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CHAPTER I: INTRODUCTION 

 

In 2012 the Institute of Medicine (now the National Academy of Medicine) released a desiderata 

for a learning healthcare system, where evidence informs practice and practice informs 

evidence.1 Though the randomized clinical trial (RCT) serves as the gold standard for informing 

clinical decisions, flaws exist in terms of achieving recruitment, overly stringent 

inclusion/exclusion criteria, and lack of patient-centered decision making.2,3 Moreover, the 

majority of medical decisions may not be informed by randomized controlled trials; a recent 

review found that only 19% of Class I cardiology guidelines have Level A evidence.4  

Clinicians often have questions when caring for patients but do not pursue answers to many of 

them.5 Observational cohort studies have grown as an important complement to RCTs allowing 

comparative effectiveness research and patient-centered trials.6 This thesis centers on leveraging 

observational cohort data to create and interpret models improving healthcare for cirrhosis patients. 

CLINICAL BACKGROUND 

Cirrhosis, a late stage of chronic liver damage where scarring replaces hepatic tissue, carries 

significant morbidity and mortality due to decreased mental, physical, and biochemical function.  

The prevalence is estimated between 400,000 and 3,000,000 persons in the United States, and the 

disease causes 44,000 deaths annually.7–11  Over fifteen etiologies exist, including 

hemochromatosis, Wilson’s disease, autoimmune hepatitis, and primary biliary cirrhosis.12  In 

the United States, the most common causes are alcohol abuse, viral hepatitis, and nonalcoholic 

fatty liver disease (NAFLD).12–14 Due to increasing obesity and diabetes in the US, the 

prevalence of NAFLD has been growing (from 5.5% in the original National Health and 

Nutrition Examination Survey up to 11% in 2008, refer to Figure 1).8 Because cirrhosis may 

remain latent for years, only autopsy or late sequelae implicate the diagnosis in 20-30% percent 

of cases.15–19   

The Department of Veterans Affairs (VA) faces an increasing burden of chronic liver disease due 

to substance use disorders, chronic viral hepatitis, and increasing numbers of patients with 

NAFLD. The VA’s patients face a higher burden of substance abuse, particularly among Iraq and 

Afghanistan veterans where the prevalence has been estimated at 11%.20 Overall, 90-100% of 

alcoholics develop liver steatosis, 10-35% develop alcoholic fibrosis and/or hepatitis, and 10% 

develop cirrhosis.21 The VA is the largest single provider of Hepatitis C Virus (HCV) care in the 

US, and has approximately 186,000 patients have chronic active HCV.22 Refer to Figure 2 for a 

description of the changes in VA cirrhosis etiology prevalence. These dramatic increases in 

overall prevalence of cirrhosis at the VA will impact the VHA system with greatly increased 

costs due to complications occurring from end-stage liver disease. 
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Figure 1: Change in prevalence of chronic liver disease in the United States from 1988 to 

2008. 

Data obtained from Younossi et al.8 

  

Figure 2: Change in prevalence of cirrhosis etiology for Veterans Affairs patients from 

2001 to 2013.  

Data obtained from Beste et al.22 Note: HCV: Hepatitis C Virus; HBV: Hepatitis B Virus: PBC: Primary Biliary 

Cirrhosis; AIH: Autoimmune Hepatitis; PSC: Primary Sclerosing Cholangitis; ALD: Alcoholic Liver Disease; 

NAFLD: Non-Alcoholic Fatty Liver Disease. 

 

CIRRHOSIS COMPLICATIONS 

Cirrhosis impacts the health care system broadly because of the breadth and severity of end-stage 

liver disease complications. Complications stem from liver synthetic dysfunction and portal 

hypertension. Synthetic dysfunction causes coagulation disorders, low serum albumin, low 
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platelet counts, and hepatic encephalopathy.23 Portal hypertension, increased pressure in the 

veins that carry blood from the gastrointestinal tract to the liver, leads to ascites, varices, renal 

failure, gastrointestinal bleeding, and spontaneous bacterial peritonitis.24 Because many 

medications are metabolized by the liver, cirrhosis can cause heightened medication sensitivity 

and toxicity.25 Once a cirrhotic patient develops a complication they follow a significantly 

different disease trajectory. The median survival for a cirrhotic patient without a complication is 

10 years, however, once a patient becomes decompensated, i.e. develops a complication, their 

median survival drops to four years.26 Refer to Figure 3 for a description of the survival curve.  

Figure 3: Survival estimates for controls, subjects with compensated cirrhosis, and subjects 

with decompensated cirrhosis. 

Data taken from Fleming et al.26 

 

The only cure for cirrhosis is liver transplant. However because livers are a scarce resource, 

relatively few are transplanted annually. In 2016, 7,841 livers were transplanted with 13,725 

patients still on the waiting list at the end of the year.27 Patients are candidates for liver 

transplant once their Model for End-stage Liver Disease (MELD) score, a measure of overall 

liver dysfunction, is ≥ 15. Patients may qualify for earlier liver transplant if they have certain 

exceptional conditions, such as hepatocellular carcinoma. Liver transplantation is contraindicated 

in select cases such as severe extra-hepatic disease, acquired immunodeficiency syndrome, and 

persistent non-adherence with medical care. Because transplantation is expensive and livers are 

scarce, patients must undergo an extensive pre-transplant evaluation that includes exhaustive 

laboratory testing, cardiopulmonary assessment, cancer screening, infectious diseases evaluation, 

and psychosocial appraisal. Guidelines recommend all patients with a MELD > 10 be referred 

for liver transplant evaluation to initiate pre-transplant evaluation and substance-abuse 

counseling (if needed). One particular complication, renal failure, heralds poor survival and 

warrants urgent transplant evaluation. 

Patients with cirrhosis are particularly prone to renal failure from multiple etiologies. Causes 

include hypovolemia from diuretics, medication toxicity, parenchymal renal disease such viral 

hepatitis induced cryoglobulinemia, and changes in the circulatory system due to cirrhosis. 

Cirrhotics with renal failure have a higher mortality and increased frequency of complications 

compared to cirrhotics without renal failure.28 Acute renal failure is also a common occurrence 

in patients hospitalized with cirrhosis, occurring 20% of the time.29 The deadliest form of renal 

failure in cirrhosis is termed Hepatorenal Syndrome. 
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HEPATORENAL SYNDROME (HRS) 

Hepatorenal syndrome (HRS), is a particularly challenging complication of end-stage cirrhosis, 

and represents an archetype of multi-organ failure.30–32  HRS represents functional kidney 

dysfunction due to intense renal vasoconstriction with concomitant splanchnic vasodilation.  

Diagnosing HRS requires exclusion of other kidney disorders, absence of shock, no concurrent 

or recent treatment with nephrotoxic drugs, and no improvement in serum creatinine after at least 

two days of diuretic withdrawal and volume expansion with albumin.30   

Table 1: Diagnostic criteria for Hepatorenal Syndrome. 

Renal biopsy often does not show intrinsic disease nor sufficient tissue damage to explain the 

amount of dysfunction.  Hepatorenal Syndrome’s underlying etiology is understood to be a 

cumulative effect of multiple clinical conditions starting with progressive portal hypertension 

causing splanchnic vasodilation resulting in lowered intravascular perfusion pressures to the 

kidneys. Subsequent neurohormonal compensation leads to sodium and water retention resulting 

in ascites. Further degradation in effective blood flow to the kidneys, potentially brought on by 

an acute insult such as an infection, leads to Hepatorenal Syndrome. Refer to Figure 4. 

Figure 4: Steps leading to Hepatorenal Syndrome. 

Note: RAAS: Renin-Angiotensin Aldosterone System. 

 

The disorder is broadly divided into two types, I and II, based mainly on rate of progression and 

a few clinical indicators.  The median survival for Type I HRS is two weeks, and is six months 

for Type II HRS.31,33,34  Over a five year span, 39% of cirrhotic patients will experience HRS.35 

The definitive treatment for HRS is liver transplant,30,31,34 but several case series suggest that 

only 4.5 – 35% of patients (median 18.5%) receive a liver36–41 due to HRS’ high mortality and 

organ scarcity.42,43  The standard of care includes several temporizing and palliative measures 

Cirrhosis with ascites 

Serum creatinine > 1.5 mg/dl (old guidelines) OR diagnosis of AKI using established 

guideline agency AKI criteria (new guidelines) 

No improvement of serum creatinine after at least 2 days with diuretic withdrawal and volume 

expansion with albumin. The recommended dose of albumin is 1 g/kg of body weight per day 

up to a maximum of 100 g/day. 

Absence of shock 

No current or recent treatment with nephrotoxic drugs 

Absence of parenchymal kidney disease as indicated by proteinuria 500 mg/day, micro-

hematuria (50 red blood cells per high power field) and/or abnormal renal ultrasonography. 
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including vasopressors,30,31,34 dialysis,44 Molecular Adsorbent Recirculating System (MARS) 

therapy,45,46 Transjugular Intrahepatic Portosystemic Shunt (TIPS),47,48 and hospice.49,50 

However, there is large variability in survival among these patients, particularly those with Type 

II HRS. Some patients may benefit from early identification and initiation of some medical 

treatments.   

Temporizing measures such as dialysis do not change overall survival, and as such there is 

increasing focus on palliative treatment, which may still result in net improvements in patient 

satisfaction and quality of life in this time period.  Earlier diagnosis would be beneficial to 

initiate timely triaging or specific treatments for HRS, including the use of vasopressor and 

somatostatin agonists, albumin expansion, dialysis, expedite evaluation for transplantation, or 

referral for palliative care.  Several studies have shown that renal function prior to the initiation 

of vasopressor therapy is predictive of response,51–53 particularly a creatinine less than 3.0 

mg/dL.54 The International Ascites Club has stressed earlier diagnosis and treatment of HRS in 

its updated 2015 guidelines.55 Moreover, increasing changes in serum creatinine from baseline 

have shown linear increases in hospitalization costs amongst patients admitted with acute kidney 

injury (AKI) from $4,886 for an increase ≥ 0.3 mg/dl up to $22,023 for an increase ≥ 2.0 

mg/dl.56  

INFORMATICS BACKGROUND 

DATA DRIVEN PHENOTYPING 

Electronic health record (EHR) phenotyping helps identify sufficiently large cohorts to perform 

observational studies that inform clinical care in a wide variety of domains; refer to Shivade et 

al. and Xu et al. for a review.57,58  Phenotyping is especially important as larger observational 

cohort datasets have been generated due to collaboration from multiple institutions.59,60 EHR 

phenotyping has been applied to various conditions including cancer,61–63 diabetes,64 heart 

failure,65 rheumatoid arthritis,66 cataracts,67 drug side effects,68 pneumonia,69 asthma,70  and 

hypertension.71   

Phenotyping has not been applied to acute kidney injury (AKI), a common acute complication 

sometimes necessitating hospitalization and a challenging problem because of the close overlap 

between multiple causes of kidney injury. There are more than ten causes of AKI;72 and in 

observational cohort studies, though laboratory markers can be used for some etiologies, the 

majority of etiologies are represented by the International Classification of Diseases (ICD) code. 

Using ICD-9 codes alone is well known to have limited sensitivity and sub-optimal specificity.73 

Hepatorenal syndrome is a serious form of AKI that can occur among patients with cirrhosis, and 

stands as an archetype of multi-organ failure.30–32 Refer to Figure 5 for some EHR elements that 

may be used to identify patients with HRS. 
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Figure 5: Hypothetical phenotyping elements for Hepatorenal Syndrome. 

Note: ICD: International Classification of Diseases. 

 

Rule based systems serve as the most basic phenotyping model. The simplest rule based systems 

employ a single ICD code to identify a cohort, e.g. ICD-9 code 571.2 for alcoholic cirrhosis. 

Typical rule-based systems apply other constraints (such as age, biological sex, laboratory value 

thresholds, etc.) in a sequence of steps. Rule-based systems can be a priori defined, either by 

medical experts or based on healthcare guidelines. Conversely, they can be automatically derived 

using, for example, a decision tree algorithm. The pros of a rule-based system include their ease 

in interpretation, implementation speed, and they tend to yield good results on limited datasets. 

Because rule-based systems often rely on structured data elements that are universal in EHRs, 

they are also more portable. Examples of rule-based systems include rules for reporting quality 

metrics to guideline agencies, e.g. National Quality Forum74 measure #001875 which identifies 

individuals with hypertension based on age, blood pressure readings, and ICD codes. 

Unlike rule-based systems, systems utilizing machine learning and statistical analysis attempt a 

data-driven approach to identifying a phenotype. Popular machine learning models employed in 

these systems include support vector machines,66 random forest,76 and Bayesian algorithms.77 

Statistical methods for classification, such as logistic regression, are not infrequently used for 

phenotyping when the overall number of variables is small.78 As EHR datasets have grown, 

particularly in the number of variables available for model construction, machine learning 

algorithms have overtaken rule-based and statistical algorithms.  

Algorithm development has given way to phenotyping system design. Phenotyping systems 

attempt to generate reproducible phenotyping algorithms that can be shared and validated across 

systems. Examples include the Electronic Medical Records and Genomics (eMERGE) 

network,59 Strategic Health IT Advanced Research Projects (SHARP),79 and the Cross 

Institutional Translational Research (CICTR).80 Rule-based algorithms are naturally easier to 

share across systems and can be posted online, e.g. on PheKB.org.60 Important questions remain 

about using free text from clinical notes and variable selection in phenotyping. 

USE OF NATURAL LANGUAGE PROCESSING PRODUCTS IN PHENOTYPING & RISK MODELING 

Phenotyping applications leverage multiple information sources from the EHR, with clinical text 

playing an increasingly important role. Clinical text, as recorded by healthcare providers usually 
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during routine care of patients, can contain data inexpressible in a structured format, tedious to 

express in structured formats, or more nuanced then that which is contained in structured data.81 

Natural Language Processing (NLP) of clinical text plays a crucial role in converting free text 

into computable structured data.66,82,83 NLP systems may proceed along one of two workflows. 

One choice is to build a custom NLP pipeline and train the system to identify specific 

phrases/concepts within the documents. This process frequently requires painstaking annotation 

of a document corpus at the phrase level. Because the concepts of interest are a priori defined 

using domain knowledge, this method will produce a more parsimonious feature set and the 

results likely will have higher specificity.  

Conversely, one may utilize an “out-of-the-box” NLP system that attempts to identify all medical 

concepts within the documents. Natural Language Processing has increasingly turned to 

replacing raw text with standardized concepts from ontologies such as the Unified Medical 

Language System (UMLS).84 Natural Language Processing pipelines from clinical Text Analysis 

Knowledge Extraction System (cTAKES),85 MedLEE,86 and MetaMap87 allow for replacing free 

text concepts with UMLS concept unique identifiers (CUIs). Refer to Figure 6 for an example of 

the steps taken by the cTAKES pipeline to convert free text into computable CUIs. The 

workflow for using these systems for model development is often different, with annotation more 

likely to be performed at the document or at the patient level. In either case, some sort of manual 

chart review is required; however, depending on resources and level of domain knowledge one 

workflow may be superior to the other. Because the “out-of-the-box” approach is often non-

specific, i.e. it attempts to identify all medical terms in the text, some sort of post-processing is 

required. This post-processing often requires dimension-reduction and/or machine learning to 

match the identified concepts with the document- or patient-level annotation. 

Phenotyping has traditionally been a time intensive process, often requiring the assistance of 

domain experts. As a result, increasing emphasis has recently been placed on automated 

methods, termed high throughput phenotyping, requiring less domain knowledge.88–90 These 

high throughput methods have focused on using NLP to augment the phenotyping process.91–93 

To date, however, they have only been validated on chronic medical conditions. Performance 

may be biased due to the much higher data density for chronic conditions, particularly in terms 

of clinical text. 
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Figure 6: Description of workflow and modules within the clinical Text Analysis 

Knowledge Extraction System (cTAKES) NLP system.  

Note: Taken from apache.org.94 DT: determiner; NN: noun; VBD: verb, past tense; IN: preposition; NNP: proper 

noun; WDT: Wh-determiner; VBD: RB: adverb; VB: verb, base form; NNS: noun, plural; PRP$: possessive 

pronoun; NP: noun phrase; VB: verb phrase; Unified Medical Language System (UMLS). 

RISK PREDICTION MODELS 

Risk prediction models increasingly complement clinical reasoning and decision making in 

modern medicine.  Models have been developed to predict a wide array of outcomes including 

ICU mortality95, various types of cancer96–98, quality control99, post-acute coronary syndrome 

outcomes100,  and other forms of acute kidney injury.101–105  

Traditional views of medicine incorporated the ideal of the master clinician who, through years 

of experience and inductive reasoning, could appropriately diagnose and treat patients. This view 

of physician healthcare delivery changed in the 20th century, most notably with the birth of 

Gordon Guyatt’s “Evidence Based Medicine.”106 However, its seeds had taken root much earlier. 

Possibly the first use of rigorous modeling in healthcare had to do with population tracking and 

prediction. Verhulst developed the logistic equation to describe population growth in 1845.107 

The logistic function had subsequent uses from the U.S. Food Administration to model food 

shortages during World War I.108 Eventually, Cox would publish his seminal work on logistic 

regression.109 Though rigorous modeling was nipping at the heels of medicine in the early 20th 

century, the majority of scientific thinking, communication, and training were still grounded in 

inductive knowledge.  

Perhaps one of the earliest changes to this dogma occurred with the Framingham Heart Study 

started in 1948 in the town of Framingham, Massachusetts.110 A cohort of 5,209 subjects were 

followed prospectively to quantify various heart disease risk factors. However, the subsequent 

multivariable survival model was too complex for everyday use and it was not until a simpler, 

point-based formula allowed the Framingham Risk Score to be employed in routine clinical 

care.111 Other early forays into risk models include the Child-Turcotte-Pugh score112,113 to 

predict surgical mortality in cirrhotic patients, Maddrey’s discriminant function for alcoholic 

hepatitis,114 and Ranson’s criteria for pancreatitis mortality.115 Though these were early forays 

into risk prediction models in medicine, it was not until the 1980s when the field exploded with 

several new models.116–119 
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Nevertheless, modeling was invariably expert driven, partially as a commentary on the climate in 

medicine at the time, but also as a matter of necessity. These models were usually based on 

carefully conducted prospective studies where the variables had to be prespecified and 

reasonable to collect. The concept of “data mining,” and its promise, was coined in the 1990s 

with the increasing reliance on large database systems in finance, transportation, and 

communication.120 Data-driven medicine did not really become a concept until two important 

events in the 21st century, sequencing of the human genome and the HITECH Act, which 

introduced a tremendous amount of data into healthcare. With the proliferation of EHRs, risk 

modeling became more complex as it consumed vastly more information,105,121–124 and even 

allowed EHR incorporation of predictions at the point of care.125–128 These EHR driven, point-of-

care risk models have led to probabilistic clinical decision support (CDS), as opposed to 

reporting a binary outcome, making calibration all the more important. 

Assessment of Performance (Discrimination / Calibration) 
For a risk prediction model to be clinically useful, one must consider both its discrimination as 

well as its calibration.129 Discrimination refers to the model’s ability to distinguish individuals 

who experienced the outcome from those who remained event free. Calibration refers to 

agreement between the probability of developing the outcome as estimated by the model and the 

observed outcome frequencies. Although clinical decision rules have often focused on a model’s 

discriminative ability (e.g., instituting a statin medication in high cardiovascular risk patients)130, 

proper calibration is required when multiple decision options are available at differing levels of 

risk (e.g., management of a solitary pulmonary nodule found on computed tomography).131 

Moreover, model performance degrades when used in a cohort outside of its development, 

making careful validation of discrimination and calibration essential.132 

Several statistics are available to summarize discrimination for binary classification models, 

which tend to be the most common in healthcare, including the c-index133 and the area under the 

receiver operator characteristic curve (AUC). One may best assess calibration graphically by 

plotting observed outcome frequencies against mean predicted probabilities within subgroups of 

the observations, usually split by deciles of predicted probabilities.134 The plot can be 

supplemented with formal statistical testing for goodness of fit, frequently done using the 

Hosmer-Lemeshow (HL) test. However, because the HL test applies the chi-square distribution, 

whose power scales with the sample size,135 the null hypothesis for the HL-test may be accepted 

under a small sample size, but rejected under a large sample size.136  

Newer measures of discrimination and calibration have been developed. Discrimination has been 

reframed as a reclassification task, i.e. how well does a new model correctly classify 

observations that the old model misclassified. Two metrics for measuring reclassification include 

the Net Reclassification Index (NRI) and the Integrated Discrimination Index.129 The NRI may 

be interpreted as the net improvement in the true positive rate plus the net improvement in the 

false positive rate under the new model. The NRI may be measured at specific thresholds of 

interest of the underlying model, which may be more informative than a global measure such as 

the AUC. Healthcare delivery is often interested in model performance at certain cutpoints.  

Feature Generation & Selection 
Feature selection and generation are common steps in data pre-processing. Feature selection 

hopes to identify a relevant subset of the original features; whereas, feature generation creates 

new features (optionally replacing some original features) to enhance model performance. 
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Feature selection has always been essential to produce parsimonious models, prevent loss of 

statistical power, and prevent overfitting. However, as the amount of healthcare data has 

exploded feature selection has gained in importance. Traditional healthcare models were often 

created with 5 – 20 a priori selected variables; however, newer data-driven models may have 

hundreds of potential variables. Popular clinical NLP systems can generate hundreds to 

thousands of features from reviewed documents.85–87,137 Often, dimensionality reduction is 

necessary to either make the classification task more tractable or improve performance.138,139  

Perhaps the most common traditional selection method has been forward selection and backward 

elimination (FBS). Forward/backward selection has drawbacks, however; particularly in large 

datasets with many variables or collinearity among its predictors.140 Newer methods include 

using random forest classifier based variable importance and 141 penalized logistic 

regression.142,143 For very high dimensional data, which is more common in biomedical datasets, 

penalized logistic regression methods such as LASSO and elastic net appear to work well.144 

Though one may produce an adequate model via the original feature set, often times one must 

consider feature generation as both a way to perform dimension reduction and identify novel 

relationships. Feature generation methods such as a priori specifying interaction terms, Principle 

Component Analysis (PCA),145 and Latent Discriminant Analysis (LDA)146 serve an important 

role in discovering underlying structure. Methods such as PCA and LDA have the added benefit 

of reducing the feature space.  

A relatively recent dimensionality reduction technique involves a distributed vector 

representation of words, or word embeddings, which has shown good performance in many NLP 

tasks.147,148 Google’s word2vec, an increasingly popular embedding algorithm,149 has been 

generalized to vector representations of an entire document (termed doc2vec).150 Although word 

embeddings have been used to improve classification in healthcare tasks,151–153 it is still 

relatively new to assess improvement in phenotyping. Zhang et al. assessed word embedding’s 

benefit in identifying phrases suggestive of psychiatric illness,154 and Turner et al used word 

embedding to identify an overall phenotype for Systemic Lupus Erythematosus.155 However, 

they applied it to chronic conditions and used raw text. 

Regardless of whether one is interested in feature selection or feature generation, the primary 

goal is to improve model accuracy. However, and this is particularly true in data-driven methods, 

a secondary measure of importance is understandability.156 Validation of the model not only 

requires statistical measures such as discrimination and calibration, but also 

biological/physiological plausibility. Feature generation methods such as PCA, latent 

discriminant analysis, and neural networks may obscure understandability of the model.157 In 

this regard, knowledge driven variable selection tends to be superior.  

INFORMATION VISUALIZATION 

The surge of Electronic Health Records, and its resulting zettabyte of data,158 allows us to realize 

the vision of the learning healthcare system. Despite the growth of observational cohort studies, 

challenges still remain bringing the knowledge from the bench-to-the-bedside.  Observational 

cohort studies employ data for secondary use, i.e. data collected for other purposes. The most 

common secondary use scenario is data collected as part of routine clinical care.159 However, 

due to cognitive and perceptual limitations, healthcare providers need increasing help to digest 

the vast amounts of information generated during clinical care.  Information visualization can be 
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defined as “the process of transforming data, information, and knowledge into visual form 

making use of humans’ natural visual capabilities.”160 Bertin, a pioneer in information 

visualization, defined it as, “… finding the artificial memory that best supports our natural means 

of perception.”161 Ultimately it is the depiction of information using spatial or graphical 

representations, to facilitate comparison, pattern recognition, change detection, and other 

cognitive skills by making use of the visual system.  It is important to differentiate scientific 

visualization from information visualization. Scientific visualization’s goals are to depict 

scientific data, often physically based, over a compact domain. Information visualization often 

deals with abstract data types mapped onto abstract domains.162  

COGNITIVE PRINCIPLES OF VISUALIZATION 

There are two basic cognitive principles in visualization, pre-attentive properties and gestalt 

properties.161 Pre-attentive processing occurs without need for focusing attention. Tasks which 

are completed in less than 250 milliseconds are considered pre-attentive.  As reference, a non-

exhaustive list of the various pre-attentive properties that have been studied in Information 

Visualization include length, width, size, curvature, number, terminators, intersection, closure, 

color, intensity, flicker, motion, binocular luster, stereoscopic depth, 3D depth curves, and 

lighting direction (See Figure 7 for examples).163  Accurate application of pre-attentive 

properties can communicating information rapidly, as a pre-attentive task takes the same amount 

of time irrespective of the number of distractors.164 The gestalt properties are forms or patterns 

that transcend the stimuli used to create them. They include proximity, similarity, enclosure, 

closure, continuity, and connection. In Information Visualization, proximity, similarity, and 

enclosure tend to play larger roles. 

TAXONOMY OF VISUALIZATION 

Visualization techniques can be subdivided into a few different types. Certain methods may be 

more appropriate for particular types of data.165,166 Table 2 describes some of the patterns of 

information visualization and the data sizes and dimensionality for which they are suited.  

Geometric visualization is one of the most common and has the closest resemblance to Scientific 

Visualization. A classic example is the use of hierarchical parallel coordinates, which allows the 

plotting of multiple variables within one figure.167 Iconographic visualization techniques have 

gained more popularity as a means of communicating complex information to lay people.168 

Pixel based visualizations allow display of very large datasets by mapping multi-dimensional 

datapoints onto a single pixel within a larger diagram.169 Hierarchical display visualizations 

allow the user to see underlying relationships within the data; the Treemap is a popular tool to 

demonstrate hierarchical relationships and semantic information.170 Network visualizations are 

common in displaying non-hierarhical relationships within a wide area of research, including 

social relationships and bioinformatics.171,172   
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Figure 7: Examples of pre-attentive/gestalt properties in visual processing. 

Each panel demonstrates a different pre-attentive property. A: orientation; B: length; C: closure; D: size; E: 

curvature; F: color; G: density; H: shape. Panels C, F, and G also demonstrate gestalt properties of closure, 

similarity, and proximity, respectively. Taken from Healey.173  

 

Table 2: Patterns of information visualization and their relationships to data size and 

dimensionality.  

GENERAL PARADIGM OF VISUALIZATION 

Ben Shneiderman constructed a paradigm of visualization, divided into tasks and data types. 

Tasks includes: (1) provide an overview; (2) zoom into relevant detail; (3) filter; (4) provide 

details-on-demand; (5) relate what is being viewed to the bigger picture; (6) be able to provide a 

history of actions; and (7) extract relevant details.174 Shneiderman also suggested (possibly 

orthogonal) data-types that in some ways mirror the taxonomy presented in Table 2. In 

particular, he considered data to be: 1-dimensional (1-D), 2-D, 3-D, Multi-dimensional, 

Temporal, Hierarchical, and Networked. Naturally, certain visualization techniques work well 

 
Data 
Size 

Dimensions Examples 

Geometric Large to 
very 
large 

Medium to 
high 

Scatter matrix, PCA, factor analysis, MDS, 
GridViz, Hierarchical Parallel Coordinates 

Icon Small to 
medium 

Medium to 
high 

Chernoff faces, color icons, driftweed, shape 
coding, sound icons 

Pixel Large to 
very 
large 

Medium Circle Segments, Recursive Pattern, Space 
Filling Curves 

Hierarchical Small to 
medium 

Low to 
medium 

TreeMap, Dimensional Stacking, Worlds-
within-Worlds 

Graph Medium Low NetMap, NetViz, SocialNet 
Hybrid Variable Variable Variable 
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with certain data types in Shneiderman’s hierarchy, e.g. Hierarchical Parallel Coordinates for 

multi-dimensional data and a TreeMap for hierarchical data. Table 3 outlines Shneiderman’s 

visualization “tasks” and methods to effectuate these tasks. 

Table 3: Tasks in Shneiderman’s Paradigm of Data Visualization. 

Tasks Example Methods 
Overview Fisheye distortion 
Zoom Brushing 
Filter Dynamic querying 
Details-on-Demand Pop-up windows 
Relate LifeLines175 
History Undo/Redo controls 
Extract Image export 

Visualization is increasingly interactive, especially when dealing with large datasets with 

multidimensional data. Central paradigms in dealing with complex data sets, as is often 

encountered in healthcare, are multiple coordinated views and dynamic queries.176,177 Dynamic 

queries allow the user to interact with the visualization in a pragmatic manner: (1) visual 

presentation of the query’s components; (2) visual presentation of results; (3) rapid, incremental, 

and reversible control; (4) selection by pointing; and (5) immediate, continuous feedback.  

TEMPORAL VISUALIZATIONS 

Temporal visualizations seek to identify patterns in time-dependent data changes. Several 

general purpose visualization tools have been developed to explore temporal changes in data.178–

181 Healthcare temporal visualization has tackled time series182–184 and event series data.175,185–

187 Time series data often have issues with scale and data density, particularly in healthcare. 

Berry et al.179 used “brushing,” a technique that allows the user to examine a data segment in 

greater detail by serially highlight and zooming in on areas of interest. Another technique used to 

zoom in on detail is “distortion visualization.” Kincaid180 applies distortion allowing the user to 

employ a “fish-eye lens” type effect. Doing so allows the user to view detail about a specific part 

of the time-line, while still maintaining global perspective.  

Different layouts can help alleviate some of the challenges of temporal data. Multi-

dimensionality is a common hurdle with healthcare data. Multi-dimensionality makes visualizing 

temporal data all the more difficult. Some basic solutions to the problem include utilizing 

interactivity to allow the user to select subsets of variables to display, such as in Rind et al.182 

Another design principle combines “multiple coordinated views,” i.e. different perspectives of 

the same data, to handle multi-dimensionality. Zhao et al.181 uses a radial layout, but combines it 

with alternate linear views offering different perspectives of the data. Disease specific views, a 

common design in healthcare visualizations of patient data, attempt to align the patient’s disease 

course, usually summarized by a numeric measure, compared to treatment interventions.183 

Brodbeck et al.,184 for example, utilizes a simple linear view but juxtaposes estimates of lung 

function with breathing treatments in patients with obstructive pulmonary disease.   

Though frequently healthcare visualizations attempt to plot data regarding a single patient, 

another common theme is plotting data of multiple patients together on the same visualization in 

an attempt to identify patterns. One of the earliest multi-patient visualizations is the seminal 
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work by Plaisant et al. with LifeLines.175 Plaisant expanded on this work by tackling a common 

problem with temporal visualization of healthcare data: often healthcare data records discrete 

events, e.g. medication refills; however, these discrete events are semantically part of a 

continuous temporal period, i.e. the time from when the healthcare provider starts prescribing the 

medication to when it stops. Wang et al.187 operationalized an iterative method to combine 

events to visualize patterns in patients with heparin-induced thrombocytopenia. Meyer186 

updated the prior work to assess patterns in medication use for patients with obstructive lung 

disease.  

CHALLENGE OF BIG DATA 

Big Data offers unique challenges for Information Visualization. Both the scale of data and the 

dimensionality provide challenges for constructing effective visual analytic tools. Two major 

approaches have emerged to handle these challenges: distortion and non-distortion based 

approaches. Non-distortion based approaches primarily focus on presenting a part of the data at 

any one time using scrolling or paging access, providing hierarchical access, and structure 

specific presentation. Distortion based approaches try to preserve the global data presentation on 

the macro scale, while zooming into the relevant area of interest on the micro scale. One 

common distortion based visualization is the Fisheye Lens, which zooms in on a local area of the 

visualization, compressing the areas not of interest, though they are still displayed on screen.188  

The prior discussed paradigms of dynamic queries and multiple coordinated views can also help 

the user explore and interpret very large datasets. 

APPLICATION IN CLINICAL INFORMATICS 

Complex informatics solutions have had difficulty gaining traction in routine clinical practice 

because of esoteric analytic techniques and outputs.  Information visualization, a field devoted to 

conveying complex data, can address these shortcomings.165,177   Visual Analytics in healthcare 

has been used for improving radiology interpretation,169,189 investigating temporality,185,187,190–

193 explaining social networks,171 analyzing spatial patterns,194,195 documenting workflows,177 

identify latent structure,176 and analyzing high dimensional data.196,197  Research on uncertainty 

visualization has predominated within geographic information science, geographic visualization, 

and scientific visualization fields.198–203  

Though visualizing risk prediction and uncertainty has received some attention for patient-facing 

tools,168,204 physician-facing clinical decision support (CDS) at the point of care has received 

sparse investigation.205 Most visualizations in medical practice are designed to be used “off-

line.” Because medical decision making rarely has an obvious correct answer, further research in 

uncertainty visualization for CDS would be beneficial.   

Visualization has also been utilized to better understand patient cohorts. For example, Mane et 

al.205 employed visualization to better understand results in comparative effectiveness trials to 

make decisions in psychiatry. Early efforts have also used visualization to show clinicians 

“Patients-like-me” cohorts.206  An essential component of these kinds of studies is ensuring that 

one has an appropriate cohort of patients. Research studies are often done under the assumption 

that a cohort of patients based on fairly rudimentary principles are relatively uniform. As 

discussed in simple rule-based phenotyping algorithms, a common assumption is that if one 

selects a group of patients with Hepatorenal Syndrome via simple structured data (e.g., ICD-9 

code) the cohort will be rather homogenous.  



 15 

However, this assumption often does not hold. The case mix (i.e. the heterogeneity of subjects in 

the population) used to develop the model affects both discrimination and calibration.207,208 

More importantly, population heterogeneity can hide subgroups for which the risk model 

underperforms (e.g. pharmacogenomic model based dosing of warfarin209 and a geriatric 

mortality model210 did worse in African Americans and the EuroSCORE cardiac surgery 

mortality model performed worse for high-risk subgroups).211  

The process of finding a cohort of similar patients goes by many names, including phenotyping, 

matching, cohort discovery, etc. Matching is an increasingly popular method to improve causal 

inference in observational studies.212 Matching attempts to reduce the bias inherently involved in 

observational studies because of measured and unmeasured confounders.213 The end result is a 

matched group of study subjects that could theoretically have been produced by a randomized 

control trial. However, traditional matching methods may cause spurious results based on the 

methodologies.214,215 

Information Visualization, when combined with clustering, may help identify true pockets of 

heterogeneity. Clustering has been applied to various medical problems such as identifying 

disease subtypes70,216,217 and risk stratifying patients.218,219 At its heart, Information 

Visualization aims at making the user an active participant in identifying patterns in the data, 

which may be undiagnosed by a computational algorithm. For example Gotz et al.220 clustered 

patients into similar groups, then attempted to visualize common clinical trajectories. The goal 

being to use the group’s trajectory to predict a new patient’s outcomes.  

PRIOR HRS INFORMATICS RESEARCH 

Current HRS mortality risk models suffer from one or more flaws: they were developed prior to 

the current standard of care (particularly the use of vasopressors);35 they were developed with 

modest sample sizes;37,39,221–224 used specialized, non-routine laboratory tests;221 did not include 

Type I and Type II HRS;39,222,225 or they were limited to a small, a priori set of variables.39,222  

Refer to Table 4 for a summary of risk prediction studies involving HRS. Because Hepatorenal 

Syndrome exhibits different phenotypes, risk model performance may vary widely among sub 

groups.95,226,227  

Several of the studies in Table 4 use an outdated definition of HRS, either the 200730 or the 1996 

International Ascites Club criteria.228 Most of the studies do not perform any validation of their 

risk model, whether internal or external. The listed studies had a median subject size of 64 (IQR: 

41 – 105) and they evaluated a median of 7.5 variables (IQR: 1 – 16.5) in univariate testing. 

Studies that performed multivariable model building invariably only included 3 – 5 variables. 

Nevertheless, several smaller studies show promising avenues for investigation. Several studies 

have investigated the beneficial use of Transjugular Intrahepatic Portosystemic Shunts (TIPS), a 

common procedure performed in cirrhotics. The use of beta-blockers, a common medication 

used in cirrhosis, has also come under scrutiny.  

For example Guevara et al.229 assessed vascular hemodynamics in 7 patients before and after 

TIPS placement, resulting in (expected) reduced portal pressures and favorable metabolite 

profiles. Testino et al.230 assessed the role of TIPS in 9 patients with severe alcoholic hepatitis 

and HRS, and identified favorable outcomes in this small sample study. Brensing et al.231 

prospectively followed 41 non-transplanted cirrhotics with HRS who received TIPS, and also 

recorded favorable short-term hemodynamic and long-term outcomes. Regardless all three 
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studies show the limitation of studying TIPS in HRS patients as no one study or TIPS specialized 

center has enough patients for sufficient inference due to the usually restrictive nature of TIPS 

selection. Sersté et al.232 performed a single-center study involving 151 patients with refractory 

ascites (often a precursor to HRS) and found poorer survival. Mandorfer et al.233 retrospectively 

analyzed 607 patients with spontaneous bacterial peritonitis and identified increased risk of HRS. 

Because beta-blockers are the standard of care for many patients with cirrhosis (to prevent 

variceal bleeding), there is significant confounding and retrospective studies require larger 

numbers to tease out any potential causal effect. To the best of our knowledge, no study has 

evaluated the necessity of stopping a beta-blocker when a patient develops HRS.  

In both of these cases improved phenotyping efforts could advance the field by building larger 

observational cohort datasets. Additionally, phenotyping could be deployed for real-time 

identification of HRS patients as current practice guidelines often leave the diagnosis in doubt 

early in the illness’s trajectory. Biomedical informatics tools and techniques may help advance 

risk prediction for HRS by allowing a significantly larger candidate predictor pool, improving 

accuracy, and allowing for other data types such as NLP augmented clinical text. Medical 

informatics solutions have been sought to improve cirrhosis care; however, these methods 

invariably rely on structured data and ignore social determinants of illness. 

THESIS OBJECTIVE 

Because of the prior small sample sizes of patient cohorts and complexity of the disease, there 

has been little work in attempting to use clinical informatics and data science to identify and 

characterize individual phenotypes within the overall syndrome of HRS.  In addition, there are 

opportunities to attempt to create early detection algorithms in order to identify and potentially 

triage and manage patients at high risk for developing HRS in the near term.  Lastly, 

interpretation of complex, high density clinical data is a challenge in health care, particularly as 

data collection and data become harder and harder to interpret and efficiently manage, and there 

are needs for interactive visualizations to help present actionable clinical information in a way 

that is believable, accepted, and actionable for clinicians.   Within the context of the use case for 

HRS, we aim to explore some of these challenges. 
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Table 4: Summary of Hepatorenal Syndrome Risk Prediction Papers. 

Note: PC: Prospective cohort; RC: Retrospective cohort; RCT: Randomized Controlled Trial; IAC: International Ascites Club. 

Author 

(Year) 

Study 

Type 

N Inclusion Criteria Exclusion Criteria # of 

Var 

Outcome Definition Event Rate 

Ginès 

(1993)35 

PC 234 Cirrhosis with ascites GI hemorrhage within 1 month of 

admission, hepatic encephalopathy 

or bacterial infection at the time of 

study, hepatocellular carcinoma, 

respiratory, cardiac, or renal 

diseases. 

39 Development of HRS by 

criteria similar to 1996 IAC 

criteria228 

56 (24%) 

Gungor 

(2014)221 

PC 64 Group 1: Healthy control 

Group 2: serum creatinine value <1.5 

mg/dl. 

Group 3: Type-2 HRS (serum 

creatinine >1.5 mg/dl) 

Group 4: Type-1 HRS (serum 

creatinine >2.5 mg/dl) 

 

Group 2: renal dysfunction, active 

infection or malignancy 

Groups 3/4: shock, fluid losses, 

active infection, and patients who 

did not fulfil HRS diagnostic 

6 6-month Mortality 28 (43.7%) 

Maddukuri 

(2014)39 

RC 59 2007 IAC criteria for HRS,30 

received vasoconstrictors plus 

albumin 

No baseline creatinine, received 

dialysis within 3 days of therapy, 

received liver transplant within 3 

days of therapy, died within 3 days 

of therapy 

1 Treatment response, defined 

as decrease in serum 

creatinine gen-erally to a 

level < 1.5 mg/dl 

15 (25.4%) 

Martinez 

(2012)222 

RC 68 2007 IAC criteria for HRS Type 130 None provided 9 Death or discharge from 

hospital 

Median survival: 

13 days 

Salerno 

(2011)224 

PC 253 (76 

w/ 

HRS) 

Cirrhosis patients admitted with renal 

failure (creatinine > 1.5 mg/dl) 

Age < 18 years, prior kidney or 

liver transplant 

21 3-month mortality 58 (76%) 

Alessandria 

(2005)37 

RC 105 1996 IAC criteria for HRS228 

 

None specified 15 Mortality 78 (74%) 

Barreto 

(2014)225 

PC 70 2007 IAC criteria for HRS30 and 

infection 

Admitted for elective diagnostic or 

therapeutic procedures, history of 

liver and/or kidney transplantation, 

hemodialysis before admission. 

