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CHAPTER I 

 

INTRODUCTION 

 

 DNA replication is the fundamental process for all living organisms to 

duplicate their genomes. From prokaryotes to eukaryotes, DNA replication is 

central to cell proliferation, and adopts a semiconservative mode to maintain high 

degree of conservation of the genetic material. Precise coordination and 

regulation mechanisms exist to guarantee the faithful transmission of the parental 

DNA information to daughter cells. This dissertation will focus on the structural 

and biochemical characterization of the oligomeric state of one essential protein 

in DNA replication, the minichromosome maintenance protein 10 (Mcm10). This 

work may provide a better understanding of the mechanism of DNA replication 

and replication-related diseases, including cancer. 

 

Cell cycle 

 DNA replication occurs at a precise time in the cell cycle. The cell cycle in 

prokaryotic cells is achieved by the binary fission process. In eukaryotes, the cell 

cycle consists of interphase (G1, S, and G2 phases), and M phase (mitosis, cell 

division). G0 phase refers to the state of quiescence when cells have temporarily 

or reversibly stopped dividing. Checkpoints exist to ensure temporal accuracy, 

verify whether each phase of the cell cycle has been accurately completed 

before progression into the next phase and ensure that the cell does not continue 
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in the cell cycle in the presence of DNA damage or inappropriately attached 

kinetochores (Figure 1). G1 (Gap 1) phase is the growth phase when all 

biosynthetic activities of the cell reach a high rate, although there are differences 

in cell cycle durations across species and cell types. For example, some 

organisms such as S. pombe, have essentially no G1 phase and do all of their 

growing in G2 phase (Oliva 2005). Also, early embryonic cell cycles often omit 

G1 and G2 phases to quickly proceed through rounds of S phase and mitosis. 

Proteins and enzymes are formed in G1 phase to prepare for DNA replication 

(Garrett 2013). The G1 checkpoint control mechanism ensures accuracy for entry 

to the next phase, S phase. DNA replication happens during S (synthesis) phase. 

A single chromosome is replicated into two identical copies called sister 

chromatids. This process requires coordination of multiple protein players to form 

the replisome. G2 phase is the gap between DNA synthesis and mitosis. The 

cells continue to grow and G2 checkpoint ensures the cells are ready to enter M 

phase. During mitosis, eukaryotic cells separate the duplicated chromosomes in 

two identical sets into two daughter cells: the sister chromatids separate and 

each chromatid is linked to only one pole via kinetochore microtubules; the 

individual chromatids are then drawn to the poles as the kinetochore 

microtubules shorten. The metaphase checkpoint in the middle of mitosis 

ensures that the cell has achieved correct bipolar attachment of all 

chromosomes. 
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Figure 1. Cell cycle schematic. The red arrows indicate checkpoints. (Figure 
adapted from personal website of Eishi Noguchi, 
http://eishinoguchi.com/checkpoint.htm) 
 

DNA replication 

Overview 

 The basic mechanism of DNA replication is conserved from prokaryotes to 

eukaryotes. The double-stranded DNA is separated into single-strands, and each 

strand serves as a template for the complementary strand to be synthesized 

based on base pair matching through hydrogen bonding (A-T and C-G). DNA 

replication starts at specific locations on the chromosome, known as origins of 

replication. When dsDNA unwinds, two replication forks are formed, with multiple 

proteins associated to help with replication (Figure 2). The dsDNA is unwound by 

the helicase into two complementary single strands. Exposed ssDNA is stabilized 

by single strand binding proteins. DNA synthesis cannot start de novo. Primase 
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synthesizes short 8-12 nt RNA primers, which are then extended by polymerase 

α to about 30 nt to serve as the initiation primer for new DNA synthesis. A single 

priming event is sufficient for the leading strand, while multiple priming events are 

needed on the lagging strand. DNA synthesis always occurs in the 5' to 3' 

direction, which is continuous on the leading strand, and by short segments 

(1,000-2,000 nucleotides long in E. coli, 100-200 nucleotides long in eukaryotes) 

on the lagging strand, known as Okazaki fragments. Positive supercoiling tension 

is built up ahead of the helicase and needs to be released by topoisomerase. 

The nicks between the Okazaki fragments are then sealed by DNA ligase. The 

initial RNA primer is removed by nucleases such as FEN1, RNase I and Dna2. 

 

 

Figure 2. DNA replication fork (Figure adapted from Garrett and Grisham 2013). 
The primer and Okazaki fragments are not to scale. 
 

 DNA replication is divided into three stages: initiation, elongation, and 

termination. Initiation refers to the process in which a cell recruits and assembles 

http://en.wikipedia.org/wiki/Nucleotides
http://en.wikipedia.org/wiki/Escherichia_coli
http://en.wikipedia.org/wiki/Eukaryote
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multiple proteins into a macromolecular machine, the replisome. Elongation is the 

stage during which bulk DNA synthesis occurs. The proteins mentioned above 

are actively involved during elongation. When replication forks travelling in 

opposite directions meet one another, indicating that all DNA in between the 

origins of these forks has been successfully copied, the elongation process is 

terminated. These three fundamental steps apply to all forms of life, with 

variations and complexity in different forms. In this chapter, the mechanisms of 

DNA replication in all three kingdoms of life will be discussed individually. One 

advantage of studying bacterial, phage/viral, and archaeal replication is the fact 

that the enzymes can be purified for in vitro studies. Also, lower organisms 

usually require simpler protein machineries. For example, some of the protein 

complexes that are heteromeric in eukaryotes are homomeric in prokaryotes.  

 

Prokaryotic Replication 

 In the bacterial chromosome, there is typically one single origin of 

replication, oriC. In Escherichia coli, the most thoroughly studied model organism 

for bacterial DNA replication, oriC is approximately 250 base pairs in length and 

contains multiple sequence-specific binding sites for the initiator protein DnaA, 

named DnaA boxes (reviewed in Mott 2007). DnaA binds to the DnaA box 

consensus sequence 5'-TTATCCAC-3' with high affinity (Schaper 1995). In the 

presence of ATP, DnaA also binds to "I sites", which are found interspersed 

among the DnaA boxes. The "I sites" differ subtly from the DnaA box consensus 

element. DnaA also binds to the "ATP-DnaA boxes" in the presence of ATP, 



6 
 

which lie within an AT-rich DNA-unwinding element (DUE) composed of three 13-

mer repeats. At the onset of DNA replication initiation, DnaA binds with oriC. As 

DnaA localizes to oriC, it homo-oligomerizes to form a large nucleoprotein 

complex, which is visible by electron microscopy (Funnell 1987). DnaA assembly, 

along with negatively supercoiled DNA and nucleoid architectural factors, 

facilitate DNA melting which generates single-stranded DNA, followed by 

helicase loading and further assembly of the replisomal machinery. Inactivation 

of DnaA is achieved by stimulation of ATP hydrolysis upon replisome assembly. 

The lack of ATP induces rearrangements in the AAA+-specific motifs in DnaA, 

resulting in the dissociation of the oligomeric complex (reviewed in Mott and 

Berger 2007).  

 The helicase DnaB is recruited to the melted DNA in the form of a 

hexamer, with the help of six DnaC proteins (Caruthers 2002). Single-strand 

DNA binding protein (SSB) binds to the exposed ssDNA. SSB in bacteria is a 

homotetramer. Each monomer contacts DNA through an 

oligonucleotide/oligosaccharide (OB) fold and achieves protein-protein interaction 

through an acidic C-terminal domain (Raghunathan 1997; Raghunathan 2000). 

Primase (DnaG) then primes the unwound DNA as template for DNA synthesis. 

 During elongation, DNA polymerase III is loaded onto primed DNA (Corn 

2006). The catalytic mechanism of DNA polymerase III involves the use of two 

metal ions in the active site. While new DNA synthesis is continuous on the 

leading strand, on the lagging strand, many RNA primers are needed, and many 

short fragments known as Okazaki fragments are synthesized. These RNA 
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primers on Okazaki fragments are then degraded by RNase H and DNA 

polymerase I. RNase H is a non-specific endonuclease and catalyzes the 

cleavage of RNA via a hydrolytic mechanism. It cleaves the 3'-O-P bond of RNA 

in a DNA/RNA duplex to produce 3'-hydroxyl and 5'-phosphate terminated 

products. The nicks between Okazaki fragments are fixed by ligase. As the 

helicase unwinds the DNA, topoisomerase/gyrase is needed to break the DNA to 

relieve the positive supercoiling tension and then re-anneals the lesion 

(Cozzarelli 1980).  

 In E. coli, DNA replication is terminated when the two opposing replication 

forks physically collide 180 degrees opposite from the origin on the circular 

chromosome (Dalgaard 2009). When one fork is slowed or stopped and the 

replication fork from the right hemisphere starts to replicate the left hemisphere in 

the wrong direction, the fork collides with the Tus protein, which binds to the cis-

acting Ter elements on the chromosome. However, the tus gene is not 

conserved among bacteria, and tus mutants lack measurable phenotypes. The 

rationale for the large number of Ter copies and their distribution over such a 

large portion of the chromosome is poorly understood. Hendrickson and 

Lawrence used bioinformatics techniques and found that in both E. coli and 

Bacillus subtilis, changes in mutational bias patterns indicated that replication 

termination most likely occurs at or near the dif site, located 180 degrees from 

the origin. They suggested that the Ter site might participate in halting replication 

forks originating from DNA repair events, and not those originating at the 

chromosomal origin of replication (Hendrickson 2007).  
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Bacteriophage Replication 

 Bacteriophages (prokaryotic viruses) provide a unique and useful model 

system for the study of DNA replication (reviewed in Weigel 2006). Genes 

encoding replication functions tend to be located close to each other in many 

phage genomes, known as "replication modules". There are virulent phages that 

are only lytic (e.g., T4 phage), and temperate phages that can be both lytic and 

lysogenic (e.g., phage lambda of E.coli). In the lytic cycle, the host (bacterial 

cells) are lysed and destroyed immediately after phage replication, whereas the 

lysogenic cycle allows the host and phage to co-exist initially through integration 

or circularization of the viral genome until environmental factors trigger the lytic 

cycle, such as the depletion of nutrients.  

 Unlike prokaryotic and eukaryotic replication, phage replication can utilize 

multiple mechanisms to prime replication depending on the virus and the 

situation. There are four mechanisms known: 1) the 3'-OH end of nicked dsDNA 

in the rolling-circle replication (RCR) mechanism; 2) the 3'-OH end of a short 

RNA primer synthesized by primase in the theta(θ)-type DNA replication; 3) the 

transcripts that remain bound to the templates; and 4) the 3'-end of ssDNA 

invading a duplex in recombination-dependent DNA replication (RDR) (reviewed 

in Weigel and Seitz 2006). 

 Bacteriophage T7, an obligate lytic phage that infects E. coli (Dunn 1983; 

Studier 1983), is a model system to study bacteriophage replication. In fact, since 

there are only a few proteins involved in bacteriophage T7 replication, it is a 

convenient model to study the dynamics of a minimal replication fork (Doublie 
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1998). The important proteins involved in T7 viral DNA synthesis include a 

hexameric T7 primase-helicase that unwinds and primes the DNA, a T7 single-

stranded DNA binding protein that binds unwound ssDNA, an 80 kDa T7 DNA 

polymerase, and E. coli thioredoxin as a processivity factor that prevents 

polymerase from dissociating from the DNA template. The polymerase structure 

resembles an open right hand, with mostly alpha helices important in nucleotide 

recognition. The thumb domain binds to thioredoxin, with catalytic activity 

contributed by the fingers domain and DNA cradled by the palm domain. The 3'-

5' exonuclease domain is important for the proofreading function of the 

polymerase. The crystal structure of T7 DNA polymerase bound to thioredoxin, a 

primer template, and a nucleotide triphosphate has been determined. The 

complex showed an unprecedented closed conformation of the polymerase 

active site that allows catalytically important, conserved residues to engage the 

incoming nucleotide. Two aspartate residues that are strictly conserved in the 

Polymerase I family, and that have homologues in other DNA polymerases and 

in RNA polymerases, ligate two metal ions in the polymerase active site in 

positions that are consistent with a two-metal mechanism of phosphoryl transfer 

(Doublie 1998).  

 

Eukaryotic Replication 

 Eukaryotes have a much more complex DNA replication process and 

machinery compared to prokaryotes. Complex arrays of proteins are assembled 

and reorganized. Sophisticated regulatory mechanisms exist to coordinate the 
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initiation, elongation, and termination processes of DNA replication. Eukaryotic 

replication also requires initiation at multiple origins to duplicate the large 

genomes. DNA replication in higher eukaryotes has high plasticity. Fertilized 

eggs of amphibians replicate the entire genome within a matter of 20-30 min, 

whereas the genome replication in somatic cells takes 8-10 hours. The former 

requires very frequent initiation through utilization of virtually all the potential 

origins, while the latter only has spatially and temporally regulated origin firing 

(reviewed in Masai 2010).  

 

SV40 Replication 

 Simian virus 40 (SV40), a polyomavirus that is found in both monkeys and 

humans, is a well-studied model system for eukaryotic DNA replication. The 

SV40 genome is a circular duplex DNA with a single replicon. SV40 is a simple 

but powerful model to study eukaryotic DNA replication due to its association with 

host histones in nucleosomes and its dependence on the host cell milieu for 

replication factors and precursors. SV40 DNA replication requires only one viral 

protein, the large tumor antigen (T-antigen), and all other components originate 

from the cell. The T-antigen functions as an initiator protein that binds to the 

origin of replication, and also as a helicase that unwinds duplex DNA (reviewed 

in Waga 1998). Replication protein A (RPA) binds to unwound single-stranded 

DNA. The T-antigen-RPA complex binds DNA polymerase α-primase, which 

synthesizes a short primer at the replication origin (Bullock 1989; Matsumoto 

1990; Bullock 1991; Murakami 1992). Further processive replication is achieved 
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by proliferating cell nuclear antigen (PCNA), its loader replication factor C (RFC), 

and polymerase δ. Despite the conservation, there are several major differences 

between the SV40 and host DNA replication mechanisms (reviewed in Fanning 

2009). SV40 encodes its own DNA helicase, the large tumor antigen (Stahl 

1986); while chromosomal replication employs the Cdc45/Mcm2-7/GINS helicase 

(Moyer 2006). SV40 replication does not use DNA polymerase epsilon (Zlotkin 

1996; Pospiech 1999), which is important for chromosomal replication (Seki 

2006; Shikata 2006). Also, SV40 DNA replicates during the S/G2 phase, but 

CDK-phosphorylated DNA polymerase alpha-primase cannot support viral DNA 

replication in a cell-free reaction (Ott 2002), suggesting the SV40 DNA replication 

requires the cellular environment and protein factors from the host cell. 

Importantly, SV40 and polyomavirus infection induce DNA damage signaling that 

promotes viral DNA replication (Wu 2004; Dahl 2005; Shi 2005; Zhao 2008), but 

ordinarily inhibits chromosomal replication and cell cycle transitions (Cimprich 

2008; Lavin 2008; Fanning and Zhao 2009).   

 

Initiation  

 Eukaryotes define the site of initiation on the genome through binding of  

the origin recognition complex (ORC). There is extensive variation in terms of 

sequence preference for origins in different organisms (reviewed in Masai 2010). 

Budding yeast ORC specially recognizes the 11-bp or 17-bp conserved 

sequence, the ARS consensus sequence (Palzkill 1988; Marahrens 1992; Theis 

1997). Fission yeast ORC and Drosophila ORC preferably bind to AT-rich 
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sequence (Chuang 1999). In mammalian cells, the ORC binding sequences 

usually are AT-rich (Altman 2004; Paixao 2004; Wang 2004), with dinucleotide 

repeats (Altman and Fanning 2004), asymmetrical purine-pyrimidine sequences 

(Wang 2004), and matrix attachment region (MAR) sequences (Debatisse 2004; 

Schaarschmidt 2004), but it has been impossible to define specific required 

sequence elements. 

 Potential sites of replication initiation are defined through ORC binding. 

Once origins are identified, a ring-shaped complex of six minichromosome 

maintenance proteins, Mcm2-7, are loaded onto the chromosome with the help of 

Cdc6 and Cdt1 (reviewed in Blow 2005): events that define the formation of pre-

RC (pre-replication complex). Current models posit that there are excess 

numbers of pre-RCs on the genome as potential origins, but only some of them 

are actually used for initiation (Edwards 2002; Hyrien 2003). The mechanism 

through which certain origins are activated is still unknown, but it could be 

caused by the effects of transcriptional units (Snyder 1988; Haase 1994; Saha 

2004), topology (Dayn 1992), the availability of single-stranded thymine-rich DNA 

(You 2003), and origin interference effects from adjacent loci (Brewer 1993; 

Tadokoro 2002; Lebofsky 2006). Studies using DNA fiber autoradiography and 

fluorescence microscopy showed that fast fork rates are associated with less 

frequent origin initiation, and slow fork rates are associated with more frequent 

initiation (Taylor 1977; Anglana 2003; Gilbert 2007). 

