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Chapter I 

 

INTRODUCTION 

 

Glycans in the nervous system: A primer for the glyco-skeptic 

Glycans (carbohydrates or oligosaccharides) are sugar modifications on 

glycoproteins and glycolipids that richly populate all nerve cell membranes 

(Figure 1). Glycans are known to play important, non-exclusive roles as ligands, 

modulators and co-receptors, but nevertheless remain enormously understudied 

in the context of neurobiology (Matani et al., 2007; Dityatev et al., 2010b; 

Soleman et al., 2013). This oversight has inhibited dissection of the fascinating 

glycan-mediated mechanisms that regulate neural development and synapse 

biology, including synaptic adhesion, neurotransmission and plasticity. The need 

to explore glycan mechanisms is underscored by the growing list of human 

‘glycanopathies’, with a new disorder reported every 17 days on average (Freeze 

et al., 2014). Indeed, well over a 100 heritable genetic disorders result from 

mutations in genes encoding products that catalyze and regulate glycans, 

including O-fucosylation, O-GalNAcylation, O-GlcNAcylation, N- glycosylation, 

glycosaminoglycans, GPI-Anchors and dystroglycans (Figure 2). Surprisingly, 

there is a clear predominance of neural defects in congenital disorders of 

glycosylation (CDG) disease states (Freeze et al., 2014). Here I illustrate, glycan-

mediated regulation of the nervous system, from molecules to behavior.  
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Figure 1. Glycocalyx of the cell membrane. Sugars boxed in teal are added 

in the endoplasmic reticulum. Other sugars are added during passage through 

the golgi. Abbreviations: mannose (Man), galactose (Gal), glucose (Glc), N-

acetylglucosamine (GlcNAc), glucosamine (GlcNH2), glucuronic acid (GlcA), 

iduronic acid (IdoA), N-acetylgalactosamine (GalNAc), xylose (Xyl), fucose 

(Fuc), sialic acid (Sia), 3-O-sulfated (3S), 6-O-sulfated (6S) and phosphate 

(PO4
-). (Modified from Stanley, 2011) 
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Figure 2. Neuroglycobiology publications and glycanopathies. (A) 

Number of papers with the search terms ‘glycosylation’ and ‘neuron’ in 

PubMed from 1971 to 2013. (B) Distribution shows the rate of identified 

dystroglycanopathies per year. (Adapted from Freeze et al. 2014) 
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It is my hope that these illustrated glycan roles will convince the glyco-

skeptic, and illuminate the bounty that awaits explorers in the nascent field of 

neuroglycobiology. A PubMed search including the terms ’glycosylation’ and 

‘neuron’ yields a little over thousand articles from 1973 till present, clearly 

highlighting the infancy of this field (Figure 2). Here, I review with specific 

examples, some of the relatively well understood glycan-mediated effects on 

neural cell adhesion, neurotransmission and mechanisms underlying neural 

disease. This general overview (Chapter 1) is followed by a much more focused 

discussion of glycan functions at peripheral neuromuscular synapses in 

vertebrate and invertebrate systems (Chapter 2). The latter topic has been my 

focus during characterization of glycogene effects on synapse structure, function 

and plasticity at the Drosophila neuromuscular junction (NMJ) model synapse.  

 

Glycosylation spatiotemporally regulates neural cell adhesion 

 Glycans form a dense glycocalyx layer on all cell surfaces (Varki et al., 

1999). Given their location, one would predict glycan macromolecules to be 

obvious key regulators of cellular adhesion. One prime example of this function is 

polysialic acid (PSA), a post-synthetic N-linked modification found on neural cell 

adhesion molecule (NCAM), which decreases homophilic binding to attenuate 

intercellular adhesion (Rutishauser, 1998). In vivo experiments show that 

complete loss of PSA modification, by simultaneous deletion of two 

polysialyltransferase genes (St8sia-II and St8sia-IV), produces severe brain 

wiring defects, progressive hydrocephalus, postnatal growth retardation and 
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death. When NCAM was simultaneously deleted in this St8sia null background, 

all observed phenotypes were restored to normal, identifying for the first time a 

glycan to be more important than the glycoconjugate (glycan modified protein) as 

a whole (Weinhold et al., 2005). Another example where glycans play a key role 

in mediating adhesion is found on laminin, a major component of the extracellular 

matrix (ECM) (Chen et al., 2003). Non-glycosylated laminins support cell 

attachment but do not promote neural spreading or outgrowth, while glycosylated 

laminins increase cell spreading is a dose dependent manner. Further, 

proteolytic digestion of glycosylated laminin restores cell-spreading, suggesting 

that the laminin carbohydrates provide the essential information 

(Chandrasekaran et al., 1991). Glycans also control the activity of ECM receptor 

integrins, which bind laminins. Expression of O-mannosyltransferases, protein O-

linked mannose N-acetylglucosaminyl-transferase 1 (PomGnT1) and N-

acetylglucosaminyltransferase-VB (GnT-Vb) all enhance β1-integrin dependent 

neurite outgrowth on laminin (Abbott et al., 2006; Lee et al., 2006). Thus, 

glycosylation of both ECM and ECM receptors can regulate neural adhesion, 

spreading/migration and neurite outgrowth  

 Importantly, cell adhesion molecules (CAMs) can be multiply glycosylated 

for specific roles. For example, synaptic cell adhesion molecules (SynCAMs) 

mediating trans-synaptic adhesion come in multiple isoforms (SynCAM1, 

SynCAM2, SynCAM3 and SynCAM4) that can form homophilic and heterophilic 

complexes (Biederer, 2006). With expression of all 4 isoforms, removal of a 

single N-glycosylation site (N290) in SynCAM3 increases adhesion (Gao et al., 
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2008), while mutation of another N-glycosylation residue (Asn60)  in SynCAM2 

reduces adhesion (Fogel et al., 2010). Thus, N-glycans at specific positions have 

differential effects on SynCAMs in regulating trans-synaptic adhesion. Likewise, 

enzymatic removal of a single N-glycosylation at Asn303 in the extracellular 

domain of postsynaptic Neuroligin-1 increases association with presynaptic 

Neurexin-1β (Comoletti et al., 2003), showing a similar mechanism in other trans-

synaptic adhesion molecules. Moreover, modulation of glycosylation states of 

secreted synaptic cleft resident proteins, such as acetylcholinesterase (AChE), 

demonstrate an N-glycosylation requirement for interaction with Neurexin-1β. 

Conversely, excessive glycosylation can competitively disrupt neurexin/neuroligin 

adhesion to impair synapse adhesion (Xiang et al., 2014). Thus, glycans can 

specifically and singularly regulate neural cell adhesion by influencing the 

function of trans-synaptic, synaptic cleft resident or extracellular matrix 

glycoproteins.  

 Glycans can mediate the malleability of cell adhesion during physiological 

morphology changes associated with neural migration, axonal path finding and 

plasticity. For example, the levels of sialylated PSA isoforms are temporally 

regulated through development, with highly sialylated forms predominating in the 

developing brain that are gradually replaced by adult isoforms with lower silaic 

acid levels (Edelman, 1984). Consistently, hippocampal brain regions that 

maintain morphological plasticity during learning activity, as well as regenerating 

neurons, retain high density sialic acid modified NCAMs (Kiss and Rougon, 

1997). Conversely, some glycans are progressively lost through development. 
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For example, in rat fetal neural cells, the N-linked glycosylated, polysialylated 

and sulfated D2 CAM progressively loses sulfated forms in postnatal stages 

(Lyles et al., 1984). Another example is Neuroglycan C, a brain specific 

proteoglycan involved in adhesion, that loses chondroitin sulfate 

glycosaminoglycan (GAG) chains during cerebellum and retinal development 

(Aono et al., 2000; Oohira et al., 2004).  

 Glycan modifications may also be transiently present during development. 

Levels of dolichyl phosphate mannose synthases that catalyzes formation of Dol-

P-P-GlnCNAc2Man9Glc3, a major substrate of N-glycosylation, are higher at day 

36 than day 15 in postnatal mouse development, with a peak coincident with 

synapse formation in the cerebral cortex (Idoyaga-Vargas and Carminatti, 1982). 

Similarly, the ECM glycoprotein Tenascin-R associated with Purkinje neuron cell 

bodies and dendrites in the molecular layer of cerebellum carries N-linked 

oligosaccharides that terminate with β1,4-linked GalNAc-4-SO(4) that are 

temporally regulated, increasing through cerebellar development between 

postnatal days 14 and 21, corresponding to a period of Purkinje cell dendrite 

extension and synaptogenesis (Woodworth et al., 2002). In mouse olfactory 

epithelium sensory neurons that extend into the olfactory bulb (OB), mutants 

deficient in glycosyltransferase β1,3 N-acetyl glucosaminyl transferase 1 

(β3GnT1), a key enzyme in lactosamine glycan synthesis, exhibit disorganized 

OB innervation and postnatal smell perception deficit (Henion et al., 2005). 

However, at two weeks of age, lactosamine is unexpectedly re-expressed in 

sensory neurons of mutant mice through a secondary pathway, accompanied by 
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regrowth of axons in to the OB glomerular layer and a return of smell perception 

(Henion et al., 2005). Thus, glycans can spatiotemporally regulate neural cell 

adhesion with increases, decreases or transient peaks of specific glycan 

expression during brain development, particularly during synaptogenesis. 

 

Glycosylation effects on neurotransmission 

In addition to regulating neural development, glycans directly modulate 

neurotransmission strength. For example, synaptic vesicle associated proteins 

Synapsin I and II contain terminal N-acetylglucosamine (GlcNAc), and Synapsin I 

is also modified by O-GlcNAc addition (Lüthi et al., 1991). When the single O-

GlcNAc site Thr-87 is mutated to alanine in primary hippocampal neurons, 

Synapsin I increasingly localizes to synapses, which increases synaptic vesicle 

clustering and vesicle reserve pool size (Skorobogatko et al., 2014). Similarly, 

the Ca2+ sensor Synaptotagmin1 bears both N and O-linked glycosylation, and 

mutational analysis reveals that the O-linked glycosylation partially targets the 

protein to dense core vesicles (Kanno and Fukuda, 2008). Mutation of the N-

terminal N-glycosylation site re-directs Synaptotagmin 1 from vesicles to plasma 

membrane, while transplanting this same site onto Synaptotagmin 7 re-directs 

from plasma membrane to secretory vesicles (Han et al., 2004). In contrast, a 

more recent analysis showed clear requirements for N-glycosylation of integral 

synaptic vesicle protein SV2 in synaptic vesicle sorting, but no effects of 

glycosylation on Synaptotagmin1 (Kwon and Chapman, 2012). Thus, amino acid 
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residue specific glycans can instruct cellular localization and trafficking of 

synaptic vesicle proteins. 

Glycans can also regulate the activity of channels to potently modulate 

synaptic transmission. Sialylation of β1 subunit of voltage-gated Na+ channels 

induces a uniform hyperpolarizing shift of steady state membrane potential and 

kinetic gating of two alpha subunits, and reducing sialylation and N-glycosylation 

impairs β1-induced gating effects (Johnson et al., 2004). Sialylation also controls 

K+ channel function, as Kv1.1 sialylation causes abnormal macroscopic 

activation and C-type inactivation kinetics producing a depolarized shift and 

shallower voltage slope (Sutachan et al., 2005). Removal of N-glycosylated 

chains from Kv12.2 in the mouse brain also causes a depolarizing shift in steady 

state activation, and unglycosylated Kv12.2 is not trafficked to the cell surface 

(Noma et al., 2009). Removal of glycosylation by site-directed mutagenesis of 

Asn220 and Asn229 N-glycan sites on yet another K+ channel, Kv3.1, causes 

differential channel distribution and the generation of outward ionic currents with 

slower activation and deactivation rates than the glycosylated form (Hall et al., 

2011).  

Glycans have also been increasingly identified to regulate ion channels 

involved in sensory function. Insights into residue-specific effects of glycan loss 

on channel function is seen in the N-glycosylated Transient Receptor Potential 

Vanilloid 1 (TRPV1), which is the major determinant of capsaicin-evoked sensory 

responses (Veldhuis et al., 2012). Specific de-glycosylation or site-directed 

mutagenesis at residue N604 leads to rapid de-sensitization and loss of ion 
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selectivity of the TRPV1 channel (Veldhuis et al., 2012). Similarly, channel 

properties are also affected in conditions of specific loss of glycosylation in 

Transient Receptor Potential Melastatin 8 (TRPM8) channels (N934Q), leading to 

a shift in the threshold of temperature activation and reduced response to 

menthol/cold stimuli (Pertusa et al., 2012). Glycosylation also affects the 

trafficking of sensory receptors. For example, in human bitter taste receptors 

(TAS2R), non-glycosylated forms lacking N-glycosylation show substantially 

lower cell surface localization, potentially due to reduced association with 

chaperone calnexin (Reichling et al., 2008). Interestingly, site-specific 

glycosylation can also differentially regulate activity-dependent function. In the 

acid-sensing ion channel-1a (AISC1a), N-linked glycosylation at Asn393 and 

Asn366 residues produce differential effects: Asn393 mutations increase cell 

surface/dendrite trafficking, pH sensitivity and current density, and increase 

dendritic targeting in N366Q mutants under conditions of acidosis-induced spine 

loss, whereas N393Q mutants display the opposite effect (Jing et al., 2012). 

Thus, TRP channels that respond to numerous sensory modalities are subject to 

site-specific glycan-mediated control of their properties leading to perturbed 

neural responses. 

The Ca2+ influx fundamental to neurotransmission and plasticity is also 

subject to glycan-mediated modulation(Frank, 2014). For example, voltage-gated 

Ca2+ channels are modulated by alpha-2 delta subunits in which N-glycan 

removal by N glycosidase F affects the current amplitude (Gurnett et al., 1996). 

Intracellular Ca2+ release is also subject to glycan-mediated regulation by inositol 
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1,4,5 triphosphate (InsP3) receptor type I, which is modified by O-GlcNAc 

glycosylation. Altering O-GlcNAc levels via oligosaccharyl transferase or loading 

with UDP-GlcNac decreases Ca2+ channel activity, which is reversed by sugar 

removal (Rengifo et al., 2007). N-glycosylation of Ca(V)3.2 T-type voltage-gated 

Ca2+ channels affects function by accelerating current kinetics, increasing current 

density and augmenting channel membrane expression, while de-glycosylating 

this channel inhibits T-currents and reverses hyperalgesia in diabetic ob/ob mice 

(Orestes et al., 2013). Thus, glycan-mediated effects on Ca2+ channel function 

play critical functions across a range of channel families. 

Neurotransmitter-gated channels are also modulated by glycosylation. The 

cell surface expression of glutamatergic N-methyl-D-aspartate receptor (NMDAR) 

can be repressed by tunicamycin treatment through regulation of NR1 but not 

NR2A subunit synthesis. The inhibition of N-glycosylation activates Endoplasmic-

reticulum-associated protein degradation(ERAD), which degrades non-

glycosylated NR1 via ubiquitination and proteasome delivery (Gascón et al., 

2007). The NMDAR GluN2 subunit is also subject to glycan-mediated regulation 

for synaptic targeting of the receptor, with GluN2B recruited in an activity-

dependent manner requiring N-linked glycosylation (Storey et al., 2011). The α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), another 

ionotropic glutamate receptor class, is similarly regulated by O-linked GlcNAc 

modification of the GluA2 subunit to modulate hippocampal long term depression 

(LTD) (Taylor et al., 2014). Further, acute inhibition of N-glycosylation depresses 

both NMDA and AMPA receptor currents by 30% in cultured hippocampal 
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neurons, and similar enzyme treatments in hippocampal slices reduces the 

amplitude of population spikes and long term potentiation (LTP) (Maruo et al., 

2003). Mechanistically, N-glycan removal shifts the agonist concentration 

response curve of both receptor classes, causing a decrease in single channel 

opening probability and a depression of whole cell currents (Maruo et al., 2006). 

Thus, the critical flux of ions across cellular membranes can be modulated by 

glycosylation of voltage and neurotransmitter gated channels to modulate neural 

transmission, plasticity and behavior.    

 Neurotransmitter transporters are also modulated by glycosylation. For 

example, both norepinephrine and serotonin transporters (NET and SERTs) 

require N-glycosylation for assembly and surface expression, although not for 

antagonist binding affinity (Blakely et al., 1994). The human SERT extracellular 

loop has two sites for N-linked glycosylation that are critical for functional 

transporter expression. Curiously, a non-synonymous single nucleotide 

polymorphism (SNP) that introduces a third N-inked glycosylation site could 

substitute for either one or the two original glycosylation sites (Rasmussen et al., 

2009). Further, dopamine (DA) transporter (DAT) activity depends on its 

glycosylation status, with DA transport more efficient in glycosylated forms 

compared to the non-glycosylated forms, which are less stable at the cell surface 

(Li et al., 2004). The glycan-dependent regulation of DAT may also have 

pathological ramifications, as glycosylated DAT was significantly higher in 

terminals of nigrostriatal neurons than the mesolimbic neurons. The former are 

progressively lost in Parkinson’s Disease (PD), suggesting that glycosylation may 
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dictate differential vulnerability of midbrain dopaminergic cells in this 

neurodegenerative disease (Afonso-Oramas et al., 2009). Disruption of the N-

glycosylation sites on the Glycine transporter (GLYT2), that removes glycine from 

the inhibitory synaptic cleft, reduces activity by 35-40% (Martínez-Maza et al., 

2001). Likewise, mutations of two of the three N-glycosylation sites in the 

extracellular loop of gamma-aminobutyric acid transporter 1 (GAT1) at inhibitory 

synapses reduces transporter turnover (Liu et al., 1998). Inhibiting N-linked 

glycosylation of the Na(+)-K(+)-2Cl(-) cotransporter-1 (NKCC1), normalizes 

GABA reversal potentiation and restores GABA inhibition of presympathetic 

neurons in spontaneously hypertensive rats (SHRs), and restores GABAergic 

inhibition by maintaining chloride homeostasis (Ye et al., 2012). Thus, 

neurotransmitter transporters represent another class of synaptic proteins 

sensitive to specific glycosylation states, largely by affecting trafficking and cell 

surface expression.  

          Interestingly, for some synaptic proteins, glycan modifications can 

suppress function. For example, in neurotrophic factors responsible for neural 

growth, survival and plasticity (Thoenen, 1995), the nerve growth factor (NGF) 

Tyrosine Kinase Receptor 1 (TrkA) contains four N-glycosylation sites necessary 

to prevent ligand independent activation and correctly localize TrkA to the cell 

surface. Non-glycosylated forms are trapped intracellularly and are unable to 

activate the Ras/MAP kinase signaling pathway (Watson et al., 1999). Moreover, 

downstream signaling factors such as cyclic AMP response element binding 

protein (CREB) known to contribute to synapse development and plasticity, also 
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exhibit glycan-mediated regulation. In response to neuronal activity, CREB is 

dynamically modified by O-linked N-acetyl glucosamine and this glycosylation 

represses CREB-dependent transcription (Rexach et al., 2012). Thus, glycan 

modification can affect neurotransmission by positively or negatively influencing a 

wide range of synaptic targets including synaptic vesicle proteins, voltage-gated 

ion channels, ligand-gated ion channels, neurotransmitter transporters, 

neurotrophic factors and associated downstream signaling pathways. This 

modulation may arise from defects in protein folding, trafficking or expression of 

the glycan-modified targets. 

 

Novel mechanisms revealed by studying glycan related diseases 

While a complete description of diseases arising from aberrant 

glycosylation is beyond the scope of this overview, I will briefly discuss novel 

modes of glycan-mediated regulation that are aberrant in specific disease 

conditions. One such mechanism is observed in proteins where glycan 

modification can affect subsequent post-translational modifications (Seet et al., 

2006). This interaction is best understood for cytosolic O-GlcNAc modifications 

and phosphorylation at serine/threonine residues. The mechanism of cross-talk 

can include alternative/competitive occupancy of the same residue, alternative 

and reciprocal occupancy at different sites, simultaneous occupancy at different 

sites, or site-dependent reciprocal (O-glycosylation or phosphorylation) or 

simultaneous (O-glycosylation and phosphorylation) occupancy (Zeidan and 

Hart, 2010). These mechanisms regulate neural transcription factor C/EBPβ, 
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insulin receptor IRS-1 and calcium-dependent kinase CaMKIV, affecting DNA-

binding capacity, turnover and enzymatic activity, respectively (Yang et al., 2008; 

Dias et al., 2009; Li et al., 2009). Similar cross-regulation also occurs in 

Amyotrophic Lateral Sclerosis (ALS) disease models, where neurofilament (NF) 

proteins form intermediate filaments that are modified and regulated by 

competing post-translational modifications. On a single NF subunit, O-GlcNAc 

levels on the tail domain decrease with reciprocal increases in phosphorylation, 

suggesting that synchronous regulation of glycosylation and 

hyperphosphorylation may underlie the pathophysiological contribution 

(Lüdemann et al., 2005).  

Cross-talk between glycosylation and phosphorylation also appears in 

Alzheimer’s disease (AD) models, in neurofibrillary plaques composed of post-

translationally modified microtubule associated Tau protein. Tau is known to form 

abnormal bundles of straight filaments under conditions of hyperphosphorylation 

and de- glycosylation (Arnold et al., 1996). However, restoration of normal 

microtubule polymerization activity occurs only when Tau is both 

dephosphorylated and de-glycosylated. Hence, hyper-phosphorylation appears 

to promote aggregation of Tau and inhibit assembly of microtubules, while 

glycosylation appears to stabilize the abnormal Tau paired helical filament (PHF) 

structure (Wang et al., 1996). Increased non-enzymatic glycosylation of PHFs 

decreases ability to bind tubules and leading to the pathological aggregations. 

Further evidence of cross talk comes from in vitro studies where de-glycosylation 

of aberrantly glycosylated tau decreases subsequent phosphorylation of Tau at 
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Ser214, Ser262 and Ser356 by protein kinase A. Interestingly, this de-

glycosylation of Tau positively modulates further de-phosphorylation by protein 

phosphatase 2A and protein phosphatase 5 at another set of residues Ser198, 

Ser199 and Ser202 (Ledesma et al., 1994). Tau protein can also be regulated by 

kinase pair Cdk2/GSK-3β, such that phosphorylation of neighboring residues 

S396 and S404 significantly decreases S400 O-GlcNAcylation. Reciprocally, 

S400 O-GlcNacylation reduces S404 phosphorylation by Cdk2/Cyclin A3 kinase 

and interrupts GSK3-β mediated sequential phosphorylation (Smet-Nocca et al., 

2011). Additionally, Tau can also be non-enzymatically glycosylated, which is 

characterized by reducing sugars condensing with free amino groups of proteins, 

leading to rearrangement and dehydration to forming unsaturated pigments and 

cross-linked products called advanced glycation end products (AGEs) (Monnier 

and Cerami, 1981; Vlassara et al., 1983; Peppa et al., 2003). AGEs are routinely 

found in neurodegenerative diseases including Alzheimer’s (Smith et al., 1994), 

Parkinson’s (Castellani et al., 1996), Pick’s (Kimura et al., 1996) diseases, ALS 

(Kato et al., 2000) and diabetic conditions (Garlick et al., 1984), but it remains to 

be identified if cross-regulatory mechanisms are also involved in these 

conditions. Taken together, these studies show that glycosylation modifications 

at specific residues can lead to a number of compounding effects. 

 Glycans can also be important for the detection of neural disorders, and 

used as biomarkers for diagnosis. For example, in ALS high levels of sialylated 

glycans, low levels of core fucosylated glycans and the expression of specific 

glycan A2BG2 is observed in patient sera. These glycan changes increase the 
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affinity of IgG type antibodies to CD16 of effector cells leading to Antibody-

Dependent Cellular Cytotoxicity (ADCC) in brain and spinal cord tissue (Edri-

Brami et al., 2012). In this way, glycan changes correlated with ALS can serve as 

an effective biomarker. Similarly, diagnostic glycan patterns in the brain occur in 

para-neoplastic cerebellar degeneration (PCD) combined with Hodgkin 

lymphoma (HL). In this neurological condition, anti-Tr antibodies are generated 

against the Delta/Notch-like epidermal growth factor related receptor (DNER), 

with the antibodies recognizing a N-glycosylation epitope (de Graaff et al., 2012). 

A similar situation also arises in Rasmussen’s encephalitis, a severe form of 

pediatric epilepsy, in which granzyme B(GB) serine protease is released by 

activated immune cells generating the GluR3B autoantigenic peptide, as long as 

no N-linked glycosylation is present within GluR3-GB recognition site (Gahring et 

al., 2001). This change may serve as a prime candidate for the development of 

antibodies against the N-linked glycosylation, allowing us to exploit the activation 

of the particular glycan modification as a biomarker for diagnosis. 

In summary, these few examples illustrate that glycans can widely 

regulate neural properties at molecular, synaptic, circuit, developmental and 

behavioral levels. Through these examples, we can make some general 

conclusions about glycan-mediated neural effects. First, the neural proteins that 

mediate these effects can be modulated either by virtue of their own glycan 

modifications or by glycan-mediated regulation of their interacting partners. 

Second, the same classes of glycan modification can have positive or negative 

regulatory effects when attached to protein A, while being completely 
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dispensable for the function of protein B, indicating molecule-specific effects of 

glycosylation. Third, multiply glycosylated proteins show position-specific effects 

of loss or gain of glycan modifications, which can also influence other post-

translational modifications. Fourth, glycan modifications are spatiotemporally 

regulated during normal development and in neuropathological conditions. 

Moving forward, studying neuroglycobiology, particularly in genetically tractable 

models, will allow for novel mechanistic characterization of these critically 

important non-template driven macromolecules.  
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Abstract 

Synapse formation is driven by precisely orchestrated intercellular 

communication between the presynaptic and the postsynaptic cell, involving a 

cascade of anterograde and retrograde signals. At the neuromuscular junction 

(NMJ), both neuron and muscle secrete signals into the heavily glycosylated 

synaptic cleft matrix sandwiched between the two synapsing cells. These signals 

must necessarily traverse and interact with the extracellular environment, for the 

ligand-receptor interactions mediating communication to occur. This complex 

synaptomatrix, rich in glycoproteins and proteoglycans, comprises 

heterogeneous, compartmentalized domains where specialized glycans 

modulate trans-synaptic signaling during synaptogenesis and subsequent 

synapse modulation. The general importance of glycans during development, 

homeostasis and disease is well established, but this important molecular class 

has received less study in the nervous system. Glycan modifications are now 

understood to play functional and modulatory roles as ligands and co-receptors 

in numerous tissues, however roles at the synapse are relatively unexplored. We 

highlight here properties of synaptomatrix glycans and glycan-interacting proteins 

with key roles in synaptogenesis, with a particular focus on recent advances 

made in the Drosophila NMJ genetic system. We discuss open questions and 

interesting new findings driving the current investigation of the complex, diverse 

and largely understudied glycan mechanisms at the synapse.  
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Introduction 

          Electrically excitable cells (neurons and muscles) are precisely connected 

via chemical synapses to form functional networks. Study of the neuromuscular 

junction (NMJ) synapse between motor neuron and muscle cell has been 

particularly instrumental in elucidating molecular mechanisms that drive 

synaptogenesis, both in vertebrate and invertebrate models (Sanes and 

Lichtman, 2001; Marques, 2005; Kummer et al., 2006; Collins and DiAntonio, 

2007; Korkut and Budnik, 2009). Secreted glycoproteins (GPs) and 

proteoglycans (PGs) interface with presynaptic and postsynaptic cell surfaces 

within the NMJ synaptic cleft and in adjacent perisynaptic domains. These highly 

compartmentalized extracellular environments harbor heavily glycosylated 

extracellular matrix (ECM) proteins as well as glycosylated transmembrane 

receptors and outer-leaflet glycolipids, which together form the ‘synaptomatrix’  

(Dityatev et al., 2010c; Vautrin, 2010). All of these sugar-coated molecules 

potentially interact with the multiple bidirectional trans-synaptic signals, 

themselves highly glycosylated, which must necessarily traverse this extracellular 

landscape to induce and modulate synaptic development, homeostasis, plasticity 

and disease (Akins and Biederer, 2006; Margeta and Shen, 2010; Shen and 

Cowan, 2010; Wu et al., 2010). Recent studies have begun to reveal the 

importance of glycans in enabling and directing intercellular signaling in a wide 

variety of cellular contexts (Hynes, 2009; Dityatev et al., 2010c). An appreciation 

of the extracellular glycan environment, including knowledge of the many glycan 
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classes and their biochemical properties, is becoming essential for the 

understanding of many areas of developmental neurobiology (Varki et al., 1999).  

          To date, the function of glycosylated ECM components has primarily been 

studied in non-neuronal cells (Kalluri, 2003; Nelson and Bissell, 2006; Hynes, 

2009; Sorokin, 2010); however, a range of glycan functions are increasingly 

being appreciated at both vertebrate and invertebrate synapses (Dityatev et al., 

2010a, 2010c). We have known that the synaptomatrix is rich in glycan 

modifications (Vautrin, 2010), but are only now beginning to more fully 

understand the function of glycans during synaptogenesis and synaptic 

modulation. Glycan modifications such as glycosaminoglycans (GAGs) have well 

established roles in differentiation, tissue morphogenesis and organogenesis 

(Kramer, 2010). Genetic studies in mice, Drosophila and C. elegans have also 

revealed developmental requirements for numerous specific monosaccharide 

and polysaccharide sugar modifications including O-fucose, O-mannose (Man), 

mucin-type O-glycans and N-glycans (Haltiwanger and Lowe, 2004). A true 

testament to the importance of glycans arises from the growing list of human 

diseases attributed to mutations in glycan biosynthetic genes (Jaeken and 

Matthijs, 2007; Jaeken et al., 2009), homologs of which are actively being studied 

in genetic model organisms (Altmann et al., 2001; Hewitt, 2009). For example, N-

glycan biosynthesis defects induce disease states collectively categorized as 

congenital diseases of glycosylation (CDGs), with common disorders such as 

metabolic syndrome and autoimmunity also tied to this glycan class (Dennis et 

al., 2009). Similarly, O-linked glycosylation defects give rise to numerous 
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diseases that include the muscular dystrophy class of neuromuscular disorders 

(Wopereis et al., 2006). Mechanistically, glycan modifications feature prominently 

in intercellular signaling, with cell surface organization and receptor clustering 

dependent on specific glycans being recognized and organized by glycan-binding 

lectin proteins (Martin, 2002; Yamaguchi, 2002; Kleene and Schachner, 2004; 

Patnaik et al., 2006). These precedents warrant scrutiny of these same molecular 

classes during physiological processes of synaptogenesis and synaptic 

modulation, as well as in synaptic disease states, which are all highly dependent 

on intercellular signaling.  

          One way forward in the exploration of glycans and glycan-mediated 

mechanisms at the synapse is to exploit the genetically-tractable Drosophila 

NMJ, a reduced genetic redundancy for the inherently complex glycan 

modification pathways (Hagen et al., 2009). Mammalian glycan modifications 

including hybrid and sialylated N-glycans are found in Drosophila, albeit at lower 

concentrations, with the majority of modifications being high- or paucimannosidic 

glycans (Koles et al., 2007). Further, Drosophila and mammalian glycan 

biosynthetic galactosaminyltransferases enzymes show similar substrate 

preferences and share preferred sites of O-linked N-acetylgalactosamine 

(GalNAc) sugar modifications on target proteins (Ten Hagen et al., 2003a). 

Unbiased forward genetic Drosophila screens have already contributed to 

understanding of heparan sulfate proteoglycan (HSPG) biosynthetic pathways, 

which have subsequently been shown to be important for cell-signaling, 

morphogenesis, metabolism and tissue repair in mammals (Bishop et al., 2007). 
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Based on the confidence of conserved glycan pathways, investigations using the 

Drosophila NMJ are now poised to make significant contributions to the 

systematic in vivo study of glycan functions involved in synapse formation and 

modulation. The aim of this review article is to highlight synaptomatrix glycans, 

glycan-interacting proteins, glycosylated ligands and their receptors, focusing on 

their recently discovered roles in synapse assembly at the Drosophila NMJ. Such 

studies should be of interest not only to synapse biologists, but also within other 

fields of neuroscience and developmental biology, as insights derived from 

glycan roles in synaptogenesis are likely to be directly relevant to other arenas of 

intercellular communication in the nervous system and during global 

development.   

The glycosylated synaptomatrix at the neuromuscular junction 

Architecture of the NMJ synaptomatrix  

         At the vertebrate NMJ, the primary (1°) synaptic cleft is the space between 

the motor neuron and the muscle that is continuous with secondary (2°) synaptic 

clefts formed by muscle cell membrane invaginations that lie apposed to the 

innervating motor neuron (Patton, 2003). The Drosophila NMJ cleft has a similar 

architecture, however the postsynaptic muscle folds form the sub-synaptic 

reticulum (SSR) that opens into the synaptic junctional cleft adjacent to 

presynaptic active zones (AZ) (Prokop, 2006). The vertebrate cholinergic NMJ 1° 

cleft is generally 40-50 nm wide and contains a clearly-defined synaptic basal 

lamina, or basement membrane (BM), that also occupies the 2° clefts and is 
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continuous with the ensheathing muscle lamina (Patton, 2003). In comparison, 

the Drosophila glutamatergic NMJ 1° cleft is only 15-20 nm wide, and in place of 

a synaptic lamina there is an electron-dense specialization found only between 

the apposing presynaptic AZ and postsynaptic density (Prokop, 2006). In cross-

section, this synaptic cleft domain contains periodic densities, and in freeze-

fracture displays a highly-ordered honeycomb pattern (Prokop, 1999). At the 

vertebrate NMJ, the synaptic basal lamina provides mechanical support, harbors 

signaling factors and serves as a substratum during synaptogenesis (Patton, 

2003). At the Drosophila NMJ, loss of the cleft synaptomatrix causes catastrophic 

failure of postsynaptic assembly and a near complete silencing of functional 

synapses during embryonic synaptogenesis (Rohrbough et al., 2007). These 

animals are consequentially paralyzed and die as mature embryos unable to 

escape the eggcase. 

Synaptomatrix contains glycosylated ECM protein isoforms 

           Glycosylation at the vertebrate NMJ has long been studied using 

fluorescently-conjugated lectins (Ribera et al., 1987; Scott et al., 1988; 

Crnefinderle and Sketelj, 1993), which bind specific carbohydrates, and to a 

lesser extent, with anti-carbohydrate monoclonal antibodies that detect specific 

carbohydrates such as β-linked GalNAc (Martin et al., 1999b) and cytotoxic T cell 

(CT) carbohydrate antigens (Lefrancois and Bevan, 1985). Both approaches 

reveal restriction of synaptic carbohydrate modifications to different presynaptic 

(e.g. CT1) and postsynaptic (e.g. CT2) compartments, suggesting localized 

requirements for specific glycan modifications (Martin et al., 1999b). Likewise, 
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anti–heparan sulfate antibodies that recognize HSPG glycosaminoglycan 

modifications show clearly distinguishable synaptic and extrasynaptic (on the 

muscle, but away from the synapse) glycan environments(Jenniskens et al., 

2000). Plant and fungal lectins have been especially useful for revealing localized 

sugar modifications at the vertebrate NMJ. For example, Wheat Germ Agglutinin 

(WGA), Soy bean agglutinin (SBA), Concanavilin A (ConA), Griffonia simplicifolia 

1 isolectin B-4 (GS-1), Limax flavus agglutinin (LFA), Peanut agglutinin (PNA) 

and Dolichos biflorus agglutinin (DBA) lectins all show strong labeling of NMJ 

synaptic regions compared to low labeling of extrasynaptic regions (Iglesias et 

al., 1992). In addition to highlighting spatially localized glycan modifications, 

these studies provide insight into specialization of the ECM associated with the 

NMJ (Lis and Sharon, 1986; Iglesias et al., 1992). 

          Similar localized carbohydrate distributions are also seen in Drosophila. 

Studies show that embryonic neuronal somata bind ConA and Limulus 

polyphemus agglutinin (LPA); central and peripheral neuronal processes bind 

WGA, PNA, Ulex Europeus agglutinin 1 (UEA-1) and Bauhina purpura agglutinin 

(BPA) lectins; while SBA labeling is completely excluded from the nervous  

system (Fredieu and Mahowald, 1994; Damico and Jacobs, 1995). At the 

Drosophila NMJ, WGA and Vicia villosa agglutinin (VVA) lectins show clearly 

enriched synaptic labeling (Fig. 3) (Haines and Stewart, 2007; Rushton et al., 

2009). WGA labels clearly defined extracellular punctae that are widely 

distributed over the muscle surface, but is much more intense, densely-spaced 

and organized immediately adjacent to presynaptic boutons (Fig. 3A). These 
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WGA domains clearly indicate that the extracellular space is compartmentalized 

into glycan-specialized regions. VVA labeling is almost wholly restricted to the 

NMJ, with little or no labeling in extrasynaptic domains (Fig. 3B). In clear contrast 

to WGA, VVA labels a more contiguous synaptomatrix domain closely associated 

with NMJ boutons. Importantly, the NMJ synaptomatrix is defined as much by the 

absence of carbohydrates as their presence. PNA (Fig. 3C) and DBA (Fig. 3D) 

lectins clearly and intensely label non-synaptic areas but are effectively excluded 

from the NMJ. This is in contrast to vertebrate NMJ lectin labeling, where DBA 

exclusively labels rat synaptic domains (Iglesias et al., 1992), indicating some 

species-specific differences. DBA recognizes trisaccharide-linked GalNAc, and 

does label other Drosophila neuronal tissues such as the omatidia in the 

developing eye (Yano et al., 2009). The lack of DBA labeling at the Drosophila 

NMJ indicates the presence of a regulated and controlled synaptic environment 

that expresses specific arrangement of sugars. These studies indicate 

conservation of glycan modifications, as well as the fact that differences exist in 

glycan expression between vertebrate and invertebrate NMJs.  

