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CHAPTER 1 

 

 

INTRODUCTION 

Basic science experiments often aim to compare normalized knockout and wild-type gene 

expression in the hopes of concluding the effectiveness of a given treatment. Statistically, this 

typically takes the form of an evaluation of the p-value from a two-sample Student’s t-test for 

difference in means of relative quantities. What has previously gone unnoticed by researchers, 

however, is the underlying assumptions made when using this statistical test and their potential 

downstream effects. Typically, when test assumptions are not met, statistical inference will be 

compromised. In basic science research, there is a tendency to utilize group-specific control 

measures for normalization and a need to keep the sample size of experiments low.  

Fold change is a relative measure which describes the extent to which a treatment 

quantity is larger than an averaged corresponding control quantity. The intention of this 

calculation is to scale measures such that varying treatment groups become more comparable to 

one another; however, the analytic methods historically used for these data have unintended 

statistical consequences. We aim to explore and identify patterns of error rate inflation in these 

methods.  

Relative fold change-like measures using Reverse Transcriptase Polymerase Chain 

Reaction (RT-PCR) data are calculated in a different way. The comparative CT method (∆∆𝐶𝑇) is 

an analytic methodology where relative quantities of gene expression are calculated by a series 

of normalizations between target and housekeeping gene expression measures, as well as 

treatment groups. These relative measures allow for the comparison of knockout and wild-type 

groups. Again, statistical issues arise when using this common method. For reference, a “RT-

PCR relative” search of PubMed.gov yields 13,937 relevant publications in the last 10 years [1]. 

In this paper, we discuss common normalization methods used in basic science research 

and shed light on their pitfalls, ultimately making recommendations of statistically sound and 

valid alternative methods. We first discuss the motivation behind this work and examine 

previously published research in Chapter 2. Then for each normalization method, we lay out 

scenarios in which these derivations might take place and make recommendations for alternative 

methods in Chapters 3 and 4, respectively.  
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CHAPTER 2 

 

 

BACKGROUND 

2.1   FOLD CHANGE 

 Basic science experiments aim to evaluate an effect of treatment and often have separate 

control measures for each of the treatment groups [2]. In an attempt to make treatment measures 

comparable across groups, a relative measure is calculated as the fold change increase in 

treatment values in relation to its corresponding control [3]. As evidenced by a review of 

literature, the standard fold change measure is utilized quite frequently. Note that a search of 

“fold change” on PubMed.gov yields 13,695 articles published in the last 10 years [1]. There are 

several ways in which fold change measures are compared to one another. In one case, fold 

change measures are calculated relative to group-specific controls and then a t-test is performed 

to evaluate whether knockout mice have a significantly different treatment effect within groups. 

We view this to be an unnecessarily intensive course of analysis, as there are other simpler 

methods available, but it is a statistically valid test. An example of this setting is shown in Figure 

2.1 where each of the ODC and E2F2 groups have their own wild-type which is used as the basis 

for fold change quantification, thus the reason both groups’ wild-type messenger RNA levels are 

1 [4]. The statistical tests are then performed between Bves−/− mice and wild-type mice within the 

ODC and E2F2 groups separately. 

 

 

Figure 2.1: c-Myc signaling is dysregulated in Bves−/− mice in inflammatory carcinogenesis. 

(Parang et al., 2017) qPCR for Odc and E2f2 in enteroid cultures Student's t test, *p<0.05. 
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As another example, see Figure 2.2 where relative expressions are calculated based on 

controls for each of the PHF8, FBXO7, NCOA3, and TFAP2c treatment groups and 

subsequently compared within groups [5]. 

 

 

Figure 2.2: Depletion of PHF8 increases H3K9me1, H4K20me1, L3MBTL1 at TSS-bound PHF8 

target genes. (Qi et al., 2010) HeLa stable cell lines were established that co-express control or 

PHF8 shRNA and/or indicated HA-tagged PHF8 constructs. mRNA expression of the three 

selected genes and endogenous PHF8 was measured by RT-Real time PCR. RPL13A was used as 

an internal control. P-values were obtained by t-test by comparing the data from column 2, 3, 4 

and 5 with those of the corresponding controls (column 1).  

 

In another case, fold changes are calculated in the same manner, but the t-test is 

performed to evaluate whether knockout mice have a significantly different treatment effect 

across groups. As we will explore further in Chapter 3, this analysis setting comes with statistical 

consequences that have previously not been acknowledged by researchers using it. An example 

of this setting is shown in Figure 2.3. The problematic step is in the comparison of Vector to 

SIRT1 to shRNA-SIRT1 as we suspect these fold change quantities were calculated relative to 

separate control measures based on the “Relative Luciferase Unit” label [6]. 
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Figure 2.3: SIRT1 regulates CREB through miR-134. (Gao et al., 2010) Reporter constructs 

containing R3, R5, or R7 regions upstream of a minimal promoter in a luciferase reporter were 

co-transfected with SIRT1, SIRT1 shRNA, or empty vector.  

 

Throughout the literature, there are more examples falling in the harmless case of fold 

change analysis, but the harmful case is still present and published in a variety of high-impact 

journals. It remains useful to examine the assumptions made by researchers using this type of 

parametric test and how the violation of these assumptions can affect the validity of the 

conclusions made. 

 

2.2   RT-PCR 

The process of RT-PCR involves the amplification of ribonucleic acid (RNA) targets in 

order to measure gene expression (Figure 2.4) [7]. In this process, RNA is isolated from cells and 

a portion of the RNA is transcribed into complementary DNA (cDNA) by reverse transcriptase. 

The cDNA may then be diluted to fall within the range of the machine’s capability. Calibrator 

and experimental samples are then set up in a 96-well plate for analysis [8]. A calibrator, or 

control, sample of cDNA from untreated cells or tissues is used as the basis for comparison in the 

relative gene expression method. For the purposes of our case study and simulation, the 

housekeeping gene is glyceraldehyde 3-phosphate dehydrogenase (Gapdh) and the target gene of 

interest is IL23a encoding the interleukin-23 subunit alpha protein [9]. The final step in the RT-

PCR process is to amplify the diluted target and housekeeping genes through PCR and analyze 

using scientific instruments. The output of RT-PCR is a count of the number of cycles needed for 

the fluorescence generated within a reaction to cross a pre-specified threshold (𝐶𝑇). The 𝐶𝑇 

values follow a logarithmic distribution and are used directly in the comparative 𝐶𝑇 method of 
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analysis in which data are normalized to Gapdh and standardized to the average of a control 

group. Further explanation of this analytic method as well as an evaluation of its statistical 

validity by way of simulation study are described in Chapter 4.   

