
LINUX DEVICE DRIVER SYNTHESIS AND VERIFICATION

By

Yi Li

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Computer Science

December, 2015

Nashville, Tennessee

Approved:

Theodore Bapty, Ph.D

Sandeep Neema, Ph.D

TABLE OF CONTENTS

Page

LIST OF FIGURES . iv

I Introduction . 1

I.1 Problem . 1
I.2 Solution Summary . 3

II Background . 5

II.1 Generic Modeling Environment . 5
II.2 Zing . 5
II.3 P Language . 5

II.3.1 Ghost Machine . 6
II.3.2 Asynchronous Semantic . 7
II.3.3 External Functions . 8

III Implementation . 9

III.1 Overview of the Solution Architecture 9
III.2 Driver Modeling Domain Specific Language 10
III.3 Domain Meta-model . 12

III.3.1 Top Level: View . 12
III.3.2 Second Level: AbsScope . 13
III.3.3 Third Level: StateMachine . 17

III.4 Code Generator . 19
III.4.1 The Entry Point . 20
III.4.2 The Generated P Program . 22
III.4.3 File Operation and External Function 23

III.5 The verifier . 31
III.5.1 State Level Responsiveness . 32
III.5.2 Machine Level Responsiveness 33

IV Case Study . 35

IV.1 The Driver Model . 35
IV.2 Execution . 39
IV.3 Concurrency . 40

ii

Chapter

V Future Work . 42

V.1 Device Class Specification . 42
V.2 Hardware Software Co-design . 43

VI Conclusion . 44

BIBLIOGRAPHY . 45

iii

LIST OF FIGURES

Figure Page

II.1 P State Machine . 6

II.2 Ghost Machine . 7

II.3 Asynchronous Semantic . 8

III.1 Overview of the Solution Architecture 9

III.2 Driver Structure . 11

III.3 View . 13

III.4 AbsScope is inherited by UserScope, DriverScope, and Environment . . 14

III.5 View in a Driver Model . 14

III.6 AbsScope . 15

III.7 AbsScope in a Driver Model . 15

III.8 AbsFunc . 16

III.9 StateMachine . 17

III.10 StateMachine in a Driver Model . 18

III.11 The Structure of Generated Code . 19

III.12 The Basic Situation . 24

III.13 Event Passing Through a File Operator 25

III.14 Event Passing Through a External Function 30

IV.1 Top Level of Schar . 36

IV.2 Scope and State Machines . 37

iv

IV.3 User Machine . 37

IV.4 Driver Machine . 38

IV.5 Flowchart of Writing . 40

IV.6 Zing Error Trace . 41

v

CHAPTER I

Introduction

I.1 Problem

The device driver is a program which provides a software interface to a hardware device

enabling operating systems and other computer programs to access hardware functions

without needing to know details of the hardware. It can be treated as an abstraction layer

between hardware devices and operating systems. Device drivers are usually contained in a

Monolithic-kernel operating system, which is one of most important part in system kernel.

[1] shows that the driver code accounts for about 70% of the code size in Linux Kernel 2.4.

[2] mentions that 85% of Windows blue screens of death are caused by the driver codes of

Windows kernel. Nowadays, drivers have become a key factor in defining the reliability of

the system and a primary source of catastrophic bugs.

However, recent aggressive scaling of complex hardware and software components [3] is

making device drivers increasingly complex and cumbersome. For example, the length of

source code of the USB hub driver in Linux kernel is over 5500 lines and we find there were

several bugs that have stayed in the kernel bug list for over 3 years. A USB hub is shared

by multiple USB devices. Therefore the conflict of these devices with different versions

of USB ports and decrease in performance caused by inappropriate concurrent strategy are

usually the problems. These problems are hard to detect and fix manually. Thus, to adapt

the trend in the growing scale of device drivers, finding a new reliable methodology for the

driver development process becomes an urgent task.

In general, there are two main problems in the traditional device driver development pro-

cess: the ambiguity of documents and the unsatisfactory testing techniques.

1

1) Ambiguity of documents.

In manual development process, developers of device drivers need to pay attention to not

only the device and user programs but also the operating system interface. Both sides rely

on informal documentation such as the device interface description from the vendor, corre-

sponding system API in the driver developer’s manual, and comments in the kernel source

code, which makes the development process tedious and error prone. For example, there

may be several versions of system API documents written independently by different au-

thors or missing information about the newest device version. These kinds of mistakes are

more likely to occur with the growing scale and rapid turn around time of hardware devel-

opment.

2) Unsatisfactory testing techniques.

In most operating systems, drivers are a kind of special program which runs directly on the

OS kernel level. Thus, traditional testing techniques may not help in detecting errors in

the driver code. Since the OS kernel is a highly concurrent environment, it is difficult to

determine the exact operation or time when there is a fault in the interaction between the

driver and the kernel. Suppose we use the Unit Test technique in the driver development

process. Due to the indeterminacy of the OS kernel, the unit-test case could go into some

inconsistent state and the crash is reported after a long time, blurring the real cause of the

crash. Moreover, some bugs of drivers that may hide well in normal circumstances can

appear in rare and exceptional cases. In this situation, we cannot find a unit-test case to

cover these kinds of driver errors.

In order to solve these problems, we posit that a model-driven automatic synthesis is a

good choice. Programmers can simply create the device driver by designing its model on

their computer, which can be converted to a series of formal specifications of the driver

and its environment. Then, the synthesis tool-chain can generate the resulting driver au-

2

tomatically. By using driver synthesis, programmers can avoid wasteful effort. Moreover,

since driver synthesis uses formal specifications rather than documents written in natural

language, computers can now understand the detailed information of the internal strategy

of device drivers, which enable computer to find those potential driver errors with the tech-

nology called formal verification.