         Besides charting the NMJ glycan landscape, lectins have been used to 

directly identify glycan modifications on synaptic proteins. In vitro studies show 

that purified synaptic laminin (s-laminin) binds WGA, ConA, Maackia amurensis 

agglutinin (MAA), Ricinus communis agglutinin (RCA120), Datura stramonium 

agglutinin (DSA) and Aleuria aurantia agglutinin (AAA) ((1-6)-fucose) lectins, 

without binding PNA (Chiu et al., 1992). These findings illustrate the specific but 

heterogeneous nature of glycan modifications present on just a single 
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Figure 3. Glycan and glycan-interacting lectin expression domains at the 
Drosophila NMJ. 

The Drosophila wandering third instar NMJ probed with a range of lectins and 
antibodies in detergent-free conditions to maintain synaptomatrix integrity. A) 
NMJ probed with WGA lectin (red) and anti-HRP (green), which recognizes 
glycans associated exclusively with the presynaptic neuronal membrane. The 
inset shows WGA domains in the synaptomatrix surrounding a single NMJ 
bouton. B) VVA lectin (red) and HRP (green). The VVA labeling occupies a 
different domain than WGA labeling, and is very highly enriched in the NMJ 
synaptomatrix. C) PNA lectin (red); HRP (green). D) DBA lectin (red); HRP 
(green). Note that both PNA and DBA lectins do not detectably label the NMJ 
synaptomatrix, although strong labeling is present in adjacent tissues (not 
shown). E) The MTG:GFP fusion protein (green) co-labeled with anti-HRP (blue). 
The MTG lectin localizes to synaptomatrix punctae (arrows) surround NMJ 
synaptic boutons. F) Triple labeling of MTG:GFP (green), βPS integrins (red) and 
HRP (blue). Note the three overlapping domains in the synaptomatrix. Scale bars 
= 5 μm.  
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synaptomatrix molecule required for NMJ development (Table IA) (Maselli et al., 

2009).  Lectin staining also has helped to visualize sugar modifications on 

dystroglycan, an ECM receptor found both at vertebrate and Drosophila NMJs. At 

the Drosophila synapse, VVA lectin co-localizes with dystroglycan (Haines and 

Stewart, 2007). More recently, lectins such as Galanthus rivalis agglutinin (GNA), 

Nicotiana tabacum (Nictaba) and Rhizoctoni solani agglutinin (RSA) have been 

utilized in lectin-affinity chromatography coupled to mass spectrometric analysis 

to elucidate N- and O- linked glycosylation of a large number of Drosophila 

synaptomatrix components such as lamininB2, LamininA, terribly reduced optic 

lobes (trol; homolog of vertebrate perlecan) and the HSPG division abnormally 

delayed (dally) (Vandenborre et al., 2010). Lectins are a powerful tool for glycan 

investigation with enormous scope for increased use in future Drosophila NMJ 

studies. 

          In addition to the above mentioned glycan distributions, the specialization 

of NMJ synaptomatrix stems from the presence of specific isoforms of otherwise 

ubiquitous ECM glycoproteins and proteoglycans, including laminin, collagen (IV) 

and perlecan. At the vertebrate NMJ, global basal lamina glycoproteins such as 

lamininα2/γ1, entactin, fibronectin and perlecan are present, along with 

synaptically-specialized isoforms such as laminin α4/α5/β2, collagen 

α3(IV)/α4(IV)/α5(IV), neuregulin α2, synaptic entactin (s-entactin), perlecan and 

agrin (Table IA). Synaptic cleft specific proteins like laminin α4, β2 and α5 are N-

glycosylated, and recent proteomic studies have established two 

galactosyltransferases involved in core glycosylation of s-collagen (Chen et al., 
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2009c; Schegg et al., 2009). GalNAc sugar modifications found exclusively in 

synaptic basal lamina further indicate the importance of glycosylation of NMJ 

synaptomatrix proteins (Scott et al., 1988; Hall and Sanes, 1993; Patton, 2003). 

In contrast, the molecular composition of the cleft material in the Drosophila NMJ 

is only poorly characterized (Table IB). Indirect evidence for vertebrate-like NMJ 

specialization comes from the a number of orthologous proteins to laminin B2 

(Montell and Goodman, 1989), collagen IV (Borchiellini et al., 1996), dystroglycan 

(Bogdanik et al., 2008) and perlecan (Voigt et al., 2002) which have been 

identified at the Drosophila NMJ. However, clear roles in Drosophila 

synaptogenesis have only been tested for laminin A (Prokop et al., 1998); 

mutations cause a decrease in the extent of interaction between the motor 

neuron and muscle (Table 1B). Clearly, there is enormous scope for further 

studies using the Drosophila genetic model. 

Synaptomatrix bounding cell membranes bear glycosylated proteins 

          In addition to secreted ECM protein glycosylation, most of the 

transmembrane proteins involved in cell adhesion and signaling during 

synaptogenesis carry extensive carbohydrate modifications. For example, 

Drosophila cell adhesion molecules (CAMs), such as fasciclins I-III (e.g. fasII 

homolog of vertebrate neural cell adhesion molecule (NCAM)) and neuroglian 

(homolog of vertebrate L1), are developmentally-regulated glycoproteins involved 

in homophilic recognition, adhesion and maintenance functions during 

synaptogenesis (Table IB) (Bastiani et al., 1987; Patel et al., 1987; Harrelson and 

Goodman, 1988; Bieber et al., 1989; Elkins et al., 1990; Halpern et al., 1991). 
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NCAM and L1 are decorated with specific L2/HNK-1 carbohydrate moieties 

(Kruse et al., 1984), and their Drosophila homologs are similarly modified and 

recognized by an antibody against the horse radish peroxidase (HRP) epitope, a 

fucosylated N-glycan (Fig. 3) (Jan and Jan, 1982). Interestingly, fasciclins 

expressed outside developing neural tissue are not bound by HRP antibodies, 

indicating these are neural-specific glycosylation pathways  (Snow et al., 1987). 

NCAM is also modified by polysialic acid (PSA) addition, which inhibits cell 

adhesive activities (Sadoul et al., 1983). Indeed, sialic acid modifications are 

particularly important in modulating the activities of membrane proteins involved 

in vertebrate intercellular signaling (Rutishauser, 2008), and similarly during 

Drosophila development (Roth et al., 1992). In vertebrate synapses, sialylated 

glycans are present in the synaptic cleft extracellular space, where they are 

involved in cell adhesion and intercellular communication (Varki and Varki, 2007; 

Rutishauser, 2008; Muhlenhoff et al., 2009), although the function of synaptic 

sialylation remains poorly characterized.  

          Conserved Drosophila sialylation biosynthetic pathways include sialic acid 

phosphate synthase (Kim et al., 2002), CMP-sialic acid synthetase (Viswanathan 

et al., 2006) and Drosophila sialyltransferase (DSiaT) with homology to 

mammalian ST6Gal sialyltransferases (Koles et al., 2004). At the Drosophila 

NMJ, DSiaT plays roles in synaptogenesis that affect the manifestation of 

locomotory behavior (Repnikova et al., 2010). One aspect of this requirement is 

that DSiaT modulates voltage-gated sodium channels. In vertebrates, similar 

regulation involves negative charge due to polysialylation, but in Drosophila the 
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mechanism appears dependent on monosialylation (Koles et al., 2004). Sialic 

acid modifications also modulate synaptogenesis independently through 

regulation of CAM homophilic interactions.  For example, addition of polysialic 

acid to NCAM attenuates adhesion and also interferes with other CAMs, such as 

L1 (Rutishauser, 1998). Recently, a screen for synaptic mutants in Drosophila 

uncovered fuseless (fusl), the putative homologue of the mammalian Sialin 8-

pass transmembrane sialic acid transporter (Long et al., 2008). In vertebrates, 

the monosaccharide sialic acid cleaved from sialoglycoconjugates is exported 

across membranes by the Sialin transporter (Morin et al., 2004; Wreden et al., 

2005) and two inherited cognitive dysfunction diseases occur in humans when 

the sialin gene is mutant (Verheijen et al., 1999). At the Drosophila NMJ, fusl 

mutants display >75% reduction in evoked synaptic transmission due to a 

presynaptic requirement in localizing Cacophony Ca2+ channels (Kawasaki et al., 

2000; Xing et al., 2005). The homologous vertebrate Ca2+ channel (α-1 subunit) 

binds ECM laminins, to facilitate organization of presynaptic active zones (Table 

IA) (Nishimune et al., 2004). At the Drosophila NMJ, the Bruchpilot protein 

stabilizes active zone formation by integrating Cacophony Ca2+ channels with 

intracellular components and, just like fusl mutants (Long et al., 2008),  bruchpilot 

mutants show reduced Ca2+ channel clustering and impaired vesicular release 

(Kittel et al., 2006; Wagh et al., 2006). Since sialic acid modifications are typically 

added as the terminal residue of cell surface oligosaccharides, one attractive 

model is that such a carbohydrate addition to the extracellular domain of the 
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presynaptic Ca2+ channel provides a critical link to the synaptic cleft ECM, driving 

active zone assembly during synaptogenesis.  

          Another important synaptomatrix component that is required to tether the 

muscle to the ECM is dystroglycan (Dg), part of the dystrophin associated 

glycoprotein complex (DGC) (Pilgram et al., 2010). In addition to binding the 

intracellular cytoskeleton, the α-dystroglycan in the DGC binds multiple 

extracellular synaptomatrix components such as secreted agrin (Sugiyama et al., 

1994) and perlecan (Talts et al., 1999), and transmembrane neurexin  (Sugita et 

al., 2001). At the Drosophila NMJ, dystroglycan facilitates the organization of 

glutamate receptor (GluR) clusters in the postsynaptic domain (Table IB), and 

plays roles in the organization of muscle costameres and attachment sites to the 

epidermal tendon cells (Bogdanik et al., 2008). In vertebrates, mutations in at 

least three glycan biosynthetic genes (POMT1 (de Bernabe et al., 2002), POMT2 

(van Reeuwijk et al., 2005) and POMGnT1 (Yoshida et al., 2001)), produce hypo-

glycosylation of α-dystroglycan. Dysfunctional glycosyltransferases give rise to a 

range of diseases termed dystroglycanopathies that give rise to congenital 

muscular dystrophies (CGDs) and limb-girdle muscular dystrophy (LGMD) 

(Martin, 2007). In vertebrates, dystroglycan serine/threonine residues are 

modified by glycans Neu5Ac(α2-3)Gal(β1-4)GlcNAc(β1-2)Man(α1-O-S/T) and a 

core 1 O-linked structure Gal(β1-3)GalNAc(α1-O-S/T) (Endo, 1999). Other sugar 

modifications include CT carbohydrate antigen (Hoyte et al., 2002), HNK-1 

antigen (Smalheiser and Kim, 1995) and Lewis-X antigen (Martin, 2003a). At the 

Drosophila NMJ, mutation of the two mannosyltransferase enzymes that target 
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dystroglycan for glycosylation, tw (POMT1) and rt (POMT2) (Nakamura et al., 

2010), recapitulate synaptic phenotypes of reduced Dg function (Table IB) 

(Haines et al., 2007; Shcherbata et al., 2007; Wairkar et al., 2008). These studies 

highlight the utility of the Drosophila NMJ model for further study of the 

glycobiology at the synapse, and as a model system for human neuromuscular 

diseases arising from defects in glycan biosynthesis.  

 

Glycosylated synaptomatrix interaction with trans-synaptic signals       

          The immediately obvious signal that traverses the glycosylated 

synaptomatrix is the neurotransmitter itself: acetylcholine (ACh) at the vertebrate 

NMJ and glutamate at the Drosophila NMJ. It was first shown in Drosophila that 

neurotransmitter release from the presynaptic terminal suppresses the surface 

presentation and localized clustering of its postsynaptic receptors, so that the 

neurotransmitter inhibits its own receptor during synapse formation and 

modulation (Featherstone et al., 2000, 2002; Augustin et al., 2007). ACh at the 

vertebrate NMJ has the same effect, acting as a negative regulator of 

acetylcholine receptor (AChR) surface maintenance and clustering (Misgeld et 

al., 2002; Brandon et al., 2003). Recent evidence suggests that glycans like 

polysialic acid can interact directly with such neurotransmitters, indicating a 

putative modulatory role for these glycans with this classical trans-synaptic 

signaling (Sato et al., 2010). At the vertebrate NMJ, negative ACh function is 

counteracted by the action of the secreted signal agrin (Bezakova and Ruegg, 
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2003; Misgeld et al., 2005), a key player in synaptogenesis and the founding 

example of secreted trans-synaptic signaling ligands. 

 HSPG trans-synaptic signaling  

          The HSPG Agrin secreted by the motor neuron is 50% sugar by weight 

due to glycan modifications that include heparan sulfate chains (Tsen et al., 

1995), O-linked glycans (Parkhomovskiy et al., 2000)  and N-linked glycans 

(Rupp et al., 1991). Agrin induces phosphorylation of the muscle-specific kinase 

(MuSK) receptor that can be inhibited by glycans Gal(β1,4)GlcNAc and 

Gal(β1,3)GalNAc (Parkhomovskiy et al., 2000). MuSK also binds 

Gal(β1,4)GlcNAc, which suggests that this glycan modification is required for 

agrin mediated AChR stabilization during synaptogenesis (Table IA) 

(Parkhomovskiy et al., 2000; Kummer et al., 2006). Other glycans such as 

heparin, heparan sulfate and sialic acid show inhibitory effects that perturb agrin-

mediated AChR stabilization (Wallace, 1990; Grow and Gordon, 2000). 

Treatment with enzymes that cleave sugars, such as neuraminidase (exposes 

glycans Gal(β1,4)GlcNAc or Gal(β1,3)GalNAc) (Martin and Sanes, 1995) or α-

galactosidase (removes α-galactose sugars to expose lactosamines or N-

acetyllactosamines) (Parkhomovskiy and Martin, 2000), causes agrin-

independent MuSK activation and AChR stabilization (Grow et al., 1999). 

Besides regulation of synaptogenesis and associated signal transduction, other 

glycans attached to synaptomatrix components such as laminin-1 and -2 can 

bind to agrin by both heparan-sulfate glycan-dependent and -independent 

mechanisms (Table IA) (Hall et al., 1997). Further, agrin not only presents glycan 
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chains, but also binds to carbohydrates of other glycoconjugates through its 

lectin domain, extending its capacity to form an inter-connected 

compartmentalized meshwork at the synapse (Kleene and Schachner, 2004). 

Agrin is not identifiable in the Drosophila genome. However, other secreted 

HSPGs such as syndecan, as well as the GPI-anchored HSPG dally-like protein 

(dlp), have been identified at the Drosophila NMJ (Table IB) (Johnson et al., 

2006; Ren et al., 2009)  where they mediate axon guidance and synapse 

formation (Yamaguchi, 2001; Lee and Chien, 2004; Holt and Dickson, 2005; Van 

Vactor et al., 2006). The basic structure shared by HSPGs is a protein core to 

which heparan sulfate glycosaminoglycan (HS) chains are attached (Bernfield et 

al., 1999). GAG chains are attached to serine/threonine residues on proteins via 

a linker (GlcA-Gal-Gal-Xyl) by alternate addition of glucuronic acid (GlcA) and N-

acetylglucosamine (GlcNAc) via 1,4- linkages (Lind et al., 1993). HS saccharides 

are further modified by addition of sulfate groups to diversify GAG chains that 

direct HSPG functions. These modifications are catalyzed by N-deacetylase/N-

sulfotransferase (Ndst), which replaces the N-acetyl group of GlcNAc with a 

sulfate group (Aikawa and Esko, 1999), and then by substrate-specific iduronosyl 

2-O-sulfotransferase (hs2st), glucosaminyl 6-O-sulfotransferase (hs6st) and 

glucosaminyl 3-O-sulfotransferase (hs3st) (Rosenberg et al., 1997; Habuchi et 

al., 2000). Along the HS chains, sulfate modifications can be concentrated into 

highly sulfated domains (S domains) of 6-10 disaccharides that resemble heparin 

(Maccarana et al., 1996). Only 10% of the disaccharide units are S domains, 

indicating a possible spatial encoding of information by the sulfate positions on  
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A. Vertebrate NMJ 

 Glycomatrix 
component 

Functions Sample References 

E
C

M
 

   

E
C

M
 

         

Laminins   

β2 presynaptic active zone formation, synaptic 
vesicle organization, postsynaptic fold 

formation, NMJ α(7B) integrin expression, 
clustering of voltage gated Ca

2+
 channels 

(Noakes et al., 1995; 
Nishimune et al., 2004) 

 

α2 postsynaptic fold formation, NMJ α(7A) 
integrin receptor expression 

(Martin et al., 1996) 

α4 apposition of presynaptic active zones and 
postsynaptic junctional folds 

(Patton et al., 2001) 

Collagen   

α2(IV), α3(IV), 
α6(IV) 

synaptic vesicle clustering, prevention of 
excessive neural outgrowth 

(Fox et al., 2007) 

Col XIII neuron and muscle apposition, active zone 
formation, postsynaptic AChR clustering 

(Latvanlehto et al., 2010) 

E
C

M
 R

e
c
e
p
to

rs
 

     

E
c
 

Dystroglycan postsynaptic clustering and anchoring of 
AChRs, cytoskeletal link to ECM 

(Bewick et al., 1996) 

Integrins   

α7 postsynaptic AChR clustering (Burkin et al., 2000) 

β1 postsynaptic AChR clustering; directing 
presynaptic axon growth and arborization 

(Schwander et al., 2004) 

S
e
c
re

te
d
 s

ig
n
a
ls

 

Agrin postsynaptic  AChR stabilization 

 

(Kummer et al., 2006) 

Perlecan localization of acetylcholinesterase (Peng et al., 1998; 
Arikawa-Hirasawa et al., 

2002) 

s-entactin maintenance of NMJ morphology 

 

(Fox et al., 2008) 

WNT (3a) postsynaptic AChR clustering 

 

(Henriquez et al., 2008) 

TGF-β2 amplification of postsynaptic spontaneous 
transmission, decrease in number of 

presynaptic vesicles used per stimulation 

(Fong et al., 2010) 
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acetylcholine neurotransmission, negative regulator of 
postsynaptic AChR clustering 

(Misgeld et al., 2002; 
Brandon et al., 2003) 

 

B. Drosophila NMJ 

 Glycomatrix 
component 

Functions Sample References 

E
C

M
 Laminin A formation of appropriate contact area 

between neuron and muscle 
(Prokop et al., 1998) 

E
C

M
 R

e
c
e
p
to

rs
 

    

E
c
 

Dystroglycan regulation of postsynaptic GluR subunit 
composition, decrease in presynaptic 
release of glutamate neurotransmitter, 

postsynaptic protein assembly 

(Bogdanik et al., 2008) 

Integrins   

βPS synaptic bouton formation, NMJ synapse 
specification, localization of postsynaptic 

proteins, postsynaptic assembly 

(Beumer et al., 1999, 
2002) 

αPS1, αPS2 formation of appropriate contact sites 
between nerve and muscle 

(Prokop et al., 1998) 

αPS3 NMJ synapse specification, synaptic bouton 
formation, regulation of neurotransmission 
strength and activity-dependent modulation 

(Rohrbough et al., 2000) 

Fasciclins   

Fas I presynaptic arborization control, 
neurotransmission strength 

(Zhong and Shanley, 
1995) 

Fas II synaptic patterning, specificity, growth, 
stabilization, presynaptic functional plasticity 

(Davis et al., 1996; 
Schuster et al., 1996) 

Fas III homophilic synaptic target recognition 

 

(Kose et al., 1997) 

Syndecan presynaptic terminal growth regulation 

 

(Johnson et al., 2006) 

Dally-like 
protein (dlp) 

presynaptic active zone morphology, 
synaptic transmission strength 

(Johnson et al., 2006) 

S
e
c
re

te
d
 

s
ig

n
a

ls
 

   

Mind-the-Gap 
(Mtg) 

organization of synaptic cleft matrix, 
postsynaptic GluR localization, integrin 
localization, Jeb/Alk signaling regulation 

(Rohrbough et al., 2007; 
Rushton et al., 2009; 
Rohrbough  K. et al., 

2010) 
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Jelly-belly  
(Jeb) 

regulation of cell adhesion proteins, BMP 
signaling pathway interaction 

(Englund et al., 2003; 
Rohrbough  K. et al., 

2010) 

Wingless 

(Wg) 

presynaptic active zone formation, 
postsynaptic GluR distribution, activity 
dependent synaptic bouton formation, 

regulation of spontaneous release function 

(Packard et al., 2002; 
Mathew et al., 2005; 
Ataman et al., 2008; 
Korkut and Budnik, 

2009) 

Glass Bottom 
Boat          
(Gbb) 

localization of presynaptic active zones, 
regulation of cell adhesion molecules, 

regulation of spontaneous release function 
and neurotransmission strength 

(Aberle et al., 2002; 
Haghighi et al., 2003; 
McCabe et al., 2003; 
Nahm et al., 2010) 

Glutamate neurotransmission, negative regulator of 
postsynaptic GluR clustering 

(Jan and Jan, 1976; 
Featherstone et al., 

2000, 2002; Augustin et 
al., 2007; Chen et al., 

2009a) 

 

Table I: Neuromuscular junction synaptomatrix components 

A) The vertebrate NMJ. The table summarizes only the major synaptomatrix 
components discussed in this review. B) The Drosophila NMJ. Synaptomatrix 
components are listed in the same order as for the vertebrate NMJ; including 
ECM, ECM receptors and secreted trans-synaptic signals.  
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the HS (Nakato and Kimata, 2002). 

 Once added, the sulfate groups can be cleaved by sulfatases (e.g. sulf1), 

which selectively removes sulfates attached to particular disaccharide units 

(Lamanna et al., 2007). The resultant HS sulfation profiles dictate HSPG co-

receptor functions that modulate ligand-receptor interactions (Dreyfuss et al., 

2009). For example, Fibroblast growth factor (FGF) ligand dimerization occurs on 

characteristically sulfated HS sequences of 10-14 sugars (Walker et al., 1994), 

and interaction of the dimerized ligand with its receptor (FGFR) is dependent on 

sulfated HS (Springer et al., 1994). Structural studies confirm HS mediated 

stabilization in a 2:2 tetrameric assembly between the FGF1 and FGFR2 dimers 

associated with HS chains (Schlessinger et al., 2000). The role of such 

modifications in directing HSPG functions during synaptic development and 

modulation is a critical area for future investigation. 

WNT-Wingless signaling 

           Numerous morphogens that are required during many phases of 

development are also found to play important roles at synapses, including the 

WNTs (Hall et al., 2000; Packard et al., 2002; Salinas, 2005; Henriquez et al., 

2008), fibroblast growth factors (FGFs) (Umemori et al., 2004), and Transforming 

growth factor/Bone morphogenic proteins (TGF-β/BMPs) (Packard et al., 2003; 

Salinas, 2003). Glycan modifications have an intimate relationship with such 

classical morphogens, and there is great potential for HS modifications regulating 

trans-synaptic signaling.  Drosophila forward genetic screens of WNT signaling 
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pathways have identified genetic interactions with heparan sulfate (HS) 

biosynthetic enzymes (Hacker et al., 2005). For example, screens for mutants 

phenocopying the founding WNT wingless (Wg) mutant identified sugarless (sgl), 

a uridyl-diphosphate-6-glucose dehydrogenase (UDPG) that synthesizes 

glucuronic acid building blocks of HS chains, and tout-velu (ttv), a polymerase 

that extends these chains (Bellaiche et al., 1998). These findings indicate a link 

between HS sulfation and WNT-wingless signaling. At the Drosophila NMJ, 

trans-synaptic Wg plays an important role in synaptogenesis (Fig. 4), where it 

has recently been shown to mediate anterograde signaling via an unusual 

exosome delivery mechanism (Korkut et al., 2009). Phenotypes of loss-of-

function mutations in this pathway include reduced number of synaptic boutons, 

disrupted organization of the postsynaptic scaffold protein Discs Large (DLG), a 

postsynaptic density 95 kDa (PSD-95) homolog, and glutamate receptor (GluR) 

mislocalization (Fig. 4) (Ataman et al., 2008). Likewise, WNT signaling in C. 

elegans regulates GluR-1 abundance in the ventral nerve cord (Juo and Kaplan, 

2004). WNT signaling similarly operates at mammalian synapses, where Wnt7a 

enhances synapsin I clustering and branching in cultured granule cells and 

cerebellar synapses (Table IA) (Lucas and Salinas, 1997). The cognate receptor 

for WNT-Wg is Frizzled 2 (Fz2), which is endocytosed upon ligand binding and 

then transported to the nuclear region where its cleaved C-terminal region 

translocates into the nucleus to induce transcription (Fig. 4) (Mathew et al., 

2005). WNT-Wg can also function as a retrograde signal by modulating futsch 

(Drosophila microtubule associated protein 1B) via inhibition of Shaggy  
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Figure 4. Diagram of trans-synaptic signaling pathways at the Drosophila 
NMJ. Presynaptic: The active zone (AZ) is indicated by a T-bar. Cell membrane 
components include PS integrins (α3 and βPS subunits), homophilic CAM 
Fasciclin II (FasII) and Cacophony calcium channels (Cac). Cytoplasmic proteins 
include kinases JNK and Shaggy, and the MAP1B Futsch. Postsynaptic: The 
glutamate receptor (GluR) domain includes two GluR classes (GluRIIA and B) 
and potassium channels (K+). Cell membrane components include PS integrins 
(α1/2 and βPS) and FasII. Membrane associated and cytoplasmic proteins 
include scaffolding proteins Discs large (DLG) and Dock, kinase PAK and 
regulators PIX and GIT1, and calmodulin kinase II (CamKII). Trans-synaptic 
pathways: Secreted signals Wingless (Wg), Glass bottom boat (Gbb) and Jelly 
belly (Jeb), and their respective membrane cognate receptors Frizzled 2 (Fz2), 
Thickveins (Tkv)/Wishful Thinking (Wit)/Saxophone (Sax) and Anaplastic 
lymphoma kinase (Alk). The Frizzled nuclear import pathway is indicated as FNI. 
The known downstream transcription factor for Gbb is Mothers against 
decapentaplegic (Mad; P-Mad indicating phosphorylated form), and for Jeb is 
ERK (P-ERK indicating phosphorylated form). Extracellular synaptomatrix 
components are indicated as ECM between the presynaptic neuron and 
postsynaptic muscle cells.  
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(Drosophila homolog of GSK3β), hence affecting microtubule function that 

modulates NMJ formation (Franco et al., 2004; Franciscovich et al., 2008) 

WNT-Wg signaling also prevents ectopic synapse formation on non-target 

muscle cells hence directing appropriate synaptogenesis (Table IB) (Inaki et al., 

2007). The potential role of glycans in mediating such signaling stems from 

studies in Drosophila wing disc showing that WNT-Wg localization, as well as 

activation of the downstream signaling pathway, is dependent on the precise 

extent of HS sulfation (Reichsman et al., 1996). For example, sulf1 mutants that 

cannot cleave sulfate modifications show increased Wg expression along the 

dorso-ventral axis of the wing disc, supporting a role for sulfated HS chains in 

regulating Wg signaling (Kleinschmit et al., 2010). By extension, HS at the 

Drosophila NMJ could sequester Wg and other trans-synaptic signals, or present 

them as co-receptors to their transmembrane receptors to initiate downstream 

signaling processes driving synaptogenesis and subsequent synapse maturation 

(Fig. 4). In support of this hypothesis, quail sulfatase (Qsulf1) can positively 

influence the ability of WNT ligand to associate with its cognate receptor Frizzled 

(Ai et al., 2003). A high priority is to assay for similar glycan mechanisms 

regulating trans-synaptic signaling. 

TGFβ/BMP signaling 

          TGFβ/BMP signaling is also modulated by heparan sulfate glycan 

modifications (Chen et al., 2006). In mammals, BMP proteins have roles in neural 

crest formation (Kishimoto et al., 1997; Dick et al., 2000; Nguyen et al., 2000) 
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and migration (Graham et al., 1994; Shah et al., 1996; Marazzi et al., 1997; Sela-

Donenfeld and Kalcheim, 2000), axon guidance (Augsburger et al., 1999; Butler 

and Dodd, 2003), neurite outgrowth and synaptogenesis (Meng et al., 2002; 

Endo et al., 2003). At the Drosophila NMJ, the retrograde BMP signal Glass 

Bottom Boat (Gbb) is similarly required for synapse stabilization (Fig. 4) (Eaton 

and Davis, 2005). Null gbb mutants, as well as mutations in its BMP receptors 

(type I receptors Thickveins (Tkv) and Saxophone (Sax), type II receptor Wishful 

thinking (Wit)) and BMP pathway regulators (e.g. the Cdc42 selective GAP Rich), 

produce gross synaptic defects that include distorted pre- and postsynaptic 

membranes, mislocalized presynaptic T-bars, reduced active zone number, and 

decreased synaptic transmission at the NMJ (Fig. 4) (Marques et al., 2002; 

McCabe et al., 2003, 2004; Rawson et al., 2003; Nahm et al., 2010). As above, 

sulf1 activity has an activating effect on BMP signaling, suggesting that HS 

modifications may have a role in this trans-synaptic signaling pathway as well. 

For example, sulf1 regulates release of the BMP antagonist noggin, allowing 

BMP to interact with its cognate receptor in cell culture (Viviano et al., 2004). It 

should be noted that glycan regulation of these signaling pathways are based 

mostly on in vitro data and are highly context specific; hence directly predicting 

stimulatory and/or inhibitor roles of glycan modifications at the synapse is not 

straightforward. In addition to binding, presenting and/or sequestering WNT-

wingless and BMP molecules bound to HS, these signaling molecules can be 

released by the enzymatic activity of matrix metalloproteinases (MMPs) that shed 

ecto-domains of HSPGs (Kainulainen et al., 1998). Other glycosylated synaptic 
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ECM components can similarly bind and present signaling factors. Thus, glycans 

in the synaptomatrix could potentially serve as a repository for trans-synaptic 

signaling molecules, and likely modulate known WNT and BMP signaling 

pathways by sequestering away or presenting signals to cognate receptors.   

Glycan-binding lectins regulate trans-synaptic signaling 

Mind-the-gap: secreted lectin that organizes cell surface receptors 

         An exciting idea that has arisen in recent years is that endogenous lectins 

(glycan-binding proteins) play critical roles in development, immunity and 

intercellular signaling (Drickamer and Taylor, 1993; Marth and Grewal, 2008; 

Dam and Brewer, 2010). At the Drosophila NMJ, a prime example is the N-

acetylglucosamine (GlcNAc)-binding lectin encoded by mind-the-gap (mtg) 

(Rohrbough et al., 2007; Rushton et al., 2009; Rohrbough  K. et al., 2010). The 

MTG protein is secreted from the presynaptic terminal to reside within the 

synaptic cleft, and in perisynaptic extracellular domains, where it co-localizes 

with WGA (Fig. 3E,F). Consistently, both proteins share binding affinity for 

GlcNAc sugar residues. Transgenic MTG-GFP is trafficked to synapses, where 

the secreted protein remains near the cell surface (Fig. 3E). Ultrastructural 

immunogold labeling shows secreted MTG adjacent to active zones in the 

presynaptic terminal, and in the extracellular lumen of the postsynaptic SSR 

(Rohrbough et al., 2007). During embryonic development, the dynamic mtg 

expression pattern correlates closely with key periods of NMJ synaptogenesis, 

with the expression peak coinciding with the presynaptic induction of 
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postsynaptic GluR domain assembly (Broadie and Bate, 1993a, 1993b, 1993c). 

Null mtg mutants exhibit severe abrogation of the glycosylated synaptomatrix 

between the presynaptic active zone and postsynaptic GluR domains, and 

greatly reduced GluR localization with a corresponding loss of GluR function 

(Table IB) (Rohrbough et al., 2007). Moreover, all known postsynaptic 

signaling/scaffold proteins functioning upstream of GluR localization are grossly 

reduced or severely mislocalized in mtg mutants, including the dPix–dPak–Dock 

cascade (Parnas et al., 2001; Ang et al., 2003) and the DLG/PSD-95 scaffold 

(Fig. 4) (Thomas et al., 2000; Ataman et al., 2006b; Gorczyca et al., 2007). 

Neuronally-targeted mtg RNA-interference (RNAi) likewise reduces postsynaptic 

assembly, whereas postsynaptically-targeted RNAi has no effect (Rohrbough et 

al., 2007). Similarly, neuronally-targeted wildtype mtg in the null mutant rescues 

the postsynaptic assembly loss. These data conclusively indicate that 

presynaptic MTG is required for the induction of the postsynaptic pathways 

driving GluR domain formation; hence it serves as an anterograde trans-synaptic 

signal. 

          It was recently shown that direct loss of GalNAc transferase alters 

Drosophila NMJ structure and function, as well as locomotory behavior (Haines 

and Stewart, 2007). This work independently demonstrates that GlcNAc-

mediated interactions have key roles in synaptic maturation. Thus, together this 

recent work indicates that both the GlcNAc sugar itself and GlcNAc-binding 

lectins modulate synaptogenesis. Since GlcNAc is a repeating sugar unit of HS, it 

seems probable that MTG regulates localization of HS-carrying proteins and 
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thereby any trans-synaptic signaling proteins bound to this lattice. With this 

mechanism, MTG could coordinately regulate multiple trans-synaptic pathways 

via binding GlcNAc moieties on both HSPGs and receptors such as integrins 

(Fig. 3F). The fact that null mtg mutants exhibit a gross reduction or complete 

absence of electron-dense synaptic matrix (Rohrbough et al., 2007) certainly 

suggests disorganization/loss of multiple synaptic ECM components and ECM-

binding proteins. Consistent with this prediction, targeted presynaptic mtg 

knockdown strongly decreases the level of position specific (PS) integrin synaptic 

expression, present in both pre- and postsynaptic membranes (Fig. 4; Table IB) 

(Beumer et al., 1999; Rohrbough et al., 2000), causing a loss of NMJ localization 

of this ECM binding receptor (Rushton et al., 2009). Thus, interaction between 

synaptic membranes and the ECM are weakened in the absence of MTG. 

Moreover, since PS integrin receptors exist in a physical complex with the DLG 

scaffold and control calcium/calmodulin dependent kinase II (CaMKII) activation 

(Beumer et al., 2002), this MTG-dependent pathway also provides a mechanism 

to regulate localization of postsynaptic proteins in the GluR domain during 

synaptogenesis (Fig. 4). Similarly in mammals, endogenous galactose binding 

lectins (galectins) bind lactosamine residues (Hirabayashi et al., 2002), such as 

those found in the extracellular domain of  β1 integrin chains, to organize lattice 

signaling microdomains at the cell surface (Perillo et al., 1995; Chung et al., 

2000; Brewer et al., 2002; Braccia et al., 2003). Although this mechanism has not 

been studied at the vertebrate NMJ, it supports the possibility of a conserved 

glycan-dependent organizing event.  
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Mind-the-gap: modulator of trans-synaptic signaling   

          Integrins are just one component of MTG-regulated trans-synaptic 

signaling. The working hypothesis is that secreted MTG organizes a GlcNAc 

glycomatrix that coordinately regulates the multiple bidirectional signals that 

traverse the synaptic cleft between neuron and muscle (Fig. 4). For example, it 

was just recently shown that MTG strongly modulates the secreted signaling 

ligand Jelly Belly (Jeb) and its receptor tyrosine kinase Anaplastic Lymphoma 

Kinase (Alk), an anterograde signaling pathway from neuron to muscle (Bazigou 

et al., 2007; Palmer et al., 2009; Rohrbough  K. et al., 2010). In the Drosophila 

nervous system, this Jeb-Alk signaling activates transcription of downstream 

genes, including cell adhesion proteins and the TGFβ/BMP signal Dpp (Loren et 

al., 2001; Englund et al., 2003; Lee et al., 2003; Shirinian et al., 2007). At the 

Drosophila NMJ, Jeb is presynaptically secreted to reside in punctate domains 

closely associated with presynaptic boutons, while its Alk receptor exhibits a 

more uniform expression in the postsynaptic domain (Fig. 4) (Rohrbough  K. et 

al., 2010). This signaling array is set up during embryonic synaptogenesis and 

maintained throughout postembryonic development.  In mtg null synapses, the 

Jeb signal is grossly over-expressed, with elevated levels, increased size of 

extracellular domains and an increased number of these domains throughout the 

synaptomatrix (Rohrbough  K. et al., 2010). Conversely, the postsynaptic Alk 

receptor expression is decreased, albeit to a lesser degree, potentially a 

reflection of the general postsynaptic disorganization (Table IB). Although direct 

mutation of the Jeb-Alk pathway has not, as yet, been demonstrated to cause 
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overt synaptogenesis defects, it is predicted that this pathway must regulate 

transcription modulating synapse formation and/or maintenance. Consistent with 

this hypothesis, Alk receptor signaling regulates TGFβ/BMP-dependent 

transcription in C. elegans (Reiner et al., 2008). By extension, at the Drosophila 

NMJ Jeb-Alk signaling could potentially regulate the TGFβ/BMP Gbb retrograde 

pathway involved in synaptic modulation (Aberle et al., 2002; Haghighi et al., 

2003; McCabe et al., 2003, 2004). Of course, such a mechanism would be in 

addition to the prediction that MTG directly regulates WNT-Wg and Gbb trans-

synaptic signals as they navigate the synaptomatrix. Putative interactions with 

these signaling pathways have yet to be tested. 