 

 

Figure 2.4: Two-step reverse transcription PCR process. (ThermoFisher) 

 

Previous papers have shown evaluations of RT-PCR data using plots of relative quantities 

as in Figure 2.5 [10,11]. In this particular study, the researchers aimed to determine if IL-21-

deficient mice express higher expression levels in Th17-inducing cytokines. To do so, they 

measured innate cytokines which were known to have potential impacts on Th17 cell expression 

in the PPs of wild-type and knockout mice. As mentioned in the Figure 2.2 caption, these relative 

measures normalized cycle threshold values to both Gapdh and uninfected wild-type mice. They 

then performed a Student’s t-test and reported significant p-values within each cytokine group. 

Based on these results, the researchers concluded that H. pylori-infected IL-21−/− mice expressed 

significantly higher levels of Il1b and Il23a than wild-type mice, but no significant differences in 

the remaining cytokine transcript levels was seen. 
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Figure 2.5: Proinflammatory gene expression in the PPs of H. pylori-infected mice. (Yasmin et 

al., 2019) Real time RT-PCR was used to measure Il1b, Il6, Il10, Il12, and Il23 expression levels 

in PPs from H. pylori-infected mice at 1 month post-infection. Relative units were calculated 

using Gapdh as the endogenous control and tissue from uninfected WT mice as the calibrator 

sample. Five mice per genotype were measured in these assays. An unpaired Student’s t-test was 

performed to test for statistical significance. *, P < 0.05.  

 

2.3   STATISTICAL EVALUATION 

In both fold change and RT-PCR normalization methods, we observe that in previous 

research, the differences between relative quantities have been evaluated by way of a p-value 

from a two-sample t-test. The use of this statistical test involves a set of assumptions, including: 

the data follow the normal probability distribution, the variances of the two populations are 

equal, and the two samples are independent. If these assumptions hold true, then the null and 

alternative hypotheses in (2.1) may be used to evaluate whether the relative quantity in the 

knockout group is different from that of the wild-type group and the inferences from the test will 

be valid.  

 𝐻0: 𝜇𝐾𝑂 = 𝜇𝑊𝑇 

𝐻𝐴: 𝜇𝐾𝑂 ≠ 𝜇𝑊𝑇  
(2.1) 
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CHAPTER 3 

 

 

FOLD CHANGE NORMALIZATION 

Fold change normalization techniques are commonly used by researchers performing 

studies on mice. In this setting, there are two genotype groups: wild-type and knockout, as well 

as two treatment groups: control and treatment. The goal of these experiments is to determine the 

impact of a treatment by comparing the treatment values in wild-type and knockout groups, 

while simultaneously accounting for the difference in control values from both genotypes. A 

popular method used by scientists attempting to answer this research question is by calculating a 

fold change ratio which places treatment values relative to the average of their corresponding 

control values. In this chapter, we examine the Type I error rates of a variety of simulation 

studies in an attempt to identify patterns of error rate inflation.  

We know based on the formula of the t-statistic (Equation 3.7) and the underlying 

assumptions of the t-test itself, that there are a variety of factors which may impact Type I error. 

In the following sections, we explore the effects of changes in theoretical fold change values, 

fold change magnitude, sample size, variance, and relative quantity derivation on error rate. We 

also make recommendations as to when the t-test is an appropriate analysis technique versus 

when alternative methods should be used. 

 

3.1   DEFINITIONS AND DERIVATIONS 

Fold changes are calculated as normalized measures within each genotype group. It is a 

measure in which treatment values are made relative to control values by way of dividing or 

subtracting. Fold changes calculated by dividing treatment values by a common control group 

average is by far the most popular.  For the purposes of our work, we will simulate our own data, 

calculate relative fold change measures, and then evaluate analytic methods for statistical 

validity. As a default case, we will consider data which are generated from a normal distribution, 

𝑌𝑁𝑜𝑟𝑚𝑎𝑙 ~ 𝑁(𝜇, 𝜎2). The probability density function, expectation, and variance are known to be 

the following. 
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𝑓(𝑌𝑁𝑜𝑟𝑚𝑎𝑙) =

1

√2𝜋𝜎2
𝑒

− 
(𝑥−𝜇)2

2𝜎2  (3.1) 

 𝐸[𝑌𝑁𝑜𝑟𝑚𝑎𝑙] = 𝜇 (3.2) 

 𝑉𝑎𝑟[𝑌𝑁𝑜𝑟𝑚𝑎𝑙] = 𝜎2 (3.3) 

In this standard normalization case, the fold change relative ratios are calculated in each 

genotype group, wild-type and knockout, as the following. 

 𝐹𝐶 =
𝑥1𝑇

𝑥̅𝐶
,
𝑥2𝑇

𝑥̅𝐶
,
𝑥3𝑇

𝑥̅𝐶
, … (3.4) 

It is important to note that the fold change values theoretically follow a Cauchy 

distribution, 𝑌𝐶𝑎𝑢𝑐ℎ𝑦  ~ 𝐶𝑎𝑢𝑐ℎ𝑦(𝑥0, 𝛾) where 𝑥0 represents location and 𝛾 represents scale, as the 

relative quantities involve a ratio of normal distributions. The probability density function of a 

Cauchy is known, but its expectation and variance are undefined. In order to approximate these 

moments, we recognize that the fold change distribution will be one of ratios. Because of this, 

we make use of the equations for approximating the expectation and variance of a ratio of 

random variables 3.5 and 3.6 which are based on Taylor series expansion theory [12,13]. We will 

make use of these approximation formulas to describe the distribution of fold change values. 

