We will use both NOX5high and NOX5low human melanoma cell 

lines—from the panel of melanoma cell lines that we have at our disposal. Our use of patient-
                                                
* Synergy between NOX-inhibitors and BRAFi estimated in two terms: potency and efficacy using DIP 
rates. Manuscript detailing the mathematical basis for drug-synergy calculation and experimental 
evidence is currently in advanced stage to be submitted soon. (Meyer, C.M, Wooten, D.J. et. al.).  
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derived xenografts (PDXs) and human melanoma cells for in vivo studies will facilitate the 

examination on the role of NOXs in melanoma tumor maintenance, progression and intrinsic 

drug resistance. GKT137831 is a small molecule inhibitor of NOX1/4/5 inhibitor, marketed by 

GenKyoTex SA, a biotechnology company located in France and has been in clinical trials 

Phase 2 for Type 2 Diabetes Mellitus with Diabetic Nephropathy (Clinical Trial# 

NCT02010242) and Primary Billiary Cirrhosis (Clinical Trial# NCT03226067). Four treatment 

groups (each n = 8) will be used for in vivo experiments: vehicle control, vemurafenib alone, 

GKT137831 alone, and vemurafenib + GKT137831 combination. Taken together, these 

experiments will provide a direct in vivo comparison to our in vitro results and further 

corroborate the benefits or lack of benefits of combination of BRAFi with NOXi in treatment of 

BRAF-mutated melanoma tumors.  

Mechanistic Insight into Short-term Drug Response Variability 

How does NOX5 regulate glycolytic reserve in melanoma cells? Lu et. al. showed a 

critical role of NOXs in supporting increased glycolysis by generating NAD+, an important 

intermediate substrate for glycolysis [242]. Since we observed that enhanced NOX5 

expression in our panel of melanoma cells correlated with higher glycolytic reserve, we 

hypothesize that increased glycolytic reserve in NOX5high cells could be due to higher 

accumulation of NAD+. For this, the levels of NAD+ and its reduced form NADH could be 

examined in different cell lines. One could also examine how NAD+ levels change under 

BRAFi treatment. The role of NAD+ in BRAFi resistance is further supported by recent studies 

that indicate that BRAFi-resistant melanoma cells had higher NAD+ levels compared to 

sensitive cells [247]. The study points out higher expression of NAD+ biosynthetic enzyme 

nicotinamide phosphoribosyltransferase (NAMPT) in BRAFi resistant melanoma cells. To test 

whether BRAFi sensitivity could be enhanced by NAMPT inhibition, one could treat melanoma 
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cells with highly specific inhibitors of NAMPT, the rate-limiting enzyme of the NAD+ salvage 

pathway: FK866 and GMX1778. One should also examine whether the effects of BRAFi in 

sensitive melanoma cells (SC01, WM88 and WM164) can be rescued by supplementing 

additional NAD+ in the growth media. Supplementation could either be direct addition of NAD+ 

or nicotinamide mononucleotide (NMN), a precursor of NAD+, which bypasses NAMPT. To 

examine mechanistic roles of NOX5 in maintaining high glycolytic reserve, one could test 

whether genetic knockdown or chemical inhibition of NOX5 alters the glycolytic reserve in 

melanoma cells. Reciprocally, one could overexpress NOX5 and examine how glycolytic 

reserve is altered.  

Although our data suggest the effect of NOX5 inhibition in our melanoma panel is not 

due to levels of ROS (Appendix 3), it is very preliminary and warrants further investigation. It is 

possible that certain species of Reactive Oxygen Species (ROS) is modulated by differential 

activity of NOX5—as it is postulated to be involved in the production of superoxide (O2
-). The 

use of ROS detection method could be improved, for instance distinguishing the subcellular 

compartment, as the dye we used stains all species of ROS, thereby, giving an incomplete 

information. It is also possible that there is compensatory activation of other isoforms of NOX 

when NOX5 is inhibited, thus, maintaining a certain level of intracellular ROS. One could 

examine whether such compensatory mechanism exists in our system, by examining the levels 

of other isoforms of NOX when NOX5 is inhibited. Antony et. al. demonstrated NOX5-

generated ROS upregulates HIF-1α expression [245]. Specifically in cancer cells, HIF-1α 

induces increased activity of several glycolytic proteins including transporters (GLUT1, GLUT3) 

and enzymes [248]. In addition, HIF-1α may also modulate the mitochondrial respiration and 

oxygen consumption in cancer cells. It is possible that such mechanism could be at play in our 

panel of melanoma cells in their differential sensitivity to BRAFi.  
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Does mitochondrial phenotype correlate to differential short-term drug response? In 

recent years, there is considerable interest in evaluating the importance of oxidative 

phosphorylation in BRAFi resistance [105,182,185,208]. We have found PGC1α expression to 

be significantly different among single-cell-derived sublines at baseline. Consistent with earlier 

reports, our results confirm the differences in oxidative phosphorylation related genes among 

sublines (Figure 6.5). We also observed differences in mitochondrial physiology using 