 Mcm2-7 forms a heterohexameric complex, which is the core of the DNA 

replication helicase. The loading of Mcm2-7 is ATP-dependent and requires 
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ORC, Cdc6 and Cdt1. Remus et al used electron microscopy to show 

Cdt1•Mcm2-7 form a single heptamer. Mcm2-7 double hexamers are loaded 

head-to-head and connected via their N-terminal rings. Mcm2-7 can slide 

passively along double-stranded DNA, which runs through the channel in the 

center (Remus 2009). The eukaryotic Mcm2-7 double hexamer structure is 

similar to that of the archaeal helicase MCM, which is thought to be the 

evolutionary precursor (Fletcher 2003; Liu 2009). However, the archaeal complex 

consists of six copies of a single protein, while the Mcm2-7 complex is a 

heterohexamer with six distinct, but related subunits. 

 Eukaryotic DNA replication initiation is a precisely regulated event that 

requires the ordered assembly of multiple protein complexes at replication 

origins. DNA replication needs to occur only once per cell cycle. The origin is 

licensed once Mcm2-7 is loaded onto DNA. Cells regulate and prevent origin re-

licensing (licensed twice in one cell cycle) in yeast through control of cyclin levels 

(reviewed in Blow and Dutta 2005), including rapid CDK-dependent destruction 

of the Cdc6/Cdc18 protein during the S phase (reviewed in Masai 2010). In 

metazoa, re-licensing is mainly prevented through regulation of Cdt1 activity by 

degradation of its specific inhibitor, geminin (Blow and Dutta 2005; Arias 2007). 

Another approach may be the degradation of Orc1 by ubiquitin-dependent 

proteolysis (Mendez 2002; Ohta 2003) and inhibition of re-association of the 

MCM complex to chromatin (reviewed in Masai 2010). 

 Cdt1 and geminin help coordinate replisome assembly with the cell cycle. 

Cdt1 is loaded onto chromatin with the help of ORC and Cdc6 (Bell 2002; Fujita 
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2006). Geminin prevents the loading of Mcm2-7 onto DNA (re-licensing) by 

binding to Cdt1 (McGarry 1998; Wohlschlegel 2000; Tada 2001; Yanagi 2002; 

Lee 2004; Saxena 2005). The protein levels of Cdt1 and geminin oscillate 

throughout the cell cycle. Cdt1 level is high in G1 phase and M-G1 phase, but 

low in S phase (Nishitani 2001); whereas geminin is low in G1 phase, but high in 

S, G2, and M phases. Cdt1 is strictly eliminated during the S phase by two 

regulation mechanisms to prevent re-licensing. During S phase, Cdt1 is 

degraded by ubiquitination-dependent proteolysis in a CDK-dependent manner 

or through interaction with proliferating cell nuclear antigen (PCNA), with the 

remaining Cdt1 inhibited by geminin (Takeda 2005; Arias 2006; Fujita 2006; 

Nishitani 2006; Senga 2006; Xouri 2007; Xouri 2007).  

 At the onset of S phase, Mcm2-7 is activated through two important 

phosphorylation events by cell-cycle dependent kinases: cyclin-dependent kinase 

(CDK) and Dbf4-dependent kinase (DDK) (Stillman 2005; Sclafani 2007). In 

yeast, CDK phosphorylates Sld2 and Sld3, and facilitates their binding to Dpb11 

(Tanaka 2007; Zegerman 2007), whereas DDK directly phosphorylates Mcm2 

and Mcm4 (Lei 1997; Sheu 2006). In S. pombe, Mcm10 interacts with both the 

Mcm2-7 complex and Dfb1-Hsk1 (homolog of Dbf4-Cdc7 in S. cerevisiae). The 

N-terminus of Mcm10 was found to interact directly with Dfp1-Hsk1 and was 

essential for phosphorylation of the Mcm complex. Truncated derivatives of 

Mcm10 that complemented the temperature-sensitive phenotype of Mcm10 

mutant cells also stimulated the phosphorylation of the Mcm2-7 complex (Lee 

2003). These phosphorylation events may induce a conformational change to 
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allow for the association of other critical factors to activate a latent helicase 

activity, or allow for an isomerization of the pre-assembled complexes to achieve 

such a switch (Ilves 2010). Research has also shown that Drosophila Mcm2-7 

helicase is activated in complex with Cdc45 and the four GINS proteins (Sld5, 

Psf1, Psf2, and Psf3) (Bochman 2008; Ilves 2010), forming the CMG complex 

(Wohlschlegel 2002; Moyer 2006; Pacek 2006). Assembly of the CMG complex 

in human cells requires the Ctf4/And-1, RecQL4, and Mcm10 proteins (Im 2009). 

RecQL4 is a homolog of Sld2, and is required for DNA replication also in 

Xenopus and Drosophila (Sangrithi 2005; Wu 2008). Ctf4/And-1 is required for 

sister chromatid cohesion in yeasts (Hanna 2001), and is also essential for the 

chromatin binding of DNA polymerase α and for DNA replication initiation in 

mammalian cells (Zhu 2007). Mcm10 loads at the onset of S phase, and 

therefore serves an important role to subsequently load other proteins in the 

process. 

  Cdc45 and GINS are not only required for the initiation, but also the 

elongation stage of DNA replication (Aparicio 1997; Tercero 2000; Kanemaki 

2003; Kubota 2003; Takayama 2003; Pacek 2004; Aparicio 2006; Labib 2007). 

The GINS proteins bind specifically to Mcm4, and enhance DNA substrate 

affinity. DNA unwinding and onset of replication may occur through allosteric 

changes in Mcm2-7, which is contributed by the association of Cdc45 and GINS 

(Ilves 2010). Interestingly, depletion of a Dpb11 homolog in human, TopBP1, did 

not significantly affect CMG complex formation, suggesting that the initiation 

complex assembly may be different in human cells from in yeast cells (Im 2009).
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 During this initiation stage, origin DNA is melted, i.e. double-stranded DNA 

is separated into two single strands. The exact mechanism and timing is not 

known, but the MCM is thought to remodel to surround the single strand DNA. 

DNA polymerase α/primase synthesizes a short RNA to serve as a template for 

DNA replication. Pol α is composed of four essential subunits, named based on 

their molecular weight: p48, p58, p68, and p180 (Sugino 1995). p48 and p58 are 

the primase to synthesize short 7-10 nt RNA primers (Arezi 2000). p68 does not 

have enzymatic activity and is thought to have a regulatory role (Mizuno 1998). 

The p180 subunit has the catalytic DNA polymerase activity and extends the 

primer to ~30 nt (Conaway 1982). Pol α has limited processivity and lacks 3' 

exonuclease activity for proofreading errors (reviewed in Burgers 1998). PCNA, 

the ring-shaped processive clamp, and its clamp loader RFC are then loaded 

onto DNA to help engage the processive polymerases (Garg 2005). Pol δ and pol 

ε, the two processive polymerases, are then loaded to begin bulk DNA synthesis 

(Burgers 2009). Leading strand synthesis is made mainly through pol δ, whereas 

the lagging strand requires pol ε (McElhinny 2008; Pursell 2007). This specificity 

was determined using a mutant polymerase allele whose error rate is higher for 

one mismatch than for its complement, and the strand-specific mutation rates 

strongly depended on the orientation of a reporter gene relative to an adjacent 

replication origin. At this stage, the replisome prepares the DNA to enter the 

elongation stage for bulk DNA synthesis. This replication initiation process is also 

reviewed in Chapter II with a schematic figure (Figure 4) highlighting the steps in 

replisome assembly. 



17 
 

Elongation 

 DNA replication elongation refers to the process during which the 

complementary DNA strand to the template is synthesized. Multiple origins on 

the chromosome will begin the bulk DNA synthesis to ensure the job is done in a 

timely fashion. As described earlier, the lagging strand is synthesized as a series 

of Okazaki fragments. As the synthesis of each Okazaki fragment is completed, 

the RNA primer of the previous fragment must be removed. The RNA primers are 

excised by RNase H1 and then FEN1 in the more common short flap pathway. 

FEN1 removes the small 5′-flap generated by strand displacement synthesis; this 

flap is most often only a mononucleotide in size. If additional initiator RNA is 

present, Pol δ and FEN1 go through iterative cycles of strand displacement and 

small flap cutting, a process called nick translation, until all RNA has been 

degraded. However, FEN1 shows no activity on substrates with long 5′-flaps 

when the flap is coated with RPA or structured, e.g. folded in a hairpin. In this 

long flap pathway, RNA removal is initiated by the Dna2 nuclease/helicase. DNA 

ligase then seals the nicks together (reviewed in Burgers 2009). Another 

important thing is that the supercoil tension generated during DNA synthesis 

needs to be relieved by topoisomerases. Toposiomerase I cuts a single 

backbone on the DNA, enabling the strands to swivel around each other to 

remove the build-up of twists. Topoisomerase II cuts both backbones, enabling 

one dsDNA to pass through another, thereby removing knots and entanglements 

that can form within and  between DNA molecules (Leppard 2005). 

Topoisomerase also mediates the ligation process. 
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Termination 

 Termination is the final stage of DNA replication. In most cases, 

termination simply occurs at the site where two replication forks meet. 

Replication also terminates at the end of the chromosome, the telomere. 

Telomeres are shortened over multiple cell divisions in somatic cells because 

those end regions cannot be fully replicated. In germ cells, telomerase extends 

the repetitive sequence of the telomere region to counteract the loss of DNA that 

occurs during DNA replication. Errors in telomerase activation can lead to 

diseases like cancer. Telomerase activation is associated with tumorigenesis 

because telomere maintenance is required for immortal cellular growth. At the 

end of DNA replication, there are two identical copies of the genome within the 

cell. The cell is ready to enter G2 phase and later M phase through the cell cycle.  

 

Archaeal Replication 

 Archaeal DNA replication machinery is related more closely to eukaryotes 

than to prokaryotes. A subset of the eukaryotic initiation proteins have been 

identified in archaea, while several other eukaryotic initiation factors (e.g., Cdt1, 

Mcm10, and Cdc45) are absent (Grabowski 2003).  

 Most archaea contain one or two copies of ORC/Cdc6 homologs. It is 

unclear whether the homolog(s) function through mechanisms similar to ORC or 

Cdc6, or both. These homologs possess low ATPase activity that can be 

stimulated by origin DNA, PCNA, the MCM helicase, and subunits of polymerase 

(Lee 2000; Giraldo 2003). Similar to the eukaryotic proteins, the archaeal 
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ORC/Cdc6 homologs may also function as helicase loaders. There is at least one 

MCM homolog in all archaea known. Archaea also have a variety of SSB, which 

are more similar to eukaryotic RPA than to bacterial SSBs. Archaea also have 

primase, GINS complex homolog, replicative DNA polymerases, PCNA and RFC 

(reviewed in Barry 2006). Additional unidentified replication initiation factors may 

exist and need to be explored in archaea.  

 The table summarizes the protein machinery in DNA replication across the 

three kingdoms (Table 1). (reviewed in Grabowski and Kelman 2003)  
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Table 1. Initiation and elongation proteins in bacteria, eukarya and archaea. 
(adapted from Grabowski and Kelman 2003)  
 
Initiation 
 Bacteria Eukarya Archaea 

Origin recognition DnaA (one 
subunit) 

Origin recognition 
complex (ORC) (six 
subunits, Orc 1-6) 

ORC/Cdc6a (one 
or two subunits) 

Helicase loader DnaCb/DnaIc 
(one subunit) 

Cdc6 (one subunit) 
together with ORC 

ORC/Cdc6a (one 
or two subunits) 

Replicative 
helicase 

DnaBb/DnaCc 
(one subunit) 

Minichromosome 
maintenance (six 
subunits, Mcm2-7) 

MCM (one 
subunit) 

Elongation 
Single stranded 
DNA binding 
protein (SSB) 

SSB (one 
subunit) 

Replication protein A 
(RPA) (three 
subunits) 

RPA/SSBd (one 
or three 
subunits) 

Primase DnaG (one 
subunit) 

Pol α/primase 
complex (four 
subunits) 

Primase 
homolog (two 
subunits) 

Polymerase/exon-
uclease 
 

Pol III core (three 
subunits) 

Pol δ (three or four 
subunits); Pol ε (five 
subunits) 

Pol B (one 
subunit); Pol De 

(two subunits) 
Clamp loader Γ-complex (five 

subunits) 
Replication factor C 
(RFC) (five subunits, 
Rfc 1-5) 

RFC (two 
subunits) 

Sliding clamp β Proliferating cell 
nuclear antigen 
(PCNA) 

PCNA (one or 
three subunits)f 

Removal of 
primers 

Pol I; RNase H Flap endonuclease I 
(Fen-1); RNase H 

Fen-1; RNase H 

Lagging strand 
maturation 

DNA ligase 
(NAD-
dependent) 

DNA ligase I (ATP-
dependent) 

DNA ligase I 
(ATP-dependent) 

Topoisomerase Type I and II 
Reverse gyraseg 

Type I and II Type I and II 
Reverse gyraseg 

a. In most species. b. In gram-negative bacteria. c. In gram-positive bacteria. d. 
Euryarchaeotal genomes contain one or three RPA homologs while 
Crenarchaeota have a single "SSB-like" protein. e. Only in Euryarchaeota. f. 
Euryarchaeotal genomes contain one PCNA homolog, and Crenarchaeota have 
three. g. Only in hyperthermophilic and some thermophilic organisms. 
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Mcm protein family 

Mcm2-7 

 The mini-chromosome maintenance (Mcm) proteins were initially identified 

in genetic screens in yeast for proteins involved in plasmid maintenance, cell 

cycle progression, and chromosome missegregation (Maine 1984). Mcm proteins 

are related based on sequence similarity (Figure 3) (reviewed in Dutta 1997). 

Deleting any one MCM gene in S. cerevisiae and S. pombe causes lethality 

(Dutta and Bell 1997; Kelly 2000). Hypomorphic mutations in MCM2, MCM3, and 

MCM5 genes cause defective plasmid maintenance (Maine 1984). Other 

separate screens showed MCM4 and MCM7 are important for cell cycle 

progression (Moir 1982; Hennessy 1991), while MCM6 is necessary for 

chromosome segregation (Takahashi 1994). Mcm2-7 form stable sub-

complexes: Mcm 2/4/6/7, Mcm4/6/7, Mcm3/7, and Mcm 3/5 (Ishimi 1997; Lee 

2000; Maiorano 2000; Prokhorova 2000). Although some sub-complexes were 

able to associate with the chromatin independent of the rest parts in the Mcm2-7 

complex, these sub-complexes are Cdt1-independent and cannot associate with 

chromatin in a productive manner even with the addition of other parts in Mcm 

complex in Xenopus egg extract (Bell and Dutta 2002). Therefore, all six Mcm 

proteins are required to load onto DNA for normal replication activity. 

 All Mcm proteins belong to the AAA+ protein family (ATPases Associated 

with various cellular activities) and have conserved ATP binding and hydrolysis 

activity to provide energy for unwinding duplex DNA (Koonin 1993; Bochman 

2007; Bochman and Schwacha 2008).  As described above, Mcm2-7 form head-
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to-head double hexamers during origin licensing. Cdc45 and GINS are loaded to 

form the Cdc45-Mcm2-7- GINS (CMG) complex, which is believed to be the 

active helicase to unwind dsDNA. RNA interference knock-down experiments 

targeting the GINS and Cdc45 components establish that the proteins are 

required for the S phase transition in Drosophila cells (Moyer 2006). 

 

 

 

Figure 3. Schematic alignment of human Mcm2-9 proteins. The highly conserved 
ATPase domain is shown in red. The area corresponding to the Walker A and B 
motifs is shown in orange. Numbers on the left indicate protein length (adapted 
from Maiorano 2006). 
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Archaeal MCM 

 Archaeal MCM forms a homohexamer and functions as the replicative 

helicase (Tye 2000). There is high sequence homology between archaeal MCM 

and eukaryotic helicase Mcm2-7, all of which have ATPase domains. MCM, 

Mcm4, Mcm6, and Mcm7 have zinc motifs for DNA binding. Archaeal MCM was 

reported to be the evolutionary predecessor of eukaryotic Mcm2-9 proteins (Liu 

2009). MCM unwinds DNA with a robust 3' to 5' helicase activity in the presence 

of ATP and Mg2+, possibly by oscillating between an open and a closed ring to 

allow ssDNA loading (Bochman 2009).  

 The crystal structure of N-terminal M. thermautotrophicus MCM (MthMCM) 

showed a head-to-head double hexamer, which is slightly different from the 

eukaryotic Mcm2-7 double hexamer, in that MthMCM is connected primarily by 

interactions near the inner circumference of the N-terminal rings (Fletcher 2003; 

Remus 2009). The structure of full-length MCM complexes is needed to further 

understand its function and mechanism in archaeal DNA replication.  

 

Mcm8 and Mcm9 

 Mcm8 was identified in human in a screen to isolate cancer-related genes 

associated with Hepatitis B integration sites in hepatocellular carcinomas 

(Gozuacik 2003). Mcm9 was identified using BLAST searches for protein 

sequences similar to Mcm2-8 (Lutzmann 2005). Mcm 8 and Mcm9 have now 

been found in human and mouse. Mcm8 localizes to the nucleus, possibly 

through binding to a nuclear protein (Gozuacik 2003). Mcm8 was later shown to 
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co-localize with RPA at replication foci, and it possesses ATP hydrolysis and in 

vitro helicase activity. Maiorano et al have further suggested that Mcm8, instead 

of functioning during initiation, functions in the elongation step of DNA replication 

as a helicase by facilitating the recruitment of RPA34 and stimulates the 

processivity of DNA polymerases at replication foci (Maiorano 2005). However, 

other studies reported the contrary, that Mcm8 has a role in pre-RC formation 

during replication initiation. These studies showed that Mcm8 interacts with ORC 

and Cdc6 in G1 phase, and depletion of Mcm8 by RNAi slowed S phase and 

reduced Mcm2-7 loading onto chromatin (Volkening 2005; Kinoshita 2008). 