 
𝐸[𝐹𝐶] = 𝐸 [

𝑌𝑇

𝑌𝐶
] ≈

𝜇𝑇

𝜇𝐶
 (3.5) 

 
𝑉𝑎𝑟[𝐹𝐶] = 𝑉𝑎𝑟 [

𝑌𝑇

𝑌𝑐
]

≈
1

𝜇𝐶
2 𝑉𝑎𝑟[𝑌𝑇] +

𝜇𝑇
2

𝜇𝐶
4 𝑉𝑎𝑟[𝑌𝐶] − 2

𝜇𝑇

𝜇𝐶
3 𝐶𝑜𝑣[𝑌𝑇 , 𝑌𝐶]

= (
𝜇𝑇

𝜇𝐶
)

2

(
𝑉𝑎𝑟[𝑌𝑇]

𝜇𝑇
2 +

𝑉𝑎𝑟[𝑌𝐶]

𝜇𝐶
2 − 2

𝐶𝑜𝑣[𝑌𝑇 , 𝑌𝐶]

𝜇𝑇𝜇𝐶
)  

= (
𝜇𝑇

𝜇𝐶
)

2

(
𝜎𝑇

2 𝑛𝑇⁄

𝜇𝑇
2 +

𝜎𝐶
2 𝑛𝐶⁄

𝜇𝐶
2 )  

(3.6) 

Where 𝐶𝑜𝑣[𝑌𝑇 , 𝑌𝐶] = 0 since these values are independent.  

After the fold changes are calculated, it is common in the basic science field to evaluate 

differences between wild-type and knockout groups using Student’s t-test. This statistical test has 

the following test statistic (3.7) and degrees of freedom using a Satterthwaite approximation 

(3.8) for samples with unequal variance. 
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𝑡 =

𝐹𝐶̅̅̅̅
𝑊𝑇 − 𝐹𝐶̅̅̅̅

𝐾𝑂

√
𝑠𝑑𝐹𝐶̅̅̅̅

𝑊𝑇
2

𝑛𝑊𝑇
+

𝑠𝑑𝐹𝐶̅̅̅̅
𝐾𝑂
2

𝑛𝐾𝑂

 
(3.7) 

 

 

𝑑𝑓 =
(

𝑠𝑑𝐹𝐶̅̅̅̅
𝑊𝑇
2

𝑛𝑊𝑇
+

𝑠𝑑𝐹𝐶̅̅̅̅
𝐾𝑂
2

𝑛𝐾𝑂
)

2

(𝑠𝑑𝐹𝐶̅̅̅̅
𝑊𝑇
2 𝑛𝑊𝑇⁄ )2

𝑛𝑊𝑇 − 1 +
(𝑠𝑑𝐹𝐶̅̅̅̅

𝐾𝑂
2 𝑛𝐾𝑂⁄ )2

𝑛𝐾𝑂 − 1

 (3.8) 

This test statistic yields a p-value which is often reported along with a conclusion about 

treatment effect. What has previously gone unnoticed, however, is the fact that these methods 

lead to Type I error inflation due to a combination of the dependency induced in the calculation 

of fold change where values are divided by a common random variable as well as the non-

normality of the fold change distribution. In order to avoid this inflation, we recommend 

performing a linear regression as follows. 

 𝑌 = 𝛽0 + 𝛽1[𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 = 𝐾𝑂] + 𝛽2[𝐺𝑟𝑜𝑢𝑝 = 𝑇𝑟𝑡]

+ 𝛽3[𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 = 𝐾𝑂] × [𝐺𝑟𝑜𝑢𝑝 = 𝑇𝑟𝑡] 
(3.9) 

Another improvement which controls Type I error rate would be to weight the linear 

regression model by 
1

𝑆2 where 𝑆 represents the observed standard deviation of the generated data. 

These models will allow for the proper evaluation of varying treatment effects between the wild-

type and knockout groups without making any underlying assumptions, instead using the data 

itself. 

 

3.2   SIMULATION SETUP 

We make use of simulation studies in order to determine whether the conclusions drawn 

from are statistically valid. In particular, we focus on the Type I error rates observed from 

simulation. First, we make random draws from the designated data-generating distribution to 

simulate raw data values for this study based on the user inputs of number of samples, means, 

and standard deviations for each of the wild-type control, wild-type treatment, knockout control, 

and knockout treatment groups of mice. As these experiments may be performed on a wide 

variety of measures, there is no upper limit on the range of possible values, the generated data 

must only be non-negative. 
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Next, we derive relative fold change quantities according to equation (3.4) in the standard 

case or using an alternative definition as will be described in section 3.4.5. We also capture the 

observed mean and variance of the raw and fold change measures to use later for validation and 

comparison. We then run both parametric and non-parametric statistical tests between the wild-

type and knockout groups of the designated fold change measure. Student’s t-test will be used as 

the parametric test of the difference in means between the wild-type and knockout fold changes 

under an assumption that the fold changes are normally distributed. The Wilcoxon rank sum test 

also tests the difference in means between the wild-type and knockout values of the fold changes 

relative measures without any parametric assumptions. We also run a series of linear regression 

models, both unweighted and weighted by 
1

𝑆2 , and capture the p-value from the test of the 

hypothesis that the relationship between treatment group and the outcome of interest is different 

in wild-type and knockout groups. 

The error rate for each analytic method is calculated as the proportion of simulation runs 

for which the statistical test yielded a p-value less than the designated Type I error rate of 0.05. 

For this study, we use 10,000 simulation runs. Finally, we observe plots of the average fold 

changes seen across all simulations to assess distribution shape as well as p-value patterns. The R 

code corresponding to this simulation may be found in the Appendix section A.1. 

 

3.3   STATISTICAL CONSIDERATIONS 

Before examining the results of our different simulation scenarios, we note the statistical 

test assumptions that may be violated using this method of normalization. The underlying 

theoretical distribution of fold change values and the potential for correlation between samples 

depending on the relative measure calculation used are of particular concern. As mentioned in 

section 3.2, under our assumption that raw values are normally distributed, it follows that the 

distribution of fold changes will be Cauchy. Thus, the normality assumption of Student’s t-test 

will be violated. We aim in the following sections to assess the impact of this violation. 

The Cauchy is known to be a skewed distribution with undefined first and second 

moments and is also a distribution for which the Central Limit Theorem (CLT) does not apply. 

Because of this, we expect to see that increasing the sample size does not affect the error rates 

seen. We see an example of the skewness of the distribution in Figure 3.1 below. 
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Figure 3.1: Density plots of fold change quantities with various standard deviation settings. 