27 Treatment response, 

mortality 

Treatment 

response: 23 

(33%), 3-month 

mor-tality: 53 

(75%) 
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Author 

(Year) 

Study 

Type 

N Inclusion Criteria Exclusion Criteria # of 

Var 

Outcome Definition Event Rate 

Krag 

(2010)234 

 

PC 24 Alcoholic cirrhosis with ascites 

without HRS type 1 by 2007 IAC 

criteria30 

GI hemorrhage within the week 

before the study, spontaneous 

bacterial peritonitis, 

insulin-dependent diabetes, acute or 

chronic intrinsic 

renal or cardiovascular diseases, 

arterial hypertension, 

abnormal electrocardiogram or any 

acute 

medical conditions such as 

infections or acute 

heart or lung diseases, alcohol 

abstinence for 6 weeks was required 

 

1 Development of type 1 HRS 

within 3 months, 12-month 

mortality 

Type 1 hrs: 4 

(16.7%), death: 9 

(37.5%) 

Mandorfer 

(2014)233 

 

RC 165 Cirrhosis with ascites who received 

their first paracentesis 

Non-liver causes of ascites 1 Development of HRS within 

90 days of SBP 

development 

29 (18%) 

Sersté 

(2010)232 

 

RC 151 Cirrhotic patients with refractory 

ascites 

Not specified 15 Mortality 97 (64.2%), 

median survival: 8 

months 

Ghosh 

(2013)52 

 

RCT 46 Type 2 HRS based on IAC 2007 

criteria30 

Severe coronary 

artery disease, sepsis in, HCC, 

diabetic nephropathy 

 

17 HRS reversal 34 (74%); 17 in 

intervention group 

A and 17 in group 

B 

Guevara 

(1998)229 

 

PC 7 Type 1 HRS patients by 1996 IAC 

criteria228 

None described. 1 Improvement in renal 

function 

7 (100%) 

Brensing 

(2000)235 

PC 41 HRS patients by 1996 IAC criteria228 

ineligible for transplant 

Transplant eligibility 5 Multiple outcomes. 3-month 

survival 

63% 

Testino 

(2012)230 

 

PC 9 Severe Alcoholic hepatitis with HRS Ongoing infections, malignancy, 

symptomatic cardiac or respiratory 

diseases, GI hemorrhage in the last 

week 

1 Improvement in renal 

function 

Unclear, 

presumably all 
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CHAPTER II: PHENOTYPING HEPATORENAL SYNDROME 

 

CHAPTER OBJECTIVE 

In this study, we sought first to assess the performance characteristics of ICD-9-CM codes for 

determining HRS occurring during a patient hospitalization.  We then evaluated commonly used 

machine learning methods and dimensionality reduction techniques among a large number of 

variables derived from EHR structured data and NLP processed outputs in order to develop 

probabilistic predictions for phenotyping HRS during hospitalization of patients that have both 

cirrhosis and acute kidney injury.   We report on the performance of these methods by comparing 

each of the HRS predictors to a reference standard of clinical patient chart reviews. 

MATERIALS AND METHODS 

STUDY POPULATION 

We analyzed a retrospective cohort of patients hospitalized from among 124 medical centers in 

the Department of Veterans Affairs (VA) between January 1, 2005 and December 31, 2013.  The 

VA is an integrated care network that includes acute inpatient hospitals, outpatient primary care 

and sub-specialist clinics, outpatient pharmacies, rehabilitation facilities, long-term care facilities 

and domiciliaries.  All VA personnel use the same EHR, Veterans Information Systems and 

Technology Architecture/Computerized Patient Record System (ViSTa/CPRS), for 

documentation and administration of clinical care.236 The institutional review board and research 

and development committees of the Tennessee Valley Health Care System VA Medical Center, 

Nashville, TN, approved this study. 

DATA COLLECTION 

All data were collected from the EHR and accessed via the national Corporate Data Warehouse.  

The clinical data included vital signs, laboratory data, inpatient and outpatient medication data, 

narrative text notes, ICD-9 codes for diagnoses, and Current Procedural Terminology (CPT) 

codes for procedures. 

COHORT SELECTION 

We examined a cohort of patients hospitalized at a VA facility during the study years. We 

included all hospitalizations for patients who had a cirrhosis diagnosis (based on a history of two 

outpatient or one inpatient) ICD-9 code (571.2 or 571.5) and had AKI during their 

hospitalization with a maximum inpatient creatinine of at least 1.5 mg/dl. The maximum 

inpatient creatinine cutoff was used to be compliant with International Ascites Club criteria for 

HRS (Refer to Table 5).30 We excluded hospitalizations where the patient was on dialysis prior 

to admission, did not have at least one serum creatinine value within the year prior to admission 

or during the inpatient stay, who had a diagnosis of HRS prior to the hospitalization, who had a 

prior hospitalization with AKI, or who were discharged in less than forty eight hours.  

We performed stratified sampling based on presence/absence of an ICD-9 code for HRS, level of 

kidney injury, and level of liver disease.  Acute Kidney Injury was defined by the Kidney 

Disease: Improving Global Outcomes (KDIGO) guidelines: with Stage I being a defined as a rise 

in creatinine of ≥0.3 mg/dl from baseline; Stage II being defined as a doubling of serum 

creatinine from baseline; and Stage III being defined as a tripling of serum creatinine or initiation 
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of dialysis. Severity of liver disease was defined by the Model for End Stage Liver Disease 

(MELD) score: a combination of three laboratory values: the serum creatinine, international 

normalized ratio, and platelet count. We sampled in blocks of twelve: six patients were selected 

if they had an ICD-9 code for HRS (572.4) anytime during their hospitalization; six patients 

(without an HRS ICD-9 code) were selected based on two levels of kidney injury (KDIGO Stage 

I versus KDIGO Stages II and III) and three levels of MELD (< 20, >= 20, and unable to 

calculate). We randomly selected a total of 42 blocks (504 inpatient admissions) to serve as the 

gold standard cohort.  

Table 5: Diagnostic criteria for Hepatorenal Syndrome from the International Ascites 

Club. 

OUTCOME 

Two physician annotators reviewed the 504 hospitalizations reviewing all clinical notes, relevant 

laboratory values, medications, and radiology reports to assign each hospitalization into one of 

five categories: HRS Type I, HRS Type II, HRS Type Indeterminate, Maybe HRS, and Not 

HRS. Reviewers were instructed to differentiate Type I, Type II, and Not HRS based on 

International Ascites Club criteria.30 Type Indeterminate was reserved for cases where the 

reviewer felt the patient had enough evidence for HRS, but could not differentiate between Type 

I and II; whereas, Maybe HRS was reserved for cases of clinical uncertainty. We employed a 

practice phase where the two annotators worked in blocks of twelve patients until the inter-

annotator agreement was  0.8. Disagreements on the 504 patient set were adjudicated by a 

board certified nephrologist. We report the inter-annotator agreement for the 504 charts that were 

reviewed. To reduce the problem to a two-class classification measure, we combined HRS Type 

I, Type II, Type Indeterminate, and Maybe HRS into a “Yes HRS” category. We performed a 

sensitivity analysis to examine classification performance after excluding “Maybe HRS” from 

model building and validation. 

PREDICTOR VARIABLES 

We included 649 variables from the structured data in the EHR, including demographics (3), 

laboratory values (92), vital signs (21), home medications (99), inpatient medications (116), 

medical history (129), inpatient diagnoses and procedures (176), and four other miscellaneous 

variables. To the structured data we added nine engineered variables comprised of the patient’s 

creatinine response to various events during hospitalization. Variable engineering was performed 

Criteria 

Cirrhosis with ascites 

Serum creatinine > 1.5 mg/dl 

No improvement of serum creatinine after at least 2 days with diuretic withdrawal and volume 

expansion 

Absence of shock 

No current treatment with nephrotoxic drugs 

Absence of parenchymal kidney disease 
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using the training set and validated on the test set prior to inclusion. A detailed summary of these 

variables and associated definitions are included in Online Appendix A.1 and A.2.  To the 

structured variables, we added variables from natural language processing of the clinical notes as 

outlined in the next section. 

With the exception of cirrhosis-related or nephrotoxic medications (e.g., lactulose, rifaximin, 

albumin, norepinephrine, cyclosporine), which were coded as separate variables, all medications 

were represented by their corresponding VA drug class code (e.g., “cephalosporin 3rd 

generation”). The VA drug class codes are available publicly through the VA National Drug 

File.237 With the exception of three prehospitalization laboratory variables, the inpatient 

laboratory values and vital signs were summarized by their maximum, minimum, and mean or 

median. Missing values for laboratory test results were filled in using Markov Chain Monte 

Carlo multiple imputation using a subset of co-morbid conditions, medications, and procedures 

(See Online Appendix A.3).238 

NATURAL LANGUAGE PROCESSING 

We filtered all available clinical notes based on authorship by first including only physicians and 

advanced practice providers, and then excluding specialties unlikely to address hepatic pathology 

(podiatry, ophthalmology, and dentistry).  We converted the documents into a string of CUIs 

mapped to the UMLS (version 2013AB)84 using the clinical Text Analysis Knowledge 

Extraction System (cTAKES) version 3.2.85 To manage the large number of unique CUIs and 

data sparsity, based on inspection and evaluation of instability of modeling within the training 

data, we first filtered the output by removing CUIs with a less than 2% or greater than 90% 

prevalence among documents. All CUI counts were log transformed. From this data, we 

evaluated nine different dimensionality reduction techniques: (1) using the full set of CUIs; (2) 

CUIs limited by semantic type; (3) CUIs aggregated by semantic similarity; (4) document 

embedding using the raw text; (5) document embedding using CUIs; (6) an a priori selection of 

CUIs based on domain knowledge; (7) Yu’s Automated Feature Extraction for Phenotyping 

(AFEP);93 (8) Yu’s Surrogate-Assisted Feature Extraction (SAFE); 92 and (9) principal 

component analysis (PCA).  We refer the reader to Online Appendix Tables A.4, A.5, and A.8 

for the list of semantic type filters, a priori selected CUIs, and AFEP/SAFE selected CUIs, 

respectively. 

To aggregate CUIs by semantic similarity we first limited by semantic type and then constructed 

a pairwise similarity matrix using the Information Content based on the Leacock and Chodorow 

distance measure, which has been shown to exhibit good performance when compared against 

other semantic similarity measures.239 We subsequently performed k-medoids clustering to find 

groups of similar CUIs. Seventy clusters were chosen using the gap statistic and the “1-standard-

error” rule.240 For models (4) and (5) we used the Distributed Memory Model of Paragraph 

Vectors (doc2vec)150 as implemented by the python gensim package.241 We utilize the term 

“document embedding,” as opposed to “word embedding,” signifying doc2vec’s ability to 

consume variable length text, and therefore obviate the need to combine word vectors. Similar to 

Turner et al.155 we pre-processed raw text by removing non-alpha numeric characters and 

eliminating stopwords before using the doc2vec algorithm to generate vectors. No processing of 

the CUIs was performed other than the default parameters within cTAKES. For PCA, we kept 

sufficient components (395) to explain 95% of the variance. Refer to Figure 8 for the workflow. 
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Figure 8: Workflow describing Natural Language Processing pipeline. 

Note: cTAKES: clinical Text Analysis Knowledge Extraction System; CUI: Concept Unique Identifier; AFEP: 

Automated Feature Extraction for Phenotyping; SAFE: Surrogate-Assisted Feature Extraction; PCA: Principal 

Component Analysis 

 

FINAL PHENOTYPING MODEL DEVELOPMENT 

We tested five different classification models: logistic regression (LR), support vector machines 

(SVM), gradient boosting (GBM), random forest, and naïve Bayes. For LR and naïve Bayes we 

first performed variable selection using penalized LR, using the L1 penalty (Least Absolute 

Shrinkage and Selection Operator—LASSO), to select a subset of the predictor variables.42 For 

the remainder of the models we used the full set of predictor variables. The hyperparameters for 

SVM, GBM, and random forest were optimized using five-fold cross validation on the training 

set. A Gaussian distribution was assumed for naïve Bayes. 

NLP DIMENSIONALITY REDUCTION AND PHENOTYPING MODEL ASSESSMENT 

We assessed the NLP dimensionality reduction techniques by constructing an SVM model using 

only the NLP variables with HRS as the outcome measure. The Radial Basis Function served as 

the SVM kernel and hyperparameters, C and γ, were optimized using grid search and 5-fold 

cross validation.  While it is possible that the dimensionality reduction techniques may perform 

differently using an alternative model assessment method, we elected to test NLP variables with 

an SVM model because we wanted to utilize a method that had a low bias and few assumptions 

about the model parameter development, to allow for complex interactions to be discoverable in 

the CUI data.  While this can result in high variance, we limited the values of C in the grid search 

to prevent very small C values that would increase the variance and over-fitting to observed data.  

In addition, this machine learning framework has been shown to work well with NLP 

variables.57,242,243  

Performance of the NLP dimension reduction technique and the final phenotyping algorithm 

were calculated using bootstrapping (100 bootstrap samples) to estimate discrimination (area 

under the receiver operating characteristic [ROC] curve [AUC], F1-measure, precision, recall) 

and calibration (slope and intercept of the best fit line through the observed to predicted 

probability plot and Brier score) metrics.129,244 We defined statistical significance as non-

crossing of the 95% bootstrapped confidence intervals. We compared the discriminatory 

performance of the machine learning algorithms to the ICD-9 code. 
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We conducted an error analysis using the best machine learning method and studied the false 

positives and false negatives. We looked at false positives and false negatives at three cut-points 

for the probabilistic phenotype: the optimal sensitivity and specificity based on Youden’s index, 

sensitivity of 0.95, and specificity of 0.95. For each of these scenarios, we examined the 

annotators’ notes on the gold standard to understand why the errors occurred.  

RESULTS 

Based on manual annotation there were 87 cases with Type I HRS, 19 with Type II HRS, 16 with 

Type Indeterminate, 88 with Maybe HRS, and 294 without HRS. Table 6 shows a summary of 

the cohort after the case annotations were dichotomized as noted in the methods, resulting in a 

total of 210 (41.7%) hospitalizations with HRS.  Eighty cases were adjudicated, yielding a 

weighted Cohen’s kappa of 0.83. Males represented 98.2% of the total admissions, with a 

median age of 61. White patients accounted for the majority of hospital admissions (71.1%). The 

sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of a 

discharge ICD-9 code for HRS were 57.6%, 88.8%, 78.6%, and 74.6%, respectively. The 

sensitivity, specificity, PPV, and NPV of an HRS ICD-9 code at any time during hospitalization 

were 87.1%, 76.5%, 72.6%, and 89.3%, respectively. 

Table 6: Characteristics of the cohort of cirrhotic patients with and without HRS as 

determined by chart review. 

1 Note: A patient may have more than one etiology of cirrhosis, hence percentages add up to greater than 100%. 

Characteristic HRS  Diagnosis (n = 

210) 

No HRS Diagnosis (n = 

294) 

DEMOGRAPHICS 

   Age, mean (SD) 60 (7.9) 62 (10.2) 

   Gender (male), n (%) 208 (99.0%) 292 (99.3%) 

   Race, n (%)   

      White 154 (73.3%) 201 (68.4%) 

      Black 28 (13.3%) 65 (22.1%) 

      Other 28 (13.3%) 28 (9.5%) 

PRE-ADMISSION CHARACTERISTICS 

   Cirrhosis Etiology, n (%)1   

      Alcoholic 130 (61.9%) 151 (51.4%) 

      Viral (Hepatitis B and C) 112 (53.3%) 130 (44.2%) 

      NAFLD 31 (14.7%) 41 (13.9%) 

   Congestive Heart Failure, n (%) 19 (9.0%) 61 (20.7%) 

   Diabetes Mellitus, n (%) 59 (28.1%) 122 (41.5%) 
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Characteristic HRS  Diagnosis (n = 

210) 

No HRS Diagnosis (n = 

294) 

   Chronic Kidney Disease, n (%) 20 (9.5%) 54 (18.4%) 

   Prior Cirrhosis Complications, n (%)   

      Hepatic Encephalopathy 75 (35.7%) 61 (20.7%) 

      Varices 58 (27.6%) 66 (22.4%) 

      SBP 30 (14.3%) 19 (6.5%) 

      Ascites 122 (58.1%) 132 (44.9%) 

      Hepatocellular Carcinoma 28 (13.3%) 22 (7.5%) 

   Baseline Creatinine, mean (SD) 1.04 (0.42) 1.15 (0.49) 

INDEX HOSPITALIZATION CHARACTERISTICS 

   Maximum Creatinine, mean (SD) 4.16 (2.10) 2.75 (1.50) 

   Maximum Blood Urea Nitrogen, 
mean (SD) 

78.2 (49.0) 49.9 (26.0) 

   Average Sodium,  mean (SD) 132.6 (5.7) 135.8 (5.0) 

   Average Bilirubin, mean (SD) 12.7 (11.5) 4.4 (6.2) 

   Average Albumin, mean (SD) 2.4 (0.6) 2.6 (0.7) 

   Average INR, mean (SD) 2.0 (0.7) 1.7 (0.7) 

   Admission MELD, mean (SD) 26.3 (8.4) 20.5 (7.1) 

   Discharge HRS ICD-9 Code, n (%) 170 (81.0%) 63 (21.4%) 

 
There were a total of 23,415 distinct CUIs within the entire document corpus, and a total of 

6,985 distinct CUIs after initial frequency filtering. Limiting based on semantic type reduced the 

total number of distinct CUIs to 2082. The median number of CUIs per cluster was 12 (IQR: 5 – 

18). AFEP and SAFE selected thirty-six and three CUIs, respectively. Table 7 presents the total 

number of variables and evaluation results for each of the nine NLP strategies. Document 

embedding using CUIs (AUC of 0.79, 95% CI: 0.79 – 0.80) significantly improved performance 

compared to embedding using raw text (AUC of 0.66, 95% CI 0.66 – 0.67). The a priori CUI 

selection, semantically informed clustering, and the high-throughput phenotyping methods 

(SAFE and AFEP) had statistically similar performance (AUC of 0.81 – 0.82). The a priori CUI 

set was selected for further analysis due to their clinical relevance and ease of interpretation. 



 25 

Table 7: Evaluation of dimension reduction techniques for handling Natural Language 

Processing outputs for phenotyping. 
Note: ¥: the counts for these models are doubled because they include both the positive assertion and the negative 

assertion; AFEP and SAFE include an extra variable for note count. AFEP: Automated Feature Extraction for 

Phenotyping; SAFE: Surrogate-Assisted Feature Extraction; CUI: Concept Unique Identifier; AUC: Area Under the 

Curve. 

Combining the structured and NLP variables, there were a total of 701 candidate predictors. 

LASSO selected 21 variables. The results of the model comparisons are shown in Table 8. 

Logistic regression had the best performance in terms of AUC, though modest performance in 

terms of calibration. Figure 9 (Panel A) shows the ROC curves with 95% confidence intervals 

for the 5 methods. The sensitivity and specificity are also plotted for the HRS ICD-9 code (both 

for a discharge ICD-9 code and any ICD-9 code during the inpatient stay). Logistic regression 

dominated the other methods and was superior to using just the ICD-9 code. Figure 9 (Panel B) 

shows the smoothed calibration curves for the different methods based on Van Hoorde et al.244 

Though calibration appears relatively uniform for regression, GBM, SVM, and random forest 

based on the Brier score; the calibration curve shows GBM and SVM had superior performance. 

As part of our sensitivity analysis, appendix Table A.6 shows the classifier performance after 

building the five classifiers after excluding “Maybe HRS” from the model building and 

validation. We note slight improvement for regression (AUC of 0.94); however, we elected to 

maintain “Maybe HRS” within the model to account for edge cases. By varying the probability 

threshold, the user may include/exclude clinically uncertain cases. Appendix Table A.7 shows 

model performance using the SAFE CUIs for comparison. Overall model performance for 

Model No. of 
Variables 

Precision Recall F-measure AUC 

Full CUI Set 13,970¥ 0.56 (0.55, 
0.57) 

0.84 (0.83, 
0.84) 

0.68 (0.67, 
0.70) 

0.74 (0.74, 
0.75) 

Semantic Type 
Limited CUI Set 

4,164¥ 0.63 (0.62, 
0.64) 

0.80 (0.79, 
0.81) 

0.70 (0.68, 
0.71) 

0.73 (0.72, 
0.73) 

AFEP 37 0.66 (0.65, 
0.67) 

0.84 (0.83, 
0.86) 

0.74 (0.73, 
0.74) 

0.82 (0.81, 
0.82) 

SAFE 4 0.73 (0.72, 
0.74) 

0.79 (0.78, 
0.80) 

0.76 (0.75, 
0.76) 

0.82 (0.81, 
0.82) 

Principal Component 
Analysis 

395 0.53 (0.52, 
0.54) 

0.77 (0.74, 
0.80) 

0.61 (0.60, 
0.63) 

0.57 (0.56, 
0.57) 

Document 
Embedding with Raw 
Text 

500 0.58 (0.57, 
0.59) 

0.65 (0.62, 
0.67) 

0.60 (0.59, 
0.61) 

0.66 (0.66, 
0.67) 

Document 
Embedding with CUIs 

500 0.66 (0.65, 
0.67) 

0.79 (0.78, 
0.81) 

0.72 (0.71, 
0.72) 

0.79 (0.79, 
0.80) 

Clustered CUIs 140¥ 0.72 (0.71, 
0.73) 

0.78 (0.77, 
0.79) 

0.73 (0.72, 
0.73) 

0.82 (0.81, 
0.82) 

A priori CUIs 52¥ 0.66 (0.65, 
0.67) 

0.84 (0.83, 
0.85) 

0.74 (0.73, 
0.74) 

0.81 (0.80, 
0.81) 
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logistic regression is largely unchanged, though the individual variables selected by LASSO 

identify more structured variables to make up for the fewer NLP variables. 

Table 8: Discrimination and calibration performance of the five models to phenotype 

Hepatorenal Syndrome. 

Note: Slope and Intercept refer to the parameters of the best-fit line through the observed-to-predicted probability 

plot; AUC: Area Under the Curve 

Model AUC (95% CI) Slope (95% CI) Intercept (95% CI) Brier Score (95% 

CI) 

Logistic 

Regression 

0.93 (0.92, 0.93) 0.68 (0.65, 0.71) 0.18 (0.13, 0.24) 0.11 (0.11, 0.11) 

Gradient 

Boosting 

0.88 (0.88,0.88) 1.26 (1.21, 1.31) 0.15 (0.10, 0.20) 0.14 (0.13, 0.14) 

Naïve Bayes 0.73 (0.72, 0.74) 0.04 (0.03, 0.04) -0.41 (-0.53, -0.29) 0.32 (0.30, 0.33) 

Random Forest 0.91 (0.91, 0.91) 2.01 (1.95, 2.06) 0.29 (0.24, 0.35) 0.13 (0.13, 0.13) 

Support Vector 

Machine 

0.90 (0.90, 0.91) 0.74 (0.71, 0.77) -0.12 (-0.17, -0.07) 0.13 (0.12, 0.13) 

Figure 9: Discrimination (Panel A), via the ROC curve, and calibration (Panel B), via 

smoothed observed-to-expected probability plots, for the five different various models for 

phenotyping Hepatorenal Syndrome phenotyping models. 

Note: The grey square represents performance for a Hepatorenal Syndrome ICD-9 code anytime during the 

admission. The grey circle represents a Hepatorenal Syndrome ICD-9 code as a discharge diagnosis. LR: Logistic 

Regression; SVM: Support Vector Machine; GBM: Gradient Boosting Machine; NB: Naïve Bayes; RF: Random 

Forest 

Panel A 

 

Panel B 
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Table 9 reports the odds ratios for the variables used in the LR model. Significant variables 

predictive of HRS include an ICD-9 code for HRS, NLP mention of HRS, inpatient use of 

midodrine, the peak serum creatinine after the first 48 hours of admission, and the average mean 

corpuscular hemoglobin concentration (MCHC). Variables predictive of other causes of renal 

failure include an ICD-9 code for acute tubular necrosis (ATN), NLP mention of shock, high 

urine sodium, a significant difference between the maximum inpatient serum creatinine versus at 

discharge, and higher serum sodium. 

Table 9: Odds ratios and confidence intervals for the logistic regression model based on 100 

bootstrap samples. 

Note: INR: International Normalized Ratio; MCHC: Mean Corpuscular Hemoglobin Concentration; NLP: Natural 

Language Processing; HRS: Hepatorenal Syndrome; ATN: Acute Tubular Necrosis; NAFLD: Non-alcoholic Fatty 

Liver Disease 

Variable Odds Ratio 
(95% CI) 

Variable Odds Ratio 
(95% CI) 

Inpatient Labs - Temporal - 

Average Serum 
Sodium 

0.67 (0.64, 
0.70) 

Creatinine Diff.  
(max inpt. to 
discharge) 

0.21 (0.20, 0.23) 

Average Urine Sodium 0.73 (0.70, 
0.77) 

Creatinine Diff.  
(1st 48 hours vs. 
rest of stay) 

0.55 (0.51, 0.60) 

Average Bicarbonate 0.79 (0.76, 
0.83) 

Peak Creatinine 
After First 48h 

1.78 (1.66, 1.91) 

Minimum Albumin 0.84 (0.81, 
0.88) 

  

Average Glucose 0.94 (0.90, 
0.97) 

ICD 9 Codes - 

Average Total Bilirubin 1.15 (1.09, 
1.20) 

Inpatient ATN 0.40 (0.36, 0.45) 

Minimum INR 1.16 (1.11, 
1.21) 

Inpatient NAFLD 1.07 (1.03, 1.11) 

Average Blood Urea 
Nitrogen 

1.16 (1.07, 
1.26) 

Inpatient Ascites 1.59 (1.51, 1.67) 

Minimum Blood Urea 
Nitrogen 

1.77 (1.63, 
1.93) 

Inpatient HRS 9.98 (9.12, 
10.93) 

Average MCHC 1.96 (1.87, 
2.05) 

  

  NLP - 

Inpatient Medications - (+) Shock 0.21 (0.20, 0.23) 

Midodrine 3.24 (2.89, 
3.62) 

(+) Paracentesis 1.37 (1.30, 1.43) 

  (+) HRS 1.78 (1.67, 1.90) 
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Table 10 reports our error analysis at three levels of cut-offs: optimal using Youden’s index, high 

sensitivity, and high specificity. As expected, false positives versus false negatives dominate at 

higher sensitivity and higher specificity, respectively. False positives at high sensitivity are 

primarily caused by the algorithm’s inability to detect improvement with fluid administration, 

separating chronic kidney disease from HRS, and other causes of AKI in cirrhotics. At higher 

specificity, false negatives are caused by high urine sodium, chronic kidney disease, and 

competing diagnoses.  At an optimal threshold, the majority of errors stemmed from an inability 

to identify improvement with fluid administration. Insufficient information caused errors at all 

cut-points, though a relatively small percentage of errors. 

Table 10: Error analysis of false positive and false negatives using the logistic regression 

model on the test set at three different thresholds. 

Note: FP: False Positive; FN: False Negative; CKD: Chronic Kidney Disease; ATN: Acute Tubular Necrosis; GI: 

Gastrointestinal; HIVAN: Human Immunodeficiency Virus Associated Nephropathy  
Sensitivity = 

0.95 

Specificity = 

0.95 

Optimal 

Threshold  

(Youden’s 

Index) 
 

FP 
(n=21) 

FN 
(n=3) 

FP 
(n=3) 

FN 
(n=15) 

FP 
(n=9) 

FN 
(n=5) 

High Urine Sodium 
 

2 
 

3 
 

2 

Improved with fluids 9 
 

1 1 5 
 

CKD 4 
  

2 
 

2 

Competing Diagnosis (sepsis) 
   

2 
 

1 

Competing Diagnosis (contrast) 1 
   

1 
 

Competing Diagnosis (ATN) 1 
 

1 
 

1 
 

Competing Diagnosis 
(hypotension or shock) 

1 
  

2 1 
 

Competing Diagnosis (multiple) 1 
  

1 
  

Competing Diagnosis (GI Bleed) 1 
  

1 
  

Competing Diagnosis (HIVAN) 1 
     

Insufficient Information 1 1 1 3 1 
 

Error in Underlying Data 1      

  



 29 

DISCUSSION 

This research demonstrates that it is possible to create a high performance probabilistic 

phenotyping algorithm to detect cases of HRS. This is one of the first efforts to phenotype AKI 

etiology, a condition that effects up to 2% of hospitalized patients.245 Penalized LR achieved the 

best performance with an AUC of 0.93 (95% CI: 0.92-0.93). NLP significantly boosted the 

performance of the model from an AUC of 0.82 (95% CI: 0.81-0.83). The sensitivity and 

specificity of an ICD-9 code anytime during the hospitalization were 87.1% and 76.5%, 

respectively; whereas, a discharge ICD-9 code had a sensitivity and specificity of 57.6% and 

88.8%, respectively. At Youden’s index, the LR algorithm would have a sensitivity of 85.4% and 

a specificity of 84.0%. The probabilistic phenotyping algorithm allows one to alter the thresholds 

for varying levels of sensitivity and specificity depending on the needs of the user.  

Optimizing the algorithm required handling the large number of NLP variables. Automated 

dimensionality reduction in NLP based classification has been shown to improve performance in 

multiple studies.246–248 Increasing effort has been placed on high-throughput phenotyping to 

perform automated feature selection/dimension reduction, though to date they have been 

primarily tested in chronic conditions where the data density is much higher. In our study, 

manual NLP variable selection using domain knowledge performed similarly to dimensionality 

reduction using SAFE, AFEP, and semantic similarity informed clustering.  Manual variable 

selection has been shown to perform favorably in other studies.61,67 For instance, Chen et. al. 

showed that a feature set selected by domain experts outperformed a data driven approach in 

phenotyping algorithms for Rheumatoid Arthritis, Colorectal Cancer, and Venous 

Thromboembolism.249   

Although embeddings have been used for phenotyping tasks, we demonstrate its performance in 

acute illness and using CUIs instead of raw text.154,155 Turner et al. showed their word 

embedding task using raw text outperformed bag-of-words models but did not outperform 

machine learning models using CUIs. We show that CUI based models (including embedding) 

outperform embedding models using free text. Increasing effort is being applied to mapping free 

text to a domain ontology for purposes of improving a wide variety of NLP tasks246,250 and 

constructing shareable, computable clinical data warehouses.251  

Though machine learning algorithms are increasingly popular for cohort identification,57 our 

study showed superior performance with penalized LR. Regression has been used for 

phenotyping efforts78 and, in at least one risk prediction study comparing regression to machine 

learning models, regression performed better.105 Machine learning methods such as support 

vector machines and random forests tend to perform well on classification tasks where multiple 

interactions exist between the predictor variables, which suggests that complex interactions may 

not have been highly prevalent in these data.   Additionally, despite the better discriminatory 

power of the logistic regression model, calibration was better with gradient boosting and support 

vector machines, which suggests that for some cut-points performance may still favor the 

machine learning methods. 

The most important variable based on odds ratio was the HRS ICD-9 code. Inpatient codes for 

ascites also significantly increased the probability of HRS. This makes pathophysiologic sense 

because development of ascites and HRS are tightly related, particularly in HRS Type II. 

Inpatient administration of midodrine, a medication that increases the blood pressure, was 

significantly predictive of HRS. This is also a logical finding because midodrine is used in only a 
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few contexts in medicine and one of them is treatment of HRS. NLP variables that were 

predictive of HRS include mention of HRS and mention of paracentesis (removal of accumulated 

fluid in the abdomen), which is indicative of the presence of clinically significant ascites. 

Predictors with good negative predictive value for HRS include variables that indicate less 

severe portal hypertension (increased blood pressure in the abdominal blood vessels), other 

causes of acute kidney injury (ATN and shock), and significant improvement in creatinine levels 

at time of discharge.   

To better understand failure points and edge cases, we performed an error analysis, revealing 

three common themes. First, errors were made in the system assessing response to fluid 

administration. In essence, this is a temporal pattern recognition problem. Though some temporal 

type variables were included in the model, they were insufficient to capture the full variation of 

response waveforms. Second, there were challenges differentiating HRS from other causes of 

kidney failure in cirrhotics. HRS is commonly one of several competing diagnoses in clinical 

practice when diagnosing the etiology of AKI in cirrhosis. The phenotyping system performed 

well in most cases. Finally, insufficient information caused a low level of persistent error across 

all cut-points. While this is unavoidable when using retrospective data, it may be mitigated when 

using the system prospectively. Importantly, our probabilistic phenotyping model allows the user 

to tailor the cutoff to the intended use: higher sensitivity for clinical decision support and higher 

specificity for defining cohorts in secondary data use analyses. 

LIMITATIONS 

There are some limitations to this research that are worth highlighting for refinement and 

extension of this investigation. First, this is a retrospective observational cohort and there were 

gaps in documentation that likely lowered ascertainment from chart review for the phenotype. 

Second, the VA data may not be representative of other clinical environments due to the slightly 

older average age and predominance of men. The other clinical variables, however, are not 

significantly different than other studies published regarding HRS.37,52,53 We only performed 

internal validation; however, we aimed to increase generalizability by sampling across a broad 

range of kidney injury and liver disease. Moreover, all variables are common to other electronic 

health records, and the selected variables make pathophysiologic sense. Third, several significant 

predictors were ICD-9 codes, but with the transition to ICD-10 in the US, the algorithm’s 

performance cannot be assured. At the same time, it is worth noting that there are one-to-one 

mappings for two of the important ICD-9 codes (ATN and HRS) based on the General 

Equivalent Maps (GEMs) framework.252 The code sets defining non-alcoholic fatty liver disease 

and ascites would require additional validation.  

NLP dimension reduction was assessed with SVM, and it is possible that an alternate method 

may have ranked the methods in a different order. We did not test expectation-maximization 

methods of clustering, such as Gaussian mixture modeling, for dimension reduction as we do not 

know the inherent probability distribution of the data. Lastly, a more thoughtful exploration of 

mapping temporal changes using established methods may have improved performance.253–255 

CONCLUSION 

This study demonstrated the utility of a probabilistic phenotype that used machine learning based 

methods to retrospectively classify patients with HRS. Though we focused on one form of AKI 

due to its high mortality, lessons learned could be applied to phenotyping other forms of kidney 

injury. Domain knowledge and several automated dimension reduction methods demonstrated 
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similar performance for identifying acute illness. Penalized logistic regression identified a 

parsimonious set of features with excellent performance. Unlike the fixed sensitivity and 

specificity of the HRS ICD-9 code, this probabilistic model can be used at multiple set points 

depending on the use case (e.g., a bias towards specificity or sensitivity). Future directions 

include external validation and identifying HRS cohorts for predictive analytics, clinical decision 

making, and population management. 
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CHAPTER III: RISK PREDICTION MODELS FOR HEPATORENAL SYNDROME 

 

CHAPTER OBJECTIVE 

Risk prediction models increasingly complement clinical reasoning and decision making in 

modern medicine.  Within the domain of HRS risk prediction, prior models focused on 

predicting the long-term risk of developing HRS (6 months to 2 years) with none predicting 

short-term risk during hospitalization, which could be useful to support immediate decision 

making regarding treatment.  In this study, we developed and internally validated an HRS risk 

prediction algorithm using data available in the peri-admission window of patient hospitalization 

among a large nationwide veteran cohort of patients.  We sought to develop an algorithm to 

support clinical decision making and initiate treatment earlier, thus improving anticipated 

outcomes. 

PATIENTS AND METHODS 

STUDY POPULATION 

We analyzed a retrospective cohort of patients hospitalized from among 122 medical centers in 

the U.S. Department of Veterans Affairs (VA) between January 1, 2005 and December 31, 2013.  

The VA is an integrated care network that includes acute inpatient hospitals, outpatient care 

services, and long-term care facilities.  All VA personnel use the same EHR, Veterans 

Information Systems and Technology Architecture/Computerized Patient Record System 

(ViSTa/CPRS), for documentation and administration of clinical care.20 The institutional review 

board and research and development committees of the Tennessee Valley Health Care System 

VA Medical Center, Nashville, TN, approved this study. 

DATA COLLECTION 

All data were collected from the EHR and accessed via the national corporate data warehouse.  

The clinical data included International Classification of Diseases - version 9 (ICD-9) codes for 

diagnoses, Current Procedural Terminology (CPT) codes for procedures, vital signs, laboratory 

data, and inpatient and outpatient medication data. 

COHORT SELECTION 

We included patients who had a cirrhosis diagnosis (based on a history of two outpatient or one 

inpatient) ICD-9 code (571.2 or 571.5) and had AKI on admission.  AKI on admission was 

defined according to the Kidney Disease Improving Global Outcomes (KDIGO) guidelines to be 

an absolute rise in serum creatinine of at least 0.3 mg/, relative rise of 50%, or the new initiation 

of dialysis in a patient.256 Baseline creatinine was defined as the average outpatient creatinine 

from values collected from 365 days to 7 days prior to admission257 and peak creatinine was 

defined as the maximum creatinine between -24 and +24 hours of admission.  
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Figure 10: Cohort selection process from an initial sample of all inpatient admissions after 

applying exclusion criteria. 

 

We excluded patients who were: (1) on dialysis prior to admission; (2) did not have at least one 

serum creatinine value within the year prior to admission; (3) did not have an admission 

creatinine; or (4) died within 24 hours of hospitalization. We also excluded patients from two 

VA facilities that had no laboratory measurements in the available source data. Furthermore, we 

excluded patients who received both octreotide and midodrine within 24 hours of hospitalization 

as this combination was pathognomonic for the treatment of HRS—indicating that a presumptive 

diagnosis was established at time of admission. We did not exclude other treatments for HRS 

(e.g., norepinephrine) because they could be used to treat alternate diseases (e.g., sepsis). We 

refer the reader to Figure 10 for a breakdown of the cohort selection process. 

OUTCOME 

The main outcome of interest was the presence of an ICD-9 code for HRS (572.4) during 

hospitalization or at the time of discharge, and the patient must have had a documented history of 

ascites or presented with ascites. See Appendix 1 for details regarding validation of the HRS 

ICD-9 code and ascites status ascertainment. If patients did not meet the ascites requirement, 

then they were assigned to the non-HRS AKI group (even if their EHR contained an ICD-9 code 

for HRS). 

PREDICTOR VARIABLES 

We started with a total of 404 variables during the pre-admission (all data up to -24 hours of 

admit) and the admission timeframe (-24 to +24 hours of admit). We included data -24 hours 

prior to admit as part of the admission timeframe to incorporate emergency room data.  Refer to 

Table 11 for a breakdown of the variables. Since by definition 100% of HRS patients have 

ascites, the complication was excluded from the candidate predictor pool. A detailed summary of 

these variables and associated definitions are included in Appendix 2. 

Initial Adult Hospitalization Cohort (n = 5,754,861) 

Exclude Patients Without Cirrhosis (n = 5,496,046) 

Exclude Patients Without Baseline Creatinine (n = 24,787) 

Exclude Patients Without AKI (n = 163,020) 

Exclude LOS < 24 hours (n = 30,798) 

Exclude Death < 24 hours (n = 1,579) 

Exclude VA Facilities w/out Data (n = 1,245) 

Exclude Patients Receiving Midodrine and 

Octreotide(n = 1,029) 

Exclude Patients Without Admit Creatinine (n = 15,098) 

Final Cohort (n = 35,412) 
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Table 11: Breakdown of the candidate predictor variables used in the Hepatorenal 

Syndrome risk prediction model. 

(Note: KDIGO: Kidney Diseases Improving Global Outcomes; MELD: Model for End Stage Liver Disease; SBP: 

Spontaneous Bacterial Peritonitis) 

With the exception of cirrhosis-related medications (e.g., lactulose, rifaximin, albumin, 

norepinephrine, and vasopressin), which were coded as separate variables, all medications were 

represented by their corresponding VA drug class code (e.g., “cephalosporin 3rd generation”). 

The VA drug class codes are available publicly through the VA National Drug File.237 Except 

for the baseline creatinine value, the remaining laboratory values corresponded to the 23 most 

commonly collected test results on inpatient admission. We summarized the inpatient laboratory 

values and vital signs as the average value during the admission timeframe, SBP was defined 

either by administrative code or > 250 neutrophils/mm3 in ascites fluid.  We eliminated any 

categorical variables that were present for less than 0.2% of admissions or showed perfect 

collinearity. The remaining 287 variables are outlined in Appendix 2. Missing values for race 

were replaced with “Unknown.” Missing values for laboratory values were filled in using 

multiple imputation using a subset of co-morbid conditions, medications, and procedures (as 

Variable Group Number of Variables in Group 

Pre-Admission Timeframe (all data up to -24 hours of admit) 

Demographics 3 

Comorbid conditions 64 

Cirrhosis etiologies 3 

h/o Cirrhosis complications 5 

Home medications 142 

Paracentesis within 3 days of 
admission 

1 

# of paracenteses within past 90 days 1 

Admission Timeframe (-24 to +24  hours of admit) 

Inpatient medications 137 

Laboratory values 24 

Vital signs 12 

Procedures (including paracentesis) 6 

KDGIO renal failure stage 1 

MELD score 1 

SBP diagnosed at admission 1 

Total IV Fluids 1 
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outlined in Appendix 3).238,258  Missing vital signs and ages were imputed with the median 

admission values from the entire cohort. 

MODEL DEVELOPMENT 

We performed a penalized logistic regression, using the L1 penalty (Least Absolute Shrinkage 

and Selection Operator — LASSO) , to select a subset of the predictor variables.42 Refer to 

Appendix 1 for details on the variable selection procedure. We subsequently used the variables 

identified by the LASSO procedure in a generalized estimating equations (GEE) model clustered 

by patient using an exchangeable covariance structure, which adjusted for correlation due to the 

multiple admissions per patient.259 Finally, we produced a traditional point-based scoring model, 

similar to the Framingham risk study,260 based on the statistically significant variables from the 

GEE model. 

MODEL ASSESSMENT 

We reported the AUC of the GEE model with a 95% confidence interval (CI) calculated from the 

bootstrap samples and variable odds ratios.129  We assessed model calibration using the Brier 

score (range from 0 to 1, where 0 implies perfect calibration), slope and intercept of the 

regression line between O/E probabilities, and an O/E  probability plot.261 We performed two 

sensitivity analyses: first, excluding hospitalizations where patients received vasopressin or 

norepinephrine on admission; second, excluding patients who could possibly have cardiorenal 

syndrome. Finally, we compared our model to a baseline that included only the Model for End-

Stage Liver Disease (MELD) score as a predictor. All statistical analysis was performed using 

the R statistical programming suite, version 3.2.2. 