Unanswered Questions and Future Directions 

          The extracellular synaptomatrix is densely packed with glycoproteins and 

proteoglycans in highly compartmentalized domains (Figs. 4 and 5). There are 

numerous unanswered questions about the development and organization of this 

environment. What is the origin of these different molecules? They could be 

expressed locally (e.g. neuron, muscle and associated glia) or trapped from 

distant sources (e.g. haemocytes and fat body). How are these molecules 

packed into such a constrained space, and spatially organized? Synaptomatrix-

resident molecules seem prohibitively large for the narrow cleft, and show clear 

regional domain distributions. What dictates selective posttranslational 

modification of glycans on particular synaptomatrix proteins? Possibly the three 

dimensional structure of proteins effectively masks potential glycosylation sites, 

allowing only certain exposed domains to be modified. Is the glycosylation status 
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of synaptomatrix proteins locally regulated within the synaptic cleft? If so, what is 

the nature of these modifications, and what mechanisms control such dynamic 

shifts? Such mechanisms could lead to differential glycosylation of identical 

isoforms of synaptomatrix proteins in a spatial and/or temporal manner. It must 

also be remembered that protein glycosylation is likely only part of the story, as 

lipids are also heavily glycosylated. For example, two Drosophila genes, 

egghead (egh) and braniac (brn) (Goode et al., 1996), encode enzymes 

responsible for glycosphingolipid biosynthesis, and mutation of both genes 

causes clear behavioral phenotypes (Chen et al., 2007). Together, all of these 

glycosylation mechanisms could affect trans-synaptic signaling. 

          At the Drosophila NMJ, multiple trans-synaptic signals, including WNT 

(Wg) and TGF-β/BMP (Gbb), navigate through the heavily glycosylated 

synaptomatrix to bind their respective receptors (Fig. 4). We propose here that 

the glycan-rich environment in the synaptomatrix likely directly modulates these 

trans-synaptic pathways during synaptogenesis, as has been clearly 

demonstrated in other arenas of development. For example, the HSPG Dlp that 

binds WNT-wingless to regulate its extracellular distribution in the developing 

Drosophila wing disc (Han et al., 2005). Dlp is enriched at the NMJ, along with 

the HSPG syndecan, where they control NMJ growth and presynaptic active 

zone assembly (Table I) (Johnson et al., 2006). Thus, HSPGs through their 

glycan modifications are here hypothesized to modulate WNT signals, likely 

jointly with TGF-β/BMP signals (Rider, 2006), suggesting significant intersection 

between these pathways within the synaptomatrix.  In this scenario, glycan 
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structures could bind and modulate multiple trans-synaptic signals 

simultaneously to coordinately regulate interactions with their cognate receptors. 

These signals could individually be stimulatory or inhibitory to the process of 

synaptogenesis, and therefore extracellular glycans may serve as platforms for 

signal integration that allow only the net effect of bound signaling molecules to 

determine synapse formation and subsequent modulation.  

          If trans-synaptic signals are modulated by glycans, then what modulates 

the glycans? We propose here that endogenous lectins are enormously 

important in shaping glycan distribution within the synaptomatrix environment. 

Mind-the-gap is one such lectin secreted into the Drosophila NMJ synaptomatrix, 

where it binds GlcNAc moieties (Rohrbough et al., 2007; Rushton et al., 2009). 

Interestingly, HS glycan modifications are abundant in GlcNAc residues, as this 

monosaccharide is repeated several times to form the final HS glycan chains 

(Lamanna et al., 2007). HS chains are also be modified by sulfate groups, with 

periodic highly sulfated regions (S-domains) interspersed by regions with almost 

no sulfation. We propose here that sulfation could provide an additional level of 

information processing to regulate trans-synaptic signaling (Lamanna et al., 

2007). By binding GlcNAc-rich HS chains, MTG is hypothesized to organize 

secreted and/or membrane-bound HSPGs in the synaptomatrix, to regulate 

synapse formation. Does MTG interact directly with WNT and/or TGF-β/BMP 

trans-synaptic pathways through such a mechanism? Although this has not yet 

been tested, these pathway’s binding site preferences may be similar to other 

signaling molecules such as FGFs (Wu et al., 2003) and Antithrombin III 
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(Kuberan et al., 2002), which bind sulfate rich domains. This leaves the GlcNAc 

moieties in non-sulfated regions open for recognition by MTG, which could then 

drive organization of HS glycans carrying HSPGs. We have just recently shown 

that Mtg strongly modulates the newly defined Jeb/Alk trans-synaptic signaling 

pathway (Rohrbough  K. et al., 2010), in direct support of our core hypothesis. 

Clearly, the Jeb/Alk pathway could be regulated by similar glycan-dependent 

mechanisms, perhaps in a combinatorial manner with other trans-synaptic 

pathways. The combinatorial regulation hypothesis warrants direct investigation.  

           It should be abundantly clear from the above discussion that glycan 

modification of the synaptomatrix plays critical roles in the formation of new 

synapses and the subsequent modulation of synaptic properties. This densely-

packed extracellular compartment provides an interface environment where 

glycan-glycan and glycan-protein interactions occur in a restricted space, 

providing exciting scope for crosstalk between different trans-synaptic signaling 

pathways. The molecular mechanisms that govern synaptogenesis may very well 

intimately depend on the cumulative effects of integrated and intersecting 

pathways within the synaptic glycomatrix, where glycosylation determines ligand 

life-time and either facilitates or thwarts the presentation of ligand to receptor. 

Further studies of the synaptic glycomatrix in the context of synaptogenesis are 

expected to reveal mechanisms of cross-talk between established signaling 

pathways, and to yield insights into novel signaling mechanisms that direct 

synapse formation. 
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Abstract 

A Drosophila transgenic RNAi screen targeting the glycan genome, including all 

N/O/GAG-glycan biosynthesis/modification enzymes and glycan-binding lectins, 

was conducted to discover novel glycan functions in synaptogenesis. As proof-of-

product, we characterized functionally-paired heparan sulfate (HS) 6-O-

sulfotransferase (hs6st) and sulfatase (sulf1), which bidirectionally control HS 

proteoglycan (HSPG) sulfation. RNAi knockdown of hs6st and sulf1 causes 

opposite effects on functional synapse development, with decreased (hs6st) and 

increased (sulf1) neurotransmission strength confirmed in null mutants. HSPG 

co-receptors for WNT and BMP intercellular signaling, Dally-like Protein and 

Syndecan, are differentially misregulated in the synaptomatrix of these mutants. 

Consistently, hs6st and sulf1 nulls differentially elevate both WNT (Wingless; 

Wg) and BMP (Glass Bottom Boat; Gbb) ligand abundance in the synaptomatrix. 

Anterograde Wg signaling via Wg receptor dFrizzled2 C-terminus nuclear import, 

and retrograde Gbb signaling via synaptic MAD phosphorylation and nuclear 

import, are differentially activated in hs6st and sulf1 mutants. Consequently, 

transcriptional control of presynaptic glutamate release machinery and 

postsynaptic glutamate receptors is bidirectionally altered in hs6st and sulf1 

mutants, explaining the bidirectional change in synaptic functional strength. 

Genetic correction of the altered WNT/BMP signaling restores normal synaptic 

development in both mutant conditions, proving that altered trans-synaptic 

signaling causes functional differentiation defects. 
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Author summary  

Glycans are sugar additions to proteins. Surrounding all eukaryotic cells, 

secreted and membrane glycans form a glycocalyx that regulates cell-cell 

signaling. However, the mechanisms controlling glycan-dependent intercellular 

communication are largely unknown. In the nervous system, glycans play 

important roles in the development and regulation of synapses mediating 

intercellular communication. The Drosophila neuromuscular junction serves as a 

genetically tractable synapse in which expression of glycan-related genes can be 

systematically knocked down to investigate effects on synaptic morphology and 

function. This study employs a transgenic RNAi screen to characterize the 

synaptic requirements of 130 glycan-related genes. From this screen, two 

functionally paired genes (hs6st and sulf1) that add or remove a sulfate at the 6-

O position on heparan sulfate proteoglycans (HSPGs) were identified as being 

critically important for synaptic functional development. Removal of each gene 

produces an opposite effect on neurotransmission strength, weakening and 

strengthening communication, respectively. This mechanism controls the 

synaptic expression of two HSPGs, which act as co-receptors to control the 

abundance of anterograde WNT and retrograde BMP signals, which drive 

intracellular signal transduction pathways regulating gene transcription to control 

synaptic functional development. This screen serves as a platform for systematic 

investigation of glycan mechanisms regulating synaptic development.   
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Introduction 

Glycans coat cell surfaces, and glycosylation decorates secreted 

molecules of the pericellular space and extracellular matrix (ECM) (Iozzo, 1998; 

Varki, 2011). It is well known that glycan modifications mediate critical functions 

of intercellular signaling and regulate interactions of numerous growth factors 

with the ECM (Kleene and Schachner, 2004; Dityatev and Schachner, 2006). 

The synthesis, modification and degradation of glycoconjugates, including O/N-

linked glycoproteins, glycosaminoglycan (GAG) proteoglycans and glycan-

binding lectins, is controlled by a dedicated cadre of genes (Varki et al., 1999; 

Hagen et al., 2009). In the nervous system, these glycan-related genes play key 

roles in development, including neuron fate specification, migration, formation of 

axon tracts and synapse maturation (Barros et al., 2011). At synapses, 

glycosylated ECM molecules, membrane receptors and outer-leaflet glycolipids 

together form the highly specialized synaptomatrix interface (Dityatev and 

Schachner, 2006; Vautrin, 2010), which interacts with trans-synaptic signals to 

modulate synaptogenesis (Dani and Broadie, 2012). 

A prime example is the classic Agrin proteoglycan, which bears heparan 

sulfate (HS) chains, O/N-linked glycans and also a glycan-binding lectin domain 

that binds other glycoconjugates (Rupp et al., 1991; Tsim et al., 1992; Tsen et 

al., 1995). Reduction of GAG sulfation perturbs the Agrin signaling that drives 

postsynaptic acetylcholine receptor (AChR) cluster maintenance at the 

neuromuscular synapse (McDonnell and Grow, 2004). Likewise, 

Galbeta1,4GlcNAc and Galbeta1,3GalNAc glycans inhibit Agrin signaling by 
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suppressing muscle specific kinase (MuSK) autophosphorylation, a key step 

during synaptogenesis (Parkhomovskiy et al., 2000). Analogous glycan-

dependent mechanisms at the Drosophila neuromuscular synapse involve the 

secreted Mind-the-Gap (Mtg) lectin, which assembles the glycosylated 

synaptomatrix between presynaptic active zone and postsynaptic glutamate 

receptor (GluR) domains (Rohrbough et al., 2007). This glycan mechanism 

induces GluR clustering, synaptic localization of integrin ECM receptors, and 

shapes trans-synaptic signaling by controlling ligand/receptor abundance 

(Rushton et al., 2009, 2012; Rohrbough  K. et al., 2010). Thus, many long-term 

studies in vertebrate and invertebrate genetic models suggest that glycan 

mechanisms are a core foundation of synapse development.  

In the current study, we conducted a broad transgenic RNA interference 

(RNAi) screen of synaptic glycan function, assaying requirements in both 

structural and functional development of the Drosophila neuromuscular junction 

(NMJ). We tested 130 genes from 8 functional categories: N-glycan, O-glycan 

and GAG biosynthesis; glycosyltransferases and glycan modifying/degrading 

enzymes; glycoprotein and proteoglycan core proteins; sugar transporters and 

glycan-binding lectins. We found that RNAi-knockdown of genes in all eight 

categories affects synaptic morphological development, with gene-specific 

effects on branching, bouton differentiation and synapse area. Likewise, all eight 

categories regulate synaptic functional development, with gene-specific effects 

both weakening and strengthening neurotransmission. Interestingly, only a few 

genes affect both structure and function, suggesting separable roles for glycans 
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in regulating these synaptogenic pathways. The results of this genomic 

transgenic screen are presented as a platform from which to pursue systematic 

investigation of glycan mechanisms in synaptic development. 

Two genes were selected for screen validation and mechanistic 

characterization; functionally-paired HS 6-O-endosulfatase (sulf1) and HS 6-O-

sulfotransferase (hs6st). RNAi knockdown and null mutants identically alter 

synaptic functional development in a bidirectional manner; loss of sulf1 elevates 

neurotransmission strength, whereas loss of hs6st weakens it. Heparan sulfate 

proteoglycan (HSPG) targets Dally-like Protein (Dlp) and Syndecan (Sdc) (Carey, 

1997; Dejima et al., 2011) are mislocalized in sulf1 and hs6st null synapses. In 

other developmental contexts, the sulfation state of these HSPG co-receptors 

strongly regulates WNT and BMP intercellular signaling (Yan and Lin, 2009; 

Kleinschmit et al., 2010; Dejima et al., 2011). At Drosophila synapses, WNT (Wg) 

is a key anterograde (Packard et al., 2002; Korkut and Budnik, 2009) and BMP 

(Gbb) a key retrograde (McCabe et al., 2003; Keshishian and Kim, 2004) trans-

synaptic signal. Consistently, loss of sulf1 and hs6st differentially changes 

synaptomatrix levels of Wg and Gbb, and downstream signaling into muscle and 

motor neuron nuclei, respectively. Glutamate release and receptor machinery is 

thereby bidirectionally altered in the two nulls. Genetic restoration of Wg/Gbb 

signaling to control levels restores the bidirectional changes in synaptic functional 

strength and pre-/post- synaptic differentiation in both sulf1 and hs6st nulls. We 

conclude that extracellular HSPG sulfation state in the synaptomatrix is a point of 

intersection between WNT/BMP trans-synaptic signaling pathways that drive  
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functional development of the neuromuscular synapse. 

Results 

RNAi screen of glycan-related genes identifies multiple synaptogenesis 

defects 

Synaptic glycans play important roles as ligands, modulators and co-

receptors regulating cell-matrix and intercellular communication (Kleene and 

Schachner, 2004; Holt and Dickson, 2005; Matani et al., 2007). Differential 

glycan distribution on pre- and postsynaptic surfaces, and in the cleft, of 

numerous protein classes, strongly suggests that glycan mechanisms mediate 

synaptic structural and functional development (Martin, 2002, 2003b; Yamaguchi, 

2002). To test the genomic scope of this requirement, we used confocal imaging 

and electrophysiological recording at the well-characterized Drosophila 

glutamatergic neuromuscular junction (NMJ) (Keshishian et al., 1996; Gramates 

and Budnik, 1999; Ruiz-Canada and Budnik, 2006) to screen the Vienna 

Drosophila RNAi Center (VDRC) library of glycan-related genes (Dietzl et al., 

2007). We induced UAS-RNAi knockdown using the ubiquitous UH1-GAL4 driver 

(Wodarz et al., 1995; Rohrbough et al., 2007) . We assayed morphological 

defects by co-labeling for pre- and postsynaptic markers, and assayed functional 

defects with two-electrode voltage clamp (TEVC) recording of neurotransmission 

strength. A summary of the screen results is shown in Figure 5. Full numerical 

results of the screen are shown in Table II. 
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Candidate glycan-related genes were identified and classified into eight 

functional categories using the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) database (Kanehisa and Goto, 2000) [37] (Fig. 5). Additional genes 

were added to the screen based on ortholog identification using the Information 

Hyperlinked over Proteins (iHOP) database (Hoffmann and Valencia, 2004). The 

candidate gene list was expanded and verified using Flybase (Tweedie et al., 

2009). From this list, genes were cross-referenced with available VDRC UAS-

RNAi transgenic lines to generate a final candidate list containing 130 genes 

within eight functionally-defined categories (Fig. 5): N-glycan, O-glycan and 

glycosaminoglycan (GAG) biosynthesis; glycan core proteins (HSPG core 

proteins/glycoproteins); sugar transporters; glycosyltransferases; glycan 

modification genes (modification and degradation of glycans); and glycan-binding 

lectins. On genetic knockdown, 103 lines were viable until the wandering 3rd 

instar, whereas 27 lines showed developmental lethality at embryonic and early 

larval stages of development. From the 103 genetic lines characterized by 

confocal microscopy and TEVC electrophysiology in the 3rd instar (Fig. 5), 21 

exhibited pupal stage developmental lethality. Interestingly, >50% of pupal lethal 

lines displayed statistically significant defects in NMJ synaptic morphology and 

function. For all 103 larval-viable lines, synapse morphology and function was 

quantified at the wandering 3rd instar NMJ (Fig. 5; Table II). Each UAS-RNAi line 

driven by UH1-GAL4 in the w1118 background was compared to the genetic 

control of w1118 crossed to UH1-GAL4 (UH1-GAL4 x w1118) (Dietzl et al., 2007). 
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Figure 5. Glycan-related gene RNAi screen for synapse structure/function 
defects. Transgenic RNAi screen interrogating effects of glycan-related gene 
knockdown on the morphology and function of the Drosophila neuromuscular 
junction (NMJ) synapse. All VDRC UAS-RNAi lines were crossed to the UH1-
GAL4 driver line. Target genes are indicated by Drosophila genome CG 
annotation number and categorized by function. Confocal imaging of co-labeled 
pre- and postsynaptic markers was used to quantify NMJ architecture, including 
branch number, bouton number and synaptic area. TEVC electrophysiology was 
used to quantify evoked excitatory junctional current (EJC) amplitudes. The 
magnitude of fold changes compared to control (w1118×UH1-GAL4) is shown on a 
color scale (see legend below the two columns). Statistical significance was 
calculated using one-way ANOVA analysis, and displayed as p<0.05 (*), p<0.01 
(**). 
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Bouton Mean Branch NMJ area EJC 

Human gene 
Drosophila 
gene CG Mean SD Mean SD Mean SD Mean SD 

  
control 22.103 4.828 3.185 0.933 190.67 57.291 279.391 53.344 

MOGS n/d 1597 30 6.066 3.333 0.516 169.205 48.809 400.270 26.083 

n/d Ady43A 1851 18 5.196 2.333 0.577 148.064 8.454 189.310 28.793 

FUT10 FucTB 4435 35.667 1.527 3 1.155 186.213 23.67 321.383 68.022 

ALG8 n/d 4542 27 4.583 4 0.633 159.583 43.879 444.660 36.252 

ST6GAL1 ST6Gal 4871 28.833 7.305 3.333 0.985 213.39 67.511 365.230 119.690 

FUT5 FucTA 6869 26.333 4.633 3.8 1.304 147.817 36.392 305.748 117.470 

MGAT2 Mgat2 7921 22 3.742 3.5 0.837 189.773 22.672 246.187 3.809 

n/d FucTD 9169 37 4 2.25 0.500 194.396 25.843 272.132 64.077 

n/d egghead 9659 39 6.244 3.5 1.000 195.263 19.213 355.295 17.430 

ALG11 n/d 11306 25.333 3.512 3.333 0.577 230.813 29.049 225.406 125.710 

MAN1B1 n/d 11874 34 10.52 3.167 0.408 181.955 74.303 395.570 102.630 

GANAB n/d 14476 28.667 33.966 3.667 0.577 216.678 33.966 223.710 22.690 

n/d n/d 17173 28.5 6.807 3.6 0.548 124.356 46.355 307.180 57.973 

ALG10 Alg10 32076 31 4.561 3.667 0.516 197.429 17.163 279.570 46.372 

MAN1A2 α-Man-I 32684 34 4.582 2.75 0.500 169.013 33.821 333.670 66.085 

GALNT10 pgant6 2103 21.5 3.834 2.833 0.577 194.424 25.064 287.176 71.023 

GALNT2 pgant2 3254 24.167 7.408 3.222 0.943 204.517 16.806 329.211 74.372 

n/d pgant3 4445 22.363 6.253 3.583 0.900 204.088 46.144 283.633 71.781 

GALNT7 GalNAc-T2 6394 26.667 7.202 3.333 0.985 267.491 28.555 346.103 70.061 

GALNT11 Pgant35A 7480 30.75 5.514 3.4 0.548 225.928 54.736 384.920 113.470 

n/d GalNAc-T1 8182 26 2.898 2.833 1.169 204.585 27.409 262.726 36.814 

C1GALT1 C1GalTA 9520 25.5 5.671 3.083 0.830 190.985 47.339 287.106 47.779 

GALNT1 pgant5 31651 22.833 1.835 2.833 1.169 193.122 15.031 463.473 114.000 

n/d pgant4 31956 21.167 4.355 3.667 1.211 216.217 3.565 241.505 58.796 

OGT sxc 10392 19.833 3.43 3 0.707 193.308 44.025 241.217 7.358 

RFNG fng 10580 22.167 6.853 3.333 0.516 191.667 38.482 312.147 21.118 

POMT2 tw 12311 22.867 3.623 3.33 1.033 192.855 42.817 253.687 51.372 

POFUT1 O-fut1 12366 23.667 0.577 3 0.817 147.801 41.089 258.148 58.650 

POFUT2 O-fut2 14789 27 5.329 2.75 0.957 136.323 30.379 341.320 41.460 

POGLUT1 rumi 31152 23 2.708 4.333 1.506 128.274 29.862 295.523 22.455 

B3GNT1 n/d 3253 27.333 7.257 4.167 0.983 140.891 52.097 285.230 72.183 

n/d GlcAT-S 3881 25.5 6.654 3.364 0.809 193.28 20.529 326.828 97.482 

CHPF n/d 4351 32.333 9.688 3 0.603 206.671 40.309 292.107 47.009 

HS6ST3 Hs6st 4451 32.3 6.195 3.182 0.982 160.382 51.968 221.445 76.016 

SULF1 Sulf1 6725 31.614 5.335 3.1667 0.753 182.304 41.794 390.791 77.178 

NDST2 sfl 8339 27.667 7.371 2.5 0.548 151.417 13.814 233.830 28.840 

EXT2 Ext2 8433 24 4.328 3.25 1.422 173.777 36.755 222.140 47.690 

CHSY1 n/d 9220 27.833 4.956 3.5 0.548 183.432 23.112 295.953 103.380 

EXT1 ttv 10117 24.167 6.145 3.333 0.817 133.221 29.341 321.280 73.667 

UGDH sgl 10072 29.5 4.68 2.5 0.548 173.36 58.236 284.297 16.373 

HS2ST1 Hs2st 10234 18.5 3.391 2.5 0.837 158.557 30.162 256.106 42.834 

B4GALT7 β4GalT7 11780 31 3.464 2.667 0.817 241.78 33.859 280.748 80.240 

CSGALNACT1 n/d 12913 47.333 4.367 3.833 0.983 237.477 12.936 255.450 15.958 

EXTL3 botv 15110 25.667 2.887 3.667 0.577 208.774 20.338 237.780 54.332 

XYLT1 oxt 32300 22 5.586 3.333 0.516 178.204 47.231 271.733 28.785 
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B3GAT3 GlcAT-I 32775 26.833 5.913 3.8333 0.753 138.585 27.628 357.973 57.666 

n/d Lamp1 3305 21.8 9.418 2.833 0.753 162.125 86.057 415.217 93.494 

n/d Sdc 10497 28.2 5.404 3.2 1.095 175.03 43.881 369.440 23.913 

BMPR1A tkv 14026 23.4 4.722 3.6 1.140 153.965 44.908 318.610 41.332 

DAG1 Dg 18250 32.333 2.887 3 0.894 179.973 25.716 247.725 32.376 

GPC4 dlp 32146 23.167 4.579 2.667 0.516 178.265 44.432 320.060 27.625 

FUT8 FucT6 2448 27.5 8.167 3.6 0.548 154.319 61.493 339.230 58.474 

PGM1 Pgm 5165 21.833 3.71 2.916 0.515 206.119 39.981 252.970 50.370 

NANS Sas 5232 31.333 9.873 3.3 0.823 153.102 35.941 294.317 44.404 

PIGA n/d 6401 42 8.509 2.667 0.516 206.846 46.72 344.273 52.533 

UGCG GlcT-I 6437 26.667 8.083 4 1.000 216.773 16.353 233.829 79.773 

n/d veg 6657 30.167 7.25 3.167 1.169 205.144 27.966 398.740 35.558 

GYS1 n/d 6904 32.333 10.504 3 0.000 207.118 57.579 269.623 30.786 

GMPPA n/d 8207 24.833 2.787 4.333 1.211 177.999 27.549 268.644 41.288 

GPI Pgi 8251 24.333 1.528 2.333 0.577 194.383 19.923 201.820 19.608 

B3GALT5 n/d 8673 27.5 3.017 3 1.095 146.754 41.517 303.453 82.266 

GALT Galt 9232 30.667 3.011 3.2 0.837 153.632 28.734 293.016 25.469 

UAP1 mmy 9535 25.167 2.483 2.667 0.985 182.304 28.075 315.563 82.648 

PIGM n/d 9865 22.5 5.244 3.5 1.049 144.827 59.411 242.390 26.816 

PIGB n/d 12006 31.167 5.115 3.667 1.211 134.796 28.835 291.793 58.065 

UGT8 n/d 30438 27.5 5.822 2.833 0.753 181.873 30.45 306.521 101.000 

n/d n/d 33145 17.167 4.622 2.833 0.753 128.98 32.529 319.993 113.290 

n/d Hexo1 1318 25.333 2.16 3.667 0.516 215.715 25.786 364.250 31.756 

n/d n/d 2135 31 3.578 3.5 1.225 167.263 53.965 320.120 63.546 

HK2 Hex-A 3001 16 5.586 3.5 1.643 140.193 63.045 332.046 53.046 

n/d α-Man-IIb 4606 30 5.727 3.2 0.447 190.397 34.896 250.280 38.711 

FUCA2 Fuca 6128 27.333 5.033 3.75 0.500 171.796 31.487 289.288 38.343 

IDUA n/d 6201 27.667 3.445 3.25 0.754 201.597 14.957 376.125 59.557 

n/d n/d 6206 23.4 2.074 3.333 1.211 214.18 20.927 380.517 17.713 

ARSB n/d 7402 25.166 3.189 3.333 1.506 212.965 24.657 467.046 64.949 

GCK Hex-C 8094 24.4 2.51 3.667 1.033 180.536 20.949 267.080 86.281 

GLB1 Gal 9092 19.25 3.304 3.636 1.027 177.423 49.938 337.420 26.981 

PMM2 n/d 10688 19.33 9.416 3.167 0.753 182.76 73.797 341.740 52.213 

IDS n/d 12014 21.167 4.07 2.8733 0.753 166.262 44.156 376.323 51.119 

GUSB n/d 15117 22.167 4.75 3.833 1.169 147.51 35.494 295.890 43.041 

GBE1 n/d 33138 30.667 7.371 3 1.000 220.125 18.167 249.926 20.682 

HK1 Hex-t2 32849 31 5.568 3.333 0.577 278.224 36.517 306.070 41.116 

n/d fw 1500 21.857 5.551 2.5 0.548 127.544 25.087 308.248 92.674 

n/d lectin-46Cb 1652 23.333 0.5744 3 0.000 190.972 23.371 248.513 21.387 

n/d lectin-21Ca 2826 31.583 6.142 3.667 1.303 180.812 30.264 246.890 12.486 

n/d lectin-24Db 2958 30.333 2.733 3.167 0.753 195.685 35.978 296.626 45.587 

n/d lectin-24A 3410 28.167 3.71 3.167 0.753 144.841 13.427 254.893 36.372 

n/d glec 6575 28 1 2.5 0.577 161.402 48.768 237.911 40.374 

n/d Nrx-1 7050 19.5 5.958 3.167 0.753 173.703 50.319 230.490 40.784 

n/d lectin-28C 7106 33.833 5.492 3.167 0.983 166.873 46.092 319.500 26.068 

n/d Lectin-galC1 9976 24.667 9.866 3.333 0.577 192.248 75.2809 460.623 52.526 

LGALS9B galectin 11372 29.667 3.011 2.5 0.548 177.635 39.298 239.073 33.651 

n/d lectin-21Cb 13686 38.167 8.377 4 0.894 248.003 106.58 300.010 38.486 
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n/d lectin-33A 16834 28 3.536 4.8 1.483 168.059 37.381 303.560 38.403 

n/d lectin-30A 17011 27.667 7.767 3.333 0.577 187.305 61.135 298.137 62.090 

n/d lectin-29Ca 17799 29.667 3.386 3.667 1.862 207.744 31.663 327.926 88.079 

n/d lectin-37Da 33532 25.5 4.506 3.167 0.753 154.475 27.428 287.150 33.351 

n/d lectin-37Db 33533 35.667 5.428 3.167 0.408 210.426 34.634 268.326 60.086 

SLC2A1 Glut1 1086 25.5 3.873 3.833 0.718 181.751 30.84 358.287 24.932 

SLC35A2 Csat 2675 26.5 5.648 4.167 1.169 226.021 30.701 373.160 21.740 

SLC35D1 frc 3874 27.833 2.563 3.5 1.314 219.609 40.526 299.290 43.799 

SLC35B2 sll 7623 27.333 3.502 3.667 0.516 195.407 35.123 277.510 10.289 

SLC35C1 Gfr 9620 19.167 3.764 2.667 0.817 142.467 26.185 225.942 25.866 

 

Table II. Primary screen results. Raw number values of the RNAi screen 
indicated by human ortholog name, Drosophila gene name and CG number. 
Mean value and standard deviation (SD) included for NMJ morphology 
parameters of bouton number, branch number and synaptic area, and for NMJ 
functional parameter of evoked excitatory junctional current (EJC) amplitude. 
Sample sizes ≥6 NMJs and ≥3 animals for morphology and function 
measurements. 
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All morphological and functional assays were done blind to genotype, with values 

reported as fold-change compared to genetic control, as well as statistical 

significance calculated using one-way ANOVA analyses (see color scheme; 

P<0.05 (*), P<0.01 (**); Fig. 5). The data represents >6 NMJs from >3 animals 

from every genotype. Synapse morphology was imaged by co-labeling with 

presynaptic marker anti-horse radish peroxidase (HRP) and postsynaptic marker 

anti-Discs Large (DLG). A synaptic bouton was defined as a varicosity of >2 µm 

in minimum diameter labeled by both HRP and DLG, and a synaptic branch was 

defined as a process containing at least two boutons (Gatto and Broadie, 2008). 

NMJ branch number was the least affected morphological parameter, with only 2 

of 103 genes showing a statistically significant change (Fig. 5). Many more genes 

were involved in bouton development. All 27 genes showing a statistically 

significant change compared to genetic control exhibited elevated bouton 

numbers (Fig. 5), suggesting that glycan mechanisms primarily limit 

morphological growth. Synapse area was determined by outlining the terminal 

area labeled by DLG using the thresholding function in ImageJ. The majority of 

gene knockdown conditions showed a decrease in NMJ area compared to 

control (Fig. 5). 7 RNAi lines exhibited a statistically significant decrease in area, 

whereas only 2 lines exhibited a statistically significant increase in synaptic area. 

All raw values of measured morphological parameters are included in Table I.  

 To assay functional differentiation, the motor nerve was stimulated with a 

suction electrode while the evoked excitatory junctional current (EJC) was 

recorded in the muscle (Fig. 5) (Beumer et al., 1999). Nerve stimulation was 
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applied at 4V for 0.5 ms at a frequency of 0.2 Hz, with the muscle clamped at -60 

mV. EJC amplitudes were calculated from recorded traces in the ubiquitously-

driven RNAi lines (w1118 background) compared to the w1118; UH1-GAL4/+ 

control. Recordings were obtained from >3 independent trials for each RNAi 

knockdown condition. All electrophysiological screening was done blind to 

genotype, with values reported as fold-change and statistical significance 

calculated by one-way ANOVA analyses (see color scheme; P<0.05 (*), P<0.01 

(**); Fig. 5). Genes from all eight glycan classes were identified to produce 

changes in neurotransmission strength upon genetic knockdown. For the 103 

larval-viable lines tested, 26 lines showed a trend towards increased 

transmission strength, and 12 were statistically elevated compared to genetic 

control (Fig. 5). 4 gene knockdowns showed a trend towards decreased 

transmission strength, of which only 1 line reached statistical significance.  73 of 

the 103 lines tested showed no change in functional strength (Fig. 5). 

Interestingly, only 6 RNAi lines showed statistically significant effects on both 

NMJ morphology parameters and EJC amplitude: CG1597, CG6657, CG7480, 

CG4451, CG6725 and CG11874 (Fig. 5). This suggests that glycan effects on 

synapse morphological and functional development are largely separable. All raw 

values of EJC measurements are included in Table II. 

To validate results, a secondary screen was conducted using independent 

RNAi lines obtained from the VDRC and Harvard TRiP collections (Table III). Of 

the 44 genes that showed morphological and functional defects in the primary 

screen, 33 were retested using independent RNAi lines, with the others lacking 
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available secondary lines from any source. Using the same screen of 

morphological and functional characterization, we determined that ~80% of 

retested secondary lines showed the reported structural (bouton number) and 

functional (EJC) phenotypes consistent with primary screen (Table II). These 

primary and secondary RNAi screen results now represent a resource for the 

systematic characterization of glycan mechanisms underlying synaptic structural 

and functional development. Screen results were further studied by comparing 

synaptogenesis phenotypes of RNAi knockdown with defined genetic nulls for 

two genes, CG6725 and CG4451, from the glycosaminoglycan biosynthesis 

class (Fig. 5). The RNAi screen of functional strength as measured by EJC 

amplitudes indicated opposite effects for these two lines, with CG6725 (RNAi-

sulf1) knockdown exhibiting an increase in transmission strength and CG4451 

(RNAi-hs6st) knockdown producing a decrease (Fig. 5). Along with our goal to 

identify interesting glycan-related genes involved in synapse development, we 

show here characterization of null alleles of two genes obtained from screen 

results and define the associated mechanisms driving the bidirectional regulation 

of synaptic functional development. 

Synaptogenesis is bidirectionally regulated by paired sulf1 and hs6st 

genes 

The RNAi screen identified two functionally-paired genes, sulf1 (CG6725) and 

hs6st (CG4451), with similar effects on morphological development but opposite 

effects on synaptic functional differentiation (Fig. 5). Our goal was to use these  
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Secondary Screen - Morphology (Bouton number) 

Human 
Gene 

Drosophila 
Gene CG ID Fold ID Fold Confirmed 

  control  1  1  

FUT10 FucTB 4435 GD40519 1.613 GD40520 1.162 N 

n/d FucTD 9169 CG27008 1.673 CG27009 1.301 Y 

n/d egghead 9659 GD10137 1.764 GD405160 1.567 Y 

MAN1B1 n/d 11874 GD101661 1.538 GD4919 1.553 Y 

MAN1A2 α-Man-I 32684 GD39572 1.538 GD5528 1.447 Y 

PIGA n/d 6401 KK107714 1.900 GD39552 1.294 N 

GYS1 n/d 6904 GD35136 1.462 GD35137 1.693 Y 

GALT Galt 9232 KK100025 1.387 GD29087 1.494 Y 

n/d n/d 2135 KK103338 1.402 GD16628 1.241 N 

n/d α-Man-IIb 4606 GD42652 1.357 KK108043 1.338 Y 

HK1 Hex-t2 32849 KK100218 1.402 GD47331 1.640 Y 

n/d lectin-24Db 2958 KK105118 1.372 GD45294 1.4403 Y 

n/d lectin-21Cb 13686 KK106450 1.726 GD32507 1.513 Y 

n/d lectin-37Db 33533 KK107567 1.613 GD51100 1.617 Y 

        
Secondary Screen - EJC 

Human 
Gene 

Drosophila 
Gene CG ID Fold  ID Fold 

Confirmed 

  
control 

 
1 

 
1 

 
ALG8 n/d 4542 KK104870 1.782 GD7132 1.333 Y 

ST6GAL1 ST6Gal 4871 KK100284 1.464 GD47955 0.978 N 

MAN1B1 n/d 11874 KK101661 1.586 GD4419 1.214 Y 

GALNT1 pgant5 31651 GD2629 1.858 KK110647 1.090 N 

HS6ST3 hs6st 4451 KK101636 0.796 GD42658 0.658 Y 

SULF1 sulf1 6725 GD37362 1.389 GD37361 1.326 Y 

B3GAT3 GlcAT-I 32775 KK107840 1.435 TRiP.HMS00289 1.280 Y 

n/d Lamp1 3305 GD7309 1.664 TRiP.GLV21040 1.404 Y 

n/d Lectin-galC1 9976 GD38002 1.846 KK100935 1.680 Y 

        

 

 

                   

 

 

Table III. Secondary screen results. Raw number values for the secondary 

screen results indicated by human ortholog name, Drosophila gene name and CG 

number. The two independent IDs for RNAi lines are shown. For all retested lines, 

morphological quantification for NMJ bouton number (top) and evoked excitatory 

junctional current (EJC) amplitude (bottom). All results are shown as fold-changes 

compared to genetic control. Sample sizes are ≥6 individual animals per 

genotype. Replication of primary screen result is indicated in the final column as 

Y, and failure to replicate indicated as N. 
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genes as a test case from the completed glycan screen, by assaying phenotypes 

in recently characterized null mutants of both genes (Kamimura et al., 2001; You 

et al., 2011). The gene products Sulfated (Sulf1), an HS 6-endosulfatase, and 

Hs6st, an HS 6-O-sulfotransferase, drive opposing changes in sulfation state of 

the same C6 carbon of the repeated glucosamine unit in GAG modified heparan 

sulfate proteoglycans (Kamimura et al., 2001; Ai et al., 2003). Viable null mutants 

are available for both genes, e.g. sulf1 (sulf1∆1) and hs6st (hs6std770) (Kamimura 

et al., 2001; You et al., 2011), but requirements have never been assayed in the 

nervous system or neuromusculature. We therefore first compared phenotypes of 

RNAi knockdown and null alleles at the NMJ synapse by confocal imaging of 

synaptic morphogenesis and TEVC recording of synaptic functional 

neurotransmission. 