 

As seen in Figure 3.1, it is possible for the relative quantity distribution to be nearly 

symmetric, and therefore not in direct violation of the normality assumption of the t-test, when 

there is very small variability in the treatment and control measures; although this information is 

mostly useful on a theoretical level, researchers do not have control of this measure in practice.  

As displayed in Section 3.4.5 below, there is potential for an induced correlation structure 

between treatment and control values depending on how the relative quantity is being calculated. 

This correlation will not be accounted for by the statistical tests used and will violate the 

independence assumption of both parametric and non-parametric tests when it is present. 

 

3.4   ERROR RATE INFLATION PATTERNS 

Let us examine one particular simulation scenario where the theoretical fold change value 

is 2 (𝜇𝑐 = 200, 𝜇𝑇 = 400), there will be 3 control mice and 9 treatment mice, and the treatment 

standard deviation is double the control (𝜎𝑐 = 10, 𝜎𝑇 = 20). We will consider this scenario to be 

the basis for comparison when the simulation settings are changed.  

Once the simulation has been run, we observe the Type I error rates for the various 

analytic methods in Table 3.1. We see Type I error for both parametric and non-parametric 

statistical tests inflated above the 0.05 level. We also see that the error rate is controlled slightly 

more using unweighted linear regression and is completely controlled using weighted linear 

regression. In Figure 3.2, we see that under these simulation settings, the fold change distribution 

appears to be only slightly skewed. Figure 3.3 indicates that in simulation runs where the average 

fold change value is more extreme in both genotype groups simultaneously, the p-value is more 
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likely to be less than 0.05 and contribute to the inflated Type I error. We observe a similar 

pattern in that when the average fold change denominator is more extreme in both genotype 

groups simultaneously, the p-value is more likely to be less than 0.05. We do not see this pattern 

hold when observing the fold change numerator values. 

 

Table 3.1: Type I error rates for the default normalization scenario 𝑛 = {3, 3, 9, 9}, 𝜇 =
{200, 200, 400, 400} and 𝜎 = {10, 10, 20, 20}. Where, 

𝑛 = {𝑛𝐶,𝑊𝑇 , 𝑛𝐶,𝐾𝑂 , 𝑛𝑇,𝑊𝑇 , 𝑛𝑇,𝐾𝑂}, 𝜇 = {𝜇𝐶,𝑊𝑇 , 𝜇𝐶,𝐾𝑂, 𝜇𝑇,𝑊𝑇 , 𝜇𝑇,𝐾𝑂}, and 𝜎 = {𝜎𝐶,𝑊𝑇 , 𝜎𝐶,𝐾𝑂 , 𝜎𝑇,𝑊𝑇 , 𝜎𝑇,𝐾𝑂}. 
 

Type I Error Rate 

T-test on 𝐹𝐶 Wilcox test on 𝐹𝐶 
Unweighted linear 

regression 

Linear regression 

weighted by 
1

𝑆2 

0.30 0.28 0.011 0.048 

 

 
Figure 3.2: Density of average fold change values across all simulations for each genotype group. 
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Figure 3.3: Density of average fold change values across all simulations for each genotype group. 

 

Based on equation (3.6), we expect the theoretical variance for both the wild-type and 

knockout genotypes to equal 0.0044 as shown in equation (3.10).  

 
𝑉𝑎𝑟[𝐹𝐶] ≈ (

400

200
)

2

(
202 9⁄

4002
+

102 3⁄

2002
) = 0.004̅ (3.10) 

After simulation, we observe the variance of the wild-type fold changes to be 0.0043 and the 

variance of the knockout fold changes to be 0.0047. This serves as evidence that the Taylor 

series approximation formula is adequate for calculating the variance of the fold change 

distribution based on scenario parameters without the need for simulation.  

 

3.4.1   Changing Theoretical Fold Change 

We first observe the changes in error rate seen when the theoretical fold change value 

increases. Recall that according to equation (3.5), the theoretical fold change value is equivalent 

to 
𝜇𝑇

𝜇𝐶
 when data are generated using the normal distribution. The results of fold change values of 

2, 4, 10, and 200 are listed in Table 3.2 below. We notice that the t-test Type I error rate is 

inflated in each case and increases with increased theoretical fold change when the sample size 
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and variability parameters are all held constant. Also observe that the non-parametric Wilcox test 

yielded only marginally smaller error rates. The value of the theoretical fold change value did 

little to change the error rates seen for both linear regressions. However, the weighted linear 

regression is controlling the error rate better than the unweighted counterpart. 

 

Table 3.2: Type I error rates for normalization scenarios with changing theoretical fold change  

𝑛 = {𝑛𝐶,𝑊𝑇 , 𝑛𝐶,𝐾𝑂 , 𝑛𝑇,𝑊𝑇 , 𝑛𝑇,𝐾𝑂}, 𝜇 = {𝜇𝐶,𝑊𝑇 , 𝜇𝐶,𝐾𝑂, 𝜇𝑇,𝑊𝑇 , 𝜇𝑇,𝐾𝑂}, and 𝜎 = {𝜎𝐶,𝑊𝑇 , 𝜎𝐶,𝐾𝑂 , 𝜎𝑇,𝑊𝑇 , 𝜎𝑇,𝐾𝑂}. 
 

𝑛 = {3, 3, 9, 9} 

𝜎 = {10, 10, 20, 20} 

Type I Error Rate 

T-test on 𝐹𝐶 
Wilcox test 

on 𝐹𝐶 

Unweighted 

linear 

regression 

Linear 

regression 

weighted by 
1

𝑆2 

𝐹𝐶 = 2 (𝜇𝐶 = 200, 𝜇𝑇 = 400) 0.30 0.28 0.011 0.048 

𝐹𝐶 = 4 (𝜇𝐶 = 100, 𝜇𝑇 = 400) 0.56 0.53 0.016 0.052 

𝐹𝐶 = 10 (𝜇𝐶 = 40, 𝜇𝑇 = 400) 0.81 0.79 0.007 0.047 

𝐹𝐶 = 200 (𝜇𝐶 = 40, 𝜇𝑇 = 8000) 0.99 0.99 0.009 0.054 

 

3.4.2   Scaling Fold Change Magnitude 

Next, we observe the effect that a higher magnitude of mean parameters in both the control and 

treatment groups has on error rate. In both cases shown in Table 3.3 below, the theoretical fold 

change value is 
𝜇𝑇

𝜇𝐶
=

400

200
=

4000

2000
= 2 even though the magnitude of mean parameters is 10 times 

larger. In this case, the t-test Type I error stays constant regardless of the scale of the fold-change 

parameters. We again see that the weighted linear regression analysis option is controlling the 

error rate appropriately. 