RESULTS 

After applying the inclusion and exclusion criteria, we identified 19,146 patients comprising 

35,412 inpatient admissions. Hospitalization characteristics of patients with and without HRS 

diagnosis are summarized in Table 12.  There was a median of one admission per patient with an 

interquartile range of one to two admissions, and a maximum of 23 admissions for one patient. 

The distribution of admissions is shown in Appendix 5. Males represented 98.2% of the total 

admissions, with a median age of 61. White patients accounted for the majority of hospital 

admissions (71.1%). The event rate for hospitalized HRS was 2,258 (6.4%). 

Table 12: Characteristics of patients with and without HRS. 

Characteristic HRS  Diagnosis 

(n=2435) 

No HRS Diagnosis 

(n=32977) 

Age, mean (SD) 61 (7.8) 63 (9.2) 

Gender (male), n (%) 2392 (98.2%) 32393 (98.2%) 

Race, n (%)   

   White 1796 (73.8%) 23372 (70.9%) 

   Black 388 (15.9%) 6803 (20.6%) 

   Other 251 (10.3%) 2802 (8.5%) 

Etiology, n (%)   

   Alcoholic 1488 (61.1%) 17513 (53.1%) 

   Viral (Hep B and C) 1337 (54.9%) 17211 (52.2%) 

   NAFLD 497 (20.4%) 4893 (14.8%) 
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Table 13 presents the 26 out of 287 variables selected by LASSO and the corresponding odds 

ratios from the GEE model. Not unexpectedly, the MELD score increased the probability of HRS 

(per 1-point increase, OR 1.16, 95% CI: 1.14 - 1.17). Other strong predictors included KDIGO 

Stage II renal failure (OR 1.23, 95% CI: 1.08 - 1.39), hepatic encephalopathy (OR 1.58, 95% CI: 

1.43 - 1.75), diagnosis of SBP at time of admission (OR 1.57, 95% 1.37 – 1.81), and a 

paracentesis on the day of admission (OR 1.50, 95% CI: 1.35 - 1.68). Medication exposure to 

drugs the VA classifies as ‘Non Opioid Analgesics’ (primarily aspirin) significantly reduced the 

likelihood of HRS (OR 0.73, 95% CI: 0.64 - 0.83). Of the ‘Non Opioid Analgesic’ group, 167 

out of 9,986 admissions had acute tubular necrosis (ATN), by ICD-9 code, versus 476 out of 

25,426 admissions (p=0.22), which suggested that the difference was not borne out of non-

steroidal anti-inflammatory drug induced AKI. The risk model had an AUC of 0.84 (95% CI: 

0.83 – 0.85), a Brier score of 0.053 (95% CI: 0.050—0.055), slope of 0.98 (95% CI: 0.92—

1.04), intercept of -0.04 (95% CI: -0.20—-0.12) and the O/E calibration curve is shown in Figure 

11. When converting the model to a traditional point-based scoring model, points ranged from 0 

to 55 (median 19, IQR: 14 – 25). Using the point-based model preserved discrimination (AUC of 

0.82), though calibration was significantly worse (slope and intercept of the calibration line and 

Brier score of -3.50, 1.00, and 0.30, respectively). Refer to Appendix 6 for details.  

The two sensitivity analyses as outlined in the Methods did not change the results of the LASSO 

variable selection or significantly affect the odds ratios from the GEE model. See Appendix 7 for 

KDIGO Renal Failure Stage, n 

(%) 

  

   Stage I 1092 (44.8%) 22828 (69.2%) 

   Stage II 670 (27.5%) 5243 (15.9%) 

   Stage III 673 (27.6%) 4906 (14.9%) 

Congestive Heart Failure, n (%) 398 (16.3%) 9774 (29.6%) 

Diabetes Mellitus, n (%) 950 (39.0%) 17030 (51.6%) 

Chronic Kidney Disease, n (%) 872 (35.8%) 12713 (38.5%) 

h/o Cirrhosis Complications, n 

(%) 

  

   Hepatic Encephalopathy 1289 (52.9%) 10357 (31.4%) 

   Varices 859 (35.3%) 8270 (25.1%) 

   SBP 592 (24.3%) 4099 (12.4%) 

   Ascites 1936 (79.5%) 17959 (54.5%) 

   Hepatocellular Carcinoma 352 (14.5%) 3782 (11.5%) 

Baseline Creatinine, mean (SD) 1.30 (0.60) 1.57 (1.42) 

Admit Creatinine, mean (SD) 2.96 (1.74) 2.41 (1.82) 

Admit Blood Urea Nitrogen,  

mean (SD) 

51.0 (27.1) 39.6 (25.5) 

Admit Sodium, mean (SD) 131.8 (6.4) 134.4 (5.7) 

Admit Bilirubin, mean (SD) 7.5 (9.1) 3.0 (4.8) 

Admit Albumin, mean (SD) 2.3 (0.7) 2.5 (0.9) 

Admit INR, mean (SD) 1.8 (0.7) 1.6 (0.7) 

Admit MELD, mean (SD) 26.5 (7.4) 19.5 (6.5) 

Admit Mean Arterial Pressure,  

mean (SD) 

94.8 (14.1) 101.2 (16.3) 
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details. The MELD score-only model had an AUC of 0.76 (95% CI: 0.75—0.78), Brier score of 

0.056 (95% CI: 0.053—0.059), slope of 1.00 (95% CI: 0.91—1.09), and intercept of 0.00 (95% 

CI: -0.23—0.24). We also investigated performance for two patient populations for whom 

clinical suspicion of HRS is typically low. First, in patients with an admission MELD score < 15 

(roughly corresponding to Child-Pugh Classification A), the model had an AUC of 0.82. Second, 

in patients with a history of CKD and who did not present with SBP, the model had an AUC of 

0.85.  

Figure 11: Observed-to-expected probability plot from the GEE model. Each point 

represents a decile within the predicted probability. 
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Table 13: Odds ratios for the general estimating equations model predicting HRS for 

variables selected by penalized logistic regression. 

Risk Factor GEE Odds Ratio 

(95% CI) 

Admit Intravenous Fluids / 1000 mL 0.93 (0.90 - 0.97) 

Admit MELD 1.15 (1.14 - 1.17) 

Baseline Creatinine 0.79 (0.75 - 0.84) 

Admit Sodium 0.99 (0.98 - 0.99) 

Admit Bicarbonate 0.98 (0.97 - 0.99) 

Admit Blood Urea Nitrogen 1.01 (1.00 - 1.01) 

Admit Glucose 1.00 (1.00 - 1.00) 

Admit Mean Corpuscular Hemoglobin Conc. 1.06 (1.01 - 1.11) 

Admit Mean Corpuscular Hemoglobin 1.00 (0.99 - 1.02) 

Admit Alkaline Phosphatase 1.00 (1.00 - 1.00) 

Admit Partial Thromboplastin Time 1.00 (0.99 - 1.00) 

Admit International Normalized Ratio 0.56 (0.50 - 0.64) 

Admit Systolic Blood Pressure 1.00 (0.99 - 1.00) 

Admit Temperature 0.98 (0.89 - 1.07) 

Admit Weight 1.00 (1.00 - 1.00) 

Admit Maximum Temperature 0.98 (0.92 - 1.05) 

# Paracentesis in 90 days Pre-Admit 1.09 (1.07 - 1.12) 

KDIGO Stage II (vs. KDIGO Stage I as 
baseline) 1.26 (1.12 - 1.41) 

KDIGO Stage III (vs. KDIGO Stage I as 
baseline) 1.02 (0.88 - 1.18) 

Ascites 1.65 (1.46 - 1.86) 

Coronary Artery Disease 0.83 (0.74 - 0.94) 

Hepatic Encephalopathy 1.42 (1.28 - 1.57) 

Home Medication Analgesics 0.85 (0.78 - 0.94) 

Admit Medication Albumin Infusion 1.40 (1.25 - 1.55) 

Admit Medication Non Opioid Analgesics 0.79 (0.70 - 0.89) 

Admit Procedure Paracentesis 1.36 (1.23 - 1.51) 

Intercept 0.43 

DISCUSSION 

In this study, we developed a risk model to diagnose HRS at the point of hospital admission to 

support clinical diagnosis and decision making during the critical 48 hour surveillance period. 

Our model achieved good discrimination (AUC of 0.84), with excellent calibration (Brier score 

of 0.053 and good O/E ratio), and consists of basic medical history, common laboratory values, 

and initial medical management that can be obtained quickly during the admission window.  This 

model includes modifiable risk factors, such as avoiding large volume paracentesis and use of 

non-opioid analgesics, and may support earlier initiation of treatment. Earlier treatment before 

kidney function worsens may improve survival.51–54 Furthermore, earlier decision making may 
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reduce costs, reduce length of stay, initiate transplant evaluation,262 and motivate referral to 

hospice.  

Using the risk model at hospital admission could impact the standard of care in diagnosing HRS, 

which involves withdrawal of diuretics, plasma expansion with albumin for 48 hours, and ruling 

out other causes of renal failure.  Other studies have attempted to use a variety of tests to 

diagnose HRS earlier. Investigations have either looked at imaging modalities or novel 

biomarkers. Promising imaging modalities include magnetic resonance imaging263 and 

ultrasound;264,265 whereas, biomarkers have looked at the predictive ability of arginine 

metabolism,266,267 neutrophil gelatinase-associated lipocalin,268 and cystatin C.269 Other research 

looking at long term risk of HRS include low serum sodium concentration, high plasma renin 

activity, absence of hepatomegaly, low cardiac output, and the MELD score.35,234,270,271  Though 

these studies are enticing, they were limited by small sample sizes, overly stringent exclusion 

criteria, or the need for specialized equipment or laboratory tests.  In contrast, our study uses 

common clinical variables obtainable at the point of care during the admission window.   

Our study corroborates known risk factors for HRS, but also highlights new ones.  Of all the 

other cirrhosis complications, a history of hepatic encephalopathy was the only one to achieve a 

statistically significant relationship with HRS. Interestingly, back in 1972 Fischer and James 

postulated a connection between hepatic encephalopathy and HRS due to amino acid precursors 

of false neurochemical transmitters, such as phenylalanine and tyrosine, and their derivatives 

produced by gut bacterial decarboxylases.272 Performing a paracentesis on admission, total 

number of paracenteses in the past 90 days, and SBP on admission were all highly predictive of 

HRS. Though we do not know if the paracenteses were diagnostic or therapeutic, since a 

diagnostic paracentesis’ association to HRS would likely be mediated through a diagnosis of 

SBP, it is likely that the additional risk of paracentesis is borne from large volume withdrawal. 

Paracentesis is known to cause significant hemodynamic changes and activation of the renin 

angiotensin aldosterone system,273,274 has been shown to precipitate AKI even with concomitant 

albumin expansion,275 and precipitate HRS if not accompanied by albumin infusion.276 A higher 

number of paracenteses in the past 90 days likely reflects patients with refractory ascites and is 

identifying patients with Type II HRS. Unsurprisingly, higher admission MELD score 

(indicating more advanced liver disease) and hyponatremia (which has already been shown to be 

predictive of future HRS)270 were both correlated with HRS.   

Counterintuitively, KDIGO Stage II renal failure was a significant predictor of HRS, but KDIGO 

Stage III was not. A greater percentage of patients with KDIGO Stage III went on to receive 

dialysis during their inpatient stay (2,642 out of 5,579 admissions, as opposed to 252 out of 

5,911 admissions for Stage III and Stage II, respectively, p < 0.0001). Dialysis is routinely 

reserved for HRS patients who are headed for transplant (only 57 of the KDIGO Stage III 

patients received one) suggesting that their renal failure was due to other causes. Furthermore, 

patients with KDIGO Stage III had higher levels of CKD Stage IV and IV (2,045 out of 5,579 

Stage III admissions versus 168 out of 5,911 Stage II admissions, p < 0.0001). For these KDIGO 

Stage III patients, a small amount of renal injury could have resulted in dialysis initiation. 

Looking at variables inversely correlated with HRS, patients with higher baseline creatinine were 

predisposed to other etiologies of renal failure include ATN, pre-renal causes, and medication 

induced kidney injury likely as a function of reduced renal reserve. Patients with existing kidney 

disease are more prone to community acquired AKI.277   
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There were several risk factors detected that have not previously been reported.  It is unclear why 

an elevated MCHC is correlated with a diagnosis of HRS. Patients with advanced liver disease 

often have abnormal red blood cells including acanthocytes, spur cells, echinocytes, and target 

cells.278  The reduced cell volume will lead to a higher MCHC calculation.  The increased 

MCHC may be an indicator of advanced liver disease; however, these cells are also prone to 

hemolysis further impairing oxygen transport that may further predispose to HRS. Interestingly, 

higher International Normalized Ratio (INR) values decreased the odds of HRS. Since the INR is 

part of the MELD score, it is possible that the MELD score already captured the patients with the 

higher INR values. Patients with higher INRs were also more likely to have a GI bleed in our 

cohort. When looking at admissions with INR > 3.0, 235 out of 1,280 (18.3%) had a GI Bleed 

versus 4361 out of 29417 (14.8%) (p = 0.0006). Although a GI bleed may precipitate HRS, it is 

more likely to cause prerenal renal failure. 

There are several limitations of this study that should be highlighted for further investigation. 

First, our cohort is largely male and may not generalize to female populations. However, 

biological sex has not played a role in prior research on HRS or AKI. Second, the administrative 

definition of the outcome showed limited sensitivity and good specificity.  This could impact the 

study by coding bias that neglects patients less likely to receive a HRS ICD-9 code, which are 

likely some of the borderline patients with a broader differential for their renal failure. 

Furthermore, we acknowledge that some patients in the “No HRS” group are likely false 

negatives; however, this would bias our study towards the null. Our validation of the ICD-9 code 

was based on older criteria for HRS (particularly a hard cutoff for creatinine) because chart 

review was conducted for patients treated prior to the 2015 criteria. We note, however, that the 

inclusion/exclusion criteria for this study did not use a minimum creatinine threshold, and used 

the KDIGO values for AKI consistent with the 2015 International Ascites Club guidelines. 

Third, we could not differentiate Type I from Type II HRS.  The average maximum creatinine 

during the inpatient stay for the HRS cohort was 4.22 +/- 2.18 (SD) mg/dL and 1767 out of the 

2258 patients had a maximum creatinine > 2.5 mg/dL. Therefore, our cohort likely 

overrepresented HRS Type I and may not work as well at detecting HRS Type II.  Fourth, ICD-9 

codes have limitations in identifying comorbidities.73 Fifth, we used an ICD-9 code for HRS at 

any point during hospitalization as the outcome measure whereas we limited our cohort to 

patients who presented with AKI. It is possible that some patients presented with non-HRS AKI 

and subsequently developed HRS during the hospitalization. 

In conclusion, this study constructed a probabilistic risk prediction model to diagnose HRS 

within 24 hours of hospital admission using routine clinical variables in the largest ever 

published HRS cohort. Separating HRS from other causes of kidney injury can be challenging, 

and our model showed good performance even for groups generally thought less likely to have 

HRS. This would provide clinical utility by allowing earlier treatment initiation.51–54   

  



 41 

CHAPTER IV: INFORMATION VISUALIZATION FOR MODEL ANALYSIS 

 

CHAPTER OBJECTIVE 

Information Visualization can help make sense of complicated, high-dimensional data and 

complement insights obtained from traditional, numerical analyses. In this study, we sought first 

to identify the most salient clinical features of cirrhosis and HRS that hepatologists find 

important. We then constructed two visualizations to help clinical decision making. The first 

visualization was a per-patient visualization giving a temporal view/summary of a patient’s 

cirrhosis disease course, particularly as a means of helping to diagnose etiology of acute kidney 

injury. The second visualization uses a multiple coordinated views approach to assess the risk 

model performance presented in Chapter III. We report on a qualitative analysis of the 

visualizations.  

METHODS 

WORKFLOW OBSERVATION 

Forty consenting physicians were observed in inpatient and outpatient settings across two 

institutions as part of a larger study; refer to Miller et al.279 for details. In brief, observations 

were conducted using a human factors engineering approach including contextual interviews for 

data collection, interpretive debriefing sessions for data collation, data consolidation using 

thematic analysis, and additional data analysis using three work modeling approaches. The 

observations focused on “clinical decision making.”  

We paid special attention to the interaction between the clinician and the EHR. In particular, 

what information sources does a clinician use from the EHR when preparing for a patient 

encounter? Before most patient encounters, clinicians make an effort to obtain a quick overview 

of the patient’s clinical course. Although, the primary aim of the parent study was looking at 

clinicians interactions with cirrhosis patients in general, several key aspects were relevant to 

understanding cirrhotics who present with kidney injury. We asked clinicians what parts of the 

medical record should be abstracted and visualized for quickly summarizing the patient’s disease 

course. 

DESIGN RATIONALE AND TOOLS 

We constructed two visualizations. Broadly, both visualizations sought to improve early 

identification of HRS. The first visualization (TIMELINE) was a patient summary tool to help 

provide an overview of the patient’s medical history. The second (CLUSTERVIEW) was an 

interactive visualization aid to help the user utilize the risk prediction model presented in Chapter 

III. The second visualization’s goal was to use established paradigms for complex data and 

display a global view of this very complex model, yet allow the user to drill down and examine 

the relevant components. Doing so users are able to evaluate risk model performance in sub-

groups. In a secondary workflow, the user would be able to see the relationship between a 

hypothetical, new patient and the other patients within the training cohort.  

For TIMELINE we used D3.js, an interactive HTML based interface that allows for vector 

graphics and interactivity.280 The visualization layer communicated through standard hypertext 

protocols with Microsoft Internet Information Services. All data meant for visualization was 
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converted into JavaScript Object Notation (JSON) format. Radial coordinates were calculated 

with the standard d3 radial transform. Drawing was accomplished using the d3.js “arc” tool.  

We used the R programming interface and used Shiny for CLUSTERVIEW. Shiny is an interactive 

protocol that allows a web-like front end with the backend powered by R.281 Shiny Dashboards 

allow the user to streamline the process of data input, statistical analysis, and graphical 

exploration. The GUI is designed to streamline the process of model performance analysis. 

Distinct panels are used for various stages of the analysis, including data input and filtering, and 

outlier detection. 

DATA SETS 

For TIMELINE, we utilized the patient pool presented in Chapter II. In brief, it consisted of 504 

cirrhotic patients who were hospitalized with AKI from a variety of causes. Manual chart review 

adjudicated the cause of AKI. Though the dataset in Chapter II was primarily interested in the 

data surrounding the hospitalization of interest, for the visualization we expanded this dataset 

with time-series data of laboratory measurements, diagnoses, and procedure codes.  

For CLUSTERVIEW, we utilized the dataset presented in Chapter III. In brief, it consisted of 

35,412 patients with cirrhosis hospitalized with acute kidney injury from a variety of causes. The 

primary outcome of the model was development of HRS. The model was constructed with 287 

predictor variables. Refer to Chapter III for full details. 

METHODS ON USING CLUSTERING TO LOOK AT MODEL PERFORMANCE 

We also assessed sub-population calibration and discrimination using unsupervised clustering, 

which collates similar observations together without forehand knowledge of any group 

membership. We performed unsupervised clustering using Kohonen’s Self-Organizing Map 

(SOM),282 implemented by the kohonen R package,283 to divide our parent cohort into forty-nine 

subgroups based on the 286 variables. We used a SOM to perform the clustering because it also 

allows for abstraction and visualization. We utilized the Gower distance as the similarity 

measure, which handles both continuous and discrete variables.284 We used the cluster instability 

metric to choose a map size (i.e., the number of clusters).285 We tested the cluster instability 

metric for map sizes between 4x4 and 13x13 units and selected the size at which the instability 

metric displayed an “elbow point,” the point past which we have diminishing marginal return in 

cluster stability. 

The user can select to plot similar patients; each patient is represented by an asterixis on the plot. 

Patient similarity was defined in one of two ways: first, patients who all fall within a percentile 

range for HRS risk based on the model, e.g. top risk decile; second, all patients similar to a 

hypothetical, new patient. Unlike the clustering, however, when plotting similar patients to a new 

patient only the variables selected for plotting are used for computing similarity. The Gower 

distance was used for identifying patient similarity to a new patient. 
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Figure 12: Example clinical course visualization for a patient with alcoholic cirrhosis. 

Note: CREAT: creatinine; MELD: Model for End-Stage Liver Disease; ALB: Albumin; BILI: Total Bilirubin; PLT: 

Platelet; PT: Prothrombin Time 

  

Figure 13: Example comparison of two patients with different clinical trajectories as 

depicted by the clinical course visualization tool. 

The temporal axis is circular and moves clockwise, starting in the year 2005 (labeled on the outermost ring). The 

end of the ring represents the hospital encounter of interest; for example in patient A, the final hospitalization 

resulted in death. CREAT: creatinine; MELD: Model for End-Stage Liver Disease; ALB: Albumin; BILI: Total 

Bilirubin; PLT: Platelet; PT: Prothrombin Time 
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RESULTS 

TIMELINE VISUALIZATION 

Figure 12 demonstrates an example patient for the clinical course visualization. Six numerical 

parameters (five laboratory values and one risk score) are plotted within the rings using color 

coding for severity. The innermost ring-space identifies decompensating events such as 

complications of cirrhosis. Finally black triangles indicate inpatient admission. The example 

patient had a history of alcohol abuse and had a late diagnosis of cirrhosis around 2011. The 

patient had a rapidly decompensating course, particularly with the development of hepatocellular 

carcinoma in 2012 marked by multiple hospital admissions prior to his death. 

Figure 13 demonstrates a side-by-side comparison of two patients: Panel A demonstrates a 

patient admitted with HRS and Panel B demonstrates a patient admitted with AKI but not 

diagnosed with HRS. In order to facilitate comparison, both patient timelines are anchored on the 

last date visualized – the first day of index admission. Two trends are readily notable. The patient 

without HRS, has a relatively stable clinical course. His indices suggest moderate cirrhosis with 

recurring problems due to hepatic encephalopathy. He would be classified as Baveno stage I. The 

HRS patient, however, demonstrates a rapidly declining course. The patient’s timeline exhibits 

multiple paracenteses before admission—indicative of refractory ascites, a common precursor to 

HRS.  

CLUSTERING TO ANALYZE MODEL PERFORMANCE 

To look at population heterogeneity and assess model performance amongst subgroups of similar 

admissions, the total cohort was subdivided into 49 clusters using a 7x7 SOM.  There was a 

median of 622 observations per cluster with an interquartile range of 321 to 973 and a maximum 

of 2026 observations in one cluster. Excluding three clusters that had ≤ 2 observations, the 

minimum number of observations per cluster was 192. 

Table 14 reports the data as a table with point estimates and 95% confidence intervals around the 

estimates.   
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Table 14: Discrimination and calibration statistics for each cluster along with 95% confidence intervals obtained by bootstrap 

sampling.  
Clusters with “N/A” had ≤ 2 observations. When comparing the cluster number with the cluster map in Figure 3, cluster #1 starts in the bottom left corner and 

proceeds row-wise until cluster #49 in the top right corner. 

Cl. N Intercept Slope Brier AUC 

1 423 -0.374 (-0.707,-0.04) 0.612 (0.387,0.837) 0.17 (0.15,0.191) 0.665 (0.606,0.725) 

2 927 1.647 (-3.471,6.765) 1.555 (0.289,2.82) 0.008 (0.003,0.013) 0.803 (0.554,1.051) 

3 1535 0.686 (-0.552,1.923) 1.217 (0.883,1.551) 0.016 (0.01,0.022) 0.859 (0.784,0.934) 

4 2026 0.785 (-0.002,1.572) 1.214 (0.966,1.461) 0.027 (0.021,0.033) 0.821 (0.767,0.875) 

5 973 0.458 (-0.637,1.553) 1.075 (0.731,1.42) 0.033 (0.022,0.044) 0.762 (0.678,0.846) 

6 236 -0.166 (-0.644,0.312) 0.82 (0.507,1.132) 0.146 (0.116,0.176) 0.749 (0.672,0.826) 

7 266 -1.001 (-1.747,-0.255) 0.381 (-0.017,0.779) 0.139 (0.11,0.168) 0.617 (0.52,0.714) 

8 321 -0.615 (-1.144,-0.087) 0.682 (0.426,0.937) 0.124 (0.1,0.149) 0.757 (0.702,0.812) 

9 860 0.366 (-0.196,0.928) 1.037 (0.807,1.266) 0.08 (0.066,0.094) 0.792 (0.745,0.839) 

10 1332 2.172 (0.58,3.764) 1.665 (1.2,2.13) 0.02 (0.013,0.028) 0.865 (0.794,0.937) 

11 2006 0.104 (-0.523,0.73) 1.004 (0.81,1.197) 0.045 (0.036,0.053) 0.775 (0.733,0.817) 

12 1 N/A (N/A,N/A) N/A (N/A,N/A) N/A (N/A,N/A) N/A (N/A,N/A) 

13 327 -0.262 (-1.273,0.749) 0.69 (0.281,1.1) 0.101 (0.071,0.13) 0.649 (0.555,0.743) 

14 0 N/A (N/A,N/A) N/A (N/A,N/A) N/A (N/A,N/A) N/A (N/A,N/A) 

15 66 4.122 (-47.616,55.859) 4.391 (-14.986,23.769) 0.029 (-0.001,0.059) 0.515 (-0.17,1.2) 

16 425 -0.427 (-1.51,0.656) 0.865 (0.482,1.247) 0.05 (0.033,0.067) 0.819 (0.722,0.916) 

17 1117 0.757 (0.207,1.306) 1.315 (1.092,1.539) 0.053 (0.043,0.063) 0.868 (0.832,0.904) 

18 1223 0.053 (-0.327,0.433) 0.975 (0.807,1.144) 0.092 (0.08,0.104) 0.78 (0.743,0.817) 

19 378 0.176 (-0.421,0.773) 0.906 (0.656,1.157) 0.109 (0.083,0.134) 0.782 (0.727,0.838) 

20 457 -0.548 (-1.528,0.431) 0.963 (0.544,1.382) 0.035 (0.023,0.048) 0.801 (0.712,0.89) 

21 811 -1.029 (-1.621,-0.437) 0.541 (0.313,0.769) 0.077 (0.061,0.092) 0.665 (0.603,0.728) 

22 508 1.535 (-0.659,3.729) 1.55 (0.883,2.218) 0.02 (0.009,0.032) 0.835 (0.75,0.92) 

23 892 -0.312 (-2.116,1.492) 1.022 (0.544,1.5) 0.013 (0.007,0.02) 0.768 (0.665,0.871) 

24 788 -0.435 (-0.77,-0.1) 0.699 (0.496,0.901) 0.137 (0.122,0.152) 0.694 (0.649,0.739) 

25 831 -0.518 (-1.105,0.07) 0.888 (0.647,1.13) 0.055 (0.041,0.068) 0.783 (0.728,0.837) 
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Cl. N Intercept Slope Brier AUC 

26 819 0.148 (-1.106,1.402) 1.126 (0.642,1.61) 0.037 (0.027,0.047) 0.785 (0.687,0.882) 

27 121 7.581 (-13.038,28.201) 4.699 (-6.656,16.053) 0.034 (0.011,0.058) 0.969 (0.917,1.02) 

28 1092 0.956 (0.24,1.672) 1.209 (0.955,1.463) 0.054 (0.043,0.066) 0.807 (0.761,0.854) 

29 1256 1.191 (-1.188,3.571) 1.573 (0.826,2.321) 0.011 (0.006,0.016) 0.785 (0.661,0.908) 

30 907 0.137 (-0.709,0.983) 0.947 (0.636,1.259) 0.061 (0.048,0.075) 0.719 (0.652,0.785) 

31 261 -0.081 (-0.465,0.302) 1.02 (0.695,1.344) 0.16 (0.135,0.185) 0.761 (0.699,0.824) 

32 506 -0.316 (-0.544,-0.089) 0.584 (0.377,0.791) 0.206 (0.185,0.226) 0.667 (0.612,0.722) 

33 622 -0.043 (-0.981,0.894) 1.011 (0.669,1.353) 0.043 (0.03,0.056) 0.85 (0.778,0.923) 

34 1142 1.51 (-0.911,3.931) 1.631 (0.868,2.394) 0.012 (0.008,0.017) 0.871 (0.76,0.981) 

35 1493 -0.226 (-1.705,1.253) 1.128 (0.703,1.554) 0.012 (0.007,0.017) 0.83 (0.742,0.918) 

36 815 -0.211 (-1.09,0.668) 0.87 (0.557,1.183) 0.057 (0.043,0.07) 0.714 (0.644,0.785) 

37 449 -0.219 (-1.143,0.705) 1.029 (0.644,1.414) 0.039 (0.024,0.055) 0.829 (0.745,0.913) 

38 813 -0.019 (-0.633,0.595) 0.889 (0.631,1.146) 0.083 (0.068,0.098) 0.749 (0.685,0.813) 

39 253 -0.914 (-1.583,-0.246) 0.411 (0.162,0.66) 0.124 (0.091,0.156) 0.661 (0.575,0.748) 

40 192 0.566 (-1.037,2.169) 1.535 (0.664,2.407) 0.058 (0.036,0.08) 0.936 (0.886,0.986) 

41 562 0.275 (-3.947,4.496) 1.457 (0.262,2.653) 0.008 (0.001,0.014) 0.85 (0.636,1.064) 

42 604 -0.296 (-0.707,0.116) 0.821 (0.607,1.036) 0.115 (0.098,0.132) 0.782 (0.736,0.827) 

43 1456 0.756 (0.034,1.479) 1.23 (0.994,1.466) 0.036 (0.028,0.044) 0.819 (0.774,0.864) 

44 308 1.862 (-0.798,4.523) 1.7 (0.767,2.633) 0.023 (0.01,0.036) 0.874 (0.786,0.962) 

45 488 -0.619 (-1.257,0.018) 0.696 (0.378,1.014) 0.109 (0.086,0.133) 0.676 (0.602,0.749) 

46 2 N/A (N/A,N/A) N/A (N/A,N/A) N/A (N/A,N/A) N/A (N/A,N/A) 

47 1537 0.181 (-0.325,0.687) 1.063 (0.841,1.285) 0.072 (0.062,0.082) 0.747 (0.706,0.788) 

48 131 -1.849 (-9.556,5.859) 1.985 (-5.986,9.957) 0.031 (0.012,0.05) 0.91 (0.805,1.015) 

49 854 -1.399 (-4.175,1.376) 1.168 (0.312,2.024) 0.006 (0.002,0.01) 0.908 (0.802,1.013) 
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There were twenty clusters with an AUC  0.8, seventeen with an AUC between 0.7 and 0.8, and 

nine with an AUC < 0.7. Clusters with AUC  0.8 demonstrated phenotypes of CKD, cardiac 

comorbidities with coronary artery disease, congestive heart failure (CHF), and atrial fibrillation, 

and higher serum sodium on admission. In addition, the group of well performing clusters in the 

bottom left quadrant showed a phenotype of alcohol abuse and higher serum sodium. Poorly 

performing clusters displayed a phenotype of patients with a history of decompensated cirrhosis 

(hepatic encephalopathy, spontaneous bacterial peritonitis, varices, and ascites) along with 

KDIGO Stage I kidney injury. When comparing the top versus bottom 5 performing clusters, in 

addition to the aforementioned phenotypic differences, there was a significant difference in 

degree of kidney injury (average admission creatinine of 6.2 ± 2.9 (SD) versus 2.1 ± 1.1 

(p<0.0001), respectively).  There was KDIGO Stage 3 kidney injury 1860 out of 1860 

hospitalizations in the top performing clusters versus 1 out of 1958 in the bottom performing 

clusters (1691 out of 1958 were KDIGO Stage 1). Finally, clusters where patients received a 

paracentesis on the day of admission also performed poorly. The clustering results were 

displayed using CLUSTERVIEW’s interface (Refer to Figure 16). 

CLUSTERVIEW  VISUALIZATION 

Layout 
The tool consists of three main areas (
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Figure 15): Panel A, control panel; Panel B, cluster visualization view; and Panel C, detail view. 

The control panel in the left area has multi-checkbox interface to choose options for the 

visualization: (1) selecting variables to display; (2) plotting observed outcomes; (3) plotting 

similar patients to an index patient; (4) plotting similar patients to the index patient in terms of 

clustering; and (5) exporting data. The cluster visualization view in the middle area visualizes 

multiple patient clusters using a glyph visualization. The detail view on the right allows a drill 

down of all the variables that make up the cluster. The user can retrieve summary statistics on a 

single cluster, or compare two clusters by selecting them in the middle panel. 

Each cluster represents a group of similar patients (Figure 14). The relative importance of 

features within each cluster is visualized using pie-piece glyphs. The larger the pie piece, the 

greater the feature’s importance to the respective cluster. The features of interest can be chosen 

from the left control panel.   

Figure 14: Visual representation of each patient cluster. 

Each cluster has an (optional) halo which color codes a user-selected outcome, e.g. probability of HRS (Arrow A). 

The user may (optionally) display up to fourteen variables within the visualization, symbolized by pie-pieces (Arrow 

B). The size of the pie-piece is proportional to the importance of that variable within the cluster. 
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Figure 15: Layout of statistics visualization tool. 

The layout includes three components: Panel A displays the control options including selection of variables and measures to display; 

Panel B contains the visualization; Panel C has drill-down information that dynamically responds to the visualized measure and 

chosen cluster. 

Figure 16: 7x7 Self Organizing Map with the 49 clusters of observations. Each cluster has an outer ring 

color coded to the risk model's performance (AUC) within that cluster. 

The slope and intercept of the risk model are color coded in the bottom semicircle and top semicircle, respectively, for each cluster. 

Each cluster’s affinity for 14 variables is represented by a color coded pie piece, with a larger pie piece showing greater affinity. (CR 

= Creatinine; NA = Sodium; AFIB = Atrial Fibrillation; CAD = Coronary Artery Disease; CHF = Congestive Heart Failure; CKD = 

Chronic Kidney Disease; HE = Hepatic Encephalopathy; SBP = Spontaneous Bacterial Peritonitis) 
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Figure 16 shows how the user can use CLUSTERVIEW to analyze overall model performance. The 

clustering along with the model’s AUC and model calibration using the slope and intercept of the 

regression line through O/E probability plot; additionally the visualization also shows each 

cluster’s affinity for fourteen key clinical variables.   

Figure 17: Statistics visualization user interface workflow. 

(A) The user utilizes the control panel to select desired outcome and predictors for plotting; (B) Plotting area 

displays clusters with the cluster measure displayed as a colored halo; (C) Patients similar in terms of risk percentile, 

chosen from the control panel, are plotted; (D) Patients with similar predictors are plotted; (E) Two clusters can be 

selected and compared using a drill-down table. 

Panel A 

 

Panel B 

 

Panel C 

 

Panel D 

 

Panel E 

 

User Interaction 
Refer to Figure 17 for the workflow. Using the left control panel users can select the predictors 

of interest to display within the cluster visualization from five domains: demographics, 

laboratory values, home medications, inpatient medications, and comorbidities. The user can also 

plot either the percentage of patients who have HRS within the cluster or the prediction model’s 

AUC for the respective cluster. This information is visualized as a color-coded halo. Using the 

selected features from the first step, users can visualize which features or combinations of 

features predispose patients to HRS. Figure 17 panels C and D demonstrate plotting similar 

patients via the two protocols discussed in the methods: similar patients based on predicted 

probability and patients similar to a new, hypothetical patient. Finally, the user may select a 

cluster (or select two clusters to compare) to obtain more information about the cluster. Cluster 

information is provided in tabular format in the right hand side of the interface. For example, one 

may see that patients in the first cluster, with a much higher prevalence of HRS, have a 

significantly higher history of cirrhosis complications.  
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DISCUSSION 

We constructed visualizations to better understand high dimensional data and represent complex 

information to help clinicians make healthcare decisions. Human cognition uses pre-attentive 

systems for significant parts of graphical data visual processing. To leverage the pre-attentive 

qualities of visual cognition, we used color and proximity in TIMELINE. For CLUSTERVIEW, we 

employed color, size, proximity, and similarity.  We leveraged design paradigms for high-

dimensional, temporal data including brushing within the timeline visualization, color mapping, 

and coordinated views within the clustering visualization.  

Radial graphs aren’t necessarily best for temporal tasks and can increase processing time.286 

Radial graphs are most useful for finding extreme values, particularly in relation to other 

dimensions.287,288 Radar graphs do have some shortcomings other than possibly increased 

processing time (depending on the task). They can be error prone because the individual needs to 

follow one of several concentric rings if the goal is to look up an individual value. However, for 

TIMELINE the goal is less to identify a particular value (e.g., what was the MELD score in 

January 1st, 2014) and more important to see the evolving pattern of values across multiple 

dimensions. 

Our clustering and visualization technique can be used at two stages of clinical care. During 

model formulation, it can be invoked to identify clusters with a different case mix and poor 

model performance. These outlier clusters may indicate the need to refit the model for these sub-

groups. Possible etiologies include not accounting for important risk variables or necessary 

interaction terms. Clustering to perform sub-group analysis also helps us perform assessment of 

strong calibration.289 Unlike measures such as Hosmer-Lemeshow or observed-to-expected 

probability plots which assess moderate calibration, strong calibration requires predicted risks to 

correspond to observed event rates for every covariate pattern. It is both computationally and 

cognitively infeasible to specify all possible covariate patterns. Clustering, however, provides an 

intuitive, parsimonious grouping of covariate patterns. 

Secondly, we can use CLUSTERVIEW at the point-of-care: when a new patient enters the 

emergency room they can be assigned to a cluster. Using this alternate clinical workflow, we 

obtain the model’s risk estimate and its performance for patients like the index case. Unlike the 

standard-of-care, if the algorithm indicates sufficient risk of HRS and the patient falls within a 

cluster where model performance is acceptable (i.e., AUC  0.8) we can initiate vasopressor 

therapy immediately. Though visualizing risk prediction and uncertainty has received some 

attention for patient-facing tools,168,204 physician-facing CDS has received sparse 

investigation.205  

In summary, we developed two cohesive information visualizations that combines model 

performance with identifying a patient’s phenotype. Next steps would be to have a formative and 

summative evaluation of these visualizations. Techniques could include semi-structured 

interviews and the use of eye-tracking to monitor areas of visualizations that users are spending 

more time on.290 This could help find pre-attentive errors that people are making because the 

visualization is poor. 
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CHAPTER V: CONCLUSIONS 

 

The widespread adoption of the electronic health record has created a new source of “Big Data.” 

As the cost of healthcare in the United States has significantly outpaced other countries,291 we 

have to turn to new technologies and exploit novel methods of analysis and decision making.  

Cirrhosis is one of the most expensive diseases in America, and is responsible for over $10 

billion dollars of spending annually.292 The majority of these costs accrue from frequent 

hospitalizations from cirrhosis-related complications.293 Hepatorenal Syndrome serves as one of 

the deadliest cirrhosis complications, with a median survival of weeks to months. Additionally, 

HRS doubles hospital length of stay and associated costs.294 

In order to improve the care of these high cost diseases, there is increasing emphasis on 

observational cohort trials and pragmatic clinical trials. These study designs require highly 

accurate methods to identify patient cases and controls. Traditional means of identifying cases, 

including chart review, are infeasible to provide sufficient cases for accurate model building. We 

have presented a highly accurate, and tunable algorithm to identify cases and controls using EHR 

phenotyping with an AUC of 0.93. Additionally, our phenotyping algorithm demonstrated the 

benefit of utilizing fixed vector representations of UMLS CUIs instead of free text. 

Predictive analytics plays an increasingly important part in delivering state of the art care and 

clinical decision support. Particularly in the era of big data we have the opportunity to improve 

the care of our sickest patients. The Veterans Health Administration has over three decades of 

experience collecting routine clinical information about the patients it serves. With the 

development of the VINCI infrastructure, the VA serves as one of the best resources for 

longitudinal observational cohort research. The VA’s decades of investment in its health IT 

infrastructure is starting to pay dividends.295 

This study showed that improved risk prediction modeling surrounding HRS patients can 

identify HRS patients at time of hospitalization. HRS is often difficult to diagnose as it mimics 

many other causes of kidney injury on presentation; moreover, cirrhotics are prone to kidney 

damage from many causes. The model helps identify those patients who are more likely to go on 

to develop acute kidney injury. We compiled a cohort of 2,435 inpatient hospitalizations with 

HRS, which is to our best knowledge the largest observational cohort for HRS ever assembled. 

Using this cohort we developed a model with an AUC of 0.84 for identifying patients at high risk 

for developing HRS with excellent calibration based on data in the peri-admission window. 

Clustering allowed us to analyze model performance within patient sub-cohorts. For example, 

patients with existing cardiac comorbidities or CKD did well. Given the recent evidence showing 

that insufficient cardiac output induces renal hypoperfusion in HRS,30,234 patients with heart 

failure comprise a demographic in need of more accurate prediction. Patients with CKD 

represent another subpopulation where diagnosing HRS can be difficult because of the increased 

variability in kidney function in patients with CKD.296 Subgroups where model performance is 

subpar show a higher proportion of cirrhosis complications and a lower level of kidney injury on 

presentation. However, in patients with Baveno stage III or IV decompensated cirrhosis297 and 

KDIGO stage III renal failure (3223 admissions), the model had an AUC of 0.81, suggesting that 

it was a combination of cirrhosis complications and low level kidney injury that comprised a 

challenging phenotype. 
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Despite aggressive promises of increasing health technology use and big data to affect 

healthcare, real world implementations of real-time predictive analytics still appear to be few and 

far between. One of the challenges faced in utilizing some of these new technologies lies in 

creating interpretable models.157 Information Visualization techniques have been employed to 

make previously ineluctable models such as neural networks more accessible.298,299 Information 

Visualization works best when it augments the human brain’s ability to find patterns in data. Our 

study created an interactive information visualization system to improve the care for patients 

with HRS. We first built a patient timeline viewer to help clinicians quickly understand the 

relevant history of a patient. During direct workflow observation we identified key attributes of a 

cirrhotic patient’s disease course that could help specialists (and non-specialists alike) 

understand how sick a patient was.  

Leveraged with this data we also constructed CLUSTERVIEW, our risk prediction model exploring 

and clustering visualization. Our clustering visualization allows rapid visualization of model 

performance within sub-groups of the cohort to assess for how case-mix may model 

performance. Additionally, we theorize an additional workflow where such a visualization will 

help providers provide tailored care for patients by identifying “Patients-like-me” cohorts.  

