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CHAPTER I

Introduction

Accumulated dipslacement damage is one of the long-term failure mechanisms to which

satellite electronics are subjected in the harsh radiation environments of space. Satel-

lite electronics are bombarded with energetic particles that displace atoms as they travel

through materials, and permanent damage to the crystal lattice of semiconductors results

in electrical degradation. The average amount of electrical damage per particle sustained

by a device can be predicted from nonionizing energy deposition simulations for a given

radiation environment. However, accurate prediction of the maximum amount of damage

caused by a single particle has remained an outstanding problem of radiation effects since

the complex relationship between phonons, lattice displacements and annealing has not yet

been quantified in a model that links nonionizing energy deposition to stable, electrically

active defects.

This work presents measurements and simulations of the electrical degradation in sil-

icon diodes caused by damage from individual heavy ions. Low-current measurements

of individual damage events provide insight into the relationship between atomic motion

within an irradiated material and the electrically active defects that result. The relationship

between nonionizing energy deposition and electrical degradation that immediately follows

damage caused by individual ions can be understood with Shockley-Read-Hall (SRH) the-

ory when electric field enhancement is taken into account. From an engineering standpoint,

this result can be used to predict the maximum amount of electrical damage that a silicon

device is likely to sustain from single particles in a given radiation environment.

Satellites encounter energetic particles that range from massless photons to the heavy

nuclei elements of galactic cosmic rays (GCRs). The Van Allen belts surrounding the

earth harbor populations of trapped protons and electrons [1]. Solar flares and coronal
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mass ejections release transient populations of heavy ions, alpha particles, and high energy

protons and electrons. While the likelihood of solar emissions increases and decreases

with solar activity, the background population of GCRs is a constant threat. GCRs are

heavy ions emitted by stellar processes. Energetic particles from the Van Allen belts, solar

activity, and GCRs all increase the risk of accumulated radiation damage and transient

electrical disruption in satellite electronics.

An incident particle loses energy to ionizing and nonionizing processes as it interacts

with atoms in a target material. Ionizing energy deposition creates electron-hole pairs as

an incident particle excites electrons from the valence band to the conduction band. Non-

ionizing energy is the fraction of incident energy lost to atomic displacements and phonon

production [2]. Displacement damage is the resulting arrangement of stable defects in a

semiconductor crystal lattice. A damage factor is defined as the average amount of elec-

trical degradation per particle caused by displacement damage. For example, the particle

damage factor may be calculated as the average increase in dark current density per inci-

dent particle [3], and the universal damage factor may be calculated as the average increase

in thermal carrier generation per displacement damage dose deposited in a depletion region

[4].

Damage factors can be calculated with nonionizing energy loss (NIEL). NIEL is a

widely-used metric that represents the average amount of energy that an incident parti-

cle loses to atomic displacements [5]. Calculated values of NIEL, typically given in units

of MeV-cm2/g, are specific to the incident particle energy and species as well as the mate-

rial and geometry of the target device. If the damage factor for one incident particle species

and energy (e.g., 1 MeV neutrons) is known for a device, the damage factor for a second

incident particle can be estimated from the ratio of NIEL values calculated for the two par-

ticles [6]. The appropriate use of NIEL can reduce the time and expense required for the

beam testing during parts qualification.

While NIEL scales with the average amount of damage per particle, it does not indi-
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cate the maximum amount of damage that a single particle can produce. Single particle

displacement damage occurs when an individual particle creates a sufficient number of

new defects to degrade or destroy a semiconductor device [7]. The maximum amount of

electrical degradation caused by single particle displacement damage has been experimen-

tally reported to be 20 to 30 times larger than the average amount of electrical degradation

per particle [8], [9], [10]. The magnitude distribution of experimentally observed dam-

age events does not match the magnitude distribution of the recoil spectrum calculated for

silicon [8]. The difference between average damage event size and maximum event size

introduces design problems in spaceflight electronics with low thresholds for acceptable

leakage current, such as imaging sensors or low power electronics.

Pixels in charge-coupled devices (CCD), charge injection devices (CID) and active

pixel sensors (APS) are the primary devices associated with single particle displacement

damage in the literature since dark current, the current measured in a pixel in the absence

of light, is a key electrical parameter sensitive to radiation-induced displacement damage

[10], [11], [12]. For example, a CCD pixel may be expected to maintain its dark current be-

low an acceptable threshold for a given operational lifetime based on the average increase

in dark current per incident particle. A large damage event from a single particle could

increase the pixel’s dark current above this threshold, turning the device into a “hot pixel”

well before the end of its anticipated operational lifetime. The dark current in a hot pixel is

high enough that the pixel is always considered on, so that the imaging data for that pixel

is corrupted.

Single particle displacement damage has also been reported in the literature for avalanche

diodes [13], SDRAMs [14], HEMTs [15], and JFET diodes [16] exposed to radiation. A

common feature of these devices is a vulnerability to increased leakage current when radia-

tion particles create defects in reverse-biased depletion regions. Electric field enhancement

has been suggested as a possible mechanism for large increases in pixel dark current when

electric fields greater than or equal to 105 V/cm are present [9], [10], [12]. Defects op-
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erating in fields of this magnitude exhibit field-enhanced emission resulting from reduced

barriers to thermal carrier emission (the Poole-Frenkel effect) [17].

Chapter II presents the physics of atomic displacement, defect energy levels, and elec-

tric field-enhanced carrier generation necessary to calculate radiation-induced displacement

damage from a single particle. A table of symbols used in Chapter II can be found in

Appendix A. Chapter III demonstrates electrical degradation caused by single particle dis-

placement damage with time series showing discrete, sustained increases in leakage cur-

rent, or current steps, in 252Cf-irradiated silicon JFET diodes. Chapter IV presents modeled

distributions of current step magnitude that show good agreement with the magnitudes of

current steps measured in irradiated JFET diodes. Radiation-induced defect density is ob-

tained with Monte Carlo simulations of atomic displacements, and electric field effects

are incorporated by modeling midgap defects as 1-D Coulomb potentials in the presence

of electric field strengths obtained from TCAD simulations. The maximum magnitude of

heavy ion-induced increases in current obtained from the expression for SRH generation

are consistent with the largest current steps measured in 252Cf-irradiated JFET diodes when

electric field enhancement of defect emission rates, radiation-induced defect density, and

the proximity of multiple depletion regions are taken into account.
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CHAPTER II

Background

An incident particle traveling through a semiconductor material displaces lattice atoms

through nonionizing processes such as Coulomb scattering, nuclear elastic collisions, and

nuclear inelastic collisions [2]. Coulomb scattering occurs when a positively charged

atomic nucleus is attracted or repelled by the charge of an incident particle. When an inci-

dent particle collides with an atomic nucleus, the combined kinetic energy of both particles

is conserved during nuclear elastic collisions. Kinetic energy is not conserved in nuclear

inelastic collisions that may involve the transfer of mass, such as fission or spallation. All

three nonionizing processes are capable of displacing atoms from the semiconductor crys-

tal lattice. The location from which a lattice atom has been displaced is a vacancy defect

[18]. A displaced atom or collision by-product that comes to rest between lattice atoms is

an interstitial defect, and isolated vacancy / interstitial pairs are called Frenkel defects or

Frenkel pairs [18]. Fig. II.1 shows a cartoon of vacancy and silicon self-interstitial defect

created by an incident particle [19].

Individual radiation particles that deposit less than 100 eV of non-ionizing energy typ-

ically result in Frenkel pairs [7]. When energetic particles deposit more than 100 eV of

non-ionizing energy, a primary displaced atom (or primary knock-on atom, PKA) can dis-

lodge secondary atoms as it travels through the material. Sufficiently energetic secondary

displaced atoms can displace further atoms, resulting in a collection of point defects and

defect clusters along the PKA’s trajectory through the material. Vacancies and intersti-

tials can form stable, electrically active defects by themselves or with doping and impurity

atoms. For examples, two vacancies can form a stable divacancy defect [18], a vacancy and

a phosophorus atom [20] or vacancy and arsenic atom [21] form the E-center defect [20],

and a vacancy and an oxygen atom form the A-center defect [22]. As stable displacement
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Figure II.1: Cartoon of a lattice vacancy and silicon self-interstitial defect caused by dam-
age from an incident particle, after Marshall and Marshall, 1999.

defects accumulate, device performance suffers. Bipolar transistor gain, diode leakage cur-

rent, and efficiency degradation in solar cells are device performance metrics adversely

affected by increasing amounts of displacement damage [2].

For devices in which leakage current is a key parameter for device performance, such

as imaging pixels and ultra-low leakage diodes, a single incident particle can create enough

displacement damage to measurably degrade the device. Single particle displacement dam-

age was first reported in the literature for avalanche diodes [13], but the phenomenon

emerged as a concern for dark current in CCD and CID pixels in the 1980’s [9], [10].

Burke and Summers noted that the largest observed damage events caused by single par-

ticles could not be explained with calculations of nuclear recoils [8]. Marshall et al. used

extreme value statistics to satisfactorily predict the size distribution of damage events in the

absence of high electric fields [23]. Srour and Hartmann identified electric field enhance-

ment of defect emission rates as a possible explanantion for the difference in the ratio of the

maximum observed damage size and the average observed damage size compared to the

6



ratio of the maximum calculated nuclear recoil energy and the average calculated nuclear

recoil energy [9]. Bogaerts, Dierickx and Mertens were able to calculate the distribution of

dark current increases for proton-irradiated APS pixels by applying electric field enhance-

ment factors to distributions of elastic and inelastic nuclear recoils weighted by electric

field [12].

As key device parameters shrink, single particle displacement damage will measurably

degrade low power electronics and transistors with very small channel volumes. Non-

silicon devices are also susceptible to single particle displacement damage; damage caused

by individual heavy ions has been reported in AlGaN / GaN high electron mobility tran-

sistors (HEMTs) [15]. Section II.1 provides an overview of the devices reported for single

particle displacement damage and the attempts to predict the maximum size of damage

events, and Section II.2 describes the physics of reverse current contributed by radiation-

induced defects with electric field-enhanced emission rates.

II.1 Devices Reported for Single Particle Displacement Damage

Avalanche Diodes

In 1965, Gereth et al. investigated the displacement damage induced by electrons and

by individual neutrons in silicon avalanche diodes [13]. When an avalanche diode is bi-

ased in the breakdown region, a single carrier generated from a deep level defect causes

an avalanche of electrons that can be measured as a voltage pulse. The pre-irradiation

avalanche diodes exhibited pulse rates of less than 1 pulse per second. Pulse rates of post-

irradiation diodes increased linearly with electron flux up to a flux of 1015 electrons cm-2

with a corresponding pulse rate of 1.3×104 pulses/s. This linear increase was attributed to

a constant rate which point defects were created with increasing flux. However, neutron

irradiation resulted in a nonlinear increase in avalanche diode pulse rates, and this was at-

tributed to the creation of defects clustered close enough together (within 100 Å) to enable

tunneling between defect energy levels.
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CCDs

In 1985, Srour and Hartmann demonstrated that CCD arrays sustained single particle

displacement damage from 14 MeV neutrons [11]. The dark current of individual pixels

increased by up to two orders of magnitude after single neutron strikes. The authors found

that the largest increases in dark current were 20 times larger than the average dark current

increase caused by a single damage event. This study recognized that individual radiation

particles can increase dark current through the creation of midgap defects in device deple-

tion region that give rise to thermal generation of carriers. Although the authors asserted

in [11] that the magnitude of incremental increases in dark current depends on the number

of new defects created rather than the arrangement of defects in clusters or as a set of iso-

lated point defects, further investigation has shown that defect clustering strongly affects

the magnitude of dark current increases [24], [25], [26].

In 1987 [8], Burke and Summers investigated the assumptions stated in [11] that the

size of discrete amounts of electrical degradation, or damage events, scales linearly with

the number of new defects while the arrangement of defects in clusters or as point defects

is immaterial. These conditions imply that the damage distribution should be proportional

to the nuclear recoil spectrum. The observed distribution of damage event sizes in [11]

did not exhibit the same shape as the calculated nuclear recoil spectrum, nor did the ratio

of maximum to average event sizes match the ratio of maximum to average nuclear recoil

energy. The calculated maximum recoil size for neutrons interacting with silicon was 1.67

times the average nuclear recoil size, but the observed maximum damage event was 23

times larger than the average event size. In 1989, Srour and Hartmann suggested that

electric field enhancement of defect emission rates could explain why the maximum to

average damage event size observed in experimental data is higher than the ratio calculated

from the nuclear recoil spectrum [9].

Charge Injection Device Imagers

In 1989, Marshall et al. used extreme value statistics to quantify the maximum dark
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current increase resulting from damage events in proton-irradiated charge injection device

(CID) imagers [10]. The authors reported that the average increase in dark current caused

by individual particles scales with NIEL, but the magnitude of the largest individual in-

creases does not scale with NIEL. A second conclusion was that the presence of an electric

field higher than 105 Vcm-1 can result in larger increases in dark current than are predicted

by SRH calculations when electric field effects are not taken into account. Electric field

enhanced emission can stem from a large reverse bias or from device-specific geometry

and metallization.

Active Pixel Sensors

In 2002, Bogaerts, Dierickx and Mertens presented a method for calculating the distri-

bution of dark current increases observed in proton-irradiated active pixel sensors with high

internal electric fields [12]. APS devices were irradiated with 10 MeV protons at fluences of

3×109 cm2, 1×1010 cm2, 3×1010 cm2, 1×1011 cm2 and 3×1011 cm2. The reported dam-

age factor of 3.65 nA cm2 MeV-1 for these devices was calculated as the average increase

in dark current per MeV of nonionizing energy deposited in the lattice. The size distribu-

tion of the measured increases in dark current observed in 1280×1024 pixels showed good

agreement with a calculated distribution of dark current increases that incorporated electric

field enhancement from both the Poole-Frenkel effect and multi-phonon tunneling. Fol-

lowing the methods described in [27] and [28], the authors used the distribution of electric

field strengths present in the APS pixels to calculate a distribution of unitless enhancement

factors as the ratio of thermal emission rates for a perfect midgap defect (Et = Eg/2) in

the presence of an electric field to zero-field emission rates [12]. The distribution of elastic

and inelastic nuclear recoils was calculated for 10 MeV protons incident upon the APS

pixels. This nuclear recoil distribution was applied to the damage factor and then weighted

by enhancement factors corresponding to the distribution of electric fields present in the

pixels.

SDRAMs
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In 2008, Edmonds and Scheick provided an analysis of damage mechanisms in Hyundai

16×4 SDRAMs [14]. They concluded that micro-displacement damage, another term for

single particle displacement damage, was the mechanism responsible for SDRAMs that

failed to maintain their logic state between refresh intervals, a condition referred to as a

“stuck bit.” The SDRAMs were irradiated with protons at incident energies of 54 keV,

106 keV, and 203 keV as well as a range of heavy ion species and energies. Edmonds and

Scheick proposed that micro-displacement damage events create generation centers in the

reverse-biased depletion region shared by the transistor’s drain and the capacitor inside the

device. These generation centers emit thermally generated carriers that increase leakage

current across the depletion region and discharge the SDRAM’s capacitor. The number of

stuck bits per incremental unit of fluence scaled with NIEL values calculated for the three

proton energies in [14].

HEMTs

In 2011, Kuboyama et al. reported abrupt, single particle induced leakage current in-

creases in AlGaN/GaN high electron mobility transistors (HEMTs) exposed to heavy ion

radiation [15]. Drain and gate currents were monitored continuously as these devices were

irradiated with 74 MeV neon, 147 MeV argon, 315 MeV krypton, and 443 MeV xenon as

drain voltage was increased from 30 V to 150 V. During krypton irradiation, the authors

observed several increases in drain leakage current that did not correspond to either an in-

crease in drain voltage or to an increase in gate current. The average value of these abrupt

increases in drain current was 187 µA. Following each abrupt increase, leakage current was

observed to relax quickly to a stable value that was higher than the pre-increase level.

The abrupt increases in drain current reported for HEMTs are seven orders of magni-

tude higher than the discrete increases in leakage current for 252Cf-irradiated JFET diodes

described in Chapter III, but time series for the HEMT drain current and JFET diode re-

verse current show similar behavior. After each device incurs damage from an incident

heavy ion strike, the initial abrupt increase in current relaxes (on the order of minutes) to a
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stable value that is higher than the pre-strike leakage current.

II.2 Physics of Single Particle Displacement Damage

The silicon devices reported for single particle displacement damage share a common fea-

ture: device performance suffers when radiation-induced lattice damage increases the cur-

rent flowing across a reverse-biased pn-junction. SRH theory describes the carrier recombi-

nation and generation processes that govern currents within device depletion regions [29],

[30]. Device materials, depletion region geometry, defect characteristics, and electric field

strength can be used to calculate the average frequency with which electrons and holes are

generated and the average amount of time before they recombine. When carriers are gen-

erated more frequently than they recombine, the resulting current is referred to as leakage

current, dark current, or reverse current. Reverse current is defined here as the leakage

current measured in a reverse-biased diode [31].

Although there is a rich body of literature characterizing point defects, defect clusters,

and defects that involve impurity atoms, this work concentrates on vacancy and interstitial

defects. The average amount of electrical degradation per particle scales linearly with the

average number of atomic displacements per particle [6]. Device damage factors can be

predicted with NIEL values calculated from simulations of the vacancies and recoil atoms

produced by incident ions [32], even though these vacancies and recoil atoms are mobile

in the semiconductor and may anneal or form complex defect structures with silicon lattice

defects or impurity atoms.

Although the amount of stable radiation-induced electrical degradation depends on both

annealing time and temperature, the initial amount of electrical degradation observed im-

mediately after an incident particle creates displacement damage can be understood with

SRH generation. Just as simulations of the average number of vacancies and recoil atoms

can be used to calculate NIEL values that predict the average amount of electrical degra-

dation in a device, the size distribution of electrical degradation can be calculated by con-
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sidering both the distribution of the number of vacancy and interstitial defects created by

incident particles as well as the variation in thermal emission rates exhibited by these de-

fects. The treatments of the effect of increased depletion region defect density on minority

carrier lifetime and of electric field effects on generation lifetime are discussed in [33].

II.2.1 Shockley-Read-Hall Generation in Depletion Regions

SRH theory provides a statistical expression for the thermal recombination and generation

of carriers subject to electron capture, electron emission, hole capture, and hole emission

[29]. These four processes are illustrated in Fig. II.2. In indirect-gap materials, which are

described by SRH theory, recombination occurs when a conduction band electron recom-

bines with a valence band hole at the defect’s energy level Et . Generation processes cause

the defect to emit electrons to the conduction band energy level Ec and holes to the valence

band energy level Ev. In electron capture, a conduction band electron becomes trapped at

the defect’s energy level. Hole capture describes the emission of an electron trapped by

the defect to the valence band, where the electron recombines with a hole. Electron emis-

sion occurs when an electron trapped by the defect is emitted to the conduction band, and

hole emission occurs when the defect traps a valence band electron and creates a valence

band hole. A semiconductor free from defects has no electron states located between the

valence and conduction bands (the bandgap). The midway point between the valence and

conduction bands is referred to as midgap.