 

Table 3.3: Type I error rates for normalization scenarios with scaled fold change magnitudes  

𝑛 = {𝑛𝐶,𝑊𝑇 , 𝑛𝐶,𝐾𝑂 , 𝑛𝑇,𝑊𝑇 , 𝑛𝑇,𝐾𝑂}, 𝜇 = {𝜇𝐶,𝑊𝑇 , 𝜇𝐶,𝐾𝑂, 𝜇𝑇,𝑊𝑇 , 𝜇𝑇,𝐾𝑂}, and 𝜎 = {𝜎𝐶,𝑊𝑇 , 𝜎𝐶,𝐾𝑂 , 𝜎𝑇,𝑊𝑇 , 𝜎𝑇,𝐾𝑂}. 
 

𝑛 = {3, 3, 9, 9} 

𝜎 = {10, 10, 20, 20} 

Type I Error Rate 

T-test on 𝐹𝐶 
Wilcox test 

on 𝐹𝐶 

Unweighted 

linear 

regression 

Linear 

regression 

weighted by 
1

𝑆2 

𝐹𝐶 = 2 (𝜇𝐶 = 200, 𝜇𝑇 = 400) 0.30 0.28 0.011 0.048 

𝐹𝐶 = 2 (𝜇𝐶 = 2000, 𝜇𝑇 = 4000) 0.31 0.28 0.011 0.059 
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3.4.3   Scaling Sample Size 

We can also observe what happens to Type I error rates among the various analytic 

methods when the sample size is increased. Notice in Table 3.4 that the theoretical fold change 

and variability parameters remain constant as the sample size gets 100 times larger. We observe 

that this change does not impact the error rates observed, so increasing the number of samples 

does not deflate Type I error. 

 

Table 3.4: Type I error rates for normalization scenarios with scaled sample sizes 

𝑛 = {𝑛𝐶,𝑊𝑇 , 𝑛𝐶,𝐾𝑂 , 𝑛𝑇,𝑊𝑇 , 𝑛𝑇,𝐾𝑂}, 𝜇 = {𝜇𝐶,𝑊𝑇 , 𝜇𝐶,𝐾𝑂, 𝜇𝑇,𝑊𝑇 , 𝜇𝑇,𝐾𝑂}, and 𝜎 = {𝜎𝐶,𝑊𝑇 , 𝜎𝐶,𝐾𝑂 , 𝜎𝑇,𝑊𝑇 , 𝜎𝑇,𝐾𝑂}. 
 

𝐹𝐶 = 2 (𝜇𝐶 = 200, 𝜇𝑇 = 400) 

𝜎 = {10, 10, 20, 20} 

Type I Error Rate 

T-test on 𝐹𝐶 
Wilcox test 

on 𝐹𝐶 

Unweighted 

linear 

regression 

Linear 

regression 

weighted by 
1

𝑆2 

𝑛 = {3, 3, 9, 9} 0.30 0.28 0.011 0.048 

𝑛 = {300, 300, 900, 900} 0.33 0.33 0.007 0.049 

 

3.4.4   Altering Standard Deviation Ratio 

It is also possible to alter the ratios of variability parameters 
𝜎𝑇

𝜎𝐶
 between the wild-type and 

knockout phenotype groups. As shown in Table 3.5, within each ratio grouping, the Type I error 

rate remains the same as long as the ratio between 
𝜎𝑇

𝜎𝐶
 stays constant, regardless of scale. 

Although, increasing the knockout group’s standard deviation ratio yielded a deflation of t-test 

Type I error. In the case where the sigma ratios are equal, we also see that it is possible for the 

unweighted linear regression to outperform the weighted version and be closest to the 0.05 level. 

 

Table 3.5: Type I error rates for normalization scenarios with various sigma ratios 

𝑛 = {𝑛𝐶,𝑊𝑇 , 𝑛𝐶,𝐾𝑂 , 𝑛𝑇,𝑊𝑇 , 𝑛𝑇,𝐾𝑂}, 𝜇 = {𝜇𝐶,𝑊𝑇 , 𝜇𝐶,𝐾𝑂, 𝜇𝑇,𝑊𝑇 , 𝜇𝑇,𝐾𝑂}, and 𝜎 = {𝜎𝐶,𝑊𝑇 , 𝜎𝐶,𝐾𝑂 , 𝜎𝑇,𝑊𝑇 , 𝜎𝑇,𝐾𝑂}. 
 

 

𝑛 = {3, 3, 9, 9} 

𝐹𝐶 = 2 (𝜇𝐶 = 200, 𝜇𝑇 = 400) 

Type I Error Rate 

T-test on 

𝐹𝐶 

Wilcox 

test on 𝐹𝐶 

Unweighted 

linear 

regression 

Linear 

regression 

weighted by 
1

𝑆2 

WT ratio=1 

KO ratio=1 

𝜎 = {10, 10, 10, 10} 0.56 0.52 0.054 0.069 

𝜎 = {10, 20, 10, 20} 0.52 0.51 0.058 0.083 
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WT ratio=1 

KO ratio=2 

𝜎 = {10, 20, 10, 40} 0.36 0.31 0.015 0.059 

𝜎 = {20, 40, 20, 80} 0.32 0.32 0.018 0.070 

 

3.4.5   Various Relative Quantity Normalization Scenarios 

As previously mentioned, the standard method used in calculating relative fold change 

measure involves dividing treatment data by a common averaged control value. In this section, 

we observe the t-test Type I error rates yielded when the relative quantity calculation is changed. 

We are particularly interested in a calculation of a relative ratio without a common control, and 

the calculation of relative differences between common and pairwise controls. 

   

3.4.5.1   Ratio relative to pairwise controls 

In order to assess whether the use of a common control in calculating relative measures is 

the sole cause of error rate inflation, we explore an alternate relative quantity definition. In the 

case where the relative quantity involves a ratio of treatment data relative to pairwise controls, 

the fold changes in each genotype group are calculated as the following. 