LIMITATIONS 

This work has some limitations that are worth noting. Most importantly, this work is based on 

retrospective observational cohort data from the Department of Veterans Affairs. The VA data 

may not be representative of other clinical environments due to the slightly older average age 

and predominance of men. We only performed internal validation; however, we aimed to 

increase generalizability by sampling across a broad range of kidney injury and liver disease. 

Moreover, all variables are common to other electronic health records, and the selected variables 

make pathophysiologic sense. Third, several significant predictors were ICD-9 codes, but with 

the transition to ICD-10 in the US, the algorithm’s performance cannot be assured. At the same 

time, it is worth noting that there are one-to-one mappings for two of the important ICD-9 codes 

(ATN and HRS) based on the General Equivalent Maps (GEMs) framework.252 The code sets 

defining other conditions would require validation. Though we included etiology of cirrhosis as a 

covariate in all of our models, it is possible that important interaction effects may go unnoticed.  

Our work showed that logistic regression was comparable, and at times superior, to certain 

machine learning methods. We did leverage penalized regression models to handle overfitting, 

however. Though this held true in this dataset, it is possible that in a dataset with significantly 

more observations, a machine learning model would offer superior performance. We did not 

perform formative or summative evaluation of our visualization for this study; however, we did 

discuss the evaluations with select domain experts for informal feedback.  

FUTURE DIRECTIONS 

The studies described in this thesis demonstrate that machine learning assisted models can 

improve and accelerate care of patients with Hepatorenal Syndrome. The validity of the 

phenotyping model will need to be assessed in an outside cohort. The phenotyping model may be 

improved by including temporal feature generation. There is exciting work using recurrent neural 

networks to capture temporal features within EHR models.300 Much of healthcare data is 

inherently temporal as the basic unit of measurement, the patient, is often reassessed multiple 
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times during their clinical course, e.g. repeat lab measurements for each day of their 

hospitalization.   

The risk prediction model only utilized structured data, and as discussed in the phenotyping 

model, the natural extension would be to utilize clinical text data within the algorithm in two 

phases. The first phase would be to implement the phenotyping model developed in Chapter II to 

identify HRS patients, thereby improving upon the sensitivity and specificity of the ICD code 

utilized as the gold standard. Secondly, elements in the free text could serve as important 

predictors of patients who would go on to develop, or have HRS. 

The question remains of the clinical utility, which can only be assessed in prospective clinical 

trial. The next step would be to implement a real-time system that would monitor cirrhotic 

patients admitted to the hospital with some level of renal failure. The system could not only 

highlight cases that are apparent based on the phenotyping model, but also cases that are likely to 

go onto develop HRS. The system would need to be integrated into routine clinical care. Future 

work would revolve around integrating these models into routine clinical care using technologies 

such as Fast Healthcare Interoperability Resources and CDS-Hooks301,302 
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APPENDIX A: DETAILS ON PHENOTYPING ALGORITHMS 

 

Appendix Table A.1: List of candidate predictor variables with their data domain (Class) 

and their timeframe (Preadmission or Home vs. Inpatient) along with summary measures, 

percent missing, and number of patients with a value > 0. 

Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Home Cond AAA Home Condition 12.00 (2.38) 0 12 

Home Cond AbdomSurg Home Condition 22.00 (4.37) 0 22 

Home Cond ACS Home Condition 39.00 (7.74) 0 39 

Home Cond AFIB Home Condition 65.00 (12.90) 0 65 

Home Cond ALD Home Condition 456.00 (90.48) 0 456 

Home Cond AnalFisFist Home Condition 2.00 (0.40) 0 2 

Home Cond Angina Home Condition 25.00 (4.96) 0 25 

Home Cond ANMA Home Condition 260.00 (51.59) 0 260 

Home Cond ARF Home Condition 232.00 (46.03) 0 232 

Home Cond ARRH Home Condition 141.00 (27.98) 0 141 

Home Cond Ascites Home Condition 254.00 (50.40) 0 254 

Home Cond ASP Home Condition 2.00 (0.40) 0 2 

Home Cond Asthma Home Condition 26.00 (5.16) 0 26 

Home Cond ATN Home Condition 18.00 (3.57) 0 18 

Home Cond 
AutoNeuropathy 

Home Condition 3.00 (0.60) 0 3 

Home Cond AZ Cancer Home Condition 126.00 (25.00) 0 126 

Home Cond BilCirrhosis Home Condition 3.00 (0.60) 0 3 

Home Cond BowelPerf Home Condition 3.00 (0.60) 0 3 

Home Cond BURN Home Condition 4.00 (0.79) 0 4 

Home Cond CABG Home Condition 25.00 (4.96) 0 25 

Home Cond CAD Home Condition 120.00 (23.81) 0 120 

Home Cond Cancer Home Condition 109.00 (21.63) 0 109 

Home Cond CANDI Home Condition 27.00 (5.36) 0 27 

Home Cond CardiacArrest Home Condition 5.00 (0.99) 0 5 

Home Cond CardSurg Home Condition 3.00 (0.60) 0 3 

Home Cond CarotidDis Home Condition 4.00 (0.79) 0 4 

Home Cond Cath Home Condition 23.00 (4.56) 0 23 

Home Cond CathPCIALL Home Condition 24.00 (4.76) 0 24 

Home Cond CathPCICont Home Condition 23.00 (4.56) 0 23 

Home Cond CathPCInoCont Home Condition 3.00 (0.60) 0 3 

Home Cond CathPCIwCont Home Condition 23.00 (4.56) 0 23 

Home Cond CDVD Home Condition 88.00 (17.46) 0 88 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Home Cond CHEMO Home Condition 17.00 (3.37) 0 17 

Home Cond CHF Home Condition 80.00 (15.87) 0 80 

Home Cond Cirrhosis Home Condition 444.00 (88.10) 0 444 

Home Cond Cirrhosis Risk 1 Home Condition 392.00 (77.78) 0 392 

Home Cond CKD Home Condition 74.00 (14.68) 0 74 

Home Cond Colitis Home Condition 4.00 (0.79) 0 4 

Home Cond Cons Condition Home Condition 98.00 (19.44) 0 98 

Home Cond COPDAsthma Home Condition 160.00 (31.75) 0 160 

Home Cond CS Home Condition 2.00 (0.40) 0 2 

Home Cond CVA Home Condition 48.00 (9.52) 0 48 

Home Cond DecALD Home Condition 467.00 (92.66) 0 467 

Home Cond Dementia Home Condition 5.00 (0.99) 0 5 

Home Cond DIAL Home Condition 12.00 (2.38) 0 12 

Home Cond DIAR Home Condition 73.00 (14.48) 0 73 

Home Cond DKA Home Condition 2.00 (0.40) 0 2 

Home Cond DM Home Condition 181.00 (35.91) 0 181 

Home Cond DMNeuropathy Home Condition 26.00 (5.16) 0 26 

Home Cond DMOsm Home Condition 4.00 (0.79) 0 4 

Home Cond DYS Home Condition 170.00 (33.73) 0 170 

Home Cond ETOH Home Condition 347.00 (68.85) 0 347 

Home Cond Etoh Abuse Home Condition 281.00 (55.75) 0 281 

Home Cond Fatigue Home Condition 1.00 (0.20) 0 1 

Home Cond Fibromyalgia Home Condition 11.00 (2.18) 0 11 

Home Cond Gastroparesis Home Condition 5.00 (0.99) 0 5 

Home Cond GI Home Condition 155.00 (30.75) 0 155 

Home Cond GIPerf Home Condition 3.00 (0.60) 0 3 

Home Cond GLOM Home Condition 2.00 (0.40) 0 2 

Home Cond GLOMNephEx Home Condition 2.00 (0.40) 0 2 

Home Cond HCC Home Condition 50.00 (9.92) 0 50 

Home Cond HE Home Condition 136.00 (26.98) 0 136 

Home Cond Headache Home Condition 36.00 (7.14) 0 36 

Home Cond Hemorrhoid Home Condition 95.00 (18.85) 0 95 

Home Cond HEP Home Condition 299.00 (59.33) 0 299 

Home Cond Hep B C Home Condition 242.00 (48.02) 0 242 

Home Cond HIV Home Condition 12.00 (2.38) 0 12 

Home Cond HOTN Home Condition 110.00 (21.83) 0 110 

Home Cond HRS Home Condition 113.00 (22.42) 0 113 

Home Cond HTN Home Condition 357.00 (70.83) 0 357 

Home Cond HTNEmer Home Condition 4.00 (0.79) 0 4 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Home Cond HYPC Home Condition 5.00 (0.99) 0 5 

Home Cond Hyperkalemia Home Condition 62.00 (12.30) 0 62 

Home Cond 
Hyperparathyroidism 

Home Condition 3.00 (0.60) 0 3 

Home Cond IBS Home Condition 5.00 (0.99) 0 5 

Home Cond IVD Home Condition 81.00 (16.07) 0 81 

Home Cond JAUD Home Condition 72.00 (14.29) 0 72 

Home Cond LIV Home Condition 462.00 (91.67) 0 462 

Home Cond LKM Home Condition 3.00 (0.60) 0 3 

Home Cond LUP Home Condition 7.00 (1.39) 0 7 

Home Cond MECHVENT Home Condition 20.00 (3.97) 0 20 

Home Cond Megacolon Home Condition 1.00 (0.20) 0 1 

Home Cond 
MetabolicSyndrome 

Home Condition 127.00 (25.20) 0 127 

Home Cond MI Home Condition 18.00 (3.57) 0 18 

Home Cond MVR Home Condition 14.00 (2.78) 0 14 

Home Cond Myopathies Home Condition 20.00 (3.97) 0 20 

Home Cond NAFLD Home Condition 72.00 (14.29) 0 72 

Home Cond NephGLOM Home Condition 9.00 (1.79) 0 9 

Home Cond Nephrtmy Home Condition 2.00 (0.40) 0 2 

Home Cond NFXss Home Condition 403.00 (79.96) 0 403 

Home Cond NSTEMI Home Condition 12.00 (2.38) 0 12 

Home Cond OA Home Condition 125.00 (24.80) 0 125 

Home Cond Obesity Home Condition 108.00 (21.43) 0 108 

Home Cond OFss Home Condition 367.00 (72.82) 0 367 

Home Cond OLG Home Condition 1.00 (0.20) 0 1 

Home Cond PALL Home Condition 47.00 (9.33) 0 47 

Home Cond Parkinsons Home Condition 3.00 (0.60) 0 3 

Home Cond PCI Home Condition 17.00 (3.37) 0 17 

Home Cond PCR Home Condition 50.00 (9.92) 0 50 

Home Cond PFT Home Condition 40.00 (7.94) 0 40 

Home Cond Plegia CC Home Condition 9.00 (1.79) 0 9 

Home Cond Porphyria Home Condition 2.00 (0.40) 0 2 

Home Cond PUD CC Home Condition 42.00 (8.33) 0 42 

Home Cond PVD Home Condition 28.00 (5.56) 0 28 

Home Cond RA Home Condition 4.00 (0.79) 0 4 

Home Cond RectalProlapse Home Condition 1.00 (0.20) 0 1 

Home Cond RHBD Home Condition 8.00 (1.59) 0 8 

Home Cond Rheum CC Home Condition 6.00 (1.19) 0 6 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Home Cond SBP Home Condition 49.00 (9.72) 0 49 

Home Cond Sickle Home Condition 1.00 (0.20) 0 1 

Home Cond SIRS Home Condition 51.00 (10.12) 0 51 

Home Cond SpinalCord Home Condition 4.00 (0.79) 0 4 

Home Cond SPS Home Condition 33.00 (6.55) 0 33 

Home Cond StableAngina Home Condition 21.00 (4.17) 0 21 

Home Cond STEMI Home Condition 13.00 (2.58) 0 13 

Home Cond STROKE Home Condition 30.00 (5.95) 0 30 

Home Cond TB Home Condition 3.00 (0.60) 0 3 

Home Cond TIA Home Condition 13.00 (2.58) 0 13 

Home Cond TIPS Home Condition 13.00 (2.58) 0 13 

Home Cond TOBC Home Condition 234.00 (46.43) 0 234 

Home Cond TRAU Home Condition 30.00 (5.95) 0 30 

Home Cond UNAN Home Condition 34.00 (6.75) 0 34 

Home Cond UrinaryObst Home Condition 46.00 (9.13) 0 46 

Home Cond Varices Home Condition 124.00 (24.60) 0 124 

Home Cond VascProc Home Condition 73.00 (14.48) 0 73 

Home Cond VascSurg Home Condition 58.00 (11.51) 0 58 

Home Cond VHD Home Condition 25.00 (4.96) 0 25 

Home Cond VLP Home Condition 58.00 (11.51) 0 58 

Home Cond VMT Home Condition 22.00 (4.37) 0 22 

Inpt Cond AA, Elixhauser Inpatie
nt 

Condition 1.16 (2.01) 0 276 

Inpt Cond AAA Inpatie
nt 

Condition 0.04 (0.73) 0 5 

Inpt Cond AbdomSurg Inpatie
nt 

Condition 0.08 (0.44) 0 18 

Inpt Cond ACS Inpatie
nt 

Condition 0.05 (0.33) 0 14 

Inpt Cond aDIAL Inpatie
nt 

Condition 0.33 (1.68) 0 39 

Inpt Cond AFIB Inpatie
nt 

Condition 0.20 (0.90) 0 50 

Inpt Cond AFL Inpatie
nt 

Condition 0.27 (1.16) 0 68 

Inpt Cond AIDS/HIV, 
Elixhauser 

Inpatie
nt 

Condition 0.04 (0.41) 0 8 

Inpt Cond ALD Inpatie
nt 

Condition 2.89 (3.49) 0 445 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Inpt Cond Angina Inpatie
nt 

Condition 0.02 (0.19) 0 7 

Inpt Cond ANMA Inpatie
nt 

Condition 0.67 (1.62) 0 185 

Inpt Cond ARF Inpatie
nt 

Condition 1.54 (2.77) 0 346 

Inpt Cond ARRH Inpatie
nt 

Condition 0.38 (1.04) 0 102 

Inpt Cond Arrhythmias, 
Elixhauser 

Inpatie
nt 

Condition 0.09 (0.37) 0 30 

Inpt Cond Ascites Inpatie
nt 

Condition 1.06 (1.69) 0 256 

Inpt Cond Asthma Inpatie
nt 

Condition 0.06 (0.54) 0 16 

Inpt Cond ATN Inpatie
nt 

Condition 0.11 (0.74) 0 35 

Inpt Cond AutoNeuropathy Inpatie
nt 

Condition 1.00 (0.20) 0 1 

Inpt Cond AZ Cancer Inpatie
nt 

Condition 0.51 (1.84) 0 94 

Inpt Cond BilCirrhosis Inpatie
nt 

Condition 0.00 (0.09) 0 1 

Inpt Cond BLA, Elixhauser Inpatie
nt 

Condition 6.00 (1.19) 0 6 

Inpt Cond BowelPerf Inpatie
nt 

Condition 0.01 (0.10) 0 2 

Inpt Cond CABG Inpatie
nt 

Condition 0.04 (0.44) 0 10 

Inpt Cond CAD Inpatie
nt 

Condition 0.23 (0.73) 0 75 

Inpt Cond Cancer Inpatie
nt 

Condition 0.48 (1.82) 0 87 

Inpt Cond CANDI Inpatie
nt 

Condition 0.05 (0.24) 0 21 

Inpt Cond CardiacArrest Inpatie
nt 

Condition 8.00 (1.59) 0 8 

Inpt Cond CardSurg Inpatie
nt 

Condition 0.01 (0.14) 0 4 

Inpt Cond Cath Inpatie
nt 

Condition 0.02 (0.16) 0 7 

Inpt Cond CathPCIALL Inpatie
nt 

Condition 0.02 (0.16) 0 7 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Inpt Cond CathPCICont Inpatie
nt 

Condition 0.02 (0.15) 0 6 

Inpt Cond CathPCInoCont Inpatie
nt 

Condition 4.00 (0.79) 0 4 

Inpt Cond CathPCIwCont Inpatie
nt 

Condition 0.02 (0.15) 0 6 

Inpt Cond CDVD Inpatie
nt 

Condition 0.15 (0.85) 0 39 

Inpt Cond CGP, Elixhauser Inpatie
nt 

Condition 0.38 (1.06) 0 134 

Inpt Cond CHF Inpatie
nt 

Condition 0.41 (1.78) 0 79 

Inpt Cond CHF bansal Inpatie
nt 

Condition 0.41 (1.78) 0 79 

Inpt Cond CHF, Elixhauser Inpatie
nt 

Condition 0.40 (1.78) 0 78 

Inpt Cond Cirrhosis Inpatie
nt 

Condition 2.01 (2.53) 0 420 

Inpt Cond Cirrhosis Risk 1 Inpatie
nt 

Condition 1.73 (3.09) 0 344 

Inpt Cond CKD Inpatie
nt 

Condition 0.36 (1.22) 0 98 

Inpt Cond Cons Condition Inpatie
nt 

Condition 0.09 (0.60) 0 24 

Inpt Cond Cons Proc Inpatie
nt 

Condition 1.00 (0.20) 0 1 

Inpt Cond COPD Inpatie
nt 

Condition 0.57 (1.98) 0 114 

Inpt Cond COPDAsthma Inpatie
nt 

Condition 0.61 (2.04) 0 121 

Inpt Cond CPD, Elixhauser Inpatie
nt 

Condition 0.63 (2.04) 0 130 

Inpt Cond CS Inpatie
nt 

Condition 0.01 (0.11) 0 3 

Inpt Cond CVA Inpatie
nt 

Condition 0.10 (0.86) 0 23 

Inpt Cond DA, Elixhauser Inpatie
nt 

Condition 0.08 (0.32) 0 34 

Inpt Cond DecALD Inpatie
nt 

Condition 3.09 (3.60) 0 451 

Inpt Cond Deyo's CHF Inpatie
nt 

Condition 0.39 (1.77) 0 73 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Inpt Cond Deyo's CPD Inpatie
nt 

Condition 0.57 (1.98) 0 115 

Inpt Cond Deyo's CVD Inpatie
nt 

Condition 0.11 (0.87) 0 26 

Inpt Cond Deyo's DM w/ 
chronic comp 

Inpatie
nt 

Condition 0.06 (0.38) 0 20 

Inpt Cond Deyo's DM w/o 
chronic comp 

Inpatie
nt 

Condition 0.47 (1.16) 0 135 

Inpt Cond Deyo's 
Hemiplegia or Paraplegia 

Inpatie
nt 

Condition 0.01 (0.10) 0 2 

Inpt Cond Deyo's HIV Inpatie
nt 

Condition 0.04 (0.41) 0 8 

Inpt Cond Deyo's 
Malignancy 

Inpatie
nt 

Condition 0.48 (1.82) 0 87 

Inpt Cond Deyo's MI Inpatie
nt 

Condition 0.04 (0.29) 0 15 

Inpt Cond Deyo's Mild Liver 
Disease 

Inpatie
nt 

Condition 2.03 (2.54) 0 420 

Inpt Cond Deyo's Moderate 
to Severe Liver Disease 

Inpatie
nt 

Condition 1.44 (2.12) 0 337 

Inpt Cond Deyo's PUD Inpatie
nt 

Condition 0.06 (0.32) 0 18 

Inpt Cond Deyo's PVD Inpatie
nt 

Condition 0.14 (0.91) 0 25 

Inpt Cond Deyo's Renal Inpatie
nt 

Condition 0.45 (1.33) 0 120 

Inpt Cond Deyo's Rheumatic Inpatie
nt 

Condition 0.01 (0.11) 0 3 

Inpt Cond Deyo's Tumor Inpatie
nt 

Condition 0.05 (0.25) 0 20 

Inpt Cond DiabetesC, 
Elixhauser 

Inpatie
nt 

Condition 0.14 (0.86) 0 31 

Inpt Cond DiabetesU, 
Elixhauser 

Inpatie
nt 

Condition 0.44 (1.07) 0 134 

Inpt Cond DIAL Inpatie
nt 

Condition 0.48 (2.49) 0 44 

Inpt Cond DIAR Inpatie
nt 

Condition 0.07 (0.33) 0 26 

Inpt Cond DKA Inpatie
nt 

Condition 1.00 (0.20) 0 1 

Inpt Cond DM Inpatie
nt 

Condition 0.57 (1.49) 0 149 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Inpt Cond DMNeuropathy Inpatie
nt 

Condition 8.00 (1.59) 0 8 

Inpt Cond DMOsm Inpatie
nt 

Condition 0.03 (0.42) 0 4 

Inpt Cond DP, Elixhauser Inpatie
nt 

Condition 0.13 (0.56) 0 42 

Inpt Cond Drug Abuse, 
Elixhauser 

Inpatie
nt 

Condition 0.11 (0.89) 0 24 

Inpt Cond DYS Inpatie
nt 

Condition 0.13 (0.41) 0 53 

Inpt Cond ETOH Inpatie
nt 

Condition 1.64 (3.13) 0 301 

Inpt Cond Etoh Abuse Inpatie
nt 

Condition 0.73 (2.23) 0 178 

Inpt Cond FED, Elixhauser Inpatie
nt 

Condition 0.88 (1.95) 0 249 

Inpt Cond Gastroparesis Inpatie
nt 

Condition 1.00 (0.20) 0 1 

Inpt Cond GI Inpatie
nt 

Condition 0.31 (1.14) 0 69 

Inpt Cond GIPerf Inpatie
nt 

Condition 0.01 (0.10) 0 2 

Inpt Cond GLOM Inpatie
nt 

Condition 3.00 (0.60) 0 3 

Inpt Cond GLOMNephEx Inpatie
nt 

Condition 3.00 (0.60) 0 3 

Inpt Cond HBC Inpatie
nt 

Condition 0.91 (1.99) 0 215 

Inpt Cond HCC Inpatie
nt 

Condition 0.23 (1.19) 0 44 

Inpt Cond HE Inpatie
nt 

Condition 0.50 (1.46) 0 137 

Inpt Cond Headache Inpatie
nt 

Condition 0.01 (0.11) 0 3 

Inpt Cond HEMOCH Inpatie
nt 

Condition 0.03 (0.63) 0 2 

Inpt Cond Hemorrhoid Inpatie
nt 

Condition 0.03 (0.20) 0 12 

Inpt Cond HEP Inpatie
nt 

Condition 1.15 (2.20) 0 261 

Inpt Cond Hep B C Inpatie
nt 

Condition 0.91 (1.99) 0 215 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Inpt Cond HF, Elixhauser Inpatie
nt 

Condition 0.53 (1.02) 0 178 

Inpt Cond HFC, Elixhauser Inpatie
nt 

Condition 0.14 (0.56) 0 56 

Inpt Cond HIV Inpatie
nt 

Condition 0.06 (0.48) 0 11 

Inpt Cond HOSP Inpatie
nt 

Condition 1.00 (0.20) 0 1 

Inpt Cond HOTN Inpatie
nt 

Condition 0.22 (0.62) 0 77 

Inpt Cond HRS Inpatie
nt 

Condition 0.69 (1.37) 0 233 

Inpt Cond HTD, Elixhauser Inpatie
nt 

Condition 0.08 (0.31) 0 37 

Inpt Cond HTN Inpatie
nt 

Condition 0.67 (1.14) 0 221 

Inpt Cond Hydronephrosis Inpatie
nt 

Condition 4.00 (0.79) 0 4 

Inpt Cond HYPC Inpatie
nt 

Condition 0.02 (0.24) 0 6 

Inpt Cond Hyperkalemia Inpatie
nt 

Condition 0.17 (0.79) 0 59 

Inpt Cond 
Hyperparathyroidism 

Inpatie
nt 

Condition 1.00 (0.20) 0 1 

Inpt Cond IABP Inpatie
nt 

Condition 1.00 (0.20) 0 1 

Inpt Cond IBS Inpatie
nt 

Condition 1.00 (0.20) 0 1 

Inpt Cond iDIAL Inpatie
nt 

Condition 0.15 (0.72) 0 38 

Inpt Cond IVD Inpatie
nt 

Condition 0.14 (0.43) 0 59 

Inpt Cond JAUD Inpatie
nt 

Condition 0.19 (0.77) 0 56 

Inpt Cond LD, Elixhauser Inpatie
nt 

Condition 3.40 (4.03) 0 458 

Inpt Cond LIV Inpatie
nt 

Condition 2.60 (3.08) 0 446 

Inpt Cond LKM Inpatie
nt 

Condition 0.01 (0.17) 0 3 

Inpt Cond LM, Elixhauser Inpatie
nt 

Condition 0.01 (0.20) 0 2 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Inpt Cond LUP Inpatie
nt 

Condition 0.01 (0.15) 0 5 

Inpt Cond LvrTx Inpatie
nt 

Condition 0.02 (0.40) 0 2 

Inpt Cond MC, Elixhauser Inpatie
nt 

Condition 0.05 (0.25) 0 20 

Inpt Cond MECHVENT Inpatie
nt 

Condition 0.17 (0.49) 0 65 

Inpt Cond MI Inpatie
nt 

Condition 0.03 (0.25) 0 9 

Inpt Cond MVR Inpatie
nt 

Condition 0.01 (0.13) 0 5 

Inpt Cond Myopathies Inpatie
nt 

Condition 9.00 (1.79) 0 9 

Inpt Cond NAFLD Inpatie
nt 

Condition 0.10 (0.42) 0 37 

Inpt Cond NAS Inpatie
nt 

Condition 0.06 (0.40) 0 20 

Inpt Cond NephGLOM Inpatie
nt 

Condition 0.01 (0.14) 0 2 

Inpt Cond Nephrtmy Inpatie
nt 

Condition 0.02 (0.17) 0 5 

Inpt Cond NFXss Inpatie
nt 

Condition 1.46 (2.91) 0 298 

Inpt Cond NSTEMI Inpatie
nt 

Condition 0.01 (0.13) 0 6 

Inpt Cond OA Inpatie
nt 

Condition 0.03 (0.28) 0 10 

Inpt Cond Obesity Inpatie
nt 

Condition 0.04 (0.26) 0 13 

Inpt Cond OFss Inpatie
nt 

Condition 2.33 (3.62) 0 416 

Inpt Cond OLG Inpatie
nt 

Condition 0.01 (0.19) 0 4 

Inpt Cond OND, Elixhauser Inpatie
nt 

Condition 0.04 (0.46) 0 10 

Inpt Cond OrganTrans Inpatie
nt 

Condition 0.02 (0.36) 0 2 

Inpt Cond PALL Inpatie
nt 

Condition 0.59 (1.88) 0 117 

Inpt Cond Paracentesis Inpatie
nt 

Condition 0.76 (1.17) 0 215 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Inpt Cond Paralysis, 
Elixhauser 

Inpatie
nt 

Condition 0.01 (0.10) 0 2 

Inpt Cond Parkinsons Inpatie
nt 

Condition 0.02 (0.40) 0 1 

Inpt Cond PCD, Elixhauser Inpatie
nt 

Condition 0.05 (0.27) 0 19 

Inpt Cond PCI Inpatie
nt 

Condition 3.00 (0.60) 0 3 

Inpt Cond PCR Inpatie
nt 

Condition 0.08 (0.55) 0 22 

Inpt Cond PFT Inpatie
nt 

Condition 0.04 (0.22) 0 15 

Inpt Cond Plegia CC Inpatie
nt 

Condition 0.01 (0.10) 0 2 

Inpt Cond PUD CC Inpatie
nt 

Condition 0.06 (0.32) 0 18 

Inpt Cond PVD Inpatie
nt 

Condition 0.10 (0.86) 0 18 

Inpt Cond PVD, Elixhauser Inpatie
nt 

Condition 0.16 (1.06) 0 31 

Inpt Cond PY, Elixhauser Inpatie
nt 

Condition 0.24 (2.79) 0 25 

Inpt Cond RA Inpatie
nt 

Condition 0.01 (0.11) 0 3 

Inpt Cond RA, Elixhauser Inpatie
nt 

Condition 0.01 (0.17) 0 3 

Inpt Cond RenalTrans Inpatie
nt 

Condition 1.00 (0.20) 0 1 

Inpt Cond RF, Elixhauser Inpatie
nt 

Condition 0.52 (1.53) 0 129 

Inpt Cond RHBD Inpatie
nt 

Condition 0.01 (0.11) 0 3 

Inpt Cond Rheum CC Inpatie
nt 

Condition 0.01 (0.17) 0 3 

Inpt Cond RUD, Elixhauser Inpatie
nt 

Condition 0.04 (0.26) 0 12 

Inpt Cond SBP Inpatie
nt 

Condition 0.17 (0.63) 0 56 

Inpt Cond SIRS Inpatie
nt 

Condition 0.17 (0.61) 0 77 

Inpt Cond SPS Inpatie
nt 

Condition 0.19 (1.26) 0 53 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Inpt Cond ST, Elixhauser Inpatie
nt 

Condition 0.45 (1.81) 0 82 

Inpt Cond StableAngina Inpatie
nt 

Condition 0.01 (0.17) 0 3 

Inpt Cond STEMI Inpatie
nt 

Condition 0.02 (0.19) 0 5 

Inpt Cond STROKE Inpatie
nt 

Condition 0.07 (0.75) 0 13 

Inpt Cond TB Inpatie
nt 

Condition 1.00 (0.20) 0 1 

Inpt Cond TIA Inpatie
nt 

Condition 1.00 (0.20) 0 1 

Inpt Cond TIPS Inpatie
nt 

Condition 0.02 (0.15) 0 6 

Inpt Cond TOBC Inpatie
nt 

Condition 0.23 (0.87) 0 81 

Inpt Cond TRAU Inpatie
nt 

Condition 0.02 (0.24) 0 4 

Inpt Cond UNAN Inpatie
nt 

Condition 0.02 (0.19) 0 7 

Inpt Cond UrinaryObst Inpatie
nt 

Condition 0.02 (0.16) 0 7 

Inpt Cond Valvular, 
Elixhauser 

Inpatie
nt 

Condition 0.10 (0.46) 0 31 

Inpt Cond Varices Inpatie
nt 

Condition 0.23 (0.71) 0 73 

Inpt Cond VascProc Inpatie
nt 

Condition 0.37 (0.71) 0 136 

Inpt Cond VascSurg Inpatie
nt 

Condition 0.34 (0.67) 0 129 

Inpt Cond VHD Inpatie
nt 

Condition 0.05 (0.29) 0 16 

Inpt Cond VLP Inpatie
nt 

Condition 0.13 (0.52) 0 39 

Inpt Cond VMT Inpatie
nt 

Condition 0.04 (0.23) 0 19 

Inpt Cond WL, Elixhauser Inpatie
nt 

Condition 0.09 (0.30) 0 45 

X3DPreAdmitProc_Paracent
esis 

Inpatie
nt 

Condition 8.00 (1.59) 0 8 

Race: 0 UNKNOWN Inpatie
nt 

Demographic 38.00 (7.54) 0 NA 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Race: 1 WHITE Inpatie
nt 

Demographic 355.00 (70.44) 0 NA 

Race: 2 BLACK Inpatie
nt 

Demographic 93.00 (18.45) 0 NA 

Race: 3 ASIAN-HAWAIIAN-
PACIFIC ISLANDER 

Inpatie
nt 

Demographic 9.00 (1.79) 0 NA 

Race: 4 AMERICAN INDIAN-
ALASKAN NATIVE 

Inpatie
nt 

Demographic 9.00 (1.79) 0 NA 

Age Inpatie
nt 

Demographic 61.55 (9.35) 0 504 

Gender Inpatie
nt 

Demographic 500.00 (99.21) 0 NA 

AdmissionToPostAdmDiffer
ence 

Inpatie
nt 

Laboratory -0.73 (1.79) 7.94 187 

Inpt Lab Avg Alb Inpatie
nt 

Laboratory 2.55 (0.68) 2.98 504 

Inpt Lab Avg AlkPhos Inpatie
nt 

Laboratory 147.90 (107.48) 3.97 504 

Inpt Lab Avg ALT Inpatie
nt 

Laboratory 80.10 (153.46) 3.77 504 

Inpt Lab Avg AST Inpatie
nt 

Laboratory 153.80 (304.61) 5.56 504 

Inpt Lab Avg BilirubinD Inpatie
nt 

Laboratory 3.56 (6.26) 38.1 411 

Inpt Lab Avg BilirubinT Inpatie
nt 

Laboratory 7.86 (9.67) 3.77 504 

Inpt Lab Avg BNP Inpatie
nt 

Laboratory 6040000000.00 
(96949181037.19
) 

68.06 504 

Inpt Lab Avg BS Inpatie
nt 

Laboratory 132.10 (47.11) 0.4 504 

Inpt Lab Avg BUN Inpatie
nt 

Laboratory 41.20 (20.96) 6.15 504 

Inpt Lab Avg CA Inpatie
nt 

Laboratory 8.27 (0.94) 1.59 504 

Inpt Lab Avg CK Inpatie
nt 

Laboratory 27560.00 
(581533.94) 

58.33 504 

Inpt Lab Avg CL Inpatie
nt 

Laboratory 102.60 (6.49) 0 504 

Inpt Lab Avg FeNa Inpatie
nt 

Laboratory 2.80 (26.09) 40.08 504 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Inpt Lab Avg HCO3 Inpatie
nt 

Laboratory 22.51 (4.20) 0 504 

Inpt Lab Avg HCT Inpatie
nt 

Laboratory 31.55 (5.47) 0 504 

Inpt Lab Avg HGB Inpatie
nt 

Laboratory 10.80 (2.16) 3.57 504 

Inpt Lab Avg INR Inpatie
nt 

Laboratory 1.83 (0.69) 8.33 504 

Inpt Lab Avg MCH Inpatie
nt 

Laboratory 32.85 (3.39) 0.4 504 

Inpt Lab Avg MCHC Inpatie
nt 

Laboratory 34.08 (1.16) 0.2 504 

Inpt Lab Avg MCV Inpatie
nt 

Laboratory 96.31 (8.45) 0.2 504 

Inpt Lab Avg NA Inpatie
nt 

Laboratory 134.50 (5.58) 0.6 504 

Inpt Lab Avg PLT Inpatie
nt 

Laboratory 121.00 (75.28) 0.2 504 

Inpt Lab Avg PT Inpatie
nt 

Laboratory 20.53 (7.56) 11.31 504 

Inpt Lab Avg PTT Inpatie
nt 

Laboratory 42.18 (13.46) 20.04 504 

Inpt Lab Avg TropI Inpatie
nt 

Laboratory 0.44 (3.18) 57.54 400 

Inpt Lab Avg UrineNa Inpatie
nt 

Laboratory 28.86 (26.68) 32.94 504 

Inpt Lab Avg WBC Inpatie
nt 

Laboratory 10.14 (7.04) 0.2 504 

Inpt Lab Max Alb Inpatie
nt 

Laboratory 3.01 (0.85) 2.98 504 

Inpt Lab Max AlkPhos Inpatie
nt 

Laboratory 188.20 (139.48) 3.97 504 

Inpt Lab Max ALT Inpatie
nt 

Laboratory 146.70 (389.40) 3.77 504 

Inpt Lab Max AST Inpatie
nt 

Laboratory 334.90 (1078.05) 5.56 504 

Inpt Lab Max BilirubinD Inpatie
nt 

Laboratory 4.30 (7.48) 38.1 410 

Inpt Lab Max BilirubinT Inpatie
nt 

Laboratory 10.21 (12.10) 3.77 504 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Inpt Lab Max BNP Inpatie
nt 

Laboratory 5017000000.00 
(84550541645.45
) 

68.06 504 

Inpt Lab Max BS Inpatie
nt 

Laboratory 225.30 (144.24) 0.4 504 

Inpt Lab Max BUN Inpatie
nt 

Laboratory 61.69 (39.84) 6.15 504 

Inpt Lab Max CA Inpatie
nt 

Laboratory 8.96 (0.91) 1.59 504 

Inpt Lab Max CK Inpatie
nt 

Laboratory 50190.00 
(515634.62) 

58.33 504 

Inpt Lab Max CL Inpatie
nt 

Laboratory 108.00 (7.94) 0 504 

Inpt Lab Max FeNa Inpatie
nt 

Laboratory 3.45 (24.64) 40.08 504 

Inpt Lab Max HCO3 Inpatie
nt 

Laboratory 26.45 (4.98) 0 504 

Inpt Lab Max HCT Inpatie
nt 

Laboratory 36.29 (5.70) 0 504 

Inpt Lab Max HGB Inpatie
nt 

Laboratory 12.53 (4.19) 3.57 504 

Inpt Lab Max INR Inpatie
nt 

Laboratory 2.36 (1.70) 8.33 504 

Inpt Lab Max MCH Inpatie
nt 

Laboratory 33.74 (3.59) 0.4 504 

Inpt Lab Max MCHC Inpatie
nt 

Laboratory 34.90 (1.23) 0.2 504 

Inpt Lab Max MCV Inpatie
nt 

Laboratory 98.71 (9.02) 0.2 504 

Inpt Lab Max NA Inpatie
nt 

Laboratory 139.40 (6.53) 0.6 504 

Inpt Lab Max PLT Inpatie
nt 

Laboratory 171.00 (97.60) 0.2 504 

Inpt Lab Max PT Inpatie
nt 

Laboratory 25.91 (18.83) 11.31 504 

Inpt Lab Max PTT Inpatie
nt 

Laboratory 54.83 (37.02) 20.04 504 

Inpt Lab Max TropI Inpatie
nt 

Laboratory 0.82 (6.75) 57.54 396 

Inpt Lab Max UrineNa Inpatie
nt 

Laboratory 38.25 (40.16) 32.94 504 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Inpt Lab Max WBC Inpatie
nt 

Laboratory 15.08 (10.52) 0.2 504 

Inpt Lab Min Alb Inpatie
nt 

Laboratory 2.17 (0.69) 2.98 504 

Inpt Lab Min AlkPhos Inpatie
nt 

Laboratory 120.40 (90.32) 3.97 504 

Inpt Lab Min ALT Inpatie
nt 

Laboratory 47.70 (76.25) 3.77 504 

Inpt Lab Min AST Inpatie
nt 

Laboratory 83.30 (114.25) 5.56 504 

Inpt Lab Min BilirubinD Inpatie
nt 

Laboratory 2.90 (5.52) 38.1 409 

Inpt Lab Min BilirubinT Inpatie
nt 

Laboratory 5.89 (7.93) 3.77 504 

Inpt Lab Min BNP Inpatie
nt 

Laboratory 399900000000.0
0 
(8803822474195.
57) 

68.06 504 

Inpt Lab Min BS Inpatie
nt 

Laboratory 79.34 (30.20) 0.4 504 

Inpt Lab Min BUN Inpatie
nt 

Laboratory 26.37 (18.74) 6.15 504 

Inpt Lab Min CA Inpatie
nt 

Laboratory 7.64 (1.28) 1.59 504 

Inpt Lab Min CK Inpatie
nt 

Laboratory 2578000.00 
(52985939.99) 

58.33 504 

Inpt Lab Min CL Inpatie
nt 

Laboratory 96.58 (7.04) 0 504 

Inpt Lab Min FeNa Inpatie
nt 

Laboratory 1.47 (21.43) 40.08 452 

Inpt Lab Min HCO3 Inpatie
nt 

Laboratory 18.45 (5.10) 0 504 

Inpt Lab Min HCT Inpatie
nt 

Laboratory 27.31 (6.72) 0 504 

Inpt Lab Min HGB Inpatie
nt 

Laboratory 9.31 (2.30) 3.57 504 

Inpt Lab Min INR Inpatie
nt 

Laboratory 1.54 (0.44) 8.33 504 

Inpt Lab Min MCH Inpatie
nt 

Laboratory 32.05 (3.39) 0.4 504 

Inpt Lab Min MCHC Inpatie
nt 

Laboratory 33.24 (1.32) 0.2 504 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Inpt Lab Min MCV Inpatie
nt 

Laboratory 94.25 (8.32) 0.2 504 

Inpt Lab Min NA Inpatie
nt 

Laboratory 129.40 (6.36) 0.6 504 

Inpt Lab Min PLT Inpatie
nt 

Laboratory 93.29 (67.59) 0.2 502 

Inpt Lab Min PT Inpatie
nt 

Laboratory 17.54 (4.63) 11.31 504 

Inpt Lab Min PTT Inpatie
nt 

Laboratory 36.05 (8.77) 20.04 504 

Inpt Lab Min TropI Inpatie
nt 

Laboratory 1667.00 
(37272.08) 

57.54 405 

Inpt Lab Min UrineNa Inpatie
nt 

Laboratory 26.40 (49.23) 32.94 504 

Inpt Lab Min WBC Inpatie
nt 

Laboratory 6.82 (5.12) 0.2 504 

Inpt Lab ProteinStick High Inpatie
nt 

Laboratory 1.91 (7.21) 13.69 366 

Inpt Lab ProteinStick 
Median 

Inpatie
nt 

Laboratory 1.18 (2.04) 13.69 350 

MaxAdmissionCreatinine Inpatie
nt 

Laboratory 2.36 (1.55) 0.2 504 

MaxCreatinineChange Inpatie
nt 

Laboratory 2.23 (1.92) 0 504 

MaxInpatientCreatinine Inpatie
nt 

Laboratory 3.34 (1.90) 0 504 

MeanInpatientCreatinine Inpatie
nt 

Laboratory 2.24 (1.37) 0 504 

PeakPostAdmToDisCreatini
ne 

Inpatie
nt 

Laboratory 3.07 (2.06) 7.74 504 

PreAdmitLab_ProteinStick_
High 

Inpatie
nt 

Laboratory 1.20 (1.11) 21.83 351 

PreAdmitLab_ProteinStick_
Median 

Inpatie
nt 

Laboratory 0.68 (1.07) 21.83 196 

PreAdmMeanCreatinine Inpatie
nt 

Laboratory 1.10 (0.47) 0 504 

Home Med Lactulose Home Medication 91.00 (18.06) 0 91 

Home Med Rifaximin Home Medication 21.00 (4.17) 0 21 

Inpt Med Cyclosporine Inpatie
nt 

Medication 1.00 (0.20) 0 1 

Inpt Med Dobutamine Inpatie
nt 

Medication 8.00 (1.59) 0 8 



 89 

Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Inpt Med Dopamine Inpatie
nt 

