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CHAPTERI

INTRODUCTION

Introduction to Dopamine and Dopaminergic Circuitry

The neurotransmitter dopamine (3,4-dihydroxyphenethylamine; DA) plays
an important role in brain function through its modulatory role on several functions
including movement, motivation and reward, and attention (Giros and Caron, 1993;
Bannon, 2005; Pamiter, 2008). DA is synthesized in a two-step process in which the
amino acid tyrosine is first hydroxylated by tyrosine hydroxylase (TH) to form L-
DOPA (L-dihydroxyphenylalanine) (Nagatsu et al, 1964). L-DOPA is then
decarboxylated by aromatic acid decarboxylase (AADC) to produce DA (Blaschko,
1942) (Fig. 1A). TH is the rate-limiting enzyme in DA synthesis (Spector et al.,, 1967).

Once synthesized, DA is packaged into synaptic vesicles by vesicular
monoamine transporter 2 (VMAT-2). VMAT-2 utilizes the proton gradient present
across the vesicular membrane to pump DA into vesicles (Njus et al., 1986; Kanner
and Schuldiner, 1987; Johnson, 1988). The other VMAT isoform, VMAT-1, is typically
associated with large secretory granule vesicles utilized by endocrine/paracrine
cells and in the sympathetic nervous system, whereas VMAT-2 is predominantly
found on small synaptic vesicles in the central nervous system (Henry et al., 1994;
Weihe et al., 1994). In most brain regions, including the striatum, free intracellular
DA is degraded by monoamine oxidase into 3,4-dihydroxyphenylacetic acid

(DOPAC) (Rutledge and Jonason, 1968). However, at some sites, such as the
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Figure 1. Synthesis and degradation of dopamine. (A) Tyrosine is converted to L-
DOPA by TH, and L-DOPA to DA by AADC. (B) DA is metabolized by monoamine
oxidase (MAO) and catechol-O-methyl transferase (COMT).



prefrontal cortex, DA is degraded by catechol-O-methyl transferase (COMT) into 3-
methoxytyramine (3-MT) (Yavich et al., 2007) (Fig. 1B). Furthermore, in some sites,
especially the peripheral nervous system, DA is used as a precursor for the synthesis
of norepinephrine (NE) and epinephrine.

DA is utilized as a neurotransmitter in four major brain circuits: the
tuberoinfundibular, nigrostriatal, mesocortical, and mesolimbic pathways (Fig. 2).
The tuberoinfundibular pathway originates in the arcuate and periventricular nuclei
of the hypothalamus and projects to the median eminence (Gudelsky, 1981). There,
DA provides tonic inhibition of prolactin secretion from the pituitary gland (Birge et
al, 1970; Shaar and Clemens, 1974; Ben-Jonathan and Hnasko, 2001). The
nigrostriatal pathway originates in the substantia nigra (SN), a brain region named
for the distinct pigmentation of its neurons (Foley and Baxter, 1958), and projects to
the striatum (in primates, the striatum is typically subdivided into the caudate
nucleus and putamen) (Bédard et al., 1969; reviewed in Bjorklund and Dunnett,
2007). The mesocortical and mesolimbic pathways both originate in the ventral
tegmental area (VTA), a midbrain nucleus, and project to the prefrontal cortex and
nucleus accumbens (NAc), respectively (reviewed in Le Moal and Simon, 1991). The
mesocortical pathway is associated with emotion, executive function, and
modulation of emotions (reviewed in Floresco and Magyar, 2006; and Cools, 2008),
while the mesolimbic pathway is typically implicated in pleasure and reward
(reviewed in Salamone and Correa, 2012). Despite separate functions, the
mesocortical and mesolimbic circuits are often collectively termed the

mesocorticolimbic pathway, as they share a common origin. DA also has a role in
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Figure 2. Schematic diagram of dopaminergic pathways in the human brain. DA
neurons in SN project to the striatum via the nigrostriatal pathway. DA neurons in
the VTA project to the nucleus accumbens and frontal cortex via the mesolimbic and
mesocortical pathways, respectively. The tuberoinfundibular pathway is not
pictured. Adapted from Neuroanatomy, An Atlas of Structures, Sections, and Systems
(Haines, 2011).



several peripheral processes including olfactory (Dacks et al., 2012; Liu et al., 2012)
retinal (Nir et al. 2000; Ruan et al., 2008), cardiovascular and renal (Jose et al., 1992;
Zeng et al., 2007; Hussain and Likhandwala, 2008; Asico et al., 2011; Harris and
Zhang, 2012), and immune system (Basu and Dasgupta, 2000; Kavelaars et al., 2005)
function, as well as regulation of some hormone signaling (Ben-Jonathan and
Hnasko, 2001) and the sympathetic nervous system (Hadjiconstantinou and Neff,
1987; Hollon et al., 2002).
DA Receptor Signaling

Dopamine typically acts in a relatively slow, modulatory fashion to fine-tune
fast synaptic transmission mediated by the excitatory neurotransmitter glutamate
and inhibitory neurotransmitter gamma-aminobutyric acid (GABA). In order to
exert its modulatory effects, DA activates members of a family of G protein-coupled
receptors. Initially, two populations of DA receptors were identified based on their
ability to modulate adenylate cyclase activity (Kebabian and Calne, 1979). Later
characterization identified multiple receptor subtypes (Bunzow et al., 1988; Dearry
et al,, 1990; Monsma et al., 1990; Sokoloff et al., 1990; Zhou et al., 1990; Sunahara et
al,, 1991; Tiberi et al.,, 1991; Van Tol et al.,, 1991) that are subdivided into D1-like
(D1 and D5) and D2-like (D2, D3, and D4) receptors based on their pharmacological
and biochemical properties (Andersen et al., 1990; Tiberi et al., 1991; Niznik and
Van Tol, 1992; Sibley and Monsma, 1992; Sokoloff et al., 1992; Van Tol et al., 1992;
Civelli et al, 1993; Vallone et al., 2000). It is generally accepted that D1-like
receptors activate Gas/oif G proteins and stimulate cAMP production, while D2-like

receptors are coupled to Gai/o G proteins and act to inhibit adenylate cyclase.



Furthermore, D1 and D5 receptors are exclusively expressed postsynaptically, while
D2 and D3 receptors are expressed both postsynaptically on target cells as well as
presynaptically on dopaminergic neurons (Sokoloff et al, 2006; Rondou et al,
2010).

DA receptors have broad expression profiles in the brain and the periphery.
In the brain, D1 receptors are highly expressed in nigrostriatal and
mesocorticolimbic projection areas such as the striatum (caudate and putamen),
NAc, SN, and frontal cortex, and appear at lower levels in hippocampus, cerebellum,
thalamus, and hypothalamus (Missale et al., 1998; Gerfen, 2000). D2 receptors are
also highly expressed in the SN, VTA, hypothalamus, cortex, and hippocampus
(Missale et al., 1998; Gerfen, 2000; Vallone et al, 2000; Seeman, 2006). D3
receptors have a more limited distribution, with the highest expression in the NAc
and olfactory tubercle and lower expression in the striatum, SN, VTA, hippocampus,
and cortical areas (Missale et al., 1998; Sokoloff et al., 2006). The D4 receptor has
the lowest expression in the brain, with expression in the frontal cortex,
hippocampus, SN, and thalamus (Missale et al., 1998; Rondou et al., 2010). D5
receptors are also expressed at low levels in several brain regions including
prefrontal cortex pyramidal neurons, cingulate cortex, substantia nigra, and
hippocampus (Missale et al., 1998; Gerfen, 2000).

The functional roles of DA receptors vary widely, as DA is involved in
numerous physiological processes. Several lines of evidence demonstrate that D1,
D2, and D3 receptors control locomotor activity (Missale et al., 1998; Sibley, 1999).

D1 receptor activation has a stimulatory effect on locomotion, while D2 and D3



receptors have more complex functions as they are expressed both pre- and
postsynaptically. Presynaptic D2 autoreceptors form a negative feedback loop that
attenuates neuron firing rate (Lacey et al., 1987; Beckstead et al., 2007; Jang et al.,
2011) as well as DA synthesis (Lindgren et al., 2001; Anzalone et al., 2012) and
release (Anzalone et al., 2012; Zhang and Sulzer, 2012) in response to extracellular
DA levels. Activation of presynaptic D2 receptors leads to less DA release and a
decrease in locomotor behavior, whereas activation of postsynaptic D2 receptors
stimulates locomotion.

Interestingly, the D2 receptor is the only DA receptor with multiple
functional splice isoforms (Giros et al., 1989). The long isoform, D2L, has a 29 amino
acid insertion in the third intracellular loop that the short isoform, D2S, lacks. D2L
is predominantly postsynaptic while D2S is predominantly presynaptic (Usiello et
al,, 2000; De Mei et al., 2009). In addition, D2L and D2S differ in their sensitivity to
D2 receptor agonists, including DA; D2S is activated by lower agonist concentrations
than needed to activate D2L (Drukarch and Stoof, 1992). This can result in biphasic
locomotor responses, as low agonist concentration favors D2S and therefore inhibits
locomotion, while higher agonist concentration favors D2L and thus stimulates
locomotor activity.

Along with locomotor activity, D1 and D2 receptors also play key roles in
response to rewards and addictive drugs (Hyman et al, 2006; Di Chiara and
Bassareo, 2007; De Mei et al, 2009) and working memory mediated by the
prefrontal cortex (Goldman-Rakic et al., 2004; Xu et al., 2009). Similarly, D3, D4, and

D5 receptors contribute a minor modulatory influence on cognitive functions



mediated by the hippocampus (Sibley, 1999; Sokoloff et al.,, 2006; Rondou et al,,
2010). Other specific roles for D3, D4, and D5 receptors are unclear; D3 receptors
have been shown to have a minor influence on several functions typically attributed
to D2 receptors (Sibley, 1999; Joseph et al., 2002; Sokoloff et al., 2006; Beaulieu et
al, 2007; De Mei et al., 2009). DA receptors also have modulatory roles in
regulating attention, impulse control, motor learning, sleep, reproductive behavior,
and regulation of food intake (Missale et al., 1998; Di Chiara and Bassareo, 2007;
Koob and Volkow, 2010; Rondou et al., 2010).

The signaling pathways downstream of DA receptors vary greatly and are
highly complex. For example, D1 and D2 receptors both modulate protein kinase A
(PKA) activity, and therefore impact a vast array of PKA target molecules (DA
receptor regulation and downstream signaling reviewed in Beaulieu and
Gainetdinov, 2011). A pair of interesting and important pathways through which
dopamine signals include dopamine and cAMP-regulated phospho-protein (DARPP-
32) and glycogen synthase kinase 3 (GSK3). DARPP-32 plays a key role in
integrating dopaminergic and glutamatergic signaling, as it is regulated by both PKA
(downstream of D1 and D2 receptor activation) and cyclin dependent kinase 5
(CDK5; downstream of NMDA receptor activation). DARPP-32 also regulates
protein phosphatase 1 (PP1) activity and can therefore affect other proteins by
regulating phosphorylation state (Hemmings et al., 1984; Desdouits et al., 1995;
Bibb et al, 1999; reviewed in Greengard et al, 1998; Greengard, 2001;

Svenningsson et al., 2004; Le Novere et al., 2008).



Since DA receptors are all G protein-coupled receptors (GPCRs), they are
inactivated by desensitization, internalization, and signal termination. Upon GPCR
activation, receptors are quickly phosphorylated by GPCR kinases (GRKs), which
leads to recruitment of scaffolding proteins known as arrestins (Lohse et al., 1990;
Benovic et al., 1991; Arriza et al,, 1992; Shenoy and Lefkowitz, 2003; Gainetdnov et
al, 2004;) and subsequent uncoupling of the receptor from the G proteins.
Association with an arrestin protein leads to clathrin-mediated internalization of a
GPCR (Lohse et al., 1990; Ferguson et al., 1996; Laporte et al., 2002; Shenoy and
Lefkowitz, 2003). However, B-arrestin 2 can associate with D2 receptors and
regulate Akt and GSK3 independent of PKA activation (Beaulieu et al., 2004, 2005,
2006). D2 receptor activation leads to formation of a protein complex containing 3-
arrestin, Akt, and protein phosphatase A (PP2A) (Beaulieu et al.,, 2005). PP2A
deactivates Akt, thus disinhibiting GSK3 (Beaulieu et al., 2004, 2005). GSK3f, once
activated, facilitates DA-associated locomotor behaviors (Beaulieu et al., 2004).

The Dopamine Transporter

Discovery and Cloning

Although MAO and COMT metabolize some DA as addressed above, most DA
(and other catecholamine transmitters) is cleared from synapses by transporter
proteins. Early studies actually focused on NE reuptake; Hertting and Axelrod
demonstrated that [3H]-NE could be selectively taken up and sequestered in
sympathetic nerve terminals (Hertting and Axelrod, 1961), and went on to
demonstrate that antidepressants (i.e. imipramine) and psychostimulants (i.e.

AMPH) block NE accumulation (Axelrod et al,, 1961; Hertting et al., 1961). Several



studies later demonstrated that both NE and DA accumulate in brain slices and that
psychostimulants blocked this process (Glowinski and Axelrod, 1966; Ross and
Renyi, 1967). Ross and Renyi also differentiated DA uptake from NE uptake,
showing that cocaine and AMPH inhibit both DA and NE uptake in the striatum, but
desipramine (a norepinephrine transporter (NET) inhibitor) only weakly inhibits
DA uptake in striatum while potently blocking cortical NE uptake (Ross and Renyi,
1967). Coyle and Snyder went on to show that AMPH isomers were differential
inhibitors of DA (equally inhibited by L- and D-AMPH) and NE (preferentially
inhibited by D-AMPH) (Coyle and Snyder, 1969), further supporting the idea that DA
and NE transport are separate processes. Nearly two decades later, Ritz and
colleagues showed that cocaine’s potency to block DA clearance was significantly
higher than it’s ability to block NE clearance (Ritz et al., 1987).

Since DA and NE uptake were pharmacologically distinct, efforts turned to
identification of the dopamine transporter. The first approach was to identify
cocaine binding sites in the brain. Reith and colleagues used plasma membranes
from mouse brain to identify and define the kinetic parameters of the cocaine
binding site using [3H]-cocaine (Reith et al.,, 1980, 1981). Subsequent work drew
correlations between occupancy of the cocaine binding site and the effects
(locomotor activity, self-administration, local anesthetic properties) of cocaine
(Sershen et al., 1983). Further autoradiographic studies using a tritiated cocaine
analog, [3H] 2 beta-carbomethoxy-3 beta-(4-fluorophenyl)tropane ([3H]-CFT),
localized cocaine binding to the striatum of squirrel monkeys (Canfield et al., 1990).

Today we understand that the cocaine binding sites reflect the presence of DAT.
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In an effort to identify and characterize neurotransmitter transporter genes,
Blakely and colleagues expressed mRNAs from several brain regions in Xenopus
laevis oocytes and demonstrated the transport of radiolabeled neurotransmitters
(glutamate, GABA, glycine, DA, serotonin (5-HT), and choline) (Blakely et al., 1988).
The expression patterns of the mRNAs that expressed proteins competent for
neurotransmitter transport were consistent with the neuroanatomical distribution
of the cell bodies for particular neurotransmitter systems and paved the way for
expression cloning of the neurotransmitter transporters (Blakely et al., 1991b).

Shortly thereafter, genes for the human norepinephrine transporter (NET)
(Pacholczyk et al., 1991), rat serotonin transporter (Blakely et al., 1991a) and rat
and bovine dopamine transporter (Giros et al., 1991; Kilty et al., 1991; Shimada et
al,, 1991; Usdin et al,, 1991) were successfully cloned. Furthermore, DAT expression
in dopamine neuron cell bodies in the SN and VTA was confirmed by in situ
hybridization (Giros et al.,, 1991; Kilty et al., 1991; Shimada et al., 1991). Further
evidence that the cloned gene was, in fact, DAT was that in vivo application of DAT
inhibitors blocked DA transport with similar potencies as previously reported in
synaptosomes (Ritz et al., 1987).

Based on the rat DAT sequence, oligonucleotide probes were designed and
used to screen a cDNA library derived from substantia nigra, resulting in the cloning
of human DAT (hDAT) (Giros et al., 1992; Vandenbergh et al., 1992). Human DAT is
a 620 amino acid protein that is 92% homologous with the previously identified rat
DAT as well as 66% homologous to hNET and 50% homologous to hSERT.

Hydropathicity analysis of DAT predicts 12 transmembrane domains (TMD) and
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both N- and C-termini oriented intracellularly (Fig. 3). A novel splice variant of DAT
exists in human blood cells (Sogawa et al., 2010). This splice isoform lacks exon 6,
which results in deletion of TMD5 and re-orientation of the C-terminus to the
extracellular side of the cell membrane. When expressed in a heterologous system,
the splice isoform lacks DA transport activity and, when co-expressed with WT DAT,
acts in a dominant negative fashion. In addition, Talkowski and colleagues reported
a cassette exon located within intron 3 in a schizophrenic population (Talkowski et
al, 2010). This alternate exon introduces multiple stop codons, resulting in a
truncated protein product that is likely subject to nonsense-mediated decay. Other
factors that favor expression of this alternate cassette exon could reduce the amount
of functional DAT expressed and may contribute to risk for schizophrenia.
DAT Structure/Function Relationships

DA transport is an ion-coupled process with a transport stoichiometry of 2
Na*, 1 Cl, and 1 DA molecule (McElvain and Schenk, 1992; Kilty, 1993; Gu et al,,
1994). With this ion stoichiometry, DA transport is a voltage-dependent,
electrogenic process where hyperpolarization increases DA transport (Sonders et
al, 1997). Electrophysiological studies reveal that DA transport through DAT
actually produces a larger current flux than the charge transfer that the ion-
dependence of DA transport would predict (Sonders et al, 1997; Ingram et al,,
2002). Subsequent research identified a channel-like state for DAT that permits
excess ion permeation during the DA transport cycle (Carvelli et al., 2004; Kahlig et

al, 2005).
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Figure 3. Schematic illustration of DAT topology. The DAT protein has 12 TMDs and
both N- and C-termini oriented to the intracellular side of the plasma membrane.
EL2 contains 3 N-linked glycosylation sites. Several phosphorylation sites, shown as
black circles labeled P, are found throughout the protein, including both N- and C-
termini and intracellular loops.
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Several studies have pursued structure/function relationships for DAT.
Initially, DAT and NET chimeric proteins were studied in vitro and provided the first
evidence for distinct functional domains of the transporter linked to substrate
recognition, translocation, and affinity (Buck and Amara, 1994; Giros et al., 1994;
Syringas et al., 2000). Specifically, inhibitor selectivity was attributed to TMDs 5-8
and substrate affinity determined by TMDs 1-3 and 10-11 (Buck and Amara, 1994;
Giros et al., 1994). Subsequent work found that TMDs 1-3 and 9-12 are important
for the Na* and Cl- dependence of substrate transport by DAT and the other SLC6
monoamine transporters (Syringas et al., 2000).

Another functional domain of DAT is the large extracellular loop between
TMD3 and TMD4 (extracellular loop 2; EL2). This region of the protein contains
three N-glycosylation sites that are essential for maturation and appropriate plasma
membrane trafficking (Lis and Sharon, 1993; Ramamoorthy et al., 1998). Mutation
of the canonical glycosylation sites, as well as enzymatic degradation or blockade of
glycosylation resulted in reduced surface expression, DA transport, and inhibitor
sensitivity (Li et al., 2004). Recent studies have gone on to show that maintenance
of DAT glycosylation is involved in DA neuron vulnerability in Parkinson’s disease
(Afonso-Oramas et al.,, 2009), suggesting that DAT glycosylation has implications
beyond basic DAT function. In addition, EL2 has a role in inhibitor binding, as DAT
inhibitors but not substrates protect DAT from trypsin digestion (Vaughan and
Kuhar, 1996; Gaffaney and Vaughan, 2004). EL2 may have a role in substrate
translocation, as well. Norregaard identified a zinc-binding site in DAT (Norregaard

et al., 1998); when a Zn?* ion is coordinated between histidine residues in EL2 and

14



EL4, DA transport is blocked. The authors speculate that constraining EL2 via Zn?2+
binding may lead to structural changes in TMD3 and/or TMD4.

In order to further study how DAT interacts with both substrates and
antagonists, mutagenesis studies have sought to identify the amino acid residues
necessary for ligand coordination. In a series of studies, Lin and coworkers
performed alanine substitutions for all phenylalanine (Lin et al., 1999), proline (Lin
et al., 2000a), or tryptophan (Lin et al, 2000b) residues in or near DAT TMDs.
Several of the engineered mutants show changes in substrate or antagonist binding
affinity, suggesting that the mutated amino acids are important for ligand binding.
Other experiments using similar mutagenesis strategies defined roles for Asp79
(Kitayama et al.,, 1992) and Phe105 (Wu and Gu, 2003) in cocaine binding, as well.

To date, the crystal structure for neither DAT nor any other SLC6 family
protein has been solved. However, Yamashita and colleagues crystallized the
leucine transporter (LeuTaa), a bacterial homolog of the SLC6 transport proteins,
from Aquifex aeolicus (Yamashita et al.,, 2005). Although LeuTaa. possesses the 12
TMD topology of DAT and other monoamine transporters, the N- and C-termini are
both small and unstructured in the crystal structure. The observed arrangement of
LeuTaa is displayed in Figure 4. Computer models based on LeuTaa. have predicted
the cocaine binding site on DAT to be located between TMD 1, 3, 6, and 8, as well as
conformational changes that occur when cocaine binds then moves to occlude DA
transport (Beuming et al., 2008; Ravna et al.,, 2009; Huang et al., 2009). Several
LeuTas-based DAT models have identified a second substrate binding pocket

(Schmitt et al, 2010; Shan et al, 2011), binding sites for AMPH-like drugs
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Figure 4. Predicted topology of DAT based on the crystal structure of the bacterial
leucine transporter LeuTaa.. TMDs 1-5 and 6-10 form a pseudo two-fold axis in the
plane of the plasma membrane (inverted pink and blue triangles) and fold over to
form the substrate translocation pathway. The yellow triangle and blue circles
depict leucine and Na* ions, respectively. Adapted from Yamashita et al., 2005.
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(Severinsen et al., 2012), benztropine-based inhibitors (Bisgaard et al., 2011), and a
non-competitive inhibitor (Bulling et al, 2012), and predicted conformational
changes required for DA binding and transport across the plasma membrane
(Gedeon et al, 2010; Merchant and Madura, 2012). Recently, LeuTa. was re-
crystallized in outward-open and inward-open states (i.e. no substrate bound)
(Krishnamurthy and Gouaux, 2012). By comparing the two transporter
conformations, the authors predict similar conformational changes likely occur
during DA transport as were suggested by previous computer simulations (Gedeon
et al.,, 2012; Merchant and Madura, 2012).
DAT Regulation

Given DAT’s role for clearing DA upon synaptic release, efforts turned to
defining how DAT itself is regulated. Kuhar’s group reported that, after irreversible
inhibition of DAT, the time course for newly synthesized DAT to replace the
inactivated transporters is very long, with only ~50% of transporters replaced after
2-3 days (Fleckenstein et al., 1996; Kimmel et al, 2000). The time course of
synthesis of new DATSs is far too slow to support the rapid changes in DAT function
or expression in response to various challenges (reviewed in Zahniser and Doolen,
2001). Now, evidence exists that DAT is subject to rapid regulation by presynaptic
receptors, interacting proteins, and various intracellular signaling networks to fine-
tune DA clearance capacity (Zahniser and Doolen, 2001; Torres, 2006; Chen et al,,
2010).

As reviewed above, presynaptic D2 autoreceptors exert inhibitory influence

on DA signaling by modulating DA neuron firing rate (Lacey et al., 1987; Beckstead
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et al.,, 2007; Jang et al., 2011), and DA synthesis and release (Lindgren et al., 2001;
Anzalone et al, 2012; Zhang and Sulzer, 2012). D2 autoreceptors also directly
regulate DAT activity (Meiergerd et al, 1993; Batchelor and Schenk, 1998;
Dickinson et al., 1999; Gulley and Zahinser, 2003), an effect mediated via activation
of extracellular signal-regulated kinases (ERK1/2) (Bolan et al., 2007). Other
studies have demonstrated that presynaptic metabotropic glutamate receptors
(mGIuRI) (Falkenberger et al., 2001) and nicotinic acetylcholine receptors (nAChR)
(Hart and Ksir, 1996; Middleton et al., 2004) regulate DAT function, as well.
Furthermore, Lee and colleagues have reported a direct interaction between the
DAT N-terminus and the presynaptic D2S receptor (Lee et al., 2007) that can
modulate DAT function. This interaction may be important for coordinating DA
release and clearance at the synaptic membrane.

Protein-Protein Interactions

Several DAT-interacting proteins have been identified via yeast two-hybrid
(Y2ZH) screens that used portions of DAT as bait, and then confirmed observed
interactions by co-immunoprecipitation in cultured cells or brain tissue
preparations (reviewed in Torres, 2006). These interacting proteins are thought to
regulate somatic export, synaptic localization, plasma membrane trafficking, and
functional characteristics of DAT. None of the identified interactions, however, have
been demonstrated to influence DAT function in vivo.

In a Y2H study using the DAT C-terminus as bait, Torres and colleagues first
identified an interaction with Protein Interacting with C Kinase-1 (PICK1) (Torres et

al,, 2001). Since PICK1 also interacts with protein kinase C (PKC) (Staudinger et al.,
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1995), this interaction may be important for mediating PKC regulation and
trafficking of DAT. The same Y2H screen also identified Hic-5 as a DAT interactor
(Carneiro et al., 2002). Hic-5 is an adhesion-associated adaptor protein that has
been shown to interact with several signaling molecules (reviewed in Shibanuma et
al, 2012), so it may be an important integrator that connects DAT to intracellular
signaling pathways.