 𝐹𝐶 =
𝑥1𝑇

𝑥1𝐶
,
𝑥2𝑇

𝑥2𝐶
,
𝑥3𝑇

𝑥3𝐶
, … (3.11) 

Using this alternative method to calculate fold change yields a t-test Type I error of 

approximately 7% as compared to 40% for a standard fold change case. We likely see this 

slightly inflated Type I error rate since the fold change measures still follow a non-normal 

distribution. Although, since the fold changes are calculated using pairwise controls in this case, 

the values within treatment group are no longer correlated.    

 

3.4.5.2   Difference relative to average control 

We are also curious if the error rate inflation is still seen when the relative quantity is 

derived using a difference instead of a ratio. In this case, we are no longer working with the 

Cauchy distribution; instead, the fold change distribution should remain normally distributed. 

We will first explore the difference between the treatment data and a common control. In the 

case where the relative quantity involves a difference between treatment data relative to the 
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average of its corresponding control, the relative differences (RD) in each genotype group are 

calculated as in equation (3.11). 

 𝑅𝐷 = (𝑥1𝑇 − 𝑥̅𝐶), (𝑥2𝑇 − 𝑥̅𝐶), (𝑥3𝑇 − 𝑥̅𝐶), … (3.12) 

Using this derivation yields a t-test Type I error rate of approximately 15% as compared to 40% 

for a standard fold change case. Based on the error rates seen in previous settings, we were under 

the impression that Cauchy distribution was causing most of the error rate inflation, although 

even without dividing, we encounter the problem. We hypothesize that the induced dependency 

due to a common control inflates the Type I error rate in this case. Although, the inflation is not 

as extreme since the relative difference distribution is normal instead of Cauchy.  

 

3.4.5.3   Difference relative to pairwise controls 

Finally, we again consider a relative quantity calculation involving a difference, but no 

longer with a common control. Instead, subtracting paired, and thus no longer independent data. 

In the case where the relative quantity involves a difference between treatment data relative to 

pairwise controls, the relative differences in each genotype group are calculated as the following. 

 𝑅𝐷 = (𝑥1𝑇 − 𝑥1𝐶), (𝑥2𝑇 − 𝑥2𝐶), (𝑥3𝑇 − 𝑥3𝐶), … (3.13) 

This final derivation method yields a t-test Type I error rate of approximately 5% as compared to 

40% for a standard fold change case. Since these relative differences are normally distributed 

and independent from one another, the Type I error rate is controlled. 

 

3.5   RECOMMENDATIONS 

As shown in the various scenarios in section 3.4, we can manipulate enough settings 

within the simulation to yield a t-test Type I error ranging anywhere from 0.05 to 0.99. It is also 

important to note that nearly all cases had inflated error. Through examining these various 

scenarios, it is clear that there is not a single root explanation as to why the t-test error rate is 

being inflated in these settings. Instead, it appears that the Cauchy distribution, measures relative 

to a common control, theoretical fold change values, and variability relationships between 

treatment groups all work in tandem to invalidate the use of the t-test in these settings. A general 

pattern we noticed when raw data are generated from a normal distribution is that the magnitude 

of parameters when comparing wild-type to knockout does not matter, it is the relationship of 

treatment and control parameters that makes a difference. 
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We recommend researchers instead use analysis of variance with weights 
1

𝑆2 in order to 

control the Type I error of their analysis. Although, with the inevitably small sample sizes seen 

in this field of research, this recommended method of analysis will suffer from low power. We 

also saw good performance of relative measures calculated using differences instead of ratios. 

We next examine normalization schemes using RT-PCR data which rely more heavily on 

relative differences to see if the error rate inflation issues persist.  
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CHAPTER 4 

 

 

COMPARATIVE 𝐶𝑇 NORMALIZATION METHOD USING RT-PCR DATA 

Scientists often make use of RT-PCR data in order to compare gene expression levels 

between knockout and wild-type groups, while simultaneously accounting for the differences 

between treated and untreated samples. The current analysis procedures used with RT-PCR data 

present another normalization technique involving quantities relative to a common control. In 

contrast to the fold change setting, there are derived relative quantities in RT-PCR analysis 

which involve only differences of these shared controls. Although, another commonly used 

relative quantity does involve a ratio calculation with respect to a shared control as part of the 

normalization process, echoing the fold change method. We will examine in the following 

sections if the same Type I error inflation issues persist when using the t-test in this similar 

setting. 

There are several analytic methods that are programmed into the RT-PCR instruments 

used by scientific research labs, such as Applied Biosystems, which aid researchers in 

determining this effect. Researchers make use of the Relative Standard Curve method for 

analyzing RT-PCR data when testing small numbers of target genes and samples. This method 

makes no assumption about the PCR efficiencies, instead measuring relative quantities directly. 

Due to the fact that this method is able to interpolate unknown sample quantities by use of a 

standard curve, discrete changes in expression may be measured and little validation is needed. 

Alternatively, when testing a large number of target genes and samples or when validating 

results from previous experiments, the Comparative 𝐶𝑇 Method (𝐶𝑇) is commonly used. This 

is also regularly referred to as the delta-delta method. The 𝐶𝑇 method comes with the caveat 

that in order for the relative calculation to be valid, the efficiency of the target and reference 

amplification must be relatively equivalent. This measure of amplification efficiency is typically 

found through previously performed validation experiments. Generally, both methods require 

specific and proper plate set-up in order for the software to make the appropriate derivations.  
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4.1   DEFINITIONS AND DERIVATIONS 

We focus on the calculation and use of a relative delta-delta measure for comparison, as it 

is a popular analytic method in which the process of normalization should be evaluated for 

statistical validity. The following arithmetic formula is a normalized, relative quantity (𝑅𝑄) 

which represents the amount target gene which is normalized to a housekeeping gene and 

relative to a calibrator sample [14]. 

 𝑅𝑄 = 2−∆∆𝐶𝑇 (4.1) 

 

Theoretically, this formula used is based on the general equation which calculates the 

exponential amplification of PCR (Equation 4.2) [15]. 