Doping levels, bias conditions, defects, and temperature constrain the balance equation

for recombination and generation processes. The SRH equation for the net recombination-

generation rate U is

U =
σnσpvthNtni

σne(Et−Ei)/kT +σpe(Ei−Et)/kT
(II.1)

where σn is the capture cross-section for electrons (a measure of a defect’s effectiveness

at electron capture), σp is the capture cross-section for holes, vth is the thermal velocity of

electrons, Nt is the defect density, ni is the intrinsic concentration of carriers in undoped
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Figure II.2: Cartoon of electron capture, electron emission, hole capture, and hole emission,
after Shockley and Read, 1952.

silicon, Et is the defect’s energy level, Ei is the intrinsic Fermi level, k is Boltzmann’s

constant, and T is temperature [34].

Defects with energy levels near the conduction band or valence band are considered to

be shallow traps that primarily capture and emit either electrons or holes [34]. Deep level

defects with energy levels near midgap are localized energy states called recombination-

generation centers that are effective at the capture and emission of both electrons and holes.

The proximity of a defect’s energy level Et to the intrinsic Fermi level Ei has an exponential

effect on the defect’s carrier generation rate. Fig. II.3 compares the recombination rate to

the generation rate for different energy levels [34]. As a defect’s energy level gets further

from the intrinsic Fermi level and closer to the conduction or valence bands, the generation

rate plummets while the recombination rate plateaus. Midgap defects are more effective at

SRH generation than shallow traps.

The recombination generation rate U in II.1 is negative when the joint population of

mobile electrons and holes np is less than ni
2, the intrinsic carrier concentration of both

electrons and holes in undoped silicon [29]. This condition occurs in the depletion region

of a pn-junction that has been swept of its mobile carriers. The bias-dependent expression
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Figure II.3: Recombination and generation rates as a defect’s energy level Et moves away
from intrinsic Fermi level Ei, after Muller, Kamins and Chan, 2003.

for the width of the depletion region xd is

xd =

[
2εSi

q

(
1

NA
+

1
ND

)
(φi−Va)

]1/2

(II.2)

where εSi is the permittivity of silicon, q is the charge of an electron, NA is the acceptor

doping level on the p-type side of the pn-junction, ND is the donor doping level on the n-

type side of the junction, and Va is the voltage applied across the junction [34]. The built-in

junction voltage φi is calculated in [34] as

φi =
kT
q

ln
NAND

ni2
. (II.3)

The depletion region expands with the magnitude of applied reverse bias. The volume of

the device that undergoes net thermal generation of carriers described by SRH theory can

be calculated as the product of the junction area A and the depletion region width xd .
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Figure II.4: The generation region width xi and depletion region width xd with respect to
quasi-Fermi levels φn and φp and the electric potential Ψ, after Calzolari and Graffi, 1972.

In 1972, Calzolari and Graffi noted that the electron-hole pair emission rate exceeds

the carrier capture rate when generation-recombination centers are located within a volume

inside the depletion region called the generation region [35]. The generation region starts

where the electric potential equals the hole quasi-Fermi level, and it ends where the electric

potential equals the electron quasi-Fermi level as shown in Fig. II.4. Inside the generation

region, the electron quasi-Fermi level is higher than the conduction band, and the hole

quasi-Fermi level is lower than the valence band. The electron population n and the hole

population p are both much lower than the intrinsic carrier concentration ni. Since there are

so few mobile carriers under these conditions, carrier generation is the restorative process

rather than carrier recombination. When the electric potential at the pn-junction is between

the hole and electron quasi-Fermi levels, the equation1 for the generation region width xi is

xi = xd−

[√
2εSikT

q2

(√
1

NA
ln

NA

ni
+

√
1

ND
ln

ND

ni

)]
(II.4)

Fig. II.5 compares the electron and hole populations, the depletion region widths, and

1The expression for generation width given by equation (13) in [35] incorrectly shows that the right hand
term inside the parenthetical expression is subtracted rather than added. A full derivation of equation II.4
above is provided in Appendix F.
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the generation region widths calculated for a symmetrical pn-junction (NA,D = 1016 cm3)

reverse-biased at 0 V, -4 V, -8 V, and -12 V. Electron populations are represented as thick

dashed lines in Fig. II.5, and hole populations are shown as thick solid lines. Genera-

tion region widths are shown as thin solid arrows superimposed on the thin dashed arrows

representing depletion region widths.

When the junction is grounded, the depletion region width xd is 0.43 µm due to the built-

in junction voltage of 0.72 V, but the generation region width xi is 0 µm. The product of the

electron and hole populations pn is always greater than n2
i , so there is no net generation.

At a reverse bias of -4 V, xi is 0.34 µm, approximately 60% of of xd . Generation is the

dominant restorative force inside the the region bounded by xi, so the magnitude of the

net current is greater than zero. The ratio of the generation region width to the depletion

region width increases with the magnitude of reverse bias. When the pn-junction is reverse-

biased at 8 V, xi is 71% of xd , and at a reverse bias -12 V, xi is 76% of xd . As the reverse

bias magnitude increases, so does the volume of the device in which radiation-induced

damage contributes to reverse current through SRH generation. Because of uncertainties in

junction grading and depletion region geometry, the generation region width xi is frequently

approximated as the depletion region width xd in reverse current calculations when the

reverse bias magnitude is greater than zero [34]. This approximation is used for modeling

current step distributions in Chapter IV.

II.2.2 Minority Carrier Lifetime and Increased Defect Density

The minority carrier lifetimes for electrons (τn0) and holes (τp0) represent the average

amount of time that carriers will exist before recombining [34]. Minority carrier lifetimes

are calculated in [34] from SRH theory as

τn0,p0 = (vthσn,pNt)
−1. (II.5)
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Figure II.5: Electron and hole populations, depletion region widths, and generation region
widths in a symmetrical pn-junction (NA,D=1016 cm-3) biased at 0 V, -4 V, -8 V, and -12 V.

Silicon vacancies and self-interstitial defects have energy levels near midgap. In [36], the

authors report that vacancies have an energy level of Ev + 0.47 eV and a capture cross-

section values of σn,p = 9×10-16 cm2 for both electrons and holes. Self-interstitial defects

are reported to have an energy level of Ec− 0.44 eV, an electron capture cross-section of

σn = 9.2×10-15 cm2, and a hole capture cross-section of σp = 9.1×10-14 cm2 [36].

Vacancy and interstitial point defects are not stable, and they are mobile within the

silicon lattice[19]. The majority of isolated vacancy and interstitial pairs (Frenkel de-

fects) anneal within 1 ms of their creation [19]. Vacancies that remain after this short-

term annealing period form stable, relatively immobile defects such as divacancies [18],

E-centers (vacancy plus phosphorus [20] or vacancy plus arsenic [21]), A-centers (vacancy

plus oxygen [22]), and complex clusters [19]. Divacancies and E-centers are both near-

midgap recombination-generation centers that have been reported for DLTS measurements

of 252Cf-irradiated silicon diodes [37]. Interstitial silicon atoms can displace boron atoms
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from the lattice of p-type silicon, and this changes the local doping dynamics while creating

interstial boron defects [38].

Although vacancy and interstitial defects are unstable on the timescale of milliseconds,

this does not preclude the use of reported values for their capture cross-sections and energy

levels along with simulated values of radiation-induced populations in the SRH generation

expression for calculations of modeled current step sizes that are consistent with the size

distribution of measured current steps. Since NIEL values have been used to successfully

predict damage factors with calculations that include the number of radiation-induced va-

cancies and recoil atoms while excluding stable defects and annealing from consideration

[32], vacancy and interstitial defects have been chosen to model current steps.

Since generation dominates over recombination when the number of mobile carriers

is less than ni
2 inside depletion regions, the pre-irradiation defect density is considered

here to be the number of recombination-generation centers N in a depletion region divided

by the volume of that depletion region, or Nt = N/Axd . Radiation-induced displacement

damage increases the number of defects throughout the device, but only defects inside the

depletion region contribute to SRH generation. The post-irradiation expressions for τ ′n0 and

τ ′p0 attributed to vacancy and interstitial defects are given by (II.6) and (II.7).

τ
′
n0
−1

=

 1

vthσn,vac
Nvac+N′vac

Axd

−1

+

 1

vthσn,int
Nint+N′int

Axd

−1

(II.6)

τ
′
p0
−1

=

 1

vthσp,vac
Nvac+N′vac

Axd

−1

+

 1

vthσp,int
Nint+N′int

Axd

−1

(II.7)

where N′vac is the number of new vacancies created in the depletion region, and N′int is the

number of new interstitials inside the depletion region.
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II.2.3 Generation Lifetime and Electric Field-Enhanced Emission

The generation lifetime associated with a defect represents the relative frequency of carrier

emission. As the generation lifetime decreases, the defect emission rate increases. The

term trap will be used to indicate localized energy states in the following discussion of

carrier trapping and emission. The expression for the pre-irradiation generation lifetime

τg0 in (II.8) incorporates the minority carrier lifetimes for electrons and holes, τn0 and τp0

[31].

τg0 = τn0e(Ei−Et)/kT + τp0e(Et−Ei)/kT (II.8)

In the absence of an electric field, if Et is greater than the intrinsic Fermi level Ei, the trap is

more effective at emitting electrons to the conduction band Ec than it is at emitting holes to

the valence band Ev. Conversely, the trap is more effective at emitting holes to the valence

band than electrons to the conduction band if the trap level is lower than the intrinsic Fermi

level. In a zero field region, the localized energy states closest to the intrinsic Fermi level

are the most effective generation centers.

The presence of an electric field reduces the amount of thermal energy required for car-

rier emission from a trap, and this field-enhanced emission is known as the Poole-Frenkel

effect [17]. Treatments of the Poole-Frenkel effect with respect to electron emission to the

conduction band are provided for different potentials and defects in [28], [27], and [39].

Following the method of [9], midgap defects are treated as 1-D Coulomb potentials for the

calculation of electric field enhancement through the Poole-Frenkel effect.

Fig. II.6 shows an energy band diagram for a pn-junction that contains two traps mod-

eled as 1-D Coulomb potentials2. Both traps have energy level Et . The first trap exists in

the zero-field, quasi-neutral region of the semiconductor. The thermal activation energy

needed to emit an electron from Et to Ec is labeled E0
act,n. The thermal activation energy

needed to emit an electron from the valence band to the trap level, otherwise known as hole

emission from Et to Ev, is labeled as E0
act,p. In a zero field region, the electron activation

2This band diagram is published in [33] showing only the trap in the pn-junction depletion region.
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Figure II.6: Energy band diagram showing two defects modeled as 1-D Coulomb poten-
tials. The presence of an electric field distorts the Coulomb potential so that the barrier
heights for both electron emission from the trap to the conduction band (E0

act,n) and hole
emission from the trap to the valence band (E0

act,p) are lowered by δEact,n = δEact,p.

energy is described by II.9, and the hole activation energy is described by II.10.

E0
act,n = Ec−Et (II.9)

E0
act,p = Et−Ev. (II.10)

The second trap shown in Fig. II.6 exists in the pn-junction’s depletion region where the

electric field strength is E. The electric field lowers the Coulomb barrier with respect to

the conduction band on one side of the trap. The thermal activation energy Eact,n needed to

emit an electron from Et to Ec becomes Ec− (Et −δEact,n). The electric field also lowers

the Coulomb barrier with respect to the valence band, so the thermal activation energy

Eact,p needed to emit a hole from Et to Ev is (Et−δEact,p)−Ev.

A 1-D Coulomb potential in an electric field E can be modeled as

V (r) =
−q2

4πεSi
−Ercos(θ) (II.11)
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where r is the distance between the electron and the ionized trap, and θ is the angle between

r and the direction of the electric field [28]. The maximum reduction in Coulomb barrier

height is calculated by evaluating the potential V (r) at distance rmax where δV
δ r is equal to

0 and θ is set to 0°[28]. The reduction in Coulomb barrier height δEact,n,p for electron and

hole emission is calculated with II.12 [9].

δEact,n,p =

√
qE

πεSi
(II.12)

The Coulomb barriers for both electron and hole emission are reduced by δEact,n,p. Two

effective trap levels emerge at levels Et +δEact,n for electron emission and Et−δEact,p for

hole emission.

As the electric field E increases, the trap at Et becomes more effective at both electron

and hole emission compared to a trap at level Et in a zero-field region. The pre-irradiation

generation lifetime equation from (II.8) becomes

τg0(E) = τn0e(Ei−(Et+δEact,n))/kT + τp0e((Et−δEact,p)−Ei)/kT . (II.13)

Fig. II.7 shows the divergence of electron and hole trap levels for 1-D Coulomb potential

models of interstitial and vacancy defects as electric field increases. The zero field trap

levels for interstitial and vacancy defects used in Fig. II.7 are taken from [36]. At electric

fields less than 103 V/cm, interstitials are more effective at electron emission than hole

emission since Et is greater than Ei, and vacancies are more effective at hole emission than

electron emission since Et is less than Ei. The divergence of electron and hole trap levels is

clear once the electric field reaches 104 V/cm.

When the electric field is 105 V/cm, a field strength commonly present in the depletion

regions of reverse-biased pn-junctions, the interstitial defect is even more effective at elec-

tron emission than it was at lower electric fields since the effective Et value for electrons

is closer to the conduction band, but it has also become more effective at hole emission
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Figure II.7: Effective trap levels for electrons and holes vs. electric field strength shown
for silicon vacancy and self-interstitial defects modeled as 1-D Coulomb potentials, after
Auden et al., 2013. Zero field trap levels Et for vacancies and interstitials are taken from
Lazanu and Lazanu, 2006.
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since the effective Et value for holes is now close to Ei. The exponential term modifying

the minority carrier lifetime for interstitial hole emission in (II.13) is closer to unity than

it is in the zero-field generation lifetime expression, so generation lifetime is reduced and

the interstitial carrier emission rate is increased. Similarly, the vacancy defect has become

more effective at hole emission compared to lower electric field conditions since its effec-

tive Et value for holes is closer to the valence band, and the effective Et value for electrons

is close to Ei.

In zero field regions, generation lifetime is minimized when the exponential terms for

both carriers in (II.8) are close to unity. In high electric field regions, the generation lifetime

expressed in (II.13) is minimized when the exponential term for one carrier is close to unity

and the exponential term for the other carrier is less than unity.

Once new defects are introduced through displacement damage, the expression for gen-

eration lifetime incorporates the post-irradiation minority carrier lifetimes τ ′n,p that have

been modified by increased defect density as in (II.6) and (II.7). The post-irradiation gen-

eration lifetime τg(E) is expressed as

τg(E) = τ
′
n0e(Ei−(Et+δEact,n))/kT + τ

′
p0e((Et−δEact,p)−Ei)/kT . (II.14)

II.2.4 Current Steps Caused by Radiation-Induced Damage

Reverse current is composed of the diffusion current that arises in the diode’s quasi-neutral

regions and the generation current created in the depletion region [40]. The ideal diode

equation given in II.15 describes the bias-dependent current I that results from electron

injection from the depletion region into the p-type side of the quasi-neutral region and

from hole injection into the n-type side of the quasi-neutral region:

I = qA

(√
Dp

τp

n2
i

ND
+

√
Dn

τn

n2
i

NA

)(
eqVa/kT −1

)
(II.15)

where Dn and Dp are the diffusion coefficients of holes and electrons [34].
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In a reverse-biased diode, current calculated with the ideal diode equation approaches

zero, so SRH generation current in the depletion region makes the dominant contribution

to total reverse current. Radiation-induced defects incease the number of electrons and

holes generated in the depletion region of a reverse-biased pn-junction, and these carriers

contribute to the total reverse current measured across a diode. Assuming that the doping

profile and bias conditions applied to a diode are held constant, the maximum reverse cur-

rent IR is inversely proportional to the generation lifetime τg, and IR can be calculated with

II.16 [31]3.

IR =
qniAxd

τg
(II.16)

Single particle displacement damage increases the density of vacancy and interstitial

defects, consequently decreasing the generation lifetime. In [3], the incremental increase

in generation current density following displacement damage is calculated based on the

difference of τg
−1 and τg0

−1. The same method is used here to calculate the incremental

increase in reverse current ∆IR, taking into account the electric field-induced reductions in

thermal activation energy included in τg(E) and τg0(E). If IR0 is the pre-irradiation reverse

current and IR is the post-irradiation reverse currve, then ∆IR can be calculated as

∆IR = IR− IR0 = qniAxd

(
1

τg(E)
− 1

τg0(E)

)
. (II.17)

Although defects in the quasi-neutral regions can increase diffusion current by decreas-

ing the minority carrier lifetimes in these regions, the relative contribution to total reverse

current made by depletion region generation current dominates over diffusion current in

3In 1957, Sah, Noyce, and Shockley stated the expression for reverse current as JRA = qWniA
2τ0

, where JR

is reverse current density (equal to IR/A) and W is the depletion region width denoted by xd in this work
[41]. The 1982 paper by Schroder corrects the expression for reverse current for the case when the hole and
electron minority carrier lifetimes are not equal (for instance, because their capture cross-sections differ) so
that the generation lifetime τ0 is the appropriate denominator rather than 2τ0 [31].
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silicon diodes [34]. Diffusion current density is calculated as

Jdi f f = qn2
i

(
Dp

Nd
√

Dpτp
+

Dn

Na
√

Dnτn

)
(eqVa/kT −1) (II.18)

where Dn and Dp are diffusion coefficients [34]. Diffusion current density is approximately

0.2% of the zero-field generation current density calculated for a comparable number of

defects at room temperature. Although diffusion current varies with applied bias, it is not

subject to electric field enhancement. The contribution of diffusion current is therefore

neglected in this treatment of radiation-induced current step sizes.

Fig. II.8 shows the calculated increase in reverse current as a function of electric field

strength and the number of radiation-induced defects. For each number of new defects

listed on the x-axis, half the defects are characterized as vacancies and half are characterized

as interstitials using energy levels and capture cross-sections reported in [36]. The device

volume sensitive to defects that contribute to SRH generation is nominally assumed to be

10 µm3.

Fig. II.8 shows that the size of a current step depends on both the number of new

radiation-induced defects created in the depletion region and the strength of the electric

field where the defects have been created. (It is assumed that electric field strength plays no

role in the defect creation process itself; only the effect of field strength on defect emission

rates is considered.) For a given electric field strength, step size varies linearly with the

number of new defects. For a given number of defects, step size increases by a factor of

1.5 when electric field strength is increased by three orders of magnitude from 1 V/cm to

103 V/cm. At this field strength, the Coulomb barrier is lowered by 0.007 eV, or 1.5%

of the energy difference between the conduction band and the trap level. However, step

size increases by more than a factor of 10 when electric field strength is increased from

103 V/cm to 105 V/cm and the Poole-Frenkel effect lowers the Coulomb barrier by 0.07 eV,

or 15% of the energy difference between the conduction band and the trap level.
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Figure II.8: Reverse current step size as a function of the number of new defects created in
generation region and the electric field strength present where the defects are created. The
volume of the generation region is nominally assumed to be 10 µm3.
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Electric field effects must be included in the expression for the generation lifetime in

depletion regions where high electric fields are present. The size distribution of current

steps induced by single particle displacement damage is underestimated if zero field defect

energy levels are used in calculations of SRH generation. Current steps modeled using

Monte Carlo simulations of increased vacancy and interstitial defects are compared with

current steps measured in 252Cf-irradiated diodes in section IV.2.3.
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CHAPTER III

Measuring Single Particle Displacement Damage

This chapter presents in situ measurements of discrete changes in diode reverse current as a

method for investigating electrical effects caused by single particle displacement damage.