Another DAT C-terminal interacting protein is a-synuclein (Lee et al., 2001).
This protein has been implicated in genetic forms of Parkinson’s disease (Chua and
Tang, 2006; Covy and Giasson, 2011). DAT/a-synuclein interactions have been
shown to cluster DAT at the plasma membrane, increase transport activity, and
enhance DA-induced apoptosis (Lee et al., 2001), an effect attributed to increased
oxidative stress resulting from accumulation of too much DA.

In another Y2H screen, Fog and colleagues identified an interaction between
calcium/calmodulin dependent kinase II (CaMKII) and the DAT C-terminus (Fog et
al, 2006). Further study revealed that CaMKII binds to the C-terminus and
phosphorylates DAT, likely at sites on the N-terminal tail. Furthermore, CaMKII
binding and DAT phosphorylation were shown to be necessary for AMPH-induced
DA efflux through DAT, providing evidence that DAT is stabilized in an “efflux-
willing” state.

Most recently, the Ras-like GTPase Rin was shown to interact with the DAT C-
terminus (Navaroli et al,, 2011). In characterizing this interaction, it was suggested
that the DAT/Rin interaction is necessary for PKC-induced DAT internalization,

though the underlying mechanism remains to be determined. Rin is also known to
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bind to and activate calmodulin (Lee et al., 1996). In light of the aforementioned
DAT/CaMKII interaction, it is reasonable to speculate that Rin might have a role in
activating DAT-bound CaMKII.

Researchers have used the Y2H approach with the DAT N-terminal as bait, as
well. Lee and colleagues identified Receptor for Activated C Kinase (RACK1) and
syntaxin 1A as DAT interactors (Lee et al.,, 2004). RACK1 binds activated PKC and
recruits it to the plasma membrane, thus putting PKC in close proximity to its
substrates (Ron et al, 1994; Rodriguez et al, 1999). The precise role of the
DAT/RACK1 interaction is unclear, but may facilitate PKC regulation of DAT.
Syntaxin 1A is a component of the SNARE complex, the machinery needed for
synaptic vesicle fusion and neurotransmitter release (Bennett et al., 1992; Wu et al,,
1999). Cervinski and colleagues demonstrated the presence of DAT/syntaxin 1A
complexes in rat striatal synaptosomes and that syntaxin 1A cleavage enhances DAT
activity, supporting a role for these complexes in DA neurons (Cervinski et al,,
2010). Interestingly, syntaxin 1A also interacts with GABA transporters (GAT1)
(Beckmann et al., 1998), glycine transporters (GLYT1) (Geerlings et al., 2000), NET
(Sung et al., 2003), and SERT (Quick, 2002), suggesting that interactions between
syntaxin and transporters may be a conserved regulatory mechanism.

Membrane Microdomain Sequestration

Plasma membranes are not a homogenous environment. Within the lipid
bilayer, sphingolipids and cholesterol can cluster together to form microdomains
known as lipid rafts. These rafts impose order onto the plasma membrane and are

proposed to function as anchors to localize and/or stabilize proteins at the
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membrane (Simons and Ikonen, 1997; Ikonen, 2001; Lingwood et al., 2009). By
sequestering proteins to discrete regions of the membrane, lipid rafts are able to
influence intracellular signaling (Brown and London, 1998; Helms and Zurzolo,
2004). Adkins and colleagues demonstrated DAT association with membrane rafts
and that this membrane association limits DAT’s lateral mobility within the
membrane and supports DA transport (Adkins et al., 2007). Other groups have
confirmed this finding and shown that lipid raft association can affect DAT’s
trafficking in response to PKC activation (Foster et al., 2008) and conformation
(Hong and Amara, 2010). In addition, DAT has been shown to interact with the raft-
associated protein flotillin-1 (Cremona et al., 2011), and that this interaction is
required for localization to rafts and AMPH-induced DA efflux (Cremona et al., 2011;
Pizzo et al, 2013). Furthermore, flotillin-1 phosphorylation was found to be
required for PKC-mediated DAT internalization. This finding may explain the
finding that PKC activation results in DAT internalization independent of DAT
phosphorylation (Granas et al., 2003).

DAT regulation by association with lipid rafts is particularly interesting due
to the loss of raft association and functional dysregulation of a DAT variant,
Arg615Cys (Sakrikar et al., 2012). This DAT mutant was identified in a human
subject diagnosed with ADHD and will be addressed later in the context of rare,
ADHD-associated DAT variants.

Intracellular Signaling

In addition to regulation by interacting proteins and membrane

microdomain association, DAT is regulated by covalent modifications including
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phosphorylation, ubiquitination, and lipid modification. The impact of these
modifications on DAT trafficking and function are based largely on in vitro studies in
cultured cells or ex vivo in brain synaptosomes (Vaughan et al. 1997). Numerous
model systems continue to be utilized to study DAT function, including the
genetically tractable nematode, C. elegans (Nass et al., 2001, 2005; Carvelli et al,,
2004, 2008; Hardaway et al., 2012), Drosophila melanogaster (Porzgen et al., 2001;
Chen et al., 2007; Makos et al., 2010; Vickrey et al., 2013), and DAT mutant mice
(Chen et al., 2005; Zhou et al., 2009; Rao et al,, 2012; Mergy et al., 2013).

DAT contains several canonical serine/threonine phosphorylation sites on
the N- and C-termini, as well as many potential non-canonical phosphorylation sites.
Several studies have shown that DAT activity is regulated by phosphorylation by a
number of kinases including PKC (Huff et al., 1997; Zhang et al., 1997), PKA (Page et
al, 2004), mitogen activated protein kinases (MAPKs) such as ERK (Bolan et al,,
2007) and MEK (Lin et al., 2003; Mord), CaMKII (Page et al., 2004; Fog et al., 2006),
and phosphoinositide 3 kinase (PI3K) (Carvelli et al, 2002). To date, limited
evidence suggests that tyrosine kinase signaling can regulate DAT activity (Simon et
al, 1997; Doolen and Zahniser, 2001; Hoover et al., 2007), however, there is no
evidence that DAT is directly phosphorylated by tyrosine kinases.

PKC activation, either by application of phorbol esters such as phorbol 12-
myristate 13-acetate (-PMA) (Huff et al., 1997; Vaughan et al.,, 1997; Zhang et al,,
1997; Foster et al., 2008) or indirect stimulation via activation of substance P
receptors (Granas et al., 2003), has been shown to produce downregulation of DAT

transport activity and cell surface expression. It was initially thought that this
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downregulation was a direct result of PKC-dependent DAT phosphorylation and
subsequent intracellular sequestration of DAT (Zhang et al., 1997; Zhu et al., 1997;
Melikian and Buckley, 1999; Grands et al, 2003; Loder and Melikian, 2003).
Although PKC activation in striatal synaptosomes does increase DAT
phosphorylation (Huff et al., 1997; Vaughan et al.,, 1997; Foster et al., 2002), later
research demonstrated that deletion of N-terminal phosphorylation sites does not
abolish PKC-mediated DAT downregulation (Granas et al., 2003). It is possible that
N-terminal phosphorylation is part of a redundant system in place to insure
appropriate transporter trafficking. Thus, studies of regulation of DAT trafficking
should be interpreted cautiously, as observed effects may be the result of alternate
processes.

After demonstrating that DAT phosphorylation was not required for PKC-
mediated DAT internalization, efforts turned to finding other mechanisms that could
be in play. Ubiquitination is typically thought of as a signal leading to protein
degradation (Hershko and Ciechanover, 1992), however, attachment of single or
short chain ubiquitin moieties rather than long ubiquitin chains can control other
cellular events such as endocytosis and membrane trafficking (Hicke, 2001; Hicke et
al,, 2005; Staub and Rotin, 2006). Miranda and colleagues demonstrated that PKC
activation leads to increases in DAT N-terminal ubiquitination, and that the
ubiquitin signal is required for DAT endocytosis (Miranda et al., 2005, 2007).

Although PKC does not directly control DAT trafficking, PKC-induced
phosphorylation does have a role in other processes, such as DAT-mediated DA

efflux (Kantor and Gnegy, 1998; Cowell et al., 2000; Johnson et al., 2005). These data
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suggest that DAT is subject to trafficking-dependent and -independent regulation by
PKC. This conclusion parallels observations that NET (Jayanthi et al., 2004) and
SERT (Zhu et al., 2005; Steiner et al., 2008) undergo both trafficking-dependent and
trafficking-independent regulation, as well.

Interestingly, DAT is sensitive to insulin signaling. Carvelli and colleagues
demonstrated that insulin treatment stimulates DAT activity in a PI3K-dependent
manner in serum-starved, DAT-transfected cells (Carvelli et al., 2002). Later studies
showed that a dominant negative form of Akt (a kinase activated by PI3K) blocks
insulin’s effect on DAT (Garcia et al., 2005). These findings coupled with data that
hypoinsulinemic rats exhibit decreased DA uptake (Patterson et al., 1998) support
the idea that insulin- and PI3K-linked signaling pathways regulate DAT function.

The Galli lab has continued to study the role of PI3K/Akt signaling in
transporter regulation, and implicated a downstream target of Akt, mTOR, in NE
transport and NET trafficking (Robertson et al., 2010; Siuta et al., 2010). Beyond
altered NET trafficking, they demonstrated that conditional mTOR KO mice had
behavioral changes (disrupted pre-pulse inhibition) that could be corrected by the
NET antagonist desipramine (Siuta et al., 2010). In light of PI3K’s ability to regulate
DAT, further exploration of the PI3K-Akt-mTOR-DAT signaling pathway is
warranted.

Taken together, the studies described above present a complicated and
incomplete understanding of regulation of DAT activities. Multiple signaling

pathways and interacting proteins intersect at DAT. Further efforts to characterize
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DAT regulation will continue to inform our understanding of neuropsychiatric
disorders such as addiction, schizophrenia, and ADHD.

Psychostimulants

Given the key role of DAT in controlling DA signaling, it is not a surprise that
drugs targeting DAT have profound effects. These effects can be beneficial, as is the
case with methylphenidate (e.g. Ritalin ®) and amphetamine formulations (e.g.
Adderall ®) used to treat ADHD. However, other psychostimulants can be highly
addictive and have profound negative consequences for the drug abuser, their
family, and the community at large.

Cocaine is the archetypical competitive DAT antagonist, simply blocking DA
reuptake through DAT, whereas the mechanism of AMPH action is more
complicated. In addition to blocking DA transport and/or inducing DA efflux, these
drugs can both influence subcellular distribution of DATs (Saunders et al., 2000;
Daws et al, 2002). Cocaine’s effects on DAT cell surface distribution are
inconsistent; Daws and colleagues reported that cocaine application increases DAT
surface expression and DA transport (Daws et al.,, 2002). However, Vaughan’s group
observed no changes in DAT expression or activity after cocaine application
(Gorentla and Vaughan, 2005). Results from studies of the brains of cocaine abusers
are inconsistent, as well, showing both reduced (Wilson et al.,, 1996) and increased
(Mash et al., 2002) DAT levels. In the intact brain of a cocaine abuser, one might
expect chronically elevated DA levels due to chronic DAT blockade by cocaine to
result in downregulation of DAT. The data, however, indicate that this is not the case

(Little et al, 1999, 2002). Further investigation is certainly warranted, as
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understanding compensatory alterations in DAT expression and/or function could
inform our understanding of drug addiction.

AMPH has a far more complicated mechanism of action than cocaine. AMPH
acts as a competitive inhibitor of DA uptake, but also acts as a DAT substrate, getting
transported into neurons through DAT (Azzaro et al., 1974), where it acts as a weak
base and disrupts vesicular proton gradients (Sulzer et al, 1995), resulting in
release of vesicular DA into the cytoplasm. This excess cytosolic DA is then
transported out of the neuron through DAT, a process known as DA efflux. AMPH-
induced DA efflux can also be observed in cultured cells transfected with DAT and
loaded with DA (Khoshbouei et al., 2003).

Prolonged exposure to AMPH leads to a reduction in DAT surface expression
and DA transport (Saunders et al, 2000; Gulley et al., 2002). This process is
dependent on AMPH transport and PKC activity, as cocaine or PKC inhibition can
block AMPH effects (Kantor and Gnegy, 1998; Saunders et al., 2000). AMPH-induced
DA efflux is regulated by both PKC (Kantor and Gnegy, 1998) and CaMKII (Fog et al.,
2006). Activation of either kinase results in DAT phosphorylation on the N-terminal
tail that is required for AMPH-induced efflux; deletion of the entire N-terminus
(Foster et al.,, 2002; Granas et al., 2003) or alanine substitution for all of the N-
terminal serine residues (Khoshbouei et al., 2004) abolishes AMPH-induced efflux.
[t appears that AMPH acts to inhibit DA clearance, but eventually gets transported
into neurons where it induces DA release and activation of PKC and CaMKII. The

activated kinases then phosphorylate DAT and stabilize an “efflux-willing” state, At

26



the same time, AMPH is emptying DA from vesicles and the efflux-willing DAT
transports DA into the synapse.

DAT and the DA System in Disease

Parkinson’s Disease

Dopaminergic dysfunction is associated with several neuropsychiatric
disease states. Perhaps the best studied is Parkinson’s disease (PD) (Temlett, 1996).
PD involves the death of SN DA neurons and the resulting loss of dopaminergic tone
leads to involuntary movements and motor tremors (Simdes et al., 2012). Other
motor symptoms include bradykinesia, rigidity, shuffling gait, and balance problems
(reviewed in Fritsch et al., 2012). In addition, patients with PD often suffer from
depression (Chen and Marsh, 2013; Lord et al, 2013), affective disturbances
(Aminian and Strafella, 2013), and cognitive impairment (Hanganu et al., 2013;
Kudlicka et al, 2013; Kulisevsky et al, 2013). Supplementation with the DA
precursor L-DOPA is the most effective treatment for the motor symptoms
associated with PD (Poskanzer, 1969; Worth, 2013).
Drug Abuse and Addiction

The DA system is also implicated in drug abuse and addiction (Kalivas and
Volkow, 2005). A large body of research implicates dopaminergic (Comings et al.,
1994; Noble et al., 2000; Gorwood et al., 2012) and other (Wang et al., 2012) genes
with addiction. Furthermore, psychostimulant drugs such as cocaine (Giros et al,,
1993), amphetamine (Sulzer et al.,, 1993), and methamphetamine (Fleckenstein et
al, 1997) act directly on the DAT. Although it appears straightforward, drugs of

abuse also elicit circuit-level changes in the brain (Hanlon and Canterberry, 2012;
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Jentsch and Pennington, 2013; Keramati and Gutkin, 2013) and form an exquisitely
complex disorder.
Schizophrenia and Bipolar Disorder

Dopaminergic signaling is also considered a primary factor underlying
affective disorders such as schizophrenia and bipolar disorder (Diehl and Gershon,
1992; Manji and Lenox, 2000; Jones and Craddock, 2001; Ross et al., 2006; Eyles et
al,, 2012; Kuepper et al.,, 2012). Numerous genetic linkage and association studies
have connected dopamine-related genes to these disorders (Lewis et al., 2003;
Seguardo et al,, 2003; Owen et al., 2004). In addition, a variant of COMT, Val158Met,
has been associated with schizophrenia (Kunugu et al.,, 1997; Nolan et al., 2004;
Ohnishi et al, 2006), though further studies did not observe any association
(Turnbridge et al., 2006; Hosak, 2007; Singh et al., 2012). Interestingly, the DAT
Ala559Val variant that is the focus of the research to be described herein was first
reported in a patient with bipolar disorder (Horschitz et al, 2005). Lastly,
dopamine’s role in bipolar disorder and schizophrenia is supported by the fact that
antipsychotic drugs used to treat the disorders primarily target D2 receptors (Boyd
and Mailman, 2012; Ginovart and Kapur, 2012). Early studies observed a correlation
between antipsychotic efficacy and drug affinity for D2 receptors (Seeman and Lee,
1975; Creese et al, 1976), but not other DA receptor subtypes (Seeman, 1987).
Further research revealed that antipsychotics were most effective when greater
than 65% of striatal D2 receptors are blocked, suggesting that antipsychotic effects

are driven by D2 antagonism (Farde et al., 1992; Kapur et al., 2000). Clearly, these
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few examples support the role of dopaminergic dysfunction in bipolar disorder and
schizophrenia, but are a mere peek into a very active research field.
Dopamine Transporter Deficiency Syndrome (DTDS)

Loss of DAT function leads to a severe clinical phenotype, as well. Though
rare, humans with two loss-of-function DAT alleles, DTDS, develop a complex
movement disorder characterized by infantile hyperkinesia that evolved into
generalized dystonia and parkinsonian symptomatology (Kurian et al., 2009, 2011).
Several missense mutations were identified from these patients and deficits in DA
transport were attributed to deficits in DAT expression, DA affinity for DAT, or
glycosylation and subsequent trafficking to the plasma membrane. These DAT
variants may prove useful for future studies of DAT structure-function relationships
or design of new neuromodulatory therapeutic strategies.

ADHD

Alterations in DA signaling and DAT function have also been associated with
attention deficit hyperactivity disorder (ADHD). ADHD is the most commonly
diagnosed neuropsychiatric disorder, affecting an estimated 4-12% of school-age
children (Biederman and Faraone, 2005; Polanczyk et al., 2007; Willcutt, 2012).
Adult ADHD is also fairly common, estimated at 4-5% of adults (Kessler et al., 2006;
Fayyad et al., 2007; de Graaf et al., 2008), though more recent studies suggest rates
of adult ADHD may actually be greater than 10% (Garnier-Dykstra et al,, 2010;
Cahill et al, 2012). The disorder is characterized by motor hyperactivity,
impulsivity, and/or inattention (American Psychiatric Association, 1994). There are

no biomarkers for ADHD, so diagnosis is based on clinical observation as well as
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parent and teacher reports (Wolraich et al., 2003; Visser et al., 2013; Wolraich et al,,
2013). Also of note, ADHD diagnoses exhibit an approximately 3:1 male:female bias
(Gaub and Carlson, 1997; Getahun et al., 2013a). It is unclear if this sex bias arises
from reinforcement of behavioral patterns or sex-linked biological factors
underlying the disorder. Interestingly, rates of ADHD diagnosis span different
cultural groups, as studies of populations in Africa (Bakare, 2012), Asia (Chien et al.,
2012), and Europe (Bianchini et al., 2013; Ezpeleta et al., 2013) report similar
prevalence.

Many lines of evidence implicate DAT and DA receptors in ADHD. Previous
studies have demonstrated an association between ADHD and genes supporting DA
signaling, including D1 (Bobb et al., 2005; Ribases et al., 2012), D2 (Nyman et al,,
2007), D4 (Roman et al., 2001; Bidwell et al.,, 2011) and D5 (Manor et al., 2004)
receptors, though alterations of receptor function in ADHD remain unclear. Several
studies have also observed association between ADHD and the DAT gene (Cook et
al, 1995; Gill et al,, 1997; Waldman et al., 1998; Barr et al.,, 2001). Furthermore,
positron emission tomography (PET) methods have afforded a direct inspection of
DAT levels in the brain of human ADHD subjects (Varrone and Halldin, 2010;
Zimmer, 2009). However, the findings with this approach have been mixed, possibly
due to prior drug exposure in some studies (Fusar-Poli et al, 2012). Thus, studies
have observed increased DAT binding in the basal ganglia of both children (Cheon et
al,, 2005) and adults (Dougherty et al., 1999; Dresel et al., 2000; Krause et al., 2000),
although others have seen no change (van Dyck et al., 2002) or decreased DAT

density in ADHD (Volkow et al., 2007).
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The clear link between DAT and ADHD led researchers to use DAT as a
candidate gene for further study. Five studies have examined the coding sequence
and splice junctions of the human dopamine transporter (hDAT) for polymorphisms
(Cargill et al., 1999; Griinhage et al., 2000; Vandenbergh et al., 2000; Mazei-Robison
et al., 2005; Mergy MA and Blakely RD, unpublished data). Six non-synonymous
variants were identified between the four studies: Val24Met (V24M), Val55Ala
(V55A), Arg237Gln (R237Q), Val382Ala (V382A), Ala559Val (A559V), and
Glu602Gly (E602G). In addition, in a study of inattentive characteristics in children
diagnosed with ADHD (Bellgrove et al., 2009), a seventh coding variant, Arg615Cys
(R615C), was identified (Sakrikar et al., 2012). Screening of proband DNAs for new
DAT coding variants is still ongoing in various diseases including bipolar disorder
and autism with comorbid ADHD (Rommelse et al., 2011; Davis and Kollins, 2012;
Mahajan et al., 2012).

Disease-associated DAT coding variants are listed in Table 1 and their
locations on the DAT protein are shown in Figure 5. Furthermore, recent advances
in whole-exome and whole-genome sequencing (1000 Genomes Project Consortium,
2010) have resulted in a plethora of new DAT coding variants being deposited into
databases. Since most exome screening projects are merely searching for genetic
variation, the sample population is not associated with any particular disorder. DAT
coding variants without known disease association are as follows (D = found in
dbSNP database, G = found by 1000 Genomes, N = found in National Heart, Lung,
and Blood Institute (NHLBI) Exome Sequencing Project): K3N (D, G, N), M11I (D, G,

N), M11V (D, G), S12P (D, G, N), V14M (D, G), A16T (G), P17L (G,N), E20(stop) (D),
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Disease

Variant Association Reference
Val24Met ADHD M. Mergy, unpublished findings
Thr48Ser Autism Liu et al., 2013; Neale et al., 2013
Arg51Trp Autism Liu et al., 2013; Neale et al., 2013
Val55Ala ? Vandenbergh et al., 2000

Val158Phe DTDS Kurian et al., 2011
Leu167Phe ADHD M. Mazei-Robison, unpublished findings
Leu224Pro DTDS Kurian et al., 2011

Arg237GIn ? Cargill et al., 1999

Gly327Arg DTDS Kurian et al., 2011

Ala346Val Autism Liu et al., 2013; Neale et al., 2013
Thr356Met Autism Liu et al., 2013; Neale et al., 2013
Leu368GiIn DTDS Kurian et al., 2009, 2011

Val382Ala ? Vandenbergh et al., 2000

Pro395Leu DTDS Kurian et al., 2009, 2011

Val464lle Autism Liu et al., 2013; Neale et al., 2013
Arg521Trp DTDS Kurian et al., 2011

Pro529Leu DTDS Kurian et al., 2011

Pro554Leu DTDS Kurian et al., 2011

Ala559Val Bipolar, ADHD Grunhage et al., 2000; Mazei-Robison et al., 2005
Glu602Gly Bipolar Grunhage et al., 2000
Arg615Cys ADHD Sakrikar et al., 2012

Table 1. Disease-associated DAT coding variants. ADHD = attention deficit
hyperactivity disorder; DTDS = dopamine transporter deficiency syndrome.
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Figure 5. Location of disease-associated hDAT variants. ADHD-associated variants
are marked with red circles, ASD-associated variants with yellow circles, bipolar
disorder-associated variants with green circles, DAT deficiency syndrome-
associated variants with orange circles, and variants without disease association
with white circles.
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E20V (G, N), I32M (G, N), V24A (G), G39R (G), L42F (D, G), P50L (D, G, N), S53R (D,
G, N), V731 (D, G, N), L104I (D, G, N), G121S (G), V131I (D, G), L138P (G), L138R (G),
A161T (G), A163V (G), A192T (D, G), S198T (G), S202L (D, G), S202W (D, G, N),
G209R (G, N), V221M (D, G, N), R237W (G, N), V245A (D, G), 1268V (G, N), T271N
(G), V275L (D, G, N), L281P (G), G289R (G), G293S (G), V300I (D, G, N), E307K (D, G),
A308V (G), A314V (G), D345G (G, N), A346T (G, N), A346V (D, G, N), F362L (G),
L368Q (G), Q373R (D, G, N), G380R (G, N), P395L (G) G433R (G), D436N (G), R445G
(G), A455V (G, N), V4641 (D, G, N), V4711 (D, G), 1490V (D, G, N), V501A (G, N),
Q509H (D, G), R515W (G), S517T (G), G538A (D), V538I (G, N), R544S (G), P545T (G,
N), H547Q (D, N), A559T (D, G), A576E (G), K579R (G, N), R588Q (G, N), G607W (G),
R610H (D, G), T613M (G, N), K619N (D, G, N).

Of the coding variants that have been characterized in any way, V24M, V55A,
R237Q, and E602G do not demonstrate any changes in transporter expression or
dopamine transport capacity. V382A hDAT, however, shows reduced protein
expression, reduced capacity for both DA and NE transport, and a loss of phorbol
ester (PMA)-induced trafficking (Mazei-Robison and Blakely, 2005). The authors
suggest that, upon PMA treatment, V382A hDAT stabilizes an inactive conformation
in the plasma membrane but is not appropriately internalized.

The A559V hDAT variant also displays a unique phenotype. In vitro
characterization of DAT Val559 (note: the genetic variant is referred to as A559V
hDAT, however the mutant DAT protein is named based on the amino acid at
position 559; Ala559 refers to WT DAT and Val559 refers to the mutant DAT

encoded by the mutant A559V DAT gene) revealed normal levels of both total and
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cell-surface DAT expression, as well as normal DA uptake in a heterologous
expression system (Mazei-Robison et al., 2008). However, amperometric studies
revealed that DAT Val559 in transfected cells exhibited a spontaneous, DAT-
mediated outward “leak” of cytoplasmic DA under basal conditions, a phenomenon
termed anomalous DA efflux (ADE), as well as elevated voltage-dependent DA efflux.
Furthermore, the ability of AMPH to induce DAT-mediated efflux (Sulzer et al,
2005) was lost in DAT Val559-transfected cells. Instead, AMPH acts like the
competitive DAT antagonists methylphenidate and cocaine to block ADE. Further
research has demonstrated that DAT Val559 displays increased channel activity and
that ADE is dependent on D2 receptor signaling and increased phosphorylation of
the DAT N-terminus (Bowton et al., 2010).

