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CHAPTER	1 INTRODUCTION	

Machine	learning	in	healthcare	

The	adoption	of	electronic	medical	records	(EMR)	increases	secondary	usage	of	clinical	

data	and	encourages	researchers	to	mine	EMR	data	to	extract	facts	and	relations.	The	discovered	

medical	knowledge	can	improve	the	care	experience	for	patients,	enhance	knowledge	about	a	

disease	and	a	treatment,	and	expand	our	capacity	for	analyzing	the	effectiveness	and	efficiency	

of	healthcare	systems	[1,2].	On	the	population	level,	aggregated	data	facilitates	bio-surveillance	

of	 epidemics	 and	 diseases,	 tracks	 health	 disparities,	 and	 identifies	 societal	 factors	 affecting	

population	health	[3].	On	the	patient	level,	EMR-based	clinical	research	enhances	phenotyping	

methodologies,	discovers	the	effects	of	treatments,	performs	risk	stratification,	and	personalizes	

treatment	based	on	the	patient	genetics.		

	EMR	contain	invaluable	information	that	can	be	leveraged	to	improve	patient	care.	For	

example,	 clinical	 decision	 support	 (CDS)	 systems	 are	 designed	 to	 aid	 health	 professionals	 in	

decision-making.	 CDS	 systems	 retrieve	 patients’	 data	 and	 match	 them	 to	 a	 computerized	

knowledge	 base	 to	 actuate	 efficient	 and	 effective	 recommendations	 [4–6].	 CDS	 systems	 are	

activated	when	clinical	 facts	and	observations	are	 fed	 into	 them.	For	example,	quick	medical	

reference	(QMR),	developed	by	Miller,	applies	an	algorithm	to	find	a	differential	diagnosis	using	

historical	and	physical	findings	and	symptoms	[7].	Researchers	at	Vanderbilt	University	Medical	

Center	 (VUMC)	 developed	 Pharmacogenomic	 Resource	 for	 Enhanced	 Decisions	 in	 Care	 and	

Treatment	 (PREDICT),	which	 is	 an	advanced	CDS	 system	 that	 identifies	 treatment	options	 for	

patients	using	their	genotypes	[8].	

In	the	last	decade,	machine	learning	and	statistical	models	have	been	applied	to	recognize	

patterns	and	build	predictive	models	 in	healthcare	data.	Risk	 stratification	models	have	been	

developed	that	predict	the	risk	of	developing	acute	disease	or	encountering	a	negative	outcome	

such	 as	 of	 stroke,	 mortality,	 or	 readmission	 [9–13].	 In	 intensive	 care	 units	 (ICUs),	 machine	

learning	models	can	identify	deteriorating	and	critically	ill	patients,	and	predict	the	length	of	stay	

using	vital	signs,	laboratory	values,	and	medications	[14,15].	In	cancer,	genotypes,	treatments,	
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and	images	are	used	to	predict	progression,	recurrence,	treatment	response,	and	outcome	[16–

18].	

Clinical	data	can	be	classified	into	two	main	categories	based	on	their	storage	format:	1)	

structured	 data	 stored	 in	 a	 pre-defined	 format	 such	 as	 laboratory	 tests,	medications,	 etc.	 2)	

unstructured	data	that	narrates	the	patient's	treatment	in	the	form	of	clinical	documents.	Clinical	

documents	assemble	clinical	events	that	patients	go	through	and	communicate	the	patient	story	

to	 the	 creator	 of	 the	 document	 and	 other	 providers	 in	 the	 same,	 or	 a	 different	 healthcare	

organization	 [19].	 Clinical	 documents	 have	 been	 leveraged	 to	 predict	 outcomes	 [20];	 extract	

information,	 assertions,	 relations,	 and	 risk	 factors	 [21–28];	 and	 for	 classification	 [29–31];	

deciphering	 sentiments	 and	 behaviors	 [20,32];	 identifying	 phenotypes	 [33–35];	 assigning	

diagnostic	 billing	 codes	 [36];	 and	monitoring	 clinical	 events	 such	 as	 drug	 adverse	 events	 and	

infections	[36,37].	

Challenges	in	secondary	usage	of	EMR	data	

Although	using	EMR	data	in	translational	and	clinical	research	can	be	cost-effective,	the	

data	 are	 rarely	 suitable	 for	 ideal	 research	 usage.	 The	 variability	 in	 quality,	 messiness,	 and	

incompleteness	 of	 clinical	 data	 complicate	 the	 curation	 and	 implementation	 of	 data	 in	

translational	research	[38].		

Clinical	data,	by	nature,	are	messy	and	noisy.	Noise	in	structured	clinical	data	can	imply	a	

high	variance	or	an	irrelevant	measurement.	For	instance,	international	classification	of	diseases	

(ICD)	codes	can	be	noisy	because	they	are	assigned	as	an	inference	to	patients	before	the	final	

definitive	diagnosis,	and	are	not	revise	later	[39].	Similarly,	noise	in	unstructured	clinical	data	can	

be	duplicated	entries,	irrelevant	text,	or	poor	grammar	[40,41].	Noise	and	messiness	can	impair	

the	data’s	ability	to	provide	influences	in	research	[42].	Variations	in	data	collection,	patients,	

and	 data	 sources	 (healthcare	 providers,	 physiological	 resources,	 consumers,	 and	 patients)	

contribute	to	the	aforementioned	challenging	characteristics	of	clinical	data.	Training	models	on	

noisy	 data	 could	 lead	 to	 overfitting,	 detecting	 incorrect	 patterns,	 and	 may	 produce	
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inconsequential	results	[43,44].	Noisy	text	hinders	pre-processing	and	effective	semantic	analysis	

[45].	

Machine	learning	researchers	handle	noise	in	data	by	learning	latent	representations	(e.g.	

Gaussian	regression	models	or	topic	models),	applying	active	learning,	using	rule-based	models,	

polishing	 and	 correcting	 noisy	 data,	 training	 robust	 learners	 such	 as	 random	 forests,	 and	

eliminating	possible	noisy	elements	[42,44–48].	Training	models	with	the	noise	assumption	can	

reduce	the	effect	of	noise	in	the	dataset.	Holding	the	assumption	of	noisy	data,	Lasko	inferred	

phenotypes	from	noisy	sparse	uric	acid	sequences	by	applying	non-parametric	Gaussian	Process	

Regression	[42].	Miotto	et	al.	implemented	a	noise-masking	algorithm	to	corrupt	the	input	and	

introduce	noise	to	data	when	training	deep	learning	model	[49].	

Missing	data	is	another	challenge	that	faces	machine	learning	researchers	in	the	medical	

informatics	 field.	 Multiple	 factors	 contribute	 to	 the	 prevalence	 of	 this	 problem	 including:	

financial	burdens	that	restrict	some	treatment	plans,	the	health	conditions	of	the	patient,	and	

variability	 in	clinical	practice	that	 influences	the	order	and	documentation	of	medications	and	

laboratory	tests	[50,51].	Missing	data	could	bias	the	analysis	and	undermine	the	credibility	of	the	

trained	model	[52,53].	Omitting	the	entries	with	missing	data	is	one	approach,	but	this	could	also	

bias	the	analysis.	Imputation	is	a	statistical	approach	that	infers	missing	values	using	methods	

such	as	mean,	and	multiple	imputation	using	chained	equations	[51–53].	Multiple	imputation	has	

been	used	to	estimate	missing	medications	in	[54].	Walsh	et	al.	implemented	additive	regression,	

bootstrapping,	and	predictive	mean	matching	to	impute	missing	data	before	predicting	the	risk	

of	suicide	attempts	[55].		

Healthcare	 providers	 communicate	 and	 review	 plans	 of	 care	 in	 unstructured	 clinical	

documents	 [56].	 The	 variability	 and	 flexibility	 in	 writing	 unstructured	 clinical	 documents	

increases	 the	 abstractions	 of	 clinical	 components	 for	 quality	 measurements,	 research,	 and	

assessing	patients’	health	[19,56].	However,	those	two	aspects	of	documentations	encumber	the	

extraction	of	clinical	events	from	documents	and	creating	text	features	and	representation	for	

machine	learning	models	[56].	Text	representations	that	account	for	semantics	and	syntax	in	the	

text	 improve	 the	 performance	 of	 text-mining	 algorithms	 and	 yield	 results	 similar	 to	 humans	

[36,57,58].	Phrases	and	n-gram	features	have	been	implemented	to	represent	the	context	of	the	
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words,	but	did	not	outperform	other	approaches	to	text	representation,	such	as	bag	of	words	

[57].	Hu	et	al.	 improved	 the	performance	of	 traditional	 text	clustering	methods	by	building	a	

concept	 thesaurus,	 using	 the	 semantic	 relations	 extracted	 from	Wikipedia	 to	 impute	missing	

semantics	in	the	text	representation	[59].		

At	the	patient	level,	clinical	data	are	inserted	into	EMR	and	interpreted	in	a	longitudinal	

format.	Medications,	laboratory	tests,	billing	codes,	and	clinical	documents	are	associated	with	

a	 timestamp.	 Understanding	 the	 trajectories	 of	 some	 diseases	 is	 a	 challenge,	 as	 it	 requires	

performing	 an	 analysis	 across	 the	 dimension	 of	 time.	 Longitudinal	 analysis	 has	 been	

implemented	in	risk	stratification,	predicting	diagnosis,	and	discovering	phenotyping	[42,60,61].	

Using	longitudinal	measurements	in	prediction	models	remains	an	active	research	field	[62].	The	

absence	of	longitudinal	data	could	impact	the	accuracy	of	machine	learning	algorithms.	Finding	

a	data	representation	to	summarize	and	retain	sequential	information	can	ease	the	challenge	of	

building	and	training	prediction	models	[63].	Using	methods	that	account	temporality	can	lead	

to	a	substantial	improvement	in	the	performance	of	the	prediction	model	[63].	

Clinical	features	representation	in	machine	learning	

The	 performance	 of	 machine	 learning	 methods	 depends	 on	 features	 representations	

[64,65].	 Feature	 engineering	 combines	 human	 ingenuity	 and	 knowledge	 in	 creating	

representations	 [64].	 Training	machine	 learning	models	 on	mediocre	 data	 representations	 or	

outdated	features	can	affect	the	model	performance	and	its	clinical	validity.	Failure	to	include	

pertinent	 information,	 informative	 representations,	 or	 changes	 in	 the	 patient’s	 health	 (e.g.	

changes	in	hypertension	status,	complications	after	hip	replacement)	can	under-	or	overestimate	

the	risk	of	undesirable	outcomes	such	as	readmission	or	poor	disease	prognosis.	For	example,	

one	study	investigated	patient	hypertension	deterioration	over	time,	and	found	that	the	most	

predictive	features	of	the	hypertension	status	(i.e.	normal	versus	out	of	control)	were	changes	in	

hypertension	 status	 patterns	 before	 the	 prediction	 point	 [66].	 Creating	 representations	 for	

hypertensive	 patients	 that	 embed	 the	 changes	 in	 features	 such	 as	 the	 hypertension	 status	

improved	the	performance	of	prediction	model.		
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Problem	statement	and	objectives	

Clinical	data	are	heterogeneous	and	multi-dimensional	[67].	Challenges	and	shortcomings	

in	training	predictive	models	using	structured	and	unstructured	data	still	exist.	To	harness	the	

power	embodied	in	EMR	data,	clinical	machine	learning	should	be	trained	on	informative	feature	

representations.	 The	 objective	 of	 this	 dissertation	 is	 structuring	 complex	 and	 heterogeneous	

clinical	data	to	develop	machine	 learning	models	that	could	 improve	patients’	care.	The	work	

addresses	 the	 temporality	 and	 semantics	 of	 clinical	 data	 and	 integrates	 those	 concepts	 in	

prediction	models.	

This	dissertation	presents	methods	to	identify	appropriate	representations	for	structured	

and	unstructured	data	that	 improve	risk	prediction,	classification,	and	 information	extraction.	

The	 rest	 of	 the	 dissertation	 discusses:	 1)	 the	 temporal	 aspect	 of	 structured	 data,	 and	 2)	 the	

semantic	representations	for	unstructured	data.	

The	temporality	of	data	and	its	effect	on	prediction	model	performance	

The	 EMR	 is	 a	 rich	 repository	 for	 the	 longitudinal	 encounters	 and	 clinical	 pathways	 of	

patients	and	providers.	The	volume	and	variety	of	patient	data	are	 increasing;	hence,	manual	

analysis	 for	 a	 long	 sequence	 of	 data	 is	 impractical.	 Most	 risky	 and	 critical	 events,	 including	

complications,	readmission,	or	mortality,	are	often	preceded	by	warning	signs	or	patterns.	For	

instance,	 the	 diagnosis	 of	 congestive	 heart	 failure	 (CHF)	 is	 usually	 preceded	 by	 dyslipidemia,	

angina,	and/or	diabetes	[68].	Evaluating	the	risk	of	developing	CHF	should	incorporate	the	latest	

clinical	information	about	the	patient	to	obtain	an	accurate	assessment.	

Most	clinical	events	and	entities,	such	as	medications,	admissions,	emergent	visits,	and	

diagnoses,	 follow	 a	 sequential,	 irregular,	 and	 auto-regressive	 nature.	 A	 clinical	 event	 often	

stimulates	the	occurrence	of	the	next.	A	main	clinical	event	causes	the	incidence	of	other	clinical	

events	in	a	treatment	pathway.	For	instance,	when	a	patient	is	admitted	due	to	acute	myocardial	

infarction	(AMI),	laboratory	tests	are	ordered,	procedures	are	performed,	and	medications	are	

prescribed	to	treat	the	patient.		

Irregularity	 in	 time	between	clinical	events	makes	 it	 challenging	 to	bin	 the	events	and	

create	a	representation	for	machine	learning	models.	Depending	on	the	type	of	disease	or	the	
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event	 of	 interest	 (mortality,	 disease	 progression,	 readmission,	 diagnosis),	 the	 time	 between	

clinical	 entities	 varies.	 For	 chronic	 conditions	 such	 as	 hypertension	 and	 CHF,	 clinical	

manifestations	and	symptoms	might	happen	over	years.	For	acute	events	such	as	AMI,	stroke,	or	

readmission,	the	leading	clinical	events	and	symptoms	happen	over	hours	or	days.		

To	predict	the	next	possible	acute	events,	most	prediction	models	aggregate	information	

before	 one	 “major	 event”	 (e.g.	 hospitalization	 due	 to	 a	 broken	 hip).	 Any	 information	 that	

happened	after	the	major	event	might	be	excluded	from	the	prediction	models.	For	 instance,	

after	hospitalization,	clinical	data	that	are	entered	during	hospitalization	are	used	to	predict	the	

risk	of	 readmission.	Moreover,	 some	models	aggregate	all	values	 for	a	clinical	event	 into	one	

value	using	the	statistical	mean	or	median.	Hence,	all	changes	will	be	normalized	to	one	value	

regardless	of	their	temporality.	

For	 dynamic	 or	 time-changing	 features	 and	output,	 the	 time	dimension	 enhances	 the	

ability	to	understand	dynamic	clinical	phenomena	such	as	the	disease	trajectory,	medications’	

effect,	and	potential	outcomes	[63].	Time	is	integrated	into	representing	clinical	data,	querying	

medical	 records,	 and	 discovering	 the	 relations	 between	 longitudinal	 features	 [69].	 Creating	

features	that	represent	temporal	changes	in	the	clinical	data	can	improve	prediction	models	that	

have	 a	 time-oriented	 output	 [69,70].	 Temporal	 data	 have	 different	 representations	 such	 as	

primitives	(point	or	interval),	time	series	projection	(linear	or	non-linear),	associations	of	clinical	

events,	and	dichotomized	values	in	time	intervals	[71–73].		

Static	prediction	models	collect	information	at	a	static	or	baseline	timepoint	and	predict	

the	 clinical	 output	 [74,75].	 Collected	 data	 do	 not	 include	 the	 changes	 in	 patterns	 or	 clinical	

transitions	after	the	baseline	time	point	[74,75].	Static	prediction	models	may	fail	to	predict	the	

patient’s	health	status	that	manifests	in	a	dynamic	way	[76].	For	instance,	readmission	models	

are	trained	on	data	collected	until	discharge	day	regardless	of	any	clinical	events	encountered	

after	 the	 discharge	 that	 might	 change	 the	 risk.	 Training	 a	 dynamic	 model	 that	 incorporates	

changes	of	time-dependent	predictors	can	improve	discrimination	in	the	models	[75].	Figure	1.1	

depicts	 the	 pipeline	 of	 building	 objective	 1.	 The	 temporality	 of	 clinical	 data	 is	 important	 in	

predicting	negative	outcome:	mortality	or	readmission.	Learning	a	dynamic	representation	for	
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the	time-varying	features	and	accurately	identify	patients	who	are	at	high	risk	of	suffering	from	

one	of	the	two	negative	outcomes:	readmission	or	death.		

Text	mining	and	natural	language	processing	for	clinical	documents	

Some	clinical	events	and	facts,	that	activate	CDS,	are	locked	in	the	free	text	format	inside	

a	clinical	document,	such	as	pathology	reports,	and	discharge	summaries	[4].	Due	to	variability	

in	 documenting	 the	 same	 clinical	 events,	 simple	 extraction	 and	 rule-based	methods	may	not	

extract	 those	 facts	 and	 events.	 Natural	 language	 processing	 (NLP)	 algorithm	 can	 locate	 the	

important	information	and	all	its	possible	phrasing	variations	to	actuate	CDS	system	or	enhance	

model	 performance	 is	 a	 necessity.	 For	 example,	 a	 complete	 screening	 for	 tuberculosis	 and	

treatment	 requires	 reading	 the	 patient’s	 medical	 history,	 physical	 examination,	 chest	

radiography	 (if	 required),	 tuberculin	 skin	 test	 (if	 required),	 and	 laboratory	 testing	 for	 human	

immunodeficiency	 virus	 infection,	 and	 M.	 tuberculosis	 (when	 required)	 [77,78].	 Hence,	

incorporating	NLP	methods	to	extract	clinical	data	from	text	could	improve	the	performance	of	

CDS	systems.	

NLP	 has	 been	 used	 for	 decades	 to	 structure	 information	 in	 clinical	 documents.	

Nevertheless,	there	are	still	several	challenges	and	barriers	that	limit	NLP	and	machine	learning	

algorithms’	 application	 in	 clinical	 text.	 Traditional	 NLP	 algorithms	 that	 implement	 syntax	 or	

linguistic	 rules	 require,	 mostly,	 an	 annotated	 dataset	 in	 the	 training	 and	 validation	 phase.	

Obtaining	annotated	data	has	substantial	barriers	such	as	time,	money,	and	finding	experts.		

In	text	mining,	engineering	and	creating	features	to	represent	the	clinical	documents	has	

many	challenges.	Simple	features	such	as	words	or	phrases	have	limitations	such	as	lacking	the	

context	and	the	semantics	of	the	words,	and	the	rigid	dependency	between	words	and	phrases.	

Moreover,	traditional	machine	learning	methods	such	as	random	forest	and	logistic	regression	

do	not	account	for	word	context.		

Medical	 ontologies	 can	 be	 used	 to	 extract	 features	 from	 clinical	 documents.	 Some	

medical	 terminologies	 include	 semantics	 in	 their	 structure.	 For	 example,	 unified	 medical	

language	system,	a	medical	terminology	maintained	by	national	library	of	medicine	(NLM),	assign	

AMI,	 congestive	 heart	 failure,	 and	 colorectal	 cancer	 to	 “disease”	 type.	 However,	 structuring	
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documents	using	medical	terminologies	has	some	challenges.	These	semantics	only	consider	if	a	

connection	between	medical	concepts	exists,	not	how	close	they	are.	For	instance,	AMI	is	closer	

to	congestive	heart	failure	disease	than	to	colorectal	cancer.	The	unified	medical	language	system	

(UMLS)	does	not	quantify	the	relationship	between	disease.	Prediction	models	trained	on	text	

represented	by	medical	concepts	yield	a	similar	performance	to	models	trained	standard	features	

such	 as	 bag	 of	 words	 [79].	 Moreover,	 medical	 ontologies	 require	 ongoing	 curation	 and	

maintenance,	lack	context,	and	miss	abbreviations	and	misspellings	common	in	clinical	notes.	

Semantics,	 word	 meaning,	 syntactic	 representation,	 and	 relevant	 text	 can	 improve	

performance	 of	 the	 machine	 learning	 model	 [38,56,80].	 Domain	 knowledge	 experts	 usually	

curate	and	maintain	semantic	 features	and	clinical	 terminologies’	concepts.	Manually	curated	

clinical	 semantic	 and	 representations	 have	 some	 issues	 such	 as	 affordability,	 ongoing	

maintenance,	 variation	 clinical	 annotation	 standard,	 and	 scalability	 [36].	 All	 aforementioned	

barriers	hinder	the	development	of	scalable	clinical	NLP	tools.	

In	traditional	NLP	machine	learning	algorithms,	the	context	of	the	words	is	rarely	used	in	

extracting	or	classifying	clinical	documents.	Moreover,	traditional	text	representations	such	as	

term	frequency-inverse	document	frequency	(TF-IDF)	learn	simple	predictors	that	accentuate	a	

few	variables	or	apply	linear	transformations.	These	representations	cannot	be	stacked	to	learn	

deeper	and	more	complex	representations	[64,81].	For	instance,	bag	of	words	does	not	encode	

the	words’	meaning	 in	 the	representation,	while	 latent	semantic	 indexing	 learns	only	a	 linear	

representation	 and	 de-correlated	 vectors.	 A	 representation	 that	 incorporates	 context	 and	

mimics	the	human	way	of	comprehending	text	could	improve	the	performance	of	NLP	algorithms	

to	answer	questions	in	chat	bots,	identify	sentiments	in	movie	reviews,	or	classify	the	phenotypes	

in	clinical	notes.	

Combining	the	semantics	and	context	of	clinical	text	to	train	NLP	models	to	create	text	

representations	 can	enhance	 classification	of	 clinical	 text.	 Traditional	 semantic	methods	map	

words	 to	equal	distances,	 in	 terms	relevant	 to	each	other,	 regardless	of	 their	 similarities.	For	

unstructured	clinical	data,	 learning	the	semantic	relationships	between	words	to	create	a	text	

representation	can	map	words	more	accurately	in	the	textual	feature	space.	The	context	around	
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the	word	in	the	text	representation	can	influence	the	documents’	classification,	patients’	portal	

messages	for	example,	as	depicted	in	Figure	1.1.	

Information	extraction	and	de-noising	clinical	documents	

With	 the	 rise	 of	 the	 EMR,	 providers	 document	 more	 information	 in	 patients’	 charts	

compared	 to	 paper-based	 systems	 [82].	 While	 acquiring	 more	 data	 about	 patients	 is	 an	

invaluable	 data	 source,	 information	 overload	 can	 make	 it	 difficult	 to	 differentiate	 between	

pertinent	information	and	noise	[83].	Presenting	a	mix	of	new	important	information	along	with	

redundant	 and/or	 old	 information	 may	 interfere	 with	 the	 decision-making	 process	 [82,84].	

Researchers	 reviewing	 and	 synthesizing	 information	 from	 clinical	 notes,	 especially	 unfamiliar	

notes,	could	encounter	barriers	such	as	searching	difficulty,	 redundancy,	and	poor	readability	

[85].		

With	the	rapid	rise	in	data	volume,	tools	to	highlight	and	present	relevant	information	

could	reduce	cognitive	burden	on	researchers,	especially	those	reviewing	complex	patient	charts.	

Information	extraction	models	are	trained	to	understand	the	semantics	of	phrases	and	sentences	

and	select	important	text.	In	the	past,	to	train	models	that	extract	relevant	information,	some	

would	argue	that	a	gold-standard	or	manual	annotation	is	required	to	train	the	machine	learning	

model	[86].	Annotating	clinical	notes	manually	is	expensive	and	complex	in	terms	of	time,	money,	

and	 depth	 of	 knowledge	 required.	 Annotating	 clinical	 documents	 requires	 recruiting	

knowledgeable	annotators,	such	as	clinicians	and	nurses,	which	could	be	difficult	due	to	their	

time	 constraints	 [37].	 Scaling	 and	 reproducing	 annotation,	 whether	 in	 another	 clinical	

organization	or	at	a	different	time	within	the	same	organization,	is	another	formidable	barrier	

facing	annotation	and	training	NLP	algorithms	[37].	In	past	years,	the	NLP	community	has	worked	

toward	overcoming	these	barriers	by	creating	and	releasing	de-identified	and	annotated	datasets	

[36].	However,	the	released	datasets	are	not	large	enough	to	train	a	scalable	model.	Therefore,	

pre-annotated	documents	have	become	a	necessity	in	the	era	of	big	data.	

	Semantics	and	context	can	play	an	important	role	in	extracting	the	information	relevant	

to	a	phenotype.	Training	a	model	that	extract	sentences	including	relevant	information	can	be	

used	to	pre-process	and	de-noise	clinical	text,	or	pre-annotate	clinical	text	for	active	annotation	
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learning	models.	An	extraction	model	utilizes	the	semantics	of	the	words	in	the	documents,	the	

context	 within	 a	 sentence	 to	 classify	 sentences	 into	 a	 binary	 output:	 sentences	 that	 include	

information	 about	 a	 phenotype,	 including	 relevant	 medical	 findings,	 medications,	 and	

procedures,	and	sentences	that	do	not,	as	depicted	in	Figure	1.1.		

Dissertation	aims	

Incorporating	 semantics	 during	 feature	 construction	 can	 improve	 the	 performance	 of	

machine	learning	models.	This	dissertation	addresses	methods	for	constructing	clinical	features	

from	 structured	 and	 unstructured	 EMR	 data.	 The	 developed	 feature	 representations	 are	

evaluated	 on	 three	 biomedical	 informatics	 problems:	 predicting	 patients	 at	 high	 risk	 of	

experiencing	an	adverse	outcome	 (readmission	or	death),	 classifying	 the	needs	of	patients	 in	

their	messages	to	healthcare	providers,	and	retrieving	information	about	a	phenotype	or	disease	

from	clinical	documents.	Each	problem	is	formulated	around	the	three	goals	depicted	in	Figure	

1.1.	The	machine	learning	pipeline	discussed	in	this	dissertation	can	be	applied	to	other	datasets	

in	different	organizations	regardless	of	the	underlying	EMR	structure.	

AIM	1:	Dynamic	representation	for	structured	data:	The	first	aim	describes	the	construction	of	

features	 for	 structured	 data	 that	 capture	 changes	 in	 values	 overtime.	 Chapter	 3	 presents	 a	

method	 to	 construct	 dynamic	 post-discharge	 features	 and	 train	 a	 risk	 prediction	model.	We	

identify	important	major	events	that	could	lead	to	readmission	or	death	after	discharge.	The	goal	

of	this	aim	is	leveraging	the	information	collected	after	discharge,	in	addition	to	data	collected	

before	 and	 during	 admission.	 We	 evaluate	 the	 model	 to	 predict	 the	 outcome	 of	 patients	

hospitalized	for	hip	fracture	and	CHF.	We	published	the	work	in	that	chapter	in	American	medical	

informatics	association	(AMIA)	proceedings,	in	a	2016	paper	entitled	“Predicting	negative	events:	

using	post-discharge	data	to	detect	high-risk	patients”	[87].	AMIA	is	an	American	professional	

non-profit	 organization	 that	 lead	 the	 initiative	 in	 “transforming	 health	 care	 through	 trusted	

science,	education,	and	the	practice	of	informatics“	[87].	

AIM	2:	 Semantic	 and	 context	 representation	 in	 classification:	 The	 second	aim	evaluates	 the	

effectiveness	of	utilizing	 semantics	 and	 context	of	words	 in	 classification.	 It	describes	a	deep	
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learning	method	to	create	an	abstract	representation	for	clinical	text.	Chapter	4	details	the	design	

of	 different	mechanisms	 for	 learning	 semantic	 and	 context	 of	 words	 in	 unstructured	 clinical	

notes.	We	 published	 this	work	 in	 a	 paper	 entitled	 “Classifying	 patient	 portal	messages	 using	

convolutional	neural	networks”	in	the	Journal	of	Biomedical	Informatics	(JBI)	[88].	

AIM	3:	 Semantic	 and	 context	 representation	 in	 information	 retrieval:	 Chapter	 5	 details	 the	

challenges	and	opportunities	 in	 retrieving	 information	 from	clinical	documents.	 It	describes	a	

deep	 learning	 information	 retrieval	 algorithm	 that	 uses	 the	 semantics	 of	 words,	 and	 the	

sequential	context	of	words	in	sentences	to	learn	a	text	representation.	The	method	leverages	

big	data	to	find	a	correlation	between	structured	phenotypes	(e.g.	and	the	association	between	

sentences	 and	 billing	 codes)	 and	 sentence	 representations	 to	 extract	 sentences	 related	 to	 a	

phenotype	without	using	an	annotated	dataset	in	the	training	phase.	The	model	assigns	a	score	

or	a	probability	 for	each	sentence.	The	scores	can	be	used	to	extract	 relevant	 information	 to	

lessen	 the	 cognitive	 burden	 of	 reading	 long	 documents.	 The	 work	 in	 this	 chapter	 will	 be	

submitted	to	the	journal	of	American	medical	informatics	association	(JAMIA).	

	
Figure	1.1	Training	machine	learning	model	on	clinical	data:	structured	and	unstructured.	Objective	1:	creating	dynamic	

features	for	structured	longitudinal	data	by	focusing	on	time	dimension.	Objective	2:	creating	informative	text	representation	
for	clinical	documents	by	embedding	semantics	and	context	of	words	for	classification.	Objective	3:	learning	text	representation	

for	information	extraction	from	clinical	documents	by	embedding	semantics	and	context	of	words	
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CHAPTER	2 BACKGROUND	

	
	

The	dissertation	 explores	 the	 importance	of	 clinical	 features	 engineering	 and	 learning	

informative	representations	to	train	a	practical	clinical	machine	learning	model.	To	recognize	the	

importance	of	these	steps	in	training	machine	learning,	one	must	understand	the	importance	of	

each	step	in	developing	the	clinical	models	focusing	on	different	clinical	feature	representations	

developed	 in	 previous	 research.	 The	 chapter	 describes	 clinical	 feature	 engineering	 in	 clinical	

machine	learning:	data	extraction,	feature	construction,	and	representation	learning.	

Feature	engineering	

Features	are	the	main	characteristics	that	describe	a	sample	such	as	a	patient	or	an	image.	

For	 instance,	 a	 patient	 can	 be	 represented	 as	 the	 set	 of	 the	 diseases	 diagnosed	 with,	 the	

medications	 prescribed,	 the	 results	 of	 the	 withdrawn	 laboratory	 tests,	 and	 the	 personal	 or	

electronic	 encounters	 with	 healthcare	 providers.	 Feature	 engineering	 creates	 a	 numerical	

representation	by	extracting	data	and	transforming	descriptors	into	features	that	improve	the	

predictive	power	of	the	machine	learning	model.	Feature	engineering	may	involve	one	or	more	

of	the	following	steps:	1)	Feature	extraction;	2)	Feature	construction;	and/or	3)	Feature	learning.		

Feature	extraction	from	the	EMR	

Clinical	informatics	problems	range	from	predicting	critical	patient	events	(readmission,	

disease	diagnosis,	unexplained	access	to	patient	records),	to	clustering	groups	of	similar	patients	

(cancer	patients	with	similar	gene	expression),	to	extracting	patients’	information	from	clinical	

text	(medications,	diagnosis)	[13,55,89–96].	Patient	data	are	multivariate	where	multiple	clinical	

events	and	values	contribute	to	the	next	clinical	decision	[97].	Clinical	machine	learning	models	

combine	different	patients’	events	to	predict,	discover,	or	explain	a	clinical	problem	in	unseen	

cases,	which	can	be	time-consuming	or	slightly	challenging	to	comprehend	by	a	human.	

