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CHAPTER I

INTRODUCTION

Basic Electrophysiology

It is well known that the fundamental constituents of mammalian cells are the

membrane, cytoplasm, and organelles, including the nucleus. The cell membrane

consists of a sheetlike phospholipid bilayer, which is two molecule thick. The bilayer

acts as an impermeable barrier that prevents the diffusion of water-soluble solutes

across the membrane. Embedded in the membrane are ion channels, which are pro-

teins that help establish and control the voltage gradient across the plasma membrane

by allowing the flow of ions down their electrochemical gradient. The interior of the

cell contains a large number of negatively charged proteins which cannot exit the cell

due to their size. Inside the cell there is also a high concentration of K+ ions and a low

concentration of Na+ ions, while the reverse is true for the cell’s exterior. Because of

this, a steady in-flux of sodium ions and out-flux of potassium ions exists via specific

sodium and potassium ion channels, respectively. To maintain the resting potential,

the cell operates Na-K pumps, which use energy to move rougly 3 sodium ions out

of the cell for every 2 potassium ions transferred into the cell. In the steady state,

the membrane resistance to potassium currents is about thirty times small than the

resistance to sodium currents. However, because the force on potassium ions is one

thirtieth of the force on sodium ions, a balance is maintained across the membrane.

The transmembrane resting potential of a typical muscle cell is in the range of

−70 to −90 mV, hence there is an excess of negative charge inside the membrane and

an excess of positive charge outside. The electric field in these two regions vanishes
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due to the cancellation effect, but within the membrane a field of the order of 106

V/m is established as a result of the transmembrane potential.

Of great importance in electrophysiology is the phenomenon of cellular depolar-

ization. This occurs when a mechanical, electric or chemical stimulus induces confor-

mational changes in the gating proteins of the cell. For example, when the potential is

raised above a certain threshold (called the stimulation threshold), a conformational

change is triggered and the membrane permeability to sodium ions is increased by

about two orders of magnitude. This causes a large influx of sodium ions into the cell

and thus the membrane potential increases significantly. The region of the cell where

this occurs is said to be depolarized.

Complementary to depolarization is the phenomenon of repolarization. About a

milisecond after depolarization, sodium ion channels close and thus sodium perme-

ability decreases to the point that no sodium ions can enter the cell any further. In

certain cells (such as cardiac or gastrointestinal cells), a secondary inward current

of calcium ions is activated at this point via calcium channels, creating an inward

current leading to a long depolarization plateau. Finally, a conformational change

in the potassium channels allows them to open. Thus, sufficient K+ can leave the

cell so that the transmembrane potential can return to approximately its original

value. The remaining imbalance of ions is corrected by the Na-K pump. Because the

repolarization currents are about one hundred times weaker than the depolarization

currents, the repolarization of the membrane lasts about one hundred times longer

than its depolarization.

The depolarization/repolarization front can travel along the membrane and it is

called a propagating action potential. Once a stimulus activates the depolarization

phase, the passive voltage can only be conducted for a short distance before being

shorted out by the leakage pathways of the membrane. This is why, for example,
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the propagation of gastric or intestinal action potentials is dependent on the presence

of an external stimulation source which allows the action potential to travel along

the entire cell. In the case of the gastrointestinal (GI) tract, this stimulation source

consists of the so-called interstitial cells of Cajal (ICCs).

To explain how ICCs mediate the propagation of the action potential, it is nec-

essary to introduce the concept of intercellular gap junctions. A gap junction (also

called a nexus) is a junction between adjacent cells which allow molecules and ions to

pass freely from one cell to the next. Groups of cells connected by gap junctions form

what is called a syncytium. A junction typically consists of connexins (gap junction

proteins) which achieve intercellular coupling by allowing certain ions to pass from

one cell to another when they are in certain configurations. These configurations are

induced by chemical or electrical stimuli that lead to conformational changes in the

connexin structure.

ICCs are stellate cells with long branched processes that are positioned between

the smooth muscle layers of the GI tract. When they were first discovered, they

were even thought to be special types of interstitial neurons due to their neuron-like

appearance. The long processes of the ICCs allow them to spawn smooth muscle layers

in all three spatial directions, which makes them ideal initiators and propagators of

gastric electrical activity. ICCs have numerous, large mitochondria located in the

processes and a high density of gap junctions that connect them to smooth muscle

cells. Along the GI tract, there can be as many as four distinct ICC layers, which

are positioned between consecutive layers of smooth muscle. Thus, ICCs form a

three-dimensional network that initiate and propagate electrical activity in the gut.

Essential for understanding how electrical activity is initiated in the stomach is

the pacemaker concept. A pacemaker is a group of cells that together set the pace

of electrical activity. The gastric pacemaker exhibits automaticity, just as in the
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cardiac case. In the stomach, the ICC pacemaker generates small membrane potential

oscillations which spread three-dimensionally along both circular and longitudinal

muscle layers.

The mechanism behind the activation of gastric electrical activity relies on the

fact that, at the resting potential values of the smooth muscle cells, ICCs can still

be activated whereas the muscle cells themselves cannot. In other words, the acti-

vation threshold of the ICCs is lower than that of the muscle cells. This is because

ICCs contain low-threshold Ca2+ channels that allow calcium to be released in the

extracellular space. As mentioned before, ICCs have numerous and large mitochon-

dria located along their processes. When inositol triphosphate (IP3 − a messenger

molecule used for signal transduction in the cell) binds to mitochondrial membranes,

calcium is released from these organelles into the cytoplasm and then to the exte-

rior of the cell. This phenomenon is periodic in nature and it is responsible for GI

autorhythmicity.

ICC membranes have a resistance of approximately 109Ω, whereas that of smooth

muscle cells is about 105 times lower. Because of the very high ICC membrane

resistance, a very feeble current due to calcium channels induces significant cellular

depolarization in the ICCs. This leads to an extracellular current that finally reaches

the activation threshold required for smooth muscle cell depolarization. Once this

has been accomplished, the repolarization plateau of the muscle cells is sustained by

the outflux of Ca2+ ions from ICC network and absorption of these ions by the muscle

cells. After the plateau phase, the potassium channels of the muscle cells allow enough

positively charged ions to leave the cell such that the resting potential is restored.

However, this outflux of K+ ions activates the adjacent series of ICCs along the body

of the stomach, which in their turn lead to the depolarization of smooth muscle cells

located farther and farther away from the original activation site of the pacemaker.
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In this fashion, electrical activity is propagated along the syncytium of the stomach

and then along the entire GI tract.

Gastrointestinal Electrical Activity

The study of the electrical control activity (ECA) in the stomach is of great inter-

est in the medical field due to the possibility to detect various pathological conditions

of this organ from the analysis of gastrointestinal slow wave signals. Although over

60 million Americans are affected by digestive diseases [50], the electrophysiological

mechanisms associated with pathological conditions in the gastrointestinal system

are only beginning to be understood. One such condition is gastroparesis, which is

characterized by abnormally slow gastric emptying rates, dyspepsia, nausea, discom-

fort and intermittent vomiting [100, 130]. In the past, numerous investigations were

carried out to detect phenomena associated with diseases such as gastroparesis and

ischemia using the electrogastrogram (EGG) and magnetogastrogram (MGG). Thus,

the EGG and MGG are the two most important procedures for measuring and quan-

tifying GEA. Given that the mortality rate of patients suffering from acute mesenteric

ischemia−including mesenteric venous thrombosis (MVT)−is at least 50%, the im-

portance of such studies cannot be understated. As explained in the previous section,

the peristaltic waves that arise in the muscle tissue layers of the GI tract are produced

by the interaction of the enteric nervous system, the interstitial cells of Cajal (ICC)

and the smooth muscle cells [138]. Pacemaker ICCs are located within the the Auer-

bachs plexus, a group of ganglion cells between the circular and longitudinal layers

of the muscularis externa in the digestive tract. Approximately every 20 seconds,

the ICC spontaneously depolarize to initiate the gastric slow wave. Once initiated by

the ICC, electrical activity is conducted from fibre to fibre throughout the body of

the stomach; muscular contractions are associated with the electrical response activity
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(ERA), which is triggered by the depolarization of the cell membrane above threshold

[78]. Thus, in humans, GEA consists of an electrical control activity (ECA) that can

be recorded as an electrical slow wave and an electrical response activity (ERA) that

is characterized by spiking potentials during the plateau phase of the ECA. Because

of volume-conductor smoothing of intracellular potentials and sequential phase shifts

between adjacent cells, the waveform of the cutaneous EGG waveform resembles a

sinusoid.

The transmembrane potentials produced by coupled cells in smooth muscle give

rise to dipole moments that vary in frequency and phase according to their anatomical

position and configuration, reflecting the fact that slow wave frequencies are location

dependent along the GI tract [157, 185]. These slow wave variations in their own turn

produce magnetic fields, which can be recorded experimentally. Studies have shown

that analyzing these magnetic fields can be useful in detecting pathological states of

the stomach in human patients. Moreover, the experimental and computational task

of identifying sources of electric current in the GI tract is important because it can

allow such conditions to be identified noninvasively.

The gastric slow wave, first recorded in 1921 by Alvarez [6], moves in the direction

of the pylorus at a frequency of 3-4 cycles per minute (cpm) in human subjects.

Alvarez [6] employed a galvanometer for his recordings; the use of electrodes for the

procedure was pioneered by Bozler in 1945 [19]. In 1986, Hamilton et al. [67] were

the first to use EGG with the purpose of investigating gastric motility disturbances

from recordings of ECA potentials in humans. A recently developed theoretical model

of the human stomach whose realism and usefulness in studying the GEA has been

confirmed by computational and simulation studies [84, 85, 86] suggests that the

GEA can be modeled by a ring of current dipoles of approximately equal magnitude

and positioned homogeneously at equal distances from each other in the cylindrical
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body of the stomach. It has been shown both theoretically and experimentally that

this dipole ring configuration can be well approximated by a single dipole located at

the center of the circumferential ring and whose magnitude is equal to the sum of

magnitudes of the smaller dipoles.

Modeling the GEA with accuracy and realism is an interesting theoretical and

computational problem. Although a number of models have been proposed to simu-

late this phenomenon since the time when it was first detected by Alvarez [6], it can

be difficult to ascertain which of them captures the characteristics of gastric activity

most vividly. For example, coupled relaxation oscillator models are also suitable for

studying the time evolution of smooth muscle propagation, while dipole models are

more appropriate for the investigation of electrical source uncoupling. In the past,

modeling the GEA using electric current dipoles led to two important predictions,

namely that the natural GI slow wave frequency gradient may be detected noninva-

sively using magnetomers and also that slow wave propagation in gastric musculature

results in propagating patterns of magnetic fields. In a previous study, GI models

were also compared statistically to allow a direct assessment of how many GI electric

sources are required to model the GEA realistically [89].

Throughout a typical propagation cycle, the amplitude of the electric potential

recorded from a healthy human subject at the surface of the abdomen increases by

more than one order of magnitude, while the propagation velocity is thought by some

researchers [117] to reach around 6.8 mm/s in the pylorus from the approximate value

of 0.3 cm/s at the beginning of the cycle. The slow wave frequency, on the other hand,

varies from 3 cpm in the stomach [163] to approximately 12 cpm in the duodenum

and 8 cpm in the terminal ileum [47, 127]. Lately, consistent efforts in the direction

of modeling the complex phenomenon of gastric electrical activity have led to the

development of various analytical and numerical electric wave propagation models
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that can reproduce EGG recordings [114, 116, 119, 115, 122]. It has thus been found

that the frequency of slow wave cycles varies greatly not only depending upon the

portion of the GI tract analyzed, but also upon the health state of the organ and

other tissue characteristics.

There is significant clinical interest associated with the analysis of gastric and in-

testinal motility from bioelectric and biomagnetic recordings due to the relationship

that has been shown to exist between gastrointestinal (GI) disorders and abnor-

malities in the characteristics of GEA. The presence of abnormal ECA propagation

patterns has been found to be associated with many diseases, including gastroparesis

[162], gastric myoelectrical dysrhythmia [140], atrophy and hypertrophy [17] and di-

abetic gastropathy [101]. Because abnormalities in the propagation of GI bioelectric

currents are associated with disease states, a great deal of investigative effort has

been invested in the direction of detecting them noninvasively. Experimentally, bio-

electric currents have been detected and investigated using the EGG; in recent years,

however, a number of inherent difficulties associated with this method−such as the

dependence of electric recordings upon tissue conductivity, which attenuates the EGG

signal−have suggested the use of the MGG instead, because the magnetic−and not

electric−field of the stomach is measured with the latter procedure. This is advanta-

geous because magnetic fields are dependent on tissue permeability, which is nearly

equal to that of free space. Investigating the GEA from magnetic field recordings is

also encouraging due to the finding that, although magnetic field strengths decrease

rapidly with distance from their sources, they do reveal the characteristics of these

sources in a more accurate manner.

In fact, the reliability of EGG has been questioned. Liang and Chen [103] showed

that the detectability of gastric slow wave propagation from cutaneous EGG is de-

pendent on the thickness of the abdominal wall and on the propagation velocity of
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the serosal slow wave. Bortolotti [18] pointed out that the practicality of using EGG

to detect alterations in slow wave frequency due to tachy- and bradygastria remains

problematic in spite of considerable recent progress to improve filtering and analysis

methods. Reservations concering the significance of EGG as a diagnosis tool were

also expressed by Camilleri et al. [32], who indicated that the precise meaning of dys-

rhythmias, signal amplitude changes and the duration of such abnormalities relative

to gastric emptying as quantified by EGG remain to be clarified. In addition, the

stability of EGG recordings is affected by a variety of artifacts, such as the overlap

of the electrical activities of the colon and stomach in cutaneous EGG recordings [7].

This is why MGG and magnetoenterography (MENG) were developed as non-invasive

alternatives to EGG [41, 167, 20]. In 1997, Bradshaw et al. showed that a high de-

gree of correlation exists between the ECA frequency values determined using EGG

and MGG [21]. EGG signals depend on the conductivities of the tissues where the

quasistatic current sources producing them are located; moreover, they also depend

on the permittivities of the insulating abdominal layers that are interposed between

these current sources and the measurement sensors. Biomagnetic fields, on the other

hand, are also dependent on the conductivities of the tissues where their sources are

located because current sources are themselves dependent on conductivity. However,

a key aspect to be noted here is that, in the case of the multilayered spheroidal model,

magnetic fields depend to a far greater extent on the the permeability−rather than

permittivity−of the tissues interposed between the sources of these fields and the lo-

cations where they are measured. This has been shown by Hämäläinen and Sarvas in

[65], where these authors were able to demonstrate that secondary currents on outer

interfaces between bioconductors only give negligible contributions to the magnetic

field measured from outside the body.

Because the conductivity of the tissues where the sources are located affects only
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these secondary currents, it can be concluded that permittivity affects the measured

magnetic fields less than permeability. It should also be mentioned here that the

argument of Hämäläinen and Sarvas applies to our case because the multilayered

spheroidal model has been found to be appropriate not only for the brain but also

for the stomach [23, 24, 92, 93]. Thus, a distinction arises in this respect between

bioelectric and biomagnetic fields in terms of how strongly they depend on the layers

of abdominal tissues that are positioned between their sources and the measurement

apparatus. Whereas the currents themselves depend on the permittivities of the emit-

ting tissues in both cases, the strength of the magnetic field as measured from the

sensor location is affected to a far greater extent by the permeability of the inter-

posed layers than by their permittivity. Because the permeability of these interposed

tissues that ‘screen out’ the field is nearly equal to that of free space (whereas their

permittivity is not), it can be argued that there may be significant advantages to the

use of MGG for clinical investigations as compared to EGG [24].

Due to the fact that gastric biomagnetic fields are very weak−having strengths

of the order of 10−12 T−a highly sensitive measurement apparatus is required for

experimental data collection. Such an instrument is the Superconducting QUantum

Interference Device (SQUID) biomagnetometer, which remains to this date the most

sensitive device for the detection and measurement of extremely low-magnitude mag-

netic fields. In particular, the Tristan 637i biomagnetometer, produced by Tristan

Technologies (San Diego, CA), is a highly sensitive, multi-channel SQUID magne-

tometer system that can detect the bioelectromagnetic activity in the human stomach

and intestine. Among others, the SQUID magnetometer has been shown to possess

the ability of detecting intestinal ischemia, a disease that is difficult to diagnose and

usually fatal. SQUID sensors are able to detect electrical signals resulting from the
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basic electrical rhythm (BER) of the intestine, whose frequency changes under is-

chemia. Thus, the potential for the use of SQUIDs in clinical diagnosis is significant.

Clinically, the ability to detect gastric activity noninvasively via a test that can be

administered rapidly and efficiently would revolutionize functional gastroenterology.

For the first time, reasons exist to hope that the MGG offers the possibility to ful-

fill this goal. In several important studies conducted in the Gastrointestinal SQUID

Technology (GIST) Laboratory at Vanderbilt University, recordings from normal and

divided pig stomachs were used to perform a comparative study of how propagation

is affected in the latter case by deliberate damage of the smooth muscle tissue. It was

then shown that SQUID magnetometers are capable of detecting abnormal charac-

teristics of the GEA and of obtaining new and meaningful information that may help

in the early diagnosis of gastroparesis. Because SQUID measurements are performed

noninvasively, abnormal changes in the electrical signal of the GI tract can be de-

tected without surgical intervention and the patient diagnosis process can be carried

out rapidly, avoiding extensive patient preparation [174].

SQUID Magnetometry

SQUIDs have a long history of use for nondestructive evaluation (NDE) and test-

ing (NDT), in which technical methods are used to examine materials or components

in a manner that does not impair their future usefulness and serviceability [187]. In

biomagnetism, these instruments were first used in 1970 by Edgar Edelsack, Jim Zim-

merman and David Cohen, who recorded the magnetocardiogram (MCG) from the

heart of a subject at the National Magnet Laboratory at the Massachusetts Institute

of Technology (MIT). Later on, Cohen used SQUIDs to develop a novel technique

called the magnetoencephalogram (MEG); his accomplishments prompted numerous

other investigators to record signals due to a variety of other sources in the human
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Figure I.1: Cross-sectional schematic of a simple Tc SQUID system. The SQUID
and input coils are located within a superconducting niobium cylinder. A flux-locked
loop is housed in a SQUID electronics box positioned above the dewar and linked to
the SQUID via a magnetometer probe. When the dewar is filled with liquid helium,
the SQUID, niobium canister and pickup coils are cooled to a temperature below the
boiling point of He (4.2 K). From [96], reproduced with permission.
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body [36, 37, 35]. The use of SQUIDs for the investigation of GI magnetic fields

was pioneered in the Living State Physics Laboratories at Vanderbilt University in

the 1990s. There, it was first shown that the biomagnetic fields of the stomach and

intestine can be used to detect pathological conditions of these organs noninvasively.

Since then, a great deal of research has been conducted in order to quantify and

understand changes in the BER that are associated with abnormal conditions of the

human GI tract.

A SQUID−or Superconducting QUantum Interference Device−is a magnetome-

ter that contains one or more Josephson junctions. A Josephson junction is a weak

insulative layer between two superconductors that is able to support a supercurrent

below a critical temperature Ic [187]. In a direct current (DC) SQUID−which contains

two Josephson junctions−a superconducting loop with a pair of Josephson junctions

is applied in order to measure the loop impedance. Due to several special proper-

ties of the Josephson junction, the impedance is a periodic function of the magnetic

flux threading the SQUID. Using this setup, a modulation signal applied to the bias

current and a lock-in detector are employed to measure the impedance and to lin-

earize the voltage-to-flux relationship. Thus the SQUID functions as a flux-to-voltage

converter of extremely high sensitivity. In biomagnetism, where the strength of the

measured field is very weak and a substantial amount of information is present at low

frequencies, the SQUID magnetometer is excellently suited as a measurement tool.

A typical modern SQUID is located inside a small, cylindrical, superconducting

magnetic shield within a liquid helium dewar. A number of superconducting pickup

coils located at the bottom of the dewar are configured as gradiometers and are able

to detect the difference in one component of the field between two points. When

cooled below a critical temperature Tc, the superconductor exhibits zero resistence

to DC currents up to a critical current value Ic. Due to a number of properties of
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Figure I.2: The Tristan 637i SQUID magnetometer in the Biomagnetism Laboratory
at Vanderbilt University. The magnetometer is located in a magnetically shielded
room where measurements are taken noninvasively.
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superconductors, the superconducting ring of a SQUID can only enclose an amount

of magnetic flux Φ that is an integer multiple of the flux quantum Φ0 = 2.07× 10−15

Wb [96]. The superconducting components of the SQUID are immersed in a helium

reservoir which is thermally insulated by a vacuum jacket containing radiation shields.

Instead of exposing the actual SQUID to the external magnetic field to be mea-

sured, most modern instruments use a multi-turn pickup coil that is linked inductively

to the SQUID. Thus, the pickup coils have the capability to sense the ambient field

while the input coils of the SQUID are shielded from the external field within a

superconducting niobium canister.

The Tristan 637i magnetometer has 5 pickup coils that record the magnetic field

gradient in the x̂ direction and 5 coils for the ŷ direction. In addition, 19 axial

coils are available for measuring gradients in the ẑ direction. The 29 superconducting

pickup coils of the 637i SQUID magnetometer coils are distributed in the shape of two

concentric, coplanar hexagons, as in Figure I.3, and can record the quantity ∆B/∆z.

Ten other such input channels are also positioned in the same plane as the other

channels, five of each being used to record ∆B/∆x and ∆B/∆y, respectively.

The hardware associated with the Tristan magnetometer includes a cryogenic

flux-to-voltage converter, superconducting pickup coils serving as a direct current

flux transformer, connecting wires and a cryostat. Pickup coils are arranged in a gra-

diometer configuration with one pickup coil located a certain distance above a lower

coil. These coils are wound in opposite directions so that the flux in the upper coil

is subtracted from the flux in the lower coil, thus canceling steady ambient magnetic

fields such as that of the Earth.

During a SQUID experiment, an analog-to-digital device is employed to convert

the magnetic data recorded by these channels into binary file format. The data are

stored as a matrix with 29 columns corresponding to each input channel of the SQUID
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Figure I.3: Spatial distribution of the co-planar input coils for the 637i SQUID bio-
magnetometer produced by Tristan Technologies (San Diego, CA). The magnetometer
possesses a total of 29 pickup coils that are distributed within two concentric hexagons
around a 5-cm baseline. 19 of these coils record changes in the magnetic field in the
ẑ direction (i.e. ∆Bz/∆z), while 5 coils record ∆Bx/∆x and 5 record ∆By/∆y. The
x and y channels are located at the center and extremities of the baseline and their
positions are marked in the figure by short arrows inscriptioned with x or y, as ap-
propriate. In addition to these 29 channels recording absolute changes in Bx, By and
Bz, a number of noise channels and respiration channels for monitoring and recording
breathholds are also provided.
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magnetometerand and a number of rows equal to the number of discrete sampling

times at which data values are recorded. Before the data are stored in digital format,

a number of analog filters and downsampling operations are also carried out. In our

case, the effective sampling frequency used for storing SQUID data is user selectable

and with a commonly used value of 300 Hz, although the actual sampling frequency

of the SQUID magnetometer is higher.

Two types of coil assemblies are present among the 29 signal channels: an axial

assembly and a three-channel vector assembly. A number of 14 axial assemblies and 5

vector assemblies are present in the sensor; signal channels are first-order gradiometers

with a baseline of 5 cm while the normal channel is an axial gradiometer. In the vector

assemblies, two transverse channels are planar gradiometers. The gradiometers of

the SQUID are designed in such fashion as to reduce environmental magnetic noise,

which is due to distant sources and couples equal but opposite signals into the two

gradiometer coils. Because biological signals are located close to the input array, their

sources will couple strongly into the closest gradiometer coil, while the distant coil

causes little signal loss. For this reason, the gradiometer design of the SQUID impacts

only signals when dealing with distant environmental sources of noise. For sources in

the stomach and intestine, the signal coils are therefore essentially magnetometers.

The 29 z channels of the SQUID measure only the B field component that is

normal to the outer surface of the sensor and, because of the experimental setup for

GI recordings, normal to the body of the subject. All three components of the field

are measured at only five locations, thus allowing one to determine the direction of

the field and its magnitude at those particular positions.