This thesis details such a device driver synthesis and verification tool chain under the Linux

operating system. We make the following contributions. First, we present an approach

for automatically synthesizing driver code based on Model Integrated Computing (MIC)

concepts. Second, we define a formal graph based Domain Specific Modeling Language

(DSML) for specifying a device driver model and its environment. Third, we use model

checking techniques for verifying that the resulting device driver constitutes a faithful de-

vice behavior while eliminating errors introduced during manual abstractions.

I.2 Solution Summary

Formalizing device description from environment related details is the key to our approach.

Thus, the user-defined driver model is the input and the output is the resulting driver. The

input model includes the software behavior of the hardware device and the I/O interface

between user programs, low level device control and the driver, which is defined formally

by the programmer with our DSML. Finally, this information will be converted into the

implementation of the driver by the code generator.

By defining a driver model, a developer can reuse duplicated driver code, simplify the de-

velopment process and describe the details of the driver behavior more precisely at a higher

level without concrete low-level code. In contrast to automatic driver synthesis, manual de-

velopment relies on informal documentation such as the device interface description from

the vendor, corresponding system API in the driver developer’s manual, and comments in

3

the kernel source code. This traditional manual approach is tedious and error prone. Our

automatic approach thus is more reliable and less ambiguous compared to the manual ap-

proach.

Moreover, inspired by research in program synthesis [4], we have integrated formal verifica-

tion into our system and have chosen the model checking verifier as an abstract interpreter

in our tool chain. Thus, our tool-chain contains a verifier to check the correctness of the

resulting driver with the model-checking technology. However, it is usually difficult to ap-

ply model checking on a program fragment that contains concurrency and side effect (like

I/O statement) because the natural notion of equivalence in those programs is typically not

strict equality either in the most straightforward mathematical semantics or in the underly-

ing machine model. In the driver model, a driver is divided into its core, the environment,

and the I/O control flow between the two. The core of the driver and each component of

the environment are represented by several event driven state machines, which is a formal

system and easy to apply model-checking to verify the correctness. To keep the consistency

of the result of verification and the state machine at run-time, we used P language, devel-

oped by Microsoft Software Research (MSR), as an intermediate representation. Details of

P language are discussed in section 3. By using the P compiler, this part of the code not

only generates the core state machine wrapped by a glue layer in the implementation of the

driver, but also sends the corresponding verification code to the verifier.

The rest of the thesis is structured as follows. Section 2 gives background information about

MIC and DSML. Section 3 describes the details of our tool implementation including the

definition of the meta model, the concept of asynchronous finite state machines, and the

code generator. Section 4 shows an example that illustrates how our tool chain generates a

complete device driver.

4

CHAPTER II

Background

II.1 Generic Modeling Environment

The Generic Modeling Enveronment (GME) is a modeling tool that is highly customizable

for creating a graph based Domain Specific Modeling Language (DSML) and supports

metamodel modeling and program synthesis. It applies UML class diagrams for describ-

ing a DSML and implements a meta language to define the concepts, relationships, and

constraints of specific domains. A user is allowed to easily integrate code generators to

a domain model with its interpreter mechanism in GME. In this paper, the device driver

model is described by a DSML in GME. [6]

II.2 Zing

Zing is a flexible and scalable infrastructure for exploring states of concurrent software

systems developed by Microsoft Research. It uses an efficient SMT Solver called z3, which

has been applied in various software verification and analysis applications. Zing is currently

being used for developing drivers on Windows operating system and Windows Phone. In

our tool chain, Zing is one of the back-ends responsible for verifying the code emitted by

P compiler. [5]

II.3 P Language

P programming language is a domain specific language developed by Microsoft Research[7]

for asynchronous event driven programming. P language allows the programmer to spec-

ify the system as a collection of interacting state machines that communicate with each

other using events. A P program can be compiled into both executable code and the cor-

responding Zing code for verification purposes. In this paper, P is used as an intermediate

representation of the driver model state machine and finally generates the implementation

5

code in C and verification code for Zing. Since P language plays a very important role in

our methodology we briefly introduce key concepts of P language. [7]

II.3.1 Ghost Machine

Figure II.1: P State Machine

Fig II.1 shows a simple P program. ”A P program is a collection of state machines, that

communicates with each other through events. An event can be sent from one machine

to another and raised within a machine. Each machine is composed of states, transitions,

variables and events.”

There is an important concept in the P language called Ghost Machine. In a P program,

users can explicitly indicate that a state machine is a Ghost Machine to be used only dur-

ing verification, and elided during compilation and actual execution. Such behavior of P

language compiler is shown in Fig II.2 and this feature is really useful for users to describe

the state machines with the specific environment. [7]

6

Figure II.2: Ghost Machine

II.3.2 Asynchronous Semantic

Compared to synchronous languages such as Esterel, Lustre and Signal, P is an asyn-

chronous languages with less restrictions on state machine definition. This means it is

unnecessary for a state machine to handle every incoming event at every clock tick. Fig

II.3 shows a typical example of using this feature. By using the keyword defer, a certain

state (the state Busy in fig II.3) in a state machine can defer a set of events and save these

unhandled events to the event queue. However, such deferred processing should be explic-

itly indicated by user and the failure to handle events is detected by automatic verification.

Moreover, to prevent user silencing the verifier by making every event deferred in every

state, the P verifier implements a liveness check that prevents deferring events indefinitely.

[7]

The reason why we chose the language with asynchronous semantics in our driver synthesis

methodology is that it is usually impractical for a driver state machine to handle every event

in every time node, which is required by synchronous semantics. This deferred processing

7

feature in P language makes the state machine representation more flexible.