The most recently identified hDAT coding variant, R615C, also displays
functional alterations. Although R615C hDAT expresses at WT levels, surface R615C
DAT is reduced by ~50% and the dopamine transport Vmax is significantly reduced
(Sakirkar et al., 2012). Despite reduced surface expression, upon treatment with
AMPH, R615C supports similar amounts of DA efflux as the WT transporter, a
finding attributed to a loss of AMPH-induced transporter internalization observed
with WT DAT (Saunders et al.,, 2000; Chen et al., 2010). Sakrikar and colleagues
went on to demonstrate that internalization and recycling rates for DAT Cys615 are
significantly = elevated. = Furthermore, @ DAT Cys615 interaction with
calcium/calmodulin-dependent protein kinase II (CaMKII) is increased, leading to
increased CaMKII-mediated basal phosphorylation of DAT’s N-terminal tail. Since

DAT association with membrane microdomains is required for PKC-mediated
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internalization and CaMKII-mediated DA efflux (Cremona et al., 2011), the authors
examined DAT Cys615 localization to membrane rafts and found a reduced
association with raft markers. These findings suggest that DAT localization and
function within membrane microdomains may provide another mechanism of DAT
dysfunction in ADHD.

Although fascinating from a mechanistic perspective, in vitro studies of
ADHD-associated DAT variants in transfected cells have obvious limitations with
respect to perturbations of DA signaling in the intact CNS. Animal models of rare
DAT variants are the next step for understanding DAT-mediated changes in DA
signaling in vivo.

Animal Models of ADHD

Animal models are a valuable tool for studying disease mechanisms. Rodent
models of ADHD are typically focused on recapitulating the symptoms seen in
human subjects with ADHD - locomotor hyperactivity, impulsivity, and inattention -
and the response to psychostimulant therapy (amphetamine or methylphenidate).
Here, I will review animal models of ADHD based on manipulations of candidate
genes to generate transgenic animals, lesion-based approaches that target brain
regions or circuits relevant to ADHD, developmental insult models, and models bred
to select for ADHD-like phenotypes. The models and findings addressed below are

summarized in Table 2.
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Hyperactivity Inattention AMPH/MPH Response
6-OHDA (rat) + ND +
Prenatal nicotine exposure (mouse) + ND +
Prenatal BrdU exposure (rat) + ND -
Prenatal ethanol exposure (rat) ND + ND
Neonatal hypoxia (rat) + - ND
Neonatal PCB exposure (rat) + ND ND
Neonatal BPA exposure (rat) + ND -
Neonatal X-ray exposure (rat) ND + +
Neonatal chronic GBR 12909 (rat) + + -

Genetic KOs

Hyperactivity Inattention AMPH/MPH Response
DAT (mouse) + + -
Steroid sulfatase (mouse) + - ND
GIT1 (mouse) + + +
NK1 receptor (mouse) + + +
SNAP-25/coloboma (mouse) + ND +
p35 (mouse) + ND +
Guanylyl cyclase C (mouse) + ND +

Other Genetic Manipulations

Hyperactivity Inattention AMPH/MPH Response
Grin1 (missense mutant mouse) + ND +
SynCAM1 dominant negative + ND +
Cocaine-insensitive DAT + ND +
DAT knock-down + - +
CK1-delta overexpression + ND +
Thyroid hormone receptor beta-PV + + +

Selective Breeding Models

Hyperactivity Inattention AMPH/MPH Response
SHR + + +
Genetically Hypertensive (GH) rat + ND ND
NHE rat + + ND
WKHA rat + ND -
Wig rat + ND -
I/LnJ acallosal mouse + + ND

Developmental Models

Hyperactivity Inattention AMPH/MPH Response
Social Isolation + + +
Dirupted habenula development + + +
Maternal separation + + ND

Table 2. Animal models of ADHD. + = phenotype observed in model, - = phenotype
absent from model, ND = phenotype not determined for model.
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Transgenic Mouse Models

DAT Knockout

Since the DAT gene has been associated with ADHD (Gill et al., 1997; Barr et
al,, 2001), imaging studies in human subjects with ADHD have suggested alterations
in DAT density (Swanson et al, 2007), and the DAT is the primary target for
psychostimulant therapies for ADHD, it was a prime candidate for generation of a
knockout (KO) mouse model. Perhaps one of the most widely studied models of
ADHD, the DAT KO mouse (Giros et al, 1996) displays a fivefold elevation in
extracellular DA concentrations due to the inability to recapture released DA from
the synapse. Subsequent characterization demonstrated that DAT KO mice have a
greater than 95% reduction in total tissue levels of DA, greater than 90% reduction
in tyrosine hydroxylase (TH) expression (Jones et al, 1998), and significant
reductions in D2R mRNA levels (~50%) (Giros et al., 1996) and protein expression
(~55%) (Jones et al, 1999). Interestingly, these changes are accompanied by a
reduction in striatal volume and the total number of neurons (Cyr et al., 2005) as
well as a loss of dendritic spines in proximal portions of dendrites (Berlanga et al.,
2011). Taken together, these finding demonstrate that deletion of DAT results in
significant structural and biochemical changes that alter DA signaling.

The biochemical changes in the DAT KO mouse manifest in several
behavioral alterations, most notably extreme (5-6 fold increase) locomotor
hyperactivity in a novel environment (Giros et al., 1996). Interestingly, although
AMPH’s ability to cause DA efflux is lost in striatal slices from DAT KO mice (Giros et

al,, 1996), these mice still show a reduction in locomotor activity following AMPH
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treatment (Gainetdinov et al,, 1999), an effect attributed to serotonergic signaling.
Furthermore, DAT KO mice display increased impulsivity as measured by a greater
number of head dips over an unprotected edge of the elevated plus maze (Carpenter
et al., 2012) and a reduced cliff avoidance reaction (Yamashita et al.,, 2013). DAT
KOs also have impaired cognitive function as assessed in the eight-arm radial maze
(Gainetdinov et al., 1999) and the Morris water maze (Morice et al., 2007), impaired
social interactions with other mice (Rodriguiz et al.,, 2004), increases in stereotyped
and perseverative behaviors (Gainetdinov et al.,, 1999; Rodriguiz et al., 2004), and
deficits in sensorimotor gating as determined by a reduction of prepulse inhibition
of the acoustic startle response (Yamashita et al.,, 2006; Arime et al., 2012).

Due to the extreme behavioral phenotypes of a complete deletion of DAT, it
has been suggested that the DAT KO is not a model for ADHD, but perhaps a better
model for schizophrenia (Spielewoy et al.,, 2000; Wong et al., 2012). Due to poor
performance in the forced swim test, the DAT KO mouse has even been suggested as
a model for depression (Perona et al., 2008). A major caveat of the DAT KO mouse,
however, is that homozygous loss-of-function of DAT (DTDS) in humans results in a
complex motor phenotype characterized by infantile dystonia and Parkinsonian
symptoms (Kurian et al., 2011). Despite displaying ADHD-like symptoms and
responding to psychostimulant medications, the DAT KO mouse most closely models
the symptoms seen in humans without a functional DAT.

DAT Knockdown

Since the DAT KO mouse is such an extreme perturbation to the DA system,

efforts were made to create a more moderate disruption in DAT function. This led
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to the creation of the DAT knockdown (KD) mouse that has an approximately 90%
reduction in DAT expression (Zhuang et al., 2001). The restoration of just a 10% of
DAT expression greatly attenuated many of the features observed in DAT KO mice.
For instance, extracellular DA is elevated two-fold, spontaneous locomotor activity
is between DAT KO and WT levels, and psychostimulant treatment improves
locomotor hyperactivity. A significant DAT reduction, however, is not a key feature
of ADHD, as evidenced by several brain imaging studies showing increased (Spencer
et al,, 2007) or unchanged DAT density (van Dyck et al, 2002) in ADHD subjects. The
DAT KD has been of limited utility for studying the disorder, although some groups
have utilized the DAT KD as a model for bipolar mania (Ralph-Williams et al., 2003;
Young et al., 2011).

GIT1 Knockout

Another putative model for ADHD is the G protein-coupled receptor (GPCR)
kinase-interacting protein 1 (GIT1) KO mouse. An intronic single nucleotide
polymorphism (SNP) that causes reduced GIT1 gene expression was associated with
ADHD in a Korean population (Won et al.,, 2011). GIT1 KO mice display a two-fold
increase in spontaneous locomotor activity as well as deficits in recognition memory
(novel object recognition paradigm) and spatial learning and memory (Morris water
maze). GIT1 KO mice display similar alterations to electroencephalogram (EEG)
rhythms in the theta range (4-8 Hz) as human subjects with ADHD (Barry et al,,
2003). The aforementioned characteristics were all reversed by AMPH treatment

(Won et al.,, 2011), providing predictive as well as face validity to this model.
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Due to GIT1’s role in regulating G protein-coupled receptors (reviewed in
Hoefen and Berk, 2006) and the association of DA receptors (all GPCRs) to ADHD
(Gill et al., 1997; Barr et al.,, 2001; Manor et al., 2004; Bobb et al., 2005; Nyman et al.,
2007; Bidwell et al., 2011), Won and colleagues investigated several signaling
pathways to see if neurotransmission was altered in GIT1 KO mice. They found that
excitatory transmission was normal, but that presynaptic mechanisms regulating
inhibitory transmission were altered in GIT1 KO mice. These findings suggest a
possible imbalance between excitation and inhibition may be contributing to the
ADHD-like symptoms seen in GIT1 KO mice. Such changes in excitatory/inhibitory
balance are an interesting departure from the dopamine theory of ADHD. Further
studies are needed to understand the precise mechanisms underlying the ADHD-like
symptoms and how deficits in inhibitory neurotransmission on dopaminergic
neurons might modulate the behaviors affected in ADHD.

Neurokinin Receptor 1 Knockout

The substance P-preferring neurokinin receptor (NK1R) KO mouse was first
reported to exhibit locomotor hyperactivity (Herpfer et al., 2005), though was not
touted as a model for ADHD. More recent research identified four single nucleotide
polymorphisms (SNPs) in the TACR1 (human NK1R) gene that are associated with
ADHD (Yan et al., 2010), thus generating interest in the NK1R KO mouse as an ADHD
model. In addition to hyperactivity, the performance of NK1R KO mice on the 5-
choice serial reaction time task (5-CSRTT) reveals inattentive, impulsive, and
perseverative behaviors, as well (Yan et al., 2011). Upon treatment with AMPH,

hyperlocomotion and perseveration were improved (Yan et al., 2010, 2011), but
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impulsive responding was exacerbated (Yan et al., 2011). Furthermore, NK1R KO
mice have deficits in AMPH-induced DA efflux in the striatum, but not prefrontal
cortex (Yan et al,, 2010) and it was speculated that the loss of NK1R on cholinergic
interneurons may contribute to altered striatal DA signaling. Although NK1R KO
mice exhibit the core behavioral features of ADHD, the lack of improvement in
inattentive and impulsive symptoms after AMPH treatment raises questions about
the validity of this model.

Steroid Sulfatase Knockout

Steroid sulfatase (STS) is an X-linked gene that is responsible for converting
the sulfated steroid hormone dehydroepiandosterone (DHEAS) to its non-sulfated
form, DHEA, in the brain (Compagnone et al., 1997), and thus modulating GABAergic
signaling (Park-Chung et al., 1999). Furthermore, deletion of the STS gene (Tobias et
al, 2001; Doherty et al.,, 2003) and DHEA/DHEAS levels (Strous et al., 2001) have
previously been associated with attention problems, and was thus suggested as a
candidate gene for ADHD (Davies et al., 2007). Subsequent work using either
pharmacological manipulation or genetic deletion of STS in mice revealed
performance deficits on the 5-CSRTT (Davies et al, 2009) and locomotor
hyperactivity (Trent et al.,, 2012). To date, however, the effects of amphetamine or
methylphenidate on 5-CSRTT performance or locomotor activity have not been
tested. Recently, two SNPs in STS were associated with ADHD risk and inattentive
symptoms (Stergiakouli et al., 2011), but the precise mechanisms underlying the

connection between STS and ADHD remain to be determined.
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p35 Knockout

Cyclin dependent kinase 5 (Cdk5), along with its cofactor p35 (Lew et al,,
1994; Tsai et al., 1994), regulates dopaminergic signaling through phosphorylation
of DARPP-32 (Bibb et al., 1999). While Cdk5 KO mice are not viable (Ohshima et al.,
1996; Gilmore et al, 1998), p35 KO mice do survive, but display severe
morphological defects including inversion of cortical lamination and reduced corpus
callosum volume (Chae et al., 1997; Kwon and Tsai, 1998). Despite such severe
abnormalities, two independent groups found that p35 KO mice display
spontaneous locomotor hyperactivity (Drerup et al.,, 2010; Krapacher et al., 2010).
Both amphetamine and methylphenidate elicit a paradoxical calming effect, as
observed in ADHD. While p35 KO mice do display a key clinical phenotype and
pharmacological responses relevant to ADHD, the major caveat of structural
abnormalities still remains, and testing for other features of ADHD such as
inattention and impulsivity are needed.

Guanylyl Cyclase C Knockout

Although originally identified as a membrane receptor for the peptides
guanyline and uroguanyline in the gut (Currie et al., 1992; Hamra et al., 1993),
guanylyl cyclase C (GC-C) was later found to be selectively expressed in DA neurons
in the midbrain (Lein et al.,, 2007). GC-C KO mice display a greater than two-fold
increase in locomotor activity as well as attention deficits, both of which are
corrected by treatment with a low dose of AMPH (Gong et al., 2011). Furthermore,
protein kinase G (PKG) activators can alleviate the locomotor hyperactivity of GC-C

KO mice, suggesting another possible therapeutic target for modulating DA signaling
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in ADHD. Further research is needed to understand how PKG signaling might
impact ADHD-like behavior in other model systems.

Coloboma/SNAP-25 Knockout

The coloboma (Cm) mutation consists of a 2 cM deletion of mouse
chromosome 2 that includes the synaptosomal-associated protein 25 kDa (SNAP-
25) locus (Hess et al.,, 1992). Further fine mapping identified the genes for SNAP-25
and brain-specific phospholipase C-f1 within the Cm deletion (Hess et al., 1994).
SNAP-25 is widely expressed in neurons (Oyler et al., 1989) and is suggested to have
a key role in synaptogenesis and synaptic remodeling (Geddes et al., 1990; Catsicas
et al,, 1991; Oyler et al,, 1991). Cm mice exhibit profound locomotor hyperactivity
(Hess et al., 1992), thus making them a possible model for ADHD.

Total levels of DA in Cm mice are not different from WT controls (Jones et al.,
2001), but in vivo microdialysis studies showed a nearly two-fold increase in basal
extracellular DA in Cm mice (Fan and Hess, 2007). SNAP-25 plays a key role in
vesicular fusion and neurotransmitter release (Bark et al., 1995; Schiavo et al,,
1997); Cm mice display a decreased capacity for K*-induced DA release (Raber et al.,
1997). In addition to locomotor hyperactivity, Cm mice display deficits in latent
inhibition and are highly impulsive (Bruno et al., 2007), thus manifesting the core
clinical features of ADHD. While Cm mice display ADHD-like behaviors, their
response to psychostimulant treatment varies: amphetamine decreases locomotion
in Cm mice, but methylphenidate enhances locomotor activity (Hess et al., 1996).
Subsequent studies suggested that the behavioral characteristics and AMPH

response of Cm mice arise from dysregulation of DA D2 receptors (Fan et al., 2010).
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Interestingly, transgenic replacement of SNAP-25 in Cm mice will rescue the
behavioral deficits observed in these animals (Hess et al., 1996). However, although
the Cm mutation is semi-dominant (that is, Cm/Cm homozygotes are not viable so
all Cm phenotypes are measured in Cm/+ heterozygotes) (Hess et al., 1994), SNAP-
25 heterozygotes do not display any of the behavioral abnormalities seen in Cm
mice (Oliver and Davies, 2009). This finding suggests that SNAP-25 is not solely
responsible for the behavioral deficits observed in Cm mice. Further studies are
needed to define the roles of genes other than SNAP-25 that are disrupted by the Cm
mutation, as they may have important roles in mediating the phenotypes of Cm
mice.

Thyroid Receptor PV

Thyroid receptor (TR) PPV mutant mice were originally developed to
understand the effects of a mutant thyroid hormone receptor from patients with
severe resistance to thyroid hormone (RTH) on growth and development (Zhu et al.,
1999; Kaneshige et al., 2000). TRBPV mice display locomotor hyperactivity, albeit
mild and significantly greater than WT controls only after multiple sessions (Siesser
et al., 2005), as well as attention deficits and increased impulsivity (Siesser et al.,
2006). In addition, TRBPV mice have elevated striatal DA turnover. The locomotor
hyperactivity of TRBPV mice is ameliorated by methylphenidate treatment, as well,
but only at high (> 30 mg/kg) doses (Siesser et al., 2005, 2006). Interestingly,
human subjects with RTH frequently have comorbid ADHD (Hauser et al., 1993), but
it remains unclear how dysfunctional thyroid hormone signaling manifests as

ADHD-like symptoms.
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Other Genetic Models

In addition to the models described above, several new mouse models for
ADHD have been suggested, but have not been well studied. Those models are
described below:

Grinl Knock-in

Furuse and colleagues reported locomotor hyperactivity that was
ameliorated by methylphenidate treatment in mice harboring a mutation in Grin 1
(NMDA receptor subunit 1) (Furuse et al.,, 2010). Further characterization revealed
deficits in sensorimotor gating, working memory problems, reduced anxiety-like
behaviors, and deficient contextual and cued fear learning (Umemori et al., 2013).
The behavioral changes observed are not exclusive to ADHD, thus the Grinl mutant
mouse may prove a useful model for other neuropsychiatric disorders such as
schizophrenia and bipolar disorder, as well.

SynCAM1 Dominant Negative

SynCAM1 is a synaptic adhesive protein that plays a significant role in
astrocyte-to-astrocyte and astrocyte-to-neuron adhesive communication (Sandau et
al, 2011b) and is important for female sexual development (Sandau et al.,, 2011a). In
order to understand the role of SynCAM1 function in astrocytes, Sandau and
colleagues generated transgenic mice that express an astrocyte-specific dominant
negative SynCAM1 (DNSynCAM1) (Sandau et al, 2012). During the course of
studies relating to female reproductive function, the DNSynCAM1 mice displayed
high levels of locomotor activity and impulsive behaviors, reminiscent of ADHD.

Formal characterization revealed elevated locomotor activity and disruption of
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diurnal patterns of locomotor activity and reduced anxiety. Furthermore, AMPH
treatment normalized locomotor hyperactivity. Since DNSynCAM1 was specific to
astrocytes, these findings suggest that astrocytic signaling may contribute to ADHD
phenotypes.

Casein Kinase 1 Overexpression

Casein kinase 1 & (CK16) is a brain-enriched protein kinase that has been
associated with bipolar disorder (Matsunaga et al, 2012) and implicated in
psychostimulant-induced behaviors (Li et al., 2011) via phosphorylation of DARPP-
32, a key integrator of dopaminergic and glutamatergic signals (Desdouits et al.,
1995; Greengard et al,, 1998; Le Novere et al.,, 2008). In order to understand the
importance of CK16 signaling in vivo, Zhou and colleagues generated a mouse with
inducible overexpression of CKI18 in the striatum, cortex, and hippocampus (Zhou
et al,, 2010). These mice display locomotor hyperactivity that is reduced by either
AMPH or MPH treatment, as well as reduced anxiety. Interestingly, CK168
overexpression did not alter glutamatergic signaling, but did result in significant
reductions in D1R and D2R expression. These findings suggest that CK16 may play a
role in regulating dopaminergic signaling that could contribute to ADHD.

Selectively Bred Models

Spontaneously Hypertensive Rat

One of the most frequently studied ADHD models is the spontaneously
hypertensive rat (SHR). Originally derived from selective breeding of Wistar rats
(Okamoto and Aoki, 1963) and used to study essential hypertension (Yamori, 1977),

researchers soon recognized the spontaneous hyperactivity of SHRs (McCarty and
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Kopin, 1979). It was then demonstrated that SHRs display the paradoxical
locomotor response to AMPH (Myers et al., 1982) and MPH (Wultz et al., 1990) and
the SHR was suggested as a model for ADHD. Further studies have demonstrated
increased impulsivity (Sagvolden et al., 1992b; Fox et al., 2008; Sagvolden 2011),
impaired attention (Sagvolden and Xu, 2008; Sagvolden 2011), and cognitive deficits
(Clements and Wainwright, 2006; Kantak et al, 2008; Brackney et al, 2012).
Accordingly, the SHR has been lauded as the best validated model of ADHD
(Sagvolden, 2011).

While the SHR displays a number of ADHD-like characteristics, these traits
are not all improved by psychostimulant treatment. For instance, psychostimulants
improve SHR performance on attention tasks in some studies (Kantak et al., 2008;
Sagvolden et al., 2011) but not in others (van den Bergh et al., 2006; Ferguson et al.,
2007). Similarly, AMPH typically reduces locomotor hyperactivity (Sagvolden and
Xu, 2008), but has been shown to potentiate locomotor behavior in some studies
(Calzavara et al., 2011). Finally, SHRs display deficits in sensorimotor gating, as
measured by prepulse inhibition (Li et al.,, 2007; Levin et al., 2011), but humans with
ADHD typically do not (Feifel et al., 2009; Hanlon et al., 2009; Holstein et al., 2011),
unless the task requires sustained attention (Hawk et al.,, 2003). The PPI deficits
observed in SHRs are perhaps a better model for schizophrenia than ADHD (Levin et
al,, 2011).

A major caveat to using the SHR to model ADHD is the lack of understanding
as to the mechanisms underlying the observed behavior changes. Li and colleagues

demonstrated a reduction of D4 receptor expression in the prefrontal cortex (Li et
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al, 2007), an interesting finding in light of the association of the D4 receptor gene
and ADHD (Bidwell et al.,, 2011). In addition, SHRs have elevated DAT expression
(Roessner et al., 2010), while human imaging studies suggest a reduction in DAT
density in ADHD subjects (Volkow et al., 2009). The SHR is certainly a valuable tool
for understanding how perturbations in DA signaling manifest behaviorally, but
perhaps is not an ideal model for ADHD.

Genetically Hypertensive Rat

In an effort to demonstrate that the hyperactivity observed in SHRs is not an
artifact of background strain (Wistar-Kyoto, WKY), Wickens and colleagues report
the independently generated New Zealand genetically hypertensive (GH) rat
(Wickens et al., 2004). GH rats do not display basal locomotor hyperactivity, but
have similar levels of lever pressing when tested on a fixed-interval schedule to
SHRs. This finding suggests that GH rats, like SHRs, are abnormally sensitive to
reward. Further research demonstrated that both GH rats and SHRs have a strong
preference for immediate reinforcement (Sutherland et al., 2009), a finding
consistent with studies of humans with ADHD (Tripp and Alsop, 2001). Thus, GH
rats may be a valuable complementary model to SHRs for studying delayed
reinforcement deficits in ADHD.

Naples High Excitability Rat

In order to understand hippocampal function, selective breeding for high and
low arousal in response to novelty was undertaken and resulted in the creation of
the Naples High Excitability (NHE) and Naples Low Excitability (NLE) rat strains

(Cerbone et al.,, 1993). NHE rats display increased locomotor activity, deficits in
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unreinforced learning, and impaired attention (Cerbone et al., 1993; Viggiano et al,,
2002a, b). Furthermore, NHE rats have larger dopaminergic neurons and higher TH
expression in the VTA without any changes in the substantia nigra (Viggiano et al,,
2002a), suggesting an imbalance between nigrostriatal and mesolimbic DA circuits.
While the NHE rat displays some characteristics of ADHD as well as underlying
changes in the brain, it has not proven to be a very productive model for ADHD.