Mcm9 was shown to bind to chromatin in an ORC-dependent manner, and is 

required for Mcm2-7 loading, as well as forms a complex with Cdct1. The authors 

then proposed that Mcm9 has a regulatory role in Mcm2-7 loading (Lutzmann 

2008). A recent study by Mishimura and colleagues suggested that Mcm8 and 

Mcm9 work downstream of the Fanconi anemia (FA) and BRCA2/Rad51 

pathways, and are required for homologous recombination that promotes sister 

chromatid exchanges, possibly as a hexameric ATPase/helicase (Nishimura 

2012). A more thorough study is needed to better understand the function of 

Mcm8 and Mcm9, but undoubtedly, they have been proven to be important in 

DNA replication. 

 

Mcm10 

Mcm10 was initially identified in a genetic screen searching for cell 

division cycle mutants in S. phombe (Nasmyth 1981). It is not related to the 
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Mcm2-7 helicase family. Mcm10 is a DNA binding protein that loads onto 

chromatin in early S-phase and is required for subsequent loading of additional 

factors, including Cdc45, RPA (Wohlschlegel 2002), and Pol α (Walter 2000). 

The precise role of Mcm10 is unknown, and is therefore the basis for the 

research presented in this thesis. Please refer to Chapter II for a thorough review 

on Mcm10. 

 

Scope of work 

 This dissertation presents the structural and biochemical progress made in 

understanding the role of Mcm10 in DNA replication initiation, specifically 

focusing on the oligomerization of the vertebrate (Xenopus laevis) ortholog. 

Chapter 2 reviews the domain architecture and structural biology of Mcm10, 

including a detailed description of the structural features of each domain, and a 

model for DNA binding and pol α interaction. Chapter 3 describes the structure of 

the coiled-coil region within the xMcm10 N-terminal domain, the interacting 

residues responsible for oligomerization, and a model of the oligomeric state of 

xMcm10 during DNA replication. Finally, Chapter 4 discusses how the work has 

expanded our knowledge on Mcm10's role in DNA replication, and the future 

directions for this research. 

 

   

 

 



 
* This chapter was published as Du, W., M.E. Stauffer, and B.F.Eichman (2012) Subcell 
Biochem 62: 197-216 
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CHAPTER II 

 

STRUCTURAL BIOLOGY OF REPLICATION INITIATION FACTOR MCM10* 

 

 Minichromosome maintenance protein 10 (Mcm10) is a non-enzymatic 

replication factor required for proper assembly of the eukaryotic replication fork. 

Mcm10 interacts with single-stranded and double-stranded DNA, polymerase α, 

and Mcm2-7, and it is important for activation of the pre-replicative complex and 

recruitment of subsequent proteins to the origin at the onset of S-phase. In 

addition, Mcm10 has recently been implicated in coordination of helicase and 

polymerase activities during replication fork progression. The nature of Mcm10’s 

involvement in these activities, whether direct or indirect, remains unknown. 

However, recent biochemical and structural characterization of Mcm10 from 

multiple organisms has provided insights into how Mcm10 utilizes a modular 

architecture to act as a replisome scaffold, which helps to define possible roles in 

origin DNA melting, pol α recruitment and coordination of enzymatic activities 

during elongation.  

 

Replication Initiation 

DNA replication can be divided into three primary stages: initiation, 

elongation and termination (Bell and Dutta 2002; Garg 2005). Initiation 
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commences during the G1 phase of the cell cycle, during which the replisome—

the protein complex responsible for DNA unwinding and synthesis at an active 

replication fork—begins to assemble at origins of replication (Figure 4). Initiation 

begins with origin licensing, in which the origin recognition complex (ORC), 

coupled with Cdc6 and Cdt1, loads minichromosome maintenance (Mcm) 

proteins 2-7 onto DNA as a head-to-head double hexamer (Remus 2009). This 

event marks the formation of the pre-replicative complex (pre-RC), which 

remains inactive in G1-phase. 
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Figure 4. A simplified view of the initiation phase of eukaryotic replication, 
highlighting key steps involved in replisome assembly. Many replication factors 
are omitted for clarity. At the end of the G1 phase of the cell cycle, chromatin is 
licensed for replication at the origin by formation of a pre-replicative complex 
(pre-RC), which includes an inactive Mcm2-7 helicase. At the onset of S-phase, 
the pre-RC is activated by Dbf4-dependent kinase (DDK) phosphorylation. 
Mcm10 loads in early S-phase and is required for loading of Cdc45 and GINS, 
which form the CMG helicase complex with Mcm2-7 and help constitute a pre-
initiation complex (pre-IC). Denaturation of origin DNA at the origin allows for 
binding of DNA polymerases and the rest of the elongation machinery, 
stimulating origin firing. Mcm10 and And-1/Ctf4 have been implicated in coupling 
pol α to the replisome.  
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The transition to S-phase is accompanied by origin activation. Mcm10 is 

one of the first proteins loaded onto chromatin at the onset of S-phase, and it is 

essential for the subsequent recruitment of other replisome proteins 

(Wohlschlegel 2002). At this point, two phosphorylation events take place to 

activate the pre-RC. In yeast, cyclin-dependent kinase (CDK) phosphorylates 

Sld2 and Sld3 and facilitates their binding to Dpb11 (Tanaka 2007; Zegerman 

and Diffley 2007), and Dbf4-dependent kinase (DDK), composed of Cdc7 and 

Dbf4, directly phosphorylates Mcm2 and Mcm4 (Lei 1997; Sheu and Stillman 

2006). Mcm10 is important for both of these events. It has been shown to 

stimulate Mcm2-7 phosphorylation by DDK and may, in fact, recruit DDK to the 

pre-RC (Lee 2003). In addition, the human RecQ4 helicase contains a Sld2-like 

sequence that is both a phosphorylation target of CDK and a binding site for 

Mcm10, suggesting that phosphorylation may act as a switch for RecQ4 activity 

by modulating its interaction with Mcm10 (Xu 2009). These phosphorylation 

events enable the subsequent loading of two helicase cofactors, Cdc45 and the 

GINS complex, to form the pre-initiation complex (pre-IC) with the help of Mcm10 

and other factors, including And-1/Ctf4 (Tanaka 1998; Zou 2000; Wohlschlegel 

2002; Im 2009). Cdc45, GINS, and Mcm2-7 form the CMG complex, which is 

considered to be the active form of the replicative helicase (Gambus 2006; Moyer 

2006; Pacek 2006; Ilves 2010; Costa 2011). Denaturation of origin DNA into 

single strands forms two bidirectional replication forks and is marked by 

recruitment of ssDNA binding protein replication protein A (RPA).  
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The initiation phase concludes upon recruitment of the DNA synthesis 

machinery to the emerging replication fork. Fork firing requires polymerase α (pol 

α)-primase to initiate DNA synthesis by generating RNA primers and short 

stretches of DNA on both leading and lagging strands. Mcm10 and And-1/Ctf4 

have been implicated in loading pol α onto chromatin, as well as physical 

coupling of pol α and Mcm2-7 (Ricke 2004; Zhu 2007; Gambus 2009; Im 2009; 

Lee 2010). Elongation proceeds through processive DNA synthesis by replicative 

polymerases δ and ε, which require the sliding clamp, proliferating cell nuclear 

antigen (PCNA), and the clamp loader, replication factor C (RFC). Fork 

progression requires concerted DNA unwinding and synthesis through 

coordination of activities among the CMG complex and polymerases α, δ, and ε. 

 

Role of Mcm10 in Replication 

The Mcm10 gene was first identified in genetic screens in yeast. Referred 

to at the time as Cdc23, Mcm10 was shown to be necessary for cell division in 

Schizosaccharomyces pombe (Nasmyth and Nurse 1981; Aves 1998). Bulk DNA 

synthesis was disrupted in temperature sensitive alleles of Cdc23, and thus DNA 

replication and mitosis were blocked. Similar genes, referred to as DNA43 and 

MCM10, were identified in screens in Saccharomyces cerevisiae and shown to 

be homologs of Cdc23 (Dumas 1982; Maine 1984). DNA43 was found to be 

essential for entering S-phase and maintaining cell viability (Solomon 1992). 

Ricke and Bielinsky (2004) showed that the recruitment of S. cerevisiae Mcm10 

(scMcm10) to replication origins is cell cycle regulated and dependent on pre-RC 
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assembly, and that scMcm10 is required to maintain pol α on chromatin 

independently of Cdc45. The importance of Mcm10 to replication initiation in 

yeast is evident from the number of genetic and physical interactions identified 

between Mcm10 and proteins involved in origin recognition, replisome assembly, 

and fork progression (Merchant 1997; Homesley 2000; Kawasaki 2000; Hart 

2002; Gregan 2003; Sawyer 2004).  

Mcm10 homologs have also been identified and characterized in higher 

eukaryotes, including humans, Xenopus, and Drosophila (Izumi 2000; 

Wohlschlegel 2002; Christensen 2003). Human Mcm10 (hMcm10) interacts with 

chromatin at the G1/S-phase transition and dissociates in G2-phase (Izumi 2000). 

It is important for activation of pre-RCs and functional assembly of the replisome 

and is regulated by phosphorylation-dependent proteolysis during late M- and 

early G1-phase (Izumi 2001). Studies in Xenopus extracts showed that Mcm10 

(xMcm10) binds to the pre-RC at the onset of S-phase, with roughly one xMcm10 

bound per 5,000 bp of DNA (approximately two Mcm10s per active origin) 

(Wohlschlegel 2002). These studies also showed Mcm10 to be essential for 

loading downstream proteins Cdc45 and RPA (Wohlschlegel 2002), which are in 

turn required for chromatin unwinding and the association of pol α at the origin 

(Walter and Newport 2000). The Drosophila homolog of Mcm10 was able to 

complement an Mcm10-null strain of S. cerevisiae and was shown to interact 

with many members of the pre-RC in KC cells, including Mcm2, Orc, and Cdc45 

(Christensen and Tye 2003). Depletion of Mcm10 from KC cells led to defects in 

chromosome condensation (Christensen and Tye 2003). 
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The human, Xenopus, and Drosophila Mcm10 orthologs have high 

sequence similarity but are distinct from the yeast protein in several ways. First, 

the vertebrate proteins have an additional C-terminal domain (Robertson 2008) 

(Figure 5A). Second, phosphorylated and mono- and diubiquitylated forms of 

hMcm10 have been identified (Izumi 2001), whereas only diubiquitylated Mcm10 

has been shown to be associated with chromatin in yeast (Das-Bradoo 2006). 

Finally, spMcm10 has been reported to contain primase activity (Fien 2006), a 

characteristic not observed in other orthologs. 

Physical interactions have been observed between Mcm10 and multiple 

proteins found in the pre-RC and at the replication fork, including ORC (Izumi 

2000; Hart 2002), Mcm2-7 (see below), pol α (Ricke and Bielinsky 2004; Ricke 

2006; Chattopadhyay 2007), and the recently identified sister chromatid cohesion 

protein And-1 and the RecQ-like helicase RecQ4 (Zhu 2007; Xu 2009). S. pombe 

Mcm10 (spMcm10) interacts with Mcm4/6/7 and Dfp1p, the S. pombe homolog of 

Dbf4 (Lee 2003). Furthermore, spMcm10 has been reported to stimulate DDK 

phosphorylation of Mcm2-7 (Lee 2003), and is thus believed to play a role in 

helicase activation. Studies in S. cerevisiae have shown that scMcm10 facilitates 

assembly of the Cdc45/Mcm2-7/GINS helicase complex (Gambus 2009), and 

physical interactions have been observed with Mcm2, Mcm4, Mcm5, Mcm6, and 

Mcm7 subunits (Merchant 1997; Homesley 2000; Hart 2002; Apger 2010). 

Recent work suggested that scMcm10 serves as a functional linker between the 

MCM helicase and pol α by coordinating their activities and ensuring their 

physical stability and integrity at the replication fork (Lee 2010), a role also 
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identified for Ctf4 (Gambus 2009). Drosophila Mcm10 interacts with Mcm2, Dup 

(Cdt1), Orc2, Cdc45, and Hp1 in yeast two-hybrid assays (Christensen and Tye 

2003). xMcm10 interacts with And-1/Ctf4 (Zhu 2007) and with Dna2, a double-

strand break repair protein (Wawrousek 2010). hMcm10 interacts with Orc2, 

Mcm2, and Mcm6 (Izumi 2000), and assembly of the Cdc45/Mcm2-7/GINS 

complex in human cells requires Mcm10 as well as the And-1/Ctf4 and RecQL4 

proteins (Im 2009). hMcm10 also regulates the helicase activity of RecQ4 by 

direct binding (Xu 2009). 

Biochemical studies of Mcm10 have focused on its interactions with DNA 

and pol α. Mcm10 binds to both single-stranded (ss) and double-stranded (ds) 

DNA, with about 3-5-fold preference for ssDNA (Fien 2004; Robertson 2008; 

Eisenberg 2009). Fien et al. (2004) showed that spMcm10 can stimulate DNA 

polymerase activity by interacting with both ssDNA and pol α, leading to the idea 

that Mcm10 may facilitate the binding of polymerase complexes to primed DNA. 

Indeed, Mcm10 affects the localization and stability of pol α, further supporting 

the idea that Mcm10 acts as a molecular chaperone for pol α in vivo (Ricke and 

Bielinsky 2004; Yang 2005; Ricke and Bielinsky 2006; Chattopadhyay and 

Bielinsky 2007). Mcm10 interacts with the p180 subunit of pol α in both yeast and 

Xenopus (Fien 2004; Robertson 2008; Lee 2010). In fact, ssDNA and the N-

terminal region of p180 compete for binding to the conserved internal domain of 

Mcm10 (Warren 2009). Mcm10 can stabilize pol α throughout the cell cycle by 

preventing its degradation by the proteasome (Ricke and Bielinsky 2004; Ricke 

and Bielinsky 2006; Chattopadhyay and Bielinsky 2007). Moreover, Mcm10 
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appears to be a cofactor for pol α activity by increasing its affinity for DNA (Fien 

2004; Zhu 2007).  

 

Overall Architecture 

The Mcm10 protein exists only in eukaryotes; no orthologs have been 

identified in archaea or bacteria, although loose homology has been observed 

between regions of Mcm10 and the Mcm2-7 proteins (Robertson 2010). Mcm10 

ranges in size from 571 amino acids in yeast to 874 in humans, with regions of 

sequence homology clustered in the central and extreme N- and C-terminal 

regions (Figure 5A). The spacing of homologous regions suggests the presence 

of three distinct structured domains tethered by unstructured linkers. Zinc finger 

motifs, initially identified from sequence alignments (Homesley 2000; Izumi 2000) 

and later confirmed by structural analysis (Warren 2008; Warren 2009; 

Robertson 2010), are present in both the central and C-terminal regions. The 

yeast homologs lack the C-terminal region altogether (Robertson 2008), 

suggesting that in lower organisms, the essential functions of Mcm10 reside 

within its N-terminal and central regions. 
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Figure 5. Mcm10 sequence homology, oligomerization, and domain architecture. 
A. A schematic sequence alignment of Mcm10 from Homo sapiens (Hs), 
Xenopus laevis (Xl), Drosophila melanogaster (Dm), Caenorhabditis elegans 
(Ce), Saccharomyces cerevisiae (Sc), and Schizosaccharomyces pombe (Sp). 
Light and dark grey bars indicate regions of moderate and high sequence 
conservation, respectively, and hatched boxes represent invariant 
cysteine/histidine clusters involved in zinc coordination. B. Various oligomeric 
states of Mcm10 reported in the literature. GFC, gel filtration chromatography; 
GGS, glycerol gradient sedimentation; EMSA, electrophoretic mobility shift 
assay; SPR, surface plasmon resonance; AUC, analytical ultracentrifugation; 
EM, electron microscopy. C. Orthogonal EM reconstruction of human Mcm10 at 
16 Å resolution and contoured at 1σ. The dashed line represents one 95-kDa 
subunit. (Figure adapted from Okorokov 2007) D. Domain architecture of 
Xenopus laevis Mcm10. NTD, N-terminal domain; ID, internal domain; CTD, C-
terminal domain; CC, predicted coiled coil; OB, oligonucleotide/oligosaccharide 
binding fold; ZnF, zinc-finger; WH, predicted winged helix; Zn, zinc ribbon. 
Interactions with proteins and DNA are shown below the schematic. 
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Biochemical and structural studies using vertebrate and yeast Mcm10 

orthologs have been rather controversial with regard to the architecture and 

oligomeric state of the full-length Mcm10 protein (Figure 5B). scMcm10 has been 

reported to form large, 800 kDa homocomplexes consisting of ~12 molecules 

when analyzed by size-exclusion chromatography (Cook 2003), although the 

shape of the molecule could potentially confound this analysis. Self-association 

in yeast was shown to be mediated by the central zinc finger-containing domain, 

and mutations in the zinc-binding residues rendered yeast cells temperature-

sensitive, with demonstrable replication defects (Homesley 2000; Cook 2003). A 

more recent surface plasmon resonance study showed that in the presence of 

ssDNA, scMcm10 forms complexes with three subunits (Eisenberg 2009). On 

dsDNA, however, scMcm10 interacted as a monomer with a stoichiometry 

directly proportional to the length of the DNA (~1 scMcm10 per 21-24 bp). Work 

from the Hurwitz laboratory has reported highly asymmetric monomeric and 

dimeric forms of spMcm10 using glycerol gradient centrifugation (Lee 2003; Fien 

and Hurwitz 2006). Analytical ultracentrifugation of xMcm10 was consistent with 

self-associated, asymmetric complexes, although the precise oligomeric state 

could not be determined from the data (Robertson 2008). More recent work using 

size exclusion chromatography with multi-angle light scattering is indicative of 

xMcm10 complexes containing 2-3 subunits in the absence of DNA (see Chapter 

III). This is consistent with the presence of a coiled-coil domain at the N-terminus 

of the protein (Robertson 2008) and the calculation of two molecules per 
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replication origin based on the concentration of chromatin-bound Mcm10 in 

Xenopus extracts (Wohlschlegel 2002).  

hMcm10 was reported to form a ring-shaped hexameric structure using 

electron microscopy (EM) and single-particle analysis (Okorokov 2007). The 

particle has dimensions of 160 Å x 120 Å, a 35 Å central channel (Figure 5C), 

and a system of smaller lateral channels and inner chambers. The volume of the 

electron density calculated at the 1 sigma contour level using Chimera (Pettersen 

2004) is consistent with a 570 kDa MW particle, or six 95-kDa subunits 

(unpublished result). From the side, individual subunits appear to adopt two 

distinct lobes. Model fitting with the structures available at the time suggested 

that each subunit within the hexamer had the same orientation, with the zinc 

molecules positioned toward the upper and lower edges of the ring (Okorokov 

2007). Subsequent crystal and NMR structures of individual Mcm10 domains, 

discussed below, cannot be unambiguously positioned into the EM density. The 

hexameric structure was reportedly consistent with its sedimentation behavior by 

analytical ultracentrifugation, although the experimental data were not presented 

(Okorokov 2007).  