Fully characterized silicon diodes were irradiated with 241Am and 252Cf to compare the

increases in reverse current caused by alpha particles and heavy ions. A low noise amplifi-

cation (LNA) circuit has been constructed to measure both transient and permanent changes

in reverse current that occur in the femtoampere and picoampere regimes. A current pulse

occurs when an alpha particle or fission fragment strikes the diode’s depletion region, cre-

ating an ionization event that deposits charge on the timescale of hundreds of picoseconds

[42]. A current step is a discrete increase in reverse current associated with displacement

damage that is sustained for minutes or hours. Examples of steps and pulses are presented

in Section III.3. Section III.4 provides a full analysis of current steps associated with single

particle displacement damage, including average and maximum step sizes, frequency of

steps, and cross-sections of step size distributions.

Measurements of current steps observed in 252Cf-irradiated JFET diodes with floating

drains have been published in [16], and [33] compares measurements of current steps ob-

served in JFET diodes with floating drains and grounded drains.

III.1 Device Characterization

Discrete increases in reverse current can be measured in irradiated diodes when individual

particles create electrically active defects in depletion regions. Characterization of device

materials and depletion region geometry provides insight into the number of defects that an

incident particle is capable of creating inside a depletion region. The thickness of overlayer

materials and silicon will influence where knock-on atoms are displaced and how far they

travel within a device before evolving into stable displacement damage defects. Silicon
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doping levels, the dimensions of doped regions, and device bias determine the dimensions

and positions of depletion regions and the strength of their electric fields. Accurate models

of electric field strengths within a depletion region are key to calculating the contributions

to SRH generation made by depletion region defects. Data from laser testing is used to

identify electrically active regions sensitive to ionizing and nonionizing radiation.

III.1.1 Device Materials

The devices used in this work are PAD1 series n-channel JFET diodes manufactured by

Vishay / Siliconix [43]. The PAD1 diodes are packaged in TO-18 metal canisters which

have been delidded with no damage to the chip or pins (see Appendix C for decapsulation

details). Device areas were established with scanning electron microscope (SEM) images,

and material thicknesses and doping profiles were obtained from the manufacturer [44].

Fig. III.1 shows a cartoon of the PAD1 diode materials, layer thicknesses, and doping

levels. Each device has a p-type silicon substrate doped with 1016 cm-3 boron atoms. An

n-type epitaxial layer of 1016 cm-3 arsenic atoms is grown on the substrate, and this layer

has an area of 70 µm by 50 µm with a thickness of 4 µm. A p+ gate region approximately

2 µm thick with an area of 6 µm by 64 µm and an average doping profile of 1017 cm-3

boron atoms is diffused into the epitaxial layer. The source and drain collection regions

are formed by n+ diffusions of 1017 cm-3 arsenic atoms diffused into the epitaxial layer on

either side of the gate. The surface of the device is protected by two overlayers, 0.5 µm of

SiO2 under 1.0 µm of Si3N4.

Dispersive-energy x-ray spectroscopy can be used to identify materials present on the

device surface. Fig. III.2 shows an SEM image of a JFET diode with the drain pad un-

bonded. Materials within the area encapsulated by the pink rectangle are analyzed with

x-ray spectroscopy. Figs. III.3 (a), (b), and (c) show that nitrogen and oxygen are present

along with silicon in the device shown in Fig. III.2. These elements correspond to the

silicon nitride and silicon dioxide overlayers. Figs. III.3 (d), (e), and (f) show that the bond
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Figure III.1: Materials, doping, and layer thicknesses of a PAD1 JFET diode.

pads are aluminum, the bond wires are gold, and a trace amount of nickel from the diode

can has fallen on the surface of the device.

III.1.2 Identification of Regions Sensitive to Radiation

Although these devices are fabricated as JFETs, they are bonded to operate as diodes. The

source acts as the cathode, the gate acts as the anode, and the drain is left unbonded during

the manufacturing process. Fig. III.4 shows an optical view of a PAD1 diode with the

drain pad unbonded. The p+ gate overlaps the p-type subtrate, so the application of bias to

the substrate also biases the gate. Under reverse bias, the gate / channel depletion region

extends down to meet the epitaxial / substrate depletion region. The channel between the

gate and the substrate is completely pinched off, so leakage current is kept extremely low

since all carriers stem from SRH generation in the depletion regions. For the JFET diodes

used in this work, the drain pad was bonded to the source pad to maximize the device

area sensitive to ionization events and displacement damage. Fig. III.5 shows an optical
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Figure III.2: Scanning electron microscope image of PAD1 JFET diode. X-ray analysis
was used to determine the elements present within the area inside the pink rectangle.

view of a JFET diode with the drain bonded to the source. The JFET diodes exhibit a

pre-irradiation leakage current magnitude of 15 fA with the gate biased at -12 V and the

source grounded with the drain pad floating. Pre-irradiation leakage current is 30 fA when

the diode is reverse-biased at 12 V with source and drain pads both grounded. The standard

deviation σ of pre-irradiation reverse current measured every 150 ms for 24 h is 1.5 fA.

Two-photon absorption laser testing can be used to identify regions in a device that are

sensitive to ionizing radiation. In this technique, a silicon device is irradiated with photons

with energies less than the bandgap of silicon. Electrons within the device that absorb

two-photons simultaneously are excited from the valence band to the conduction band, and

these excited carriers can be collected as current [45]. The peak current maps in Fig. III.6

and Fig. III.7 show surface views of device regions where charge generated by two-photon

absorption is collected by the source contact (and by the drain contact bonded to the source

pad). The relative amount of charge generated at a given position is represented by a color
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(a) Nitrogen (b) Oxygen

(c) Silicon (d) Nickel

(e) Gold (f) Aluminum

Figure III.3: Dispersive-energy x-ray spectroscopy analysis of elements present in a PAD1
JFET diode.
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Figure III.4: Optical view of PAD1 JFET diode as manufactured with unbonded drain pad.
The region between the gate and the drain is floating.

Figure III.5: Optical view of PAD1 JFET diode with the drain pad bonded to the source
pad, after Auden et al., 2013. The bias applied to the region between the gate and the drain
is equal to the bias applied to the region between the gate and the source.
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scale from red (high) to blue (low). Since charge generated by ionization is collected from a

region symmetrical about the gate, charge generated by SRH generation in this region will

also be collected. Therefore, the peak current map shows device regions that are sensitive to

both ionization events and fluctuations in reverse current caused by displacement damage.

Fig. III.6 shows a peak current map for a PAD1 diode reverse-biased at -4 V with

drain floating as shown in Fig. III.4. Peak current is highest on the source (cathode) side

of the device and around the gate (anode). The region on the drain side of the device

shows very little peak current. Although electrons are excited by two-photon absorption

in this region, they are not collected as current since the drain pad is unbonded and the

region between drain and gate is electrically floating. Only the regions bounded by the

gate / epitaxial depletion region and the source side of the epitaxial / substrate depletion

region are sensitive to ionizing radiation. It should also be noted that SRH generation

and recombination processes from defects created in the electrically floating drain side

depletion region will create zero net current, so the unbonded drain side is not sensitive to

displacement damage caused by nonionizing radiation, either.

Fig. III.7 shows a normalized peak current map generated by two-photon absorption in

a PAD1 diode with the drain pad bonded to the source pad as shown in Fig. III.5. Peak

current is symmetrical on both sides of the gate. The regions bounded by the gate / epitaxial

depletion region and both the source and drain epitaxial / substrate depletion regions are

sensitive to ionizing radiation. Carriers generated through SRH generation in the gate /

epitaxial depletion regions as well as the source and drain epitaxial / substrate depletion

regions will be collected as current, so Fig. III.7 also indicates that both the drain and

source regions are sensitive to displacement damage created by nonionizing radiation.
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Figure III.6: Laser testing: normalized peak current in JFET diode with drain unbonded.
The source is grounded, the gate is biased at -4 V, and the drain is floating.

Figure III.7: Laser testing: normalized peak current in JFET diode with the drain pad
bonded to the source pad. Drain and source are grounded.
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Figure III.8: Circuit diagram of current-to-voltage converter, after Auden et al., 2012.

III.2 Reverse Current Measurement Circuit

III.2.1 Current-to-Voltage Converter Design

A low noise amplification circuit was built to measure diode currents in the range of -60 pA

to +60 pA using a current-to-voltage converter. The converter consists of a 100 GΩ resistor

connected between an LMC6001 op amp’s negative input and output terminals while the

positive input terminal is grounded. The output of an ideal op amp will change as needed

to maintain a zero voltage differential between the op amp’s input terminals when there

is an external feedback loop [46]. The current-to-voltage converter’s output is equal to the

voltage drop across the 100 GΩ resistor. The converter’s output voltage changes in response

to the input current which, in this case, is the reverse current of a diode. The input reverse

current IR is obtained from the expression IR = Vout
1011Ω

. An input current with magnitude

10 fA is measured as an output voltage of 1 mV at the op amp’s output terminal. A 4.7

pF capacitor is connected in parallel with the 100 GΩ resistor, so the current-to-voltage

converter integrates current pulses at a rate set by the RC time constant of 0.47 s. A circuit

diagram is shown in Fig. III.8 [47].
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Several steps were taken to minimize circuit noise and leakage. The LMC6001 op amp

is rated with an input offset current of less than 5 fA [48]. Guard rings encircle the op

amp’s positive and negative input terminals, and the positive input terminal is connected

to ground via the 100 GΩ resistor to minimize bias current [47]. The op amp is held in a

low-leakage socket made from gold-plated discrete component jacks [49]. All components

are soldered in air to PTFE-coated wire. The circuit is enclosed in a diecast aluminum box

to reduce electromagnetic noise.

The current-to-voltage converter’s output voltage was read every 150 ms with an Ag-

ilent 34970A data acquisition unit. The 34970A was also used to bias the PAD1 diode at

-12 V. A BK 1790 DC power supply provided the op amp supply voltages with VS+ equal

to +6 V and VS− equal to -6 V. BNC connectors mounted on the diecast aluminum box

relayed the input voltages for VS+, VS−, and VA as well as the output voltage signal VOut .

III.2.2 Frequency Response

The frequency response of the current-to-voltage converter can be used to predict how the

time-dependent output voltage will change with input current. The shape of the frequency

response can be used to differentiate ionization events associated with particle strikes from

stray noise. Two signals of interest are ionization events (in which transient electron-hole

pairs are created on a timescale of hundreds of picoseconds [42]) and abrupt current steps

(in which the creation of new defects permanently increases reverse current). The fre-

quency response of the circuit shown in Fig. III.8 can be calculated from an s-domain

transfer function equal to the total circuit impedance:

H(s) =
Vout

IR
=

−1
C

s+ 1
RC

(III.1)

where s is the complex frequency σ + jω , C is the value of the circuit’s capacitor, and R is

the value of the circuit’s resistor.

The time response of the circuit’s output voltage can be calculated by taking the inverse
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Laplace transform of the transfer function multiplied by the s-domain expression for a

signal that represents a change in reverse current. The circuit’s time response to ionization

events can be modeled as the product of total charge deposition Q and the delta function

δ (t) as in equation III.2 . The Laplace transform for δ (t) is 1.

∆Vout(t) =
−Qmax

C
e
−t
RC (III.2)

The maximum charge Qmax deposited by an ionizing particle with incident energy Ei

can be calculated as

∆Qmax =
qEi

Eeh
(III.3)

where Eeh is the energy required to create an electron-hole pair in silicon, 3.6 eV [50]. Qmax

values for typical 252Cf decay products are 0.26 pC for 5.9 MeV alpha particles, 4.9 pC for

106 MeV Cd ions, and 3.6 pC for 80 MeV Nd ions. The size of the capacitor used in the

converter circuit dictates both the magnitude of the output voltage pulse and how long the

pulse takes to decay. Since Qmax values associated with typical 252Cf decay products are

on the order of 1 pC, a capacitor value between 1 and 10 pF allows ionization events to

be recognized as voltage pulses with magnitudes of tens to hundreds of mV that decay on

a timescale of seconds. Fig. III.9 shows the magnitude of the output voltage response for

a 5.9 MeV alpha particle that deposits 0.26 pC and for a 106 MeV Cd ion that deposits

4.9 pC.

Abrupt current steps caused by displacement damage can be modeled as the magnitude

of discrete reverse current increase ∆IR multiplied by the unit step u(t). The Laplace trans-

form for u(t) is 1
s , and the time-dependent output voltage behavior following an abrupt

current step is calculated in equation III.4.

∆Vout(t) = ∆IRR(e
−t
RC −1) (III.4)

38



Figure III.9: Output voltage time response for ionization events modeled with the delta
function δ (t).

Fig. III.10 shows the behavior of output voltage magnitude following an abrupt current

step of 1 pA.

III.3 Device Irradiation

Although neutrons and protons are frequently used for displacement damage studies (e.g.,

[13], [8], [9]), heavy ions are ideal incident particles for investigating single particle dis-

placement damage since they create more displacement damage per particle than nucleons.

PAD1 diodes were irradiated with a 0.9 µCi 252Cf radiation source that has an active area

of 0.25 cm2. The 252Cf isotope undergoes alpha decay in 96.9% of decays, so the source

produces a stream of 5.9 MeV alpha particles [51]. Spontaneous fission comprises the other

3.1% of decays. Fission decay results in the emission of two fission fragments (one light

fragment and one heavy fragment), so the expected branching ratio of a 252Cf radiation

source is 16 alpha particles to 1 fission fragment emitted in 4π steradians.
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Figure III.10: Output voltage time response for abrupt current step modeled with the unit
step u(t).

Fig. III.11 shows the 252Cf isotope’s percentage yield of light and heavy fission frag-

ments. The branching ratio of light fission fragments (with masses peaking at 106 a.m.u.)

is equal to that of heavy fission fragments (with masses peaking at 140 a.m.u.) [52]. A

typical heavy fission fragment emitted by a 252Cf source is 80 MeV Nd, and 106 MeV Cd

is a typical light fission fragment [53]. The 252Cf isotope’s fission decays also produce

neutrons with an average energy of 2.1 MeV [54].

Because 252Cf emits alpha particles and neutrons as well as heavy ions, diodes were

also irradiated with a 0.1 µCi 241Am alpha source to differentiate displacement damage

effects caused by alpha particles from those caused by heavy ions. The 241Am source

emits 5.5 MeV alpha particles [55]. A comparison of reverse current time series for 241Am

and 252Cf-irradiated diodes allows one to determine whether damage induced from alpha

particles results in measurable, discrete increases in reverse current.
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Figure III.11: Yield of 252Cf fission fragments. The double peak indicates a 1:1 branching
ratio of light and heavy fission fragments (after Schmitt, Kiker, and Williams, 1965)

III.3.1 Alpha Particle and Heavy Ion Irradiation in Air

To compare the damage produced by the 252Cf source’s fission fragments to that produced

by alpha particles, diodes reverse-biased at -12 V were irradiated at room temperature

with the 241Am source and then the 252Cf source at a distance of 2 mm in air from the

surface of the diode’s active area. Diode reverse current was monitored for 24 hours before

the 241Am source was introduced (“pre-irradiation”), for 24 hours during exposure to the

241Am source (“241Am”), and for a further 24 h after the 241Am source was removed (“post-

241Am”). Next, reverse current was monitored for 24 hours while the diodes were exposed

to the 252Cf source (“252Cf”) and, finally, for 24 hours once the 252Cf source was removed

(“post-252Cf”). Fig. III.12 shows the pre-irradiation, 241Am irradiation, post-241Am, 252Cf

irradiation, and post-252Cf reverse current for a PAD1 diode irradiated in air.

The reverse current increased by 60 fA during 24 hours of 241Am irradiation. No mea-

surable, discrete increases in reverse current were observed during this period of irradiation
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Figure III.12: Reverse current time series for PAD1 diode exposed to 241Am and 252Cf
irradiation conditions for 24 h, after Auden et al., 2012.

with alpha particles. The pre-irradiation, 241Am irradiation and post-241Am reverse current

results are indistinguishable in Fig. III.12. During irradiation with the 252Cf source, reverse

current increased by 35 pA over 24 h. The noisy appearance of the 252Cf data series on this

timescale stems from transient current spikes caused by ion strikes approximately every

10 s. On a timescale of seconds, the 252Cf data series can be resolved as individual current

transients that correspond to alpha particles and fission fragments.

At a distance of 2 mm in air between radiation source and diode surface, the flux of

all 252Cf decay products incident upon the diode’s active area is 6.6×104 particles/cm2-s.

This means that an average of 3.3 particles (or 0.2 fission fragments) strike the diode’s

active area every second. Because of the circuit’s 0.47 s RC time constant, this rate of

particle strikes is too high for current behavior to fully recover after each ionization event.

Recovery time is defined as the amount of time required for the circuit’s output voltage to

return to the pre-strike level (1.5 fA, or 1 σ ), assuming that no displacement damage has
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Incident Energy (MeV) Particle Maximum Current Pulse Height (fA) Recovery Time (s)

5.9 α 560 2.8
80 Nd 7600 4.0

106 Cd 10000 4.1

Table III.1: Ionization events: charge deposition and recovery time, after Auden et al.,
2012.

occurred. For instance, Table III.1 shows that the expected reverse current recovery time

for an alpha particle-induced ionization event can last up to 2.8 s.

III.3.2 Heavy Ion Irradiation in Vacuum

To better observe single particle effects, the 252Cf irradiation was repeated at a distance

of 2 cm under vacuum to reduce the incident flux to 160 particles/cm2-s. This flux corre-

sponds to a strike rate of 0.008 particles/s (0.0005 fission fragments/s) incident upon the

diode’s active area, which is sufficient to allow the circuit response to fully recover be-

tween ionization events. The increased distance between source and diode reduced the rate

of particle strikes, and the vacuum conditions eliminated energy loss due to collisions with

air.

Fig. III.13 shows the reverse current vs. time for a PAD1 diode with drain floating

irradiated with 252Cf for 118 h in a vacuum chamber. The vacuum chamber was held at

a mild vacuum pressure of 16 mbar. The flux of 252Cf decay particles incident upon the

diode’s active area was 160 particles/cm2-s. The diode was biased at -12 V, as with the “in-

air” experiment. These irradiation conditions were repeated for two additional diodes with

drain floating, and the relevant time series are shown in Figs. III.14 and III.15. Figs. III.16,

III.17, and III.18 show reverse current time series for three 252Cf-irradiated diodes with the

drain grounded. The reverse current time series for the diode labeled “Drain Floating #1”

is used to describe typical current behavior observed in all six irradiated diodes. A full

comparison of current steps and pulses observed in diodes with drains floating grounded is

presented in Section III.4.
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Figure III.13: 118 hours of a reverse current time series for a PAD1 diode labeled “Drain
Floating #1” irradiated with 252Cf under vacuum, after Auden et al., 2012. Drain pad is
unbonded.
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Figure III.14: 117 hours of a reverse current time series for a PAD1 diode labeled “Drain
Floating #2” irradiated with 252Cf under vacuum. Drain pad is unbonded.