Wistar-Kyoto Hyperactive Rat

In order to separate hypertensive and hyperactive traits, SHRs were bred
with their progenitor Wistar-Kyoto strain, the selectively bred for hypertensive or
hyperactive phenotypes, resulting in Wistar-Kyoto Hyperactive (WKHA) and
Wistar-Kyoto Hypertensive (WKHT) rats (Hendley and Ohlsson, 1991). WKHA rats
display elevated hyperactivity, reduced anxiety behavior, and impaired attentional
processing (Hendley and Ohlsson, 1991; Sagvolden et al., 1992a; Courvoisier et al.,
1996; Chess et al., 2005). Subsequent analysis identified a quantitative trait locus
on rat chromosome 8, linking locomotor hyperactivity to a chromosomal region
containing genes for the a3 nicotinic acetylcholine receptor and serotonin 5-HT1B
receptor genes (Moisan et al, 1996). The genes are not typically considered
candidates for influencing hyperactivity, however, it was shown that an antagonist
of the 5-HT1B receptor can block locomotor hyperactivity induced by a 5-HT1B
agonist, but not locomotor hyperactivity induced by AMPH treatment (Chaouloff et
al, 1999). These findings suggest that serotonergic signaling can contribute to

hyperactivity in WKHA rats, but it is unclear if serotonin receptors are involved in
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the tonic hyperactivity of these animals. It was later demonstrated the hyperactivity
of WKHA rats is not improved upon methylphenidate treatment (Drolet et al., 2002).
Wig Rat

“Wiggling” rats were initially identified as a spontaneously hyperactive sub-
strain of the Long-Evans Cinnamon rat, a rat strain that spontaneously develops
acute hepatitis and hepatocellular carcinoma (Kamimura et al, 2001). Initial
characterization revealed locomotor hyperactivity, impaired working memory, and
impulsivity. Furthermore, the hyperactive trait was transmitted in an autosomal
recessive pattern that is not linked to the causative gene for hepatitis. Subsequent
research confirmed the hyperactive phenotype observed in Wig rats (Masuo et al,,
2007), and found an increase in DAT gene expression in the dorsal midbrain,
suggesting that abnormal development of dopamine neurons may underlie the
locomotor hyperactivity. Furthermore, methamphetamine exacerbated locomotor
activity, indicating that Wig rats do not display a paradoxical response to
psychostimulants. Most recently, Hirano and colleagues reported several
differentially expressed genes and proteins in the brain of the Wig rat (Hirano et al,,
2008). Tyrosine hydroxylase was the only dopamine-related gene differentially
expressed in Wig rats, but the other genes and proteins identified could be useful
targets for future studies into the pathogenesis of ADHD.
Lesion and Insult Models

6-Hydroxydopamine

The compound 6-hydroxydopamine (6-OHDA) is a neurotoxin that targets

catecholaminergic neurons, leading to degeneration of nerve terminals and eventual
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neuron death (Tranzer and Thoenen, 1968; Uretsky and Iversen, 1969, 1970).
Behavioral characterization of 6-OHDA-treated rats revealed locomotor
hyperactivity in juvenile, but not adult, animals (Evetts et al., 1970; Lipton et al,,
1980; Pappas et al., 1980; Shaywitz et al., 1981), as well as a paradoxical response to
amphetamine, methylphenidate, and atomoxetine (Shaywitz et al.,, 1976a; Wool et
al, 1987; Luthman et al.,, 1989; Davids et al,, 2002b; Moran-Gates et al., 2005).
Furthermore, even though 6-OHDA affects both noradrenergic and dopaminergic
neurons, it was shown that loss of DA signaling after 6-OHDA lesion was responsible
for the behavioral defects observed in these animals (Shaywitz et al., 1984). As such,
6-OHDA-treated juvenile rats were put forth as a model for ADHD (Shaywitz et al.,
1976b; Kostrzewa et al, 1994) and lauded for both face and predictive validity
(Sagvolden et al., 2005; van der Kooij and Glennon, 2007).

Subsequent work in both mice and rats has focused on the brain response to
6-OHDA lesion. Masuo and colleagues reported on gene expression changes in the
striatum and midbrain, finding increases in striatal glutamate transporter (GluT)
and midbrain DAT and D4 dopamine receptor expression (Masuo et al., 2002).
Induction of DAT expression was in agreement with other studies showing
increased DAT expression in ADHD subjects (Dougherty et al., 1999; Madras et al,,
2002). Further studies demonstrated that the D4 receptor is essential for mediating
locomotor hyperactivity in 6-OHDA-lesioned mice (Avale et al., 2004a).

Several studies have also investigated alterations in serotonin signaling after
6-OHDA lesions. Davids and colleagues reported that selective serotonin

transporter (SERT) inhibitors (SSRIs) reduce the hyperlocomotion of 6-OHDA-
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lesioned rats (Davids et al., 2002a), a finding reminiscent of the effect of SSRIs on
DAT KO mice (Gainetdinov et al, 1999). In addition, 6-OHDA lesion leads to
increased SERT binding in the striatum (Zhang et al., 2002) and induces sprouting of
serotonergic axons and increases 5-HT levels in the striatum (Avale et al., 2004b).
In light of a growing body of evidence implicating alterations in serotonin signaling
to ADHD (Comings et al.,, 2000; Arnsten, 2006; Sonuga-Barke et al., 2011), this
model may continue to be a useful tool.

In spite of the obvious face and predictive validity of 6-OHDA-lesioned
rodents, the nature of the insult has limited relevance to ADHD. 6-OHDA lesions
lead to degeneration of dopaminergic neurons, a clinical profile similar to
Parkinson’s disease (reviewed in Poewe and Mahlknecht, 2009). The ADHD-like
characteristics of this model are transient (Pappas et al., 1980), and adult animals
are perhaps best used as a Parkinson’s disease model (Tieu, 2011; Blandini and
Armentero, 2012; Blesa et al., 2012).

Prenatal Nicotine

Current studies are not clear if cigarette smoking during pregnancy causes
cognitive impairments such as ADHD. Many studies find a significant effect of
cigarette smoking (Milberger et al, 1996, 1998; Ernst et al, 2001; Fried and
Watkinson, 2001), but some see no such effect (Thapar et al., 2009; Obel et al,,
2011). While cigarette smoke contains many chemical compounds, evidence
suggests that the effect of nicotine on the developing brain causes future behavioral
problems (Slotkin et al., 1987; Navarro et al., 1989). Recent research in both mice

(Zhu et al., 2012) and rats (Schneider et al., 2012) finds that prenatal exposure to
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nicotine does, in fact, result in ADHD-like locomotor hyperactivity, and MPH
ameliorates that hyperactivity in mice (Zhu et al., 2012). Nicotine-exposed rats also
showed impulsive responses on the 5-choice serial reaction time task, indicating
that nicotine also affects inhibitory control.

Polychlorinated Biphenyls

A substantial body of evidence suggests that exposure to polychlorinated
biphenyls (PCBs) is associated with development of ADHD in humans (Sagiv et al.,
2010, 2012; reviewed in Eubig et al., 2010). Studies in rats have demonstrated that
early postnatal exposure to sub-toxic levels of PCBs leads to hyperactive and
impulsive behavior similar to that observed in SHRs (Holene et al., 1998). Further
studies examined changes in gene expression following PCB exposure and identified
a number of potential target genes underlying the ADHD-like behavioral induced by
PCBs (DasBanerjee et al., 2008; Sazonova et al.,, 2011). Such findings reiterate the
concept that environment has a direct impact on gene expression and function and
that the combination of genes and environment contribute to disease phenotypes.
Bisphenol A

Early postnatal exposure to the endocrine disruptor and environmental txin
bisphenol A (BPA) has been suggested as a model for ADHD since BPA-treated rats
dose-dependently develop locomotor hyperactivity, particularly during the dark
phase of the light/dark cycle (Masuo et al., 2004). Subsequent studies confirmed
that BPA exposure does indeed cause locomotor hyperactivity (Kiguchi et al., 2007,
2008), but that the hyperactivity is not improved by treatment with

methylphenidate. In fact, BPA-treated mice displayed dose-dependent increases in
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MPH-induced locomotor activity. More recently, Zhou and colleagues report that
early postnatal BPA treatment leads to functional alterations in the basolateral
amygdala (BLA) (Zhou et al, 2011). It appeared that BPA treatment causes
disinhibition of GABA signaling and enhancement of dopaminergic signaling, but
that application of D1 receptor or NMDA receptor antagonist or GABA-A receptor
agonist in the BLA improve hyperactive and inattentive symptoms. Although such
signaling changes are not typically considered for ADHD, they may provide
interesting avenues for future study.

BrdU

5-bromo-2’-deoxyuridine (BrdU) is a nucleotide analog that is incorporated
into DNA during cell division and is known to affect neurogenesis and cellular
differentiation (Biggers et al., 1987; Kolb et al., 1999; Kuwagata et al., 2001). Rats
exposed prenatally to BrdU are similar to 6-OHDA lesioned animals (Avale et al,,
2004b) in that they display locomotor hyperactivity, decreased DA levels, and
increased 5-HT levels (Kuwagata et al., 2004). Such changes in the DA and 5-HT
systems led to the suggestion of BrdU-treated rats as an ADHD model. Further
research observed no changes in DAT density in BrdU-treated rats and that their
locomotor hyperactivity was increased by methylphenidate treatment (Muneoka et
al., 2006; Orito et al.,, 2009). Similar to DAT KO mice (Gainetdinov et al. 1999),
however, the selective serotonin reuptake inhibitor paroxetine did ameliorate the
hyperactivity of BrdU-treated rats (Orito et al., 2009). These findings suggest
changes in serotonergic signaling may be an adaptive response to reduced

dopaminergic signaling.
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Neonatal Hypoxia

Previous studies have suggested that children born prematurely commonly
go on to develop ADHD (Szatmari et al., 1990; Botting et al., 1997; Bhutta et al,,
2002), and recent evidence found an association between ischemic-hypoxic
conditions at birth and ADHD, particularly in preterm births (Getahun et al., 2013b).
Efforts to understand the impact of premature birth and hypoxic conditions on
brain development in rats have demonstrated that acute neonatal hypoxia leads to
locomotor hyperactivity (Speiser et al., 1983; Oorschot et al., 2007) but the impact
on attention remains unclear (Decker et al, 2003; Oorschot et al, 2007).
Interestingly, rats with neonatal hypoxic injuries display an upregulation of D1
receptor and vesicular monoamine transporter (VMAT), suggesting downregulated
DA signaling, but normal levels of DAT and TH (Decker et al., 2003). These findings
suggest that neonatal hypoxia induces neurochemical and behavioral changes
consistent with ADHD, but further studies are needed to identify the precise lesion
that yields such alterations.

Prenatal Ethanol

Several studies have recognized the similarity in behavior of children
diagnosed with fetal alcohol syndrome and ADHD (Nanson and Hiscock, 1990; Coles
et al, 1997; O’'Malley and Nanson, 2002). Prenatal exposure to ethanol also
produces ADHD-like characteristics in rats - locomotor hyperactivity, impulsivity,
and attention are all negatively affected by ethanol in a dose-dependent fashion
(Hausknecht et al., 2005; Kim et al., 2013). Furthermore, prenatal ethanol exposure

alters the development of electrical activity in DA neurons of the VTA (Choong and
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Shen, 2004). It remains unclear, though, if prenatal ethanol exposure contributes to
ADHD, or if ADHD symptoms are merely a component of a larger ethanol-related
clinical syndrome.
X-Ray

A single study has examined the effects of early postnatal x-ray exposure on
ADHD-like phenotypes in rats (Highfield et al, 1998). Hippocampal irradiation
resulted in significant cell death in the hippocampus and produced deficits in
patterned single alternation, a form of memory-based learning. Interestingly,
treatment with amphetamine improved performance on the learning task.
Regardless, it is difficult to separate a learning deficit due to hippocampal damage
from poor task performance due to inattention. As such, the x-irradiated rat is only
of minor importance for furthering the understanding of ADHD.

Chronic DAT Inhibition

Sub-chronic treatment with the potent DAT inhibitor GBR 12909 and
subsequent withdrawal has been suggested as a model for ADHD (Hewitt et al,,
2005, 2009). This model is based on the rebound hypothesis - DAT inhibition will
initially reduce DAT activity, but upon withdrawal DAT expression will rebound and
be over-expressed. After short-term GBR 12909 treatment, rats maintain a small
but significant elevation in locomotor activity and poor performance on an object
discrimination task, a result attributed to inattention. While this model is based on
alteration of DAT function, the behavioral phenotypes observed are transient and

may limit the utility of this model system.
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Social Isolation

Social isolation has been associated with subsequent development of
locomotor hyperactivity (Wilkinson et al, 1994; Voéikar et al, 2005), anxiety
(Hellemans et al., 2004; Wei et al.,, 2007), aggression (Miczek and O’Donnell, 1978;
Wongwitdecha and Marsden, 1996; Ibi et al., 2008), learning and memory deficits
(Lu et al, 2003; Ibi et al, 2008), and impairment of prepulse inhibition of the
acoustic startle response (Wilkinson et al., 1994; Day-Wilson et al., 2006). Socially
isolated rats treated with methylphenidate showed reduced anxiety-like behaviors,
but no change in aggression (Koike et al, 2009). Further study revealed an
apparent attention deficit, as socially isolated rats performed poorly on a water
finding test (a test of latent learning) (Ouchi et al.,, 2013). Interestingly, some of the
behavioral deficits were improved by treatment with the selective serotonin
reuptake inhibitor fluoxetine or antipsychotic clozapine (Koike et al.,, 2009). The
diverse repertoire of behavioral deficiencies and response to a variety of drugs
suggests that social isolation may be a model for a very complex psychiatric
syndrome and could prove useful for studies relevant to schizophrenia or
depression in addition to ADHD.

Maternal Separation

Separation of infant rats from their mothers during the first two weeks of life
has been used to study the effects of early life stress because newborn rats are
entirely dependent on the mother at this age (Janus, 1987). Maternal separation
(MS) has been suggested as a model of ADHD based on subsequent locomotor

hyperactivity (von Hoersten et al., 1993; Arnold and Siviy, 2002; Braun et al., 2003;
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Colorado et al.,, 2006; Kwak et al., 2009), however several studies have observed
either no change or a decrease in locomotor behavior following MS (Janus, 1987;
Stanton et al.,, 1992; Rhees et al.,, 2001; Shalev and Kafkafi, 2002; Matthews and
Robbins, 2003). Such conflicting findings raise questions regarding the validity of
MS rats as an ADHD model.

Recent studies have utilized maternal separation and early weaning (MSEW)
in mice to model early life neglect and abuse (ENA) (George et al., 2010; Duque et al,,
2012), a complex syndrome that can manifest later in life as ADHD (Ouyang et al.,
2008) as well as anxiety, depression, and substance abuse (reviewed in Heim et al.,
2010). Such mice do display locomotor hyperactivity, increased anxiety,
depressive-like symptoms (George et al., 2010), and subtle deficits related to
attention (Carlyle et al., 2012). While perhaps not an ideal model for ADHD, MSEW
mice may be a useful tool for studying environmental/experiential influences on
complex behaviors.

Interestingly, efforts have been made to study the effects of maternal
separation on SHRs. Using this compound model, Womersley and colleagues
demonstrated that MS did not alter SHR behavior (i.e. MS does not increase
locomotor behavior or induce anxiety) (Womersley et al.,, 2011). However, MS did
alter DAT function in SHRs; the time to clear DA was increased in maternally
separated SHRs, an effect attributed to a decrease in either DAT surface expression
or affinity for DA. Further study using the MS SHR model revealed neurochemical
changes in GABA-A receptor-mediated modulation of norepinephrine release in the

hippocampus (Sterley et al., 2013). However, the behavior of MS SHRs is unaffected
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(Womersley et al., 2011), leading to the hypothesis that additional adaptive changes
likely occur in response to MS (Sterley et al., 2013), thus further highlighting the fact
that environmental inputs can interact with genetic factors in some manifestations
of ADHD.

Habenula Disruption

The habenula consists of a pair of nuclei - lateral (LHb) and medial (MHb)
habenula - that receive inputs primarily from limbic structures and serve to
regulate the activity of monoaminergic neurons in several midbrain nuclei
(Hikosaka, 2010). Pharmacological inactivation of the lateral habenula has been
shown to increase DA release in the prefrontal cortex and nucleus accumbens
(Lecourtier et al, 2008), suggesting that the LHb is inhibiting dopaminergic
neurotransmission. Rats that received either chemical (Lee and Goto, 2011) or
genetic (Kobayashi et al., 2013) lesions of the habenula resulted in locomotor
hyperactivity, impulsivity, and inattention (Lee and Goto, 2011; Kobayashi et al,,
2013). Furthermore, low dose AMPH treatment attenuated hyperactive and
impulsive traits in juvenile rats, and dopamine D3 receptor and DAT expression
were reduced in juvenile rats (Lee and Goto, 2011). Taken together, these findings
suggest that lesion of the habenula disrupts dopaminergic signaling and results in
ADHD-like behaviors. Habenular dysfunction has been associated with
schizophrenia (Sandyk, 1992; Caputo et al., 1998; Shepard et al.,, 2006), but may

prove to be an interesting target for future studies related to ADHD.
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Specific Aims

The work presented herein seeks to generate and characterize a new
construct-valid mouse model for ADHD, the knock-in mouse expressing the ADHD-
associated DAT coding variant Val559. To achieve these goals, I pursued the
following aims:

1) Generate the DAT Val559 knock-in mouse.

2) Characterize biochemical features of DAT Val559 and validate that in vitro
findings regarding DAT Val559 (Mazei-Robison et al., 2008) are maintained
in the mouse model.

3) Characterize baseline behavioral profile of DAT Val559 mice.

4) Test behavioral effects of amphetamine, a psychostimulant medication
commonly used in the treatment of ADHD.

5) Examine DAT Val559 function via in vivo and ex vivo preparations.
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CHAPTER I

GENERATION AND INITIAL CHARACTERIZATION

Introduction

Increasing evidence supports the concept that risk for neuropsychiatric
disorders is derived from a complex interplay of genetic variation and
environmental factors (Nigg et al.,, 2010; Wermter et al., 2010). Although difficult to
identify, rare variants may be of larger effect than common variants, and, when
localized to functionally annotated regions of the genome, such as protein coding
sequences, afford the generation of animal models that may be used for mechanistic
studies (Boerio et al., 2010; Hassouna et al., 2012; Veenstra-VanderWeele et al,,
2012). In addition, as described in Chapter 1, ADHD is the most common
neuropsychiatric disorder diagnosed in children, and a preponderance of evidence
associates altered DA signaling, in general, and the dopamine transporter,
specifically, to the disorder. Therefore, we hypothesized that the ADHD patient
population may be enriched for rare, highly penetrant coding variants. To that end,
we screened the DAT coding sequence and splice junctions of ADHD probands for
rare, non-synonymous variation absent from control samples (Mazei-Robison et al.,
2005) and identified DAT A559V in a pair of brothers diagnosed with ADHD (note:
the genetic variant is referred to as A559V hDAT, however the mutant DAT protein
is named based on the amino acid at position 559; Ala559 refers to WT DAT and

Val559 refers to the mutant DAT encoded by the mutant A559V DAT gene). DAT
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Val559 exhibits a unique alteration of function, basal DA efflux (Mazei-Robison et al.,
2008). We speculate that DAT Val559 may contribute to risk for ADHD, as well as
suggest a more general mechanism by which altered DA signaling and the resulting
compensatory changes contribute to the disorder.

Since in vitro studies of DAT Val559 have obvious limitations regarding
applicability to an intact nervous system, we engineered knock-in mice to express
DAT Val559 in order to better study the biochemical and behavioral effects this
variant in vivo. This chapter will describe the generation of the DAT Val559 knock-
in mouse and initial characterization of its viability and basic sensorimotor
functions (note: experiments were performed in both hetero- and homozygous DAT
Val559 animals; hetero- or homozygosity will be noted for all results).

Methods
Production of DAT Val559 Knock-In Mice

Transgenic mice were produced using a linearized DNA construct derived
from the genomic DNA sequence of the 129S6/SvEvTac mouse strain to match the
strain background of the mouse stem cells (TL-1) that are used for gene targeting
experiments. The targeting construct contains 5’ and 3’ homologous arms from the
Slc6a3 gene, derived from 12956 mouse genomic DNA, with a mutation in the 5’ arm
to encode a valine at amino acid position 559 introduced by oligonucleotide-
mediated site-directed mutagenesis (Stratagene Quik-Change Mutagenesis Kit,
Agilent Technologies, Santa Clara, CA). The targeting construct also included self-
excising Cre recombinase and neomycin resistance (NeoR) cassettes in the 3’ intron

and a thymidine kinase cassette for negative selection. The DAT Val559 targeting
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construct was electroporated into TL-1 embryonic stem cells in the ES/Transgenic
Core Facility operated by the Vanderbilt University Center for Stem Cell Biology.
Successful homologous recombination was confirmed by Southern blotting for both
5’ (576 stem cell clones screened; 12 positive for 5’ probe (2.08%)) and 3’ probes (6
stem cell clones containing the 5’ end of the construct screened; 2 positive for 3’
probe (0.34% of all stem cell clones). The presence of the Val559 substitution was
subsequently confirmed on both strands via Sanger sequencing (1 clone positive for
5" and 3’ probes via Southern blotting and presence of Val559 substitution by
sequencing (0.17% of all stem cell clones).

C57BL/6] blastocysts were injected with successfully targeted stem cells and
then implanted into pseudo-pregnant females. The resulting chimeric offspring
were mated with WT C57BL/6] mice to test for germline transmission of the DAT
Val559 allele. Thereafter, genotypes of all mice were determined by PCR (forward
primer: CAG CAT GGA AAA AAT CCA TGA A; reverse primer: AGC TAT ATT CAC CAT
CAA AAG G; 490 base pair (BP) product = WT, 561 bp product = homo, 490 and 561
bp products = het). The difference in PCR product size between WT and Val559
DAT arises from 71 bp remaining in DAT intronic sequence after the excision of the
Cre and NeoR cassettes.

A single male derived from the testcross was then mated with a WT 12956
female to generate the initial colony for breeding, resulting in a hybrid background
strain consisting of 25% C57BL/6] and 75% 129S6 genomic character. All animals
used for subsequent studies were derived from heterozygous breedings at this and

subsequent generations. Mice were maintained under standard housing conditions
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on a 12-hour light/dark cycle (lights off 1800-0600 for breeding colony; lights off
0200-1400 for behavior colony) with food (irradiated LabDiet 5LOD chow (PMI
Nutrition International, St. Louis, MO)) and water available ad libitum. In order to
assess growth and development, male mice of all three genotypes were weighed
weekly from 3-12 weeks of age.

Irwin Screen

Basic sensorimotor function and reflexes of DAT Val559 hetero- and
homozygous mice were examined using a modified version of the Irwin test battery
(Irwin, 1968). Mice were recorded over 2 consecutive days during the light phase
(1600-2000). General physical condition (presence of whiskers, quality of fur
(general coat condition, bald patches, piloerection), limb tone, body tone) for
individual mice was observed in a clean cage containing corncob bedding.

Motor abilities and reflexes were assayed as follows: Trunk curl: each mouse
was lifted 12-18 inches by the base of the tail and the presence of nose-to-tail
curling of the body assessed. Forepaw reaching: each mouse was lifted by the base of
the tail and moved horizontally towards a metal wire food bin/cage insert. The
degree to which the mouse extended its forepaws as it approached the wire food bin
was scored (no reaching = 0, reaching upon nose contact = 1, reaching upon whisker
contact = 2, reaching before whisker contact (18-20 mm) = 3, early, vigorous
reaching (> 25 mm) = 4). Inverted screen: Two to four mice were placed on a metal
grid screen (10 x 14 cm) into individual compartments. After placement, the mice
were given time to establish a grip on the screen before it was inverted 60 cm above

a clean plastic cage containing fresh corncob bedding. The latency to fall was
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recorded for up to 1 minute, at which point the mice were removed from the
apparatus and returned to the home cage. Positional passivity: Each mouse was
subjected to sequential handling and the reaction to handling (e.g. struggle to
escape) assessed. Mice were first restrained by the tail (score = 0), then gently
restrained by the neck (score = 1), restrained by the nape of the neck (scruffed) and
held supine (score = 2), and finally restrained by the hind legs (score = 3). Data are
represented as the number of mice showing any positional passivity. Rotarod: Motor
coordination and balance were assessed using an accelerating rotarod apparatus
(Ugo Basile, Comerio VA, Italy). Mice were placed on the rotating cylinder (3 cm in
diameter) and confined to a segment of the cylinder (approximately 6 cm wide) by
gray plastic dividers. The rotational speed of the cylinder increased from 5 to 40
rpm over the 5-minute testing period. The latency at which mice fell off of the
rotating cylinder was measured. Each mouse was given a trial on the rotarod before
performance was assessed. Grip strength: Grip strength was measured using a force
gauge attached to a small metal grate (8 x 8 cm). Each mouse was allowed to grip
the metal grate with its forepaws, then gently pulled backwards by the base of the
tail until it released the grate. Grip strength was recorded with a digital gauge that
returned the maximum force during each trial. The average grip strength, given in
Newtons, is the average of three trials. Righting reflex: Mice were inverted to a
supine position in the research’s hand. The mouse was then released and the ability
of the mouse to right itself was assessed. Air righting reflex: Mice were inverted to a
supine position in the researcher’s hand while being held approximately 30 cm

above a cage containing 8-10 cm of clean corncob bedding. The mouse was released
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and allowed to drop into the cage and bedding below. The ability of the mouse to
right itself while falling was assessed. Ear twitch: Mice were gently restrained and
the auditory meatus gently touched with the tip of a size 6.1 Touch Test (Von Frey)
Sensory Evaluator (Stoelting, Wood Dale, IL). The presence of a reaction (active
retraction and/or flick of the ear) was assessed. Petting escape: Mice were stroked
down the length of the body, starting with a light touch and gradually increased
pressure as the researcher approached the mouse’s tail. The escape reaction was
assessed as follows: no response (score = 0), mild (escape from moderate pressure,
score = 1), moderate (escape from light pressure, score = 2), or vigorous (escape
from approach, score = 3). Data are presented as the number of mice showing an
escape response. Data for all measures of sensorimotor function were analyzed
using a one-way ANOVA with Bonferroni’s post hoc test for multiple comparisons.
Backcrossing to C57 Background

Since the primary DAT Val559 colony is maintained on a hybrid background,
we opted to backcross to a pure C57BL/6] background. In order to accelerate the
generation of congenic C57BL/6]-DAT Vall559 mice, we utilized the commercially
available MAX-BAX® speed congenic service (Charles River Laboratories
International, Inc., Wilmington, MA) (for a review of the basic speed congenic
process, see Wong, 2002). Briefly, heterozygous hybrid DAT Val559 male mice were
bred with WT C57BL/6] females. Offspring were genotyped and DNA samples from
those carrying the DAT Val559 allele were subjected to screening on a microarray-
based microsatellite panel. This microsatellite marker panel contains DNAs that are

polymorphic between the 12956 and C57BL/6] strains. Using a fluorescence-based
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genotyping assay, the genome is analyzed to determine which of the mice screened
possesses the most markers associated with the target (C57BL/6]) strain. The
mouse with the highest percentage of C57BL/6] genome was selected for breeding
with a WT C57BL/6] and the microsatellite analysis repeated. DAT Val559 mutant
mice were backcrossed onto the C57BL6/] background for 4 generations.
Results