In addition to the 29 channels that record magnetic field data, a number of 8

magnetic sensing channels are provided in a tensor array to monitor environmental

magnetic noise. This array is located high enough above the input coils to avoid

17



Figure I.4: Experimental setup for data acquisition in MGG. The subject is positioned
horizontally directly below the pickup coils of the SQUID gradiometer.
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Figure I.5: Experimental setup of simultaneous MENG/EENG data acquisition. The
intestine of most common mammals is located under several layers of skin, fat and
other tissues, which all attenuate the EENG signal. For this reason, the EENG is
invasive because it requires the placement of electrodes directly on the external gastric
wall surface, while the MGG is non-invasive because magnetic fields are recorded in
the latter procedure. Because the permittivity of biological tissues is nearly equal to
that of free space, the MGG signal is attenuated far less than the EGG signal.
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Figure I.6: Experimental setup of simultaneous MGG/EGG data acquisition. The
EGG electrode platform is placed invasively at the external surface of the stomach
while the SQUID magnetometer is positioned above the body.

detection of the signal of interest but close enough to the subject to record environ-

mental noise that is representative of the noise in the signal coils. The total of 37

SQUID channels are mounted in a 27 liter liquid helium dewar, although the average

helium consumption is less than 6 liters per day, allowing the system to remain usable

for several days in a row after the cooling of the SQUID.

MGG and MENG experiments are conducted at Vanderbilt University in the

magnetically shielded room of the Biomagnetism Laboratory. Informed consent is

obtained from every volunteer and each study must be approved by the Vanderbilt

University Institutional Review Board (VUIRB). In a typical experiment of this type,
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the subject is positioned horizontally below the magnetometer coils and is then asked

to suspend respiration and lie quietly for a period of at least one minute during each

recording. A drawing of the experimental setup in such cases is provided in Figure

I.4. In some cases, fasting is required of the subject prior to the experiment. Very

often, biomagnetic data are acquired both before and after the consumption of a meal

to study the electrical activity of the stomach in both of these two conditions. For

each recording, the magnetometer is oriented such that the coils measuring the x and

y components of the signal tangential to the body surface are oriented in the saggital

and horizontal planes. On the other hand, the coil measuring the z component normal

to the body surface is oriented in the frontal plane. [22].

A variety of clinical investigations and data measurements can be done with the

Tristan SQUID magnetometer, as shown in Figure I.5 and Figure I.6. Very often,

measurements for both the MGG/MENG and the EGG/EENG are taken at the

same time not only for practical reasons but also to have both signals available for

investigation, e.g. in a correlation study of the MGG and EGG signals. Because

the EGG/EENG signal is attenuated dramatically from the internal source to the

external environment due to the presence of skin and fat, EGG electrodes are often

placed invasively directly on the outer surface of the stomach. The MGG signal,

however, depends on the permittivity of tissues, which is nearly equal to µ0. Thus

MGG signals can be acquired noninvasively.
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CHAPTER II

POTENTIALS AND FIELDS FOR A CURRENT DIPOLE IN AN

ELLIPSOID

Introduction

The forward problem of bioelectromagnetism plays an important role in the sci-

entific area of biophysical electrodynamics. In human brain studies [66], for example,

where the forward problem has been in the focus of attention for a considerable pe-

riod of time, noninvasive recordings of magnetic fields generated in the head have

allowed researchers to detect and measure brain electrical activity directly via elec-

troencephalography (EEG) and magnetoencephalography (MEG) [12, 136]. In mag-

netogastrography (MGG), on the other hand, the phenomenon under study is the

gastric electrical activity (GEA), generated by the periodic depolarization and re-

polarization of cells in the stomach [22, 32]. The GEA originates in the corpus of

this organ as a wave propagating aborally towards the pylorus through the electric

syncytium of the stomach [144]. In the quasistatic approximation, the phenomenon

can be modeled as one or several current dipoles. A current dipole Q is a good ap-

proximation for a small source viewed from a distant field point; it is a concentration

of some impressed current density Ji to a single point r0. Anomalies in the character-

istics of dipole propagation have been studied [112] and their relevance to the field of

medical diagnosis has been the focus of active research [21, 53]. In particular, the use

of superconducting quantum interference device (SQUID) magnetometers, pioneered

by Cohen et al. in the 1970s [35, 36, 37], has proven to be very suitable for detecting

and studying the GEA both in healthy and diseased subjects [21]. An important
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practical aspect in favor of using SQUIDs for experimental biological data acquisi-

tion is the ability to study gastrointestinal electromagnetic phenomena noninvasively,

which greatly eases the task of conducting clinical studies. Moreover, non-invasive

GEA studies are encouraging in light of current efforts to identify effective ways of

analyzing the phenomenon of abnormal current propagation, which is associated with

pathological conditions such as gastroparesis and ischemia [23].

The current dipole approximation has been widely used in the literature to model

the biological electrical activity [131]. To study this phenomenon, the body of the

stomach has been simulated using cylinders, cones, conoids, ellipsoids and, very re-

cently, using a realistic model of the human body via the finite element and boundary

element methods [30]. In 1985 [121, 122], Mirizzi et al. proposed a mathematical

model to simulate the extracellular electrical control activity where an annular band

polarized by electric current dipoles moves distally from the mid-corpus to the ter-

minal antrum. In 1995, Mintchev & Bowes constructed a conoidal dipole model of

the electrical field produced by the human stomach, where spontaneous depolariza-

tion and repolarization due to ionic exchange were simulated [114]. Later, Irimia &

Bradshaw constructed a model of the stomach in which an annular band of dipoles

advances along a truncated ellipsoid [87], thus simulating the electric potential and

electric field recorded by a nasogastric probe.

An important advantage of using the ellipsoidal model in both MGG and EGG is

the fact that the problem is approached more realistically than in the case of spherical

and conoidal models. Moreover, ellipsoidal geometry offers a suitable ground for the

evaluation of inverse problem algorithms in both MEG and MGG. Computing the

electric potential φ and electric field E due to an electric current dipole in an ellipsoid

requires a truncated expansion of normal ellipsoidal harmonic terms E
m
n . The general

approach to this was first proposed by Kariotou [99] and Dassios [44], who outlined
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the formalism for this problem but who derived formulas for φ only up to order 2 in

E
m
n . Analogous formulas for the electric field E have not yet been derived. In our most

recent study [92], the electric potential of the stomach was successfully simulated using

the low-order ellipsoidal harmonic expansion of Dassios & Kariotou. However, it was

found that all ellipsoidal terms included in this expansion (order 1 and 2) contributed

substantially to the computed electric potential. This raises the important question as

to whether the contributions of higher-order terms may also be significant in electro-

and magneto- gastrographic modelling. This issue is significant because the accuracy

of the calculation may be seriously affected if an insufficient number of ellipsoidal

terms are included in the expansion. The purpose of the present article is to address

this problem by providing a generalized theoretical and computational approach to

the calculation of φ and E using an arbitrarily large expansion of ellipsoidal terms.

The computer implementation of our proposed formalism would then allow one to

investigate the contributions of these terms and to identify suitable cutoffs to the

associated harmonic expansions so that an accurate calculation of the two physical

quantities under consideration (φ and E) is made possible.

In the following section, we present the mathematical formalism behind our model.

We then continue by deriving formulas for two important quantities in our calcula-

tion, namely the gradient ∇ of the normal harmonic functions E
m
n and the first

derivative of the associated Lamé functions Em
n . Thereafter, generalized expressions

for φ and E are found using the mathematical tools developed and computational

considerations regarding the overall problem are addressed in the following section.

Thus, the material in section 2 is a review of previous work while the remainder of

the paper contains novel results. We conclude with a discussion and summary of our

model, which we intend to implement numerically with the purpose of answering the

important modelling issues raised above.
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Mathematical formalism

Throughout our derivations, we make use of the standard equation of the ellipsoid

x2
1

α2
1

+
x2

2

α2
2

+
x2

3

α2
3

= 1 (II.1)

where (x1, x2, x3) are the usual Cartesian coordinates (x, y, z) and 0 < α3 < α2 <

α1 < +∞ are the ellipsoidal semiaxes. As in [99, 72], we also employ the ellipsoidal

system, with coordinates ρ, µ and ν and semifocal distances h1, h2 and h3, defined

by

h2
1 = α2

2 − α2
3 (II.2)

h2
2 = α2

1 − α2
3 (II.3)

h2
3 = α2

1 − α2
2. (II.4)

Conversion from ellipsoidal to Cartesian coordinates can be made via the relationships

x1 =
ρµν

h2h3
(II.5)

x2 =

√
ρ2 − h2

3

√
µ2 − h2

3

√
h2

3 − ν2

h1h3

(II.6)

x3 =

√
ρ2 − h2

2

√
h2

2 − µ2
√
h2

2 − ν2

h1h2

, (II.7)

where ρ ∈ [h2,+∞), µ ∈ [h3, h2] and ν ∈ [−h3, h3]. In ellipsoidal coordinates, the

Laplace equation has the form

(
µ2 − ν2

) ∂2φ

∂β2
+
(
ρ2 − ν2

) ∂2φ

∂ϕ2
+
(
ρ2 − µ2

) ∂2φ

∂χ2
= 0, (II.8)
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where

β =

∫ χ

h2

dρ√
ρ2 − h2

3

√
ρ2 − h2

2

(II.9)

ϕ =

∫ µ

h3

dµ√
µ2 − h2

3

√
h2

2 − µ2
(II.10)

χ =

∫ ν

0

dν√
h2

3 − ν2
√
h2

2 − ν2
(II.11)

and φ is the electric potential.

To calculate the electric potential φ for an ellipsoid, separation of variables for

the Laplace equation in ellipsoidal coordinates leads to the Lamé equation, which

assumes the following form for each of the three spatial coordinates ηi = ρ, µ, ν:

(
η2

i − h2
3

) (
η2

i − h2
2

)
E ′′(ηi) + ηi

(
2η2

i − h2
3 − h2

2

)
E ′(ηi) +

[(
h2

2 + h2
3

)
P − n(n+ 1)η2

i

]
E(ηi) = 0. (II.12)

Above, P , n are constants, the prime in E ′, etc. indicates differentiation with respect

to the independent variable ηi = ρ, µ, ν, and the quantities E are the so-called Lamé

functions that form the normal interior harmonic function

E
m
n (ρ, µ, ν) = Em

n (ρ)Em
n (µ)Em

n (ν). (II.13)

The corresponding exterior harmonic functions F
m
n are given by

F
m
n (ρ, µ, ν) = (2n+ 1)Em

n (ρ, µ, ν)Im
n (ρ)

= (2n+ 1)Im
n (ρ)Em

n (ρ)Em
n (µ)Em

n (ν), (II.14)
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where Im
n are elliptic integrals of the form

Im
n (ρ) =

∫ ∞

ρ

dt

[Em
n (t)]2

√
t2 − h2

2

√
t2 − h2

3

(II.15)

with n = 0, 1, 2, ..., and m = 1, 2, ... , 2n + 1. Interior harmonic functions enter

the expression for the electric potential only for the space enclosed by the ellipsoid,

while exterior harmonic functions are used to define the potential outside this body.

In fact, internal harmonic terms diverge as r → ∞, while external terms tend to 0 in

the same limit, as expected. Naturally, the surface potential can be computed using

either internal or external harmonics since the boundary conditions imposed upon

solving the Laplace equation guarantee the absence of any anomalous discontinuities

in the potential across the two media.

It was first shown by Lamé that four classes (also called species) of Lamé functions

exist, typically denoted by K(ηi), L(ηi), M(ηi), and N(ηi), respectively, where ηi is

any of the coordinates ρ, µ, or ν. These are referred to as Lamé functions of the first

(as opposed to second) kind, a label that we omit from this point forward because

our theory does not involve Lamé functions of the second kind.

The Lamé functions of the first kind involve polynomials and can be written as

K(ηi) =

r+1∑

k=0

akη
n−2k
i (II.16)

L(ηi) =
√
η2

i − h2
3

n−r∑

k=0

akη
n−(k+1)
i (II.17)

M(ηi) =
√
h2

2 − η2
i

n−r∑

k=0

akη
n−(k+1)
i (II.18)

N(ηi) =
√

(η2
i − h2

3) (η2
i − h2

2)

r∑

k=0

akη
n−2(k+1)
i , (II.19)

where the coefficients ak can be obtained by inserting the appropriate Lamé functions
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into the Laplace equation, acoording to the approach described by Hobson [72]. The

additional restriction must be placed that the power of each ηi in the expressions for

K, L, M and N above must be greater than or equal to zero. The index r in the

summations above is given by

r =





n
2

for n even

n−1
2

for n odd
, (II.20)

where n is the degree of the ellipsoidal harmonic E
m
n . For a harmonic of degree n,

there are 2n+1 associated Lamé functions; it can be inferred from Eq. II.19 that there

are r+1 functions of type K, n−r functions of type L, n−r functions of type M and

r functions of type N , for a total of 2n + 1 Lamé functions. Although not required

for our derivations, we give the definition of the Lamé functions of the second kind

Fn for completeness. These functions were introduced independently by Liouville and

Heine; they involve the Lamé functions of the first kind as well as elliptic integrals.

Their general definition is given by

Fn(η) = (2n+ 1)En(η)

∫ ∞

η

dη√
η2 − h2

√
η2 − k2

, (II.21)

where h and k are constants determined by the geometry ([72] discusses this type of

functions in more detail).

In the ellipsoidal formalism, Lamé functions are used to construct ellipsoidal har-

monic functions, which are eigenfunctions of the Laplacian operator in ellipsoidal

coordinates. Thus, Lamé functions and the triplet (Em
n (ρ), Em

n (µ), Em
n (ν)) are anal-

ogous to the radial function Rm
l (r) and spherical harmonics Y m

l (θ, φ)−i.e. to the

doublet (Rm
l (r), Y m

l (θ, φ))−in spherical harmonic theory.

Products of the form Em
n (µ)Em

n (ν) are called surface ellipsoidal harmonics because
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they refer to the ellipsoidal surface ρ = ρ0. We adopt the convention used by Kariotou

[99] and label the normalization functions associated with ellipsoidal harmonics as γm
n .

These quantities assume the form

γm
n =

∮

ρ=ρ0

[Em
n (µ)Em

n (ν)]2√
(ρ2

0 − µ2) (ρ2
0 − ν2)

dS, (II.22)

where

dS = dµdν
(
µ2 − ν2

)
√

(ρ2 − µ2) (ρ2 − ν2)

(µ2 − h2
3) (h2

2 − µ2) (h2
3 − ν2) (h2

2 − ν2)
(II.23)

is the ellipsoidal surface element in the same coordinate system [31]. The formulation

of ellipsoidal harmonics in Cartesian coordinates is given by

E
m
n (r) = Cij

m∏

k=1

Θk, (II.24)

where Θk(x, y, z) is known as the Niven function [128, 72],

Θk =
x2

α2
1 + θk

+
y2

α2
2 + θk

+
z2

α2
3 + θk

− 1, (II.25)

while θk is the k-th root of the Lamé function Em
n . C denotes a matrix whose elements

are given in Cartesian coordinates and are labeled by subscripts i and j, indicating

the corresponding row and column, respectively, of the appropriate entry. C has the

form

C =





x yz

1 y zx xyz

z xy




. (II.26)

Columns in C correspond to each of the function types K, L, M and N , while rows
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refer to the coordinates in the chosen system, i.e. x, y or z in the Cartesian system.

To evaluate E
m
n using Eq. II.24, one must select appropriate entries in C for each

coordinate and multiply the resulting quantity by the product
∏m

k Θk. Lamé showed

that the roots of the functions bearing his name must all be real, distinct and located

in the interval (−α2
1, α

2
3). In ellipsoidal coordinates, the harmonics can be written as

E
m
n (r) = Lij

m∏

k=1

Ψk, (II.27)

where Lij denotes the appropriate entry in the table L given in ellipsoidal coordinates,

where

L =





ρ
√
ρ2 − h2

3

√
ρ2 − h2

2

√
(ρ2 − h2

3) (ρ2 − h2
2)

1 µ
√
µ2 − h2

3

√
h2

2 − µ2
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(µ2 − h2
3) (h2

2 − µ2)

ν
√
h2

3 − ν2
√
h2

2 − ν2
√

(h2
3 − ν2) (h2

2 − ν2)





(II.28)

and

Ψk =
(
ρ2 − ψ2

k

) (
µ2 − ψ2

k

) (
ν2 − ψ2

k

)
. (II.29)

In this case, ψk are the roots of the corresponding function Ψk(ρ, µ, ν) expressed in

ellipsoidal coordinates.

The two coordinate systems used above (Cartesian and ellipsoidal) are both im-

portant throughout our derivations; for this reason, formulas of interest will be given

in a form that is independent of the coordinate system chosen. In this section, we

derive two particular quantities that are of interest in each of them, namely the gra-

dient of the normal ellipsoidal harmonic function E
m
n and the derivative of the Lamé

polynomial Em
n .

For any diagonal metric tensor gij = giiδij (where δij is the usual Kronecker delta

function), the scale factors si are defined in terms of the parametrizations xi = fi,
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where xi are the Cartesian coordinates and fi are the functions xi in terms of some

other coordinates ηi. In our case, ηi are the ellipsoidal coordinates ρ, µ and ν and

the parametrizations fi are given in Eqs. II.5-II.7. For three-dimensional space, the

scale factors si are defined as

si = (gii)
1/2 (II.30)

=

[
3∑

k=1

(
∂fk

∂ηi

)2
]1/2

. (II.31)

In this generalized formalism, the gradient ∇w(ηi) of any function w of three inde-

pendent variables ηi assumes the form

∇w =

3∑

i=1

1

si

∂w

∂ηi
âi, (II.32)

where âi are the three unit vectors in the coordinate system ηi. For the Cartesian

case, we obtain the familiar expression

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
. (II.33)

Applying this formalism to the ellipsoidal coordinate case, we obtain

∇ =
1

sρ

ρ̂
∂

∂ρ
+

1

sµ

µ̂
∂

∂µ
+

1

sν

ν̂
∂

∂ν
, (II.34)

where inverses of the scale factors [124] are given by

1

sρ
=

√
(ρ2 − h2

2)(ρ
2 − h2

3)

(ρ2 − µ2)(ρ2 − ν2)
(II.35)
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1

sµ
=

√
(µ2 − h2

2)(µ
2 − h2

3)

(µ2 − ρ2)(µ2 − ν2)
(II.36)

1

sν
=

√
(ν2 − h2

2)(ν
2 − h2

3)

(ν2 − ρ2)(ν2 − µ2)
. (II.37)

Another quantity that will be useful later is the outward unit vector n̂ with respect

to the surface of the ellipsoid. In Cartesian coordinates, the ellipsoid can be defined

[87] by the implicit equation F (x, y, z) = 0, where

F (x, y, z) =
x2

α2
1

+
y2

α2
2

+
z2

α2
3

− 1. (II.38)

It follows by a theorem of vector calculus [61] that, in the Cartesian coordinate system,

the normal unit vector can be defined as

n̂ =

[(
∂F

∂x

)2

+

(
∂F

∂y

)2

+

(
∂F

∂z

)2
]−1/2

∇F (II.39)

=

(
x

α2
1

x̂ +
y

α2
2

ŷ +
z

α2
3

ẑ

)(
x2

α4
1

+
y2

α4
2

+
z2

α4
3

)−1/2

. (II.40)

For ellipsoidal coordinates, the expression for this function is quoted in [43] as being

given by

n̂ = Dnρ̂, (II.41)

with

Dn =
α2α3√

(α2
1 − µ2)(α2

1 − ν2)
. (II.42)

To compute the gradient of the Lamé function, the Cartesian coordinate system

is preferable because of the simple form assumed by this operator in terms of x, y and
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z. Applying the gradient operator to the Cartesian coordinate expression in Eq. II.24

and keeping in mind the product rule of differentiation yields the result

∇E
m
n (r) =

[
Gij +

(
Cij

m∑

k=1

ξk

)
û

]
m∏

l=1

Θl, (II.43)

where G is a vector matrix with entries

G =





x̂ yẑ + zŷ

0 ŷ xẑ + zx̂ xyẑ + yzx̂ + xzŷ

ẑ xŷ + yx̂




. (II.44)

The function ξk is defined as

ξk(r) =
1

Θk
∇Θk

=
2

Θk

(
x

α2
1 + θk

+
y

α2
2 + θk

+
z

α2
3 + θk

)
(II.45)

and û = x̂ + ŷ + ẑ is composed of the three orthonormal vectors in each of the

coordinate directions.

Before we address the problem of computing ∇E
m
n in ellipsoidal coordinates, let

us compute the first derivative of the Lamé polynomial Em
n , which has the general

form

d

dηi

Em
n (ηi) = Lij

d

dηi

Bm + L′
ijB

m, (II.46)

the prime in L′
ij denoting differentiation of the appropriate entry in table L with
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respect to ηi. The function Bm is defined as

Bm =
m∏

k=1

(η2
i − ψ2

k) (II.47)

=
m∏

k=1

(ηi − ψk)(ηi + ψk). (II.48)

We made use, on the last line above, of the property ψk ∈ R characteristic of

Lamé function roots to factor out the quantity η2
i − ψ2

k. In other words, since the

roots of a Lamé function are always real by definition (see [72]), the quantity η2
i −ψ2

k

can be written as (ηi − ψk)(ηi + ψk). It is also important to note that the symbol ηi

is employed to denote the independent variable for Em
n , where ηi = ρ, µ or ν. This

is to emphasize that the Bm function has the same general form for each of all three

spatial ellipsoidal coordinates. As expected, the definition of the Lamé polynomials

given above is consistent with the separability of the normal ellipsoidal harmonics

into functions depending only on one of ρ, µ or ν (see Eq. II.13); this can be made

obvious by noting that the entries in each row of L are functions of only one variable,

whereas only the normal ellipsoidal harmonic function E
m
n depends on all three spatial

coordinates. The entries in the matrix L′ can be computed straightforwardly by

differentiation. They are

L′
i1 = 0 (II.49)

L′
i2 = 1 (II.50)

L′
13 =

ρ√
ρ2 − h2

3

(II.51)

L′
14 =

ρ√
ρ2 − h2

2

(II.52)

34



L′
15 =

ρ [2ρ2 − (h2
2 + h2

3)]√
(ρ2 − h2

3)(ρ
2 − h2

2)
(II.53)

L′
23 =

µ√
µ2 − h2

3

(II.54)

L′
24 =

−µ√
h2

2 − µ2
(II.55)

L′
25 =

µ [(h2
2 + h2

3) − 2µ2]√
(µ2 − h2

3)(h
2
2 − µ2)

(II.56)

L′
33 =

−ν√
h2

3 − ν2
(II.57)

L′
34 =

−ν√
h2

2 − ν2
(II.58)

L′
35 =

ν [2ν2 − (h2
2 + h2

3)]√
(h2

3 − ν2)(h2
2 − ν2)

. (II.59)

Note again that each row i in L′ is associated with the Lamé function that depends

on the respective variable ηi.