Figure III.15: 118 hours of a reverse current time series for a PAD1 diode labeled “Drain
Floating #3” irradiated with 252Cf under vacuum. Drain pad is unbonded.
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Figure III.16: 160 hours of a reverse current time series for a PAD1 diode labeled “Drain
Grounded #1” irradiated with 252Cf under vacuum. Drain pad is bonded to source pad.
Note: the 252Cf source was placed 4 cm from the diode’s active area for this irradiation
cycle.
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Figure III.17: 141 hours of a reverse current time series for a PAD1 diode labeled “Drain
Grounded #2” irradiated with 252Cf under vacuum. Drain pad is bonded to source pad.

Figure III.18: 148 hours of a reverse current time series for a PAD1 diode labeled “Drain
Grounded #3” irradiated with 252Cf under vacuum. Drain pad is bonded to source pad.
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Reverse current increased by 243 fA during 118 h of irradiation for the first of three

diodes irradiated with the drain floating. The time series shown in Fig. III.13 can be

examined in much greater detail than the time series shown in Fig. III.12 since the diode

is positioned 10 times further from the 252Cf source’s active area, so more time elapses

between particle strikes. Current pulses from individual fission fragments can be seen in

the times series shown Fig. III.13. The average time between fission fragment strikes is

0̃.6 h. Since radioactive decay is a Poisson process, one expects apparent clusters of events

(e.g. the hour around t=42 h, probability of at least 3 events = 0.23) as well as intervals

of up to several times the mean life with no decay events (as with the hour around t=20 h,

probability = 0.19).

Figs. III.19, III.20, and III.21 each show a 1 h interval of the reduced-flux results

shown in Fig. III.13. During each interval, at least one discrete, sustained increase (or step)

in reverse current is apparent following a fission fragment ionization event. A current step

is defined here as a discrete increase between sequential data points that is greater than

1.5 fA. This increase must be sustained for at least 500 data points (approximately 75 s)

to differentiate this long term current step behavior from the short-lived current pulses that

identify ionization events. The top panels in Figs. III.19 III.21 show reverse current on a

scale of 0 to 5000 fA so that the fission fragment ionization events are obvious. The bottom

panel of each figure shows reverse current on a 50 fA scale so that current steps of 5 fA or

more are clearly visible.

The top panel of Fig. III.19 shows a single current pulse of 3200 fA that occurs at

t = 10.2 h. Table III.1 states that the maximum current pulse caused by a 5.9 MeV alpha

particle is 560 fA for this circuit. Therefore, one may conclude that the current pulse

at t = 10.2 h is caused by a fission fragment. In addition, this current pulse is the only

ionization event that is conclusively caused by a fission fragment between hours 10 and 11

of irradiation.

The bottom panel of Fig. III.19 shows that a 15 fA step coincides with the 3200 fA

48



Figure III.19: Reverse current time series showing fission fragment-induced ionization
event and discrete increase of 15 fA in reverse current at t=10.2 h, after Auden et al.,
2012.

49



Figure III.20: Time series showing fission fragment-induced ionization event and corre-
sponding 6 fA discrete increase in reverse current at t=37.5 h. A second discrete increase of
20 fA with corresponding fission fragment induced ionization event is visible at t=37.85 h,
after Auden et al., 2012.
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Figure III.21: Time series showing fission fragment-induced ionization event and corre-
sponding 12 fA discrete increase in reverse current at t=114.6 h, after Auden et al., 2012.

pulse. After the initial 15 fA step, reverse current decreases over a few minutes between

t=10.2 h and t=10.25 h to a sustained increase of 9 fA. Although this relaxation interval

is too long to attribute to the circuit’s frequency response, it is consistent with short-term

annealing on the timescale of 102 s described in [56].

The top panel of Fig. III.20 shows six current pulses that are large enough to identify

as fission fragment-induced ionization events. The bottom panel shows two current steps,

one at t=37.5 h and one at t=37.85 h. These two current steps coincide with the two largest

current pulses shown in the top panel. The other four large current pulses are not associated

with current steps. The initial current step at t=37.5 h is 6 fA with a brief relaxation interval

to a sustained increase of 4 fA. The 20 fA current step at t=37.85 h exhibits a pronounced

relaxation interval as the net increase in reverse current is reduced to 15 fA. Fig. III.20

demonstrates that while current steps may occur in close temporal proximity to each other,

not all fission fragment strikes cause discrete, sustained increases in reverse current.
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Fig. III.21 displays a similar pattern to Fig. III.19; there is one current pulse associated

with a fission fragment strike that coincides with a 12 fA current step at t=114.6 h. How-

ever, there is no clearly visible relaxation interval following the current step in the bottom

panel of Fig. III.21. After 114 h of irradiation, the reverse current noise floor has increased

to 240 fA, so the time series is noisy compared to the stable reverse current shown in Fig.

III.19.

III.4 Analysis of Discrete Changes in Reverse Current

III.4.1 Identifying Current Pulses and Steps

Current pulses and steps similar to the examples shown in Figs. III.19 - III.21 can be

identified with an algorithm that searches for exponentially decaying current spikes and

abrupt, sustained increases in reverse current levels between particle strikes. Fig. III.22

shows the same time interval between hours 10 and 11 of irradiation as Fig. III.19 for a

252Cf-irradiated dioe with drain floating. The y-axis is plotted on a log scale so that both

current pulses and steps are clearly visible. The raw reverse current time series is shown

in black. The dataset highlighted in red in Fig. III.22 represents the reverse current after

applying a 500-point median filter to smooth the data. The filter replaces each raw reverse

current reading with the median of all data points within a 75 s window centered on that

reading. This filter suppresses the short-term behavior of current pulses while retaining the

long-term behavior of current steps.

The current pulses marked with green circles in Fig. III.22 are identified in the raw

reverse current data when two conditions are met. First, reverse current increases by at least

10 fA (or 4σ , where σ is the 1.5 fA standard deviation of pre-irradiation reverse current

measured for 24 h) between readings i−1 and i. Second, the reverse current reading at i+1

has decreased to within ±25% of the value predicted by Equation III.2. If both of these

conditions are met, a current pulse is recorded as the difference between reading i and

reading i−1. Note that only current pulses 10 fA or larger are identified by this algorithm,
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Figure III.22: One hour of reverse current time series (raw and median-filtered) for a 252Cf
-irradiated PAD1 diode under vacuum, after Auden et al., 2012.

so pulses under this size limit are not marked with green circles in Fig. III.22. Since the

current-to-voltage converter’s output voltage is read every 150 ms, the measured pulse size

may be as low as 75% of the actual current pulse caused by an ionization event, using the

time-dependent voltage response for current pulses given in III.2.

The blue square denotes the current step identified at t = 10.2 h. Current steps are

identified using the median-filtered reverse current data, since the short-term behavior is

suppressed. A current step is identified when the median filtered reverse current value at

reading i is more than 1.5 fA higher than the median filtered reverse current value at reading

i−1. This algorithm only identifies steps larger than 1.5 fA, and it records the initial step

size rather than the more stable step size that ensues following the relaxation interval of a

few minutes.
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III.4.2 Characterization of Current Steps and Pulses

Tables III.2 and III.3 compare the current pulses and steps identified in reverse current time

series for six 252Cf-irradiated diodes. The column labeled “Ion Threshold” in Table III.2

lists the current pulse heights used as thresholds to distinguish current pulses associated

with heavy ions from those associated alpha particles in each time series. The ion thresh-

olds range from 238 fA to 276 fA. Instead of using a common ion threshold for all six time

series, the threshold for each time series was chosen to keep the ratio of particle strikes

identified as heavy ions to those identified as alpha particles as close as possible to the 16:1

branching ratio expected for 252Cf calculated in Section III.3 from decay process statistics

reported in [51].

Although the observed current steps were temporally correlated only with current pulses

an order of magnitude higher than the listed ion thresholds, establishing the number of

heavy ion strikes is important for calculating damage factors and total fluence. Table III.2

also lists the total number of pulses identified as heavy ions (“Number of Incident Ions”)

and the fluence of heavy ions incident upon the surface area of each diode’s depletion re-

gions. Fluence is calculated as the total number of current pulses identified as heavy ions

strikes divided by the cross-sectional area of the diode’s depletion regions (3700 µm2 for

diodes with drain grounded and 2100 µm2 for diodes with drain floating). Calculated flu-

ence varies with the cross-sectional area of the depletion regions sensitive to ionization

events, the distance between the 252Cf source’s active area and the diode’s surface, and the

total irradiation time.

Table III.3 lists information pertinent to long term increases in reverse current caused

by displacement damage. The total increase in current listed for each irradiated diode is

divided by the corresponding number of incident ions listed in Table III.2 to calculate the

damage factors in the second column. The damage factor DF for the 252Cf irradiated diodes

is defined here as

DF =
∆IR

N
(III.5)
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Diode Ion Threshold (fA) Number of Incident Ions Fluence (cm-2)

Drain floating #1 280 235 1.1×107

Drain floating #2 280 294 1.4×107

Drain floating #3 257 228 1.1×107

Drain grounded #1 251 436 1.2×107

Drain grounded #2 273 1512 4.1×107

Drain grounded #3 239 1115 3.0×107

Table III.2: Ion threshold used to distinuguish heavy ions from alpha particles, number
of current pulses associated with ion strikes, and fluence of incident ions for six 252Cf-
irradiated diodes.

Diode Total Current Increase (fA) Damage Factor (fA) Number of Steps Max. Step (fA) Avg. Step (fA) P(Step)

Drain floating #1 242 1.0 42 23.4 12.0 17.9%
Drain floating #2 417 1.4 48 81.8 19.6 16.3%
Drain floating #3 292 1.3 44 61.0 13.5 19.3%

Drain grounded #1 605 1.4 73 64.3 17.8 16.7%
Drain grounded #2 1826 1.2 140 90.4 22.7 9.3%
Drain grounded #3 1160 1.0 100 73.1 20.3 9.0%

Table III.3: Total current increase, damage factor, number of identified steps, maximum
step size, average step size, and probability that an ion resulted in a measurable step for six
252Cf-irradiated diodes.

where ∆IR is the total change in reverse current during irradiation and N is the number of

particles incident upon the diode’s sensitive area [37]. Table III.3 also lists the number of

identified steps larger than 1.5 fA, the maximum and average step sizes for each diode,

and the probability that a heavy ion strike will produce a measurable current step. This

probability is calculated as the number of steps divided by the number of incident ions.

The probability that an incident ions will result in electrically active damage measured as

a current step ranges from 16.3% to 19.3% for four diodes, but the probability of an ion

producing a step is 9.3% and 9.0% in the two diodes labeled “Drain Grounded #2” and

“Drain Grounded #3.” These two diodes exhibited the highest total increase in reverse

current, so a possible explanation for the lower probabilities of ion strikes resulting in a

measurable step is that the increased noise floor may have obscured small steps so that the

calculated ratio of measured steps to incident ions was too small.

As stated in Section III.3.1, the 241Am-irradiated diode’s reverse current increased by
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60 fA after exposure to 3.2×104 incident alpha particles. Its damage factor is 1.9×10-3

fA/alpha particle. When the same diode was irradiated with 252Cf in air, the reverse current

magnitude increased by 35 pA after the device was struck by approximately 2×104 fission

fragments (or 3×105 alpha particles). Its damage factor is 2 fA/fission fragment. Reverse

current increased by 243 fA when the diode was struck by 2.0×102 incident fission frag-

ments (or 3.3×103 alpha particles) for the diode irradiated with 252Cf under vacuum as

shown in Fig. III.13. Its damage factor is 1.0 fA/fission fragment. The 252Cf-induced dam-

age factors are of the same order as the damage coefficient (0.8 fAunit of fluence) reported

for a 252Cf irradiated diode in [37]. The average step size values listed in Table III.3, which

corresponds to the average sizes of only those current steps identified by the algorithm, are

10 to 20 times bigger than the listed damage factors.

Table III.3 indicates that “Drain Grounded #2”, the diode struck by the most ions during

irradiation (1512 ions), exhibited both the largest total increase in reverse current at 1826 fA

and the largest individual current step at 190 fA. “Drain Floating #1”, which had the second

lowest number of ion strikes at 235 ions, had both the smallest total increase in reverse

current at 242 fA and the smallest current step at 23 fA. The average measured step size

ranged from 12 fA to 23 fA for each of the reverse current time series. “Drain Grounded #2”

had the largest average step size, and “Drain Floating #1” had the smallest average step size.

This suggests a loose correlation between the largest observed step size and the number of

ion strikes; the more ions that pass through a radiation-sensitive volume of a depletion

region, the larger the maximum measured current step is likely to be. However, “Drain

Floating #3” was struck by the smallest number of incident ions (228), but it exhibited a

maximum current step of 61 fA, which is three times higher than the maximum current step

of “Drain Floating #1”.

The plot of step size versus pulse size shown in Fig. III.23 demonstrates that all current

steps that are greater than 1.5 fA are associated with current pulses of a size consistent with

fission fragment-induced ionization events. Fig. III.23 was generated by taking each iden-
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Figure III.23: Step size vs. pulse size for the reverse current time series for the diode
labeled “Drain Floating #1” shown in Fig. III.13, after Auden et al., 2012.

tified pulse’s timestamp, finding the corresponding median-filtered reverse current reading,

and subtracting the previous reading. All differences less than or equal to 1σ , or 1.5 fA,

were assigned a step size of 0 fA. No alpha particles, in fact, no fission fragments associated

with current pulses less than 2590 fA, corresponded to steps greater than 1.5 fA.

The five largest pulse sizes did not correspond to identified current steps, either. Pulse

size was used in this analysis to separate fission fragment strikes from alpha particle strikes,

since the LET of a particle, hence its energy deposition, is a very well defined function

of the incoming ion species and energy. On the other hand, current steps are a result of

atomic collisions. Ionization and atomic collisions are intrinsically uncorrelated, and the

distribution of energy deposition caused by atomic collision events is very large. The result

is that it is possible to have a wide range of damage production events, manifested as

increases in reverse current, without a corresponding range of pulse heights.

Fig. III.24 shows the distribution of step sizes over time. After 118 h of radiation
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Figure III.24: Step size vs. time for the reverse current time series for the diode labeled
“Drain Floating #1” shown in Fig. III.13, after Auden et al., 2012.

exposure, the range of current step sizes remains constant across this period of irradiation.

The largest current steps occur throughout the 252Cf irradiation cycle even though the most

damage has accrued at the end of the cycle. At a fluence of 7.0×107 particles/cm2 (4.1×106

fission fragments/cm2), the damage that can be created by individual particles is steady over

time. The largest current steps do not cluster at the beginning of the irradiation cycle when

little damage has occurred, nor do they cluster at the end of the irradiation cycle when the

most damage has occurred.

Fig. III.25 shows an integral cross-section of heavy ion-induced current steps measured

in the reverse current time series corresponding to six 252Cf-irradiated JFET diodes shown

in Figs. III.13 - III.18. The three datasets labeled “Drain Floating #1”, “Drain Floating #2”

and “Drain Floating #3” represent current step sizes in diodes with the drain unbonded,

so the gate / epitaxial depletion region, gate / channel depletion region, and half of the

epitaxial / substrate depletion region are sensitive to displacement damage. The integral
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Figure III.25: Integral cross-section of current step sizes for six 252Cf-irradiated JFET
diodes. Three diodes were irradiated with the drain floating as in Fig. III.4, and three
were irradiated with the drain grounded as in Fig. III.5.

cross-sections for these diodes cross the y-axis at 2100 µm2, the sensitive cross-sectional

area of the depletion regions. The three datasets labeled “Drain Grounded #1”, “Drain

Grounded #2” and “Drain Grounded #3” correspond to current steps measured in diodes

with the drain pad bonded to the source pad. The gate / epitaxial depletion region, gate /

channel depletion region, and the whole epitaxial / substrate depletion region are sensitive

to displacement damage, so the integral cross-sections for these diodes cross the y-axis

at 3700 µm2, the cross-sectional area of the full substrate / epitaxial depletion regions.

Current steps measuring at least 1.5 fA were binned by size for each diode, and the number

of counts in each bin was divided by the corresponding fluence value from Table III.2.

The shape of the size distribution of all six irradiated diodes is similar whether the drain

is floating or grounded, so the size distribution does not depend on either the incident ion

fluence or volume of the depletion region sensitive to the nonionizing radation.
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Fig. III.26 shows a histogram of step sizes for all six irradiated diodes. The largest

observed current step is visible at 91 fA, but most current steps cluster between 10 fA and

30 fA. The histogram also highlights useful information about the smallest observed current

steps. Although the minimum current step that can be differentiated from background noise

by the current-to-voltage converter is 1.5 fA, only one current step has been measured at

5 fA or less. The minimum current steps caused by damage from heavy ions are measured

in the range of 6 fA to 10 fA. These current steps are assumed to be associated with heavy

ions rather than alpha particles since the steps temporally correspond to pulse sizes too

large to be alpha particles, as was shown in Fig. III.24. In addition, the reverse current

time series measured during 241Am irradiation (see Fig. III.12) exhibited no measurable

current steps even though a thousand times more alpha particles struck the diode’s active

area during the 241Am irradiation compared to the six 252Cf irradiations analyzed in this

section.

The integral cross-section of current pulse sizes for the six 252Cf-irradiated diodes is

shown in Fig. III.27. All six datasets show a sharp knee around 350 fA that is associated

with the transition from pulses caused by alpha partices to the pulses caused by heavy ions.

Once again, the integral cross-section datasets that correspond to “Drain Grounded” diodes

cross the y-axis at 3700 µm2, the cross-sectional area of the epitaxial / substrate depletion

region under the drain, gate, and source regions. The datasets that correspond to “Drain

Floating” diodes cross the y-axis at 2100 µm2, the cross-sectional area of the epitaxial /

substrate depletion region under the source and gate regions only. The division between

current pulses associated with alpha particles and those associated with heavy ions is re-

peated in the histogram of pulse sizes shown in Fig. III.28. Most of the counts correspond

to pulse sizes of less than 400 fA, and these pulses are attributed to alpha particles. The

distribution of pulses sizes between 400 fA and 7200 fA are associated with the spectrum

of light and heavy fission fragments emitted from 252Cf.

Figs. III.29 and III.30 show post-irradiation current-voltage sweeps for the three diodes
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Figure III.26: Histogram of current step sizes for six 252Cf-irradiated JFET diodes. Three
diodes were irradiated with the drain floating as in Fig. III.4, and three were irradiated with
the drain grounded as in Fig. III.5.

61



Figure III.27: Integral cross-section of current pulse sizes for six 252Cf-irradiated JFET
diodes. Three diodes were irradiated with the drain floating as in Fig. III.4, and three were
irradiated with the drain grounded as in Fig. III.5.
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Figure III.28: Histogram of current pulse sizes for six 252Cf-irradiated JFET diodes. Three
diodes were irradiated with the drain floating as in Fig. III.4, and three were irradiated with
the drain grounded as in Fig. III.5.
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with drains grounded. The sweeps shown in Fig. III.29 were performed immediately after

irradiation ended, and the sweeps shown in Fig. III.30 were performed 72 h later. All

three diodes exhibit little reduction in reverse current magnitude after 72 h. Diodes 1 and 3

respectively exhibit a 2.8% and 3.5% reduction in reverse current magnitude after 3 days.