Successful Generation of DAT Val559 Mice

To express the DAT Val559 variant from the endogenous mouse Sic6a3 locus,
we performed homologous recombination with a construct bearing an altered
codon encoding the Val substitution in exon 13, as well as self-excising loxP-flanked
Cre recombinase and neomycin resistance (NeoR) cassettes in the 3’ intron (Fig. 6).
Chimeric animals positive for integration of the targeting construct (Fig. 7) were
crossed with a WT C57BL/6] mouse to test for germline transmission. A founder
animal positive for germline transmission of the Val559 variant and Neo excision
(Fig. 8) was selected and bred as described in Methods.
Evaluation of Growth and Sensorimotor Function of DAT Val559 Mice

Before proceeding with full characterization of DAT Val559 mice, we
assessed growth and development and basic sensorimotor function. Whereas DAT
KO mice show reduced weight gain and survival (Giros et al., 1996), neither hetero-
nor homozygous DAT Val559 mice displayed growth abnormalities relative to WT
littermates (Fig. 9). Furthermore, general sensorimotor assessment of male mice at
7 weeks of age revealed no genotype differences in general health, reflexes, or basic

motor function (Table 3). Although we observe normal growth of DAT Val559 mice,
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DAT Gene Structure

1. 2 3 4 56 78 9101 12 13 14 15
A559V Targeting Vector
TK 12 13 Cre NeoR 14 15

loxP loxP

A559V
Targeted AS559V DAT
1.2 3 4 56 78 9101 12 13 14 15
loxP
A559V

Figure 6. Targeting strategy to generate DAT Val559 knock-in mice. Structure of the
DAT gene (top), DAT Val559 targeting construct (middle), and successfully
recombined DAT gene (bottom). Coding exons are displayed as white boxes, non-
coding exonic sequence appears as a gray box. Following successful recombination,
the Cre recombinase and neomycin resistance cassette are excised from the DAT
gene.
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Figure 7. Southern blot analysis to screen for genomic integration of the targeting
construct. Probes for the (A) 5’ and (B) 3’ ends of the targeting construct bind to a
larger band for the WT allele and a smaller band for the DAT Val559 allele following
the appropriate restriction enzyme digest (EcoRI for 5’ probe; EcoRV for 3’ probe).
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Figure 8. Genotype determination of DAT Val559 mice. Following successful
recombination and excision of Cre recombinase and neomycin resistance cassettes,
genotypes of all mice can be determined by PCR. The presence of a 490 bp band
indicates a WT DAT allele, a 561 bp band indicates a DAT Val559 homozygote, and
the presence of both 490 and 561 bp bands indicates a DAT Val559 heterozygote.
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Figure 9. Growth of DAT Val559 mice after weaning (3-12 weeks) does not differ
among genotypes.
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General wT Het Homo

Missing whiskers 1/8 0/8 0/8
Poor coat condition 0/8 0/8 0/8
Piloerection 0/8 0/8 0/8
Bald patches 0/8 0/8 1/8
Body tone (# with normal tone) 8/8 8/8 8/8
Limb tone (# with normal tone) 8/8 8/8 8/8
Respiration rate (# abnormal) 0/8 0/8 0/8
Heart rate (# abnormal) 0/8 0/8 0/8
Tremor 0/8 0/8 0/8
Gait (# abnormal) 0/8 0/8 0/8
Motor Ability wr Het Homo
Trunk curl 1/8 0/8 3/8
Forepaw reaching 8/8 8/8 8/8
Horizontal wire hang 8/8 8/8 8/8
Vertical wire hang 8/8 8/8 8/8
Pole climb 8/8 8/8 8/8
Inverted screen (latency to fall, sec) 34.9 +/- 8.1 22.9 +/- 8.3 16.7 +/- 3.7
Positional passivity 0/8 0/8 0/8
Rotorod (latency to fall, sec) 171.9 +/- 25.8 | 204.0 +/-10.1 | 166.9 +/- 23.5
Grip strength (N) 1.71+/-017 | 143 +/-0.04 | 1.71 +/-0.13
Reflexes wT Het Homo
Righting reflex 8/8 8/8 8/8

Air righting reflex 8/8 8/8 8/8
Ear twitch 5/8 7/8 8/8
Petting escape 718 6/8 8/8

Table 3. Sensorimotor evaluation of DAT Val559 mice. DAT Val559 hetero- and
homozygous mice display no deficiencies in measures of general health, motor
capability, or reflexes (each test analyzed by one-way ANOVA, P = n.s. for all
measures).



we detected a small but significant reduction in the number of DAT Val559 males
present in the post-weaning population (Table 4) (chi-square test: male: P = 0.006;
female: P = 0.80; overall: P = 0.006).
Generation of Congenic DAT Val559 Mice on C57BL/6] Background

As described in the methods, animals used for the experiments described
herein were maintained on a hybrid background. We used a commercially available
marker-assisted selection protocol (“speed congenic”) to express DAT Val559 on a
pure C57BL/6] background. After only four generations of backcrossing to the
C57BL/6] target strain, we successfully generated DAT Val559 heterozygotes with
99% C57BL/6] genomic character (Table 5). These animals were then bred in order
to establish the C57BL/6]J DAT Val559 mouse colony.

Discussion

Rare genetic variation is increasingly recognized as source for insights into
the etiology of complex disorders (Horschitz et al., 2005; Kauwe et al., 2008; Quast
et al., 2012; Takata et al., 2013). Oftentimes, such variation is limited to a single, and
sometimes small pedigree, compelling the demonstration of functional
perturbations in vitro and in vivo to make reasonable conclusions regarding possible
disease associations. Having analyzed the biochemical features of the DAT Val559
variant in vitro (Mazei-Robison et al.,, 2008), we pursued construction of a DAT
Val559 knock-in mouse model to permit in vivo analyses of the functional impact of
the DAT Val559 variant.

After successful generation of the DAT Val559 mice, we established

heterozygous breeders and evaluated growth and development of offspring as a
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Male Female Total
WT 332 (25%) 286.5 (25%) 618.5 (25%)
Het 664 (50%) 573 (50%) 1237 (50%)
Homo 332 (25%) 286.5 (25%) 618.5 (25%)
Observed
Male*** Female Total**
WT 386 (29.07%) 299 (26.09%) 685 (27.69%)
Het 650 (48.95%) 561 (48.95%) | 1211 (48.95%)
Homo 292 (21.99%) 286 (24.96%) 578 (23.36%)

Table 4. Expected and observed allele frequencies of DAT Val559. The DAT Val559
allele is significantly under-represented in the total population of post-weaning
mice (** = P < 0.01, chi-square test), driven primarily by a reduction in the male
mice possessing the DAT Val559 allele (*** = P = 0.001, chi-square test). Males
obtained from 446 litters, females obtained from 367 litters (for some litters, males
were utilized for behavioral experiments, but females were not needed and,
therefore, never genotyped).
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Expected Polymorphic Markers Only All Markers
% C57
Average Max Min Average Max Min
NO 25 27.69 34.54 21.989 63.1 66.667 60.26
N1 62.5 -- - -- - -- -
N2 81.25 86.95 91.1 83.07 93.2 95.39 91.21
N3 90.625 96.39 97.14 95.57 98.11 98.43 97.64
N4 95.3125 97.74 98.9637 96.6321 98.77 99.48 98.18

Table 5. Expected and observed C57BL/6] (C57) genomic content throughout
backcross from hybrid 129S6/C57 background to congenic C57BL/6] background.
At each generation, DAT Val559 heterozygous mice were crossed with WT C57 mice.
C57 genomic character of each generation was determined via Charles River
Laboratories MAX-BAX® speed congenic service. For each generation, the mouse
with the highest percentage of C57 genomic character was bred to generate the
subsequent generation.
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function of genotype to ensure that perturbations in DA signaling resulting from the
presence of DAT Val559 did not affect mouse viability. Whereas DAT KO mice
display retarded growth and reduced survival (Giros et al., 1996), we found that
DAT Val559 mice develop normally without any gross morphological abnormalities.
We have also obtained brain sections from these mice from Neuroscience
Associated (Knoxville, TN), and preliminary gross inspection shows no obvious
alterations to brain structure. Furthermore, since DA signaling is a key modulator of
motor function, we assayed basic motor function and reflexes in the DAT Val559
mice. No deficits in reflexes, sensory function, or motor function were observed.
Interestingly, we did observe a small but significant reduction in the number
of male progeny expressing DAT Val559, suggesting a contribution of DAT function
to neurodevelopmental processes. The reason for the male bias evident in this
reduced recovery of DAT Val559 mice is unclear at present; it is reminiscent of the
as-yet unexplained male predominance of ADHD, and could derive from
perturbations of common pathways. For instance, we do know that DAT mRNA
expression is evident in the mouse CNS by E13.5 (Allen Institute for Brain Science)
and the rat CNS by E14-15 (Fujita et al., 1993; Perrone-Capano et al., 1994), and
robustly expressed by E70 in the rhesus monkey (Fang and Rgnnekliev, 1999).
Other studies have shown the presence of DA and DA receptors in the periphery,
including both rodent (Kim et al., 1997) and human (Elwan et al., 2003) placenta,
possibly related to a role for D2-like receptors in regulating secretion of human
placental lactogen (hPL), a growth factor that modulates the mother’s metabolic

state and helps to establish the energy supply for the developing fetus (Saxena et al.,
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1969; Spellacy, 1969; Petit et al.,, 1990). DAT is also expressed by neural crest-
derived neurons in the gut (Li et al.,, 2004). Further studies that restrict the spatial
and temporal expression of the DAT Val559 variant are needed to infer when and
where the precise role of the mutant protein in developmental processes. In
addition, although the gross brain structure of DAT Val559 mice is normal,
Stanwood and colleagues have shown that pharmacological (Stanwood et al., 2001)
or genetic (Stanwood et al., 2005) manipulation of DA signaling during development
leads to permanent alterations in cortical architecture and function. Such findings
encourage a more refined analysis of cortical structure of DAT Val559 mice
throughout development and into adulthood.

As addressed in Methods, the DAT Val559 mice were maintained and studied
on a hybrid 129S6/C57BL/6] background. Over the course of my studies, however, I
successfully backcrossed DAT Val559 to congenicity on a C57BL/6] background
strain via speed congenic techniques. Interestingly, the background strain on which
mutant mice are maintained can have sizable effects on both behavior and response
to pharmacological manipulation (Loos et al.,, 2010; Kerr et al., 2013; O’Neill and Gu,
2013). Further studies are needed to identify other genetic factors that vary by
background strain that may contribute to the phenotypes observed in DAT Val559

mice.
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CHAPTER III

BIOCHEMICAL CHARACTERIZATION

Introduction

Prior to initiating our biochemical studies of the DAT Val559 model, we
developed several hypotheses based on the in vitro behavior of the allele. As noted
in Chapter 1, characterization of DAT Val559 in a heterologous expression system
demonstrated that the mutant transporter expressed in HEK-293 cells at the same
level as WT DAT and demonstrated normal DA transport kinetics (Mazei-Robison et
al, 2008). However, DAT Val559 supported a spontaneous outward DA “leak”, a
process referred to as anomalous DA efflux (ADE). Accordingly, and assuming no
unexpected impact of the addition of a loxP site in intron 13, we expected DAT
Val559 to express at WT levels in our knock-in mouse model in vivo and to maintain
normal DA transport Kinetics.

Both DAT KO and knock-down (KD) mice have elevated extracellular DA due
to their inability to recapture released DA (Jones et al.,, 1998; Zhuang et al., 2001),
and likely rely more on newly synthesized DA to maintain DA signaling than WT
animals. In DAT KO animals, the activity of TH is doubled relative to WT mice,
though TH protein levels fall to ~10% of WT levels (Jones et al., 1998). Although we
expected elevated extracellular DA in DAT Val559 mice due to ADE (addressed in

Chapter 5), we did not anticipate changes in total tissue levels of DA (or DA
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metabolites) or in TH expression because DA reuptake and vesicular packaging
should be intact.

Further predictions regarding the impact of DAT Val559 expression on
biochemical measures of the mouse brain are not based on in vitro observations, per
se, but arise from predictions of compensations for the ADE exhibited by the mutant
transporter. For example, potential compensatory changes could occur in DA
receptor expression or function. DAT KO mice, for example, show reduced D1 and
D2 receptor mRNA expression in both dopaminergic cell bodies in the midbrain and
terminal fields of the striatum (Giros et al., 1996; Fauchey et al., 200043, b), as well as
reduced D2 receptor protein in the striatum (Jones et al., 1999). Such changes are
believed to arise from the excess DA signaling that occurs as a result of the inability
to clear DA out of the synapse or away from somatodendritic autoreceptors that act
to constrain DA signaling (Giros et al., 1996). Since the DAT Val559 mice are
expected to be at least mildly hyperdopaminergic as a result of ADE, we may also
see downregulation of receptor expression. Such alteration of receptor expression
could be interpreted as an adaptive change intended to dampen aberrant DA
signaling and balance the increased dopaminergic tone derived from ADE.

Methods
Immunoblotting

Brains were harvested from mice following rapid decapitation. Brains were
immediately placed on an ice-cold metal platform and the frontal cortex, midbrain,
and striatum quickly dissected. Dissected tissue was placed into 3 mL of

homogenization buffer (130 mM NaCl, 1.3 mM KCl, 2.2 mM CaClz, 1.2 mM MgS0g4, 1.2
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mM KH;PO4, 10 mM HEPES (pH 7.4), 10 mM glucose, 100 uM pargyline, ascorbic
acid, 10 uM tropolone, 0.32 M sucrose) and homogenized using a Potter-Elvehjem
homogenizer (Wheaton, Millville, NJ). Protein concentrations of all samples were
determined by a bicinchoninic acid (BCA) protein assay (Thermo Fisher Scientific,
Rockford, IL). Equal amounts of protein were incubated with Laemmli sample buffer
for 1 hr at room temperature and analyzed using SDS-PAGE and western blotting.
DAT protein was visualized on samples blotted to Immobilon-P PVDF membrane
(EMD Millipore Corporation, Billerica, MA) using a rat anti-hDAT antibody
(MAB369, 1:2500 dilution; Millipore, Billerica, MA). Tyrosine hydroxylase (TH) was
visualized using a rabbit anti-TH antibody (SAB4300675, 1:1000 dilution; Sigma-

Aldrich, St. Louis, M0O), and f -actin visualized using a mouse anti- 3 -actin antibody

(A5316, 1:2000 dilution; Sigma-Aldrich, St. Louis, MO) as a loading control.
Appropriate HRP-conjugated, secondary antibodies were obtained from Jackson
ImmunoResearch Laboratories, Inc. (West Grove, PA). Secondary antibody labeling
was detected using Western Lightning Plus ECL (Perkin Elmer, Waltham, MA) and
exposure to Hyblot CL Autoradiography Film (Denville Scientific, Inc., Metuchen, NJ).
Multiple exposures were obtained to insure linearity of band detection. Western
blots were quantified using NIH Image] software and data analyzed using one-way
ANOVA with Bonferroni’'s post hoc test for multiple comparisons, with P < 0.05
considered significant.
Synaptosomal DA Transport Assays

Brains were harvested from mice following rapid decapitation. Brains were

immediately placed on an ice-cold metal platform and the striatum quickly
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dissected. Tissue samples were placed into 3 mL of homogenization buffer (130 mM
NaCl, 1.3 mM KCl, 2.2 mM CaClz, 1.2 mM MgS04, 1.2 mM KH2PO4, 10 mM HEPES (pH
7.4), 10 mM glucose, 100 uM pargyline, ascorbic acid, 10 uM tropolone, 0.32 M
sucrose) and homogenized using a Potter-Elvehjem homogenizer (Wheaton,
Millville, NJ). Homogenates were centrifuged at 500 x g at 4°C for 10 min.
Supernatants were removed and centrifuged at 12000 x g at 4°C for 10 min. The
resulting synaptosome-enriched pellets were then resuspended in 2.5 mL of assay
buffer (130 mM NaCl, 1.3 mM KCl, 2.2 mM CaClz, 1.2 mM MgS04, 1.2 mM KH2PO4, 10
mM HEPES (pH 7.4), 10 mM glucose, 100 uM pargyline, ascorbic acid, 10 uM
tropolone) and protein concentrations determined using the Coomassie Plus
(Bradford) Protein Assay (Thermo Fisher Scientific, Rockford, IL). This material
(hereafter called synaptosomes) was then diluted to 30 ug of total protein per 100
uL. Synaptosomes were incubated with varying concentrations of [3H]-DA (46.0
Ci/mmol; Perkin Elmer, Waltham, MA) ranging from 50 nM to 1 uM (50 nM was
100% labeled substrate, DA concentrations between 250 nM and 1 uM used 10%
labeled and 90% unlabeled DA) for 5 min. at 37°C. To determine non-specific
transport, parallel samples were incubated with 10 uM cocaine for 10 min. before
the addition of [3H]-DA. Assays were terminated by rapid filtration over 0.3%
polyethyleneimine-soaked GF/B glass microfiber filters (Whatman, Clifton, NJ) and
washed 3X with ice-cold Krebs-Ringers-HEPES buffer (130 mM NacCl, 1.3 mM KCl,
2.2 mM CaClz, 1.2 mM MgS04, 1.2 mM KH;PO4, 10 mM HEPES (pH 7.4)). Filters
placed into scintillation vials with 7 mL of Ecoscint H (National Diagnostics, Atlanta,

GA) scintillation fluid, shaken overnight at room temperature, and then radioactivity
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was quantified using a TriCarb 2900TR scintillation counter (Perkin Elmer,
Waltham, MA). Specific [3H]-DA transport was assayed in triplicate for all samples.
Data were analyzed using one-way ANOVA with Bonferroni’s post hoc test for
multiple comparisons.
Receptor Binding Assays

Frozen tissue was dissected and frozen as noted above then placed in 2 mL of
binding buffer (50 mM Tris (pH 7.4), 5 mM MgClz, 5 mM KCl, 1 mM EDTA, 120 mM
NaCl) and homogenized using an Omni-Tip handheld homogenizer (Omni
International, Kennesaw, GA) at 10000-12000 rpm for 10-15 secs. Homogenates
were then centrifuged at 20000 x g at 4°C for 20 min. Membrane pellets were
resuspended in 3 mL of binding buffer and homogenized again as described above.
Homogenates were pre-incubated at 37°C for 15 min and then centrifuged at 20000
x g at 4°C for 20 min. Membrane pellets were again resuspended in 3 mL of binding
buffer and homogenized as described above. Protein concentration was determined
by bicinchoninic acid (BCA) protein assay (Thermo Fisher Scientific, Rockford, IL).
Samples were stored at -80°C until used for binding assays. Membrane samples
were then thawed and (100-150 ug for cortex, 150-200 ug for midbrain, and 100-
150 ug for striatum) incubated in a final reaction volume of 1 mL at room
temperature for 75 min in the presence of 3 nM [3H]-SCH 23390 (D1 receptor
assays; 84.3 Ci/mmol; Perkin Elmer, Waltham, MA) or 90 min in the presence of 3
nM [3H]-raclopride (D2 receptor assays; 76 Ci/mmol; Perkin Elmer, Waltham, MA).
Binding reactions were terminated by the addition of 8 mL of ice-cold wash buffer

(50 mM Tris (pH 7.4)) followed by rapid filtration over water-moistened S&S (#5)
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(Schleicher and Schuell Bioscience, Inc., Kenne, NH) or Whatman GF/B (Whatman,
Clifton, NJ) glass fiber filter using a Millipore vacuum manifold. Each filter was then
washed 2X with 8 mL of ice-cold wash buffer. Filters were placed in scintillation
vials and 10 mL of Biosafe II scintillation fluid (Research Products International
Corp., Mount Prospect, IL) was added to each vial. Vials were shaken overnight at
room temperature, and then radioactivity was counted using a TriCarb 2900TR
scintillation counter (Perkin Elmer, Waltham, MA). Non-specific binding was
determined using parallel incubations as above with the addition of 2 uM
butaclamol to samples with binding values from these samples subtracted from
radioligand only samples to determine specific binding. All samples (total and non-
specific binding) were assayed in triplicate. Data were analyzed using one-way
ANOVA with Bonferroni’s post hoc test for multiple comparisons.
Assessment of Tissue Biogenic Amines

Brain regions, harvested and dissected as noted above, were flash-frozen in
liquid nitrogen and stored at -80°C. Frozen brain tissue was homogenized using a
tissue dismembrator (Misonix XL-2000; Qsonica, LLC, Newtown, CT) in 100-750 uL
of a solution containing 100 mM TCA, 10 mM NaCzH302, 100 uM EDTA, 5 ng/mL
isoproterenol (an internal standard), and 10.5% methanol (pH 3.8). Samples were
spun in a microcentrifuge at 10000 x g for 20 min. and the supernatants were stored
at -80°C until assayed (Cransac et al., 1996). Prior to assay, thawed supernatants
were centrifuged at 10000 x g for 20 min. before being analyzed by HPLC. Twenty
uL samples of each sample were injected using a Waters 2707 auto-sampler onto a

Phenomenex Kintex (2.6 u, 100 A) C18 HPLC column (100 x 4.6 mm). Biogenic
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amines were eluted with a mobile phase (89.5% 100 mM TCA, 10 mM NaCz;H30,
100 uM EDTA, and 10.5% methanol (pH 3.8)) delivered at 0.6 mL/minute using a
Waters 515 HPLC pump. Analytes were detected utilizing an Antec Decade Il
(oxidation: 0.4) (3 mm GC WE, HYREF) electrochemical detector operated at 33°C.
HPLC instrument control and data acquisition was managed by Empower software.
Data were analyzed with one-way ANOVA with Bonferroni’s post hoc test for
multiple comparisons.
Results

DAT Val559 Expression and Transport Capacity

Previous in vitro studies demonstrated that DAT Ala559 (WT) and DAT
Val559 express equivalently, both in total extracts and cell surface fractions
(biotinylation), and did not differ in inward DA transport capacity (Mazei-Robison et
al,, 2008). Consistent with these findings, striatal extracts from DAT Val559 animals
demonstrate normal transporter protein levels (Fig. 10). Similarly, striatal
synaptosomes from both hetero- and homozygous DAT Val559 animals show
equivalent DA transport kinetics as compared to WT samples (Fig. 11), with no
differences in DA Ku or transport Vuax.
DAT Val559 Effects on Neurochemistry and DA System Components

Whereas DAT KO mice show drastically reduced tissue levels of DA (less than
5% of WT levels) (Jones et al., 1998), DAT Val559 mice show no genotype-
dependent changes in total levels of DA, DA metabolites (DOPAC, HVA, 3-MT), or DA

turnover (DA:DOPAC ratio) in cortex, midbrain, or striatum (Fig. 12). Interestingly,
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Figure 10. DAT Val559 mice have normal striatal DAT expression (n = 6 per
genotype; P> 0.05, one-way ANOVA).
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Figure 11. DAT Val559 in striatal synaptosomes supports normal DA transport
kinetics (n = 5 WT, 4 het, 7 homo; Vmax+/- SEM (pmol/min/ug protein): WT = 1.01
+/- 0.215, het = 0.8284 +/- 0.1822, homo = 0.8847 +/- 0.1770, P > 0.05, one-way
ANOVA; Ki, +/- SEM: WT = 0.1774 +/- 0.03839, het = 0.08762 +/- 0.0261, homo =
0.1407 +/- 0.04754, P> 0.05, one-way ANOVA).
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we detected small but significant changes in cortical and striatal 5-HT levels without
concomitant changes in 5-HT metabolite 5-HIAA or 5-HT turnover (Fig. 13).

Since DAT KO mice are unable to recover released DA, they rely totally on the
synthesis of DA to maintain dopaminergic signaling. Moreover, Jones and colleagues
demonstrated that TH expression in DAT KO mice is reduced by 96%, though the
rate of DA synthesis by available TH is doubled relative to the rate of synthesis in
WT animals (Jones et al., 1998). In contrast, we found in DAT Val559 animals, that
TH total protein levels are equivalent to WT levels (Fig. 14). Finally, DAT KO mice
show reductions in D1 and D2 receptor mRNA expression in striatum (Giros et al.,
1996; Fauchey et al., 20004, b) and reduced D2 receptor levels in midbrain (Jones et
al, 1999). In contrast, we observed no change in D1 or D2 receptors in the cortex,
midbrain, or striatum of DAT Val559 hetero- or homozygotes (Fig. 15).

Discussion

All of the findings reported in this chapter derived from direct evaluation of
DAT Val559 are consistent with previous in vitro studies of the mutant protein. DAT
Val559 total expression and transport function in mouse striatum are equivalent to
those of the WT protein. Whereas the loss of DA reuptake in DAT KO mice results in
reduced tissue DA and TH protein levels (Giros et al., 1996; Jones et al., 1998), the
normal inward DA reuptake of DAT Val559 mice, along with normal levels of TH,
appears to sustain normal tissue DA levels. It is also possible that ADE occurs in the
context of reduced DA neuron excitability, such that the loss of cytoplasmic DA is

offset by reduced vesicular release, resulting in normal tissue DA levels. Thus,
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Figure 14. DAT Val559 mice have normal striatal TH expression (n = 3 per genotype;
P> 0.05, one-way ANOVA).
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Figure 15. Radioligand binding assays reveal no differences in (A) D1 receptor (n =
3-5 per genotype per brain region; [3H]-SCH-23390 binding, cortex and midbrain
plotted on left y-axis, striatum plotted on right y-axis; P > 0.05 for each brain region,
one-way ANOVA) or (B) D2 receptor (n = 3-5 per genotype per brain region;
[3H]raclopride binding, cortex and midbrain plotted on left y-axis, striatum plotted
on right y-axis; P > 0.05 for each brain region, one-way ANOVA).
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further studies are needed to examine basal and stimulated excitability of DA
neurons in the DAT Val559 mouse model.