The authors of the EM structure provided two explanations for 

hexamerization of Mcm10. The first was that this architecture may enable a 

topological link with DNA to allow for processive DNA binding like many other 

ring-shaped DNA-binding proteins. Another explanation was that Mcm10 

inherited the hexameric fold from a DNA helicase ancestor, but lost the helicase 

activity during evolution and instead now serves as a “docking” module to 
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facilitate protein-protein interactions in DNA replication, such as Mcm2-7 helicase 

and pol α (Patel 2000; Pape 2003; Chen 2005; Okorokov 2007). It is enticing to 

speculate that a hexameric Mcm10 structure would provide an extensive binding 

interface for the six subunits of Mcm2-7, although there are no data to support 

such a hexamer-hexamer interaction, and Mcm10 does not travel with the 

helicase that has been uncoupled from the replisome by inhibition of the 

polymerase with aphidicolin (Pacek 2006). In light of the facts that a hexameric 

form of Mcm10 has not been reported in non-human orthologs, that other studies 

identify Mcm10 assemblies composed of 2-3 subunits, and that only two 

molecules of Mcm10 are likely present at the origin, we offer an additional 

explanation—that the hexamer is simply one of several states occurring in 

cellular equilibrium and is needed under specific conditions during the onset of 

replication. For example, hexamerization may be used for sequestering the 

molecule at the replication fork or as a compact storage state of the protein 

during replication inactivity. We note that to be consistent with the available 

oligomerization data, the Mcm10 hexamer may in fact be a trimer of dimers. 

 

Mcm10 Domain Structure 

 Biochemical and structural studies have been performed using xMcm10, 

which has 84% sequence similarity and 58% identity to the human protein. 

Limited proteolysis and mass spectrometry revealed that full length xMcm10 is 

composed of three structured domains at the N-terminal (NTD; residues 1-145), 

internal (ID; 230-427), and C-terminal (CTD; 596-860) regions of the protein 
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(Figure 5D) (Robertson 2008). The functional significance of the NTD is currently 

undefined, while the ID and CTD each bind DNA and pol α (Robertson 2008). 

Interdomain linkers are predicted to be largely unstructured by secondary 

structure and disorder predictions and by virtue of their extreme proteolytic 

sensitivity in purified preparations (Robertson 2008). 

 
Mcm10-NTD 

Circular dichroism indicates that the NTD is predominantly α helical and 

random coil, consistent with secondary structure predictions (Robertson 2008). 

The NTD alone is a dimeric assembly unit as judged by analytical 

ultracentrifugation, consistent with the presence of a predicted coiled-coil motif 

comprising residues 93-132 (Robertson 2008). A strong yeast 1-hybrid 

interaction from the first 100 residues of Drosophila Mcm10 was recently 

reported (Apger 2010), suggesting that the NTD might function as an 

oligomerization domain for the full-length protein. Interestingly, self-interaction of 

ID and CTD regions was observed in yeast 2-hybrid assays when the NTD was 

deleted, suggesting that the NTD may not be the only point of contact between 

Mcm10 subunits. Nonetheless, the strong NTD self-interaction supports a 

proposed model in which Mcm10 forms a dimer with two subunits oriented in the 

same direction, which provides a plausible explanation for interaction of Mcm10 

with both leading and lagging strand polymerases at a replication fork. Unlike the 

ID and CTD, the NTD does not bind to DNA (Robertson 2008). 
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Mcm10-ID 

The ID (residues 230-427) is homologous across all species from 

vertebrates to yeast and is the most conserved region in the entire protein (Izumi 

2000). Mutations in this region were identified in yeast genetic screens to affect 

minichromosome maintenance and replication in vivo (Nasmyth and Nurse 1981; 

Maine 1984; Grallert 1997; Liang 2001). The ID contains a CCCH-type zinc 

finger and an oligonucleotide/oligosaccharide binding (OB)-fold (Figure 5D) that 

are now known to facilitate interactions with a number of proteins and DNA 

(Izumi 2000; Ricke and Bielinsky 2006; Warren 2008). Specifically, the ID has 

been shown to interact with ssDNA and the N-terminal 323 residues of DNA 

polymerase α (Robertson 2008). In addition, a PCNA interacting peptide (PIP) 

region was identified in the sequence of scMcm10’s ID (Das-Bradoo 2006). 

Mutations within the PIP box abrogated the interaction between diubiquitylated 

Mcm10 and PCNA (Das-Bradoo 2006; Warren 2009).  

The crystal structure of xMcm10-ID revealed that this region forms a 

globular domain consisting of an α-helical/random coil region (αA-αB, residues 

230-283), an OB-fold (β1-β5.2, residues 286-375), and a C-terminal zinc finger 

motif (βC-αE, residues 378-418) (Figure 6A). The α-helical/coil region packs onto 

the back of the OB-fold, opposite the canonical DNA-binding cleft of the OB-fold, 

to form a flat molecular surface (Warren 2008). The zinc finger protrudes 

sideways relative to the OB-fold cleft and makes extensive electrostatic and van 

der Waals contacts with both the L23 loop of the OB-fold and the α-helical/coil 

region. It is interesting to note that the sequential arrangement of the OB-fold and 
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the zinc finger in Mcm10-ID is different from other DNA processing proteins that 

contain both structural motifs. In the structures of the archaeal MCM helicase 

(Fletcher 2003), RPA trimerization core (Bochkareva 2002), T4 gp32 (Shamoo 

1995), and NAD+- dependent DNA ligase (Lee 2000), a zinc ribbon is inserted 

into the OB-fold L12 loop, whereas in Mcm10-ID the zinc finger is C-terminal to 

the entire OB-fold (Warren 2008) (Figures 6A,D). The unique arrangement of the 

OB-fold/zinc finger suggests that, in Mcm10, this domain assembly may have a 

unique function. 
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Figure 6. The crystal structure of xMcm10-ID bound to ssDNA. A. xMcm10-ID 
(residues 235-419) bound to ssDNA, with the OB-fold in green, the zinc finger in 
blue, the Zn2+ ion in magenta, and the N-terminal α-helical/coil region in tan. The 
three nucleotides of ssDNA observed in the crystal structure are shown as 
orange sticks. ssDNA traverses both the OB-fold cleft and the zinc loop. The 
trajectory of bound DNA determined by NMR is represented by the orange 
dashed line. B. Crystal structure of RPA70AB subunit bound to ssDNA (PDB ID 
1JMC). The OB-folds are colored green and blue, and the ssDNA orange. C. 
Crystal structure of the xMcm10/ssDNA complex viewed 90° with respect to the 
view shown in panel A. D. Crystal structure of Methanobacterium 
thermoautotrophicum MCM (PDB ID 1LTL). E. Sequence alignment of Mcm10-
ID. Zn2+-coordinating residues are highlighted in red. Mutations identified in yeast 
genetic screens to affect cell growth and DNA replication are highlighted in 
yellow. Residues that affect xMcm10 binding to DNA in vitro or that increase the 
sensitivity of S. cerevisiae to HU are highlighted in pink. The PIP-box and Hsp10-
like motif are highlighted in blue and gold, respectively. 
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The tandem OB-fold-zinc finger arrangement in xMcm10-ID is reminiscent 

of the high affinity ssDNA binding surface created by side-by-side OB-folds in the 

RPA70AB sub-domain (Bochkarev 1997) (Figure 6B). NMR chemical shift 

perturbation of xMcm10-ID indicated that ssDNA binds to both the OB-fold cleft 

and to the extended loop of the highly basic zinc finger (Warren 2008). The 

nature of the ssDNA interaction with the concave cleft of the OB-fold was 

revealed by the crystal structure of xMcm10-ID in complex with ssDNA (Warren 

2009). A tricytidine oligonucleotide was clearly observed within the OB-fold cleft, 

traversing β strands β1- β3 and β5.1 (Figure 6A). The channel created by loops 

L12 and L45 was ~16 Å in diameter (Figure 6C), allowing the ssDNA a degree of 

flexibility that precluded observation of atomic-level interactions. However, the 

polarity of the ssDNA was unmistakably defined, with the 5′ end oriented toward 

β5.1 and the 3′ end toward β1 and the zinc finger, similar to the polarity reported 

for the RPA70AB structure (Bochkarev 1997) (Figure 6B). Also similar to 

RPA70AB, the L12 loop was unobservable in the unliganded structure, 

presumably due to flexibility (Warren 2008), but upon DNA binding, its electron 

density was readily visible (Warren 2009).  
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The Mcm10-ID zinc finger extends the ssDNA binding surface of the OB-

fold in a manner analogous to the RPA70B subunit (Bochkarev 1997). A crystal 

lattice contact occluded DNA binding by the zinc finger in the Mcm10-ID/ssDNA 

complex structure (Warren 2009). Nonetheless, NMR chemical shift perturbation 

had unequivocally showed both this region and the cleft between it and the OB-

fold to be affected by ssDNA binding, and residues in these regions were shown 

to affect DNA binding by xMcm10-ID and replication in yeast (Warren 2008). A 

Lys385Glu/Lys386Glu double mutant on the extended zinc loop reduced ssDNA 

binding affinity by 10-fold, and a Lys293Ala mutant in the cleft reduced it by 5-

fold (Warren 2008). Transferring these mutations to yeast for assessment of their 

functional consequences showed that they increased the sensitivity of yeast cells 

to treatment with hydroxyurea (Warren 2008). The Lys293Ala mutation 

(His215Ala/Lys216Ala in scMcm10) caused a 2-fold decline in cell survival, while 

the Lys385Glu/Lys386Glu mutation (Asn313Glu/Lys314Glu in yeast) led to a 

striking 7-fold decrease. Cell survival was also significantly compromised (~60%) 

in cells containing the Phe306Ala mutation (Phe230Ala/Phe231Ala in yeast), 

which resides in the cleft between the OB-fold and zinc finger. Interestingly, the 

zinc finger domain was also found to be affected by dsDNA binding (Warren 

2008). The presence of an extended loop in the zinc finger renders it structurally 

distinct from the archetypical Zif268 zinc finger that binds dsDNA in a sequence 

dependent manner, so it remains to be seen how dsDNA binds to this motif.  

The Mcm10-ID crystal structures elucidated the yeast mutations originally 

identified to affect minichromosome maintenance and DNA replication (Figure 
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6E). The cdc23-1E2 (Cys239Tyr) (Grallert and Nurse 1997) and cdc23-M30 

(Leu287Pro) (Liang and Forsburg 2001) mutations, which correspond to xMcm10 

Leu323 and Leu369, respectively, are located in the interior of the OB-fold’s β-

barrel, and thus are likely to cause structural perturbations that disrupt protein 

folding. Other mutations probably affected protein interactions necessary for 

replisome formation and/or progression. These include cdc23-M36 (Asp232Gly), 

corresponding to the invariant xMcm10 Asp313 that lies on the interior of the L23 

loop, and cdc23-M36 (Val265Ile) and mcm10-1 (Pro269Leu), which map to 

solvent exposed positions in the L45 loop (Nasmyth and Nurse 1981; Maine 

1984). The human counterpart to the xMcm10-ID has been crystallized (Jung 

2008), but the structure was never determined and is expected to be virtually 

identical to the reported Xenopus domain on the basis of high sequence 

homology (58% identity; 84% similarity).  

 

Mcm10-CTD 

Vertebrate homologs of Mcm10 contain a CTD that is unique to higher 

eukaryotes; yeast Mcm10 is not predicted by sequence alignments to have this 

domain (Figure 5A). Interactions between xMcm10-CTD (residues 596-860) and 

ssDNA, dsDNA, and pol α have been mapped to a proteolytically stable 

subdomain (residues 690-842) that consists of a putative winged helix motif 

(residues 690-755) followed by tandem CCCH- and CCCC-type zinc motifs 

(residues 756-842) (Figure 7A) (Robertson 2008; Robertson 2010). 

Heteronuclear NOE experiments on this region showed that the putative winged 
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helix contains high backbone flexibility while the zinc motif is more rigid 

(Robertson 2010). The two Zn2+ atoms in xMcm10-CTD, originally identified by 

atomic absorption spectroscopy, likely play a structural role based on the 

observations that, in the presence of EDTA, the CTD is more proteolytically 

sensitive and DNA binding affinity decreases (Robertson 2008).  
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Figure 7. NMR structure of xMcm10-CTD zinc binding region. A. Sequence 
alignment of Mcm10-CTD. Secondary structure elements shown above the 
sequence are either predicted (grey) or determined from the NMR structure 
(green, blue). CCCH and CCCC zinc coordinating residues are highlighted in red. 
B. The NMR structure of xMcm10 (756-842) is shown as a ribbon with a 
transparent grey molecular surface. C. Structural and sequence alignment of the 
CCCC zinc ribbon from xMcm10 (aa 796-830) (blue) and MthMCM (gold, PDB ID 
1LTL). In the crystal structure of the MthMCM N-terminal domain (top right of 
panel), the CCCC zinc ribbon mediates head-to-head double hexamer formation. 
The sequence alignment of this region (bottom of panel) shows the CCCC motif 
to be conserved in human Mcm2-7. 
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The solution NMR structure of the zinc binding region of xMcm10-CTD 

revealed a V-shaped globular domain in which the two zinc binding motifs are 

tethered by a hinge and the two zinc atoms bind at the tips of the V (Figure 7B) 

(Robertson 2010). The N-terminal CCCH zinc motif (residues 756-795) consists 

of a three-stranded antiparallel β-sheet capped with a short perpendicular α-helix 

with a Zn2+ ion embedded in between. DNA binding maps to the CCCH zinc 

motif, the structure of which is unique to Mcm10. The residues involved in DNA 

binding trace a nearly continuous 35 Å path around the CCCH arm (Robertson 

2010). The length of DNA required for maximal binding affinity was between 10 

and 15 nucleotides, suggesting that all of the residues along that path are 

involved to some extent in interactions with DNA. 

The CCCC zinc motif (residues 796-830) adopts a twisted antiparallel β-

sheet with the zinc coordinated between the loops by the four cysteines. This 

motif is not involved in DNA binding, and, interestingly, is identical in structure to 

a zinc ribbon motif in the N-terminal domain of Methanobacterium 

thermoautotrophicum MCM helicase (mtMCM) (Figure 7C). This MCM zinc motif 

mediates the head-to-head double hexamer assembly observed in mtMCM 

crystals (Fletcher 2003; Fletcher 2005) and in scMcm2-7 loaded onto DNA 

(Remus 2009). The sequence of the CCCC zinc motif in xMcm10-CTD is highly 

conserved relative to those in the metazoan Mcm2-7 subunits and in Mcm8 and 

Mcm9 proteins as well (Robertson 2010). Mcm10 has been shown to interact 

directly with several subunits of Mcm2-7 helicase (Izumi 2000; Lee 2003; 

Gambus 2006), and the recent finding that Drosophila Mcm10’s interaction with 
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Mcm2 is localized to the CTD (Apger 2010) suggests that the CCCC zinc motif in 

both proteins may be the point of contact. The Mcm2-7 double hexamer that is 

loaded onto chromatin in the pre-RC (Remus 2009) is able to separate during 

DNA unwinding (Yardimci 2010), leading us to predict that if Mcm10-Mcm2-7 

interactions are indeed facilitated by the zinc motifs, then this interaction would 

take place only after fork firing. Of course this is highly speculative, and 

additional experiments are needed to define this aspect of Mcm10’s function. 