Diode 2, the device that sustained the most ion strikes (1512 ions) and the largest increase

in reverse current (1.8 pA), exhibited a 22% reduction in reverse current magnitude after 3

days. Although the annealing of displacement damage is expected to reduce the damage-

induced change in reverse current by a factor of 5 in the first hour after damage occurs

[4], the diodes reported in this work were irradiated for 5 to 7 days. Displacement damage

caused by initial ion strikes had annealed for several days once exposure to the radiation

source was stopped, and damage from the final ion strikes had annealed for several minutes.

Reductions in reverse current magnitude on the order of 25% or less are reasonable for an

irradiated device that has already undergone an annealing period of a few days [4].

While Figs. III.29 and III.30 demonstrate the minor amount of annealing that occurs

over a 3 day period following irradiation, the plots of current vs. voltage also show as

the magnitude of reverse bias is increased, depletion regions expand to encompass more

damage-induced generation centers that contribute to reverse current. Electric field strength

also increases with reverse bias, so depletion region generation centers become more effec-

tive at thermal carrier generation.
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Figure III.29: Post-irradiation IV sweeps of 252Cf-irradiated JFET diodes with drain
grounded taken at room temperature (nominally 20◦ C) approximately 10 m after expo-
sure to the 252Cf source was stopped, after Auden et al., 2013.
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Figure III.30: Post-irradiation IV sweeps for three JFET diodes with drain grounded. For
these sweeps, current voltage characteristics were swept three days after irradiation.
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CHAPTER IV

Modeling Single Particle Displacement Damage

The reverse current time series and analyses presented in Chapter III demonstrate that dis-

crete, sustained increases in reverse current can be observed when a reverse-biased diode’s

depletion region is struck by a single fission fragment. The average increase in reverse cur-

rent per incident particle can be calculated with simulations of nonionizing energy loss, and

this metric can be used to estimate the operational lifetime of a device operating in a given

radiation environment. The radiation-induced electrical response of various irradiated de-

vices has been shown to scale with NIEL [32], [57]. For example, NIEL values calculated

with the Stopping Range of Ions in Matter (SRIM) code can be used to predict the average

increase in dark current sustained by pixels in a CCD or CID array. Sections IV.1.1 and

IV.1.2 discuss two methods for estimating experimental damage factors: comparing NIEL

ratios for two incident particles and species and calculating the universal damage factor.

Calculating the average amount of electrical degradation per particle is of limited util-

ity in determining another damage metric, the maximum amount of electrical degradation

caused by a single particle. The ratio of the average increase in dark current associated

with two different incident particle species or energies has no bearing on the ratio of the

maximum individual increases in dark current associated with those different particles. For

instance, the size of discrete increases in dark current that result in hot pixels does not

correlate with NIEL [10]. Single particle displacement damage studies have shown dif-

ferences between the ratios of maximum recoil energy to average recoil energy (obtained

from calculations) and the maximum size of the resulting electrical effects to the average

size of the electrical effects (obtained experimentally) [8], [9], [10]. Modeling the size

distribution of current steps indicates the likelihood that a device will incur unacceptable

degradation from a single particle strike, but it requires information about the arrangement
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of device material layers, depletion region geometry, and electric field strength along with

nonionizing energy simulations.

This chapter presents simulations of both the average amount of electrical degradation

per incident particle observed in 252Cf-irradiated JFET diodes (published in [16]) and the

maximum amount of electrical degradation per incident particle (published in [33]).

IV.1 Modeling the Average Increase in Reverse Current

IV.1.1 NIEL

NIEL describes the nonionizing energy lost to the creation of phonons and vacancy / inter-

stitial pairs as an incident radiation particle creates a wake of atomic displacements [19].

NIEL is calculated as

NIEL =
N
A

∫
L[T (Θ)]T (Θ)

dσ(Θ)

dΩ
dΩ (IV.1)

where N is Avogadro’s number, A is the target material’s atomic weight, Θ is the recoil

angle, [T (Θ)] is the recoil energy, L[T (Θ)] is the Lindhard partition fraction of total en-

ergy lost to nonionizing processes, and dσ(Θ)/dΩ is the differential cross-section that an

incident particle recoils into an incremental solid angle dΩ [6], [58]. As with linear en-

ergy transfer (LET), the metric used to estimate energy loss to ionizing processes, NIEL

is calculated in units of MeV-cm2 g-1. NIEL estimates the average rate of displacement

damage sustained for a given particle species and energy, so values calculated with SRIM

can be used to estimate the overall increase in reverse current that a diode will sustain from

displacement damage caused by a given fluence of radiation particles.

NIEL correlates well with experimental damage factors [6]. In [19], Marshall and Mar-

shall note that the ratio of damage factors measured for different particle species and en-

ergies can be compared to the NIEL ratios of those particle species without a scaling fac-

tor. Fig. IV.1 shows the ratio of experimental damage factors calculated for the diode

irradiated with 252Cf labeled “Drain Floating #3” (damage factor = 1.2 fA / fission frag-
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Figure IV.1: Ratio of damage factors (∆IR per incident fission fragment for a 252Cf-
irradiated diode to (∆IR per incident alpha particle for a 241Am-irradiated diode) com-
pared to the ratio of NIEL(106 MeV Cd) to NIEL(5.9 MeV α) as well as the ratio of
NIEL(80 MeV Nd) to NIEL(5.9 MeV α), after Auden et al., 2012.

ment) and the 241Am-irradiated diode (1.9×10-3 fA / alpha particle). This ratio is labeled

“fission fragments / α .” The experimental damage factor ratio is compared to the ra-

tio of NIEL(106 MeV Cd) with NIEL(5.9 MeV α). It is also compared to the ratio of

NIEL(80 MeV Nd) with NIEL(5.9 MeV α).

The averages of the NIEL ratios for Cd to alpha particles and Nd to alpha particles are

also shown in Fig. IV.1 as bars labeled “Avg.” since, as Fig. III.11 shows, 252Cf emits equal

numbers of light and heavy fission fragments. NIEL was calculated with SRIM using the

method described by Messenger et al. in [32] and also with the Monte Carlo Radiative

Energy Deposition (MRED) code using the nonionizing energy deposition rate described

by Weller et al. in [59]. MRED is a radiation transport code based on Geant4 particle

physics libraries [60], [61]. Both the MRED and SRIM simulations were performed with

a device structure modeled as a simple silicon wafer. The depletion region was modeled as
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a 1 µ m thick sensitive volume with an area of 5000 µm2 located 1 µm under the surface of

the silicon.

The ratio of experimental damage factors is within 12% of the average NIEL ratio

calculated using MRED, and it is within 6% of the average NIEL ratio calculated using

SRIM. Even though the largest measured current step was 18 times larger than the average

increase in reverse current indicated by the fission fragment damage factor, the ratio of

NIEL associated with fission fragments to NIEL associated with alpha particles is in good

agreement with the ratio of damage factors associated with fission fragments and alpha

particles. All six 252Cf-irradiated diodes exhibited damage factors within 0.1 fA to 0.2 fA

of the damage factor used in Fig. IV.1, so NIEL can calculate the average increase in

reverse current per ion independent of the displacement-damage sensitive volume of the

depletion region that varies as the drain is grounded or left floating.

As the ratio of experimental damage factors indicates, the average fission fragment as-

sociated with 252Cf decays causes 6̃30 times more damage than the average alpha particle.

252Cf fission decays produce 2 fission fragments [51] and an average of 3.5 neutrons (aver-

age energy of 2.1 MeV) [62]. MRED simulations show that the cross-section for depositing

a given amount of energy in atomic displacements is six orders of magnitude smaller for

2.1 MeV neutrons than it is for fission fragments. The electrical effects of neutron-induced

displacement damage are thus insignificant compared to fission fragment-induced damage

in 252Cf-irradiated silicon.

However, because NIEL calculates the average nonionizing energy lost as a particle

travels through a given material, it does not indicate the amount of damage caused by the

rare particle that deposits excessive nonionizing energy. For instance, the largest single

particle damage events reported in [10] did not scale with NIEL. Furthermore, since NIEL

calculations focus on the creation of vacancy interstitial pairs and do not include infor-

mation about the effect of local electric field strength on defect emission rates, NIEL does

not provide information about the maximum size of displacement damage-induced current
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steps when high electric fields are present.

IV.1.2 Universal Damage Factor

In 2000, Srour and Lo presented the universal damage factor as a means of comparing the

average amount of electrical damage per particle independently of device type and incident

particle [4]. The universal damage factor Kdark is defined as the increase in the thermal

carrier generation rate per unit of displacement damage dose Dd in a depletion region,

where displacement damage dose can be calculated as fluence×NIEL.

The value of Kdark for the JFET diodes with drains floating and grounded is approxi-

mately 4×107 carriers cm-3 s-1 per particle cm-2. Fig. IV.2 shows this value of Kdark as

a red circle plotted on a graph of Kdark×NIEL vs. NIEL along with 42 other irradiated

devices reported in reported in [4], and it is in good agreement with the heavy ion irradi-

ated devices in this figure. The Kdark values calculated for the diodes in this work used the

MRED NIEL values calculated for Fig. IV.1.

Universal damage factor values for the original 42 silicon devices reported in [4] were

calculated for dark current data normalized to 1 week post-irradiation. As stated in Section

III.4.2, the diodes in this work were irradiated for 5 to 7 days, so the accumulated heavy

ion-induced displacement damage had already annealed for a period of several minutes to

several days. Therefore, no further normalization for annealing was applied to the reverse

current data used to calculate the universal damage factors for the diodes reported in this

work that are represented by the red circle in Fig. IV.2.

IV.2 Modeling the Maximum Discrete Increase in Reverse Current

The good agreement shown between published Kdark values for devices irradiated with

heavy ions and the Kdark values calculated with MRED values of NIEL for the 252Cf-

irradiated diodes investigated in this work show that MRED simulations of nonionizing

energy deposition can correctly predict the average increase in reverse current per incident

ion. This result is underscored with the agreement shown between the ratios of experimen-
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Figure IV.2: Kdark×NIEL vs. NIEL for devices irradiated with photons, electrons, protons,
and heavy ions, after Srour and Lo, 2000. The Kdark value calculated for 252Cf-irradiated
JFET diodes is shown as the red circle.
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tal damage factors for 241Am and 252Cf-irradiated diodes and NIEL ratios for heavy ions

and alpha particles calculated with both SRIM and MRED. MRED can predict the size of

the average damage event, and the remainder of this chapter will show that MRED can also

predict the size distribution of damage events.

In Section III.4.2, the size distributions of heavy ion-induced current steps in 252Cf-

irradiated JFET diodes showed that the maximum current steps measured for each diode

are 2 to 4 times larger than the average measured current steps, and the maximum measured

steps are 23 to 82 times larger than the corresponding damage factors. Calculations of NIEL

and the universal damage factor Kdark in Section IV.1 estimate values for the average in-

crease in reverse current per particle that show good agreement with experimental values.

This section uses MRED and TCAD simulations to model the expected size distribution of

current steps in 252Cf-irradiated diodes. MRED simulations of nonionizing energy deposi-

tion and atomic displacements are used to calculate the radiation-induced increase in defect

density that reduces minority carrier lifetime. TCAD simulations of electric field strengths

within the depletion regions are used to calculate reductions in the Coulomb barrier height

that enhance defect emission rates and decrease generation lifetime.

IV.2.1 MRED Simulations of Increased Defect Density for Minority Carrier Life-

time

MRED simulations of nonionizing energy deposition can be used to predict the average

amount of damage caused by incident particles as shown in Section IV.1.1. However,

MRED can be used to calculate additional physical parameters, such as the number of

secondary displacements caused by the incident particle and subsequent knock-on atoms.

MRED can track the isotopes of atoms that have been displaced within a structure, and it

can also calculate the distance between displacements. Figs. IV.4 and IV.3 show the JFET

diode structure (with drain floating and grounded, respectively) simulated with MRED.

Depletion regions are shown as solid blocks, and material layers are represented with a
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Figure IV.3: MRED model of JFET diode with drain grounded, after Auden et al., 2013.
Material layers are shown as wireframes, and depletion regions are shown as solid colors.

wireframe structure.

Figs. IV.5 and IV.6 show an integral cross-section and a histogram of nonionizing

energy deposition by four different particle species and energies in the sensitive volumes

represented by the red, yellow, and cyan shading in the model of a JFET diode with drain

grounded shown in Fig. IV.3. The datasets in Figs. IV.5 and IV.6 represent typical emission

byproducts of 252Cf: 80 MeV Nd, 106 MeV Cd, 5.9 MeV alpha particles, and 2.0 MeV

neutrons [53], [54]. The cross-section values on the y-axis indicate the likelihood that an

incident particle will deposit energy equal to or exceeding the corresponding amount of

energy shown on the x-axis [63], and for small values of deposited energy asymptotically

approach the device’s geometric area. Figs. IV.7 and IV.8 pertain to nonionizing energy

deposition by 252Cf emission products when the diode is floating (as shown in Fig. IV.4)

so that the epitaxial / substrate depletion region is roughly half the volume it is when the

drain is grounded.

As discussed in Section I, experimental damage factors scale linearly with NIEL, even

though NIEL incorporates atomic displacements without accounting for complex defect
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Figure IV.4: MRED model of JFET diode with drain floating. Material layers are shown as
wireframes, and depletion regions are shown as solid colors.

Figure IV.5: Integral cross-section of nonionizing energy deposited by typical 252Cf fission
fragments, alpha particles, and neutrons in a JFET diode with drain grounded.
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Figure IV.6: Histogram of nonionizing energy deposited by typical 252Cf fission fragments,
alpha particles, and neutrons in a JFET diode with drain grounded.

Figure IV.7: Integral cross-section of nonionizing energy deposited by typical 252Cf fission
fragments, alpha particles, and neutrons in a JFET diode with drain floating.
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Figure IV.8: Histogram of nonionizing energy deposited by typical 252Cf fission fragments,
alpha particles, and neutrons in a JFET diode with drain floating.

structures or time-dependent annealing. The method reported in [32] for calculating NIEL

from TRIM simulations finds the average numbers of vacancies and recoil atoms produced

by incident particles. In this work, the numbers of vacancies and knock-on atoms that stop

inside depletion regions are modeled using MRED. Knock-on atoms are atoms that have

been displaced from the semiconductor lattice by incident particles or by other displaced

atoms that traverse the material before stopping.

MRED can track the trajectories of all knock-on atoms displaced by each incident par-

ticle along with nonionizing energy deposition. If a knock-on atom is displaced from a

location within a device depletion region, then the location of displacement is counted as

a vacancy. If a knock-on atom (primary, secondary, tertiary, and so forth) stops inside a

device depletion region, that stopped atom is counted as an interstitial. The total number of

vacancies and interstitials created by one incident particle are substituted for N′vac and N′int

in the equations for minority carrier lifetime (II.6) and generation lifetime (II.7). The av-
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erage displacement evergy for single vacancy production has been reported as 21 eV [64],

although the authors comment that a lower threshold of 12-13 eV as reported in [65] may be

more appropriate for the multiple close-proximity atomic displacements that result in defect

clusters. Recent molecular dynamics simulations have calculated an average displacement

energy of 6.25 eV per atom in localized, highly disordered regions [66]. However, NIEL

calculations that successfully predict the average amount of displacement damage-induced

electrical degradation [6], [32] use 21 eV as the threshold energy for atomic displacements

in silicon, so the 21 eV displacement threshold is also used here for the MRED simulations

that use the modified Kinchin-Pease expression [67] in binary collision calculations.

Fig. IV.9 shows the number of interstitials as a function of nonionizing energy deposited

by 80 MeV Nd and 106 MeV Cd, two typical light and heavy fission fragments emitted by

252Cf [53], in the depletion regions of the MRED device structure shown in Fig. IV.3. In-

terstitial production scales linearly with nonionizing energy deposition; both 80 MeV Nd

and 106 MeV Cd ions produce ˜1600 interstitials per MeV of nonionizing energy. Fig.

IV.10 shows that vacancy production exhibits the same linear relationship with nonioniz-

ing energy of ˜1600 vacancies per MeV. The number of atomic displacements varies with

the collison processes involved. For example, the damage cascade following a nuclear re-

coil will involve more secondary knock-on atoms than the damage caused by Rutherford

scattering [2], and MRED simulations incorporate these processes.

The numbers of vacancies and interstitials that contribute to reverse current also vary

with trajectory of the incident particle as it traverses the device. An incident ion that strikes

the device at normal incidence in the gate region will displace atoms as it travels through the

device, and all vacancies and interstitials produced in the gate / epitaxial depletion region,

gate / channel depletion region, and epitaxial / substrate depletion region will contribute to

N′vac and N′int . An incident ion that strikes the device at normal incidence between the source

and the gate may displace a similar number of atoms as it travels through the quasi-neutral

region into the epitaxial / substrate depletion region, but only the vacancies and interstitials
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Figure IV.9: Interstitials vs. nonionizing energy deposition in depletion regions shown in
Fig. IV.3 from MRED simulations of 80 MeV Nd and 106 MeV Cd ions, typical light
and heavy 252Cf fission fragments, after Auden et al., 2013. Interstitials are modeled as
knock-on atoms that stop inside a depletion region.

Figure IV.10: Vacancies vs. nonionizing energy deposition in depletion regions shown in
Fig. IV.3 from MRED simulations of 80 MeV Nd and 106 MeV Cd ions, typical light
and heavy 252Cf fission fragments, after Auden et al., 2013. Vacancies are modeled as the
locations where knock-on atoms are displaced from the lattice.
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produced in the epitaxial / substrate region will contribute to N′vac and N′int . Increased defect

density depends on both collision processes and depletion region geometry.

Fig. IV.11 shows a cartoon of the depletion regions surrounding the p+ gate of the JFET

diode modeled as the MRED structure in Fig. IV.4. In both figures, the gate / epitaxial

depletion region is represented in cyan, the gate / channel depletion region is represented

in yellow, and the epitaxial / substrate depletion region is represented in red. White areas

in Fig. IV.11 represent quasi-neutral regions. Existing pre-irradiation defects are shown as

unfilled circles, and new defects introduced by a single incident particle are represented as

filled circles. Both the pre-irradiation and post-irradiation defects inside all three depletion

regions contribute to reverse current through thermal carrier generation. As discussed in

Section II.2.4, defects located in quasi-neutral regions are not included in calculations of

reverse current since the contribution of radiation-induced increases in diffusion current are

very small compared to depletion region generation current at room temperature [34].

IV.2.2 TCAD Simulations of Electric Fields for Generation Lifetime

In [9], [10], and [68], the authors reported that more generation current is produced by

single particle displacement damage in portions of the depletion region exhibiting electric

field strengths equal to 105 V/cm or higher compared to low electric field volumes within

the depletion region. Deep-level defects created in high electric field regions exhibit higher

thermal emission rates than the same defect structures in low electric field regions [27],

[28]. Electric field-enhanced thermal emission mechanisms, such as phonon-assisted tun-

neling and the Poole-Frenkel effect, have been used to explain extreme device responses

to single-particle effects [9]. Srour and Hartmann describe displacement damage enhance-

ment as the enhanced thermal emission rates that contribute to the size of the current steps

produced by extreme damage events in high electric field regions [9].