We now turn to the differentiation of Bm. Applying the chain rule of differentia-

tion, we obtain

d

dηi
Bm =

m∏

k=1

(ηi − ψk)
d

dηi

m∏

k=1

(ηi + ψk)

+

m∏

k=1

(ηi + ψk)
d

dηi

m∏

k=1

(ηi − ψk). (II.60)

Expanding and factoring out the products on the right-hand side, we obtain the

following expression:

d

dηi
Bm =

m∑

d=1

1

ηi + ψd

m∏

k=1

(ηi − ψk)(ηi + ψk)

+

m∑

d=1

1

ηi − ψd

m∏

k=1

(ηi − ψk)(ηi + ψk). (II.61)
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It is useful now to define two functions ζ+
km and ζ−km:

ζ±km =
m∑

d=1

1

(ηi ± ψd)
k
. (II.62)

Straightforwardly, we can also define a third function ζkm as the sum of the two:

ζkm = ζ+
km + ζ−km

=

m∑

d=1

[
1

(ηi + ψd)
k

+
1

(ηi − ψd)
k

]
. (II.63)

It is worthwhile to note that ζkm ≡ ζmk, i.e. permutation of the non-spatial indices k

and m does not change the value of ζkmB
m. From this point forward, the subscript

m of the ζ’s will be suppressed for simplicity and we will write ζk ≡ ζkm. Using the

formalism described above, one can derive the following result by direct substitution

of ζk into the expression for the derivative of Bm:

d

dηi
Bm = Bmζ1. (II.64)

This allows us to write the first derivative of the Lamé function using the simple

formula

d

dηi
Em

n (ηi) =
(
Lijζ1m + L′

ij

)
Bm. (II.65)

We now have the tools required to derive ∇E
m
n (ρ, µ, ν). The form assumed by

the gradient of the normal ellipsoidal harmonic function is far more complicated in

ellipsoidal coordinates than it is in the Cartesian system. Nevertheless, this particular

formulation is very important because of the separability property of the normal

ellipsoidal harmonics in this coordinate system. Moreover, as will be made obvious in

a future section, the simplicity associated with the definition of the ellipsoidal surface
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in this framework leads to numerous computational advantages, both analytic and

numerical. Upon applying the gradient operator in ellipsoidal coordinates, we obtain

the formula

∇E
n
m = Dij

m∏

k=1

Ψk + Lij∇

m∏

k=1

Ψk (II.66)

= (Dij + Lij∇)

m∏

k=1

Ψk, (II.67)

where {Dij} denotes a 3 × 5 matrix with the following entries:

Di1 = 0 (II.68)

D12 =
1

sρ
ρ̂ (II.69)

D22 =
1

sµ
µ̂ (II.70)

D32 =
1

sν
ν̂ (II.71)

D13 =
1

sρ

ρ√
ρ2 − h2

3

ρ̂ (II.72)

D23 =
1

sµ

µ√
µ2 − h2

3

µ̂ (II.73)

D33 =
1

sν

−ν√
h2

3 − ν2
ν̂ (II.74)

D14 =
1

sρ

ρ√
ρ2 − h2

2

ρ̂ (II.75)

D24 =
1

sµ

−µ√
h2

2 − µ2
µ̂ (II.76)

D34 =
1

sν

−ν√
h2

2 − ν2
ν̂ (II.77)

D15 =
[2ρ2 − (h2

3 + h2
2)] ρ√

(ρ2 − µ2)(ρ2 − ν2)
ρ̂ (II.78)

D25 =
[(h2

3 + h2
2) − 2µ2]µ√

(µ2 − ρ2)(ν2 − µ2)
µ̂ (II.79)

D35 =
[2ν2 − (h2

3 + h2
2)] ν√

(ν2 − ρ2)(ν2 − µ2)
ν̂. (II.80)
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Since we have already computed dBm/dηi using our ζ operator approach, it is

now easy to derive ∇
∏m

k Ψk because the factorized form of Ψk (see Eq. II.29) allows

us to compute partial derivatives with respect to ηi very easily by holding terms

of the form (η2
j − ψ2

k)(η
2
l − ψ2

k) constant, where j 6= i and l 6= i. Thus, the same

line of reasoning used for finding dBm/dηi can be employed to compute the partial

derivatives of
∏m

k Ψk. The final result is given by

∇

m∏

k=1

Ψk =

[
ζ1m(ρ)

sρ

ρ̂+

] m∏

k=1

Ψk, (II.81)

leading to the following expression for ∇E
m
n :

∇E
n
m =

{
Dij + Lij

[
ζ1m(ρ)

sρ
ρ̂ +

ζ1m(µ)

sµ
µ̂ +

ζ1m(ν)

sν
ν̂

]} m∏

k=1

Ψk. (II.82)

This concludes our derivation of ∇E
m
n in the two coordinate systems of our choice.

Calculation of the potentials and fields

The mathematical theory of ellipsoidal harmonics is of great interest in a variety

of scientific areas, including gravitational astrophysics [149] physical geodesy [54] and

numerical analysis, e.g. for obtaining solutions to the ellipsoidal Stokes problem

[147]. In biophysics, it is useful for computing the electric potential, electric field and

magnetic field due to one or several quasistatic current dipoles located in an organ

whose shape is approximately ellipsoidal, such as the human brain or stomach.

Consider a point r′ located inside a body of volume V , where a primary current

dipole source with moment Q is also located. The physics of this problem [158, 64]

allows one to model the phenomenon at hand as a concentration of impressed current
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Ji to a point r0 using the Dirac delta functional δ(r− r0) via the algebraic expression

Ji(r) = Qδ(r − r0). (II.83)

The electric field E induced by the impressed current creates an induction current

Jd(r) = σE(r), (II.84)

where σ is the tissue conductivity. Since anatomical and physiological characteristics

of the human body allow for such currents to be considered quasistatic [66, 111, 158,

164], the electric field is irrotational and Poisson’s equation can be used to find the

electric potential φ.

The formulas for φ due to dipoles located inside ellipsoids, spheroids and spheres

were derived by Kariotou in [99]. For this reason, we discuss these theoretical results

only to the extent that they are necessary for our own derivations. Nevertheless, it

is important to take note of the fact that the expressions provided in [99] do not

include ellipsoidal harmonic terms of degree 3 or higher because such terms require

numerical evaluations of roots for the Lamé polynomials. In the present study, we

provide a generalized numerical and theoretical method for computing the potential

using a harmonic expansion of arbitrary degree and order.

In our ellipsoidal coordinate formulation, the general solution to Poisson’s equation

∆φ−(r) =
1

σ
∇ · Ji(r), r ∈ V − (II.85)

is a superposition of an interior harmonic function Φ(r) and of the function

φ(r) =
1

4πσ
Q · ∇

r0

1

|r − r′| , (II.86)
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where the superscripts (−) and (+) denote quantitites referring to the interior and

exterior, respectively, of the volume for which Poisson’s equation is solved. The

equation above is cited correctly in reference [44]. In Eqs. 38 and 40 of [99], however

(both [44] and [99] have the same authors), ∇
r0

is replaced by ∇; this is most likely a

typographic error because all the other theory in that reference based on this formula

is derived correctly using ∇
r0

instead of ∇. Upon substitution of the formulas for

the interior harmonic function and Laplace operator [113] into Eq. II.85, the interior

potential assumes the form

φ−(r) = b10 +
∞∑

n=0

2n+1∑

m=1

{
bmn +

1

σγm
n

[Q · ∇
r0

E
m
n (r0)] I

m
n (ρ)

}
E

m
n (r) (II.87)

The symbol bmn denotes the coefficient of the normal ellipsoidal harmonic functions

E
m
n , which is given [99] by the formula

bmn =
1

σγm
n

[Q · ∇
r0

E
m
n (r0)]

[
1

α1α3Em
n (α1)

(
dEm

n

dα1

)−1

− Im
n (α1)

]
, (II.88)

where differentiation of dEm
n /dα1 is with respect to the argument α1. As one can

see, the interior potential is an infinite summation of terms involving the ellipsoidal

harmonics E
m
n . Substitution of the expression for bmn into the equation defining the

potential and further manipulations yield the important formula

φ−(r) = b10 +
∞∑

n=1

2n+1∑

m=1

1

σγm
n

[Q · ∇
r0

E
m
n (r0)] E

m
n (r)

×
[
Im
n (ρ) − Im

n (α1) +
1

α2α3Em
n (α1)

(
dEm

n

dα1

)−1
]

(II.89)

A similar calculation for φ+ [99] provides the following expression for the exterior
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potential:

φ+(r) = b10
I1
0 (ρ)

I1
0 (α1)

+

∞∑

n=1

2n+1∑

m=1

Im
n (ρ)

Im
n (α1)

[Q · ∇′
E

m
n (r′)] Em

n (r)

σγm
n α2α3Em

n (α1)

(
dEm

n

dα1

)−1

(II.90)

The value assigned to the real constant b10 is entirely arbitrary and its presence is

evocative of the fact that one can add any real constant to a scalar potential with-

out affecting the result obtained when computing the potential difference between

two points. In the next section it will be shown that setting this constant to 0 is

computationally advantageous in the calculation of the magnetic field. Although the

exterior potential involves the exterior harmonic functions F
m
n , the potential can also

be expressed only in terms of internal harmonics E
m
n since the former can be defined

in terms of the latter. The expressions above were simplified analytically in [99] for el-

lipsoidal terms of first and second degree. In this section, however, we develop a more

general model for obtaining solutions for an arbitrarily large expansion of harmonics.

Using the expressions for φ, we can derive corresponding formulas for the electric

field E that apply both to the interior (E−) and to the exterior (E+) of the ellipsoid:

E−(r) = −∇φ− (II.91)

= −
∞∑

n=1

2n+1∑

m=1

1

σγm
n

[Q · ∇
r0

E
m
n (r0)] ∇E

m
n (r)

×
[
Im
n (ρ) − Im

n (α1) +
1

α2α3Em
n (α1)

(
dEm

n

dα1

)−1
]
. (II.92)
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Similarly, we obtain for E+

E+(r) = −∇φ+ (II.93)

= −
∞∑

n=1

2n+1∑

m=1

Im
n (ρ)

Im
n (α1)

[Q · ∇
r0

E
m
n (r0)]∇E

m
n (r)

σγm
n α2α3Em

n (α1)

(
dEm

n

dα1

)−1

. (II.94)

This completes our derivation of the electric potential and field.

Deriving a generalized expression for the magnetic field B is somewhat more

tedious. Because much of the underlying theory required for this task has already

been derived by Sarvas [158], we only summarize it here. The magnetic field due to

some current density J is given by the law of Biot and Savart:

B(r) =
µ0

4π

∮

Ω

J(r′) × r − r′

|r − r′|3d
3r′, (II.95)

where Ω is the support of J and µ0 is the permeability of free space. An important

detail concerning the formula above and the remainder of this section pertains to

the difference between r′ and r0. The variable r′ refers to the integration space Ω,

whereas r0 is related to the position of the dipole. Thus, r′ is used in association

with the current density J over the entire volume of the ellipsoid, whereas r0 is used

for the current dipole that approximates this density. The conceptual differences

associated with this aspect of the theory will be explained below in more detail. In

the quasistatic approximation−which is justified here [158, 99, 44]−one of Maxwell’s

equation reads

J = Ji + Jd (II.96)

= Ji + σE, (II.97)

where σE is the Ohmic induction current previously described. Replacing J in
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Eq. II.95 by the quantities on the right hand side above and using E− = −∇φ−

yields the magnetic field as an integral over the volume V of the ellipsoid:

B(r) =
µ0

4π

∮

V

[
Ji(r

′) − σ∇φ−(r′)
]
× r − r′

|r− r′|3d
3r′. (II.98)

Using the definition of a current dipole Q located at r0 given before, i.e.

Ji(r) = Qδ(r − r0), (II.99)

it can be shown (see [158] for details) that the magnetic field is given by

B(r) =
µ0

4π
Q × r − r0

|r − r0|3
− σ

µ0

4π

∮

V −

∇φ−(r′) × r − r′

|r − r′|3d
3r′. (II.100)

From the formula above, one can see that the variable r0 is associated with the dipole

location, whereas r′ is used in the integral over the entire ellipsoidal volume, hence the

difference between the two. One can apply Stokes’ theorem to convert this integral

into a surface integral, with the result

B(r) =
µ0

4π
Q × r − r0

|r − r0|3
− σ

µ0

4π

∮

S

φ−(r′)n̂ × r − r′

|r − r′|3dS
′. (II.101)

Our task is now to express the equation for B above in terms of normal ellipsoidal

harmonic functions E
m
n . The elliptic integrals Im

n have been already defined in Eq.

II.15. One can use the identity

∇
′ 1

|r − r′| =
r − r′

|r − r′|3 (II.102)
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together with the result

1

|r − r′| =
∞∑

n=0

2n+1∑

m=1

4π

γm
n

Im
n (ρ)Em

n (r′)Em
n (r) (II.103)

derived in [44] to conclude that

r − r′

|r − r′|3 =
∞∑

n=0

2n+1∑

m=1

4π

γm
n

Im
n (ρ)Em

n (r)∇′
E

m
n (r′). (II.104)

We can also compute the useful quantity

p ≡ n̂ × r − r′

|r − r′|3 (II.105)

= Dn(r′)

∞∑

n=0

2n+1∑

m=1

4π

γm
n

Im
n (ρ)Em

n (r) [ρ̂′ × ∇
′
E

m
n (r′)] . (II.106)

The unit vector ρ̂′ above comes from the definition of n̂ in ellipsoidal coordinates given

in Eq. II.41. This unit vector refers to the surface of the ellipsoid being integrated

over in Eq. II.101; because the integration variable there is dS ′ as a function of

(ρ′, µ′, ν ′), the unit normal n̂ is also a function of the primed variables. This is the

motivation for writing ρ̂′ rather than ρ̂ in the expression above.

Before evaluating the integral over the closed surface in Eq. II.101, we note that

its variable of integration is r′. It was shown by Kariotou [99] that the exterior electric

potential due to a dipole in the ellipsoid can be written as

φ−(r) = g1
0 +

∞∑

n=1

2n+1∑

m=1

1

σγm
n

[Q · ∇
r0

E
m
n (r0)] E

m
n (r)

×
[
Im
n (ρ) − Im

n (α1) +
1

α2α3Em
n (α1)

(
dEm

n

dα1

)−1
]
, (II.107)

where g1
0 is a constant. The only quantities in φ−(r′) and p that are dependent on this

variable are, respectively, E
m
n (r′) (from making the substitution r → r′ in Eq. II.89)
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and Dn(r′) [ρ′ × ∇
′
E

m
n (r′)]. Thus constants and functions involving only r can be

factored out from the integral. To ease our calculation, let us define the following

functions:

am
n (r) =

4π

γm
n

Im
n (ρ)Em

n (r) (II.108)

bmn (r′) = Dn(r′) [ρ̂′ × ∇
′
E

m
n (r′)] (II.109)

cmn (r0) =
1

σγm
n

Q · ∇
r0

E
m
n (r0) (II.110)

dt
s(ρ;αi) = I t

s(ρ) − I t
s(α1) +

1

α2α3Et
s(α1)

(
dEt

s

dα1

)−1

(II.111)

This allows us to write

φ−(r, r′, r0) = b10 +

∞∑

n=0

2n+1∑

m=0

E
m
n (r′)cmn (r0)d

m
n (ρ;αi) (II.112)

p(r, r′) =
∞∑

n=0

2n+1∑

m=0

am
n (r)bmn (r′) (II.113)

The integrand over the surface of the ellipsoid in Eq. II.101 can now be written as

φ−p = b10

∞∑

n=0

2n+1∑

m=0

am
n (r)bmn (r′)

+

∞∑

n=0

2n+1∑

m=0

am
n (r)bmn (r′)

∞∑

s=0

2s+1∑

t=0

E
t
s(r

′)cts(r0)d
t
s(ρ;αi). (II.114)

From a computational perspective, it is useful to assign the value 0 to the constant

b10 because this allows one to drop one infinite summation from the equation above.

Carrying out the integration over the ellipsoidal surface for which ρ = ρ0, we obtain

∮

ρ0

φ−pdS ′ =

∞∑

n=0

2n+1∑

m=0

∞∑

s=0

2s+1∑

t=0

am
n (r)cts(r0)d

t
s(ρ0;αi)

∮

ρ0

bmn (r′)Et
s(r

′)dS ′.

(II.115)
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Note the dependence of dt
s on ρ0 as a constant rather than on ρ as a variable since the

value of this coordinate is constant on the surface. A simplification to the equation of

the magnetic field given above comes from contracting the two infinite summations

over n and s in the same equation using the convolution method for sequences that one

can derive from Cauchy’s product formalism [151]. This method, although typically

used in the context of complex analysis for power series, is nevertheless perfectly

applicable to real sequences. Therefore, recalling the Cauchy product formula

(
∞∑

n=1

an

)
·
(

∞∑

s=1

bs

)
=

∞∑

n=1

n∑

p=1

an−pbp, (II.116)

we can relabel the subscripts in Eq. II.119 appropriately, and simplify our notation

by defining the function

ζmt
ns ≡ am

n−s(r)c
t
s(r0)d

t
s(ρ0;αi)

∮

ρ0

bmn−s(r
′)Et

s(r
′)dS ′. (II.117)

This leads us to the following expression for our integral:

∮

ρ0

φ−pdS ′ =

∞∑

n=0

n∑

s=0

2(n−s)+1∑

m=0

2s+1∑

t=0

ζmt
ns . (II.118)

In addition to making the notation more compact and easier to follow, this formulation

removes the additional and unnecessary degree of freedom s from the double infinite

summation for B. The expression involving the magnetic field is given by

1

µ0
B(r) =

∞∑

n=0

2n+1∑

m=1

1

γm
n

Im
n (ρ)Em

n (r) [Q × ∇
r0

E
m
n (r0)]

−
∞∑

n=0

n∑

s=0

2(n−s)+1∑

m=0

2s+1∑

t=0

ζmt
ns (II.119)
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This can also be written in the elegant factorized form

1

µ0

B(r) =
∞∑

n=0

2n+1∑

m=1


 1

γm
n

Im
n (ρ)Em

n (r)Q × ∇
r0

E
m
n (r0) −

n∑

s=0

2(n−s)+1∑

t=1

ζmt
ns


 ,

(II.120)

which completes our derivation of the magnetic field.

A final remark is in place concerning the computational complexity of evaluating

B. Upon examining the formulas for φ and B, it is not difficult to realize that calculat-

ing the magnetic field is the most computationally-intensive task (since it effectively

involves two infinite summation even though the Cauchy summation formula can be

used to remove one of them). Let u represent the degree of the highest term used

in each expansion, i.e. the highest selected value of n, and let τ represent the time

needed to compute either one of φ or B for some particular set of values for n and m.

Using Big-Oh notation, computing φ and E requires
∑u

n=1(2n + 1)τ = (u2 + 2u)τ ,

i.e. the algorithm is O(u2). In the case of computing the magnetic field, there are

two degrees of freedom because n and s can be chosen arbitrarily. If the assumption

is made that the two are equal, we can let τ ′ ≡ (u2 + 2u)τ in the equation above and

the algorithm is then found to be O(u4). Thus the calculation of the magnetic field

is significantly more intensive.

Figure II.1 depicts the results of a simple numerical study regarding the accuracy

of the expansion in Eq. II.120. Physical parameter values (as specified in the cap-

tion) were selected so that the situation described resembles closely the experimental

protocol of MGG or MEG (the case discussed is identical to that in [92], where im-

ages are also provided). What the figure demonstrates is that, for points located

farther and farther away from the ellipsoid, the contribution of higher and higher

order terms decreases. Close to the surface of the ellipsoid, however, these terms
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Figure II.1: Numerical accuracy results for the expansion in Eq. II.120. The inde-
pendent variable nmax refers to the size of the expansion over n in Eq. II.120, i.e.
B/µ0 =

∑nmax

n=0 (...). Let B(i) refer to the value of the magnetic field computed for
an expansion over n = 0, ... , i. The quantity on the vertical axis was computed
according to the formula [B(nmax) - B(i)]/B(nmax). In other words, it represents
the percentage difference between B(i) and the most accurate value of B that was
computed for this numerical example, namely B(nmax). The results presented are
for an ellipsoid of dimensions (α1, α2, α3) = (7.5, 5.0, 4.0) cm located at the origin
(this is identical to the case discussed in [92], where images are also provided). The
three curves represent values computed for a point A located on the Cartesian z axis
at a distance of 1 cm, 10 cm and 1 m, respectively, from the upper extremity of the
ellipsoid (i.e. the point on the surface of the ellipsoid closest to A).

48



can have a significant contribution. In conclusion, for applications where reasonable

numerical precision is needed for the calculation of B, a large expansion (n > 10) may

be required. What this implies is that, if the ellipsoidal approximation to the brain or

stomach is to be used effectively in similar simulation studies, low-order expansions

(e.g. n < 3) may be insufficient.

Discussion

We can now summarize our algorithm proposed for the computation of φ, B

and E using an ellipsoidal harmonic expansion of arbitrary order and degree. The

generalized formulas for these three quantities are given in Eqs. II.89, II.90, II.92 and

II.94. The constants γm
n can be evaluated numerically using Eq. II.22 as well as the

formula for the surface differential dS specified by Eq. II.23. The normal ellipsoidal

harmonic functions are given in both Cartesian (Eqs. II.24-II.26) and ellipsoidal (Eqs.

II.27-II.29) coordinates. The gradient ∇
′
E

m
n can be computed using Eq. II.82 with

inputs for {Dij}, {Lij} provided in Eqs. II.68-II.80 and II.28, respectively. Two other

required formulas include the elliptic integrals Im
n (which can be evaluated numerically

using Eq. II.15) and the first derivative of the Lamé function (provided by Eq. II.65).

Finally, the function Dn is specified by Eq. II.41.

A number of computational issues should be addressed with reference to the prob-

lem at hand. As explained in [99], ellipsoidal harmonics can be expressed analytically

in terms of the αi’s only for n ≤ 3 because higher-degree harmonic parameters lead

to irreducible polynomial equations of cubic or higher degree. In this work, we choose

to work only with the general formula for the ellipsoidal harmonics of arbitrary order

and degree. According to a result by Stieltjes [145, 146], the Lamé function Em
n (ρ) has

at most m real zeros ψ1, · · · , ψm, m ≤ 2n + 1, none of which are repeated. Because

identifying all roots is algebraically impossible for polynomials of order 5 and higher,
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better approximations to the electric potential can be obtained only by implementing

a numerical algorithm. To find the characteristic equations associated with Lamé

polynomials, one must substitute the general expressions for E
m
n into the Laplace

equation and write down the relations that must hold in order for this equation to be

satisfied; the details of this process are demonstrated in detail by Hobson, whose work

on ellipsoidal harmonics [72] is an excellent reference. After tedious manipulations,

it can be shown that the set of characteristic equations is given by

3∑

d=1

zd

α2
d + θp

+
m∑

q=1,q 6=p

1

θp − θq

= 0, (II.121)

where θ1, . . . , θm are the m roots sought and the constants zd have the values shown

in Table II.1. The left-hand side in this set of equations is the logarithmic differential

coefficient with respect to θp of the product

Em
n =

m∏

p=1

(α2
1 + θp)

z1(α2
2 + θp)

z2(α2
3 + θp)

z3

m∏

q+p

|θp − θq|, (II.122)

which is known as Stieltjes’ formulation of the Lamé function. The system of equa-

tions defined above can be manipulated using an efficient method for solving nonlinear

equations; for example, a subspace trust region method based on the interior-reflective

Newton method [39, 40] was found by the author to exhibit excellent convergence be-

havior. In this approach, each iteration involves the approximate solution of a large

linear system using the method of preconditioned conjugate gradients [40].

Numerical integration must be used to compute elliptic integrals of the form shown

in Eq. II.15, as well as the constants γm
n . In the case of the Im

n ’s, a simple analysis

of the physical problem demonstrates that contributions to the integral are minute

for values of the integration variable t greater than some constant multiple of α1, i.e.
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Table II.1: Values of the coefficients zd, d = 1, . . . , 3 in the characteristic equations
of the Lamé polynomials

Function Value
type z1 z2 z3
K 1/4 1/4 1/4
L 3/4 1/4 1/4
M 1/4 3/4 3/4
N 3/4 3/4 3/4

for t > cα1, where c is of O(1) and c > 1. Hence, the upper integration limit can be

appropriately fixed in this case to a suitable value.

The results presented in this article show that the calculation of higher-order

contributors to the electric potential and field in ellipsoidal geometry is a tedious

and computationally-demanding task. This raises the question as to whether simpler

techniques−such as the finite or boundary element methods−may be superior. This

may indeed be the case for the forward problem of MEG or MGG; nevertheless, a

certain important advantage associated with our method is not available in the BEM

or FEM formalisms. This advantage refers to the fact that neither of the latter

methods can clarify the issue as to how many higher-order contributors are necessary

for accurate calculations of φ and E in the ellipsoidal formalism. Because of this, the

issue of accuracy associated with the localization of sources from inverse procedures

applied to MGG or fetal EEG data (see [62] and the discussion in [92]) cannot be

settled only from an application of FEM or BEM. More research is therefore required

to determine how appropriate the ellipsoidal model is in comparison with realistic

models.
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CHAPTER III

ELLIPSOIDAL MODELING OF GI SOURCES AND FIELDS

Introduction

Physiologically, electric fields in the human gut are produced by the exchange of

ions between cells in the gastric smooth muscle. The movement of these ions creates

electric currents that generate magnetic fields; although of the order of pT, these

fields can be detected noninvasively using Superconducting QUantum Interference

Device (SQUID) magnetometers.