What is known with certainty is that Mcm10 interacts with both the helicase and 

pol α. Most likely, Mcm10 serves as a scaffold to co-localize the essential players 

within the replisome during the initiation and elongation phases of replication 

(Ricke and Bielinsky 2004; Lee 2010; Robertson 2010). 

 

Implications of Modular Architecture for Function 

Modular architecture is a common feature of DNA processing proteins that 

allows for the coordination of distinct biochemical activities (Stauffer 2004). 

Flexible linkers between structured domains allow those domains to 

accommodate DNA and protein binding partners simultaneously, by virtue of the 

fact that the domains retain their structure while distance and angular 

adjustments are made between them. When tandem domains bind to the same 

entity, affinity for that entity is often increased relative to the strength of binding 

by one domain or the other. And many DNA processing proteins contain 

bifunctional folds, which are known to bind both DNA and other proteins. Thus, 

when two different entities compete for the same binding site, it promotes 
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molecular hand-off that facilitates the progression of the DNA processing 

pathway.  

The structural organization of Mcm10 exemplifies each of these general 

features of DNA processing proteins. First, the attachment of the functional 

domains of Mcm10 by unstructured linkers, coupled with the spatial separation of 

protein and DNA binding sites, may allow it to bind both DNA and proteins 

simultaneously. Robertson et al. reported NMR spectra showing that the ID and 

the CTD of xMcm10 retain their individual structural properties in the context of a 

larger “ID+CTD” construct containing both domains and that the interdomain 

linker region is unstructured and flexible (Robertson 2010). Second, the full-

length xMcm10 protein, as well as the ID+CTD construct, binds DNA with 10-fold 

greater affinity than either the ID or CTD alone (Robertson 2008; Warren 2009), 

and ID+CTD binds pol α-p180 with 15-fold greater affinity than Mcm10-ID alone 

(Warren 2009). Lastly, ssDNA and the N-terminal region of p180 compete for 

binding to the OB-fold cleft of Mcm10-ID (Warren 2009). dsDNA also binds to 

essentially the same site on Mcm10-ID (Warren 2008). Moreover, the PIP box 

predicted in the scMcm10 sequence (Ricke and Bielinsky 2006) coincides with 

the OB-fold β3 strand, suggesting that the OB-fold can bind to PCNA as well. 

Indeed, xMcm10 Phe324, which corresponds to the residue in scMcm10 that 

mediates interaction with PCNA (Das-Bradoo 2006), had a modest effect on DNA 

binding (Warren 2008).  

The interaction of multiple binding partners with identical sites on Mcm10 

fits with two distinct models of molecular hand-off (Figure 8A, B). In the first, 
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Mcm10-ID binds to ssDNA while the CTD is used to recruit a protein partner 

(e.g., pol α p180). In the second model, the CTD binds ssDNA and ID recruits a 

protein binding partner via its OB-fold. Hand-off would be facilitated in either 

scenario by competition between the binding partner and Mcm10 for the exposed 

ssDNA or, alternatively, for the OB-fold in Mcm10-ID. Depending on the 

oligomeric state of Mcm10 in vivo, there could be more than one subunit of the ID 

and the CTD present at the origin, increasing the number of possible interaction 

points and competition events (Figure 8C). Future studies of the oligomerization 

state of Mcm10 and of the order of events at the origin will be needed to clarify 

which model is in play at each stage of replication. 
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Figure 8. Three possible models for Mcm10 hand-off of other proteins (e.g., pol 
α) onto DNA. A,B. Either Mcm10-ID or CTD interact with DNA, while the non-
DNA bound domain is free to bind protein cargo. C. ID+CTD together create a 
high-affinity DNA binding platform, and Mcm10 self-association through the NTD 
would present an additional free binding platform to localize proteins to the DNA.  
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Its modular architecture and lack of enzymatic activity suggest that Mcm10 

serves as a scaffold for the coupling of protein and DNA interactions during 

replication initiation. For example, a head-to-head Mcm10 dimer could couple 

events on the leading and lagging strands, or physically tether the helicase and 

pol α, while retaining the polarity necessary for fork progression. Interestingly, 

recent studies have shown that yeast Mcm10 displays differential packing on 

ssDNA versus dsDNA (Eisenberg 2009), suggestive of an Mcm10-DNA scaffold 

during origin melting or helicase unwinding. The authors speculated that a 

change in Mcm10 conformation or oligomeric state could facilitate strand 

separation.  

 

Summary and Future Perspectives 

Despite decades of work, Mcm10 remains an essential yet mysterious 

player in DNA replication. As one of the first proteins to load after pre-RC 

formation, Mcm10 is needed for subsequent protein loading and downstream 

events in DNA replication initiation. Mcm10 interacts with multiple replisome 

components and DNA. Its interactions with ssDNA and pol α are mediated by the 

conserved ID and CTD through OB-fold and zinc finger structural elements. 

Crystal and NMR structures have elucidated the details of the ID-DNA 

interactions and have begun to address the binding activity within the CTD. Full-

length xMcm10 forms a number of oligomeric species, which may be assembled 

through coiled coil interactions within the NTD. The functional significance of 

Mcm10’s self-assembly and its interactions within the replisome, the structure of 
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the NTD, the mechanisms of multi-domain DNA binding activities, and the effects 

of ubiquitylation and other post-translational modifications on Mcm10 structure 

and function are all questions that remain unanswered.  

The nature of Mcm10 self-assembly is critical for understanding its role at 

the replication fork, although the structural and functional relationship between 

the apparent multiple oligomeric states is not at all clear from the literature. A 

dimerization model best explains the physical and genetic evidence for Mcm10’s 

interaction with both leading and lagging strand polymerases at a replication fork 

(Fien 2004; Ricke and Bielinsky 2006; Robertson 2008), but this remains to be 

determined. Detailed structural analyses of the N-terminal domain may help to 

address this issue. In addition, studies of the configuration(s) of the tandem ID 

and CTD in complex with DNA, pol α, and other protein binding partners will yield 

insight into the mechanisms by which Mcm10 acts as a scaffold at the replication 

origin. 

A growing body of research also suggests Mcm10 plays a role in 

elongation. The first glimpse of a potential role for Mcm10 in fork progression 

came from the observation in S. cerevisiae that Mcm10 mutants delayed 

completion of DNA synthesis after cells were released from hydroxyurea arrest 

(Kawasaki 2000). Mcm10 interacted genetically with pol δ and ε (Kawasaki 

2000), and a physical interaction with replisome progression complexes, which 

exist at DNA replication forks, has been observed in yeast (Gambus 2006). In 

addition, a diubiquitylated form of scMcm10 interacts with PCNA, suggesting that 

Mcm10 directly participates in DNA elongation (Das-Bradoo 2006). Pacek et al. 
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showed that Mcm10 travels with the replication fork by inducing specific 

replication fork pausing on biotin-streptavidin-modified plasmids in Xenopus egg 

extracts (Pacek 2006). In these experiments, Mcm10 was found to localize to the 

vertebrate DNA replication fork by chromatin immunoprecipitation. Finally, recent 

work in yeast suggested that Mcm10 coordinates the activities of the Mcm2-7 

helicase and pol α and ensures their physical stability at the elongating 

replication fork (Lee 2010). 

Although the majority of work to date has been focused on its role in DNA 

replication, Mcm10 has also been shown to be important for transcriptional gene 

silencing (Douglas 2005; Liachko 2005; Liachko 2009; Apger 2010). scMcm10 

physically interacts with Sir2 and Sir3, two essential silencing factors in S. 

cerevisiae (Douglas 2005). Moreover, Mcm10 mediates interactions between 

Sir2 and subunits 3 and 7 of the Mcm2-7 helicase via a ~100-residue segment at 

its C-terminus. Mutations to this region of Mcm10 caused silencing defects, but 

had no detrimental effect on replication (Liachko and Tye 2009). The 

corresponding segment in the Xenopus protein resides within an unstructured 

linker between the ID and CTD (Figure 4B), which suggests that either the yeast 

protein has an organism-specific function or the vertebrate Mcm10s have an as 

yet uncharacterized role in gene silencing. The yeast sequence between 

residues 515 and 523 is predicted to be an amphipathic helix (Liachko and Tye 

2009), a finding which warrants further investigation into the analogous segments 

of its orthologs. 
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In summary, Mcm10 lies at the heart of the replication initiation pathway. It 

loads early onto licensed replication origins and is necessary for pre-RC 

activation and origin melting as a result of its interactions with DNA and many of 

the enzymes involved in fork progression. In addition to its essential role in 

establishing active replication forks at the origin, Mcm10 is involved in other 

aspects of genome utilization. The structures and interactions between Mcm10 

and its binding partners are adding to a growing body of knowledge for how 

multi-conformation scaffolding proteins are used to maintain the integrity of the 

genome. To further enhance our understanding of the mechanisms involved in 

replisome assembly and function, the next step is to utilize the existing structures 

of the Mcm10 DNA binding domains as a foundation to build up larger sub-

complexes, taking advantage of the extensive network of Mcm10 interactions. 

This higher resolution picture of the replisome will be critical to understand the 

transactions involved at the replication fork, including DNA synthesis, damage 

response and repair, and cell cycle regulation. 
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CHAPTER III 

 

MCM10 SELF-ASSOCIATION IS MEDIATED BY AN N-TERMINAL COILED-

COIL DOMAIN* 

 

Minichromosome maintenance protein 10 (Mcm10) is an essential 

eukaryotic DNA-binding replication factor thought to serve as a scaffold to 

coordinate enzymatic activities within the replisome. Mcm10 appears to function 

as an oligomer rather than in its monomeric form. However, various orthologs 

have been found to contain 1, 2, 3, 4, or 6 subunits and thus, this issue has 

remained controversial. Here, we show that self-association of Xenopus laevis 

Mcm10 (xMcm10) is mediated by a conserved coiled-coil (CC) motif within the N-

terminal domain (NTD). Crystallographic analysis of the CC at 2.4 Å resolution 

revealed a three-helix bundle, consistent with the formation of both dimeric and 

trimeric Mcm10 CCs in solution. Mutation of the side chains at the subunit 

interface disrupted in vitro dimerization of both the CC and the NTD as monitored 

by analytical ultracentrifugation. In addition, the same mutations also impeded 

self-interaction of the full-length protein in vivo, as measured by yeast-two hybrid 

assays. We conclude that Mcm10 likely forms dimers or trimers to promote its 

diverse functions during DNA replication. 
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Introduction 

DNA replication is carried out by multi-protein factories that in eukaryotes 

are assembled in stages to regulate the timing of DNA synthesis within the cell 

cycle (Bell and Dutta 2002; MacNeill 2012; Thu 2013). Pre-replicative complexes 

(pre-RCs) are assembled at origins during G1 and are composed of origin 

recognition complex (ORC), Cdc6, Cdt1, and an inactive form of the 

minichromosome maintenance (Mcm) 2-7 helicase. The pre-RC is activated at 

the onset of S-phase by Dbf4-dependent kinase (DDK) and cyclin-dependent 

kinase (CDK) activities (Heller 2011). In yeast, CDK phosphorylates Sld2 and 

Sld3 and facilitates their binding to Dpb11 (Adachi 1997; Tanaka 2007; 

Zegerman and Diffley 2007) and DDK phosphorylates Mcm2 and Mcm4 (Lei 

1997; Sheu and Stillman 2006) to promote the assembly of additional factors. 

Ultimately, pre-RC activation leads to the loading of Cdc45 and GINS (Go-Ichi-

Nii-San), which form a functional helicase (CMG) complex with Mcm2-7 (Gambus 

2006; Moyer 2006; Pacek 2006; Im 2009; Ilves 2010; Costa 2011). Unwinding of 

the origin is signified by loading of replication protein A (RPA), followed by 

recruitment of DNA polymerase α (pol α)-primase, which initiates DNA synthesis 

at the heads of the leading strands and each Okazaki fragment. 

Mcm10 is a non-enzymatic protein that aids assembly and activation of the 

replisome and coordinates helicase and polymerase activities during elongation 

(Ricke and Bielinsky 2004; Chattopadhyay and Bielinsky 2007; Zhu 2007). 

Mcm10 interacts with single- (ss) and double-stranded (ds) DNA (Fien 2004; 

Robertson 2008; Eisenberg 2009), is loaded onto chromatin in early S-phase, 
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and is essential for helicase activation (Kanke 2012; van Deursen 2012; Watase 

2012) and the subsequent recruitment of replisome proteins, including RPA and 

pol α (Wohlschlegel 2002; Ricke and Bielinsky 2004; Heller 2011). 

Saccharomyces cerevisiae Mcm10 (scMcm10) is required to maintain pol α on 

chromatin independently of Cdc45 (Ricke and Bielinsky 2004), and both Mcm10 

and the sister chromatid cohesion protein And-1/Ctf4 have been implicated in 

loading pol α onto chromatin and physically coupling pol α and Mcm2-7 (Ricke 

and Bielinsky 2004; Zhu 2007; Gambus 2009; Im 2009; Lee 2010). Mcm10 from 

various organisms has been shown to interact physically with key proteins 

involved in initiation and elongation, including ORC (Izumi 2000; Hart 2002), 

Mcm2-7 (Merchant 1997; Homesley 2000; Hart 2002; Apger 2010), pol α (Ricke 

and Bielinsky 2004; Ricke and Bielinsky 2006; Chattopadhyay and Bielinsky 

2007; Robertson 2008; Warren 2009), proliferating cell nuclear antigen (PCNA) 

(Das-Bradoo 2006), And-1 (Zhu 2007) and the RecQ-like helicase RecQ4 (Zhu 

2007; Xu 2009). Mcm10 binds to the Sld2-like sequence of the human RecQ4 

helicase, suggesting that it may regulate the phosphorylation of RecQ4 to 

facilitate initiation (Xu 2009). Furthermore, loss of Mcm10 from human cells 

causes chromosome breakage and genomic instability (Chattopadhyay and 

Bielinsky 2007; Thu and Bielinsky 2013). 

Mcm10 contains at least three functional domains (Robertson 2008). An N-

terminal coiled-coil (CC) domain (NTD) has been implicated in Mcm10 self-

association (Robertson 2008) and the interaction with Mec3, a subunit of the 9-1-

1 clamp (Alver and Bielinsky, unpublished results). In addition, the protein has a 
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highly conserved internal (ID) and vertebrate-specific C-terminal domain (CTD) 

that bind DNA and the catalytic (p180) subunit of pol α (Robertson 2008; Warren 

2009; Du 2012). The yeast orthologs have also been shown to interact with DNA 

and pol α despite the apparent lack of the CTD (Fien 2004; Ricke and Bielinsky 

2004; Yang 2005; Eisenberg 2009). Thus, the ID is likely to mediate these 

interactions in S. cerevisiae. Moreover, recent evidence suggests that acetylation 

of the ID and CTD in human Mcm10 differentially controls their respective DNA 

binding and protein-protein interactions (Fatoba 2013). However, the details of 

this potential mechanism are still unclear. 

The oligomeric state of Mcm10 has remained controversial, with reports 

ranging in size from 1-12 subunits (Du 2012). scMcm10 was shown by size-

exclusion chromatography to form large, 800-kDa homocomplexes consisting of 

~12 molecules (Cook 2003). Self-association in that case was presumably 

dependent on the integrity of the zinc-finger (ZnF) motif within the ID, although 

the purified xMcm10-ID was found to be monomeric (Robertson 2008). Electron 

microscopy (EM) and single-particle analysis of the human protein showed a 

hexameric ring-shaped structure (Okorokov 2007). In contrast, asymmetric 

monomeric and dimeric forms of S. pombe Mcm10 (spMcm10) were reported 

(Lee 2003; Fien and Hurwitz 2006). Similarly, xMcm10 exhibited mass-

dependent association into low molecular weight complexes that were presumed 

to represent Mcm10 dimers solely on the basis of dimerization of the isolated 

NTD (Robertson 2008). Consistent with NTD-mediated self-assembly, scMcm10 

showed a strong yeast two-hybrid interaction that was ablated when one binding 
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partner carried a truncation of the first 100 amino acids. Moreover, these 

truncation mutants exhibited a striking sensitivity to the replication inhibitor 

hydroxyurea that was revealed in the absence of the 9-1-1 checkpoint clamp 

(Alver and Bielinsky, unpublished results). These observations agree with a 

report that demonstrates that scMcm10 is monomeric when bound to dsDNA, but 

capable of forming multi-subunit complexes on ssDNA (Eisenberg 2009).  

Here, we studied the role of the NTD on xMcm10 self-assembly using 

structural, biophysical, and in vivo binding assays. We show that the CC region is 

necessary and sufficient to explain Mcm10-Mcm10 interaction, and is capable of 

forming both dimers and trimers in solution. The trimeric form of the CC was 

stabilized in a crystal structure, which revealed the residues at the subunit 

interface. Specific mutations at this interface disrupted dimerization of the 

isolated CC, the NTD, and eliminated self-association of the full-length protein by 

yeast-two hybrid interaction. 