The observed changes in serotonin levels in the striatum and cortex are also
quite interesting. Caron’s research group reported in DAT KO mice that locomotor
hyperactivity was attenuated by treatment with selective 5-HT reuptake inhibitor
(SSRI) treatment (Gainetdinov et al., 1999) even though locomotor activity of WT
animals was unaffected, and that cocaine self-administration remained intact and
was mediated by cocaine binding to SERT (Rocha et al., 1998). In addition, DAT KO
mice have elevated 5-HT levels in the frontal cortex and hippocampus (Fox et al,,
2013), suggesting that 5-HT signaling undergoes compensatory changes in the
context of hyperdopaminergia. On the other hand, following loss of DA signaling by
6-OHDA lesions, Avale and coworkers found increased 5-HT axon sprouting and
elevated striatal 5-HT levels (Avale et al., 2004b), suggesting that 5-HT signaling can
also compensate for a hypodopaminergic state. Investigation of specific 5-HT
receptor-mediated modulation of DA signaling revealed that 5-HT;a and 5-HTzc
receptors exert excitatory and inhibitory control of DA signaling, respectively (Di
Matteo et al., 2002; Porras et al.,, 2002; reviewed in Esposito et al., 2008), offering a
mechanism by which 5-HT signaling can respond to both hypo- and
hyperdopaminergic states. In the context of DAT Val559, we expect ADE to cause a
mildly hyperdopaminergic state. The observed increases in cortical and striatal 5-
HT, therefore, may be indicative of compensatory changes in 5-HT signaling to
account for the altered dopaminergic tone due to DAT Val559. Further exploration

of serotonergic function, in general, and 5-HT receptor expression and function in
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the cortex and striatum, specifically, is needed to better elucidate the impact of DAT
Val559.

In contrast to DAT KO mice, we showed that DA receptor density is
unchanged in DAT Val559 mice. DAT KO animals show significant reduction in DA
receptor mRNA expression (Giros et al., 1996) and D2 receptor protein expression
(Jones et al,, 1999). It is possible that the increase in extracellular DA concentration
due to ADE, partially offset by normal DA uptake, is of a smaller magnitude than that
observed with a complete loss of DA reuptake in the DAT KO mice and, as a result,
DA receptor levels may not change. Furthermore, changes in D2 receptor
expression in DAT KOs were subsequently shown to reflect a reduction in
somatodendritic D2 autoreceptor function (Jones et al., 1999). Also, the radioligand
binding data presented here do not address potential changes in DA receptor
localization (i.e. internalization) or function (i.e. desensitization) that do not
necessarily require changes in protein levels. Further studies are warranted to
more closely examine DA receptor function and regulation in the context of DAT

Val559.
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CHAPTER IV

BEHAVIORAL CHARACTERIZATION

Introduction

DA signaling plays an important role in a variety of behaviors that can be
readily evaluated in rodent models. For example, locomotor activity in the open
field is very sensitive to extracellular DA levels. Also, elevation of extracellular DA
via treatment with AMPH (Dews, 1953; Smith, 1965) or cocaine-like
psychostimulants (Heise and Boff, 1962; Van Rossum and Hurkmans, 1964; Smith,
1965.) produces significant hyperactivity in open field chambers. Consistent with
these findings, DAT KO and KD animals where extracellular levels of DA are elevated
5 and 2 fold, respectively, are extremely hyperactive in a novel environment (Giros
et al., 1996; Zhuang et al., 2001), whereas DA depletion by reserpine treatment
(Carlsson et al., 1958; Utley and Carlsson, 1965; Almgren et al., 1976; Johnels, 1982),
extensive 6-OHDA lesion (Koob et al.,, 1981), or genetic ablation of TH (Zhou and
Palmiter, 1995; Nishii et al., 1998) produces hypokinesis, a characteristic of
Parkinson’s disease. Assuming that DAT Val559 mice have elevated extracellular DA
levels due to ADE, we anticipated that these mice could be spontaneously
hyperactive as compared to WT littermates.

As reviewed in Chapter 1, in vitro data have shown that DAT Val559 has an
abnormal response to AMPH, such that AMPH blocks ADE as opposed to inducing

DA release (Mazei-Robison et al., 2008), acting more like a competitive substrate or
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inhibitor. In the DAT Val559 mice, therefore, AMPH is expected to lead to a certain
degree of locomotor activation, as AMPH will prevent reuptake of released DA (in a
mechanism similar to cocaine (Izenwasser et al., 1993) or methylphenidate
(Schweri, 1990; Héron et al.,, 1994; Wall et al., 1995). However, in the absence of
AMPH-evoked, nonvesicular DA release, this locomotor activation is expected to be
of a smaller magnitude than that seen in WT mice.

It is important to note that both of the children identified with the DAT
Val559 each possessed only one mutant allele (Mazei-Robison et al., 2005). We
expect, therefore, that DAT Val559 acts dominantly and can exert its effects despite
the presence of a WT DAT allele. Accordingly, we may also see blunted responses to
AMPH in DAT Val559 heterozyogtes. If DAT Val559 is acting in a dominant manner,
then we anticipate that hetero- and homozygotes will display similar phenotypes,
rather than intermediate, gene-dosage dependent differences among genotypes.

The impact of DAT Val559 on other behavioral readouts is difficult to predict.
In addition to locomotor hyperactivity, DAT KO mice display stereotyped
movements such as head weaving (Wong et al,, 2012; Fox et al,, 2013). It is not
unreasonable, then, that DAT Val559 mice could also exhibit stereotyped behaviors,
though the extent may be dictated by the size of the elevations in extracellular DA
and/or how they are achieved. In this this chapter, I present a characterization of
locomotor phenotypes using the DAT Val559 mice, as well as their response to

treatment with AMPH.
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Methods

Open field Locomotor Assay

All locomotor behavior was assessed using male mice, aged 5-9 weeks, with
7-10 days of acclimation to a reverse light/dark cycle between 3-5 weeks of age,
during the animal’s active (dark phase of light/dark cycle) period. Locomotor
activity in the open field was measured using 27 x 27 x 20.5 chambers (Med
Associates, St. Albans, VT) placed within light- and air-controlled, sound-attenuating
boxes (64 x 45 x 42 cm). Locomotion was detected by interruption of infrared
beams by the body of the mouse (16 photocells in each horizontal axis located 1 cm
above the activity chamber floor, as well as 16 photocells elevated 4 cm above the
chamber floor to detect rearing and jumping behaviors). Data were collected and
quantified by Med Associates Activity Monitor software.

Mice were acclimated to the activity chambers during a 30-minute session 2-
3 days before data recording began. On Day 1 of the experimental sequence, mice
were weighed then placed into activity chambers and activity was monitored for 30
min. The mice were then removed from the activity chambers and received a 5
mL/kg i.p. injection of 0.9% saline (AMPH experiments) or 0.02% DMSO (SKF 83822
experiments). Mice were returned to the activity chambers and locomotor activity
was recorded for 60 min. No manipulations were performed on Day 2. On Day 3,
mice were weighed then placed into activity chambers and activity recorded for 30
minutes. Mice were then removed from the activity chambers and injected i.p. with
AMPH (in 0.9% saline; 3 mg/kg, 5 mL/kg) or SKF83822 (in 0.02% DMSO, 2 mg/kg, 5

mL/kg). Mice were then returned to the chambers and activity recorded for 60 min.
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Time course data were analyzed using two-way ANOVA with Sidak’s post hoc test for
multiple comparisons, and cumulative measures of behavior (i.e. total distance
traveled, time in stereotypy, number of stereotyped behaviors, time rearing, and
number of rearing behaviors) during the entire 60-minute recording analyzed using
one-way ANOVA with Tukey’s post hoc test for multiple comparisons.
Darting

Mice were moved from group housing and isolated in clean cages for 60-75
minutes. After acclimating to the new cage, darting responses were initiated by a
researcher reaching for the base of the mouse’s tail, mimicking an attempt to pick up
the animal, without making contact. Each mouse was approached 5-7 times, with
20-30 seconds between approaches, to elicit the darting reaction (total number of
approaches: 130 WT, 223 het, 103 homo). Escape reactions (“darting”) were
recorded and then videos were imported into iMovie (Apple, Cupertino, CA) and
slowed to 10% of original speed. The beginning and ending video frames of each
darting incident were noted with timestamps and then imported into Image] (NIH,
Bethesda, MD) with the timestamps used to isolate the first frame of each dart. A Z-
stack image was then created over the entire darting reaction, and a subtracted
image (first frame subtracted from Z-stack) was produced, leaving a negative image
where the mouse moved during the dart. A freehand line was then plotted through
the center of each mouse’s darting path and the distance quantified. To account for
variability between videos, the length of one side of each mouse’s cage was
measured and used to convert from pixels (path length measurement in Image]) to

centimeters (Fig. 16). Speed from the initiation of the darting movement until 1
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Figure 16. Darting behavior analysis. For each darting event, the first video frame
before the mouse starts moving (A) is subtracted from a stacked image of the dart in
which the entire video clip is compressed into a single still image (B). The resulting
negative image (C) reveals the path of the dart that can be measured.
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second elapsed (or the animal stopped moving) was then calculated based on the
distance traveled and duration of each dart. Data were analyzed using one-way
ANOVA with Tukey’s multiple comparisons test and are depicted as a frequency
distribution of darting speed, as well as average darting speed.
Elevated Zero Maze

Anxiety behaviors were examined using an elevated zero maze (62.5 cm
outer diameter, 5 cm path width, 15 cm wall height in closed segments; maze
fabricated by Vanderbilt Kennedy Center Scientific Instrumentation Service) with
recordings lasting for 5 min. At the start of each trial, mice were placed onto an open
portion of the maze, adjacent to and facing one of the closed segments. Each session
was recorded by a ceiling-mounted video camera connected to a computer for
digital video acquisition and analysis with ANY-maze software (Stoelting, Wood
Dale, IL). Data analyzed include the percent of time spent in the open zone, number
of open and closed zones entries, and distance traveled around the maze. Data were
analyzed using one-way ANOVA with Bonferroni’'s post hoc test for multiple
comparisons.
Acoustic Startle

The acoustic startle response was assessed in sound-attenuated acoustic
startle chambers (Med-Associates, St. Albans, VT). Mice were gently restrained in
transparent acrylic cylinders (3.2 cm inner diameter; Med Associates, Inc. model:
ENV-263A) and placed on a startle platform with load cells and a force transducer.
Mice were habituated to the chambers for five minutes before the presentation of

the first acoustic startle stimulus. Each mouse was recorded for 48 startle trials (70,
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80, 90, 100, 110, or 120 dB white noise bursts, each presented 8 times in
pseudorandom order). The startle response following each stimulus was recorded
and analyzed by Startle Reflex software (MED Associates, version 5). Data were
analyzed using two-way ANOVA with Tukey’'s post hoc test for multiple
comparisons.
Results

Locomotor Response to a Novel Environment

DAT KO mice display profound locomotor hyperactivity in open field testing
(Giros et al., 1996; Speilewoy et al., 2000). In open field assessments of locomotor
response to a novel environment, we did not observe locomotor hyperactivity, but
rather a modest, but significant, reduction in horizontal locomotor activity between
WT and DAT Val559 heterozygous animals (Fig. 17A). Interestingly, rearing
behavior was also significantly reduced in DAT Val559 animals (Fig. 17B). No
genotype differences were detected in time spent in the center versus total time in
the chamber, a measure of anxiety (Fig. 17C). In addition, preliminary evidence
obtained using home-cage recordings also indicates a reduction in rearing activity in
DAT Val559 mice (see Appendix 3), suggesting that this behavioral change reflects a
trait induced by constitutive DAT Val559 expression versus a state induced by a
novel environment (or their interaction).
Darting, Elevated Zero Maze, and Acoustic Startle

Although we observed no spontaneous hyperactivity, we did notice early on
in our handling of the DAT Val559 mice that when researchers reached to transfer

animals between cages, the presence of a DAT Val559 genotype could be fairly
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Figure 17. DAT Val559 mice display reduced locomotor activity and rearing
behavior in a novel testing environment. (A) Horizontal locomotor activity (n = 28
WT, 30 het, 25 homo; left: time course of locomotor behavior, P(genotype) > 0.05,
two-way RMANOVA; right: total +/- SEM distance traveled in 30 minutes in activity
chambers, overall P < 0.05, post hoc tests (Tukey’s multiple comparisons test)
reveals * = P < 0.05 for WT vs. het, P = 0.0764 (n.s.) for WT vs. homo, one-way
ANOVA) and (B) rearing activity (left: number of rearing behaviors +/- SEM in 30
minutes in activity chambers, overall P < 0.001, post hoc tests (Tukey’s multiple
comparisons test) reveals *** = P < 0.001 for WT vs. het, * = P < 0.05 for WT vs.
homo, one-way ANOVA; right: time +/- SEM rearing in 30 minutes in activity
chambers, overall P < 0.01 for WT vs. het, P = 0.1334 for WT vs. homo, one-way
ANOVA) are significantly reduced in DAT Val559 mice without changes in (C) time
spent in the center versus the edge of the activity chambers (percent of time +/-
SEM in center of chambers during 30-minute recording, P > 0.05, one-way ANOVA).
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reliably assigned based on the presence of a more robust escape response, a
behavior that we termed “darting”. After rigorous quantification of the speed of
each escape response, we identified a significant genotype effect, such that DAT
Val559 mice display a faster escape reaction than their WT counterparts, whether
considered as a distribution of all darting speeds (Fig. 18A, or average darting speed
for each genotype (Fig. 18B). Furthermore, the increase in darting speed for DAT
Val559 animals is specific to the darting behavior; average locomotor speed during
recordings of basal open field activity do not differ among genotypes (Fig. 18C).

The increased darting speed that we observed in DAT Val559 animals could
reflect an increase in the general startle response and/or anxiety. To test these
possibilities we assessed DAT Val559 mice and WT littermates for their acoustic
startle response and performance on the elevated zero maze (EZM). We observed
no impact of genotype on startle latency or peak startle magnitude at any decibel
level tested (Fig. 19). We also found no genotype-dependent effect on locomotor
activity in the zero maze or in time spent in the open areas of the maze (Fig. 20).
Blunted Locomotor Activation by AMPH

In control experiments, DAT Val559 mice display a small but non-significant
reduction in locomotor activity following saline injection (Fig. 21A), similar to the
behavioral pattern observed during recording of basal locomotor activity (Fig. 17A).
DAT Val559 mice are less active during the first 30 minutes after injection, perhaps
reflecting a subdued response to injection stress, as activity levels of DAT Val559

mice normalize to WT levels during the last 30 minutes of the trial.
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Figure 18. DAT Val559 mice display significantly increased darting speed upon
imminent handling. (A) Frequency distribution of darting speeds. (B) Mean +/- SEM
darting speed (n = 21 WT, 33 het, 14 homo; overall P < 0.0001, post hoc test
(Tukey’s multiple comparisons test) reveal **** = P < 0.0001 for WT vs. homo and *
= P < 0.05 for het vs. homo comparisons, one-way ANOVA)) is significantly faster for
DAT Val559 mice, but (C) mean +/- SEM locomotor speed during basal open field
recording is not different among genotypes (P > 0.05, one-way ANOVA).
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Figure 19. Despite significantly faster darting responses, DAT Val559 mice show no
differences in (A) acoustic startle latency or (B) peak startle response (n = 8 per
genotype; P > 0.05, two-way ANOVAs).
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Figure 20. Despite significantly faster darting responses, DAT Val559 mice show no
differences in elevated zero maze behavior, including (A) time in the open area and
(B) distance traveled on the maze (n = 20 WT, 24 het, 14 homo; P > 0.05, one-way
ANOVAs).
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In vitro studies of AMPH action on DAT Val559 demonstrated that the drug
acts only as a competitive substrate, inhibiting both DA uptake and ADE (Mazei-
Robison et al., 2008), as opposed to its well-established ability to produce DAT-
mediated DA efflux (Sulzer et al., 2005). Consistent with these previous findings,
DAT Val559 mice have a significantly blunted (approximately 50%) locomotor
response after i.p. administration of 3 mg/kg AMPH (Fig. 21B). Interestingly, the
blunted response to AMPH of Val559 mice relative to WT animals was not limited to
ambulatory behavior; AMPH also elicited significantly less rearing behavior in DAT
Val559 mice (Fig. 22A), but stereotyped movements were equivalent between WT
and DAT Val559 animals (Fig. 22B).

D1 receptors have been shown to mediate the locomotor hyperactivity
triggered by AMPH treatment in vivo (O’Neill and Shaw, 1999; Hall et al., 2009).,
After titrating the i.p. dosage (data not shown) of the D1 agonist SKF 83822 (2
mg/kg) to elicit an equivalent locomotor activation as 3 mg/kg AMPH, we observed
no genotype differences in the locomotor response (Fig. 23A). DAT Val559 animals
display a small but non-significant reduction in rearing behavior following SKF
83822 treatment (Fig. 23B), as well as no change in stereotyped behavior (Fig. 23C).

Across conditions (basal, saline-, AMPH-, or SKF 83822-treated), DAT Val559
animals display reduced locomotor behavior relative to WT mice only after AMPH
treatment (Fig. 24A). In contrast, rearing behavior is significantly reduced at

baseline, and continues to trend towards reduction across all other conditions (Fig.
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Figure 21. DAT Val559 mice have a significantly blunted locomotor response to
AMPH. (A) DAT Val559 mice display a small but insignificant reduction in locomotor
activity following saline injection (n = 37 WT, 21 het, 15 homo; left: time course of
locomotor behavior, P(genotype) > 0.05, two-way RMANOVA, right: total +/- SEM
distance traveled in 60 minutes after saline injection, P > 0.05, one-way ANOVA) but
(B) an approximately 50% reduction in AMPH-induced locomotor stimulation (n =9
WT, 9 het, 6 homo; left: time course of AMPH response, P(genotype) < 0.05, post hoc
testing (Tukey’s multiple comparisons test) reveals P < 0.05 at 20, 25, 40, 45, and 55
min and P < 0.01 at 30 and 35 min after AMPH injection for WT vs. het and P < 0.05
at 20, 25, 30, and 35 min after AMPH injection for WT vs. homo, two-way
RMANOVA; right: total +/- SEM distance traveled in 60 minutes after AMPH
administration, * = overall P < 0.05, one-way ANOVA).
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Figure 22. DAT Val559 mice display reduced rearing behavior following AMPH
treatment. (A) The number of rearing behaviors and time spent rearing are
significantly reduced following 3 mg/kg AMPH treatment (n = 9 WT, 9 het, 6 homo;
left: number of rearing behaviors +/- SEM in 60 minutes following AMPH, overall P <
0.05, post hoc tests (Tukey’s multiple comparisons test) reveals * = P < 0.05 for WT
vs. het, P = 0.0537 for WT vs. homo, one-way ANOVA; right: time spent rearing +/-
SEM after AMPH, overall P < 0.05, post hoc tests (Tukey’s multiple comparisons test)
reveals * = P < 0.05 for WT vs. het and WT vs. homo comparisons, one-way ANOVA)
but (B) stereotyped behaviors are unaffected (n = 9 WT, 9 het, 6 homo; left: number
of stereotyped behaviors +/- SEM in 60 minutes following AMPH, P > 0.05, one-way
ANOVA; right: time in stereotypy +/- SEM in 60 minutes after AMPH, P > 0.05, one-
way ANOVA).
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Figure 23. Locomotor activity, stereotypy, and rearing behavior do not differ
between DAT Val559 mice and WT controls after treatment with D1 receptor
agonist SKF83822. (A) Locomotor activity following treatment with 2 mg/kg
SKF83822 (D1R agonist) does not differ between DAT Val559 mice and WT controls
(n = 8 per genotype; left: time course of SKF83822 response, P(genotype) > 0.05, all
post hoc comparisons P > 0.05, two-way RMANOVA; right: total +/- SEM distance
traveled in 60 minutes following SKF83822 administration, P > 0.05, one-way
ANOVA). Similarly, (B) rearing behavior (left: number of rearing behaviors +/- SEM
following SKF83822 treatment, P > 0.05, one-way ANOVA; right: time +/- SEM spent
rearing after SKF83822 administration, P > 0.05, one-way ANOVA) and (C)
stereotyped behaviors (left: number of stereotyped movements following SKF83822
treatment, P > 0.05, one-way ANOVA; right: time +/- SEM in stereotypy after
SKF83822 administration, P > 0.05, one-way ANOVA) do not differ between DAT
Val559 mice and WT controls.
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Figure 24. Locomotor and rearing behavior in an open field across all treatments.
(A) Total distance traveled +/- SEM, (B) number of rearing behaviors +/- SEM, and
(C) time spent rearing +/- SEM during 60 minutes following injection of nothing
(basal), saline, AMPH, or D1 agonist SKF 83822.
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24B, C). Stereotyped behavior does not differ among genotypes regardless of
treatment condition (data not shown).
Discussion

Because ADHD is a childhood disorder (American Psychiatric Association,
1994) and displays a consistent male bias (Gaub and Carlson, 1997; Getahun et al,,
2013a), we focused our studies on juvenile/adolescent (aged 5-9 weeks) male mice.
All experiments were performed during the dark phase of the light-dark cycle. Mice
are generally a nocturnal species, becoming more active during the dark phase
(Cambras and Diez-Noguera, 1991; Goulding et al., 2008), and activity levels vary
between mouse background strains (Goulding et al., 2008; Giirkan et al., 2008). In
my own experience, the DAT Val559 mice were considerably less active during the
light phase, such that their lack of activity made basal behavioral analysis difficult.
For ease of performing experiments during the dark phase, therefore, mice were
maintained on a reverse light-dark cycle. Mice were given at least one week to
acclimate to the reverse light cycle, as light cues are known to affect feeding, sleep,
and locomotor activity (Ikeda et al., 2000), and 5-6 days is sufficient for mice to re-
entrain to the new light-dark cycle (Kopp et al., 1998).

Somewhat surprisingly, given the prediction of in vivo ADE for DAT Val559,
no basal locomotor hyperactivity was observed in the open field test, and, in fact, the
animals were slightly hypoactive, suggesting less arousal by the novel environment.
The lack of hyperactivity relative to WT littermates suggests either that 1) ADE is
not occurring in vivo or 2) that adaptive changes in response to ADE may have

occurred that have diminished environmental arousal or overall exploratory
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interest. In support of the latter hypothesis, DAT Val559 animals displayed
reductions in rearing behavior in both open field chambers and in home cage
recordings (see Appendix 3). Arguing against a perturbation of exploratory
behavior, our preliminary studies using the novel object recognition paradigm
reveal no impact of the DAT Val559 variant (see Appendix 3). At a molecular level,
the observed change in rearing behavior could reflect a change in D2R function, as
Kelly and colleagues demonstrated that D2R deficient mice display reduced
locomotor activity and rearing behavior (Kelly et al., 1998). In addition, D2R KO
mice have drastically reduced locomotor responses upon amphetamine treatment
(Kelly et al., 2008; Neve et al.,, 2013), a finding attributed primarily to loss of the
postsynaptic isoform, D2L. Since we observed no change in D2 protein levels in
striatum and midbrain, we suspect that if changes in D2R do occur, they will be at
the level of surface expression or functional coupling to signaling pathways. In light
of the loss of AMPH sensitivity in D2R KO mice, downregulation of D2R functionality
(likely desensitization arising from constant DA stimulation due to ADE) provides a
reasonable mechanism for the blunted rearing behavior that we observe in DAT
Val559 mice following AMPH treatment. Experiments to determine the underlying
mechanism of the reduced rearing behavior observed in DAT Val559 mice are
certainly warranted.

Although we observed no hyperactivity in the DAT Val559 mice on open field
testing or in our preliminary studies with home cage monitoring, we did identify a
novel hyperactive phenotype that we termed “darting”. We noticed that when we

reached to transfer the mice between cages, the presence of a DAT Val559 allele
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could be fairly reliably determined based only on a more robust escape reaction. As
we found no genotype differences in tests of anxiety behavior or startle responses,
we believe darting behavior to be a behavioral phenotype linked to a response to
imminent handling. Interestingly, spontaneous darting behavior has been reported
as a phenotype that reliably differentiates C57BL6] and DBA/2] inbred mouse
strains (Kafkafi et al.,, 2003). Additionally, spontaneous darting behavior mediated
by glutamatergic corticostriatal projections (Fonnum et al., 1981) has been reported
following administration of the NMDA receptor antagonist CPP (3(2-
carboxypiperazin-4-yl)-propyl-l1-phosphonic acid) in the prefrontal cortex of rats
(O’Neill and Liebman, 1987; Crawley et al., 1992). Together, these findings raise the
possibility that alterations in DA signaling in the cortex or striatum of DAT Val559
mice could lead to alterations in glutamatergic signaling that contribute to darting.
The darting phenotype that we observed may derive from a deficit in cortical
inhibition of DA release (Lodge, 2011). Studies in humans with ADHD have
demonstrated deficits in response inhibition (reviewed in Aron and Poldrack, 2005;
and Barnes et al., 2011) that has been explained using the “activation-suppression
model” (van den Wildenberg et al, 2010). According to this model, the motor
response to a salient but irrelevant stimulus must be suppressed in order to
respond to a relevant stimulus. In the context of this model, the darting behavior
exhibited by DAT Val559 mice may reflect an inability to suppress an escape
response to imminent handling, a harmless stimulus that the animals experience
regularly during cage transfers. Thus far, we have been unable to pharmacologically

manipulate the darting response of DAT Val559 mice, likely due to associations of
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approach linked to a negative stimulus that overwhelms genotype differences in
darting behavior. Clearly, further studies are needed to define the nature of brain
circuits and signaling alterations that drive the darting behavior we report.