Figure II.3: Asynchronous Semantic

II.3.3 External Functions

P language provides a strategy to integrate those user defined external functions into the

state machines. The external functions must have one additional argument on top of the

ones declared in P, which points to external memory that can be used by programmers

to persist some information as a part of the state of calling machine. The externals are

assumed to terminate and self manage its memory. In this thesis, all driver-specific low

level IO actions are represented by external functions.

8

CHAPTER III

Implementation

III.1 Overview of the Solution Architecture

Figure III.1: Overview of the Solution Architecture

Fig.III.1 gives an overview of the solution architecture. First, a device driver model, as

an input, can be defined inside GME with the graph based domain specific language. Ac-

cording to the semantic of DSL, these state machines that describe the core logic of the

driver and simulate the behaviors coming from user and device components can be decou-

pled from the input model and be interpreted into the intermediate representation, the P

code. From the state machine representation, the P compiler generates the corresponding

C source code forming the logic part of the device driver. Moreover, the corresponding

9

zing code is also generated in this process for verification purposes. These information

about the file control function and user-defined external function will be extracted from the

original model to generate the I/O interface, the glue layer which adapts the state machine

to the kernel space. Finally, these state machine code, I/O interface, and external function

defined by the user constitute the whole driver implementation while the zing code is sent

to the verifier.

It is a noteworthy fact that the state machines in user design models consist of the driver

machine and its environment. The two parts will be represented by the corresponding P

code. However, the environment is composed of something called ”Ghost Machines” in P

language which are used only during verification and are erased during actual execution.

III.2 Driver Modeling Domain Specific Language

Our driver modeling domain specific language is defined by a GME domain meta model.

In this section, before we examine the detail of the domain meta model, we will give a gen-

eral idea about how our language describes a device driver model, illustrated by Fig III.2.

A typical device driver plays the role of connecting user programs to the device. Thus,

naturally, the driver model can be divided into three parts: user space, driver space, and

device space.

1) User space contains these state machines that simulate the actions of user programs.

2) Driver space is the entity of the device driver that responds to requests from the user

programs and communicates with the hardware.

3) Device space is a virtual component of the driver model which mimics the behavior of a

physical device.

10

Figure III.2: Driver Structure

Between user space and driver space, there is a collection of I/O control function which

forward those device accessing requests from user programs to the device driver. Specif-

ically, since the UNIX paradigm for a device is to treat each one as a file, this interface

layer consists of several file operation (like open, read ,write, and close). Similarly, the

layer between driver space and device space is also an interface providing a serious exter-

nal function for the driver to communicate with the physical device.

Moreover, to formalize those behaviors of user, driver and device, in our domain specific

language, the whole system (these three parts) is treated as a collection of interacting state

machines, which communicate with each other using events. At the state machine level,

for verification purposes, those request from user programs are the events generated by the

11

user machine as the inputs to the driver machine, while those device control commands are

the events generated by the driver machine as the inputs to the device machine.

At the runtime level, both user space and device are erased in a concrete driver source code.

Thus, to generate the implementation of a device driver from a driver model, in our domain

specific language, each file operation mentioned before is bound with an input event of the

driver state machine while each output event is related to an external function. Thus, in

the implemented driver source code at execution time, after calling a file operation from

a user program, the corresponding events will be launched and fire the transition in the

driver state machine. Similarly, that a driver machine sends an event to the device machine

at state machine level means the corresponding hardware control function (user defined

external function) will be called at execution time.

III.3 Domain Meta-model

In this section, we illustrate the syntax elements in our driver modeling language which are

defined by a GME meta model. In general, our driver modeling language has a hierarchical

structure with three different levels, which are View, Scope ,and StateMachine. Each level

is defined by the GME meta model language.

III.3.1 Top Level: View

The meta model of model View is presented in Fig III.3 and Fig III.4, from which pro-

grammer can overview the whole driver model. There is only three elements in View:

AbsScope, AbsFunc, and FuncToFunc.

1) AbsScope is an abstract model belonging to the model View. UserScope,DriverScope

,and Environment, are drived from AbsScope. The top level of driver modeling language

can contain several AbsScopes. Recalling that the world is split into three pieces, user

space, driver space and device space, this scheme is quiet self-explanatory. UserScope is

12

related to the user space and DriverScope represents the driver space while Environment

means the device space. Typically, a driver model contain one or multiple UserScopes, one

DriverScope and multiple Environments.

2) AbsFunc is a model and the port of AbsScope, which is intruduced in the next subsec-

tion (model AbsScope).

3) FuncToFunc is a connection that connects one AbsFunc to another. AbsFuncs of

an AbsScope and the corresponding connections FuncToFunc constitute the interface be-

tween one AbsScope and another, for example, those file operations between the user space

and the driver space.

Figure III.3: View

III.3.2 Second Level: AbsScope

The model AbsScope is the second level of our driver modeling language, included by

View. It is presented in Fig III.6, which contains the following entries:

1) The model StateMachine represents the collection of state machines of a driver model.

In this level, the StateMachine has two kinds of ports: InputEvent, which represents those

13

Figure III.4: AbsScope is inherited by UserScope, DriverScope, and Environment

Figure III.5: View in a Driver Model

incoming events from the outside of a state machine, while OutputEvent means the events

emitted by a state machine. The internal detail of the model StateMachine will be intro-

duced in next subsection (model StateMachine).