Medication 33.00 (6.55) 0 33 

Inpt Med Human Albumin Inpatie
nt 

Medication 246.00 (48.81) 0 246 

Inpt Med Lactulose Inpatie
nt 

Medication 299.00 (59.33) 0 299 

Inpt Med Midodrine Inpatie
nt 

Medication 127.00 (25.20) 0 127 

Inpt Med Nacetylcysteine Inpatie
nt 

Medication 40.00 (7.94) 0 40 

Inpt Med Norepinephrine Inpatie
nt 

Medication 66.00 (13.10) 0 66 

Inpt Med Octreotide Inpatie
nt 

Medication 164.00 (32.54) 0 164 

Inpt Med Phenylephrine Inpatie
nt 

Medication 20.00 (3.97) 0 20 

Inpt Med Rifaximin Inpatie
nt 

Medication 71.00 (14.09) 0 71 

Inpt Med Septra Inpatie
nt 

Medication 20.00 (3.97) 0 20 

Inpt Med Trimethoprim Inpatie
nt 

Medication 16.00 (3.17) 0 16 

Inpt Med Vancomycin Inpatie
nt 

Medication 205.00 (40.67) 0 205 

Inpt Med Vasopressin Inpatie
nt 

Medication 33.00 (6.55) 0 33 

Octreotide_and_Midodrine Inpatie
nt 

Medication 119.00 (23.61) 0 119 

Octreotide_and_Norepineph
rine 

Inpatie
nt 

Medication 31.00 (6.15) 0 31 

Octreotide_and_Vasopressin Inpatie
nt 

Medication 15.00 (2.98) 0 15 

Any_IV_Vasopressor Inpatie
nt 

Medication 
Class 

86.00 (17.06) 0 86 

Home Med Ace Inhibitors Home Medication 
Class 

96.00 (19.05) 0 96 

Home Med Alcohol 
Deterrents 

Home Medication 
Class 

1.00 (0.20) 0 1 

Home Med Alpha Blockers 
Related 

Home Medication 
Class 

45.00 (8.93) 0 45 

Home Med Aminoglycosides Home Medication 
Class 

4.00 (0.79) 0 4 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Home Med Amphetamine 
Like Stimulants 

Home Medication 
Class 

1.00 (0.20) 0 1 

Home Med Analgesics Home Medication 
Class 

155.00 (30.75) 0 155 

Home Med Analgesics 
Topical 

Home Medication 
Class 

9.00 (1.79) 0 9 

Home Med Angiotensin Ii 
Inhibitor 

Home Medication 
Class 

21.00 (4.17) 0 21 

Home Med Anti Infective 
Topical 

Home Medication 
Class 

27.00 (5.36) 0 27 

Home Med Anti Infective 
Topical Other 

Home Medication 
Class 

2.00 (0.40) 0 2 

Home Med Anti Infectives 
Other 

Home Medication 
Class 

30.00 (5.95) 0 30 

Home Med Anti 
Inflammatory Topical 

Home Medication 
Class 

23.00 (4.56) 0 23 

Home Med Antiacne Agents Home Medication 
Class 

2.00 (0.40) 0 2 

Home Med Antiacne Agents 
Topical 

Home Medication 
Class 

2.00 (0.40) 0 2 

Home Med Antianginals Home Medication 
Class 

17.00 (3.37) 0 17 

Home Med Antiarrhythmics Home Medication 
Class 

4.00 (0.79) 0 4 

Home Med Antibacterial 
Topical 

Home Medication 
Class 

9.00 (1.79) 0 9 

Home Med Anticoagulants Home Medication 
Class 

16.00 (3.17) 0 16 

Home Med Anticonvulsants Home Medication 
Class 

44.00 (8.73) 0 44 

Home Med Antidepressants Home Medication 
Class 

119.00 (23.61) 0 119 

Home Med Antidepressants 
Other 

Home Medication 
Class 

114.00 (22.62) 0 114 

Home Med Antidotes 
Deterrents And Poison 
Control 

Home Medication 
Class 

11.00 (2.18) 0 11 

Home Med Antidotes 
Deterrents And Poison 
Control Exchange Resins 

Home Medication 
Class 

2.00 (0.40) 0 2 

Home Med Antidotes 
Deterrents Other 

Home Medication 
Class 

7.00 (1.39) 0 7 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Home Med Antifungal 
Topical 

Home Medication 
Class 

18.00 (3.57) 0 18 

Home Med Antifungals Home Medication 
Class 

4.00 (0.79) 0 4 

Home Med Antihistamines Home Medication 
Class 

51.00 (10.12) 0 51 

Home Med Antihistamines 
Alkylamine 

Home Medication 
Class 

2.00 (0.40) 0 2 

Home Med Antihistamines 
Ethanolamine 

Home Medication 
Class 

7.00 (1.39) 0 7 

Home Med Antihistamines 
Other 

Home Medication 
Class 

21.00 (4.17) 0 21 

Home Med Antihistamines 
Phenothiazine 

Home Medication 
Class 

9.00 (1.79) 0 9 

Home Med Antihistamines 
Piperazine 

Home Medication 
Class 

14.00 (2.78) 0 14 

Home Med Antihistamines 
Piperidine 

Home Medication 
Class 

2.00 (0.40) 0 2 

Home Med 
Antihypertensive 
Combinations 

Home Medication 
Class 

13.00 (2.58) 0 13 

Home Med 
Antihypertensives Other 

Home Medication 
Class 

11.00 (2.18) 0 11 

Home Med Antilipemic 
Agents 

Home Medication 
Class 

58.00 (11.51) 0 58 

Home Med Antimalarials Home Medication 
Class 

4.00 (0.79) 0 4 

Home Med Antimicrobials Home Medication 
Class 

97.00 (19.25) 0 97 

Home Med Antimigraine 
Agents 

Home Medication 
Class 

2.00 (0.40) 0 2 

Home Med Antineoplastic 
Hormones 

Home Medication 
Class 

3.00 (0.60) 0 3 

Home Med Antineoplastic 
Other 

Home Medication 
Class 

7.00 (1.39) 0 7 

Home Med Antineoplastics Home Medication 
Class 

11.00 (2.18) 0 11 

Home Med Antineoplastics 
Antimetabolites 

Home Medication 
Class 

1.00 (0.20) 0 1 

Home Med Antiparasitics Home Medication 
Class 

4.00 (0.79) 0 4 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Home Med Antiparkinson 
Agents 

Home Medication 
Class 

3.00 (0.60) 0 3 

Home Med Antiprotozoals Home Medication 
Class 

4.00 (0.79) 0 4 

Home Med Antipsoriatic Home Medication 
Class 

2.00 (0.40) 0 2 

Home Med Antipsoriatics 
Topical 

Home Medication 
Class 

2.00 (0.40) 0 2 

Home Med Antipsychotics Home Medication 
Class 

28.00 (5.56) 0 28 

Home Med Antipsychotics 
Other 

Home Medication 
Class 

27.00 (5.36) 0 27 

Home Med Antituberculars Home Medication 
Class 

1.00 (0.20) 0 1 

Home Med Antivirals Home Medication 
Class 

16.00 (3.17) 0 16 

Home Med Autonomic 
Medications 

Home Medication 
Class 

7.00 (1.39) 0 7 

Home Med Benzodiazepine 
Derivative Sedatives 
Hypnotics 

Home Medication 
Class 

40.00 (7.94) 0 40 

Home Med Beta Blockers 
Related 

Home Medication 
Class 

189.00 (37.50) 0 189 

Home Med Blood Formation 
Products 

Home Medication 
Class 

2.00 (0.40) 0 2 

Home Med Blood Products 
Modifiers Volume 
Expanders 

Home Medication 
Class 

30.00 (5.95) 0 30 

Home Med Calcium Channel 
Blockers 

Home Medication 
Class 

59.00 (11.71) 0 59 

Home Med Carbonic 
Anhydrase Inhibitor 
Diuretics 

Home Medication 
Class 

1.00 (0.20) 0 1 

Home Med Cardiovascular 
Agents Other 

Home Medication 
Class 

7.00 (1.39) 0 7 

Home Med Cardiovascular 
Medications 

Home Medication 
Class 

352.00 (69.84) 0 352 

Home Med Central Nervous 
System Medications 

Home Medication 
Class 

232.00 (46.03) 0 232 

Home Med Cephalosporin 
1st Generation 

Home Medication 
Class 

1.00 (0.20) 0 1 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Home Med Cephalosporin 
3rd Generation 

Home Medication 
Class 

1.00 (0.20) 0 1 

Home Med Cns Medications 
Other 

Home Medication 
Class 

6.00 (1.19) 0 6 

Home Med Cns Stimulants Home Medication 
Class 

1.00 (0.20) 0 1 

Home Med Dermatological 
Agents 

Home Medication 
Class 

67.00 (13.29) 0 67 

Home Med Dermatologicals 
Topical Other 

Home Medication 
Class 

7.00 (1.39) 0 7 

Home Med Digitalis 
Glycosides 

Home Medication 
Class 

10.00 (1.98) 0 10 

Home Med Diuretics Home Medication 
Class 

257.00 (50.99) 0 257 

Home Med Emollients Home Medication 
Class 

16.00 (3.17) 0 16 

Home Med Erythromycins 
Macrolides 

Home Medication 
Class 

6.00 (1.19) 0 6 

Home Med Heavy Metal 
Antagonists 

Home Medication 
Class 

1.00 (0.20) 0 1 

Home Med Keratolytics 
Caustics Topical 

Home Medication 
Class 

2.00 (0.40) 0 2 

Home Med Lithium Salts Home Medication 
Class 

1.00 (0.20) 0 1 

Home Med Local 
Anesthetics Topical 

Home Medication 
Class 

3.00 (0.60) 0 3 

Home Med Loop Diuretics Home Medication 
Class 

202.00 (40.08) 0 202 

Home Med Nitrofurans 
Antimicrobials 

Home Medication 
Class 

1.00 (0.20) 0 1 

Home Med Non Opioid 
Analgesics 

Home Medication 
Class 

66.00 (13.10) 0 66 

Home Med Opioid 
Analgesics 

Home Medication 
Class 

112.00 (22.22) 0 112 

Home Med Opioid 
Antagonist Analgesics 

Home Medication 
Class 

1.00 (0.20) 0 1 

Home Med 
Parasympatholytics 

Home Medication 
Class 

4.00 (0.79) 0 4 

Home Med 
Parasympathomimetics 
Cholinergics 

Home Medication 
Class 

3.00 (0.60) 0 3 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Home Med Penicillinase 
Resistant Penicillins 

Home Medication 
Class 

1.00 (0.20) 0 1 

Home Med Penicillins 
Amino Derivatives 

Home Medication 
Class 

11.00 (2.18) 0 11 

Home Med Penicillins And 
Beta Lactam Antimicrobials 

Home Medication 
Class 

13.00 (2.58) 0 13 

Home Med Phenothiazine 
Related Antipsychotics 

Home Medication 
Class 

1.00 (0.20) 0 1 

Home Med Platelet 
Aggregation Inhibitors 

Home Medication 
Class 

13.00 (2.58) 0 13 

Home Med Potassium 
Sparing Combinations 
Diuretics 

Home Medication 
Class 

184.00 (36.51) 0 184 

Home Med Quinolones Home Medication 
Class 

46.00 (9.13) 0 46 

Home Med Sedatives 
Hypnotics Other 

Home Medication 
Class 

21.00 (4.17) 0 21 

Home Med Sedatives 
Hypontics 

Home Medication 
Class 

58.00 (11.51) 0 58 

Home Med Sulfonamide 
Related Antimicrobials 

Home Medication 
Class 

7.00 (1.39) 0 7 

Home Med Sun Protectants 
Screens Topical 

Home Medication 
Class 

2.00 (0.40) 0 2 

Home Med Tetracyclines Home Medication 
Class 

4.00 (0.79) 0 4 

Home Med Thiazides 
Related Diuretics 

Home Medication 
Class 

33.00 (6.55) 0 33 

Home Med Tricyclic 
Antidepressants 

Home Medication 
Class 

9.00 (1.79) 0 9 

Inpt Med Class Ace Inpatie
nt 

Medication 
Class 

81.00 (16.07) 0 81 

Inpt Med Class 
Aminoglycosides 

Inpatie
nt 

Medication 
Class 

29.00 (5.75) 0 29 

Inpt Med Class Arb Inpatie
nt 

Medication 
Class 

10.00 (1.98) 0 10 

Inpt Med Class 
Benzodiazepines 

Inpatie
nt 

Medication 
Class 

205.00 (40.67) 0 205 

Inpt Med Class Betablockers Inpatie
nt 

Medication 
Class 

301.00 (59.72) 0 301 

Inpt Med Class 
Fluoroquinolones 

Inpatie
nt 

Medication 
Class 

141.00 (27.98) 0 141 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Inpt Med Class 
Glucocorticoids 

Inpatie
nt 

Medication 
Class 

100.00 (19.84) 0 100 

Inpt Med Class Insulin Inpatie
nt 

Medication 
Class 

216.00 (42.86) 0 216 

Inpt Med Class 
Ksparingdiuretic 

Inpatie
nt 

Medication 
Class 

191.00 (37.90) 0 191 

Inpt Med Class Nsaids Inpatie
nt 

Medication 
Class 

43.00 (8.53) 0 43 

Inpt Med Class Opioids Inpatie
nt 

Medication 
Class 

418.00 (82.94) 0 418 

Inpt Med Class Statins Inpatie
nt 

Medication 
Class 

57.00 (11.31) 0 57 

Inpt Med Va Class Ace 
Inhibitors 

Inpatie
nt 

Medication 
Class 

81.00 (16.07) 0 81 

Inpt Med Va Class Alcohol 
Deterrents 

Inpatie
nt 

Medication 
Class 

3.00 (0.60) 0 3 

Inpt Med Va Class Alpha 
Blockers Related 

Inpatie
nt 

Medication 
Class 

66.00 (13.10) 0 66 

Inpt Med Va Class 
Aminoglycosides 

Inpatie
nt 

Medication 
Class 

26.00 (5.16) 0 26 

Inpt Med Va Class 
Amphetamine Like 
Stimulants 

Inpatie
nt 

Medication 
Class 

2.00 (0.40) 0 2 

Inpt Med Va Class 
Analgesics Topical 

Inpatie
nt 

Medication 
Class 

9.00 (1.79) 0 9 

Inpt Med Va Class 
Angiotensin Ii Inhibitor 

Inpatie
nt 

Medication 
Class 

10.00 (1.98) 0 10 

Inpt Med Va Class Anti 
Infective Anti Inflammatory 
Combinations Topical 

Inpatie
nt 

Medication 
Class 

1.00 (0.20) 0 1 

Inpt Med Va Class Anti 
Infective Topical Other 

Inpatie
nt 

Medication 
Class 

8.00 (1.59) 0 8 

Inpt Med Va Class Anti 
Infectives Other 

Inpatie
nt 

Medication 
Class 

274.00 (54.37) 0 274 

Inpt Med Va Class Anti 
Inflammatory Topical 

Inpatie
nt 

Medication 
Class 

28.00 (5.56) 0 28 

Inpt Med Va Class Antiacne 
Agents Topical 

Inpatie
nt 

Medication 
Class 

2.00 (0.40) 0 2 

Inpt Med Va Class 
Antianginals 

Inpatie
nt 

Medication 
Class 

26.00 (5.16) 0 26 

Inpt Med Va Class 
Antiarrhythmics 

Inpatie
nt 

Medication 
Class 

19.00 (3.77) 0 19 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Inpt Med Va Class 
Antibacterial Topical 

Inpatie
nt 

Medication 
Class 

28.00 (5.56) 0 28 

Inpt Med Va Class 
Anticoagulants 

Inpatie
nt 

Medication 
Class 

233.00 (46.23) 0 233 

Inpt Med Va Class 
Anticonvulsants 

Inpatie
nt 

Medication 
Class 

76.00 (15.08) 0 76 

Inpt Med Va Class 
Antidepressants Other 

Inpatie
nt 

Medication 
Class 

151.00 (29.96) 0 151 

Inpt Med Va Class Antidotes 
Deterrents And Poison 
Control Exchange Resins 

Inpatie
nt 

Medication 
Class 

110.00 (21.83) 0 110 

Inpt Med Va Class Antidotes 
Deterrents Other 

Inpatie
nt 

Medication 
Class 

17.00 (3.37) 0 17 

Inpt Med Va Class 
Antifungal Topical 

Inpatie
nt 

Medication 
Class 

64.00 (12.70) 0 64 

Inpt Med Va Class 
Antifungals 

Inpatie
nt 

Medication 
Class 

69.00 (13.69) 0 69 

Inpt Med Va Class 
Antihemorrhagics 

Inpatie
nt 

Medication 
Class 

4.00 (0.79) 0 4 

Inpt Med Va Class 
Antihistamines 
Ethanolamine 

Inpatie
nt 

Medication 
Class 

86.00 (17.06) 0 86 

Inpt Med Va Class 
Antihistamines Other 

Inpatie
nt 

Medication 
Class 

12.00 (2.38) 0 12 

Inpt Med Va Class 
Antihistamines 
Phenothiazine 

Inpatie
nt 

Medication 
Class 

43.00 (8.53) 0 43 

Inpt Med Va Class 
Antihistamines Piperazine 

Inpatie
nt 

Medication 
Class 

28.00 (5.56) 0 28 

Inpt Med Va Class 
Antihistamines Piperidine 

Inpatie
nt 

Medication 
Class 

1.00 (0.20) 0 1 

Inpt Med Va Class 
Antihypertensive 
Combinations 

Inpatie
nt 

Medication 
Class 

8.00 (1.59) 0 8 

Inpt Med Va Class 
Antihypertensives Other 

Inpatie
nt 

Medication 
Class 

45.00 (8.93) 0 45 

Inpt Med Va Class 
Antilipemic Agents 

Inpatie
nt 

Medication 
Class 

67.00 (13.29) 0 67 

Inpt Med Va Class 
Antimalarials 

Inpatie
nt 

Medication 
Class 

4.00 (0.79) 0 4 

Inpt Med Va Class 
Antineoplastic Other 

Inpatie
nt 

Medication 
Class 

4.00 (0.79) 0 4 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Inpt Med Va Class 
Antiparkinson Agents 

Inpatie
nt 

Medication 
Class 

3.00 (0.60) 0 3 

Inpt Med Va Class 
Antiprotozoals Other 

Inpatie
nt 

Medication 
Class 

1.00 (0.20) 0 1 

Inpt Med Va Class 
Antipsoriatics Topical 

Inpatie
nt 

Medication 
Class 

1.00 (0.20) 0 1 

Inpt Med Va Class 
Antipsychotics Other 

Inpatie
nt 

Medication 
Class 

84.00 (16.67) 0 84 

Inpt Med Va Class 
Antituberculars 

Inpatie
nt 

Medication 
Class 

2.00 (0.40) 0 2 

Inpt Med Va Class 
Antivertigo Agents 

Inpatie
nt 

Medication 
Class 

9.00 (1.79) 0 9 

Inpt Med Va Class Antivirals Inpatie
nt 

Medication 
Class 

15.00 (2.98) 0 15 

Inpt Med Va Class Barbituric 
Acid Derivative Sedatives 
Hypnotics 

Inpatie
nt 

Medication 
Class 

1.00 (0.20) 0 1 

Inpt Med Va Class 
Benzodiazepine Derivative 
Sedatives Hypnotics 

Inpatie
nt 

Medication 
Class 

205.00 (40.67) 0 205 

Inpt Med Va Class Beta 
Blockers Related 

Inpatie
nt 

Medication 
Class 

301.00 (59.72) 0 301 

Inpt Med Va Class Blood 
Derivatives 

Inpatie
nt 

Medication 
Class 

247.00 (49.01) 0 247 

Inpt Med Va Class Blood 
Formation Products 

Inpatie
nt 

Medication 
Class 

19.00 (3.77) 0 19 

Inpt Med Va Class Calcium 
Channel Blockers 

Inpatie
nt 

Medication 
Class 

81.00 (16.07) 0 81 

Inpt Med Va Class Carbonic 
Anhydrase Inhibitor 
Diuretics 

Inpatie
nt 

Medication 
Class 

4.00 (0.79) 0 4 

Inpt Med Va Class 
Cardiovascular Agents 
Other 

Inpatie
nt 

Medication 
Class 

139.00 (27.58) 0 139 

Inpt Med Va Class 
Cephalosporin 1st 
Generation 

Inpatie
nt 

Medication 
Class 

31.00 (6.15) 0 31 

Inpt Med Va Class 
Cephalosporin 2nd 
Generation 

Inpatie
nt 

Medication 
Class 

6.00 (1.19) 0 6 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Inpt Med Va Class 
Cephalosporin 3rd 
Generation 

Inpatie
nt 

Medication 
Class 

171.00 (33.93) 0 171 

Inpt Med Va Class Cns 
Medications Other 

Inpatie
nt 

Medication 
Class 

7.00 (1.39) 0 7 

Inpt Med Va Class 
Dermatologicals Topical 
Other 

Inpatie
nt 

Medication 
Class 

46.00 (9.13) 0 46 

Inpt Med Va Class Digitalis 
Glycosides 

Inpatie
nt 

Medication 
Class 

25.00 (4.96) 0 25 

Inpt Med Va Class 
Emollients 

Inpatie
nt 

Medication 
Class 

37.00 (7.34) 0 37 

Inpt Med Va Class 
Erythromycins Macrolides 

Inpatie
nt 

Medication 
Class 

45.00 (8.93) 0 45 

Inpt Med Va Class Extended 
Spectrum Penicillins 

Inpatie
nt 

Medication 
Class 

171.00 (33.93) 0 171 

Inpt Med Va Class Heavy 
Metal Antagonists 

Inpatie
nt 

Medication 
Class 

1.00 (0.20) 0 1 

Inpt Med Va Class 
Lincomycins 

Inpatie
nt 

Medication 
Class 

21.00 (4.17) 0 21 

Inpt Med Va Class Lithium 
Salts 

Inpatie
nt 

Medication 
Class 

1.00 (0.20) 0 1 

Inpt Med Va Class Local 
Anesthetics Injection 

Inpatie
nt 

Medication 
Class 

22.00 (4.37) 0 22 

Inpt Med Va Class Local 
Anesthetics Topical 

Inpatie
nt 

Medication 
Class 

13.00 (2.58) 0 13 

Inpt Med Va Class Loop 
Diuretics 

Inpatie
nt 

Medication 
Class 

305.00 (60.52) 0 305 

Inpt Med Va Class 
Nitrofurans Antimicrobials 

Inpatie
nt 

Medication 
Class 

1.00 (0.20) 0 1 

Inpt Med Va Class Non 
Opioid Analgesics 

Inpatie
nt 

Medication 
Class 

218.00 (43.25) 0 218 

Inpt Med Va Class Opioid 
Analgesics 

Inpatie
nt 

Medication 
Class 

370.00 (73.41) 0 370 

Inpt Med Va Class Opioid 
Antagonist Analgesics 

Inpatie
nt 

Medication 
Class 

13.00 (2.58) 0 13 

Inpt Med Va Class 
Parasympatholytics 

Inpatie
nt 

Medication 
Class 

16.00 (3.17) 0 16 

Inpt Med Va Class 
Parasympathomimetics 
Cholinergics 

Inpatie
nt 

Medication 
Class 

49.00 (9.72) 0 49 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Inpt Med Va Class Penicillin 
G Related Penicillins 

Inpatie
nt 

Medication 
Class 

1.00 (0.20) 0 1 

Inpt Med Va Class 
Penicillinase Resistant 
Penicillins 

Inpatie
nt 

Medication 
Class 

11.00 (2.18) 0 11 

Inpt Med Va Class 
Penicillins Amino 
Derivatives 

Inpatie
nt 

Medication 
Class 

47.00 (9.33) 0 47 

Inpt Med Va Class 
Phenothiazine Related 
Antipsychotics 

Inpatie
nt 

Medication 
Class 

6.00 (1.19) 0 6 

Inpt Med Va Class Platelet 
Aggregation Inhibitors 

Inpatie
nt 

Medication 
Class 

16.00 (3.17) 0 16 

Inpt Med Va Class 
Potassium Sparing 
Combinations Diuretics 

Inpatie
nt 

Medication 
Class 

191.00 (37.90) 0 191 

Inpt Med Va Class 
Quinolones 

Inpatie
nt 

Medication 
Class 

201.00 (39.88) 0 201 

Inpt Med Va Class Sedatives 
Hypnotics Other 

Inpatie
nt 

Medication 
Class 

42.00 (8.33) 0 42 

Inpt Med Va Class Sedatives 
Hypontics 

Inpatie
nt 

Medication 
Class 

1.00 (0.20) 0 1 

Inpt Med Va Class Soaps 
Shampoos Soap Free 
Cleansers 

Inpatie
nt 

Medication 
Class 

6.00 (1.19) 0 6 

Inpt Med Va Class 
Sulfonamide Related 
Antimicrobials 

Inpatie
nt 

Medication 
Class 

20.00 (3.97) 0 20 

Inpt Med Va Class Sun 
Protectants Screens Topical 

Inpatie
nt 

Medication 
Class 

1.00 (0.20) 0 1 

Inpt Med Va Class 
Tetracyclines 

Inpatie
nt 

Medication 
Class 

7.00 (1.39) 0 7 

Inpt Med Va Class Thiazides 
Related Diuretics 

Inpatie
nt 

Medication 
Class 

38.00 (7.54) 0 38 

Inpt Med Va Class Tricyclic 
Antidepressants 

Inpatie
nt 

Medication 
Class 

7.00 (1.39) 0 7 

Inpt Med Va Class Volume 
Expanders 

Inpatie
nt 

Medication 
Class 

9.00 (1.79) 0 9 

LOSHours Inpatie
nt 

Misc 311.10 (736.92) 0 504 

MELD Inpatie
nt 

Misc 22.98 (8.16) 19.05 504 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

Num_paracentesis_90D Inpatie
nt 

Misc 1.17 (0.76) 0 504 

PalliativeConsult Inpatie
nt 

Misc 181.00 (35.91) 0 181 

n_Anuria Inpatie
nt 

NLP 0.02 (0.19) 2.38 7 

n_ARDS Inpatie
nt 

NLP 0.04 (0.38) 2.38 7 

n_Ascites Inpatie
nt 

NLP 3.03 (5.00) 2.38 335 

n_ATN Inpatie
nt 

NLP 0.02 (0.45) 2.38 1 

n_Casts Inpatie
nt 

NLP 0.05 (0.41) 2.38 13 

n_Dehydration Inpatie
nt 

NLP 0.04 (0.30) 2.38 16 

n_Edema Inpatie
nt 

NLP 7.05 (6.90) 2.38 460 

n_Glomerulonephritis Inpatie
nt 

NLP 1.00 (0.20) 2.38 1 

n_HE Inpatie
nt 

NLP 0.35 (1.28) 2.38 78 

n_Hematemesis Inpatie
nt 

NLP 0.69 (1.69) 2.38 169 

n_HRS Inpatie
nt 

NLP 1.19 (2.61) 2.38 203 

n_Hydronephrosis Inpatie
nt 

NLP 0.98 (2.61) 2.38 144 

n_Hypotension Inpatie
nt 

NLP 0.31 (1.03) 2.38 76 

n_Nephritis Inpatie
nt 

NLP 0.11 (0.69) 2.38 18 

n_Nephrotoxic Inpatie
nt 

NLP 0.25 (1.24) 2.38 45 

n_NSAIDS Inpatie
nt 

NLP 0.44 (1.51) 2.38 99 

n_NVD Inpatie
nt 

NLP 6.02 (6.85) 2.38 417 

n_Paracentesis Inpatie
nt 

NLP 1.95 (3.87) 2.38 237 

n_Peritonitis Inpatie
nt 

NLP 0.26 (1.19) 2.38 50 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

n_Prerenal Inpatie
nt 

NLP 0.00 (0.00) 2.38 0 

n_RBCs Inpatie
nt 

NLP 1.59 (4.21) 2.38 211 

n_sepsis Inpatie
nt 

NLP 0.95 (2.96) 2.38 119 

n_Shock Inpatie
nt 

NLP 0.30 (1.29) 2.38 50 

n_SIRS Inpatie
nt 

NLP 0.06 (0.38) 2.38 20 

n_TubularCells Inpatie
nt 

NLP 0.02 (0.26) 2.38 3 

n_UrineSediment Inpatie
nt 

NLP 0.05 (0.43) 2.38 9 

p_Anuria Inpatie
nt 

NLP 0.15 (0.77) 1.98 32 

p_ARDS Inpatie
nt 

NLP 0.57 (3.65) 1.98 26 

p_Ascites Inpatie
nt 

NLP 26.25 (36.76) 1.98 406 

p_ATN Inpatie
nt 

NLP 0.07 (0.53) 1.98 14 

p_Casts Inpatie
nt 

NLP 0.25 (1.07) 1.98 54 

p_Dehydration Inpatie
nt 

NLP 1.16 (3.91) 1.98 149 

p_Edema Inpatie
nt 

NLP 16.42 (20.32) 1.98 438 

p_Glomerulonephritis Inpatie
nt 

NLP 0.15 (1.38) 1.98 17 

p_HE Inpatie
nt 

NLP 5.34 (11.36) 1.98 245 

p_Hematemesis Inpatie
nt 

NLP 0.70 (3.20) 1.98 68 

p_HRS Inpatie
nt 

NLP 10.71 (16.78) 1.98 368 

p_Hydronephrosis Inpatie
nt 

NLP 0.19 (1.75) 1.98 30 

p_Hypotension Inpatie
nt 

NLP 5.43 (11.63) 1.98 304 

p_Nephritis Inpatie
nt 

NLP 1.01 (6.72) 1.98 55 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

p_Nephrotoxic Inpatie
nt 

NLP 0.51 (1.81) 1.98 79 

p_NSAIDS Inpatie
nt 

NLP 0.66 (2.27) 1.98 97 

p_NVD Inpatie
nt 

NLP 15.56 (28.71) 1.98 398 

p_Paracentesis Inpatie
nt 

NLP 14.93 (22.78) 1.98 353 

p_Peritonitis Inpatie
nt 

NLP 1.24 (6.23) 1.98 104 

p_Prerenal Inpatie
nt 

NLP 0.00 (0.00) 1.98 0 

p_RBCs Inpatie
nt 

NLP 11.18 (14.12) 1.98 453 

p_sepsis Inpatie
nt 

NLP 3.68 (10.76) 1.98 172 

p_Shock Inpatie
nt 

NLP 3.18 (13.91) 1.98 91 

p_SIRS Inpatie
nt 

NLP 0.26 (1.33) 1.98 37 

p_TubularCells Inpatie
nt 

NLP 0.12 (0.75) 1.98 23 

p_UrineSediment Inpatie
nt 

NLP 0.31 (1.93) 1.98 43 

FluidResponsive Inpatie
nt 

Temporal 91.00 (18.06) 0 91 

MaxInptToDisCreatDifferen
ce 

Inpatie
nt 

Temporal 0.71 (1.66) 0 331 

PostAlbuminSlope Inpatie
nt 

Temporal 0.10 (0.24) 66.07 434 

PostContrastSlope Inpatie
nt 

Temporal 0.05 (0.19) 81.35 463 

PostAnyFluidSlope Inpatie
nt 

Temporal 0.01 (0.33) 0 129 

PostHypotensionSlope Inpatie
nt 

Temporal 0.01 (0.14) 89.48 18 

PostInsultSlope Inpatie
nt 

Temporal 0.08 (0.25) 0 441 

PostIVFSlope Inpatie
nt 

Temporal 0.01 (0.33) 48.21 102 

PostVasopressorSlope Inpatie
nt 

Temporal 0.16 (0.09) 93.65 497 
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Varname Time Class Summary, n(%) 
or mean (SD) 

% 
missin
g 

N > 0 

AvgInptDiastolic Inpatie
nt 

Vitals 65.69 (9.52) 0.6 504 

AvgInptMAP Inpatie
nt 

Vitals 82.12 (10.65) 0.6 504 

AvgInptPulse Inpatie
nt 

Vitals 81.23 (13.04) 0.4 504 

AvgInptResp Inpatie
nt 

Vitals 19.37 (2.09) 0.6 504 

AvgInptSystolic Inpatie
nt 

Vitals 116.30 (16.69) 0.6 504 

AvgInptTemp Inpatie
nt 

Vitals 97.71 (0.77) 0.6 504 

AvgInptWeight Inpatie
nt 

Vitals 203.00 (49.40) 7.54 504 

MaxInptDiastolic Inpatie
nt 

Vitals 86.10 (14.14) 0.6 504 

MaxInptMAP Inpatie
nt 

Vitals 94.79 (13.35) 0.6 504 

MaxInptPulse Inpatie
nt 

Vitals 104.70 (21.75) 0.4 504 

MaxInptResp Inpatie
nt 

Vitals 26.80 (12.32) 0.6 504 

MaxInptSystolic Inpatie
nt 

Vitals 148.00 (25.10) 0.6 504 

MaxInptTemp Inpatie
nt 

Vitals 99.46 (1.31) 0.6 504 

MaxInptWeight Inpatie
nt 

Vitals 211.80 (51.43) 7.54 504 

MinInptDiastolic Inpatie
nt 

Vitals 47.10 (12.14) 0.6 501 

MinInptMAP Inpatie
nt 

Vitals 69.89 (12.02) 0.6 504 

MinInptPulse Inpatie
nt 

Vitals 60.81 (16.12) 0.4 499 

MinInptResp Inpatie
nt 

Vitals 14.73 (3.14) 0.6 502 

MinInptSystolic Inpatie
nt 

Vitals 89.17 (18.77) 0.6 501 

MinInptTemp Inpatie
nt 

Vitals 95.95 (1.49) 0.6 504 

MinInptWeight Inpatie
nt 

Vitals 192.60 (53.09) 7.54 503 
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Appendix Table A.2: Code definitions for co-morbid conditions and procedures used in the 

model based on International Classification of Diseases-Version 9, Current Procedural 

Terminology, and ICD Procedure Code. 

Condition Abbreviation Description Codes 

AA, Elixhauser Alcohol Abuse 265.2, 291.[12356789], 
303.[09], 305.0, 357.5, 
425.5, 535.3, 571.[0123], 
980.*, V11.3 

AAA Abdominal Aortic Aneurysm, 
Procedure 

3480[02-5], 3482[56], 
3483[012], 350[89][12], 
3510[23], 33877, 441.4, 
39.71 

AbdomSurg Abdominal Surgery, Procedure 3810[012], 38115, 
3812[09], 4310[78], 
4311[23678], 4312[1-4], 
4330[05], 4331[02], 
43320, 4334[01], 
4335[012], 4336[01], 
4350[012], 43510, 
4362[012], 4363[1-489], 
43659, 4384[023678], 
4385[05], 4386[05], 
43870, 43880, 43999, 
44010, 4402[015], 
4405[05], 4411[01], 
4412[015], 44130, 
4414[013-7], 4415[0-
356], 44160, 4420[1-8], 
4421[012], 4423[89], 
44300, 4431[0246], 
4432[02], 4434[056], 
4460[2-5], 4462[056], 
44640, 44650, 4466[01], 
44680, 44799, 44820, 
44850, 44900, 4495[05], 
44960, 44899, 4511[0-
469], 4512[0136], 45805, 
45825, 4712[025], 47130, 
47350, 4736[012], 47399, 
4760[05], 4761[02], 
47620, 47701, 4772[01], 
4774[01], 4776[05], 
4778[05], 47800, 48005, 
4814[056], 4815[02-5], 
48180, 48520, 48540, 



 106 

4854[57], 48556, 48999, 
4900[02], 49010, 49020, 
49062, 49040, 49060, 
49085, 4920[01], 49220, 
49999, 41.4[123], 41.5, 
41.9[59], 42.1[0129], 
42.4[012], 42.5[1-689], 
42.6[1-689], 43.0, 43.5, 
43.6, 43.7, 43.8[129], 
43.9[19], 44.3[189], 
44.4[012], 44.5, 
44.6[123589], 44.99, 
45.0[123], 45.6[123], 
45.7[1-69], 45.8[123], 
45.9[0-5], 46.0[1-4], 
46.1[0134], 46.2[0-4], 
46.3[19], 46.4[0-3], 
46.5[012], 46.6[0-4], 
46.7[1-69], 46.8[012], 
46.9[349], 48.4[239], 
48.5[0129], 48.6[1-59], 
50.0, 50.2[2-69], 50.3, 
50.4, 50.6[19], 51.0[34], 
51.2[1-4], 52.22, 
52.5[1239], 52.6, 52.7, 
52.9[59], 54.1[129], 54.99 

ACS Acute Coronary 
Syndrome,Condition 

410*, 411* 

aDIAL Acute Dialysis,Procedure 90935, 90937, 90945, 
90947, 90999, V45.1, 
V56.0, V56.1, 39.95 

AFIB Atrial Fibrillation, Condition 427.3[12] 

AFL Alcoholic Fatty Liver 571.[013] 

AIDS/HIV, Elixhauser AIDS/HIV 04[234].* 

ALD Advanced Liver 
Disease,Condition 

070.22, 070.23, 070.44, 
456.0, 456.1, 456.20, 
456.21, 571.2, 571.3, 
571.5, 571.6, 572.[2348] 

Amyloidosis Amyloidosis, Diagnosis 277.3, 277.3[019] 

AnalFisFist Anal Fissures or Fistula, 
Diagnosis 

565.1 

Angina Angina, Condition 413*, 411.1 

ANMA Anemia,Condition 280*, 281*, 282.01, 
282.2*, 282.3*, 282.4*, 
282.71, 282.8, 282.9, 
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283.[019]*, 284*, 285*, 
648.2*, 776.5* 

ARF Acute Renal Failure, Condition 584.[5-9], 669.3[0124] 

ARRH Arrhythmia,Condition 427*, 785.0, 785.1, 
779.81, 426*, V45.0*, 
V53.3*, 746.86 

Arrhythmias, Elixhauser Cardiac Arrhythmias, Diagnosis 426.[079], 426.[1][023], 
427.[012346789], 785.0, 
996.0[14], V45.0, V53.3 

Ascites Ascites, Condition or Procedure 
(paracentesis) 

4908[0-3], 789.5*, 54.91 

ASP Aspergillosis,Condition 117.3, 484.6, 518.6 

Asthma Asthma, Condition 493.* 

ATN Acute Tubular Necrosis, 
Condition 

584.5 

AUTOHEP Autoimmune Hepatitis 571.42 

AutoNeuropathy Autonomic Neuropathy, 
Diagnosis 

337.9 

AZ_Cancer Cancer,Condition 1[4-9][0-9]*, 20[0-8]*, 
209.[0-3]*, 23[0-3]* 

BilCirrhosis Biliary Cirrhosis 571.6 

BLA, Elixhauser Blood Loss Anemia 280 

BmTx Bone Marrow Transplant, 
Procedure 

3824[012], 996.8[58], 
V42.8[12], 41.0* 

BowelPerf BowelPerforation, Diagnosis 569.83 

BURN Burns,Condition 906.5, 906.6, 906.7, 906.8, 
906.9, 906.9, 940*, 941*, 
942*, 943*, 944*, 945*, 
946*, 947*, 948.1*, 
948.2*, 948.3*, 948.4*, 
948.5*, 948.6*, 948.7*, 
948.8*, 948.9*, 949* 

CABG CABG,Procedure 3351[012346789], 
3352[123], 3353[3-6], 
V45.81, 414.04, 36.1*, 
36.2* 

CAD Coronary Artery 
Disease,Condition 

410.*, 411.*, 412.*, 413.*, 
414.[02-9]*, V45.81, 
V45.82 

Cancer Cancer,Condition 1[4568]_.*, 
17[012456789].*, 
19[0124].*, 
195.[012345678]*, 
20[012345678].*, 238.6* 
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CANDI Candidiasis,Condition 112* 

CardiacArrest Cardiac Arrest, Diagnosis 427.4[12], 427.5 

CardSurg Cardiac Surgery, Procedure 33020, 33120, 33130, 
3314[01], 3323[678], 
33243, 3325[13], 33261, 
3330[05], 3331[05], 
3332[012], 3333[025], 
33404, 3341[4-7], 
3347[68], 33496, 
3340[01356], 3341[0-3], 
3342[02567], 33430, 
3346[03458], 
3347[012579], 3350[0-
6], 3351[0-46-9], 3352[1-
3], 3353[03-6], 3354[25], 
33572, 3360[0268], 
3361[012579], 
3364[157], 3368[148], 
3369[0247], 3386[013], 
3387[057], 3391[0567], 
3366[05], 33670, 33702, 
33710, 3372[02], 
3373[02567], 3375[05], 
3376[2467], 3377[014-
9], 3378[0168], 
3380[023], 3381[34], 
33824, 3384[05], 
3385[123], 3391[89], 
3392[02], 33999, 35.*, 
35.1[0-4], 35.2[0-8], 
35.3[1-59], 35.5[134], 
35.[67][0-3], 35.8[1-4], 
35.9*, 36.03, 36.1[0-79], 
36.2, 36.3[129], 36.9[19], 
37.1[01], 37.3[12356], 
37.49, 39.6[1-46] 

CarotidDis Carotid Disease, Condition 433.1, 38.12 

Cath Cardiac Catheterization, 
Procedure 

9350[138], 9351[014], 
9352[46789], 
9353[01239], 
9354[0235], 9355[56], 
9356[12], 37.2[1-3], 
88.5[2-7] 

CathPCIALL Cath/PCI ALL, Procedure 9350[138], 9351[014], 
9352[46789], 
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9353[01239], 
9354[0235], 9355[56], 
9356[12], 9297[34], 
9298[0124], 9299[56], 
G029[01], 37.2[123], 
88.5[2-7], 00.66, 
36.0[125679] 

CathPCICont Cath/PCI w Contrast,Procedure 93508, 9351[014], 
9352[46789], 
9353[1239], 9354[035], 
9355[56], 9297[34], 
9298[0124], 9299[56], 
G029[01], 37.2[23], 
88.5[2-7], 00.66, 
36.0[125679] 