As	mentioned	previously,	some	clinical	events	are	stored	in	a	structured	format	where	

each	clinical	event	has	a	pre-defined	set	of	description	fields.	For	instance,	diagnosis	codes	or	ICD	
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record	has	a	patient	identification	number,	the	ICD	code,	and	the	date	and	time	when	the	ICD	

was	assigned	to	the	patient.	Other	clinical	events	are	documented	and	stored	in	a	narrative	or	

unstructured	 format.	 Structured	 data	 has	 been	 used	 to	 predict	 outcomes	 [20],	 extract	

information,	 assertions,	 relations,	 and	 risk	 factors	 [21–28],	 classification	 [29–31],	 deciphering	

sentiments	and	behaviors	 [20,32],	 identifying	phenotypes	 [33–35],	assigning	diagnostic	billing	

codes	[36],	and	monitoring	clinical	events	such	as	drug	adverse	events	and	infections	[36,37].		

Depending	 on	 the	 problem	of	 interest,	 researchers	 extract	 data	 from	one	 of	 the	 two	

sources.	Unstructured	data	holds	more	information	than	structured	data;	however,	it	is	harder	

to	extract	clinical	 information	 for	chart	 review	or	 features	 for	clinical	models	 [98].	Therefore,	

structured	data	are	the	typical	choice	in	training	clinical	models.	Hybrid	models	that	implement	

data	from	both	structured	and	unstructured	resources	might	outperform	the	models	trained	on	

data	from	one	of	those	two	sources	[99].	

Documents	and	feature	extraction	

Different	methods	have	been	studied	to	extract	patients’	data	from	various	EMR	data	sources.	

ICD	codes	are	 the	most	common	data	source	used	 in	 identifying	patient	phenotypes	 [100].	A	

systematic	review	investigated	the	data	sources	implemented	in	identifying	top	10	phenotypes	

in	80	studies,	and	diagnosis	codes	were	the	main	source	in	identifying	phenotypes	in	40	studies	

[100].	Diagnosis	codes	can	be	an	easy	and	fast	source	to	extract	records	of	acute	phenotype;	

despite,	 previous	 studies	 concluded	 that	 diagnosis	 code	 alone	might	 not	 be	 sufficient	 [100].	

Clinical	documents	can	be	employed	or/and	combined	to	extract	relevant	patient	information?	

such	 as	 demographics,	 procedures,	 vital	 signs,	 and	 laboratory	 values.	 NLP	 rules	 are	 usually	

applied	to	mine	and	assign	phenotypes’	labels	to	the	notes.	

Feature	construction	

Feature	 construction	methods	 transform	 data	 to	 obtain	more	 discriminative	 patterns	

which	 improve	 the	 performance	 of	 the	model	 [101,102].	 Sometimes,	 feature	 transformation	

methods	are	applied	to	reduce	the	dimensionality	of	the	data	[103,104].	Feature	transformation	
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methods	 can	 be	 simple	 such	 as	 scaling	 or	 averaging.	 Other	methods	 apply	 a	more	 complex	

mathematical	 transformation	 on	 the	 original	 features	 [105,106].	 The	 following	 paragraphs	

describe	 some	 traditional	 data	 construction	 and	 transformation	 and	 their	 application	 in	

biomedical	informatics.	

Scaling,	 ratios,	 discretization,	normalizing,	 and	averaging	are	 conventional	methods	of	

transformation	[101].	For	example,	laboratory	values	can	be	represented	by	the	average	of	each	

laboratory	test	over	a	range	of	time.	Feature	scales	and	ranges	vary.	Features	with	large	values	

might	dominate	the	training,	and	their	weights	might	get	updated	faster.	As	a	result,	they	become	

the	main	predictors	regardless	of	their	importance	in	the	prediction	[107].	If	the	same	features	

have	 different	 scales,	 the	 model	 results	 might	 differ	 [108].	 Hence,	 scaling	 and	 normalizing	

features	are	applied	before	training	some	machine	learning	such	as	logistic	regression.	

Discretization	 converts	 continuous	 values	 to	 discrete	 features.	 Discretization	 may	

improve	 the	 performance	 of	 machine	 learning	 algorithms	 [109,110].	 It	 can	 homogenize	 the	

attribute	in	the	dataset,	clarify	the	non-linear	relationships,	and	enable	the	derivation	of	count	

variables	 for	non-continuous	data	 [110].	Discretization	can	be	supervised	where	the	target	or	

output	is	used	in	the	discretization,	or	unsupervised	where	output	information	is	not	available	or	

not	used	in	dichotomizing	the	variables.		

Minimum	descriptive	length-based	(MDL)	and	ChiMerge	are	two	supervised	discretization	

methods.	 MDL	 divides	 the	 range	 of	 continuous	 values	 by	 splitting	 the	 values	 into	 bins	 and	

calculating	the	entropy	for	the	output	classes.	The	algorithm	stops	when	it	reaches	a	minimum	

entropy	value	[111].	ChiMerge	implements	the	bottom-up	approach.	It	starts	from	the	individual	

values	as	individuals	bins	and	merges	the	close	values.	ChiMerge	evaluates	similarities	between	

bins	using	Chi-square	tests	and	stops	merging	the	bins	when	the	significance	level	of	the	test	is	

0.05	or	lower	[112].	

Reference	range,	equal	width,	equal	frequency,	and	clustering	binning	are	unsupervised	

discretization	methods.	 Reference	 range	 categorizes	 values	 into	 clinically-relevant	 ranges	 (or	

bins)	such	as	low,	normal,	and	high	for	laboratory	values,	and	chapters	for	ICD	codes.	Equal	width	

divides	the	values'	range	into	k	bins	of	equal	width,	while,	equal	frequency	divides	the	range	into	
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k	bins	with	an	equal	number	of	observations	[113].	In	clustering	binning,	a	clustering	algorithm	

(e.g.	k-means,	finite	mixture)	creates	non-overlapping	bins	that	minimize	the	distance	between	

the	values	 in	bins	 [114].	Maslove	et	al.	 evaluated	different	methods	of	data	discretization	 to	

classify	the	arterial	blood	gas	 into	13	categories	and	cardiac	output	 into	four	circularity	shock	

types	using	clinical	features	[110].	The	authors	reported	that	supervised	discretization	methods	

were	 more	 accurate	 that	 unsupervised	 methods.	 Among	 the	 unsupervised	 discretization	

methods,	equal	frequency	and	k-means	performed	well	in	classifying	the	ABG	and	cardiac	output	

[110].	

Time	in	clinical	data	and	machine	learning	

Patients	encounter	unexpected	events	 that	quickly	change	their	health	status,	 such	as	

having	a	stroke	or	breaking	a	hip.	Clinical	interventions	are	applied	with	respect	to	other	clinical	

events	to	move	the	patients	to	stable	health	status	[115].	Clinicians	prescribe	medications,	order	

laboratory	tests,	and	request	procedures	based	on	the	patient	condition	and	the	severity	of	the	

illness.	 Hence,	 the	 distribution	 of	 clinical	 events	 changes	 over	 time	 leading	 to	 an	 irregular	

sampling	time	[72].	

Clinical	environments	are	dynamic	where	timing	of	the	same	clinical	event	varies	for	two	

patients	with	the	same	health	condition	based	on	the	urgency,	available	resources,	and	the	day	

of	the	clinical	events.	A	patient's	health	and	clinical	environment	contribute	to	this	variability.	

The	non-stationary	nature	of	the	care	pathway	increases	the	challenge	of	sampling	and	creating	

features	 [115].	Hence,	 incorporating	features’	changes,	and	accounting	for	the	non-stationary	

nature	of	clinical	data	in	constructing	features	and	training	machine	learning	models	can	improve	

their	performance	[70,115,116].	Without	proper	feature	extraction,	patients	who	have	mild	and	

severe	episodes	of	illness	during	two	years	might	be	grouped	with	patients	who	have	an	average	

severity	of	illness	during	the	same	period.	For	instance,	using	temporal	features	improved	the	

detection	 of	 adverse	 drug	 events	 (ADE)	 compared	 to	 a	 cruder	 model	 that	 create	 features	

regardless	of	their	time	[117].	
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In	longitudinal	clinical	data,	exact	values	and	intervals	are	two	typical	representations	of	

temporal	data	[118].	In	temporal	dichotomization,	clinical	features	are	extracted	by	dividing	the	

clinical	timeline	into	bins	with	a	start	and	end	time.	The	dichotomized	clinical	bins	outline	the	

extraction	boundaries	for	the	clinical	data.	Longitudinal	clinical	data	can	be	dichotomized	by	clock	

time,	the	events	sequence	(e.g.	second	event,	fifth	event),	time	measures	in	the	series	(e.g.	three	

months	after	the	first	diagnosis	code),	or	significant	clinical	events	(e.g.	time	between	admission	

and	discharge).	Optimum	time	boundaries	can	improve	the	performance	of	the	model	and	create	

stationary	representation	[115].	The	mean,	median,	or	rate	of	change	can	aggregate	continuous	

values,	while	counts	or	binary	values	can	represent	categorical	variables	in	the	created	bins.		

Some	clinical	variables	are	more	 important	 in	prediction	than	other	variables	 [97].	For	

example,	the	last	values	of	a	laboratory	test,	or	the	order	time	of	a	specific	laboratory	test	are	

highly	predictive	for	the	next	laboratory	test	or	medication	order	[97].	Batal	et	al.	implemented	

temporal	pattern	mining	algorithms	 to	predict	 clinical	events	 such	as	adverse	medical	events	

[72,73].	These	algorithms	discovered	more	informative	patterns	by	mining	the	events	backward	

starting	from	the	event	of	interest.	The	authors	evaluated	backward	mined	patterns	on	predicting	

adverse	medical	conditions	associated	with	diabetes.	Their	analysis	shows	that	patterns	mined	

backward	are	more	efficient	than	patterns	mined	toward	the	event	of	interest	[72].	

Feature	representation	learning	

Feature	 representation	 learning	 generates	 features	 by	 transforming	 the	 input	 or	

predictors	 into	 a	 more	 informative	 representation	 for	 prediction	 or	 classification	 [64,119].	

Representation	 learning	 can	 improve	 the	 performance	 of	 clinical	 NLP	 models	 by	 learning	

meaningful	features	and	latent	factors	from	clinical	documents.	Feature	representation	learning	

gained	a	 lot	of	attention	 in	fields	that	have	complex	data	such	as	 image	classification,	speech	

recognition,	and	text	mining	[64,120,121].	As	previously	mentioned,	creating	features	manually	

for	clinical	text	that	have	complex	dependencies	can	be	time-consuming,	non-generalizable,	and	

non-scalable	 [37].	 Moreover,	 creating	 and	 curating	 simple	 features	 for	 complex	 data	 may	

underrepresent	the	relationship	between	input	and	output	[122].		
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The	 curse	 of	 dimensionality	 in	 clinical	 data,	 such	 as	 images	 and	 text,	 can	 reduce	 the	

generalization	 of	 machine	 learning	 [64].	 Moreover	 raw	 data	 representation	 can	 grow	

exponentially	and	can	reduce	generalizability	especially	in	datasets	that	have	few	observations	

or	complex	input-to-output	relationships	[64,123].	Some	techniques	project	the	original	features	

into	a	new	space	with	a	 lower	dimension	while	 retaining	most	of	 the	original	 information	or	

improving	the	encoded	information	to	reflect	the	relationship	between	the	features.		

Principal	component	analysis	(PCA)	 is	a	popular	unsupervised	dimensionality	reduction	

technique.	It	applies	linear	transformations	on	dependent	inter-correlated	variables	or	features	

to	 create	 a	 smaller	 number	 of	 orthogonal	 less	 correlated	 features	 that	 capture	most	 of	 the	

relevant	 information	 [124,125].	 PCA	 has	 been	 successfully	 used	 in	 biomedical	 informatics	 to	

investigate	malignant	melanoma	treatment,	measure	speech	behaviors	of	stroke	patients,	and	

detect	walking	gaits	of	patients	with	knee	osteoarthritis	[126–128].	

Text	mining	using	clinical	documents		

Unstructured	 clinical	 documents	 are	 a	 comprehensive	 source	 of	 clinical	 events.	 Some	

clinical	data	does	not	exist	in	a	structured	format	due	to	the	lack	of	self-reporting,	using	general	

coding,	and	using	codes	designed	for	billing	[129].	Some	clinical	events	required	to	activate	CDS	

are	locked	in	a	free	text	format	inside	a	clinical	document	such	as	pathology	reports,	discharge	

summaries,	 or	 progress	 notes	 [4].	 For	 instance,	 colorectal	 cancer	 screening	 is	 captured	 by	

combining	data	from	self-reporting,	clinical	reports,	and	charts,	which	all	exist	in	a	free	format	

[130].	 Adding	 features	 from	 clinical	 text	 can	 improve	 prediction	 models	 and	 phenotype	

algorithms	[131,132].	Adenoma	detection	rate	(ADR),	a	quality	metric	for	colonoscopy,	is	another	

clinical	event	that	is	rarely	reported	in	the	structured	format	[133].	Calculating	ADR	mandates	a	

careful	review	of	EMR	charts	and	pathology	reports	[133].	NLP	methods	extract	clinical	data	that	

could	improve	this	and	other	CDS	systems.	

Structured	data	within	clinical	documents	should	be	carefully	combined	to	achieve	the	

desired	results.	One	study	combined	structured	and	unstructured	data	to	predict	billing	codes	

that	should	be	assigned	to	patients	[99].	The	authors	found	training	a	model	on	the	combined	
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features	can	lead	to	lower	performance.	More	accurate	results	were	achieved	by	combining	the	

prediction	of	two	models:	one	trained	on	structured	data,	and	another	trained	on	unstructured	

data	[99].		

Text	 mining	 extracts	 patterns	 from	 EMR	 and	 structures	 the	 text	 into	 features.	 The	

resulting	features	can	be	fed	into	machine	learning	models	such	as	clustering,	or	classification	

[134,135].	NLP	analyzes	and	represents	 text	by	applying	ranges	of	 techniques	borrowed	from	

linguistics,	 computer	 science,	and	artificial	 intelligence	 [136,137].	The	NLP	algorithms	convert	

unstructured	data	into	machine-readable,	structured	data	by	processing	the	lexical,	semantical,	

or	 syntactic	 levels	 of	 the	 text	 [138].	 They	 apply	 statistical	models	 to	 1)	 identify	 spelling	 and	

grammatical	 errors,	 2)	 categorize	 words,	 phrases,	 or	 entities	 (also	 known	 as	 name	 entity	

recognition,	NER),	3)	disambiguate	words,	4)	identify	negotiation	and	uncertainty,	and	5)	extract	

relationships	between	text	entities	[139].	

NLP	has	been	implemented	to	extract	medical	knowledge	from	clinical	documents.	In	the	

simplest	implementation,	NLP	applies	rule-based	methods,	n-gram,	and	regular	expressions	to	

structure	the	text	[139].	MedEx	creates	a	structured	representation	for	medication	from	clinical	

documents	 using	 sequential	 semantic	 tagger	 and	 a	 chart	 parser	 [95].	 On	 an	 advanced	 level,	

researchers	 train	 logistic	 regression,	 support	 vector	 machine	 (SVM),	 hidden	 Markov	 model	

(HMM),	and	conditional	random	fields	(CRF)	to	perform	NLP	tasks	[139].	One	group	developed	a	

polarity	module	to	detect	negated	text	by	training	an	SVM	classifier	on	bag	or	words,	cue	words,	

negation	dependency	path,	 and	 constituency	 tree	 fragments	 [140].	Another	 study	 trained	an	

SVM	model	to	locate	body	sites	[141].		

Most	clinical	NLP	studies	mine	clinical	concept	strings	from	medical	terminologies	such	as	

UMLS,	 SNOMED,	 or	 RxNorm	 [142–144].	 Clinical	 NLP	 tools	 such	 as	 KnowledgeMap,	 cTakes,	

MedLEE,	RegEX	can	retrieve	the	medical	concepts	in	unstructured	data	[145–148].	Those	tools	

apply	NLP	methods	 to	 identify	 terms	and	map	 them	 to	a	pre-defined	 set	of	medical	 concept	

strings	 and	 semantic	 categories	 to	 extract	 information	 from	 clinical	 text	 [142–144,149].	 A	

normalization	 step	 links	 the	 clinical	 term	 to	 a	 unique	 concept	 identifier	 and	 produces	 the	

concepts	along	with	their	text	indicators	(location	and	string)	[149]	KnowledgeMap	maps	clinical	

text	 to	 concepts	 in	 UMLS	 [142].	 cTake	 combines	 SNOMED	 CT	 and	 RXNorm	 concepts,	 with	
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sentence	boundary	detection,	 negation	detection	 tool	 (NegEx),	 and	part	 of	 the	 speech	 (POS)	

parser	to	extract	clinical	entities	from	clinical	notes	[143,144,147,150].	

Researchers	have	been	training	machine	learning	models	on	various	text	representations	

to	mine	and	extract	clinical	 information	such	as	medication,	diagnosis,	and	tumor	information	

[151,152].	Vector	space	models	map	or	embed	each	term,	word,	or	document	as	a	point	or	a	

vector	in	space.	In	a	few	spaces,	the	distance	between	the	mapped	vectors	of	words	correspond	

to	similarities	between	words	and	smaller	distance	implies	higher	similarities	[153].		

Text	mining	and	NLP	have	various	applications	in	the	biomedical	informatics	field.	Latent	

Dirichlet	Allocation	(LDA)	models	have	been	applied	to	discover	psychiatric	symptoms	(suicide,	

severe	 depression)	 and	 depressive	 disorder	 comorbidities	 (postpartum,	 brain	 tumor)	 in	

psychiatric	documents	[154].	Sentiments	scores	were	extracted	from	discharge	summaries	in	an	

i2b2	dataset	and	fed	into	a	Cox	regression	model	to	predict	the	risk	of	readmission	and	mortality	

after	discharge	[20,155].	Another	group	trained	an	elastic	net	model	to	select	essential	features	

from	nursing	notes	represented	by	TF-IDF	vectors	[156].	Liao	et	al.	used	ICD9	billing	codes	and	

concepts	extracted	from	unstructured	notes	to	develop	a	phenotype	algorithm	[157].	Combining	

both	structured	and	unstructured	data	improved	the	performance	of	phenotyping	algorithms	for	

multiple	 sclerosis,	 Crohn’s	 disease,	 ulcerative	 colitis,	 and	 rheumatoid	 arthritis	 [157].	 NLP	 has	

been	applied	to	identify	surgical	patients	with	pancreatic	cysts,	patients	who	can	be	discharged	

from	a	neonatal	intensive	care	unit,	and	children	with	asthma	[158–160].	

Challenges	in	applying	language	processing	to	clinical	text	

The	 rich	 vocabulary	 in	 clinical	 notes	 can	 increase	 the	 complexity	 and	 the	 variation	 in	

clinical	narratives	 [19].	Healthcare	providers	use	sub-languages	and	abbreviations	 tailored	 for	

sub-domains	 and	 express	 the	 same	 information	 in	 various	 words	 and	 writing	 styles,	 as	

demonstrated	in	Table	2.1	[4].	The	examples	in	Table	2.1	were	extracted,	inferred,	or	inspired	

from	clinical	documents	in	synthetic	derivative,	a	de-identified	version	of	Vanderbilt	University	

Medical	Center	EMR.	

Expressivity	 of	 documentation,	which	 conveys	 both	 patient	 and	 provider	 impressions,	

lead	to	variations	in	the	length	and	the	content	of	the	document	[161].	Hence,	documents	vary	
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in	length	depending	on	the	patient	condition	and	the	document	creator.	The	atypical	grammar	

and	 various	 writing	 styles	 are	 other	 challenges	 that	 researchers	 face	 in	 clinical	 NLP	 [19].	

Formatting	and	structuring	the	clinical	document	in	a	pre-defined	format	could	ease	text	mining;	

however,	restricting	the	style	of	documentation	could	increase	the	cognitive	burden,	decrease	

efficiency,	and	introduce	a	delay	in	clinical	workflow	[161–163].		

Table	2.1	Examples	of	similar	phrases	written	and	communicated	differently	in	clinical	notes.	

Clinical	event	 Sentence	variation	1	 Sentence	variation	2	 Sentence	variation	3	
Describing	
occlusion	in	heart	

Diffuse	distal	LAD	
occlusion	

Showed	90%	RCA	
occlusion	

65%	ostial	SVG-LAD	
lesion	

Treating	patient	
with	Heparin	

She	was	treated	with	
TPA	and	heparin	

As	well	as	bridging	
with	heparin	

Pt	was	treated	
aggressively	with	
intravenous	heparin	

Medication	
prescription	

Atorvastatin	20	mg	
tablet	daily	

Toprol	100	mg	once	a	
day	

Levothyroxine	30	
milligram	daily	

Describing	patient	
with	cancer	
diagnosis		

He	is	a	gentleman	with	
T3	rectal	cancer	

Patient	was	diagnosed	
at	age	65	with	colon	
cancer		

Pt	is	a	pleasant	male	
with	presenting	to	
discuss	therapy	for	
stage	III	pancreatic	
cancer	

	

Multimodal	algorithms	and	ontologies	(e.g.,	LOINC	for	laboratory	tests,	UMLS	for	medical	

concepts,	 and	 RxNorm	 for	 medication)	 must	 be	 deployed	 to	 extract	 clinical	 entities	 from	

unstructured	data	[142,144,164].	Rule-based	extraction	methods	including	the	aforementioned	

clinical	 NLP	 tools	 are	 subject	 to	 challenges	 including	misspelling,	 structural	 ambiguity,	 lexical	

coverage	 in	 dictionaries,	 acronyms,	 and	 abbreviations	 [165].	 For	 example,	 UMLS	 has	 some	

problems	including	missing	concepts	and	ambiguous	terms	such	as	"other	location	of	complaint"	

[4].	One	study	reported	that	using	UMLS,	as	a	source	of	 lexical	knowledge	to	extract	medical	

concepts	 in	 discharge	 summaries	 and	 chest	 x-ray	 reports,	 did	 not	 outperform	 a	 local	 or	

customized	 lexicon	 [148].	Engineering	 text	 features	using	 terminologies	may	not	 improve	 the	

metrics	 of	 a	 machine	 learning	 model.	 Another	 study	 evaluated	 whether	 prediction	 models	

trained	on	features	extracted	via	medical	dictionaries	will	outperform	prediction	models	trained	

on	the	actual	terms	and	words	in	the	documents	[79].	The	difference	between	the	two	models	

was	not	statistically	significant	[79].	
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Information	extraction	from	clinical	notes	

Information	 extraction	 can	 enhance	 a	 providers'	 access	 to	 patients'	 data.	 Extraction	

models	 can	 locate	 sentences	 about	 a	 phenotype,	 identify	 indicators	 for	 infectious	 diseases,	

cancer,	 and	 diabetes,	 and	 provide	 data	 for	 research	 [166].	 Effective	 extraction	 models	 can	

increase	the	flexibility	of	documentation	without	worrying	about	the	information	accessibility	or	

restricting	providers	to	write	only	in	a	specific	format	[167].	Adapting	and	developing	extraction	

algorithms	 has	 been	 difficult	 due	 to	 the	 nuances	 and	 noise	 in	 the	 medical	 text	 [168].	 This	

dissertation	proposes	a	method	that	extracts	sentences	contain	clinical	events	and	facts	about	a	

specific	phenotype	in	clinical	documents.	

Challenges	in	manual	annotations	

Most	 clinical	 text	mining	 and	 information	 extraction	methods	 are	 supervised	models.	

Those	 NLP	 algorithms	 require	 annotated	 datasets	 to	 train	 them.	 Nevertheless,	 manual	

annotation	is	laborious,	time-consuming,	incomplete,	inconsistence,	and	prone	to	human	error	

[145,165].	For	instance,	annotator	needs,	on	average,	87.2	±	61	seconds	to	manually	de-identify	

narrative	 in	one	note	[169].	At	Vanderbilt	University	Medical	Center	 (VUMC),	a	 locally	hosted	

crowdsourcing	 system	 was	 implemented	 to	 recruit	 annotators	 to	 perform	 tasks	 such	 as	

annotating	a	document	or	an	image.	Most	annotators	are	medical	students,	and	a	few	of	them	

are	nurses	and	clinicians.	The	cost	of	annotating	a	document	 is	$20	per	hour.	The	annotated	

datasets	 are	 usually	 small.	 For	 example,	 the	 number	 of	 annotated	 documents	 in	 each	 i2b2	

dataset,	a	well-known	series	of	annotated	datasets	that	were	released	as	part	of	NLP	challenges,	

ranges	between	400	and	2600	documents	[24,155].		

The	 complexity	 of	 annotation	 is	 another	 challenge	 that	 might	 affect	 the	 results	 and	

scalability	of	NLP	algorithms.	The	complexity	of	annotation	varies	depending	on	the	target	task,	

the	delimitation	of	annotation	in	the	text,	and	the	inclusion	criteria	[170].	As	a	result,	annotated	

sections	 could	 differ	 among	 annotators.	 Even	 with	 the	 availability	 of	 resources	 to	 perform	

annotation,	it	is	non-scalable	due	to	the	high	variability	and	the	small	size	of	generated	datasets	

[171].	The	quality	of	the	annotated	training	dataset	could	impact	the	trained	models,	which	affect	

the	scalability	and	reliability	of	the	trained	models	[172].		
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Machine	learning:	definition	and	approaches		

Machine	learning	includes	methods	that	learn	patterns	from	data	and	examples,	and	use	

the	detected	patterns	 to	predict	unseen	data,	or	 suggest	 a	decision	 for	new	examples	under	

uncertainty	[173].	Each	example	or	input	consists	of	numerical	independent	variables	or	features.	

Machine	learning	algorithms	can	be	supervised	or	unsupervised.	Supervised	learning	methods	

learn	the	mapping	between	the	 input	and	output	or	dependent	variable.	The	outputs’	 format	

determines	 the	 problem	 and	 learning	 method.	 Real	 values	 require	 regression	 models	 while	

categorical	 values	 require	 classification	 learning	 models.	 Unsupervised	 methods	 discover	

patterns	in	the	data	using	the	input	values	only.	

	 Different	machine	learning	techniques	have	been	developed	and	implemented	over	the	

years.	Random	forest	technique	has	been	used	for	regression	and	classification.	Random	forest	

trains	a	group	of	weak	learners	or	weak	decision	trees	[174].	Each	decision	tree	is	trained	on	a	

sampled	subset	of	the	training	dataset	and	only	on	a	subset	of	the	features	[174].	The	decisions	

of	all	trees	are	aggregated	to	generate	one	predicted	output	[174].		

Regression	is	a	common	machine	learning	algorithm	that	has	multiple	learners	depending	

on	 the	distribution	of	 the	output.	 Linear	 regression	asserts	 a	 linear	 relationship	between	 the	

input	and	the	output,	and	learns	weights	for	the	input	features	that	map	the	linear	relationship	

while	accounting	for	a	normally-distributed	error	[173].	Logistic	regression	generalizes	the	linear	

regression	for	binary	classification	by	replacing	the	normal	or	Gaussian	distribution	for	the	output	

with	Bernoulli,	and	passing	the	output	of	the	model	through	a	sigmoid	function	that	 limit	the	

output	 to	 the	 [0-1]	 range	 [173].	 Researchers	 prefer	 regression	 because	 they	 can	 explain	 and	

extract	the	 learned	relationship	between	the	 input	and	the	output	using	the	 learned	weights,	

especially	in	medicine	where	explanation	is	preferred	over	prediction	[175,176].	

Deep	learning	

Data	 representation	 influences	 the	 performance	 of	 machine	 learning	 models	 [177].	

Conventional	machine	learning	models	have	a	limited	ability	to	process	complex	data	in	the	raw	

format	 [178].	 Representation	 learning	 discovers	 useful	 representations	 for	 classification	 or	
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prediction	from	raw	input	data	[64,178].	Representation	learning	is	a	deep	learning	model	that	

generates	complex	concepts	using	simpler	ones,	and	multiple	 levels	of	non-linear	modules	or	

layers	 [177,178].	 Each	 level	builds	 a	more	 complex	 representation	and	 slightly	more	abstract	

representation	compared	to	the	previous	level	and	feeds	it	to	the	next	level.	For	instance,	a	deep	

learning	model	constructs	a	representation	for	a	house	image	using	lines	and	edges.	Figure	2.2	

depicts	an	example	of	a	general	deep	neural	network.	

	

	

Figure	2.1	An	example	of	a	deep	neural	network	

	

Deep	learning	models	have	different	variations	 in	their	architecture,	depending	on	the	

target	task.	Feed	forward	neural	network	(NN),	one	of	the	conventional	deep	learning	methods,	

consists	of:		

1)	An	input	layer	with	fixed-size	that	holds	the	observed	values.	In	our	house	example,	the	house	

image	consists	of	pixels,	where	each	pixel	holds	a	float	value.	

2)	One	or	more	layers,	known	as	learning	layers,	neural	layers,	or	hidden	layers	(Figure	2.2).	The	

layers	transform	the	input	into	higher	and	more	abstract	representations	that	are	easier	to	model	
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[179–181].	Each	hidden	layer	consists	of	hidden	units	(or	neurons)	that	apply	non-linear	functions	

on	its	input,	calculate	the	weighted	sum	of	the	inputs	from	the	previous	layer,	and	pass	it	to	the	

next	one	[177–179,182].	The	rectified	linear	unit	(ReLU),	hyperbolic	tangent	function	(Tanh)	are	

common	non-linear	 functions.	The	 trainable	weights	 in	each	 layer	hold	 real	values	 [182].	The	

output	of	the	neural	network	layer	activates	the	neurons	in	the	next	layer	[182,183].	The	number	

of	hidden	layers	and	the	number	of	hidden	units	can	vary	depending	on	the	complexity	of	the	

model	and	the	purpose	of	learning.	A	shallow	neural	network	has	one	hidden	layer	with	a	high	

number	of	hidden	units	while	the	deep	network	consists	of	two	or	more	hidden	layers.	For	the	

house	image,	each	layer	learns	higher	abstracted	detail	about	the	house.	The	first	hidden	layer	

learns	the	small	lines	that	constructs	the	house.	The	second	hidden	layer	learns	the	individual	

components	such	as	windows	and	doors.	The	third	hidden	layer	learns	the	house’s	front	view,	

the	roof,	etc.	The	last	layer	learns	the	final	shape	of	the	house.	

3)	A	fixed-size	output	layer	that	holds	the	value	to	be	learned.	This	could	be	a	probability,	a	class,	

or	a	numerical	value.	In	our	house	example,	the	output	will	be	if	there	is	a	house	in	the	picture	

or	not.		

Several	different	deep	 learning	models	 that	have	been	 implemented	with	 two	specific	

types	applied	to	NLP.	Convolutional	neural	networks	(CNN)	is	a	deep	neural	network	method	that	

models	 temporal	 and	 spatial	 correlations	 between	 features.	 It	 processes	 data	 and	 takes	 into	

account	the	proximity	of	the	data	in	two-dimensional	space,	such	as	images.	A	CNN	applies	layers	

of	functions	(i.e.,	convolutional	layers)	on	all	possible	regions	in	an	input	matrix	to	compute	its	

output.	CNN	maps	features	using	multiple	convolutional	functions	and	selects	most	important	

representations	from	a	pool	[178].	The	main	two	advantages	of	CNN	are	detecting	patches	of	

features	regardless	of	their	location	in	an	input	matrix	(i.e.,	location	invariance),	and	composing	

patches	 of	 features	 into	 higher-level	 representations.	 CNN	 is	 mainly	 applied	 to	 images	

classification,	 computer	 vision,	 signal	 processing,	 and	 face	 recognition	 [184–187].	 Chapter	 4	

provides	a	detailed	description	of	CNNs.		

Recurrent	Neural	Networks	(RNN)	are	another	variation	of	neural	networks.	RNNs	process	

a	sequence	of	elements,	one	at	a	time,	and	include	information	about	all	the	preceded	elements.	