Using double-labeling for HRP (presynaptic) and DLG (postsynaptic), NMJ 

structural parameters including bouton number, branch number and synaptic 

area were quantified in sulf1 and hs6st null alleles. The mutant results closely 

recapitulated the RNAi knockdown findings from the screen (Table II, III). To 

consistently compare RNAi and null mutant conditions, both animal groups were 

simultaneously reared and processed to visualize the NMJ (Fig. 6). Structural 

quantification showed an increased bouton number with RNAi-mediated sulf1 

knockdown (sulf1-RNAi x UH1-GAL4; 36.4±1.6, n=10) and hs6st knockdown 

(hs6st-RNAi x UH1-GAL4; 35.1±1.96, n=10) compared to the transgenic control 

(w1118 x UH1-GAL4; 21.9±1.84, n=10 p<0.001, n=10; Fig. 6A,B). Consistently, 

increased bouton number was observed in both sulf1 (31.9 ± 1.37, n=10) and 
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hs6st (36.25 ± 2.58, n=8) null mutants compared to genetic control (w1118, 19.3 ± 

1.69, p<0.001, n=10; Fig. 6C,D). In contrast, no significant change in branch 

number was exhibited with sulf1 knockdown (3.22 ± 0.28, p>0.05, n=9) or hs6st 

knockdown (3.22 ± 0.22, p>0.05, n=9) compared to control (w1118 x UH1-GAL4; 

2.64 ± 0.06, n=11).  Similarly, no significant change was observed in the synaptic 

branch number in sulf1 (2.8 ± 0.33, p=0.27, n=10,) and hs6st (3.63 ± 0.38, 

p=0.115, n=10) nulls compared to control (w1118; 3.4 ± 0.46, n=8). Further, there 

was no significant difference in synaptic area in sulf1 (138.16 ± 5.82, p>0.05, 

n=10,) and hs6st (138.48 ± 13.38, p>0.05, n=8,) mutants compared to the control 

(w1118 ; 118.04 ± 8,38, n=10), however a slight increase in synaptic area was 

observed in sulf1 knockdown (178.68 ± 10.64, p<0.05, n=9), while no change 

was observed for hs6st knockdown (164 ± 8.47, p>0.05, n=10) as compared to 

control (w1118 x UH1-GAL4; 134.57 ± 11.95, n=10). Based on these imaging 

studies, we conclude morphological differences in synaptic architecture observed 

in both sulf1 and hs6st null allele conditions is consistent with both RNAi 

knockdown conditions. 

Functional development was next tested with electrophysiological 

recording to compare RNAi and null mutant phenotypes (Fig. 7). Representative 

TEVC records are shown as an average of 10 consecutive nerve stimulus 

responses in 1.0 mM extracellular Ca2+ for each transgenic genotype in Figure 

7A; sulf1 knockdown (UH1-GAL4 x sulf1-RNAi), hs6st knockdown (UH1-GAL4 x 

hs6st-RNAi) and genetic control (UH1-GAL4 x w1118). There was a striking ~80% 

difference in EJC amplitude between sulf1 and hs6st knockdown conditions, with  



72 

 

 

Figure 6 NMJ synaptic bouton number in sulf1 and hs6st mutants. (A) 
Representative NMJ images from muscle 4 in segment A3 showing anti-
horseradish peroxidase (HRP; red) and anti-Discs Large (DLG; green) in control 
(w1118×UH1-GAL4), sulf1 RNAi (UH1-GAL4×UAS-CG6725) and hs6st RNAi 
(UH1-GAL4×UAS-CG4451). (B) Quantification of synaptic bouton number in 
RNAi-knockdown conditions for sulf1 and hs6st, normalized to genetic control 
(w1118×UH1-GAL4). Sample sizes are ≥10 animals per indicated genotypes. (C) 
Representative NMJ images of anti-HRP (red) and anti-DLG (green) in w1118 
control, sulf1 and hs6st null mutants. (D) Quantification of synaptic bouton 
number in mutant conditions normalized to genetic control. Sample sizes are ≥8 
animals per indicated genotype. Statistically significant differences were 
calculated using student's t-test and indicated as ***p<0.001. Error bars indicate 
S.E.M. 
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Figure 7. Loss of sulf1/hs6st causes opposite effects on transmission 
strength. (A) Representative excitatory junctional current (EJC) traces from 
control (w1118×UH1-GAL4), sulf1 RNAi (UH1-GAL4×UAS-CG6725) and hs6st 
RNAi (UH1-GAL4×UAS-CG4451). The nerve was stimulated (arrows) in 1.0 mM 
external Ca2+, with TEVC records (−60 mV holding potential) from muscle 6 in 
segment A3. Each trace averaged from 10 consecutive recordings. (B) 
Quantified mean EJC amplitudes (nA) for the three genotypes shown in panel A. 
(C) Representative traces from control (w1118), sulf1Δ1 and hs6std770 null alleles 
under the same conditions described in panel A. (D) Quantified mean EJC 
amplitudes (nA) for the three genotypes shown in panel C. Sample sizes are at 
least 11 animals per indicated genotype. Statistically significant differences 
calculated using student's t-test, ** p<0.01, *** p<0.001. Error bars indicate 
S.E.M. 
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sulf1 elevated by ~30% and hs6st reduced by ~30% compared to control. 

Quantification of EJC amplitudes showed both knockdown conditions to 

be highly significantly different from control and each other (control, 286.22 ± 

8.56 nA; sulf1-RNAi, 365.01 ± 9.502 nA, p<0.001; hs6st-RNAi, 199.19 ± 11.84 

nA, p<0.001; sulf1-RNAi vs. hs6st-RNAi, p<0.001; Fig. 7B). These opposite 

effects on neurotransmission strength were confirmed in characterized null 

alleles for both genes [42,43]. Representative traces from sulf1∆1 and hs6std770 

null mutants compared to w1118 control are shown in Figure 7C. Quantification of 

EJC amplitudes showed null mutants to be highly significantly different from 

control and each other (w1118, 256.14 ± 7.38 nA; sulf1∆1, 372.86 ± 18.49 nA, 

n=11, p<0.001; hs6st, 209.66 ± 13.44 nA, n=14, p<0.01; sulf1∆1 vs. hs6st, 

p<0.001; Fig. 7D). These results were confirmed in an independent sulf1 null 

allele (sulf1∆P1), which shows comparable elevation compared to control (w1118, 

244.91 ± 9.04 nA; sulf1∆P1, 282.28 ± 13.59, p<0.05, n=22), as well as the hs6st 

null (hs6std770) over deficiency  (Df(3R)ED6027), which shows comparable 

depression compared to control (w1118, 256.14 ± 7.38 nA; hs6st/Df(3R)ED6027, 

224.06 ± 7.65 nA,  p<0.05, n=18). These results reveal a critical role for sulf1 and 

hs6st genes in synaptic functional development. 

Given the functionally-paired nature of sulf1 and hs6st activities on 6-O-S 

modification, and the epistatic function of hs6st to sulf1, we predicted that 

knocking both genes down would produce a phenotype similar to knockdown of 

hs6st alone. Consistently, hs6st and sulf1 double knockdown produced EJC 

amplitudes significantly lower than control (w1118 x hs6st-RNAi; sulf1-RNAi  
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 (control), 225.17 ± 6.28 nA, n=12; hs6st-RNAi, sulf1-RNAi x UH1-GAL4, 198.22 

± 9.77 nA, n=15, p<0.05; Fig. 8). Cell-specific knockdown in neural (elav-GAL4), 

muscle (24B-GAL4) and glia (repo-GAL4) also support the observed opposite 

effects in neurotransmission strength. With sulf1 knockdown in muscle, EJC 

amplitude was significantly elevated compared to control (w1118 x sulf1-RNAi 

(control), 199.97 ± 21.86 nA; 24B-GAL4 x sulf1-RNAi (knockdown), 222.88 ± 

25.78 nA, p<0.01, n=10), but no change occurred with neural knockdown (elav-

GAL4 x sulf1-RNAi, 196.09 ± 25.08 nA, p=0.72, n=10) or glial knockdown (repo-

GAL4 x sulf1-RNAi, 208.40 ± 32.45 nA, p=0.53, n=7). Moreover, only neural 

knockdown of hs6st caused a decrease in EJC amplitude (w1118 x hs6st-RNAi 

(control), 211.496 ± 22.142 nA, elav-GAL4 x hs6st-RNAi (knockdown), 184.68 ± 

28.97 nA, p<0.05, n=16), while no change occurred with muscle knockdown 

(24B-GAL4 x hs6st-RNAi, 209.92 ± 24.74 nA, p=0.88, n=9) or glial knockdown 

(repo-GAL4 x hs6st-RNAi, 216.38 ± 37.80 nA, p=0.32, n=7). We conclude that 

HSPG sulfation state strongly modulates NMJ functional development, with 

contributions from both motor neuron and muscle, but not glia. The clear next 

step was to test for differences in the localization and abundance of synaptic 

HSPG targets known to regulate NMJ synaptogenesis.  

HSPG abundance at the synaptic interface is dependent on sulf1 and hs6st. 

Both GPI-anchored HSPG glypican Dally-like (Dlp) and transmembrane HSPG 

Syndecan (Sdc) are clearly expressed at the Drosophila NMJ (Fig. 9), where they 

are known to regulate synaptogenesis (Johnson et al., 2006). We detect no 

enrichment of the secreted HSPG perlecan (Trol) at the NMJ, although 
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Figure 8. Double knockdown of sulf1 and hs6st measure of EJC amplitude. 
(A) Representative evoked excitatory junctional current (EJC) traces from control 
(w1118×UH1-GAL-4) and double knockdown with both sulf1 and hs6st RNAi 
transgenic lines (UH1-GAL4×UAS-sulf1-RNAi; UAS-hs6st-RNAi). (B) Quantified 
mean EJC amplitudes (nA) for the two genotypes shown in panel A normalized to 
control. Sample sizes are ≥12 animals per indicated genotype. Statistically 
significant differences calculated using student's t-test, * p<0.05, Error bars 
indicate S.E.M. 
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it is abundantly expressed in the motor nerve leading up to the synaptic terminal 

and present in lower levels throughout the muscle (Fig. 10). We therefore 

hypothesized that membrane-associated Dlp and Sdc HSPGs are targeted by 

sulf1 and hs6st activity to regulate their synaptic distribution and/or function. To 

test this hypothesis, we assayed both Dlp and Sdc under non-permeabilized, 

detergent-free conditions to examine their cell surface expression at the NMJ 

synaptic interface of sulf1 and hs6st null mutants compared to control. These 

data are summarized in Figure 11.  

In the genetic background control (w1118), Dlp shows a punctate 

expression pattern strongly concentrated in a halo-like array around the anti-HRP 

labeled presynaptic membrane (Fig. 9, Fig. 11, top). In sulf1 mutants there was a 

clear and consistent increase in Dlp abundance, with more numerous and 

intense punctae at the synaptic interface surrounding NMJ boutons, while at 

hs6st mutant synapses there was an opposing decrease in Dlp abundance (Fig. 

11). This bidirectional and differential effect on Dlp abundance was quantified as 

fluorescence intensity normalized to the internal HRP labeling control. There was 

a significant Dlp increase in sulf1 compared to control (~40% elevated over 

control; p<0.05; n=11), and a significant Dlp decrease in  the hs6st null synapse 

(~15% reduced compared to control; p<0.05; n = 11; Fig. 11B). Importantly, the 

difference between sulf1 and hs6st nulls was very highly significant (p<0.001). In 

comparison, cell surface Sdc labeling also showed a dense halo-like localization 

around NMJ synaptic boutons labeled with cell adhesion marker Fasciclin II  
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Figure 9. NMJ synaptic localization of Dally-like and Syndecan HSPGs. 
Representative confocal images showing HSPG synaptic localization at the larval 
NMJ. (A) Single channel images of presynaptic anti-horseradish peroxidase (anti-
HRP, blue), Dally-like Protein (anti-Dlp, green) and postsynaptic glutamate 
receptor subunit IID (anti-GluRIID, red). (B) Single channel images showing 
presynaptic anti-horseradish peroxidase (anti-HRP, blue), syndecan (anti-Sdc, 
red) and postsynaptic Discs Large (anti-DLG, green). (C) Merged image showing 
Dlp localization with respect to presynaptic HRP, postsynaptic GluRIID and the 
triple-labeled terminal. (D) Merged image showing Sdc localization with respect 
to presynaptic HRP, postsynaptic DLG and the triple-labeled terminal. 
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Figure 10. HSPG Perlecan (Trol) is absent from the NMJ synaptic terminal. 
(A) Representative confocal image showing Perlecan expression at the 
wandering third instar larval NMJ using the Trol-GFP Flytrap line ZCL1700 from 
the Flytrap GFP Resource. Single channel and merged images show presynaptic 
anti-horseradish peroxidase (anti-HRP, red) and Trol-GFP (green). (B) 
Representative confocal image showing Perlecan (anti-PcanV) antibody staining, 
shown at a much higher confocal gain than in A to emphasize muscle 
expression. Perlecan is strongly expressed in the motor nerve, and clearly 
present on the muscle surface, but is never detectably enriched at the NMJ 
terminal. In many cases, as in the example shown, Perlecan appears at lower 
levels in the perisynaptic region surrounding the NMJ than elsewhere on the 
muscle. 
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Figure 11. Synaptic HSPG co-receptor abundance is modified by 6-O-S 
sulfation. (A) Representative NMJ synaptic boutons imaged from control (w1118), 
sulf1 and hs6st nulls, probed with presynaptic neural marker anti-HRP (green) 
and Dally-like (Dlp; red). Right: Dlp distribution without the HRP signal is shown 
for clarity. (B) Quantification of mean fluorescent intensity levels of anti-Dlp 
labeling normalized to the HRP co-label at the muscle 6 NMJ, normalized to 
genetic control. (C) Boutons labeled with neural marker anti-Fasciclin II (FasII, 
green) and anti-Syndecan (Sdc, red). Right: Sdc distribution is shown alone for 
clarity. (D) Quantification of the mean fluorescent intensity levels of anti-Sdc 
labeling at the muscle 6 NMJ, normalized to genetic control. Sample sizes are at 
least 12 independent NMJs of at least 7 animals per indicated genotypes. 
Statistically significant differences calculated using student's t-test, * p<0.01, ** 
p<0.01, ***p<0.001. Error bars indicate S.E.M. 
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(FasII; Fig. 9, Fig. 11C). Synaptic Sdc labeling intensity was consistently greater 

in both sulf1 and hs6st nulls compared to control (Fig. 11). Quantification of 

fluorescence intensity normalized to HRP revealed that Sdc abundance was 

greatly increased in sulf1 null synapses compared to control (~35% elevated over 

control; p<0.01; n=17) and, to a greater degree, also in hs6st nulls (~50% 

elevated over control; p<0.001; n=12; Fig. 11D). Thus, both Dlp and Sdc HSPGs 

are strongly altered in sulf1 and hs6st null NMJ synapses, with Dlp bidirectionally 

misregulated and Sdc differentially elevated in the two mutant conditions. 

HSPGs act as co-receptors for WNT and BMP intercellular signaling 

ligands in many developmental contexts, acting to modulate extracellular ligand 

abundance and downstream signaling (Lin and Perrimon, 2000; Hacker et al., 

2005). Drosophila WNT Wingless (Wg) distribution and signaling is known to be 

modulated by Dlp, which retains Wg at the cell surface in a mechanism that is 

enhanced by HS GAG chains (Yan et al., 2009). Specifically, Wg ligand 

abundance and signaling activity along the dorso-ventral axis of the developing 

Drosophila wing disc is elevated in sulf1 mutants (Kleinschmit et al., 2010). 

Likewise, BMP ligands in other cellular contexts are closely regulated by HSPG 

co-receptors (Dejima et al., 2011). Specifically, Dlp has been suggested to 

similarly regulate Drosophila BMP Glass Bottom Boat (Gbb) (Dejima et al., 

2011). We therefore hypothesized that altered HSPG co-receptors Dlp and/or 

Sdc in sulf1 and hs6st null synapses regulate Wg and Gbb abundance to drive 

differentially altered trans-synaptic signaling across the synaptic cleft. 
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HSPG sulfation regulates abundance of WNT/BMP trans-synaptic ligands 

Classical WNT and BMP morphogens act locally at synapses to fine tune 

synaptogenesis (Salinas, 2003; Marques, 2005). At the Drosophila NMJ, the 

WNT Wg is well-characterized as an anterograde trans-synaptic signal 

modulating synaptogenesis (Packard et al., 2002, 2003; Korkut and Budnik, 

2009). Similarly, the BMP Gbb is well-characterized as a retrograde signal driving 

synaptic development (McCabe et al., 2003; Rawson et al., 2003; Keshishian 

and Kim, 2004). A third trans-synaptic signaling pathway, presynaptically-

secreted Jelly Belly (Jeb) to postsynaptic Alk receptor (Rohrbough  K. et al., 

2010), has no known interaction with HSPGs and therefore would not be 

expected to be affected in sulf1 and hs6st nulls, providing a comparison for 

specificity. To test the hypothesis that the observed alterations of HSPG co-

receptor abundance will drive specific changes in WNT and BMP intercellular 

pathways, we labeled NMJ synapses with antibodies under non-permeablized 

conditions to reveal extracellular trans-synaptic signaling ligands (Fig. 12), and 

compared protein abundance and distribution in controls, sulf1 and hs6st null 

mutants. The data are summarized in Figure 13.  

NMJ synapses were first labeled with Wg antibody (green) together with 

anti-HRP (red) to label the presynaptic membrane (Fig. 13A). In control animals 

(w1118), external Wg localized at large type Ib synaptic boutons in a dynamic 

pattern of punctuate distribution at the synaptic interface between motor neuron 

and muscle (Fig. 12, Fig. 13A, top). In sulf1 and hs6st mutants, Wg was 

consistently elevated and concentrated uniformly in the extracellular domain 
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Figure 12. Permeablized versus non-permeabilized Wg and Gbb labeling. 
Representative NMJ images of muscle 6/7 in segment A3 from the wandering 
third instar. Merged and single channel images of (A) anti-horseradish 
peroxidase (HRP; red) and anti-Wingless (Wg; green), and (B) anti-Fasciclin II 
(FasII; green) and anti-glass bottom boat (Gbb; red), in non-permeablized 
labeling conditions in the absence of detergent. Note strong localization of both 
Wg and Gbb at the NMJ terminal. Merged and single channel images of (C) anti-
HRP (red) and anti-Wg (green), and (D) anti-FasII (green) and anti-Gbb (red) in 
permeablized labeling conditions with 4% paraformaldehyde added to all 
antibody incubations. Note that most of the synaptic localization of Wg and Gbb 
is lost. 
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adjacent to, and overlapping with, the anti-HRP-labeled presynaptic membrane 

(Fig. 13A, middle and bottom). The elevated Wg levels in mutants were clearly 

observed at the level of individual synaptic boutons, as shown in the magnified 

insets in Figure 13A. To examine changes in Wg spatial distribution, cross-

sectional planes were examined in single confocal line scans through the 

diameter of individual synaptic boutons (Fig. 13A, white lines). Representative 

distribution plots for membrane-marker HRP (red) and external Wg (green) are 

shown in Figure 13B. In all genotypes, extracellular Wg was closely associated 

with the HRP-labeled presynaptic membrane, but both sulf1 and hs6st nulls 

displayed a consistent increase in Wg label intensity and broadening of the 

spatial domain occupied by the secreted Wg ligand (Fig. 13B, middle and 

bottom). To quantify changes in extracellular Wg abundance, the mean 

fluorescent signal intensity was normalized to the internal HRP co-label, and then 

normalized to analogous control intensity ratios. In sulf1∆1 nulls, there was very 

highly significant elevation of Wg compared to control (~90% increased; p<0.001; 

n=16; Fig. 13C). A similar increase was observed in the independent sulf1∆P1 null 

(p<0.001; n=11). The hs6st null displayed a smaller significant increase in Wg 

abundance (~40% increased; p<0.001; n=15; Fig. 13C), which was again 

recapitulated in hs6st null over deficiency (Df(3R)ED6027) condition. Importantly, 

Wg abundance is differentially elevated in sulf1 vs. hs6st mutants (p<0.01, Fig. 

13C). To test whether the sulf1/hs6st mechanism might coordinately regulate 

multiple trans-synaptic signals, we next assayed the BMP Gbb, a muscle-derived 

retrograde signal. A barrier to previous Gbb analyses has been the absence  
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Figure 13. Synaptic WNT and BMP ligand abundance is modified by 6-O-S 
sulfation. Images show muscle 6 NMJ in segment A3 probed in non-detergent 
conditions, so that only extracellular protein distributions are detected. The white 
lines indicate cross-section planes for spatial measurements. Insets indicate 
single synaptic boutons at higher magnification. (A) Representative NMJ boutons 
from control (w1118), sulf1 and hs6st null genotypes, labeled for presynaptic anti-
horseradish peroxidase (HRP, red) and anti-wingless (Wg, green). (B) 
Extracellular distribution of Wg across the diameter of a synaptic bouton. The Y-
axis indicates intensity and the X-axis shows distance in microns. The HRP 
intensity profile is indicated in red; Wg intensity is shown in green. (C) 
Quantification of Wg mean intensity levels normalized to the HRP co-label, and 
to genetic control. Sample sizes are at least 15 animals per indicated genotypes. 
(D) Representative synaptic boutons labeled with presynaptic anti-Fasciclin II 
(FasII; green) and anti-Glass Bottom Boat (Gbb; red). (E) Gbb distribution across 
the diameter of a synaptic bouton. Y-axis indicates intensity and the X-axis 
shows distance in microns. FasII intensity profile is indicated in green; Gbb 
intensity is shown in red. (F) Quantification of Gbb mean intensity levels 
normalized to genetic control. Sample sizes are at least 11 independent NMJs of 
at least 7 animals per indicated genotypes. Statistically significant differences 
calculated using student's t-test and Mann-Whitney test for non-parametric data, 
** p<0.01, *** p<0.001. Error bars indicate S.E.M. 
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of an anti-Gbb antibody. We therefore generated a specific anti-Gbb antibody for 

this study (see Methods). As above, labeling was done under non-permeabilized 

conditions to reveal only the extracellular Gbb, together with labeling for HRP or 

the cell adhesion molecule marker FasII to reveal the presynaptic membrane 

(Fig. 12). In the control (w1118), extracellular Gbb concentrated in a ring of 

punctate domains around boutons (Fig. 13D, top). Gbb was similarly punctate in 

sulf1 and hs6st nulls, but consistently more extensive and denser (Fig. 13D, 

middle and bottom; see magnified insets). To examine Gbb spatial distribution, 

cross-sectional planes of confocal line scans were made through individual 

synaptic boutons (Fig. 13D, white lines). Representative plots for FasII (green) 

and Gbb (red) show extracellular Gbb closely associated with the FasII-labeled 

presynaptic membrane in all genotypes (Fig. 13E). However, sulf1 and hs6st 

nulls consistently displayed increased Gbb intensity and broadened expression 

compared to the control. Upon quantifying signal intensity of Gbb normalized to 

HRP co-label, sulf1∆1 exhibited a significantly higher Gbb abundance than control 

(65% increased; p<0.01; n=12; Fig. 13F). The independent sulf1∆P1 null allele 

showed a similar increase (p<0.001; n=12). The hs6st null also showed Gbb 

elevation compared to control (59% increased; p<0.01; n=11; Fig. 13E), which 

was confirmed in hs6st null over deficiency (Df(3R)ED6027; p<0.05; n=23). 

To test further whether extracellular Wg and Gbb abundance was sensitive to the 

sulfation state of GAGs, a biochemical approach was next used to determine 

effects on Wg and Gbb trans-synaptic signals (Fig. 14). Specifically, NMJs were 

acutely exposed to heparin, the most sulfated form of GAG, and then synaptic 
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Wg and Gbb abundance was measured by immunolabeling as above. We found 

that both trans-synaptic signals were rapidly altered by heparin incubation in a 

dose-dependent manner. Specifically, incubation with increasing concentrations 

of heparin caused a reciprocal decrease in Wg labeling intensity in the NMJ 

synaptic domain (Fig. 14A,C), with a significant decrease first detected with 

0.315 mg/ml heparin incubation (~50% less than control, p<0.01, n=4). 

Interestingly, incubation with heparin caused the opposing loss of Gbb from the 

synaptic domain. In a dose-dependent manner, increasing heparin 

concentrations caused a parallel increase in Gbb abundance in the NMJ synaptic 

domain (Fig. 14B,C), with significant increases again first detected at 0.315 

mg/ml heparin (~25% greater than control, p<0.05) and rising further at 0.625 

mg/ml heparin (~40% greater than control, p<0.001). These results indicate that 

HSPG sulfation state does indeed affect trans-synaptic signal abundance, 

supporting the observed alterations in Wg and Gbb abundance in mutants of 

heparan sulfate modifying genes, sulf1 and hs6st.  

To examine effects on other trans-synaptic signaling pathways in the sulf1 

and hs6st mutant synapses, we also assayed for changes in Jeb and FGF 

signaling (Rohrbough  K. et al., 2010). In both control and mutants, extracellular 

Jeb labeling was tightly associated with NMJ type Ib boutons and, like other 

trans- synaptic ligands, occupied an extracellular domain closely associated with 

the presynaptic membrane (Fig. 15). However, in stark contrast to Wg and Gbb 

ligands in the same extracellular synaptomatrix domain, no change was 
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Figure 14. NMJ retention of Wg/Gbb altered by highly-sulfated heparin. 
Confocal imaging of Wg and Gbb trans-synaptic ligand abundance at the 
wandering third instar NMJ (muscle 4, segment A3) following acute incubation 
with highly-sulfated heparin. (A) Single channel and merged images of anti-
horseradish peroxidase (HRP; red) and anti-Wingless (Wg; green) following 
control (no heparin), 0.156 mg/ml, 0.315 mg/ml and 0.625 mg/ml heparin 
treatments. (B) Single channel and merged images of anti-HRP (red) and anti-
glass bottom boat (Gbb; green) following control, 0.156 mg/ml, 0.315 mg/ml and 
0.625 mg/ml heparin treatments. (C) Quantification of fluorescence intensity of 
Wg and Gbb normalized to the internal HRP co-label for the control and indicated 
heparin concentrations. Individual data points are an average of ≥3 animals. 
Dotted line shows fitted linear trend lines. Statistically significant differences 
calculated using student's t-test and indicated as ***p<0.001, ** p<0.01, * p<0.05. 
Error bars indicate S.E.M. 
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observed in Jeb abundance or spatial distribution in sulf1 null (p=0.99, n=10) or 

hs6st null (p=0.36, n=8) compared to control (w1118) NMJ synapses (Fig. 15). 

FGF signaling is also well established to be affected by HSPGs (Shimokawa et 

al., 2011), and one pioneering study has investigated roles for FGF signaling at 

the Drosophila NMJ (Sen et al., 2011). The probe used in the previous study was 

an antibody against the FGF receptor Heartless (Htl) (Shishido et al., 1997). 

Using this antibody, we confirmed that the Htl receptor beautifully localizes to 

NMJ boutons to mediate FGF signaling (Fig. 16). However, Htl receptor synaptic 

abundance and distribution was very similar for the sulf1 (p=0.89, n=9) and hs6st 

(p=0.69, n=7) mutants compared to control (w1118) (Fig. 16B). Unfortunately, no 

antibody probes are available for Drosophila FGF ligands, so these signals have 

not yet been queried. Together, these results show that both WNT (Wg) and 

BMP (Gbb) ligand abundance is coordinately upregulated by the sulf1 and hs6st 

mechanism at the NMJ synapse, but that a spatially overlapping signaling ligand 

(Jeb) and at least FGF receptor expression are unaffected. These results 

strongly predict that Wg and Gbb trans-synaptic signaling controlled by sulf1 and 

hs6st activity regulates synaptic functional development. 

Trans-synaptic WNT/BMP signaling is regulated by HSPG sulfation 

Wg and Gbb serve as anterograde and retrograde trans-synaptic signals, 

respectively, activating cognate receptors to initiate downstream signaling 

cascades and nuclear import pathways in muscles and motor neurons, 

respectively (Keshishian & Kim, 2004; Marques, 2005; M Packard et al., 2003). 
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Figure 15. NMJ expression of Jeb ligand unchanged in sulf1/hs6st nulls. (A) 
Representative NMJ images at the wandering third instar NMJ on muscle 6 in 
segment A3 from control (w1118), sulf1 and hs6st nulls, labeled with neural marker 
anti-horseradish peroxidase (HRP; red) and anti-Jelly belly (Jeb; green). Merged 
images show Jeb tightly localized at synaptic boutons. (B) Quantification of anti-
Jeb mean fluorescence intensity levels normalized to HRP co-label and the 
genetic control. Sample sizes are ≥8 animals per indicated genotypes. 
Statistically significant differences calculated using student's t-test. N.S. indicates 
no significant difference. Error bars indicate S.E.M. 
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Figure 16. NMJ expression of FGF receptor unchanged in sulf1/hs6st nulls. 
(A) Representative NMJ images at the wandering third instar NMJ on muscle 6 in 
segment A3 from control (w1118), sulf1 and hs6st nulls, labeled with neural marker 
anti-horseradish peroxidase (HRP; red) and anti-Heartless (Htl; green). Merged 
images show the Htl FGF receptor tightly localized at synaptic boutons. (B) 
Quantification of Htl mean fluorescence intensity levels normalized to HRP co-
label and the genetic control. Sample sizes are ≥7 animals per indicated 
genotypes. Statistically significant differences calculated using student's t-test. 
N.S. indicates no significant difference. Error bars indicate S.E.M. 
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The anterograde Wg signal drives dFrizzled-2 (dFz2) receptor 

internalization in the postsynaptic domain followed by cleavage of the receptor C-

terminus, which then enters the muscle nuclei (Mathew et al., 2005). The muscle-

derived retrograde Gbb signal activates presynaptic receptors to drive 

phosphorylation of the Mothers Against Decapentaplegic (Mad) transcription 

factor, and then P-Mad enters the motor neuron nuclei to regulate transcription 

(McCabe et al., 2003; Keshishian and Kim, 2004; Kim  G., 2010). Given the 

differential change in both HSPG co-receptor and Wg/Gbb ligand abundance in 

sulf1 vs. hs6st mutants, we hypothesized that these signaling pathways would be 

differentially affected during synaptogenesis. We therefore quantitatively assayed 

the paired muscle and motor neuron nuclear import pathways to determine 

whether and how trans-synaptic signaling may be modulated by sulf1 and hs6st 

at the NMJ synapse. 

Characterized antibodies specifically recognizing the N- and C-termini of 

the WgdFz2 receptor allow measurements of the receptor at the NMJ synapse 

(dFz2N; Fig. 17) and the cleaved fragment (dFz2C; Fig. 18) imported into muscle 

nuclei (Mathew et al., 2005; Mosca and Schwarz, 2010). We first assayed dFz2 

receptor abundance at the NMJ with the N-terminal specific antibody. The dFz2 

receptor is closely associated with the synaptic cell membrane marker FasII and 

occupies a domain that envelopes all type Ib boutons (Fig. 17).  In hs6st nulls, 

the dFz2 receptor domain was spatially extended as compared to controls, 

however sulf1 alleles showed no detectable change in the receptor. Likewise, 

fluorescence intensity measurements showed no significant difference between 
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control and sulf1 nulls, but hs6st null synapses displayed a ~25% increase in 

dFz2 receptor abundance, a very significant elevation (p<0.01, n=12; Suppl. Fig. 

17B) in synaptic dFz2 abundance. Thus, importantly (see Discussion), 

significantly more dFz2 receptors occur in the hs6st null compared to sulf1 null 

synapse.  

To assay downstream signal transduction, the cleaved Fz2C fragment 

imported into muscle nuclei was quantified using the established method of 

counting dFz2C-positive punctae in nuclei proximal to the NMJ (Fig. 18) (Mosca 

and Schwarz, 2010) [59]. In genetic control (w1118), most muscle nuclei contained 

a small number (1-3) of detectable dFz2C punctae, but some nuclei contained 

more and others were devoid of detectable dFz2C (Fig. 18A, top). More than 100 

muscle nuclei were quantified in >7 different animals to determine the control 

level of dFz2C nuclear import. In sulf1 and hs6st mutants, there was a clear and 

consistent bidirectional difference in the number and size of dFz2C punctae in 

muscle nuclei (Fig. 18A, middle and bottom). Null sulf1 nuclei showed a highly 

significant decrease in number of dFz2C punctae per nuclei (>50% decreased; 

p<0.01; n=163; Fig. 18B). In contrast, hs6st nulls had an opposing highly 

significant increase in dFz2C punctae per nuclei (>60% increased; p<0.01; 

n=163; Fig. 18B). The difference between sulf1 and hs6st null mutants was very 

highly significant (p<0.001), with a differential change in signaling paralleling the 

bidirectional change in synaptic functional differentiation (Fig. 7). A characterized 

antibody specifically recognizing phosphorylated Mad (P-Mad) allowed 

independent measurements of Gbb signaling in the presynaptic terminal and  
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Figure 17. Synaptic Frizzled-2 receptor levels in sulf1 and hs6st nulls. 
Frizzled-2 receptor N-terminus (dFz2-N) specific antibody shows localized 
expression surrounding synaptic boutons at the NMJ. (A) Representative 
wandering third instar NMJ images from muscle 6 in segment A3 for control 
(w1118), sulf1 and hs6st null mutants, double-labeled with presynaptic neural 
marker anti-Fasciclin II (FasII, red) and dFz2-N (green). Right: dFz2-N shown 
alone for clarity. (B) Quantification of dFz2-N mean fluorescence intensity for the 
indicated genotypes, normalized to the genetic control. Sample sizes are ≥12 
animals per genotype. Statistically significant differences calculated using 
student's t-test, ** p<0.01. Error bars indicate S.E.M. 
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Figure 18. Loss of sulf1 and hs6st causes opposite effects on WNT 
signaling. (A) Representative images of muscle nuclei from control (w1118), sulf1 
and hs6st nulls, labeled with nuclear marker propidium iodide (PI, red) and for 
the C-terminus of the Wingless receptor Frizzled 2 (dFz2-C, green). Arrows 
indicate punctate dFz2-C nuclear labeling. Nuclei shown from muscle 6 in 
segment A3. (B) Quantification of the number of dFz2-C punctae per nuclei, 
normalized to genetic control. The total number of nuclei analyzed is indicated in 
each column; 119 for control (w1118) and 163 nuclei each for sulf1 and hs6st null 
mutants. Sample sizes are ≥9 animals per indicated genotypes. Statistically 
significant differences calculated using student's t-test; ** p<0.01 *** p<0.001. 
Error bars indicate S.E.M. 
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P-Mad import into the motor neuron nuclei as a transcriptional regulator (Fig. 19) 

(Persson et al., 1998; McCabe et al., 2003). To assay this transduction pathway, 

P-Mad fluorescent intensity normalized to FasII was first assayed in presynaptic 

boutons (Higashi-Kovtun et al., 2010; Nahm et al., 2010). In the genetic control 

(w1118), P-Mad labeling was bounded by the synaptic cell adhesion molecule 

marker FasII, with P-Mad localized in numerous punctate domains (Fig. 19A, 

arrows). In sulf1 and hs6st nulls, both the intensity and size of P-Mad positive 

punctae were obviously and consistently greater than in controls (Fig. 19A, 

middle and bottom). In fluorescence intensity quantification, sulf1 null synapses 

displayed a significant increase in synaptic P-Mad (45% increased; p<0.05; 

n=10; Fig. 19C). An increase in P-Mad was also observed in the hs6st null 

boutons (42% greater than control; p<0.01; n=15; Fig. 19C). The motor neuron 

nuclei at the ventral nerve cord (VNC) midline accumulate P-Mad transcription 

factor downstream of Gbb signaling at the NMJ (McCabe et al., 2003; Higashi-

Kovtun et al., 2010; Nahm et al., 2010). In genetic control (w1118), P-Mad nuclear 

labeling was consistently detected in these motor neuron nuclei (Fig. 19B, 

arrows). A similar P-Mad distribution was observed in motor neuron nuclei of 

sulf1 and hs6st nulls, but the intensity of P-mad expression was clearly and 

consistently elevated in both mutants compared to control (Fig. 19B, middle and 

bottom). In fluorescence intensity quantification, sulf1 null neuronal nuclei 

displayed a very significant increase in P-Mad accumulation (15% increased; 

p<0.01; n=14; Fig. 19D), paralleling increased P-Mad signaling at the NMJ (Fig. 