CathPCInoCont Cath/PCI NO Contrast, 
Procedure 

9350[13], 93530, 93542, 
9356[12], 37.21 

CDVD Cardiovascular 
Disease,Condition 

3353[03456]*, 
3351[0123456789]*, 
3352[012358]*, 
3353[03456]*, 
9298[0124]*, 
9299[5678]*, 
3480[023456]*, 3525*, 
3528*, 3530*, 3535[15]*, 
3537[12]*, 35381, 
354[5789]*, 355[468]*, 
3555[168]*, 3557[01]*, 
356[4567]*, 410.*, 411.*, 
412.*, 413.*, 429.7*, 430.*, 
431.*, 433._1, 435.*, 436.*, 
434.0, 434.01, 434.1, 
434.11, 434.9, 434.91 

CGP, Elixhauser Coagulopathy 286.*, 287.[1345] 

CHEMO Chemotherapy, Procedure 4180F, 9640[01289], 
9641[0-7], 
9650[012589], 
9651[012], 99555, 
C895[345], G0292, 
G035[59], 99.25, 00.10 

CHF Congestive Heart 
Failure,Condition 

398.91, 402.11, 404.01, 
404.11, 404.91, 428*, 
402.01, 402.91, 404.03, 
404.13, 404.93, 
425.[145789]* 
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CHF, Elixhauser Congestive Heart Failure, 
Diagnosis 

398.91, 402.[019]1, 
404.[019][13], 
425.[456789], 428.* 

CHF  CHF, Condition 398.91, 402.11, 404.01, 
404.11, 404.91, 428*, 
402.01, 402.91, 404.13, 
404.93, 425.[145789]* 

Cirrhosis Cirrhosis,Condition 571.2, 571.5 

Cirrhosis_Risk_1 Combination of Cirrhosis Risk 
Factors 

291.[0123589], 303.*, 
305.0*, 571.[013], 
070.[23][0-3], V02.6[12], 
070.[45][14], 070.7[01], 
275.0[1-3], 571.42, 571.6 

CKD Chronic Kidney 
Disease,Condition 

585*, 403*, 404* 

Colitis Colitis, Diagnosis 555.[0129], 556., 556.[0-
6] 

Cons_Condition Constipation, Condition 564.0*, 560.3[029], 
560.89, 560.9*, 564.7*, 
787.99 

Cons_Proc Constipation, Procedure 45915, E035[02], A4458, 
E0740, 96.3[789], 96.09 

COPD COPD, Condition 49[126]*, 493.2* 

COPDAsthma COPD/Asthma,Condition 491.*, 492.*, 493.*, 496.*, 
V17.5*, V81.3* 

CPD, Elixhauser Chronic Pulmonary Disease 416.[89], 
49[0123456789].*, 
50[012345].*, 506.4, 
508.[18] 

CS Cardiogenic Shock,Condition 785.51 

CVA Cerebrovascular 
Disease,Condition 

43[0-8]*, 362.34 

DA, Elixhauser Deficiency Anemia 280.[123456789], 281.* 

DecALD Decompensated Cirrhosis, 
Condition 

456.[012], 571.*, 572.[1-
8], 789.5 

Dementia Dementia w/o Delirium, 
Condition 

290.*, 294.[1]*, 
331.[012]* 

Dermatomyositis Dermatomyositis, Diagnosis 710.3 

Deyo's CHF Congestive Heart Failure, 
Diagnosis 

428* 

Deyo's CPD Chronic Pulmonary Disease, 
Diagnosis 

49[0-24-9]*, 493.[2-8]*, 
50[0-5]*, 506.4* 

Deyo's CVD Cerebrovascular Disease, 
Diagnosis 

43[0-8]* 
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Deyo's Dementia Dementia, Diagnosis 290* 

Deyo's DM w/ chronic 
comp 

Diabetes with chronic 
complication, Diagnosis 

250.[4-6]* 

Deyo's DM w/o chronic 
comp 

Diabetes without chronic 
complication, Diagnosis 

250.[0-37]* 

Deyo's Hemiplegia or 
Paraplegia 

Hemiplegia or Paraplegia, 
Diagnosis 

344.1*, 342* 

Deyo's HIV AIDS/HIV, Diagnosis 04[2-4]* 

Deyo's Malignancy Any Malignancy (except of 
skin), Lymphoma, or Leukemia 

1[4-6][0-9]*, 17[0-24-9]*, 
18[0-9]*, 19[0-5]*, 20[0-
8]* 

Deyo's MI Myocardial Infarction, 
Diagnosis 

410*, 412* 

Deyo's Mild Liver Disease Mild Liver Disease, Diagnosis 571.[24-6]* 

Deyo's Moderate to 
Severe Liver Disease 

Moderate or Severe Liver 
Disease, Diagnosis 

456.[01]*, 456.2[01], 
572.[2-8]* 

Deyo's PUD Peptic Ulcer Disease, Diagnosis 53[1-4]* 

Deyo's PVD Peripheral Vascular Disease 443.9*, 441*, 785.4*, 
V43.4*, 38.48 

Deyo's Renal Renal Disease, Diagnosis 58[2568]*, 583.[0-7]* 

Deyo's Rheumatic Rheumatic Disease, Diagnosis 710.[014]*, 714.[0-2]*, 
714.81, 725* 

Deyo's Tumor Metastatic Solid Tumor, 
Diagnosis 

19[6-9]* 

DiabetesC, Elixhauser Diabetes, Complicated 250.[456789]* 

DiabetesU, Elixhauser Diabetes, uncomplicated 250.[0123]* 

DIAL Dialysis,Procedure 90921, 90925, 90935, 
90937, 90945, 
9096[0126], G8956, 
90947, 90989, 9099[39], 
585.6, V39.27, V39.42, 
V39.43, V45.1, V56.0, 
V56.2, V56.31, V56.32, 
V56.8, 39.9[35], 54.98 

DIAR Diarrhea,Condition 009.2, 009.3, 564.5, 
787.91 

DKA Diabetic Ketoacidosis, 
Condition 

249.1*, 250.1* 

DM Diabetes,Condition 249*, 250*, 357.2*, 
362.0*, 366.41, V45.85, 
V53.91 

DMNeuropathy Diabetic Neuropathy, Diagnosis 357.2 

DMOsm Diabetic w/ Hyperosmolarity, 
Condition 

249.2*, 250.2* 
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DP, Elixhauser Depression 296.[235], 300.4, 309.*, 
311 

Drug Abuse, Elixhauser Drug Abuse 292.*, 304.*, 
305.[23456789], V65.42 

DYS Dyslipidemia,Condition 272.* 

ECMO ECMO, Procedure 3396[01], 37.62 

ETOH Alcohol Use,Condition 291.*, 303.*, 305.0*, 
535.3*, 292.21, 357.5, 
425.5, 571.0, 571.1, 571.2, 
571.3, 760.71, 790.3, 
977.3, 980.[012456789]*, 
E947.3, 
E860.[012356789]*, 
V11.3 

Etoh_Abuse Alcohol Abuse 291.[0123589], 303.*, 
305.0* 

Fatigue Chronic Fatigue, Diagnosis 780.71 

FED, Elixhauser Fluid and Electrolyte Disorder 253.6, 276.* 

Fibromyalgia Fibromyalgia, Diagnosis 729.1 

Gastroparesis Gastroparesis, Diagnosis 536.3 

GI GI Bleeding,Condition 530.82, 53[1-4].[0246]0, 
535.[045]1, 578.* 

GIPerf GI Perforation, Diagnosis 569.83 

GLOM Acute GLOMERULONEPHRITIS, 
Condition 

580.* 

GLOMNephEx Glomerular Nephritis 
(Exclusion), Condition 

580.[049], 580.8[19], 
581.[0123], 582.[01249], 
582.8[19], 583.[0124], 
581.89 

HBC Cirrhosis Risk Cohort without 
NAFLD 

070.[23][0-3], V02.6[12], 
070.[45][14], 070.7[01] 

HCC Hepatocellular Carcinoma, 
Condition 

155 

HE Hepatic Encephalopathy, 
Condition 

572.2*, 070.00, 070.2*, 
070.40, 070.41, 070.44, 
070.49, 070.60 

Headache Migraine & Headache, Diagnosis 784.0, 339.0[0123459], 
339.[12][0-2], 339.3, 
339.4[1-4], 
339.8[123459], 346.[0-
5][0-3], 346.[0-2], 346.[7-
9][0-3], 346.[89] 

HEMOCH Cirrhosis Risk Cohort without 
NAFLD 

275.0[1-3] 
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Hemorrhoid Hemorrhoids, Diagnosis 455.[0-9] 

HEP Hepatitis,Condition 070.*, 072.71, 091.62, 
130.5, 571.1, 571.4*, 
573.1, 573.2, 573.3, 
V02.6*, V05.3 

Hep_B_C Hepatitis B and C, acute and 
chronic 

070.[23][0-3], V02.6[12], 
070.[45][14], 070.7[01] 

HF, Elixhauser Hypertension, uncomplicated, 
Diagnosis 

401.* 

HFC, Elixhauser Hypertension, complicated, 
Diagnosis 

40[2345].* 

HIV HIV,Condition 04[234]*, 079.53, 795.71, 
V08* 

HOSP Hospice,Condition 99377, 99378 

HOTN Hypotension,Condition 458.* 

HRS Hepatorenal Syndrome 572.4 

HrtTx Heart Transplant,Procedure V42.1, 37.5[1-5] 

HSVNeuralgia Post Herpetic Neuralgia, 
Diagnosis 

53.19 

HTD, Elixhauser Hypothyroidism 240.9, 24[34].*, 246.[18] 

HTN Hypertension,Condition 401*, 402*, 403*, 404*, 
405*, 437.2* 

HTNEmer Hypertension Emergency, 
Condition 

40[1-5].0, 40[2-5].01, 
404.0[23], 405.0[19] 

Hydronephrosis Hydronephrosis 591* 

HYPC Hypercalcemia,Condition 275.42 

Hyperkalemia Hyperkalemia, Diagnosis 276.7 

Hyperparathyroidism Hyperparathyroidism, 
Diagnosis 

252.0* 

IABP Intra-Aortic Balloon Pump, 
Procedure 

3396[78], 3397[0134], 
37.61 

IBS Irritable Bowel Syndrome, 
Diagnosis 

564.1 

iDIAL Dialysis Inpatient v45.1, v56.0, v56.1, 39.95 

Impaction Impaction, Diagnosis 560.32 

IVD Intravascular Volume 
Disease,Condition 

276.5, 276.5[01] 

JAUD Jaundice,Condition 282.00, 774.[0123567]*, 
782.4, , ,  

LD, Elixhauser Liver Disease 070.[23][23], 070.[45]4, 
070.[69], 456.[012], 
57[01].*, 572.[2345678], 
573.[3489], V42.7 
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LIV Liver,Condition 070.22, 070.23, 070.33, 
070.44, 070.54, 456.0, 
456.1, 456.20, 456.21, 
571.0, 571.2, 571.3, 
571.40, 571.41, 571.42, 
571.49, 571.5, 571.6, 
571.8, 571.9, 572.3, 572.8, 
573.5, V42.7 

LKM Leukemia,Condition 202.4*, 203.1*, 20[4-8].*, 
V10.6* 

LM, Elixhauser Lymphoma 20[012].*, 203.0, 238.6 

LngTx Lung Transplant,Procedure V42.6, 33.5* 

LUP Systemic Lupus 
Erythematosus,Condition 

286.5, 323.81, 517.8, 
58[023].81, 695.4, 710.0 

LvrTx Liver Transplant,Procedure 4713[56], V42.7, 50.5[19] 

MC, Elixhauser Metastatic Cancer 19[6789].* 

MECHVENT Mechanical Ventilation, 
Procedure 

93.92, 96.0[45], 96.7[012] 

Megacolon Megacolon, Diagnosis 564.7 

MEN Multiple Endocrine Neoplasia, 
Diagnosis 

258.0* 

MetabolicSyndrome Metabolic Syndrome using sub-
conditions 

usp_Build_Metabolic_Syn
drome 

MI Myocardial Infarction,Condition 410* 

MM Multiple Myeloma,Condition 203.0* 

MultScler Multiple Sclerosis, Diagnosis 340 

MVR Mitral Regurgitation,Procedure 396.3, 424.0, 746.6 

Myopathies Myopathies, Diagnosis 359.8, 359.89, 425.4 

NAFLD Non-alcoholic fatty liver disease 571.8, 571.9 

NAS Nausea,Condition 787.0, 787.01, 787.02 

NephGLOM Nephritis Glomerular Not 
Specified,Condition 

580.81, 58[03].9, 
583.8[19] 

Nephrtmy Nephrectomy, Procedure 5022[05], 5023[046], 
50240, 50300, 50320, 
50340, 50370, 5054[35-
8], 55.4, 55.5[1-4] 

NFXss Infection (sepsis sup),Condition 00[1-589]*, 01[0-8]*, 
02[0-7]*, 03*, 04[01]*, 
09[0-8]*, 10[0-4]*, 11[0-
24-8]*, 32[0245]*, 
42[01]*, 451*, 46[1-5]*, 
48[1256]*, 491.21, 494*, 
51[03]*, 54[012]*, 
562.[01][13], 56[67]*, 
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569.5*, 569.83, 572.[01]*, 
575.0*, 59[07]*, 599.0*, 
601*, 61[456]*, 
68[1236]*, 711.0*, 730*, 
790.7*, 996.6*, 998.5*, 
999.3* 

NSTEMI NSTEMI, Condition 410.7* 

OA Osteoarthritis, Diagnosis 715.0[049], 715.1[0-8], 
715.2[0-8], 715.3[0-8], 
715.8[09], 715.9[0-8], 
V13.4 

Obesity Obesity 278.0, 278.0[01], 649.1, 
278.03 

Obesity, Elixhauser Obesity 278 

OFss Organ Failure (sepsis 
sup),Condition 

785.5*, 458*, 348.3*, 
293*, 348.1*, 286.[69]*, 
287.[45]*, 570*, 573.4*, 
584*, 96.7* 

OLG Oliguria,Condition 788.5 

OND, Elixhauser Other Neurological Disorders 331.9, 332.[01], 333.[45], 
333.92, 33[45].*, 336.2, 
34[015].*, 348.[13], 
78[04].3 

OrganTrans Organ Transplant,Procedure 50320, 50360, 50365, 
50370, 50380, 33935, 
33940, 33945, 32851, 
32852, 32853, 32854, 
47135, 47136, 38240, 
38241, 48554, 48556, 
V42.0*, V42.1*, V42.6*, 
V42.7*, V42.81*, V42.83* 

PALL Pallative Care,Condition V66.7* 

PANTx Pancreas Transplant,Procedure 48554, 99686, V42.83, 
52.8[0-3] 

Paracentesis Paracentesis, procedure 4908[0-3], 54.91 

Paralysis, Elixhauser Paralysis, Diagnosis 334.1, 34[23].*, 
344.[01234569] 

Parkinsons Parkinson’s Disease, Diagnosis 332 

PCD, Elixhauser Pulmonary Circulation 
Disorders, Diagnosis 

415.[01], 416.*, 417.[089] 

PCI PCI, Procedure 9297[34], 9298[0124], 
9299[56], G029[01], 
V45.82, 00.66, 
36.0[125679], 92.27 
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PCR Pancreatitis,Condition 577.[01]* 

PFT Spirometry,Procedure 94010, 94060, 94375, 
94150, 94200, 93720, 
93721, 93722, 94726, 
94727, 94728, 94729, 
94240, 94260, 94350, 
94360, 94370, 94720, 
94725 

Plegia_CC Hemiplegia or Paraplegia 
(Charlson Comorbidity 
Definition) 

334.1*, 342.*, 343.*, 
344.[01234569]* 

Porphyria Porphyria, Diagnosis 277.1 

PREG Pregnancy,Condition V22.*, 6[3-7]* 

ProctFugax Proctalgia Fugax, Diagnosis 564.6 

PUD_CC Peptic Ulcer Disease (Charlson 
Comorbidity Definition) 

531.*, 532.*, 533.*, 534.* 

PVD Peripheral Vascular 
Disease,Condition 

440*, 441*, 442*, 444.2*, 
V43.4 

PVD, Elixhauser Peripheral Vascular Disorders, 
Diagnosis 

093.0, 437.3, 44[01].*, 
443.[123456789], 447.1, 
557.[19], V43.4 

PY, Elixhauser Psychoses 293.8, 295.*, 296.[0145]4, 
29[78].* 

RA Rheumatoid Arthritis, Diagnosis 714 

RA, Elixhauser Rheumatoid Arthritis, Collagen 
vascular diseases 

446.*, 701.0, 
710.[0123489], 711.2, 
714.*, 719.3, 72[05].*, 
728.5, 728.89, 729.30 

RectalProlapse Rectal prolapse, Diagnosis 569.1 

Rectocele Rectocele, Diagnosis 618.04 

RenalTrans Renal Transplant,Procedure 50365, 50360, 996.81, 
V42.0, 55.69*, 00.9[123] 

RF, Elixhauser Renal Failure 403.[019]1, 404.0[23], 
404.[19][23], 58[56].*, 
588.0, V42.0, V45.1, V56.* 

RHBD Rhabdomyolysis,Condition 728.88 

Rheum_CC Rheumatic Disease (Charlson 
Comorbidity Definition) 

446.5*, 710.[01234]*, 
714.[0128]*, 725.* 

PUD, Elixhauser Peptic Ulcer Disease, excluding 
bleeding 

53[1234].[79]* 

SBP Spontaneous Bacterial 
Peritonitis - extra general, 
Condition 

567.23, 567.[0289]0, 
567.2[19], 567.89, 
567.[0289] 

Scleroderma Scleroderma, Diagnosis 701 
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Sickle Sickle Cell Disease, Condition 282.4[1-4]*, 282.6* 

SIRS SIRS,Condition 995.9* 

SpinalCord Spinal Cord Injury / Tumors, 
Diagnosis 

349.39, 806.[0-3][0-9], 
806.[4589], 
806.[67][0129], 907.2, 
952.[01][0-9], 
952.[23489] 

SPS Sepsis,Condition 785.52, 995.92 

SSTS Schistosomiasis,Condition 120* 

ST, Elixhauser Solid Tumor without Metastasis 1[456][0123456789].*, 
17[012].*, 17[456789].*, 
18[0123456789].*, 
19[012345].* 

StableAngina Stable Angina, Diagnosis 413.[019] 

STEMI STEMI, Condition 410.[012345689]* 

STROKE Stroke, Condition 43[01]*, 434.[019], 
434.[019]1, 436*, 997.02 

TB Tuburculosis,Condition 01[0-8].*, 137.*, V12.01 

TIA TIA, Condition 435.[89] 

TIPS Transjugular Intrahepatic 
Portosystemic Shunt 

3718[23], 39.1 

TOBC Tobacco Use,Condition 305.1*, V15.82 

TRAU Injury-Trauma,Condition 349.39, 716.1*, 717.*, 
718.0*, 718.3*, 806.*, 
80[0134].[12346789]*, 
83_.*, 85[01234].*, 86_.*, 
90[012347].*, 905.6, 
906.4, 908.[01234]*, 
92[56789].*, 952.*, 
V15.52 

UNAN Unstable Angina, Condition 411.1*, 413* 

UrinaryObst Urinary Obstruction, Condition 592.1, 593.4, 594.[29], 
596.0, 598.[1289], 599.6, 
599.69, 599.82, 
600.[0129]1, 753.[26], 
753.2[129], 788.2, 
788.29, V44.6, V55.6 

VAD Ventricular Assist Device, 
Procedure 

3397[5-9], 33980, 37.41, 
37.5[2-5], 37.6[0356] 

Valvular, Elixhauser Valvular Disease, Diagnosis 093.2, 39[4567].*, 424.*, 
746.[3456], V42.2, V43.3 

Varices Varices, Condition or Procedure 4324[34], 4320[45], 
456.[012][01], 456.[012], 
42.33 
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VascProc All Vascular Procedures 3332[012], 3333[025], 
3386[013], 3387[057], 
3388[01], 34001, 34051, 
34101, 34111, 34151, 
3420[13], 34401, 34421, 
34451, 34471, 34490, 
3480[02-5], 3482[56], 
3483[0-2], 34900, 
3500[12], 3501[13], 
3502[12], 35045, 
3508[12], 3509[12], 
3510[23], 3511[12], 
3512[12], 3513[12], 
3514[12], 3515[12], 
3516[12], 3521[16], 
3522[16], 3523[16], 
3524[16], 3525[16], 
3526[16], 3527[16], 
3528[16], 3530[1-6], 
35311, 35321, 35331, 
35341, 3535[15], 
3536[13], 3537[12], 
35381, 35390, 
3545[024689], 3547[0-
5], 3548[0-5], 3549[0-5], 
3550[16-9], 3551[1568], 
3552[16], 3553[135-9], 
3554[01689], 3555[168], 
3556[0356], 3557[01], 
3558[2357], 3560[16], 
3561[26], 3562[136], 
3563[12678], 
3564[12567], 
3565[0146], 3566[1356], 
35671, 3569[45], 35700, 
35820, 35840, 35860, 
3587[0569], 35881, 
3590[1357], 37799, 
38.0[0-9], 38.1[0-68], 
38.2[1-69], 38.3[0-9], 
38.4[0-9], 38.5[0-3579], 
38.6[0-9], 38.7, 38.8[0-9], 
38.9[1-5789], 39.0, 39.1, 
39.2[1-9], 39.3[012], 
39.4[1239], 39.5[1-9], 
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39.7[1-9], 39.8[1-9], 
39.9[0-46-9] 

VascSurg Major Vascular Surgery, 
Procedure 

3332[012], 3333[025], 
3386[013], 3387[057], 
3388[01], 34151, 34201, 
3480[02-5], 3482[56], 
3483[0-2], 3508[12], 
3509[12], 3510[23], 
3511[12], 3512[12], 
3521[16], 35221, 
3524[16], 35251, 
3527[16], 35281, 35331, 
35341, 3536[13], 
3545[02], 3547[12], 
3548[01], 3549[01], 
3553[15-9], 
3554[01689], 35551, 
35560, 35582, 
3563[12678], 3564[167], 
35651, 35820, 35840, 
35870, 3590[57], 
38.0[456], 38.1[4568], 
38.2[123], 
38.[3468][456], 38.9[1-
5789], 39.0, 39.2[13-6], 
39.5[45], 39.7[138] 

VHD Valvular Heart Disease, 
Condition 

424.[0-3] 

VLP Valvulopathy,Condition 39[4567].*, 424.*, 745.*, 
746.[0-7]*, 746.8[134], 
747.3, 785.[23]*, V42.2, 
V43.3 

VMT Vomiting,Condition 078.82, 307.54, 536.2, 
564.3, 569.87, 578.0, 
643*, 787.0, 787.00, 
787.01 

WL, Elixhauser Weight Loss 26[0123].*, 783.2, 799.4 
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Appendix Table A.3: Variables used in the multiple imputation of laboratory values. 

Multiple imputation was carried out by the mi package for the R statistical programming 

software. Imputation was carried out for 30 iterations using 4 separate chains. Imputations 

were carried out to convergence. Values from the four separate chains were averaged 

together for the final imputed values used in the dataset. 

Domain TimePeriod Variable 

Condition Home Atrial Fibrillation 

Condition Home Anemia 

Condition Home Ascites 

Condition Home AZ_Cancer 

Condition Home Biliary Cirrhosis 

Condition Home Coronary Artery Disease 

Condition Home Congestive Heart Failure 

Condition Home Chronic Kidney Disease 

Condition Home Dialysis 

Condition Home Diabetes Mellitus 

Condition Home Etoh Abuse 

Condition Home GI Bleed 

Condition Home Hepatocellular Carcinoma 

Condition Home Hepatic Encephalopathy 

Condition Home Viral Hepatitis 

Condition Home HIV 

Condition Home HTN 

Condition Home Nonalcoholic Fatty Liver Disease 

Condition Home Spontaneous Bacterial Peritonitis 

Condition Home Transjugular Intrahepatic Portosystemic Shunt 

Condition Home Varices 

Medication Home Rifaxmin 

Medication Home Lactulose 

MedClass Home Quinolones 

MedClass Home Anticoagulants 

MedClass Home Platelet Aggregation Inhibitors 

MedClass Home Opioids 

MedClass Home Sedative Hypnotics 

MedClass Home Anticonvulsants 

MedClass Home Antidepressants 

MedClass Home Digitalis glycosides 

MedClass Home Beta Blockers 

MedClass Home Alpha Blockers 

MedClass Home Calcium Channel Blockers 

MedClass Home Antiarrhythmics 
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MedClass Home Antilipemic Agents 

MedClass Home Thiazides 

MedClass Home Loop Diuretics 

MedClass Home Potassium Sparing Combination Diuretics 

MedClass Home ACE Inhibitors 

MedClass Home Angiotensin II Inhibitors 

Procedure Home Paracentesis 

Medication Inpt Trimethoprim 

Medication Inpt Vancomycin 

Medication Inpt Lactulose 

Medication Inpt Octreotide 

Medication Inpt Midodrine 

Medication Inpt Human Albumin 

Medication Inpt Norepinephrine 

Medication Inpt Vasopressin 

Medication Inpt Rifaximin 

Medication Inpt Septra 

Medication Inpt Dobutamine 

Medication Inpt Phenylephrine 

Medication Inpt Octreotide and Midodrine 

Medication Inpt Octreotide and Norepinephrine 

Medication Inpt Octreotide and Vasopressin 

Medication Inpt Any IV Vasopressor 

MedClass Inpt NSAIDs 

MedClass Inpt Aminoglycosides 

MedClass Inpt Beta Blockers 

MedClass Inpt ACE Inhibitors 

MedClass Inpt Angiotensin Receptor Blockers 

MedClass Inpt Glucocorticoids 

MedClass Inpt Potassium Sparing Diuretics 

MedClass Inpt Statins 

MedClass Inpt Insulin 

MedClass Inpt Extended Spectrum Penicillins 

MedClass Inpt 3rd Generation Cephalosporins 

MedClass Inpt Anticoagulants 

MedClass Inpt Platelet Aggregation Inhibitors 

Condition Inpt Dialysis 

Condition Inpt Chronic Kidney Disease 

Condition Inpt Diabetes Mellitus 

Condition Inpt Coronary Artery Disease 

Condition Inpt Hypertension 
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Condition Inpt Hospice 

Condition Inpt Congestive Heart Failure 

Condition Inpt Cancer 

Condition Inpt Sepsis 

Condition Inpt Diarrhea 

Condition Inpt SIRS 

Condition Inpt Hepatitis 

Condition Inpt Vomiting 

Condition Inpt Alcohol Use 

Condition Inpt Anemia 

Condition Inpt GI Bleed 

Condition Inpt Cardiovascular Disease 

Condition Inpt COPDAsthma 

Condition Inpt Glomerulonephritis 

Condition Inpt Acute Tubular Necrosis 

Condition Inpt Decompensated Liver Disease 

Condition Inpt Urinary Obstruction 

Condition Inpt Glomerularnephritis NOS 

Condition Inpt Atrial Fibrillation 

Condition Inpt Acute Renal Failure 

Condition Inpt Nephrectomy 

Condition Inpt Palliative Care 

Condition Inpt Hydronephrosis 

Condition Inpt Etoh Abuse 

Condition Inpt Ascites 

Condition Inpt Hepatorenal Syndrome 

Condition Inpt Transjugular Intrahepatic Portosystemic Shunt 

Condition Inpt Varices 

Condition Inpt Hepatic Encephalopathy 

Condition Inpt Spontaneous Bacterial Peritonitis 

Condition Inpt Hepatocellular Carcinoma 

Condition Inpt Nonalcoholic Fatty Liver Disease 

Condition Inpt Elixhauser: CHF 

Condition Inpt Elixhauser: Arrhythmias 

Condition Inpt Elixhauser: Valvular Heart Disease 

Condition Inpt Elixhauser: Pulmonary Circulation d/o 

Condition Inpt Elixhauser: Peripheral Vascular Dz 

Condition Inpt Elixhauser: HTN uncomplicated 

Condition Inpt Elixhauser: HTN complicated 

Condition Inpt Elixhauser: Paralysis 

Condition Inpt Elixhauser: Other Neurological d/o 
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Condition Inpt Elixhauser: Pulmonary Disease 

Condition Inpt Elixhauser: Diabetes uncomplicated 

Condition Inpt Elixhauser: Diabetes Complicated 

Condition Inpt Elixhauser: Hypothyroidism 

Condition Inpt Elixhauser: Renal Failure 

Condition Inpt Elixhauser: Liver Disease 

Condition Inpt Elixhauser: Peptic Ulcer Disease 

Condition Inpt Elixhauser: AIDS/HIV 

Condition Inpt Elixhauser: Lymphoma 

Condition Inpt Elixhauser: Metastatic Cancer 

Condition Inpt Elixhauser: Solid Tumor without mets 

Condition Inpt Elixhauser: Collagen vascular diseases 

Condition Inpt Elixhauser: Coagulopathy 

Condition Inpt Elixhauser: Weight Loss 

Condition Inpt Elixhauser: Fluid and Electrolyte Disorder 

Condition Inpt Elixhauser: Blood Loss Anemia 

Condition Inpt Elixhauser: Deficiency Anemia 

Condition Inpt Elixhauser: Alcohol Abuse 

Condition Inpt Elixhauser: Drug Abuse 

Condition Inpt Elixhauser: Psychoses 

Condition Inpt Elixhauser: Depression 

  



 124 

Appendix Table A.4: List of semantic types used to filter variables for semantic  

Semantic Type Identifier Description 
T020  acquired abnormality 
T190  anatomical abnormality 
T053  behavior 
T031  body substance 
T201  clinical attribute 
T060  diagnostic procedure 
T047  disease or syndrome 
T033  Finding 
T131  Hazardous or Poisonous Substance 
T058  Health Care Activity 
T129  Immunologic Factor 
T037  Injury or Poisoning 
T048  mental or behavioral dysfunction 
T191  neoplastic process 
T046  pathologic function 
T184  sign or symptom 
T061  therapeutic or preventive procedure 
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Appendix Table A.5: List of a-priori CUIs 

CUI STR Assigned Variable 
Category 

C0035222 Acquired respiratory distress syndrome Acquired respiratory 
distress syndrome 

C0003460 ANURIA Anuria 

C0000731 abdomen distended Ascites 

C0003962 abdominal dropsy Ascites 

C0426682 fluid wave Ascites 

C0741244 Tense ascites Ascites 

C0333501 Acute necrosis Acute Tubular Necrosis 

C0344391 granular cast Casts 

C0011175 body water dehydration Dehydration 

C0013604 dropsies Edema 

C0017658 Glomerulonephritis NOS Glomerulonephritis 

C0017662 GLOMERULONEPHRITIS, 
MEMBRANOPROLIFERATIVE 

Glomerulonephritis 

C0156221 acute glomerulonephritis Glomerulonephritis 

C0017665 glomerulonephritis membranous Glomerulopnephritis 

C0018926 Hematemeses Hematemesis 

C0019151 coma hepaticum Hepatic Encephalopathy 

C0019212 Hepatorenal syndrome Hepatorenal Syndrome 

C1708271 HRS Hepatorenal Syndrome 

C0020295 Hydronephrosis Hydronephrosis 

C0020649 hypotension Hypotension 

C0027707 Interstitial Nephritis Nephritis 

C0041349 Tubulo-interstitial nephritis Nephritis 

C0149937 acute interstitial nephritis Nephritis 

C0347129 AIN Nephritis 

C1514118 nephrotoxic Nephrotoxic 

C0003211 Agents, Nonsteroidal Antiinflammatory NSAIDs 

C0011991 bowel loose movements Nausea/Vomiting/Diarrhea 
(NVD) 

C0027497 nausea Nausea/Vomiting/Diarrhea 
(NVD) 

C0027498 N&V - Nausea and vomiting Nausea/Vomiting/Diarrhea 
(NVD) 

C0042963 Emesis Nausea/Vomiting/Diarrhea 
(NVD) 

C0034115 paracentesis Paracentesis 

C0031154 Peritonitis Peritonitis 

C0014772 blood cell count red RBCs 
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C0014772 Red Cell Count RBCs 

C0036690 SEPSIS Sepsis 

C0243026 SEPSIS Sepsis 

C0036974 Shock Shock 

C0036982 Haemorrhagic shock Shock 

C0036983 SHOCK SEPTIC Shock 

C0242966 SIRS Systemic Inflammatory 
Response Syndrome (SIRS) 

C0552639 tubular cell Tubular Cells 

C0553257 Epithelial cell of renal tubule Tubular Cells 

C1261248 urinary sediment Urine Sediment 

XXXXXXX XXXXXXX Prerenal 
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Appendix Table A.6: Evaluation of model performance after exclude “Maybe HRS” cases 

from model building and evaluation using the a priori CUIs. 
 

AUC (95% 
CI) 

Slope 
(95% CI) 

Intercept 
(95% CI) 

Brier Score 
(95% CI) 

Logistic 
Regression 

0.94 (0.93, 
0.94) 

0.36 (0.31, 
0.40) 

-0.24 (-0.32, -
0.16) 

0.08 (0.08, 
0.09) 

Gradient 
Boosting 

0.94 (0.93, 
0.94) 

1.70 (1.64, 
1.75) 

0.16 (0.08, 
0.24) 

0.10 (0.09, 
0.10) 

Naïve Bayes 0.77 (0.74, 
0.79) 

0.20 (0.19, 
0.22) 

-3.84 (-4.28, -
3.40) 

0.44 (0.40, 
0.47) 

Random 
Forest 

0.94 (0.94, 
0.94) 

2.54 (2.44, 
2.65) 

0.45 (0.36, 
0.54) 

0.10 (0.10, 
0.11) 

Support 
Vector 
Machine 

0.94 (0.93, 
0.94) 

0.86 (0.82, 
0.89) 

-0.06 (-0.14, 
0.02) 

0.09 (0.09, 
0.10) 
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Appendix Table A.7. Discrimination and calibration performance of the five models to 

phenotype Hepatorenal Syndrome using the SAFE concept unique identifiers.  

(Note: Slope and Intercept refer to the parameters of the best-fit line through the observed-to-

predicted probability plot; AUC: Area Under the Curve) 
 

AUC (95% 

CI) 

Slope (95% 

CI) 

Intercept 

(95% CI) 

Brier Score 

(95% CI) 

Logistic 

Regression 

0.93 (0.92, 

0.93) 

0.47 (0.43, 

0.50) 

-0.16 (-0.22, -

0.11) 

0.11 (0.11, 

0.11) 

Gradient 

Boosting 

0.91 (0.91, 

0.92) 

1.60 (1.54, 

1.65) 

0.09 (0.04, 

0.14) 

0.12 (0.12, 

0.13) 

Naïve Bayes 0.70 (0.68, 

0.73) 

0.14 (0.12, 

0.15) 

-2.60 (-2.91, -

2.29) 

0.42 (0.40, 

0.45) 

Random 

Forest 

0.91 (0.91, 

0.92) 

1.97 (1.92, 

2.02) 

0.32 (0.27, 

0.37) 

0.13 (0.13, 

0.13) 

Support 

Vector 

Machine 

0.91 (0.90, 

0.91) 

0.85 (0.82, 

0.87) 

-0.01 (-0.06, 

0.04) 

0.12 (0.12, 

0.13) 

 

  



 129 

Appendix A.8: CUIs selected based on the Automated Feature Extraction for Phenotyping 

(AFEP) and the Surrogate-Assisted Feature Extraction (SAFE) method. 

Candidate CUIs for consideration in the AFEP algorithm 93 were extracted from Medscape and 

Wikipedia articles on HRS.  The SAFE algorithm 92 also considered CUIs extracted from the 

HRS entries in Merck Manuals and Medline Plus Medical Encyclopedia. Mayo Clinic Disease 

and Conditions did not include relevant content on HRS to allow inclusion in the SAFE 

approach.  We limit candidate CUIs lists for both methods based on semantic type and grouped 

drug concepts by generic names and drug classes. Brand name concept to generic concept 

mapping was performed using the “has_tradename” and “tradename_of” relationships in the 

UMLS hierarchy, similar to the AFEP paper. Drug class identification was performed using the 

RxNorm hierarchy and the RxNorm WebAPI.303 The remaining candidates were filtered for 

rarity and commonality as recommended. A list of filtered candidate CUIs based on the public 

knowledge sources is available in the Online Appendix.  We adjusted the SAFE silver standard 

thresholds to ensure reasonable sample sizes in the extreme subsets (LICD=0, LNLP=0, UICD=1, 

and UNLP=3). We implemented 50 iterations of the elastic net models for each of the three silver 

standards in the SAFE approach, selecting CUIs included in 50% of the models overall. The final 

list of CUIs selected by AFEP and SAFE are listed in Appendix Table A.8. 
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Appendix Table A.8: List of Concept Unique Identifiers (CUI) used in the automated 

feature extraction for phenotyping (AFEP) and surrogate-assisted feature extraction 

(SAFE) methods.  

The sources are: Wikipedia, Medscape, Merck Manual, MedlinePlus, and MayoClinic. 
 