RNNs	are	 suitable	 for	 sequence	analysis	 such	as	 speech	and	 language	 [178].	 Long	 short-term	
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memory	(LSTM)	is	an	RNN	variation	that	controls	the	proportions	of	current	element	information	

and	 the	proportions	of	 previous	 elements	 to	 include	 in	 the	 training.	 Chapter	 5	 describes	 the	

architecture	of	the	RNN	and	LSTM.	

The	popularity	of	deep	learning	in	healthcare	has	increased	due	to	the	rise	in	the	volume	

of	EMR	data	and	its	successful	application	in	other	domains.	Neural	networks	have	been	used	to	

create	patient	representations	to	predict	readmission,	disease,	and	medication	[42,49,61,188–

190].	Miotto	 et	 al.	 successfully	 inferred	 representations	 for	 patients	 and	 evaluated	 them	 by	

predicting	 the	 probability	 of	 developing	 various	 diseases	 using	 data	 from	Mount	 Sinai	 [49].	

Rajkomar	 et	 al.	 trained	 a	 deep	 learning	model	 to	 predict	medical	 events	 such	 as	 unplanned	

readmission,	in-hospital	mortality,	and	prolonged	length	of	stay	[93].	Choi	et	al.	trained	an	RNN	

model	 on	 longitudinal	 diagnosis	 codes,	 medications,	 and	 clinic	 visits	 to	 infer	 patient	

representations	 that	 predict	 future	 diagnosis	 codes	 and	 medications	 [61].	 Lasko	 et	 al.	

implemented	 stacked	 sparse	 auto-encoder	 to	 identify	 multiple	 population	 subtypes	 using	

longitudinal	sequences	of	serum	uric	acid	measurements	[42].	Bajor	et	al.	trained	LSTM	on	billing	

codes	 to	predict	 the	classes	of	medications	prescribed	 for	patients	 [189].	All	of	 these	 studies	

investigated	different	applications	of	deep	learning	methods	on	EMR	data	to	solve	a	health	care	

informatics	problem.	

Deep	learning	and	text	representation	

A	variety	of	deep	learning	models	have	been	employed	in	NLP	to	translate	text,	answer	

questions,	and	classify	text	[184,191,192].	The	trend	of	implementing	deep	learning	in	NLP	has	

sparked	after	the	successful	implementation	of	word	embedding.	Traditional	machine	learning	

algorithms	 are	 trained	on	hand-crafted	or	 traditional	 features	 that	 have	 some	drawbacks,	 as	

discussed	earlier.	Deep	learning	methods	can	leverage	a	humongous	amount	of	unlabeled	text	

to	learn	a	useful	representation.	Deep	learning	has	demonstrated	promising	results	using	non-

clinical	text	[193,194].	It	can	overcome	some	of	the	aforementioned	challenges	when	applied	to	

clinical	text.	Implementing	a	deep	learning	pipeline	that	learns	underlying	context	and	semantics	

and	creates	an	informative	representation	of	the	clinical	text	can	have	various	implementations	

in	the	clinical	environment.		
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Recently,	 researchers	 have	 trained	 unsupervised	 vector	 space	 models	 to	 learn	 word	

embeddings	from	large,	unlabeled	datasets	[195,196].	Mikolov	et	al.	trained	two	neural	networks	

to	create	the	word	embedding	that	considers	words	similarity	[195].	The	first	neural	network	is	

Continuous	Bag-of-Words	model	 (CBOW)	that	predicts	a	target	word	using	surrounding	words	

[197].	The	second	neural	network,	skip-Gram	model,	predicts	surrounding	words	using	the	target	

word	 [197].	 For	 instance,	 CBOW	 model	 predicts	 the	 kidney	 embedding	 using	 the	 words	 “I	

scheduled	 the”	 and	 “transplant	 annual	 appointment,”	while	 skip-Gram	model	 uses	 kidney	 to	

predict	“I	scheduled	the”	and	“transplant	annual	appointment,”	as	Figure	2.3	depicts.	Pennington	

et	al.	learned	word	representation	using	word-word	co-occurrence	counts,	and	used	a	log-bilinear	

regression	 model	 to	 create	 a	 word	 embedding	 [196].	 Trask	 et	 al.	 encoded	 both	 word-	 and	

character-level	 representations	 to	 learn	 word	 embeddings	 [198].	 These	 learned	 word	

representations	preserve	the	meaning	or	analogy	of	word	[195,196,198].	Hence,	similar	words	

are	mapped	to	close	proximity	in	the	vector	space.	Word	embeddings	have	been	implemented	in	

text	 classification,	 analyzing	 social	media	 posts	 (e.g.	 the	mention	 of	 adverse	 drug	 reaction	 in	

tweets),	text	summarization,	and	question	answering	[192,199–201].	

	

	

Figure	2.2	A	visual	illustration	for	the	continuous	bag	of	words	(CBOW)	and	Skip-Gram	model	to	learn	word	embedding,	
inspired	by	figures	in	[197]	
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Deep	 learning	models	have	been	used	 to	 analyze	 text	 [193],	 including	CNN	 [184,202].	

Recently,	 CNNs	 have	 been	 used	 in	 NLP	 to	 extract	 features	 for	 sentence	 classification	 [184],	

sentence	 modeling	 [203],	 sentiment	 analysis	 [204],	 and	 sentence	 matching	 [205].	 Grnarova	

successfully	combined	Word2Vec	and	CNN	to	predict	 intensive	care	unit	mortality	rates	[206].	

Their	results	demonstrate	that	a	CNN	outperforms	bag	of	words	and	paragraph	vector	inferred	

by	Paragraph2Vec	model.	

The	impact	of	EMR	data	representation	

Training	clinical	machine	learning	models	start	after	identifying	the	problem	or	need	that	

is	 time-consuming	 or/and	 requires	 a	 series	 of	 computations.	 Defining	 the	 problems	 and	 the	

hypothesis	of	our	experiments	and	modeling	inform	the	informaticians	of	EMR	data	required	to	

train	the	machine	learning	model.	Extracting	and	creating	features	is	the	first	step	in	developing	

machine	 learning	 models.	 An	 informative	 representation	 captures	 the	 essence	 of	 patients’	

trajectories,	the	changes	over	time,	or	the	content	of	EMR	data,	in	a	structured	or	unstructured	

format.	 Learning	 or	 constructing	 an	 efficient	 representation	 can	 improve	 the	 accuracy	 of	 the	

model.	 In	structured	data	time	and	temporality	can	 improve	the	performance	of	 the	machine	

learning	 model.	 In	 unstructured	 data,	 semantics	 and	 context	 of	 words	 can	 enhance	 the	

classification	of	documents	and	the	extractions	or	information.	Some	machine	learning	models	

are	 trained	 on	 features	 that	 lack	 time	 dimension,	 semantic,	 or	 context.	Moreover,	most	 text	

features	 and	NLP	 algorithms	 require	 human	 knowledge	which	 can	 be	 expensive	 and	 hard	 to	

obtain.	

This	dissertation	builds	on	and	expands	previous	work	in	biomedical	informatics	that	to	

address	 creating	 representations	 for	 structured	and	unstructured	EMR	data	 that	enhance	 the	

performance	 of	 clinical	 machine	 learning.	 The	 proposed	 methods	 extract	 and	 construct	 the	

features	based	on	the	dimensions	that	reflect	the	changes	 in	patient	status	 in	structured	data	

(Chapter	 3).	 Moreover,	 the	 proposed	 methods	 to	 address	 the	 learning	 and	 the	 creation	 of	

features	 that	 incorporate	 semantics	 and	 context	 without	 human	 knowledge.	 The	 learned	
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representation	 for	 the	 clinical	 text	 can	 be	 used	 for	 classification	 (Chapter	 4)	 and	 information	

extraction	(Chapter	5).	
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CHAPTER	3 DYNAMIC	FEATURES:	TIME	AND	POST	DISCHARGE	DATA	

Introduction	

After	confirming	a	diagnosis,	health	care	providers	create	a	treatment	plan	to	transfer	the	

patient	into	a	stable	state	and	prevent	future	relapses	such	as	unavoidable	readmission,	death,	

or	disease	prognosis.	Most	prediction	models	collect	data	or	predict	output	at	one	baseline	point	

such	 as	 the	 discharge	 day.	 Static	 prediction	 model	 may	 provide	 misleading	 results	 during	

consecutive	follow-ups	due	to	multiple	reasons	[207].	Events	that	happen	between	the	baseline	

point	 and	 the	 prediction	 time	 might	 change	 the	 outcome.	 For	 instance,	 premature	

discontinuation	of	 treatment	might	change	 the	survival	probability	of	a	breast	 cancer	patient	

[207].	On	the	other	hand,	the	values	and	the	importance	of	some	predictors	change	after	data	

collection,	which	leads	to	time-varying	effects	on	the	outcome.	For	example,	the	increase	in	red	

blood	cell	 units	 in	a	 trauma	patient	during	 the	 treatment	 is	 associated	with	worse	outcomes	

[208].	

Time	plays	a	vital	 role	 in	 feature	construction	and	clinical	model	 implementation.	This	

work	evaluates	the	importance	of	time	in	constructing	dynamic	features	and	deploying	machine	

learning	model	for	one	of	the	challenging	problems	in	biomedical	informatics:	predicting	patients	

at	high	risk	of	being	re-admitted	or	die	after	being	diagnosed	with	a	disease	for	the	first	time.	

Care	 providers	 and	 the	 administrators	 of	 healthcare	 organizations	 are	 keen	 on	

determining	which	patients	might	experience	complications	that	lead	to	readmission	or	death.	

Healthcare	providers	may	allocate	additional	resources	to	the	patients	and	intervene	before	an	

adverse	outcome	transpires	[209].	Unfortunately,	resources	are	limited.	Decision	makers	within	

health	organizations	(e.g.,	physicians	and	care	coordinators)	specify	a	subset	of	high-risk	patients	

who	 can	 receive	 special	 attention	while	 other	 high-risk	 patients	 do	 not	 have	 access	 to	 such	

resources	[210,211].	Identifying	and	prioritizing,	which	patients	should	be	assigned	assistance,	is	

a	vital	informatics	problem.	

Traditionally,	negative	outcome	prediction	systems	are	executed	at	the	time	of	discharge	

to	 identify	 high-risk	 patients	 [212].	 However,	 such	 systems	 are	 limited	 in	 their	 applicability	
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because	 patient	 status	 often	 changes	 after	 their	 discharge.	 Risk	 prediction	 models	 are	 not	

amended	to	incorporate	such	variation.	This	lack	of	dynamic	post-discharge	knowledge	can	cause	

risk	 assessment	errors	 and	potential	 readmission	penalties,	 under	meaningful	use	 regulation,	

calculated	via	a	payment	adjustment	factor	[209].	

Objectives	

To	investigate	the	effect	of	time	in	constructing	features,	such	as	pre-discharge	and	post-

discharge	features,	this	aim	focuses	on	several	core	questions	in	this	chapter.		

1. How	can	the	patient	timeline	be	divided	to	predict	the	outcome	after	being	hospitalized	and	

diagnosed	with	a	disease?		

2. What	 are	 the	 post-discharge	 data	 that	 are	 collected	 after	 a	 discharge	 to	 construct	 post-

discharge	features	and	train	a	dynamic	post-discharge	model?		

3. Does	the	performance	of	 risk	prediction	model	 improve	 if	 the	post-discharge	features	are	

added	to	the	static	features	in	training?	

4. How	do	different	time	periods	of	post-discharge	information	impact	the	predictions?	

This	work	evaluated	standard	static	and	post-discharge	prediction	models	using	three	years	

of	data	from	VUMC’s	EMR	system	for	two	phenotypes:	1)	an	acute	condition	in	the	form	of	a	hip	

fracture	and	2)	and	a	chronic	progressive	disorder	in	the	form	of	congestive	heart	failure	(CHF).	

The	results	in	our	work	published	in	AMIA	proceeding	demonstrate	that	[87]:	

• Predicting	at	successive	post-discharge	days,	and	including	dynamic	post-discharge	data	in	

the	prediction	model,	outperforms	state-of-the-art	static	“at	discharge”	models,	such	as	LACE	

[213,214];	

• The	importance	of	post-discharge	clinical	features	grows	as	the	prediction	horizon	for	adverse	

events	is	pushed	further	into	the	future;		

• Higher	utilization	of	clinical	resources	(e.g.,	appointments	and	medications)	after	discharge	

are	correlated	with	a	negative	outcome;	and		
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• Combining	 the	 structured	 data	 with	 the	 content	 of	 clinical	 documents	 such	 as	 discharge	

summaries	or	patients’	electronic	messages	did	not	improve	the	performance	of	prediction.		

Clinical	significance	

The	proposed	model	highlights	the	main	components	for	building	decision	support	tools	

that	 identify	 high	 risk	 patients	 using	 the	 data	 after	 discharge.	 The	 approach	 introduces	

techniques	that	help	developers	to	train	and	build	a	CDS	tool	that	identifies	high	risk	patients	

using	dynamic	and	recent	post-discharge	data	by:	

1. Identifying	the	time	of	collecting	clinical	features	after	discharge	to	train	high-risk	patients	

prediction	model.	

2. Measuring	the	improvement	of	including	dynamic	data	about	the	patient	after	discharge	in	

training	clinical	risk	prediction	models.	

3. Applying	 the	 concept	 of	 dynamic	 features	 to	 clinical	 informatics	 problems	 that	 exhibit	

dynamic	nature	such	as	phenotype	diagnosis	or	hospitalization.	

Background	

The	 number	 of	 proposed	 risk	 prediction	 models	 has	 increased	 over	 the	 last	 decade.	

Kansagara	 and	 colleagues	 performed	 a	 comprehensive	 systemic	 review	 to	 evaluate	 the	

performance	of	risk	prediction	models	and	their	suitability	for	clinical	use	[215].	Studies	usually	

compare	their	models	to	an	established	one	for	evaluation	purposes.	LACE	is	an	established	index	

that	provides	a	risk	score	to	predict	the	readmission	or	death,	specifically	for	CHF	patients,	using	

length	of	 stay	 (L),	 the	 acuity	 of	 admission	 (A),	 comorbidity	 score	 (C),	 and	 the	number	of	 the	

emergency	department	visits	(E)	[213,214].	

Several	 studies	 have	 shown	 that	 post-discharge	 data	 can	 assist	 in	 the	 prediction	 of	

negative	events	in	special	circumstances.	For	instance,	certain	studies	investigated	the	surgical	

quality	 assessment	 at	 the	 point	 of	 discharge	 and	 observed	 that	 over	 a	 quarter	 of	 the	

complications	 are	 diagnosed	 post-discharge	 [26,216,217].	 Another	 study	 found	 that	 post-
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discharge	data	could	improve	the	prediction	of	the	presence	and	the	severity	of	the	spasticity	in	

upper	limbs	in	the	year	following	a	stroke	[218].		

While	 post-discharge	 data	 has	 rarely	 been	 used	 in	 readmission	 prediction,	 Hersh	 and	

colleagues	performed	a	systemic	review	about	the	post-discharge	environment	and	its	relation	

to	readmission	after	heart	failure	[219].	They	reviewed	26	studies	published	between	1985	and	

2011	 to	 evaluate	 the	 importance	 of	 integrating	 post-discharge	 environment	 in	 heart	 failure	

readmission	models.	In	the	review,	only	seven	studies	included	post-discharge	data	and	focused	

mainly	 on	whether	 the	 patient	 had	 a	 primary	 care	 provider.	 They	 concluded	 that	 the	 socio-

economics	 of	 the	 post-discharge	 environment	 are	 a	 key	 indicator	 that	 affects	 readmission	

probability.	 Another	 correlated	 factor	 with	 readmission	 is	 the	 number	 of	 follow-ups	 after	

discharge.	Specifically,	patients	with	a	more	significant	number	of	early	follow-ups	tend	to	have	

a	 lower	 likelihood	of	unplanned	 readmission,	especially	 for	patients	with	a	higher	number	of	

comorbidities	[220–223].	

Some	studies	created	bins	and	time	windows	to	divide	the	clinical	timeline	and	construct	

features.	Creating	temporal	bins	can	improve	prediction	models	such	as	readmission	model.	Zhao	

et	al.	improved	the	ADE	prediction	by	dividing	the	timeline	before	the	ADE	into	temporal	bins	

and	 creating	 temporal	 features	 [117].	Wang	 et	 al.	 developed	 a	 one-sided	 convolutional	 non-

negative	matrix	factorization	to	extract	temporal	patterns	for	diabetic	patients	from	segments	of	

clinical	sequences[224].	

Dynamic	models	incorporate	changes	in	predictors	based	on	the	patient	trajectory	which	

simulate	the	clinical	approach	[75,208].	Clinical	dynamic	models	include	new	patient’s	data	such	

as	new	laboratory	values,	new	medications	during	hospitalization	or	after	discharge.	Tangri	et	al.	

applied	dynamic	modeling	to	predict	whether	chronic	kidney	disease	patient	will	need	a	kidney	

transplant	[75].	Retraining	the	model	with	latest-available-measurement	for	labs	improved	the	

discrimination	and	goodness	of	fit	of	risk	prediction	[75].	Hubbard	developed	a	time-dependent	

prediction	for	mortality	within	discrete	time	intervals	in	trauma	dataset	[208].	The	results	show	

the	features’	importance	in	predicting	future	mortality	changes	over	time,	and	dynamic	modeling	

increases	the	precision	and	the	accuracy	of	prediction	[208].	Caballero	proposed	a	framework	to	

re-estimate	the	probability	of	readmission	to	the	ICU	after	being	discharged	to	a	lower	care	level	
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when	a	new	feature	is	observed	[225].	Dynamic	estimation	of	the	readmission	to	ICU	had	higher	

AUC,	sensitivity,	and	specificity	compared	to	static	models	[225].	

Methods	

This	section	describes	the	dynamic	risk	prediction	models.	First,	we	construct	temporal	

features	 from	different	 time	bins.	 Second,	we	propose	a	method	 to	 construct	post-discharge	

dynamic	features	extracted	from	different	time	windows.	Third,	we	evaluate	these	features	by	

predicting	patients	who	might	encounter	an	undesirable	outcome	(readmission	or	death)	within	

a	prediction	window.	

Feature	construction		

We	represent	longitudinal	EMR	data	with	an	MNxT	matrix,	where	T	is	the	length	of	time	

for	extracted	EMR	data	and	N	is	the	number	of	patients	in	the	cohort.	All	patients	in	the	cohort	

were	hospitalized	and	diagnosed	with	a	phenotype	 for	 the	 first	 time.	Each	 row	 in	 the	matrix	

represents	one	patient	vector	denoted	by	t.	For	each	patient	p,	we	divide	the	longitudinal	medical	

record	 vector	 t	 into	 three	 temporal	 bins:	 before	 admission,	 during	 admission,	 and	 after	

discharge.	An	observation	window	(OW)	specifies	the	time	from	which	to	extract	features.	Using	

a	 combination	of	 features,	we	predict	whether	 the	 patients	would	 have	 a	 negative	 outcome	

within	a	prediction	window	(PW),	where	the	window	starts	at	the	discharge	day	and	ends	at	the	

prediction	point	(PP).	Static	features	have	a	fixed	value	regardless	of	the	time	of	the	prediction.	

Dynamic	 features	 values	 change	 based	 on	 the	 prediction	 point.	 For	 instance,	 the	 number	 of	

appointments	 that	 patients	 scheduled	 before	 admission	 is	 the	 same,	 while	 the	 number	 of	

scheduled	appointments	after	discharge	may	vary	for	30	days	versus	60	days	PW.	

For	the	purposes	of	this	investigation,	we	represent	outcomes	as	a	dichotomous	variable.	

A	patient	has	a	negative	outcome	if	he/she	experiences	a	negative	event	(-1)	in	the	prediction	

window	and	has	a	non-negative	outcome	(+1)	otherwise.	Figure	3.1	visualizes	model	settings	in	

which	both	patients	experience	negative	outcomes,	but	only	 the	patient	 in	Figure	3.1b	has	a	

negative	outcome	in	the	prediction	window.		
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Figure	3.1	Prediction	models	based	on	temporal	features	(a)	before	and	(b)	after	a	negative	outcome	

		

Prediction	Model	and	Features	evaluation	

We	constructed	five	different	patients’	representation	extracted	from	different	times	or	

observation	 windows	 to	 evaluate	 the	 importance	 of	 temporal	 features	 and	 different	

representations.	We	quantfied	the	effecitvness	of	representations	by	predicting	the	outcome	of	

the	patients.	

Model	 1:	 LACE:	 Starting	 with	 the	 most	 common	method	 in	 the	 literature,	 we	 build	 a	 static	

prediction	model	 using	 predefined	 LACE	 features,	 where	 E	 is	 the	 number	 of	 the	 emergency	

department	visits	in	the	past	six	months.	LACE	assigns	points	to	each	variable	based	on	its	value	

and	calculates	probabilities	using	regression	models	[214].	Patients	with	a	score	higher	than	ten	

are	considered	to	be	high	risk.	We	retrieved	the	four	LACE	features	from	the	EMR	and	calculated	

the	risk	score,	which	we	fed	as	a	feature	into	the	prediction	model.	LACE	was	the	baseline	in	the	

models’	comparison.	

Model	2:	Before-Admission	Model	(BAM):	To	learn	whether	prior	health	status	can	forecast	the	

future	health	status	of	patients,	we	represented	the	patients	using	before	the	admission	features.	

Each	patient’s	entry	is	assigned	to	a	pre-admission	feature	vector	denoted	by	b.	The	BAM	matrix	

is	visualized	in	Figure	3.2a.	

Model	3:	During-Admission	Model	(DAM):	We	investigated	whether	the	representation	learned	

from	 data	 collected	 about	 a	 phenotype	 is	 sufficient	 to	 predict	 the	 outcome.	 The	 model	

represented	patients	using	admission	data	as	visualized	 in	Figure	3.2b	where	 the	observation	

window	begins	at	admission	and	ends	at	discharge.	

a:	Prediction	model	–	prediction	point	before	negative	outcome	

b:	Prediction	model	–	prediction	point	after	negative	outcome	
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Model	4:	At-Discharge	Model	 (ADM):	This	model	 represents	the	patient	by	before	and	during	

admission	 features	 as	 visualized	 in	 Figure	 3.2c.	 This	 static	 representation	 is	 the	 conventional	

approach	in	training	risk	prediction	model.	

Model	 5:	 Before,	 During	 admission,	 and	 After	 discharge	Model	 (BDAM):	 All	 previous	models	

predict	 the	outcome	by	creating	a	 static	 representation	 for	 the	patients.	This	dynamic	model	

incorporates	post-discharge	data	to	predict	the	patient's	outcome,	which	Figure	3.2d	visualizes.	

This	model	mimics	the	actual	clinical	practice	 in	re-estimating	the	possible	outcome	based	on	

updated	 information	 about	 the	 patient.	 We	 defined	 three	 key	 parameters	 to	 extract	 and	

construct	dynamic	post-discharge	features:	1)	checkpoint:	time	point	at	which	we	collected	post-

discharge	data,	2)	prediction	point:	time	point	to	identify	the	length	of	the	prediction	window,	

and	 3)	 gap:	 an	 unbiased	 parameter	 that	 excludes	 data	 prior	 to	 negative	 events	 that	 might	

introduce	biased	knowledge	about	an	upcoming	negative	event.	Post-discharge	representation	

integrates	all	changes	after	discharge	except	the	ones	that	happened	immediately	before	the	end	

of	 the	observation	window	(i.e.,	events	 in	 the	gap	window).	Thus,	a	checkpoint	C,	a	gap	G,	a	

prediction	point	PP	and	prediction	window	PW	variables	determine	the	dynamic	information	in	

post-discharge	 features.	 The	 BDAM	 model	 combines	 the	 three	 temporal	 representations	 to	

predict	the	outcome.	

	

	

	

	

	

	

a:	Before	Admission	Model	(BAM)	

b:	During	Admission	Model	(DAM)	

c:	At	Discharge	Model	(ADM)	
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Figure	3.2	Prediction	models	based	on	varying	temporal	features	

	

Overview	of	Features	

For	each	patient,	we	extracted	the	demographics	(age,	gender)	and	data	inserted	from	

one	 year	 before	 to	 one	 year	 after	 the	 first	 documented	 incidence	 of	 the	 phenotype	 under	

investigation	(i.e.,	hip	fracture	and	CHF).	The	extracted	data	were	the	number	of	resources	that	

were	allocated	for	treatment,	including:	1)	medications,	2)	laboratory	tests,	3)	appointments,	4)	

previous	admissions,	5)	the	average	of	previous	the	length	of	stays	(LOS),	6)	days	since	the	last	

admission	and	7)	the	count	of	the	ICD,	Ninth	Revision	(ICD-9)	in	each	of	the	20	chapters.	Table	

3.1	summarizes	the	features	and	their	temporal	period	(e.g.,	before	admission,	during	admission,	

or	after	discharge).	In	addition,	we	extracted	the	number	of	documents,	grouped	by	their	types,	

which	were	created	and	stored	in	the	EMR	during	hospitalization.		

I	retrieved	the	average	values	of	the	most	common	laboratory	tests	that	were	ordered	

for	80%	of	 the	patients	during	admission	and	after	discharge,	 including	 carbon	dioxide	 levels	

(CO2),	creatinine,	glucose,	hematocrit	or	packed	cell	volume	(PCV),	partial	thromboplastin	time	

(PTT),	potassium	(K),	sodium	(Na).	Clinicians	order	these	laboratory	tests	to	evaluate	heart	and	

kidney	functionality,	electrolyte	balances,	and	blood	clotting	timing.	Table	3.2	lists	the	extracted	

laboratory	tests,	their	normal	ranges,	and	the	diagnostic	purpose	of	the	test.	

Unstructured	data	representation	

Clinical	communication	and	discharge	summaries	are	other	sources	of	patient	information.	

We	 implemented	 the	 following	 NLP	 methods	 to	 convert	 the	 documents	 or	 communication	

messages	into	a	structured	format:	

1- Latent	Dirichlet	Allocation	(LDA):	we	trained	LDA	on	clinical	communications	and	discharge	

summaries	and	extracted	20,	30,	and	50	topics.	A	binary	vector	for	the	LDA	topics	was	created	

where	the	corresponding	topic	is	set	to	one	if	the	document	included	that	topic.	

d:	Before,	During	and	After	admission	Model	(BDAM)	
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2- Average	of	Word2Vec	vectors:	we	trained	a	Word2Vec	model	on	discharge	summaries	and	

clinical	 communication.	 For	 each	 document,	we	 tokenized	 the	 document	 into	words	 and	

retrieved	 the	 Word2Vec	 embedding	 for	 each	 word.	 The	 mean	 of	 the	 words’	 vectors	

represented	the	text.	

For	 each	 patient,	 we	 created	 two	 document	 vectors:	 discharge	 summary	 vector	 to	

incorporate	at-discharge	unstructured	 information,	and	post-discharge	clinical	communication	

to	 incorporate	 information	 communicated	 after	 discharge.	 we	 concatenated	 the	 discharge	

summary	and	clinical	communication	vectors	to	the	structured	data	vector.	

Table	3.1	Summary	of	the	features	included	in	the	models	with	the	observation	window	taken	from.	The	symbols	*,	+,	and	-	
represents	extracted	from	before,	during	and	after	time	periods	respectively	

Feature	Type	 Feature	Values	 Feature	Bin	
Demographics	 Age	and	gender.	 	 	 	
Laboratory	
tests	

Number	of	laboratory	tests.	 *	 +	 –	
Average	values	of:	glucose,	creatinine,	partial	thromboplastin	
time	(PTT),	hematocrit	or	packed	cell	volume	(PCV),	Carbon	
Dioxide	levels	(CO2),	potassium	(K),	and	sodium	(Na).	

	 +	 –	

Medication	 Number	of	medications	prescribed	for	the	patient.		 *	 +	 –	
ICD	 The	count	of	ICD9	in	each	of	20	chapters.	 *	 +	 –	

ICD	deviation	post-fracture	(the	ratio	of	ICD	chapters	number	
in	an	appointment	after	discharge	to	the	average	number	of	
ICD	chapters	before	hip	fracture	incidence).	

	 	 –	

Routine	care	 The	average	of	Braden	score,	the	number	of	ECG	tests,	the	
number	of	times	a	patient	received	respiratory	care.	

	 +	 	

Admission	 Length	of	Stay	(LOS).	 	 +	 	
Last	day	of	previous	admission.	 *	 	 	
Average	LOS	 *	 	 	

Appointment	 The	number	of	appointments.		 	 	 –	
Documents	and	
communication	

The	number	of	communication	message	 	 	 –	
The	number	of	documents	initiated	for	per	document	type.	 	 +	 	

Post-discharge	
time	

Number	of	days	since	discharge.	 	 	 –	
Number	of	days	until	prediction	point	 	 	 –	

	

Table	3.2	Common	laboratory	tests,	their	normal	values,	and	the	diagnostic	purpose	

Laboratory	test	
name	

Normal	values	 Purpose	 Abnormal	values	reasons	

Creatinine	 Male:	1.3	mg/dL	
Female:	1.1	mg/dL	

Test	kidneys	
functionality	

Higher	than	normal	level	is	an	
indicator	of	kidney	malfunction	
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such	as	kidney	failure,	blocked	
urinary	tract,	and	kidney	damage.	

Partial	
thromboplastin	
time	(PTT)	

25-35	seconds	 Measuring	
the	time	that	
the	blood	
takes	to	clot	

Abnormal	or	long	PTT	time	indicate	
bleeding	disorder	or	disorder	in	
clotting	process	

Hematocrit	or	
packed	cell	
volume	(PCV)	

Male:	55%	
Female:	42%	

Measuring	
the	
percentage	of	
Red	Blood	
Cells	(RBC)	in	
blood		

Low	PCV:	indicator	of	anemia,	over-
hydration,	and	destruction	of	RBC	
High	PCV	indicator	of	dehydration,	
congenital	heart	disease,	or	
abnormal	increase	in	RBC	

Carbon	Dioxide	
levels	(CO2)	

23	to	29	mEq/L	 Detecting	the	
body’s	
electrolytes	
imbalance	

Low	levels:	indicator	of	acidosis,	
Kidney	disease	
High	level:	indicator	of	breathing	
disorders,	hyperaldosteronism	

Potassium	(K)	 3.7	to	5.2	mEq/L	 Assessing	the	
kidney	and	
heart	
functions.	

Low	levels:	Chronic	diarrhea,	renal	
artery	stenosis,	diuretics	
High	levels:	blood	transfusion,	
Kidney	failure,	acidosis	

Sodium	(Na)	 135	-145	mEq/L	 Measuring	
balance	
between	
sodium	and	
water	in	
consumed	
foods	and	
drinks	

Hyponatremia	(Na	<	135	mEq/L):	
kidney	disease,	heart	failure,	or	
ketones	in	blood	from	starvation	
Hypernatremia	(Na	>	145	mEq/L):	
dehydration,	severe	vomiting,	or	
diarrhea	

 

Negative	Outcome	Prediction	Over	Time	

The	model	predicted	the	outcome	for	different	prediction	points	and	prediction	windows	

ranging	from	seven	days	to	one	year.	The	variations	in	the	prediction	window	assess	the	utility	

of	patients’	representations,	specifically	the	changes	in	post-discharge	data	importance.	

Model	Implementation	and	data	extraction	

This	 section	 describes	 the	 data	 extraction	 and	 provides	 high-level	 overview	 of	 the	

prediction	algorithms.	

We	extracted	patients	who	were	diagnosed	with	a	hip	fracture	or	CHF,	using	the	ranges	

of	820.*	and	428.*	ICD9	codes,	respectively.	We	excluded	patients	who	had	no	encounters	before	
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admission	and	after	discharge,	and	visited	VUMC	for	only	that	admission.	We	analyzed	only	the	

first	admission	for	that	phenotype	and	excluded	repeated	the	admissions.	