19C). Likewise, hs6st null motoneuron nuclei  
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Figure 19. Loss of sulf1 and hs6st causes differential effects on BMP 
signaling. (A) Representative NMJ synaptic boutons on muscle 6 in segment A3 
from control (w1118), sulf1 and hs6st nulls, labeled with neural marker anti-
Fasciclin II (FasII, red) and for phosphorylated Mothers against decapentaplegic 
(P-Mad; green) activated downstream of Gbb signaling. Arrows indicate 
representative P-Mad punctae in the indicated genotypes. (B) Representative 
ventral nerve cord (VNC) midlines from the same 3 genotypes, labeled with anti-
FasII (red) and P-Mad (green). Labeled motor neuron nuclei are indicated by 
arrows. Quantification of the mean fluorescent intensity level of P-Mad labeling 
normalized to FasII co-label at the NMJ synapse (C) and in motor neuron nuclei 
(D), normalized to genetic control. Sample sizes are ≥14 animals per indicated 
genotypes. Statistically significant differences calculated using the Mann-Whitney 
test for non-parametric data, * p<0.05, ** p<0.01. Error bars indicate S.E.M. 
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exhibited a smaller but still significant elevation in P-Mad accumulation (9% 

elevated over control; p<0.05; n=21; Fig. 19D), again paralleling the observed P-

Mad signaling change at the NMJ (Fig. 19C). We conclude that both anterograde 

WNT (Wg) and retrograde BMP (Gbb) trans-synaptic signaling in muscle and 

motor neuron nuclei, respectively, is differentially regulated by the sulf1 and 

hs6st HSPG sulfation mechanism. 

Trans-synaptic WNT/BMP signals genetically interact with sulf1 and hs6st 

nulls 

In the sulf1 and hs6st nulls we identified a bi-directional change in 

synaptic functional differentiation, measured as evoked junction current 

amplitudes increased in sulf1 and decreased in hs6st null synapses (Fig. 7). We 

therefore hypothesized that these functional changes are driven by the 

differential Wg and Gbb trans-synaptic signaling defects characterized above in 

sulf1 and hs6st mutants (Figs. 12, 14, 19). We reasoned that correcting Wg and 

Gbb levels in sulf1 and hs6st nulls should restore neurotransmission to control 

levels. To test this hypothesis, we crossed heterozygous wg/+ and gbb/+ mutants 

into both sulf1 and hs6st homozygous null backgrounds, both singly and in 

combination, and compared them to both positive and negative controls. The 

resulting 9 genotypes were all assayed with TEVC electrophysiology to compare 

EJC transmission strength. A summary of these data is given in Figure 20. 

Representative transmission records are shown as an average of 10 consecutive 

EJC responses (1.0 mM extracellular Ca2+) for the genotypes in Figure 20A, with 

quantification of mean peak amplitudes in all genotypes shown in Figure 20B. 
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First testing sulf1 nulls, we examined the consequences of heterozygous genetic 

reduction of Wg and Gbb, alone and in combination. Compared to the elevated 

EJC amplitude of the sulf1 null condition (381.28 ±1 62.24 nA, p<0.01, n=9; Fig. 

20B), genetic reduction of Wg (wg/+; sulf1/sulf1) caused very significantly 

reduced transmission, similar to genetic reduction of Gbb  (gbb/+; sulf1/sulf1) 

with a comparable effect, restoring EJC amplitude to control levels (267.16 ± 

16.33, p<0.01, n=9; Fig. 20B). Combinatorial genetic reduction of both Wg and 

Gbb in the sulf1 null (wg/gbb;sulf1/sulf1) similarly returned EJC amplitudes to 

control levels (278.78 ± 23.17, n=7; Fig. 20B). Secondly testing hs6st nulls, 

genetic reduction of either Wg or Gbb alone was not sufficient to significantly 

change the depressed synaptic function (Fig. 20B). In this case, combinatorial 

genetic reduction of both Wg and Gbb in the hs6st null (wg/gbb;hs6st/hs6st) was 

required to raise the depressed EJC amplitude, a very significant increase back 

to control levels (272.98 ± 18.58, p<0.01, n=8; Fig. 20B). Therefore, we conclude 

that combinatorial Wg and Gbb trans-synaptic signaling defects are causative for 

the observed bi-directional effects on synaptic functional differentiation in the 

sulf1 and hs6st null mutant conditions.  

The sulf1 and hs6st mechanism regulates pre- and postsynaptic 

differentiation 

The consequence of WNT (Wg) and BMP (Gbb) trans-synaptic signaling 

is nuclear import and transcriptional regulation in both synaptic partner cells 

(Packard et al., 2003; Salinas, 2003). We therefore hypothesized that sulf1 and 

hs6st null mutants would show bidirectional changes in pre- and postsynaptic  
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Figure 20. WNT and BMP signals genetically interact with sulf1 and hs6st 
nulls. Genetic reduction of Wg and Gbb levels in sulf1 and hs6st homozygous 
conditions restore EJC amplitudes to control levels. (A) Representative excitatory 
junctional current (EJC) traces from control (w1118), homozygous sulf1Δ1 null, 
heterozygous wg/+ and gbb/+ in sulf1 null background (wgI-12/gbb2; 
sulf1Δ1/sulf1Δ1), homozygous hs6std770 null and heterozygous wg/+ and gbb/+ in 
hs6st null background (wgI-12/gbb2; hs6std770/hs6std770). The nerve was stimulated 
(arrows) in 1.0 mM external Ca2+, and TEVC records (−60 mV holding potential) 
made from muscle 6 in segment A3. Each trace was averaged from 10 
consecutive evoked EJC recordings. (B) Quantified mean EJC amplitudes (nA) 
for the nine genotypes shown. Sample sizes are ≥7 animals per indicated 
genotype. Statistically significant differences calculated using student's t-test, * 
p<0.05, ** p<0.01. Error bars indicate S.E.M. 
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molecular components that would explain the bidirectional change in synaptic 

functional differentiation (Figs. 8 and 21). To test this hypothesis, we examined a 

key component of the presynaptic active zone (Bruchpilot; Brp) (Wagh et al., 

2006), and an essential subunit of the postsynaptic glutamate receptor (Bad 

Reception (Brec); GluRIID) (Featherstone et al., 2005). In parallel, we also 

performed a miniature EJC (mEJC) analysis to compare functional presynaptic 

vesicle release probability and postsynaptic response amplitude. A summary of 

these data is shown in Figure 21. 

First, NMJ synapses were double-labeled for GluRIID recognized with 

anti-Brec (green) and Brp recognized with anti-nc82 (red) to compare genetic 

control (w1118) with sulf1 and hs6st nulls (Fig. 21A). We found that GluRIID was 

very significantly elevated at sulf1 synapses compared to control (~30% 

increased; p<0.01, n=20; Fig. 21B). In the opposing direction, hs6st null 

synapses showed a significant decrease in GluRIID abundance (~15% reduced; 

p<0.05, n=21; Fig. 21B). The GluRIID field area per bouton and number of 

GluRIID punctae normalized to field area per synaptic bouton were also 

bidirectionally altered in the sulf1 and hs6st nulls (Fig. 21C,D). GluRIID receptor 

field area was increased in sulf1 (~30% greater; p<0.01, n=47) but decreased in 

hs6st (~25% reduced; p<0.01, n=51). Conversely, measurements of GluRIID 

puncta normalized to field area per synaptic bouton were decreased in sulf1 

(~15% lower; p<0.05, n=47), but increased in hs6st nulls (~40% greater; p<0.01, 

n=51, Fig. 21D). The bi-directional differences between sulf1 and hs6st were very 

highly significant (p<0.001). The active zone protein Brp also showed opposite  



102 

 

 

Figure 21. Bi-directional effects of sulf1 and hs6st nulls on synaptic 
assembly. (A) Representative NMJ boutons from control (w1118), sulf1 and hs6st 
null genotypes, labeled for postsynaptic Bad Reception (Brec) glutamate receptor 
IID subunit (GluRIID, green) and presynaptic active zone Bruchpilot (anti-nc82, 
red). Quantification of GluRIID mean fluorescent intensity (≥18 animals per 
indicated genotype) (B), GluRIID field area (≥40 boutons from ≥9 animals per 
indicated genotype) (C), and GluRIID punctae number per synaptic bouton (≥40 
boutons from ≥9 animals per indicated genotype) (D), all normalized to genetic 
control. (E) Representative mEJC traces from control (w1118), sulf1Δ1 and 
hs6std770 null alleles. Quantified mean mEJC amplitude (nA) (F), mean mEJC 
frequency (Hz) (G) and mean quantal content (H), with genetic control levels 
indicated as a dotted red line in each case. Sample sizes ≥15 recordings per 
indicated genotype. Statistically significant differences calculated using student's 
t-test or Mann-Whitney test for non-parametric data and indicated as, * p<0.05, ** 
p<0.01, *** p<0.001. Error bars indicate S.E.M. 
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effects (Fig. 21A). Although the difference between sulf1 null and control was not 

quite significant (p>0.05, n=20), hs6st null synapses showed a very significant 

decrease in Brp compared to control (~20% reduced; p<0.01, n=21; Fig. 21A).  

Based on these results, we next tested pre- (Brp) and postsynaptic 

(Brec/GluRIID) changes in sulf1 and hs6st mutants with genetic reduction of Wg 

and Gbb (wg/ gbb;sulf1/sulf1 and wg/gbb;hs6st/hs6st), as in Figure 21. 

Distribution changes of both pre- and postsynaptic components were assayed as 

measurements of glutamate receptor field and active zone areas (Fig. 22). To 

measure glutamate receptor distribution comparing wg/gbb;sulf1/sulf1 to 

matched control, we counted the number of GluRIID punctae per bouton (p=0.73, 

n=48; Fig. 22B) and GluRIID area (p=0.92, n=48; Fig. 22C), and found both 

corrected back to control levels. Likewise, for wg/gbb;hs6st/hs6st compared to 

control, GluRIID puncta number (p=0.88, n=48) and area (p=0.41, n=58) were 

both corrected to control levels. To measure Brp-positive presynaptic active 

zones comparing wg/gbb;sulf1/sulf1 to matched control, we counted the number 

of Brp punctae per bouton (p=0.43, n=48; Suppl. Fig. 22D) and Brp area (p=0.39, 

n=48; Suppl. Fig. 22E), and found both corrected back to control levels. Likewise, 

for wg/gbb;hs6st/hs6st compared to control, Brp number (p=0.54, n=58) and 

area(p=0.19, n=58) were also corrected back to control levels. These results 

provide strong genetic evidence that Wg and Gbb trans-synaptic signaling 

changes are causative for the pre- and postsynaptic molecular differentiation 

defects in the sulf1 and hs6st null mutants. These bidirectional pre- and 

postsynaptic molecular changes parallel functional transmission changes in sulf1  
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Figure 22. Wg and Gbb signals genetically interact with sulf1 and hs6st 
nulls. Genetic reduction of Wg and Gbb levels in sulf1 and hs6st homozygous 
conditions restores molecular synaptic assembly to control levels. (A) 
Representative NMJ boutons from control (w1118), heterozygous wg/+ and gbb/+ 
in sulf1 null background (wgI-12/gbb2; sulf1Δ1/sulf1Δ1) and hs6st null background 
(wgI-12/gbb2; hs6std770/hs6std770) labeled for postsynaptic Bad Reception (Brec) 
glutamate receptor IID subunit (GluRIID, green) and presynaptic active zone 
Bruchpilot (anti-nc82, red). Quantification of GluRIID punctae/bouton (B), total 
GluRIID area (C), Brp punctae/bouton (D) and total Brp area (E), all normalized 
to the genetic control. All multiply mutant conditions are restored to control levels 
for all parameters, with no significant differences remaining. 



105 

 

and hs6st mutants (Fig. 21). To assay function at the single synapse level, we 

finally assayed spontaneous synaptic vesicle fusion events. Representative 

mEJC traces for control compared to sulf1 and hs6st nulls are shown in Figure 

21E. Consistent with observed bidirectional changes in evoked transmission, 

mEJC amplitudes in hs6st were ~25% lower than in sulf1 nulls (hs6st, 0.60 ± 

0.02 nA vs. sulf1, 0.76 ± 0.05 nA; p<0.5, n=34; Fig. 21F). Moreover, hs6st nulls 

had a ~100% elevated mEJC frequency compared to sulf1 nulls (hs6st, 2.56 ± 

0.27 vs. sulf1, 1.30 ± 0.09; p<0.001, n=34; Fig. 21G). Based on these mEJC 

measurements, there was a highly significant bidirectional change in quantal 

content between the two mutant conditions, with sulf1 quantal content ~50% 

greater than hs6st (sulf1, 539.98 ± 22.02 vs. hs6st, 350.69 ± 8.92;  p<0.001, 

n=34; Fig. 21H). Taken together, these results show a bi-directional change in 

presynaptic glutamate release machinery and vesicle fusion probability, as well 

as postsynaptic glutamate receptor levels and functional responsiveness. We 

conclude that these changes underlie the bi-directional switch in 

neurotransmission strength characterizing sulf1 and hs6st mutants. 

Discussion 

It is well known that synaptic interfaces harbor heavily-glycosylated membrane 

proteins, glycolipids and ECM molecules, but understanding of glycan-mediated 

mechanisms within this synaptomatrix is limited (Dani and Broadie, 2012). Our 

genomic screen aimed to systematically interrogate glycan roles in both 

structural and functional development in the genetically-tractable Drosophila NMJ 

synapse. 130 candidate genes were screened, classified into 8 functional 
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families: N-glycan biosynthesis, O-glycan biosynthesis, GAG biosynthesis, 

glycoprotein/proteoglycan core proteins, glycan modifying/degrading enzymes, 

glycosyltransferases, sugar transporters and glycan-binding lectins. From this 

screen, 103 RNAi knockdown conditions were larval viable, whereas 27 others 

produced early developmental lethality. 35 genes had statistically significant 

effects on different measures of morphological development: 27 RNAi-mediated 

knockdowns increased synaptic bouton number, 9 affected synapse area (2 

increased, 7 decreased) and 2 genes increased synaptic branch number. These 

data suggest that overall glycan mechanisms predominantly serve to limit 

synaptic morphogenesis. 13 genes had significant effects on the functional 

differentiation of the synapse, with 12 increasing transmission strength and only 

1 decreasing function upon RNAi knockdown. Thus, glycan-mediated 

mechanisms also predominantly limit synaptic functional development. A very 

small fraction of tested genes (CG1597; pgant35A, CG7480; veg, CG6657; 

hs6st, CG4451; sulf1, CG6725 and CG11874) had effects on both morphology 

and function. A large percentage of genes (~30%) showed morphological defects 

with no corresponding effect on function, while only 7% of genes showed 

functional alterations without morphological defects, and <5% of all genes affect 

both. These results suggest that glycans have clearly separable roles in 

modulating morphological and functional development of the NMJ synapse.  

A growing list of neurological disorders linked to the synapse are attributed to 

dysfunctional glycan mechanisms, including muscular dystrophies, cognitive 

impairment and autism spectrum disorders (Inlow and Restifo, 2004; Muntoni et 
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al., 2008; Schachter, 2009). Drosophila homologs of glycosylation genes 

implicated in neural disease states include ALG3 (CG4084), ALG6 (CG5091), 

DPM1 (CG10166), FUCT1 (CG9620), GCS1 (CG1597), MGAT2 (CG7921), 

MPDU1 (CG3792), PMI (CG33718) and PPM2 (CG12151) (Inlow and Restifo, 

2004). Two of these genes, Gfr (CG9620) and CG1597, showed synaptic 

morphology phenotypes in our RNAi screen. Given that connectivity defects are 

clearly implicated in cognitive impairment and autism spectrum disorders 

(Belmonte et al., 2004; Gatto and Broadie, 2011), it would be of interest to 

explore the glycan mechanism affecting synapse morphology in Drosophila 

models of these disease states. Glycans are well known to modulate extracellular 

signaling, including ligands of integrin receptors, to regulate intercellular 

communication (Zhang et al., 2008, 2010). In our genetic screen, several O-

glycosyltransferases mediating this mechanism were identified to show 

morphological (GalNAc-T2, CG6394; pgant35A, CG7480, O-fut2, CG14789; 

rumi, CG31152) and functional (pgant5, CG31651; pgant35A, CG7480) synaptic 

defects upon RNAi knockdown. These findings suggest that known integrin-

mediated signaling pathways controlling NMJ synaptic structural and functional 

development (Beumer et al., 1999, 2002; Rohrbough et al., 2000; Rushton et al., 

2009) are modulated by glycan mechanisms. Our screen showed CG6657 RNAi 

knockdown affects functional differentiation, consistent with reports that this gene 

regulates peripheral nervous system development (Prokopenko et al., 2000). The 

corroboration of our screen results with published reports underscores the utility 

of RNAi-mediated screening to identify glycan mechanisms, and supports use of 
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our screen results for bioinformatic/meta-analysis to link observed phenotypes to 

neurophysiological/pathological disease states and to direct future glycan 

mechanism studies at the synapse. 

From our screen, the two functionally-paired genes sulf1 and hs6st were 

selected for further characterization. As in the RNAi screen, null alleles of these 

two genes had opposite effects on synaptic functional differentiation but similar 

effects on synapse morphogenesis, validating the corresponding screen results. 

The two gene products have functionally-paired roles; Hs6st is a heparan sulfate 

(HS) 6-O-sulfotransferase (Kamimura et al., 2001), and Sulf1 is a HS 6-O-

endosulfatase (Dhoot et al., 2001). These activities control sulfation of the same 

C6 on the repeated glucosamine moiety in HS GAG chains found on heparan 

sulfate proteoglycans (HSPGs). At the Drosophila NMJ, two HSPGs are known 

to regulate synapse assembly; the GPI-anchored glypican Dally-like protein 

(Dlp), and the transmembrane Syndecan (Sdc) (Johnson et al., 2006). In 

contrast, the secreted HSPG Perlecan (Trol) is not detectably enriched at the 

NMJ (Morin et al., 2001), and indeed appears to be selectively excluded from the 

perisynaptic domain. In other developmental contexts, the membrane HSPGs 

Dlp and Sdc are known to act as co-receptors for WNT and BMP ligands, 

regulating ligand abundance, presentation to cognate receptors and therefore 

signaling (Yan et al., 2009; Dejima et al., 2011). Importantly, the regulation of 

HSPG co-receptor abundance has been shown to be dependent on sulfation 

state mediated by extracellular sulfatases (Lai et al., 2008). Consistently, we 

observed upregulation of Dlp and Sdc in sulf1 null synapses, whereas Dlp was 
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reduced in hs6st null synapses. In the developing Drosophila wing disc, HSPG 

co-receptors increase levels of the Wg ligand due to extracellular stabilization 

(Han et al., 2005), and the primary function of Dlp in this developmental context 

is to retain Wg at the cell surface (Yan and Lin, 2009). Likewise, in developing 

Drosophila embryos, a significant fraction of Wg ligand is retained on the cell 

surfaces in a HSPG-dependent manner (Pfeiffer et al., 2002), with the HSPG 

acting as an extracellular co-receptor. Syndecan also modulates ligand-

dependent activation of cell-surface receptors by acting as a co-receptor (Carey, 

1997; Dejima et al., 2011). At the NMJ, regulation of both these HSPG co-

receptors occurs in the closely juxtaposed region between presynaptic bouton 

and muscle subsynaptic reticulum, in the exact same extracellular space 

traversed by the secreted trans-synaptic Wg and Gbb signals (Johnson et al., 

2006). We therefore proposed that altered Dlp and Sdc HSPG co-receptors in 

sulf1 and hs6st mutants differentially trap/stabilize Wg and Gbb trans-synaptic 

signals at the interface between motor neuron and muscle, to modulate the 

extent and efficacy of intercellular signaling driving synaptic development. 

HS sulfation modification is linked to modulating the intercellular signaling 

driving neuronal differentiation (Gorsi and Stringer, 2007). In particular, WNT and 

BMP ligands are both regulated via HS sulfation of their extracellular co-

receptors, and both signals have multiple functions directing neuronal 

differentiation, including synaptogenesis (Packard et al., 2003; Salinas, 2003; 

Marques, 2005). In the Drosophila wing disc, extracellular WNT (Wg) ligand 

abundance and distribution was recently shown to be strongly elevated in sulf1 
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null mutants (Kleinschmit et al., 2010). Moreover, sulf1 has also recently been 

shown to modulate BMP signaling in other cellular contexts (Otsuki et al., 2010). 

Consistently, we have shown here increased WNT Wg and the BMP Gbb 

abundance and distribution in sulf1 null NMJ synapses. The hs6st null also 

exhibits elevated Wg and Gbb at the synaptic interface, albeit the increase is 

lower and results in differential signaling consequences. In support of this 

contrasting effect, extracellular signaling ligands are known to bind HSPG HS 

chains differentially dependent on specific sulfation patterns (Baeg and Perrimon, 

2000; Baeg et al., 2001; Mohammadi et al., 2005). It is important to note that the 

sulf1 and hs6st modulation of trans-synaptic signals is not universal, as Jelly 

Belly (Jeb) ligand abundance and distribution was not altered in the sulf1 and 

hs6st null conditions (Rohrbough  K. et al., 2010). This indicates that discrete 

classes of secreted trans-synaptic molecules are modulated by distinct glycan 

mechanisms to control NMJ structure and function. 

At the Drosophila NMJ, Wg is very well characterized as an anterograde 

trans-synaptic signal (Packard et al., 2002; Ataman et al., 2006a; Korkut and 

Budnik, 2009) and Gbb is very well characterized as a retrograde trans-synaptic 

signal (Marques et al., 2002; McCabe et al., 2003; Keshishian and Kim, 2004; 

Marques, 2005). In Wg signaling, the dFz2 receptor is internalized upon Wg 

binding and then cleaved so that the dFz2-C fragment is imported into muscle 

nuclei (Mathew et al., 2005; Ataman et al., 2006a; Mosca and Schwarz, 2010). In 

hs6st nulls, increased Wg ligand abundance at the synaptic terminal corresponds 

to an increase in dFz2C punctae in muscle nuclei as expected. In contrast, the 
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increase in Wg at the sulf1 null synapse did not correspond to an increase in the 

dFz2C-terminus nuclear internalization, but rather a significant decrease. One 

explanation for this apparent discrepancy is the ‘exchange factor’ model based 

on the biphasic ability of the HSPG co-receptor Dlp to modulate Wg signaling 

(Yan et al., 2009). In the Drosophila wing disc, this model suggests that the 

transition of Dlp co-receptor from an activator to repressor of signaling depends 

on Wg cognate receptor dFz2 levels, such that a low ratio of Dlp:dFz2 

potentiates Wg-dFz2 interaction, whereas a high ratio of Dlp:dFz2 prevents dFz2 

from capturing Wg (Yan et al., 2009). In sulf1 null synapses, we observe a very 

great increase in Dlp abundance (~40% elevated) with no significant change in 

the dFz2 receptor. In contrast, at hs6st null synapses there is a decrease in Dlp 

abundance (15% decreased) together with a significant increase in dFz2 receptor 

abundance (~25% elevated). Thus, the higher Dlp:dFz2 ratio in sulf1 nulls could 

explain the decrease in Wg signal activation, evidenced by decreased dFz2-C 

terminus import into the muscle nucleus. In contrast, the Dlp:Fz2 ratio in hs6st is 

much lower, supporting activation of the dFz2-C terminus nuclear internalization 

pathway. This previously proposed competitive binding mechanism dependent 

on Dlp co-receptor and dFz2 receptor ratios predicts the observed synaptic Wg 

signaling pathway modulation in sulf1 and hs6st dependent manner (Yan et al., 

2009). 

At the Drosophila NMJ, Gbb is very well characterized as a retrograde 

trans-synaptic signal, with muscle-derived Gbb causing the receptor complex 

Wishful thinking (Wit), Thickveins (Tkv) and Saxophone (Sax) to induce 
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phosphorylation of the transcription factor mothers against Mothers against 

decapentaplegic (P-Mad) (Wharton et al., 1999; McCabe et al., 2003; Keshishian 

and Kim, 2004). Mutation of Gbb ligand, receptors or regulators of this pathway 

have shown that Gbb-mediated retrograde signaling is required for proper 

synaptic differentiation and functional development (Marques et al., 2002; 

McCabe et al., 2003, 2004; Rawson et al., 2003). Further, loss of Gbb signaling 

results in significantly decreased levels of P-Mad in the motor neurons (McCabe 

et al., 2003). We show here that accumulation of Gbb in sulf1 and hs6st null 

synapses causes elevated P-Mad signaling at the synapse and P-Mad 

accumulation in motor neuron nuclei. Importantly, sulf1 null synapses show a 

significantly higher level of P-Mad signaling compared to hs6st null synapses, 

and this same change is proportionally found in P-Mad accumulation within the 

motor neuron nuclei. These findings indicate differential activation of Gbb trans-

synaptic signaling dependent on the HS sulfation state controlled by the sulf1 

and hs6st mechanism, similar to the differential effect observed on Wg trans-

synaptic signaling. Our genetic interaction studies show that these differential 

effects on trans-synaptic signaling have functional consequences, and exert a 

causative action on the observed bi-directional functional differentiation 

phenotypes in sulf1 and hs6st nulls. Genetic correction of Wg and Gbb defects in 

the sulf1 null background restores elevated transmission back to control levels. 

Similarly, genetic correction of Wg and Gbb in hs6st nulls restores the decreased 

transmission strength back to control levels. These results demonstrate that the 
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Wg and Gbb trans-synaptic signaling pathways are differentially regulated and, in 

combination, induce opposite effects on synaptic differentiation.  

Both Wg and Gbb pathway mutants display disorganized and mislocalized 

presynaptic components at the active zone (e.g. Bruchpilot; Brp) and 

postsynaptic components including glutamate receptors (e.g. Bad reception; 

Brec/GluRIID) (Aberle et al., 2002; Marques et al., 2002; Packard et al., 2002). 

Consistently, the bi-directional effects on neurotransmission strength in sulf1 and 

hs6st mutants are paralleled by dysregulation of these same synaptic 

components. Changes in presynaptic Brp and postsynaptic GluR 

abundance/distribution causally explain the bi-directional effects on synaptic 

functional strength between sulf1 and hs6st null mutant states. Alterations in 

active zone Brp and postsynaptic GluRs also agree with assessment of 

spontaneous synaptic activity. Null sulf1 and hs6st synapses showed opposite 

effects on miniature evoked junctional current (mEJC) frequency (presynaptic 

component) and amplitude (postsynaptic component). Further, quantal content 

measurements also support the observation of bidirectional synaptic function in 

the two functionally paired nulls. Genetic correction of Wg and Gbb defects in 

both sulf1 and hs6st nulls restores the molecular composition of the pre- and 

postsynaptic compartments back to wildtype levels. When both trans-synaptic 

signaling pathways are considered together, these data suggest that HSPG 

sulfate modification under the control of functionally-paired sulf1 and hs6st jointly 

regulates both WNT and BMP trans-synaptic signaling pathways in a differential 

manner to modulate synaptic functional development on both sides of the cleft. 
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We present here the first systematic investigation of glycan roles in the 

modulation of synaptic structural and functional development. We have identified 

a host of glycan-related genes that are important for modulating neuromuscular 

synaptogenesis, and these genes are now available for future investigations, to 

determine mechanistic requirements at the synapse, and to explore links to 

neurological disorders. As proof for the utilization of these screen results, this 

study has identified extracellular heparan sulfate modification as a critical 

platform of the intersection for two secreted trans-synaptic signals, and 

differential control of their downstream signaling pathways that drive synaptic 

development. Other trans-synaptic signaling pathways are independent and 

unaffected by this mechanism, although it is of course possible that a larger 

assortment of signals could be modulated by this or similar mechanisms. This 

study supports the core hypothesis that the extracellular space of the synaptic 

interface, the heavily-glycosylated synaptomatrix, forms a domain where glycans 

coordinately mediate regulation of trans-synaptic pathways to modulate 

synaptogenesis and subsequent functional maturation. 

Materials and Methods 

Drosophila stocks and genetics 

The glycan-related gene collection was generated using the KEGG glycan 

databases and Flybase annotation. The 163 UAS-RNAi lines tested were 

obtained from the Vienna Drosophila RNAi Center (VDRC) and Harvard TRiP 

collection. Transgenic UAS-RNAi males were crossed to GAL4 driver females, 
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with progeny raised at 25°C on standard food, controlling for density (3 ♀ 

crossed to 2 ♂). The UH1-GAL4 driver was used for ubiquitous knockdown of 

target gene expression (Rohrbough et al., 2007). Neural specific elav-GAL4 (Lin 

and Goodman, 1994a), muscle specific 24B-GAL4 (Brand and Perrimon, 1993) 

and glia specific repo-GAL4 lines (Sepp et al., 2001) from Bloomington stock 

center were used to assay cell-targeted knockdown. The two sulf1 null alleles 

used were sulf1∆1 (You et al., 2011) and sulf1∆P1 (Kamimura et al., 2001). The 

two hs6st null alleles used were hs6std770 and the deficiency Df(3R)ED6027 

(Kamimura et al., 2006). The wg allele wgI-12 (Marie et al., 2010) and gbb alleles 

gbb1 and gbb2 were used (Wharton et al., 1999; McCabe et al., 2003). Multiply 

mutant animals were made using standard genetic crosses. The trol-GFP line 

was obtained from Flytrap (Morin et al., 2001).  

Antibody production 

We generated a rabbit polyclonal anti-Gbb antibody using a 1:1 combination of 

two Gbb-specific peptides (SHHRSKRSASHP, NDENVNLKKYRNMIVKSC) 

corresponding to amino acids 319-330 and 435-452 of Gbb (Young-In Frontier, 

Seoul, Korea). The antibody was purified by Protein A affinity chromatography, 

and antibody specificity demonstrated by examining immunoreactivity in the 

wandering third instar neuromusculature with gbb mutants and by expressing 

UAS-gbb9.1 under the control of the muscle driver BG57-GAL4 (Figure 23). 

Immunoreactivity in the wandering third instar neuromusculature was severely 

reduced in a strong hypomorphic gbb allele (gbb1/gbb2, UAS-gbb9.9), which has 

leaky expression of UAS-gbb9.9 in a null allelic combination [25,87,95]. In sharp 
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contrast, the anti-Gbb signal was strongly elevated in BG57-GAL4/UAS-gbb9.1 

relative to wildtype larvae. 

Immunocytochemistry 

Wandering third instars were dissected in Ca2+-free saline and then immediately 

fixed in either 4% paraformaldehyde for 10 minutes (all labels except anti-Dlp) or 

Bouin’s fixative for 30 mins (anti-Dlp). Preparations were then washed in 

permeabilizing PBST (PBS + 0.1% Triton-X) or detergent-free PBS for 

extracellular labeling only (Rushton et al., 2009) . The following primary 

antibodies were used: rabbit or goat anti-HRP (1:250; Jackson ImmunoResearch 

Laboratories); mouse anti-DLG (4F3; 1:250; Developmental Studies Hybridoma 

Bank (DSHB)); mouse anti–Fasciclin II (1D4; 1:5; DSHB); mouse anti-Dlp (13G8, 

1:5; DSHB) and rabbit anti-Syndecan (1:200) (Spring et al., 1994); mouse anti-

Wg (4D4; 1:2 DSHB) and rabbit anti-Gbb (1:100); rabbit anti-PcanV (1:1000) 

(Friedrich et al., 2000) guinea pig anti-Jeb (1:100) (Rohrbough  K. et al., 2010); 

rabbit anti-dFz2-C (1:500) and rabbit anti-dFz2-N (1:100) (Mathew et al., 2005); 

rabbit anti-Htl (1:100) (Shishido et al., 1997); rabbit anti-P-Mad (PS1; 1:1000) 

(Persson et al., 1998); rabbit anti-GluRIID (1:500) (Featherstone et al., 2005) and 

mouse anti-BRP (1:100; DSHB). Primary antibodies were incubated at 4°C 

overnight. Alexa-conjugated secondary antibodies (Jackson ImmunoResearch 

Laboratories) were used at 1:250 dilutions for 2 hours at room temperature. 

Staining with propidium iodide (Sigma Aldrich) to visualize cell nuclei was done at 

1:100 dilution of 1 mg/ml propidium iodide incubated for 30 minutes at room 

temperature.  
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Imaging quantification 

Images were taken with on an upright Zeiss LSM 510 META laser-scanning 

confocal using a Plan Apo 63X oil objective. For structural quantification, 

including NMJ synapse branch number, bouton number and area, preparations 

were double-labeled with anti-HRP and anti-DLG, with counts made at muscle 4 

in segment A3. For nuclear import studies, nuclei were identified by propidium 

iodide staining with fluorescent punctae counted and intensity quantified [59]. For 

synaptic functional protein quantitation, glutamate receptor and Brp punctae were 

quantified for muscle 4, segment 3. Glutamate receptor number and field area 

was quantified in consecutive boutons of >3µm diameter. All preparations were 

fixed, stained and processed simultaneously to allow for intensity comparisons. 

All analyses were done with ImageJ software (National Institutes of Health) using 

the threshold function to outline areas and Z-stacks made using the maximum 

projection function. Statistics were done with one-way ANOVA analysis followed 

by Dunnett’s post-test. All analyses were done blind to genotypes during all 

stages of experimentation and analysis. All figure images were projected in LSM 

Image Examiner (Zeiss) and exported to Adobe photoshop. 

Heparin treatment 

Stock solution of heparin (Sigma, H3393) in 1XPBS was prepared and serially 

diluted to obtain concentrations (e.g. 0.625, 0.315 and 0.156 mg/ml). Dissected 

wandering third instar larvae were incubated with these heparin concentrations 

for 5 minutes at RT, followed by a 1 minute wash with 1XPBS and then 10 
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minute fix with 4% paraformaldehyde in 1XPBS. After fixation, anti-Wg or anti-

Gbb antibodies were used as above with appropriate secondary antibodies. 

Processed animals were analyzed for changes in intensity measurements as 

above in the image quantification section. All fluorescence intensity 

measurements were compared to preparations treated identically with only 

1XPBS and no heparin, and the processed simultaneously for immunolabeling, 

microscopy and quantification.   

Electrophysiology 

Two-electrode voltage-clamp (TEVC) records were made from the wandering 

third instar NMJ as previously described (Beumer et al., 1999). In brief, staged 

control, mutant and transgenic RNAi animals were secured on sylgard-coated 

coverslips with surgical glue (liquid suture), dissected longitudinally along the 

dorsal midline, and glued flat. The segmental nerves were cut near the base of 

the ventral nerve cord. Recording was performed in 128 mM NaCl, 2 mM KCl, 4 

mM MgCl2, 1.0 mM CaCl2, 70 mM sucrose, and 5 mM Hepes. Recording 

electrodes (1-mm outer diameter capillaries; World Precision Instruments) were 

filled with 3 M KCl and had resistances of >15 MΩ. Spontaneous mEJCs were 

collected using continuous (gap-free) recording and evoked EJC recordings were 

made from the voltage-clamped (Vhold = −60 mV) muscle 6 in segment A3 with a 

TEVC amplifier (Axoclamp 200B; MDS Analytical Technologies). The cut 

segmental nerve was stimulated with a glass suction electrode at a 

suprathreshold voltage level (50% above baseline threshold value) for a duration 

of 0.5 ms. Records were made with 0.2 Hz nerve stimulation in episodic 
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acquisition setting and analyzed with Clampex software (version 7.0; Axon 

Instruments). Each n=1 represents a recording from a different animal. Statistical 

comparisons were performed using student’s t-test or the Mann-Whitney test for 

non-parametric data.  
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Abstract  

Using a Drosophila whole-genome transgenic RNAi screen for glycogenes 

regulating synapse function, we have identified two protein α-N-

acetylgalactosaminyltransferases (pgant3 and pgant35A) that regulate synaptic 

O-linked glycosylation (GalNAcα1-O-S/T). Loss of either pgant alone elevates 

pre-/postsynaptic molecular assembly and evoked neurotransmission strength, 

but synapses appear restored to normal in double mutants. Likewise, activity-

dependent facilitation, augmentation and post-tetanic potentiation are all 

suppressively impaired in pgant mutants. In non-neuronal contexts, pgant 

function regulates integrin signaling, and we show here that the synaptic αPS2 

integrin receptor and transmembrane tenascin ligand (ten-m) are both 

suppressively down-regulated in pgant mutants. Channelrhodopsin-driven activity 

rapidly (<1 minute) drives integrin signaling in wildtype synapses, but is 

suppressively abolished in pgant mutants. Optogenetic stimulation in pgant 

mutants alters presynaptic vesicle trafficking and postsynaptic pocket size during 

the perturbed integrin signaling underlying synaptic plasticity defects. Critically, 

acute blockade of integrin signaling acts synergistically with pgant mutants to 

eliminate all activity-dependent synaptic plasticity. 
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Introduction  

The heavily glycosylated transmembrane and extracellular synaptomatrix 

at the synaptic interface plays pivotal roles in synaptogenesis, neurotransmission 

and synaptic plasticity (Dityatev and Schachner, 2003; Broadie et al., 2011; Dani 

and Broadie, 2012). Neurological disease states arising from aberrant 

glycosylation occur in numerous congenital disorders of glycosylation (CDGs) 

and dystroglycanopathies (Freeze, 2006). However, the mechanisms by which 

synaptomatrix glycan modifications regulate normal synapse function and 

dysfunction in heritable disease states remain poorly understood (Ohtsubo and 

Marth, 2006). Drosophila is a powerful genetic model to pursue these synaptic 

glycan mechanisms, given the conservation of glycan pathways, reduced 

glycogene genomic redundancy in this system, and host of techniques available 

at the well-characterized glutamatergic neuromuscular synapse (Keshishian et 

al., 1996; Gagneux and Varki, 1999). Using this model, we have recently shown 

that endogenous glycan-binding lectin (mind the gap; Rushton et al., 2009), 

heparan sulfate proteoglycan (HSPG) modifiers (sulf1/hs6st; Dani et al., 2012) 

and N-linked glycosylation (mgat1; Parkinson et al., 2013) glycan mechanisms all 

act as potent regulators of trans-synaptic integrin, WNT and BMP signaling.  