14

Figure III.6: AbsScope

Figure III.7: AbsScope in a Driver Model

2) The model AbsFunc is represented by Fig III.8, which represents the functional inter-

face between scope and scope. AbsFunc is an abstract model from which FileOperation

15

Figure III.8: AbsFunc

and extFunction are derived. Naturally, an AbsScope has multiple AbsFuncs. A User-

Scope can only have FileOperation and Environment can only has extFunction, while

both FileOperations and extFunctions can be contained by a DriverScope. Moreover, an

AbsFunc has a substructure called retVal as the port of the model which represents those

return values of a function (an AbsFunc may has multiple retVal as its ports). Finally,

FileOperation has 5 subtypes called Open, Close, Write, Read, and Ioctl that correspond

with those Linux basic file operation functions.

3) Those connections at scope level are driven by the events transitive relationship. For

each pair of state machines in the same scope, it is natural that there is a connection be-

tween an output event of one state machine and an input event of the other, represented

by the connection OutputAsIuput. The connection FuncRelateInput between a model

AbsFunc and a port InputEvent means that an input event is related to the corresponding

function. Similarly, there is a connection OutputRelateFunc. Moreover, the connection

16

RetValAsInput represent that one return value from a function can be an input event of a

state machine, while OutPutAsRetVal means we can treat an output event as a function

return value.

III.3.3 Third Level: StateMachine

Model StateMachine is the third level of our driver modeling language, included in AbsS-

cope. It is presented in Fig III.9, which contains the following entries:

Figure III.9: StateMachine

1) The model AbsState and Connector constitute the basic semantic of a finite state ma-

chine representation, which are states and the transitions between two different states. An

AbsState can connect another AbsState through a Connector with connection SrcState-

ToConnector and ConnectorToDstState. Connection ConnectorAssociateToEvent con-

necting an InputEvent to a Connector represents a transition between two states guarded

17

Figure III.10: StateMachine in a Driver Model

by an event. Then, there are two kinds of states: State, representing a regular state and

StartState, which is used to indicate the initial appearance of a state machine. Both of

them derived from AbsState. All of these elements are contained by the aspect Machine.

2) The aspect emitting includes model AbsState, model OutputEvent, and connection

StateEmitOutputEvent. It means the corresponding OutputEvent will be emitted by a

state machine when the machine enters into a specific state.

3) The aspect deferring includes model AbsState, model InputEvent and connection

StateDeferInputEvent. According to the definition of asynchronous semantic in P lan-

guage introduced at section 2.3, we can connect a InputEvent to a AbsState under the

deferring aspect, to indicate that a certain state defers a set of events and saves these un-

handled events to the event queue in GME.

18

Figure III.11: The Structure of Generated Code

III.4 Code Generator

Our methodology aims to help programmers to develop a usable device driver according

an input device driver model.

A complete device driver includes two parts of code, the user-defined external functions

and the code generated by our tool chain. In this section, we illustrate the internal strategy

used in our code generator.

A GME interpreter can extract the necessary information from a driver model, and the ex-

traction logic can be written in varying programming language (in this paper, we use C#

to write the interpreter). This process is automatic through generative capabilities. In our

salutation, the interpreter is responsible for generating the P source file for the state ma-

chine and C code (including source and header file) for the driver framework. In addition,

an automatic build script will be created after this procedure.

19

The structure of the generated code is presented in Fig III.11. From a input, a GME driver

model, our interpreter generates the following files:

driver.c: the main framework of the target device driver.

impl.c: the collection of the assistant functions of the P state machine.

driver.h: the collection of foreign function declarations.

driver.p: the P state machine program that can be compiled into the c source code by the P

compiler.

III.4.1 The Entry Point

We start at the driver entry point defined in driver.c. An example is presented by Listing

III.1. The logic of the entry function, dev init, is quite simple. The first step is to register

the device and obtain the device point, cdev. Then, the function allocates the memory space

for the device context, ctx, which is an area of shared data of the driver. Moreover, instead

of initializing a series of variables and logic in traditional driver initializing functions, we

simply start a P process, make a P state machine and add the machine point into the device

context. After this point, the ownership of the device driver is claimed by the P state ma-

chine. Any user action is treated as an event passing into the P state machine through a file

operation (recall that each device is represented by a system file in Linux).

Listing III.1: driver.c

s t a t i c i n t d e v i n i t (vo id)

{

20

i n t r e s u l t ;

i n t i ;

/ * g e t d r i v e r number and r e g i s t e r * /

d e v t devno = MKDEV(dev major , 0) ;

. . .

/ * i n i t a c h e r d e v i c e * /

c d e v i n i t (&cdev , &d e v f o p s) ;

cdev . owner = THIS MODULE ;

cdev . ops = &d e v f o p s ;

/ * a l l o c memory f o r d e v i c e c o n t e x t * /

cdev add (&cdev , MKDEV(dev major , 0) , MEMDEV NR DEVS) ;

c t x = kma l loc (MEMDEV NR DEVS *

s i z e o f (s t r u c t d e v c t x) , GFP KERNEL) ;

/ * l i n k d e v i c e p o i n t t o c o n t e x t * /

c tx−> dev = cdev ;

/ * c a l l a use r−d e f i n e d i n i t f u n c t i o n * /

d e v u s e r i n i t (c t x) ;

/ * c r e a t e s t a t e machine * /

c tx−>p r o c e s s = P r t S t a r t P r o c e s s (p roces sGu id ,

&P GEND PROGRAM,

E r r o r H a n d l e r ,

Log) ;

21

p a y l o a d = Pr tMkNul lValue () ;

c tx−>mc = PrtMkMachine (p r o c e s s ,

P MACHINE Driver , p a y l o a d) ;

/ * l i n k d e v i c e c o n t e x t t o P machine c o n t e x t * /

mc−>e x t C o n t e x t = c t x ;

. . .

r e t u r n 0 ;

f a i l m a l l o c :

u n r e g i s t e r c h r d e v r e g i o n (devno , 1) ;

}

m o d u l e i n i t (d e v i n i t) ;

III.4.2 The Generated P Program

A P program is a collection of state machine definitions. Since the semantic of model

StateMachine in our driver modeling language is one to one related to a state machine

definition in P language, it is not difficult to translate a state machine in our model to a P

state machine. However, there are two differences we need to point out here.