Input	matrix:	We	 construct	 the	 BAM,	 DAM,	 ADM,	 and	 BDAM	 input	matrices.	 For	 the	 BDAM	

matrix,	 different	 checkpoint	 days	 can	 influence	 the	 prediction’s	 performance	 based	 on	 the	

changes	 consolidated	 in	 dynamic	 post-discharge	 features.	 We	 uniformly	 sampled	 100	

checkpoints	 at	 random	 day	 between	 the	 discharge	 and	 prediction	 points	 to	 account	 for	 the	

variability	in	post-discharge	data.	The	results	report	the	average	of	100	predictions.	The	random	

day	sampling	approach	provides	a	viable	option	for	testing	the	model	since	the	output	changes	

as	different	amounts	of	post-discharge	data	are	included.		

Changing	the	prediction	window	length:	The	prediction	window	length	varied	from	7	to	365	days	

to	study	the	changes	in	risk	and	the	effects	of	the	phenotype	over	time.	

Model	implementation:	We	used	a	random	forest	classifier	from	Scikit-learn	and	conducted	five-

fold	cross-validation	[226].	We	trained	the	random	forest	model	using	the	parameters:	500	trees	

with	15	maximum	depth	and	15	as	the	minimum	split.		

In	the	BDAM	matrix,	the	gap	value	was	five	days	for	all	prediction	points	except	for	seven	days’	

prediction.	For	one	week	prediction,	the	gap	value	was	assigned	to	three	days	to	yields	four	days	

to	sample	post-discharge	data.	The	values	in	the	post-discharge	data	depend	on	the	checkpoint	

location.	Different	checkpoint	locations	lead	to	different	BDAM	entries	for	the	same	dataset	as	

shown	 in	 Figure	 3.3	 (Figures	 3.3a	 and	 3.3b	 exhibit	 the	 vectors	 constructed	 with	 different	

checkpoints	for	the	same	patient).	To	minimize	the	effect	of	randomness,	we	built	100	matrices	

at	each	prediction	point	by	 randomly	 sampling	checkpoints	and	averaged	 the	area	under	 the	

receiver	operator	characteristic	curves	(AUCs).	

	

	
a:	An	example	of	a	random	checkpoint	
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Figure	3.3	Building	BDAM	vector	using	two	checkpoints	(a)	an	example	of	a	randomly	sampled	checkpoint	and	(b)	an	alternative	
sampled	checkpoint	

	

Important	features	and	their	relationship	to	outcomes	

We	extracted	the	features	that,	on	average,	have	the	highest	importance	across	all	folds	

and	all	100	samples	in	the	post-discharge	model.	The	features	importance	will	demonstrate	the	

static	and	dynamic	features	importance	in	predicting	the	outcome.	We	analyzed	the	importance	

of	 the	 features	 that	 comprised	around	50%	of	 the	 total	 feature	 importance.	Additionally,	we	

analyzed	 the	non-linearity	of	 features	with	partial	dependence	plots.	The	partial	dependence	

shows	 the	dependence	of	prediction	on	a	 subset	of	 the	 input	 variables.	 It	 finds	 the	marginal	

average	of	the	prediction	to	identify	the	effect	of	chosen	subsets	of	features	on	the	prediction	

probability	after	accounting	for	the	rest	of	the	input	features.	For	a	given	predictor,	the	y	values	

in	the	partial	plot	show	the	average	of	prediction	probability	across	all	trees	in	the	forest.		

Results	

This	section	begins	by	summarizing	the	patient	populations	and	their	negative	outcome	

rates.	 The	 following	 subsections	 present	 the	 performance	 of	 the	 models,	 with	 LACE	 as	 the	

baseline.	 Finally,	 the	 result	 section	 concludes	 by	 reporting	 the	 importance	 of	 the	 features	

incorporated	in	the	model	and	the	outcome.		

Patient	Population	

This	study	was	conducted	on	patients	who	were	admitted	to	VUMC	between	2010	and	

2013.	We	included	patients	who	were	65	years	and	older	and	were	diagnosed	with	either	a	hip	

fracture	or	CHF.	We	excluded	patients	who	did	not	have	an	admission	on	the	onset	date	of	the	

phenotype.	This	selection	criteria	yielded	704	hip	fracture	patients	and	5250	CHF	patients.	

b:	An	alternative	random	checkpoint		
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Around	 25%,	 and	 21%	 of	 hip	 fracture	 and	 CHF	 patients,	 respectively,	 had	 a	 negative	

outcome	within	90	days	after	discharge.	The	one-year	survival	rates	exhibited	a	similar	trend,	as	

shown	in	Figure	3.4.	For	patients	who	exhibited	a	negative	outcome	within	the	first	7	days,	more	

than	half	were	admitted	to	the	emergency	department	or	died	within	the	first	three	days	after	

discharge.	

	

	

	

	

	

	

	

	

	

	

Before	Discharge	Model	Results	

Figure	3.5	reports	on	the	AUC	for	predicting	the	negative	outcome	within	one	year	using	

LACE,	before	admission,	during	admission,	and	at	discharge)	models	 for	hip	 fracture	and	CHF	

patients.		

Across	all	prediction	points,	LACE	exhibited	the	lowest	AUC	values	for	both	cohorts.	The	

before	model	has	similar	AUC	values	as	LACE	for	hip	fracture	patients,	while	it	has	higher	AUC	

than	 LACE	 when	 applied	 on	 the	 CHF	 cohort.	 However,	 the	 during	 and	 at-discharge	 both	

outperform	the	LACE	and	before	models.	The	during	model	exhibits	almost	the	same	AUC	as	the	

at-discharge	model	when	predicting	the	outcome	for	the	CHF	patients.	By	contrast,	at-discharge	

model	has	a	higher	AUC	than	the	during	model	for	the	hip	fracture	patients.	

In	both	cohorts,	the	before	model	had	the	lowest	AUC	within	the	first	20	days.	After	20	

days,	the	AUC	values	increased	slightly.	The	during	and	at-discharge	models	exhibited	the	same	

trend	in	performance	over	time.	In	CHF,	the	during	and	at-discharge	models	had	the	highest	AUC	

Figure	3.4	Survival	rate	for	patients	within	one	year	from	the	diagnosis	
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during	the	first	two	weeks	of	prediction.	Afterwards,	the	AUC	values	decline	slightly	and	smoothly	

until	they	reach	their	lowest	point	at	the	one-year	prediction.	By	contrast,	the	AUC	values	of	the	

during	model	and	at-discharge	were	the	lowest	within	the	first	two	weeks	for	the	hip	fracture	

patients	 and	 increased	 slightly	 until	 they	 reached	 their	 highest	 AUC	 values	 at	 the	 one-year	

prediction.	

	

	

	

Days	
(a)	Hip	Fracture	

Days	
(b)	Congestive	Heart	Failure	

Figure	3.5	AUC	values	for	BAM,	DAM,	and	ADM	models	for	outcome	prediction	within	one	year.	The	x-axis	shows	the	prediction	points	
at	which	the	model	was	run.	The	y-axis	corresponds	to	the	average	AUC	

	

Post-Discharge	Model	Results	

I	analyzed	the	post-discharge	model	in	two	ways:	(i)	using	a	single	feature	representing	the	days	

since	 discharge	 (post-discharge	 time),	 and	 (ii)	 all	 post-discharge	 data	 including	 days	 since	

discharge.	The	results	in	these	two	models	highlight	the	importance	of	time	in	the	post-discharge	

model	(i.e.,	the	 longer	the	patient	 is	out	of	the	hospital,	the	 less	 likely	the	patient	will	have	a	

negative	outcome).		
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Figure	3.6	depicts	the	AUC	values	for	specific	checkpoints	for	the	7,	14,	22,	and	30	days	

prediction	 points.	 The	 x-axis	 corresponds	 to	 the	 sampled	 checkpoint.	 The	 red	 dashed-line	

represents	the	average	AUC	for	post-discharge	model	at	a	given	checkpoint,	while	the	diamond	

and	triangle	shapes	correspond	to	the	AUC	of	at-discharge	model	and	the	traditional	LACE	model.	

The	solid	blue	line	represents	the	AUC	for	the	post-discharge	time	only	model.	The	BDAM	model	

outperformed	 all	 models	 as	 shown	 in	 four	 figures.	 Moreover,	 the	 AUC	 values	 increased	 as	

additional	post-discharge	data	are	included.	

	

Figure	3.6	AUC	values	for	BDAM	model	applied	at	different	successive	checkpoints	for	hip	fracture	patients	at	7,	14,	22	and	30	
days	negative	outcome	

Figure	3.7	depicts	 the	performance	of	 the	LACE,	ADM	(at	discharge)	and	BDAM	(post-

discharge)	models	for	different	prediction	points	(where	the	post-discharge	data	are	averaged	

across	the	checkpoints).	The	upper	grey	line,	lower	grey	line,	and	solid	black	line	represent	the	

minimum,	maximum,	and	average	AUC	of	100	 sampled	post-discharge	matrices,	 respectively.	

Both	the	BDAM	and	the	ADM	models	performed	better	than	the	LACE	model	by	20	-	30%	AUC.	

In	this	setting,	BDAM	had	a	higher	AUC	than	ADM	at	all	prediction	points	by	15.8	-	26.5%	for	hip	

(a) 7 days (b) 14 days 

(c) 22 days (d) 30 days 
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fracture	and	9.7	-	12.1%	for	CHF	patients.	Using	BDAM,	predicting	the	negative	outcome	within	

7	days	had	a	higher	AUC	compared	to	predictions	within	30	days.	

BDAM	 results	 trended	 differently	 for	 the	 two	 phenotypes.	 For	 hip	 fracture,	 the	 AUC	

decreased	until	it	reached	the	lowest	values	at	21	days,	then	increased	between	21	and	60	days,	

staying	relatively	constant	afterwards.	For	CHF,	the	AUC	decreased	until	21	days.	

Feature	Importance	

For	 each	 prediction	 point,	 we	 retreived	 the	 features	 that,	 on	 average,	 exhibited	 the	

highest	importance.	At	all	prediction	points	in	both	cohorts,	days	from	discharge	and	days	until	

prediction	point	displayed	the	highest	importance.	The	number	of	appointments	after	discharge	

was	 the	 third	 most	 important	 predictor	 for	 a	 negative	 event	 within	 30	 days	 while	 clinical	

communication	was	the	forth	or	fifth	important	feature	within	the	same	time	range.		

In	hip	fracture	patients,	age	is	one	of	the	top	10	predictors	of	a	negative	outcome	within	

30	 days.	 Diagnosing	 hip	 fracture	 patients	 with	 infectious,	 blood	 stream,	 genitouribnary,	 or	

circulatory	diseases	during	admission	were	among	the	top	predictors	for	readmission	within	30	

days.	In	CHF	patients,	the	average	number	of	labs	during	admission	(e.g.,	creatinine,	K,	Na,	and	

CO2)	were	strong	predictors	for	negative	events	within	60	days.		

Figure	3.8	depicts	the	partial	dependency	plots	for	the	most	important	features	for	7,	21,	

30,	and	60	days	for	hip	fracture	patients.	In	the	partial	dependence	plot,	the	x-axis	shows	the	

values	of	the	important	variable.	For	a	given	x	value,	the	y	value	indicates	the	probability	of	the	

negative	outcome	after	accounting	for	the	values	of	the	other	input	variables.	A	small	y	value	

indicates	 a	 low	 probability	 of	 positive	 label,	 while	 a	 large	 y	 indicates	 a	 high	 probability	 of	 a	

positive	label.		
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Figure	3.7	Outcome	prediction	within	one	year	for	a)	hip	fracture	and	b)	CHF	

	

For	example,	patients	who	scheduled	a	small	number	of	appointments	after	discharge	

had	 a	 higher	 probability	 of	 experiencing	 a	 negative	 outcome.	 A	 low	 and	 high	 number	

appointments	scheduled	before	discharge	were	associated	with	a	high	probability	of	negative	

outcome.	 In	 addition,	 a	 low	 and	 high	 quantity	 of	 post-discharge	 communications	 had	 a	 high	

probability	 of	 a	 negative	 outcome.	 During	 admission,	 patients	who	were	 prescribed	 a	 larger	

number	of	medications	and	laboratory	tests,	in	comparison	to	other	patients	in	the	cohort,	had	

a	higher	probability	of	having	a	negative	outcome.	The	partial	dependency	plots	of	laboratory	

values	such	as	K,	PVC,	and	creatinine	depict	that	abnormal	values	were	associated	with	a	high	

probability	of	a	negative	outcome.		

Unstructured	Data	Features	

Appending	the	discharge	summaries	and	clinical	communications	representation	did	not	

improve	any	of	the	models’	AUC	significantly.	Implementing	clinical	communication	vector	in	the	

post-discharge	model	 improved	 the	 AUC	 slightly.	 Hence,	 we	 removed	 the	 unstructured	 data	

vectors.	All	 the	 results	 reported	above	were	generated	by	models	 trained	on	structured	data	

only.		

(a) Hip fracture  (b) Congestive Heart Failure  
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Figure	3.8	Partial	dependency	plots	for	outcome	predictions	for	hip	fracture	patients	

Discussion	

Predicting	negative	outcomes	and	detecting	high-risk	patients	are	challenging	problems.	

The	findings	demonstrate	that	representing	changes	about	a	patient’s	post-discharge	status	may	

increase	 the	 performance	 of	 such	 predictions.	 This	 finding	 is	 further	 supported	 by	 the	

observation	 that	 the	 LACE	 model,	 while	 simple	 to	 implement,	 is	 likely	 to	 neglect	 many	 key	

features	that	can	enhance	predictions.		

One	of	the	critical	discoveries	made	in	this	study	is	that	the	post-discharge	time	is	a	strong	

predictor	on	its	own	for	a	negative	outcome.	This	result	affirms	the	observation	that	the	longer	

a	patient	remains	out	of	the	hospital,	the	less	likely	they	will	be	readmitted	or	die	after	discharge.	

Same	 observation	 about	 time	 was	 concluded	 in	 studies	 that	 investigated	 the	 breast	 cancer	
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recurrence,	where	recurrence	rate	declined	within	two	years	of	survival	[227–229].	However,	the	

time	from	discharge	in	isolation	lacks	essential	clinical	information.	Including	clinical	data	in	the	

patient's	representation	can	further	improve	prediction	quality.	Moreover,	time	until	prediction	

quantifies	the	updated	post-discharge	data	missing	from	the	dynamic	representation.	

One	 challenge	 in	 building	 the	 dynamic	 post-discharge	 representation	 is	 selecting	 the	

checking	 point.	 Defining	 the	 period	 of	 collecting	 post-discharge	 data	 controls	 the	 amount	 of	

updated	knowledge	that	the	model	gained	about	the	patient.	In	this	work,	we	proposed	a	random	

day	 model.	 In	 practice,	 a	 post-discharge	 model	 can	 be	 executed	 daily	 to	 identify	 high-risk	

patients,	no	matter	when	they	were	discharged.	

The	analysis	demonstrates	that	risk	changes	over	time,	especially	during	the	first	three	

months	after	discharge.	In	particular,	the	first	seven	to	ten	days	are	the	times	when	frail	patients	

are	at	high	risk	of	encountering	a	negative	outcome.	A	decline	of	the	prediction	performance	

over	time	suggests	a	variation	in	recovery	stages	for	healthy	patients	and	a	difference	in	the	risk	

factors	for	patients	who	died	or	were	readmitted	within	the	same	time	frame.	For	example,	the	

prediction	of	the	hip	fracture	outcome	had	the	lowest	performance	between	14	and	21	days.	

Several	factors	could	cause	this	incline	such	as	various	pre-existing	medical	problems,	the	degree	

of	daily	activity,	and	the	ability	to	attend	follow-ups.	Further	analysis	could	be	done	to	identify	

the	change	in	risk	factors	(e.g.,	post-discharge	complications),	and	locate	the	period	when	those	

factors	are	correlated	with	readmission.	

Healthcare	providers	want	to	identify	the	values	of	the	features	that	are	highly	associated	

with	 the	negative	outcome.	 Learning	 such	values	may	help	 clinicians	understand	 the	 reasons	

leading	to	a	negative	outcome	and	identify	early	signs	of	complications.	Direct	intervention	could	

be	applied	to	lessen	risks	through	outpatient	appointments	or	home	visits.	In	the	proposed	risk	

model,	the	features	can	be	categorized	into	clinical	factors	and	clinical	resources.	Both	types	of	

features	influence	the	predictions	at	different	levels.	The	number	of	clinical	resources	allocated	

to	treat	patients	before	admission	and	after	discharge	could	recognize	the	patients	who	have	a	

high	probability	of	encountering	a	negative	outcome.	The	patients	who	utilized	more	treatment	

resources	 exhibit	 a	 higher	 probability	 of	 experiencing	 a	 negative	 outcome	 except	 for	 post-

discharge	follow-up	utilization.	A	low	utilization	value	implies	the	existence	of	barriers	preventing	
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the	patient	 from	going	 to	 see	 their	healthcare	provider.	 Even	 low	utilization	values	 for	 some	

features,	such	as	the	number	of	labs	ordered	during	admission,	are	associated	with	the	negative	

outcome	occurrence.	The	unexpected	utilization	could	be	an	indirect	measure	to	identify	patients	

at	high	risk	of	encountering	the	negative	outcome.	

Summary	

The	 inclusion	 of	 dynamic	 and	 updated	 post-discharge	 data	 to	 represent	 patients	 can	

improve	 the	 performance	 of	 the	machine	 learning	model,	 such	 as	 predicting	 readmission	 or	

death.	The	traditional	and	static	representation	such	as	LACE	and	at-discharge	models	focus	on	

constructing	features	using	information	available	only	at	the	point	of	discharge	or	using	a	small	

set	of	pre-defined	features.	Training	a	dynamic	model	on	temporal	features	and	post-discharge	

representation	is	notable.	It	shows	that	static	risk	prediction	methods	would	benefit	from	using	

longitudinal	data	and	updated	 feature	 representations.	This	 finding	holds	 true	 for	both	acute	

(i.e.,	hip	fracture)	and	chronic	(i.e.,	congestive	heart	failure)	patient	populations.	It	is	notable	that	

the	primary	driving	factors	of	our	discovery	include:	1)	time	out	of	the	hospital	after	discharge	

and	 2)	 the	 number	 of	 the	 physical	 (e.g.,	medication,	 labs,	 appointments)	 and	 the	 electronic	

(communication,	documents)	resources	allocated	for	a	patient.	

The	proposed	method	has	several	limitations.	First,	this	study	focused	on	sampling	only	

one	day	for	post-discharge	information.	A	notable	extension	is	evaluating	risk	scores	on	multiple	

consecutive	 days	 to	 identify	 changes	 in	 risk	 score	 and	 identify	 patients	 at-risk	 to	 apply	 early	

intervention.	 Second,	 the	 feature	 representation	 neglected	 the	 semantics	 about	 the	 clinical	

status	that	might	exist	in	communications	between	patients	and	their	healthcare	providers.	For	

instance,	 patients	 who	 communicate	 about	 severe	 pain	 or	 complications	 from	 opioid	

medications	 may	 miss	 their	 follow-ups.	 Thus,	 information	 intimated	 to	 care	 providers	 may	

indicate	 signs	 of	 an	 impending	 negative	 outcome.	Using	 topics	 or	 terms	 frequency	 in	 clinical	

communication	did	not	improve	the	performance	of	the	model	significantly.	This	result	raises	the	

question	of	whether	 structuring	 the	clinical	 communication	using	 standard	 representations	 is	

viable,	or	a	better	representation	for	clinical	communication	is	needed.	
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CHAPTER	4 SEMANTICS	AND	CONTEXT	IN	TEXT	CLASSIFICATION	

Introduction	

EMR	 systems	 contain	 various	 types	 of	 documents	 which	 increase	 the	 challenge	 of	

applying	text	mining	and	machine	learning	algorithms.	Applying	NLP	on	clinical	notes	can	unlock	

and	locate	information	necessary	for	decision	making.	Machine	learning	and	NLP	algorithms	can	

classify	 diseases	 in	 clinical	 notes	 (e.g.,	 suicide,	 smoking	 status,	 colorectal	 cancer),	 predict	

readmission,	and	extract	social	factors	such	as	homelessness	[230].	In	clinical	text	mining,	distinct	

terms,	 syntactic,	 and	 clinical	 domain	 knowledge	 are	 ways	 to	 represent	 text.	 Good	 feature	

representations	 of	 clinical	 notes	 are	 critical	 in	 enabling	 and	 enhancing	 the	 discovery	 of	 the	

relationship	between	input	and	output.		

This	 chapter	 focuses	 on	 evaluating	 two	 aspects	 of	 clinical	 text	 representations:	 the	

semantics	or	the	meaning	of	the	words,	and	the	context	of	surrounding	words.	Most	traditional	

text	 representations	 create	 distinct	 features	 based	 on	 their	 occurrence,	 grammatical	

relationships,	 or	 rule-based	 words	 semantics.	 Clinical	 NLP	 tools	 such	 as	 cTakes	 and	

KnowledgeMap	combine	the	variations	of	medical	concepts	strings	with	NLP	methods	to	extract	

the	medical	concepts	from	the	unstructured	text.	Those	clinical	NLP	tools	may	overlook	some	

concepts	 due	 to	 misspellings,	 local	 abbreviations;	 moreover,	 those	 tools	 do	 not	 include	 the	

semantic	relation	between	medical	and	non-medical	words,	or	medical	terms	that	do	not	exist	in	

the	integrated	medical	terminologies.		

Various	 text	 mining	 techniques	 have	 been	 implemented	 to	 classify	 and	 retrieve	

information	from	clinical	documents	[206,214,231–233].	We	selected	patient	portal	messages,	

an	electronic	communication	between	patients	and	healthcare	providers,	 to	evaluate	 the	NLP	

methods	that	integrate	semantics	and	contexts.	This	chapter	sought	to	identify	optimal	methods	

to	improve	the	classification	of	patients'	need	expressed	in	portal	messages.	

Patient	portals	are	secure	online	systems	that	enable	patients	to	access	personal	health	

information	and	interact	with	healthcare	systems	[231,234–237].	One	of	most	popular	features	

of	patient	portals	 is	secure	patient-provider	messaging,	a	channel	through	which	patients	and	
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caregivers	can	ask	questions	and	receive	answers	[231,238–243].	Patient	portal	messages	contain	

diverse	content,	 ranging	 from	 important	medical	questions	 to	social	exchanges	 [231,241,244–

247].	One	taxonomy	of	consumer	health-related	needs	divides	consumer	health	communications	

into	 informational,	medical,	 logistical,	 social,	 and	 other	 categories	 (Figure	 4.1)	 [231,248,249].	

Informational	communications	include	questions	or	answers	requiring	clinical	knowledge,	such	

as	the	risk	factor	for	a	disease.	Medical	communications	request	actual	medical	care	including	

reports	 of	 new	 symptoms	 to	 be	 managed.	 In	 logistical	 communications,	 patients	 request	

pragmatic	information	such	as	directions	to	a	facility.	Social	communications	include	expressions	

of	gratitude	or	complaints	about	a	service	[231,248,249].	Portal	messages	often	contain	multiple	

categories	of	consumer	health	communications.	This	 taxonomy	has	been	applied	to	questions	

from	patient	 journals,	medical	 textbooks	contents,	health-related	needs	expressed	 in	patients	

and	caregivers	interviews,	and	portal	messages	[231,248,249].	

	

	

Figure	4.1	Dr.	Jackson’s	Taxonomy	of	consumer	health-related	needs	

	
Categorizing	portal	messages	into	types	has	many	potential	benefits,	such	as	prioritizing	

urgent	messages	with	appropriate	actions	(e.g.,	"to	reply",	or	"to	do"),	and	supporting	message	
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triage	to	appropriate	personnel	or	resources	[250,251].	For	example,	a	logistical	question	might	

be	 answered	 by	 an	 administrative	 assistant	 whereas	 a	 medical	 message	 would	 be	 more	

appropriately	addressed	by	a	clinical	provider.	Recognizing	messages	with	specific	needs	could	

help	 identify	 patient	 problems	 such	 as	 adverse	 events	 following	 a	 procedure	or	 the	need	 for	

medication	adjustment	[252,253].	

Given	that	the	number	of	portal	messages	is	growing,	it	would	be	useful	to	automatically	

extract	a	patient's	needs	to	improve	care	efficiency.	Classifying	portal	messages	can	be	performed	

in	several	different	ways.	Using	manual	classification,	annotators	read	and	assign	types	to	the	

messages.	However,	this	approach	does	not	scale	with	growth	in	message	volumes	[254–256].	

Another	approach	is	asking	the	patient	to	select	the	communication’s	type	from	a	pre-specified	

list.	 However,	 categories	 selected	 by	 patients	 to	 describe	 content	 of	 messages	 are	 often	

inconsistent	[241].	A	third	approach	is	training	a	classifier.	Cronin	and	colleagues	have	previously	

classified	portal	messages	by	representing	the	messages	with	bag	of	words,	along	with	two	UMLS	

values:	concept	unique	identifiers	(CUIs),	and	semantic	types	(STYs)	[257].	They	employed	rule-

based	basic	to	train	random	forest,	logistic	regression	and	naïve	Bayes.	Their	classifiers	had	an	

acceptable	performance	for	predicting	the	category	of	communications.	However,	their	work	has	

limitations	including	the	use	of	features	lacking	semantics	and	excluding	words’	context.	

Objective	

In	 this	 chapter,	we	 represented	 the	portal	messages	using	 four	 representations:	 terms	

lacking	semantics	and	syntactic,	terms	and	their	syntax,	context	features,	semantics	and	context	

features.	We	trained	four	binary	classifiers	to	identify	informational,	medical,	social,	and	logistical	

contents	in	patients’	messages	using	different	features	representations.	In	our	evaluation	of	text	

representations,	we	focused	on	the	following	questions:		

1. Does	using	text	syntax	(e.g.,	verb,	noun)	improve	the	classification	of	portal	messages?	

2. Does	 integrating	 the	 semantics	 in	 the	 representation	 enhance	 the	 message	 category	

identification?	

3. Does	convolutional	neural	network	learn	better	features	by	integrating	the	words	context?	
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4. Does	learning	the	representation	of	messages	or	training	more	advanced	machine	learning	

methods	outperform	the	standard	machine	learning?	

To	 answer	 these	 questions,	 we	 trained	 classifiers	 on	 variations	 of	 features	 representation	 to	

categorize	messages	sent	via	My	Health	At	Vanderbilt	(MHAV),	a	locally-developed	patient	portal	

at	the	VUMC.	Our	published	work	demonstrates	that	creating	features	that	incorporate	semantics	

and	context	improves	the	classification	and	the	identification	of	patients’	needs	in	messages	sent	

to	their	healthcare	provider	[88].		

Clinical	significance	

Patients	and	healthcare	providers	exchanged,	on	average,	hundreds	of	messages	via	MHAV.	

Although	healthcare	providers	have	limited	time,	they	try	to	respond	to	patients	messages	in	a	

timely	manner.	Training	a	classifier	that	identify	the	types	of	patients	need	in	the	message	can	

help:		

1. Reducing	the	load	on	healthcare	providers	who	receives	patients’	messages	by	prioritizing	the	

important	messages	that	contain	medical	and	clinical	requests.	

2. Scaling	the	message	prioritization	and	patients’	needs	identification	to	handle	the	increasing	

number	 of	 patient	 messages	 by	 automating	 the	 process	 and	 minimizing	 the	 manual	

annotation.	

Background	

Standard	text	representation	

Converting	unstructured	text	into	usable	informative	structured	features	is	the	first	and	

one	of	the	important	steps	in	in	NLP	pipeline.	Text	classification	has	various	applications	in	NLP	

domains	such	as	information	retrieval,	sentiment	analysis,	and	web	search	[194,258–260].	The	

simplest	way	to	generate	structured	features	from	text	is	bag	of	words	[261].	This	method	has	

some	drawbacks,	including	lack	of	context,	treating	abbreviations	and	misspellings	as	separate	

entities,	 splitting	 multi-word	 concepts,	 and	 ignoring	 text	 structure	 and	 semantics	 [262,263].	

Although	analyzing	medical	text	using	standard	medical	NLP	systems	such	as	MetaMap,	cTakes,	
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MedLEE	considers	the	medical	semantics	words,	 implementing	those	medical	semantics	along	

with	standard	text	representation	improves	the	classification	insignificantly	[147,231].	Another	

text	representation	method	is	bag	of	phrases,	which	uses	noun	and	propositional	phrases	[264–

266].	Bag	of	phrases	appears	 to	provide	better	 representations	 than	bag	of	words	because	 it	

conserves	the	partial	ordering	of	words	[266].	Notwithstanding,	bag	of	phrases	still	has	limitations	

including	 representing	 similar	 phrases	 as	 different	 features,	 and	 increasing	 the	 feature	 space	

[261,266].	

Graph-based	models	extract	syntactic	and	semantic	information	and	convert	the	text	into	

graphical	representations	[263,267–271].	The	graphs	of	documents	can	be	converted	to	vectors	

but	they	will	be	sparse	high-dimensional	vectors	and	lack	of	word	context.	Luo	et	al.	designed	an	

unsupervised	 framework	 to	 capture	 relationships	 between	 concepts	 in	 pathology	 reports	 to	

predict	 the	 type	 of	 lymphoma	 [270].	 The	 study	 demonstrated	 that	 SVM	 classifier	 that	 use	

sentences	subgraphs	as	input	outperform	SVM	classifiers	that	use	n-gram	or	MetaMap	features	

[270].	In	another	study,	Luo	et	al.	proposed	an	unsupervised	framework	that	implements	graph	

mining	and	Non-Negative	Tensor	Factorization	(NTF)	to	extract	features	from	clinical	text	[271].	

First,	 the	 authors	 converted	 the	 clinical	 text	 to	 a	 graph	 representation,	 and	 identified	 the	

important	subgraphs	(or	higher	order	features)	by	applying	frequent	subgraph	mining.	Then,	the	

authors	applied	NTF	and	Tucker	factorization	schemes	to	capture	similar	patients’	groups,	and	

similar	subgraphs,	and	identify	interactions	between	groups	in	different	modes	(i.e.	patients	and	

text	subgraphs	mode)	[271].	

Deep	learning	for	text	representation	

Paragraph2Vec	is	unsupervised	method	that	learns	a	fixed-length	dense	vector	for	each	

variable-length	paragraph	[200].	The	model	concatenates	a	paragraph	vector	with	word	vectors	

to	predict	the	next	word.	Hence,	the	word’s	context,	as	well	as	the	paragraph’s	context,	contribute	

to	word	prediction.	Paragraph2Vec	generates	two	embeddings:	a	paragraph	embedding	and	a	

word	embedding.	Paragraph2Vec	has	been	implemented	to	classify	movie	reviews	in	the	Stanford	

Sentiment	Treebank	dataset	and	Internet	Movie	Database	[200,272].		
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Miñarro-Giménez	 used	 Word2Vec	 model	 to	 mine	 medical	 text	 and	 identify	 the	

relationships	 across	 drugs,	 diseases,	 and	 physiological	 processes	 [232].	 Miñarro-Giménez	

compared	the	extracted	relations	with	manually	curated	gold	standard	relations	from	the	national	

drug	 file-reference	 terminology	 [142,232].	 Another	 research	 team	 employed	 Word2Vec	 to	

represent	clinical	documents	and	build	a	readmission	prediction	model	for	patients	diagnosed	

with	chronic	obstructive	pulmonary	disease	[233].	Their	proposed	model	has	a	similar	prediction	

performance	 to	LACE,	a	widely-used	risk	model	 to	predict	mortality	and	readmission	 that	has	

been	explained	in	chapter	3	[214].	