TCAD simulations were used to obtain the electric field distributions in the diodes dis-

cussed in the previous section. The device is modeled with the PAD1 JFET diode materials
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Figure IV.11: Cartoon of depletion regions around the gate of a reverse-biased JFET diode,
after Auden et al., 2013. Pre-irradiation defects are shown as unfilled circles, and new
defects introduced by a radiation particle are shown as filled circles. Only the defects
within depletion regions contribute to reverse current.
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and doping parameters described in Section III.1.1. The p-type gate and p-type substrate

are biased at -12 V with the n+ source grounded. Fig. IV.12 shows the electric field mag-

nitude as a function of position when the n+ drain is floating, and Fig. IV.13 shows the

electric field magnitude as a function of position when the drain is grounded. Both TCAD

electric field plots are shown next to the peak current maps obtained with laser testing data

(described in Section III.1.2) to compare the field strength of radiation-sensitive depletion

regions.

Fig. IV.12 and Fig. IV.13 show that the electric field strength is at least 7×104 Vcm

throughout most of the gate / epitaxial, gate / channel, and epitaxial / substrate depletion re-

gions. The Poole-Frenkel effect contributes to enhanced emission rates in these regions by

lowering the Coulomb barrier of defect activation energy [28], so that less thermal energy

is required for a defect to emit an electron to the conduction band or a hole to the valence

band. Both figures also show that the electric field in the gate epitaxial depletion region

reaches 2×105V/cm.

IV.2.3 Size Distribution of Modeled Current Steps

Fig. IV.14 shows an integral cross-section of current steps measured in three 252Cf-irradiated

JFET diodes reverse-biased at -12 V and current steps modeled with (II.17). The vacancies

N′vac and interstitials N′int created by individual 106 MeV Cd and 80 MeV Nd ions were

tallied for each of the depletion regions shown in Fig. IV.3, and these values were used

to calculate the post-irradiation electron and hole minority carrier lifetimes in (II.6) and

(II.7). The reductions in thermal activation energy for electrons δEact,n and holes δEact,p

in each depletion region were calculated from the average electric field strength E present

in that depletion region from the TCAD electric field simulation shown in Fig. IV.13. The

values for δEactn,p were used to calculate the generation lifetimes τg0(E) and τg(E). The

total increase in reverse current for one incident ion was calculated as the sum of ∆IR in all

depletion regions.
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Figure IV.12: Peak current map generated with laser testing (top) and a 2-D TCAD electric
field simulation (center) that indicate the geometry of depletion that are sensitive to charge
generation in a reverse-biased JFET diode with drain floating, after Auden et al., 2013.
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Figure IV.13: Peak current map generated with laser testing (top) and a 2-D TCAD electric
field simulation (center) that indicate the geometry of depletion that are sensitive to charge
generation in a reverse-biased JFET diode with drain grounded.
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Figure IV.14: Integral cross-section of measured current step sizes for three 252Cf-irradiated
diodes with drain grounded and modeled current step sizes calculated from MRED simu-
lations of 106 MeV Cd and 80 MeV Nd ions, after Auden et al., 2013.

85



Figure IV.15: Integral cross-section of measured current step sizes for three 252Cf-irradiated
diodes with drain floating and modeled current step sizes calculated from MRED simula-
tions of 106 MeV Cd and 80 MeV Nd ions.

The magnitude distribution of current steps is also calculated for the JFET diode with

drain floating shown in Fig. IV.4. Fig. IV.15 shows an integral cross-section of current

steps measured in three 252Cf-irradiated JFET diodes reverse-biased at -12 V and current

steps modeled with (II.17). The average electric field strengths shown in Fig. IV.12 for the

gate / epitaxial depletion region, gate / channel depletion region, and epitaxial / substrate

depletion region under the source and gate were used to calculate the Coulomb barrier

reduction in the equation for generation lifetime.

Fig. IV.14 shows good agreement between measured and modeled current steps. The

size distribution of current steps modeled from defects introduced by 106 MeV Cd and

80 MeV Nd provide upper and lower boundaries to the size distribution of current steps

expected from 252Cf fission fragments. The size distribution of measured steps appears to

be more closely aligned with distribution of steps modeled from 106 MeV Cd ions than with
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the steps modeled from 80 MeV Nd ions. One explanation is that the current steps modeled

from both Cd and Nd ions are overestimated since the expressions for generation lifetimes

τg0(E) and τg(E) use a reduction in thermal activation energy calculated for a 1-D Coulomb

potential rather than a 3-D Coulomb potential [28]. In addition, deep level defects may be

modeled more accurately with a screened Coulomb potential than a Coulomb potential

[28].

Fig. IV.15 shows that MRED simulations of vacancies and interstitials, in tandem with

TCAD electric field strength simulations, overestimate the size distribution of current steps

observed in 252Cf-irradiated diodes with the drain floating. Again, the overestimate could

be attributed to the use of a 1-D Coulomb potential to model the reduced Coulomb barrier

height. Since the disparity between measured and modeled steps is more pronounced in

Fig. IV.15 than in Fig. IV.14, the MRED volumes representing the depletion regions in the

diode with drain floating may have been too large. This would result in an overestimate of

the number of damage-induced vacancies and interstitials that contribute to reverse current.

It must be stressed that the agreement between measured and modeled current steps is

dependent on time and temperature. MRED simulations assume a temperature of 300 K,

and all measured current steps are taken from reverse current time series of diodes irra-

diated at room temperature. Furthermore, MRED simulations do not take annealing or

accumulated damage into account. The magnitudes of measured current steps reflect the

discrete increase in reverse current that occured between 150 ms sampling periods. Re-

laxation of these current steps consistent with short-term annealing was observed in the

2 to 3 minute period following each current step [16], and this relaxation can be seen in

Fig. III.22. Nevertheless, MRED simulations of atomic displacements provide a useful and

novel method for calculating the maximum current step size observed ˜150 ms after single

particle displacement damage.
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CHAPTER V

Conclusions

Heavy ion-induced single particle displacement damage has been investigated in n-channel

silicon JFET diodes. The size distribution of heavy ion-induced discrete increases in re-

verse current has been measured and modeled for reverse-biased 252Cf-irradiated diodes.

The diodes used in this work were manufactured as n-channel JFETs with the gate act-

ing as anode, the source acting as cathode, and the drain left floating. Since laser testing

confirmed that only current generated in the gate / epitaxial depletion regions and in the

portion of the epitaxial / substrate depletion region between the source and gate was col-

lected at the source, 252Cf irradiation was performed both on diodes with the drain floating

as manufactured and with the drain grounded by bonding the drain pad to the source pad.

For 252Cf-irradiated diodes biased at -12 V with the drain floating, discrete increases in

reverse current were measured at 1.5 fA to 80 fA, where 1.5 fA represents the lower limit

of current that can be measured with the current-to-voltage converter used in this work. For

diodes biased at -12 V with the drain grounded, discrete increases in reverse current were

measured at 1.5 fA to 100 fA under similar radiation conditions. All measured current steps

coincided with ionization events indicative of fission fragments rather than alpha particles

or secondary ionization from neutrons. Current steps exhibit a relaxation time of 3 to 5

minutes that is associated with the evolution of stable defects.

When an individual heavy ion creates displacement damage in the depletion region of

a reverse-biased pn-junction, the resulting deep level vacancy and interstitial defects con-

tribute to reverse current through Shockley-Read-Hall generation. If these defects operate

inside an electric field of approximately 105 V/cm, less thermal energy is required for a

midgap defect to emit an electron to the conduction band. The presence of the high electric

field lower the defect’s Coulomb barrier through the Poole Frenkel effect. At higher elec-

88



tric fields, the probability of multiple phonon-assisted tunneling is increased as well, but the

electric fields present in the devices investigated in this work did not warrant the inclusion

of multi-phonon tunneling in electric field enhancement equations. Both the Poole-Frenkel

effect and multi-phonon tunneling increase the thermal emission rate of a defect. A de-

fect operating in an electric field contributes more to reverse current than the same defect

operating in electric fields less than 105 V/cm.

The model for the size distribution of current steps hinges upon damage-induced mod-

ification of the generation lifetime, τg, taking electric field enhancement of defects into

account. When an incident particle creates new vacancy and interstitial defects in the de-

pletion regions of a device, defect density Nt is increased. The pre-irradiation defect den-

sity is assumed to be the existing number of defects in a depletion region divided by the

volume of the depletion region. Monte Carlo simulations of the primary knock-on atoms

displaced and stopped within the device depeletion regions provide the number of new de-

fects that can be added to the existing, pre-irradiation defects. Furthermore, both existing

pre-irradiation defects and damage-induced new defects operate in electric fields inside the

depletion region. The electric field enhancement for these defects can be obtained by mod-

eling electric field strength with TCAD simulations and then calculating the reduction in a

one-dimensional Coulomb barrier for that electric field. Defect energy levels are modified

by the reduction in the Coulomb barrier so that the effective trap level for electrons moves

closer to the conduction band while the effective trap level for holes moves closer to the

valence band.

For a given incident ion, the discrete increase in Shockley-Read-Hall generation in

a given depletion region is modeled as the difference in Shockley-Read-Hall generation

before and after the generation lifetime is modified by the number of new defects created by

the incident ion in that depletion region. The total current step associated with an incident

ion is the sum over all depletion regions of the product of the electron charge, the Shockley-

Read-Hall generation rate in that depletion region, and the volume of that depletion region.
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Modeled current steps are calculated from Monte Carlo simulations of knock-on atoms

displaced within volumes corresponding to JFET diode depletion regions. Reasonable pa-

rameters were chosen for defect capture cross-sections, defect energy levels, electric field

enhancement factors, and the cutoff energy for atomic recoils. The size distributions of

current steps measured in 252Cf-irradiated diodes are in good agreement with the upper

and lower limits of the size distribution of modeled current steps corresponding to light

and heavy 252Cf fission fragments (106 MeV Cd and 80 MeV Nd, respectively). Modeled

current steps calculated from MRED simulations of 14.3 MeV O ions underpredict (by less

than a factor of 2) the size distribution of current steps measured in Pelletron-irradiated

JFET diodes.

The agreement between measured and modeled size distributions for the three com-

binations of bias and radiation environment suggest that current step size varies with the

number of new defects created in device depletion regions by a given incident ion. In

these simulations, the number of defects scales linearly with nonionizing energy deposi-

tion within device depletion regions. For both the Pelletron oxygen ions and the 252Cf

fission fragments, incident ions strike the diode surface at normal incidence The number of

new defects created within one or more depletion regions depends on where the ion strikes

the diode surface. If the incident ion traverses both the gate / epitaxial depletion region and

the epitaxial / substrate depletion region, the number of defects created that contribute to

reverse current will be much higher than the number of electrically active defects created

if an ion traverses the epitaxial / substrate depletion region only.

The maximum size of current steps caused by single particle displacement damage is

explained using Monte Carlo simulations of atomic displacements when electric field en-

hancement of defect emission is taken into account. Increases in reverse current caused by

single particle displacement damage have been measured in 252Cf-irradiated JFET diodes

and modeled using Monte Carlo simulations of new vacancy and interstitial defects that

operate in electric fields of ˜105 V/cm. Electric field emission enhancement is calculated
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by modeling midgap defects as 1-D Coulomb potentials and finding the reduction in ther-

mal activation energy required to emit electrons and holes from the defect energy level.

Electric field strength is calculated with TCAD simulations. Increased density of vacancy

and interstitial defects is calculated from Monte Carlo simulations of atomic displacements

using MRED simulations of 106 MeV Cd and 80 MeV Nd, typical light and heavy 252Cf

fission fragments.

When the expression for generation lifetime is modified to incorporate radiation-induced

defect density and electric field enhancement of defect emission rates, the distribution of

modeled current steps shows good agreement with current steps that are measured 150 ms

after displacement damage occurred. This work extends the understanding of single par-

ticle displacement damage beyond the average damage event size calculated with NIEL.

The distribution of radiation-induced discrete increases in reverse current is related to the

distribution of energy-deposition events, once the effects of high electric fields are taken

into account.
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Appendices

Appendix A: Table of Symbols

Symbol Units Explanation

k J K-1 or eV K-1 Boltzmann’s constant
ni carriers cm-3 intrinsic carrier concentration
q C charge of an electron
r cm distance between an electron and a localized energy state
vth cm s-1 thermal velocity of electrons
xd cm depletion region width
xi cm generation region width
A cm2 depletion region area
Dn,p cm2 s-1 diffusion coefficients of electrons and holes
E V cm-1 electric field strength
Ec eV conduction band energy level
Eeh eV energy required to create an electron-hole pair
Ei eV intrinsic Fermi level
Et eV defect energy level
Ev eV valence band energy level
E0

act,n eV zero-field activation energy for emission of electron from defect to conduction band
E0

act,p eV zero-field activation energy for emission of electron from defect to valence band
Eact,n eV activation energy for emission of electron from defect to conduction band
Eact,p eV activation energy for emission of electron from defect to valence band
δEactn,p eV electric field-induced change in defect activation energy for electron and hole emission
I A ideal diode current
IR A reverse current across a diode
∆IR A discrete change in reverse current
IR0 A pre-irradiation reverse current
N defects number of defects in a depletion region
Nint,vac defects number of existing interstitial or vacancy defects in a depletion region
N′int,vac defects number of new radiation-induced interstitial or vacancy defects in a depletion region
Nt defects cm-3 defect density
N′t defects cm-3 post-irradiation defect density
NA,D atoms cm-3 acceptor or donor doping level
NIEL MeV cm2 g-1 nonionizing energy loss
T K temperature
U carriers s-1 cm-3 Shockley-Read-Hall recombination-generation rate
Va V Voltage applied across diode
εSi F cm-1 permittivity of silicon
φi V built-in voltage of pn-junction
φn,p V quasi-Fermi level for electrons or holes
σ fA standard deviation of reverse current
σn,p cm2 capture cross-section for electrons and holes
τg s generation lifetime
τg0 s pre-irradiation generation lifetime
τn0,p0 s minority carrier lifetime of electrons, holes
τ ′n0,p0 s post-irradiation minority carrier lifetime of electrons, holes
θ ° angle between r and the direction of the electric field
Ψ V electric potential inside junction

Table V.2: Symbols Used in this Work.
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Appendix B: Design and Etching of a Printed Circuit Board

The reverse current measurement circuit described in III.2 was designed and etched by

hand onto a printed circuit board (PCB) using the following process.

Materials:

• Copper clad board

• Small plastic container (area slightly larger than dimensions of copper clad board)

• Laser printer

• Sharpie marker

• Glossy magazine paper

• 200 ml muriatic acid

• 100 ml hydrogen peroxide

• Water wash bottle

• Acetone wash bottle

• Scouring pad

• Windex

• Paper towels

• Tweezers

• Safety gloves, goggles, apron

• Large glass bottle with screw cap (waste container)

• VEHS hazardous waste labels (call 615-322-2057)
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First, the circuit’s copper layout was designed using the FreePCB software, an open-

source PCB layout editor. This simple current-to-voltage converter used an LMC6001 op

amp, two 100 GΩ resistors, and a 4.7 pF capacitor. Fig. V.1 shows the circuit’s copper

layout. To reduce noise from circuit leakage, each of the op amp’s pins, the resistor con-

necting the negative input terminal to ground, and the positive and negative power supply

wires are inserted into gold discrete component jacks. The copper layout shows the solder

pads for these component jacks, and all other components were soldered in air to further

reduce circuit leakage. The circles in each of the design’s four corners are for screw holes

so that metal screws will connect the circuit’s ground lines to the diecast aluminum box

enclosing the circuit.

Next, the copper layout image was then transferred to a piece of copper clad board. The

copper clad board was prepared by scrubbing the shiny side with a scouring pad and then

cleaning the surface with acetone. The combiontoner from the laser printer The copper

layout was horizontally flipped so that its mirror image could be printed with a laser printer

onto glossy paper (a leaf of the Nuclear Science and Plasma newsletter). The printed mirror

image of the copper layout was placed facedown on the prepared copper clad board, and a

hot iron was applied for twenty minutes. The heat transferred the ink and laser toner from

the paper’s glossy surface to the copper clad board. The copper clad board was rinsed with

water to remove the remaining glossy paper, resulting in a printed image of the circuit’s

copper layout on the copper clad board. The final circuit design was touched up with a

Sharpie marker.

Finally, the printed copper clad board was submerged in a plastic container containing

a solution of two parts muriatic acid to one part hydrogen peroxide. The container was

gently agitated for five minutes as the exposed copper dissolved. The copper protected by

the laser toner and Sharpie ink was not exposed to the etching solution. The printed circuit

board was removed from the solution and rinsed with water. The laser toner and Sharpie

ink were removed with acetone to expose the copper layout. Etching solution and rinse
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Figure V.1: Copper layout for reverse current measurement circuit. The layout on the left
shows the circuit’s labeled solder pads. The layout on the left is the mirror image ironed on
to the copper clad board.

water should be decanted into a glass bottle with a screw top lid, labeled with a VEHS

waste label, and removed by VEHS personnel for disposal.

The result of this design and etching process was a printed circuit board ready for screw

holes to be drilled and discrete component jacks to be soldered to the copper solder pads.

Reference: “Toner Transfer and Muriatic Acid Etchant: Making PCBs at LVL1”,

http://www.meatandnetworking.com/projects/toner-transfer-and-muriatic-acid-etchant-

making-pcbs-at-lvl1/, accessed 14 December 2012
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Appendix C: Chemical and Mechanical Package Decapsulation

This appendix outlines the chemical and mechanical decapsulation of packaged semicon-

ductor devices. This procedure is intended to provide a cheap, fast, in-house procedure

for reliable decapsulation that results in electrically functional devices ready for radiation

testing.

Chemical Package Decapsulation

Chemical decapsulation is suitable for devices packaged in epoxy. The following technique

will remove the epoxy directly over a chip while leaving the epoxy holding the package and

pins in place. The result is an exposed chip in a functional package.

• Red fuming nitric acid (90% HNO3) (Location: Stevenson 5637 hood)

• Glass dish

• VEHS or plastic tray (secondary container)

• Large glass bottle with screw cap (waste container)

• VEHS hazardous waste labels (call 615-322-2057)

• 2 plastic pipettes

• Tweezers

• Exacto-knife

• Acetone wash bottle

• Water wash bottle

• Long neoprene gloves worn over nitrile gloves

• Safety goggles
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• Long-sleeved lab coat

• Plastic apron

• Street clothing: long-sleeved shirt, long pants, shoes of solid leather or rubber

Perform the chemical decapsulation procedure under a fume hood. Place a VEHS haz-

ardous waste label on the waste container. Labels should be filled out with users name,

contact information, and waste materials (Red fuming nitric acid, plastic / epoxy, water).

The fume hoods glass shield is pulled down as far as possible without restricting movement.

Use the exacto-knife to etch a shallow trough into the devices surface epoxy. The trough

should be the approximate shape and location of the silicon die. Use the tip of an emery

board to sand down the trough. See Fig. V.2. Take time to make the trough as deep as

possible; this will reduce the amount of HNO3 needed to expose the silicon chip, better

protecting the device and its pins.