AMPH is well known to elicit DAT-mediated DA efflux (Sulzer et al., 2005)
and induce locomotor hyperactivity (Dews, 1953; Smith, 1965). Based on our in
vitro findings with DAT Val559 that AMPH lacks DA releasing properties but
remains a competitive substrate (Mazei-Robison et al, 2008), we predicted a
blunted, locomotor stimulatory effect of AMPH though not a full insensitivity to the
stimulant. Consistent with the in vitro data, DAT Val559 mice display an
approximately 50% reduction in AMPH-induced locomotor activity. Interestingly,
DAT Val559 mice exhibited reduced rearing behavior, both during acclimation to
the open field, after saline injections, and after AMPH injections. D1Rs have been
implicated in the locomotor hyperactivity triggered by AMPH in vivo (O’Neill and
Shaw, 1999; Hall et al,, 2009). Upon stimulation with the D1 agonist SKF83822 at a
dose titrated to achieve stimulation at levels seen with 3 mg/kg i.p. AMPH, we
observed no genotype differences in locomotor stimulation. This finding suggests
that striatal D1 signaling is intact in DAT Val559 mice, and that the differences in
locomotor response between WT and DAT Val559 mice observed with AMPH likely
arise from presynaptic mechanisms and/or network-level plasticities.

As mentioned above, DAT Val559 mice were also recorded in a home cage
monitoring (HCM) system (see Appendix 3). For HCM experiments, mice are housed
individually, then video-recorded over the course of several days, and all behaviors

documented by an automated system. While open field testing is informative,
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especially for measuring drug effects, HCM analysis allows for detection of changes
in basal behaviors, and removes potential confounds arising from the novelty of the
testing apparatus. HCM of DAT Val559 mice confirms the reduction in rearing
behavior observed in open field tests, and may prove useful for detecting
spontaneous darting behavior.

Interestingly, Val559 hetero- and homozygotes displayed remarkably similar
phenotypes on all behaviors measured. Such findings suggest that DAT Val559 may
act in a dominant fashion in the heterozygous animals, such that one mutant allele
drives the mutant phenotype despite the presence of a WT allele. Several studies
have provided evidence that DAT forms dimers (Hastrup et al., 2001; Torres et al,,
2003; Sorkina et al., 2003), providing a possible mechanism by which DAT Val559
might act in a dominant manner. Further studies are required to formally

demonstrate DAT Val559’s dominant effect.
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CHAPTERV

IN VIVO AND EX VIVO CHARACTERIZATION

Introduction

As discussed previously, in vitro characterization of DAT Val559 revealed
that the mutant transporter exhibits normal DA transport, but supports a
spontaneous outward DA leak, a phenomenon termed anomalous DA efflux (ADE)
(Mazei-Robison et al., 2008). Furthermore, DAT Val559 displays an inappropriate
response to the psychostimulant AMPH - instead of inducing DAT-mediated DA
efflux, AMPH blocks both DA uptake and ADE. Based on these phenotypes, we made
several predictions and performed several experiments regarding the biochemical
(Chapter 3) and behavioral (Chapter 4) ramifications of the DAT Val559 variant.

Despite a strong in vitro phenotype, there remains a possibility that adaptive
changes can occur during development that might change how DAT Val559
functions in vivo. For example, compensatory changes in DA synthesis, vesicle pools,
DAT regulation, or alternative inactivation mechanisms could be engaged to nullify
any extracellular changes in DA that are expected from DAT-mediated ADE or AMPH
blockade. Additionally, we certainly cannot disregard the possibility that the Val559
allele produces other effects on DAT in vivo that could alter the basal efflux observed
in vitro. Thus, in order to provide direct evidence of basal DA efflux and an altered
ability of AMPH to produce transporter-mediated DA efflux, we performed in vivo

microdialysis and ex vivo [3H]-DA release studies. These techniques allow for
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measurement of basal and evoked DAT Val559 function in native tissue, and provide
critical evidence regarding the ongoing potential for altered DAT function to modify
synaptic events.
Methods

Microdialysis

Mice were anesthetized with isoflurane (5% for induction, 2% for
maintenance during surgery) and placed in a stereotaxic frame using mouse-specific
ear bars (Kopf Instruments, Tujunga, CA). A guide cannula (CMA7) was placed 1 mm
above the dorsal striatum (-0.86 AP from Bregma, +/- 1.6 mL and -2.0 DV from
dura) and secured to the skull using glass ionomer cement (Instech Solomon,
Plymouth Meeting, PA). After recovery from surgery (18-24 hours), animals were
placed in individual dialysis chambers (clear cylindrical enclosure, 14 cm diameter,
22 cm high; Instech Solomon, Plymouth Meeting, PA). A microdialysis probe (CMA
Microdialysis, USA) with an active length of 2 mm was inserted into the guide
cannula. One end of a tether was attached to the headpiece and the other end
attached to a liquid swivel (Instech Solomon, Plymouth Meeting, PA) that was
mounted on a counterbalanced arm above the dialysis chamber. The probe was
perfused with artificial cerebral spinal fluid (aCSF; 149 mM NaCl, 2.8 mM KCl, 1.2
mM CaClz, 1.2 mM MgClz, 5.4 mM d-glucose, pH 7.2) at a flow rate of 1.0 uL/minute
overnight. After the fourth baseline sample, the aCSF was switched to aCSF
containing 0.1 uM D-amphetamine for the remaining 9 samples. Dialysate samples
were stored at -80°C and analyzed by HPLC-EC for DA and serotonin levels, as

described above. After the dialysis session, animals were overdosed with sodium
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pentobarbital, brains removed and post-fixed in 4% paraformaldehyde in 100 mM
phosphate buffer, sectioned, stained for Nissl substance, and then inspected for
acceptable probe placement. Data were analyzed using two-way ANOVA with
Sidak’s post hoc test for multiple comparisons.
DA Release in Striatal Slices

Brains were harvested from mice following rapid decapitation. Brains were
immediately placed on an ice-cold metal platform and the striatum quickly
dissected. Striatal slices were then incubated for 30 min. with 150 nM [3H]-DA at
37°C and loaded into the perfusion chambers of a Brandel SF-12 superfusion system
(Brandel, Inc., Gaithersburg, MD), sandwiched between GF/B glass fiber filter discs
(Whatman, Clifton, NJ). The chambers were perfused at a flow rate of 0.4 mL/min.
with oxygenated Krebs’-Ringer’s-HEPES (KRH) buffer (130 mM NaCl, 3 mM KCl, 2.2
mM CaClz, 1.2 mM MgS04, 1.2 mM KH;PO4, 10 mM D-glucose, 10 mM HEPES pH 7.4)
at 37°C for 1 hr prior to the start of the experiment to achieve a steady baseline of
[3H]-DA release. For studies of K*- or AMPH-evoked [3H]-DA release, chambers were
perfused with KRH at a flow rate of 0.4 mL/min and samples were collected every 5
minutes. After collection of 3 baseline samples, perfusate was switched to KRH
buffer supplemented with 20 mM KCI to evoke vesicular [3H]-DA release or 1 uM D-
AMPH to evoke non-vesicular [3H]-DA release for 15 min and then returned to
perfusion with KRH for an additional 15 min. For studies of quinpirole modulation
of DA release, two 5 min baseline KRH perfusates were collected and then the
perfusion buffer was switched to KRH supplemented with 5 uM quinpirole for 5

min. Then the perfusate was switched to KRH containing 5 uM quinpirole and 1 uM
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D-AMPH and samples were collected for the next 15 minutes, followed by a return
to perfusion for 15 minutes with KRH. Five mL of EcoScint XR scintillation fluid
(National Diagnostics, Atlanta, GA) was added to all samples and radioactivity was
counted using a TriCarb 2900TR scintillation counter (Perkin Elmer, Waltham, MA).
Data for [3H]-DA released are presented as the fraction of the total [3H]-DA loaded
into each sample (amount released + amount remaining in the tissue). Data were
analyzed using either one-way ANOVA with Bonferroni’s post hoc test for multiple
comparisons (for total [3H]-DA release) or two-way ANOVA with Sidak’s post hoc
test for multiple comparisons (for time course of [3H]-DA release).
Results

In vivo Microdialysis

In order to determine whether the ADE, and loss of AMPH-induced DA efflux,
observed in our in vitro studies of transfected DAT Val559 could account for the
blunted locomotor response to AMPH we observed in the DAT Val559 mice, we
performed in vivo microdialysis studies in unanesthetized, freely moving animals
and used HPLC to measure endogenous extracellular levels of DA and 5-HT.
Although basal extracellular 5-HT levels in the striata of WT and DAT Val559
animals exhibited no significant genotype effect (Fig. 25A), such an effect was
evident for extracellular DA levels where we observed an ~10-fold increased in DA
levels in the DAT Val559 homozygotes over that of WT control animals (Fig. 25B).
Although variability in the samples from heterozygous DAT Val559 mice precluded
a conclusion of significant changes, our mean values for these animals were also

much higher than seen for WT animals.
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Figure 25. DAT Val559 mice have elevated basal extracellular DA, but 5-HT levels
are unaffected. (A) Basal extracellular 5-HT levels do not differ between genotypes
(n = 4 per genotype; left: time course of basal 5-HT release, P(genotype) > 0.05, two-
way RMANOVA; right: mean +/- SEM extracellular 5-HT concentration prior to
AMPH stimulation, P > 0.05, one-way ANOVA) but (B) basal extracellular DA levels
are significantly elevated in DAT Val559 mice (n = 4 per genotype; left: time course
of basal DA release, P(genotype) < 0.01, post hoc tests (Tukey’s multiple
comparisons test) reveal P < 0.05 at 20 min for WT vs. het and P < 0.05 at 20, 40,
and 80 min and P < 0.01 at 60 min for WT vs. homo, two-way RMANOVA; right:
mean +/- SEM extracellular DA concentration prior to AMPH stimulation, * = P <
0.05, one-way ANOVA).
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Next, to probe the capacity of AMPH to induce DA efflux by DA terminals, we
infused AMPH (0.1 uM) into the striatum of cannulated mice, sampling to monitor
extracellular DA levels before and after infusion. We chose this route of
administration as systemic AMPH would have more complex effects and possibly
cloud interpretations as compared to direct application of the drug onto DA
terminals. Whereas intrastriatal administration of AMPH induced genotype-
independent 5-HT release (Fig. 26A), both heterozygous and homozygous DAT
A559V animals exhibited a significantly lower release of DA as compared to WT
littermates. Indeed, DAT Val559 heterozygous and homozygous animals released
~10 times less DA than WT controls (Fig. 26B).

Ex vivo [3H]-DA Release from Striatal Slices

AMPH-evoked DA release in vivo occurs in the context of DA neuron firing
that could differ between genotypes. To determine whether DA terminals of DAT
Val559 animals exhibit a diminished capacity for AMPH-evoked DA release
independent of afferent activity (i.e. regardless of neuron activity, DAT Val559 does
not respond to AMPH), we monitored the release of preloaded [3H]-DA from striatal
slices ex vivo. Striatal slices from WT and DAT Val559V animals loaded with [3H]DA
to the same extent (Fig. 27A). Next, using WT slices, we established an AMPH
concentration (1 uM) that generated an intermediate capacity for DA release, such
that neither ceiling nor floor effects would obscure genotype effects. As predicted
by heterologous expression and in vivo microdialysis studies, DAT Val559 slices
demonstrated a significantly reduced capacity for evoked DA efflux as compared to

slices from WT controls (Fig. 27B).
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Figure 26. DAT Val559 mice display significantly blunted AMPH-evoked DA release,
but 5-HT release is unaffected. Upon AMPH stimulation, (A) evoked 5-HT does not
differ between genotypes (n = 4 per genotype; left: time course of evoked 5-HT
release, expressed as fold change above baseline +/- SEM, P(genotype) > 0.05, two-
way RMANOVA; right: mean +/- SEM integrated fold change of 5-HT relative to
baseline, P > 0.05, one-way ANOVA), but (D) AMPH-evoked DA is reduced ~10-fold
in DAT Val559 mice (n = 4 per genotype; left: time course of evoked DA release,
expressed as fold change above baseline +/- SEM, P(genotype) < 0.05, post hoc tests
(Tukey’s multiple comparisons test) reveal P < 0.05 at 180 min, P < 0.01 at 100 and
160 min, and P < 0.0001 at 120 and 140 min for WT vs. het and P < 0.05 at 100, 200,
and 220 min, P < 0.01 at 160 and 180 min, and P < 0.0001 at 120 and 140 min for
WT vs. homo, two-way RMANOVA; right: mean +/- SEM integrated fold change of DA
relative to baseline, overall P < 0.05, post hoc tests (Tukey’s multiple comparisons
test) reveal * = P < 0.05 for WT vs. het and WT vs. homo, one-way ANOVA).
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Figure 27. Striatal slices from DAT Val559 animals show blunted [3H]-DA release.
(A) Striatal slices from WT and DAT Val559 mice accumulate similar levels of [3H]-
DA (n=11WT, 10 het, 11 homo; P > 0.05, one-way ANOVA), but upon application of
1 uM AMPH (B) DAT Val550 tissue releases significantly less [3H]-DA than WT tissue
(n=11 WT, 10 het, 11 homo; left: time course of AMPH-evoked [3H]-DA release,
expressed as percentage of available DA released +/- SEM, P(genotype) < 0.001, post
hoc tests (Tukey’s multiple comparisons test) reveal P < 0.05 at 20 and 45 min, P <
0.01 at 25 and 40 min, and P < 0.001 at 30 and 35 min for WT vs. het, and P < 0.01 at
40 and 45 min, P < 0.01 at 20 min, and P < 0.001 at 25, 30, and 35 min, two-way
RMANOVA,; right: total percentage +/- SEM of AMPH-evoked [3H]-DA released,
overall P < 0.001, post hoc tests (Tukey’s multiple comparisons test) reveal ** = P <
0.01 for WT vs. het and *** = P < 0.001 for WT vs. homo comparisons, one-way

ANOVA).
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Discussion

Two key in vitro phenotypes of the DAT Val559 variant are ADE and a loss of
AMPH-induced DA release (Mazei-Robison et al., 2008). Our findings of significant
elevations of basal extracellular DA levels in the striatum of DAT Val559 knock-in
mice provide supportive evidence of ADE in vivo. However, AMPH'’s effects in vivo
are less straightforward. In a heterologous expression system, AMPH blocks DAT-
mediated uptake and efflux, but in vivo, AMPH does not block efflux, and actually
elicits some DA release. It is unlikely that DAT Val559 fails to recognize AMPH, as in
vitro studies demonstrated equivalent inhibitory potency in blocking DA transport
through WT or DAT Val559 transporters (Mazei-Robison et al.,, 2008). It remains
unclear if some AMPH is finding a way into dopaminergic terminals despite DAT
Val559’s inability to transport it. A two-mechanism model for AMPH entry into
neurons has been proposed (Liang and Rutledge, 1982); at low concentrations,
AMPH is transported as a DAT substrate and may be responsible for increased
locomotor activity, but at higher concentrations, AMPH can passively diffuse across
plasma membranes and induce DA release (Zaczek et al.,, 1991a, b). Assuming that
DAT Val559 does not transport AMPH in vivo, some AMPH may still enter
dopaminergic neurons by passive diffusion, at which point AMPH’s ability to induce
DA release is still intact.

Alternatively, presynaptic compensations could explain the observed
response to AMPH. DAT KO mice display an approximately 90% reduction in D2
autoreceptor function (Jones et al, 1999), a finding attributed to receptor

downregulation resulting from constant DA exposure. DAT Val559 mice are also
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hyperdopaminergic due to ADE, thus autoreceptors are likely downregulated.
Furthermore, in D2R KO mice, the locomotor response to cocaine is significantly
reduced relative to WT mice, an effect mediated in large part by presynaptic D2
autoreceptors, as D2L (postsynaptic D2R) KO mice show only a slight reduction in
the locomotor response to cocaine (Welter et al., 2007). If D2 autoreceptors are
downregulated in DAT Val559 mice and AMPH is acting only as a DAT inhibitor (like
cocaine), then we would expect a blunted response to AMPH. In addition, we have
not yet tested the impact of a DAT inhibitor such as methylphenidate via
microdialysis. Such experiments are necessary to demonstrate that AMPH acts as
only as a DAT blocker for DAT Val559.

At this point, however, we cannot rule out the possibility that elevated tonic
firing rates of DA neurons in DAT Val559 mice could account, to some degree, for
the elevated basal extracellular DA levels. Somatodendritic and presynaptic D2 DA
receptors exert powerful negative feedback control over DA neuron firing (Lacey et
al., 1987; Beckstead et al.,, 2007) and vesicular DA release (Anzalone et al., 2012;
Zhang and Sulzer, 2012), respectively. Autoinhibitory mechanisms would be
expected to oppose local or circuit-level compensations that could drive excessive
firing and release of DA. However, under sustained receptor activation, as occurs
with chronic DAT blockade, D2 DA receptor-mediated inhibition of firing and
release can be desensitized (Jones et al., 1996; Katz et al,, 2010). DAT Val559-
mediated ADE could result in a similar state of chronic receptor activation, receptor
desensitization, and a failure to exert autoinhibitory control over DA neuron firing

and excitation-secretion coupling. Although we detected no changes in the levels of
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D2 receptors in the midbrain or striatum (see Chapter 3), radioligand binding
assays as performed in our studies do not provide information on receptor surface
levels or receptor coupling to effectors. Thus, further studies are needed to examine
whether DA autoreceptors retain their signaling capacity in the face of constitutive
elevation of extracellular DA and to compare resting and modulated DA neuron
firing rates in vivo.

In addition to tonically elevated extracellular DA in the striatum of DAT
Val559 mice, we also observed a diminished capacity for AMPH-evoked DA release
in striatal slices ex vivo and in the striatum in vivo. The blunted ability of AMPH to
induce DA release in striatal slices also supports the presence of presynaptic
changes independent of any possible changes in DA neuron excitability since AMPH-
induced DA release is not dependent on impulse flow. The more substantial loss of
AMPH’s ability to induce DA release in vivo versus ex vivo in brain slices may be due
to the engagement of other signaling pathways that facilitate AMPH induced DA
release in vivo. Alternatively, the greater AMPH effect in vivo may arise from a
measurement of release in this context from endogenous DA stores, whereas our ex
vivo studies measure the release of preloaded, radiolabeled DA. AMPH treatments
lead to liberation of endogenous DA from vesicle stores, providing high cytoplasmic
levels that serve as a substrate for DAT-mediated export. Pre-labeling of DA
terminals with [3H]-DA is known to largely load a small population of rapidly
recycling, readily-releasable vesicles (Herdon et al., 1985; Covey et al., 2013), as
opposed to the loading of reserve pool vesicles that are already filled with unlabeled

DA. Although it is assumed that radiolabeled neurotransmitter is liberated
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equivalently by AMPH from these pools, but if this is not the case, differences
between the slice and dialysis measures could arise. Additionally, there may simply
be ceiling effects on the amount of radiolabeled neurotransmitter that can be
released due to a continual loss of neurotransmitters from the slices that is not
resupplied by synthesis, unlike endogenous stores. As our studies progress,
incorporation of such distinctions between vesicle pools will likely be necessary,
and informative, in understanding the full impact of the DAT Val559 variant on DA
signaling. Further studies are needed to examine the effects of AMPH on

endogenous vs. prelabeled DA release both in vitro and in vivo.
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CHAPTER VI

SUMMARY AND FUTURE DIRECTIONS

DA signaling is critically important for several behaviors including motor
function, reward and motivation, and working memory and executive function
(Barnes et al, 2011; Mitaki et al, 2013). Several neuropsychiatric disorders,
including drug abuse and addiction (Kalivas and Volkow, 2005), bipolar disorder
(Manji and Lenox, 2000; Jones and Craddock, 2001), schizophrenia (Ross et al,,
2006; Eyles et al., 2012), Parkinson’s disease (Temlett, 1996), and ADHD (Faraone
and Biederman, 1998; Mazei-Robison and Blakely, 2005) all involve dopaminergic
dysfunction. A key regulator of maintenance of dopamine signaling in the brain is
DAT. The DAT KO mouse was initially proposed as a model for ADHD due to its early
hyperkinetic phenotype (Giros et al.,, 1996), however humans with homozygous
loss-of-function mutations in the DAT gene develop a complex motor disorder
described as infantile parkinsonism-dystonia (Kurian et al.,, 2009, 2011). Prior to
the Blakely lab’s efforts to study DAT variation in ADHD, there was no direct link
between DAT dysfunction and disease.

DAT is the primary site of action for the most commonly prescribed
therapeutic agents used the treat ADHD, suggesting that it likely has a role in
ADHD’s underlying pathophysiology. Several DAT coding variants had been
reported in large-scale genetic screens (Griinhage et al.,, 2000; Vandenbergh et al.,

2000), however it was clear that common coding polymorphisms in DAT that could
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confer risk for ADHD were unlikely to exist. However, pursuing the hypothesis that
ADHD subijects represented a clinical population enriched for DAT variation, efforts
to identify rare, highly penetrant DAT variants were pursued (Mazei-Robison et al.
2005; Mergy MA and Blakely RD, unpublished findings (see Appendix 1)).

Using a high-throughput single nucleotide polymorphism (SNP) discovery
system, our lab identified four DAT variants - Val24Met, Leu167Phe, Ala559Val, and
Arg615Cys - in ADHD subjects. Of particular interest was Ala559Val, as it had been
previously reported in a subject diagnosed with bipolar disorder (Griinhage et al.,
2000), then re-discovered in two brothers with ADHD (Mazei-Robison et al., 2005).
ADHD and bipolar disorder are highly comorbid (Bernardi et al., 2010; Karaahmet et
al,, 2013;Pataki and Carlson, 2013), suggesting that DAT Val559 may contribute to
both disorders. Furthermore, the small pedigree known for DAT Val559 reveals
transmission to the two affected boys from the mother and maternal grandmother.
Unfortunately, no other males could be identified as carriers of the variant. The
female carriers did not meet diagnostic criteria for ADHD, however the mother
reported a mild learning disability and the grandmother rated above average for
impulsivity/emotional lability traits on the Conner’s Adult ADHD rating scale
(CAARS-S:L) (Mazei-Robison et al., 2008).

In vitro characterization revealed that DAT Val559 supports anomalous DA
efflux (ADE) that can be blocked by cocaine, methylphenidate, and AMPH (Mazei-
Robison et al.,, 2008). Subsequent work demonstrated that ADE is supported by
tonic D2 receptor signaling in a CaMKII-dependent mechanism (Bowton et al,

2010). CaMKII interacts with the DAT C-terminus and is thought to phosphorylate
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N-terminal serine residues that are required for AMPH-induced DA efflux
(Khoshbouei et al., 2004; Fog et al., 2006). DAT Val559 has been show to be
hyperphosphorylated relative to WT DAT (Sakrikar, 2012), and it was suggested
that the mutation in DAT Val559 pushes DAT into an efflux-willing conformation
that occur after AMPH treatment.

In light of the functional perturbations associated with DAT Val559 in vitro,
we generated the DAT Val559 knock-in mouse in order to study the biochemical and
behavioral effects of this variant in vivo. Using traditional transgenesis methods, we
successfully created the DAT Val559 mouse. These mice display normal growth,
development, and basic sensorimotor function, suggesting that our manipulation of
the DAT gene and the presence of the Val559 mutation are well tolerated.
Interestingly, we observed a small but significant under-representation of the
Val559 allele, particularly in male mice. This suggests that DAT function has a
neurodevelopmental role. The male bias of the DAT Val559 under-representation is
also interesting in light of the male predominance of ADHD, suggesting a role for
DAT in a common pathway between ADHD and neurodevelopment. In order to fully
understand how DAT Val559 expression during development imparts long-lasting
effects on behavior, future efforts may involve creation of a conditional DAT Val559
knock-in mouse in which the temporal expression of DAT Val559 can be controlled.
Alternatively, we could use a viral approach in adult animals to examine the effects
of DAT Val559 in the adult animal.

To date, DAT Val559 mice are maintained on a hybrid background that is

~75% 12956 and ~25% C57BL/6. Backcross to a congenic C57 line has been
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completed and certainly warrants further study. Pure inbred strains provide a
stable genetic background, and C57BL/6 mice are particularly useful for behavioral
and pharmacological analysis (reviewed in Puglisi-Allegra and Cabib, 1997; and
Cabib et al, 2002). Furthermore, some phenotypes are affected by strain
background. O’Neill and Gu reported that the amphetamine response of mice
expressing a cocaine-insensitive DAT was altered upon completion of backcrossing
to a pure C57BL/6 background (O’Neill and Gu, 2013). Kerr and colleagues report
similar findings in the Gly56Ala SERT knock-in mouse model of autism; when
backcrossed to the C57 strain, several phenotypes including hyperserotonemia, 5-
HT receptor sensitivity, and repetitive behaviors were lost (Kerr et al., 2013).
Studies of DAT Val559 on a pure C57BL/6 background may confirm the impact of
DAT Val559 (i.e. phenotypes will not change), or indicate that other genetic factors
(i.e. modifier genes, epigenetic regulation, etc.) may be contributing to the observed
phenotypes.

In vitro studies demonstrated that WT DAT and DAT Val559 express
equivalently (total and surface) and did not differ in their DA transport capabilities.
Consistent with these findings, DAT Val559 and WT mice express equal levels of
DAT protein and, in striatal synaptosomes, show equivalent DA transport kinetics.
Further studies involving cell-surface biotinylation in brain slices are needed to
confirm that surface levels of DAT Val559 are normal, as well.

We also examined DA receptor levels. Due to the high degree of homology
between DA receptor subtypes, antibodies that differentiate receptor subtypes are

not consistent and may not accurately reflect receptor expression levels. Therefore,
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we performed radioligand binding studies on membranes prepared from WT and
DAT Val559 mice. Unfortunately, pharmacological agents only discriminate
between D1-like and D2-like DA receptors, but that, at least, separates receptors by
functional class. Binding studies reveal no differences in receptor density between
WT and DAT Val559 animals in cortex, midbrain, or striatum. Receptor density,
however, may be misleading: receptor function and expression can be uncoupled, so
further studies are needed to assay receptor function.