1) Because the view of the state machine is the top level view in P language, in our driver

modeling language, those state machines in different scopes are unfolded into a group of

plain state machines definitions. Recall we should explicitly indicate those state machines

which need be erased at runtime in a P program. Thus, those state machines in UserScope

and Environment are declared as virtual state machines in a P program(with key word

22

model).

2) P language does not support the feature that a state machine defines an unguarded transi-

tion between two states. Thus, for an unguarded transition in our driver modeling language,

when it is translated into a P program, the source state will self-raise an inner event called

eUnit and the original unguarded transition will be a transition guarded by the event eUnit.

III.4.3 File Operation and External Function

In this subsection we discuss the detailed implementation of the file operations and exter-

nal function interface in the generated driver code, which includes both P language code

and C source code. Instead of giving an analysis of the whole program, we plan to discuss

several typical situations to explain how events are transited at both state machine level and

runtime level.

1) There are two state machines in the same scope with one event emitted from one to the

other, presented by Fig III.12. This is the most simple situation. Since the active event does

not pass through two different scopes, there is no AbsFunc involved in this process and

there is no generated C source code for this situation. A P program segment is generated

directly according to the state machine semantic, presented by Listing III.2.

23

Listing III.2: basic situation

machine M1

{

s t a t e s o m e S t a t e 1

{

e n t r y { send M2, E1 ;}

}

. . .

}

machine M2

{

s t a t e s o m e S t a t e 1

{

. . .

on E1 go to s o m e S t a t e 2 ;

}

}

Figure III.12: The Basic Situation

24

2) There are two state machines: one is in a UserScope and the other in a DriverScope

with one event emitted from one to the other through a file operation. According to Fig

III.13, the file operation Read can have several return values and each return value has a

corresponding event emitted from M2 to M1. The P program segment is quite similar to

the basic case, presented by Listing III.3.

Figure III.13: Event Passing Through a File Operator

Listing III.3: event passing through a file operator

/ / u s e r scope machine

model M1

{

s t a t e s o m e S t a t e 1

{

e n t r y { send M2, eRead } ;

}

. . .

s t a t e h a n d l e R e t V a l

{

25

. . .

on eSucc go to s o m e S t a t e 2 ;

on e F a i l go to s o m e S t a t e 3 ;

}

}

/ / d r i v e r scope machine

machine M2

{

s t a t e s o m e S t a t e 1

{

. . .

on eRead go to s o m e S t a t e 2 ;

}

. . .

s t a t e r e t S u c c

{

e n t r y

{

M 2 r e t e S u c c () ;

send M1, eSucc ;

}

}

s t a t e r e t F a i l

{

e n t r y

{

26

M 2 r e t e F a i l () ;

send M1, e F a i l ;

}

}

}

There are two foreign functions, M2 ret eSucc and M2 ret eFail, and both of their C code

program segments are automatically generated by the code generator, presented by Listing

III.4. These functions are responsible for sending the return values to user space by chang-

ing the device context(recall that M1 is a virtual machine. Thus, those event eSucc and

eFail will disappear at runtime).

Listing III.4: function M2 ret eSucc

enum r e t { eSucc , e F a i l , . . . } ;

s t r u c t d e v c t x

{

. . .

i n t R e a d r e t f l a g = FALSE ;

enum r e t R e a d r e t v a l u e ;

}

s t a t i c vo id M 2 r e t e S u c c (s t r u c t d e v c t x * c t x)

{

l o c k (d e v l o c k) ;

c tx−>R e a d r e t f l a g = TRUE;

R e a d r e t v a l u e = eSucc ;

un lo ck (d e v l o c k) ;

27

}

Finally, the Read file operation should look like Listing III.5. the Read function first gets

the device context from the file point. Then, instead of directly manipulating the device,

it gets the point of the P machine with the PrtSend function and sends the event eRead.

Since Read is a synchronized I/O function, it blocks the current thread and checks if there

is an available return value. Finally, it will copy the data to user space when the return

value is true. Otherwise, it returns an error number and does nothing.

Listing III.5: function Read

s t a t i c s s i z e t d e v r e a d (s t r u c t f i l e * f i l p , c h a r * buf ,

s i z e t s i z e , l o f f t * ppos)

{

u n s i g n e d long p = * ppos ;

u n s i g n e d i n t c o u n t = s i z e ;

i n t r e t = 0 ;

s t r u c t d e v c t x * c t x = f i l p −>p r i v a t e d a t a ;

. . .

PRT MACHINEINST *mc = ctx−>mc ;

P r t S e n d (mc , Pr tMkEventValue (P EVENT eRead) ,

Pr tMkNul lValue ()) ;

w h i l e (t r u e)

{

28

i f (TRUE == ctx−> R e a d r e t f l a g)

b r e a k ;

}

i f (eSucc == c tx−>R e a d r e t v a l u e)

{

/ * copy t o u s e r * /

c o p y t o u s e r (buf , (vo id *) (dev−>d a t a + p) , c o u n t)

. . .

r e t = 0 ;

}

e l s e

r e t = −EFAULT ;

r e t u r n r e t ;

}

3) There are two state machines: one is in a DriverScope and the other in an Environment

with one event emitted from one to the other through an external function, presented by Fig

. III.14.

This case is quite similar to the second case. However, since the external functions usually

are hardware specific functions which are responsible for directly communicating with the

device, the generated codes are just function warps and the implementation of those exter-

nal functions should be completed by the user. Since the machines at the Environment

scope are virtual, the function warp obtains the return value from the user defined function

and sends the corresponding event to the P machine at runtime. An external function warp

29

Figure III.14: Event Passing Through a External Function

looks like Listing III.6.