To study GEA, one must become aware of how electric sources move along the

body of the stomach during propagation. Numerous theoretical and computational

models attempting to capture the characteristics of GEA have appeared in the litera-

ture [87, 120, 127, 137, 142], all falling into one of two broad categories, i.e. idealized

or realistic. Idealized models have the advantage of simplicity since they allow both

the forward and inverse problems to be studied with relative ease because both qual-

itative and quantitative judgments are more straightforward in idealized geometries.

On the other hand, realistic models have the advantage of capturing various aspects

of the modeling problem more vividly, which makes them very useful in a variety of

real-life applications [30, 138, 142, 143].

The simplest of all idealized models describing GEA in the context of the qua-

sistatic approximation to Maxwell’s equations is the single-dipole model [23, 64, 87].

Although it makes use of significant simplifications of the actual phenomenon, this

model has proved to be useful not only in GI modeling but also in the study of elec-

trophysiology in other organs, most notably the brain [58, 64, 66, 125, 158, 186]. In
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the present chapter, a GEA model in ellipsoidal geometry is developed using current

dipoles in the quasistatic approximation.

Computational approach

We adopt the approach of Kariotou [99] and compute the potential using only

terms that involve polynomials of degree less than 3. The potential thus obtained is

given by

u−(r) ≈ b10 +
3

4πσ

3∑

m=1

Qmxm

[
Im
1 (ρ) − Im

1 (α1) +
1

α1α2α3

]

− 5

4πσ (Λ − Λ′)

3∑

m=1

Qmx0m

[
I1
2 (ρ) − I1

2 (α1) +
1

2α1α2α3Λ

]
E

1
2(r)

Λ − α2
m

+
5

4πσ (Λ − Λ′)

3∑

m=1

Qmx0m

[
I2
2 (ρ) − I2

2 (α1) +
1

2α1α2α3Λ′

]
E

2
2(r)

Λ′ − α2
m

+
15

4πσ

3∑

i,j=1

i6=j

Qix0jxixj

[
I i+j
2 (ρ) − I i+j

2 (α1) +
1

α1α2α3

(
α2

i + α2
j

)
]

(III.1)

Analogously, the formula for the exterior potential u+ is given by

u+ ≈ b10
I1
0 (ρ)

I1
0 (α1)

+
3

4πσα1α2α3

3∑

m=1

Qmxm
Im
1 (ρ)

Im
1 (α1)

− 5

8πσα1α2α3(Λ − Λ′)
×

×
3∑

m=1

Qmx0m

[
I1
2 (ρ)

I1
2 (α1)

E
1
2(r)

Λ (Λ − α2
m)

− I2
2 (ρ)

I2
2 (α1)

E
2
2(r)

Λ′ (Λ′ − α2
m)

]

+
15

4πσα1α2α3

3∑

i,j=1

i6=j

Qix0jxixj

α2
i + α2

j

I i+j
2 (ρ)

I i+j
2 (α1)

(III.2)

As already noted, the formulae above involve only ellipsoidal harmonic terms of degree

1 and 2; this effectively constitutes an approximation of the expression for the total
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potential, which is an infinite summation of such terms. More on the possible effect

of this approximation will be said in a future section.

We adopt a gain transfer matrix approach [126] to compute the electric potential

due to dipoles located inside an ellipsoid. In this formulation, the vector v containing

computed electric potential values at time j can be modeled as

v(j) =

p∑

i=1

G(li)qi(j) (III.3)

= [G(li) · · ·G(lp)] [q1(j) · · ·qp(j)]
T (III.4)

= G(l)q(j), (III.5)

where the superscript T indicates the transpose of a matrix and

l =
[
~l1 · · ·~lp

]T
(III.6)

q = [~q1 · · ·~qp]
T (III.7)

are column vectors that consist of concatenations of parameters for the p dipoles.

The quantities~li and ~qi are 3-vectors indicating the locations and orientations of the

dipoles, respectively. The matrix G is called the ‘gain transfer matrix’ for the ith

dipole. If the dipole locations are kept constant while their orientations are varied

with time, the model can be extended to capture the time-dependent variability of

the sources. Thus, for n time points, we have

A = [a1 · · ·an] (III.8)

= G(l) [q1 · · ·qn] (III.9)

= G(l)Q. (III.10)
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In our problem, the entries in the gain transfer matrix are computed using the for-

mulae for the potential presented in the previous section to obtain the potential due

to each dipole at the required locations.

The geometry of our problem is shown in Fig. III.1. Each propagation cycle

begins on the right-hand extremity of the ellipsoid (positive x) and the direction of

propagation is the negative x direction. As shown in the figure, the paths assumed by

the dipoles are directed longitudinally, along the greater dimension of the idealized

gastric body. Each incremental time step during the propagation process brings

about a change in the position of the activation front along the axis of propagation,

as the image suggests. Distance increments in the activation front position along the

propagation path are equal for all time segments. In other words, the longitudinal

lines drawn from the positive to the negative extremity of the ellipsoid in the x

direction correspond to the paths assumed by the current dipoles during propagation.

The elliptic ‘slices’ whose lines are perpendicular to the direction of propagation

correspond to the time points of the simulation. In our approach, 20 seconds are

necessary for the simulated activation front to propagate from one end of the ellipsoid

to the other.

To compute the appropriate locations of the dipoles during each cycle (based on

the restriction that the distances between consecutive time points must be equal),

the line (path) integral of each current dipole is computed along the direction of

propagation, over the extent of each time segment involved. Since the path is a

semiellipse as indicated by the geometry, the resulting expression assumes the form

∫ t2

t1

ds =

∫ t2

t1

√

1 +

(
∂y

∂x

)2

dx

=

∫ t2

t1

√

1 +
α2

2x
2

α4
1

(
1 − x2

α2
1

)−1

dx, (III.11)
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Figure III.1: Geometric models for the forward problem of electrogastrography. In
these figures, the stomach is simulated as an ellipsoid with (α1, α2, α3) = (7.5, 5.0, 4.0)
cm. Propagation starts on the right hand side, from the extremity of the ellipsoid,
and proceeds along the x axis in the negative x direction. In (a), only the mesh
definition is shown. In (b), the propagation surface is shown with dipoles oriented in
the direction of propagation. Each circular band of dipoles corresponds to a particular
time point during the propagation cycle. For illustration purposes, dipoles are shown
only for eight such equidistant time points. In (c), the dipoles are perpendicular
to the propagation surface and in (d) the dipole vectors have a component that is
parallel to the direction of propagation and another that is perpendicular to it. The
body of the ellipsoid in (a) and (b) is opaque, whereas in (c) and (d) it is transparent
so as to allow one to visualize the dipole vectors located inside the ellipsoid.
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where ds is the path increment and t1,2 are any two successive time points during the

propagation cycle. In our computational approach, the integral above is computed

numerically using Simpson’s 1
3

rule. This is also done for the elliptic integral in

Eq. II.15, which is evaluated numerically. The values assumed for the ellipsoidal

semiaxes are (α1, α2, α3) = (7.5, 5.0, 4.0) cm and an experimentally measured value

of 0.45 1/Ω· m [23] is used for the conductivity σ of the gastric body.

Because the velocity of propagation along the gastric corpus varies from around

0.3 mm/s at the beginning of a cycle to approximately 4-5 mm/s at the end [120], this

characteristic was also included into our model. Specifically, a linear dependence of

the propagation velocity upon time was assumed for the purpose of our study and the

initial and final velocities mentioned above were used to determine the appropriate

velocity function. Because our dipoles travel along an ellipsoid and their trajectories

are therefore semielliptical, the distances travelled by the dipoles were used to as-

sociate their locations during the simulation with corresponding time points during

the propagation cycle. This was necessary because, although the distance increments

used were the same due to our mesh definition (see Fig. III.1), the nature of the

velocity function implies that the associated time increments are not. In computing

the appropriate time intervals corresponding to equidistant points of successive dis-

placement along the dipole trajectory, the elliptic perimeter p was calculated using

the rapidly converging Gauss-Kummer series expansion, given by

p = π(α1 + α2)

∞∑

n=0




1
2

n




2

ζn

= π(α1 + α2)

(
1 +

ζ

4
+
ζ2

64
+

ζ3

256
+ · · ·

)
, (III.12)
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where

ζ ≡
(
α1 − α2

α1 + α2

)2

. (III.13)

An interesting aspect of our problem concerns the orientation of current dipoles

during the propagation cycle. In one view concerning this problem, dipoles are ori-

ented inwards with respect to the surface of the ellipsoid, i.e. perpendicular to the

surface of propagation. The motivation for this approach is the fact that the cellular

exchange of ions in the stomach, mediated by the cells of Cajal, takes place between

the concentric tissue layers of the stomach, hence the orientation of the dipoles should

be inwards with respect to the propagation surface. The theoretical model captur-

ing this view of the phenomenon was derived by Irimia & Bradshaw in a previous

study [87], to which we refer the reader for the complete derivation. The expression

predicting the orientation of current dipoles in this model is given by

−q0
∇ξ

|∇ξ| , (III.14)

where q0 is in this case the assumed dipole strength q0 = |q0|, ∇ξ/|∇ξ| is the nor-

malized downward unit vector with respect to the ellipsoidal surface S, and ξ is a

function whose gradient is perpendicular to S, such that Eq. III.14 is satisfied:

ξ(x1, x2, x3) = x2 − α2

√
1 − x2

3

α2
3

− x2
1

α2
1

. (III.15)

The second approach to this problem is based on the fact that propagation is

observed in the stomach along the corpus and towards the pylorus and dipoles should

therefore be oriented in the direction of propagation. This argument requires the

computation of the unit tangent with respect to S, with a direction indicated by the

direction of propagation along the surface.
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Figure III.2: The electric potential u simulated using the ellipsoidal model for a point
located on the upper side of the ellipsoidal surface. The orientation of the dipoles
used to produce this wave is parallel to the direction of propagation.

Figure III.3: Same as Fig. III.2, but the orientation of the dipoles is perpendicular
(as opposed to parallel) to the direction of propagation.

To help clarify this issue, we have chosen to produce simulations using both mod-

els, in order to determine which one captures the characteristics of the GEA more

suitably. In the first case, the dipole orientation function is computed analytically;

in the second case, advantage is taken of the geometry and mesh definition shown

in Fig. III.1 to compute the unit tangent vector numerically, using a simple inter-

polation algorithm. Finally, a third type of simulation was generated, in which the

dipole orientation function is a linear combination with different weights of the two

functions described above.

Results and discussion

Computational results of our simulations are presented in Fig. III.2 and Fig. III.3.

The point for which the potential is evaluated corresponds, in both cases, to the

extremity of the ellipsoid in the z (vertical) direction. Thus our waveforms attempt

to reproduce the bioelectric potential as recorded on the upper extremity of the gastric
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wall. This simulated waveform agrees reasonably well with experiment and with other

simulations obtained with various models (see, for example, [23]). Notable features

are the presence of the upstroke followed by the sustained repolarization phase, two

characteristics that have been observed experimentally and explained theoretically

by activation models [23, 89]. In Fig. III.2, the orientation of the dipoles is along the

direction of propagation, as opposed to Fig. III.3, where the dipoles are perpendicular

to the ellipsoidal surface. The parallel dipole model waveform in Fig. III.2 is able

to reproduce the upstroke that is characteristic of experimentally-recorded EGG,

whereas the perpendicular-dipole model in Fig. III.3 is not. In addition to the two

cases above, simulations were produced for the scenario where the dipoles had both

a parallel (Qp) and a perpendicular (Qr) component with respect to the surface of

propagation as in Fig. 1 (d), where the linear combination is given by

Q = 0.8Qp + 0.2Qr. (III.16)

The criterion for the choice of coefficients specified above was based on the physiology

and anatomy of the problem. Thus, because the stomach wall is much thinner than it

is long with respect to the propagation direction, the coefficient of the perpendicular

dipole vector component was selected to be 0.2, i.e. smaller than the one for the

parallel vector component, which was assigned the value 0.8. With this chosen linear

combination of vectors, the resulting waveform was found to be very similar to the

one in Fig. III.2; this is why, for brevity, it is not reproduced here.

Three-dimensional visualizations of the simulated gastric surface potential are

shown in Fig. III.4, where the observed characteristics of the gastric electrical activity

are simulated. To acquire a correct understanding of what is conveyed in this figure,

it is necessary to analyze it by making close reference to Fig. III.2 because Fig. III.4

shows the evolution of the ellipsoidal surface potential as a function of time for the
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Figure III.4: Visualizations of the simulated electric potential on the surface of the
ellipsoid throughout an ECA cycle of 20 seconds. The colormap varies from bright
yellow at 30 mV to dark green at 0 mV. The time instants during the propagation
cycle that correspond to each of the images in (a)-(f) are (left to right and top down)
3, 7, 10, 13, 17, and 20 seconds, respectively. In (a), the beginning of a propagation
cycle is shown with the associated current dipoles drawn in red with orientations
determined by the direction of propagation. The gastric pacemaker is located in this
figure at the righ-hand extremity of the ellipsoid, in agreement with the physiological
characteristics of the stomach. In (b)-(e), the band of dipoles advances along the
gastric syncytium in the direction of the pylorus. In (f), the dipoles have reached
the pylorus and can be seen as a concentration of red vector arrows at the left-hand
extremity of the ellipsoid. On the opposite (right-hand) extremity, a new propagation
cycle is about to begin.

61



parallel dipole model. Since the waveform simulated for this model is presented in

Fig. III.2, a close relationship exists between the physical quantities depicted in these

two figures. Each image in Fig. III.4 (a)-(f) depicts a snapshot of the ellipsoidal

surface potential throughout the twenty-second propagation cycle. In each of these

3D plots, current dipoles are shown in red on the propagation surface with orientations

specified by the direction of propagation. The dipoles are located on the isopotential

ring where the electric potential reaches a maximum (bright yellow in the figures); this

ring corresponds to the potential spike in Fig. III.2. In Fig. III.4 (a)-(f), one can also

see an elliptic isopotential region immediately behind the ring of propagating dipoles.

This band separates the dipole ring (which is at a maximum of the potential) from

the portion of the ellipsoid located immediately after the band (where the potential

decreases gradually from bright yellow to dark green). The portion of the separating

band closest to the ring of dipoles corresponds to the resting potential plateau depicted

in Fig. III.2. Finally, the region of zero potential lying in front of the dipoles on the

left-hand side corresponds to the resting potential of the GI tissues after the passage

of a dipole band in the previous cycle.

The ellipsoidal model is important at a theoretical level because it offers one of the

very few geometries in which expressions for the electric potential and magnetic field

due to current dipoles can be formulated analytically. This key aspect of theoretical

GI modeling was emphasized in [87], where the ellipsoidal model was used to simulate

the gastric electric potential throughout a typical GEA propagation cycle. To further

our understanding of the GEA phenomenon, however, it is imperative to improve our

knowledge−both qualitative and quantitative−concerning the spatial resolutions of

different inverse methods in the context of EGG and MGG. This is important because,

although we are now able to detect disease states of the gut, our understanding of

pathological GEA remains limited; improved spatial resolution for inverse methods is
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thus critical for the study of GI processes at the tissue and even cellular level. In this

context, the forward model presented in this article is relevant in view of future work

in the area of inverse algorithm comparison and validation. To predict the possible

diagnostic relevance of our model in the context of inverse modelling, it may be useful

to consider the past use of ellipsoidal geometry in the area of fetal MEG (fMEG),

where Gutiérrez et al. [62] employed an ellipsoidal head model to obtain both forward

and inverse solutions that can characterize neural development in newborns. Their

motivation for using the ellipsoidal model came from an earlier analysis by Vrba et al.

[181], who had concluded that the spherical head model was superior to the uniform

abdomen model in fMEG. However, because the sphere does not provide an accurate

approximation to fetal head anatomy, the ellipsoid was chosen instead by the authors

in order to increase the realism of their implementation as well as the ability of their

model to capture important fMEG information. Thus, theirs is yet another example

showing that the tendency to replace a simple idealized model with one that is more

realistic is a powerful driving force in biophysical modelling. A line of reasoning

analogous to that of Gutiérrez et al. quite possibly applies to the case of EGG, where

the stomach has been modelled as a cylinder, cone or conoid [23, 120, 142, 143]. Such

studies found that idealized models with closer and closer resemblance to gastric

anatomy could offer greater and greater improvements in their ability to characterize

normal and pathological conditions in humans [143]. Thus, although specific details

regarding the superiority of the ellipsoidal EGG inverse model over other candidates

are not currently available because inverse solutions have not yet been implemented

for it, we believe that the ellipsoidal EGG model may nevertheless be very valuable in

light of the arguments presented above. For example, we believe that the uncoupling

of gastric electrical sources due to gastroparesis will be easier to characterize with our
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model than with a simpler, free-space dipole model, which has already been applied

to human data with partial success [89].

To ensure the correctness, accuracy and complete agreement of our computational

codes with the theory presented in the previous sections, all calculations were verified

by hand for selected values of the electric potential. Because the theoretical model

employed here makes use of a truncated infinite summation of ellipsoidal harmonic

terms, we have sought to understand the effect of truncation upon the accuracy of

the results obtained. In analogy with the theory of spherical harmonics as applied to

Laplace’s equation, one can expect that the contributions of harmonic terms to the

potential should diminish as the order of these terms increases. For the case of a dipole

in a sphere, this conclusion can be easily verified by inspection of the formulae for the

potential that were first derived by Frank in 1952 [55] and later implemented, among

others, by Purcell et al. [139], Schmidt and Pilkington [159], and He and Norgren [70].

For the sphere, the expressions for the potential involve, in a manner analogous to the

ellipsoidal case, an infinite summation over spherical harmonic terms. However, these

expressions have closed forms associated with them [55], which eliminates the need

for truncating the infinite summations over spherical harmonics when the potential

is evaluated. Furthermore, since closed form solutions are available, one does not

have to worry about the issue of accuracy that must be taken into account when a

truncated expansion is used. In the ellipsoidal case, closed form solutions are not

available in the literature. This is a serious drawback because one is then forced to

investigate the error associated with the ellipsoidal expansion used to compute the

potential. For the problem at hand, expressions for the potential u involving higher-

order harmonics (degree > 3) have not yet been derived (April 2005). As a result,

we have attempted to address the issue of accuracy by investigating the extent to

which first- and second-order terms contribute to u in our simulations. Because these
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Figure III.5: Probability density functions for the magnitudes of ellipsoidal harmonic
terms contributing to the potential u computed for the surface of the simulation
ellipsoid. The terms Si, i = 1, · · · , 4 are the four summations (terms of order lower
than 3) in Eq. III.1. Although lowest-order terms are important, the magnitudes of
second-order terms are also non-negligible.

harmonic terms can be of either negative or positive sign, acquiring a quantitative

understanding of how much higher- vs. lower-order terms contribute to the actual

potential is a delicate matter due to the possible effect of cancellation between terms

of identical or different order in Eq. III.1.

In light of these issues, we have chosen to compare the magnitudes of harmonic

terms that contribute to each individual value of u computed during a typical sim-

ulation. The results of this quantitative comparison is presented in Fig. III.5. To

produce this figure, we first normalized the magnitude of every harmonic term con-

tributing to each value of u with respect to that contributor that had the highest

magnitude. To explain this in mathematical notation, consider a computed potential
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value, call it u1, given numerically by the four terms in Eq. III.1, i.e.

u1 = b0 + S1 − S2 + S3 + S4, (III.17)

where S1, S2, S3 and S4 are the four summations (terms of order less than 3) in

that equation. To compare the contributions of these terms to the potential, the

values of Si, i = 1, · · · , 4 were normalized with respect to max{Si}. During our

simulations, the values of these normalized harmonic terms were recorded for all

values of the potential evaluated on the surface of the ellipsoid. Furthermore, the

probability distribution functions for each of these terms were computed to acquire a

quantitative understanding of how important they are to the evaluated potential.

In Fig. III.5, the probability distribution functions of the normalized harmonic

terms are presented. As the figure demonstrates, there is a high probability that any

of the terms included−regardless of their order−contributes substantially to the com-

puted potential. This becomes apparent upon examination of the probability range

[0.9, 1.0] in our figure. Another issue to be noted is that the significance of contribu-

tions by first- and second-order terms to the potential oscillates greatly between the

two extremes. What this may imply is that, from a quantitative standpoint, both

first- and second-order harmonic terms can be equally important in the evaluation of

the potential, at least in the case of the problem at hand. To better understand our

argument, it is useful to consider the same potential problem but for the case of the

sphere, where the magnitudes of higher-degree contributors to the potential decreases

rapidly as the degree of such terms increases. If this feature of the spherical problem

were to be used to predict the behavior of high-degree terms in the ellipsoidal case

at hand, one would expect that, overall, second-degree terms would contribute less

than first-degree terms. This, however, is not what Fig. III.5 suggests. Letting fk

represent the probability density function associated with ellipsoidal terms of order
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k, Fig. III.5 makes it clear that the terms S3 and S4 associated with second-degree

terms are important because the integral

∫ 1.0

0.9

fkdf (III.18)

for k = 2 is comparable in magnitude with the same integral associated with the

first-degree terms, for which k = 1. In other words,

∫ 1.0

0.9

f1df ∼
∫ 1.0

0.9

f2df. (III.19)

This means that, probabilistically, the contributors to the potential associated with

the first- and second-degree terms are comparable in magnitude and that the spherical

case does not provide a clear analogy with the ellipsoidal case. This may suggest

that further theoretical and/or computational investigation is required in order to

obtain expressions for u that include harmonic terms of degree higher than 2. Such

work may help in clarifying how large the approximation (series truncation) error is

for Eq. III.5 as derived in [99]. Finally, we note that the importance of high-order

ellipsoidal harmonic terms was also emphasized by Sona, who demonstrated that such

terms have a significant role when solving geodetic boundary value problems [165].

In our modeling case, higher-order harmonic terms may not significantly affect

the simulated waveforms presented in this article from a qualitative standpoint. We

believe this is the case because of the good qualitative agreement of our present results

with experiment and previous studies that used other models. For example, a free-

space dipole model [25] yielded waveforms very similar to ours; furthermore, both

our present results and those in [25] are in agreement with earlier theoretical studies

by Familoni et al. (who simulated the propagation of dipoles in cylindrical geometry

[52, 53]) and even with the earlier study of Sarna et al., who employed a coupled
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oscillator model [154]. Our theoretical results are also in agreement with a wide range

of experimental results, ranging from a very early study by Bozler [19] conducted in

1945 to recent ones (2001-2004) by Zhu & Chen [191], Parkman et al. [135] and

Horiguchi et al. [75], etc. Thus, higher-order contributors to the potential may not

be essential when only forward modeling is concerned. However, the situation may

be quite different in the case of inverse modeling. There, because of the ill-position of

the inverse problem, small changes in the measured or simulated potential can cause

significant changes in the reconstructed sources. The ellipsoidal expansion derivations

of Kariotou were published in 2004 [99]. Already, a very recent study by Gutiérrez

et al. [62] published in 2005 used the very same geometry and harmonic expansions

to second order that were employed in this article to obtain inverse solutions from

fetal magnetoencephalographic recordings. Since their approach was applied in the

context of encephalography and involved a different number of dipoles with different

activation patterns being studied, our observations regarding the issue of accuracy

may not be directly applicable to their study; it would therefore be premature and

ill-advised to criticize the accuracy of their results solely on this basis. However, we

believe that our present study is timely and extremely important because our results

can draw attention to the fact that the issue of ellipsoidal forward model accuracy is

not entirely elucidated and needs further investigation. Solving this matter possibly

involves the process of validating the use of inverse procedures in ellipsoidal geometry

based on an analysis of the error associated with the number of harmonic terms

included in the forward model.

Modeling the GEA using the ellipsoidal model is useful because it allows one to

explore many important problems related to gastric physiology in a simplified and ide-

alized geometry. Although the approximation errors associated with this formulation

remain an open issue, we have shown here that the electric waveform simulated with
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this model is able to reproduce very well key characteristics of the GEA waveform.