Methods	

Gold	standard	

This	 was	 an	 institutional	 review	 board-approved	 study	 conducted	 at	 VUMC.	 VUMC	

launched	a	 locally-developed	patient	portal,	MHAV,	 in	2005.	MHAV	offers	 a	 suite	of	 common	

patient	 portal	 functions	 including	 secure	 patient-provider	 messaging	 and	 access	 to	 selected	

portions	of	the	EMR	[273].	All	secure	messages	sent	through	MHAV	are	written	to	the	EMR.	VUMC	

maintains	 a	 de-identified	 version	 of	 the	 EMR	 including	 over	 20	million	MHAV	messages	 in	 a	

resource	called	the	Synthetic	Derivative	 (SD)	 [274].	Patient-initiated	MHAV	messages	between	

2005	and	2014	were	extracted	from	the	SD.	We	randomly	selected	3,000	messages	to	include	in	

the	study	dataset.	The	content	of	these	portal	messages	was	manually	classified	using	a	taxonomy	

of	 consumer	 health	 needs	 (Figure	 4.1).	 Creation	 of	 this	 gold	 standard	 has	 been	 described	 in	

[246,275].		

Feature	construction	

	 We	used	standard	methods	to	convert	the	messages	into	structured	features	including:	

bag	of	words,	bag	of	phrases,	and	graph-based	representation.	Moreover,	we	trained	Word2Vec	

and	Paragraph2Vec	to	learn	word	and	paragraph	vectors.		

Several	methods	create	 representation	vectors	 from	clinical	documents	 such	as	bag	of	

words,	 phrases,	 tokens,	 n-gram,	 and	 normalized	 document	 (e.g.	 extracting	 unique	 UMLS	

concepts	using	NLP)	[29,94,151,152].	Bag	of	words	is	the	most	straightforward	way	to	generate	
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structured	 features	 from	 the	 text	 [261].	 This	 method	 treats	 words	 as	 discrete	 entities	 and	

assumes	that	similar	documents	have	the	same	words	and/or	have	a	similar	frequency	of	the	

words.	 Bag	 of	 words	 method	 has	 some	 drawbacks,	 including	 a	 lack	 of	 context,	 treating	

abbreviations	and	misspellings	as	separate	entities,	splitting	multi-word	concepts,	and	ignoring	

text	structure	and	semantics	[262,263].	Another	text	representation	method	is	bag	of	phrases,	

which	uses	nouns	and	prepositional	phrases	[264–266].	Bag	of	phrases	appears	to	provide	better	

representations	 than	 bag	 of	words	 because	 it	 conserves	 the	 partial	 ordering	 of	words	 [266].	

Notwithstanding,	 bag	of	 phrases	 still	 has	 limitations	 including	 representing	 similar	 phrases	 as	

different	features,	and	increasing	the	feature	space	[261,266].	

Graph-based	 models	 utilize	 syntactic	 and	 semantic	 information	 to	 convert	 text	 into	

graphical	representations	that	possess	better	expressive	features	[263,267–271].	The	graph	node,	

which	 is	 a	 text	 component,	 can	be	one	of	 the	 following:	part	of	 speech,	phrase,	name	entity	

recognition	(NER),	token,	or	semantic	node.	If	two	nodes	have	a	relationship	(e.g.,	"appointment"	

is	 a	 "noun"),	 an	 edge	 connects	 them.	 Each	 document	 is	 converted	 into	 a	 graph	 that	 can	 be	

mapped	into	a	feature	vector	and	can	be	fed	to	a	machine	learning	model	[263,269].	Limitations	

of	 graph	models	 include	 sparse	 and	 high-dimensional	 vectors	 and	 lack	 of	 word	 context.	 For	

example,	 the	 following	 sentence:	 “Is	 it	 time	 to	 schedule	 a	 kidney	 transplant	 annual	

appointment?”	can	be	converted	into	the	a	depicted	in	Figure	2.1	(stop	words	are	removed).	This	

graph	is	then	converted	into	a	Boolean	feature	vector,	and	a	value	is	set	to	1	for	all	edges	that	

exist	in	the	graph	(i.e.,	transplant	--	appointment	=	1).		

	

Figure	4.2	A	graph	representation	for	the	sentence	"Is	it	time	to	schedule	a	kidney	transplant	annual	appointment".	Advcl:	
Adverbial	clause	modifier;	Dobj:	Direct	object;	Comp:	Compound;	Amod:	Adjectival	modifier	
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I	created	four	categories	of	feature	representations,	as	depicted	in	Figure	4.2.	We	evaluated	the	

features	 by	 training	 and	 comparing	 the	 classifications	 metrics	 for	 random	 forest,	 logistic	

regression	and	CNN	classifiers:	

1- Terms	lacking	semantics	and	syntactic:	Bag	of	words,	bag	of	phrases	

2- Terms	and	their	syntax:	Text	graph	

3- Context	only:	CNN	trained	on	random	vectors	

4- Semantics	and	context	features:	CNN	trained	on	Word2Vec	vectors	

		

Figure	4.3	Semantics	and	context	in	patient	portal	messages	representation	

Bag	of	words	(BoW):	this	feature	representation	is	the	simplest	method	to	represent	the	text	but	

it	lacks	the	semantics,	syntax,	and	context	aspects.	We	extracted	the	set	of	words	from	the	portal	

messages.	In	the	preprocessing	step,	we	excluded	stop	words	retrieved	from	the	natural	language	

toolkit	package	and	words	that	occurred	only	once	in	the	entire	corpus	[276].	We	also	removed	

non-alphanumeric	characters.	We	created	dictionary	that	maps	a	numerical	value	for	each	word	

in	 the	 preprocessed	 messages	 to	 create	 the	 numerical	 representation,	 where	 the	 numerical	

values	are	not	semantically	related.	We	tokenized	and	represented	each	preprocessed	message	
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with	a	binary	vector,	where	each	the	index	of	the	cell	is	a	numerical	mapping	of	the	word.	The	

cell	was	assigned	to	one	if	that	word	existed	in	the	message,	else	it	was	assigned	to	zero.	

Bag	of	phrases:	Representing	the	messages	by	their	phrases	preserve	small	syntactic	information	

restricted	by	the	ones	that	generate	small	phrases.	Digital	Reasoning’s	Synthesys	is	an	interactive	

tool	that	applies	supervised	and	unsupervised	machine	learning	techniques	to	extract	knowledge	

from	unstructured	data.	The	tool	 implements	an	entity-centric	approach	to	uncover	concepts,	

events,	 and	 relationship	 between	 the	 entities	 from	 complex	 data	 [277].	 Synthesys	 performs	

natural	language	processing	to	extract	entities	(e.g.,	noun,	verb,	phrases)	and	facts.	Each	text	is	

divided	into	sentences	which	in	turn	are	divided	up	into	tokens	including	words	and	punctuation.	

The	tokens	are	analyzed	for	their	grammatical	roles	(i.e.,	part	of	the	speech).	The	tool	assembles	

the	related	entities	and	tokens,	detects	synonyms	and	related	concepts,	and	implements	graph	

analysis	techniques,	such	as	associative	networks,	frequency,	and	ranking	algorithms,	to	uncover	

relationships	and	correlations	between	entities	[278].		

Using	the	Synthesys	tool,	we	tokenized	the	messages	into	phrases	[278].	We	implemented	the	

English	 engine	 to	 extract	 phrases	 such	 as	 noun	 and	 verb	 phrases.	 The	 phrase	 length	 varies	

depending	on	the	number	of	words	forming	the	phrase.	We	assigned	a	numerical	value	for	each	

phrase.	A	binary	vector	was	formed	for	each	message,	where	a	cell	index	maps	to	the	numerical	

value	 for	 a	 phrase.	 The	 cell	 value	was	 assigned	 to	 one	 if	 the	 phrase	 existed	 in	 the	message;	

otherwise,	it	was	assigned	to	zero.	

Graph-based	representation:	the	graph	representation	accounts	for	all	the	syntactic	relationships	

between	the	words	in	the	message	during	the	feature	construction.	For	each	communication,	we	

used	the	Synthesys	to	extract	the	syntactic	features	from	the	messages	 including	tokens,	POS,	

and	phrases,	to	form	a	graph	[278].	Synthesys	converted	the	message	graph	into	a	binary	vector	

by	extracting	all	relations	between	nodes.	The	communications	vector	in	the	training	dataset	had	

on	average	20,868	features.	

Word	embedding:	To	construct	features	considering	meaning	and	semantic	relation	between	the	

words,	we	used	Word2Vec	to	represent	each	word	in	the	communication	by	a	vector.	we	retrieved	

the	vectors	from	three	models:	
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Pre-trained	model:	A	Google	model	that	was	trained	on	100	billion	articles	from	Google	

News.	The	Google	Word2Vec	vectors	(https://code.google.com/p/word2vec/)	have	300	

dimensions.	 This	 feature	 representation	 includes	 a	 general	 meaning	 and	 semantic	

relations	of	the	words,	but	not	the	medical	or	local	semantics	of	the	words.		

Word2Vec	model	trained	on	a	local	dataset	(SD	Word2Vec):	To	obtain	an	embedding	for	

the	misspelled	 words	 and	 abbreviations	 in	 the	 local	 dataset,	 we	 trained	 a	Word2Vec	

model	using	the	Gensim	package	on	all	SD	documents	including	clinical	notes,	discharge	

summaries,	 portal	messages,	 etc.	 [279]	 To	 train	 the	Word2Vec	model,	we	 used	 50	 as	

minimum	word	count,	15	as	the	window	size,	and	100	as	the	number	of	hidden	units,	

which	is	also	the	dimension	of	the	embeddings.		

	Word2Vec	 model	 trained	 on	 MHAV	 messages	 (MHAV	 Word2Vec):	 Different	 clinical	

documents	 have	 different	 writing	 styles	 [280].	 Word2Vec	 learns	 word	 vectors	 using	

surrounding	words	 (i.e.,	 context).	Hence,	Word2Vec	model	 trained	on	portal	messages	

with	the	same	writing	style	could	provide	better	word	representation	compared	to	models	

trained	on	documents	with	different	writing	styles.	We	trained	a	Word2Vec	on	3.3	million	

MHAV	messages	(i.e.,	a	subset	of	the	SD)	to	obtain	embedding	that	consider	word	context,	

using	the	exact	parameters	of	˝SD	Word2Vec˝	model.	

	Integer	 Coding	 vectors:	 To	 evaluate	 the	 importance	 of	 semantics	 in	 the	 Word2Vec	

embedding	for	the	CNN,	we	assigned	a	random	integer	to	each	word	where	the	value	is	

unrelated	to	the	meaning	of	the	word.	Then,	we	converted	the	integer	into	a	binary	vector	

(e.g.,	3	is	converted	to	0011).	The	generated	feature	embedding	lacks	the	meaning	of	the	

words	and	the	semantic	relationship	between	words.	

˝MHAV	Para2Vec˝	model:	 For	 a	 paragraph	 vector,	 instead	of	 representing	 the	message	using	

features	on	the	word	 level,	Paragraph2Vec	 infers	a	representation	for	the	entire	message.	We	

trained	Paragraph2Vec	model	on	MHAV	portal	messages	only.	We	assigned	the	window	size	to	

10,	 minimum	 word	 count	 to	 10,	 and	 hidden	 units	 to	 300.	 From	 this	 model,	 we	 used	

Paragraph2Vec	word	embedding,	that	has	300-dimensions	for	each	word,	to	create	word	vectors	
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that	 evaluates	 the	 effect	 of	 including	 portal	 message	 context	 in	 embedding	 learning.	 We	

represented	each	message	by	a	300-dimensional	vector	inferred	by	˝MHAV	Para2Vec˝	model.	

Classification	algorithms	

We	 trained	 four	 binary	 classifiers	 on	 the	 four	 features’	 representation,	 one	 for	 each	

communication	need,	to	classify	the	messages.	

Standard	machine	 learning	 techniques:	we	trained	 two	standard	classifiers:	 logistic	 regression	

and	random	forest	provided	by	scikit-learn	to	classify	the	messages	represented	by	bag	of	words,	

bag	of	phrases,	graph	vectors,	and	paragraph	vectors	[226].	

Deep	Neural	Network	(DNN):	we	investigated	whether	the	complexity	of	the	model	or	the	feature	

representation	would	improve	the	performance	of	the	classification.	we	trained	a	DNN	to	classify	

the	patient	messages;	however,	the	length	of	the	message	varies,	and	the	input	for	DNN	requires	

a	 fixed-length	 one-dimensional	 vector	 for	 the	 input	 layer.	 To	 generate	 one	 vector	 for	 each	

communication,	we	aggregated	the	vectors	of	all	the	words	in	a	message	using	the	sum.	We	fed	

the	vectors	 into	a	DNN	and	a	softmax	 layer	that	converts	the	output	of	 the	network	 into	two	

probabilistic	output	units:	positive	label	and	negative	label,	where	the	highest	probability	is	the	

predicted	label.	We	varied	the	DNN	parameters	such	as	the	number	of	layers,	number	of	hidden	

units,	activation	functions,	to	pick	the	optimal	model.	We	included	the	details	about	the	ranges	

of	the	DNN	parameters	in	section	“Model	Validation”	section.		

CNN	using	Word2Vec	embedding:	All	 the	previous	 classifier	does	not	 account	 for	 the	 context	

around	 the	words.	 Learning	 a	 representation	 for	 the	 subsequence	 of	words	 that	 include	 the	

patient’s	need	would	enhance	the	features.	CNN	create	higher	representations	for	the	adjacent	

input	elements	within	a	given	window.	Applying	CNN	on	text	creates	higher	representations	for	

the	subsequence	of	 the	words,	or	 the	context	of	adjacent	words,	as	Figure	4.3	demonstrates.	

Hence,	we	implemented	CNN	model	as	described	in	[184]	and	we	modified	the	parameters	in	the	

model	to	fit	our	analysis.	Each	message	was	represented	as	a	matrix-of-words	embedding	and	fed	

it	build	a	CNN	classifier.	 The	CNN	model	 comprises	an	 input	 layer,	 a	 convolution	 layer,	 a	max	

pooling	layer	and	a	softmax	layer.	Below,	we	describe	each	layer.	
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Figure	4.4	An	example	of	applying	CNN	on	a	text	

Let	the	vector	be	represented	as	wjÎℝ𝒌,	where	wj	is	a	k-dimensional	embedding	vector	for	the	j-

the	word	in	a	message.	Since	CNN	requires	that	all	messages	have	the	same	number	of	words,	

we	 padded	 the	 message	 with	 zeros	 to	 have	 the	 same	 number	 of	 words	 as	 the	 longest	

communication.	Each	communication	was	represented	by	a	two-dimensional	nxk	matrix	ci	=	[w1,	

w2,	 ….,	wn],	 where	 n	 is	 the	 maximum	 number	 of	 words,	 and	 k	 is	 the	 dimension	 of	 the	wj	

embedding.	A	filter	t	with	region	size	rxk	applies	a	convolutional	operation	on	the	j:j+r	sub-matrix	

(i.e.	r	rows	between	j	and	j+r	rows)	to	produce	a	mapped	feature	m	for	r	words.	A	convolution	

layer	generates	mapped	feature	mj	by	applying	the	non-linear	function	ƒ:	

mj	=	ƒ(t.c	j:j+r	+	b),	where	.	is	a	dot	product.	

Where	ƒ	is	a	non-linear	function	such	as	a	sigmoid,	t	is	a	filter	Îℝ𝒓𝒌,	c	j:j+r	is	a	sub-matrix	

composed	of	r	words,	and	b	is	a	bias	term.	Hence,	the	CNN	maps	a	message	with	n	words	to	n-

r+1	features	m	=	[m1,	m2,	…,	mn-r+1],	where	each	m	is	the	representation	of	the	words	inside	the	

filter.	To	select	the	most	important	mapped	features	generated	by	a	filter,	we	used	a	max	pooling	

layer	 to	 pick	 the	 feature	 m	 with	 the	 highest	 value.	 Filters	 with	 different	 region	 sizes	 and	

convolutional	 functions	 can	 be	 applied	 to	 each	 communication	 to	 obtain	 multiple	

representations.	 The	 output	 of	max-pool	 layer	 for	 all	 filters	 was	 passed	 to	 a	 fully	 connected	

softmax	layer	with	two	probabilistic	output	units:	positive	and	negative	labels.	
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We	used	the	same	regularization	technique	used	by	Kim	[184].	We	implemented	dropout	

on	the	penultimate	layer	to	prevent	hidden	units	from	co-adapting	and	model	from	overfitting	

[281,282].	Moreover,	L2	regularization	was	employed	on	the	weight	vectors.	If	the	L2-norm	of	the	

weight	 vector	 exceeded	 a	 threshold	 s,	 the	 vector	was	 rescaled	 to	make	 L2-norm	 equals	 to	 s.	

However,	we	implemented	and	tested	multiple	model	parameters	(listed	in	Table	4.1	and	Table	

4.2	below).	To	evaluate	the	effect	of	different	semantics	of	words	on	the	classification	accuracy,	

we	represented	words	using	various	Word2Vec	embeddings	trained	on	clinical	documents	as	well	

as	Google	News.	We	describe	the	set	of	parameters	used	in	CNN	in	the	next	section.	

Model	Validation	

Searching	the	parameter	space	to	select	 the	optimal	model	makes	the	comparisons	of	

performance	 between	 different	 models	 on	 the	 validation	 and	 test	 sets	 more	 reliable.	 We	

searched	 possible	 parameter	 values	 to	 identify	 the	 optimal	 classifier,	 optimizing	 the	 search	

process	using	a	Bayesian	method.	We	used	Hyperopt	package	which	 is	a	python	package	that	

performs	Bayesian	optimization	to	tune	function	parameters	and	obtain	the	optimal	model	[283].	

The	optimal	parameters	are	selected	by	finding	the	parameter	combination	that	minimizes	a	loss	

function.	 The	 loss	 value	 is	 the	 prediction	 error	 when	 the	 model	 predicts	 the	 output	 of	 the	

validation	set.	To	validate	models,	we	randomly	divided	the	dataset	into	training,	validation,	and	

testing	with	the	ratios	0.8,	0.1,	and	0.1,	respectively.	We	used	Hyperopt	to	obtain	the	optimal	

model	applied	on	the	validation	set.	Table	4.1	summarizes	the	range	of	parameters	we	used	in	

Hyperopt	 to	 identify	 optimal	model,	 and	 Table	 4.2	 lists	 the	 optimal	 parameters	 identified	 by	

Hyperopt.	We	repeated	this	process	five	times,	and	calculated	the	AUC	and	accuracy	using	metrics	

function	in	scikit-learn	[226].		

In	the	clinical	setting,	the	labels	should	be	assigned	to	the	message.	Dichotomizing	the	

probabilities	into	labels	is	performed	by	selecting	a	threshold	to	create	labels.	Precision	and	recall	

are	metric	to	evaluate	the	correctness	of	the	assigned	labels.	Both	metrics	are	sensitive	to	the	

threshold	chosen	to	classify	the	messages.	The	standard	threshold	is	0.5	where	any	probability	

that	equals	or	above	that	threshold	has	a	positive	label.	Nevertheless,	using	this	static	threshold	

might	not	suit	all	the	models’	output	depending	on	the	output	probability	distribution.	Hence,	

we	used	the	Youden	Index	to	select	the	thresholds	for	recall	and	precision	that	generated	the	
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highest	values	using	the	validation	set,	and	we	reported	both	metrics	for	the	test	set.	The	Youden	

index	 selects	 the	 best	 threshold	 by	 tuning	 the	 threshold	 t,	 dichotomizing	 probabilities,	 and	

calculating	the	sensitivity	and	specificity.	The	threshold	that	generate	the	highest	value	of	the	

equation	below	is	the	dichotomizing	threshold:	

J	(Youden	Index)	=	sensitivity(t)	+	specificity(t)	-1.	

Where	J	is	function	that	finds	the	maximum	value	of	the	equation	by	changing	the	threshold	t	of	

calculating	sensitivity	and	specificity.	

Table	4.1	Ranges	of	parameters	used	in	grid	search	for	random	forest,	logistic	regression,	deep	neural	network,	and	
convolutional	neural	network	models	

	

Classifier	 Parameter	name	 Parameter	value	
Random	Forest	 Maximum	depth	 1	to	30,	by	1	

Maximum	features	 1	to	500,	by	1	
Number	of	estimator	 1	to	200,	by	1	
Splitting	criterion	 Gini,	entropy	

Logistic	Regression	 Regularization	or	
penalty	

L1,	L2	

Regulation	constant	 0.1	to	10,	by	0.1	
Fit	intercept	 True,	False	

Deep	Neural	Network	 Number	of	hidden	
units	

100,	150,	200,	250,	300,	350	

Number	of	layers	 1,2,3,4,5	
Drop	rate	 0.1,0.2,0.3,0.4,0.5	
Learning	rate	 0.01	to	0.4	with	0.005	increments	
Activation	function	 Hyperbolic	tangent	(Tanh),	Rectified	

linear	unit	(ReLU),	sigmoid,	linear,	
softsign	

Initiation	function	for	
weights	

Uniform,	LeCun	uniform,	normal,	Glorot	
uniform,	He	uniform	

Convolutional	Neural	
Network	

Number	of	hidden	
units	

50,	100,	150	

Filters	values	 [3,4,5],	[4,5,6],	[4,5,6,7],	[5,6,7],	
[5,6,7,8],	and	[7,8,9]	

Learning	decay	 0.8,	0.85,	0.9,	0.95	
Square	normalized	
limit	

5,6,7,8,9,10	

Activation	function	 Tanh,	ReLU	
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Table	4.2	The	parameters	of	the	optimal	models	identified	by	Hyperopt.	

	
	

Classifier	 Parameter	
name	

Optimal	parameter	value	
Informational	Medical	 Logistical	 Social	

Random	Forest	 Maximum	depth	 16	 26	 22	 29	
Maximum	
features	

235	 92	 339	 343	

Number	of	
estimator	

185	 133	 41	 55	

Splitting	
criterion	

Gini	 Entropy	 Gini	 Entropy	

Logistic	Regression	 Regularization		 L1	 L2	 L2	 L1	
Regulation	
constant	

0.3	 4.5	 0.7	 0.5	

Fit	intercept	 True	 True	 True	 True	
Deep	Neural	
Network	

Number	of	
hidden	units	

150	 350	 200	 150	

Number	of	
layers	

1	 2	 2	 3	

Drop	rate	 0.1	 0.1	 0.4	 0.1	
Learning	rate	 0.013	 0.025	 0.02	 0.013	
Activation	
function	

Tanh	 Tanh	 Tanh	 Sigmoid	

Weights	
initiation	
function	

Glorot	
uniform	

LeCun	
uniform	

He	
uniform	

He	
Normal	

Convolutional	
Network	

Number	of	
hidden	units	

100	 100	 150	 100	

Filters	values	 3,	4,	5	 3,	4,	5	 5,	6,	7,	8	 3,	4,	5	
Learning	decay	 0.9	 0.95	 0.9	 0.95	
Square	
normalized	limit	

6	 8	 6	 6	

Activation	
function	

Tanh	 Tanh	 ReLU	 Tanh	
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Results	

Dataset	

In	the	3,000	MHAV	messages	corpus,	2,173	(72.4%)	contained	medical	communications;	

371	 (12.4%)	 informational	 communications;	 747	 (24.9%)	 logistical	 communications;	 and	 839	

(28%)	social	communications.	

Only	1,867	messages	had	a	singular	type,	usually	medical	or	social	communications.	197	

of	 informational	 communications	 contained	 medical	 communications	 as	 well.	 Similarly,	 359	

messages	 of	 logistical	 communications	 also	 involved	 medical	 communications	 (see	 UpSet	

visualization	[284,285],	Figure	4.4).		

	

	
Figure	4.5	UpSet	visualization	for	portal	messages	grouped	by	communication	types.	The	small	bar	graph	at	the	lower	left	

depicts	message	distribution	across	categories.	Each	row	in	the	dot	graph	corresponds	to	a	category,	with	columns	
corresponding	to	an	intersection	

The	messages	consisted	of	7,679	distinct	words,	reduced	to	3,371	words	after	preprocessing.	We	

formed	 18,689	 phrases,	 from	 which	 4,362	 phrases	 occurred	 more	 than	 once.	 The	 longest	
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communication	was	a	medical	message	consisting	of	823	words.	The	highest	median	of	words	

count	was	74	for	 informational	messages,	while	the	lowest	median	of	words	count	was	27	for	

social	(Figure	4.5).	

	
Figure	4.6	Statistical	summary	for	the	words	in	portal	messages	in	informational,	medical,	logistical,	and	social	categories.	Each	
message	is	represented	by	a	blue	line.	Boxes	indicates	the	messages	lengths	range	between	first	quantile	(25th	percentile),	and	
third	quantile	(75th	percentile).	Lower	black	line	represents	extreme	values	within	1.5	time	first	percentile,	and	the	upper	black	

line	is	the	1.5	of	third	quantile	and	any	value	above	the	black	line	is	considered	as	an	outlier.	Red	lines	indicate	the	median	
(second	quantile	or	50th	percentile)	of	the	words	counts	

	

Features	without	semantics:	BoW	and	bag	of	phrases	features	

Using	BoW	that	lack	syntax	and	semantics,	the	AUCs	for	classifying	informational	and	logistical	

communications	using	random	forest	were	0.8027	and	0.9280,	which	were	higher	than	the	AUC	

of	logistic	regression	by	0.034	and	0.025%0,	respectively.	The	AUCs	for	classifying	medical	and	

social	communications	using	 logistic	 regression	and	random	forest	were	0.885	and	0.827.	The	

accuracy	 of	 logistic	 regression	 and	 random	 forest	 were	 around	 0.88,	 0.83,	 and	 0.77	 for	

informational,	 medical,	 and	 social	 communications.	 The	 accuracy	 of	 classifying	 logistical	

communications	using	logistic	regression	was	0.893,	higher	than	the	accuracy	of	random	forest	

by	0.013.		
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Using	features	that	lack	semantics	preserve	very	basic	syntax	such	as	bag	of	phrases,	the	highest	

AUC	for	classifying	informational,	social,	and	logistical	communications	were	0.786,	0.812,	and	

0.857	using	random	forest,	while	logistic	regression	classified	the	medical	communications	with	

AUC	 0.851.	 The	 AUCs	 for	 classification	 of	medical,	 social,	 and	 logistical	 communication	 using	

logistic	regression	were	0.804,	0.79,	and	0.858,	and	were	higher	than	accuracy	of	random	forest	

for	same	categories.	Table	4.3	summarizes	the	performance	metrics	of	classifiers	trained	on	bag	

of	words	and	bag	of	phrases.	

	
Table	4.3	Performance	metrics	of	classifiers	trained	on	features	without	semantics:	bag	of	words	and	bag	of	phrases.	BoW:	Bag	

of	words,	RF:	Random	Forest,	LR:	Logistic	regression.	AUC	=	area	under	the	curve,	ACC	=	Accuracy.	The	highest	AUC	of	
classifying	a	specific	category	(e.g.	social)	is	bolded	

	

	

	Syntax	in	graph		

Random	 forests	 classified	 informational,	 medical,	 social,	 and	 logistical	 communications	

represented	by	graph	vectors	with	AUCs	of	0.832,	0.914,	0.845,	and	0.889,	respectively,	which	

were	 higher	 than	 AUC	 of	 logistic	 regression	 (Table	 4.4a).	 For	 graph	 representation,	 logistic	

regression	had	higher	accuracy	than	random	forest	for	all	categories	except	medical	messages.	

Semantics	without	context	in	paragraph	vector	and	Word2Vec	vectors	aggregation	

We	trained	random	forest	and	logistic	regression	using	two	features	representations	built	on	the	

semantics	 of	 the	words	more	 than	 the	 context:	 paragraph	 vectors	 and	 aggregated	Word2Vec	

embedding.	 Using	 logistic	 regression	 to	 classify	 informational	 and	 medical	 communications	

represented	by	paragraph	vectors	yielded	0.763	and	0.845	AUC,	which	were	slightly	higher	than	

using	random	forest	by	0.008	and	0.038.	On	the	other	hand,	using	random	forests	to	classify	the	

social	and	logistical	communications	represented	by	paragraph	vectors	yielded	AUCs	of	75%,	and	

	 BoW	RF	 BoW	LR	 Bag	of	Phrases	RF	 Bag	of	Phrases	LR	
AUC	 ACC	 AUC	 ACC	 AUC	 ACC	 AUC	 ACC	

Informational		 0.803	 0.877	 0.769	 0.880	 0.788	 0.876	 0.761	 0.872	
Medical	 0.884	 0.833	 0.890	 0.830	 0.837	 0.725	 0.852	 0.804	
Social	 0.828	 0.773	 0.827	 0.770	 0.812	 0.725	 0.797	 0.790	
Logistical	 0.928	 0.880	 0.903	 0.893	 0.857	 0.775	 0.835	 0.858	
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78%,	and	outperformed	logistic	regression	by	roughly	0.02	(Table	4.4b).	The	AUC	of	DNN	using	

Word2Vec	were	higher	than	using	paragraph	vectors	and	lower	than	using	graph	vectors	(Table	

4.4c).	For	DNN,	using	the	words	vectors’	average	instead	of	the	sum	yielded	similar	AUC.	Table	

4.4	summarizes	the	metrics	of	classifiers	using	graph-based	representation,	paragraph	vectors,	

and	DNN.	

		

Table	4.4	Performance	metrics	of	prediction	models	that	implemented	(a)	graph	representation,	(b)	paragraph	representation,	
or	(c)	DNN	using	sum	of	word	vectors.	Bold	text	represents	the	highest	AUC	and	accuracy	

	

	 Random	forest	 Logistic	regression	
AUC	 ACC	 AUC	 ACC	

Informational		 0.832	 0.877	 0.826	 0.883	
Medical	 0.914	 0.849	 0.851	 0.746	
Social	 0.845	 0.745	 0.814	 0.816	
Logistical	 0.889	 0.789	 0.866	 0.836	

	

	 Random	forest	 Logistic	regression	
AUC	 ACC	 AUC	 ACC	

Informational		 0.725	 0.874	 0.763	 0.876	
Medical	 0.837	 0.831	 0.846	 0.822	
Social	 0.752	 0.787	 0.736	 0.795	
Logistical	 0.784	 0.788	 0.762	 0.784	

	

	 Informational		 Medical		 Social		 Logistical		
AUC		 0.768	 0.892	 0.833	 0.815	
ACC	 0.861	 0.827	 0.812	 0.787	

	

Semantics	and	context	in	CNN	classification	

Constructing	the	features	with	context	and	semantics,	MHAVPara2Vec	with	CNN	had	the	highest	

AUCs:	 0.909,	 0.916,	 0.936,	 and	 0.944	 for	 informational,	 medical,	 social,	 and	 logistical	

communications,	respectively.	The	CNN	using	MHAVPara2Vec	vectors	yielded	a	higher	AUC	than	

the	CNN	using	Google	vector	by	0.06-0.025	as	shown	in	Table	4.3.	Word	embedding	generated	by	

SDWord2Vec	yielded	0.899,	0.880,	0.925,	and	0.931	AUC	for	informational,	medical,	social,	and	

(a)	Graph	representation	

(b)	Paragraph	representation	

(c)	DNN	using	sum	of	word	vectors	
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logistical	 communications,	which	were	 the	 same	 or	 slightly	 lower	 than	 using	Google	 vectors.	