Listing III.6: external function warp

enum r e t { r e t 1 , r e t 2 , . . . } ;

r e t a c t i o n i m p (d e v c t x *) ; / * s h o u l d be d e f i n e d by u s e r * /

vo id a c t i o n (d e v c t x * c t x)

{

PRT MACHINEINST *mc = ctx−>mc ;

enum r e t r e t v a l = a c t i o n i m p (c t x) ;

s w i t c h (r e t v a l)

{

c a s e r e t 1 : P r t S e n d (mc ,

Pr tMkEventValue (P EVENT ret1) ,

Pr tMkNul lValue ()) ;

b r e a k ;

30

c a s e r e t 2 :

. . .

}

}

III.5 The verifier

After the P program is generated by our code generator, as we mentioned before, the cor-

responding Zing code is generated by the P compiler for verification purpose. P language

contains constructs to build responsive programs. This section describe these three liveness

properties according the semantic of P language.

First, we formalize the state machine semantic of our driver modeling language.

• M is a sequence of state machines mi that contains all these state machines in a driver

model, where mi represents a state machine.

• E is a sequence of events e j that contains all events in the driver model, where e j

represents a state machine.

• For each state machine mi, its states consist of a set mi.S = {mi.s1,mi.s2..,mi,sn},

where sk represents a specific state. The start state is mi.sstart

• For each state machine mi, its transitions consist of a set mi.T = {(src,dst,ei)...},

where src,dst ∈ mi.S and ei ∈ E.

• For each state mi.s j in a certain state machine mi, its deferrable events consist of a

set mi.s j.D = ea, ...,eb, where ei ∈ E.

31

• For each state mi.s j in a certain state machine mi, its output events consist of an

sequence mi.s j.Out = (ea, ...,eb), where ei ∈ E.

III.5.1 State Level Responsiveness

First, we need to construct a single state machine m′ that is equivalent to our former defini-

tion.

• The set of states of machine m′ is m′.S, which is the Cartesian product of mi.S, where

m1×m2...×mn = {m1.sa,m2.sb, ...,mn.sc}. Since M is a sequence, we can sim-

plify the denotation to (sa,sb, ...,sc), where the i-th sk means mi.sk. The start state is

(sstart , ...,sstart)

• For all transitions (src,dst,ei)∈mi.T , there is a corresponding transition (src′,dst ′,ei,Out)∈

m′.T , where src′ = (..., src︸︷︷︸
i-th

, ...), dst ′ = (..., dst︸︷︷︸
i-th

, ...) , ei = ei and Out = dst.Out.

• For each state m′.st = (st1,st2, ...,stn), m′.st .D =
⋃

i st i.D.

Thus, the operational semantics of state transitions in machine m′ has two situations:

m′.s1 ea ∈ eventQueue (m′.s1,m′.s2,ea,Out)
m′.s2 eventQueue−{ea} eventQueue→ eventQueue∪Out)

and
m′.s1 ea ∈ eventQueue ea ∈ m′.s1.D

m′.s1 eventQueue

.

The formulas mean for each event ea in the event queue, for current state m′.s1, there is

either a transition (m′.s1,m′.s2,ea,Out) or the deferrable events set m′.s1.D including ea.

Otherwise, an error will be detected. In the driver model level, since all those input events

32

come from the User scope, this property guarantees that there is no undefined behavior for

any valid user operation.

III.5.2 Machine Level Responsiveness

Two properties presented by [7] are about machine level responsiveness. In this section,

we give a brief summary and show the meaning of these two properties for a driver model.

• seched(m) holds iff a machine m takes a transition.

• enq(m,e,m′) hold iff a machine m enqueues an event e into machine m′.

• deq(m′,e) holds iff machine m′ dequeues an event e.

In the first property, the set of erroneous executions is given by

∃m.FG(sched(m)).

This equation specifies that a machine cannot execute indefinitely without becoming dis-

abled. In particular, a state machine should not get into a loop of operation without the

interaction with the other machines. In the driver model level, since a driver is an interface

between user and hardware, a driver machine with such deadlock represents that the driver

may have frozen the kernel in some situations, while a state machine in user or environment

scope means a bad design of the user/device behavior simulation (a remarkable fact is, in

this case, the driver machine may be right and the generated code can be executed correctly.

However, such an error will be detected by the verifier).

In the second property, the set of erroneous executions is given by,

∃m,e,m′.G(enq(m,e,m′)∨F¬deq(m′,e))∨FG¬ppn(m′,e)

33

where ppn(m,e) that holds whenever m is in a state whose list of postponed events contain

e.

The erroneous execution is one in which every machine is fairly scheduled and an event

is inserted into the event queue and never subsequently dequeued, which means that an

event equeued by a machine will eventually be dequeued. In the source code level, such

invalid events permanently stay in the event queue and eventually cause the event queue

overflow.[7]

34

CHAPTER IV

Case Study

In this section, we illustrate a simple char device driver called schar as a study case that is

generated by our driver synthesis tool-chain. Schar is a char driver that acts on a memory

area as though it were a device. The advantage is this device is hardware independent and

the substantial device is a memory allocated by the kernel. Thus, schar is portable across

the computer architectures on which Linux runs and clear enough to show how a complete

device driver is generated from an input model.

In general, schar is a disk device with read and write operations. It has two components,

a disk and a cache. When user programs write the data into schar, it will directly save the

data into the disk. When user programs read the data from schar, it will first try to find

the requested data in its cache. Limited by size, the cache may return incomplete data and

the driver is responsible for reading the rest of the data from the disk component. After the

data on the disk is accessed, the driver updates the cache.