Future research will have to determine the optimal size of the ellipsoidal harmonic

expansion to be included in the forward model when inverse solutions based on such

a model are to be attempted.
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CHAPTER IV

DETECTION OF GASTRIC ELECTRICAL RESPONSE ACTIVITY

USING PCA

In humans and other mammals, GEA consists of (1) an electrical control activity

(ECA) that can be recorded as an electrical slow wave and (2) an electrical response

activity (ERA) that is characterized by spiking potentials during the plateau phase of

the ECA. From a theoretical perspective, it was proposed by Sarna et al. that ECA

can be modelled using a system of bidirectionally coupled relaxation oscillators [154,

155, 156]. Within the framework provided by this formalism, ERA was later shown

to correspond to a bifurcation solution to the set of higher-order partial differential

equations that describe the dynamics of this coupled gastric activation system [59, 28].

Thus far, ERA has only been detected in animals using EGG and the only hu-

man study available was performed with invasive serosal electrodes [77]. In 1995,

Atanassova et al. recorded spiking activity from anesthesized dogs using implanted

and cutaneous electrodes [9, 10]. In 1999, Akin and Sun recorded the spike activity

of the canine stomach using EGG [1]. These authors concluded that ERA in serosal

recordings occupies the frequency range of 50-80 cpm and later proposed an analysis

method to extract the motility information from the EGG signal in the frequency

range of ERA [2]. In 2001, Wang et al. investigated canine ERA using a blind source

separation algorithm [182, 183, 184]. An increasing number of studies point to the

possible use of ERA to identify and study gastric diseases. A study by Ouyang et

al. involving electroacupuncture of the canine stomach used ERA to quantify the

improvement of gastric emptying brought about by the procedure [133]. Another

investigation by Garcia-Casado et al. used spike potential recordings made using

surface electrodes to investigate and monitor intestinal mechanical activity in dogs
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[56]. Finally, Xu et al. studied the effects of enhanced viscosity on canine gastric and

intestinal motility from invasive ECA and ERA recordings [190].

The purpose of this chapter is to report the first noninvasive detection of ERA

in humans and to show that significant differences in ERA patterns exist in pre-

and post-prandial GEA. The application of principal component analysis (PCA) to

magnetogastrographic recordings with the purpose of isolating and characterizing

ERA patterns in the human stomach is demonstrated. In the following section, the

PCA method is described and the noninvasive detection of ERA is demonstrated using

the analysis of pre- and post-prandial ERA patterns recorded from 10 healthy human

patients. Detecting ERA is useful in a clinical context because ERA characteristics

can be used in a noninvasive way in order to differentiate between neurological and

physiological causes of GI diseases.

Methods

MGG signals were recorded using the multichannel SQUID magnetometer in

the Vanderbilt University GIST Laboratory. Informed consent was obtained from

a healthy human volunteer and the study was approved by the Vanderbilt Univer-

sity Institutional Review Board. Subjects were positioned underneath the SQUID

magnetometer inside the magnetically shielded room of the GIST Laboratory. Each

volunteer was asked to suspend respiration and lie quietly for a period of at least one

minute during each recording. For each recording, the magnetometer was oriented

such that the coils measuring the x̂ and ŷ components of the signal tangential to the

body surface were oriented in the sagittal and horizontal planes, and the coil mea-

suring the ẑ component normal to the body surface was oriented in the frontal plane.

Sample plots of the MGG signals recorded from one healthy subject are presented in

Fig. IV.1.
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Figure IV.1: Sample raw MGG SQUID recording (Bz field component signals) ac-
quired from a healthy human patient for a time interval of 1.5 minutes. Plots are
shown in the approximate spatial arrangement of the SQUID magnetomer coils.
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Figure IV.2: Selected gastric PC computed from the information provided by the sig-
nals in Fig. IV.1. The PC exhibits the characteristic waveform of ECA at a dominant
frequency of 3 cpm.
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Figure IV.3: Frequency spectrum of the gastric PC in Fig. IV.2: (A) 1-20 cpm and
(B) 20-100 cpm. The spectral energy present in the range 2-4 cpm corresponds to
the gastric signal, whereas the peaks at 70-80 cpm is due to the cardiac artifact. A
visual comparison of the ranges displayed on the vertical axes of the two plots (A)
and (B) reveals that the gastric ECA signal is by far much stronger than both the
respiration and cardiac artifacts. The power value associated with the highest peak in
the frequency spectrum for the interval 100-500 cpm was found to be about 5× 10−6

pT2/Hz, which is significantly lower than both (A) and (B); this demonstrates that
high-frequency components in this range contribute very little to the signal; for this
reason, the associated plot for the interval 100-500 cpm is not reproduced for brevity.
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PCA was employed to reduce the dimensionality of the acquired MGG recordings.

After computing the PC’s of an MGG data set, the so-called labeling problem of PCA

must be addressed. This problem can be defined as the “task of finding substantive

interpretations of some set of hypothetical latent variables which have been derived

through PCA” [69]. In the case at hand, this translates into the challenge of associat-

ing one of the computed PC’s with the gastric signal, which constitutes in this case the

latent variable of interest. For the present study, the labeling problem was addressed

using a visual analysis of the PC’s that sought to identify the particular PC whose

waveform best matched the gastric ECA waveform, which has a distinct frequency of

3 cpm. For the data set in Fig. IV.1, the selected PC is displayed in Fig. IV.2. As an

aid to the decision process concerning the optimal PC to select, the power spectral

density (PSD) of each PC was computed using the classical fast Fourier transform

(FFT) and analyzed visually, thus providing a time-frequency representation of the

MGG data. The frequency spectrum of the PC in Fig. IV.2 is shown in Fig. IV.3.

For the data set in Fig. IV.1, the selected PC is displayed in Fig. IV.2. As an aid to

the decision process concerning the optimal PC to select, the power spectral density

(PSD) of each PC can computed using the classical fast Fourier transform (FFT) and

analyzed visually, thus providing a time-frequency representation of the MGG data.

The frequency spectrum of the PC in Fig. IV.2 is shown in Fig. IV.3.

After selecting a suitable PC, the signals provided by the chosen PC was processed

for further analysis. First, linear detrending was applied to eliminate short-lived data

trends due to extraneous causes, thus ensuring that low-frequency noise was elimi-

nated. Then, a number of bandpass, second-order Butterworth filters are designed.

The Butterworth filter is maximally flat in the pass band and monotonic overall,

which reduces the effect of pass band ripples in the signal to a minimum. This type

of filter sacrifices rolloff steepness for monotonicity in the pass- and stopbands. To
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generate each filter, z-transform coefficients were created for a lowpass digital But-

terworth filter of order n with user-specified cutoff frequencies for each filter. Filter

coefficients were specified in our approach in two rows a and b of length n+1, with

coefficients listed in descending power of z:

H(z) =
A(z)

B(z)
(IV.1)

=
b(1) + b(2) 1

z
+ ...+ b(n + 1) 1

zn

1 + a(2)1
z

+ ...+ a(n + 1) 1
zn

. (IV.2)

Results

The cutoff frequencies used for our analysis and the resulting filtered waveforms

obtained from the processing of the PC in Fig. IV.2 are presented in Fig. IV.4, where

plots of magnetically recorded ECA and ERA are shown. It is well known that

the ECG and MCG signals due to the human heart have characteristic components

that are spread in a wide range of frequencies [38]. Thus, unavoidably, although

the dominant frequency of the cardiac signal is around 75 cpm for the example in

Fig. IV.4, the frequency ranges of ERA and MGG must overlap at least partially.

For this reason, both signals are displayed using the method of Fig. IV.4 (C), where

the cutoff frequencies for the Butterworth filter were 60-100 cpm. In that figure, the

cardiac waveform can be seen in the time interval between 0.45-0.80 min. However,

another signal is also present in Fig. IV.4 (C); this signal is both qualitatively and

quantitatively different from the cardiac MCG signal and why this is the case is

explained both below and by the analysis provided in Fig. IV.5.

1. the amplitude of the second signal identified in Fig. IV.4 (C) (i.e. the non-

cardiac signal corresponding to the signal in Fig. IV.5 (C)) is twice as high as that of

the MCG signal. The latter signal remained approximately constant throughout the
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Figure IV.4: Human MGG and MCG recordings indicating the possible presence
of ERA. Vertical grids are provided for convenience to emphasize the relationships
that exist between the three waveforms. (A) gastric ECA waveform obtained from
the gastric PC using a Butterworth filter with cutoff frequencies 1.8-40 cpm. (B)
superimposed gastric (ECA and ERA) and cardiac (magnetocardiogram - MCG)
signals obtained by applying a Butterworth filter with cutoff frequencies of 1.8-100
cpm to the PC. (C) superimposed gastric ERA and cardiac MCG signals obtained by
applying a Butterworth filter with frequencies 60-100 cpm. The characteristic shape
of the MCG signal is more evident throughout time segment 0.45-0.80 min, while the
suspected ERA signal can be distinguished within time segments 0.20-0.45, 0.85-1.15
and 1.2-1.3 min. It can be noticed that ERA has a higher amplitude and a lower
frequency than the MCG signal and that it appears only during the plateau phase
(i.e. after the beginning) of the associated ECA wave. Signals plotted within time
intervals [*] and [**] (delineated by vertical bars and horizontal arrows) are drawn
separately and discussed further in Fig. IV.5.
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Figure IV.5: MCG (A,B) and suspected ERA (C) waveforms isolated from Fig. IV.4
(C). Time interval indications Time interval indications are identical to those in
Fig. IV.4; note that the time scale in (A) and (B) differs from that in (C) because two
different time intervals are displayed, i.e. (A) and (B) correspond to [*] in Fig. IV.4
while (C) corresponds to [**] in Fig. IV.4. Verticale scale intervals are the same in
both (B) and (C) to emphasize the difference in magnitude between the MCG and
ERA signals. In (A), the unfiltered cardiac PC is shown; because no filter was ap-
plied there, the magnitude of the signal is higher than in (B), where the filtered
MCG signal for the same time period in (A) is nevertheless still identifiable; the P,
Q, R, S and T waves that are characteristic of cardiac activity are labeled for a sam-
ple MCG interval. In (C), the ERA waveform is of greater magnitude and does not
exhibit MCG characteristics. The fact that the MCG and ERA are out of phase with
each other is indicated by the presence of an oscillating envelope associated the ERA
signal, indicating again two distinct generating sources for the two phenomena.
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entire analyzed time segment because the human subject lay still and did not move

throughout the data acquisition process.

2. the waveform of the second identified signal differs categorically from the MCG

waveform (see Fig. IV.5).

3. the non-cardiac signal was identified in the frequency range of 60-100 cpm, i.e.

in approximately the same frequency range where ERA had been detected in animals

(see, for example, [9, 1]).

4. Most importantly, the non-cardiac signal in Fig. IV.4 (C) is seen only during

the plateau phase of the corresponding ECA waveform in Figure IV.4 (A). This can

be demonstrated by analyzing time segments 0.20-0.45 min, 0.85-1.15 min and 1.2-

1.3 min, where it is clear that the second identified signal appears on the plateau

of the ECA wave. Thus the non-cardiac signal satisfies the properties of the ERA

signal previously observed in canines and felines by a plethora of other GI researchers

[9, 1, 182, 183]. It is reasonable to assume that human ERA would be seen in about

the same frequency range because the depolarization and contractile mechanisms of

the gastric muscles that are responsible for ERA are very similar for both humans

and animals.

5. The second observed signal cannot be due to small or large intestine activities

because the frequency ranges of these two types of electrical activity are far below

the frequency range investigated here (i.e. 10-15 cpm for the small intestine and 8-12

cpm for the large intestine). In addition, skeletal muscle activity exhibits frequencies

above the frequency range of 60-100 cpm investigated here and neither intestinal nor

muscular activity are time-locked with the plateau phase of the ECA cycle.

In view of the reasons enumerated above, one can conclude that the non-cardiac

signal in Fig. IV.4 (C) is generated by the ERA signal from the human stomach.

This figure provides an example of what motivates our belief that we detected ERA
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from the MGG signal. Because our subjects lay still throughout the data acquisition

process, there is no reason to consider the possibility of abrupt changes in the charac-

teristics of the MCG signal for the time periods analyzed. One might argue, however,

that the presence of the non-cardiac signal on the plateau phase of the ECA wave

in Fig. IV.4 (point 4 above) is due to mere coincidence. In our analysis approach,

however, this possibility was refuted in light of a statistical test applied to the 10

human MGG data sets used in our study. This test was applied as follows. First, a

computer-based analysis identical to the one in Fig. IV.4 (A)-(C) was conducted for

every human data set used in this study. Then, for each slow wave detected in a data

set (Fig. IV.4 (A)), the associated plot analogous to the one in Fig. IV.4 (C) was an-

alyzed and every non-cardiac signal detected using the analysis above was subjected

to criteria (1), (2) and (3) above. It was then found that, when the non-cardiac signal

fulfilled all these three criteria, it also fulfilled criterion 4 above in more than 19 out

of 20 cases (confidence level > 95%). Thus it is statistically reasonable to conclude

that the appearance of our non-cardiac signal only during the plateau phase of the

ECA is not a coincidence and that the signal is human ERA.

Postprandial changes in ECA patterns have been investigated by a number of

authors. Terasaka et al. was among the first to show that that cellular coupling

decreases post-prandially [172]. Postprandial changes in electrical control activity

that are recordable from serosal and cutaneous EGG recordings have been inves-

tigated, among others, by Lin et al. [105, 106]. Prompted to investigate this phe-

nomenon by the controversial interpretations that have been given to the postprandial

increase in the dominant power of the EGG, these researchers concluded that exoge-

nous stimulation−such as water ingestion− may change ECA amplitudes that are

reflected in the EGG.

To study the effect of eating upon ERA characteristics, the analysis methods
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Table IV.1: ERA analysis results for pre- and post-prandial human data (pre and
post). Percentage differences were computed according to the formula (post−pre) ×
100 / pre.

ECA waves with ERA spikes(%)

Subject Pre-prandial Post-prandial Difference(%)
1 28 47 68
2 30 50 67
3 36 54 50
4 38 63 66
5 39 61 56
6 40 67 68
7 46 62 35
8 46 63 37
9 52 67 29
10 56 72 29

Mean 41 61 47

presented in the previous section were applied to the MGG data acquired from ten

healthy human volunteers. Both pre- and post-prandial recordings were acquired for

each patient and 20 minutes of recordings (10 of pre- and 10 of post-prandial data)

were analyzed for each patient. After acquiring pre-prandial data, subjects were given

a standard turkey sandwich and 300 ml of water, whereafter post-prandial data were

acquired.

The results of our data analysis are summarized in Table IV.1. For each patient,

the number of ECA waves was counted and the percentage of those waves that ex-

hibited what we suspect to be ERA patterns detectable using our algorithm was also

computed. The fact that the percentage of ECA waves with ERA activity is different

from subject to subject is an indicator of inter-patient anatomical and physiological

variability as well as other factors such as different signal-to-noise ratios for each

experiment, small experimental setup differences, etc. Nevertheless, as a result of
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Figure IV.6: Box plot of post-prandial percentages of ECA waves exhibiting ERA vs.
similar pre-prandial percentages. Horizontal lines indicate the mean (red), first and
third quartiles (blue) and ranges (black) of the percentage values (no outliers were
found). The statistical difference between the means of the two quantities plotted
indicates that eating leads to a statistical increase in ERA (p < 0.0001).
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Figure IV.7: Plot of post-prandial percentages of ECA waves believed to exhibit ERA
vs. similar pre-prandial percentages. The line of best fit in the least squares sense is
also displayed. The fit to the data indicates that a linear increase in ERA amplitude
is associated with eating.
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applying a two-tailed paired t test, a statistically significant difference between pre-

and post-prandial ERA recordings was found (p < 0.0001). This may be evidence

that, as a result of eating, the amplitude of ERA increases by approximately one half

of its pre-prandial value in normal humans. This conclusion is supported by the box

plot in Fig. IV.7, where it can be seen that a statistical difference exists between pre-

and post-prandial averages of ECA wave percentages with exhibited ERA.

A simple plot of the quantities in the third column of the table (post-prandial per-

centage) vs. those in the second table (pre-prandial percentage) is shown in Fig. IV.7.

The least-squares line of best fit was computed using a nonlinear optimization algo-

rithm. The result of applying this technique shows that a linear relationship between

the two quantities (pre- and post-prandial percentages) is quite suitable. What this

indicates is that the amplitude of ERA in the human stomach increases linearly from

pre- to post-prandial recordings by approximately 50%. Whereas this is expected

on physiological grounds because ERA is associated with the contractile behavior of

the stomach (which increases post-prandially during digestion), this is the first study

to report and quantify this increase in humans. Thus these results may represent an

independent confirmation of the close relationship of direct dependence between ERA

and the contractile activity of the gastric smooth muscle using the novel biomagnetic

method of investigation. Moreover, the fact that this result could be obtained from

our analysis without having treated it as an assumption throughout our investigation

is an indicator in favor of biomagnetic method reliability.

The ECA patterns detected using our algorithm were found to exhibit a domi-

nating frequency of 61.2 ± 2.4 cpm (mean ± SE, where the standard error SE of the

sample was computed based on its standard deviation σ̂ using the formula SE = σ̂/
√
n

where n=10 is the sample size). This value differs significantly from the dominating

frequency of the cardiac signal, which was found to be 77.6 ± 1.7 cpm (mean ± SE).
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What this may imply is that there is relatively little overlap between the frequency

contents of the two signals, which is of course benefic from the standpoint of isolating

and studying ECA during the analysis process.

An important issue to note at this point is that, since this is the first reported ERA

detection from noninvasive MGG recordings, some type of independent validation of

the results presented here must be obtained by means of a highly-reliable method

such as invasive serosal recordings from humans. Although such recordings are not

available in our case, one can state confidently that we have detected and analyzed a

type of signal that is time-locked with the plateau phase of ECA and that we strongly

believe to be a human ERA signal. To fully ascertain the validity of our claim, a future

correlation study involving direct serosal or mucosal electrode recordings−which has

been done before and is therefore a trusted method−and MGG recordings is necessary.

In conclusion, by means of a PCA of non-invasively acquired MGG signals, a

biological signal with characteristics that strongly resemble those of gastric ERA

in humans was detected. By analyzing the frequency spectrum of the gastric PC,

suspected human ERA was found in the frequency range of 60-100 cpm, as well as

post-prandial increases in the contractile activity of the smooth gastric muscle. The

analysis technique employed opens a new avenue of investigation into the charac-

terization of gastric diseases in man, including the possible future development of

noninvasive methods of diagnosis that could potentially differentiate between gas-

tric diseases of neurological and muscular origin based on the principal component

analysis of ERA recordings.
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CHAPTER V

BIOMAGNETIC SIGNAL EXTRACTION USING FAST ICA

Introduction

The artifact removal problem for magnetic fields recorded from GI electrical ac-

tivity is at least as difficult as it is in electro- (EEG) and magneto-encephalography

(MEG) or electro- (ECG) and magneto-cardiography (MCG). In the case of MEG

compared to MGG, the head is positioned farther away from other organs that pro-

duce strong magnetic fields (such as the heart and abdomen) [66]. In MCG, the

magnetic signal of the heart is quite strong compared to that of the surrounding or-

gans, which is beneficial in terms of the signal-to-noise ratios of MCG experiments

[42].

The stomach is positioned just below the diaphragm, which implies that respira-

tion artifacts can be very strong if the subject is breathing. In the case of conscious

humans, this problem can be partially addressed by asking subjects to hold their

breath for specified periods of time [22]. This solution is not entirely satisfactory, as

it significantly limits the length of data segments. Moreover, frequency analysis is

very limited by the time length of the data segments, which may obscure bradygastria

since its frequency is of about 0.5 cpm. Longer segments can be acquired while the

subject is breathing; however, for such data to be easily analyzable, a method is re-

quired in order to address the respiratory artifact issue. Thus far, both conventional

filtering [21] and adaptive respiration signal subtraction [134] have been implemented

for MGG, but only with modest success. Conventional methods−such as Butter-

worth and Tchebyshev filters−are capable of removing respiration artifacts−albeit

imperfectly−but, in doing so, they can also remove important biological information
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from the data [129]. Adaptive respiration subtraction can be implemented by sub-

tracting a (scaled) respiration signal recorded in a reference sensor from channels that

record magnetic data. However, the implementation of this method is problematic−to

say the least−in realistic contexts because, while the frequency of the respiration sig-

nal recorded by the reference respiration channel may be identical to that recorded

by the magnetic data channels, the waveform assumed by the respiration artifact

signal can differ greatly across channels, which can make signal subtraction more

problematic [180].

A major problem of MGG data acquisition is related to the presence of motion

artifacts caused by small movements made by subjects in the waking state while data

are being acquired. Very often, MGG measurements are made both pre- and post-

prandially for periods of time of the order of hours. This is required because certain

pathological changes in gastric activity as a result of eating occur only gradually

in time, which can require lengthy data acquisition sessions [135]. In view of this,

motion artifacts caused by movements of the human subject under the measurement

apparatus are often unavoidable.

Another important problem consists of the fact that the gastric ECA signal is often

obscured in MGG recordings by the presence of cardiac, muscular and/or intestinal

artifacts, which can also reduce the quality of MGG signals. Although cardiac activity

usually has its frequency peak between 60-80 cpm in resting humans (as opposed to

the frequency peak of ECA, which is located around 3 cpm), the power spectrum

of the cardiac signal does contain a large amount of energy in the low frequency

range [38]. The same can be said about cardiac and intestinal signals because the

dominating frequency of the latter is between 8-12 cpm, which is also in the range

of low-frequency cardiac activity. Finally, the fact that respiration causes motion

artifacts implies that SQUID sensors record magnetic field information at different
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positions with respect to the location of the stomach throughout the data acquisition

process. This complicates the issue of applying inverse procedures with accuracy.

The purpose of this chapter is to describe and demonstrate the use of the fast

independent component analysis (fast ICA) technique for the separation of the gastric

signal from MGG data in the presence of severe motion, cardiac and respiratory

artifacts. In the following section, an overview of the fast ICA algorithm is first

given. Then, the application of fast ICA to an experimental MGG data set containing

a significant amount of artifacts is illustrated. In particular, the isolation of the

gastric signal as well as that of cardiac, respiratory and other motion artifacts is

demonstrated. An accuracy analysis of the results is then carried out to conclude

that the method is quite robust and appropriate for the analysis of MGG signals.

Methods

The MGG signals used here were recorded using the multichannel SQUID mag-

netometer in the Vanderbilt University GIST Laboratory. The study was approved

by the Vanderbilt University Institutional Review Board. Human volunteers were

positioned underneath the SQUID magnetometer inside the magnetically shielded

room of the GIST Laboratory. Informed consent was obtained from each of these

volunteers. Throughout the recording period, the magnetometer were oriented such

that the coils measuring the x̂ and ŷ components of the signal tangential to the body

surface were oriented in the sagittal and horizontal planes, and the coil measuring the

ẑ component normal to the body surface was oriented in the frontal plane. Sample

plots of the MGG signals recorded from one healthy subject in which substantial noise

and artifact components are present are presented in Fig. V.1.

Fast independent component analysis (fast ICA) was employed to analyze MGG
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Figure V.1: Sample raw MGG SQUID recordings (Bz field component signals) ac-
quired from a healthy human patient for a time interval of 2.5 minutes. Magnetic
field values (pT) are plotted against time (minutes). Plots are shown in the approx-
imate spatial arrangement of the SQUID magnetometer coils. The signal due to the
stomach is not apparent from these recordings due to the presence of severe motion,
cardiac and respiratory artifacts.
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recordings from ten healthy adult human volunteers. Since ICA involves the compu-

tation of the covariance matrix of the MGG data−which can be (near)-singular−data

dimensionality was reduced in our approach [91] using principal component analysis

(PCA), whereafter the fast ICA algorithm described below was applied to the reduced

data.

Originally introduced independently by Pearson in 1901 and by Hotelling in 1933,

PCA is a multivariate analysis technique that attempts to describe the variation of a

set of multivariate data in terms of a set of uncorrelated variables, each of which is a

particular linear combination of the original variables [51]. The recorded MGG signal

includes not only the gastric ECA and ERA, but also other underlying variables that

can be considered, in our case, to be artifacts due to respiration, cardiac activity and

to the rest of the GI tract (duodenum, small and large intestine). Each computed

principal component (PC) of the MGG observation set is a linear combination of the

underlying variables in that set. Specifically, they are those particular combinations

which maximize the variances of each PC subject to the constraint of orthonormality.