Next, place device into glass dish. Use a pipette to place a small drop of HNO3 ( 0.1

mL) into the etched trough. Allow the HNO3 to dissolve epoxy for a few minutes. Gently

agitate the dish with a gloved hand or chemical shaker to speed reaction time. Sluice the

device with water and use a second pipette to transfer waste solution to waste container.

Inspect troughs surface under a magnifying glass or microscope. Repeat the application

of HNO3, water sluice, and visual inspection until the shiny die surface is fully exposed.

Rinse with acetone. View the chip surface under a microscope to see whether any small

pieces of epoxy remain on the die surface, as in the device on the right of Fig. V.2. Repeat

the application of HNO3 and water sluice as needed until die surface is clean. If at any time

the acid begins to bubble with a turquoise green color near the packages pins at any time,

sluice with water immediately.

Rinse device with acetone once die is fully exposed. Use tweezers to remove device.

Use second pipette to transport waste water to waster container. Use tweezers to trans-

port any large chunks of epoxy to waste container. Use H20 wash bottle to sluice device
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Figure V.2: Decapsulated chips. The image on the left shows two identical devices. The
top device has had a trough etched in the epoxy with an Exacto-knife, and the bottom
device shows a fully exposed chip. The image on the right shows a microscope view of a
chemically decapsulated microcontroller with epoxy residue visible on the chip surface.

and inside of glass dish with water. Rinse both pipettes by transporting waste water to

waste container. Tighten screw cap on waste container. When waste container is full or all

decapsulations are finished, call VEHS at 615-322-2057 to remove waste container from

hood.

Mechanical Package Decapsulation

Mechanical decapsulation is suitable for devices packaged in hermetically sealed metal

cans, such as TO-3, TO-52, or TO-72 transistor outline packages. The lid of the metal

can be opened and removed with a handheld can opener (such as the ThorLabs WR1 can

opener shown in Fig. V.3) without damage to the device or pins.
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Figure V.3: A specialized tool known as a can opener used to mechanically decapsulate TO
packaged devices.
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Appendix D: Workflow of Experiment and Data Analysis

This appendix states the workflow of laboratory experiments and data analysis for future re-

peatability. The procedure described below assumes that the experiment will be performed

in Featheringill 310 at Vanderbilt University.

LNA Circuit and Diode Preparation

A low noise amplification (LNA) current-to-voltage converter can be built using the circuit

diagram in Fig. III.8.

1. A diecast aluminum box will serve as ground and will also provide electromagnetic

shielding for the circuit. Drill 4 holes with diameter 0.512” (13.00 mm) in the side of

the box. Mount one BNC connector in each hole. (Amphenol front mount bulkhead

panel BNC jacks were used here.)

2. Drill 1 hole with diameter 0.512” (13.00 mm) in the lid of the box, and drill 2 smaller

holes to either side. Cut out a small piece of PVC or tupperware plastic and punch

a hole in it large enough to snugly fit the diode can. Screw the piece of plastic to

the aluminum box lid using the 2 smaller drilled holes so that the punched hole is

aligned with the bigger drilled hole. (This diode mounting strategy must be adapted

if the diode is in a DIP package or D-type package rather than a can.)

3. Use the copper layout design and PCB etching technique described in Appendix B

to construct a PCB with printed circuit lines.

4. Make an ultra-low noise op amp socket by a soldering gold discrete component

jack upright on each of the 8 op solder pads, the VS+ and VS− solder pads, and the

grounded solder pad labelled in Fig. V.1.

5. Wire the following components in air (that is, don’t let wires or components touch

each other, the PCB, the side of the aluminum circuit box, or anything other than the

specified connections - this reduces leakage current).
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• Press the op amp into the socket. Solder op amp pins to the component jacks to

ensure good connections.

• Solder one end of a 100 GΩ resistor to the negative input terminal of the op

amp. Solder the other end of the resistor to the grounded solder pad.

• Solder a second 100 GΩ resistor between the positive input terminal and the

output terminal of the op amp. Solder a 4.7 pF capacitor in parallel with this

100 GΩ resistor.

• Solder one end of a wire to the positive voltage supply terminal of the op amp.

Solder the other end of the wire to the solder cup of the VS+ BNC connector.

• Solder one end of a wire to the negative voltage supply terminal of the op amp.

Solder the other end of the wire to the solder cup of the VS− BNC connector.

• Solder one end of a black wire to the positive input terminal of the op amp. Sol-

der a gold discrete component jack to the other end of the wire. This component

jack will hold the cathode pin of a diode.

• Solder a gold discrete component jack to one end of a white wire. This compo-

nent jack will hold the anode pin of a diode. Solder the other end of the wire to

the solder cup of the VA BNC connector.

• Solder a wire to the ground terminal of each BNC jack. Solder the other end of

each wire to the grounded solder pad.

6. Decapsulate the diode using the mechanical or chemical decapsulation procedure

described in Appendix C.

7. Mount the decapped diode in the LNA circuit. The anode goes in the socket soldered

to the white wire, and the cathode goes in the socket soldered to the black wire. Slide

the diode can into the circular hole cut into the clear plastic window screwed to the

lid of the LNA circuit box, and then screw the lid to the box.
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Figure V.4: Diagram of experimental setup showing equipment and connections.

Experiment Set-up and Irradiation

Fig. V.4 shows a diagram of the equipment used for in situ reverse current measurements

of 252Cf-irradiated diodes along with the connections between pieces of equipment.

1. Remove the electrical feedthrough flange from the vacuum chamber. The feedthrough

has four male SMA connectors mounted on each side. Connect four cables between

the male BNC connectors on the LNA circuit box to the four SMA adapers on the

inside of the electrical feedthrough:

• VS+: positive voltage supply for op amp

• VS−: negative voltage supply for op amp

• VA: applied voltage for diode

• VOut : output voltage from LNA current-to-voltage converter circuit

2. Connect four cables between the male SMA connectors on the outside of the electri-

cal feedthrough to the power supply and multichannel data acquisition unit:
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• VS+: BK 1760A power supply positive voltage on channel A (+6 V used here)

• VS−: BK 1760A power supply negative voltage on channel B (-6 V used here)

• VA: Analog output channel 104 on Agilent 34970A multichannel data acquisi-

tion unit. Set this channel to the desired reverse bias. (-12 V used here.)

• VOut : Digital input channel 201 on Agilent 34970A multichannel data acquisi-

tion unit. Set this channel to measure DC volts in the desired range.

3. Connect the Agilent 34970A multichannel data acquisition unit to the Agilent E5810A

GPIB / LAN gateway using a GPIB cable.

4. Connect the gateway to the laptop using an ethernet cable. Open a browser on the

laptop. Type the IP address displayed on the gateway into the browser’s address field.

If a login window pops up, keep the default password and press Submit. On the

equipment page, press “Find instruments” and select “gpib 0,9.” Test the connection

by pressing “IDN” - the Agilent 34970A should identify itself by printing its name

and some connection details in the text area on the equipment page. Troubleshooting

- check the IP address, the ethernet cable and connections, the GPIB cable, and that

“gpib 0,9” is the instrument selected.

5. Connect the vacuum chamber to the Pfeiffer TMH 071 P turbomolecular vacuum

pump with hose and clamps. Hose is rubber or PVC with steel casing. Turn the

pump power on at the switch, and then start the pump by pressing the soft button

once. The roughing pump will start first, and the turbo pump will start after a few

minutes (it sounds like an airplane taking off). Monitor the vacuum level on channel

. Trouble-shooting: if the vacuum level plateaus before reaching 10-5 mbar, check

the system for leaks. Squirt isopropyl alcohol around the joins between feedthroughs

or hose clamps and vacuum chamber while checking for spikes or dips in vacuum

level. Do not overtighten nuts holding feedthroughs to chamber. If necessary, remove

feedthroughs or hose and clean the gaskets. Check gaskets for rips or tears.
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6. Place the LNA circuit box inside the vacuum chamber. Mount the 252Cf source the

desired distance from the diode’s surface. (NOTE: 252Cf emission products will be-

gin striking the device surface now.) Do not use tape or adhesives to secure 252Cf

source, and do not pierce the source. Instead, construct a holder or box for the source

with a window cut out for the source’s active area, and secure the holder with screws

or cable ties. Avoid using wood and cardboard inside the vacuum chamber since the

moisture content of these materials will greatly increase the amount of time needed to

pump down the vacuum chamber. Re-attach the electrical feedthrough to the vacuum

chamber and tighten nuts.

7. Start the python script that reads time and output voltage. Data is written continu-

ously to a file on the laptop. Command:

python ScriptName filename &

Finish Experiment and Analyze Data

1. Keep taking data until 1) the output voltage corresponds to the desired maximum

leakage current (1 V = 10 pA), 2) the output voltage reaches 6 V (maximum range of

LNA circuit), or 3) the desired amount of time has elapsed.

2. End the experiment with this procedure:

• Stop data acquisition by pressing any key or, if the process run by the script was

placed in the background with “&”, kill the process. Open a terminal and type

“ps aux” to list job ID’s, find the python script’s ID, and kill the process with

“kill jobID”.

• Turn off the vacuum pump by pressing the soft button once. Vent the chamber

by turning the wingnut located on the back of the pump.

• Remove one of the feedthroughs or plain flanges on the vacuum chamber and

remove the 252Cf source. Replace the source in its packaging and return it to
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the radiation source safe.

• Power down all equipment.

3. Convert the data read from the Agilent 34070A multichannel data acquisition unit to

other data products for further analysis:

• Reverse current time series:

• Identification of current steps and pulses:

Links to Equipment Manuals

1. BK 1760A power supply: https:www.bkprecision.comdownloadsmanualsen1760A manual.pdf

2. Agilent 34970A multichannel data acquisition unit: http:cp.literature.agilent.comlitwebpdf34972-

90010.pdf

3. Pfeiffer TMH 071 P vacuum pump: http:/

/mmrc.caltech.eduVacuumPfeiffer%20TurboTMHTMU 071P.pdf

4. Agilent E5810A GPIB / LAN gateway: http:cp.literature.agilent.comlitwebpdfE5810-

90001.pdf
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Appendix E: Identification of Current Pulses and Steps

This appendix presents python code written by Elizabeth Auden that identifies current

pulses and steps in reverse current time series of irradiated JFET diodes.

#FindSteps_CrossSection_PAD1.py
#Author: Elizabeth Auden (elizabeth.c.auden@vanderbilt.edu)
# 3 December 2012

###########################################################
# NOTE: turned off multi-peak finder 11:24 06/07/12 ECA
# to allow better detection of 10 fA first peaks
###########################################################

import sys
sys.path.append(’/usr/local/radeffects/libpython/mred-9xx’)
sys.path.append(’/usr/local/radeffects/old/packages/graceplot’)
import math
import vumps
import os
import medfilt
import GracePlot

class myGrace(GracePlot.GracePlot):
grace_command=’gracebat’

def ReadDataFile(filename, delay):
times = []
voltages = []
first_data_line = True
initial_time = 0.
for line in file(filename):

line = line.split()
if len(line) > 5:

time = line[5]
reading = line[6]
if first_data_line == True:

initial_time = float(time)
if (float(time) - initial_time >= 0.0 + delay):

times.append((float(time) - float(initial_time))/3600.)
voltages.append(float(reading))

first_data_line = False
return voltages, times

# Median filter data
def MedianFilterVoltages(voltages, L):

mf_voltages = medfilt.medfilt1(voltages,int(L))
return mf_voltages

# Peak detection
# Algorithm:
# 1. threshold = 2*std dev
# 2. find discrete change in voltage amplitude > threshold
# 3. see if voltage change at t0+3*dt = initial change * ((e\ˆ(-3dt/RC))\ˆ-1) +/- std dev
# 4a. if yes, record discrete voltage change and time as detected impulse
# 4b. if yes, record discrete voltage change and time as false impulse

def GetNIons(voltages, times, stddev, peakThreshold):

resistor = 1.e11
capacitor = 4.7e-12
rc = resistor * capacitor
alpha_threshold = 4. * stddev
threshold = peakThreshold
logflag=False
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nIons = 0
nPulses = 0

length_voltages=len(voltages)
i=1
while i < length_voltages-2:
h = voltages[i] - voltages[i-1]
if (h > threshold) and (voltages[i] >= 0.):

# Find difference in time (in s) between current
# reading’s time and time 1 reading later
t = (float(times[i+1]) - float(times[i]))*3600.
expected_vout_decay = h*(math.e**(-t/rc))
actual_decay = voltages[i+1]-voltages[i-1]
upper_limit = max(1.25*expected_vout_decay, expected_vout_decay + stddev)
lower_limit = min(0.75*expected_vout_decay, expected_vout_decay - stddev)
anomaly = False
if (actual_decay >= lower_limit) and (actual_decay <= upper_limit):
nIons += 1
nPulses += 1

elif actual_decay < lower_limit:
anomaly = True

elif actual_decay > upper_limit:
risingedge_h = voltages[i+1]-voltages[i-1]
risingedge_t = (float(times[i+2]) - float(times[i+1]))*3600.
risingedge_expected_vout_decay = risingedge_h*(math.e**(-risingedge_t/rc))
risingedge_actual_decay = voltages[i+2]-voltages[i-1]
risingedge_upper_limit = max(1.25*risingedge_expected_vout_decay, \
risingedge_expected_vout_decay + stddev)

risingedge_lower_limit = min(0.75*risingedge_expected_vout_decay, \
risingedge_expected_vout_decay - stddev)

if (risingedge_actual_decay >= risingedge_lower_limit) and \
(risingedge_actual_decay <= risingedge_upper_limit):
nIons += 1
nPulses += 1
# now treat h and i as if first point didn’t exist
h=risingedge_h
i=i+1

else:
anomaly = True

elif (h < threshold) and (voltages[i] >= 0.) and (h > alpha_threshold):
# Find difference in time (in s) between current
# reading’s time and time 1 reading later
t = (float(times[i+1]) - float(times[i]))*3600.
expected_vout_decay = h*(math.e**(-t/rc))
actual_decay = voltages[i+1]-voltages[i-1]
upper_limit = max(1.25*expected_vout_decay, expected_vout_decay + stddev)
lower_limit = min(0.75*expected_vout_decay, expected_vout_decay - stddev)
anomaly = False
if (actual_decay >= lower_limit) and (actual_decay <= upper_limit):
nPulses += 1

elif actual_decay < lower_limit:
anomaly = True

elif actual_decay > upper_limit:
risingedge_h = voltages[i+1]-voltages[i-1]
risingedge_t = (float(times[i+2]) - float(times[i+1]))*3600.
risingedge_expected_vout_decay = risingedge_h*(math.e**(-risingedge_t/rc))
risingedge_actual_decay = voltages[i+2]-voltages[i-1]
risingedge_upper_limit = max(1.25*risingedge_expected_vout_decay, \
risingedge_expected_vout_decay + stddev)

risingedge_lower_limit = min(0.75*risingedge_expected_vout_decay, \
risingedge_expected_vout_decay - stddev)

if (risingedge_actual_decay >= risingedge_lower_limit) and \
(risingedge_actual_decay <= risingedge_upper_limit):
nPulses += 1
# now treat h and i as if first point didn’t exist
h=risingedge_h
i=i+1
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else:
anomaly = True

i=i+1
#return peaks, peak_heights, peak_times, peak_hist, peak_indices
return nIons, nPulses

# Step Detection
def FindSteps(voltages, mf_voltages, times, mf_stddev, L):

stepInPrev500Pts = False
stepInPrev500PtsCounter = 1
points_to_average=500
threshold=mf_stddev
length_mfvoltages=len(mf_voltages)
lowlimit=0.0001
highlimit=0.01
nbins=100
logflag=True
numSteps = 0
step_times=[]
steps=[]
step_heights=[]
step_hist = mred.getNewHistogram(hMin=lowlimit, hMax=highlimit, nBins=nbins, \

logSpacing=logflag)
annealed_step_times=[]
annealed_steps=[]
annealed_step_heights=[]
annealed_step_hist = mred.getNewHistogram(hMin=lowlimit, hMax=highlimit, \

nBins=nbins, logSpacing=logflag)
stop_point = length_mfvoltages-points_to_average

for i in range(points_to_average, stop_point):
if stepInPrev500Pts == False:
edge = mf_voltages[i] - mf_voltages[i-1]
if edge > threshold:
prev_avg=(sum(mf_voltages[i-points_to_average-1:i-1]))/float(points_to_average)
next_avg=(sum(mf_voltages[i+1:i+points_to_average+1]))/float(points_to_average)
step=next_avg-prev_avg

if step > (threshold):
step_times.append(times[i-1])
step_hist.add(step)
steps.append(step+prev_avg)
step_heights.append(step)
stepInPrev500Pts = True

# Find average of next 500 points after 3 minutes, or 1200 points
three_minutes_later_next_avg = \
(sum(mf_voltages[i+1201:i+points_to_average+1201]))/float(points_to_average)

annealed_step=three_minutes_later_next_avg-prev_avg
annealed_step_times.append(times[i+1199])
annealed_step_hist.add(annealed_step)
annealed_steps.append(annealed_step+prev_avg)
annealed_step_heights.append(annealed_step)
numSteps += 1

else:
if stepInPrev500PtsCounter < 500:
stepInPrev500PtsCounter += 1
stepInPrev500Pts = True

else:
stepInPrev500PtsCounter = 1
stepInPrev500Pts = False

return numSteps, steps, step_heights, step_times, step_hist, annealed_steps, \
annealed_step_heights, annealed_step_times annealed_step_hist

####################################
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def MakeGracePlot(x_datasets,y_datasets,histogram=False,legends=None,
xax_min=None, xax_max=None, xlog=True, xscaler=1, xlabel=’’,
yax_min=None, yax_max=None, ylog=True, yscaler=1, ylabel=’Weight’, nbins=1024,
lowlimit=0., highlimit=1., title=’’,grace_format_file=None, reverse_sum=False,
width_normalize=False, outfile_stem=’plot’, jobid=None, jobname=None,
logflag=False):

try:

datasets=[]
ymin=1e308; ymax=0; xmin=1e308; xmax=0

hnum=0
dnum=0
for y_dataset in y_datasets:

if histogram==True:
#reverse_sum = True
h = y_dataset
if reverse_sum:

h=h.sumArrayReverse()
elif width_normalize:

h=h.scaleByBinWidth()

xvals=[x*xscaler for x in h.x]
yvals=[y*yscaler for y in h.y]
yvals_plain=[y*1.0 for y in h.y]
dyvals=[math.sqrt(y2)*yscaler for y2 in h.y2 ] #fixed from sqrt(y) 20080115 MHM
xlog=True
ylog=True

else:
xvals=[x for x in x_datasets[dnum]]
yvals=[y for y in y_dataset]
dyvals=[y+stddev for y in yvals ] #fixed from sqrt(y) 20080115 MHM
xlog=False
ylog=False

if ylog:
ymin=min(ymin, min([y for y in yvals if y!=0]))

else:
ymin=min(ymin, min(yvals))

ymax=max(ymax, max(yvals))
if (ymax == ymin) and (ymin == 1.0):

ymin = 0.1
ymax = 10.