Included in public knowledge source AFEP SAFE 

CUI Wiki. Med. Merck Medline Mayo Candidate Selected Candidate Selected 

C0000731       X           

C0000970   X       X       

C0001047 X X       X       

C0001128   X       X X     

C0001306 X X   X   X   X   

C0001443   X       X       

C0001648   X       X       

C0001924 X X X X   X X X   

C0002006 X         X       

C0002170   X       X       

C0002210   X       X       

C0002556   X       X       

C0002772   X       X       

C0002792   X       X       

C0003009   X       X       

C0003018 X X       X       

C0003211       X           

C0003232 X X   X   X   X   

C0003402   X       X       

C0003448 X         X       

C0003779   X       X       

C0003962 X X X X   X X X   

C0004610   X       X       

C0004623 X X       X       

C0005771   X       X       

C0005779   X       X X     

C0006318   X       X       

C0007430   X       X       

C0007554   X       X       

C0007584   X       X       

C0007955   X       X       

C0008370   X       X       
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Included in public knowledge source AFEP SAFE 

C0008679   X   X   X       

C0008809   X       X       

C0009319   X       X       

C0009421       X           

C0009429     X             

C0009450 X X   X   X   X   

C0009555   X       X       

C0009566 X X   X   X   X   

C0009676       X           

C0009905       X           

C0009924 X X       X       

C0010403   X       X       

C0010404   X       X       

C0010592 X         X       

C0010957 X   X X   X   X   

C0011276   X       X       

C0011710   X       X       

C0011744   X       X       

C0011923   X       X       

C0011946 X X   X   X X X   

C0011947   X       X       

C0012169   X       X       

C0012237   X       X       

C0012299   X       X       

C0012359 X         X       

C0012582   X       X       

C0012772   X       X       

C0012798 X X   X   X X X   

C0012854   X       X       

C0013030   X       X       

C0013103   X       X       

C0013221 X         X       

C0013378   X       X       

C0013516   X       X       

C0013604   X       X X     

C0013819       X           

C0013862       X           

C0013983   X       X       
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Included in public knowledge source AFEP SAFE 

C0014245 X         X       

C0014264 X         X       

C0014442   X       X       

C0014745   X       X       

C0014772   X       X X     

C0014867 X X       X       

C0015672   X       X       

C0015950   X       X       

C0016059 X         X       

C0016107 X X X     X   X   

C0017181 X X   X   X   X   

C0017654 X X X     X   X   

C0017658   X       X       

C0017662   X       X       

C0017665   X       X       

C0017675   X       X       

C0017817   X       X       

C0018418   X   X   X       

C0018801       X           

C0018935   X       X       

C0018941   X       X       

C0018965 X X       X       

C0019004 X X       X       

C0019014   X       X       

C0019080 X X   X   X   X   

C0019151 X     X   X X     

C0019158 X X X X   X X X   

C0019163 X X       X       

C0019187 X X   X   X   X   

C0019214   X       X       

C0019270   X       X       

C0019311   X       X       

C0019868   X       X       

C0019932 X X       X       

C0020295   X       X       

C0020488   X       X       

C0020538 X X       X       

C0020541 X X       X       
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Included in public knowledge source AFEP SAFE 

C0020625   X       X X     

C0020649 X X   X   X X X   

C0020651       X           

C0020683   X       X       

C0020740       X           

C0021081 X X       X       

C0021368 X         X       

C0021440 X         X       

C0021936   X       X       

C0021968   X       X       

C0022116 X X       X       

C0022346 X X   X   X X X   

C0022658 X X   X   X   X   

C0022660 X X       X X     

C0022671 X         X       

C0022672   X       X       

C0023175 X         X       

C0023518   X       X       

C0023545   X       X       

C0023890 X X X X   X   X   

C0023891 X         X X     

C0023895 X X   X   X X X   

C0023899   X       X       

C0023901   X       X       

C0023911 X X X     X   X   

C0024337   X       X       

C0025424   X       X       

C0026018 X         X       

C0026078 X X X     X X X X 

C0026160 X X       X       

C0026846   X       X       

C0027310   X       X       

C0027479 X         X       

C0027481 X         X       

C0027497       X           

C0027769   X       X       

C0028128 X X       X       

C0028158       X           
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Included in public knowledge source AFEP SAFE 

C0028259 X         X       

C0028351   X       X       

C0028365   X       X       

C0028778   X       X       

C0028833 X X X     X X X   

C0028961 X X X     X   X   

C0029276 X X       X       

C0029944   X       X       

C0030125 X         X       

C0030899 X X       X       

C0030946   X       X       

C0031001   X       X       

C0031154 X X       X       

C0031448   X       X       

C0032017 X X       X       

C0032042   X       X       

C0032181   X       X       

C0033085   X       X       

C0033095 X X       X       

C0033554 X         X       

C0033567 X         X       

C0033684 X         X X     

C0033687 X X       X       

C0033707   X   X   X       

C0034783   X       X       

C0034933       X           

C0035078 X X X X   X X X   

C0035139 X X       X       

C0036140   X       X       

C0036193   X       X       

C0036974 X X       X       

C0037473 X X       X       

C0037494   X       X       

C0037659 X X       X       

C0038257 X         X       

C0038689   X       X       

C0038999       X           

C0039052   X       X       



 135 

 
Included in public knowledge source AFEP SAFE 

C0039082 X X X X   X X X X 

C0039796   X       X       

C0040057 X         X       

C0040061 X         X       

C0040125   X       X       

C0040549 X         X       

C0040732 X X X     X X X   

C0040808 X X       X       

C0040958 X         X       

C0041041   X       X       

C0041044   X       X       

C0041834   X       X       

C0041942   X       X       

C0042029   X       X       

C0042345 X X       X X     

C0042373   X       X       

C0042397 X X X     X   X   

C0042402   X       X       

C0042769 X         X       

C0042963       X           

C0043047   X   X   X       

C0043094       X           

C0066480   X       X       

C0066563 X         X       

C0072471   X       X       

C0078077   X       X       

C0079284   X       X       

C0079595 X         X       

C0080059   X       X       

C0080274   X       X       

C0082420   X   X   X       

C0085128   X       X       

C0085149 X         X       

C0085174 X X       X       

C0085584 X X   X   X X X   

C0085590 X X       X       

C0085605 X X   X   X X X   

C0085649   X       X       
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Included in public knowledge source AFEP SAFE 

C0086761   X       X       

C0087111 X X X X   X   X   

C0105421 X X   X   X   X   

C0125644   X       X       

C0127400 X         X       

C0145185 X X X     X   X   

C0149651   X       X       

C0150041   X       X       

C0150077   X       X       

C0151578   X       X       

C0152451   X       X       

C0155210   X       X       

C0155789 X         X       

C0156221   X       X       

C0156246   X       X       

C0156247   X       X       

C0161959   X       X       

C0162529   X       X       

C0162557 X         X       

C0175661   X       X       

C0179802   X       X       

C0181074   X       X       

C0181805 X         X       

C0184486 X         X       

C0194133   X       X       

C0198497       X           

C0199176 X X       X       

C0200396   X   X   X       

C0200679 X         X       

C0200949   X       X       

C0201803 X X       X       

C0201838 X X       X X     

C0201849 X         X       

C0201879       X           

C0201888   X       X       

C0201913   X       X X     

C0201975 X X       X       

C0201976 X X       X       
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Included in public knowledge source AFEP SAFE 

C0201989   X       X       

C0202145   X       X       

C0202195   X       X       

C0217843   X       X       

C0221135   X       X       

C0221198       X           

C0221226   X       X       

C0221239   X       X       

C0221423 X         X       

C0221752 X         X       

C0231176   X   X   X       

C0231187   X       X       

C0231218 X X       X       

C0232342 X         X       

C0232766   X       X       

C0232831       X           

C0233494 X         X       

C0235395 X X       X       

C0235618   X       X       

C0239571   X       X       

C0240182   X       X       

C0240962   X       X X     

C0242528   X X X   X   X   

C0242656 X         X       

C0242889   X       X       

C0242903       X           

C0242937   X       X       

C0243026   X       X       

C0243071 X X       X       

C0262926 X X       X       

C0266258   X       X       

C0275551 X X       X       

C0277787   X       X       

C0278252   X       X X     

C0279033 X         X       

C0282090   X       X       

C0282151   X       X       

C0282638   X       X       
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Included in public knowledge source AFEP SAFE 

C0302353   X       X       

C0302809   X X     X       

C0303753 X X       X       

C0304550   X       X       

C0304551   X       X       

C0304925   X       X       

C0309872   X       X       

C0311392 X X   X   X   X   

C0333121 X         X       

C0333501 X X       X       

C0337443 X X X X   X X X   

C0338237   X       X       

C0339897 X X X     X   X   

C0341503 X X       X       

C0344441 X         X       

C0348042   X   X   X       

C0350056 X         X       

C0353714   X       X       

C0355614   X       X       

C0368721   X       X       

C0373535 X X       X       

C0373595 X X       X       

C0373719 X X       X       

C0392148 X X       X       

C0403416   X       X       

C0418967 X         X       

C0422768   X       X       

C0426396       X           

C0427944   X       X       

C0428279 X X       X       

C0428283 X         X       

C0428437       X           

C0428601   X       X       

C0428642   X       X       

C0428886   X       X       

C0429119   X       X       

C0430397 X         X       

C0439775 X         X       



 139 

 
Included in public knowledge source AFEP SAFE 

C0440102 X X       X       

C0441513 X         X       

C0441610   X       X       

C0442811 X     X   X       

C0442856   X       X       

C0442886       X           

C0445115 X         X       

C0449970   X       X       

C0450442 X X       X       

C0450458   X       X       

C0456378 X X       X       

C0457422   X       X       

C0460139 X X   X   X   X   

C0472683   X       X       

C0475371 X     X   X       

C0475806   X       X       

C0487602 X         X       

C0520819 X         X       

C0520890   X       X       

C0520891 X         X       

C0521302   X       X       

C0523444 X X       X       

C0523891 X X       X       

C0542331 X X       X       

C0545131   X       X       

C0546817       X           

C0546866 X         X       

C0546884   X       X       

C0554309   X X     X       

C0554756   X       X       

C0558148       X           

C0559546   X       X       

C0572025   X       X       

C0574032 X     X   X       

C0577060       X           

C0577118   X       X       

C0580859       X           

C0581142   X       X       
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Included in public knowledge source AFEP SAFE 

C0585109   X       X       

C0587081   X       X       

C0587355   X       X       

C0587362   X       X       

C0591050   X       X       

C0596170   X       X       

C0597198   X       X       

C0597357 X X       X       

C0600061 X X       X       

C0600688 X         X       

C0677039 X         X       

C0677582   X       X       

C0679861 X         X       

C0681827   X       X       

C0684336 X X       X       

C0700308   X       X       

C0700445   X       X       

C0724649   X       X       

C0728940 X         X       

C0732165   X       X       

C0740085 X X       X       

C0740469       X           

C0741244 X X       X       

C0742724   X       X       

C0859036   X       X       

C0868945 X X       X       

C0949378   X       X       

C1137947 X X       X       

C1140999 X         X       

C1145640   X       X       

C1171398   X       X       

C1256585 X X   X   X X X X 

C1261287 X         X       

C1261720   X       X       

C1263666     X             

C1266240   X       X       

C1268852   X       X       

C1271104 X     X   X       
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Included in public knowledge source AFEP SAFE 

C1272641   X       X       

C1272919   X       X       

C1278293 X X       X       

C1287298 X X   X   X X X   

C1292856   X       X       

C1293861 X X       X       

C1299583 X         X       

C1302112 X         X       

C1318478 X         X       

C1366678   X       X       

C1396851 X         X       

C1442858 X X X X   X   X   

C1443036 X         X       

C1444662   X       X       

C1511237   X       X       

C1522240   X       X       

C1533693   X       X       

C1533734 X X       X       

C1536696   X       X       

C1559265 X X   X   X   X   

C1705480 X X       X       

C1710425 X X X X   X   X   

C1718097   X       X       

C1832073   X       X       

C1874188   X       X       

C1874190   X       X       

C1874191   X       X       

C1874271 X X       X       

C1874288   X       X       

C1874289   X       X       

C1874292   X       X       

C1874295   X       X       

C1874882   X       X       

C1874911   X       X       

C1874953   X       X       

C1874955   X       X       

C1874970   X       X       

C1875099   X       X       



 142 

 
Included in public knowledge source AFEP SAFE 

C1875100   X       X       

C1875146   X   X   X       

C1875186   X       X       

C1875409   X       X       

C1875410   X       X       

C1875417   X       X       

C1875522   X       X       

C1875542       X           

C1875577   X       X       

C1875579   X       X       

C1875643   X   X   X       

C1875728   X   X   X       

C1875761 X         X       

C1875865   X X     X       

C1881049   X       X       

C1882365 X         X       

C1882443 X X       X       

C1962945 X         X       

C1970989   X       X       

C2239176   X       X       

C2242979   X       X       

C2266920 X         X       

C2266943 X         X       

C2266959   X       X X     

C2266960   X       X       

C2266971   X       X       

C2266972   X       X       

C2347023 X         X       

C2347080 X         X       

C2348813 X         X       

C2746010   X   X   X       

C2825032   X       X       

C2825050 X         X       

C2825091 X X       X       

C2826616   X       X       

C2917331   X       X       

C2917342 X X       X       

C2917344   X       X       
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Included in public knowledge source AFEP SAFE 

C2917403 X X       X       

C2917419   X       X X     

C2919641   X       X       

C2986592 X         X       

C2986642 X X       X       

C2987634 X X       X       

C3263722   X       X       

C3275118   X       X       

C3514012 X         X       

C3532188   X       X       

C3536742   X       X       

C3536752   X       X       

C3536808 X X       X       

C3536825 X X X     X X X   

C3536828 X X X     X X X   

C3536840       X           

C3536843 X X       X       

C3536888   X       X       

C3537198   X       X       

C3537226   X       X       

C3537240 X X       X       
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APPENDIX B: DETAILS ON RISK PREDICTION ALGORITHMS 

 

Appendix Table 1: List of initial candidate predictor variables and ultimate variables 

chosen for the LASSO model after elimination of low prevalence and collinear variables. 

Variable Name n (%) or median 
(IQR) 

Missing, n 
(%) 

Candidate 
Variable 
in Final 
Model 

Gender 34785 (98.23%) 0 (0%) X 

Race 
 

950 
(2.68%) 

 

0 UNKNOWN 2037 (5.75%) 
 

X 

1 WHITE 25168 (71.07%) 
 

X 

2 BLACK 7191 (20.31%) 
 

X 

3 ASIAN-HAWAIIAN-PACIFIC 
ISLANDER 

538 (1.52%) 
 

X 

4 AMERICAN INDIAN-ALASKAN 
NATIVE 

478 (1.35%) 
 

X 

Age 61 (57.%) 0 (0%) X 

KDIGO Renal Failure Stage 
   

   1 23920 (67.55%) 0 (0%) X 

   2 5913 (16.7%) 0 (0%) X 

   3 5579 (15.75%) 0 (0%) X 

Admit MELD 19.28 (15.13,23.67) 5313 
(15.%) 

X 

Baseline Creatinine 1.13 (0.9,1.59) 0 (0%) X 

Admit Avg Creatinine 1.86 (1.39,2.8) 29 (0.08%) X 

Admit Avg Sodium 135. (131.,138.) 162 
(0.46%) 

X 

Admit Avg Chloride 102. (97.5,106.5) 60 (0.17%) X 

Admit Avg Bicarbonate 23. (20.,26.) 59 (0.17%) X 

Admit Avg Calcium 8.45 (8.,8.88) 1467 
(4.14%) 

X 

Admit Avg Blood Urea Nitrogen 34. (22.,52.) 2193 
(6.19%) 

X 

Admit Avg Glucose 121.6 (101.7,157.) 138 
(0.39%) 

X 

Admit Avg Hemoglobin 10.6 (9.2,12.15) 1153 
(3.26%) 

X 

Admit Avg Hematocrit 31.35 (27.2,35.8) 189 
(0.53%) 

X 
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Variable Name n (%) or median 
(IQR) 

Missing, n 
(%) 

Candidate 
Variable 
in Final 
Model 

Admit Avg White Blood Cell 7.7 (5.5,10.9) 202 
(0.57%) 

X 

Admit Avg Platelet 116.3 (73.5,176.) 312 
(0.88%) 

X 

Admit Avg Mean Corpuscular Volume 94.1 (88.75,99.7) 217 
(0.61%) 

X 

Admit Avg Mean Corpuscular 
Hemoglobin Conc. 

33.93 (33.1,34.65) 215 
(0.61%) 

X 

Admit Avg Mean Corpuscular 
Hemoglobin 

31.9 (29.7,34.15) 348 
(0.98%) 

X 

Admit Avg Albumin 2.5 (2.,3.05) 3309 
(9.34%) 

X 

Admit Avg Aspartate 
Aminotransferase 

54.5 (34.,92.) 3490 
(9.86%) 

X 

Admit Avg Alanine Aminotransferase 30. (18.,50.27) 2991 
(8.45%) 

X 

Admit Avg Direct Bilirubin 0.42 (0.11,1.3) 21438 
(60.54%) 

X 

Admit Avg Total Bilirubin 1.6 (0.8,3.4) 2751 
(7.77%) 

X 

Admit Avg Alkaline Phosphatase 118. (82.,173.) 2716 
(7.67%) 

X 

Admit Avg Prothrombin Time 16.55 (14.5,19.5) 5907 
(16.68%) 

X 

Admit Avg Partial Thromboplastin 
Time 

34.7 (31.3,39.1) 10577 
(29.87%) 

X 

Admit Avg International Normalized 
Ratio 

1.4 (1.22,1.7) 4706 
(13.29%) 

X 

Admit Systolic Blood Pressure 116. (104.,129.) 613 
(1.73%) 

X 

Admit Diastolic Blood Pressure 66. (59.,73.) 617 
(1.74%) 

X 

Admit Mean Arterial Pressure 99. (90.,110.) 617 
(1.74%) 

X 

Admit Temperature 97.72 (97.22,98.16) 692 
(1.95%) 

X 

Admit Pulse 81.4 (71.33,92.) 598 
(1.69%) 

X 

Admit Respirations 19. (18.,20.) 662 
(1.87%) 

X 
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Variable Name n (%) or median 
(IQR) 

Missing, n 
(%) 

Candidate 
Variable 
in Final 
Model 

Admit Weight 193.6 (167.,209.9) 7707 
(21.76%) 

X 

Admit Min Systolic Blood Pressure 100. (90.,113.) 613 
(1.73%) 

X 

Admit Max Temperature 98.6 (98.,99.1) 692 
(1.95%) 

X 

Admit Max Pulse 93. (81.,106.) 598 
(1.69%) 

X 

Admit Max Resp 20. (20.,24.) 662 
(1.87%) 

X 

Admit Weight Change -2.44 (-9.28,4.52) 7885 
(22.27%) 

X 

# Paracentesis in last 90 days 1. (1.,1.) 0 (0%) X 

Atrial Fibrillation 6233 (17.6%) 0 (0%) X 

Amyloidosis 84 (0.24%) 0 (0%) X 

Angina 3235 (9.14%) 0 (0%) X 

Anemia 24253 (68.49%) 0 (0%) X 

Arrhythmia 12836 (36.25%) 0 (0%) X 

Ascites 27836 (78.6%) 0 (0%) 
 

Asthma 2022 (5.71%) 0 (0%) X 

Autonomic Neuropathy 62 (0.18%) 0 (0%)   

Cancer 10729 (30.3%) 0 (0%) X 

Biliary Cirrhosis 181 (0.51%) 0 (0%) X 

Bone Marrow Transplant 9 (0.03%) 0 (0%)   

CABG 3083 (8.71%) 0 (0%) X 

Coronary Artery Disease 12410 (35.04%) 0 (0%) X 

Carotid Disease 133 (0.38%) 0 (0%) X 

Congestive Heart Failure 10172 (28.72%) 0 (0%) X 

Chronic Kidney Disease 13585 (38.36%) 0 (0%) X 

Colitis 300 (0.85%) 0 (0%) X 

Chronic Obstructive Pulmonary 
Disease 

12683 (35.82%) 0 (0%) X 

Cerebrovascular Accident 4159 (11.74%) 0 (0%) X 

Dementia 1025 (2.89%) 0 (0%) X 

Dermatomyositis 9 (0.03%) 0 (0%)   

Dialysis 4191 (11.83%) 0 (0%) X 

Diabetes Mellitus 17980 (50.77%) 0 (0%) X 

Diabetic Neuropathy 4225 (11.93%) 0 (0%) X 

Dyslipidemia 14992 (42.34%) 0 (0%) X 



 147 

Variable Name n (%) or median 
(IQR) 

Missing, n 
(%) 

Candidate 
Variable 
in Final 
Model 

Etoh Abuse 19001 (53.66%) 0 (0%) X 

Gastrointestinal Bleed 12073 (34.09%) 0 (0%) X 

Acute Glomerulonephritis 330 (0.93%) 0 (0%) X 

Glomerular Nephritis 911 (2.57%) 0 (0%) X 

Hepatocellular Carcinoma 4134 (11.67%) 0 (0%) X 

Hepatic Encephalopathy 11646 (32.89%) 0 (0%) X 

Viral Hepatitis 18548 (52.38%) 0 (0%) X 

HIV 722 (2.04%) 0 (0%) X 

Hospice 27 (0.08%) 0 (0%)   

Heart Transplant 63 (0.18%) 0 (0%)   

Hypertension 28271 (79.83%) 0 (0%) X 

Hyperparathyroidism 433 (1.22%) 0 (0%) X 

Leukemia 307 (0.87%) 0 (0%) X 

Lung Transplant 28 (0.08%) 0 (0%)   

Lupus 2122 (5.99%) 0 (0%) X 

Multiple Endocrine Neoplasia 4 (0.01%) 0 (0%)   

Myocardial Infarction 2674 (7.55%) 0 (0%) X 

Multiple Myeloma 202 (0.57%) 0 (0%) X 

Multiple Sclerosis 47 (0.13%) 0 (0%)   

Myopathies 3248 (9.17%) 0 (0%) X 

NAFLD 5390 (15.22%) 0 (0%) X 

Glomerular Nephritis, NOS 2800 (7.91%) 0 (0%) X 

Nephrectomy 165 (0.47%) 0 (0%) X 

Osteoarthritis 8919 (25.19%) 0 (0%) X 

Obesity 7607 (21.48%) 0 (0%) X 

Palliative Care 4159 (11.74%) 0 (0%) X 

Parkinsons 273 (0.77%) 0 (0%) X 

Pancreatitis 3964 (11.19%) 0 (0%) X 

Hemi- or Paraplegia 882 (2.49%) 0 (0%) X 

Porphyria 104 (0.29%) 0 (0%) X 

Peptic Ulcer Disease 3879 (10.95%) 0 (0%) X 

Peripheral Vascular Disease 3621 (10.23%) 0 (0%) X 

Rheumatoid Arthritis 461 (1.3%) 0 (0%) X 

Renal Transplant 169 (0.48%) 0 (0%) X 

Rheumatic Disease (Charlson 
Comorbidity Index Definition) 

715 (2.02%) 0 (0%) X 

Spontaneous Bacterial Peritonitis 4691 (13.25%) 0 (0%) X 

Scleroderma 28 (0.08%) 0 (0%)   
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Variable Name n (%) or median 
(IQR) 

Missing, n 
(%) 

Candidate 
Variable 
in Final 
Model 

Sickle Cell Anemia 48 (0.14%) 0 (0%)   

Spinal Cord Injury 247 (0.7%) 0 (0%) X 

STEMI 1783 (5.04%) 0 (0%) X 

Stroke 2657 (7.5%) 0 (0%) X 

Tuberculosis 416 (1.17%) 0 (0%) X 

Transient Ischemic Attack 902 (2.55%) 0 (0%) X 

TIPS 599 (1.69%) 0 (0%) X 

Tobacco Use 16956 (47.88%) 0 (0%) X 

Urinary Obstruction 4598 (12.98%) 0 (0%) X 

Varices 9129 (25.78%) 0 (0%) X 

Valvular Heart Disease 3736 (10.55%) 0 (0%) X 

Home Med Rifaximin 2166 (6.12%) 0 (0%) X 

Home Med Lactulose 8439 (23.83%) 0 (0%) X 

Home Med Antidotes Deterrents And 
Poison Control 

995 (2.81%) 0 (0%) X 

Home Med Alcohol Deterrents 48 (0.14%) 0 (0%)   

Home Med Heavy Metal Antagonists 15 (0.04%) 0 (0%)   

Home Med Antidotes Deterrents And 
Poison Control Exchange Resins 

276 (0.78%) 0 (0%) X 

Home Med Antidotes Deterrents Other 664 (1.88%) 0 (0%) X 

Home Med Antihistamines 4730 (13.36%) 0 (0%) X 

Home Med Antihistamines 
Phenothiazine 

806 (2.28%) 0 (0%) X 

Home Med Antihistamines 
Ethanolamine 

961 (2.71%) 0 (0%) X 

Home Med Antihistamines Alkylamine 49 (0.14%) 0 (0%)   

Home Med Antihistamines Piperazine 1876 (5.3%) 0 (0%) X 

Home Med Antihistamines 
Butyrophenone 

49 (0.14%) 0 (0%)   

Home Med Antihistamines Piperidine 104 (0.29%) 0 (0%) X 

Home Med Antihistamines Other 1461 (4.13%) 0 (0%) X 

Home Med Antimicrobials 9133 (25.79%) 0 (0%) X 

Home Med Penicillin G Related 
Penicillins 

40 (0.11%) 0 (0%)   

Home Med Penicillins Amino 
Derivatives 

858 (2.42%) 0 (0%) X 

Home Med Penicillinase Resistant 
Penicillins 

47 (0.13%) 0 (0%)   
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Variable Name n (%) or median 
(IQR) 

Missing, n 
(%) 

Candidate 
Variable 
in Final 
Model 

Home Med Extended Spectrum 
Penicillins 

10 (0.03%) 0 (0%)   

Home Med Penicillins And Beta Lactam 
Antimicrobials 

1553 (4.39%) 0 (0%) X 

Home Med Cephalosporin 1st 
Generation 

449 (1.27%) 0 (0%) X 

Home Med Cephalosporin 2nd 
Generation 

62 (0.18%) 0 (0%)   

Home Med Cephalosporin 3rd 
Generation 

122 (0.34%) 0 (0%) X 

Home Med Cephalosporin 4th 
Generation 

2 (0.01%) 0 (0%)   

Home Med Beta Lactams 
Antimicrobials Other 

2 (0.01%) 0 (0%)   

Home Med Erythromycins Macrolides 382 (1.08%) 0 (0%) X 

Home Med Tetracyclines 370 (1.04%) 0 (0%) X 

Home Med Aminoglycosides 398 (1.12%) 0 (0%) X 

Home Med Lincomycins 249 (0.7%) 0 (0%) X 

Home Med Quinolones 4125 (11.65%) 0 (0%) X 

Home Med Antituberculars 93 (0.26%) 0 (0%) X 

Home Med Methenamine Salts 
Antimicrobials 

9 (0.03%) 0 (0%)   

Home Med Nitrofurans Antimicrobials 85 (0.24%) 0 (0%) X 

Home Med Sulfonamide Related 
Antimicrobials 

1123 (3.17%) 0 (0%) X 

Home Med Antifungals 490 (1.38%) 0 (0%) X 

Home Med Antivirals 774 (2.19%) 0 (0%) X 

Home Med Anti Infectives Other 3051 (8.62%) 0 (0%) X 

Home Med Antineoplastics 690 (1.95%) 0 (0%) X 

Home Med Antineoplastics Alkylating 
Agents 

10 (0.03%) 0 (0%)   

Home Med Antineoplastic Antibiotics 0 (0.%) 0 (0%)   

Home Med Antineoplastics 
Antimetabolites 

98 (0.28%) 0 (0%) X 

Home Med Antineoplastic Hormones 121 (0.34%) 0 (0%) X 

Home Med Protective Agents 0 (0.%) 0 (0%)   

Home Med Antineoplastic Other 502 (1.42%) 0 (0%) X 

Home Med Antiparasitics 284 (0.8%) 0 (0%) X 

Home Med Antiprotozoals 255 (0.72%) 0 (0%) X 



 150 

Variable Name n (%) or median 
(IQR) 

Missing, n 
(%) 

Candidate 
Variable 
in Final 
Model 

Home Med Antimalarials 234 (0.66%) 0 (0%) X 

Home Med Antiprotozoals Other 21 (0.06%) 0 (0%)   

Home Med Anthelmintics 5 (0.01%) 0 (0%)   

Home Med Pediculicides 24 (0.07%) 0 (0%)   

Home Med Antiparasitics Other 0 (0.%) 0 (0%)   

Home Med Antiseptics Disinfectants 1 (0.%) 0 (0%)   

Home Med Autonomic Medications 995 (2.81%) 0 (0%) X 

Home Med Sympathomimetics 
.adrenergics. 

19 (0.05%) 0 (0%)   

Home Med Sympatholytics 2 (0.01%) 0 (0%)   

Home Med Parasympathomimetics 
Cholinergics 

762 (2.15%) 0 (0%) X 

Home Med Parasympatholytics 220 (0.62%) 0 (0%) X 

Home Med Autonomic Agents Other 9 (0.03%) 0 (0%)   

Home Med Blood Products Modifiers 
Volume Expanders 

3921 (11.07%) 0 (0%) X 

Home Med Anticoagulants 1713 (4.84%) 0 (0%) X 

Home Med Thrombolytics 2 (0.01%) 0 (0%)   

Home Med Antihemorrhagics 26 (0.07%) 0 (0%)   

Home Med Platelet Aggregation 
Inhibitors 

1222 (3.45%) 0 (0%) X 

Home Med Blood Formation Products 1190 (3.36%) 0 (0%) X 

Home Med Blood Derivatives 30 (0.08%) 0 (0%)   

Home Med Volume Expanders 1 (0.%) 0 (0%)   

Home Med Central Nervous System 
Medications 

19537 (55.17%) 0 (0%) X 

Home Med Analgesics 14293 (40.36%) 0 (0%) X 

Home Med Opioid Analgesics 9892 (27.93%) 0 (0%) X 

Home Med Opioid Antagonist 
Analgesics 

46 (0.13%) 0 (0%)   

Home Med Non Opioid Analgesics 7363 (20.79%) 0 (0%) X 

Home Med Antimigraine Agents 38 (0.11%) 0 (0%)   

Home Med Anesthetics 9 (0.03%) 0 (0%)   

Home Med General Anesthetics Other 1 (0.%) 0 (0%)   

Home Med Local Anesthetics Injection 8 (0.02%) 0 (0%)   

Home Med Anesthetic Adjuncts 0 (0.%) 0 (0%)   

Home Med Sedatives Hypontics 4019 (11.35%) 0 (0%) X 

Home Med Barbituric Acid Derivative 
Sedatives Hypnotics 

29 (0.08%) 0 (0%)   
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Variable Name n (%) or median 
(IQR) 

Missing, n 
(%) 

Candidate 
Variable 
in Final 
Model 

Home Med Benzodiazepine Derivative 
Sedatives Hypnotics 

2777 (7.84%) 0 (0%) X 

Home Med Sedatives Hypnotics Other 1457 (4.11%) 0 (0%) X 

Home Med Anticonvulsants 4746 (13.4%) 0 (0%) X 

Home Med Antiparkinson Agents 388 (1.1%) 0 (0%) X 

Home Med Antivertigo Agents 138 (0.39%) 0 (0%) X 

Home Med Antidepressants 9435 (26.64%) 0 (0%) X 

Home Med Tricyclic Antidepressants 1187 (3.35%) 0 (0%) X 

Home Med Monamine Oxidase 
Inhibitor Antidepressants 

2 (0.01%) 0 (0%)   

Home Med Antidepressants Other 8764 (24.75%) 0 (0%) X 

Home Med Antipsychotics 2146 (6.06%) 0 (0%) X 

Home Med Phenothiazine Related 
Antipsychotics 

110 (0.31%) 0 (0%) X 

Home Med Antipsychotics Other 2061 (5.82%) 0 (0%) X 

Home Med Lithium Salts 97 (0.27%) 0 (0%) X 

Home Med Cns Stimulants 70 (0.2%) 0 (0%)   

Home Med Amphetamines 6 (0.02%) 0 (0%)   

Home Med Amphetamine Like 
Stimulants 

50 (0.14%) 0 (0%)   

Home Med Cns Stimulants Other 14 (0.04%) 0 (0%)   

Home Med Cns Medications Other 452 (1.28%) 0 (0%) X 

Home Med Cardiovascular Medications 27201 (76.81%) 0 (0%) X 

Home Med Digitalis Glycosides 1423 (4.02%) 0 (0%) X 

Home Med Beta Blockers Related 16825 (47.51%) 0 (0%) X 

Home Med Alpha Blockers Related 4450 (12.57%) 0 (0%) X 

Home Med Calcium Channel Blockers 5194 (14.67%) 0 (0%) X 

Home Med Antianginals 2718 (7.68%) 0 (0%) X 

Home Med Antiarrhythmics 546 (1.54%) 0 (0%) X 

Home Med Antilipemic Agents 6364 (17.97%) 0 (0%) X 

Home Med Antihypertensive 
Combinations 

446 (1.26%) 0 (0%) X 

Home Med Antihypertensives Other 1944 (5.49%) 0 (0%) X 

Home Med Peripheral Vasodilators 2 (0.01%) 0 (0%)   

Home Med Diuretics 21146 (59.71%) 0 (0%) X 

Home Med Thiazides Related Diuretics 2698 (7.62%) 0 (0%) X 

Home Med Loop Diuretics 18419 (52.01%) 0 (0%) X 

Home Med Carbonic Anhydrase 
Inhibitor Diuretics 

14 (0.04%) 0 (0%)   
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Variable Name n (%) or median 
(IQR) 

Missing, n 
(%) 

Candidate 
Variable 
in Final 
Model 

Home Med Potassium Sparing 
Combinations Diuretics 

14719 (41.57%) 0 (0%) X 

Home Med Diuretics Other 0 (0.%) 0 (0%)   

Home Med Ace Inhibitors 7725 (21.81%) 0 (0%) X 

Home Med Angiotensin Ii Inhibitor 1504 (4.25%) 0 (0%) X 

Home Med Direct Renin Inhibitor 5 (0.01%) 0 (0%)   

Home Med Cardiovascular Agents 
Other 

613 (1.73%) 0 (0%) X 

Home Med Dermatological Agents 7574 (21.39%) 0 (0%) X 

Home Med Anti Infective Topical 3054 (8.62%) 0 (0%) X 

Home Med Antibacterial Topical 1352 (3.82%) 0 (0%) X 

Home Med Antifungal Topical 1731 (4.89%) 0 (0%) X 

Home Med Antiviral Topical 18 (0.05%) 0 (0%)   

Home Med Anti Infective Topical Other 268 (0.76%) 0 (0%) X 

Home Med Anti Inflammatory Topical 2017 (5.7%) 0 (0%) X 

Home Med Anti Infective Anti 
Inflammatory Combinations Topical 

82 (0.23%) 0 (0%) X 

Home Med Sun Protectants Screens 
Topical 

55 (0.16%) 0 (0%)   

Home Med Emollients 2413 (6.81%) 0 (0%) X 

Home Med Soaps Shampoos Soap Free 
Cleansers 

324 (0.91%) 0 (0%) X 

Home Med Deodorants 
Antiperspirants Topical 

3 (0.01%) 0 (0%)   

Home Med Keratolytics Caustics 
Topical 

30 (0.08%) 0 (0%)   

Home Med Antineoplastic Topical 27 (0.08%) 0 (0%)   

Home Med Analgesics Topical 787 (2.22%) 0 (0%) X 

Home Med Local Anesthetics Topical 562 (1.59%) 0 (0%) X 

Home Med Antiacne Agents 132 (0.37%) 0 (0%) X 

Home Med Antiacne Agents Systemic 0 (0.%) 0 (0%)   

Home Med Antiacne Agents Topical 132 (0.37%) 0 (0%)   

Home Med Antipsoriatic 185 (0.52%) 0 (0%) X 

Home Med Antipsoriatics Systemic 24 (0.07%) 0 (0%)   

Home Med Antipsoriatics Topical 163 (0.46%) 0 (0%) X 

Home Med Dermatologicals Systemic 
Other 

1 (0.%) 0 (0%)   

Home Med Dermatologicals Topical 
Other 

1543 (4.36%) 0 (0%) X 
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Variable Name n (%) or median 
(IQR) 

Missing, n 
(%) 

Candidate 
Variable 
in Final 
Model 

Admit IVF Total 350. (0.,1250.) 0 (0%) X 

Admit Octreotide 1803 (5.09%) 0 (0%) X 

Admit Midodrine 478 (1.35%) 0 (0%) X 

Admit Albumin Inf 6042 (17.06%) 0 (0%) X 

Admit Norepinephrine 712 (2.01%) 0 (0%) X 

Admit Vasopressin 153 (0.43%) 0 (0%) X 

Admit Rifaximin 2888 (8.16%) 0 (0%) X 

Admit Med Class Nsaids 806 (2.28%) 0 (0%) X 

Admit Med Class Aminoglycosides 796 (2.25%) 0 (0%) X 

Admit Med Class Betablockers 15805 (44.63%) 0 (0%)   

Admit Med Class Ace 3091 (8.73%) 0 (0%)   

Admit Med Class Arb 684 (1.93%) 0 (0%)   

Admit Med Class Glucocorticoids 2681 (7.57%) 0 (0%) X 

Admit Med Class Ksparingdiuretic 7890 (22.28%) 0 (0%)   

Admit Med Class Benzodiazepines 5798 (16.37%) 0 (0%)   

Admit Med Class Statins 5310 (14.99%) 0 (0%) X 

Admit Med Class Insulin 12004 (33.9%) 0 (0%) X 

Admit Med Class Fluoroquinolones 4147 (11.71%) 0 (0%) X 

Admit Med Class Opioids 19447 (54.92%) 0 (0%) X 

Admit Med Va Class Antidotes 
Deterrents And Poison Control 

0 (0.%) 0 (0%)   

Admit Med Va Class Alcohol Deterrents 21 (0.06%) 0 (0%)   

Admit Med Va Class Heavy Metal 
Antagonists 

6 (0.02%) 0 (0%)   

Admit Med Va Class Antidotes 
Deterrents And Poison Control 
Exchange Resins 

3502 (9.89%) 0 (0%) X 

Admit Med Va Class Antidotes 
Deterrents Other 

188 (0.53%) 0 (0%) X 

Admit Med Va Class Antihistamines 0 (0.%) 0 (0%)   

Admit Med Va Class Antihistamines 
Phenothiazine 

974 (2.75%) 0 (0%) X 

Admit Med Va Class Antihistamines 
Ethanolamine 

1895 (5.35%) 0 (0%) X 

Admit Med Va Class Antihistamines 
Alkylamine 

12 (0.03%) 0 (0%)   

Admit Med Va Class Antihistamines 
Piperazine 

991 (2.8%) 0 (0%) X 
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Variable Name n (%) or median 
(IQR) 

Missing, n 
(%) 

Candidate 
Variable 
in Final 
Model 

Admit Med Va Class Antihistamines 
Butyrophenone 

23 (0.06%) 0 (0%)   

Admit Med Va Class Antihistamines 
Piperidine 

61 (0.17%) 0 (0%)   

Admit Med Va Class Antihistamines 
Other 

823 (2.32%) 0 (0%) X 

Admit Med Va Class Antimicrobials 0 (0.%) 0 (0%)   

Admit Med Va Class Penicillin G 
Related Penicillins 

51 (0.14%) 0 (0%)   

Admit Med Va Class Penicillins Amino 
Derivatives 

996 (2.81%) 0 (0%) X 

Admit Med Va Class Penicillinase 
Resistant Penicillins 

125 (0.35%) 0 (0%) X 

Admit Med Va Class Extended 
Spectrum Penicillins 

5186 (14.64%) 0 (0%) X 

Admit Med Va Class Penicillins And 
Beta Lactam Antimicrobials 

0 (0.%) 0 (0%)   

Admit Med Va Class Cephalosporin 1st 
Generation 

695 (1.96%) 0 (0%) X 

Admit Med Va Class Cephalosporin 
2nd Generation 

134 (0.38%) 0 (0%) X 

Admit Med Va Class Cephalosporin 3rd 
Generation 

5955 (16.82%) 0 (0%) X 

Admit Med Va Class Erythromycins 
Macrolides 

1337 (3.78%) 0 (0%) X 

Admit Med Va Class Tetracyclines 350 (0.99%) 0 (0%) X 

Admit Med Va Class Aminoglycosides 753 (2.13%) 0 (0%) X 

Admit Med Va Class Lincomycins 544 (1.54%) 0 (0%) X 

Admit Med Va Class Quinolones 5703 (16.1%) 0 (0%) X 

Admit Med Va Class Antituberculars 80 (0.23%) 0 (0%) X 

Admit Med Va Class Nitrofurans 
Antimicrobials 

19 (0.05%) 0 (0%)   

Admit Med Va Class Sulfonamide 
Related Antimicrobials 

597 (1.69%) 0 (0%) X 

Admit Med Va Class Antifungals 861 (2.43%) 0 (0%) X 

Admit Med Va Class Antivirals 774 (2.19%) 0 (0%) X 

Admit Med Va Class Anti Infectives 
Other 

10306 (29.1%) 0 (0%) X 

Admit Med Va Class Antineoplastics 0 (0.%) 0 (0%)   
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Variable Name n (%) or median 
(IQR) 

Missing, n 
(%) 

Candidate 
Variable 
in Final 
Model 

Admit Med Va Class Antineoplastics 
Alkylating Agents 

4 (0.01%) 0 (0%)   

Admit Med Va Class Antineoplastics 
Antimetabolites 

33 (0.09%) 0 (0%)   

Admit Med Va Class Antineoplastic 
Hormones 

6 (0.02%) 0 (0%)   

Admit Med Va Class Antineoplastic 
Other 

227 (0.64%) 0 (0%) X 

Admit Med Va Class Antiparasitics 0 (0.%) 0 (0%)   

Admit Med Va Class Antiprotozoals 0 (0.%) 0 (0%)   

Admit Med Va Class Antimalarials 151 (0.43%) 0 (0%) X 

Admit Med Va Class Antiprotozoals 
Other 

30 (0.08%) 0 (0%)   

Admit Med Va Class Pediculicides 30 (0.08%) 0 (0%)   

Admit Med Va Class Autonomic 
Medications 

0 (0.%) 0 (0%)   

Admit Med Va Class 
Parasympathomimetics Cholinergics 

1022 (2.89%) 0 (0%) X 

Admit Med Va Class 
Parasympatholytics 

221 (0.62%) 0 (0%) X 

Admit Med Va Class Autonomic Agents 
Other 

6 (0.02%) 0 (0%)   

Admit Med Va Class Blood Products 
Modifiers Volume Expanders 

0 (0.%) 0 (0%)   

Admit Med Va Class Anticoagulants 11162 (31.52%) 0 (0%) X 

Admit Med Va Class Antihemorrhagics 25 (0.07%) 0 (0%)   

Admit Med Va Class Platelet 
Aggregation Inhibitors 

1103 (3.11%) 0 (0%) X 

Admit Med Va Class Blood Formation 
Products 

541 (1.53%) 0 (0%) X 

Admit Med Va Class Blood Derivatives 6062 (17.12%) 0 (0%) X 

Admit Med Va Class Volume Expanders 126 (0.36%) 0 (0%) X 

Admit Med Va Class Central Nervous 
System Medications 

0 (0.%) 0 (0%)   

Admit Med Va Class Analgesics 0 (0.%) 0 (0%)   

Admit Med Va Class Opioid Analgesics 14915 (42.12%) 0 (0%) X 

Admit Med Va Class Opioid Antagonist 
Analgesics 

222 (0.63%) 0 (0%) X 

Admit Med Va Class Non Opioid 
Analgesics 

9986 (28.2%) 0 (0%) X 
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Variable Name n (%) or median 
(IQR) 

Missing, n 
(%) 

Candidate 
Variable 
in Final 
Model 

Admit Med Va Class Antimigraine 
Agents 

4 (0.01%) 0 (0%)   

Admit Med Va Class Anesthetics 0 (0.%) 0 (0%)   

Admit Med Va Class Local Anesthetics 
Injection 

362 (1.02%) 0 (0%) X 

Admit Med Va Class Sedatives 
Hypontics 

1 (0.%) 0 (0%)   

Admit Med Va Class Barbituric Acid 
Derivative Sedatives Hypnotics 

60 (0.17%) 0 (0%)   

Admit Med Va Class Benzodiazepine 
Derivative Sedatives Hypnotics 

5798 (16.37%) 0 (0%) X 

Admit Med Va Class Sedatives 
Hypnotics Other 

1232 (3.48%) 0 (0%) X 

Admit Med Va Class Anticonvulsants 4889 (13.81%) 0 (0%) X 

Admit Med Va Class Antiparkinson 
Agents 

363 (1.03%) 0 (0%) X 

Admit Med Va Class Antivertigo Agents 48 (0.14%) 0 (0%)   

Admit Med Va Class Antidepressants 0 (0.%) 0 (0%)   

Admit Med Va Class Tricyclic 
Antidepressants 

863 (2.44%) 0 (0%) X 

Admit Med Va Class Antidepressants 
Other 

8512 (24.04%) 0 (0%) X 

Admit Med Va Class Antipsychotics 0 (0.%) 0 (0%)   

Admit Med Va Class Phenothiazine 
Related Antipsychotics 

117 (0.33%) 0 (0%) X 

Admit Med Va Class Antipsychotics 
Other 

2612 (7.38%) 0 (0%) X 

Admit Med Va Class Lithium Salts 82 (0.23%) 0 (0%) X 

Admit Med Va Class Cns Stimulants 0 (0.%) 0 (0%)   

Admit Med Va Class Amphetamine Like 
Stimulants 

35 (0.1%) 0 (0%)   

Admit Med Va Class Cns Stimulants 
Other 

5 (0.01%) 0 (0%)   

Admit Med Va Class Cns Medications 
Other 

425 (1.2%) 0 (0%) X 

Admit Med Va Class Cardiovascular 
Medications 

0 (0.%) 0 (0%)   

Admit Med Va Class Digitalis 
Glycosides 

1118 (3.16%) 0 (0%) X 
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Variable Name n (%) or median 
(IQR) 

Missing, n 
(%) 

Candidate 
Variable 
in Final 
Model 

Admit Med Va Class Beta Blockers 
Related 

15805 (44.63%) 0 (0%) X 

Admit Med Va Class Alpha Blockers 
Related 

3815 (10.77%) 0 (0%) X 

Admit Med Va Class Calcium Channel 
Blockers 

3892 (10.99%) 0 (0%) X 

Admit Med Va Class Antianginals 2018 (5.7%) 0 (0%) X 

Admit Med Va Class Antiarrhythmics 702 (1.98%) 0 (0%) X 

Admit Med Va Class Antilipemic 
Agents 

5855 (16.53%) 0 (0%) X 

Admit Med Va Class Antihypertensive 
Combinations 

93 (0.26%) 0 (0%) X 

Admit Med Va Class Antihypertensives 
Other 

2365 (6.68%) 0 (0%) X 

Admit Med Va Class Diuretics 0 (0.%) 0 (0%)   