. Letting xk represent one of these original n variables (k = 1, ..., n), the i-th PC yi

can be formally defined as

yi =

n∑

k=1

αikxk, (V.1)

where αik are the linear coefficients (weights) assigned to each variable xk for the i-th

PC yi. In matrix notation,

x = (x1, x2, ..., xn) (V.2)

αT
i = (αi1, αi2, ..., αin)T (V.3)

where αT
i denotes the transpose of the column matrix αi. The definition of yi can
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now be written simply as

yi = αT
i x. (V.4)

In PCA, the i-th PC is that linear combination αT
i x which maximizes the value of

the variance var (yi) subject to the orthonormality constraint specified by

αT
i αj = δij, (V.5)

where δij is the usual Kronecker delta function. The variance is computed from

var(yi) = var(αT
i x) (V.6)

= αT
i Sαi, (V.7)

where S is the variance-covariance matrix of the original variables. The optimization

technique of Lagrange multipliers [123, 34] is applied in our approach to maximize

the variance of each PC, which leads to the calculation of the eigenvectors of S.

These eigenvectors correspond to the eigenvalues of the variance-covariance matrix

arranged in descending order according to their magnitude; thus the first PC can

be interpreted as that linear combination of the original variables which maximally

discriminates among a set of subjects. Z scores, defined as the data formed by

transforming the original data into the space of the PC’s, are also computed. An

important statistic associated with PCA is Hotelling’s T 2 statistic, which provides

a measure of the multivariate distance of each observation from the center of the

data set. In our computational approach, in addition to the PC’s, we also compute

Z scores, the eigenvalues of the covariance matrix as well as Hotelling’s T 2 statistic

for each time data point. After dimensionality reduction, the number of PCs that
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was retained was set to the number of input signals, which account for most of the

explained variance in the data.

ICA is a data analysis technique that attempts to recover unobserved signals

or ‘sources’ from observed mixtures, i.e. typically from the output of an array of

sensors [33]. ICA has already been employed quite successfully in a variety of fields,

including EEG [108, 109, 98], MEG [177, 178, 179], fetal ECG [102] and MCG [42]. In

GI research, ICA was used by Wang et al. to blindly separate slow waves and spikes

from invasive measurements of gastrointestinal electrical activity [182] in animals.

In 2005, it was used by Liang [104] to extract the ECA waveform from invasive

EGG measurements. Our study is the first one to demonstrate the use of ICA for

noninvasive MGG gastric signal extraction.

Let x1, x2, ..., xn be a set of n observed random variables expressed as linear

combinations of another n random variables s1, s2, ..., sn, i.e.

xi = ai1s1 + ai2s2 + ...+ ainsn =
n∑

j=1

aijsj, (V.8)

where i = 1, ..., n and aij ∈ R. The si are assumed to be statistically mutually

independent. Let x and s denote the random vectors containing the mixtures x1, x2,

..., xn and s1, s2, ..., sn, respectively and let A denote the matrix with entries Aij =

aij. The mixing model above can then be written simply as

x = As. (V.9)

In terms of the formalism provided above, the task involved in ICA consists of finding

s (in our case, the underlying gastric, cardiac, etc. signals) in terms of some given x

(i.e. SQUID-recorded signals for our purposes) by identifying a suitable choice of the

matrix elements of A. We have used the fixed-point fast ICA algorithm of Hyvärinen
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as described in [79]. Since the details of this algorithm are extensively discussed

elsewhere [81, 82, 83], the method is only summarized here.

Let the differential entropy H of a random vector y = (y1, y2, ..., yn)
T with prob-

ability density function f(.) be defined as

H(y) = −
∫

dy f(y) lnf(y). (V.10)

In the present case, the term entropy refers to the basic information-theoretic quan-

tity for continuous one-dimensional random variables. The negentropy J can be

interpreted as a measure of nongaussianity and can be defined as

J(y) = H(yg) −H(y), (V.11)

where yg is a Gaussian random vector of the same covariance matrix as y. The

mutual information I between the n scalar random variables yi is a natural measure

of the dependence between random variables that can be defined as

I(y1, y2, ..., yn) = J(y) −
∑

i

J(yi), (V.12)

where

J(yi) = H(yig) −H(yi) (V.13)

since yi is a scalar random variable. The ICA of the random vector x can now be de-

fined as the invertible transformation s = Wx chosen in such a way that I(s1, s2, .., sn)

is minimized. This is equivalent to the task of finding the direction in which negen-

tropy is maximized. To achieve this, negentropy is first approximated in our approach
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Figure V.2: ICs obtained from the SQUID data input in Fig. V.1. Magnetic field
values (pT) are plotted against time (minutes). The ICs in (a), (b), (c) and (d) are
believed to correspond to (partially overlapping) motion artifacts in the data while
(e) shows the gastric slow wave of ECA that was isolated as a separate IC with a
dominating frequency of 3 cpm. The ICs corresponding to cardiac activity and to
respiration are presented in (f) and (g), respectively. High-frequency noise in the data
was also isolated by fast ICA as a separate IC shown in (h).
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using

J(w) = [E {G(wTx)} − E {G(ν)}]2, (V.14)

where E {.} is the expectation operator, w is an m-dimensional weight vector subject

to the constraint E {(wTx)2} = 1, ν is a standardized Gaussian variable and G is

the so-called contrast function (g and g′ denote the first and second derivatives of G).

Theoretically, G can be any non-quadratic form; however, three contrast functions

are most commonly used, namely

G1(u) =
1

a1
ln cosh(a1u) (V.15)

G2(u) = − 1

a2
exp

(
−a2u

2

2

)
(V.16)

G3(u) =
u4

4
, (V.17)

where 1 ≤ a1 ≤ 2 and a2 ≈ 1 are constants. Our experience showed that most of the

ICs isolated from our MGG data were sub-Gaussian; therefore, of the three functions

above, G3 was selected for our calculations because it is very suitable as a general

purpose contrast function in such cases [14, 80, 82].

The task of maximizing negentropy can be rephrased as the goal of finding max

{∑i JG(wi)}, i = 1, ..., n, subject to the constraint E {(wT
j x)(wT

k x)} = δjk, where

δjk denotes the Kronecker delta function. In our fixed-point approach, after data

sphering (whitening) has been performed, each new value of w (denoted by w+) is

obtained iteratively from the old value of w (denoted by w−) using the formulae

w′ = E {xg(w−Tx)} − E {g′(w−Tx)} w− (V.18)

w+ =
w′

||w′|| , (V.19)
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where ||w′|| indicates the Euclidian norm of w′ and w−T indicates the transpose of

w− (not to be confused with (w−1)
T
, i.e. the inverse of w taken to the power T ).

Because our form of the Hyvärinen algorithm makes use of the Newton-Ralphson

method of convergence (which is not guaranteed), a stabilizing step is introduced in

our approach so as to ensure its convergence.

The expression for the stabilizing step of the algorithm can be derived by making

use of the Kuhn-Tucker conditions [107], according to which the optima of E
{
G(wTx)

}

under the constraint E{
(
wTx

)2} = ||w|| = 1 are obtained at points where

E
{
xg(wTx)

}
− βw = 0. (V.20)

The symbol β used above denotes the quantity

β = E {w−Tx g (w−Tx)}. (V.21)

To solve Eq. V.20 using Newton’s method, one can label the left hand side of the

equation above as a function F that must be set to zero. The Jacobian matrix JF

of this function can be computed from

JF = E
{
xx′g′(wTx)

}
− βI, (V.22)

where I is the identity matrix. Using the set of approximations

E
{
xx′g′(wTx)

}
≈ E

{
xxT

}
E
{
g′(wTx)

}
(V.23)

≈ E
{
g′(wTx)

}
I, (V.24)
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the Jacobian matrix becomes diagonal and can be inverted. Then, by applying New-

ton’s method, Eq. V.20 yields

w′ = w− − µ
E {x g (w−Tx)} − βw−

E {g′ (w−Tx)} − β
(V.25)

w+ =
w′

||w′|| , (V.26)

where µ is a step size parameter. In our study, the parameter µ was assigned the

value of 0.005. As far as the number of ICs to be separated by fast ICA is concerned,

it was found that a very suitable choice for this was given by the number of SQUID

magnetometer channels, i.e. the number of signals acquired during each experiment.

Within the theoretical framework of fast ICA, this choice does have a reasonable

amount of merit [69] since most of the explained variances of the original signals are

accounted for in this approach.

After computing the IC’s of an MGG data set, the so-called labeling problem

of PCA must be addressed. This problem can be defined as the “task of finding

substantive interpretations of some set of hypothetical latent variables which have

been derived” [69]. In the case at hand, this translates into the challenge of associating

one of the computed IC’s with the gastric signal, which constitutes in this case the

latent variable of interest. For the present study, the labeling problem was addressed

using a visual analysis of the IC’s that sought to identify the particular IC whose

waveform best matched the gastric ECA waveform, which has a distinct frequency of

3 cpm.

Results and discussion

The results of the fast ICA analysis of MGG data are shown in Figs. V.2-V.5. In

Fig. V.2, the ICs isolated with our fast ICA algorithm are presented. These ICs are
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Figure V.3: Plot of the SQUID signal shown in red (i.e. the signal plotted in the
second column and second row) in Fig. V.1. The contributors of each of the ICs
separated by fast ICA in Fig. V.2 are pointed out by arrows. The labels for each
arrow correspond to the ICs displayed in the associated subplot of Fig. V.2 that is
labeled by the same letter. Thus, the features labeled by (a), (b), (d) are artifacts
while those indicated by (f) and (g) are of cardiac and respiratory origin, respectively.
The artifact shown in Fig. V.2 (c) is not readily apparent due to a cancellation effect
between the waveforms due to artifacts (a), (b) and (d). In the cases of cardiac
and respiratory activities, only a few selected artifact features are labeled by arrows
due to the their large number in the featured plot. Because of these artifacts, the
waveform of the signal does not allow one to visually identify the gastric IC of the
signal. However, the fast ICA technique does allow one to do this quite well (see
Fig.V.2 (e)).
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arranged from (a) to (h) in the order of their contributions to the variances of the

raw SQUID signals. The ones in Fig. V.2 (a)-(d) can be identified as motion artifacts

caused by the movement of the human subject under the SQUID. These ICs have

higher magnitudes than those in Fig. V.2 (e)-(h) and dominate in fact the waveforms

of the raw SQUID signals shown in Fig. V.1. Because of these artifacts, the wave-

form of the gastric ECA signal is not distinguishable in the latter plots. Fig. V.2 (e)

shows a sinusoidal waveform with a dominating frequency of approximately 3 cpm,

corresponding to the gastric signal. The cardiac MCG signal was also isolated by the

algorithm as a separate IC with a dominating frequency of about 75 cpm, as shown

in Fig. V.2 (f). The respiratory artifact in the SQUID data is of smaller magnitude

than both the gastric and the cardiac signals and has a dominating frequency of ap-

proximately 13 cpm (Fig. V.2 (g)). Finally, the fast ICA algorithm was also found to

be capable of isolating a high-frequency IC that we believe to correspond to environ-

mental and magnetometer noise (Fig. V.2 (h)), although further study is required for

clarification. If fast ICA is indeed able to obtain a quantitative assessment of noise,

the algorithm may be very suitable for measuring the signal-to-noise ratio of MGG

experiments.

Some of the ICs in Fig. V.2 can be identified from the raw SQUID data in Fig. V.1;

this is demonstrated in Fig. V.3. The most important conclusion that can be drawn

from this figure is that, if artifacts due to motion, cardiac and respiratory activities

are present, the gastric ECA waveform can be very difficult−if not impossible−to

distinguish visually. This, together with the other results of our study, points out

that the fast ICA algorithm is extremely suitable for the analysis of MGG signals.

Although sometimes difficult, the issues of (1) relating individual ICs to signals

produced by actual biological sources and (2) determining realistic polarities and in-

tensities for these signals from ICA information can be addressed in several ways. A
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common procedure is to retrieve field pattern information from the mixing vector ai

of the i-th IC [179]. A spatial mapping technique where mixing vector coefficients are

associated with individual spatial locations on the horizontal grid of SQUID chan-

nel sensors can then be employed in many cases to determine the sources for which

fast ICA has captured signal information in the ICs. In most cases of interest to

our study (including those of gastric or cardiac signals), improved confidence regard-

ing the realism of the IC extraction procedure is provided when ICs have both (1)

waveforms that resemble those of biological signals originating in the organs of in-

terest (stomach and heart, in our case) and (2) field patterns that are convincingly

associated with the spatial locations of the organs where these biological signals are

known to be generated based on a priori information. For example, a field pattern

revealing the presence of a current dipole in the anatomic region of the gastric corpus

and associated with a sinusoidal IC waveform that resembles the gastric ECA signal

provides strong indication that the isolated IC corresponds to a signal generated in

the stomach. It should be noted that the field patterns discussed here display map-

pings of dimensionless coefficients in the mixing vector ai rather than actual magnetic

field values. Thus, these visual tools depict the pattern of the field associated with a

particular IC rather than its actual physical values.

An example that illustrates the method of analysis described above is presented

in Fig. V.4. There, the field pattern due to the isolated gastric IC in Fig. V.2 (e)

is displayed. Because the SQUID sensors of the Tristan 637i biomagnetometer are

distributed horizontally, the pattern displayed is two- rather than three-dimensional

as in the case of MEG, where field patterns are often used [179]. The field pattern in

Fig. V.4 reveals the presence of a current dipole oriented in the direction of gastric

ECA propagation; the location of the dipole under the measurement grid can be

inferred based on a simple geometric argument [189] which shows that the dipole is
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located on the line segment that connects the points on the grid where the extrema

of the field are located. The approximate orientation of the dipole can then be

determined by applying the right hand rule of electrodynamics. The outline of the

stomach is presented solely for illustrative purposes. Aside from being two- rather

than three-dimensional, this type of field pattern is very similar to those used in

MEG research [179]. What can be inferred from our figure is that the characteristics

of the field pattern do satisfy the anatomic (i.e. dipole position) and physiologic

(i.e. orientation along the propagation axis) conditions expected for a current dipole

that approximates gastric ECA. In conclusion, the field pattern approach−coupled

with the visual inspection method for analyzing IC waveforms−does seem to provide

conclusive information that can allow us to identify the gastric IC with a reasonable

amount of certainty.

This analysis would be incomplete if it did not offer a measure of fast ICA accuracy

with respect to its ability to recover biological and non-biological signals satisfactorily.

To demonstrate the algorithm’s ability to extract these ICs faithfully, a comparison

plot of fast ICA-reconstructed and electrode-measured respiration activity is pre-

sented in Fig. V.5. This figure shows excellent agreement between the reconstructed

and the directly-measured waveform. The decision to choose this particular type of

activity for validation is motivated by the practical ease associated with the noninva-

sive measurement of respiratory activity. As one may point out, our plot only offers

an indirect measure of the accuracy associated with the ability of fast ICA to recon-

struct the gastric IC with high accuracy. To obtain a direct measure of accuracy, an

invasive method of validation (e.g. serosal electrode measurements of ECA) would

also be required.

The ability of fast ICA to extract the gastric signal from MGG data can be made

more obvious using a comparative analysis of this technique to a more traditional
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Figure V.4: Two dimensional field pattern associated with the gastric IC in Fig. V.2
(e). The map was generated by associating the coefficients of the mixing vector ai for
the gastric IC with the appropriate locations of corresponding SQUID channel sensors.
To generate field values for the remaining nodes of the grid where no data had been
recorded, two-dimensional biharmonic spline interpolation [153] was employed. The
field pattern values displayed are dimensionless and are normalized for simplicity with
respect to |max{ai}| (the largest absolute value among the coefficients in the mixing
vector of the selected IC). The black arrow indicates the approximate location and
projection onto the 2D plane of the gastric current dipole that generates the magnetic
field being measured (the orientation of the dipole is determined using the right hand
rule of magnetism). The approximate outline of the stomach is shown for orientation
purposes only.
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Figure V.5: Comparison plot of fast ICA-reconstructed (a) and directly-recorded
(b) respiration activity. In (a), the plotted respiration signal is the same IC as the
one presented in Fig.V.2 (g). This IC was reconstructed solely from the data. The
signal shown in (b) was directly recorded from the human subject during the experi-
ment using a nasal sensor that records variations in the temperature of the subject’s
breath. The two plots have different scales and units because the first one is an IC
corresponding to a magnetic field component whereas the second one is an electric
potential signal that was directly measured with an electrode system. Upon fitting
the signal in (a) to the one in (b) in a least-squares sense, the value of the correlation
coefficient r between the two quantities was found to be 0.957.
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method such as digital filtering. A filter that has been widely used in MGG studies is

the Butterworth filter [22, 24]. The second-order Butterworth filter that was applied

for the purpose of our comparison is maximally flat in the pass band and monotonic

overall, which reduces the effect of pass band ripples in the signal to a minimum.

This type of filter sacrifices rolloff steepness for monotonicity in the pass- and stop-

bands. To generate the filter, z-transform coefficients were created for a lowpass

digital Butterworth filter with the user-specified cutoff frequencies of 1 and 20 cpm.

The low cutoff of 1 cpm was selected in order to eliminate high frequency noise from

the resulting waveform, while the upper cutoff of 20 cpm was chosen so as to take

into account the high-frequency components of the gastric signal, whose dominant

frequency is 3 cpm. Moreover, the selection of the value for the upper cutoff was

motivated by the need to prevent the occurence of aliasing effects that can appear

when filtering windows are too restrictive.

In Fig. V.6, two traces are presented, namely (1) the extracted gastric IC and (2)

the waveform produced as a result of applying the Butterworth filter described above

to the SQUID signal drawn in red in Fig. V.1 and reproduced in Fig. V.3. The fact

that high-frequency signal components are present in the IC waveform as opposed to

the filtered signal waveform is due to the fact that the application of fast ICA did

not involve filtering in any way. One conclusion that can be drawn from Fig. V.6

is that, compared to the filtered signal, the waveform produced by fast ICA is more

similar to the typical gastric ECA signal that has been recorded using both invasive

and noninvasive procedures [17, 24]. Moreover, there is little similarity between the

gastric IC and the filtered signal aside from their comparable magnitudes. The filtered

SQUID signal contains a large number of spurious, short-lived oscillations that may

be due to filtering artifacts; its waveform does not exhibit close similarity to the

expected sinusoidal shape of the gastric ECA waveform. Nevertheless, any claim that
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Figure V.6: Comparison between the gastric IC (blue, continuous) and the filtered
SQUID signal in Fig. V.3 after the application of the Butterworth filter (red, dashed).
Whereas the magnitude range of the two waveforms is comparable, there are signifi-
cant differences between the abilities of the two methods to reproduce the expected
sinusoidal waveform of the gastric ECA as the latter has been recorded using other
procedures [17, 24].
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ICA produces better waveforms has to be confirmed using simultaneous electrode and

magnetic field recordings.

data set being analyzed. In our case, this was due to the fact that SQUID hard-

ware resets can occur when noise levels inside the shielded room vary between two

extremes within a short period of time. Because the Tristan 637i biomagnetometer

is equipped with an automatic signal reset algorithm that is triggered whenever such

noisy conditions occur, SQUID resets of the baseline signal can occur unexpectedly.

When data are written to digital storage, such resets are recorded as sharp spikes

whose order of magnitude is often many times larger than that of the biological sig-

nals that are being acquired. Thus, due to the presence of such high-magnitude reset

spikes, the fast ICA algorithm was found to perform poorly unless the short time

segment containing the reset spike was removed from the data processed using fast

ICA. This poor performance was due, quite expectedly, to the fact that spikes were

being identified as ICs which explained a large percentage of the signal variance but

which had no association with the biological signals of interest. When, however, the

removal of SQUID reset artifacts was implemented, the ability of the algorithm to

extract the gastric signal was restored. Specifically, it was found that splitting the

data before analysis into segments spanning 2-5 minutes of acquisition time that did

not include reset artifacts was very useful in terms of allowing the fast ICA algorithm

to extract the gastric component. It may also be possible that an alternative−albeit

more computationally intensive−approach to the problem of SQUID resets can be

implemented by selecting a larger number of PCs and ICs during fast ICA.

By applying the methods described in the previous sections to the human ten-

subject data set, fast ICA was found to be able to identify the gastric and cardiac

signals in all ten subjects. Comparisons between the extracted and the directly-

measured respiration signals (as shown in Fig. V.5) were also performed for these
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volunteers, with resulting values for the cross-correlation coefficient r ranging between

0.87 and 0.98; the mean value of r across volunteers was found to be r = 0.93 ± 0.02

S.E.M.

In conclusion, the use of fast ICA for the extraction of the gastric ECA signal

from artifact-contaminated MGG data was demonstrated. The analysis was carried

out using a fixed-point version of the fast ICA model with a stabilization constraint

imposed for ill-conditioned MGG data. Although the algorithm was shown to extract

the respiration activity signal accurately, invasive serosal electrode measurements may

be required to directly clarify how powerful the method is for the reconstruction of

the gastric ECA signal. Nevertheless, since it is quite probable that such invasive

measurements would also be affected by motion artifacts, other types of validation

may also be required in cases where such artifacts are also present. The visual analysis

of field patterns associated with various ICs was found to be a useful tool in deter-

mining the sources of the isolated signals with reasonable certainty. Finally, more

research is required to address the applicability of fast ICA for the characterization

of pathological conditions.
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CHAPTER VI

FILTERING VS. ICA FOR ARTIFACT REDUCTION

Introduction

As mentioned in previous chapters, three methods used for acquiring gastric

ECA recordings are gastric electromyography (EMG), electrogastrography (EGG)

and magnetogastrography (MGG). EMG and EGG involve the use of electrodes that

record the bioelectric fields due to ECA. In the case of EMG, electrodes are posi-

tioned directly onto the serosa, which makes this technique strictly invasive. In the

case of EGG, the electrodes are attached to the abdominal skin. Whereas the signal

to noise ratio (SNR) of EMG is excellent, that of EGG is extremely poor. For this

reason, the reliability of the latter technique has been questioned due to the high

dependence of cutaneous electrical recordings upon tissue conductivity, the thickness

of the abdominal wall, and the variable propagation velocity of ECA [103].

In the previous chapter, we demonstrated the use of ICA for the removal of both

biological and non-biological artifacts from multi-channel MGG recordings. There,

the accuracy of the method was analyzed by comparing ICA-extracted vs. electrode-

measured respiratory signals to conclude that reliable results could be obtained with

MGG in terms of ECA signal extraction. In what follows, we describe the use of

ICA for signal extraction from simultaneous EMG/MGG recordings rather than from

MGG recordings alone. Through the use of this improved technique, we demonstrate

the accuracy of our method by comparing not respiratory signals as in the previ-

ous case, but rather the gastric signals themselves. Moreover, we show that ICA is

superior to conventional filtering (CF) in its ability to remove artifacts from MGG

recordings.
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Methods

Two techniques were used for data acquisition, namely magnetogastrography

(MGG) and electromyography (EMG). The electrode equipment employed for EMG

data acquisition consisted of 18 pre-gelled, disposable, pickup/ground electrodes (Rochester

Electro-Med Inc., Tampa, FL, USA) connected to an isolated bioelectric amplifier

(James Long Co., Caroga Lake, NY, USA). Twelve electrodes were manually affixed

to the skin of a fasted, anesthetized healthy pig of approximately 20 kg, which was

placed horizontally under the SQUID inside the magnetically shielded room. Initial

anaesthesia consisted of intravenous injections of Telazol, Ketamine and Xylazine,

each at a concentration of 100 mg/ml. The dosage administered was 4.4 mg/kg Tela-

zol, 2.2 mg/kg Ketamine and 2.2 mg/kg Xylazine. The animal was intubated and

maintained on isoflurane anaesthesia with a concentration of 2%. A respiration sen-

sor was placed on the mouth and nose. EMG data were acquired using a personal

computer (Dell, Austin, TX, USA) through analog-to-digital conversion boards in-

terfaced with custom LabVIEW software (PCI-6033E, National Instruments, Austin,

TX, USA) with a sample frequency of 3 kHz and decimation to 300 Hz. Simulta-

neous EMG/MGG data were acquired for a duration of 15 minutes. To investigate

and compare the ability of CF and ICA to remove respiration artifacts from the data,

one-minute breathholds were induced twice throughout the recording.