Using	 an	 integer	 coding	 vectors	 that	 lack	 the	 semantics	 of	 the	 words	 had	 the	 lowest	 AUC	

compared	to	the	other	CNN	models	that	implemented	semantically	generated	vectors.	The	AUC	

of	CNN	using	MHAVWord2Vec	was	not	significantly	different	from	CNN	using	MHAVPara2Vec	for	

all	categories	except	for	informational	where	using	MHAVPara2Vec	yielded	a	significantly	higher	

AUC	(Table	4.5).	A	CNN	model	that	implemented	MHAVPara2Vec	had	the	highest	accuracy	except	

for	medical	message	where	using	SDWord2Vec	had	an	AUC	of	0.892,	the	highest	accuracy.	
Table	4.5	The	performance	metrics	of	CNN	models	using	word	vectors	as	features.	AUC	=	area	under	the	curve,	ACC	=	Accuracy	

	

Method	Comparisons	

Using	CNN	with	MHAVPara2Vec	embedding	had	the	highest	AUC	as	compared	to	the	other	one-

versus-all	classifiers	as	depicted	in	Figure	4.6.	Standard	bag	of	words	model	had	AUCs	of	0.803,	

0.884,	 0.828,	 and	 0.928	 for	 informational,	medical,	 social	 and	 logistical	 communications,	 and	

outperformed	bag	of	phrases	and	paragraph	vectors.	Using	the	graph	representation	generated	

by	 the	 Synthesys	 had	 higher	 AUC	 than	 bag	 of	 words	 classifier	 by	 0.034,	 0.03,	 0.017	 for	

informational,	medical,	 and	 social	 communications.	 For	 logistical	 communications,	 the	 bag	 of	

words	 outperformed	 the	 graph	 representation	 by	 0.03.	 The	 AUC	 for	medical	 and	 social	 DNN	

classifiers	were	slightly	higher	than	the	AUC	of	the	bag	of	words	classifiers.	On	the	other	hand,	

the	 AUC	 of	 informational	 and	 logistical	 classifiers	 that	 used	 bag	 of	 words	 are	 higher	 than	

corresponding	DNN	classifiers.	The	variance	of	all	classifiers	ranged	between	0.006	–	0.035,	where	

graph-based	representation	had	the	highest	variance	and	logistical	messages	using	bag	of	words	

had	lowest	variance.	

The	 CNN	 using	 random	 integer	 embeddings	 yielded	 AUCs	 of	 0.846,	 0.888,	 0.920,	 and	

0.906	 for	 informational,	medical,	 social,	 and	 logistical	 communications,	 respectively,	 and	 they	

	 Google	Vector	 SD	Word2Vec	 MHAVWord2Vec	 MHAVPara2Vec	 Integer	coding	
AUC	 ACC	 AUC	 ACC	 AUC	 ACC	 AUC	 ACC	 AUC	 ACC	

Informational		0.887	 0.886	 0.900	 0.851	 0.867	 0.879	 0.909	 0.900	 0.846	 0.868	
Medical	 0.919	 0.874	 0.880	 0.892	 0.919	 0.876	 0.916	 0.866	 0.888	 0.849	
Social	 0.930	 0.889	 0.926	 0.891	 0.935	 0.887	 0.937	 0.896	 0.920	 0.884	
Logistical	 0.938	 0.905	 0.931	 0.906	 0.945	 0.906	 0.945	 0.909	 0.907	 0.896	
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were	higher	than	the	AUCs	for	bag	of	words	classifiers.	The	highest	AUC	differences	between	bag	

of	words	and	CNN	were	0.106,	0.032,	0.109,	and	0.017	for	 informational,	medical,	social,	and	

logistical	communication	classification,	respectively,	when	we	used	the	CNN	with	MHAVPara2Vec.	

	 	
Informational	 Medical	

	
	

	

Social	 Logistical	
Figure	4.7	Comparison	between	classification	models	using	different	features	with	various	complexities.	AUC:	area	under	the	

curve,	CNN:	Convolutional	Neural	Network,	SD:	Synthetic	Derivative,	MHAV:	My	Health	At	Vanderbilt	

Compared	 to	 other	 classifiers,	 the	 CNN	 yielded	 higher	 precision	 values	 that	 ranged	 between	

0.2659	-	0.3461,	0.9147	-	0.9237,	0.7368	-	0.9182,	0.6839	-	0.7816	for	 informational,	medical,	

social,	and	logistical	communications,	respectively.	The	precision	values	of	CNN	informational	and	

social	classifiers	were	the	highest.	On	the	other	hand,	classifying	medical	communication	using	

the	 graph	 representation	 had	 the	 highest	 precision	 with	 0.9451,	 and	 classifying	 logistical	

messages	using	bag	of	words	yielded	the	highest	precision	with	0.8333.		
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Similarly,	the	CNN	models	yielded	high	recall	values	with	the	following	ranges	0.8448	-	0.9006,	

0.7531	-	0.8556,	0.7912	-	0.8257,	0.7522	-	0.8539	for	informational,	medical,	social,	and	logistical	

communications,	 respectively.	Classifying	 logistical	messages	using	CNN	had	 the	highest	 recall	

amongst	other	logistical	classifiers.	The	recall	value-	for	classifying	informational	communications	

using	paragraph	vector	representations	was	higher	by	only	0.009	compared	to	CNN	informational	

classifier.	 Using	 paragraph	 vector	 representation	 to	 classify	 the	 medical	 communications	

generated	 highest	 recall	 value	 of	 0.9082,	 while	 using	 phrases	 representation	 generated	 the	

highest	recall	of	0.8810.	The	following	tables	summarize	the	precision	and	recall	values	for	all	

classifiers.	

Table	4.6	A	comparison	of	precision	values	for	all	classifiers.	BoW:	Bag	of	words,	RF:	Random	Forest,	LR:	Logistic	regression,	
CNN:	Convolutional	Neural	Network,	SD:	Synthetic	Derivative,	MHAV:	My	Health	At	Vanderbilt	

Classifier	 Informational	 Medical	 Social	 Logistical	
BoW	-	RF	 0.245	 0.903	 0.649	 0.750	
BoW	-	LR	 0.271	 0.912	 0.820	 0.833	
Phrases	-	RF	 0.309	 0.891	 0.462	 0.509	
Phrases	-	LR	 0.221	 0.920	 0.465	 0.628	
Graph	-	RF	 0.318	 0.937	 0.529	 0.582	
Graph	-	LR	 0.297	 0.945	 0.576	 0.682	
DNN	 0.298	 0.870	 0.605	 0.509	
Paragraph	vector	-	RF	 0.172	 0.873	 0.494	 0.374	
Paragraph	vector	-	LR	 0.210	 0.874	 0.579	 0.382	
CNN	-	Integer	coding	 0.266	 0.917	 0.747	 0.713	
CNN	-	Google	Vector	 0.293	 0.924	 0.771	 0.782	
CNN	-	SDWord2Vec	 0.319	 0.915	 0.918	 0.684	
CNN	-	MHAVWord2Vec	 0.325	 0.921	 0.737	 0.726	
CNN	-	MHAVPara2Vec	 0.346	 0.916	 0.786	 0.767	
	
	
Table	4.7	A	comparison	of	recall	values	of	all	classifiers.	BoW:	Bag	of	words,	RF:	Random	Forest,	LR:	Logistic	regression,	CNN:	

Convolutional	Neural	Network,	SD:	Synthetic	Derivative,	MHAV:	My	Health	At	Vanderbilt	

Classifier	 Informational	 Medical	 Social	 Logistical	
BoW	-	RF	 0.727	 0.709	 0.658	 0.761	
BoW	-	LR	 0.788	 0.847	 0.540	 0.672	
Phrases	-	RF	 0.676	 0.825	 0.857	 0.787	
Phrases	-	LR	 0.730	 0.793	 0.881	 0.720	
Graph	-	RF	 0.757	 0.618	 0.750	 0.853	
Graph	-	LR	 0.730	 0.793	 0.726	 0.800	
DNN	 0.515	 0.888	 0.684	 0.433	
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Paragraph	vector	-	RF	 0.909	 0.908	 0.579	 0.687	
Paragraph	vector	-	LR	 0.879	 0.847	 0.474	 0.821	
CNN	-	Integer	coding	 0.875	 0.753	 0.791	 0.752	
CNN	-	Google	Vector	 0.901	 0.850	 0.802	 0.782	
CNN	-	SDWord2Vec	 0.845	 0.851	 0.821	 0.833	
CNN	-	MHAVWord2Vec	 0.845	 0.856	 0.826	 0.854	
CNN	-	MHAVPara2Vec	 0.874	 0.851	 0.820	 0.830	
	

Discussion	

In	 this	 chapter,	 we	 sought	 to	 improve	 the	 classification	 of	 patient	 portal	 messages	 by	

incorporating	semantics	and	the	context	of	the	words	in	creating	features.	We	compared	different	

text	representations	and	various	classifiers	to	identify	four	semantic	types	of	consumer	health	

communications	 in	 patient	 portal	 messages.	 Implementing	 features	 that	 considered	 the	

semantics	 and	 context	 of	words	provided	 the	most	 accurate	 classifications	 and	 increased	 the	

number	 of	 correctly	 categorized	 messages	 with	 important	 clinical	 content	 such	 as	 the	

presentation	of	a	new	problem	or	adverse	effects	of	a	medication.	Specifically,	MHAVPara2Vec	

along	with	a	CNN	improved	classification	by	0.105	for	identifying	medical	and	social	content	in	

patient	 portal	 messages	 compared	 to	 all	 other	 methods.	 This	 work	 improved	 upon	 prior	

classification	 efforts	 by	 Cronin	 and	 colleagues	 [231].	 Nevertheless,	 the	 precision	 of	 the	

informational	 classifier	 is	 still	 lower	 than	 0.50,	 which	 suggests	 a	 room	 for	 improvement	 in	

classification	and	text	representation.	

Classifiers	 trained	 using	 bag	 of	 words	 or	 phrases	 (i.e.,	 the	 crudest,	 standard	 feature	

representations	that	lack	semantics)	had	acceptable	performance	but	could	be	readily	improved.	

Although	representing	messages	using	phrases	preserves	the	partial	order	of	the	words	or	basic	

syntactic	representation,	it	did	not	improve	the	accuracy	of	the	classifiers,	likely	due	to	the	large	

feature	space.	The	results	demonstrate	that	using	a	graph	representation	of	the	text	improves	

classifier	performance	slightly	since	it	implements	the	words	and	all	syntactic	relations	between	

them.	Nevertheless,	the	similarities	between	words	and	their	meaning	are	not	included	in	the	

graph	representation.	For	example,	"appointments"	and	"appointment"	are	similar	words,	but	

each	one	of	them	is	represented	with	a	different	node	and	a	different	edge	with	the	"noun"	node.	
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Moreover,	 the	 three	 aforementioned	 standard	 representations	 do	 not	 include	 the	 context	

surrounding	words	or	the	semantics	of	the	words.	

Creating	paragraph	vector	generates	a	dense	representation	that	consolidates	the	sub-

contexts	of	messages	into	a	single	vector.	This	approach	is	suitable	for	paragraphs	that	discuss	

one	topic	such	as	movie	reviews.	For	text	that	deliver	different	messages	or	contain	various	topics,	

paragraph	vector	overlook	the	local	context	scattered	at	different	sections	of	the	text,	generating	

a	combined	text	representation	for	all	the	different	topics	 in	the	text.	This	mixed	presentation	

does	 not	 generate	 distinguishable	 features	 to	 train	 a	 classifier.	 For	 instance,	MHAV	 has	 been	

broadly	deployed	and	adopted	across	all	clinical	specialties,	and	thus	its	patient	portal	messages	

involve	a	wide	variety	of	health	concerns	[286–289].	The	paragraph	vector	approach	might	be	

more	effective	if	applied	to	messages	from	a	particular	subspecialty,	messages	that	contain	one	

of	the	patients	need	only,	or	messages	with	mutually	exclusive	labels.		

The	analysis	 indicates	 that	CNN	models	outperform	other	models	 for	categorization	of	

portal	messages.	A	CNN’s	ability	to	highlight	local	context	regardless	of	the	word	location	in	the	

message	might	contribute	to	the	improvement	in	classification,	especially	when	classifying	social	

and	informational	communications.	For	example,	a	CNN	classifier	correctly	predicted	labels	for	

acknowledgment	 messages:	 "ok",	 "Thanks.	 [Name]",	 and	 "That	 works	 for	 me.	 [Name]".	 In	

addition,	CNN	predicted	 the	category	of	messages	with	common	words	 (e.g.,	 “how	 long	until	

these	test	results	return?”),	which	are	difficult	to	classify	using	simple	representations	such	as	

BoW.	Nevertheless,	the	CNN	classifier	still	misses	some	positive	labels,	especially	messages	that	

contain	both	medical	and	informational	content.	For	informational	communication	classification,	

around	27%	of	false	negative	messages	had	medical	and	informational	content.		

One	of	the	common	classifier	errors,	especially	in	binary	CNN	models,	occurs	in	labeling	

patients’	 needs	 that	 share	 very	 similar	 sub-contexts.	 Some	 informational	 messages,	 where	

patients	 inquire	 about	 a	 procedure,	 include	 medical	 details.	 For	 example,	 the	 informational	

message	“Do	we	need	a	clinic	visit	before	Dr.	[Name]	would	administer	the	SI	injection?”	includes	

a	sub-phrase	about	SI	injection,	a	procedure	(i.e.,	intervention)	performed	to	diagnose	or	treat	

sacroiliac	 joint	 dysfunction.	 The	 sub-phrase	 by	 itself	 contains	 a	 medical	 need;	 however,	 an	

informational	need	is	detected	when	considering	the	entire	message.	The	medical	classifier	labels	
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the	needs	in	the	message	as	medical	since	it	localizes	the	sub-phrase,	and	it	predicts	only	two	

outputs:	 medical	 and	 non-medical.	 Increasing	 the	 size	 of	 CNN	 window	 might	 improve	 the	

performance	 for	 sentences	 with	 longer	 context	 since	 the	 window	 of	 creating	 context	

representation	will	be	wider;	however,	 it	might	 reduce	 the	accuracy	of	 classification	 for	 short	

messages.		

Another	 example	 is	 misclassifying	 non-logistical	 messages	 that	 include	 facilities	 and	

contact	 information	 such	as	 locations	names	and	phone	numbers.	 For	 instance,	 the	 following	

medical	message	“this	evening	my	medication	still	were	not	filled.	My	pharmacy	 is	Rite	Aid	 in	

**PLACE.	**PHONE”,	contains	requests	for	medication	refill	and	information	about	a	pharmacy.	

The	binary	logistical	classifier	detects	the	location	and	place	and	labels	the	message	as	logistical.	

The	main	limitation	of	CNN	is	forcing	all	messages	to	have	a	fixed-length	set	by	the	longest	one.	

Portal	messages	vary	in	length	especially	in	medical	and	logistical	categories	(Figure	4.1),	which	

might	affect	the	performance	of	this	classifier.		

Using	a	 representation	 that	considers	 the	words’	 semantic	outperforms	an	embedding	

that	assigns	random	integer	vectors	to	words.	In	addition,	training	the	Word2Vec	model	on	a	local	

dataset,	 especially	 on	 documents	 with	 the	 same	 writing	 style,	 generates	 words	 vectors	 that	

improve	 classification	 results	 as	 illustrated	 in	 Table	 4.3.	 Word	 embeddings	 learned	 from	

paragraphs,	 and	 word	 context	 (i.e.,	 Paragraph2Vec)	 also	 provides	 vectors	 that	 improve	

classification	performance	for	some	categories.		

The	methods	in	this	chapter	have	certain	limitations,	which	can	be	broadly	divided	into	

methodological	and	dataset	limitations.	First,	the	dataset	was	relatively	small,	and	more	labeled	

data	 could	 improve	 classification	 accuracy	 and	 precision.	 The	 size	 of	 the	 data	 might	 raise	 a	

concern	about	its	generalizability	when	training	deep	learning	models.	However,	in	some	cases,	

obtaining	a	larger,	manually	labeled	dataset	can	be	an	increasingly	labor-intense	and	costly	task.	

Nevertheless,	choosing	the	appropriate	architecture	of	the	CNN	model	can	lessen	this	problem.	

We	plotted	a	learning	curve	to	further	understand	the	impact	of	the	training	dataset	size.		

A	 learning	 curve	 summarizes	 the	 behavior	 of	 the	 learning	 by	 plotting	 the	 training,	

validation,	and	test	errors	(or	any	other	performance	metrics)	as	the	size	of	the	training	dataset	

increases	[290].	The	x-axis	represents	the	percentage	of	the	full	training	dataset	sampled	to	train	
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the	model.	The	y-axis	represents	that	AUC	of	training	the	model	of	the	corresponding	portion	of	

the	training	dataset.	For	a	well-trained	model,	the	error	or	accuracy	of	validation	and	test	set	will	

be	the	same	as	to	the	training	set	when	the	size	of	the	sampled	training	dataset	is	closer	to	100%.	

The	validation	and	test	curves	approximate	to	each	other	in	a	generalizable	model.	The	learning	

curves	of	CNN	models	in	Figure	4.7	show	that	adding	more	data	can	improve	the	informational	

and	 social	 classifiers.	 The	medical	 and	 logistical	 classifiers	might	 improve	 but	 the	 differences	

between	the	test	and	the	validation	sets	demonstrate	that	those	two	classifiers	perform	well	on	

new	datasets	as	shown	in	the	second	and	last	sub-figures	in	Figure	4.7.	

During	 training,	 we	 tuned	 the	 weights	 of	 the	 word	 embedding	 to	 predict	 whether	 a	

specific	need	is	expressed	in	the	communication	message.	Tuning	the	parameters	and	performing	

the	grid	search	are	the	primary	keys	to	repeating	the	analysis	on	another	dataset.	We	computed	

learning	curves	for	the	optimal	CNN	models	trained	on	MHAVPara2Vec	to	understand	the	impact	

of	 the	 dataset	 size.	 Learning	 curves	 demonstrate	 the	 predictive	 performance	 of	 a	 model	 by	

showing	 the	 relationship	between	 the	number	of	 training	cases	and	 the	performance	metrics	

(e.g.,	accuracy,	AUC)	[291].	We	observed	that	the	learning	curves	of	AUC	plateaus	as	depicted	in	

the	learning	curve	below.	These	plots	indicate	that	the	potential	improvements	from	adding	more	

training	data	might	 improve	the	model	slightly,	especially	 for	medical	and	 logistical	classifiers.	

Several	studies	examined	whether	a	CNN	could	be	trained	on	a	small	image	dataset	to	generate	

an	 acceptable	 model	 [292,293].	 The	 studies	 demonstrated	 that	 identifying	 the	 correct	 CNN	

architecture	and	the	appropriate	parameters	such	as	initialization	of	weights	could	improve	the	

generalizability	of	the	CNN	model	trained	on	small	datasets	[292,293].	



	 75	

	

	



	 76	

	

	

Figure	4.8	The	learning	curves	for	the	"Para2Vec	MHAV"	CNN	classifiers:	informational,	medical,	logistical,	and	social	classifiers	

Second,	 we	 trained	 a	 binary	 classifier	 to	 classify	multi-label	messages.	Messages	 that	

contain	multiple	labels	can	be	misclassified.	Multi-label	classification	is	a	growing	field,	and	there	

is	active	work	to	extend	single	label	classifiers	such	as	CNN	to	multi-label	classifiers.	Training	a	

multi-label	classifier	that	detects	the	different	types	of	needs	expressed	in	patient	messages	is	

another	possible	extension	to	our	study.		

Third,	the	study	was	conducted	using	data	from	a	single	tertiary	care	 institution	 in	the	

Southeastern	United	States,	and	regional	dialects	or	unique	problems	addressed	at	this	regional	
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referral	center	may	influence	the	content	of	the	portal	messages	and	thus,	classifier	performance.	

Finally,	we	used	de-identified	dataset	where	main	identifiers	such	as	names,	phone	have	been	

replaced	by	tokens	(e.g.	 [NAME],	 [PHONE]).	The	performance	of	classifier	 for	some	categories	

might	be	biased	due	to	the	existence	of	a	specific	de-identification	words	such	as	[PHONE],	which	

appeared	in	more	than	half	of	logistical	messages.		

Summary	

Learning	the	text	representations	including	the	semantics	and	the	context	of	the	words	

may	improve	the	text	classifiers	performance.	This	improvement	could	help	triage	and	prioritize	

important	message	 sent	 via	 patient	 portals,	 detect	 satisfaction	messages	 with	 complaints	 or	

negative	 feedback,	 or	 provide	 possible	 topics	 for	 messages	 between	 providers.	 This	 aim	

demonstrated	that	classification	models	that	use	bag	of	words	have	lower	accuracy	than	graph-

based	 representations	 that	 consider	 syntactic	 aspects	 in	 the	 portal	 messages.	 The	 best	

classification	results	are	attained	when	incorporating	semantics	and	context	by	applying	CNN	to	

feature	vectors	generated	by	Word2Vec	and	Paragraph2Vec.	This	research	shows	that	considering	

both	 the	 semantics	 and	 context	 of	 the	 message	 improves	 the	 identification	 of	 the	 types	 of	

communication	in	patient	portal	messages.		

It	 is	worth	noting	that	the	clinical	communication	messages	we	used	in	this	study	have	

been	 manually	 cleaned	 of	 the	 noise	 and	 irrelevant	 information.	 Hence,	 we	 attempted	 to	

represent	noisy	clinical	communication	messages	using	word	embedding	and	predict	the	risk	of	

readmission	using	CNN.	The	AUC	we	obtained	from	this	experiment	did	not	exceed	60%.	Further	

investigations	revealed	that	patient	messages	were	too	noisy	as	unprocessed	messages	contain	

the	 entire	 thread	 of	 replies.	 Hence,	 clinical	 documents	 to	 filter	 out	 irrelevant	 information	 is	

necessary.	

	

	

	

	



	 78	

CHAPTER	5 SEMANTICS	AND	CONTEXT	REPRESENTATION	IN	RETRIEVING	RELEVANT	CLINICAL	

INFORMATION	

Introduction	

EMR	contain	an	abundance	of	narrative	data.	EMRs	often	organize	clinical	documents	by	

date	or	title.	Providers	must	sift	through	documents	to	compile	information	required	to	plan	a	

treatment,	or	assess	a	disease	prognosis	[294].	Reading	documents	to	distinguish	between	

relevant,	irrelevant,	or	duplicate	information	is	an	overwrought	and	time-consuming	task,	

especially	for	complex	patients	[85,295].	Information	overload	and	locating	data	of-interest	are	

difficulties	central	to	electronic	clinical	documentation	[85].	

Information	retrieval	algorithms	were	developed	to	search	and	extract	information	from	

clinical	 documents	 [80,296–300].	 NLP	 algorithms	 automatically	 extract	 clinical	 entities	 and	

variables	that	can	be	useful	to	detect	patient	phenotypes	[168,301–303].	These	techniques	still	

have	challenges	in	extracting	clinical	data	due	to	the	large	volume	of	data,	complexity,	variability,	

and	domain-specific	language	in	clinical	documents	[36,80,304].	Moreover,	training	models	that	

use	traditional	NLP	algorithms	requires	annotated	datasets,	which	need	extensive	resources	to	

create	[36].	The	generalizability	of	the	models	depends	on	the	quality	of	the	annotated	dataset	

due	to	the	variability	in	the	annotation	[36,303].	Addressing	the	gap	in	implementing	semantics	

to	retrieve	clinical	information	is	still	in	the	early	stages.		

This	chapter	focuses	on	learning	representations	for	sentences	in	clinical	documents	that	

can	 extract	 sentences	 related	 to	 a	 phenotype.	 Researchers	 have	been	 training	 deep	 learning	

models	to	 learn	words	and	documents	to	classify	text,	answer	questions,	and	summarize	text	

[184,191–193,195,200,201,272,305,306].		

Deep	 learning	 models	 can	 handle	 complex	 relations	 and	 require	 fewer	 hand-crafted	

features	[306].	Deep	learning	models	also	outperform	traditional	NLP	algorithms	in	a	clinical	and	

non-clinical	text	[88,202,307].	In	the	previous	chapter,	the	second	aim	proposed	a	CNN	model	to	

learn	a	higher	representation	for	the	portal	messages.	CNN	model	requires	all	the	inputs	to	have	

the	same	dimensions.	Sentences	and	documents	vary	in	length	which	can	raise	some	concerns	
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over	 implementing	 CNN.	 Another	 CNN	 limitation	 is	 the	 inability	 to	 learn	 long	 contextual	

information	and	creating	a	representation	only	for	the	part	of	the	text	inside	the	filter	window	

[203].	 Recursive	 models,	 such	 as	 RNN,	 overcome	 those	 two	 problems	 by	 learning	 a	

representation	that	accounts	for	the	context	regardless	of	the	input	lengths.	This	work	proposes	

deep	learning	model	that	learns	a	representation	for	the	sentence	in	the	clinical	documents	by	

leveraging	 the	 phenotypes	 assigned	 to	 the	 documents.	 The	 model	 integrates	 the	 semantics	

embedded	in	the	word	vectors,	and	the	context	persevered	long-short-term	memory	model	to	

learn	a	phenotype-dependent	representation	for	sentences	in	clinical	documents.		

Objective	

The	 primary	 aim	was	 to	 develop	 an	 approach	 that	 automatically	 extracts	 information	

relevant	 to	 a	 phenotype	 from	 clinical	 documents,	 without	 using	 an	 annotated	 dataset.	 The	

extraction	model	 learns	 the	 complex	 association	 between	 phenotypes	 and	 sentences	 in	 the	

clinical	documents,	as	depicted	in	Figure	5.1.	A	sentence	in	a	clinical	document	is	relevant	to	a	

phenotype	if	it	contained	information	about	the	phenotype,	including	medications,	procedures,	

symptoms,	or	diagnostic	tests.	To	achieve	this	objective,	the	analysis	is	focused	on	the	following	

questions:	

1. Can	the	extraction	model	use	the	correlations	between	the	documents’	phenotypes	and	the	

sentences	in	the	clinical	documents	to	identify	sentences	relevant	to	a	phenotype?		

2. Does	the	granularity	in	defining	a	phenotype	influence	the	accuracy	of	extracting	the	relevant	

sentences?	

3. Does	 the	 learned	 representation	 outperform	 the	 traditional	 features	 such	 as	 phenotype	

keywords	in	identifying	and	extracting	relevant	sentences?	

Clinical	significance	

Training	machine	learning	models	that	extract	sentences	and	information	relevant	to	a	

disease	have	been	studies	over	the	past	decades.	Training	the	machine	learning	model	require	

annotated	datasets	which	are	few	espcially	public	or	shared	ones,	Medical	infomratian	need	a	
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machine	learning	approach	that	does	not	require	annotation.	The	signifcance	of	our	proposed	

model	is:		

1. Highlighting	and	extracting	the	clinical	data	about	a	phenotype	from	a	document.	

2. Presenting	the	extracted	sentences	to	healthcare	providers	before	a	visit.	

3. Upgrading	the	current	scanning	process	by	presenting	the	documents	and	the	sentences	that	

contain	the	relevant	clinical	information	regardless	of	their	type	or	insertion	date.	

4. Establishing	a	search	tool	or	information	retrieval	based	on	the	phenotype.	

	

	

	

Figure	5.1	Pipeline	for	training	the	phenotype	sentences	selection	model	using	phenotypes	assigned	to	documents	and	
sentences	inside	the	documents	

Background	

Clinical	documents	are	heterogeneous	data	sources.	Healthcare	providers	document	patients’	

symptoms,	 medical	 history,	 and	 medications	 in	 a	 narrative	 format.	 This	 flexibility	 and	 the	

freedom	in	documentation	can	encumber	extracting	the	data	needed	for	subsequent	clinic	visits	

or	research	[308].	Manual	data	extraction	from	documents	is	a	laborious	task	that	requires	time	

and	effort,	which	both	are	valuable	assets	in	the	clinical	environment	[36,309].		
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Traditional	 information	 extraction	 methods	 rely	 on	 manually	 created	 features	 which	

could	limit	their	efficiency	[310].	Rule-based	tools,	such	as	KnowledgeMap,	cTakes,	and	MedLEE,	

combine	 syntactic	 analysis,	 regular	 expressions,	 and	 medical	 terminologies	 such	 as	 unified	

medical	language	system	(UMLS),	LOINC,	and	RXNorm	to	extract	relevant	medical	concepts	and	

structure	 clinical	 documents	 [144,146,147,164,257,311].	 Rule-based	 models	 might	 overlook	

some	 concepts	 since	 clinical	 documents	 usually	 contain	 local	 abbreviations,	 acronyms,	 and	

misspellings	 [312].	 Moreover,	 these	 models	 depend	 on	 medical	 terminologies	 that	 require	

ongoing	maintenance	and	all	possible	variations	of	terms	which	can	be	enormous	[313,314].	

Structured	 data	 and	 simple	 NLP	 rules	 are	 used	 to	 extract	 notes	 for	 cohorts,	 retrieve	

relevant	entities,	and	assign	phenotypes	to	clinical	documents	[100,304,315].	Most	structured	

data	 such	 as	 ICD	 and	 current	 procedural	 terminology	 (CPT)	 codes	 are	 reported	 in	 clinical	

documents.	The	codes	are	inserted	in	a	structured	format	within	a	time	window,	that	varies	from	

a	 few	 hours	 or	 couple	 of	 days,	 from	 the	 time	 of	 creating	 clinical	 documents.	 The	 order	 of	

structured	 data	 inside	 the	 document	 does	 not	 match	 their	 chronological	 order.	 Hence,	 the	

structured	data	cannot	be	directly	mapped	or	linked	to	its	location	in	the	document.	

Machine	learning	models	automate	extraction	of	clinical	data	from	documents.	However,	

training	the	extraction	model	still	requires	annotated	datasets.	Creating	an	annotated	dataset	

requires	human	resources,	domain	expertise,	and	time,	which	can	be	hard	to	obtain	[301].	As	a	

result,	training	datasets	are	small	and	cannot	be	shared	due	to	various	concerns,	such	as	privacy	

and	annotation	standards	issues	[37].	Small	datasets,	lack	of	inter-institutional	sharing,	and	lack	

of	standardization	can	limit	the	generalizability	of	information	extraction	models.	A	solution	that	

lessens	some	of	the	annotation	burdens	is	now	a	necessity	in	the	era	of	big	data.	

Semantics	in	informational	retrieval	

Several	studies	demonstrated	the	effectiveness	of	the	words’	semantics	in	developing	the	

retrieval	system.	One	approach	exploited	the	UMLS	concepts	and	their	co-occurrence	in	the	same	

document	 to	 calculate	 a	 semantic	 relatedness	 score	 of	 concepts	 to	 a	 queried	 concept	 [316].	

Another	study	compared	retrieving	episode	of	care	 in	clinical	notes	and	discharge	summaries	

using	 random	 index	vectors	 (i.e.,	one-hot	vectors),	 and	Word2Vec	vectors	 [317].	 The	authors	
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learned	three	different	context	vectors:	adding	the	index	vectors	for	surrounding	words,	adding	

note	index,	and	adding	ICD	index	to	each	random	index	vector.	They	compared	the	scores	learned	

from	context	vectors	to	Word2Vec	vectors.	The	authors	found	that	Word2Vec	or	semantics	had	

the	highest	precision	in	retrieving	information	related	to	clinical	concepts	[317].	

Deep	learning	and	natural	language	Processing	

The	last	chapter	introduced	some	applications	to	deep	learning	in	NLP	and	the	study	in	

the	previous	chapter	implemented	CNN	to	create	higher	representations	for	the	text	and	classify	

the	patient	messages	sent	via	patient	portals.	RNN	models	apply	the	same	computation	at	each	

sequence	element	and	include	all	previous	sequence	elements	[318].	LSTM,	an	RNN	variation,	

specifies	the	amount	of	data	from	previous	and	current	sequence	elements	that	are	included	in	

the	calculation	[319,320].	Researchers	have	applied	RNN	and	LSTM	in	NLP	to	analyze	sentiment,	

perform	entity	recognition,	and	classify	text	[321–323].	Gao,	et	al.	trained	a	hierarchical	LSTM	

with	attention	model	that	identified	sentences	related	to	cancer	in	pathology	reports	in	the	SEER	

dataset	[324].	Lui,	et.	al	trained	RNN	model	on	an	annotated	dataset	to	extract	clinical	entity	and	

personal	health	information	[325].		