 

Experimental Procedures 

 

Protein Purification 

Full-length Xenopus laevis Mcm10 (xMcm10) was purified from baculovirus 

infected insect cells using the Bac-to-Bac expression system (Invitrogen). The 

gene was subcloned into pFastBac1 vector with a His6 tag added to the C-

terminus by PCR. Protein was expressed in Hi-5 insect cells for 48 hr. Cells were 

resuspended in lysis buffer (50 mM Tris buffer (pH 7.5), 500 mM NaCl, 10% 
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glycerol) and hand homogenized. Protein was purified by nickel-nitrilotriacetic 

(NTA) acid affinity chromatography. Pooled Ni-NTA fractions were buffer 

exchanged into 50 mM Tris buffer (pH 7.5), 150 mM NaCl, and 10% glycerol and 

purified using Source Q (GE Healthcare) cation exchange, followed by gel 

filtration on a Superose6 (GE Healthcare) column equilibrated in 25 mM Tris 

buffer (pH 7.5), 150 mM NaCl, 5% glycerol, and 2mM β-mercaptoethanol (BME). 

Mcm10ΔN (aa 230-860) and Mcm10-NTD (aa 1-145) were expressed and 

purified as previously described (Robertson 2008; Warren 2009). 

Gene sequences encoding xMcm10 amino acids 95-124 and 95-132 were 

cloned into a pMALX(E) vector using NotI and BamHI restriction sites to generate 

coiled-coil (CC) fragments fused to the C-terminal end of a mutant form of 

maltose binding protein (MBP) with a short, uncleavable peptide linker as 

previously described (Moon 2010). The recombinant proteins were 

overexpressed in E.coli C41 cells for 3 hrs at 37°C in LB medium supplemented 

with 100 µg/mL ampicillin and 0.5 mM IPTG at mid-log phase. Cells were 

resuspended in lysis buffer and lysed under pressure (25,000 p.s.i.) using an 

EmulsiFlex-C3 homogenizer (Avestin, Inc.). Lysate was centrifuged at 35,000Xg 

for 20 min. The supernatant was incubated with amylose resin (New England 

Biolabs) overnight at 4°C and washed with 15 column volumes of lysis buffer. 

Fusion proteins were eluted with 40 mM maltose in lysis buffer, concentrated, 

and further purified by size exclusion chromatography on a Superdex S200 

column (GE Healthcare) equilibrated in 25 mM Tris buffer (pH 7.5), 150 mM 

NaCl, 5% glycerol, 4 mM BME, and 40 mM maltose. Purified MBP-CC proteins 
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were flash frozen and stored at -80°C in 25 mM Tris buffer (pH 7.5), 150 mM 

NaCl, 0.2 mM tris(2-carboxyethyl)phosphine hydrochloride (TCEP), and 5 mM 

maltose. 

The 2A (L104A/L108A), 2D (L104D/L108D) and 4A 

(L104A/L108A/M115A/L118A) mutations were incorporated into full-length, NTD, 

and MBP-CC constructs using the QuikChange Mutagenesis Kit (Qiagen). 

Mutant proteins were expressed and purified the same as their corresponding 

wild-type proteins. 

 

X-ray crystallography 

Purified MBP-CC proteins were concentrated to 50 mg/mL using a 10-kDa 

MWCO Amicon spin concentrator and buffer exchanged into 25 mM Tris buffer 

(pH 7.5), 150 mM NaCl, 0.2 mM TCEP, and 5 mM maltose for crystallization. 

Crystals were grown by sitting drop vapor diffusion at 16°C by adding 2 µl protein 

to 2 µl reservoir solutions containing 0.1 M sodium acetate (pH 4.8), 0.1 M NaCl, 

0.1 M CaCl2, 15% PEG 2K, and 5% (w/v)  N-dodecyl-beta-D-maltoside (MBP-

CC95-124), or 0.05 M sodium acetate (pH 4.8), 0.2 M NH4H2PO4, and 12% PEG 

3350 (MBP-CC95-132). Crystals were flash frozen in 0.1 M sodium acetate (pH 

4.8), 0.1 M NaCl, 0.1 M CaCl2, 22% PEG 2K, and 15% glycerol (MBP-CC95-124) 

or 0.05 M sodium acetate (pH 4.8), 0.2 M NH4H2PO4, 23% PEG 3350, and 15% 

glycerol (MBP-CC95-132) prior to data collection. X-ray diffraction data were 

collected at the Advanced Photon Source LS-CAT/sector 21 and processed 

using HKL2000 (Otwinowski 1997).  
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The structures of MBP-CC95-124 (2.4 Å) and MBP-CC95-132 (3.1 Å) were 

determined by molecular replacement using MBPX(E) from PDB ID 3H4Z as a 

search model (Moon 2010; Mueller 2010). Phases generated from three copies 

of MBP in the asymmetric unit revealed clear electron density for the Mcm10 

coiled-coil in both cases. The models were built in COOT (Emsley 2004) and 

refined against a maximum likelihood target in PHENIX (Adams 2002). Although 

one additional turn of the α-helix was visible in the MBP-CC95-132 structure, the 

side chains could not be unambiguously identified, and thus the lower resolution 

structure was not pursued further. Anisotropic motion was modeled using 

translation/libration/screw-rotation (TLS) refinement, with each protomer defined 

as a TLS group. Individual anisotropic B-factors derived from the refined TLS 

parameters were held fixed during subsequent rounds of refinement. 

Adjustments to the model and addition of solvent was carried out iteratively 

through inspection of 2Fo-Fc, Fo-Fc and composite omit electron density maps. 

The final MBP-CC95-124 model, consisting of MBPX(E) residues 1-367, the five-

residue linker (AAAMG), and xMcm10 residues 95-122, was validated using 

PROCHECK (Laskowski 1996). 97.5% and 2.2% of residues reside in the 

favored and allowed regions of the Ramachandran plot, respectively. The 

remaining 0.3% in disallowed regions reside in the MBP-CC linker, MBP loops, or 

the extreme MBP amino terminus. The final model was deposited in the Protein 

Data Bank under accession number 4JBZ. 
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Analytical Ultracentrifugation 

Sedimentation velocity experiments were performed using a Beckman 

ProteomeLab XL-I ultracentrifuge operating at 42,000 rpm and 4°C (Mcm10, 

Mcm10ΔN) or 20°C (MBP, MBP-CC, and NTD). Full-length Mcm10 was 

concentrated to 1.6 mg/ml in PBS buffer, 150 mM NaCl, and 0.3 mM TCEP, and 

Mcm10ΔN was analyzed at 1.0 mg/ml in 25 mM Tris buffer (pH 7.5), 150 mM 

NaCl, 2 mM MgCl2, 5% glycerol, and 4 mM BME. MBP, MBP-CC, and NTD 

constructs were analyzed at 0.6 mg/ml in PBS buffer (pH 7.4), 150 mM NaCl, 

and 0.3 mM TCEP or 25 mM sodium acetate buffer (pH 4.7), 150 mM NaCl, and 

0.3 mM TCEP. Buffer viscosity, buffer density and partial specific volume were 

calculated using SEDNTERP (Laue 1992). Data was processed using c(s) 

analysis in SEDFIT (Schuck 2000; Schuck 2002).  

 

Multi-angle light scattering 

Molecular mass analysis of Xenopus Mcm10 and Mcm10ΔN by size 

exclusion chromatography and multi-angle light scattering (SEC-MALS) was 

carried out using a Superose6 10/300GL column (GE Healthcare) operating at 

0.4 ml/min in 25 mM Tris buffer (pH 7.5), 150 mM NaCl, 2% glycerol, and 2 mM 

BME. Absorbance, refractive index, and light scattering of the eluants were 

measured using a DAWN HELEOS II detector (Wyatt Technology) and data 

analyzed by ASTRA software. 
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Yeast two-hybrid assay and immunoblotting 

Mcm10 self-association by yeast two-hybrid was performed using the 

GAL4-based MATCHMAKER Two-Hybrid System 3 (CLONTECH Laboratories, 

INC.). Full-length wild-type and 2D and 4A mutants of Xenopus laevis Mcm10 

(xMcm10) and a construct lacking the N-terminal region (xMcm10ΔN, residues 

230-860) were cloned into pGBKT7 (bait) and pGADT7 (prey) vectors and co-

transformed into yeast strain AH109. Positive controls included co-transformation 

of murine p53/pGBKT7 and SV40 large T-antigen/pGADT7. As negative controls, 

Mcm10/pGBKT7 was co-transformed with the pGADT7 empty vector, 

Mcm10/pGADT7 was co-transformed with the pGBKT7 empty vector, and the 

pGBKT7 and pGADT7 empty vectors were co-transformed. Co-transformed cells 

were plated on synthetic defined medium lacking leucine and tryptophan (SD/-

leu-trp) or on SD lacking leucine, tryptophan, histidine, and adenine (SD/-Leu-

Trp-His-Ade). Cells were transformed immediately prior to cell growth and 

spotting on plates. Plates were incubated at 30°C for two days and photo-

documented. For the spotting assay, single colonies were picked from the 

transformation plates and grown in liquid culture (SD/-Leu-Trp, supplemented 

with 0.2% adenine) at 30°C for 1 day. All samples were diluted to a starting 

concentration of 24,625 cells/µL. 5 µl each of 10-fold serial dilutions were spotted 

on SD/-Leu-Trp and SD/-Leu-Trp-His-Ade selective plates and incubated for four 

days at 30°C. To verify protein expression, total protein extracts were obtained 

from yeast cultures by trichloroacetic acid (TCA) preparation as described and 

separated by SDS-PAGE and subsequently transferred onto nitrocellulose 
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membrane (Haworth 2010). HA-tagged xMcm10 was visualized using a 

horseradish peroxidase (HRP)-conjugated anti-HA antibody (Roche, 3F10). Myc-

tagged xMcm10 was detected using an anti-Myc antibody (Thermo Scientific, 

9E11). 

 

Results 

Mcm10 self-associates through its N-terminal domain 

Full-length Xenopus laevis Mcm10 (xMcm10) self-associates into low 

molecular mass complexes, which we previously hypothesized to form as a result 

of NTD dimerization (Robertson 2008). In order to investigate the contribution of 

the NTD on self-association behavior, we purified a deletion mutant lacking the 

first 230 residues of xMcm10 (Mcm10ΔN) and analyzed molecular masses of full-

length and Mcm10ΔN proteins by sedimentation velocity analytical 

ultracentrifugation and size exclusion chromatography coupled to multi-angle 

light scattering (SEC-MALS). The full-length protein showed a broad distrubution 

of low and high sedimenting species indicative of multiple oligomeric states 

(Figure 9B). The complex nature of the sedimentation profile precluded 

assignment of precise molecular mass to each peak. Similarly, SEC-MALS 

analysis of the full-length protein showed a broad elution profile with at least 

three overlapping but distinct peaks and the majority of the protein existing as the 

lower molecular weight form (Figure 9C). As with the sedimentation data, the 

overlapping nature of the peaks only allowed for an estimation – not a definitive 

assessment – of the respective molecular masses. From the light scattering data, 
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the three major species were approximately 90.4 kDa (I), 189.3 kDa (II), and 

322.7 kDa (III) in size, corresponding to 1, 2, and 3.4 Mcm10 subunits, 

respectively (the calculated mass from amino acid composition is 95.4 kDa). 

Although not strictly conclusive, these data are consistent with reports of dimeric 

and trimeric forms of yeast Mcm10 (Fien and Hurwitz 2006; Eisenberg 2009).   

In contrast, Mcm10ΔN formed a single species corresponding unequivocally 

to a monomeric protein in both experiments. The molecular mass of the major 

(1.5S) peak from sedimentation velocity (Figure 9B) was calculated to be 68.8 

kDa, compared to 70.4 kDa calculated from the amino acid composition. The 

minor species observed at 2.3S did not increase with the protein concentration 

(Table 2) and was thus judged to be a contaminant. In addition, Mcm10ΔN eluted 

as a single, monodispersed species from a size exclusion column with a 

molecular mass of 75.1 ± 0.8 kDa determined by MALS (Figure 9D). Therefore, 

deletion of the NTD eliminated self-association of the full-length protein. 
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Figure 9. The NTD is necessary for Mcm10 self-association. A. Schematic of 
Xenopus laevis Mcm10 constructs used to study self-association. Theoretical 
molecular masses are 95.4 kDa (Mcm10) and 70.4 kDa (Mcm10ΔN). B. 
Sedimentation velocity data for full-length Mcm10 (black dotted line) and 
Mcm10ΔN (blue) as described in Materials and Methods. The molecular mass of 
the Mcm10ΔN major peak was calculated to be 68.8 kDa. Molecular masses 
could not be accurately determined from the full-length data. C,D. SEC-MALS 
analysis of Mcm10 (C) and Mcm10ΔN (D). The UV trace is shown as a black 
dotted line and the light scattering trace is red. C. Estimated molecular masses 
were calculated from the three shaded regions to be 90.4 kDa (I), 189.3 kDa (II), 
and 322.7 kDa (III). The peak at 18 min corresponds to the void volume. D. The 
molecular mass of Mcm10ΔN was calculated to be 75.1 ± 0.8 kDa. 
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Table 2. Sedimentation velocity data for Mcm10 constructs. 
 

 

 

 

 

 

 



74 
 

The structure of the Mcm10 coiled-coil region 

The NTD of the vertebrate and Saccharomyces cerevisiae Mcm10 orthologs 

contain a putative coiled-coil (CC) that we previously hypothesized accounts for 

dimerization of the NTD (Robertson 2008). We tested the ability of this region to 

dimerize by fusing the peptide corresponding to xMcm10 residues 95-132 to 

maltose binding protein (MBP) and analyzing by sedimentation velocity 

ultracentrifugation. MBP alone sedimented as a monomer, in agreement with a 

previous determination (Marvin 1997). In contrast, two species consistent with 

monomeric and dimeric forms of MBP-CC were present (Figure 10A,B). The 

dimeric form of MBP-CC persisted on SDS-PAGE gels even in the presence of 

high concentrations of reducing agents (Figure 10C), a characteristic of coiled-

coils observed in other proteins (Wigge 1998).  
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Figure 10. Dimerization of the putative Mcm10 coiled-coil region. A,B. 
Sedimentation velocity profiles of free MBP (A) and MBP-CC95-132 (B) at pH 7.4. 
Molecular masses derived from the data (Table 2) are 43 kDa (MBP) and 52 and 
75 kDa (MBP-CC), corresponding to 1.2 and 1.7 MBP-CC subunits, respectively. 
C. SDS-PAGE of MBP-CC95-132 in the presence of varying amounts of reducing 
agents. Both bands were confirmed by mass spectrometry to be xMcm10 
residues 95-132. The loading buffer in each sample contained 62.5 mM Tris-HCl 
(pH 6.8), 10% glycerol, 2% SDS (w/v), and bromophenol blue in addition to the 
reducing agents shown at the top of each lane. The peak marked with an asterisk 
(*) represents a molecular mass exactly twice that of the calculated mass, and 
persisted at DTT concentrations as high as 200mM (not shown). 
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To verify this region of the protein as a bona fide CC, we determined the 

crystal structure of the MBP-CC fusion protein to a resolution of 2.4 Å (Figure 

11). The highest quality diffraction data (Table 3) were obtained from a construct 

spanning xMcm10 residues 95-124 crystallized under low pH conditions. The 

final model was refined to crystallographic residuals of 16.4% (Rwork) and 20.5% 

(Rfree). Surprisingly, the asymmetric unit consisted of a trimeric assembly with the 

Mcm10 residues at the center forming a parallel three-helix CC wrapped in a left-

handed superhelix (Figure 11A,B). Trimer formation is not a crystallographic 

artifact, since we observed trimeric and dimeric MBP-CCs in solution under the 

same (low pH) conditions used for crystallization (Figure 11C). Similarly, we 

verified that MBP did not influence trimerization since MBP alone is monomeric in 

solution at the low pH condition (Figure 11D). Thus, the Mcm10 CC has the 

propensity to form both dimeric and trimeric helical bundles, consistent with our 

SEC-MALS analysis of the full-length protein (Figure 9C).   
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Figure 11. Trimerization of MBP-CC. A,B. Crystal structure of the MBP-CC 
asymmetric unit, with each protomer colored differently. Maltose-binding protein 
is shown as a Cα-trace, and the xMcm10 coiled coil is depicted as a cartoon 
ribbon. C,D. Sedimentation velocity profiles of MBP-CC95-132 (C) and free MBP 
(D) at pH 4.7. Molecular masses (kDa) calculated from the sedimentation data 
are shown above each peak. The molecular mass of a single polypeptide 
calculated from the amino acid composition are 45.1 kDa (MBP-CC) and 40.4 
kDa (MBP).  
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Table 3. MBP-CC95-124 crystallographic data collection and refinement statistics  
 

 

 

CCs in other proteins have been shown to exist in multiple oligomeric 

states, a property largely dependent on the characteristics of the a and d 

hydrophobic side chains of the heptad repeat that form the helical interface 

(Burkhard 2001). For example, two-, three-, and four-stranded CCs in the GCN4 

leucine zipper were engineered by mutating the a and d positions (Harbury 

1993). The Mcm10 CC helical region spans Glu98 to Leu122, two invariant 

residues in the human, frog, mouse, and budding yeast orthologs (Figure 12A), 

although we did observe the helices to extend to at least Thr125 in lower 
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resolution structures obtained from a longer 95-132 construct (data not shown). 