Two data analysis methods were implemented separately for comparison, namely

conventional filtering (CF) and ICA. The CF analysis performed consisted of the

application of a bandpass, second-order Butterworth filter. As explained in the pre-

vious chapter, the Butterworth filter is maximally flat in the pass band and monotonic

overall, which reduces the effect of passband ripples in the signal to a minimum.

Because our ICA implementation has already been described, its details are omit-

ted. After computing the ICs, a set of ‘ICA-reconstructed’ signals were obtained as
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follows. First, the frequency spectrum was computed for each IC. Then, the energy

content percentage, call it p, within the range of GI activity (1.5-15 cpm) was com-

puted. In the next step, those rows in the matrix W that corresponded to ICs with

p ≤ 0.15 (15% or less GI frequency content) were set to zero. The new matrix, call

it Z, is thus similar to the matrix W described before, with the difference that Z

does not contain information pertaining to ICs that contribute little to the GI con-

tent of the original signals x. By performing the matrix operation x′ = Z−1ŝ, one

can obtain a new set of signals x′, which are similar to the original recorded signals

x but with the difference that no information is included that comes from ICs that

have p ≤ 0.15. In practice, such ICs contain cardiac, respiration, motion and other

similar artifacts whose elimination is of course warranted. The signals x′ are the set

of ‘ICA-reconstructed’ signals, that is the set of recordings which contain only GI

signal components and which are ‘artifact-reduced’. These ICA-reconstructed signals

are the ones based on which the comparison with CF is made in the following section.

The motivation for using these reconstructed signals rather than the original ICs is

the fact that a comparison of CF and ICA was attempted in this study. In our

previous undertaking [91] it was of course demonstrated that gastric signals can be

isolated using ICA, but no comparison of methods was attempted there. To compare

ICA and CF fairly, however, it was necessary, for the purpose of the present study, to

identify a manner of studying the results of the two methods in a similar data format.

As a result, the method of ICA-reconstructed signals was used in order to focus on

the abilities of the two methods to extract artifacts without introducing any bias in

favor of ICA.
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Results and discussion

Our first comparative analysis of waveforms obtained using CF and ICA is pre-

sented in Fig. VI.1. There, simultaneous EMG/MGG data are shown for one minute

of recording time. Two different segments were chosen, namely one acquired during a

breathhold (first column) and another acquired during respiration (second column).

In the case of raw data acquired during the breathhold (top left), no respiration

artifact is visible, as expected. The most easily identifiable artifact in this case is of

cardiac origin and has a frequency of about 80 cpm. This artifact is visible only in

MGG data (shown using a continuous black trace) while the EMG raw signal (red

dashed trace) is not affected by cardiac activity. The reason for this is the fact that

EMG signals are generated primarily by sources in the immediate physical proximity

of the sensor, while MGG signals can also be affected by sources that are farther

away. Because electrode signals depend to a very large extent on tissue conductivity,

electrical sources that are far from the recording site do not contribute to the signal

appreciably. In the case of MGG, the quality and strength of the signal is dependent

on tissue permeability, which is very nearly equal to that of free space for biological

matter. This is why, although SQUID coils are farther from the source than electrodes

are during a typical experiment (the latter being affixed directly to the external gastric

surface), the MGG signal is more sensitive to cardiac activity than the EMG signal.

The raw data segment acquired during the breathhold (top left) can be compared

to the raw data segment acquired during respiration (top right). In the latter, the

respiration artifact is clearly visible in the case of MGG at a frequency of about 32

cpm. The cardiac artifact is also present, though its amplitude is lower. The EMG

signal is not appreciably affected by respiration. This is because the relative electrode

position with respect to the gastric electric source remains unchanged throughout
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raw, breathold

filter

ICA

raw, respiration

filter

ICA

Figure VI.1: Validation across techniques of conventional filtering and ICA for artifact
removal. MGG signals are shown as continuous (black) traces while EMG signals
are shown as dashed (red) traces. The left column displays data acquired during a
breathhold while the right column displays data acquired during respiration. The
time interval shown is of one minute in both cases. The first row displays raw data,
the second row displays filtered data and the third row displays ICA-processed data.
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respiration, whereas for MGG this is not the case. As a result, EMG signal properties

remain largely unchanged whether acquired during respiration or during a breathhold.

The second row in Fig. VI.1 displays the EMG and MGG signals after CF pro-

cessing. In the case of EMG, results are very similar for breathhold and for respiration

data. In the case of MGG, large differences exist. First of all, the CF method is not

capable of removing the respiration artifact in a satisfactory manner, as shown in the

plot on the middle right. Secondly, the EMG and MGG processed signals are more

strongly correlated during the breathhold than they are during respiration.

The ICA results are shown in the third row of Fig. VI.1. There it can be seen

that ICA is largely unaffected by the presence of respiration artifacts in the original

data. Moreover, the correlation between the EMG and MGG waveforms is higher in

both ICA cases as compared to CF-processed data.

In conclusion, Fig. VI.1 suggests that ICA may be superior to CF for simultaneous

EMG/MGG recordings in at least two respects, namely (1) the agreement (amount of

correlation) between the signals acquired using the two procedures and (2) the ability

to minimize respiration artifacts from MGG data. This conclusion is supported by

the contents of Fig. VI.2. This figure displays the same traces as in Fig. VI.1,

though in a different manner that makes comparison easier from another perspective.

Whereas Fig. VI.1 is useful to investigate the agreement between EMG and MGG (i.e.

comparison of acquisition methods), Fig. VI.2 can be used to compare the artifact

removal abilities of CF and ICA (i.e. comparison of signal processing methods).

In the top left section of Fig. VI.2, MGG raw data acquired during the breathhold

(black continuous trace) is presented against the CF-processed signal (red dashed

trace) and the ICA-processed signal (blue dotted trace). From this it can be seen that

CF and ICA yield qualitatively similar results for data acquired during breathholds.

In the top right section of the same figure, MGG raw data acquired during respiration
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breath hold, MGG

breath hold, EGG

respiration, MGG

respiration, EGG

Figure VI.2: Comparison of conventional filtering and ICA for artifact removal in
simultaneous EMG and MGG (II). Raw signals are shown as continuous (black, top)
traces, filtered signals are shown as dashed (red, middle) traces and ICA-processed
signals are shown as dot-dashed (blue, bottom) traces. The left column displays data
acquired during a breathhold while the right column displays data acquired during
respiration. The time interval shown is of one minute in both cases. The first column
displays MGG data while the second column displays EMG data.
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is compared to the CF and ICA signals using the same type of traces as in the previous

example. In this case, however, it can be seen clearly that the respiration artifact is

much larger in magnitude after CF than it is after ICA.

Finally, the bottom-row traces of Fig. VI.2 display EMG raw and processed data

acquired during the breathhold (bottom left) and during respiration (bottom right).

This comparison is largely unremarkable, as both CF and ICA are found to perform

very similarly for EMG signals. However, as pointed above, the main differences

between the two methods lie in their unequal abilities to process MGG data, which

clearly separates them from the standpoint of their utility.

In addition to signal waveform comparison between CF and ICA, we have also

undertaken a frequency analysis comparison of the two methods. The motivation for

this is the fact that, as explained in the introduction, the frequency characteristics of

EMG/MGG are important in distinguishing between healthy and diseased stomach.

Because of this, it is important to understand how CF and ICA are different in

their ability to capture the information contained in the frequency characteristics of

EMG/MGG signals.

Fig. VI.3 displays an FFT frequency analysis of the same one-minute data seg-

ments presented in Fig. VI.1 and VI.2. The top left plot in Fig. VI.3 displays the

frequency analysis of the raw data as acquired during respiration. Because the FFT

method was used and the analyzed segment consisted of one minute of data acquired

at 200 Hz, false peaks exist due to harmonics present at integer multiples of the dom-

inant frequency. For example, in the case of EMG, a false peak is clearly visible at

approximately 6 cpm, though the true peak at 3 cpm evident of gastric activity is

clearly superior in magnitude.

The frequency analysis results for this segment after CF and ICA processing are

shown in the same first column of Fig. VI.3 (middle left for CF and bottom left
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for ICA). Several conclusions can be drawn from inspecting these two plots. First,

because of the filtering window used for CF and ICA before generating the FFT

spectrum (1-30 cpm), the energy content due to low-frequency trends in the data

is removed from the CF and ICA plots (middle and bottom left), as distinct from

the original raw data (top left). Secondly, a comparison of the CF and ICA plots

for the breathhold segment leads to the conclusion that, as far as breathhold data

are concerned, the frequency content of the analyzed signal is qualitatively the same

whether the latter is analyzed using CF or ICA.

The results of our frequency analysis for the respiration signal are presented in the

second column of Fig. VI.3. Comparing the ICA plot (bottom right) to the raw data

plot (top right) shows that ICA has the ability to preserve the frequency peak due

to gastric activity at the same frequency as in the original raw data, i.e. at 3 cpm.

On the other hand, comparing the CF plot (middle right) to the original raw data

plot (top right) shows that the CF method is not able to do this. Instead, the gastric

frequency peak appears to be shifted to a frequency lower than the true frequency as

determined from the raw data plot. Moreover, a large amount of energy is found, for

the CF plot, in the neighborhood of the peak at 8 cpm. This is misleading because it

suggests that the dominant frequency of the signal is in that region, which is not true

because the raw data frequency analysis plot suggests otherwise. In conclusion, while

the CF and ICA methods yield comparable frequency analysis results for breathhold

data, ICA seems to be superior when respiration data are analyzed.

Fig. VI.4 displays the frequency waterfall plots of the entire data sets from which

the waveforms discussed up to this point were selected. For this figure, each spec-

trum displayed was created from a segment covering a period of 4 minutes, with an

incremental step of 30 seconds for each successive spectrum. The first row displays

CF-processed data and the second row displays ICA-processed data. Similarly, the

116



0 5 10 15

0.2

0.4

0.6

0.8

1
raw, breathold

P
n [p

T2 /H
z]

frequency [cpm]

0 5 10 15
0

0.2

0.4

0.6

0.8

1
CF

P
n [p

T2 /H
z]

frequency [cpm]

0 5 10 15
0

0.2

0.4

0.6

0.8

1
ICA

P
n [p

T2 /H
z]

frequency [cpm]

0 5 10 15

0.2

0.4

0.6

0.8

1
raw, respiration

P
n [p

T2 /H
z]

frequency [cpm]

0 5 10 15
0

0.2

0.4

0.6

0.8

1
ICA

P
n [p

T2 /H
z]

frequency [cpm]

0 5 10 15
0

0.2

0.4

0.6

0.8

1
CF

P
n [p

T2 /H
z]

frequency [cpm]

Figure VI.3: Frequency analysis results for the EMG/MGG data segments displayed
in Figs. VI.1 and VI.2. MGG spectra are shown as continuous (black) traces while
EMG spectra are shown as dashed (red) traces. The left column displays data ac-
quired during a breathhold while the right column displays data acquired during
respiration. The first row displays spectra for raw data, the second row displays
spectra for filtered data and the third row displays spectra for ICA-processed data.
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Figure VI.4: Comparison of waterfall plots for simultaneous EMG and MGG. The
first columns displays MGG results and the second column displays EMG results.
The first row refers to filtered data and the second row refers to ICA-processed data.
The frequency range displayed is 0-40 cpm.
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Figure VI.5: Same as Fig. VI.4, but with a frequency range displayed of 0-15 cpm.

first column displays MGG data while the second column displays EMG data. In

the case of EMG, the results are very similar for CF and ICA. In the case of MGG,

however, an important difference is that the height of the peak due to respiration (32

cpm) relative to the GI frequency content (1-10 cpm) is much higher for CF-processed

data (top left) than it is for ICA-processed data (bottom left). This is true because, in

the case of the CF waterfall plot, the respiration peak ‘overshadows’ the GI frequency

content. In contrast to this, the ICA plot clearly demonstrates that the energy due

to the respiration artifact is lower than that due to the GI content of the signal. This

suggests that ICA is superior to the CF method from the standpoint of its ability to

remove respiration artifacts from MGG data.

Fig. VI.5 displays the same information as Fig. VI.4 but the frequency range
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displayed is 0-15 cpm as opposed to 0-40 cpm in Fig. VI.4. Whereas the purpose

of Fig. VI.4 was to emphasize the respiration artifact content of each signal, that of

Fig. VI.5 is to focus on the GI content of each spectrum. The conclusion to be drawn

is that the two methods are largely similar from a qualitative standpoint regarding

their ability to capture the frequency information of the original signal. For both

MGG and EMG plots, the temporal evolution of the frequency components is loosely

the same in the CF as in the ICA case. Though differences exist, their nature is

predominantly quantitative rather than qualitative. However, as Fig. VI.3 suggests,

ICA can sometimes be more trustworthy than the CF method for the purpose of

frequency analysis though the reverse may occur in some cases. Nevertheless, as Fig.

VI.5 shows, the two methods are comparable from this standpoint and qualitatively

very similar.

Several important conclusions were reached after our comparison of CF and ICA

for the analysis of simultaneous EMG/MGG signals. First, it was determined that

the two methods yield very similar results for breathhold data. Second, ICA was

found to be superior to the CF method in the case of segments acquired during

respiration. Because the large majority of our data sets consist of such segments,

our study indicates that ICA may be preferable to the CF method for the analysis

of EMG/MGG signals. Third, it was found that, qualitatively, the two methods

yield comparable results regarding their ability to capture the frequency information

of the signals. In conclusion, our study suggests that ICA is the more reliable and

trustworthy technique for the purpose of artifact reduction in EMG/MGG.
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CHAPTER VII

MEASUREMENT OF ECA PARAMETERS USING SPATIAL ICA

Introduction

The study of gastric motility is of clinical interest due to the relationship between

gastrointestinal (GI) disorders and the characteristics of gastric electrical control ac-

tivity (ECA). ECA is a slow, sinusoidal wave with a frequency of 3 cycles per minute

(cpm) originating in the antral gastric region and propagated along smooth muscle

cells. Abnormal ECA has been associated with many GI disorders, such as gas-

troparesis, diabetic gastropathy, and gastric myoelectrical dysrhythmia [140]. Two

methods for characterizing ECA are electrogastrography (EGG) and magnetogastrog-

raphy (MGG). EGG involves the placement of cutaneous electrodes on the abdomen

to record the bioelectric fields due to ECA at the body surface. The reliability of this

procedure has been questioned due to the high dependence of electrical recordings

upon tissue conductivity, the thickness of the abdominal wall, and the variable prop-

agation velocity of ECA [103]. MGG involves the positioning of a magnetometer in

close proximity to the abdomen to detect the biomagnetic field generated by the elec-

tric current of ECA. The measurement of biomagnetic fields is advantageous because

they are more strongly dependent on tissue permeability, which is nearly equivalent

to that of free space.

In recent years, much attention has been devoted to the task of accurately measur-

ing ECA spatiotemporal parameters such as its amplitude, direction and propagation

velocity[176]. Clinically, it is important to understand the time behavior of these pa-

rameters because statistically significant differences in their average values have been

found between subjects in the healthy and diseased states [29]. Thus, monitoring
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ECA using a set of sensitive and reliable physiological parameters may one day pro-

vide a noninvasive method for detecting certain diseases whose diagnosis is otherwise

problematic.

This chapter describes the application of PCA and ICA for measuring ECA param-

eters from simultaneous, noninvasive MGG/EGG recordings. The approach makes

use of ICA to isolate the gastric signal, whereafter gastric dipole locations and ori-

entations can be determined from ICA field maps. Results are compared, based on

magnetic data, to analogous ones obtained using simultaneous electrode recordings.

Methods

MGG recordings were acquired using the SQUID biomagnetometer in the Van-

derbilt University GIST Laboratory. The study was approved by the Vanderbilt

University Institutional Review Board. Subject are asked to lie horizontally under

the SQUID in the magnetically shielded room of the GIST Laboratory and the mag-

netometer is oriented so that the coils measuring the x̂ and ŷ components of the signal

(tangential to the body surface) are oriented in the sagittal and horizontal planes,

while the coils measuring the ẑ component (normal to the body surface) are oriented

in the frontal plane. The electrode equipment employed for this experiment consisted

of 18 pre-gelled, disposable, pick-up/ground electrodes (Rochester Electro-Med Inc.,

Tampa, FL, USA) connected to an isolated bioelectric amplifier (James Long Co.,

Caroga Lake, NY, USA). The electrodes were manually affixed to the skin in the

configuration shown in Fig. VII.1. The relative spatial positioning between the MGG

and EGG channels is also depicted in that figure.

The fast ICA method was separately implemented for each of the simultaneous

MGG and EGG data sets to determine the independent components (ICs) derived
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Figure VII.1: Data acquisition grid for simultaneous MGG/EGG experiments. Bipo-
lar electrode channels are indicated by red circles and SQUID magnetometer channels
by diamonds. The black rectangle enclosing the electrode channels indicates the ex-
tent of the area shown in the maps of Fig. VII.3. The outline of the stomach is
approximate and is meant to serve as a guide to the eye.

from magnetic field and electric potential recordings, respectively. The labeling prob-

lem was addressed using an automated analysis of the ICs, whose purpose was to

identify the IC whose waveform best matched the gastric ECA waveform (which has

a distinct frequency of 3 cpm in humans). In most cases, the gastric IC was found to

be among the first few ICs that accounted for the highest percentage of the variance

in the recorded signals. We found this to be the case because the gastric signal is

relatively strong compared to other components of biological origin and because it is

superseded, in most cases, only by motion artifact signals.

Although there are advantages to performing a visual, offline analysis of ICs to

determine the optimal ones to be used for analysis, an automated algorithm was

developed instead. As an aid to the decision process, the power spectral density

(PSD) of each IC (denoted henceforth by ρ(f), where f is the frequency) was first

computed using the classical fast Fourier transform, thus providing a time-frequency

representation of MGG/EGG data. Both signal- and zero-padding were applied to

reduce picket fence effects. In addition, appropriate Hamming windows were used. To

investigate frequency changes in the gastric signal as a function of time, the recorded
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signals were split into segments denoted by j = 1, ... , n and fast ICA was applied

separately to each of them. Suppose that m ICs were computed for the i-th segment

and let k represent the index of each IC, i.e. k = 1, ... , m (it is assumed that

the ICs are ordered in decreasing order of the variance in the data for which they

account). If we let the symbol I represent some given IC, the notation Ijk denotes,

in this convention, the k-th IC in data segment j. In the first step of our approach,

we computed ρ(I1k; f), i.e. the PSD for each IC in the first time segment of the data

set. To assess the similarity between the PSDs of different ICs (as described below),

ρ values were normalized to ρ̃:

ρ̃(f) =
ρ(f)∫∞

0
ρ(f)df

, (VII.1)

where in practice the upper limit of integration is constrained by the Nyquist Theo-

rem. Next, the energy integral

E(α, β) =

∫ β

α

ρ̃(f)df (VII.2)

was calculated, where α and β are the cutoff frequencies for the signal of interest. In

our case, the choice made was [α, β] = [2, 5] cpm, which is the frequency interval

where most of the energy in the human gastric signal is contained. One can see that

the quantity

E(α, β)

E(0,∞)
=

∫ β

α
ρ̃(f)df∫∞

0
ρ̃(f)df

=

∫ β

α

ρ̃(f)df (VII.3)

is maximized by the IC that has the largest proportion of energy in the interval [α,

β]. For this reason, the IC selected for analysis from the first segment of data (i =

1) was chosen based on this criterion. Let this IC be denoted by I1c (c for ‘chosen’).
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In the second stage of the selection algorithm, the subsequent time segments of data

j = 2, ... , n were processed. For each of these, the squared energy residuals

∆E2
jk =

[∫ ∞

0

ρ̃(I1c; f)df −
∫ ∞

0

ρ̃(Ijk; f)df

]2

(VII.4)

were evaluated. What ∆E2
jk provides is a measure of the ‘similarity’ between the first

chosen independent component (I1c) and each of the components in the subsequent

time segments (Ijk). Naturally, this measure is minimized when the similarity is

highest. For this reason, the IC with the lowest value of the squared energy residual

was selected for analysis. A legitimate question can be raised by the reader as to

why different selection criteria were chosen for the two steps of our algorithm. The

reason lies in the fact that fast ICA can very possibly separate more than one gastric

component from the data. Naturally, since these components may account for distinct

dipolar patterns with distinct locations and rhythms, it is important to distinguish

between the IC that was chosen initially (I1c) and other ICs. This is because, since

one wishes to determine the spatiotemporal evolution of I1c, it is more useful to

identify ICs in subsequent data segments that are most similar to I1c (and therefore

most likely to represent the signal due to the source being sought) rather than other

dipoles−whether gastric or not−whose evolution is not under focus. Thus, to identify

I2c, ... , Inc, the use of the quantitative measure ∆E2
jk is preferable. After selecting

suitable ICs for each time segment in the data set, the signals provided by the chosen

ICs were analyzed. First, each data set was detrended using a linear fit to eliminate

short-lived trends that are due to extraneous causes, such as low-frequency noise.

Then, a number of bandpass, second-order Butterworth filters were applied.

The source model adopted for this study consists of a current dipole Q1 that
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approximates a current density J(r′) with spatial extent at r′ in an ellongated cylin-

der with an inhomogeneous conductivity profile. Since the ECA is a depolariza-

tion/repolarization wavefront advancing along the corpus, the current dipole approx-

imation is appropriate in our context. For our purposes, the inhomogeneity of the

spatial conductivity function σ can be approximated through the use of small regions

of piecewise homogeneous conductivity. The sources Qi are assumed to be buried

beneath the skin surface, which is taken to be the plane z = 0 cm. It is relatively

straightforward [173] to show that, if the distance between the two extrema of B(Qi)

on the surface is taken to be γ and the dipole is approximately parallel to the surface,

then the dipole lies at a depth z = −γ/
√

2 on the vertical plane that passes through

the extrema. the magnetic field B above the surface of the body can be approxi-

mated, in the context of the quasistatic approximation to Maxwell’s equations [173],

by

B(r) =
µ0

4π

[∫
Ji(r

′)dr′ −
∑

νη

(σν − ση)V (r′)dSνη

]
×∇′ 1

||r− r′|| , (VII.5)

where V is the electric surface potential, r and r′ are the field and source points,

respectively, µ0 is the permeability of the vacuum and || · || is the Euclidian norm.

The summation is carried out over all the regions ν and η of the surface S that have

different piecewise constant conductivities. For example, the quantity (σν −ση) is the

conductivity difference between two regions ν and η that are adjacent. We refer the

reader to [173] for the derivation of this formula.

Similarly, the relationship for the electric potential analogous to (VII.5) is given

by

V (r) =
1

4πσ

{∫
[Ji(ri)d

3r′ −
∑

νη

(σν − ση)V (r′)dS′
ην ] · ∇′ 1

||r− r′||

}
. (VII.6)
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Figure VII.2: Sample ECA waveform as recorded using simultaneous MGG (A) and
EGG (B). Signal extraction was performed using fast ICA and appropriate Butter-
worth filters and Hamming windows were applied to the selected ICs to generate these
plots. Both waveforms display the characteristic gastric frequency of 3 cpm.

The process of identifying the location and orientation of bioelectric sources from

information provided by ICA has already been successfully implemented in mag-

netoencephalography [45] and magnetocardiography [42]. Our particular approach

closely follows the method proposed by Tang and colleagues [171]. Spatial infor-

mation regarding a separated IC is provided by its sensor projection (field map),

which represents the measured sensor response to the activation of the component

ŝjk. The information required to construct the map of component k in time seg-

ment j is contained in the k-th column of the estimated attenuation matrix Â for

that particular IC, which we denote by Âk. The values in Âk were used to create a

two-dimensional field/potential map using adaptive cubic spline interpolation. This

method was then employed to generate 2D spatial maps that show, in addition to the

underlying field/potential maps, the locations of the current dipoles as inferred from

the field/potential map data.