 𝑋𝑛 =  𝑋0 × (1 + 𝐸𝑋)𝑛 (4.2) 

where: 

𝑋𝑛 = Number of target molecules at cycle n 

𝑋0 = Initial number of target molecules 

𝐸𝑋 = Efficiency of target amplification 

𝑛 = Number of cycles 

 

In our simulation of RT-PCR data, we are interested in quantifying the number of molecules in 

both the target (e.g., IL23a) and housekeeping (e.g., Gapdh) reference groups at the cycle 

number at which the fluorescence threshold is crossed; 𝑋𝑇,𝐼𝐿23𝑎 and 𝑋𝑇,𝐺𝑎𝑝𝑑ℎ , respectively. 

Using equation (4.2) as a basis, the number of cycles may be replaced with the cycle number at 

which the amount of amplified target reaches a fixed threshold 𝐶𝑇 and we know that the 

threshold number of molecules will be an integer constant. Equation (4.3) describes the 

exponential amplification of the IL23a target reaction.  

 𝑋𝑇,𝐼𝐿23𝑎 =  𝑋0,𝐼𝐿23𝑎 × (1 + 𝐸𝐼𝐿23𝑎)𝐶𝑇,𝐼𝐿23𝑎 (4.3) 

Similarly, equation 4.4 describes the same quantity for the Gapdh housekeeping reaction.  

 𝑋𝑇,𝐺𝑎𝑝𝑑ℎ =  𝑋0,𝐺𝑎𝑝𝑑ℎ × (1 + 𝐸𝐺𝑎𝑝𝑑ℎ)𝐶𝑇,𝐺𝑎𝑝𝑑ℎ (4.4) 

In order to normalize, we relate the target molecules to the reference molecules by taking a ratio.  

 𝑋𝑇,𝐼𝐿23𝑎

𝑋𝑇,𝐺𝑎𝑝𝑑ℎ
=  

𝑋0,𝐼𝐿23𝑎 × (1 + 𝐸𝐼𝐿23𝑎)𝐶𝑇,𝐼𝐿23𝑎

𝑋0,𝐺𝑎𝑝𝑑ℎ × (1 + 𝐸𝐺𝑎𝑝𝑑ℎ)𝐶𝑇,𝐺𝑎𝑝𝑑ℎ
 (4.5) 
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The 𝐼𝐿23𝑎𝑇 and 𝐺𝑎𝑝𝑑ℎ𝑇 threshold values are dependent on several factors related to scientific 

variation and the machine itself and therefore will not necessarily equal one another, though will 

equal a constant 𝐾. Under the assumption that the efficiencies of the target and reference 

reactions are equal 𝐸𝐼𝐿23𝑎 = 𝐸𝐺𝑎𝑝𝑑ℎ = 𝐸, the equation may be rewritten as in equation (4.6).  

 
𝐾 =

𝑋0,𝐼𝐿23𝑎

𝑋0,𝐺𝑎𝑝𝑑ℎ
× (1 + 𝐸)𝐶𝑇,𝐼𝐿23𝑎−𝐶𝑇,𝐺𝑎𝑝𝑑ℎ   (4.6) 

Next, 
𝑋0,𝐼𝐿23𝑎

𝑋0,𝐺𝑎𝑝𝑑ℎ
 is defined as the normalized amount of initial target molecules 𝑋𝑁 and the 

difference in threshold cycles 𝐶𝑇,𝐼𝐿23𝑎 − 𝐶𝑇,𝐺𝑎𝑝𝑑ℎ for target and reference molecules is defined 

as ∆𝐶𝑇. By applying these new definitions and rearranging, we yield Equation (4.7).  

 𝑋𝑁 =  𝐾 × (1 + 𝐸)−∆𝐶𝑇 (4.7) 

Finally, we again normalize by taking a ratio such that the treated samples 𝑇 are relative to their 

untreated counterparts 𝑈𝑇.  

 𝑋𝑁,𝑇

𝑋𝑁,𝑈𝑇
=  

𝐾 × (1 + 𝐸)−∆𝐶𝑇,𝑇

𝐾 × (1 + 𝐸)−∆𝐶𝑇,𝑈𝑇
=  (1 + 𝐸)−∆∆𝐶𝑇 (4.8) 

Notice that the delta-delta relative quantity ∆∆𝐶𝑇 is equal to ∆𝐶𝑇,𝑇 − ∆𝐶𝑇,𝑈𝑇. Under the 

assumption set by Applied Biosystems that the efficiency is nearly equal to one, the point 

estimate of the relative quantity becomes 𝑅𝑄 = 2−∆∆𝐶𝑇. Statistical tests are then performed on 

𝑅𝑄𝑊𝑇  and 𝑅𝑄𝐾𝑂  to test the following hypotheses: 

𝐻0: 𝜇𝑅𝑄𝐾𝑂
= 𝜇𝑅𝑄𝑊𝑇

 

𝐻𝐴: 𝜇𝑅𝑄𝐾𝑂
≠ 𝜇𝑅𝑄𝑊𝑇

 

In terms of quantifying the variation of the above relative quantity, we know that at the 

first normalization step of comparing IL23a to Gapdh genes, the standard error is calculated as in 

equation (4.9) where 𝑛 is the number of wells for a given sample. 

 

 

∆𝐶𝑇𝑆𝐸 =  √
𝐶𝑇𝑆𝐷𝑡𝑎𝑟𝑔𝑒𝑡

2

𝑛
+

𝐶𝑇𝑆𝐷𝐺𝐴𝑃𝐷𝐻
2

𝑛
 (4.9) 

The quantification of variance for the second normalization step for comparing treated to 

untreated samples is less clear. According to the Applied Biosystems Guide to Performing 

Relative Quantitation of Gene Expression Using RT-PCR, the subtraction of  ∆𝐶𝑇,𝑈𝑇 is 

considered to be the subtraction of an “arbitrary constant” meaning that it has no associated 
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variability [14]. It follows from this logic that the standard deviation of the ∆∆𝐶𝑇 value is the 

same as the standard deviation of the treated quantities ∆𝐶𝑇,𝑇. This assumption, however, ignores 

a non-negligible amount of variability in the normalized untreated quantities and calls into 

question the RT-PCR instrument’s automatic calculation of a confidence interval surrounding the 

2−∆∆𝐶𝑇 relative quantity. 