if xlog:
xmin=min(xmin, min([x for x in xvals if x!=0]))

else:
xmin=min(xmin, min(xvals))

xmax=max(xmax, max(xvals))

# Do style info: filled circles, no lines, size=25, black, red, green, blue
if dnum==0:

mysymbol=1
mysymbolsize=0.5
myfillcolor=1
mysymbollinewidth=0.5
myfillpattern=1
mysymbolcolor=1
mylinetype=0
mylinewidth=1
mylinecolor=1
mylegend=legends[0]

elif dnum==1:
mysymbol=1
mysymbolsize=0.5
mysymbolcolor=2
mysymbollinewidth=0.5
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myfillpattern=1
myfillcolor=2
mylinetype=0
mylinewidth=1
mylinecolor=15
mylegend=legends[1]

elif dnum==2:
mysymbol=1
mysymbolsize=0.5
mysymbolcolor=3
mysymbollinewidth=0.5
myfillpattern=1
myfillcolor=3
mylinetype=0
mylinewidth=1
mylinecolor=3
mylegend=legends[1]

elif dnum==2:
mysymbol=1
mysymbolsize=1.0
mysymbollinewidth=2
myfillpattern=0
myfillcolor=1
mysymbolcolor=15
mylinetype=0
mylinewidth=0
mylinecolor=0
mylegend=legends[2]

elif dnum==3:
mysymbol=1
mysymbolsize=1.0
myfillpattern=0
mysymbolcolor=4
mysymbollinewidth=2
myfillcolor=1
mylinetype=0
mylinewidth=0
mylinecolor=0
mylegend=legends[3]

l1=GracePlot.Line(type=mylinetype,linewidth=mylinewidth,color=mylinecolor)
e1=GracePlot.Errorbar(onoff=’off’,riserclip=’on’, risercliplength=0.1)
s1=GracePlot.Symbol(errorbar=e1,skip=0,symbol=mysymbol,color=mysymbolcolor,\
fillcolor=myfillcolor,size=mysymbolsize, fillpattern=myfillpattern, \
linewidth=mysymbollinewidth)

d1=GracePlot.Data(x=xvals, y=yvals, dy=dyvals, type=’xydy’, symbol=s1, line=l1, \
legend=mylegend)

datasets.append(d1)
dnum=dnum+1

graceSession=myGrace(width=5.5, height=3.75)
g=graceSession[0]
g.plot(datasets)
for axname, ax_min, ax_max, val_min, val_max, logaxis, axfunc, axlabel in (

(’y’, yax_min, yax_max, ymin, ymax, ylog, g.yaxis, ylabel),
(’x’, xax_min, xax_max, xmin, xmax, xlog, g.xaxis, xlabel)):
if logaxis:

if ax_max is None:
#make ymax rounded to nearest decade up
ax_max=math.pow(10, math.ceil(math.log10(val_max*.999999)))

if ax_min is None:
if val_min==0.0:

ax_min=1e-8*ax_max
else:

#make ymax rounded to nearest decade down
ax_min=math.pow(10, math.floor(math.log10(val_min*1.00001)))

scale=’logarithmic’
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ticks=GracePlot.Tick(major=10, minorticks=9)
else:

if ax_max is None or ax_min is None:
#ax_min=0.0
ax_min=lowlimit
ax_max=val_max

scale=’normal’
ticks=GracePlot.Tick()

#grace requires keywords xmin, xmax or ymin, ymax
axlimits={axname+’min’: ax_min, axname+’max’: ax_max}
axfunc(label=GracePlot.Label(axlabel, font=4, charsize=1.48), tick=ticks, \
scale=scale, **axlimits)

g.legend(font=4,charsize=1.3)
g.title(title)
graceSession.send_commands(’saveall "%s.agr"’ % outfile_stem,’exit’)
return ""

except:
#meltdown, return the traceback to the caller
import cStringIO
stdout=sys.stdout
out=cStringIO.StringIO()
sys.stdout=out
import traceback
traceback.print_exc()
sys.stdout=stdout

return out.getvalue()

####################################

def usage():
return

if __name__ == "__main__":

filename=’’
stddev=0
L=0

# Check for correct syntax
if len(sys.argv) < 5:
print "Syntax: FindSteps_CrossSection.py datfile stddev L peakThreshold"
sys.exit()

else:
filename=sys.argv[2]
stddev=float(sys.argv[3])
L=float(sys.argv[4])
peakThreshold=float(sys.argv[5])

basename, extension = os.path.splitext(filename)
print "Data file: ", filename, ", stddev: ", stddev, ", L: ", L

# Read data file
print "In ReadDataFile"
# Add delay in case first n seconds of dataset should be ignored (for instance,
# ion gauge still on or ion rate not properly adjusted). Uncomment one option.
#delay=600.0 # Delay of 10 minutes
delay=0.0 # Delay of 0 minutes
voltages, times = ReadDataFile(filename, delay)

# Median filter data
print "In MedianFilterVoltages"
mf_voltages = MedianFilterVoltages(voltages, L)
lengthMFV = len(mf_voltages)

mf_stddev=0.00015
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print "MF stddev: ", mf_stddev

# Count number of ions from current pulses
print "In GetNIons"
nIons = 0
nIons, nPulses = GetNIons(voltages, times, stddev, peakThreshold)

# Step detection
print "In FindSteps"
numSteps, steps, step_heights, step_times, step_hist, annealed_steps, \
annealed_step_heights, annealed_step_times, annealed_step_hist = \
FindSteps(voltages, mf_voltages, times, mf_stddev, L)

# area = 2250.e-8 #area of epitaxy / substrate depl reg (cmˆ2) under source and gate
area = 3500.e-8 #area of epitaxy / substrate depl reg (cmˆ2) under source, gate, and drain
fluence = float(numSteps) / area
yscaler = 1.0/fluence
legends=[]
legends.append("Steps")

output_stem = basename + "_StepCrossSection"
xlabel="D I Reverse (fA)"
ylabel="Cross Section (cm\ˆ-2)"
nbins=100
lowlimit=1.
highlimit=100.
logflag = True
# Convert peak size from V to fA (multiply by 10000)
fA_conversion = 10000.
current_step_hist = mred.getNewHistogram(hMin=lowlimit, hMax=highlimit, \
nBins=nbins, logSpacing=logflag)

for x in step_hist.x:
current_step_hist.add(x*fA_conversion)

hlist=[]
hlist.append(step_hist)
MakeGracePlot(times, hlist, histogram=True,legends=legends, xscaler=fA_conversion, \
yscaler=yscaler, xlabel=xlabel,ylabel=ylabel,outfile_stem=output_stem, reverse_sum=True)

print "Damage factor: ", str(fA_conversion*((mf_voltages[len(mf_voltages) - 1] \
- mf_voltages[0]))/nIons)

print "nIons: ", nIons
print "Max step size: ", max(step_heights),
print "Max annealed step size: ", max(annealed_step_heights)
print "Done with FindSteps_CrossSection.py"
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Figure V.5: The generation region width xi and depletion region width xd with respect to
quasi-Fermi levels φn and φp and the electric potential Ψ (after Calzolari and Graffi, 1972).

Appendix F: Derivation of Generation Width Equation
In 1972, Calzolari and Graffi described the generation region as a subvolume within a pn-
junction depletion region in which thermal carrier generation is the dominant restorative
force rather than thermal recombination [35]. This condition arises when the product of
electron and hole densities is less than ni

2, so the generation region is bounded by the
points at which the quasi-Fermi levels φn and φp intersect the electric potential Ψ(x).

The authors note that the expression for generation width changes with doping condi-
tions. If the p-type side of the metallurgical junction is heavily doped, both the electron
and hole quasi-Fermi levels may intersect the electric potential on the n-type side of the
junction, as shown in Fig. V.5 . The reverse holds true for a heavily doped n-type side;
both quasi-Fermi levels may intersect the electric potential on the p-type side. If the p and
n doping levels are equal (or if both sides are lightly doped), the hole quasi-Fermi level
will interest the electric potential on the p-type side, and the electron quasi-Fermi level will
interest the electric potential on the n-type side.

This appendix derives the generation width equation for three doping conditions in an
abrupt pn-junction:

• NA >> ND

• NA << ND

• NA == ND.

We start by defining expressions for the electric potential, the boundaries of the deple-
tion region, the depletion region width, the hole and electron quasi-Fermi levels, and the
locations at which the quasi-Fermi levels intersect the electric potential. The metallurgical
junction is assumed to be at x = 0. In the notation of Calzolari and Graffi, the depletion
region boundary on the p-type side of the junction is located at −x1 (or −xp in the notation
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used in [34]) [35]. The n-type side depletion region boundary is located at x2 (equivalent
to xn in [34]). The locations of these boundary points are expressed with respect to the
depletion region width xd [35]:

− x1 =−
ND

NA +ND
xd (V.1)

x2 =
NA

NA +ND
xd (V.2)

where xd is expressed as with respect to doping levels NA and ND, the built-in junction
voltage Ψ0, and the applied voltage VA [35]:

xd = |−x1|+ |x2|=

√
2εSi

q
NA +ND

NAND
(Ψ0 +VA). (V.3)

Calzolari and Graffi set the electric potential Ψ equal to 0 at the edge of the depletion
region on the p-type side of the junction so that electrical potential can be defined on the
n-type side of the junction with respect to the built-in junction potential and the magnitude
of applied reverse bias [35]:

Ψ(−x1) = 0 (V.4)

Ψ(x2) = Ψ0 +VA (V.5)

On the p-type side of the junction, the electric potential within the depletion region can
be defined with respect to Ψ(−x1). Similarly, the electric potential within the depletion
region on the n-type side of the junction can be defined with respect to Ψ(x2) [35]:

Ψ(x) =
qNA

2εSi
(x+ x1)

2,−x1 ≤ x≤ 0 (V.6)

Ψ(x) = Ψ0 +VA−
qND

2εSi
(x2− x)2,0≤ x≤ x2 (V.7)

The hole quasi-Fermi level φp intersects the electric potential Ψ at location x1i, and
the electron quasi-Fermi level φn intersects the electric potential at location x2i [35]. The
quasi-Fermi levels (and the electric potential at the location intersected by the quasi-Fermi
levels) are expressed in [35] as

φp = Ψ(x1i) =
kT
q

ln
NA

ni
(V.8)

φn = Ψ(x2i) = Ψ0 +VA−
kT
q

ln
ND

ni
(V.9)

The next three sections use the expressions for electrical potential within the depletion
region to derive the generation width xi for three doping conditions as
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xi = |x1i|+ |x2i| (V.10)

Case 1: NA >> ND
When the p-type doping is much higher than the n-type doping, both the electron and hole
quasi-Fermi levels will intersect the electric potential on the lightly doped n-type side of
the metallurgical junction. Fig. V.5 shows that under these doping conditions, x1i and x2i
are both positive with respect to the junction. (V.9) is used to find the electric potential at
x1i and x2i.

(a) Solve for x1i: find the electrical potential Ψ(x1i) with respect to the electric potential
at x2 as defined in (V.7), and set this equal to the hole quasi-Fermi potential defined by (V.8).

Ψ(x1i) = Ψ0 +VA−
qND

2εSi
(x2− x1i)

2 =
kT
q

ln
NA

ni
(V.11)

The built-in junction voltage Ψ0 can be expressed in terms of doping levels [34]:

Ψ0 =
kT
q

ln
NAND

ni2
=

kT
q

ln
NA

ni
+

kT
q

ln
ND

ni
. (V.12)

Using the expression for Ψ0 given in (V.12), solve (V.11) for x1i in terms of doping
levels and reverse bias.(

kT
q

ln
ND

ni
+

kT
q

ln
NA

ni

)
+VA−

kT
q

ln
NA

ni
=

qND

2εSi
(x2− x1i)

2 (V.13)

2εSi

qND

(
kT
q

ln
ND

ni
+VA

)
= (x2− x1i)

2 (V.14)

x1i = x2−

√
2εSi

qND

(
kT
q

ln
ND

ni
+VA

)
(V.15)

x1i =
NAxd

NA +ND
−

√
2εSi

qND

(
kT
q

ln
ND

ni
+VA

)
(V.16)

(b) Solve for x2i: similarly, find the electrical potential Ψ(x2i) with respect to the electric
potential at x2 as defined in (V.7), and set this equal to the electron quasi-Fermi potential
defined by (V.9).

Ψ(x2i) = Ψ0 +VA−
qND

2εSi
(x2− x2i)

2 = Ψ0 +VA−
kT
q

ln
ND

ni
(V.17)

Solve for x2i in terms of doping levels and reverse bias.

(x2− x2i)
2 =

2εSi

qND

(
kT
q

ln
ND

ni

)
(V.18)
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x2i = x2−

√
2εSi

qND

(
kT
q

ln
ND

ni

)
(V.19)

x2i =
NAxd

NA +ND
−

√
2εSi

qND

(
kT
q

ln
ND

ni

)
(V.20)

(c) Solve for xi = |x1i|+ |x2i|:

xi = |x1i|+|x2i|=

∣∣∣∣∣ NAxd

NA +ND
−

√
2εSi

qND

(
kT
q

ln
ND

ni
+VA

)∣∣∣∣∣+
∣∣∣∣∣ NAxd

NA +ND
−

√
2εSi

qND

(
kT
q

ln
ND

ni

)∣∣∣∣∣
(V.21)

xi =

∣∣∣∣∣ 2NAxd

NA +ND
−

√
2εSi

qND

(√
kT
q

ln
ND

ni
+VA +

√
kT
q

ln
ND

ni

)∣∣∣∣∣ (V.22)

Case 2: NA << ND
If the n-type doping is much higher than the p-type doping, both the electron and hole
quasi-Fermi levels will intersect the electric potential on the lightly doped p-type side of
the metallurgical junction. Under these conditions, x1i and x2i are both negative with respect
to the junction. (V.8) is used to find the electric potential at x1i and x2i.

(a) Solve for x1i: find the electrical potential Ψ(−x1i) with respect to the electric poten-
tial at −x1 as defined in (V.6), and set this equal to the hole quasi-Fermi potential defined
by (V.8).

Ψ(x1i) =
qNA

2εSi
(x1i + x1)

2 =
kT
q

ln
NA

ni
(V.23)

(x1i + x1)
2 =

2εSi

qNA

kT
q

ln
NA

ni
(V.24)

x1i =

√
2εSi

qNA

kT
q

ln
NA

ni
− x1 (V.25)

x1i =

√
2εSi

qNA

kT
q

ln
NA

ni
− NDxd

NA +ND
(V.26)

(b) Solve for x2i: Find the electrical potential Ψ(x2i) with respect to the electric potential
at −x1 as defined in (V.6), and set this equal to the electron quasi-Fermi potential defined
by (V.9).

Ψ(x2i) =
qNA

2εSi
(x2i + x1)

2 = Ψ0 +VA−
kT
q

ln
ND

ni
(V.27)

As with Case 1, substitute the expression for Ψ0 defined in terms of doping levels to
solve for x2i.
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(x2i + x1)
2 =

2εSi

qNA

((
kT
q

ln
ND

ni
+

kT
q

ln
NA

ni

)
+VA−

kT
q

ln
ND

ni

)
(V.28)

x2i =

√
2εSi

qNA

(
kT
q

ln
NA

ni
+VA

)
− x1 (V.29)

x2i =

√
2εSi

qNA

(
kT
q

ln
NA

ni
+VA

)
− NDxd

NA +ND
(V.30)

(c) Solve for xi = |x1i|+ |x2i|:

xi =

∣∣∣∣∣
√

2εSi

qNA

kT
q

ln
NA

ni
− NDxd

NA +ND

∣∣∣∣∣+
∣∣∣∣∣
√

2εSi

qNA

(
kT
q

ln
NA

ni
+VA

)
− NDxd

NA +ND

∣∣∣∣∣ (V.31)

xi =

∣∣∣∣∣
√

2εSi

qNA

(√
kT
q

ln
NA

ni
+

√(
kT
q

ln
NA

ni
+VA

))
− 2NDxd

NA +ND

∣∣∣∣∣ (V.32)

Case 3: NA == ND
The final derivation of xi can be used when the p-type and n-type doping levels are equal
or if one side is doped only slightly more heavily than the other side. This derivation is
used whenever the hole quasi-Fermi level intersects the electric potential on the p-type side
of the metallurgical junction and the electron quasi-Fermi potential intersects the electric
potential on the n-type side. Under these conditions, x1i is negative and x2i is positive with
respect to the junction. (V.8) is used to find the electric potential at x1i. (V.9) is used to find
the electric potential at x2i.

(a) Solve for x1i: find the electrical potential Ψ(−x1i) with respect to the electric poten-
tial at −x1 as defined in (V.6), and set this equal to the hole quasi-Fermi potential defined
by (V.8).

Ψ(x1i) =
qNA

2εSi
(x1i + x1)

2 =
kT
q

ln
NA

ni
(V.33)

(x1i + x1)
2 =

2εSi

qNA

kT
q

ln
NA

ni
(V.34)

x1i =

√
2εSi

qNA

kT
q

ln
NA

ni
− x1 (V.35)

x1i =

√
2εSi

qNA

kT
q

ln
NA

ni
− NDxd

NA +ND
(V.36)

(b) Solve for x2i: Find the electrical potential Ψ(x2i) with respect to the electric potential
at x2 as defined in (V.7). Set this equal to the electron quasi-Fermi potential defined by
(V.9).
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Ψ(x2i) = Ψ0 +VA−
qND

2εSi
(x2− x2i)

2 = Ψ0 +VA−
kT
q

ln
ND

ni
(V.37)

(x2− x2i)
2 =

2εSi

qND

kT
q

ln
ND

ni
(V.38)

x2i = x2−

√
2εSi

qND

kT
q

ln
ND

ni
(V.39)

x2i =
NAxd

NA +ND
−

√
2εSi

qND

kT
q

ln
ND

ni
(V.40)

(c) Solve for xi = |x1i|+ |x2i|:

xi =

∣∣∣∣∣
√

2εSi

qNA

kT
q

ln
NA

ni
− NDxd

NA +ND

∣∣∣∣∣+
∣∣∣∣∣ NAxd

NA +ND
−

√
2εSi

qND

kT
q

ln
ND

ni

∣∣∣∣∣ (V.41)

xi = xd−

[√
2εSikT

q2

(√
1

NA
ln

NA

ni
+

√
1

ND
ln

ND

ni

)]
(V.42)

The generic expression for xi given by (V.41) is applicable when the hole quasi-Fermi
level intersects the electric potential on the p-type side of the junction and the intersection
between the electron quasi-Fermi and the electric potential is on the n-type side. If the
doping levels are equal (as is the case for the epitaxial / substrate depletion region described
in Chapter III of this work), the generation width equation may be further reduced by
substituting NA for ND.

xi =

∣∣∣∣∣
√

2εSi

qNA

kT
q

ln
NA

ni
− NAxd

NA +NA

∣∣∣∣∣+
∣∣∣∣∣ NAxd

NA +NA
−

√
2εSi

qNA

kT
q

ln
NA

ni

∣∣∣∣∣ (V.43)

xi =

∣∣∣∣∣xd−

√
8εSi

qNA

kT
q

ln
NA

ni

∣∣∣∣∣ (V.44)
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