In addition to studying receptor function directly, it is also worthwhile to
examine signaling pathways downstream of DA receptor activation. As reviewed in
Chapter 1, DA receptors signal through several pathways, including DARPP-32 and
GSK3pB. If DA receptor signaling is altered in response to DAT Val559-mediated
ADE, then downstream pathways may be differentially activated to compensate for
the DA receptor dysregulation. On the other hand, DA receptor function may be
altered and, as a result, downstream signaling may be dysregulated, as well, and the
impact of DAT Val559 ADE can spread far beyond the dopaminergic synapse.
Studies are currently underway to probe the impact of DAT Val559 on DARPP-32
phosphorylation (GL Davis, personal communication).

Alteration of striatal and cortical serotonin was, perhaps, the most surprising
biochemical alteration observed in DAT Val559 mice, thus far. We observed
significant increases in tissue 5-HT levels, suggesting that 5-HT circuits are
compensating for dysfunctional DA circuits. Serotonergic adaptation to altered DA
signaling is not unprecedented - DAT KO mice respond to psychostimulants in a

SERT-dependent manner (Gainetdinov et al., 1999) and loss of DA neurons via 6-
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OHDA lesion induces serotonergic axon sprouting (Avale et al., 2004b). The two
primary 5-HT receptors that impinge upon DA circuits are 5-HT2a (excitatory) and
5-HTc (inhibitory) (Di Matteo et al., 2002; Porras et al., 20202; reviewed in Esposito
et al., 2008). Future efforts should explore changes in 5-HT receptor expression and
5-HT receptor-dependent behaviors. For instance, the 5-HT2a agonist DOI induces a
robust head twitch response (HTR) and is a straightforward behavioral assay for
5HT2a receptor activation (Halberstadt and Geyer, 2013).

Behavioral characterization of DAT Val559 mice revealed a surprising small
but significant reduction in basal locomotor activity. In addition, DAT Val559 mice
had a significantly blunted response to the psychostimulant AMPH, but the
locomotor response to the D1 agonist SKF 83822 was intact. Based on the in vitro
finding that AMPH acts to block transport and efflux through DAT Val559 (Mazei-
Robison et al., 2008), the observed locomotor behaviors are remarkably similar to
those of D2R KO mice. In D2R KO mice, basal locomotor activity is significantly
reduced, as is locomotor activity following treatment with cocaine (Welter et al,,
2007). The locomotor response to cocaine, however, was restored when only
postsynaptic D2Rs were knocked out, indicating that presynaptic D2 autoreceptor
function is responsible for cocaine-induce hyperlocomotion. In DAT Val559 mice,
ADE means that D2 autoreceptors are chronically exposed to DA and, therefore, may
be desensitized. @ Thus, even though D2Rs have not been experimentally
manipulated in DAT Val559 mice, they may be functionally “knocked out” and

AMPH’s induction of locomotor activity is severely blunted.
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It is important to note that we have not yet tested the behavioral effects of
DAT inhibitors such as cocaine or methylphenidate on DAT Val559 mice. In the
event that the locomotor response to methylphenidate or cocaine resembles the
response to AMPH, such findings would provide evidence that AMPH is merely
blocking DAT and support the hypothesis that D2 autoreceptors are desensitized.
These behavioral experiments would dovetail nicely with biochemical assays of DA
receptor function, as well.

Despite no spontaneous hyperactivity, we noticed early on in our handling of
DAT Val559 animals that the DAT Val559 genotype could be fairly reliably assigned
based on the presence of a robust escape response to imminent handling, a behavior
that we termed “darting”. Analysis of darting speed revealed that DAT Val559 mice
display faster darting speeds than their WT counterparts. We also considered that
darting may be a locomotor manifestation of a startle response or an anxiety
response. Acoustic startle testing revealed no difference in startle response at any
decibel level test. Testing on the elevated zero maze revealed no anxiety-like
behavior. It appears that darting is a phenotype unique to DAT Val559 mice.

In an attempt to ameliorate the darting response, I injected mice with AMPH.
The results were uninterpretable, however, as injection with saline affected the
distribution of darting speeds among genotypes. It appears that a stressor more
substantial than handling (i.e. an injection) may affect darting behavior. In order to
test the effects of AMPH on darting behavior, AMPH will need to be administered
orally (i.e. mixed into a highly palatable food substance such as peanut butter or a

chocolate drink such as Ensure). This finding also raises the possibility that DAT
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Val559 mice are more sensitive to stress than their WT counterparts; testing DAT
Val559 mice in acute and chronic stress paradigms may provide a fruitful line of
research.

It is worth noting that all behavior experiments were performed in juvenile
male mice. Despite the under-representation of DAT Val559 alleles predominantly
in male mice, as well as the consistently documented 3:1 male bias in ADHD
diagnosis (Gaub and Carlson, 1997; Getahun et al., 2013a), the DAT Val559 allele
was transmitted from the maternal grandmother (impulsive symptoms) and mother
(learning disability, but no ADHD symptoms) to the ADHD subjects where the
variant was identified (Mazei-Robison et al., 2008). Future studies may focus on the
effect of DAT Val559 in female mice. If DAT Val559 maintains its biochemical
characteristics in females (preliminary data suggests that it does), but behavior
differs between males and females, then DAT Val559 mice may allow for
identification of female-specific factors that confer protection from ADHD.

In order to directly test for ADE and loss of AMPH-induced efflux that were
observed in vitro, we performed in vivo microdialysis studies in unanesthetized,
freely moving animals and HPLC to measure endogenous levels of extracellular DA
and 5-HT. We observed no difference in basal 5-HT levels, but basal DA was
elevated ~10-fold in DAT Val559 homozygous mice. We then applied AMPH directly
to the striatum and measured AMPH-induced changes in DA and 5-HT levels.
AMPH-induced 5-HT release was similar for all genotypes, but DA release was ~10-
fold less in DAT Val559 homozygotes than in WT animals. Taken together, these

data indicate that DAT Val559 functions in vivo as it did in vitro.
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We also examined [3H]-DA release in an ex vivo slice preparation. Striatal
slices were pre-loaded with [3H]-DA, and we then measured AMPH-induced DA
release. Since in vivo DA release occurs in the context of neuron firing that could be
different among genotypes, the de-afferented ex vivo slice preparation allows us to
assay AMPH-induced DA release as an inherent property of DAT Val559. In this
paradigm, we observe equal [3H]-DA loading into slices, but significantly reduced
AMPH-induced release.

Microdialysis and slice release studies are still ongoing, as these paradigms
allow us to probe the contributions of vesicular and non-vesicular DA release, as
well as possible alterations in distribution of vesicle pools. Current efforts are
focused on assaying vesicular release using either K* or 4-aminopyridine (4-AP)
stimulation (R Gowrishankar and P] Gresch, personal communications). These
experiments will offer insight regarding the possible redistribution of DA among
vesicle pools in DAT Val559 mice.

Since we have evidence that DAT Val559 supports ADE in vivo and behavioral
and pharmacological evidence that DA signaling is disrupted as a result, we might
predict that larger networks of genes are affected as a result of DAT Val559. Thus,
transcriptome analysis would be a worthwhile pursuit, as it would provide an
unbiased assessment of gene expression changes that accompany DAT Val559
expression. Such studies may identify new genes or gene networks beyond those
involved with DA signaling that contribute more broadly to risk for ADHD.

In addition to the experiments suggested above, several other studies are

also underway. In collaboration with Dr. Danny Winder’s lab, DAT Val559 mice
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have been crossed with TH-EGFP reporter mice. The resulting animals express DAT
Val559 and EGFP in dopaminergic neurons, thus allowing for visualization of DA
neurons to be used for electrophysiological characterization. Preliminary data
suggest that DAT Val559 mice have a reduced (hyperpolarized) resting membrane
potential relative to WT mice, a finding that could be attributed to tonic D2-induced
hyperpolarization (M Fettig, personal communication).

Further electrophysiological characterization is necessary to examine
alterations to patterns of DA signaling. Dopaminergic neurons typically display two
activity patterns - tonic signaling, characterized by spontaneous, irregular, single
spike events, and phasic signaling, which is depolarization-dependent and displays a
burst-firing activity pattern (Grace and Bunney, 1983). Tonic firing is established by
an intrinsic pacemaker mechanism that is dependent on a hyperpolarization-
activated cation conductance (Grace and Bunney, 1984b). In contrast, phasic or
burst firing is depolarization-dependent, and initiated by incoming cortical and
brainstem afferents (Grace and Bunney, 1984a; Charara et al., 1996; Lodge and
Grace, 2006a, b). Studies have demonstrated that phasic DA neuron activity
requires NMDA receptors, as NMDA receptor antagonism inhibits DA neuron firing
(Chergui et al., 1993). In light of ADE, DA neurons may alter their firing patterns to
account for the constant presence of DA in the synapse. Assessment of tonic and
phasic DA neuron activity in DAT Val559 mice will add to our understanding of the
full impact of DAT Val559 on neuron function.

Thus far, behavioral characterization has focused on locomotor behavior and

AMPH response. However, impulsivity and attention are distinct realms of behavior
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that have not yet been explored. In collaboration with Dr. Martin Sarter at the
University of Michigan, mice will be tested on attention tasks such as the 5-choice
serial reaction time task (reviewed in Robbins, 2002), and impulsivity tasks such as
the stop signal or go/no-go task (reviewed in Eagle et al., 2008).

It is also necessary to remain careful not to overstate the impact of our
findings surrounding DAT Val559 mice. The DAT KO mouse is a fitting example -
DAT KO mice were originally proposed as a model for ADHD as they are extremely
hyperactive (Giros et al., 1996). However, DAT KO mice mirror the human loss-of-
function syndrome (dopamine transporter deficiency syndrome (DTDS)) almost
exactly (Kurian et al., 2009, 2011). For instance, DAT KO mice display early
hyperkinesis (that looks similar to ADHD), but later become immobile and dystonic.
Furthermore, DAT KO mice fail to develop normally and show significantly reduced
survival, reminiscent of the failure to thrive observed in patients with IPD. In fact,
Caron’s research group has recently acknowledged that the DAT KO mouse is not
the most appropriate model for ADHD, and are perhaps most useful for studying [PD
(MG Caron, personal communication). The DAT KO is merely an example, however,
it serves as a useful reminder to keep an open mind regarding the disease-
applicability of our findings.

In conclusion, we have successfully modeled a rare, highly penetrant DAT
coding variant derived from human ADHD subjects. DAT Val559 mice display
several phenotypes predicted by previous in vitro characterization of the mutant
transporter, including spontaneous, basal DA efflux and altered response to AMPH.

This new model has also allowed us to begin characterizing the impact of DAT
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Val559 on animal behavior. DAT Val559 mice show reduced AMPH-induced
locomotor stimulation, as well as an as yet unexplained hyper-reactive darting
phenotype. Our findings also point towards alterations in DA signaling, most likely
dysregulation of D2 autoreceptor signaling. The DAT Val559 mouse represents the
first construct-valid mouse model for ADHD and has promise as a useful tool for

studying dopaminergic dysfunction relevant to ADHD.
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APPENDICES

In addition to the data presented in Chapters 2-5, which has been submitted

for publication, I have pursued several other studies. Although these findings are

not published, they have informed previous and ongoing efforts.

Appendix 1: Identification of New DAT Coding Variants

Appendix 2: In Vitro Characterization of V24M hDAT

Appendix 3: Preliminary Behavior Experiments on DAT Val559 Mice
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APPENDIX 1

IDENTIFICATION OF NEW DAT CODING VARIANTS

Past efforts in the Blakely lab have involved screening of the coding sequence
and exon-adjacent regions of human subjects diagnosed with ADHD (Mazei-Robison
et al., 2005). In a continuation of those efforts, we continued screening human
subjects diagnosed with either ADHD or bipolar disorder.

ADHD and Bipolar Disorder Screening

Our collaborators, Dr. Irwin Waldman at Emory University and Dr. John
Kelsoe at University of California, San Diego, provided us with collections of genomic
DNA samples from 192 ADHD (Waldman) and 418 bipolar disorder (Kelsoe)
probands. Using the methods described previously (Mazei-Robison et al., 2005),
and with the aid of a postdoctoral fellow in the lab, Dr. Leah Miller, I screened the 14
coding exons of the DAT gene. The results of these efforts are summarized in Tables
6 and 7.

It is important to note that our initial screening step merely identifies the
presence of a single nucleotide polymorphism (SNP), and the identity of the SNP is
subsequently determined by sequencing. Therefore, we detect synonymous (non-
coding) variants as well.

As the tables indicate, the frequency of most of these SNPs is quite low (less
than 1%). As these are non-coding SNPs, it is unlikely that these rare, synonymous

mutations contribute to any great degree to disease risk. However, several non-
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SNP Base Pair Amino Acid Allele Freq. Subject Freq.

2 G/A 198 V24M 0.26% 0.52%
CIT 242 - 0.26% 0.52%
GIT 278 - 1.04% 1.56%

4 C/A -12 - 7.03% 11.46%

6 CIT 938 - 0.78% 1.56%

9 AIG 1343 - 8.33% 13.54%

10 G/A -21 - 6.25% 9.90%

13 CIT 1859 - 0.78% 1.56%

Table 6. Summary of SNPs in DAT coding region identified in 192 probands

diagnosed with ADHD.
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SNP Base Pair Amino Acid Allele Freq. Subject Freq.
2 CIT 242 - 4.78% 2.51%
GIT 278 - 0.48% 0.24%
CIT 290 - 0.24% 0.12%
4 C/A -12 - 27.75% 16.63%
CIT 674 - 0.24% 0.12%
6 CIT 938 - 0.24% 0.12%
8 CIT +33 - 0.24% 0.12%
9 AIG 1343 - 28.71% 17.34%
10 G/A -21 - 23.21% 13.04%
11 G/A +14 - 0.96% 0.84%
13 CIT 1820 - 0.24% 0.12%
CIT 1859 - 0.72% 0.36%
14 AIT -18 - 0.24% 0.12%

Table 7. Summary of SNPs in DAT

diagnosed with bipolar disorder.

coding region identified in 418 probands
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coding variants occur at a much higher frequency and differ between the ADHD and
bipolar subject populations. To date, however, there is no indication that these
variants contribute lead to any perturbation in DAT expression or function. One new
coding SNP, Val24Met, was identified in this screen as well. Further information
regarding Val24Met hDAT follows.

Identification of Val24Met hDAT

One new coding variant was identified and confirmed during screening of
ADHD probands. This particular SNP generated a new restriction fragment length
polymorphism (RFLP) that allowed for the creation of a small, one-generation
pedigree (Fig. 28). I demonstrated that Val24Met is an inherited mutation, being
transmitted by the father. Further clinical information regarding the ADHD-like

characteristics of the father was unavailable.
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Figure 28. V24M DAT is
transmitted from the
father to the affected
subject. (A) V24M
introduces a new
restriction enzyme site
into exon 2. RFLP
analysis reveals the
presence of the novel
restriction site, and
therefore the presence
of V24M hDAT, in the
affected proband and
his father, but not in
his mother or
unaffected sibling.
RFLP analysis allows
for the generation of a
small pedigree (B)
demonstrating this
transmission pattern.



APPENDIX 2

IN VITRO CHARACTERIZATION OF V24M HDAT

Having identified a novel coding variant, V24M, in an ADHD proband
(Appendix 1), efforts turned to characterizing the functional implications of the
mutation. Initial characterization of V24M hDAT transfected in cultured cells
revealed that total and surface protein expression (assayed via cell-surface
biotinylation and subsequent immunoblotting) were unaffected by the mutation
(Fig. 29A). Furthermore, DA transport was equivalent in the mutant (Fig. 29B).
These findings suggested that V24M is a tolerated mutation and does not affect DAT
function.

SIFT Analysis and Systematic Mutation of Val24

The N-terminal tail of DAT contains several phosphorylation sites that
regulate transporter function. It is also the site of interaction between DAT and
several other proteins (reviewed in Chapter 1). Although V24M appears to have
little impact on DAT function, I wanted to explore the significance of Val24 for N-
terminal functionality.

In order to inform my experimental design, I used the computer algorithm
SIFT (Sorting Intolerant From Tolerant) to predict the effect of various mutations
(Ng and Henikoff, 2001, 2006; Kumar et al, 2009). Briefly, SIFT performs an
iterative BLAST search for all protein sequences homologous to the target protein,

DAT. Based on the frequency of variation at specific amino acid locations in

147



B Vv24Mm

Total Surface
Protein Expression

o Normalized Protein Expression >

N
=]
g

-
0

2
. >

= hDAT-WT

DA Transport Rate
(pmol/min)
=
o

o
e .

4 hDAT-V24M
0 . ' . ' . .
0 1 2 3
[DA] (uM)

Figure 29. V24M displays normal (A) total and surface protein expression (n = 3
independent experiments; P > 0.05, two-tailed t-test) and (B) transport kinetics (n =
3 independent experiments; P > 0.05, two-way RMANOVA).
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homologous proteins, SIFT calculates the probability that a given amino acid
substitution will have a deleterious effect on protein function. SIFT analysis
predicted that amino acid position 24 could accommodate any amino acid
substitution except for tryptophan.

Although most residues were predicted to be tolerable, I proceeded to use
site-directed mutagenesis to introduce non-conservative mutations into amino acid
position 24. I generated a series of V24 mutants by mutating the native valine to
cysteine, aspartate, phenylalanine, lysine, threonine, and tryptophan. DA transport
in all of the mutants except for V24C and V24K was significantly elevated relative to
WT hDAT, with V24W showing the greatest increase in DA transport (Fig. 30). It
seems that SIFT’s prediction of “deleterious” effect on protein function is
misleading; V24W hDAT appears to have increased transport function.

Effect of V24 Variation on DAT Regulation

After demonstrating that mutation of Val24 increases transport, I wanted to
see if DAT regulation was affected. In cultured cells, treatment with AMPH or PMA
induces DAT internalization and, as a result, reduced transport function. I tested the
effects of AMPH and PMA on DA transport in DAT Val24 mutants transfected and
expressed in cultured cells. Upon AMPH treatment, all V24 variants except for V24D
were significantly down-regulated, similar to WT DAT (Fig. 31A). It is thought that
DAT regulation by AMPH requires PKC activity (Kantor and Gnegy, 1998; Saunders
et al.. 2000). Interestingly, aspartate substitutions are frequently used to mimic
phosphorylation. My findings support the notion that addition of the phosphate

group at the N-terminal tail is required for DAT internalization.
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Since AMPH-induced internalization of the V24 hDATSs is mostly intact, I was
surprised to find that PKC activation by PMA did not induce downregulation, except
for V24C (Fig. 31B). This finding suggests that Val24 may be important for PMA
activation of PKC, as replacement of V24 abolishes PKC-mediated downregulation.
It must be noted that AMPH and PMA exert their effects primarily through DAT
internalization; reduction of DA transport is merely a proxy for DAT internalization.
Further studies that directly look at DAT trafficking (i.e. biotinylation studies), may

offer more insight as to the effects of mutation of Val24.
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Figure 30. V24 mutants display significantly elevated DA transport relative to WT.
(A) Saturation analysis reveals altered transport kinetics, and (B) all V24 mutants
except for V24C and V24K transport significantly more DA than WT DAT (n = 3-4
independent experiments per V24 mutant; overall P < 0.05, post hoc tests (Tukey’s
multiple comparisons test) reveals * = P < 0.05, *** = P < 0.001, and **** = P < 0.0001
for V24 mutant vs. WT DAT comparison; one-way ANOVA).
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Figure 31. Regulation of V24 DAT mutants by AMPH and PMA. (A) All DATs except
for V24D are appropriately downregulated by AMPH treatment (n
independent experiments per V24 mutant; overall P > 0.05, post-hoc tests reveal

that * = P < 0.05 for WT vs. V24D comparison; two-way ANOVA).
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APPENDIX 3

PRELIMINARY BEHAVIOR EXPERIMENTS ON DAT VAL559 MICE

Throughout the course of behavioral characterization of the DAT Val559
mice, | preformed preliminary experiments on a number of different paradigms,
then conducted more thorough experiments on those that were most relevant. This
appendix will present those preliminary behavior findings.

Cliff Avoidance Reaction

Impulsivity is a key feature of ADHD, and has been defined as a lack of
behavioral inhibition. In animal testing paradigms, premature, mistimed, and/or
difficult to suppress behaviors are considered to reflect impulsivity (Dalley et al.,
2008; Eagle and Baunez, 2010). A simple test of impulsivity involves placing a
mouse atop a raised platform and assessing how mice explore the edge of the
platform (Yamashita et al., 2013). Mice typically balance their exploratory
tendencies with a desire to remain safe and therefore avoid the edge of the elevated
platform. This edge avoidance behavior has been termed the cliff avoidance
reaction. I performed this assay with DAT Val559 mice to test for obvious signs of
impulsivity and observed no differences in latency to fall (Fig. 32A) or the rate of
head dips over the edge of the cliff (Fig. 32B), suggesting that DAT Val559 mice do

not impulsively explore the edge of the cliff.
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Figure 32. DAT Val559 mice do not differ from WT controls in either (A) latency to
fall +/- SEM (n = 13 WT, 7 het, 14 homo; P > 0.05, one-way ANOVA) or (B) number
of head dips per 10 seconds +/- SEM (n = 15 WT, 16 het, 16 homo; P > 0.05, one-way
ANOVA) in the cliff avoidance test.
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Novel Object Recognition

The novel object recognition (NOR) paradigm is a test of cognitive function
that addresses learning and memory and preference for novelty (reviewed in
Antunes and Biala, 2012). Briefly, the test involves exposing mice to two identical
objects for a brief period, then after a delay, replacing one of the familiar objects
with a novel object. Mice can then explore both objects; normal mice typically
explore the new object, as they have learned that the familiar object does not offer
any particular advantage. DAT Val559 mice display a small but non-significant
increase in preference for the novel object (Fig. 33), however, WT mice do not show
an object preference, so interpretation of these data is not clear. It is important to
note that NOR was tested during the light phase of the light/dark cycle, so the lack of
novelty preference may be partly attributable to reduced activity of the animals.
Performing NOR during the dark phase and/or using DAT Val559 animals that have
been backcrossed to the more behaviorally robust C57BL/6] background strain is a
worthwhile experiment to pursue.

Prepulse Inhibition

Prepulse inhibition (PPI) of acoustic startle is a dopamine-sensitive behavior
(Koch, 1999; Ralph et al.,, 2001; Powell et al., 2008; Wong et al., 2012) in which the
acoustic startle response is reduced by a lower-intensity stimulus preceding the
startle stimulus. DAT Val559 mice show no PPI deficits at any of the prepulse
intensities tested (Fig. 34), suggesting that startle circuitry through the VTA is

intact. However, AMPH is known to disrupt PPI (Swerdlow et al., 1990). Since DAT
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Figure 33. DAT Val559 mice do not differ from WT mice in their performance on the
novel object recognition task. NOR performance is indexed as the percent of trial
time (10 minutes) +/- SEM spend exploring the novel and familiar objects n = 8 per
genotype, P > 0.05, two-way ANOVA).
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Figure 34. DAT Val559 mice display no deficits in prepulse inhibition compared to
WT controls. PPl is displayed as the percentage +/- SEM of the startle response that
can be inhibited by the presence of a prepulse (n = 16 per genotype, P > 0.05, two-
way ANOVA).
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Val559 mice show significantly altered response to AMPH, examining its effects on
PPl is certainly warranted.

Home Cage Monitoring

Although we did not observe locomotor hyperactivity during open field
testing, we still wanted to analyze the behavior of DAT Val559 mice in a familiar
environment to remove any potential caveats of apparatus novelty. I used the home
cage monitoring system (HCM) to record and annotate the behavior of individual
mice over a period of three days. Mice were singly housed to establish a “home
cage”, then recorded within a climate-controlled incubator to limit the effect of any
experimenter intervention. HCM returns an enormous volume of data, including
locomotor activity, rearing behavior, hanging from the wire cage insert, sleeping,
eating, drinking, and grooming. Over the course of three days, DAT Val559 mice do
display a slight increase in total locomotor behavior (Fig. 35A), driven largely by
increased locomotion during the dark (active) phase (Fig. 35B). Locomotor activity
during the light period did not differ among genotypes (Fig. 35C).

Throughout our various open field activity recordings, we observed a
significant reduction in rearing behavior in DAT Val559 mice. HCM recordings
reveal a similar phenotype - rearing activity is consistently reduced in DAT Val559
animals, regardless of light/dark phase (Fig. 36). As discussed in Chapter 4,
downregulation of D2 receptors offers a potential mechanism for this behavioral
finding. These HCM findings confirm a reduction of rearing activity and lend
support to the notion that DAT Val559 leads to desensitization of D2 receptors in

the brain.
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[t is important to note that this experiment is extremely underpowered -
only three homozygous animals were included in the experiment. Future
experiments must first focus on replicating the current findings in additional

homozygous animals.
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Figure 35. DAT Val559 mice display small, insignificant increases in locomotor
behavior during (A) the total 3-day recording, or (B) dark and (C) light phases. Due
to the low number of homozygous animals, differences in locomotor behavior are
not statistically significant (n = 10 WT, 11 het, 3 homo; P > 0.05, one-way ANOVAs).
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Figure 36. DAT Val559 mice display reduced rearing behavior in the home cage
environment during (A) the total 3-day recording period, or (B) dark and (C) light
phases. Due to the low number of homozygous animals, the difference in rearing
behavior is not statistically significant (n = 10 WT, 11 het, 3 homo; P > 0.05, one-way
ANOVAs).
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