Most importantly, the high resolution of the structure enabled us to identify the 

residues of the CC interface as Leu104, Leu108, Met111, Met115, and Leu118 

(Figure 12B). This interface is entirely hydrophobic, with the side chains of each 

residue interacting with its equivalents on the other two helices through van der 

Waals packing around a three-fold rotation axis (Figure 12C,D).  

 

 

 

Figure 12. Crystal structure of the Mcm10 coiled-coil. A. Sequence alignment of 
the coiled-coil region from Xenopus laevis (x), Homo sapiens (h), Mus musculus 
(m), and Saccharomyces cerevisiae (sc) Mcm10. Red boxes indicate identical 
amino acids. The predicted heptad repeat pattern is labeled by letters a-g at the 
bottom. The position of the helix is shown schematically at the top (brown, MBP-
CC95-124; grey, MBP-CC95-132). B. Composite 2Fo-Fc omit electron density map 
(contoured at 1σ) with carbon atoms colored according to protomer. C. Crystal 
structure of Xenopus laevis Mcm10-CC95-124. Residues at the interface are shown 
in ball and stick, and the amino acid numbers labeled in black. D. View down the 
helical axis, rotated 90° from the view in B.  
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We expected the same residues to form the interface in a dimeric form of 

the CC based on other structures with both dimeric and trimeric propensities 

(Harbury 1993; Harbury 1994; Ciani 2010). The conformation of the Mcm10 CC 

trimer is virtually identical to the isoleucine zipper variant of the GCN4 CC 

(Harbury 1994), with only a modest divergence at the N-terminal end (Figure 

13B), which likely results from non-hydrophobic heptad repeat a and d residues 

(Gln97, Lys101) and/or the MBP tag (Figure 13A). We therefore constructed a 

model of the dimeric Mcm10 CC using the GCN4 leucine zipper dimer as a 

template (Figure 13C) (O'Shea 1991). As shown in Figure 13D, the dimer and 

trimer are related by a simple 60° rotation and 8 Å translation of one helix. The a 

and d positions are conserved between the two models, and the conformations of 

only two side chains (Leu104 and Leu108) needed to be adjusted to avoid steric 

collision across the dimer interface. Thus, only modest adjustments are required 

to interconvert between the CC dimer and trimer.  

 

 

 



81 
 

 

 

 



82 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. A model of the dimeric Mcm10 CC. A. Structure-based sequence 
alignment between Mcm10 CC and the trimeric and dimeric forms of GCN4 CC. 
B. Stereoview of the Mcm10 CC trimer (green) superimposed onto the isoleucine 
GCN4 trimer (grey, PDB ID 1GCM). Side chains at the CC interface are shown, 
with the exception of the N-terminal methionine in GCN4. Two Mcm10 residues 
are labeled for orientation. The view is rotated 45° clockwise with respect to 
Figure 3C. C. Stereoview of the Mcm10 CC dimer model (green) superimposed 
on the CGN4 CC (grey, PDB ID 2ZTA). D. Schematic showing the relationship 
between trimer (left) and dimer (right) forms of the CC. The conformation of the 
dimer can be constructed from the trimer by a 60° rotation and 8Å translation of 
the magenta helix. The interhelical distances (dashed line) are 15.5 Å (trimer) 
and 10 Å (dimer).  
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Mutations in the coiled-coil motif disrupt Mcm10 oligomerization 

To validate the crystal structure as representative of a functional CC, we 

designed mutations aimed at disrupting self-interaction. We introduced 

electrostatic repulsion at the interface by substituting Leu104 and Leu108 with 

aspartate to create a L104D/L108D double (2D) mutant. In addition, we 

eliminated side chains at positions 104, 108, 115, and 118 by alanine substitution 

to create a L104A/L108A/M115A/M118A quadruple (4A) mutant. Mutations were 

introduced into the MBP-CC95-124 and NTD protein constructs and tested for 

dimerization using sedimentation velocity (Figure 14). Both 2D and 4A mutants 

disrupted dimerization of the wild-type CC and NTD (Figure 14A,B). Interestingly, 

replacing only Leu104 and Leu108 with alanine (2A mutant) was not enough to 

disrupt dimerization (Figure 15A), suggesting that the remainder of the interface 

is sufficient to hold the CC together. 
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Figure 14. Coiled-coil mutations disrupt CC and NTD dimerization. 
Sedimentation velocity data for MBP-CC95-124 (A) and NTD (B) constructs as 
wild-type (WT) or containing L104D/L108D (2D) or L104A/L108A/M115A/L118A 
(4A) mutations. Molecular masses corresponding to each peak are reported in 
Table 2.  

 

 

 

 



85 
 

 

 
 
 
 
 
 
 
 
Figure 15. Effect of coiled-coil point mutants on Mcm10 self-association. A. 
Native gel electrophoresis (4-16% Bis-Tris) of the NTD as wild-type (WT), 2A 
(L104A/L108A), 2D (L104D/L108D), or 4A (L104A/L108A/M115A/L118A). Size 
markers in kDa are shown to the left. B. Sedimentation velocity analytical 
ultracentrifugation of full-length Mcm10 (black, wild-type; blue, 2D mutant). Data 
were collected at 4 °C and 42,000 rpm in PBS buffer, 150 mM NaCl, and 0.3 mM 
TCEP at protein concentrations of 1.6 mg/ml (WT) and 1.0 mg/ml (2D). The 
estimated massess of these peaks are shown in Table S1. Although the precise 
masses cannot be accurately determined due to the complex nature of the 
sedimentation profile, the reduction of the 4S peak (marked with an asterisk) in 
the monomeric 2D mutant represents a significant difference from the WT.  
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To confirm that the 2D and 4A mutations impeded Mcm10 dimerization in 

vivo, we conducted a yeast two-hybrid analysis (Figure 16). Full-length xMcm10 

as well as the 2D, 4A and Mcm10∆N mutants were each fused to either a Gal4-

binding or -activation domain. The interaction between T-antigen (T-ag) and p53 

served as a positive control, whereas combinations of the respective activation 

domain fusions combined with an empty vector served as negative controls. 

Plasmid retention was evaluated by spotting cells onto double selection plates 

lacking leucine and tryptophan. The ability to interact was scored on quadruple 

selection plates. Full-length xMcm10 displayed strong self-interaction, almost at 

the level as the binding between T-ag and p53. In contrast, the interaction was 

eliminated by the 2D and 4A point mutations and the N-terminal deletion 

construct (Figure 16A). As expected, empty vector controls did not show any 

viable colonies (Figure 16A). Importantly, the lack of self-association between the 

respective mutants or the N-terminally truncated protein and full-length xMcm10 

was not due to differences in protein expression, as analyzed by Western blot 

(Figure 16B,C). Since we also observed a significant difference in the 

sedimentation velocity profile of purified full-length wild-type protein and the 2D 

mutant (Figure 15B), we conclude that the CC is the primary oligomerization 

motif in xMcm10.  
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Figure 16. Coiled-coil mutations disrupt Mcm10 self-association. A. Bait and 
Prey proteins were cloned into the yeast-2-hybrid system and co-transformed 
into AH109 cells. Media lacking leucine and tryptophan (-Leu-Trp) select for 
maintenance of the both bait and prey plasmids. Media lacking leucine, 
tryptophan, histidine and adenine (-Leu-Trp-His-Ade) select for the 2-hybrid 
interaction. Ten-fold serial dilutions were shown. WT Mcm10 self-associates 
while mutants do not interact. The p53/T-antigen pair is a positive control for 
interaction, and empty vectors were used as negative controls. B. Western blot 
showing wild-type and mutant xMcm10 protein expression in representative 
strains. Gal4-AD fusions were detected by a HA-specific antibody. Strains 
carrying empty vector controls, or Gal4-AD fusion genes and Gal4-BD empty 
vectors are shown on the left (Empty vector controls). Strains expressing pair-
wise combinations of theGal4-AD and Gal4-BD fusion genes are shown on the 
right (Two-hybrid strains). Full-length xMcm10 and the 2D and 4A mutants ran at 
an approximate size of 140 kDa, whereas the truncated form of xMcm10 ran at 
an approximate size of 94 kDa. Tubulin served as a loading control. C. Gal4-BD 
fusions were detected by a Myc-specific antibody. Extracts from the identical two-
hybrid strains shown in (B) were loaded in the same order. The asterisk denotes 
a non-specific band. 
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Discussion 

This work identifies an evolutionarily conserved CC motif in the N-terminus 

of xMcm10 and provides evidence that it is required for self-association. Our data 

also strongly suggest that Mcm10 exists in a dynamic equilibrium between 

multiple oligomeric states, which helps to explain the disagreement in the 

literature regarding the number of subunits. We observed a broad distribution of 

states of the full-length protein using two quantitative approaches, and 

consistently found the presence of both dimeric and trimeric species. It is striking 

that in addition to estimates of dimer and trimer formation of full-length xMcm10 

by SEC-MALS, we detected a mixture of dimeric and trimeric forms of the 

isolated CC region, with dimers predominating in solution and a trimer in crystals. 

The propensity of the Mcm10 CC to form multiple states can be explained 

by the particular CC sequence, since the rules governing the number of CC 

subunits as a function of the amino acids at the a and d positions within the 

heptad repeat is well understood (Harbury 1993; Burkhard 2001; Woolfson 2005; 

Ciani 2010). Inclusion of methionine at the a position in the human, mouse, and 

frog Mcm10 CC (Met115 in our structure) likely destabilizes the dimer and would 

even favor parallel tetramers and pentamers (Woolfson 2005). This raises the 

possibility that the Mcm10 CC could accommodate higher order oligomers, 

formed either as a simple association between the helices or as more complex 

patterns such as a trimer of dimers (Chan 1997; Moutevelis 2009; Spinola-

Amilibia 2011). Regardless of the oligomeric state, the residues lining the 

supercoil interface would remain the same. Indeed, our data indicate that the a 
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and d residues identified in the trimer crystal structure are important for 

dimerization of the CC and the NTD in vitro and the self-association of the full-

length protein in vivo.  

The existence of dimers and trimers implies that the Mcm10 CC is 

metastable and therefore its oligomeric state is sensitive to environmental 

factors. In support of this, the Mcm10 CC trimer is stabilized at lower pH. 

Interestingly, pH dependent CC switches are important biological mechanisms by 

which proteins change conformation to drive various processes (Burkhard 2001). 

For example, viral glycoproteins adopt trimeric CCs in response to pH as a 

mechanism to fuse viral and cellular membranes (Carr 1993; Chan 1997; 

Gibbons 2000). In fact, the crystal structure of the human T cell leukemia virus 

type 1 transmembrane ectodomain, determined as a MBP fusion, formed a 

parallel trimeric CC required for proper function (Center 1998; Kobe 1999), 

further validating the importance of our trimeric MBP-Mcm10-CC structure. In 

addition, CC folding and remodeling in response to other environmental factors, 

including temperature and effector molecules is a general phenomenon (Noelken 

1964; Lowey 1965; O'Shea 1992; O'Shea 1993; Dutta 2001; Dutta 2003; 

Spinola-Amilibia 2013). On the basis of these examples and consistent with our 

data, we speculate that the Mcm10 CC exists mainly as an intrinsically 

disordered monomer or as a CC dimer, and has the propensity to attain other 

multimeric configurations in response to its environment.  

It is intriguing to speculate that Mcm10 may adopt different oligomeric states 

to perform multiple roles during DNA replication. For example, higher-order 
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oligomers may be used for sequestering Mcm10 at the replication fork. Upon pre-

RC activation and origin melting, Mcm10 may reform as a dimer or trimer as DNA 

is denatured and replication factors recruited to the emerging fork. scMcm10 was 

reported to exhibit differential packing on ssDNA versus dsDNA (Eisenberg 

2009), suggesting that a change in the Mcm10 conformation or its oligomeric 

state could facilitate strand separation. In this context, it is noteworthy that 

Mcm10 binds ssDNA with a 3-5-fold preference over dsDNA (Fien 2004; 

Robertson 2008; Eisenberg 2009). Oligomerization on ssDNA might thus assist 

in the initial unwinding step and aid what has been termed “helicase activation” 

(Thu and Bielinsky 2013) but may very well just be the coordinated stabilization 

of short stretches of unwound DNA after the separation of Mcm2-7 dimers 

(Gambus 2006; Remus 2009).  

Mcm10’s modular architecture and lack of enzymatic activity suggest that it 

serves as a scaffold to orchestrate protein and DNA interactions within the 

replisome. Self-association would provide multiple points of contact between 

replication factors and DNA (Du 2012). Indeed, Mcm10 is involved in multiple 

interactions, including but not limited to the replication and checkpoint clamps, 

PCNA and 9-1-1 (unpublished results and ref. Das-Bradoo 2006), and pol α 

(Ricke and Bielinsky 2004; Ricke and Bielinsky 2006; Chattopadhyay and 

Bielinsky 2007; Robertson 2008; Warren 2009). Protein-protein interactions could 

be mediated by the CC directly, similar to the interaction between Cdt1 and 

geminin (Lee 2004; Saxena 2004; Thepaut 2004). Alternatively, dimerization 

could facilitate molecular interactions and recruiting proteins to the origin simply 
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by increasing the number of possible binding sites on Mcm10 (Du 2012). For 

example, the ID and CTD each bind DNA and pol α and could therefore be 

involved in a molecular hand-off, whereby Mcm10 is anchored to DNA via the ID 

while binding pol α at the CTD, and vice versa (Warren 2009). Additional Mcm10 

subunits would enhance these interactions by increasing the number of ID and 

CTD present. Similarly, a parallel Mcm10 dimer could couple events on the 

leading and lagging strands or physically tether the helicase and pol α (Ricke and 

Bielinsky 2004; Zhu 2007; Lee 2010) while retaining the polarity necessary for 

fork progression. This would also explain why loss of the first 100 residues of 

scMcm10 confers such a strong sensitivity to hydroxyurea in the absence of the 

9-1-1 clamp (Alver and Bielinsky, unpublished results). 

Taken together, the dimerization or trimerization of xMcm10 in the absence 

of DNA reported here is consistent with previous work on spMcm10 (Fien and 

Hurwitz 2006), and the observation that three subunits of scMcm10 are bound to 

short ssDNA oligonucleotides, although these latter complexes were not shown 

to have the three-fold symmetry revealed in our crystal structure (Eisenberg 

2009). We did not find any evidence for Mcm10 hexamers, which were previously 

observed by EM of the human protein (Okorokov 2007). As discussed above we 

do not rule out a trimer of dimers, although this would not be consistent with the 

six-fold symmetrical EM structure reported. 
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CHAPTER IV 

 

DISCUSSION AND FUTURE DIRECTIONS 

 

Role of Mcm10 in DNA replication 

 Despite decades of research, the precise function of Mcm10 is not well 

understood. The research presented here brings us one step closer towards 

understanding its role. The oligomeric state of Mcm10 is likely to be important to 

its function. Here I propose several models for how Mcm10 self-association helps 

with its function. First, Mcm10 might self-associate to recruit proteins to DNA 

using a molecular hand-off mechanism. Second, Mcm10 might use different 

oligomeric states to regulate Mcm10-protein interaction. Third, the multiple 

changing states of Mcm10 may help with replisome assembly. 

 Our data and other existing research support the hypothesis that Mcm10 

functions as a scaffold protein to orchestrate protein and DNA interactions within 

the replisome during DNA replication. As an example of its role in protein 

recruitment to DNA, Mcm10 is required for the activation of the CMG complex at 

origins. Without Mcm10, the origin unwinding is blocked (van Deursen 2012); 

RPA and pol α cannot be recruited (Kanke 2012). Mcm10 is also required for 

chromatin loading of And-1, an essential DNA replication initiation factor, and the 

stability of p180 in mammalian cells (Zhu 2007). Mcm10 might use a molecular 

hand-off mechanism in which the ID is anchored to DNA while the CTD binds to 

pol α, and vice versa. But more importantly, self-association might help protein 
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recruitment to DNA using the molecular hand-off mechanism. For example, an 

Mcm10 dimer could use one copy of Mcm10 to primarily interact with DNA to 

provide an anchor, while the other copy binds to Mcm10-interacting proteins such 

as pol α. In this scenario, when two copies of Mcm10 self-associate through the 

NTD, one copy of ID+CTD binding to DNA would provide a high-affinity DNA-

binding platform, while the other copy of ID+CTD exposes a free binding platform 

to recruit proteins to DNA. A dimer model could also be compatible with the idea 

that one copy of Mcm10 is responsible for activities on the leading strand (such 

as DNA binding), and the other copy on the lagging strand performs other 

activities (such as protein recruitment). Such coordination could help recruit 

important proteins to DNA during replication, while maintaining the polarity of the 

fork in DNA replication.  