         To systematically pursue synaptic glycan mechanisms, we undertook a 

Drosophila whole-genome screen of glycogenes using RNAi-mediated 

knockdown of all N-/O-/glycosaminoglycan-linked enzymes, glycosaminoglycans, 

glycosyltransferases and glycan-binding lectins, characterizing effects on NMJ 

structure and function using confocal microscopy and two-electrode voltage-
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clamp electrophysiology, respectively (Dani et al., 2012). This screen identified 

two α-N-acetylgalactosaminyltransferases, pgant3 and pgant35A, which catalyze 

transfer of GalNAc monosaccharides onto serine/threonine residues (GalNAcα1-

O-S/T) to form Tn antigens, as found within mucin-like O-linked glycans (Ten 

Hagen et al., 2003a). This most complexly regulated glycosylation is orchestrated 

by multiple GalNAc‐transferases (12 pgants in Drosophila) with distinct and 

overlapping peptide specificities (Yoshida et al., 2008; Tran and Ten Hagen, 

2013). Pursuing our screen results with well-characterized pgant3 and pgant35A 

loss-of-function mutants (see Methods), we found elevated synaptic O-linked 

glycosylation, pre-/postsynaptic molecular assembly, pre-/postsynaptic 

ultrastructural elaborations and neurotransmission strength, which are all 

corrected in double mutants that show none of these synaptic defects, identifying 

a novel suppressive genetic interaction. 

In non-neuronal tissues, Drosophila pgants regulate integrin signaling and 

intercellular adhesion (Zhang and Ten Hagen, 2011). Importantly, we have 

shown position specific (PS) integrins, localized both pre- and postsynaptically, 

regulate NMJ morphogenesis (Beumer et al., 1999), synaptic 

scaffold/synaptomatrix adhesion molecules (Beumer et al., 2002), functional 

differentiation (Rohrbough et al., 2007) and activity-dependent plasticity 

(Rohrbough et al., 2000). We therefore hypothesized that pgants regulate 

integrin signaling at the synapse, and consistently find suppressive down-

regulation of αPS2-containing integrin receptors (Beumer et al., 1999), RGD-

containing tenascin (ten-m) ligand (Mosca et al., 2012), and postsynaptic 
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membrane adhesion defects in pgant mutants. Furthermore, we find integrin- and 

activity-dependent functional synaptic plasticity is suppressively (reciprocal 

suppression) regulated in pgant mutants. Importantly, we find that 

channelrhodopsin activity stimulation (Wang et al., 2011) disrupts downstream 

integrin association with talin and pFAK signaling, and elevates postsynaptic 

membrane adhesion defects. RGD peptide blockade of integrin function 

synergistically abolishes all activity-dependent synaptic plasticity in pgant 

mutants. These data show two pgants suppressively regulate synaptic O-GalNAc 

glycosylation, synapse molecular assembly, neurotransmission strength and 

activity-dependent plasticity via trans-synaptic integrin-tenascin signaling. 

 

Materials and Methods 

Drosophila genetics 

All stocks were maintained at 25°C on standard food. Two independent mutant 

alleles isolated by EMS mutagenesis were employed for pgant3; 1) pgant3m1, a 

C>T transition changing conserved arginine to cysteine at amino acid 130 

resulting in failure to glycosylate substrates in enzymatic activity tests, and 2) 

pgant3m2, a G>A transition that creates a stop codon at amino acid 609, thereby 

deleting the C-terminal 59 amino acids and resulting in an unstable protein 

(Zhang et al., 2010). Similarly, the pgant35A mutations used were 1) 

pgant35AHG8, a C>T transition at nucleotide 265 resulting in a glutamine to stop 

codon change at amino acid 89, and 2) pgant35A3775, a T>A transversion at 

nucleotide 584 resulting in a premature stop codon at amino acid 195, both fully 
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eliminating the catalytic domain (Ten Hagen and Tran, 2002). All mutants were 

placed in the w1118 genetic background, and w1118 was therefore used as the 

wildtype control. Rescue and overexpression experiments were performed with 

UAS-pgant3 and UAS-pgant35A (Zhang et al., 2008) wildtype transgenes driven 

by neural (elav-gal4) (Lin and Goodman, 1994a), muscle (24B-gal4) (Brand and 

Perrimon, 1993) and ubiquitous (UH1-gal4) (Wodarz et al., 1995) drivers. 

Standard genetic techniques were used to generate recombinant and multiply 

mutant animals. Optogenetic studies were performed with the UAS-ChIEF-

tdTomato channelrhodopsin transgene (Wang et al., 2011) driven by the neural-

specific elav-gal4 driver in animals raised on 0.25 mM ATR (all-trans retinal; 

Sigma) supplemented food. Animals used for experimentation were of either sex. 

Immunocytochemistry 

Wandering third instars were dissected in Ca2+-free saline and then fixed in 4% 

paraformaldehyde for 10 mins. Preparations were then washed in either 

permeabilizing PBST (PBS+0.1% Triton-X) or detergent-free PBS for 

extracellular labeling (Rushton et al., 2009). O-GalNAc glycans were visualized 

with TRITC-conjugated VVA (1:250; EY Laboratories) and HPL (1:250; 

Invitrogen) lectins (Chia et al., 2014) . Mouse antibodies obtained from the 

Developmental Studies Hybridoma Bank (DSHB) included: anti-βPS (1:500), 

anti-αPS1 (1:200), anti-αPS2 (1:500), anti-scab (1:200), anti-talin (1:10) and anti-

DLG (4F3; 1:250). Other sourced primary antibodies included: mouse anti-Ten-m 

(1:3000) (Levine et al., 1994), mouse anti-Tig (1:200) (Fogerty et al., 1994), 

guinea pig anti-LanA (1:200) (Inoue and Hayashi, 2007), rat anti-Tsp (1:200) 
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(Subramanian et al., 2007), rabbit Wb-N (1:500) (Martin et al., 1999a),  rabbit 

anti-βν (1:300) (Yee and Hynes, 1993) and rabbit anti-pFAK (pY397; 1:50; 

Invitrogen). All antibodies were incubated at 4°C overnight. Alexa-conjugated 

Fluor 647-goat anti-HRP and secondary antibodies (Jackson ImmunoResearch 

Laboratories) were incubated at 1:250 for 2 hours at RT.  

Image quantification 

Control and mutant preparations for antibody and lectin studies were processed 

simultaneously for all intensity comparisons (Dani et al., 2012). To allow for direct 

comparisons of signal intensity levels, all genotypes were dissected, fixed, 

labeled and imaged in parallel at the same time, with identical confocal settings 

and intensity measurements also made at the same time for all compared 

genotypes. Imaging was done on an upright Zeiss LSM 510 META laser-

scanning confocal using a Plan Apo 63x oil objective. NMJ structural 

quantification was done with anti-HRP imaging at muscle 6/7 in segment A3. All 

intensity analyses were done with ImageJ software (NIH) using the threshold 

function to outline Z-stack areas with the maximum projection function. All 

statistical comparisons were performed with one-way ANOVA analysis followed 

by Dunnett’s or Dunn’s post-test for non-parametric data using Instat Graphpad 

software. All data are presented as mean ± SEM. All images were projected in 

LSM Image Examiner (Zeiss) and exported to Adobe Photoshop. 

Electrophysiology 

Two-electrode voltage-clamp (TEVC) records were made from NMJs of paired 

control and mutant wandering third instars as reported previously (Beumer et al., 
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1999). Briefly, recordings were performed in 128 mM NaCl, 2 mM KCl, 4 mM 

MgCl2, 1.0 mM CaCl2, 70 mM sucrose, and 5 mM Hepes saline (PH 7.1). 

Recording electrodes (1-mm outer diameter capillaries; World Precision 

Instruments) filled with 3M KCl had resistances of >15 MΩ. Evoked excitatory 

junction currents (EJCs) were recorded at 18oC using episodic recording from 

voltage-clamped (Vhold: −60 mV) muscle 6 in segment A3 with a TEVC amplifier 

(Axoclamp 2B; Axon). Excitatory junctional potentials (EJPs) were also recorded 

in parallel. Segmental nerves were stimulated with a glass suction electrode at a 

suprathreshold voltage (50% above threshold) for 0.5 ms duration at 0.5 Hz. For 

synaptic plasticity studies, the nerve was stimulated at 10 Hz for 60 seconds in 

0.2 mM CaCl2 saline (Rohrbough et al., 2000). EJCs were acquired via Clampex 

(Axon) and analyzed using Clampfit 9.0 by averaging 10 (during initial/PTP) to 20 

(during tetanus) consecutive responses. Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) 

integrin inhibition and Gly-Arg-Ala-Asp-Ser-Pro (GRADSP) control peptides 

(Sigma) were used at 0.2 mM, incubated for 1 hour at 18oC. Statistical 

comparisons were done using one-way ANOVA analysis followed by Dunnett’s 

post-test with Instat Graphpad software. Each N=1 represents a recording from a 

different animal. All data are presented as mean ± SEM. 

Electron microscopy 

Ultrastructural analyses were performed as reported previously 

(Beumer et al., 1999). Briefly, staged third instar preparations were fixed in 1.6% 

paraformaldehyde/2% glutaraldehyde (20 mins), washed in 1XPBS (10 mins) 

and transferred to 2.5% glutaraldehyde in cacodylate buffer (12 hrs) with washes 



128 

 

in the same buffer (30 mins). Preparations were postfixed in 1% OsO4 in 

cacodylate buffer (2 hrs) and then dehydrated in an ethanol series followed by 

propylene oxide (30 mins). Segment A3 muscle 6/7 was dissected free of the 

preparations and separately embedded in araldite resin. Ultrathin (40 nm) 

sections were cut using a Leica ultracut UCT 54 ultramicrotome and then 

transferred to formvar-coated slot grids. Sections were imaged using a Phillips 

CM10 transmission Electron Microscopy at 80 kV, with images collected on a 4 

megapixel CCD camera. Sample sizes are >10 independent NMJs, with the 

statistical analyses calculated using unpaired t-tests. Images acquired from AMT 

Image Capture Software were exported to Adobe Photoshop. All data are 

presented as mean ± SEM. 

Optogenetics 

Wandering third instars were dissected in 0.2 mM Ca2+ saline on Sylgard-coated 

plates with the nervous system kept intact. An LEDD1B LED driver, M470L2 

mounted LED at 470nm affixed with LA1951-A lens was used to stimulate 

channelrhodopsin activity (Gruntman and Turner, 2013).  Preparations were 

subjected to a 60 sec train of light stimulation at 10 Hz, with a pulse duration of 

60 ms, followed by immediate fixation and processing during continual 

stimulation, using the methods described above. >8 independent NMJs were 

analyzed for each genotype and condition, with statistical tests for activity-

dependent changes in fluorescence intensity and ultrastructure performed as 

described above in the immunocytochemistry and electron microscopy sections.  

 



129 

 

Results   

Pgants regulate synapse composition and transmission strength 

          An unbiased genetic screen of glycogenes identified synaptic function 

defects using inducible RNAi-mediated down regulation of two pgants (pgant3 

and pgant35A). This screen tested 130 glycan-related genes defined in 8 

function categories: N-glycan, O-glycan and glycosaminoglycan biosynthesis; 

glycosyltransferases, glycan degrading/ modifying enzymes; glycoprotein and 

proteoglycan core proteins; sugar transporters and glycan-binding lectins. Using 

a combination of confocal microscopy and two-electrode voltage-clamp (TEVC) 

electropyhysiology, NMJ morphology and functional transmission defects were 

tested in Drosophila wandering third instar larvae following ubiquitous (UH1-gal4) 

RNAi knockdown. From this screen, 31 genes affected synapse structure (27 

increased bouton number, 2 increased branching and 2 increased NMJ area) 

and 13 affected synapse function (12 increased and 1 decreased). Only 6 gene 

knockdowns affected both structure and function. To investigate mucin-type O-

linked glycosylation, 9 available RNAi lines were used to test 6 pgant genes 

(pgant2, pgant3, pgant4, pgant5, pgant6 and pgant35A) and 3 additional GalNAc 

transferases (GalNAcT-1, GalNAcT-2 and C1GalTA). Of these, 3 pgant genes 

(pgant3, pgant5 and pgant35A) were identified to have increased 

neurotransmission strength upon knockdown, and GalNAc-T2 showed increased 

NMJ area. The other 5 gene knockdowns caused no detectable NMJ 

phenotypes. Well-characterized mutants are available for only pgant3 and 

pgant35A (see Methods), which have been extensively studied in heteroallelic 
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null combinations (Ten Hagen and Tran, 2002; Zhang et al., 2010). In this study, 

we pursued a full characterization of these two pgant genes using the same 

conditions.  

          To characterize synaptic mechanisms in pgant3 and pgant35A null single 

and double mutant larvae, we performed nerve-evoked excitatory junction current 

(EJC) recordings in the TEVC paradigm (Dani et al., 2012). Sample traces of 10 

consecutive, superimposed responses are shown for 4 genotypes; the genetic 

background control (w1118), pgant3 (pgant3m1/pgant3m2) and pgant35A 

(pgant35AHG8/pgant35A3775) single mutants in w1118 background, and the double 

null mutant (pgant3m1,pgant35AHG8/ pgant3m2,pgant35A3775). Neurotransmission 

is clearly and consistently elevated in both pgant mutants, increased 25-40% 

compared to controls (Fig. 23A). Quantification of mean EJC amplitudes shows 

that synapse strength is very significantly elevated in both pgant3 

(255.46±8.12nA, n=26, p<0.001) and pgant35A (277.62±11.88nA, n=22, 

p<0.001) single mutants compared to control (198.73±7.77nA, n=17; Fig.24A, 

right). Surprisingly, however, neurotransmission in the recombinant double null 

mutant is not significantly elevated compared to control (231.64±7.24nA, n=21, 

p>0.05; Fig.24A. right), which behaves like the control. Thus, a similar phenotype 

occurs in the two pgant single mutants, which is absent in the double mutant. We 

use the term ‘suppression’ throughout this study, as the simplest genetic term 

describing the observed interaction.  Importantly, there is a synaptic function 

defect only, with no differences in NMJ morphology in either of the pgant 

mutants. In quantifying synaptic branching, neither pgant3 (5.00±0.28 decrease, 
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Figure 23. Null pgant mutants suppressively elevate neurotransmission 
strength. (A) Representative evoked excitatory junction current (EJC) records 
from genetic control (w1118), pgant3 (pgant3m1/pgant3m2) and pgant35A 
(pgant35AHG8/pgant35A3775) single mutants, and double mutants 
(pgant3m1,pgant35AHG8/pgant3m2,pgant35A3775). Ten consecutive EJCs traces 
shown at 0.2 Hz stimulation from the muscle 6 NMJ in segment A3. Scale bar 
indicates EJC amplitude (50nA, Y-axis) and time (10ms, X-axis). Right: 
Histogram of mean EJC amplitudes, with sample sizes >17 for each genotype. 
(B) Representative NMJ boutons for the above four genotypes labeled for 
postsynaptic glutamate receptors (GluRIID, green) and presynaptic active zone 
Bruchpilot (Brp, red), with split channels shown for clarity. White arrows indicate 
GluRIID/Brp paired punctae in single mutants. Scale bar: 2µm. (C) Quantification 
of GluRIID/Brp areas and punctae number per NMJ terminal. Statistical 
differences are calculated using one-way ANOVA with Dunnett’s post-test; 
*p<0.05, **p<0.01, ***p<0.001, N.S. indicates no significance.  
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n=28) or pgant35A (5.79±0.26 n=24) single mutants, or the double mutants 

(6.26±0.41, n=23) showed any significant difference from controls (5.58±0.22, 

n=26). Likewise, NMJ bouton number is also not significantly affected in pgant3 

(90.89±4.25, n=28) or pgant35A (92.29±5.78, n=24) single mutants or double 

mutants (77.46±4.18, n=24) compared to controls (85.96±4.18, n=28). This 

finding was the first discovery of the suppressive action of pgant genes on 

synapse function.  

To begin to determine how pgant co-repressive regulation arises at the 

synapse, we labeled NMJs for presynaptic active zones with Bruchpilot (Brp), 

and postsynaptic glutamate receptors (GluRIID), marking the two sides of each 

individual synapse (Fig.24B). There is a clear and consistent increase in 

Brp/GluRIID punctae in both pgant3 and pgant35A single mutants, indicating a 

co-operative change on both pre- and postsynaptic sides of the synapse. 

Importantly, however, the double null mutant does not show any detectable 

increase in either synaptic marker (Fig. 23B). Quantification reveals significantly 

increased glutamate receptor field area and punctae number in pgant3 

(82.59±6.77µm2 (p<0.05) and 358.0±16.20 (p<0.01); n=14) and pgant35A 

(81.02±6.95µm2 and 302.73±15.61; n=15, p<0.05) single mutants, but with no 

differences in the double mutants in either parameter compared to controls 

(61.03±3.99µm2 and 233.25±12.33, n=16; Fig.24C). Likewise, presynaptic Brp 

active zone area and punctae number are increased at pgant3 (54.80±4.80µm2 

and 357.46±18.89; n=13, p<0.05) and pgant35A (52.96±4.30µm2 and 

305.4±14.86; n=15, p<0.05) single mutants, with no differences in 
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pgant3,pgant35A double mutants compared to controls (38.56±3.03µm2 and 

242±31.22; n=16; Fig. 23C). Both pgant mutants show no significant change in 

spontaneous miniature EJC (mEJC) frequencies (pgant3, 2.29±0.17Hz, n=10; 

pgant35A, 2.06±0.11Hz, n=9) compared to control (1.93±0.13Hz, n=10), but do 

show small, significant decreases in mEJC amplitudes (pgant3, 0.68±0.03nA, 

n=10, p<0.05; pgant35A, 0.69±0.03nA, n=9; p<0.05) compared to control 

(0.80±0.02nA, n=10). These results show that pgant3 and pgant35A both up-

regulate neurotransmission strength through elevated pre- and postsynaptic 

assembly via a mutually suppressive mechanism that predominantly impacts 

evoked function. 

Pgants regulate presynaptic vesicles and postsynaptic pocket size 

The synaptic ultrastructure of the Drosophila NMJ has been well 

characterized by transmission electron microscopy (TEM), categorizing multiple 

synaptic vesicle (SV) pools in the presynaptic bouton and the complex 

architecture of the expansive sub-synaptic reticulum (SSR) of the postsynaptic 

membrane (Rohrbough et al., 2007). As no gross morphology differences were 

associated with observed neurotransmission elevations in pgant mutants, we 

next investigated synapse ultrastructure. On the presynaptic side, we measured 

bouton area, active zone architecture, overall SV density and SV distribution in 

concentric rings (e.g. 250 nm, 500 nm) extending from each active zone (Fig. 

24A,B; white arrows). On the postsynaptic side, we assayed SSR area, thickness 

on major and minor axes, density (folds/unit length) and postsynaptic pocket  
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Figure 24. Null pgant mutants suppressively alter pre/postsynaptic 
ultrastructure. (A) Representative transmission electron microscopy (TEM) 
images of synaptic boutons from muscle 6 NMJ in segment A3 of genetic control 
(w1118, top), pgant3 (pgant3m1/pgant3m2) and pgant35A 
(pgant35AHG8/pgant35A3775) single mutants (middle), and double mutants 
(pgant3m1,pgant35AHG8/3775/pgant3m2,pgant35A3775, bottom). Labels indicate 
synaptic vesicle (SV) pools in presynaptic bouton, subsynaptic reticulum (SSR) 
of muscle membrane, and presynaptic active zones (arrowheads). Scale: 500nm.  
(B) High magnification images of single active zone synapses in all four 
genotypes. Labels indicate presynaptic t-bars (arrowheads) and postsynaptic 
pockets (white dotted lines). Scale: 100nm. (C) Quantification of SV pools (<250 
nm (top), <500 nm (middle) from active zone t-bar) and postsynaptic pocket 
depth (bottom). Sample size >10 boutons for each of the four genotypes. 
Statistical differences calculated using one-way ANOVA with Dunnett’s post-test; 
*p<0.05, **p<0.01, N.S. indicates no significance.  
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(PSP) size by measuring the distance from presynaptic active zone to the first 

SSR membrane layer (Fig. 24A,B; dotted white lines). Expansion of the 

postsynaptic pocket is a hallmark of mutants defective in synaptomatrix resident, 

trans-synaptic signaling ligands (Packard et al., 2002) and heparan sulfate 

proteoglycan (HSPG) extracellular regulators of trans-synaptic signaling 

(Kamimura et al., 2013). 

Presynaptic bouton appearance (Fig. 24A) and area in both pgant mutants 

(pgant3, 7.53±0.85 µm2, n=10 pgant35A, 7.76±0.80 µm2, n=12,) are not 

significantly different from the genetic control (w1118, 9.51±1.78 µm2, n=7), 

although there is a trend towards smaller boutons. Likewise, active zone 

architecture and t-bar dimensions are not measurably affected by loss of pgant 

activity (Fig. 24B). In contrast, the density and distribution of SV pools is clearly 

aberrant in both pgant single mutants, although the double null mutant is not 

detectably different from the control (Fig. 24A,B). Immediately adjacent to active 

zone t-bars (Fig. 24B, arrows), SV clustering is increased in both pgant single 

mutants, but not in the double mutant combination. Quantifying SV number within 

250 nm of the t-bar shows a consistent density in controls (10.5±0.91), which is 

significantly increased in both pgant3 (15.22±0.99, p<0.01) and pgant35A 

(15.53±0.78, p<0.01) single mutants, but back at control level in double null 

mutants (9.4±0.67; n=15; Fig. 24C, top). Likewise, at a distance of 500 nm from 

the active zone t-bar, SV number increases in pgant3 (36.3±1.66, p<0.01) and 

pgant35A (43.31±1.21, p<0.01) single mutants, but not in double mutants 

(26.06±1.44, n=15) compared to controls (26±2.18; Fig. 24C, middle). Thus, 
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presynaptic vesicle pool distribution is suppressively regulated by pgant3 and 

pgant35A, in line with changes in synaptic function. 

Postsynaptic SSR appearance, area, thickness and density are normal in 

all pgant mutants (Fig. 24A). Quantification of SSR area (pgant3, 1.26±0.16; 

pgant35A, 1.13±0.17; pgant3,pgant35A, 1.09±0.17), thickness (pgant3, 

1.12±0.10; pgant35A, 0.84±0.08; pgant3,pgant35A, 0.80±0.07) and density 

(pgant3, 0.83±0.05; pgant35A,1.10±0.08; pgant3,pgant35A, 1.11±0.08) all show 

no significant changes normalized to controls (Fig. 24A). In contrast, however, 

there is a striking expansion in both pgant mutants of the postsynaptic pocket 

(PSP) (Packard et al., 2002; Kamimura et al., 2013). This compartment has been 

defined as “a postsynaptic area immediately apposed to an active zone 

containing amorphous material” (Packard et al., 2002), which is spatially 

localized between postsynaptic membrane and SSR (Ren et al., 2009). The PSP 

compartment has been shown to be expanded in trans-synaptic signaling 

disrupted mutants including WNT wingless (wg), BMP glass bottom boat (gbb), 

HSPG perlecan (trol) and HSPG sulfateless (sfl) mutants (Packard et al., 2002; 

Tian and Ten Hagen, 2007; Ren et al., 2009; Nahm et al., 2010; Kamimura et al., 

2013).  Both pgant3 and pgant35A single mutants similarly display an enlarged 

PSP compartment, although the double null mutant is not detectably different 

from the control (Fig. 24B; dotted white lines). As a quantifiable PSP parameter, 

pocket depth from presynaptic active zone to the next adjacent postsynaptic SSR 

membrane was measured in all four genotypes. Compared to controls (mean 

PSP depth 121.17±4.95nm, n=10), both pgant single mutants display a >2-fold 
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expanded PSP (pgant3, 254.7±35.25nm, p<0.01; pgant35A, 233.96±41.83nm, 

p<0.05) (Fig. 24B,C bottom). In sharp contrast, the double null mutants show no 

significant increase in PSP depth compared to controls (169.09±15.46nm; n=12; 

Fig. 24C, bottom). Thus, we observe suppressive regulation by pgant genes of 

SV pools in the presynaptic compartment as well as postsynaptic compartment 

expansion, paralleling the changes in neurotransmission strength. 

Neuronal and muscle pgant3 and pgant35A modulate neurotransmission  

To determine cell-specific requirements of pgant3 and pgant35A, we used 

the inducible Gal4-UAS binary system (Brand and Perrimon, 1993) to express 

UAS-pgant3 or UAS-pgant35A wildtype transgenes in neurons (elav-gal4) or 

muscles (24B-gal4) in respective single mutant backgrounds, and assayed for 

phenotype rescue (Fig. 25). Sample EJC traces show an average of 10 

consecutive nerve-evoked responses for both rescue conditions in both pgant 

nulls (Fig. 25A). We find that functional neurotransmission strength is restored to 

control levels when pgant3 is expressed in either neurons (pgant3m1/pgant3m2; 

UAS-pgant3/elav, 181.61±11.85 nA, n=14) or muscles (pgant3m1/pgant3m2; UAS-

pgant3/24B, 187.47±12.72 nA, n=11) in the otherwise pgant3 null background, as 

compared to controls (w1118, 193.34±8.69 nA, n=14; Fig. 25C, top panel). 

Similarly, pgant35A expression in neurons (pgant35AHG8/pgant35A3775; UAS-

pgant35A/elav, 197.50±14.26 nA, n=9) or muscles (pgant35AHG8/pgant35A3775; 

UAS-pgant35A/24B, 211.42±17.06 nA, n=10) in the pgant35A mutant 

background likewise rescues neurotransmission strength to control level (Fig. 
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Figure 25. Pgants function in neurons and muscle to regulate 
neurotransmission. (A) Representative evoked junctional current (EJC) records 
from genetic control (w1118), pgant3 mutant with neuronal (pgant3m1/pgant3m2; 
UAS-pgant3/elav) and muscle (pgant3m1/pgant3m2; UAS-pgant3/24B) pgant3 
expression, pgant35A mutant with neuronal (pgant35AHG8/pgant35A3775; UAS-
pgant35A/elav) and muscle (pgant35AHG8/pgant35A3775; UAS-pgant35A/24B) 
pgant35A expression. 10 consecutive EJC traces are shown at 0.2 Hz 
stimulation from the muscle 6 NMJ in segment A3. Scale bar indicates EJC 
amplitude (50 nA, Y-axis) and time (10 ms, X-axis). Sample size n≥8 animals for 
all conditions. (B) Representative NMJ boutons for the above five genotypes co-
labeled for both postsynaptic glutamate receptors (GluRIID, green) and 
presynaptic active zone Bruchpilot (Brp, red), with split channels shown for 
clarity. Scale bar: 2µm. (C) Histograms show normalized EJC amplitude, punctae 
number and GluRIID/Brp area per NMJ terminal for the above five genotypes. 
Sample size n≥10 animals for all conditions. Statistical differences are calculated 
using one-way ANOVA with Dunnett’s post-test. N.S. indicates no significance.   
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25C, top panel).  

To test if this functional rescue correlates with corrected synaptic 

molecular assembly, NMJs were labeled for presynaptic Brp and postsynaptic 

GluRIID (Fig.26B). Brp punctae number in pgant3 neuronal (392.56±22.86, n=9) 

or muscle (321.13±17.84, n=15) rescue conditions, as well as pgant35A neuronal 

(340±25.63, n=8) or muscle (409.58±27.71, n=12) rescue conditions, does not 

differ significantly from control (358.84±18, n=19; Fig. 25B,C). Similarly, GluRIID 

punctae number is also restored to control levels (360.73±19.16, n=19), with 

pgant3 neuronal (395.89±23.95, n=9) or muscle (327.6±18.22, n=15) rescue, as 

well as pgant35A neuronal (336±24.71, n=8) or muscle (414.17±26.98, n=12) 

rescue. The same result is reflected in Brp area measurements, where pgant3 

neuronal (85.67±6.78, n=10) or muscle (75.66±7.99, n=15) rescue, as well as 

pgant35A neuronal (79.12±8.23 µm2, n=10) or muscle (88.80±8.29 µm2, n=12) 

rescue is similar to control values (74.35±4.69 µm2, n=18; Fig. 25B,C). Similarly, 

postsynaptic GluRIID area measurements in pgant3 neuronal (173.75±10.38 

µm2, n=10) or muscle (142.47±10.80 µm2, n=15) rescue, as well as pgant35A 

neuronal (155.61±9.97 µm2, n=10) or muscle (156.99±11.89 µm2, n=12) rescue, 

are not significantly different from control (148.20±7.01 µm2, n=18; Fig. 25C). 

These results show that both pgant3 and pgant35A can function either pre- or 

postsynaptically to regulate synaptic assembly and neurotransmission strength.  

Pre-/postsynaptic balance of pgant3 and pgant35A regulate 

neurotransmission  

Given the pgant suppressive mechanism and coupled pre/postsynaptic roles of 
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pgant3 and pgant35A, we next tested whether the balance of pgant3 and 

pgant35A is required to properly regulate neurotransmission. We generated 

allelic combinations for UAS-pgant3 wildtype transgene expression in neurons 

(elav-gal4), muscles (24B-gal4) or ubiquitously (UH1-gal4) in the 

pgant3,pgant35A double mutant background, and tested effects on 

neurotransmission strength. Representative EJC traces for each genotype are 

shown in Fig. 26A. Compared to the control mean EJC amplitude 

(pgant3m1,pgant35AHG8/pgant3m2,pgant35A3775; UAS-pgant3/+, 211.42±11.94 nA, 

n=8), neuronal (pgant3m1,pgant35AHG8/pgant3m2,pgant35A3775; elav/UAS-pgant3, 

258.99±9.59 nA, n=9, p<0.05), muscle 

(pgant3m1,pgant35AHG8/pgant3m2,pgant35A3775; 24B/UAS-pgant3, 276.52±11.19 

nA, n=9, p<0.05) as well as ubiquitous 

(pgant3m1,pgant35AHG8/pgant3m2,pgant35A3775; UAS-pgant3/UH1+, 

254.47±13.59 nA, n=13, p<0.05) pgant3 expression in the double mutant 

background, all significantly elevated neurotransmission strength (Fig. 26B). 

Thus, restoring pgant3 to either neuron or muscle effectively reveals the 

pgant35A single mutant phenotype (Fig. 23A).  

In parallel, we overexpressed both pgant genes alone to test the effect on 

neurotransmission strength. Representative EJC traces for each genotype are 

shown in Fig. 26C. As compared to control (UAS-pgant3/+, 205.55±8.77 nA, 

n=22), pgant3 overexpression in neurons (UAS-pgant3/elav, 154.99±11.99 nA, 

n=11 p<0.01), muscles  (pgant3/24B, 165.62±11.13 nA, n=10, p<0.05) or 

ubiquitous (pgant3/UH1, 164.80±9.79 nA, n=10, p<0.05) all similarly decreased 
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Figure 26. Pre/postsynaptic pgant3/35A balance regulates 
neurotransmission. Representative EJC records (A) and mean amplitudes (B) 
for pgant3 expression in the double mutant background. The four genotypes 
include genetic control (pgant3m1,pgant35AHG8/pgant3m2,pgant35A3775;+/UAS-
pgant3), neuronal (pgant3m1, pgant35AHG8/pgant3m2,pgant35A3775;elav/UAS-
pgant3), muscle (pgant3m1,pgant35AHG8/ pgant3m2,pgant35A3775;24B/UAS-
pgant3) and ubiquitous (pgant3m1,pgant35AHG8/ 
pgant3m2,pgant35A3775;UH1+/UAS-pgant3) pgant3 expression in the double 
mutant. Sample size n≥10 animals for all conditions. (C) Representative EJC 
records and (D) mean amplitudes for pgant3 and pgant35A overexpression 
conditions. The eight genotypes include pgant3 genetic control (UAS-pgant3/+), 
neuronal (UAS-pgant3/elav), muscle (UAS-pgant3/24B) and ubiquitous (UAS-
pgant3/UH1) pgant3 overexpression; and pgant35A genetic control (UAS-
pgant35A/+), neuronal (UAS-pgant35A/elav), muscle (UAS-pgant35A/24B) and 
ubiquitous (UAS-pgant35A/UH1) pgant35A overexpression. Sample size ≥10 
animals for each genotype. Statistical differences calculated using one-way 
ANOVA with Dunnett’s post-test; *p<0.05, **p<0.01, N.S. indicates no 
significance.  
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mean EJC amplitudes (Fig 27D, left panel). Likewise, as compared to control  

 (UAS-pgant35A/+, 235.15±10.77 nA, n=19), pgant35A overexpression in 

neurons (UAS-pgant35A/elav, 193.50±13.39 nA, n=18, p<0.05) and ubiquitous 

overexpression (UAS-pgant35A/UH1, 187.52±9.43 nA, n=10, p<0.05) both 

decrease neurotransmission transmission, although muscle overexpression 

alone has no significant effect (UAS-pgant35A/24B, 224.99±8.77 nA, n=20; Fig. 

26D, right panel). Overall, pgant overexpression has the opposite consequence 

of pgant loss of function (Fig. 23A). Thus, the proper balance of pgant3/pgant35A 

in neurons and muscle bidirectionally regulates the strength of synaptic 

transmission. 

Activity-dependent synaptic plasticity is impaired in pgant mutants 

In the non-neuronal context of the Drosophila wing disc, pgant mutants 

specifically impair integrin signaling to cause intercellular de-adhesion (Zhang et 

al., 2010). Similarly, the above synaptic ultrastructure defects in pgant mutants 

recalls synaptic integrin signaling, which we have shown is required for activity-

dependent synaptic plasticity (Rohrbough et al., 2000). We therefore next 

investigated the multiple phases of activity-dependent plasticity in pgant mutants, 

including immediate facilitation and maintained augmentation during a tetanic 

stimulus train (10 Hz, 60 seconds), and initiation and maintenance of post-tetanic 

potentiation (PTP) following return to basal stimulation. In this paradigm, EJCs 

are recorded initially at 0.5 Hz for 30 seconds, followed by the tetanic train, and 

then returned to basal 0.5 Hz for a total of 5 minutes recording (Rohrbough et al., 

2000). Figure 27A shows representative traces for control (w1118), single 



143 

 

 
Figure 27.  Impaired activity-dependent synaptic plasticity in pgant 
mutants. (A) Representative two-electrode voltage-clamp (TEVC) records from 
genetic control (w1118, top), pgant3 (pgant3m1/pgant3m2) and pgant35A 
(pgant35AHG8/pgant35A3775) single mutants (middle two traces), and double 
mutants (pgant3m1, pgant35AHG8/pgant3m2,pgant35A3775, bottom). The stimulation 
paradigm is 0.5 Hz for 30 seconds (solid bar), 10 Hz for 60 seconds (hatched 
bar), and then a return to 0.5 Hz (solid bar) for 5 minutes total recording time. 
Scale bars indicate 20nA (y-axis) and 10s (x-axis). (B) Mean EJC amplitudes 
over time normalized to initial mean EJC amplitude for control (solid circle), 
pgant3 (hollow square) and pgant35A (hollow triangle) single mutants, and 
double mutant (hollow circle). Bars labeled “C” and “D” are expanded below, 
showing normalized EJC amplitudes during tetanic stimulation (C) and early 
post-tetanic stimulation periods (D). Sample sizes >10 independent NMJs for 
each of the four genotypes. Statistical differences calculated using one-way 
ANOVA with Dunnett’s post-test; *p<0.05, **p<0.01, ***p<0.001, N.S. indicates 
no significance.  
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 (pgant3m1/pgant3m2 and pgant35AHG8/pgant35A3775) and double mutants 

(pgant3m1,pgant35AHG8/pgant3m2,pgant35A3775).  