Materials	and	methods	

We	 trained	 the	 model	 to	 select	 relevant	 sentences	 from	 clinical	 documents	 for	 two	

phenotypes	that	might	benefit	 from	locating	relevant	 information:	AMI	and	cancer.	AMI	 is	an	

acute,	specific	condition	that	can	have	very	long	outpatient	notes.	Ischemic	heart	is	a	less	specific	

condition	that	may	have	broader	narratives	 in	a	clinical	narrative	for	AMI.	Cancer	 is	a	chronic	

condition	where	patient	information	such	as	complications	and	toxicities	is	extracted	to	develop	

evidence-based	 therapy	 regimen	 [326].	 Healthcare	 providers	 would	 normally	 scan	 clinical	

documents	to	extract	relevant	sentences	for	AMI	and	cancer.		

For	this	approach,	we	split	documents	into	sentences	to	avoid	processing	very	long	input.	We	

trained	a	sentence	extraction	model	using	a	LSTM	with	attention	model	to	distinguish	relevant	

phenotype	sentences	(e.g.	"A	50	years	old	male	patient	with	stage	3	lung	cancer")	from	irrelevant	

sentences	(e.g.	"patient	has	one	daughter",	"patient	had	renal	failure")	as	depicted	in	Figure	5.2.	

LSTM	accounts	for	word	context	and	processes	the	sentence	based	on	the	classification	output.	
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The	 model	 processed	 and	 labeled	 each	 sentence	 individually.	 Sentences	 were	 considered	

relevant	 if	 they	 included	 clinical	 entities	 associated	 with	 the	 phenotype	 of	 interest	 such	 as	

medications,	diagnostic	 tests,	procedures,	symptoms;	while	 irrelevant	sentences	did	not	have	

relevant	entities.	

Dataset	

We	extracted	discharge	 summaries	 and	 clinical	 notes	 from	 the	 SD,	 a	 de-identified	 version	of	

VUMC’s	EMR,	from	2008	to	2013	[274].	The	documents	are	associated	with	a	set	of	phenotypes,	

as	shown	in	Figure	5.1.	We	chose	three	cohorts	to	train	three	sentence	extraction	models:	

Cohort	1:	Acute	Myocardial	Infarction	(AMI)	

Since	discharge	summaries	recap	the	treatment	that	AMI	patients	underwent,	WE	trained	an	AMI	

sentence	extraction	model	on	case	documents	that	are	the	discharge	summaries	inserted	in	the	

patient	chart	up	to	10	days	after	the	ICD9	code	410.X,	allowing	to	capture	90%	of	AMI	patients	

[327].	 For	 instance,	 if	 the	 410.9	 code	 was	 inserted	 on	 03-04-2009,	 the	 patient’s	 discharge	

summary	written	between	03-04-2009	and	03-14-2009	 is	a	case	document.	Control	discharge	

summaries	belonged	to	patients	diagnosed	with	other	phenotypes.	In	total,	WE	included	5,038	

case	summaries	and	177,813	control	summaries.	

Cohort	2:	Ischemic	Heart	

A	phenotype	can	be	defined	with	high	specificity	using	ICD	codes	or	with	lower	granularity	using	

the	 ICD	parent	codes,	PheWAS	codes,	or	 ICD	chapters	 [328].	 In	 the	AMI	model,	we	applied	a	

specific	AMI	definition	to	label	the	sentences.	To	evaluate	the	effect	of	granularity	in	defining	a	

phenotype,	we	used	PheWAS	or	Phecode	to	generalize	AMI	to	the	ischemic	heart	phenotype.	

Any	ICD9	code	within	the	range	410.0-414.9	has	an	ischemic	heart	Phecode.	We	extracted	case	

summaries	 inserted	 10	 days	 after	 the	 ischemic	 heart	 code.	 The	 control	 documents	 were	

summaries	inserted	for	other	codes.	We	included	30,385	case	documents	and	152,466	control	

documents.		
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Cohort	3:	Cancer	

We	represented	all	cancers	using	one	general	phenotype	to	obtain	a	large	dataset	for	training.	

Using	billing	codes	to	extract	cancer	notes	can	decrease	the	positive	predictive	values	(PPV)	and	

sensitivity	 of	 the	 extraction	 [329].	 Assigning	 cancer	 phenotypes	 to	 notes	 using	NLP	 rules	 can	

increase	the	sensitivity	and	PPV	[330].	Hence,	we	extracted	cancer	notes	that:	1)	were	written	by	

a	provider	in	hematology	and	oncology,	and	2)	had	all	the	following	keywords:	cancer,	tumor,	

stage,	 staging,	 hematology,	 and	oncology.	 To	 create	 the	 control	 dataset,	we	 sampled	 clinical	

notes	inserted	that:	1)	were	issued	from	a	clinic,	other	than	hematology	or	oncology,	and	2)	had	

none	of	the	previous	keywords.	Our	cancer	cohort	dataset	had	17,954	cancer	notes	and	429,358	

control	notes.	

Sentence	selection	model	

We	extracted	documents	for	case	and	control	cohorts	to	train	the	sentences	extraction	

model.	The	case	documents	belonged	to	patients	diagnosed	with	the	phenotype	of	interest	at	

the	time	of	the	documentation	during	admission,	or	clinical	visit.	The	control	documents	belong	

to	patients	who	were	not	diagnosed	with	the	phenotype	at	the	documentation	time.	A	patient	

might	have	documents	in	both	cohorts	if	he	or	she	had	other	diagnoses	at	different	times.	We	

tokenized	 the	 documents	 into	 sentences	 and	 processed	 each	 sentence	 independently	 as	

illustrated	in	Figure	5.2.	All	sentences	extracted	from	case	documents	were	marked	as	relevant	

or	 positive	 (i.e.	 1)	 while	 the	 sentences	 extracted	 from	 control	 documents	 were	 negative	 or	

irrelevant	(i.e.	0).	Obviously	not	all	sentences	in	a	document	are	relevant,	but	this	approximation	

was	needed	as	phenotype	information	is	not	specified	more	granularly.	
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Figure	5.2.	Model	for	extracting	sentences	with	information	about	the	phenotype	of	interest.	Case	documents	include	
information	about	the	target	phenotype.	Control	documents	include	information	about	phenotypes	other	than	the	target.	Text	
pre-processing:	tokenizing	the	documents	into	sentences,	and	representing	words	by	word	embedding.	Input	matrix:	sentences	

represented	by	words’	vectors.	Output	matrix:	a	label	whether	the	sentence	is	originated	from	a	case	or	control	document	

LSTM	Sentence	selection	model		

After	splitting	the	documents	into	sentences,	we	removed	the	non-alphabetical	and	numerical	

characters	and	converted	all	the	words	into	lower	case.	We	trained	a	LSTM	with	attention	

model,	depicted	in	Figure	5.3,	that	has	four	layers:	

1. An	input	layer	that	represents	each	word	in	the	sentence	using	the	Word2Vec	embedding.	

To	get	word	embedding	for	the	words,	we	trained	a	Word2Vec	model	on	2.4	million	clinical	

documents	 in	 the	 SD	 using	 the	 parameters:	 50	 for	 the	minimum	word	 count,	 15	 for	 the	

window	size,	and	100	for	the	number	of	hidden	units.	

2. LSTM	layer	composed	of	sequentially	connected	LSTM	units,	where	each	unit	corresponds	to	

a	word	in	the	sentence.	The	units	are	sequentially	connected,	where	each	unit	feed	its	output	

to	 its	 successor	 [320].	 Each	 LSTM	 unit	 at	 element	 t	 is	 a	 collection	 of	 four	 vectors	 in	 the	

representation	 space:	 input	 gate	 𝑖%,	 forget	 gate	 𝑓%,	 output	 gate	 𝑜%,	 and	 a	 hidden	

representation	ℎ%,	as	depicted	in	Figure	5.4.	A	memory	cell	𝑐%	allows	the	LSTM	to	preserve	

the	cell	state	for	a	long	time	and	it	is	a	function	of	the	input	gate.	The	input	gate	𝑖%	determines	

the	amount	of	current	input	𝑥%	to	be	stored	in	the	memory	cell,	and	forget	gate	controls	the	
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amount	of	current	input	𝑥%	to	be	forgotten,	as	inferred	from	the	equations	set	1.	There	are	

different	variations	for	LSTM;	Appendix	A	provides	a	description	for	LSTM	and	its	equations.		

3. Attention	layer	that	creates	a	context	vector	to	identify	the	words	that	are	highly	associated	

with	the	output	[331].	LSTM	layer	creates	a	fixed	vector	at	the	last	LSTM	cell	that	represents	

the	entire	 sentence.	 The	 relationship	or	 the	dependency	between	 the	words	 in	 the	 input	

sentence	and	the	output	(i.e.,	classes,	sentence)	will	be	lost	[332].	The	attention	layer	is	a	

dense	layer	that	pays	attention	to	each	word	in	the	sentence.	It	applies	a	Softmax	function	to	

relate	each	word	in	the	sentence	to	the	output,	and	produces	a	predictive	distribution	for	the	

words	in	the	sentence,	as	Figure	5.5	shows	[333].	The	context	vector	of	attention	provides	a	

dependency	score	for	each	word	regardless	of	its	location.	Appendix	A	describe	the	attention	

layer	and	its	equation	in	detail.		

	

4. An	 output	 layer	 that	 applies	 a	 Softmax	 regression	 to	 generate	 a	 probability	 value	 of	 the	

sentence	relevance	or	relevance	score.	

	

Figure	5.3	Sentence	selection	model	layers.	wEi	is	word	embedding	of	word	i	in	the	sentence,	LSTMi	is	LSTM	unit	at	step	i,	n	is	
the	number	of	the	words	in	the	sentence	
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Figure	5.4	The	distribution	of	attention	scores	for	the	words	in	the	sentence	in	relation	to	the	relevance	label:	AMI	or	not	AMI	
related.	The	figure	is	an	illustration	for	the	distribution	of	attention	scores	

In	the	rest	of	the	chapter,	a	LSTM	with	attention	model	and	sentence	extraction	model	will	be	

mentioned	interchangebly.		

Sentence	selection	model	parameters	

I	 employed	 a	 human-guided	 search	 to	 select	 the	 optimal	model	 amongst	 the	models	

trained	on	the	following	parameters	combinations:	100,	200,	300	for	LSTM	hidden	units;	0.001,	

0.005,	0.01,	0.2	for	learning	rate;	Tanh	and	ReLU	for	activation	function;	and	Adadelta,	Adam,	

and	Adagrad	for	optimization.	We	trained	the	model	on	90%	of	the	dataset	and	validated	on	10%	

of	 the	dataset	once	 (i.e.	 there	was	no	cross	validation),	 for	5	 to	10	 iterations	or	epochs.	The	

optimal	model	 parameters	were	 100,	 Adam,	 0.001,	 and	 Tanh	 for	 hidden	 units,	 optimization,	

learning	 rate,	 and	activation	 function	 respectively,	which	 is	 the	 combination	 that	 yielded	 the	

highest	AUC	and	accuracy	on	the	validation.	We	trained	the	final	model	for	7	epochs	because	the	

AUC	and	the	accuracy	of	the	validation	set	declined	after	7	epochs.		

Gold	Standard	

I	 assessed	 the	 sentence	extraction	models	on	an	annotated	dataset.	 From	 the	SD,	we	

randomly	selected	discharge	summaries	for	100	patients	diagnosed	with	AMI	and	clinical	notes	
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for	 100	 cancer	 patients	 created	 between	 2014	 and	 2016.	 To	 annotate	 the	 documents,	 we	

recruited	 three	medical	 student	 annotators	 via	 VUMC	PyBossa,	 a	 local	 VUMC	 crowdsourcing	

environment	[334].	We	asked	the	annotators	to	select	the	sentences	that	had	diagnostic	tests,	

medications,	 procedures,	 or	 symptoms	 related	 to	 AMI,	 or	 cancer.	 We	 standardized	 the	

annotation	by	tokenizing	the	documents	into	sentences	before	the	annotation.	Sentences	were	

relevant	if	at	least	two	annotators	labeled	them	as	relevant;	otherwise,	the	sentences	label	were	

irrelevant.		

Model	evaluation	using	gold	standard	

I	 compared	 the	LSTM	with	attention	sentence	extraction	model	 to	 two	other,	established	

models:	

1. Word2Vec	 extraction	model:	we	 created	 a	 keyword-based	 extraction	model	 that	 extracts	

relevant	sentences	using	the	phenotype’s	concepts	and	their	similar	terms.	Using	clinician	

feedback,	we	 defined	 the	 possible	words	 that	 healthcare	 providers	might	 use	when	 they	

search	for	AMI	or	cancer	information.	We	picked	four	AMI	keywords:	heart	attack,	AMI,	acute	

myocardial	infarction,	and	angina.	For	cancer,	we	selected	tumor	and	cancer	keywords.		

To	expand	the	keyword	search	list,	we	identified	similar	words	for	each	keyword.	Word2Vec	

model	 provides	 a	 list	 of	 the	 top	 similar	 words	 for	 a	 keyword	 by	 calculating	 the	 cosine	

similarities	between	the	vectors	of	a	keyword	and	other	words	in	the	vocabulary.	A	Word2Vec	

model	specifically	trained	on	an	EMR	and	note	subsets	was	used	to	create	comprehensive	list	

of	word	similarity	scores	[335,336].	For	the	above	keywords,	we	attained	the	list	of	similar	

words	using	the	approach	previously	described	and	validated	by	Ye,	et	al	[335].	We	retrieved	

and	combined	the	top	3,000	words	similar	to	the	AMI	keywords	and	generated	a	list	of	6560	

AMI	keywords.	We	repeated	the	same	process	for	cancer	keywords	and	created	a	list	of	4474	

cancer	keywords.	

The	 Word2Vec	 model	 attempts	 to	 identify	 sentences	 with	 similar	 words	 in	 it	 to	 the	

phenotype.	The	model	assigned	a	score	to	each	sentence	by	summing	the	cosine	similarity	of	

the	 similar	words	 in	 the	 sentence.	 If	 a	word	was	not	 in	 the	 similarity	 keyword	 list,	 it	was	

excluded.	Specifically,	for	a	sentence	j	Sj	with	sequence	of	words	𝑤,,𝑤., 𝑤/, 𝑤0, … , 𝑤%,	where	
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𝑤,	𝑤.	𝑤0	are	the	words	in	the	phenotype’s	keywords	list,	the	following	equation	generated	

the	relevance	score:	

	

Word2Vec;<=>? = 	𝑆B	𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	𝑠𝑐𝑜𝑟𝑒	𝑢𝑠𝑖𝑛𝑔	𝑊𝑜𝑟𝑑2𝑉

= 	
SimScore0 𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒	𝑘𝑒𝑦𝑤𝑜𝑟𝑑,𝑤0V

0W,

𝑛 	, ∀𝑤	𝑖𝑛	𝑆B		

Where:	

	𝑛:	the	number	of	words	in	both	𝑆B 	and	top	similar	words	list.	We	excluded	words	that	are	

not	in	the	list	of	top	similar	words	

SimScorei(𝑤0):	 the	 similarity	 score	 between	word	𝑤0 	 and	 a	 phenotype	 keyword	 (e.g.,	

SimScorei(resection,	cancer)	

The	calculated	Word2Vecscore	heuristic	of	𝑆B 	is	a	probability	value	that	ranges	between	0	

and	1.	

2. Combination	of	LSTM	with	attention	and	Word2Vecscore	similarity	score:	we	combined	the	

scores	 of	 LSTM	with	 attention	 and	Word2Vecscore	 to	 evaluate	whether	 the	 two	 relevance	

scores	 identify	 the	 same	 relevant	 sentences.	We	 fitted	 a	 logistic	 regression	 to	 learn	 the	

coefficients	a,	b	in	the	following	equation:	

𝑆𝑒𝑛𝑒𝑡𝑒𝑛𝑐𝑒B	𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑	𝑠𝑐𝑜𝑟𝑒 = 	𝐿𝑜𝑔𝑖𝑡(𝛼𝐿𝑆𝑇𝑀_`abc + 	𝛽𝑊𝑜𝑟𝑑2𝑉𝑒𝑐fa`bc)	

We	used	the	cancer	model	to	extract	cancer	sentences,	and	the	AMI	and	the	ischemic	

heart	models	to	identify	AMI	sentences.	The	sentence	extraction	models	generated	a	relevance	

probability	 for	 each	 annotated	 sentence	 in	 the	 gold	 standard.	 We	 used	 the	 relevance	

probabilities	or	relevance	scores	to	calculate	the	AUC	for	the	three	models	on	the	gold	standard.	

In	 our	 experiment,	 we	 had	 one	 gold	 standard	 dataset.	 One	 AUC	 value	 cannot	 show	 if	 the	

difference	between	two	models	is	significant.	To	test	the	significance,	we	sampled	80%	of	the	

sentences	 and	 calculated	 the	 AUC	 for	 the	 three	 scores’	 models.	 We	 repeated	 the	 sampling	

process	100	times.	We	applied	paired	t-test	to	evaluate	if	the	difference	between	the	AUC	of	the	

three	scores	is	significant.	
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The	gold	standard	combine	all	annotators	responses	to	create	the	true	positive	values.	

The	combined	standard	does	not	demonstrate	the	impact	of	including	a	specific	annotator	and	

or	the	correctness	of	the	annotations	of	the	corresponding	annotators	while	fixating	the	labels	

of	the	other	annotators.	The	correctness	of	the	labels	generated	by	annotator	can	be	evaluated	

by	 introducing	 noise	 to	 the	 his/her	 labels,	 holding	 the	 other	 annotators’	 labels	 fixed,	 and	

reevaluate	the	noisy	gold	standard.	Data	perturbation,	a	technique	that	distorts	a	dataset,	can	

create	a	noisy	gold	standard	[337,338].	Perturbation	is	applied	on	images	or	labels	to	reevaluate	

and	regularize	machine	learning	models	to	reduce	the	misclassification	or	prediction	[339,340].	

Data	perturbation	can	be	applied	to	show	the	sensitivity	of	the	model	towards	possible	variations	

and	changes	in	samples.	Assessing	the	quality	of	the	annotation	for	the	annotators	can	benefit	

from	 a	 similar	 analysis.	 The	 perturbations	 are	 introduced	 to	 the	 labels	 that	 the	 annotators	

created	by	switching	each	sentence	from	labeled	to	unlabeled	or	from	positively	annotated	to	

negatively	 annotated.	 Perturbation	 can	 be	 gradually	 introduced	 as	 the	 percentage	 of	 the	

perturbed	sentences	increases.	The	model	performance	is	reassessed	for	the	perturbed	versions	

of	 the	 gold	 standard.	 Applying	 perturbation	 analysis	 on	 the	 three	 annotators	 labeling	 will	

evaluate	each	annotator	labels	in	the	gold	standard.		

Results	

I	trained	AMI	and	ischemic	heart	sentence	extraction	models	on	11	million	sentences	and	

trained	cancer	sentence	extraction	model	on	12	million	sentences.	The	percentages	of	positive	

sentences	in	training	were	2.7%	for	AMI,	16%	for	ischemic	heart,	and	20%	for	cancer,	as	reported	

in	Table	5.1.	The	models	were	validated	on	1.2	million	AMI	and	ischemic	heart	sentences,	and	on	

three	million	cancer	sentences.		

	
Table	5.1	Documents	description	for	AMI	and	cancer	datasets.	

Cohort	 Maximum	
sentence	
length	

Training	sentences	 Validation	sentences	
All	(n)	 Positive	(n,	%)	 All	(n)	 Positive	(n,	%)	

AMI	 416	 11,090,556	 298,842	(2.7%)	 1,232,284	 51,536	(4.1%)	
Ischemic	heart	 416	 11,090,556	 1,807,832	(16%)	 1,232,284	 231,163	(19%)	
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Cancer	 218	 12,090,000	 2,411,025	(20%)	 3,022,501	 651,984	(22%)	
	

Model	evaluation	using	annotated	dataset	

The	annotated	dataset	included	100	discharge	summaries	that	had	16,513	sentences	total	

and	100	cancer	notes	with	31,926	sentences	total.	Kappa	and	F1	or	agreement	scores	between	

annotators	in	identifying	AMI	relevant	sentences	were	higher	than	annotating	relevant	cancer	

sentences.	 Annotator	 1	 had	 the	 highest	 agreement	 scores	with	 other	 annotators	with	 kappa	

scores	 0.606	 in	 AMI	 documents	 and	 0.558	 in	 cancer	 notes,	 as	 reported	 in	 Table	 5.2.	 This	

annotator	also	had	the	highest	agreement	with	the	cancer	sentence	extraction	model	and	one	of	

the	highest	agreement	scores	with	AMI	sentence	extraction	model	(the	difference	AMI	kappa	

scores	between	Annotator	1	and	Annotator	2	was	less	than	0.007	as	Table	5.2	shows).	
Table	5.2	Agreement	between	annotators,	and	between	the	annotator	and	our	sentence	extraction	model	using	Kappa	and	F1	

scores.	

	 AMI	 Cancer	
Kappa	 F1	 Kappa	 F1	

Annotators	1	and	2	 0.606	 0.686	 0.154	 0.184	
Annotators	1	and	3	 0.576	 0.676	 0.559	 0.633	
Annotators	2	and	3	 0.562	 0.650	 0.120	 0.153	
Annotator	1	and	model	 0.183	 0.233	 0.133	 0.344	
Annotator	2	and	model	 0.190	 0.237	 0.014	 0.053	
Annotator	3	and	model	 0.139	 0.191	 0.095	 0.348	

	

Comparing	 the	 three	 sentence	 extraction	models,	 the	 AUC	 of	 applying	 AMI	 sentence	

extraction	model	on	AMI	gold	standards	was	0.862	which	was	higher	than	using	Word2Vec	scores	

alone	by	0.024,	as	shown	in	Table	5.3.	Combining	AMI	Word2Vec	and	sentence	extraction	scores	

using	the	coefficients	6.93	and	8.01	yielded	0.888	for	AUC.		

Selecting	relevant	AMI	sentences	with	ischemic	heart	sentence	extraction	yielded	0.8523	

which	was	higher	than	using	Word2Vec	scores	by	0.025.	We	used	the	coefficients	4.3289	and	

6.0554	to	combine	the	scores	generated	by	the	ischemic	heart	sentence	extraction	model	and	

Word2Vec.	Combining	those	scores	outperformed	both	individual	models	with	an	AUC	of	0.8867.	

Selecting	AMI	relevant	sentences	using	AMI	model	had	higher	AUC	than	selecting	AMI	sentences	

using	ischemic	heart	model.		
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Using	the	cancer	sentence	extraction	model	to	identify	cancer-related	sentences	yielded	

AUC	of	0.683	(Table	5.3),	which	was	lower	than	using	similarity	scores	of	Word2Vec.	Combining	

the	score	using	1.1620	and	5.533	coefficients	for	LSTM	and	Word2Vec	scores	outperformed	the	

two	models	and	yielded	0.822	AUC.		

Using	the	median	of	words’	scores	to	calculate	the	Word2Vecscores,	instead	of	the	mean,	

yielded	 lower	 AUC.	 However,	 using	 the	 maximum	 score	 of	 the	 words	 in	 the	 sentences	 as	

Word2Vecscore	yielded	slightly	higher	AUC	by	0.019	and	0.009	for	AMI	and	cancer	respectively,	

compared	to	using	the	mean	in	Word2Vecscore	equation.	The	p-value	of	the	paired	t-test	on	100	

AUC	values	for	the	sub-sampled	gold	standard	dataset	shows	that	the	difference	between	the	

AUC	of	the	three	models	is	less	than	0.05.	

Table	5.3	The	Area	Under	the	Curve	(AUC)	values	for	predicting	the	relevant	sentences	in	gold	standard	datasets	using:	1)	LSTM	
with	attention,	2)	Word2Vec	similarity	score,	and	3)	combining	of	LSTM	with	attention	and	Word2Vec.	

Cohort	 LSTM	 Word2Vec	 LSTM+Word2Vec	
Coefficients	a,	b	 AUC	

AMI	 0.862	 0.839	 6.931,	8.005	 0.888	
Ischemic	 0.852	 0.830	 4.329,	6.055	 0.887	
Cancer	 0.683	 0.811	 1.162,	5.533	 0.822	

	

Since	the	kappa	and	F1	scores	were	low,	we	reevaluated	the	models	using	a	more	rigid	

gold	 standard	 (or	 tails	 gold	 standard).	 The	 strict	 dataset	 included	 only	 sentences	 with	 full	

agreement	that	were	selected	or	were	not	selected	by	all	annotators.	The	AUC	of	predicting	the	

relevant	sentences	in	this	rigid	gold	standard	was	0.922	for	LSTM	in	the	AMI	cohort	(Table	5.4),	

a	value	0.06	higher	 than	predicting	all	 the	sentences	 (Table	5.3).	Using	 the	strict	dataset	also	

raised	the	AUC	for	LSTM	in	the	cancer	cohort	to	0.721	(Table	5.4),	0.035	higher	than	the	previous	

approach	(Table	5.3).	

Table	5.4	Area	Under	the	Curve	(AUC)	for	predicting	relevant	sentences	in	the	strict	gold	standard	datasets	using	LSTM	with	
attention,	Word2Vec	similarity	scores,	and	combining	scores	of	LSTM	with	Word2Vec	

Cohort	 LSTM	 W2V	 LSTM+	Word2Vec	
Coefficients	a,	b	 AUC	

AMI	 0.922	 0.888	 10.109,	9.408	 0.942	
Ischemic	 0.912	 0.882	 6.058,	6.800	 0.941	
Cancer	 0.721	 0.864	 1.345,	5.846	 0.871	
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	 We	plotted	the	cumulative	distribution	function	(CDF)	for	the	models'	scores	to	analyze	

the	scores	learned	by	the	AMI	and	cancer	sentence	extraction	models	(Figures	5.6-5.8).	The	x-

axes	in	the	plots	represent	sentences	relevance	scores.	The	y-axes	represent	the	percentage	of	

sentences	that	have	scores	equal	to	the	corresponding	score	on	x-axis,	or	less.	We	created	three	

CDF	each	for	AMI,	ischemic	heart	and	cancer	phenotypes,	the	CDF	shows	the	scores	of	positively-

annotated	sentences	 (i.e.,	 selected	by	annotator,	solid	 lines),	and	the	second	CDF	depicts	 the	

scores	 of	 negatively-annotated	 sentences	 (i.e.,	 not	 selected	 by	 annotator,	 dashed	 lines).	 For	

positively-annotated	sentences,	 the	closer	 the	corner	of	CDF	plot	 to	 the	bottom	right	or	high	

scores	corner,	the	higher	the	relevance	score	assigned	by	the	model	to	related	sentences	(i.e.,	

higher	true	positive	value).	For	negatively-annotated	sentences,	the	closer	the	CDF	corner	to	the	

top	left	corner,	the	lower	the	relevance	scores	assigned	for	irrelevant	sentences	(i.e.,	higher	true	

negative	value).	

As	 shown	 in	 Figure	 5.6,	 for	 the	 AMI	 dataset,	 around	 half	 of	 the	 positively-annotated	

sentences	had	relevance	scores	higher	than	0.2,	while	80%	of	the	negatively-annotated	dataset	

had	0.1	scores	or	lower.	For	the	ischemic	heart	model,	Figure	5.7	demonstrates	that	the	scores	

of	 65%	 of	 positively	 annotated	 sentences	 were	 higher	 than	 0.5,	 while	 80%	 of	 negatively	

annotated	sentences’	scores	were	lower	than	0.4.	Figure	5.8	shows	the	cancer	model	assigned	

0.5	or	 higher	 for	 77%	of	 positively-annotated	 sentences;	while	 the	 scores	of	 42%	negatively-

annotated	cancer	sentences	were	lower	than	0.5.	
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Figure	5.5	CDF	distribution	of	AMI	sentences	scores	generated	by	LSTM	with	attention	model	for	positively	and	negatively	

annotated	sentences	in	the	AMI	gold	standard	dataset	

	
	

	
Figure	5.6	CDF	distribution	of	ischemic	heart	sentences	scores	generated	by	LSTM	with	attention	model	for	positively	and	

negatively	annotated	sentences	in	the	AMI	gold	standard	dataset	
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Figure	5.7	CDF	distribution	of	cancer	sentences	scores	generated	by	LSTM	with	attention	model	for	positively	and	negatively	

annotated	sentences	in	the	cancer	gold	standard	

	

The	 Pearson	 correlation	 between	 sentence	 selection	 and	 Word2Vec	 scores	 were	 all	

positive	 and	 the	 correlations	 for	 ischemic	 heart	models	 scores	was	 the	 highest.	 The	 Pearson	

correlation	between	the	two	models	were	0.556,	0.447,	and	0.282	for	ischemic	heart,	AMI,	and	

cancer	models	respectively.		

One	of	the	model	implementation	is	highlighting	the	relevant	sentences.	Using	the	CDF	

plots,	 we	 selected	 the	 score	 threshold	 to	 highlight	 relevant	 sentences.	 For	 each	 model,	 we	

identified	 the	 highlight	 threshold	 where	 60%	 of	 positively	 annotated	 sentences	 has	 that	

corresponding	score	or	higher.	We	highlighted	the	AMI	sentences	that	have	LSTM	with	attention	

scores	higher	than	0.2	for	AMI	sentences	and	cancer	sentences	with	LSTM	scores	higher	than	0.7.	

The	 sentences	 that	 include	 AMI	 findings	 and	 diagnosis	 were	 highlighted	 in	 AMI	 discharge	

summary	 (Figure	 5.9a).	 Sentences	 that	 describe	 the	 cancer	 location	 and	 stage	 were	 also	

highlighted	(Figure	5.9b).	

	The	model	implementation	can	be	expanded	to	focus	the	attention	of	the	reader	on	the	

individual	words	inside	the	sentences.	The	attention	layer	creates	an	attention	distribution	for	

the	words	in	the	sentence	or	an	attention	score	for	each	word.	The	scores	of	the	words	can	be	
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visualized	to	show	the	importance	of	the	words	and	their	relative	importance	to	the	phenotype,	

as	shown	in	Figure	5.10a	and	Figure	5.10b.		

	

	
(a) AMI	discharge	summary	

	
(b) Cancer	note	
Figure	5.8	A	visual	example	of	the	relevant	sentences	selected	by	LSTM	model	and	highlighted	with	a	yellow	background:	(a)	

AMI	discharge	summary	(b)	cancer	note	



	 97	

	

	

	

Most	
Relevant	

(a) Snapshot	from	AMI	discharge	summary		 	

	 Least		
(b) Snapshot	from	cancer	note	 relevant	

Figure	5.9	A	heat	map	for	the	attention	scores	for	the	words	in	sentences	from:	(a)	AMI	discharge	summary	(b)	cancer	notes.	
Darker	color	indicates	higher	attention	scores	which	indicate	higher	relevance	to	the	phenotype.	

The	model	AUC	should	decrease	as	the	perturbation	of	good	annotators	labels	increase.	

Annotator	1	(blue	line	in	Figure	5.11)	had	the	highest	agreement	with	the	model	and	perturbing	

his/her	annotation	lead	to	2%	decrease	in	AUC	for	AMI	and	ischemic	heart	models,	and	4%	for	

cancer	model	with	full	perturbation,	as	seen	 in	Figures	below.	The	AUC	value	of	the	AMI	and	

ischemic	heart	had	a	similar	declining	trend	for	Annotator	2	(orange	line)	but	with	a	lower	slope;	

however,	the	perturbation	of	Annotator	2	labels	did	not	affect	on	the	model	performance	given	

the	labels	of	the	other	annotators,	as	seen	in	Figure	5.11.	Excluding	Annotator	3	labels	from	the	

gold	 standard	 (plotted	 in	 grey)	 influenced	 the	 model	 AUC	 values	 differently.	 There	 was	 an	

apparent	 increase	 in	 AUC	 when	 most	 of	 Annotator	 3	 positively-annotated	 sentences	 were	

switched	to	negatively-annotated	sentences.	
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(a) AUC	of	AMI	model	on	perturbated	AMI	labels	 (b) AUC	of	ischemic	heart	model	on	perturbated	AMI	labels	

	

	

(c) AUC	of	Cancer	model	on	perturbated	cancer	labels	 	
Figure	5.10	Perturbation	of	positive	labels	in	the	gold	standard	provided	by	annotators	and	their	effect	on	the	reported	AUC	of	
the	model:	(a)	Reevaluating	AMI	model	(b)	Reevaluating	ischemic	heart	model	(c)	Reevaluating	cancer	model	

Discussion	

The	results	show	that	LSTM	sentence	extraction	models,	depicted	in	Figures	5.1	and	5.2),	

can	locate	and	extract	relevant	sentences	to	a	phenotype	in	clinical	documents.	Training	an	LSTM	

model	 can	 improve	 the	extraction	of	 relevant	 sentences	 compared	 to	using	keywords	 search	

only.	 Both	 LSTM	and	Word2Vec	models	 complement	 each	other	 and	 combining	 their	 output	

increased	the	extraction	accuracy.		