MitoOrange and MitoGreen fluorescent probes. MitoGreen stains mitochondria of all live cells 

irrespective of mitochondrial membrane potential, while MitoOrange will only accumulate inside 

mitochondria with intact membrane potential. Although preliminary, we observed that SC01 to 

have consistently low mitochondrial mass compared to other sublines. Because mitochondria 

are dynamic organelles, constantly going through mitochondrial fission and fusion, one should 

evaluate further to determine whether fragmented, dysfunctional mitochondria predispose 

sensitive cells (i.e. SC01, WM88) for increased sensitivity to BRAF-inhibition. Similarly, one 

could examine whether knockdown/overexpression of PGC1α sensitizes or rescues our 

melanoma cells from the effects of BRAF-inhibition respectively.  



	 142	

 

Figure 6.5: Heat map of differentially expressed genes related to oxidative phosphorylation among sublines. FDR 
of < 0.01 and fold-change of 2 is set to identify differentially expressed genes.  

 

Molecular Mechanisms of Idling State  

Idling state represents an interesting property of melanoma cell population under 

continuous BRAFi exposure. We speculate that residual disease observed in patients in clinic 

may comprise a significant number of idling cells, thus, determining the molecular 

determinants of the phenotypic landscape that idling cells occupy may lead to the development 

of novel therapies. The next obvious step to carry this project forward would to understand the 

molecular basis for the emergence of idling state in drug-treated BRAF-mutated melanoma 

cells. So far, we have investigated the changes in metabolic phenotype in cells under BRAF-

inhibition. Surprisingly, we found that idling cells have reduced metabolic profiles (i.e. decrease 

in both oxygen consumption rate and glucose utilization) compared to their untreated 

counterparts. This is in contrast with other reports that suggest increased mitochondrial 
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respiration upon BRAF-inhibition due to induction of mitochondrial biogenesis and metabolic 

reprogramming to favor oxidative phosphorylation [186]. Since Haq et. al. evaluated the 

metabolic changes in melanoma cells treated with BRAFi within 96 hrs., we wondered whether 

idling state is representative of the changes seen in the short-term. For that, we examined the 

mRNA expression of PGC1α in SKMEL5 cells and its derivative clonal lineages. We observed 

a transient increase in the expression of PGC1α in all parental cell and sublines—particularly 

after 120 h, the induction of PGC1α under BRAF-inhibition plateaus (Figure 6.6).  

 

 

Figure 6.6: Induction of PGC1α upon BRAF-inhibition is transient and not sustained in idling cells. PGC1α 
expression normalized to its expression at time zero is plotted along y-axis, x-axis represents time lengths for 
drug exposure in hours. Error bar represents standard deviation from 3 technical replicates for each time point/cell 
line.  

 

We also looked at other mitochondrial related genes to examine whether BRAF-

inhibition induces mitochondrial biogenesis and its related genes. For that, we looked genes 

involved in oxidative phosphorylation and mitochondrial function in Subline SC07. The 

expressions of other oxphos-related genes exhibit similar trend as PGC1α—a transient 

induction and plateau effect. In some cases, (such as ERRα), there is no difference in drug 

treatment compared to its untreated control.  
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Figure 6.7: BRAFi-induced expression of Oxphos genes is not sustained in SC07. Relative expression of 
respective genes is quantified by RT-qPCR and normalized to its expression in time zero, untreated control. X-
axis denotes the time lengths with different drug exposure. Error bar represents standard deviation from 3 
technical replicates for each time point. 