For quantification, consecutive EJCs are averaged throughout the 

stimulation phases to display mean amplitudes normalized to the starting level 

(Fig. 27B). Controls show immediate, rapid facilitation leading to a 6-fold 

augmentation during tetanic stimulation, followed by 2-fold initial PTP phase, 

later maintained as a ~50% elevation for the duration of the recording (Fig. 

27A,B). In contrast, both pgant single mutants show very significantly impaired 

initial facilitation and blunted 4-fold augmentation during tetanic stimulation (Fig. 

27B, solid bar labeled C). For example, at 20 seconds into the tetanic train, EJC 

amplitudes show augmentation decreases of ≤65% in pgant3  (p<0.01, n=10) 

and ≤55% in pgant35A (p<0.01, n=11) mutants. In contrast, the double null 

mutant is clearly less impaired than either single pgant mutant (Fig. 27A,B). At 20 

seconds into the tetanic train, the double mutants exhibit a reduced impairment 

of ≤40% compared to controls (p<0.05, n=11; Fig. 27C). Following this initial 

facilitation phase, double mutants reach control levels of augmentation, whereas 

the single pgant mutants remain impaired (Fig, 28A,B), showing a suppressive 

interaction. Following the tetanic train, potentiation in double mutants is 

indistinguishable from controls, whereas both single mutants (pgant3 and 

pgant35A) show strong loss of PTP initiation (Fig. 27B, solid bar labeled D). 

Quantification shows >50% decrease in pgant3 (p<0.001, n=10) and >35% 

decrease in pgant35A (p<0.05, n=11) single mutants compared to controls, but  

no detectable decrease in the double null mutants (Fig. 27D). Thus, pgant 
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mechanisms regulate activity-dependent facilitation, augmentation and 

potentiation. 

Pgants suppressively regulate integrin signaling  

Synapses sandwich heavily-glycosylated transmembrane and extracellular 

proteins that regulate synaptic function and plasticity (Dani and Broadie, 2012). 

For example, we have previously shown that O-linked heparan sulfate 

glycosaminoglycans bidirectionally regulate WNT and BMP trans-synaptic 

signaling to modulate neurotransmission strength (Dani et al., 2012). To directly 

visualize changes in synaptic O-GalNAc glycosylation in pgant mutants, we used 

fluorescently-conjugated VVA-TRITC and HPL-488 lectins to label NMJ terminals 

(Fig. 28). Non-detergent conditions were used throughout to examine only the 

glycosylation state of the extracellular synaptomatrix (Dani et al., 2012). 

Representative images show the halo-like VVA (Fig. 28A, top left) and HPL (Fig. 

28A, middle left) labeling surrounding the anti-HRP marked synaptic boutons. In 

comparison to controls, O-linked glycan expression is very significantly increased 

in both pgant3 (31.65±5.61%, n=9, p<0.01) and pgant35A (58.50±4.39%, n=14, 

p<0.01) single mutants, however there is no significant change in the double 

mutants (13.54±5.04%, n=6, p>0.05) (Fig. 28B). Similarly, quantified HPL 

labeling is very significantly elevated in both pgant3 (33.13±6.39%, n=21, 

p<0.01) and pgant35A (41.06±7.83%, n=18, p<0.01) single mutants, but no 

significant difference occurs in the double null mutants (7.49±6.85%, n=18, 

p>0.05) compared to controls (Fig. 28B). Thus, two independent approaches 

highlight the suppressive regulation of synaptic O-GalNAc modification by these 
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Figure 28. Synaptomatrix O-glycan and integrin signaling defects in pgant 
mutants. (A) NMJ synaptic boutons from control (w1118, left column), pgant3 
(pgant3m1/pgant3m2) and pgant35A (pgant35AHG8/pgant35A3775) single mutants 
(middle two columns) and the double mutant 
(pgant3m1,pgant35AHG8/pgant3m2,pgant35A3775; right column) show co-labeling 
for synaptic O-linked glycosylation markers (VVA and HPL), integrin receptor 
(αPS2) and transmembrane integrin ligand (ten-m) relative to the presynaptic 

marker anti-HRP. Scale bar: 2 m. (B) Histograms show fluorescence intensities 
for all four labels (VVA, HPL, αPS2 and ten-m) normalized to each genetic 
control (dotted red line). Sample size ≥10 independent NMJs for each label for all 
four genotypes. Statistical differences calculated using one-way ANOVA with 
Dunnett’s post-test; **p<0.01. 
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two pgant genes.  

Studies in non-neuronal tissues have shown that pgant mutants 

misregulate integrin signaling (Zhang et al., 2010). Consistently, we have 

previously identified pre-/postsynaptically localized Position Specific (PS) integrin 

receptors at the Drosophila NMJ, containing multiple different α and β subunits 

(Beumer et al., 1999, 2002; Rohrbough et al., 2000, 2007; Rushton et al., 2009). 

We therefore tested the multiple integrin receptor subunits, including αPS1 

(mew), αPS2 (if), αPS3 (scab/volado), βPS (mys) (Brower et al., 1984) and βv 

(Yee and Hynes, 1993). The two β subunits show an interesting pgant-specific 

change, with βPS increased in pgant35A (1.39±0.08, n=14, p<0.01) and βv 

increased in pgant3 (1.21±0.03, n=18, p<0.05) single mutants, but no significant 

change of either β subunit in the double mutant (βPS, 1.17±0.64, n=10, p>0.05; 

βv, 0.91±0.06, n=10, p>0.05) normalized to control. Most of the α receptor 

subunits show no consistent changes in the pgant mutants, including αPS1 

(pgant3, 1.27±0.07, n=18, pgant35A, 1.10±0.05, n=18) and αPS3 (pgant3, 

1.05±0.02, n=8, pgant35A, 1.15±0.06, n=12; all p>0.05 with respect to control). 

The sole exception is αPS2, which sharply decreases in both pgant3 

(39.19±6.75%, n=10, p<0.01) and pgant35A (34.37±5.69%, n=11, p<0.01) single 

right). We next examined a host of characterized integrin ligands for changes 

in pgant single and double mutants (Zhang and Ten Hagen, 2011), including 

Tiggrin (Fogerty et al., 1994), laminin α subunits LanA (Inoue and Hayashi, 2007) 

and Wing-blister (Wb) (Martin et al., 1999a), Thrombospondin (Tsp) 

(Subramanian et al., 2007) and Tenascin (ten-m) (Levine et al., 1994). Most of 
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these ligands show no consistent changes in pgant single and double mutants as 

compared to control: Tiggrin (pgant3, 1.08±0.05, n=11, pgant35A, 1.03±0.05, 

n=14, pgant3,pgant35A, 1.07±0.03, n=8, as compared to control, p>0.05), LanA 

(pgant3, 1.25±0.07, n=11, p<0.05, pgant35A, 1.16±0.07, n=14, p>0.05, double 

mutant, 1.00±0.05, n=8, p>0.05), Wb-N terminus (pgant3, 1.00±0.05, n=10, 

pgant35A, 1.12±0.03, n=11, double mutant, 1.11±0.04, n=7, all p>0.05), and Tsp 

(pgant3, 1.02±0.07, n=9,  pgant35A, 1.12±0.06, n=10, double mutant, 1.13±0.05, 

n=8, p>0.05), all normalized to control. The sole exception was the RGD domain-

containing, transmembrane ten-m (Levine et al., 1994). Ten-m localizes in a 

halo-like ring around HRP-labeled synaptic boutons in controls, but is 

consistently reduced in both pgant single mutants (Fig. 28A, middle). Compared 

to controls, ten-m levels are very significantly decreased in pgant3 

(21.88±3.47%, n=15, p<0.01) and pgant35A (20.84±3.91%, n=16, p<0.01) single 

mutants, but show no change in double null mutants (Fig. 28A, right). Thus, the 

two pgant genes suppressively downregulate αPS2 integrin/ten-m ligand at the 

synapse.  

Neuronal and muscle pgants regulate O-glycosylation and integrin 

signaling 

To determine if changes in synaptic O–linked glycosylation and trans-synaptic 

ten-m/αPS2 integrin signaling are directed by pre- or postsynaptic pgant function, 

we next tested both pgant3 and pgant35A rescue in neurons and muscle in their 

respective null mutant backgrounds (Fig. 29). Representative NMJs showing 

VVA lectin, αPS2 integrin and ten-m ligand labeling are shown for all genotype 
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conditions in Fig. 29A. Both pgant3 neuronal (1.02±0.05, n=15) and muscle 

(1.05±0.05, n=15), as well as pgant35A neuronal (1.13±0.03, n=13) and muscle 

(1.01±0.03, n=22) expression restored VVA lectin labeling to control levels 

(1.00±0.03, n=18; Fig. 29B). Similarly, αPS2 integrin abundance is also rescued 

with pgant3 neuronal (0.94±0.05, n=19) or muscle (0.99±0.06, n=20) expression, 

as well as pgant35A neuronal (0.90±0.04, n=21) or muscle (0.86±0.04, n=25) 

expression, as compared to control (1.00±0.03, n=20; Fig. 29B). Interestingly, 

only neuronal pgant3 (0.99±0.04, n=10) and pgant35A (0.97±0.04, n=8) 

expression could restore synaptic ten-m levels to control levels (1.00±0.03, 

n=21), whereas muscle pgant3 (0.88±0.04, n=17, p<0.05) and pgant35A 

(0.82±0.03, n=14, p<0.01) remained significantly decreased normalized to control 

(Fig. 29B, right panel). Thus, both pre- and postsynaptic pgant3 and pgant35A 

are sufficient to properly regulate synaptic O-linked glycosylation and integrin 

levels, but regulation of the ten-m ligand requires pgant function in the 

presynaptic neuron.  

Pgants regulate activity-dependent integrin signaling at the synapse  

 With striking activity-dependent effects on synaptic plasticity in pgant mutants, 

we next queried activity-dependent changes in integrin signaling (Fig. 30) 

presynaptic activity, followed by confocal microscopy examination for molecular 

changes at the NMJ synapse. The neuronal driver (elav-gal4) (Lin and Goodman, 

1994b) was used to target UAS-CHiEF-tdTomato (Wang et al., 2011) in genetic 

control, single and double mutants. Channelrhodopsin targeting was confirmed 

by visualizing tdTomato expression (Fig. 30A) and eliciting evoked junctional 
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Figure 29. Pre/postsynaptic pgant3/35A regulate O-GalNAc and integrin 
signaling. (A) NMJ synaptic boutons co-labeled for synaptic O-linked 
glycosylation marker (VVA), integrin receptor (αPS2) (top three panels) and ten-
m relative to the presynaptic marker anti-HRP (bottom two panels), with split 
channels shown for clarity. The five genotypes shown include genetic control 
(w1118), neuronal (pgant3m1/pgant3m2; UAS-pgant3/elav) and muscle 
(pgant3m1/pgant3m2; UAS-pgant3/24B) pgant3 expression, and neuronal 
(pgant35AHG8/pgant35A3775; UAS-pgant35A/elav) and muscle (pgant35AHG8/ 
pgant35A3775; UAS-pgant35A/24B) pgant35A expression conditions. Scale bar: 2 

m. (B) Histograms showing the relative fluorescence intensities for all three 
labels (VVA, αPS2 and ten-m) normalized to each genetic control (dotted red 
line). Sample size ≥8 independent NMJs for each label for all five genotypes. 
Statistical differences calculated using one-way ANOVA with Dunnett’s post-test; 
*p<0.05, **p<0.01.  
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Figure 30. Activity-dependent integrin signaling changes in pgant mutants. 
(A) Representative image of neurally-targeted (elav-gal4) channelrhodopsin 
expression (ChIEF-tdTomato) in third instar ventral nerve cord. The native 
fluorescence of the tagged light-activated channel (red) is shown without 

amplification. Scale bar: 50 m. (B) Representative evoked junctional potential 
(EJP) trace from the muscle 6 NMJ induced by blue light (470nm) stimulation of 
ChiEF-expressing neurons. (C) Schematic of the optogenetic stimulation 
paradigm used to assay changes in integrin signaling. Basal stimulation at 0.5 Hz 
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for 30 seconds to establish baseline, followed by 10 Hz blue light pulses for 60 
seconds to induce-activity-dependent changes. Samples were then immediately 
fixed and labeled for analyses. (D) Representative images of pFAK (top) and talin 
(bottom) labeling, with HRP co-labeling, showing split channels to compare 
unstimulated control (left) and light-stimulated (10Hz, 60 seconds) synaptic 
boutons. The genotypes are ChIEF-expressing control (w1118; UAS-ChIEF/elav-
gal4, top), pgant3 (pgant3m1/pgant3m2; UAS-ChIEF/elav) and pgant35A 
(pgant35AHG8/pgant35A3775; UAS-ChIEF/elav-gal4) single mutants (middle two 
rows), and the double mutant (pgant3m1, pgant35AHG8/pgant3m2,pgant35A3775; 
UAS-ChIEF/elav-gal4 (far right). (E) Histograms show relative fluorescence 
intensities of pFAK (left) and talin (right) normalized to genetic control for all four 
genotypes. Sample size >8 independent NMJs for each label and condition for all 
genotypes. Statistics calculated using one-way ANOVA with Dunnett’s post-test; 
*p<0.05. 
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potentiations (EJPs) with 5 Hz blue light (λ=460 nm, 60 ms duration) stimulation 

(Fig. 30B). Guided by the plasticity stimulation paradigm (Fig. 27), preparations 

were illuminated with 60 ms light pulses at 10 Hz for 60 seconds, then 

immediately fixed for imaging (Fig. 30C). VVA-TRITC O-GalNac labeling did not 

detectably change in unstimulated controls compared to optogenetically-

stimulated preparations (pgant3, 1.09±0.04, pgant35A, 1.09±0.03, double 

mutant, 0.96±0.04 as normalized to controls, n≥13, all p>0.05). Similarly, we 

observe no change in levels of integrin ligand ten-m (pgant3, 1.00±0.04, 

pgant35A, 1.02±1.04, double mutant, 1.14±0.05, n≥17, all p>0.05) or integrin 

receptor αPS2 levels (pgant3, 0.94±0.04, pgant35A, 0.88±0.04, double mutant, 

0.84±0.07 as normalized to controls, n≥8, all  p>0.05). We therefore investigated 

integrin downstream signaling by assaying talin and pFAK abundance 

(Devenport et al., 2007; Tsai et al., 2012a).  

  To determine if activity-dependent integrin signal transduction is affected, 

we investigated channelrhodopsin-dependent changes in Talin recruitment and 

downstream pFAK production (Fig. 30D). Interestingly, when compared to 

respective unstimulated genotype controls, optogenetic stimulation drives a 

striking increase in Talin levels in both control (49.41±18.96%, n=8 p<0.05) and 

pgant double mutants (80.1±7.93%, n=13, p<0.05) compared to unstimulated 

conditions, whereas neither pgant3 nor pgant35A single mutants showed any 

significant activity-dependent change in Talin recruitment to the synapse (Fig. 

30D, bottom row; Fig. 30E, left panel). Moreover, we find an activity-dependent 

decrease pFAK levels in stimulated controls (UAS-CHIEF/elav, 17.85±4.23%, 
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n=49, p<0.05), with no change in stimulated pgant3 (pgant3m1/pgant3m2; UAS-

CHIEF/elav 8.15±6.28%, n=43, p>0.05), pgant35A (pgant35AHG8/pgant35A3775; 

UAS-CHIEF/elav 7.76±3.94%, n=61, p>0.05) and double mutant 

pgant3,pgant35A (pgant3m1, pgant35AHG8/pgant3m2,pgant35A3775; UAS-

CHIEF/elav,  3.61±2.61%, n =27, p>0.05) conditions (Fig. 30D top row; Fig. 27E, 

right). We conclude that both integrin recruitment of talin and downstream 

production of pFAK is activity-dependent and under pgant-dependent 

suppressive regulation.  

Pgants regulate activity-dependent postsynaptic pocket size 

  Misregulated integrin signaling leads to intercellular de-adhesion and 

subsequent wing blistering in pgant mutant wing discs (Zhang et al., 2010). 

Moreover, mutants in trans-synaptic WNT/BMP and HSPG extracellular 

pathways manifest enlarged postsynaptic pockets at the NMJ (Packard et al., 

2002; Kamimura et al., 2013).  As we have shown that pgant mutants 

suppressively regulate basal and activity-dependent integrin signaling and 

postsynaptic pocket expansion, we next examined optogenetic activity-

dependent synaptic ultrastructural changes, with a particular focus on the 

postsynaptic pocket. In the above channelrhodopsin-expressing mutants and 

controls, we adopted the same light stimulation paradigm, followed by fixation 

and transmission electron microscopy examination of synapse ultrastructure (Fig. 

31).  

In optogenetically-stimulated synaptic terminals, there is an obvious 

decrease in SV density in all four genotypes compared to unstimulated controls 
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(Fig. 31A). At <250 nm away from the active zone, quantification of SV number 

shows a ~30% decrease in controls, and a similar ~30% decrease in stimulated 

pgant3 mutants (n=13, p<0.001 compared to unstimulated condition; Fig. 31B). 

Both the pgant35A single mutant (n=19) and the double null mutant (n=16) 

behave similarly. Further, there are no significant differences in suppressive 

regulation under basal conditions (Fig. 24) or unstimulated UAS-ChIEF carrying 

lines (Fig. 31) i.e. single mutants (pgant3m1/pgant3m2, 15.22±0.99 vesicles; 

pgant35AHG8/pgant35A3775, 15.54±0.78; p<0.05) are elevated compared to 

control (w1118, 10.5±0.91) and the double mutant (pgant3m1,pgant35AHG8/ 

pgant3m2,pgant35A37758, 9.4±0.67). Similarly, in unstimulated single mutants 

carrying the channelrhodopsin transgene, synaptic vesicles are elevated 

(pgant3m1/pgant3m2; UAS-CHIEF/elav, 9.53±0.63;, p<0.01; 

pgant35AHG8/pgant35A3775; UAS-CHIEF/elav, 8.95±0.49, p<0.05) with respect to 

control (UAS-CHIEF/elav, 7.13±0.57) and double mutant 

(pgant3m1,pgant35AHG8/pgant3m2,pgant35A3775; UAS-CHIEF/elav, 7.68±0.39). 

Thus, activity drives SV cycling in all four genotypes comparably (Fig.32B). In 

contrast, optogenetically-stimulated control NMJ synapses show an activity-

dependent increase in PSP depth that does not occur in either pgant3 and 

pgant35A single mutant, although the double mutant is indistinguishable from 

control (Fig. 31A, dotted lines). Quantification of these differences reveal an 

activity-dependent PSP depth increase of >50% in control (p<0.05 compared to 

unstimulated condition) and ~35% increase in the double null mutants (n=14, 

p<0.05), but no significant change in either single pgant mutant (Fig. 31C). 
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Figure 31. Activity-dependent changes in synapse ultrastructure in pgant 
mutants. (A) Representative active zone synapses of control (w1118; UAS-
ChIEF/elav-gal4, top), pgant3 (pgant3m1/m2; UAS-ChIEF/elav) and pgant35A 
(pgant35AHG8/3775; UAS-ChIEF/elav-gal4) single mutants (middle two rows) and 
double mutant (pgant3m1, pgant35AHG8/pgant3m2,pgant35A3775; UAS-ChIEF/elav-
gal4, bottom), comparing the unstimulated (left column) and light-stimulated 
(10Hz, 60 seconds; right column) conditions. Dotted white line indicates 
postsynaptic pocket (PSP) depth for each condition and genotype. Scale bar: 
100 nm. (B, C) Histograms showing quantification of activity-dependent changes 
for normalized synaptic vesicle number (B) and PSP depth (C) for all four 
genotypes under stimulated (black bars) and unstimulated (gray bars) conditions. 
Sample size >15 independent boutons for each genotype and condition. 
Statistical differences calculated using one-way ANOVA with Dunnett’s post-test; 
*p<0.05, **p<0.01, ***p<0.001, N.S. indicates no significance.  
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Further, comparing basal genotypes with unstimulated ChIEF carrying controls 

and mutants show no significant difference in PSP depth. For controls (w1118, 

120.47±7.46 nm, n=12 vs. unstimulated control, 147.41±15.69 nm, n=14, 

p>0.05), single mutants (pgant3, 272.36±45.83 nm, n=13 vs. unstimulated 

pgant3, 253.26±37.70 nm, n=14, p>0.05; pgant35A, 246.84±46.63 nm, n=12 vs. 

unstimulated pgant35A, 232.97±24.88 nm, n=15, p>0.05) and the double mutant 

(pgant3,pgant35A, 182.13±23.76 nm, n=14 vs. unstimulated pgant3,pgant35A, 

227.31±18.56 nm, n=25, p>0.05). Thus, presynaptic vesicle number decreases in 

all genotypes with acute optogenetic stimulation, but pgants suppressively 

regulate activity-dependent postsynaptic pocket expansion, consistent with the 

dysregulated integrin-mediated signaling. 

Integrin inhibition blocks activity-dependent synaptic plasticity in pgant 

mutants 

We have previously shown that blocking integrin signaling with RGD 

peptides interferes with synaptic plasticity at the Drosophila NMJ, comparably to 

integrin mutations (Bahr et al., 1997; Rohrbough et al., 2000). Further, the ten-m 

integrin ligand that is found to be suppressively regulated by pgants, contains an 

RGD sequence. Hence, as a direct test of integrin signaling requirements in 

pgant-dependent facilitation, augmentation and potentiation phases of tetanic 

stimulus train induced synaptic plasticity, we utilized RGD integrin inhibitory 

peptides and scrambled RAD controls in the genetic background control, pgant 

single mutants and the double mutant (Rohrbough et al., 2000). Using our 

established protocols for peptide incubation (Rohrbough et al., 2000), we 
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recorded EJCs using the same stimulation paradigm employed above (Fig. 24). 

Recordings were normalized to the mean basal EJC amplitude in 

sham/RGD/RAD-treated controls (Fig. 32A), pgant3 (Fig. 32B) and pgant35A 

(Fig. 32C) single mutants, and pgant3,pgant35A (Fig.33D) double mutants. 

Consecutive EJCs were averaged during the 0.5Hz and 10Hz stimulation 

phases, respectively, for data presentation and quantification.  

In RGD compared to RAD-treated control (w1118) synapses, a >50% elevation 

occurs in synaptic augmentation during the tetanic stimulus train, and >30% 

increase occurs in PTP following stimulation (Fig. 32A). In striking contrast, pgant 

single and double mutants show a synergistic interaction with integrin blockade 

to exhibit a loss of both phases of activity-dependent plasticity (Fig. 32B-D, left). 

Quantification of EJC amplitudes during the tetanic phase shows a significant 

increase in RGD-treated compared to RAD-treated control synapses (p<0.05, 

n≥9; Fig. 32A, right). However, EJC amplitudes actually decrease ~60% in 

pgant3 (p<0.05, n≥9; Fig. 32B, right), pgant35A (p<0.05, n≥6; Fig. 32C right) and 

pgant3,pgant35A (p<0.05, n≥4; Fig. 32D) following RGD treatment. During PTP 

phases, RGD-treatment again causes a highly significant EJC amplitude 

increase compared to RAD-treated controls (p<0.05, n≥9; Fig. 32A right). 

Remarkably, RGD-treatment instead causes >50% decreases in pgant3 (p<0.05,  

n≥9; Fig. 32B), pgant35A (p<0.05, n≥6; Fig. 32C) and pgant3, pgant35A 

mutants (p<0.05, n≥4; Fig. 32D), compared to RAD-treated synapses. 

Importantly there are no significant differences between RAD-treated synapses 

and sham controls(Fig. 32A-D).  We conclude that integrin signaling blockade  
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Figure 32. Integrin inhibition blocks all synaptic plasticity in pgant mutants. 
TEVC recordings from sham treated, RAD control and RGD integrin-blocking 
peptide applications in genetic control (w1118, A), pgant3 (pgant3m1/pgant3m2, B) 
and pgant35A (pgant35AHG8/pgant35A3775, C) single mutants, and the double 
mutant (pgant3m1, pgant35AHG8/pgant3m2,pgant35A3775, D). Left column: The 
stimulation paradigm is indicated on the X-axis with EJC amplitudes normalized 
to the basal EJC amplitude in each condition for sham control (solid circle), RAD 
control (hollow square) and integrin-blocking RGD (hollow circle) peptide 
applications. Right column: Histograms show normalized EJC amplitudes for 
sham/RAD/RGD peptide treatments for the indicated time-periods. Samples size: 
≥5 independent NMJs for each genotype and treatment condition (>60 recordings 
total). Statistical differences calculated using one-way ANOVA with Dunnett’s 
post-test; *p<0.05.  
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coupled to the loss of pgant function causes a complete loss of activity-

dependent facilitation, augmentation and potentiation, consistent with a 

requirement of pgant activity in integrin-mediated functional synaptic plasticity.  

Discussion  

Across species, glycans are increasingly being recognized as key 

regulators of synaptic function and plasticity (Dani and Broadie, 2012; Scott and 

Panin, 2014).  Classically, Gal(β1,4)GlcNAc, Gal(β1,3)GalNAc, CT carbohydrate 

antigen, heparin, heparan sulfate and sialic acid are all known to modulate the 

trans-synaptic agrin signal mediating postsynaptic acetylcholine receptor 

stabilization at mammalian NMJs (Wallace, 1990; Parkhomovskiy et al., 2000).  

Similarly, the Drosophila Mind-the-Gap (Mtg) glycan-binding lectin regulates the 

stabilization/organization of postsynaptic glutamate receptors and establishes the 

extracellular matrix-integrin interface at the NMJ (Rohrbough et al., 2007; 

Rushton et al., 2009). Other Drosophila glycan regulating genes including 

sialyltransferase (DSiaT), sialic acid transporter Fuseless (Fusl) and UDP-

GlcNAc:α-3-D-mannoside-β1,2-N-acetylglucosaminyl-transferase I (Mgat1) also 

modulate ion channels, pre/postsynaptic organization and neurotransmission 

strength at the NMJ (Long et al., 2008; Repnikova et al., 2010). Our RNAi 

glycogene screen recently identified a pair of genes (hs6st and sulf1) that 

regulate HSPG sulfation state to modulate the bidirectional trans-synaptic 

WNT/BMP signaling driving pre/postsynaptic assembly and synapse function 

(Dani et al., 2012; Parkinson et al., 2013). Another gene pair, pgant3 and 

pgant35A, catalyzing early steps of mucin O-glycan (GalNAcα1-O-S/T) 
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posttranslational modification as N-acetylgalactosaminyl transferases 

(Schwientek et al., 2002; Ten Hagen et al., 2003b), was identified to have 

neurotransmission effects in the same screen. 

In Drosophila, pgant3 is characterized to regulate integrin-ligand secretion 

and intercellular adhesion, and pgant35A for appropriate intercellular septate 

junction formation (Tian and Ten Hagen, 2007; Zhang et al., 2008). Microarray 

analyses have identified pgant3 and pgant35A transcripts in the developing 

nervous system and musculature (Tian and Ten Hagen, 2006; Chintapalli et al., 

2007), and our lectin analyses show NMJ O-GalNAc modifications dependent on 

both pgant3 and pgant35A. Null mutants display increased presynaptic active 

zone bruchpilot (brp, ELKS/CAST) and postsynaptic glutamate receptor bad 

reception (brec, GluRIID) assembly (Featherstone et al., 2005; Wagh et al., 

2006), and elevated evoked neurotransmission strength, and genetic rescue 

experiments show pgant3 and pgant35A function both in neurons and muscle. All 

synaptic defects occurring in single pgant nulls are absent in double mutants, 

which are largely indistinguishable from controls. Similar observations have been 

described as ‘co-repression’ and ‘reciprocal suppression’ in the context of 

transcriptional regulation and physically interacting proteins, respectively. 

However, as the basis of the pgant3/pgant35A interaction is as yet unknown, we 

have opted here for the conservative ‘suppression’ genetic interaction definition. 

This suppressive regulation presumably arises from balanced pgant3/pgant35A 

function. Consistently, when a single wildtype transgene (UAS-pgant3) is 

expressed (pre- or postsynaptically) in the double mutant (pgant3,pgant35A), the 
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other mutant phenotype (pgant35A) re-emerges. Moreover, overexpression of 

either pgant3 or pgant35A individually in neuron or muscle decreases 

neurotransmission strength, which is the opposite consequence of single loss-of-

function. These results reveal a pgant3/pgant35A suppressive mechanism 

dependent on the balance between these two genes on both sides of the 

synapse.  

          The pgant suppressive mechanism regulates synaptic ultrastructural 

organization, including presynaptic vesicle pools and postsynaptic pocket size. 

Like other synaptic phenotypes, postsynaptic pocket size is elevated in single 

pgant3/pgant35A mutants, but normal in double mutants. Importantly, 

postsynaptic pocket compartments apposed to presynaptic active zones are 

expanded in trans-synaptic WNT/BMP signaling ligand mutants (Packard et al., 

2002; Tian and Ten Hagen, 2007; Ren et al., 2009; Nahm et al., 2010; Kamimura 

et al., 2013) as well as mutants affecting extracellular HSPG regulators of trans-

synaptic signaling (Packard et al., 2002; Tian and Ten Hagen, 2007; Ren et al., 

2009; Nahm et al., 2010; Kamimura et al., 2013). Consistently, we identified the 

trans-synaptic ten-m/αPS2 integrin signaling pair (Mosca et al., 2012) to be 

suppressively regulated by the pgant3/pgant35A mechanism. Ten-m/αPS2 

integrin interactions are known to drive intercellular adhesion (Graner et al., 

1998), and pgant3 is known to regulate integrin-ligand secretion and promote 

adhesion in the developing Drosophila wing (Zhang et al., 2010). At the 

Drosophila NMJ, both ten-m ligand and αPS2 integrin are localized pre- and 

postsynaptically (Mosca et al., 2012). Based on these extensive established 



163 

 

interactions, we interpret the enlarged PSP in pgant3 and pgant35A single 

mutants to a consequence of impaired ten-m/integrin signaling. As the spacing 

between pre- and postsynaptic membranes is not affected, and normally 

apposed pre-/post-synaptic membranes occur with enlarged PSPs, we consider 

this to be a postsynaptic defect. This is not surprising as αPS2/ten-m are both 

transmembrane proteins, and integrin signaling is well known to bridge to the 

cytoskeleton (Delon and Brown, 2007). Thus, an enlarged PSP can manifest on 

the inside of the postsynaptic membrane due to impaired integrin signaling. The 

levels of ten-m and αPS2, as well as postsynaptic pocket size, are all 

suppressively regulated by the pgant3/pgant35A mechanism. 

Synaptic O-GalNAc abundance is likewise suppressively regulated by 

pgant3 and pgant35A, with levels elevated in single mutants and normal in 

double mutants. Like mammalian pgants (GalNAc-Ts or ppGalNAcTs), 

Drosophila pgants (12 total) are thought to function hierarchically, competing for 

naked or glycosylated substrates to regulate final O-GalNAc density (Ten Hagen 

et al., 2003a). The observed suppressive mechanism suggests pgant3 and 

pgant35A may function at the same tier of glycosylation. Alternatively, with the 

imbalance induced by pgant mutations, other pgant family members may be 

dysregulated, leading to increased O-GalNAc synaptic glycosylation. Normally 

Golgi-resident pgants relocated to the ER are known to increase O-GalNAc 

glycosylation (Gill et al., 2010), dependent on Src activation downstream of 

integrin signaling (Mitra and Schlaepfer, 2006), which is misregulated in pgant 

mutants. In addition to well-described α/β-integrins functions at the mammalian 
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NMJ, α3 integrin affects hippocampal dendrite stability and function (Kerrisk et 

al., 2013), whereas β3 integrin associates with GluA2 AMPA receptors (Pozo et 

al., 2012). In Drosophila, we have shown that αPS1-3 and βPS regulate synapse 

assembly and neurotransmission strength (Beumer et al., 1999; Rohrbough et 

al., 2000), agreeing with pgant roles shown here in presynaptic vesicle pool and 

postsynaptic glutamate receptor regulation. In synaptic plasticity, α3/5/8 and β1 

integrin knockdown all impair hippocampal long term potentiation (LTP) (Chan et 

al., 2003, 2006). Similarly, Drosophila αPS3 (Volado) and βPS mutants show 

impaired augmentation and post-tetanic potentiation (PTP) (Rohrbough et al., 

2000), agreeing with pgant roles shown here in maintaining both plasticity 

phases. In addition to the joint ten-m/αPS2 downregulation in pgant3 and 

pgant35A, each mutant also displays distinct misregulation of integrin signaling 

components (βv and βPS, respectively), with roles in neurotransmission and 

synaptic plasticity (Rohrbough et al., 2000; Tsai et al., 2012a; Tran and Ten 

Hagen, 2013).  

All phases of synaptic plasticity (facilitation, augmentation and 

potentiation) are suppressively regulated by pgant3 and pgant35A. To investigate 

mechanisms of these activity-dependent changes, we employed optogenetic 

stimulation to test acute subcellular ultrastructure and integrin signaling effects 

(Fenno et al., 2011). Classical studies coupling traditional electrical nerve 

stimulation to ultrastructural analysis at frog NMJ revealed dynamic vesicle fusion 

after single stimuli (Heuser and Reese, 1981) and vesicle depletion after a 

prolonged train of 10 Hz stimulation (Ceccarelli et al., 1972). Recent studies 
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using channelrhodopsin (ChIEF) optogenetic stimulation identified an ultrafast 

endocytic mechanism at the C. elegans NMJ (Watanabe et al., 2013a), which 

was subsequently validated in hippocampal synapses (Watanabe et al., 2013b), 

but did not assay effects on vesicle pools. Utilizing the same ChIEF optogenetic 

tool in Drosophila, we find that a brief, high frequency light train (10Hz 60ms 

pulses for 60 seconds) drives a depression of vesicles in distinct pools around 

presynaptic active zones. We also find activity-dependent expansion of 

postsynaptic pockets in controls, which fails in both pgant single mutants but is 

restored in double mutants, again showing a suppressive mechanism. 

Consistently, we identify suppressive activity-dependent elevation of integrin 

downstream talin signaling in only control and double mutant conditions, 

supported by known roles of talin-mediated αPS2 integrin signaling (Devenport et 

al., 2007). Moreover, we find a lack of activity-dependent pFAK regulation, 

supported by previous studies showing activity-dependent decreases in pFAK 

signaling at the Drosophila NMJ (Tsai et al., 2012a). Importantly, RGD treatment 

perturbing integrin-signaling and synaptic plasticity, also alters synaptic pFAK 

levels (Staubli et al., 1998; Rohrbough et al., 2000; Russo et al., 2013). 

Consistent with this mechanism, RGD treatment acts synergistically with pgant 

mutations to prevent the manifestation of a synaptic plasticity.  

In summary, this is the first investigation of synaptic pgant roles, which 

combines molecular, electrophysiological, electron microscopy and optogenetic 

approaches. We identify here a novel suppressive mechanism between two 

pgant family members (pgant3 and pgant35A) regulating synaptomatrix O-
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GalNAc glycosylation state, coupled presynaptic active zone and postsynaptic 

glutamate receptor assembly, transmission strength, integrin signaling and 

synaptic adhesion, and the appearance of activity-dependent  plasticity. Future 

studies will seek to determine whether Ca2+ and/or CaMKII signaling 

mechanisms (Tsai et al., 2012a) are misregulated during pgant synaptic 

dysfunction, as the leading causal link between activity and observed synaptic 

changes. Based on recent reports that show O-GalNac levels regulate proteolytic 

cleavage and ligand secretion (Zhang et al., 2014), we will test whether the pgant 

suppressive mechanism may reflect interactions between pgants or within other 

enzymatic classes. A final priority will be investigation of pgant-mediated 

regulation of disease-related synaptic proteins, including Dystroglycan (Dg) 

(Henry et al., 2001) and Neurofimbrin (NF1) (Tsai et al., 2012b), to test 

hypotheses that heritable neurological and neuromuscular disorders are causally 

related to the pgant synaptic mechanisms. 

Acknowledgements 

We are particularly grateful to Kelly Ten Hagen for pgant mutant and transgenic 

lines (pgant3m1, pgant3m2, pgant35AHG8, pgant35A3775, UAS-pgant3 and UAS-

pgant35A), Zhuoren Wang for the optogenetic line (UAS-ChIEF-tdTomato) and 

the Bloomington Drosophila Stock Center for providing other essential stocks. 

We also particularly thank the following for essential antibodies; Ron Wides (Ten-

m), John Fessler (Tig), Talila Volk (LanA, Tsp), Stephan Baumgartner (Wb-N), 

Richard Hynes (βν) and the Iowa Hybridoma Bank. This work was fully supported 

by NIMH grant MH096832 to K.B. 