The	 models	 proposed	 in	 this	 chapter	 outperform	 the	 conventional	 methods	 such	 as	

concept	extraction	tools.	For	instance,	KnowledgeMap	could	only	identify	a	subset	of	relevant	

AMI	and	cancer	sentences.	The	AUC	of	identifying	relevant	sentences	using	KnowledgeMap	were	

0.5273	 and	 0.6060	 for	 AMI	 and	 cancer,	 respectively,	 which	 were	 lower	 than	 the	 AUC	 of	

Word2Vec	and	LSTM	with	attention	models.		

Word2Vec	yielded	higher	relevance	scores	for	some	sentences	with	words	similar	to	the	

phenotype’s	 keywords.	 LSTM	 generated	 higher	 scores	 for	 sentences	 that	 mentioned	 the	
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phenotype	 contextually	 and	 had	 relevant	 concepts	 such	 as	 diagnosis,	 symptoms,	 and	

medications.	For	instance,	in	AMI	gold	standard,	the	Word2Vec	scores	of	the	sentences	“ischemic	

cardiomyopathy”	and	“2d	echocardiogram	read	by	dr”	were	higher	than	the	LSTM	score.	This	

shows	 that	Word2Vec	 can	 extract	 relevant	 sentences	 that	 contain	 similar	words	 better	 than	

LSTM.	

The	LSTM	model	assigned	phenotype-relevance	scores	higher	than	Word2Vec	for	the	AMI	

sentences	 “major	 epicardial	 coronary	 arteries	 are	widely	 patented,”	 “placed	 on	 beta-blocker	

therapy,”	 and	 “there	 is	 disease	 in	 the	 very	 small	 distal	 branches	 of	 the	 circumflex.”	 In	 the	

annotated	 cancer	 notes,	 LSTM	 assigned	 scores	 higher	 than	 Word2Vec	 for	 the	 sentences:	

“adenocarcinoma	 positive	 for	 kras	 g12c	 treatment,”	 and	 “left	 lower	 lobe	 wedge	 resection.”	

Word2Vec	provided	higher	scores	for	the	sentences	“but	proved	to	be	chondrosarcomatous	at	

exploration,”	and	“retinoblastoma	status	post	radiation	and	bilateral	enucleation	treatment.”.	

Combining	LSTM	with	Word2Vec	scores	increased	the	identifications	of	relevant	sentences.		

Sentence	extraction	models	can	highlight	the	relevant	sentences	for	providers,	especially	

the	ones	that	do	not	include	direct	information	or	the	phenotype	search	keywords.	The	model	

could	improve	the	quality	of	retrieved	information	presented	to	healthcare	providers.	

The	 low	 kappa	 scores	 and	 the	 slightly	 lower	 than	 expected	 AUC	 for	 the	 sentence	

extraction	 models	 can	 be	 explained	 by	 the	 mislabeled	 sentences	 in	 the	 gold	 standard.	 The	

annotators	selected	sentences	that	had	low	scores	and	did	not	include	phenotype	data	in	some	

cases.	None	 of	 the	 clinical	 concepts	 in	 the	 sentences	 “obstructive	 sleep	 apnea”,	 “date	 social	

history	and	family	history”	and	“no	subtype	nasal”	are	related	to	AMI	or	cancer.	On	the	other	

hand,	some	sentences	that	the	extraction	model	missed	are	relevant	to	other	phenotypes.	For	

example,	the	annotated	sentences	“Lisinopril”	and	“she	was	given	Lovenox	therapeutic	dosing	

and	transferred	for	further	management”	and	“I	personally	reviewed	her	face	and	neck	ct,”	and	

“ct	 sinuses	 were”	 are	 relevant	 to	 AMI	 and	 cancer	 and	 other	 phenotypes	 such	 as	 deep	 vein	

thrombosis,	high	blood	pressure,	heart	failure.	

Sentence	 extraction	 models	 identified	 related	 sentences	 that	 some	 annotators	

overlooked.	For	instance,	all	models	assigned	scores	higher	than	0.7	for	the	sentences	“estimated	
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gfr	54”	and	“she	underwent	chest	radiography”	in	AMI	documents,	and	“carcinoid	sxs	are	stable”	

and	“enhancing	left	adrenal	lesion	likely	representing	metastatic	disease”	in	cancer	notes.	Some	

annotators	 did	 not	 label	 those	 sentences	 as	 relevant.	 One	 application	 for	 the	model	 is	 pre-

annotating	possible	relevant	sentences	for	annotators,	as	shown	in	Figure	5.9.	Pre-annotating	

can	increase	the	agreement	scores	amongst	annotators	who	have	different	levels	of	expertise	

[303,341].	It	may	also	reduce	the	annotation	time	and	effort	[303,341].	

The	discrimination	between	the	scores	of	positively-annotated	and	negatively-annotated	

AMI	sentences	was	higher	than	the	cancer	sentences	discrimination	as	inferred	from	CDF	plots	

(Figures	 5.6	 and	 5.8).	 Using	 general	 phenotype	 definition	 could	 affect	 the	 performance	 of	

sentence	extraction	model.	In	the	training,	we	applied	the	most	general	cancer	definition	while	

we	chose	a	more	granular,	specific	definition	to	train	the	AMI	model.	We	also	observed	lower	

performance	when	we	used	ischemic	heart	definition	to	identify	AMI	relevant	sentences,	which	

is	a	less	specific	than	AMI	definition	(Table	2	and	3).	

The	reliability	of	cancer	annotation	was	not	high	which	might	affect	the	reported	AUC	of	

cancer	sentence	extraction	model.	Annotating	cancer	notes	 is	 challenging,	especially	 for	non-

experienced	annotators	who	received	minimal	or	no	clinical	 training	 in	oncology.	The	 level	of	

clinical	 expertise	 required	 to	annotate	 cancer	notes	may	explain	 the	 low	performance	of	 the	

cancer	 model.	 The	 kappa	 and	 F1	 between	 “Annotator	 1	 and	 Annotator	 2”	 and	 between	

“Annotator	 2	 and	 Annotator	 3”	 scores	 were	 lower	 than	 0.2	 in	 the	 cancer	 dataset	 (Table	 2).	

Including	only	sentences	with	a	full	agreement	in	the	strict	gold	standard	increased	the	AUC	of	

identifying	 relevant	 sentences.	 The	 level	 of	 disagreement	 might	 have	 affected	 the	 reported	

performance	 of	 the	model.	 For	 instance,	 a	 first-year	medical	 student	 does	 not	 have	 enough	

training	in	oncology	as	a	fourth-year	medical	student,	which	underlied	kappa	and	F1	scores	where	

a	fourth-year	medical	student	(Annotator	1)	had	the	highest	values.		

We	believe	that	the	sentence	extraction	model	can	have	multiple	implementations	in	the	

clinical	environment.	The	model	can	serve	as	a	tool	to	gather	the	facts	from	unstructured	data	

about	a	phenotype	from	the	past	visits	and	present	them	to	health	care	providers,	as	visualized	

in	Figure	5.9.	On	the	words	level,	the	scores	of	the	words	can	focus	the	attention	on	the	words	

relative	to	the	phenotype.	In	AMI	sentences,	heart,	ejection,	cardiomyopathy,	and	ischemic	are	
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more	relative	to	the	AMI	condition	than	with,	stage,	or	foot.	Highlighting	or	locating	words,	as	

shown	 in	 Figure	 5.10.	 The	 words	 score	 can	 denoise	 the	 sentences	 from	 irrelevant	 word	 to	

perform	a	data-driven	preprocessing	step.		

This	 study	has	 some	 limitations.	 First,	we	evaluated	 the	models	on	a	 small	 annotated	

dataset.	It	will	be	helpful	to	compare	models	using	larger	datasets	that	include	broader	disease	

definitions	 and	 longer	 term	 patient	 data.	 Second,	 the	 quality	 of	 the	 annotation	 was	 low	 to	

medium.	 The	 recruited	 annotators	 have	 different	 levels	 of	 clinical	 expertise.	 Recruiting	more	

annotators	with	the	required	experience	would	provide	a	more	accurate	evaluation.	Third,	our	

cancer	note	extraction	methods	might	be	biased	since	we	used	NLP	rules.	In	our	future	work,	we	

are	 planning	 to	 create	 another	 note	 extraction	method	 or	 less	 biased	 extraction	method	 for	

cancer	note.	Fourth,	we	trained	a	binary	model	for	each	phenotype.	Training	a	multi-phenotype	

model	that	accounts	for	the	co-occurrence	of	phenotypes	which	could	be	a	possible	extension	to	

our	model	and	would	have	a	valuable	application	in	the	clinical	environment.		

Summary	

This	chapter	introduced	a	model	to	learn	a	representation	for	sentences	to	extract	the	

ones	relevant	to	a	phenotype	such	as	diagnoses	and	medications	from	clinical	documents.	The	

study	demonstrates	a	sentence	extraction	model	can	learn	representations	and	identify	

relevant	sentences	in	clinical	documents	for	acute	myocardial	infarction	and	cancer.	We	were	

able	to	combine	methods	to	identify	relevant	sentences	with	greater	accuracy	than	Word2Vec	

or	LSTM	extraction	models	alone.	Learning	informative	sentences	representations	depends	

upon	specificity	in	phenotype	definitions,	while	successful	sentence	extraction	is	dependent	on	

annotator	experience.	This	representation	learning	and	extraction	approach	could	help	

providers	extract	relevant	patient	information	in	narrative	clinical	documents,	thus	increasing	

efficiency	and	improving	patient	care.	
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CHAPTER	6 CONCLUSION	

	

EMRs	 store	 heterogeneous	 data	 that	 describe	 patients’	 health	 over	 their	 lifespan.	

Researchers	leverage	the	power	of	machine	learning	to	analyze	clinical	data	and	build	models	

that	 help	 decision-making.	 Researchers	 convert	 clinical	 data	 into	machine-readable	 features.	

Preparing	 informative	features	that	can	highlight	the	 important	patterns	 in	 input	samples	 is	a	

primary	success	factor	in	training	a	model.	

Creating	 a	 useful	 feature	 representation	 depends	 on	 the	 predictors	 and	 output.	

Longitudinal	dynamic	features	and	time-dependent	outputs	should	be	represented	differently	

than	static	features	and	fixed	outputs.	Text-based?	features	that	highlight	the	words'	meaning	

and	context	allow	the	machine	learning	model	to	mimic	human	processing	of	the	text,	which	in	

turn	could	improve	the	quality	of	models.	

This	dissertation	focused	on	learning	and	creating	feature	representations	of	structured	

and	unstructured	clinical	data.	The	central	insight	is	learning	and	forming	features	that	embed	

the	distinct	input	patterns	that	are	descriptive	to	different	outputs.	In	longitudinal	dynamic	data	

where	 patients’	 health	 status	 changes	 over	 time,	 constructing	 and	 feeding	 the	 updated	

information	 can	 improve	 the	 prediction	 model	 and	 mimic	 the	 way	 healthcare	 providers	

reevaluate	 the	 upcoming	 patient’s	 outcome	 or	 disease.	 Unstructured	 data	 (i.e.	 clinical	

documents)	 is	 another	 valuable	 source	 in	 EMR.	 Learning	 and	 creating	 features	 and	

representations	for	the	clinical	documents	is	a	critical	step	in	training	machine	learning	models	

that	have	various	applications	such	as	phenotyping,	predicting	outcome,	identifying	the	type	of	

questions	 and	 need	 in	 patients	 messages,	 or	 retrieving	 information.	 Our	 research	 and	

investigations	contribute	to	the	biomedical	informatics	field	by	addressing	common	challenges	

encountered	by	researchers	who	are	training	machine	learning	models	using	EMR	data.		

One	challenge	in	using	EMR	to	predict	patient	outcomes	is	capturing	the	change	in	the	

data	 that	 can	 influence	 the	 outcome.	 For	 instance,	 having	 complications	 after	 discharge	 can	

increase	the	probability	of	an	unavoidable	emergency	visit.	Chapter	3	described	a	dynamic	model	

that	 predicts	 the	 risk	 of	 readmission	 or	 death	 after	 being	 hospitalized	 for	 a	 phenotype.	 The	
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proposed	model	creates	temporal	representations	for	structured	data	and	dynamic	features	for	

information	 inserted	 after	 discharge	 to	 predict	 the	 outcome	 of	 patients.	 The	 post-discharge	

model	mimics	the	healthcare	provider	assessment	by	incorporating	the	changes	in	patient	health	

status	 after	 being	 discharged.	 The	 post-discharge	 model	 outperformed	 models	 trained	 on	

traditional	static	features	such	as	LACE	and	at-discharge	models	in	predicting	high	risk	patients	

who	had	a	hip	fracture	or	cognitive	heart	failure	by	at	least	20%	in	the	AUC	value.	This	work	fills	

the	 gap	 in	 the	 current	 readmission	 and	 outcome	 prediction	 models	 that	 create	 a	 static	

representation	and	leave	out	the	new	information	inserted	before	the	event	of	interest.	

Another	 medical	 informatics	 challenge	 is	 identifying	 effective	 clinical	 text	 mining	

algorithms	 that	 integrate	 semantics	 and	 word	 context	 into	 representations.	 Creating	 those	

features	might	need	manual	efforts	which	can	be	hard	 to	obtain	and	might	 limit	 the	models’	

generalizability.	Chapter	4	describes	a	method	to	learn	text	representations	that	integrates	both	

the	 semantics	 and	 context	 of	 words	 in	 patients’	 portal	 messages.	 Learning	 an	 informative	

representation	of	patients’	messages	 can	 improve	 the	detection	of	patients’	 needs,	 and	 thus	

prioritizing	 the	 response	 to	 the	messages	 according	 to	 their	 urgency.	 The	work	 in	 chapter	 4	

examined	 and	 compared	 different	 messages	 representations.	 Some	 of	 representations	 lack	

context	and	semantics,	while	other	incorporate	semantics	or	context	or	both.	The	analysis	shows	

that	learning	a	representation	that	includes	semantics	and	context	lead	to	a	better	identification	

of	 patients’	 needs	 in	messages.	 The	 AUC	 values	were	 higher	 by	 3%-10%	 using	 semantic	 and	

context	representations	compared	to	traditional	features	such	as	bag	of	words.	This	work	built	

on	and	improved	the	studies	that	Cronin	and	colleagues	performed	in	the	same	area.	

Extracting	 relevant	 clinical	 text	 and	 identifying	 disease	 information	 have	 significant	

applications	 in	the	clinical	environment.	 Information	extraction	can	facilitate	chart	reviews	by	

presenting	the	relevant	parts	of	clinical	documents	to	healthcare	providers.	However,	training	

extraction	models	often	 require	manually	curated	datasets.	Annotating	datasets	need	human	

resources.	The	necessity	of	annotated	datasets	and	the	cost	of	preparing	them	can	hinder	the	

development	of	extraction	models.	Chapter	5	introduced	a	machine	learning	model	that	extracts	

sentences	relevant	to	a	phenotype	without	using	an	annotated	dataset.	The	extraction	model	

learns	semantic	representations	for	sentences	using	the	correlations	between	the	content	and	
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the	phenotypes	of	the	clinical	documents.	Sentence	extraction	models	performed	better	than	

KnowledgeMap,	a	medical	concepts	extraction	tool,	and	keywords	search.	The	proposed	deep	

learning	extraction	method	might	reduce	the	need	for	annotated	datasets	during	the	training.	

Moreover,	it	offers	biomedical	informatics	researchers	a	chance	to	utilize	the	reachable	clinical	

datasets	 and	 train	 extraction	 models	 that	 fits	 the	 writing	 and	 linguistic	 styles	 in	 their	

organizations.	Other	researchers	might	prefer	the	usage	of	medical	terminology	but	combining	

both	source	can	improve	the	NLP	models	and	reduce	the	need	for	de-identifying,	annotating,	and	

sharing	datasets	that	have	small	size	in	most	cases.	

This	dissertation	developed	methods	to	mine	data	from	EMR	and	converted	them	into	

numerical	 representations.	 The	 EMR	data	 is	 heterogeneous,	 dynamic,	 and	 changeable.	 Every	

encounter	 in	 healthcare	 organization	 leaves	 a	 digital	 footprint.	 However,	 the	 tremendous	

amount	of	clinical	data	can	be	hard	to	analyze	and	comprehend	manually	in	a	busy	environment	

such	as	healthcare.	Moreover,	some	analyses	require	ongoing	complex	computations	and	finding	

associations	that	humans	are	incapable	of	performing	promptly.	Machine	learning	models	can	

perform	complex	computations,	 learn	associations,	and	apply	the	learned	patterns	on	unseen	

data.	 The	 raw	 EMR	 data	 needs	 to	 be	 transformed	 and	 converted	 into	 digital	 features	 and	

variables	that	the	machine	learning	models	understand	to	find	the	patterns	and	solve	the	clinical	

problems.		

The	Dynamic	nature	in	data	should	be	captured	to	predict	a	time-varying	outcome	such	

as	 readmission.	 Our	 analysis	 proved	 that	 using	 dynamic	 features	 to	 train	 prediction	 models	

improves	the	prediction.	Creating	the	dynamic	features	might	need	some	understanding	of	the	

sources	of	time-varying	features.	The	clinical	experts	can	help	during	the	creation	of	the	dynamic	

features	by	identfying	the	sources	of	dynamic	data	that	can	improve	the	models.	Besides,	they	

can	identify	the	CDS	tools	that	can	be	built	or	utilized	to	collect	the	dynamic	variables	and	new	

clinical	events.	

Integrating	 the	 semantics	 and	 the	 context	 in	 the	 text	 representation	 can	 increase	

the	accuracy	of	the	output	of	the	machine	learning	models	such	as	classifications	and	information	

extraction.	However,	the	current	NLP	methods	require	manually	annotated	datasets	and	curated	

language	and	medical	dictionaries	to	train	the	models.	Applying	the	deep	learning	methods	in	
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the	 NLP	 field	 shows	 promising	 results	 and	 has	 many	 applications	 in	 healthcare	 such	 as	

information	extraction,	summarizations,	and	answering	questions.	The	proposed	NLP	methods	

can	reduce	the	necessity	of	manually	embedding	the	scientific	and	medical	knowledge	to	create	

and	represent	the	clinical	text.	The	presented	NLP	methods	are	not	a	replacement	for	the	human,	

and	it	builds	on	the	existing	clinical	knowledge	stored	EMR	data	to	reduce	the	time	and	effort	

wasted	on	 tedious	 tasks	 such	as	 annotating	datasets	 for	 training	models	or	 triaging	patients’	

messages	 according	 to	 the	 requests	 and	 needs	 of	 the	 patients.	 The	 dissertation	 proposed	

methods	 to	 address	 those	 challenges:	 creating	 dynamic	 representations	 for	 changeable	 EMR	

data,	and	learning	text	representation	while	embedding	semantics	and	context.		
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CHAPTER	7 FUTURE	WORK	

	

This	dissertation	proposed	representations	of	structured	and	unstructured	that	improved	

machine	learning	model	accuracy.	However,	there	is	always	room	for	improvement.	This	chapter	

discusses	extensions	or	future	directions	to	the	work	proposed	in	this	dissertation,	and,	more	

broadly,	other	possible	future	research	in	medical	informatics.	First,	the	chapter	describes	the	

possible	 improvements	 on	 creating	 dynamic	 representations	 for	 patients	 after	 a	 baseline	 or	

major	event	(e.g.	discharge).	The	Chapter	explore	the	future	of	applying	deep	learning	in	clinical	

NLP	including	classifications	and	information	extraction.	

Dynamic	features	

In	 the	 dynamic	 feature	 model,	 the	 post-discharge	 model	 predicted	 the	 outcome	 of	

patients	 using	 the	 structured	 post-discharge	 data.	 Learning	 a	 dynamic	 representation	 of	 the	

unstructured	post-discharge	data,	such	as	clinical	communication,	and	combining	it	with	dynamic	

structured	 features	 might	 improve	 the	 identification	 of	 adverse	 events	 that	 might	 lead	 to	

unavoidable	 readmissions.	 In	 our	 future	 work,	 we	 are	 planning	 to	 apply	 the	 methods	 and	

techniques	used	here	to	create	a	text	representation	for	the	clinical	documents	and	improve	the	

dynamic	model	proposed	in	the	first	aim	(please	refer	to	page	10	for	a	general	description,	and	

page	 30	 for	 the	 specific	 objectives	 of	 the	 first	 aim).	 The	 future	 model	 will	 create	 a	 text	

representation	 for	 the	 unstructured	 data	 and	 clinical	 documents	 that	 are	 inserted	 into	 the	

patients	EMR	record	whether	clinical	notes	during	outpatient	appointments	or	patients’	portal	

messages	exchanged	between	healthcare	providers	and	patients.	Our	final	goal	is	developing	a	

method	 that	 creates	 a	 representation	 for	 the	dynamic	 structured	and	unstructured	data	 and	

trains	our	machine	learning	models	on	the	combined	or	learned	representation	for	the	two	types	

of	data.	The	future	model	can	utilize	the	sources	of	new	information	after	a	significant	event	(e.g.	

discharge,	 transient	 ischemic	 attack)	 such	 as	 patient	 portals	 and	 outpatient	 data,	 creating	

informative	representations	for	EMR	data	including	structured	(laboratories,	medications,	etc.),	
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clinical	documents,	images	etc.,	and	combining	those	representations	to	build	decision	aid	tools	

such	as	high	risk	patients	identification	and	new	phenotypes.	

Deep	learning	in	clinical	NLP	

Integrating	 semantics	 and	 context	 of	 words	 enhanced	 the	 text	 representations	 for	

classification.	However,	the	 learned	representations	can	be	 improved.	Adding	more	messages	

can	increase	the	model’s	generalizability	and	accuracy.	A	semi-supervised	model	can	be	trained	

to	learn	representation	on	larger	unannotated	datasets	since	annotating	all	messages	requires	

human	and	time	resources	[31].	Learning	representation	for	other	clinical	tasks	can	evaluate	the	

model	scalability.	A	similar	representation	learning	model	can	be	applied	to	identify	the	patients’	

satisfaction	and	complaints	in	messages,	detect	adverse	events	in	patients’	portal	messages	and	

extract	the	billing	codes	from	the	messages	if	they	exist.	For	instance,	patients	communicate	their	

concerns	 about	 their	 health	 via	 messages	 in	 patients’	 portals.	 They	 seek	 confirmations,	

suggestions,	advices,	and	opinions	about	their	current	health	status.	Patients	who	had	a	major	

surgery	 and	 cannot	 leave	 their	 houses	 may	 send	 their	 surgeon	 or	 primary	 care	 physician	

discomforts,	 complications,	 or	 unusual	 physical	 symptoms.	 Learning	 and	 creating	

representations	for	those	messages	can	offer	a	patient-reported	source	of	data	that	the	EMR	has	

but	still	not	fully	utilized.	

Learning	sentences’	 representation	while	considering	semantics	and	context	 improved	

the	 extraction	 of	 sentences	 related	 to	 a	 phenotype.	 However,	 the	 extraction	model	 learned	

representation	 to	 extract	 relevant	 sentences	 for	 one	 phenotype.	 Hundreds	 or	 thousands	 of	

models	are	needed	to	cover	all	phenotypes.	Learning	a	representation	for	sentences	or	words	

for	multiple	ICD	codes	can	be	more	efficient,	and	it	will	account	for	the	co-occurrence	of	multiple	

ICD	codes.	A	multi-ICD	attention	model	can	identify	relevant	words	for	ICD	codes	using	attention	

layer	only,	as	proposed	in	[332].	The	proposed	model	has	a	short	training	time	and	learns	scores	

for	words	in	a	long	text	regardless	of	their	location	[332].	This	strategy	would	allow	our	model	to	

link	the	ICD	codes	to	the	relevant	words	inside	the	documents.	Identifying	the	relevant	words-

to-ICD	can:	1)	help	biomedical	informatics	researchers	find	new	associations	between	words	and	

diseases,	2)	learn	the	words	that	can	be	associated	with	multiple	diseases,	3)	identify	words	for	
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disease	that	were	not	included	in	UMLS,	4)	remove	the	noisy	words	for	clinical	documents	as	a	

pre-processing	step,	5)	reduce	the	time	that	clinical	experts	spend	on	creating	and	annotating	

relevant	words	and	benefit	from	their	knowledge	on	refining	the	output.	

A	more	specific	multi-ICD	model	can	be	trained	to	predict	a	subset	of	ICD	for	a	general	

phenotype.	For	example,	a	model	that	predicts	cancer	billing	codes	for	oncology	notes	can	list	

the	possible	set	of	billing	codes	for	the	clinical	provider	at	the	end	of	the	documentation.	Training	

a	 model	 for	 cancer	 codes	 might	 increase	 the	 discrimination	 of	 words’	 attention	 scores	

distribution	 that	 is	 relevant	 to	 specific	 cancer	 types	 such	 as	 lung	 cancer.	 Clinical	 researchers	

hesitate	to	use	the	billing	codes	in	their	research	since	only	a	few	ICD	assigned	to	each	document	

based	on	the	billing	process,	and	the	codes	do	not	reflect	all	the	ICD	codes	in	the	documents.	

Training	 specific	 multi-ICD	 model	 can	 help	 researchers	 expand	 the	 list	 of	 ICD	 codes	 they	

implement	in	their	research.	

Moreover,	it	can	explain	some	the	variability	in	the	coding	for	similar	patients.	Physicians	

and	billing	coders	assign	 ICD	codes	depending	on	the	bill	 that	will	be	sent	 to	a	payer.	Hence,	

similar	patients	might	have	different	ICD	codes	in	their	record.	Showing	all	ICD	codes	can	explain	

this	 coding	 variability	by	 listing	all	 ICD.	 Showing	all	 the	 ICD	will	 list	 the	missing	ones	and	 the	

different	diseases	and	comorbidities	that	can	lead	to	the	difference	in	assigning	the	billing	codes.	

Relevant	sentence	extraction	models	can	have	multiple	implementations.	The	model	can	

preprocess	and	remove	irrelevant	noisy	sentences	or	words	before	training	a	machine	learning	

model.	For	 instance,	the	cancer	sentence	extraction	model	can	 identify	and	clean	the	general	

cancer	 notes	 before	 training	 a	 classifier	 to	 detect	 specific	 cancer	 billing	 codes.	 Another	

implementation	 is	creating	a	decision	support	tool	 that	summarizes	patients	documents	 from	

past	visits.	The	tool	extracts	and	displays	the	sentences	about	the	phenotype	that	the	healthcare	

provider	wants	to	treat.	This	would	enable	researchers	to	mine	the	clinical	documents	efficiently,	

identify	the	clinical	contents	inside	the	documents,	and	increase	the	usage	of	clinical	documents	

by	learning	efficient	and	more	concise	representation	for	the	documents.	

In	conclusion,	our	future	work	would	focus	on	addressing	limitations	to	our	current	study:	

expanding	 the	 creation	 of	 dynamic	 features	 and	 training	 dynamic	models	 and	 improving	 the	

clinical	document	representation	leading	to	better	clinical	text	mining.	It	would	also	build	upon	
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the	foundation	of	work	created	here.	Future	work	including	building	dynamic	prediction	models	

for	 any	 clinical	 events	 (e.g.,	 the	 probability	 of	 being	 diagnosed	 with	 a	 phenotype,	 disease	

prognosis)	and	applying	advanced	deep	learning	models	in	clinical	text	mining.	The	future	could	

elevate	this	dissertation	by	enabling	researchers	to	train	machine	learning	models	that	have	new	

information	feed	loop	that	feed	the	new	patients	EMR	data	and	mine	the	clinical	documents	that	

we	are	only	able	to	obtain	the	tip	of	the	iceberg	of	the	clinical	information	stored	in	them.	
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APPENDIX	A	

	

	 This	appendix	describes	the	LSTM	model	and	equations	of	LSTM	and	the	attention	layer	
that	we	used	in	our	models.	

LSTM	description	

Equations	set	1	shows	LSTM	equation	as	described	in	Zaremba	and	Sutskever	[324].	The	output	

gate	controls	the	amount	of	current	state	that	will	be	passed	to	next	LTSM	cell.	Finally,	as	the	last	

equation	in	the	equations	set	shows,	the	ℎ%	is	a	function	of	the	memory	cell	and	the	output	cell,	

and	 it	 represents	 the	 learned	 representation	 from	 the	 current	 and	 all	 the	 previous	 LSTM	

sequence	elements.	

𝑖% = 	𝜎(𝑊 0 𝑥% + 𝑈 0 ℎ%j, + 𝑏 0 		(1)	

𝑓% = 	𝜎(𝑊 k 𝑥% + 𝑈 k ℎ%j, + 𝑏 k 	

𝑜% = 	𝜎(𝑊 a 𝑥% + 𝑈 a ℎ%j, + 𝑏 a 	

𝑢% = 	𝑡𝑎𝑛ℎ(𝑊 l 𝑥% + 𝑈 l ℎ%j, + 𝑏 l 	

𝑐% = 𝑖%⨀𝑢% + 𝑓%⨀𝑐%j,	

ℎ% = 𝑜%⨀tanh	(𝑐%)	

Where	𝑊	 is	 weight	 matrix	 for	 the	 current	 cell,	 𝑈	 is	 weight	 matrix	 for	 the	 hidden	

representation	of	previous	LSTM	cell,	𝑏	superscripts	𝑖,	𝑓	and	𝑜	correspond	to	the	gates:	

input,	forget	and	output.	Figure	A.1	depicts	the	LSTM	cell	and	its	gates.	
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Figure	0.1	A	detailed	visualization	of	gates	in	LSTM	unit.	f	is	the	forget	gate,	i	is	the	input	gate,	o	is	the	output	gate,	h	is	the	
hidden	representation	of	current	unit,	and	c	is	the	memory	cell	

Attention	layer	equations	

Given	 the	 hidden	 states	 in	 LSTM	 layer	 ℎ,, ℎ., … , ℎ%j,	 and	 context	 vector	 𝑣%,	 a	 simple	

concatenation	layer	that	combines	previous	hidden	states	and	context	vector	to	calculate	the	

attention	at	hidden	state	ℎ%.	An	alignment	vector	𝑎%(𝑠)	is	created	by	combining	each	source	

hidden	state	(hidden	states	that	preceded	ℎ%)	ℎf	with	the	current	target	hidden	unit	at	step	

𝑠,	ℎ%	using	the	following	equation:	

𝑎%(𝑠) =
exp	(𝑠𝑐𝑜𝑟𝑒 ℎ%, ℎf )
exp	(𝑠𝑐𝑜𝑟𝑒 ℎ%, ℎf )f

0W,
	

Where	score	values	are	calculated	using	the	following	equation:	

𝑠𝑐𝑜𝑟𝑒 = tanh(ℎf𝑊uℎ% + 𝑏u)	

𝑊u	is	the	trainable	weight	matrix	of	attention.	In	our	current	analysis,	we	used	the	following	

equation	to	simplify	the	model:	

𝑠𝑐𝑜𝑟𝑒 = tanh(𝑊uℎ% + 𝑏u)	

A	 context	 vector	 is	 created	 by	 calculating	 the	 weighted	 vector	 of	 input	 sequence	 using	 the	

alignment	vector	𝑎%,	as	shown	in	chapter	5,	Figure	5.5.	
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