Results and discussion

Sample simultaneous MGG/EGG waveforms are shown in Fig. VII.2. In Fig. VII.3,

examples of field/potential maps from three non-consecutive time points (A, B, C)
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are shown. The quantity visualized in each spatial map is the normalized amplitudes

of the magnetic field (B̃i) and electric potential (Ṽi) due to three identified gastric

sources, where B̃i = Bi/max{Bi} and Ṽi = Vi/max{Vi}. Also depicted are the in-

ferred locations of the associated current dipole producing the fields/potentials shown

in the map. The decision to plot B̃i and Ṽi rather than Bi and V was made so as

to simplify the visual comparison of different maps. Because only one colorbar and

colormap were used for all maps (although max{Bi} and max{Vi} are different for

each map), plotting B̃i and Ṽi ensured that the same proportional scaling was used

for all maps. Thus, comparison between different maps is simplified.

All maps have a spatial extent of 17 × 10 cm. Because simultaneous MGG/EGG

recordings were acquired, maps were computed from both magnetic field (B) and elec-

tric potential (V ) signals. This procedure allowed for the comparison of noninvasive

biomagnetic recordings to cutaneous electrode data. In Fig. VII.3, the orientations

of MGG-based dipoles are more realistic and are similar, in fact, to those obtained

from MGG data in a previous study using the surface current density method [26].

One important observation to be made from the analysis of our figure is that, due

to its higher spatial resolution, the magnetic sensor grid is superior to the electrode

grid from the standpoint of its ability to capture the configuration of the gastric

biomagnetic field. In spite of grid coarseness issues, electric maps are nevertheless

valuable because they offer a method of comparison between the dipole locations and

orientations obtained using the two protocols. Quite possibly, differences in location

and orientation between MGG- and EGG-based dipoles are due to the different signal-

to-noise ratios of the two procedures as well as to the difference in the finesse and

configurations of the two grids. In conclusion, there is agreement between the two

although magnetic recordings are superior in their ability to portray the underlying

physiology.
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Figure VII.3: Examples of field/potential maps from three non-consecutive time
points (A, B, C). Maps of magnetic field (Bz, see A1, B1, C1) and electric potential
(V , see A2, B2, C2) patterns were extracted from simultaneous MGG/EGG record-
ings using fast ICA. Pictured are spatial maps of normalized (see text) B and V
values as inferred via fast ICA (the first column depicts B̃i, the second column de-
picts Ṽ ). Grid dimensions are 17 × 10 cm. Black arrows are shown as guides to
the eye to indicate the locations and orientations of the underlying current dipoles as
inferred from the spatial maps using the right hand rule.
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Black arrows visually track the spatial displacement of this dipole throughout the

ECA cycle, allowing us to compute the average propagation velocity of electrical ac-

tivity. The six black arrows in the last 6 frames (3 seconds) indicate the emergence

of a second current dipole in the anatomic region of the gastric corpus. This phe-

nomenon is associated with the reset of ECA to the gastric syncytium and with the

beginning of another propagation cycle.

In conclusion, the comparison of magnetic field and electric potential maps ob-

tained from simultaneous MGG/EGG recordings is important due to the uncertain-

ties associated with the spatial accuracy of such methods. An interesting next step

would involve subjecting our ICA-computed data components to three-dimensional

inverse algorithms, which may allow us to determine ECA parameters not only for

the stomach but also for the intestine.
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CHAPTER VIII

NONLINEAR DYNAMICS OF THE GI SYSTEM

Introduction

The study of nonlinear dynamics is important for the elucidation of complex

pathological states such as arrhythmia, ischemia and muscle injury [60, 95]. Since

the first magnetocardiography (MCG) experiments of the late 1960s and early 1970s

[35, 36], significant progress has been made towards the use of chaos theory for the

characterization of normal and abnormal states of the mammalian heart. Differences

between chaos patterns in the healthy and pathological states have been revealed in

the context of cardiac fibrillation, heart rate variability and chronic heart failure [57,

110, 15, 168, 27]. In neuroscience, nonlinear analysis techniques have been useful for

the study of various phenomena of the brain, including epilepsy, cerebral hemisphere

synchronization, depression and schizophrenia [11, 166, 141].

Recent literature describes the use of chaos analysis for the study of many other

biological systems such as muscular structures, biliary ducts and renal calyces [60].

Nevertheless, very little research has been conducted regarding the content and char-

acteristics of chaos patterns in the gastrointestinal (GI) system [68, 132, 118], where

their clinical significance is nevertheless comparable. Moreover, little progress has

been made towards revealing the connection between abnormal states of the circula-

tory system and circulation-related GI pathology.

Much is now known regarding the electrical activity of the heart [63]. Cardiac

fibers are made of individual cells connected in series and in parallel with one an-

other and the cardiac action potential is caused by the opening of fast sodium and

slow calcium channels. While the slow calcium channels are open, a large quantity
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of calcium and sodium ions flow to the interior of the cardiac muscle fiber. This

maintains a prolonged period of depolarization, which is the cause of the plateau

phase of the action potential. Cardiac rhythmicity is controlled by the sinus node,

which acts as a pacemaker of the normal heart. Cardiac arrhythmias can be caused

by a variety of conditions, including abnormal rhythmicity of the pacemaker, shift of

the pacemaker from the sinus node to other locations, abnormalities in the spread

of the impulse through the heart, etc. In the case of the stomach and intestine,

two major phenomena of the GI tract−the electrical control and response activities

(ECA and ERA, respectively)−are responsible for the measurable electric potentials

and magnetic fields recorded via magneto -gastrography and -enterography. ECA

originates in the gastric antrum due to the presence of the interstitial cells of Cajal,

which impose periodic waves of cell membrane depolarization and repolarization that

advance along the corpus of the stomach at a rate of 3-6 cycles per minute (cpm) in

porcines. Each of these waves consists of a potential upstroke followed by a plateau

and then by a sustained depolarization phase. Gastric smooth muscle cells respond to

this cycle by regulating L-type Ca2+ currents that are responsible for the contractile

behavior of the stomach. Associated with this contractile behavior is gastric ERA,

which is characterized by spiking potentials during the plateau phase of ECA. The

electrical activity initiated in the stomach propagates along the entire length of the

GI tract, although propagation frequencies depend upon position along the tract and

mammalian species. Previously, chaos in the GI system has been explored within the

framework of the FitzHugh-Nagumo equations [3, 4]. From a theoretical perspective,

GI electrical activity can be modeled using a system of bidirectionally coupled relax-

ation oscillators where ERA interestingly represents a bifurcation solution to the set

of partial differential equations governing the system [154, 155, 156].

One tool of particular importance in nonlinear dynamical analysis is the Lorentz
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attractor. This 3D object can be formally defined as the subspace of the total state

space of a system to which the trajectory of the system converges after the initial

transients have died out [166]. The term ‘attractor’ originates from the fact that such

an object attracts towards it trajectories from all possible initial conditions. A linear

dissipative deterministic system has an attractor that consists of a single point (hence

the term ‘point attractor’) because such a system converges to a steady state after

which no further changes occur unless external disturbances are present. In a chaotic

system, however, the attractor can be very complex and usually assumes a fractal

geometry. The dynamics corresponding to such an object is called deterministic

chaos, which means that the system is deterministic only in the short term although

system trajectories are confined to the attractor.

Attractor analysis typically involves one or several quantitative measures. Among

the wide variety of such measures that can be used to describe attractor dynam-

ics, three common ones−capacity dimension, information dimension and correlation

integral−were selected for our study. A 3D attractor can be divided using a partition

of boxes of edge length ε. If N(ε) is the minimum number of boxes required to cover

the spatial extent of the attractor, the capacity dimension of the system (also com-

monly referred to as Kolmogorov entropy or box-counting dimension) can be defined

as

C = lim
ε→0

lnN(ε)

ln(1/ε)
. (VIII.1)

The capacity dimension of a system is a measure of the ‘spatial extent’ of an attractor.

In a practical sense, the capacity dimension is a measure of how tightly packed the

sheets of the attractor are. The second measure that was used is the information

dimension δ, first introduced by Balatoni & Rényi [13], which is a generalization of

the capacity dimension concept that weighs each non-empty cube i by its probability
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pi:

δ = lim
ε→0

1

ln ε

N(ε)∑

i=1

pi ln(1/pi). (VIII.2)

This measure can be thought of as the number of information bits required to specify a

certain point to a certain degree of accuracy specified by ε. Another popular measure

is the correlation dimension

ν = lim
ε→0

lnI
ln ε

, (VIII.3)

where I(ε) is the correlation integral

I(ε) = lim
N→∞

1

N(N − 1)

N∑

i=1

N∑

j=1

Θ(ε− |ri − rj|), (VIII.4)

Above, Θ(x) is the Heaviside function (-1 if x ≥ 0, 0 otherwise) and |ri − rj| is the

distance between two points ri and rj.

Similar to Lorentz attractors are return maps, which are 2D phase space plots [49].

A 3D phase space attractor is a visualization technique that allows one to study the

time evolution of a system’s return map. In this approach, the outline (perimeter) of

the map is first determined based on a time segment of data of appropriate length.

The process is then repeated for the entire length of the data set, which results in

the creation of m return map outlines. If y and z are the two dimensions of the map,

time can be plotted on the x dimension of a 3D plot and each section can be drawn

on the y − z plane at a constant value of x specified by the time span of the data

segment from which the return map was generated. A 3D surface can then be drawn

that connects the outlines of adjacent sections; this creates a 3D, spatiotemporal

phase space attractor, which demonstrates the evolution of the chaos content in the
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signal throughout time. In our approach, an active shape contour (commonly known

as ‘snake’ in image processing literature) based on a gradient vector force (GVF)

algorithm [8] was employed to automatically determine the perimeter of each return

map.

In the remainder of this chapter, the time evolution of normal and arrythmic

cardiac and gastric biomagnetic signals is compared using simultaneous MCG and

MGG. Normality and pathology in the two organs is then studied using various

measures, both visual (Lorentz attractors, 2D return maps) and quantitative (ca-

pacity dimension, correlation integral, etc). It is proposed that a shared feature of

circulation-related arrhythmias in mammals is that their onset and development are

associated with statistically significant fluctuations in chaotic attractor dimension-

ality. Evidence in favor of this hypothesis is presented in the context of an animal

model and validated using statistical testing procedures.

Experimental protocol and data analysis

The present study is focused on three mammalian organs−the heart, stomach

and small intestine−in the attempt to capture those nonlinear dynamical properties

of the three systems that are common. Our study made use of both MCG and MGG.

The use of MGG is arguably more advantageous than that of electrogastrography

(EGG) because the quality and strength of recorded EGG signals are strongly de-

pendent upon the permittivity of tissues, whereas MGG depends primarily on their

permeability, which is approximately equal to that of free space. EGG signals are

thus attenuated by the layers of fat and skin located between internal organs and the

recording electrodes, while MGG does not suffer from this setback [118].
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Signals were acquired using the multichannel 637i SQUID biomagnetometer (Tris-

tan Technologies Inc., San Diego, CA, USA) in the Vanderbilt University Gastroin-

testinal SQUID Technology (VU-GIST) Laboratory. The animal subject set consisted

of 10 healthy domestic pigs (sus domesticus) of approximately 20 kg each. Each anes-

thetized animal was placed horizontally under the SQUID inside the magnetically

shielded room. The protocol for the study was approved by the Vanderbilt Univer-

sity Institutional Animal Care and Use Committee (VU-IACUC). Initial anaesthesia

consisted of intravenous injections of Telazol, Ketamine and Xylazine, each at a con-

centration of 100 mg/ml. The dosage administered was 4.4 mg/kg Telazol, 2.2 mg/kg

Ketamine and 2.2 mg/kg Xylazine. Each animal was intubated and maintained on

isoflurane anaesthesia with a concentration of 1.5-2.5%. Because the extent of the

SQUID input grid is comparable to the size of the animal’s chest and abdomen,

simultaneous MCG/MGG signals could be recorded.

The set of pigs was divided into two and one of two important pathological GI

conditions was induced in each group. In 10 of the 20 pigs used, the stomach was

surgically divided and post-division data were acquired. In the other 10 pigs, intesti-

nal ischemia was surgically induced by ligating the mesenteric artery of each animal

and post-ligation data were then recorded. Thus, exactly one abnormal condition of

the gut−gastric electrical source uncoupling in the first case and mesenteric ischemia

in the second case−was induced. After one hour of post-surgery recording time,

euthanasia was induced in pigs using an intravenous injection as data were being

acquired. All animals were under monitored anaesthesia while euthanasia was being

induced. The euthanasia solution consisted of pentobarbital sodium with a concen-

tration of 390 mg/ml and a dosage of 860 mg/kg (1 cc/10 lb). This procedure allowed

us to record not only the abnormal gastric and intestinal signals of each pig resulting

from stomach division or ischemia induction, but also the increasingly arrhythmic

136



cardiac signals induced by the euthanasia injection and culminating in cardiac arrest.

The signals from these three organs were recorded simultaneously.

A common problem in nonlinear analysis is that there is usually not a one-to-one

correspondance between the number of measured signals and the number of under-

lying sources. More often, the recorded signals are due to an unknown mixing of

the true system variables [166]. This important issue was addressed in our case with

a technique called embedding, where one or more simultaneous time series are con-

verted to a series of vectors in an m-dimensional space, where m is often (as in our

case) equal to 3 for convenience in view of three-dimensional (3D) visualization. In

our case, the simultaneous time series are MCG/MGG signals. If certain conditions

are satisfied [166], the so-called ‘equivalent attractor’ of the embedded system has the

same dynamical properties as the true attractor. This fundamental statement of non-

linear analysis theory is known as Takens’ embedding theorem [169]. In addition to

embedding, another signal processing technique that is very suitable to this problem

was employed, namely fast ICA.

To investigate the chaotic content of our recordings, three visualization methods

were employed, namely the Lorentz attractor, return map and 3D spatiotemporal

phase space attractor. First, fast ICA was used to recover the cardiac and gastric

sources of interest from the SQUID-recorded mixtures. In doing so, the dimensionality

of each data set was first reduced using PCA, whereafter fast ICA was applied.

Lorentz attractors were used to visualize MCG/MGG data. Differences in at-

tractor characteristics between the healthy and pathological states were quantified

numerically using four measures already described, namely the capacity dimension,

information dimension, correlation dimension and correlation integral.
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Figure VIII.1: Sample normal and pathological magnetic signals for the heart (A1-
A4) and stomach (B1-B4) acquired from a porcine subject. The first column contains
normal signals while the second one displays pathological signals. A1 and B1 show
normal raw magnetic field (Bz) data, while A2 and B2 show FICA-processed, artifact-
reduced signals. Similarly, A3 and B3 display pathological raw magnetic field (Bz)
signals, while A4 and B4 show FICA-processed, artifact-reduced pathological data.

Results and discussion

Sample raw and ICA-processed MCG and MGG signals acquired from a porcine

subject are shown in Figure VIII.1. What can be concluded from the analysis of

this figure is that the underlying properties of the two biological sources are more

readily apparent from their respective ICs (A2, A4, B2, B4) than from the raw data

traces (A1, A3, B1, B3). Although cardiac interference (A1) is a significant artifact

138



in the gastric signals of (B1), its presence was reduced via fast ICA. In A3 and A4,

arrhythmic heart signals are shown while B3 and B4 display a tachygastric signal

induced by stomach division. The differences between the normal and pathological

signals of the heart are readily visible from our figure. Whereas the periodicity of the

PQRST complex in the first case is normal ((A1) and (A2)), pronounced bradycardia

is visible in (A3) and (A4). In the case of the gastric signals, the dominant GEA

frequency is of approximately 3 cpm in (B1) and (B2), whereas (B3) and (B4) show

a tachygastric rhythm of approximately 4.5 cpm.

Examples of Lorentz attractors created from our data are shown in Figure VIII.2.

The normal cardiac attractor (A1) has a characteristic shape due to the high rhythmic

pattern of the heart signal. This feature is disrupted in the arrhythmic state, which

is also reflected in the attractor (A2), which has a more irregular shape. Comparing

normal (B1) and abnormal (B2) gastric signals, one can see that a larger amount of

chaos is present in the abnormal case (B2) compared to (B1).

Sample return maps generated from our analysis are presented in Fig. VIII.3,

where both healthy and pathological data are shown for the heart, stomach and

intestine. A dashed line is included for each plot to emphasize the symmetry of the

return map. The increased asymetry of the pathological attractor (A2) with respect

to the diagonal axis compared to the normal attractor (A1) is visually apparent.

The ribbon in the top right corner of (A1)−corresponding to the cardiac R wave

(ventricular depolarization)−includes more points than the corresponding ribbon in

(A2). There, the number of points in this particular feature of the attractor is lower

due to the bradyarrhythmic character of the cardiac signal. Because bradyarrhythmia

is a state where the frequency of cardiac activity is lower than normal, fewer points

in the attractor are due to the standard PQRST complex. Thus, the number of

attractor points generated by this complex is considerably lower in (A2) compared
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Figure VIII.2: Example of Lorenz attractors for heart (A) and stomach (B) signals.
Both normal (1) and pathological (2) data were used and normalization was applied
as in the previous figure.

to (A1). However, (A1) and (A2) contain an equal number of points, meaning that

more points in (A2) are due to the resting state of the heart. In the case of the

stomach (B1-B2) and intestine (C1-C2), return maps based on pathological signals

have different shapes and exhibit visible clusters of points in the lower left-hand corner

of each map.

A sample 3D spatiotemporal attractor is presented in Fig. VIII.4. The color-coded

arrows marked by ‘A’, ‘B’ and ‘C’ indicate the time points where the heart signals

in the corresponding plots (A), (B) and (C) were acquired. At (A), heart activity

is normal and the shape of the 3D attractor remains approximately identical in the
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Figure VIII.3: Return maps of healthy (first column) and pathological (second col-
umn) signals. The first, second and third rows correspond to the cardiac, gastric and
intestinal components, respectively. For ease of comparison, signal normalization was
applied so that one common set of axes could be employed for all maps, with limits
x, y ∈ [−1,+1].
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Figure VIII.4: 3D (x, y, t) phase space attractor of cardiac activity evolution in
an anesthetized domestic pig across a period of almost one hour of simultaneous
MCG/MGG/MENG recordings. The point indicated by arrow (A) corresponds to
the data plotted in (A), where cardiac activity is normal. Point (B) corresponds to
several minutes after the administration of the euthanasic solution (data plot shown
in (B)). At this point, a sharp variation in the chaos content of the system can be seen
both from the 3D attractor and from (B) due to cardiac arrhythmia. The amount of
chaos varies highly over the ensuing 15 minutes. At (C), cardiac activity has ceased.
This makes the S/N ratio drop as a result of heart failure.
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time interval between (A) and (B). A few minutes after (B), the euthanizing solution

is administered and the resulting arrhythmic cardiac signal leads to large changes in

the shape of the 3D attractor. At (C), heart activity has ceased almost entirely and

most of the recorded signal consists of environmental noise. In conclusion, our figure

demonstrates that, for the example shown, the shape of the 3D attractor is altered

significantly when cardiac arrhythmia is present. Similar 3D phase space attrac-

tors demonstrating the time evolution of gastric and intestinal signals are shown in

Fig. VIII.6. Similarly, while healthy attractors are relatively smooth, large variations

in their diameter and shape occur after the onset of arrhythmia.

Before attempting to describe the chaotic content of our acquired signals using

the quantitative measures listed in the previous section, we first investigated their

convergence behavior as a function of the parameter ε. It was thus found that, from

among these three measures, the correlation integral I converged fastest as a function

of ε. On the other hand, ν and δ were found to best reflect the differences in nonlinear

dynamics between the healthy and pathological states that we sought in our study. It

was also found that a high degree of correlation existed between the values of ν and

δ (r = 0.996) whereas hardly any correlation existed between I and ν (r = 0.024) or

between I and δ (r = 0.021). Because of this behavior, δ is employed to present our

results. The time evolution of this parameter in shown in Fig. VIII.7. Because the

purpose of the figure is to demonstrate the common behavior of δ for each animal

with respect to time, δ values are shown after normalization, i.e. the normalized

quantity δ̃ ≡ δ/〈δ<〉 is plotted, where 〈δ<〉 is the average value of δ before the onset

of arrhythmia (〈·〉 stands for the average). The average value of δ across all animals

(〈δ〉) is also presented in Fig. VIII.7.

It is important to add that, due to experimental protocol issues, each abnormal

condition was induced at different times for every subject, such that the moment
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Figure VIII.5: Convergence of the capacity dimension C, information dimension δ,
correlation dimension ν and correlation integral I as a function of the number of
volumetric boxes used for their computation (see text for details). The definition
used for the percentage error between two successive (previous vs. current) values
of each measure was (current - previous) × 100 / max {previous, current}. Values
on the abscissa are shown in units of ln (% error) + 1, such that no error (perfect
agreement) corresponds to the horizontal line y = 1, which is also drawn.

when pathology was established is different for each case. To present all subject data

on one plot, time axes were therefore aligned so that the moment when pathology

was induced was equal to the time point t = 0 min for all data sets. For this reason,

each of the plotted functions appears to be of different length since data acquisition

periods were different for each subject. From the figure it can be seen that the capacity

dimension of the cardiac, gastric and intestinal attractor assumes a relatively constant

value during the healthy state. Immediately after the onset of pathology, the value
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Figure VIII.6: 3D phase space attractors displaying the time evolution of gastric (A,
B) and intestinal (C, D) electrical activities in two anesthetized domestic pigs. In the
first pig (plots A, B), MGG normal data were first recorded (3D phase space attractor
shown in A). The stomach of the first animal was then surgically divided and data
were acquired again (attractor shown in B). In the second pig (C, D), MENG normal
data were recorded from the bowel (attractor shown in C). Thereafter, intestinal
ischemia was induced by ligating the mesenteric artery of the animal and data were
acquired again (attractor shown in D). Whereas the diameter of the attractor is
relatively time-constant in the healthy state (A and C), it exhibits large variations in
the injured state (B, D). The validity of this statement was verified using a statistical
confidence test.
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Figure VIII.7: Temporal evolution of the normalized capacity dimension δ̃ for all
subjects (black) and 〈δ〉 (red). Changes from normal (t < 0 min) to pathological (t >
0 min) values of δ̃ are indicated by blue arrows. These events are euthanasic injection
(A), stomach division (B) and mesenteric artery ligation (C). Because experimental
recording periods were not equal for each animal, plots are aligned so that the onset
of pathology corresponded to the time t = 0 min. Nevertheless, recordings from the
three organs were acquired simultaneously from each animal. Heart rate and δ̃ values
were found to be highly correlated (r = 0.917).

146



of δ fluctuates dramatically such that differences between its pre- and post-operative

values become significant. In the case of cardiac activity, as euthanasia is induced and

heart activity decreases (see (A)), the capacity dimension decreases to values that are

lower than pre-operative ones (this behavior was observed in all subjects).

For most data samples used, δ was found to best reflect the differences between

the healthy and pathological states. Because of this, a number of observations re-

garding the behavior of this parameter are in place. In the case of MGG recordings

from normal subjects, because GEA parameters such as frequency and amplitude are

approximately constant in time, δ was found to be well behaved, with a normalized

variance (σ(δ)/〈δ〉) of 0.12 〈δ〉 across subjects. In the case of pathology, arrhyth-

mia was found to cause abrupt and frequent changes in GEA parameters, which was

reflected in the normalized variance of δ having a value of 0.84 〈δ〉 across subjects.

These differences in δ were found to be statistically significant (p < 0.001). Normal-

ized variances are reported here instead of absolute numbers because the σ statistic

was computed across subjects, where large inter-subject differences in δ were found

although the time behavior of this parameter was found to be very similar in all cases.

In conclusion, we have presented evidence that−within the framework of a porcine

model−cardiac, gastric and intestinal arrhythmias are associated with statistically

significant fluctuations in chaotic attractor dimensionality. This phenomenon was de-

scribed using both visual (attractors) and numerical (capacity dimension time plots)

measures. In the case of visual measures, distinguishable differences in attractor

shape were made obvious between the healthy and pathological states. In the case

of numerical measures, statistically significant differences in δ̃ were shown to exist

between the normal and arrhythmic state of each organ. It appears thus that the

ECA-ERA complex−which is somewhat analogous to the PQRST complex of cardiac

activity−is excellently suited for investigation via nonlinear analysis methods and
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it is surprising that chaos theory has received only little attention in this respect.

Further study of such differences may one day help to develop novel methods for the

noninvasive characterization of gastric disease.
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