Admit Med Va Class Thiazides Related 
Diuretics 

1074 (3.03%) 0 (0%) X 

Admit Med Va Class Loop Diuretics 12466 (35.2%) 0 (0%) X 

Admit Med Va Class Carbonic 
Anhydrase Inhibitor Diuretics 

16 (0.05%) 0 (0%)   

Admit Med Va Class Potassium Sparing 
Combinations Diuretics 

7890 (22.28%) 0 (0%) X 

Admit Med Va Class Ace Inhibitors 3091 (8.73%) 0 (0%) X 

Admit Med Va Class Angiotensin Ii 
Inhibitor 

684 (1.93%) 0 (0%) X 

Admit Med Va Class Cardiovascular 
Agents Other 

847 (2.39%) 0 (0%) X 

Admit Med Va Class Dermatological 
Agents 

0 (0.%) 0 (0%)   

Admit Med Va Class Anti Infective 
Topical 

0 (0.%) 0 (0%)   

Admit Med Va Class Antibacterial 
Topical 

1116 (3.15%) 0 (0%) X 

Admit Med Va Class Antifungal Topical 1746 (4.93%) 0 (0%) X 

Admit Med Va Class Antiviral Topical 8 (0.02%) 0 (0%)   

Admit Med Va Class Anti Infective 
Topical Other 

184 (0.52%) 0 (0%) X 

Admit Med Va Class Anti Inflammatory 
Topical 

1260 (3.56%) 0 (0%) X 



 158 

Variable Name n (%) or median 
(IQR) 

Missing, n 
(%) 

Candidate 
Variable 
in Final 
Model 

Admit Med Va Class Anti Infective Anti 
Inflammatory Combinations Topical 

43 (0.12%) 0 (0%)   

Admit Med Va Class Sun Protectants 
Screens Topical 

3 (0.01%) 0 (0%)   

Admit Med Va Class Emollients 1540 (4.35%) 0 (0%) X 

Admit Med Va Class Soaps Shampoos 
Soap Free Cleansers 

138 (0.39%) 0 (0%) X 

Admit Med Va Class Keratolytics 
Caustics Topical 

12 (0.03%) 0 (0%)   

Admit Med Va Class Antineoplastic 
Topical 

19 (0.05%) 0 (0%)   

Admit Med Va Class Analgesics Topical 364 (1.03%) 0 (0%) X 

Admit Med Va Class Local Anesthetics 
Topical 

235 (0.66%) 0 (0%) X 

Admit Med Va Class Antiacne Agents 0 (0.%) 0 (0%)   

Admit Med Va Class Antiacne Agents 
Topical 

57 (0.16%) 0 (0%)   

Admit Med Va Class Antipsoriatic 2 (0.01%) 0 (0%)   

Admit Med Va Class Antipsoriatics 
Systemic 

11 (0.03%) 0 (0%)   

Admit Med Va Class Antipsoriatics 
Topical 

114 (0.32%) 0 (0%) X 

Admit Med Va Class Dermatologicals 
Topical Other 

1122 (3.17%) 0 (0%) X 

Admit Procedure Dialysis 2569 (7.25%) 0 (0%) X 

Admit Proc Liver Transplant 23 (0.06%) 0 (0%)   

Admit Procedure TIPS 84 (0.24%) 0 (0%) X 

Admit Procedure Variceal Control 672 (1.9%) 0 (0%) X 

Admit Procedure Paracentesis 7814 (22.07%) 0 (0%) X 

Admit Procedure Cardiac Cath 165 (0.47%) 0 (0%) X 

Admit Condition SBP 2654 (7.5%) 0 (0%) X 

3 Day Pre Admit Procedure Dialysis 0 (0.%) 0 (0%)   

3 Day Pre Admit Procedure 
Paracentesis 

617 (1.74%) 0 (0%) X 
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Appendix Table 1b: Code definitions for co-morbid conditions used in the model. (ICD-9: 

International Classification of Diseases-Version 9; CPT: Current Procedural Terminology; 

ICDProc: ICD Procedure Code) 

Description ICD-9 CPT ICDProc 
Acute 
Glomerulonephriti
s 

580.*   

Etoh Abuse 291.[0123589],303.*,305.0*   
Amyloidosis 277.3,277.3[019]   
Anemia 280*,281*,282.01,282.2*,282.3*,282.4*, 

282.71,282.8,282.9,283.[019]*,284*,285
*, 
648.2*,776.5* 

  

Angina 413*,411.1   
Arrhythmia 427*,785.0,785.1,779.81,426*,V45.0*,V5

3.3*,746.86 
  

Ascites 789.5* 4908[0-3] 54.91 
Asthma 493.*   
Atrial Fibulation 427.3[12]   
Autonomic 
Neuropathy 

337.9   

Cancer 1[4-9][0-9]*,20[0-8]*,209.[0-3]*,23[0-
3]* 

  

Biliary Cirrhosis 571.6   
Bone Marrow 
Transplant 

996.8[58],V42.8[12] 3824[012] 41.00* 

CABG V45.81,414.04 3351[01234678
9], 
3352[123], 
3353[3-6] 

36.1*, 
36.2* 

Carotid Disease 433.1  38.12 
Cerebrovascular 
Disease 

43[0-8]*,362.34   

Congestive Heart 
Failure 

398.91,402.11,404.01,404.11,404.91,42
8*, 
402.01,402.91,404.13,404.93,425.[1457
89]* 

  

Chronic Kidney 
Disease 

585*,403*,404*   

Colitis 555.[0129],556.,556.[0-6]   
Chronic 
Obstructive 
Pulmonary 
Disease 

491.*,492.*,493.*,496.*,V17.5*,V81.3*   
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Description ICD-9 CPT ICDProc 
Coronary Artery 
Disease 

410.*,411.*,412.*,413.*, 
414.[02-9]*,V45.81,V45.82 

  

Dementia 290.*,294.[1]*,331.[012]*   
Dermatomyositis 710.3   
Diabetes Mellitus 249*,250*,357.2*,362.0*,366.41,V45.85, 

V53.91 
  

Diabetic 
Neuropathy 

357.2   

Dialysis 585.6,V39.27,V39.42,V39.43,V45.1,V56.0
, 
V56.2,V56.31,V56.32,V56.8 

90921,90925, 
90935,90937, 
90945,9096[012
6],G8956,90947, 
90989,9099[39] 

39.9[35], 
54.98 

Dyslipidemia 272.*   
Gastrointestinal 
Bleeding 

530.82,53[1-
4].[0246]0,535.[045]1,578.* 

  

Glomerular 
Nephritis 
(Exclusion) 

580.[049],580.8[19],581.[0123],582.[01
249], 
582.8[19],583.[0124],581.89 

  

Heart Transplant V42.1  37.5[1-5] 
Hemiplegia or 
Paraplegia 

334.1*,342.*,343.*,344.[01234569]*   

Hepatic 
Encephalopathy 

572.2*,070.00,070.2*,070.40,070.41,070
.44, 
070.49,070.60 

  

Viral Hepatitis 070.[23][0-
3],V02.6[12],070.[45][14],070.7[01] 

  

Hepatocellular 
Carcinoma 

155.0   

HIV 04[234]*,079.53,795.71,V08*   
Hospice  9,937,799,378  
Hyperparathyroidi
sm 

252.0*   

Hypertension 401*,402*,403*,404*,405*,437.2*   
Leukemia 202.4*,203.1*,20[4-8].*,V10.6*   
Lung Transplant V42.6  33.50* 
Multiple 
Endocrine 
Neoplasia 

258.0*   

Multiple Myeloma 203.0*   
Multiple Sclerosis 340.   
Myocardial 
Infarction 

410*   

Myopathies 359.8,359.89,425.4   
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Description ICD-9 CPT ICDProc 
Nephrectomy  5022[05], 

5023[046],5024
0, 
50300,50320, 
50340,50370, 
5054[35-8] 

55.4, 
55.5[1-4] 

Glomerular 
Nephritis, NOS 

580.81,58[03].9,583.8[19]   

NAFLD 571.8,571.9   
Obesity 278.0,278.0[01],649.1,278.03   
Osteoarthritis 715.0[049],715.1[0-8],715.2[0-8], 

715.3[0-8],715.8[09],715.9[0-8],V13.4 
  

Pallative Care V66.7*   
Pancreatitis 577.[01]*   
Parkinson’s 
Disease 

332.0   

Peptic Ulcer 
Disease 

531.*,532.*,533.*,534.*   

Peripheral 
Vascular Disease 

440*,441*,442*,444.2*,V43.4   

Porphyria 277.1   
Renal Transplant 996.81,V42.0 5,036,550,360 55.69*, 

00.9[123] 
Rheumatic Disease 
(Charlson 
Comorbidity 
Definition) 

446.5*,710.[01234]*,714.[0128]*,725.*   

Rheumatoid 
Arthritis 

714.0   

Scleroderma 701.0   
Sickle Cell Disease 282.4[1-4]*,282.6*   
Spinal Cord Injury  349.39,806.[0-3][0-9], 806.[4589], 

806.[67][0129],907.2, 
952.[01][0-9], 952.[23489] 

  

Spontaneous 
Bacterial 
Peritonitis 

567.23,567.[0289]0,567.2[19],567.89, 
567.[0289] 

  

STEMI 410.[012345689]*   
Stroke 43[01]*,434.[019],434.[019]1,436*,997.

02 
  

Lupus 286.5,323.81,517.8,58[023].81,695.4,71
0.0 

  

Transient Ischemic 
Attack 

435.[89]   
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Description ICD-9 CPT ICDProc 
Tobacco Use 305.1*,V15.82   
TIPS  3718[23] 39.1 
Tuberculosis 01[0-8].*,137.*,V12.01   
Urinary 
Obstruction 

592.1,593.4,594.[29],596.0,598.[1289],5
99.6, 
599.69,599.82,600.[0129]1,753.[26], 
753.2[129],788.2,788.29,V44.6,V55.6 

  

Valvular Heart 
Disease 

424.[0-3]   

Varices 456.[012][01],456.[012] 4324[34],4320[4
5] 

42.33 
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Appendix Table 2: Variables used in the multiple imputation of laboratory values.  

Multiple imputation was carried out by the mi package for the R statistical programming 
software. Imputation was carried out for 30 iterations using 4 separate chains. 
Imputations were carried out to convergence. Values from the four separate chains 
were averaged together for the final imputed values used in the dataset. 

Variable Name 

Gender 

Race 

Age 

Admit MELD 

Baseline Creatinine 

Admit Avg Creatinine 

Admit Avg Sodium 

Admit Avg Chloride 

Admit Avg Bicarbonate 

Admit Avg Calcium 

Admit Avg Blood Urea Nitrogen 

Admit Avg Glucose 

Admit Avg Hemoglobin 

Admit Avg Hematocrit 

Admit Avg White Blood Cell 

Admit Avg Platelet 

Admit Avg Mean Corpuscular Volume 

Admit Avg Mean Corpuscular Hemoglobin 
Conc. 
Admit Avg Mean Corpuscular Hemoglobin 

Admit Avg Albumin 

Admit Avg Aspartate Aminotransferase 

Admit Avg Alanine Aminotransferase 

Admit Avg Direct Bilirubin 

Admit Avg Total Bilirubin 

Admit Avg Alkaline Phosphatase 

Admit Avg Prothrombin Time 

Admit Avg Partial Thromboplastin Time 

Admit Avg International Normalized Ratio 

Atrial Fibrillation 

Anemia 

Ascites 

Cancer 

Biliary Cirrhosis 

Coronary Artery Disease 
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Congestive Heart Failure 

Chronic Kidney Disease 

Dialysis 

Diabetes Mellitus 

Etoh Abuse 

Gastrointestinal Bleed 

Hepatocellular Carcinoma 

Hepatic Encephalopathy 

Viral Hepatitis 

HIV 

Hypertension 

NAFLD 

Spontaneous Bacterial Peritonitis 

TIPS 

Varices 

# Paracentesis in last 90 days 

Home Med Rifaximin 

Home Med Lactulose 

Home Med Quinolones 

Home Med Anticoagulants 

Home Med Platelet Aggregation Inhibitors 

Home Med Opioid Analgesics 

Home Med Sedatives Hypontics 

Home Med Anticonvulsants 

Home Med Antidepressants 

Home Med Digitalis Glycosides 

Home Med Beta Blockers Related 

Home Med Alpha Blockers Related 

Home Med Calcium Channel Blockers 

Home Med Antiarrhythmics 

Home Med Antilipemic Agents 

Home Med Thiazides Related Diuretics 

Home Med Loop Diuretics 

Home Med Potassium Sparing Combinations 
Diuretics 
Home Med Ace Inhibitors 

Home Med Angiotensin Ii Inhibitor 

Admit Procedure Dialysis 

Admit Procedure TIPS 

Admit Procedure Variceal Control 

Admit Procedure Paracentesis 
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Appendix Table 3: GEE Odds ratios and confidence intervals for the variables selected by 

LASSO yielding the minimum deviance. 

Variable Odds Ratio (95% CI) 
(Intercept) 2.733  

Race White 0.804 (0.67,0.965) 

Race Black 0.639 (0.515,0.793) 

Race Asian 0.481 (0.3,0.772) 

Race Native American 0.644 (0.407,1.02) 

Age 1.012 (1,1.02) 

KDIGO Stage 2 Renal Failure 1.188 (1.04,1.35) 

KDIGO Stage 3 Renal Failure 0.942 (0.774,1.15) 

Admit IVF Total 0.942 (0.898,0.987) 

Admit MELD 1.169 (1.15,1.19) 

Baseline Creatinine 0.77 (0.711,0.834) 

Admit Avg Creatinine 1.066 (1.02,1.11) 

Admit Avg Sodium 0.971 (0.955,0.988) 

Admit Avg Chloride 1.016 (0.999,1.03) 

Admit Avg Bicarbonate 0.992 (0.974,1.01) 

Admit Avg Calcium 0.978 (0.913,1.05) 

Admit Avg Blood Urea Nitrogen 1.005 (1,1.01) 

Admit Avg Glucose 0.998 (0.997,0.999) 

Admit Avg Hematocrit 1 (0.99,1.01) 

Admit Avg Platelet 1 (0.999,1) 

Admit Avg Mean Corpuscular Volume 0.996 (0.99,1) 

Admit Avg Mean Corpuscular Hemoglobin Concentration 1.068 (1.02,1.12) 

Admit Avg Albumin 0.918 (0.836,1.01) 

Admit Avg Alanine Aminotransferase 0.999 (0.999,1) 

Admit Avg Total Bilirubin 0.988 (0.978,0.998) 

Admit Avg Alkaline Phosphatase 1 (1,1) 
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Variable Odds Ratio (95% CI) 
Admit Avg Partial Thromboplastin Time 0.995 (0.989,1) 

Admit Avg International Normalized Ratio 0.568 (0.491,0.657) 

Admit Mean Systolic Blood Pressure 0.985 (0.979,0.992) 

Admit Mean Diastolic Blood Pressure  1.014 (1.01,1.02) 

Admit Mean Temperature 0.942 (0.889,1) 

Admit Mean Pulse 1 (0.993,1.01) 

Admit Mean Weight 1.002 (1,1) 

Admit Min Systolic Blood Pressure 1.006 (1,1.01) 

Admit Max Pulse 0.999 (0.993,1) 

# Paracentesis in last 90 days 1.073 (1.05,1.1) 

Anemia 1.121 (0.997,1.26) 

Arrhythmia 0.951 (0.845,1.07) 

Asthma 0.732 (0.572,0.938) 

Cancer 0.902 (0.804,1.01) 

CABG 0.767 (0.592,0.993) 

Coronary Artery Disease 0.946 (0.824,1.09) 

Congestive Heart Failure 0.94 (0.806,1.09) 

Dialysis 1.04 (0.85,1.27) 

Gastrointestinal Bleed 0.9 (0.802,1.01) 

Hepatic Encephalopathy 1.446 (1.29,1.63) 

Viral Hepatitis 0.951 (0.851,1.06) 

Hypertension 0.922 (0.818,1.04) 

NAFLD 1.083 (0.955,1.23) 

Osteoarthritis 0.969 (0.858,1.09) 

Obesity 1.301 (1.14,1.48) 

Palliative Care 1.183 (1.03,1.36) 

Peptic Ulcer Disease 0.856 (0.725,1.01) 

Peripheral Vascular Disease 0.818 (0.661,1.01) 
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Variable Odds Ratio (95% CI) 
STEMI 1.118 (0.836,1.5) 

Tobacco Use 1.126 (1.02,1.25) 

Urinary Obstruction 0.864 (0.733,1.02) 

Varices 1.03 (0.915,1.16) 

Home Med Lactulose 0.942 (0.837,1.06) 

Home Med Antihistamines Piperazine 0.847 (0.677,1.06) 

Home Med Antihistamines Other 1.024 (0.787,1.33) 

Home Med Cephalosporin 1st Generation 0.448 (0.243,0.826) 

Home Med Quinolones 1.04 (0.91,1.19) 

Home Med Antivirals 1.352 (1,1.82) 

Home Med Anti Infectives Other 0.828 (0.693,0.989) 

Home Med Antineoplastic Other 0.589 (0.365,0.952) 

Home Med Autonomic Medications 0.805 (0.575,1.13) 

Home Med Platelet Aggregation Inhibitors 2.195 (1.61,2.98) 

Home Med Opioid Analgesics 0.915 (0.812,1.03) 

Home Med Non Opioid Analgesics 0.876 (0.758,1.01) 

Home Med Antidepressants Other 0.877 (0.763,1.01) 

Home Med Cardiovascular Medications 1.114 (0.962,1.29) 

Home Med Beta Blockers Related 0.831 (0.741,0.931) 

Home Med Calcium Channel Blockers 1.065 (0.891,1.27) 

Home Med Antianginals 0.837 (0.646,1.08) 

Home Med Antilipemic Agents 1.028 (0.845,1.25) 

Home Med Antihypertensives Other 0.592 (0.406,0.862) 

Home Med Potassium Sparing Combinations Diuretics 1.052 (0.93,1.19) 

Home Med Ace Inhibitors 0.859 (0.733,1.01) 

Home Med Dermatologicals Topical Other 1.184 (0.937,1.5) 

Admit Midodrine 1.459 (0.937,2.27) 

Admit Albumin Infusion 1.37 (1.22,1.54) 
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Variable Odds Ratio (95% CI) 
Admit Norepinephrine 0.913 (0.652,1.28) 

Admit Rifaximin 1.42 (1.16,1.73) 

Admit Med Class Glucocorticoids 0.76 (0.607,0.951) 

Admit Med Class Statins 0.913 (0.569,1.47) 

Admit Med Class Insulin 0.88 (0.769,1.01) 

Admit Med Class Opioids 1.103 (0.994,1.22) 

Admit Med Va Class Antidotes Deterrents And Poison Control 

Exchange Resins 

1.306 (1.13,1.51) 

Admit Med Va Class Antihistamines Phenothiazine 1.126 (0.851,1.49) 

Admit Med Va Class Extended Spectrum Penicillins 0.751 (0.644,0.876) 

Admit Med Va Class Anti Infectives Other 0.924 (0.805,1.06) 

Admit Med Va Class Anticoagulants 1.013 (0.9,1.14) 

Admit Med Va Class Non Opioid Analgesics 0.759 (0.664,0.868) 

Admit Med Va Class Benzodiazepine Derivative Sedatives 

Hypnotics 

1.007 (0.87,1.17) 

Admit Med Va Class Anticonvulsants 1.134 (0.957,1.34) 

Admit Med Va Class Antidepressants Other 1.153 (1,1.33) 

Admit Med Va Class Antipsychotics Other 0.647 (0.508,0.824) 

Admit Med Va Class Beta Blockers Related 1.179 (1.05,1.32) 

Admit Med Va Class Antilipemic Agents 0.829 (0.531,1.3) 

Admit Med Va Class Potassium Sparing Combinations Diuretics 1.007 (0.887,1.14) 

Admit Med Va Class Ace Inhibitors 0.731 (0.524,1.02) 

Admit Med Va Class Cardiovascular Agents Other 1.446 (1,2.08) 

Admit Med Va Class Emollients 0.68 (0.514,0.901) 

Admit Procedure Dialysis 0.765 (0.555,1.05) 

Admit Procedure Paracentesis 1.453 (1.3,1.63) 

Admit Condition SBP 1.631 (1.41,1.88) 

3 Day Pre Admit Procedure Paracentesis 1.573 (1.2,2.06) 
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Appendix Table 3b: Overall GEE model performance using the LASSO variables yielding 

the minimum deviance. 
 

Value 

Intercept -0.154 (-0.319, 0.012) 

Slope 0.926 (0.860, 0.993) 

Brier 0.052 (0.050, 0.055) 

AUC 0.843 (0.833, 0.853) 

O/E 0.998 (0.913, 1.083) 

  



 172 

Appendix 4: Distribution of number of patients as a function of number of admissions. 
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Appendix Table 5: Discrimination and calibration statistics for each cluster along with 

95% confidence intervals obtained by bootstrap sampling.  

Clusters with “N/A” had ≤ 2 observations. When comparing the cluster number with the cluster 

map in Figure 3, cluster #1 starts in the bottom left corner and proceeds row-wise until cluster 

#49 in the top right corner. 

Cl. N Intercept Slope Brier AUC 

1 423 -0.374 (-0.707,-
0.04) 

0.612 (0.387,0.837) 0.17 
(0.15,0.191) 

0.665 
(0.606,0.725) 

2 927 1.647 (-
3.471,6.765) 

1.555 (0.289,2.82) 0.008 
(0.003,0.013) 

0.803 
(0.554,1.051) 

3 1535 0.686 (-
0.552,1.923) 

1.217 (0.883,1.551) 0.016 
(0.01,0.022) 

0.859 
(0.784,0.934) 

4 2026 0.785 (-
0.002,1.572) 

1.214 (0.966,1.461) 0.027 
(0.021,0.033) 

0.821 
(0.767,0.875) 

5 973 0.458 (-
0.637,1.553) 

1.075 (0.731,1.42) 0.033 
(0.022,0.044) 

0.762 
(0.678,0.846) 

6 236 -0.166 (-
0.644,0.312) 

0.82 (0.507,1.132) 0.146 
(0.116,0.176) 

0.749 
(0.672,0.826) 

7 266 -1.001 (-1.747,-
0.255) 

0.381 (-
0.017,0.779) 

0.139 
(0.11,0.168) 

0.617 
(0.52,0.714) 

8 321 -0.615 (-1.144,-
0.087) 

0.682 (0.426,0.937) 0.124 
(0.1,0.149) 

0.757 
(0.702,0.812) 

9 860 0.366 (-
0.196,0.928) 

1.037 (0.807,1.266) 0.08 
(0.066,0.094) 

0.792 
(0.745,0.839) 

10 1332 2.172 (0.58,3.764) 1.665 (1.2,2.13) 0.02 
(0.013,0.028) 

0.865 
(0.794,0.937) 

11 2006 0.104 (-
0.523,0.73) 

1.004 (0.81,1.197) 0.045 
(0.036,0.053) 

0.775 
(0.733,0.817) 

12 1 N/A (N/A,N/A) N/A (N/A,N/A) N/A (N/A,N/A) N/A (N/A,N/A) 

13 327 -0.262 (-
1.273,0.749) 

0.69 (0.281,1.1) 0.101 
(0.071,0.13) 

0.649 
(0.555,0.743) 

14 0 N/A (N/A,N/A) N/A (N/A,N/A) N/A (N/A,N/A) N/A (N/A,N/A) 

15 66 4.122 (-
47.616,55.859) 

4.391 (-
14.986,23.769) 

0.029 (-
0.001,0.059) 

0.515 (-
0.17,1.2) 

16 425 -0.427 (-
1.51,0.656) 

0.865 (0.482,1.247) 0.05 
(0.033,0.067) 

0.819 
(0.722,0.916) 

17 1117 0.757 
(0.207,1.306) 

1.315 (1.092,1.539) 0.053 
(0.043,0.063) 

0.868 
(0.832,0.904) 

18 1223 0.053 (-
0.327,0.433) 

0.975 (0.807,1.144) 0.092 
(0.08,0.104) 

0.78 
(0.743,0.817) 

19 378 0.176 (-
0.421,0.773) 

0.906 (0.656,1.157) 0.109 
(0.083,0.134) 

0.782 
(0.727,0.838) 

20 457 -0.548 (-
1.528,0.431) 

0.963 (0.544,1.382) 0.035 
(0.023,0.048) 

0.801 
(0.712,0.89) 
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Cl. N Intercept Slope Brier AUC 

21 811 -1.029 (-1.621,-
0.437) 

0.541 (0.313,0.769) 0.077 
(0.061,0.092) 

0.665 
(0.603,0.728) 

22 508 1.535 (-
0.659,3.729) 

1.55 (0.883,2.218) 0.02 
(0.009,0.032) 

0.835 
(0.75,0.92) 

23 892 -0.312 (-
2.116,1.492) 

1.022 (0.544,1.5) 0.013 
(0.007,0.02) 

0.768 
(0.665,0.871) 

24 788 -0.435 (-0.77,-0.1) 0.699 (0.496,0.901) 0.137 
(0.122,0.152) 

0.694 
(0.649,0.739) 

25 831 -0.518 (-
1.105,0.07) 

0.888 (0.647,1.13) 0.055 
(0.041,0.068) 

0.783 
(0.728,0.837) 

26 819 0.148 (-
1.106,1.402) 

1.126 (0.642,1.61) 0.037 
(0.027,0.047) 

0.785 
(0.687,0.882) 

27 121 7.581 (-
13.038,28.201) 

4.699 (-
6.656,16.053) 

0.034 
(0.011,0.058) 

0.969 
(0.917,1.02) 

28 1092 0.956 (0.24,1.672) 1.209 (0.955,1.463) 0.054 
(0.043,0.066) 

0.807 
(0.761,0.854) 

29 1256 1.191 (-
1.188,3.571) 

1.573 (0.826,2.321) 0.011 
(0.006,0.016) 

0.785 
(0.661,0.908) 

30 907 0.137 (-
0.709,0.983) 

0.947 (0.636,1.259) 0.061 
(0.048,0.075) 

0.719 
(0.652,0.785) 

31 261 -0.081 (-
0.465,0.302) 

1.02 (0.695,1.344) 0.16 
(0.135,0.185) 

0.761 
(0.699,0.824) 

32 506 -0.316 (-0.544,-
0.089) 

0.584 (0.377,0.791) 0.206 
(0.185,0.226) 

0.667 
(0.612,0.722) 

33 622 -0.043 (-
0.981,0.894) 

1.011 (0.669,1.353) 0.043 
(0.03,0.056) 

0.85 
(0.778,0.923) 

34 1142 1.51 (-
0.911,3.931) 

1.631 (0.868,2.394) 0.012 
(0.008,0.017) 

0.871 
(0.76,0.981) 

35 1493 -0.226 (-
1.705,1.253) 

1.128 (0.703,1.554) 0.012 
(0.007,0.017) 

0.83 
(0.742,0.918) 

36 815 -0.211 (-
1.09,0.668) 

0.87 (0.557,1.183) 0.057 
(0.043,0.07) 

0.714 
(0.644,0.785) 

37 449 -0.219 (-
1.143,0.705) 

1.029 (0.644,1.414) 0.039 
(0.024,0.055) 

0.829 
(0.745,0.913) 

38 813 -0.019 (-
0.633,0.595) 

0.889 (0.631,1.146) 0.083 
(0.068,0.098) 

0.749 
(0.685,0.813) 

39 253 -0.914 (-1.583,-
0.246) 

0.411 (0.162,0.66) 0.124 
(0.091,0.156) 

0.661 
(0.575,0.748) 

40 192 0.566 (-
1.037,2.169) 

1.535 (0.664,2.407) 0.058 
(0.036,0.08) 

0.936 
(0.886,0.986) 

41 562 0.275 (-
3.947,4.496) 

1.457 (0.262,2.653) 0.008 
(0.001,0.014) 

0.85 
(0.636,1.064) 

42 604 -0.296 (-
0.707,0.116) 

0.821 (0.607,1.036) 0.115 
(0.098,0.132) 

0.782 
(0.736,0.827) 
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Cl. N Intercept Slope Brier AUC 

43 1456 0.756 
(0.034,1.479) 

1.23 (0.994,1.466) 0.036 
(0.028,0.044) 

0.819 
(0.774,0.864) 

44 308 1.862 (-
0.798,4.523) 

1.7 (0.767,2.633) 0.023 
(0.01,0.036) 

0.874 
(0.786,0.962) 

45 488 -0.619 (-
1.257,0.018) 

0.696 (0.378,1.014) 0.109 
(0.086,0.133) 

0.676 
(0.602,0.749) 

46 2 N/A (N/A,N/A) N/A (N/A,N/A) N/A (N/A,N/A) N/A (N/A,N/A) 

47 1537 0.181 (-
0.325,0.687) 

1.063 (0.841,1.285) 0.072 
(0.062,0.082) 

0.747 
(0.706,0.788) 

48 131 -1.849 (-
9.556,5.859) 

1.985 (-
5.986,9.957) 

0.031 
(0.012,0.05) 

0.91 
(0.805,1.015) 

49 854 -1.399 (-
4.175,1.376) 

1.168 (0.312,2.024) 0.006 
(0.002,0.01) 

0.908 
(0.802,1.013) 
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Appendix 6: Sensitivity analysis taking patients with HRS who were admitted with acute 

decompensated heart failure or acute myocardial infarction and re-assigning them to the 

no-HRS group. Performed to assess the possibility of misdiagnosing cardiorenal syndrome.  

As cardiorenal syndrome develops in the setting of acute (or acute on chronic) 
decompensated heart failure (ADHF) or acute myocardial infarction (AMI),304–306 we 
performed a sensitivity analysis assigning patients with decompensated  heart failure or 
acute myocardial infarction who had an HRS ICD9 code to the “No HRS” cohort.  

METHODS: We identified patients with decompensated heart failure by an ICD9 code 
for acute or acute on chronic heart failure (428.21, 428.23, 428.31, 428.33, 428.41, 
428.43) occurring any time during the admission or a primary discharge diagnosis of 
heart failure (regardless of chronicity). We identified patients with an acute myocardial 
infarction by an ICD9 code (410.*) any time during the admission. 

There were 11 patients with ADHF and 19 patients with AMI who also had an ICD9 
code for HRS (out of a total of 2258).  
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Appendix Table 6a: Odds Ratios for the GEE model predicting HRS for statistically 

significant variables. 

Risk Factor GEE Odds Ratio 
(95% CI) 

Admit Intravenous Fluids / 1000 mL 0.899 (0.858,0.942) 
Admit MELD 1.154 (1.139,1.169) 
Baseline Creatinine 0.789 (0.749,0.831) 
Admit Sodium 0.982 (0.974,0.99) 
Admit Bicarbonate 0.98 (0.969,0.991) 
Admit Blood Urea Nitrogen 1.006 (1.004,1.008) 
Admit Glucose 0.997 (0.996,0.998) 
Admit Mean Corpuscular Hemoglobin 
Conc. 1.076 (1.024,1.131) 
Admit Mean Corpuscular Hemoglobin 1.003 (0.986,1.02) 
Admit Alanine Aminotransferase 0.999 (0.999,1) 
Admit Alkaline Phosphatase 1 (1,1) 
Admit Partial Thromboplastin Time 0.994 (0.988,1) 
Admit International Normalized Ratio 0.565 (0.493,0.647) 
Admit Systolic Blood Pressure 0.995 (0.993,0.998) 
Admit Temperature 0.954 (0.866,1.051) 
Admit Weight 1.002 (1.001,1.003) 
Admit Maximum Temperature 0.977 (0.907,1.053) 
# Paracentesis in 90 days Pre-Admit 1.104 (1.084,1.125) 
KDIGO Stage II (vs. KDIGO Stage I as 
baseline) 1.243 (1.099,1.406) 
KDIGO Stage III (vs. KDIGO Stage I as 
baseline) 1.005 (0.863,1.171) 
Hepatic Encephalopathy 1.58 (1.424,1.752) 
Home Medication Analgesics 0.859 (0.776,0.95) 
Home Medication Potassium Sparing 
Diuretics 1.072 (0.968,1.188) 
Admit Medication Albumin Infusion 1.474 (1.315,1.651) 
Admit Medication Non Opioid Analgesics 0.7 (0.616,0.796) 
Admit Procedure Paracentesis 1.519 (1.359,1.698) 
Admit Diagnosis SBP 1.56 (1.354,1.796) 
Intercept 10.913 

 

Appendix Table 6b: Overall GEE model performance. 
 

Value 

Intercept -0.039 (-0.206, 0.129) 

Slope 0.983 (0.921, 1.046) 

Brier 0.052 (0.049, 0.055) 
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AUC 0.841 (0.832, 0.850) 

O/E 0.998 (0.913, 1.084) 
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Appendix 7: Hepatorenal Syndrome ICD-9 Code Accuracy Identification 

Study Population 

We analyzed a retrospective cohort of patients hospitalized from among 124 medical 
centers in the Department of Veterans Affairs (VA) between January 1, 2005 and 
December 31, 2013.  We included all hospitalizations for patients who had a cirrhosis 
diagnosis (based on a history of two outpatient or one inpatient) ICD-9 code (571.2 or 
571.5) and had AKI during their hospitalization with a maximum inpatient creatinine of at 
least 1.5 mg/dl. We excluded hospitalizations where the patient was on dialysis prior to 
admission, did not have at least one serum creatinine value within the year prior to 
admission or during the inpatient stay, who had a diagnosis of HRS prior to the 
hospitalization, who had a prior hospitalization with AKI, or who were discharged in less 
than forty eight hours.  

We performed stratified sampling based on presence/absence of an ICD-9 code for 
Hepatorenal Syndrome, level of kidney injury, and level of liver disease.  We sampled in 
blocks of twelve: six patients were selected if they had an ICD-9 code for Hepatorenal 
Syndrome anytime during their hospitalization;   six patients (without an HRS ICD-9 
code) were selected based on two levels of kidney injury (KDIGO Stage I versus KDIGO 
Stage II and III) and three levels of MELD (< 20, >= 20, and unable to calculate). We 
randomly selected a total of 42 blocks (504 inpatient admissions) to serve as the gold 
standard cohort.  

Outcome 

Two physician annotators reviewed the 504 hospitalizations reviewing all clinical notes, 
relevant laboratory values, medications, and radiology reports to assign each 
hospitalization into one of five categories: HRS Type I, HRS Type II, HRS Type 
Indeterminate, Maybe HRS, and Not HRS based on International Ascites Club criteria, 
with the exception that chronic kidney disease did not automatically preclude HRS. We 
employed a training phase where the two annotators worked in blocks of twelve patients 
until the inter-annotator agreement was >= 0.8. Disagreements on the 504 patient set 
were adjudicated by a board certified nephrologist.  

Results 

The sensitivity, specificity, positive predictive value (PPV), and negative predictive value 
(NPV) of a discharge ICD-9 code for HRS were 57.6%, 88.8%, 78.6%, and 74.6%. 

  



 180 

Appendix 8: Point Score Model 

A point-based scoring model was developed in line with the Framingham risk study.260 
Points ranged from -12 to 56 (median 13, IQR: 7 – 19). The points based model had an 
AUC of 0.835, intercept and slope of the observed-to-expected calibration line of -4.208 
and 1.043 respectively, and a Brier score of 0.424. 

Appendix Table 8a: Point allocation for statistically significant variables. 

Variable Categories Points 

Admit Intravenous Fluids  <500 1 

Admit Intravenous Fluids  (500,1e+03] 0 

Admit Intravenous Fluids  (1e+03,2e+03] 0 

Admit Intravenous Fluids  > 2000 -2 

Admit MELD < 7 -2 

Admit MELD (7,10] 0 

Admit MELD (10,15] 4 

Admit MELD (15,20] 9 

Admit MELD (20,25] 13 

Admit MELD (25,30] 18 

Admit MELD > 30 26 

Baseline Creatinine <1 1 

Baseline Creatinine (1,1.5] 0 

Baseline Creatinine (1.5,2] -1 

Baseline Creatinine (2,2.5] -2 

Baseline Creatinine (2.5,3] -3 

Baseline Creatinine (3,3.5] -4 

Baseline Creatinine (3.5,4] -4 

Baseline Creatinine > 4 -9 

Admit Sodium <125 2 

Admit Sodium (125,140] 0 

Admit Sodium > 140 -1 

Admit Bicarbonate < 10 1 

Admit Bicarbonate (10,15] 1 

Admit Bicarbonate (15,20] 0 

Admit Bicarbonate (20,25] -1 

Admit Bicarbonate > 25 -2 

Admit Blood Urea Nitrogen < 10 0 

Admit Blood Urea Nitrogen (10,20] 0 

Admit Blood Urea Nitrogen (20,40] 1 

Admit Blood Urea Nitrogen (40,80] 2 

Admit Blood Urea Nitrogen > 80 4 

Admit Glucose < 100 0 
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Admit Glucose (100,200] -1 

Admit Glucose (200,300] -3 

Admit Glucose (300,400] -5 

Admit Glucose > 400 -7 

Admit Mean Corpuscular Hemoglobin Conc. < 25 -1 

Admit Mean Corpuscular Hemoglobin Conc. (30,32] 0 

Admit Mean Corpuscular Hemoglobin Conc. (32,34] 1 

Admit Mean Corpuscular Hemoglobin Conc. (34,36] 2 

Admit Mean Corpuscular Hemoglobin Conc. > 36 3 

Admit Alanine Aminotransferase < 20 0 

Admit Alanine Aminotransferase (20,50] 0 

Admit Alanine Aminotransferase (50,150] 0 

Admit Alanine Aminotransferase (150,300] -1 

Admit Alanine Aminotransferase > 300 -4 

Admit Partial Thromboplastin Time < 30 0 

Admit Partial Thromboplastin Time (30,40] 0 

Admit Partial Thromboplastin Time (40,50] 0 

Admit Partial Thromboplastin Time (50,70] -1 

Admit Partial Thromboplastin Time > 70 -2 

Admit International Normalized Ratio < 1.2 0 

Admit International Normalized Ratio (1.2,1.5] -1 

Admit International Normalized Ratio (1.5,2] -3 

Admit International Normalized Ratio (2,2.5] -5 

Admit International Normalized Ratio > 2.5 -11 

Admit Systolic Blood Pressure < 90 1 

Admit Systolic Blood Pressure (90,120] 1 

Admit Systolic Blood Pressure (120,130] 0 

Admit Systolic Blood Pressure (130,140] 0 

Admit Systolic Blood Pressure > 140 -1 

Admit Weight < 45 -1 

Admit Weight (45,60] 0 

Admit Weight (60,100] 1 

Admit Weight > 100 2 

# Paracentesis in 90 days Pre-Admit < 2 0 

# Paracentesis in 90 days Pre-Admit (2,4] 2 

# Paracentesis in 90 days Pre-Admit (4,7] 3 

# Paracentesis in 90 days Pre-Admit > 7 7 
Hepatic Encephalopathy Present 3 
Home Medication Analgesics Present -1 

Admit Medication Albumin Infusion Present 3 

Admit Medication Non Opioid Analgesics Present -2 



 182 

Admit Procedure Paracentesis Present 3 
Admit Diagnosis SBP Present 3 

KDIGO Stage 2 Renal Failure Present 1 

KDIGO Stage 3 Renal Failure Present 0 
 

Appendix Table 8b: Probability of HRS based on total points. 

Points Probability 

-16 0.039398 

-15 0.044875 

-14 0.051073 

-13 0.058074 

-12 0.065969 

-11 0.074851 

-10 0.084821 

-9 0.095981 

-8 0.108435 

-7 0.122287 

-6 0.137635 

-5 0.15457 

-4 0.173171 

-3 0.193498 

-2 0.215588 

-1 0.239451 

0 0.265064 

1 0.292363 

2 0.321244 

3 0.351561 

4 0.383125 

5 0.415705 

6 0.449039 

7 0.482837 

8 0.516793 

9 0.550595 

10 0.583936 

11 0.616526 

12 0.648102 

13 0.678433 

14 0.707331 

15 0.734648 

16 0.760279 
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17 0.784162 

18 0.806272 

19 0.826617 

20 0.845236 

21 0.862189 

22 0.877554 

23 0.891422 

24 0.903891 

25 0.915064 

26 0.925046 

27 0.93394 

28 0.941845 

29 0.948856 

30 0.955062 

31 0.960546 

32 0.965385 

33 0.969649 

34 0.973403 

35 0.976703 

36 0.979603 

37 0.982148 

38 0.984381 

39 0.986338 

40 0.988053 

41 0.989555 

42 0.99087 

43 0.992021 

44 0.993027 

45 0.993908 

46 0.994678 

47 0.995351 

48 0.995939 

49 0.996453 

50 0.996902 

51 0.997295 

52 0.997638 

53 0.997937 

54 0.998199 

55 0.998427 

56 0.998627 
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Appendix 9: Natural Language Processing pipeline to identify ascites from radiology 

reports. 

To identify ascites, we constructed a natural language processing (NLP) pipeline. To develop the 

pipeline we assembled a gold standard of radiology reports for cirrhotic patients. We filtered all 

available radiology reports to include only computed tomography, magnetic resonance imaging, 

and ultrasound examinations of the abdomen, pelvis, or chest.  Four hundred and fifty-six 

documents were randomly sampled and manually reviewed for assertion of ascites (either 

positive or negative). Of the reviewed documents, 124 were sampled for training and testing of 

the NLP pipeline (64 with at least one positive ascites assertion, 30 with at least one negative 

assertion and no positive assertions, and 30 with zero positive or negative assertions). The 

documents were split into a training (50%) and testing set (50%).  We converted the documents 

into a string of concept unique identifiers (CUIs) mapped to the Unified Medical Language 

System (version 2013AB)84 using the clinical Text Analysis Knowledge Extraction System 

(cTAKES) version 3.2.85 A rule-based algorithm was devised based on the training set using 

CUIs related to ascites. Performance was assessed on the testing set; the sensitivity, specificity, 

positive predictive value, and negative predictive value were 96.5%, 94.0%, 93.3%, and 96.9%, 

respectively. 

 