 

Similar analyses could be done in other sublines and BRAF-mutated melanoma cell 

lines. However, to examine global changes in the gene-expression in idling cells, one could 

also perform RNASeq analysis and analyze differentially expressed genes to identify key 

molecular drivers of idling phenotype. To this end, we performed RNASeq analysis in idling 

cells of three sublines, SC01, SC07 and SC10 (treated for 7 days in 8μM PLX4720). Analysis 

of this gene-expression data remains to be done. Differential gene expression analysis on the 

sublines between idling and untreated groups should be done to identify differentially 

expressed genes (DEGs). Because the metabolic profiles of idling melanoma cells are 

reduced, we speculate the shunting of metabolic intermediates into alternative metabolic 

pathways such as Pentose Phosphate Pathways (PPP), glutaminolysis, allows melanoma cells 
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to regenerate necessary substrates to survive continued drug exposure. Pentose phosphate 

pathway is involved in regeneration of reducing equivalents such as NADPH which helps cells 

to combat excessive oxidative stress. One could also examine whether prolonged BRAFi 

treatment induces oxidative stress in idling cells—if so, combating such stress is critical for 

cells to maintain their survival. Others have reported the transition of melanoma into similar 

drug-tolerant cells to be due to chromatin remodeling, enrichment in markers implicated in 

cancer stemness [106,207]. Drug-induced senescence, de-differentiation, enhanced 

expression of multi-drug transporters and phenotype switching such as Epithelial-

Mesenchymal Transition (EMT) have also been proposed to describe drug-tolerant phenotype 

[101,212,249]. Since the drug-modified epigenetic landscape inferred from the population level 

data vary between cell lines, it is possible that several mechanisms could be at play to 

maintain a fine balance between cell division and death while sustaining prolonged BRAFi 

treatment. It is possible that melanoma cells achieve the idling state differently, as initial drug 

response vary among cell lines: some regress while others expand before converging to an 

idling state. Understanding the early drug-adaptation would be critical to maximize cell killing, 

and limit the number of cells that reach the idling state. It would be interesting to distinguish 

whether idling state is defined by common molecular signatures among BRAF-mutated 

melanoma cells, or unique to different cell lines. As all BRAF-mutated melanoma cells 

experience death in idling state, it would be exciting to determine the mode of cell death: 

apoptosis, necrosis or necroptosis. Collectively, these studies will deepen our understanding of 

how BRAF-mutated melanoma cells can survive sub-lethal concentrations of MAPK-pathway 

inhibitors. Combination therapies both simultaneous or sequential could be designed to 

deplete the reservoir of non-quiescent idling cells and potentially thwart the emergence of drug 

resistance in melanoma.  
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Single-Cell RNA Sequencing to Identify Distinct Cancer Subpopulations 

In recent years, we have seen single-cell RNA Sequencing [137–139] become an 

indispensable tool to characterize intra-tumor heterogeneity within tumors or cell-to-cell 

heterogeneity within cancer cell population. Single-cell RNA Sequencing (scRNASeq) is a 

great tool to explore distinct genotypic and phenotypic states of tumors. We speculate that 

melanoma cells exist in distinct phenotypic states and they transition between states both as a 

result of phenotypic drift and under drug perturbations. To infer all possible phenotypic states 

within BRAF-mutated melanoma landscape and to characterize them molecularly, one could 

perform scRNASeq and evaluate genetic and transcriptional programs present in hundreds to 

thousands of individual cells. Through dimensionality reduction algorithms [250], one could 

identify the major subtypes of clonal subpopulations within BRAF-mutated melanoma cell 

population. These results will provide support to our theoretical framework and hypothesis of 

co-existing distinct phenotypic, functional states within melanoma. The identified signature of 

the subtypes would facilitate the study of phenotypic state transitions among cell 

subpopulations.  

Clonal Sublines Mixture Experiments 

Does cell-cell communication matter? To determine whether cell-cell communication 

regulate the differential responses of BRAF-mutated melanoma cells, one could mix clonal 

sublines and delineate how mixing affects the population dynamics at the cell population and 

clonal level. To be able to follow distinct clonal sublines and their response over time, sublines 

need to be fluorescently tagged with different colors, or defined with respect to some molecular 

signatures as in breast cancer subpopulations [194]. Taken together, results obtained from 

these experiments would form the basis for transition rate calibration and estimation in our 

model.  
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APPENDIX 1 

Simple Three-State Model of Cell Proliferation 

To better understand the complex dynamics exhibited by BRAF-mutated melanoma 

cells in response to BRAFi, including emergence of the idling phenotype, we devised a simple 

three-state model comprised of a regressing state R, a stable (zero net growth) state S, and an 

expanding state E. Cells in each state can experience two fates, division and death, with 

kinetic rate constants that are characteristic of the states. Additionally, drug induces transitions 

between “adjacent” states. The model can be expressed in kinetic terms as 

 𝐶𝑒𝑙𝑙\
CvZ

𝐶𝑒𝑙𝑙\ + 𝐶𝑒𝑙𝑙\       (A1)  
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∅         (A2) 
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𝐶𝑒𝑙𝑙_ + 𝐶𝑒𝑙𝑙_        (A3) 
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Here, CellX (X ∈ {R,S,E}) is the number of cells in state X, kgX and kdX are division (growth) and 

death rate constants for cells in state X, kXY is the transition rate constant between states X 
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and Y (R ó S ó E), and ∅ represents cell death (the null state). A graphical representation of 

the model is provided in Figure 4.9a of the main text. 