To demonstrate how our approach improves the quality of driver codes and finds potential

bugs in the development process, we present two versions of the design of schar. The

first one is designed without the consideration of concurrency. We show that the flaw in

the driver can be detected by our driver synthesis tool-chain, Then, we present the revised

version.

IV.1 The Driver Model

The top level of the driver model of schar is presented by Fig IV.1, with one UserScope ,

one DriverScope and one Environment. Between UserScope and DriverScope, there are

four FileOperations: Open, Close, Read and Write. Similarly, the four extFunction are

35

Figure IV.1: Top Level of Schar

between DriverScope and Environment. They are:

1. fDisk Writing : writing the data to the Disk component.

2. fCache Reading : Reading the data from the Cache component.

3. fDisk Reading : Reading the data from the Disk component.

4. fDisk ReadingRestData : When the incomplete data is read from cache, reading

the rest of the data from the Disk component.

5. fCache Updating : When Disk is accessed, updating the Cache component.

According to Fig IV.2, UserScope has a state machine User, and Driver includes Driver,

while Environment contains two state machines, Disk and Cache, the components of

schar.

The User machine is presented by Fig IV.3. It is just a loop of these four file operations.

We first consider the situation with one User machine. Then, we will show the problem in

36

Figure IV.2: Scope and State Machines

Figure IV.3: User Machine

current design when there are multiple User machines.

37

Figure IV.4: Driver Machine

The Driver machine is presented by Fig IV.4. The initial state is Init. As soon as schar is

loaded into the Linux kernel, it will initialize itself, go to the state Idle and wait for events

in the input buffer. When a user program opens schar, the event eOpen will be sent to the

Driver machine and fire the Ready state. From Ready, there are two branches, the reading

process and the writing process. As we mentioned before, in the reading process, schar

first searches the requested data in Cache. If the data in Cache is incomplete, schar will go

to Disk Reading or Disk ReadingRest state and read the requested data from Disk. After

any disk operations, schar goes to Cache Updating and updates Cache. Finally, schar

goes to IO Succ state and returns success to the user program.

Since the device components Disk and Cache can only take one action at the same time, to

prevent user programs from repeatly reading and writing, all states in the Driver machine

38

except Init, Idle, and Ready have the deferrable event set containing the events eRead and

eWrite. This strategy works without problems under the single thread environment and we

will examine the concurrent situation later.

IV.2 Execution

The code of schar is generated from the previous driver model without any error message

reported from the verifier. The complete device driver contains the following user-defined

codes.

• The device probing function is empty here, since we assume the device is ready once

the driver is loaded into the kernel.

• The private data area of context contains the read/write buffer and two link lists

(Cache and Disk) located in computer memory.

• The allocating function creates an instance of the P machine and allocates memory

for the driver context.

• External functions correspond to those output events of the schar state machine,

which adds or removes the data by manipulating the link lists.

To demonstrate the execution of the driver, we use the writing process as an example. Fig

IV.5 presents the operations sequence of writing. The initialization process happens when

schar is loaded into the Linux kernel. In this process, the driver allocates the memory

for the driver context, registers these file operations and creates an instance of the driver

state machine. Then, suppose an user program calls the write function with the device ID

of schar. The driver first copies the input data from the user space to the kernel space

and saves it into the write buffer. Then, the driver gets the point of the driver state ma-

chine and sends the event eWrite. After this point, instead of directly manipulating the

hardware components(these link lists in memory space) the driver transfers its ownership

39

Figure IV.5: Flowchart of Writing

to the instance of driver state machine and waits for the return value. As we mentioned

before, the driver machine goes to states Disk Writing and Cache Updating and calls the

corresponding external functions to execute the writing action.

IV.3 Concurrency

The resulting driver seems to work well in the non-concurrent situation. In this section, we

illustrate how our synthesis tool chain reveals the potential bugs in schar when the driver

works in multiple task circumstances.

To simulate the concurrent environment, we simply add another instance of the User state

machine in our driver model. Thus, in the driver model, there are two user machines, the

driver machine ,and two components (Disk and Cache). After creating the driver model

40

and running our synthesis tool chain, the verifier found a wrong execution sequence in the

state machines system.

Figure IV.6: Zing Error Trace

This is how the problem occurred: when the driver machine accepted the event eOpen sent

by the first user machine and went to the state Ready, another eOpen sent by the second

user machine was an unhandled event for the driver machine. The reason is the program-

mer focus on only the property of the hardware device and misplaced eWrite and eRead

into the event deferred set of the state Ready (because Disk and Cache cannot be read or

written by two different instances simultaneously). This problem makes the event eOpen

become an undefined behavior when the device driver runs under a concurrency environ-

ment, which may cause a fatal system crash. For example, a user program can close a

device while another program is reading data from the device.

To fix this problem, the easiest way is, to add the events eOpen and eClose into the de-

ferrable events set of all states in the machine Driver except the states Init and Idle. This

solution can ensure that there is only one instance of a user program can accessing the

device driver at the same time.

41

CHAPTER V

Future Work

V.1 Device Class Specification

The former section shows that, from an input driver model, our synthesis tool chain can

generate the implementation of a Linux device driver. However, in the real world, because

of the variety of hardware standards, it is usually difficult to integrate a complex device

driver into a standalone kernel module. Thus, to simplify the development process, the

Linux kernel contains many generic drivers and frameworks for a device class, like a USB

controller for a USB device and a HID API for a HID device.

One possible improvement in our synthesis tool chain is to abstract this device class in-

formation from the input driver model, which means a device driver is generated from an

input driver model and the corresponding device class specification. In a device class spec-

ification, programmers can redefine the entry point, data structure, and register the process

of a device driver for a specific device class.