167 

 

Chapter V 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 The foundation of this work was a genome-level investigation of glycan 

related genes to identify mechanisms that regulate NMJ structure and function. 

By transgenic RNAi knockdown, I broadly investigated glycogenes involved in 

N/O/glycosaminoglycan biosynthesis; such as glycosyltransferases, glycosidases 

and glycan transporters; and encoding glycan-binding lectins and glycan targeted 

core-proteins (Fig 34). By validating the primary screen results with a secondary 

screen and the use of loss of function mutants, I have developed a resource that 

can guide targeted investigation of glycogenes in various synaptic contexts. 

Knockdown of 37 genes across the 8 tested groups showed statistically 

significant differences in morphological development, with 27 that increase 

synaptic bouton number and 2 that increase branch numbers (Fig 34). These 

findings suggest that glycans may generally serve as a mechanism to restrict 

NMJ growth. Knockdown of 13 genes had effects on functional differentiation, 

with 12 knockdowns showing an increase and only 1 showing a decrease in 

neurotransmission strength (Fig 34). These findings suggest that glycans 

generally limit synaptic transmission as well. A further key result is that 

glycogenes appear to regulate NMJ architecture and function in largely separable 

mechanisms. In only rare cases does the same glycogene affect both structure 

and function (Fig 34).  
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Figure 33. Glycogene screen results. Transgenic RNAi-mediated 

knockdown of glycogenes in the following gene families (clockwise from 

top): lectins, sugar transporters, O-glycan biosynthesis, glycan modification, 

core protein, glycosyltransferases, N-glycan biosynthesis and 

glycosaminoglycan (GAG) biosynthesis. The total number of genes tested in 

each glycan family listed in bold parentheses. The number of genes that 

affect  NMJ morphology, function or both is indicated in regular parentheses. 
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 All measured parameters of morphology and function are ensemble 

properties. For example, the comparator used to measure neurotransmission  

(evoked excitatory junction current; EJC) is a function of action potential 

propagation, Ca2+ influx/sensing, synaptic vesicle cycle, factors limiting 

neurotransmitter diffusion and postsynaptic responsiveness, among other 

factors. To pin-point the step specifically regulated by a targeted glycogene 

requires further analysis of spontaneous release measurements, ultrastructural 

analysis, FM1-43 dye labeling and measurements of postsynaptic receptor 

distribution and function, among other analyses. Post hoc analysis on collected 

EJC to assay rise/fall times might reveal altered kinetics. Likewise, morphological 

parameters quantitated from confocal microscopy can now be subject to further 

quantification, including subsynaptic reticulum (SSR) architecture, differences in 

number of mini-boutons to identify immature/newly developing boutons, or inter-

bouton distance/clustering that may suggest pre/postsynaptic cytoskeletal 

defects. Coupling these studies with glycoproteomic, glycotranscriptomic and 

glycoanalytical approaches will be needed to define the underlying molecular 

regulation. These studies may also reveal any cross-talk or redundancy between 

glycogene products, giving us further insight into the emergent hypothesis that 

glycans largely limit synapse structure and function.  

 Also tested in the RNAi screen was the characterization of developmental 

defects caused by neural knockdown of glycogenes. Of the 120 glycan related 

genes tested, only 17 showed a developmental lethality phenotype (Table IV). 

Interestingly, the majority (13) showed post-embryonic 
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Gene name Gene function CG 

Vienna 
ID 

Embryonic 
lethal Tim8 

P-P-bond-hydrolysis-driven protein 
transmembrane transporter activity 1728 2609 

 
N/A alkaline sulfatase 8646 38092 

  
mitochondrial carrier protein 18022 20580 

 
vermiform chitin deacetylase 8756 47128 

  

N-acetyllactosaminide beta-1,3-N-
acetylglucosaminyltransferase activity 11149 7882 

  

alpha-1,3-mannosylglycoprotein 4-beta-
N-acetylglucosaminyltransferase activity 9384 109285 

  

UDP-galactose:beta-N-
acetylglucosamine beta-1,3-
galactosyltransferase activity 8668 33156 

  

Oligosaccharide biosynthesis protein 
Alg14-like 6308 30273 

 
nervana 

sodium:potassium-exchanging ATPase 
activity 8863 35904 

 
α-Man-Ib 

mannosyl-oligosaccharide 1,2-alpha-
mannosidase activity 11874 101661 

 
lectin-30A C-type lectin 17011 107218 

 
comm3 - 32209 15466 

1st instar lethal Thor 4E-BP 8846 35439 

 
Mgat1 Alpha-1,3-mannosylltransferase 13431 103609 

 
myospheroid BPS integrin 1560 103704 

minute 
lethal/necrotic Ost48 Oligosaccharyltransferase 48kD subunit 9022 105881 

 

lethal (2) k12914 
dolichyl-diphosphooligosaccharide-
protein glycotransferase activity 13393 33166 

  

Alpha-1,3/1,6-mannosyltransferase 
ALG2 1291 32116 

 
OstΔ Oligosaccharide transferase Δ subunit 6370 107068 

  
lipase activity 10116 13731 

  

phospho-N-acetylmuramoyl-
pentapeptide-transferase activity 5287 51882 

 
CG34238 

 
8437 10641 

  
beta-1,4-mannosyltransferase activity 18012 20580 

  
alpha-1,2-mannosyltransferase activity 11306 104286 

  
voltage-gated chloride channel activity 5284 51882 

2nd/3rd instar 
lethal 

 
glycosyltransferase (hexosyl) 14512 108957 

pupal lethal 
 

mannosyl-oligosaccharide glucosidase 
activity 1597 108675 

  

alpha-1,3-mannosylglycoprotein 4-beta-
N-acetylglucosaminyltransferase activity 17173 100347 

 
lectin-28C C-type lectin 7106 104801 

 
Galt 

Galactose-1-phosphate 
uridylyltransferase 9232 100025 

  
PIG-V 6657 10441 
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 Gene name Gene function CG 
Vienna 
ID 

 
pupal lethal 

 

NADH:ubiquinone oxidoreductase-like, 
20kDa subunit 2014 108457 

 
furrowed C-type lectin 1500 106656 

 
Ext2 (sotv) 

EXTL2, alpha-1,4-N-
acetylhexosaminyltransferase 8433 109949 

 
GalNAc-T2 

polypeptide N-
acetylgalactosaminyltransferase activity 6394 105160 

 
trol perlecan 33950 24259 

 
egghead beta-1,4-mannosyltransferase activity 9659 45160 

 
meltrin peptidase/ADAM 7649 102641 

 
medial glomeruli 

UDP-galactose transmembrane 
transporter activity 5802 103753 

 

Cuticular protein 
50Cb cuticular protein 6305 30274 

 
tkv TGF-beta receptor 14026 105834 

  
alpha-glucosidase activity 14476 48374 

 
botv 

glucuronyl-galactosyl-proteoglycan 4-
alpha-N-acetylglucosaminyltransferase 
activity 15110 108262 

weak animals lectin-33A C-type lectin 16834 108412 

disfigured non-
inflated wings Stubble serine type endopeptidase 4316 108455 

disfigured wings Rac1 Small GTPase 2448 109432 

hyperactive 
adults AGBE 

1,4-alpha-glucan branching enzyme 
activity 33138 108087 

wings and eyes 
deformed 

 

alpha-1,3-mannosylglycoprotein 4-beta-
N-acetylglucosaminyltransferase activity 9384 109285 

aggressive adult 
activity trol perlecan 33950 22642 

extended 
proboscis rumi glucosyltransferase activity 31152 14480 

hyperactive, 
spastic animals Hex-t1 hexokinase 33102 46574 

 

Table IV. Developmental phenotypes of neural glycogene knockdown  
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lethality in the 1st instar larval stage (11) or 2nd instar (2), compared to relatively 

rare embryonic lethality (4). Orthologs of a number of the screen hits are 

implicated in neurological diseases. For example, mannosyl-oligosaccharide 

glucosidase (MOGS) was recently identified in congential disorder of 

glycosylation type IIb (CDG-IIb), which presents with multiple neurological 

complications (Sadat et al., 2014). Interestingly, the Drosophila homolog 

(CG1597) identified in the screen produced increased NMJ architecture and very 

significantly elevated neurotransmission with RNAi knockdown. As new 

glycogene-associated diseases are rapidly being discovered, the screening 

results from this study may help identify and prioritize disease genes regulating 

synaptic properties (Table V). Alternatively, screen-derived glycogene targets 

may be cross-referenced to genome-wide association studies (GWAS) to 

generate new disease models in genetically malleable systems using newly 

identified gene disruption tools such as zinc-finger nucleases (ZFNs), clustered 

regulatory interspaced short palindromic repeat (CRISPR) and transcription 

activator-like effector nucleases (TALEN) tools (Gaj et al., 2013) .  

 

Synaptic organization of glycans, glycoproteins and proteoglycans 

 This work has also revealed the spatial organization of a number of 

glycans/glycoproteins and proteoglycans in the Drosophila NMJ. Although this 

landscape is relatively well studied at vertebrate NMJs, this information is lacking 

in Drosophila (Martin et al., 1999b; Van Vactor et al., 2006; Ren et al., 2009; 

Parkinson et al., 2013). I have identified glycans, glycan modified  
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CG Gene name molecular dysfunction Disease Symptoms Ref. 

1597 - 
mannosyl-oligosaccharide 
glucosidase needed for N-

glycosylation 
CDG-IIb 

Multiple 
neurologic 
symptoms 

Sadat et 
al., 2014 

4542 xiantuan 
dolichyl pyrophosphate 

Glc1Man9GlcNAc2 alpha-1,3-
glucosyltransferase 

CDG-Ih 
reduced fetal 

movement 

Schollen 
et al. 
2004 

11874 Mannosidase Ib 
mannosyl-oligosaccharide 1,2-

alpha-mannosidase activity 

Mental retardation, 
Autosomal recessive 

15 

Multiple 
symptoms 

Rafiq et 
al., 2011 

32076 - α-3 glucosyltransferase 
Congenital long QT 

syndrome 
ventricular 

arrhythmias 

Jongbloe
d et al. 
1999 

32775 GlcAT-I 
galactosylgalactosylxylosylprote

in 3-beta-
glucuronosyltransferase 

TBD 
developmental 

delay 

von 
oettingen 

et al. 
2014 

6401 - GPI-anchor synthesis 
Multiple Congenital 

anomalies - hypotonia 
- seizures syndrome 2 

epilepsy, 
developmental 

delay 

Kato et al. 
2014 

6657 PIG-V mannosyltransferase 
Hyperphosphatasia 

with MRS 1 
mental 

retardation 
Krawitz et 
al. 2010 

9232 
Galactose-1-
phosphate 

uridyltransferase 

UDP-glucose:hexose-1-
phosphate uridylyltransferase 

Galactosemia 
neurologic 
movement 
disorders 

Lucioni et 
al. 2014 

2135 - beta glucuronidase 
Mucopolysaccharidosi

s, Type VII 
mental 

impairment 
Shipley et 
al. 1993 

6128 α-L-fucosidase α-L-fucosidase Fucosidosis 
psychomotor 
retardation 

Kousseff 
et al. 
1976 

7402 - 
N-acetylgalactosamine-4-

sulfatase activity 
Mucopolysaccharidosi

s, Type VI 

central 
nervous 

system defects 

Giugliani 
et al. 
2007 

33138 
1,4-α-Glucan 

Branching 
Enzyme 

1,4-α-glucan branching enzyme 
activity 

Polyglucosan body 
disease 

CNS/PNS 
dysfunction 

Lossos et 
al. 1998 

32849 Hex-t2 Hexokinase 
Charcot-Marie-Tooth 

disease, Type 4G 
Motor/sensory 

neuropathy 
Rogers et 
al. 2000 

9620 
neuronally 

altered 
carbohydrate 

GDP-fucose transmembrane 
transporter 

CDG-IIc 
developmental 

delay 
Dauber et 
al. 2014 

 Table V. Screen targets associated with neurological disease  



174 

 

glycoproteins/proteoglycans and secreted trans-synaptic glycoprotein signals 

spatially organized in discrete compartments on the extracellular surfaces of 

synapsing neuron and muscle. I have employed non-detergent conditions for 

labeling (immunohistochemistry) and visualization (confocal microscopy) of these 

signals (Chapter 3 and Chapter 4). Importantly, the routinely used anti-

horseradish peroxidase (HRP) antibody that is used to mark presynaptic 

neurons, recognizes α(1,6) and α(1,3) fucose modifications on N-linked 

glycosylation and shows detergent sensitive spatial organization (Rendic et al., 

2010). As routinely visualized under detergent conditions, anti-HRP closely labels 

the presynaptic bouton membranes. However, under non-detergent conditions I 

observe a diffuse and wispy anti-HRP pattern extending over a larger area of the 

muscle. These structures may form trans-synaptic connections, similar to 

cytoneme in developing wing disc (Roy et al., 2014). It would be of significant 

interest to determine if cytonemal markers localize to these structures, 

particularly because classic synaptic genes such as neuroglian that are shown to 

reduce cytoneme-mediated transport are also known to be recognized by anti-

HRP (Desai et al., 1994). This approach may identify another mode of synaptic 

communication in addition to secreted/membrane-bound trans-synaptic signaling 

and neurotransmission. 

 I have also used fluorescently-labeled lectin proteins that recognize 

glycans to determine expression patterns at the neuromuscular junction. Many 

lectins reveal a halo-like domain bounding presynaptic boutons that envelopes 

presynaptic and postsynaptic regions and can extend well into the muscle, 
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depending on the particular lectin (for example: VVA, WGA (Fig. 3, Chapter 2). 

However, other lectin-defined glycans are completely absent from the NMJ 

synapse (for example: DBA (Fig. 3, Chapter 2), supporting the hypothesis that 

glycans are differentially expressed with cell-specific roles. Despite these 

interesting findings, it should be noted that this imaging approach is inherently 

limited. First, glycans are formed by monosaccharides linked together by 

glycosidic bonds, while lectin specificity is usually demonstrated by incubation 

with cognate monosaccharides  (Simionescu et al., 1982). It is usually unknown if 

successively added glycans alter or mask the cognate monosaccharide 

recognition. Second, lectins are known to be sensitive to the density of the 

particular glycan, hence sparsely expressed glycans may not be identified at 

specific lectin concentrations (Godula and Bertozzi, 2012). It is also possible that 

endogenous lectins may compete with fluorescently tagged exogenous lectin 

labels. These caveats highlight the need for further investigation with novel tools 

and suggest guarded interpretation of lectin staining patterns upon glycogene 

manipulation at synapses and other tissues. These limitations may be partially 

circumvented by using metabolic labeling with chemically modified glycans, as 

applied in the zebrafish model system for in vivo imaging of membrane-

associated glycans through development (Laughlin et al., 2008). However, my 

preliminary tests with these reagents provided mixed results. Optimizing 

metabolic labeling, including dosage and appropriate imaging techniques, may 

allow for better real-time investigation of glycan expression/turnover dynamics. 
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 Overlapping with the extracellular glycan domain are trans-synaptic 

signaling glycoprotein ligands (e.g. WNT and BMP) that reside in a halo-like 

pattern around NMJ terminals (Fig 14, Chapter 3). Secreted Wg (Drosophila 

WNT- Wingless) is enriched at specific boutons, whereas Gbb (Drosophila BMP- 

glass bottom boat) shows relatively uniform expression pattern (Fig 14, Chapter 

3). This differential pattern is not yet understood, but Wg-positive boutons may 

be sites of imminent morphological growth, or regions of suppressed neural 

activity as WNTs are actively endocytosed to mediate downstream signaling 

(Ataman et al., 2008). These differential patterns may also be regulated by 

heparan sulfate proteoglycan (HSPG) co-receptors, that are known to bind these 

signals via sulfate glycosaminoglycan side chains (Ren et al., 2009). My results 

in chapter 3 show that the relative abundance of Wg and Gbb is clearly sensitive 

to HSPG sulfation state regulated by heparan sulfate-6-sulfotransferases (hs6st) 

and heparan sulfate-6-endosulfatase (sulf1).  As seen in Fig 35 the sulfation 

patterns of HSPG glycosaminoglycans (GAG) in the two mutants show an 

elevation of the GlcNS and the 2SGlcNS levels with complete loss of GlcNAc6S, 

GlcNS6S and 2SGlcNS6S. Null sulf1 mutants have GlcNS and 2SGlcNS 

decreased while 2SGlcNS6s levels are increased, with no changes in GlcNAc6S 

and GlcNS6S compared to controls (Fig 35). While this may explain the 

magnitude of Wg and Gbb signal differences, it does not address observed 

differences in spatial distribution across the NMJ (Fig 13, Chapter 3). This could 

be addressed by using available HS sulfation-state specific phage display  
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Figure 34. HSPG sulfation in hs6st and sulf1 mutants.(A) Relative abundance 
of sulfated monosaccharides (top row) of HSPGs in hs6st and sulf1 mutants 
compared to controls. (B) Model of HSPG Glypican (left) and Syndecan (right). 
Adapted from Kleinshmit et al. 2013, Deijma et al. 2013 and Johnson et al. 2006. 

 

 

 

 

 

 



178 

 

antibodies to determine overlap of particular sulfation states with Wg/Gbb signal 

abundance  (van Kuppevelt et al., 1998).  

 Interestingly, we observe differential effects on Dlp and Sdc HSPGs in 

sulf1 and hs6st mutants. While there is a bi-directional effect on synaptic Dlp 

levels, which is elevated in sulf1 and decreased in hs6st, Sdc is elevated in both 

mutant conditions (Fig. 11, Chapter 2). There are at least three differences in the 

architecture of these HSPGs that may account for this difference. First, Dlp is a 

glypican that is GPI-anchored to the membrane, while Sdc is a trans-membrane 

proteins (Bar-Shavit et al., 1996; Chen et al., 2009b) . Secondly, the HS 

glycosaminoglycan chain is attached relatively close to the membrane in the Dlp 

glypican, while transmembrane Sdc has HS chains farther from the cell surface 

(Filmus and Selleck, 2001; Couchman, 2003). Finally, Sdc also bears an 

additional chondroitin sulfate glycosaminoglycan, and there is potential for 

antagonistic/synergistic effects of the ligands bound by each of these sulfated 

glycosaminoglycans (Fig. 34) (Johnson et al., 2006).  

 

Screen-derived target validation using pairs of glycogenes 

 Drosophila RNAi screens have successfully identified novel gene 

mechanisms in multiple cellular contexts (Mummery-Widmer et al., 2009; Neely 

et al., 2010; Pospisilik et al., 2010; Schnorrer et al., 2010). However, unique to 

my screening approach was the subsequent targeted investigation of gene pairs 

operating in the same pathway. For the work described in Chapter 3, I focused 

on one gene pair (hs6st and sulf1) that catalyzes the transfer and removal of a 



179 

 

single HSPG sulfate group. As a result, I uncover an ‘exchange factor 

mechanism’ regulating the availability of trans-synaptic Wg signals. Similarly for 

the work described in Chapter 4, I focused on a second gene pair (pgant3 and 

pgant35A) that catalyzes the transfer of O-linked GalNAc sugars, and uncover a 

suppressive mechanism that regulates integrin signaling to neurotransmission 

strength and plasticity. Neither mechanism would have been identified without 

these gene pairs being studied in conjunction. Alternative interpretations, testable 

hypotheses and conclusions for these two mechanisms are outlined in the 

following sections. 

Exchange factor mechanism regulates synaptic WNT signaling 

 Low-affinity interactions between signaling ligands and 

glycosaminoglycans have long been known to regulate intercellular signaling 

(Kjellén and Lindahl, 1991). A classic example is HS glycans that oligomerize 

Fibroblast Growth Factors (FGF) and also dictate FGF receptor dimerization, 

activation and cell proliferation (Spivak-Kroizman et al., 1994). Seminal studies in 

the developing Drosophila wing disc similarly show WNT signals are modulated 

by HSPG Dally and Dlp by virtue of its GAG modification (Lin and Perrimon 

1999). This interaction strongly shapes the extracellular WNT morphogen 

gradient and signaling essential for normal development (Yan and Lin, 2009). It is 

known that the Dally:Dlp ratio affects the gradient, with Dlp both sequestering 

and presenting WNT ligands to the cognate dFz2 receptor (Han Lin 2005). 

Consistent with this HSPG ‘exchange factor model’ proposed in the developing 

wing disc, sulfation state regulation by hs6st/sulf1 controls relative Dlp co- 
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receptor and dFz2 receptor abundance to dictate the corresponding Wg 

downstream signaling at the NMJ (Figure 35). Through this mechanism, sulf1 

and hs6st have opposite effects on dFz2 import, followed by C-terminus 

cleavage of the receptor for import into the nucleus and subsequent association 

with mRNP granules (Speese et al., 2012). 

 Interestingly, working with Sam Friedman, we found that the Dlp co-

receptor mechanism also interfaces with the Fragile X mental retardation protein 

(FMRP) translational regulator (Friedman et al., 2013). Loss of FMRP causes 

Fragile X Syndrome (FXS), the most common monogenic form  

of inherited intellectual disability and autism spectrum disorders (Gatto and 

Broadie, 2011). The Drosophila FXS disease model recapitulates neurological 

symptoms in the human condition, including both synaptic and behavioral defects 

(Tessier and Broadie, 2008; Gatto and Broadie, 2011; Kanellopoulos et al., 2012) 

. In loss of function mutant alleles of dfmr1 HSPG co-receptor expression at the 

NMJ is grossly elevated (Dlp, ~90%; Sdc  ~50%) (Friedman et al., 2013). 

Correspondingly, Wg levels are also elevated along with a decrease in 

intracellular dFz2C levels, consistent with the above ‘exchange factor model’ 

model (Fig 36). Importantly, genetic correction of the Dlp levels, in the dfmr1 

mutant background restores all synaptic structural phenotypes. Functional 

phenotypes include an elevation in neurotransmission strength the dfmr1 null 

alleles, is also restored upon genetic correction of the elevated levels of both 

HSPG co-receptors (Dlp and Sdc) (Figure 32). Independent studies have also 

identified HSPG transcripts to be FMRP-bound targets via high throughput  
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Figure 35. Exchange Factor Model. (A) Exchange Factor Model depicts 

interaction between heparan sulfate proteoglycan (HSPG) Dally like protein 

(Dlp), trans-synaptic signal WNT (Wg), cognate receptor Frizzled2 (Fz2) and 

downstream Frizzled 2 C-terminus (Fz2C). (B) Ratio between Dlp and dFz2 

dictates level of downstream Wg signaling (dFz2C) levels. Green arrows 

indicate level of each of the described components while lack of arrows 

indicate no difference as compared to control.  
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sequencing of mRNA isolated via crosslinking immunopreciptation (HITS-CLIP) 

(Darnell et al., 2011). Based on the combination of these results, we propose that 

HSPG-mediated co-receptor abundance and consequent co-receptor activity can 

be regulated by HS GAG sulfation and translational mechanisms to regulate 

synapse structure and function (Friedman et al., 2013). 

Non-exchange factor model regulates synaptic BMP signaling 

 The elevation in the trans-synaptic BMP signal Glass bottom boat (Gbb) 

may not be regulated by the HSPG co-receptor mechanism. Neither Dlp nor Sdc 

are known to interact with this signaling ligand. Further, unlike the reciprocal 

regulation of WNT downstream signaling, hs6st and sulf1 mutants exhibit 

elevated Gbb downstream signaling through phosphorylated Mothers against 

decapentaplegic (p-MAD) activation (Chapter 3). Altered Gbb signaling has been 

shown to affect NMJ synaptic morphology (McCabe et al., 2003), and we 

observe that the morphology parameters of bouton number, branch number and 

NMJ area are all elevated in both mutant conditions. It is therefore possible that 

synaptic morphology may be primarily regulated by BMP signaling in non-

exchange factor mechanism. Further support for this hypothesis arises from p-

MAD dependent downstream regulation of Trio, which has Rho-guanyl nucleotide 

exchange factor activity (Newsome et al., 2000). Importantly, Trio is known to 

activate Rac GTPase, which leads to changes in the cytoskeleton and 

modulation of NMJ growth (Ball et al., 2010). Thus, one model is that increased 

p-MAD leads to increased transcription of Trio, which in turn positively regulate 

actin polymerization and NMJ growth. This idea suggests that sulf1/hs6st 
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regulation of Wg and Gbb affect neurotransmission and growth respectively. 

Alternatively, my data also show elevated and depressed neurotransmission 

strength in sulf1 and hs6st mutants, while Wg and Gbb levels remain elevated in 

both. Intriguingly, only when Wg and Gbb are simultaneously reduced in both 

sulf1/hs6st mutants is neurotransmission restored to wildtype levels. This 

suggests that there may also be a level of cross-talk between the Wg and Gbb 

signaling pathways. This forms a strong foundation for further investigation of 

glycan-regulated effects on coordinated WNT/BMP trans-synaptic signaling. 

Suppressive regulation of O-glycosylation, neurotransmission and plasticity 

 In the second phase of this work (Chapter 4), I investigate synaptic O-

linked glycosylation catalyzed by the family of protein-N-acetylgalactosaminyl 

transferases (pgants). Embarking on the investigation of two screen-identified 

genes, pgant3 and pgant35A, I uncovered a unique suppressive interaction 

regulating NMJ functional properties (Figure 36). This suppressive interaction is 

defined by the observed result that the double mutants do not show any of the 

single mutant phenotypes and are essentially unchanged from control. This type  

of interaction is rare, but has been described previously, particularly in yeast 

studies. For example, mutations in the yeast homolog of cytoskeletal fimbrin 

(Sac6p) dominantly and reciprocally suppress phenotypes of the temperature- 

sensitive yeast actin mutation (act1-1), such that double mutants are essentially 

indistinguishable from controls (Adams and Botstein, 1989). In this case, the two 

proteins physically interact (Honts, 1994). Whether or not pgants physically 

interact is unknown, but multiple pgants are known to be co-distributed within the  
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Figure 36. Pgant3 and Pgant35A suppressively regulate O-

glycosylation. Pgant3 and Pgant35A suppressively regulate expression of 

GalNAc (blue), but independently regulate GalNAc (red) and GalNAc (green). 

Total GalNAc levels indicated in each mutant condition of single mutants 

pgant3 (pgant3-/-), pgant35A (pgant35A-/-) and double mutant (pgant3-/-

,pgant35A-/-).  
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cis and medial-Golgi compartments (Stanley, 2011). They function in a  

hierarchical manner such that early addition of O-GalNAc modifications can 

influence subsequent O-GalNAc additions as the protein is trafficked through the 

Golgi (Tian and Ten Hagen, 2009). Given that our studies of pgant3 and 

pgant35A single mutants shown identical loss of function phenotypes for synaptic 

O-GalNAc glycosylation, it is possible that these proteins are localized in the 

same Golgi compartment, function at the same tier of glycosylation and may also 

physically interact. Efforts directed towards testing these hypotheses will further 

mechanistic insight into O-GalNAc synaptic glycosylation.  

 While this suppressive mechanism explains the observation that O-

GalNAc levels remain unchanged in the double mutant condition, and is elevated 

only in the pgant3 and pgant35A single mutant conditions, it does not account for 

how single mutants would elevate levels of O-GalNAc modification. At least three 

possibilities can be tested in this regard. First, it is known that pgants catalyze 

the transfer of monosaccharide GalNAc to naked serine/threonine residues to 

form the Tn antigen, which can be modified by addition of galactose to form the T 

antigen, and further modified by sialic acid to form SiaT antigens (Tian and Ten 

Hagen, 2009) . Given that glycosyltransferases that catalyze these reactions are 

sensitive to substrate concentrations and donor sugars that provide the 

monosaccharide, and in the presence of limited GalNAc in the single mutant 

conditions of either pgant3 and pgant35A the critical levels of substrates may not 

be available for further modification (Bowles et al., 2006). Hence, Tn antigen 

GalNAcs may remain unmodified and available for further detection by the two 
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GalNAc recognizing lectin tools used in this study. This possibility could be tested 

by comparing relative levels of galactose and sialic acid, to determine if they are 

reciprocally reduced in the single mutant conditions and elevated in the control 

and double mutants.  

 A second possibility arises from the organization of the pgants within the 

Golgi, which is known to be sensitive to the activation of Src signaling (Gill et al., 

2010). Activation of this pathway leads to the re-arrangement of the pgants from 

the cis/medial Golgi to the ER, leading to excessive O-GalNAc modifications 

added onto protein substrates, consequently elevating the level of glycosylation 

on the cell surface (Gill et al., 2010). Src is known to be activated downstream of 

integrin signaling. Critically, I have identified that an integrin receptor and 

Tenascin ligand combination, along with downstream Talin signaling, is 

suppressively regulated by both pgants (Chapter 4). It would therefore be of 

great interest to test the status of Src signaling in these contexts (Arias-Salgado 

et al., 2003). A third possibility arises from the fact that pgants are part of a family 

of genes with at least 12 members in Drosophila (Tian and Ten Hagen, 2009). 

Loss of either pgant3 or pgant35A may potentially lead to an imbalance in the 

function of the other pgants or overcompensation by the other family members. 

While these changes may manifest at the gene expression level, it is known that 

pgants can modify both naked and pre-glycosylated substrates, and earlier 

disruption in O-GalNAc modifications (in the pgant3 or pgant35A mutants) may 

affect subsequent glycosylation by the other family members, potentially leading 

to the observed elevation of synaptic O-GalNAc (Ten Hagen and Tran, 2002) .  
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Targets of the suppressive regulation: the integrin signaling pathway 

 I have identified integrin signaling to be regulated by the pgant dependent 

suppressive regulation (Chapter 4). This result is supported by studies in the 

Drosophila wing disc, where pgant mutations modulate the secretion of the 

integrin ligand Tiggrin, to regulate intercellular adhesion between the two wing 

disc cell layers (Zhang et al., 2008). However, there is no significant difference in 

Tiggrin levels at the NMJ in either of pgant3 and pgant35A mutant conditions. 

This suggests that pgants show cell-specific regulation of integrin signaling, 

which is supported by the wing disc studies in which pgant35A mutants alone do 

not have any effects on wing disc integrin signaling and pgant3 mutant effects 

cannot be rescued by pgant35A (Zhang et al., 2008). At the NMJ, the pgant-

dependent neural effects suppressively regulates the integrin ligand/receptor pair 

Ten-m and αPS2, which are expressed pre-and postsynaptically and known to be 

potent regulators of the synaptic development and function (Beumer et al., 1999; 

Mosca et al., 2012). While Ten-m is known to form trans-synaptic adhesions with 

its synaptic partner Ten-a (Mosca et al., 2012), I show that Ten-m/αPS2 signaling 

occurs at intercellular adhesions at the neuromuscular synapse.  

 Both αPS2 and Ten-m contain strings of consecutive serine/threonine 

residues predicted to be recognized and modified by the pgant gene family. 

Importantly, Ten-m has been shown to be a predominant target of both pgant3 

and pgant35A in glycosyltransferase activity measurements in vitro (Zhang et al., 

2008). Thus, Ten-m may plausibly be a direct target of O-GalNAc modification at 

the neuromuscular synapse. However, in both pgant3 or pgant35A mutant 
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conditions, αPS2 and Ten-m levels are down-regulated, while O-GalNAc levels 

are elevated. The straight-forward interpretation is that pgant dysregulation 

decreases abundance of the integrin ligand/receptor pair. Alternatively increased 

O-linked glycosylation may perturb epitope recognition by antibodies against 

ligand/receptor. Another possibility is that increases in O-linked glycosylation, 

lead to greater interaction between the ligand and receptor to cause 

conformation changes that decrease epitope availability for subsequent detection 

by Ten-m and αPS2 antibodies. These options could be tested by use of 

appropriate de-glycosylating enzymes and lectin-pull down experiments, as well 

as the generation of direct epitope-tagged Ten-m and αPS2 transgenes.  

 Using cell-specific rescue experiments, I identify pre- and postsynaptic  

requirements for pgant3 and pgant35A (Chapter 4). Both Ten-m ligand and αPS2 

receptor are found pre and postsynaptically, with relatively greater expression of 

both targets in the postsynaptic membrane (Beumer et al., 1999; Mosca et al., 

2012). Importantly, postsynaptic Ten-m has been shown to form a trans-synaptic 

pair with presynaptic Ten-a, with unknown roles for presynaptic Ten-m (Mosca et 

al., 2012).  As only presynaptic rescue of pgant3 and pgant35A can rescue the 

downregulated Ten-m levels in corresponding loss of function mutant 

backgrounds, pgant dependent suppressive mechanism in the presynaptic 

neuron may specifically regulate the Ten-m/αPS2 signaling. I identify both pre- 

and postsynaptic subcellular defects in pgant3 and pgant35A mutants. Of 

particular interest is the regulation of the postsynaptic pocket (PSP) space, which 

is found apposing presynaptic active zones (Fig. 24, Chapter 4). The PSP is 
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significantly larger in pgant3 and pgant35A single mutant conditions, but double 

mutants return to the control condition. The PSP compartment was first 

described by Estes et al. 1996 in shibire endocytosis mutants. Packard et al. 

2002 later reported PSP enlargement in WNT signaling mutants. Enlarged PSPs 

have subsequently been reported in BMP Gbb mutants (Nahm et al., 2010), sfl 

mutants regulating HSPGs in the extracellular space (Ren et al., 2009), and 

Perlecan secreted HSPG mutants (Kamimura et al., 2013). Hence, PSPs are 

sensitive to defective glycosylation and trans-synaptic signaling.  

 Consistently, we find defective signaling at the Ten-m/αPS2 signaling axis. 

Ten-m/PS2 integrin signaling drives cell adhesion (Graner et al., 1998) and 

pgants also promote adhesion and matrix secretion (Zhang and Ten Hagen, 

2010). Both pgant mutants down-regulate synaptic Ten-m/PS2 levels at the 

NMJ synapse, with no differences in pgant double mutants. Based on this 

extensive literature, we interpreted enlarged PSPs to be a consequence of 

impaired synaptic adhesion. Indeed, normally apposed pre- and postsynaptic 

membranes occur with pgant enlarged PSPs. This is not surprising as PS2/Ten-

m are both transmembrane, and integrin signaling is well known to bridge to the 

cytoskeleton. Thus, an adhesion defect can manifest on either side of the 

postsynaptic membrane due to impaired integrin signaling. Further investigation 

of the cytoskeletal differences associated with these using markers for 

presynaptic microtubules, and postsynaptic alpha-spectrin would further support 

this idea. Of further interest would be an ultrastructural analysis with gold-labeled 

antibodies against postsynaptic scaffold proteins and glutamate receptors given 
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the expansion of PSP in the pgant mutants and the single and double mutants 

under activity-dependent conditions (Chapter 4). Thus, I identify pgant dependent 

suppressive mechanism to control synaptic function, subcellular distribution and 

synaptic integrin signaling. 

 Integrins are also known to potently regulate synaptic plasticity. Earlier 

work shows significant depression of facilitation and augmentation phases in 

integrin mutants (Rohrbough et al., 2000). Consistent with identified 

dysregulation of integrin signaling in pgant mutants, I have found differences in 

the facilitation and augmentation phases during high frequency stimulation. I find 

that suppressive mechanisms controlling neurotransmission strength during high 

frequency are time-dependent, as single and double mutants largely behave 

similarly during this phase, but there is a restoration of suppressive effects of 

neurotransmission in the post-tetanic phases (Chapter 4). Using optogenetic 

strategies, I show that these differences in phasic properties can be explained by 

suppressive and non-suppressive regulation of integrin dependent downstream 

signaling. In response to tetanic stimulation, I find pFAK levels in the 

single/double mutants behave similarly, while in the post-tetanic phase, Talin 

levels are depressed in single mutants while double mutants are similar to 

controls (Fig. 30, Chapter 4). Further insight into these dynamics could be 

determined by also visualizing total FAK levels with FAK antibodies to determine 

if there are suppressive interactions on the FAK levels or if they are reciprocally 

regulated as compared to the pFAK levels. 
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 I also show activity-dependent expansion of the PSP is controls and 

double mutants, which is largely absent in the single mutants (Fig. 31, Chapter 

4). This change may arise from the altered dynamics of the Talin/pFAK 

activation. The interaction between Talin and pFAK remains an area of intense 

research where Talin is considered to be an obligate pFAK interactor. However, 

recent reports have shown that pFAK may in turn regulate Talin levels (Lawson 

et al., 2012). In these studies, pFAK and Talin are co-regulated in stable points of 

intercellular adhesion, while they are differentially regulated in adhesions at 

actively spreading ‘environmental probing’ extensions of the cell. Given that the 

PSP expansion is also a result of dynamic membrane changes, elicited by only 

60 seconds of nerve stimulation, the observed expansion of the PSP 

compartment could arise from uncoupled pFAK and Talin dynamics. This 

question remains unresolved, but would be of significant interest to cell biologists 

and neurobiologists given the common interests in inter-cellular and cell-matrix 

adhesion. In summary, I was fortunate to discover novel synaptic glycan-

mediated mechanisms, mediated by coupled gene pairs that are part of the same 

glycan pathway. I would strongly advocate using this paradigm for investigation 

of other complementary and inhibitory pairs of genes.  
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