Given these reactions, and defining 𝑘[z ≡ 	𝑘Oz − 𝑘$z as the net proliferation rate for 

cells in state X, the coupled set of ordinary differential equations (ODEs) describing the state 

dynamics is 

 $YZ
$%

= 𝑘[\ − 𝑘M] 𝑁\ + 𝑘]M𝑁_       (A9)    

 $Y`
$%

= 𝑘[_ − 𝑘]M − 𝑘]" 𝑁_ + 𝑘M]𝑁\ +	𝑘"]𝑁a     (A10) 

 $Yb
$%

= 𝑘[a − 𝑘"] 𝑁a + 𝑘]"𝑁_       (A11) 

Equations (A9)-(A11) are presented in the main text as Eqs. (1)-(3) in CHAPTER 4. 

Model Simulation and Parameter Calibration 

The model in Eqs. (A1)-(A8) consists of 10 parameters: three net proliferation rates (kpE, 

kpS, kpE), four transition rate constants (krs, ksr, kse, kes), and three initial cell counts (NR(t=0), 

NS(t=0), NE(t=0)). We fixed the net proliferation rate for state S to zero and chose values for 

states R and E based on the range of responses seen for the SKMEL5 parental cell line 

(Figure 4.3a and Figure 4.4d). Specifically, we chose 𝑘[\ = −0.055	hGU, 𝑘[_ = 0	hGU, and 

𝑘[a = 0.015	hGU based on the range of drug-induced proliferation rates (range: +0.03hGU to -

0.11 hGU). We also set the total number of initial cells T0 = 10,000. Altogether, this eliminates 

four free parameters, leaving a total of six free parameters in need of calibration: the four 

transition rate constants and the initial proportions of cells in states R and S (denoted R0 and 

S0, respectively; R0 = NR(t=0)/T0, etc.). Model simulation was performed by numerically 

integrating Eqs. (A9)-(A11) using the LSODA algorithm [251] as implemented within the ode 
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function of the R package deSolve [196]. Model calibration was performed using the cost 

function (presented as Eq. (4) in the main text in CHAPTER 4)  

 𝐶𝑜𝑠𝑡 = 	 (hEG|E)i

꜄E
-
(kU         (A12) 

where n is the number of measured time points and Mi, Oi, and σi are the model prediction, 

experimentally observed value, and standard experimental error at time point i, respectively. 

We first identified the closest local minimum within the cost space using the Levenberg-

Marquardt algorithm as implemented within the modFit function of the R package FME [199]. 

We then performed Markov chain Monte Carlo (MCMC) sampling, using the modMCMC 

function of the FME package, to sample the trough of the cost-space well and to confirm that it 

was, to our best estimate, the global minimum. A Gaussian prior was defined for all 

parameters[198] with variances obtained from modFit. A lower bound of 0 was imposed for all 

parameters. An upper bound of 0.06/h (the observed proliferation rate for SKMEL5 cells in 

dimethyl sulfoxide (DMSO) control) was imposed for the transition rate constants krs, ksr, kse, 

and kes. For the initial cell proportions R0 and S0, an upper bound of 1 was imposed. In 

addition, we required that R0 + S0 ≤ 1. Constraints such as this cannot be defined directly 

within the modMCMC function. Therefore, we modified our R script to impose an artificially 

large cost (>106) if an MCMC iteration returned values that violated this constraint. 

In all cases, we performed 105 MCMC iterations starting from the parameter set 

obtained from modFit. Values of 𝜎( in Eq. (A12) were automatically determined in each case by 

modMCMC based on the input data set. The parameter covariance matrix was evaluated 

every 100 iterations (updatecov argument to modMCMC) and used to update the MCMC 

jumps. The maximum number of tries for the delayed rejection procedure was set to 2 (ntrydr 

argument to modMCMC). In some cases, three independent MCMC chains were run with 
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different initial parameter values (±25% around the best fit from modFit) and converged to the 

same distributions as per the Gelman-Rubin test [252,253]. Parameter distributions for 

numerous cell lines are shown in Appendix 1; associated MCMC trace plots are shown in 

Appendix 2.  