 A second possibility is that Mcm10 uses different oligomeric states to 

regulate its interaction with other proteins. Mcm10 has an extensive network of 

interacting proteins, such as pol α (Ricke and Bielinsky 2004; Ricke and Bielinsky 

2006; Chattopadhyay and Bielinsky 2007), ORC (Izumi 2000; Hart 2002), Mcm2-

7 (Merchant 1997; Homesley 2000; Hart 2002; Apger 2010), RecQL4 (Xu 2009), 

And-1 (Zhu 2007), and PCNA (Das-Bradoo 2006). These proteins may need to 

interact with Mcm10 only during a certain stage during DNA replication initiation. 

Their timely dissociation from Mcm10 could be tightly regulated to prevent 

replication errors. Some proteins might interact with a certain state of oligomeric 

Mcm10, and then disassociate from another oligomeric Mcm10 form. Mcm10 

might therefore oscillate between monomer, dimer, and trimer forms, for 
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example, to regulate protein binding. These on and off states could ensure 

efficient transitions between different Mcm10-protein interactions. 

 A third model for the biological significance of Mcm10 self-association 

involves multiple changing oligomeric states as needed to help with replisome 

assembly. Our results showed a trimeric crystal structure of the NTD, and also 

further showed that both dimer and trimer forms of NTD exist in solution. The 

exact oligomeric state of full-length Mcm10 could not be determined, because of 

the poor protein sample quality despite multiple attempts to improve protein 

purity. Although not conclusive, the SEC-MALS and AUC data (see Chapter III) 

suggested that multiple oligomeric states might exist. If this is the case, Mcm10 

could adopt different oligomeric forms to suit different requirements in replisome 

assembly. For example, Mcm10 might first use a higher oligomerization state 

(e.g. dimer of trimers) to have each copy of Mcm10 interacting with one subunit 

of Mcm2-7 to facilitate DNA unwinding at the origin. Alternatively, an Mcm10 

dimer might use specific structural features to help replisome formation. In a 

model in which the Mcm2-7 double hexamers dissociate upon origin firing to form 

two bidirectional replication forks (Remus 2009), Mcm10 might mediate this 

process. The interaction between the two hexamers of Mcm2-7 is partly 

mediated by a zinc ribbon motif, which is structurally homologous to the CCCC 

motif in Mcm10-CTD (Robertson 2010). Mcm10 might mimic the zinc ribbon of 

Mcm2-7 double hexamer and facilitate its dissociation. In yeast Mcm10 that lacks 

CTD (and thus CCCC motif), another mechanism might be needed to facilitate 

Mcm2-7 double hexamer dissociation. At a later step in replication initiation, 
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Mcm10 might then adapt to a lower oligomeric state (e.g. dimer or trimer) to 

recruit proteins (such as pol α) to DNA using a molecular hand-off mechanism 

(Du 2012). Mcm10 might change between monomer, dimer, trimer and other 

forms to regulate Mcm10-protein interactions during various stages of replication 

initiation. It is also conceivable that higher order Mcm10 oligomers could be 

inactive as scaffolds, and that lower order Mcm10 oligomers or Mcm10 

monomers are released to perform their individual recruiting and scaffolding 

functions. These speculative scenarios are derived from the current in vitro study. 

It will be ideal to investigate this question again with in vivo studies.   

  It is also important to note that evidence has suggested that Mcm10 also 

has a role in DNA replication elongation (Pacek 2006). Mcm10 interacts with pol 

α and prevents its degradation by the proteosome to stabilize it through the cell 

cycle. Mcm10 increases the binding of pol α to DNA and stimulates its primase 

activity, and thus seems to be a co-factor for pol α. Pol α undergoes cycles of 

chromatin association and dissociation during Okazaki fragment synthesis, and 

therefore Mcm10 might also bind only transiently to the fork. It is interesting to 

speculate that self-association of Mcm10 might help this transient binding of pol α 

to DNA by changing between different oligomeric states, while pol α might only 

be recruited by a certain Mcm10 oligomeric form. It is also possible that pol α is 

bound to Mcm10 throughout the process, but its enzymatic activity is regulated 

by different Mcm10 oligomers, i.e. pol α is active when bound to a certain Mcm10 

oligomeric form, but not others. Mcm10 also travels with the replication fork 

during elongation. A Xenopus egg extract study targeted replication factors 
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including Mcm10 (Pacek 2006). They used ChIP assay of plasmid templates that 

contained a biotinylated nucleotide. Adding streptavidin caused replication fork 

arrest without uncoupling DNA polymerases from the helicase. Mcm10 co-

localized with DNA polymerases and Mcm2-7 subunits at the biotin-streptavidin 

site, which supports that Mcm10 is a component of the elongation machinery 

(reviewed in Thu and Bielinsky 2013).  

 It is interesting to speculate how Mcm10 is able to perform these multiple 

functions during replication, from DNA and protein binding to coordinating 

enzymatic activities. One possibility is that there are different "pools" of Mcm10, 

each subset performing one specific function. It will be very informative to 

investigate how various Mcm10 pools are formed and how the cell recognizes 

the difference. It can be a result of the coordination of conformational changes, 

protein expression levels through the cell-cycle, and the overall cellular spatial 

and temporal environment. Another possibility is that there are some other 

factors to trigger the changes between its different roles. This could be different 

oligomeric states, post-translational modifications, or the existence of other 

upstream trigger proteins. Sophisticated regulatory mechanism will have to exist 

to maintain the proper balance and accuracy. 

 

DNA replication and diseases 

 Chromosome instability syndromes are a group of diseases developed 

from DNA replication defects. Known diseases include Ataxia telangiectasia 

(caused by lack or inactivation of the ATM protein kinase), Ataxia telangiectasia-
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like disorder (deficiency of the human Mre11 protein), Bloom syndrome 

(mutations in the BLM gene), Fanconi anaemia (15 genes related, including 

BRCA1/BRCA2, FANCA, etc.) (D'Andrea 2010), and Nijmegen breakage 

syndrome (defective Nbs1 protein) (Taylor 2004). These diseases result in 

predisposition to cancer because of various gene rearrangements or mutations. 

Moreover, when depleted of replication factors, normal cells and cancer cells 

respond differently. Cancer cells are more sensitive and usually undergo cell 

death, while normal cells do not. This difference makes replication factors 

possible targets for cancer therapy. Recent studies suggest that cell cycle and 

checkpoint control may be coupled to the regulation of other biological cycles 

such as the circadian cycle or metabolic cycle, proposing that replication factors 

might have other functions besides DNA replication (reviewed in Masai 2010). 

Better characterization of Mcm10, an important factor in DNA replication, will 

likely improve our understanding of related diseases.  

 

Coiled-coil 

 Coiled coils are major oligomerization motifs in proteins (Burkhard 2001). 

Coiled coil motifs are highly versatile in form, consisting of 2-7 alpha helices (Liu 

2006); and often have "tailored" oligomeric states that correspond to biological 

functions of proteins (Burkhard 2001). Coiled coils are composed of heptad 

repeats with hydrophobic residues in the a and d positions. Coiled coils are 

mainly stabilized by a distinctive "knobs-into-holes" packing of the apolar side 

chains into a hydrophobic core (reviewed in Walshaw 2003). The characteristics 
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of a and d hydrophobic residues side chains have significant impact on the 

oligomeric states of coiled coil. In a classic example, the GCN4 leucine zipper 

could be switched between two-, three-, and four-strands by mutating these 

residues (Harbury 1993).  

 The stability of coiled-coil is pH-dependent; low pH stabilizes the coiled 

coil structure (Noelken 1964; Lowey 1965; O'Shea 1992; Zhou 1992; Carr and 

Kim 1993; Gibbons 2000; Dutta 2001). This has important biological implications. 

For example, enveloped viruses such as influenza, Ebola or HIV have coiled-coil-

containing surface glycoproteins to fuse their membrane coats with cellular 

membranes to import genomes to cells. During influenza infection, hemagglutinin 

refolds at low pH and the membrane lipid bilayers are rearranged (Burkhard 

2001). Besides pH and the hydrophobic residues at a and d positions, another 

study showed that the b and c heptad positions are also important to the stability 

of coiled-coil (Fairman 1996). 

 The coiled-coil region of xMcm10 formed a trimer in the crystallization 

condition at pH 4.6. Our AUC analysis further showed the existence of the 

monomer, dimer, and trimer forms at low pH; while at physiological pH 7.4, only 

monomer and dimer were observed. The trimerization therefore is a low-pH 

effect (Figure 10, 11). Interestingly, another study on a de novo-designed 

synthesized peptide showed that dimer was preferred over the trimer at lower 

pH. There are two explanations proposed. One is that the dimeric state has a 

larger surface-to-volume ratio and thus lower electrostatic repulsions than the 

trimer. The other possibility is the preferential packing of protonated Glu side-
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chains at a and d positions against the apolar residues (Dieckmann 1998). The 

pH-dependent oligomeric states of xMcm10 lead us to speculate that although 

the exact oligomeric form was not determined for FL protein, Mcm10 might be 

prone to form a dimer and stabilized by replication proteins at physiological pH in 

cells. This would be consistent with several dimeric Mcm10 models outlined at 

the beginning of this chapter.  

 It is also interesting to note that this coiled-coil interaction observed within 

NTD in Mcm10 could be at least partially disrupted with high salt in solutions in 

vitro. An example comparison of the effect of salt concentration is shown in 

Figure 17. Oligomerization of MBP-CC95-124 and MBP-CC95-132 were each tested 

by AUC at both pH 4.7 (crystallization condition) and pH 7.4 (physiological pH). 

To keep the protein stable during overnight dialysis at a pH (4.7) close to their pI 

(5.1), high salt (400mM NaCl) was added to keep the protein from precipitating 

out. Results showed that low pH tends to stabilize the trimer, and high salt 

weakens the oligomerization.  
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Figure 17. High salt concentration disrupts coiled-coil oligomerization. A. AUC of 
MBP-CC95-132 in pH 7.4 buffer with 150mM NaCl. B. AUC of MBP-CC95-132 in pH 
7.4 buffer with 400mM NaCl. The arrows indicate monomer and dimer. M, 
monomer. D, dimer. 

 

Future directions 

 The research presented in this thesis expanded our knowledge of the 

structural basis for oligomerization of Mcm10 and the interactions of Mcm10 with 

other players in replication initiation. However, more work needs to be done to 

understand the precise function of Mcm10 in DNA replication. To test the 

functional significance of Mcm10 oligomerization, future experiments should be 

focused on introducing the mutants studied here in vivo. There are several model 

systems that can be used for this purpose. First, the xMcm10 mutants could be 

introduced into Xenopus egg extract. Proteins interacting with Mcm10 can be 

identified in a pull-down assay. If Mcm10 oligomerizes to regulate protein 

binding, some interacting proteins may not be pulled-down with the Mcm10 

mutants. A possible complication may be that if the interactions are weak or 

transient, as found in some cases between interacting proteins in DNA replication 

initiation (Zou and Stillman 2000; Bauerschmidt 2007; Bruck 2011), the protein-
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protein interaction would not be easily identified biochemically. Another 

experiment in the Xenopus egg extract would be a ChIP assay to investigate 

whether Mcm10 oligomerization mutants bind to the chromatin. Since Mcm10 ID 

and CTD bind DNA, we would expect mutated Mcm10 could also bind DNA. 

However, if oligomerization Mcm10 mutants do not bind DNA, it suggests that 

Mcm10 loads onto the chromatin as an oligomer. If protein-protein interactions 

are not detectable biochemically in Xenopus egg extract, we would perform a 

complementation assay in human cells given the high sequence similarity 

between Xenopus and human Mcm10. Since Mcm10 is essential, we would first 

introduce Xenopus Mcm10 into human cells, and then use RNAi to knock-down 

expression of endogenous human Mcm10. We would then use pull-down and 

ChIP assays as above to investigate the consequences of Mcm10 

oligomerization mutants. A third system we can use is yeast. Yeast mutations 

designed based on my Xenopus data did not disrupt oligomerization by yeast-2-

hybrid (Anja Bielinsky, unpublished), suggesting yeast Mcm10 may utilize 

additional domains to self-associate. However, one experiment would be to 

replace endogenous yeast Mcm10 with either wild-type or mutant forms of the 

Xenopus Mcm10 by plasmid shuffling in an Mcm10 deletion strain or through use 

of a temperature-sensitive or degron allele of MCM10, followed by assaying cell 

viability under normal conditions. For plasmid shuffling, we may want to start with 

a high-copy yeast vector to achieve high yield of xMcm10 protein, but may switch 

to a low-copy vector if too much Xenopus Mcm10 is toxic to yeast cells. The 

temperature-sensitive allele is also convenient in that we can raise the 
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temperature to inactivate yeast Mcm10 and test the functions of mutant Xenopus 

Mcm10. Yeast cells with wild-type Mcm10 should show normal growth. If the 

Xenopus Mcm10 can complement the yeast Mcm10, those cells should also 

show normal growth. This could serve as a tool for studying the functional 

consequences of Mcm10 oligomerization mutants. We can then perform the 

ChIP or pull-down experiments outlined above after expressing the 

oligomerization-defective xMCM10 alleles in yeast. We can also synchronize the 

wildtype and mutants, and study the DNA replication process on those mutant 

cells. Those might fail to enter S phase, or have prolonged S phase.   

 Besides oligomerization and function of Mcm10, another interesting 

question is how the individual domains coordinate binding to DNA. Previous 

studies identified both ID and CTD as DNA binding domains. In fact, a construct 

spanning both the ID and CTD (lacking the NTD) has a tighter binding to DNA by 

10-fold than either domain alone. Therefore, it is very likely that ID and CTD bind 

to each other in a coordinated manner. Yeast Mcm10 binding data showed 

Mcm10s cooperatively bind to dsDNA in an end-to-end manner, supporting our 

hypothesis (Eisenberg 2009). There are three possible mechanisms for ID and 

CTD to bind DNA (Figure 18). One is that ID and CTD both bind to the same 

region of ssDNA, which is sandwiched in between the two binding sites 

(globular). Another model would be that ID and CTD stack end to end on the 

ssDNA, or even to the point of overlapping. The third possibility is that ID and 

CTD are separated from each other upon DNA binding. If ID and CTD coordinate 

DNA binding, there could be a significant conformational change of Mcm10 upon 
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DNA binding. Whether ID and CTD restructure upon DNA binding could be 

investigated by measuring hydrodynamic properties of the protein using 

biophysical techniques such as SEC-MALS and small angle X-ray scattering 

(SAXS). High-resolution structures of ID+CTD with and without DNA can be 

pursued by X-ray crystallography. Critical residues in DNA binding could be 

examined by mutagenesis, and corresponding in vivo functional analysis of the 

mutants needs to be performed. 

 

Figure 18. Possible ssDNA binding modes by ID+CTD. 

 
 It would also be interesting to know about the preferred substrate in 

binding. Fluorescence anisotropy and electrophoretic mobility shift assays 

(EMSA) have determined that the preferred substrate length for ID was 5-10 nt. 

And for CTD, ~15 nt would be sufficient for ssDNA binding with maximal binding 

affinity achieved at 20-25 nt (Robertson 2008; Warren 2008). Having 

characterized the DNA binding length for the individual domains, it would be very 

informative to investigate the optimal DNA binding length for the full DNA binding 

site as a whole. Moreover, Mcm10 interacts with pol α, which contains a primase 

function. Pol α synthesizes a small RNA as the template for DNA replication, 

which leads to the possibility of Mcm10 also interacting with RNA. Fluorescence 
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anisotropy and EMSA can be used for optimal substrate determination with 

various lengths of fluorescein-labeled ssDNA (e.g. 15-45 nt), labeled RNA primer 

and ssDNA overhang. This RNA substrate study will shed light on the details of 

Mcm10 interacting with pol α, as well as its cellular function.  

 To further define the structural basis for the function of Mcm10 in the 

replication machinery, structures of full-length Mcm10 and possibly Mcm10-pol α 

complex will be very informative. Efforts on obtaining the structure of Mcm10 by 

X-ray crystallography have not been successful, possibly due to the flexibility 

within the protein. Because Mcm10 binds to other proteins such as pol α, co-

crystallization could possibly provide more stability. Another technique can be 

used is SAXS, which requires no crystal- only proteins in solution and is suitable 

to analyze big protein complexes, although the resolution is lower than 

crystallography. SAXS can provide initial low-resolution models, high-resolution 

Mcm10 domain structures can be then fit into the molecular envelop.  

 

Summary 

 This work examines the role of the N-terminal domain (NTD) in Mcm10 

structure and self-assembly. Specifically, NTD was identified to be responsible 

for full-length xMcm10 oligomerization. The structure of the coiled-coil motif 

within NTD was determined to be a homotrimer by X-ray crystallography. Both 

dimer and trimer were observed in solution by AUC. Mutations of the interacting 

residues within NTD disrupted oligomerization of NTD, as well as full-length 

Mcm10. A dimer/trimer coiled coil conversion model was proposed. This study 
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puts us one step further in understanding Mcm10 oligomerization, and thus its 

role in DNA replication initiation. Future studies to better characterize the 

coordination of ID and CTD in DNA binding, the complex structure of FL Mcm10 

and its interacting partners, and the investigation of the functional significance of 

Mcm10 will help us better understand Mcm10 and DNA replication. This research 

will shed light on drug discovery and treatment of DNA-replication related 

diseases, including cancer. 
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