One typical example is the USB device class. In the Linux kernel, USB drivers are con-

trolled by the USB Host Controller. At the runtime, the USB Host Controller continuously

monitors the USB ports of the computer. When a USB device is plugged in, the USB Host

Controller will get the device-identifying information and check if there is a corresponding

registered device driver in the kernel. This probing process is related to low-level USB

protocols, which are very complicated. However, for a USB device driver, it only needs

to contain the device-identifying information and register its entry point function to the

USB Host Controller. Thus, in our synthesis tool chain, the logic of a USB device driver

and the USB device class information can be decoupled by defining a separate USB de-

42

vice class specification, which contains the device identifying information, the name of the

entry point function and so on.

V.2 Hardware Software Co-design

Another problem illustrated by the example in section 4 is how to model the behaviors

of user programs and the hardware in a appropriate way. Because the verifier in the syn-

thesis tool chain verifies an input driver model according to those assumptive properties

restricted by the state machines in the User and Environment scope, the improper defini-

tion of the environment of a driver model can affect the correctness of the verification result.

However, in the device driver development process, it usually difficult for programmers to

know the details of a complex device and create the corresponding models which correctly

describe the behaviors of the device components. One feasible solution is hardware soft-

ware co-design, which is a front parser generating the corresponding state machine system

automatically from a formal hardware design language (like VHDL). Moreover, with the

development of some recent technology like field programmable gate arrays (FPGA), the

distinction between hardware and software has been blurred. Thus, our synthesis approach

can be more easily applied on the embedded systems, which are defined as a collection of

programmable parts that interact continuously with the environment through sensors.

43

CHAPTER VI

Conclusion

The motivation of this research is to find an automatic and robust approach to device drivers

synthesis based on the model-integrated computing technology. We developed a device

driver tool chain that can generate the implementation of a device driver from an input

driver model.

In this thesis work, we focused on formalizing the behavior of the device driver, the inter-

face between user space and kernel space, and the interface between the operation system

and the hardware devices. Then, we integrated an existing tool call P language to our

synthesis tool chain to describe the logic of the input driver by using the state machine

representation and apply model-checking technology on such representation to verify the

correctness of the input model. Finally, our tool chain contains a code generator that gen-

erates the resulting device driver.

44

BIBLIOGRAPHY

[1] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler. An
empirical study of operating systems errors. SIGOPS Oper. Syst. Rev., 35(5):73–88,
October 2001.

[2] Archana Ganapathi, Viji Ganapathi, and David Patterson. Windows xp kernel crash
analysis. pages 12–12, 2006.

[3] Hajime Fujita, Robert Schreiber, and Andrew A Chien. Its time for new programming
models for unreliable hardware. In Proceedings of the international conference on
architectural support for programming languages and operating systems (ASPLOS),
2013.

[4] Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya Bagrak, Rob Ennals, Matthew
Harren, George Necula, and Eric Brewer. SafeDrive: safe and recoverable extensions
using language-based techniques. pages 45–60, 2006.

[5] Tony Andrews, Shaz Qadeer, Sriram K. Rajamani, Jakob Rehof, and Yichen Xie.
Zing: A model checker for concurrent software. In Computer Aided Verification,
16th International Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004, Pro-
ceedings, pages 484–487, 2004.

[6] James Davis. Gme: The generic modeling environment. pages 82–83, 2003.

[7] Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Rajamani, and
Damien Zufferey. P: Safe asynchronous event-driven programming. Technical Report
MSR-TR-2012-116, November 2012.

[8] Leonid Ryzhyk, Adam Walker, John Keys, Alexander Legg, Arun Raghunath,
Michael Stumm, and Mona Vij. User-guided device driver synthesis. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 14), pages 661–
676, Broomfield, CO, October 2014. USENIX Association.

[9] Yue-Ting Shen, Kevin Elphinstone, and Gernot Heiser. User-level device drivers:
Achieved performance.

[10] F Mérillon, R Marlet, and GM Devil. An idl for hardware programming. In Proc.
of the 4th Symposium on Operating Systems Design and Implementation. San Diego,
USA:[sn], 2000.

[11] Alessandro Rubini and Jonathan Corbet. Linux device drivers. ” O’Reilly Media,
Inc.”, 2001.

[12] Leonid Ryzhyk, John Keys, Balachandra Mirla, Arun Raghunath, Mona Vij, and Ger-
not Heiser. Improved device driver reliability through hardware verification reuse. In
ACM SIGPLAN Notices, volume 46, pages 133–144. ACM, 2011.

45

	LIST OF FIGURES
	I Introduction
	I.1 Problem
	I.2 Solution Summary

	II Background
	II.1 Generic Modeling Environment
	II.2 Zing
	II.3 P Language
	II.3.1 Ghost Machine
	II.3.2 Asynchronous Semantic
	II.3.3 External Functions

	III Implementation
	III.1 Overview of the Solution Architecture
	III.2 Driver Modeling Domain Specific Language
	III.3 Domain Meta-model
	III.3.1 Top Level: View
	III.3.2 Second Level: AbsScope
	III.3.3 Third Level: StateMachine

	III.4 Code Generator
	III.4.1 The Entry Point
	III.4.2 The Generated P Program
	III.4.3 File Operation and External Function

	III.5 The verifier
	III.5.1 State Level Responsiveness
	III.5.2 Machine Level Responsiveness

	IV Case Study
	IV.1 The Driver Model
	IV.2 Execution
	IV.3 Concurrency

	V Future Work
	V.1 Device Class Specification
	V.2 Hardware Software Co-design

	VI Conclusion
	 BIBLIOGRAPHY