 

 

Appendix 1: Parameter estimation obtained by MCMC calibration against Experimental data for multiple BRAF-
mutated melanoma cells. (A) Transition rate constants (log scale) (B) Proportions of initial cell counts. 
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Appendix 2: MCMC traceplots for multiple BRAF-mutated melanoma cell lines. Last 50% (accounting for burn-in) 
of the total 105 iterations are shown.  
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Appendix 3: Effect of NOX-inhibition on ROS signaling. (A) Correlation between Drug-induced proliferation (DIP) 
rates and ROS intensity (on log2 scale) from conditions described in Figure 5.5b. ROS is measured using 
CellRoxTM Deep Red Reagent (Cat# C10422). Increased ROS signaling is inversely correlated with DIP rates 
(Corr: -0.705), Pearson Correlation used, p-value < 0.001. (B) Level of ROS signaling quantified on log2 scale for 
Scrambled control and siRNA knockdown of NOX5 in SC10.  

 
Model Selection  

We additionally considered the possibility of: two-state models and three-state model 

with all possible phenotypic state transitions (triangle-model). For two-state model, we 

considered all possible combinations: (A) Two states with Regressing (R) and Stable (S) 

states; (B) Two states with Stable (S) and Expanding (E) states; (C) Two states with 

Regressing (R) and Expanding (E) states. Our three-state model tacitly assumes that the 

states are organized in a linear fashion—with zero possibility of transition between Regressing 

(R) to Expanding (E) states. Although biologically distant from each other, the transitions 

between States R and E are theoretically possible. Therefore, we also considered the “triangle” 

model where transitions between all three states are possible. Graphical representation of all 

possible combinations of the models we considered is shown in Appendix 4. 
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Appendix 4: Graphical representation of all possible model configurations. Two-state models with: (A) Regressing 
(R) and Stable (S) state; (B) Stable (S) and Expanding (E) states; (C) Regressing (R) and Expanding (E) states; 
(D) Three-state model with all possible state transitions among states, also called triangle model; (E) Three-state 
model organized in linear fashion. In all the states, cells can either divide/die or transition into another available 
states. (F) Population dynamics of the proposed three-states.  

 

We calibrated the models against an experimental time course for a 1:1:1 clonal mixture 

of three single cell-derived sublines (SC01, SC07, and SC10). We inferred the Akaike 

information criteria (AIC) [254] for all the models we considered.  
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 Model A Model B Model C Model D Model E 

Number of Parameters 4 4 4 8 6 

AIC value 145.6585 -363.4001 -129.4709 -394.5141 -399.7858 

Residual Std. Error 1.869 0.1965 0.5533 0.1677 0.1656 

 

Appendix 5: Model fit and model selection statistics indicate three-state model linear model improves fit. Three-
state model organized in linear fashion (Model E in Appendix 4) has the lowest AIC value and lowest residual 
standard error, indicating that the model E is both improved in terms of model selection and in terms of error 
minimization than the other possible models considered.  

 

Definition of Quasi-Potential Landscape 

 It is a conceptual construct, with its basis on classical mechanics and captures the 

global behaviors of the complex Gene Regulatory Networks (GRN) [149]. A gene regulatory 

network (GRN) is specific to a cell type and regulates the expression of genes giving rise to 

distinct gene expression patterns. This network of genes can give rise to non-genetic 

heterogeneity due to multiple metastable phenotypes [127–131]. The mathematical basis for 

this idea relies on the concept of state space, where a phenotypic state of a cell at time t, S(t) 

is represented by quantity xi(t) of N interacting genes [127,133]. Given a network architecture, 

most random gene networks will ultimately settle into few stable basins of attraction called 

“attractors.” [127]. This formalism is an extension to Waddington’s epigenetic landscape [132], 

and links a multidimensional dynamical-systems framework to phenotypic variability. In the 

probabilistic view, not all attractors or states in the state space S(t) are equally likely to be 

occupied by cells. Hence, the probability for each state is assigned an ‘elevation’, V(s), a 

quasi-potential energy (“potential”) whose height or energy barrier is inversely related to its 

probability P(s). A collection of the “potential” values V(s) over the entire state space gives rise 

to a quasi-potential landscape. The prefix “quasi” or “generalized” distinguishes this potential 
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from true energy potentials often used in physics. This framework allows for co-existence of 

multiple stable phenotypes within the same genome and has been used to describe 

phenotypic variability in cancer cells without genetic alterations [161,255]. With this view, 

distinct stable phenotypes in an epigenetic landscape can be visualized as attractors and their 

stability can be represented as a quasi-potential energy U of each state [195]. Thus, a quasi-

potential energy surface defines an epigenetic landscape of a cancer where cells are 

hypothesized to reside in different attractors.  
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