 

4.2   SIMULATION SETUP 

In order to assess the validity of the statistical conclusions being made in this field of 

work, we examine error rates from simulation. We first make random draws from a normal 

distribution to simulate cycle threshold 𝐶𝑇 values for the IL23a target and Gapdh housekeeping 

genes used for this study. We assume that the distribution of 𝐶𝑇 values for the Gapdh 

housekeeping genes are the same for both wild-type and knockout groups and follow, 

𝐶𝑇 𝑇,𝐺𝑎𝑝𝑑ℎ ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑇,𝐺𝑎𝑝𝑑ℎ, 𝜎𝑇,𝐺𝑎𝑝𝑑ℎ) 

𝐶𝑇 𝑈𝑇,𝐺𝑎𝑝𝑑ℎ  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑈𝑇,𝐺𝑎𝑝𝑑ℎ , 𝜎𝑈𝑇,𝐺𝑎𝑝𝑑ℎ)  

for treated and untreated samples, respectively. Similarly, we assume that the IL23a target genes 

for both wild-type and knockout groups follow, 

𝐶𝑇 𝑇,𝐼𝐿23𝑎 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑇,𝐼𝐿23𝑎, 𝜎𝑇,𝐼𝐿23𝑎)  

𝐶𝑇 𝑈𝑇,𝐼𝐿23𝑎 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑈𝑇,𝐼𝐿23𝑎, 𝜎𝑈𝑇,𝐼𝐿23𝑎)  

for treated and untreated samples, respectively. For these raw measures, it is helpful to note that 

a smaller 𝐶𝑇 value is indicative of larger cytokine expression since it crossed the fluorescence 

threshold at an earlier cycle, meaning there was more of that cytokine. Generally speaking, there 

do not tend to be  𝐶𝑇 values above 35 cycles. 

Next, we derive relative quantities according to the equations in section 4.1 based on the 

corresponding normalization scenario detailed in section 4.4. We then run both parametric and 

non-parametric statistical tests between the wild-type and knockout groups of various relative 

measures. Student’s t-test will be used as the parametric test of the difference in means between 

the wild-type and knockout quantities of the ∆∆𝐶𝑇 and 2−∆∆𝐶𝑇 relative measures under an 

assumption that the relative measures are normally distributed. The Wilcoxon rank sum test 

evaluates the difference in central tendency between the wild-type and knockout values of the 

∆∆𝐶𝑇 and 2−∆∆𝐶𝑇 relative measures with no parametric assumptions. 
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Finally, the error rate for each test in the normalization scenario is calculated as the 

proportion of simulation runs for which the statistical test yielded a p-value less than the 

designated Type I error rate of 0.05. For the purposes of this study, we use 10,000 simulation 

runs. We are particularly interested in knowing whether the Type I error for any of the tests is: 

below the 0.05 level, indicating a loss of statistical power; at the 0.05 level, demonstrating 

statistical validity; or inflated. The R code corresponding to this simulation may be found in the 

Appendix section A.2. 

 

4.3   STATISTICAL CONSIDERATIONS 

Before examining any specific normalization scenarios, we can evaluate potential threats 

to statistical validity based on the test assumptions that could be violated. The underlying 

theoretical distributions of the relative quantities being tested and the correlation between 

samples are of particular concern. Under our assumption that raw 𝐶𝑇 values are normally 

distributed, we can follow through the derivation formulas as in section 4.1 and observe that the 

calculation of ∆∆𝐶𝑇 involves a series of addition, subtraction, and scaling of known normal 

distributions as shown in the expansion in (4.10). Thus, ∆∆𝐶𝑇 values will follow a normal 

distribution and not violate the normality assumption of Student’s t-test.  

 ∆∆𝐶𝑇 = ∆𝐶𝑇 𝑇𝑟𝑒𝑎𝑡𝑒𝑑 − ∆𝐶𝑇 𝑈𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑                                                          

= (𝐶𝑇 𝑇,𝐼𝐿23𝑎 − 𝐶𝑇 𝑇,𝐺𝑎𝑝𝑑ℎ) − (𝐶𝑇 𝑈𝑇,𝐼𝐿23𝑎 −  𝐶𝑇 𝑈𝑇,𝐺𝑎𝑝𝑑ℎ) 

= (
𝐶𝑇1 𝑇,𝐼𝐿23𝑎 + 𝐶𝑇2 𝑇,𝐼𝐿23𝑎 

2
−

𝐶𝑇1 𝑇,𝐺𝑎𝑝𝑑ℎ + 𝐶𝑇2 𝑇,𝐺𝑎𝑝𝑑ℎ

2
)    

− (
𝐶𝑇1 𝑈𝑇,𝐼𝐿23𝑎 + 𝐶𝑇2 𝑈𝑇,𝐼𝐿23𝑎 

2
−

𝐶𝑇1 𝑈𝑇,𝐺𝑎𝑝𝑑ℎ + 𝐶𝑇2 𝑈𝑇,𝐺𝑎𝑝𝑑ℎ

2
)          

(4.10) 

The relative quantity 2−∆∆𝐶𝑇, however, does not follow a theoretically normal 

distribution. As described above, we know the −∆∆𝐶𝑇 quantity is normal, but 2 raised to the 

power of a normal is not a known distribution. The only recognized relationship is that 

−𝑙𝑜𝑔2(2−∆∆𝐶𝑇) is normally distributed. As seen in Figure 4.1, it is possible for the relative 

quantity distribution to be nearly symmetric, and therefore not in direct violation of the normality 

assumption of the t-test, when the standard deviation of the ∆∆𝐶𝑇 value is very low; although the 

variance of the normalized ∆𝐶𝑇 values is not something within the control of researchers when 

performing experiments. What Figure 4.1 also highlights is the potential for relative quantity 
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outliers when the  ∆∆𝐶𝑇 values have a moderate amount of variability. This combination of 

skewness and wide variability calls into question the use of a parametric statistical test for 

evaluating research questions of the difference between group averages. 

 

 
Figure 4.1: Density plots of 2−∆∆𝐶𝑇  relative quantities with various standard deviation settings for 

the normally distributed ∆∆𝐶𝑇  values. 

 

When considering the non-parametric Wilcoxon rank sum test, it is important to note that 

due to the nature of the underlying ranking involved, the test will not be able to detect small 

group differences at a 0.05 level when the sample size is less than 4 [16]. 

As shown below in Section 4.4, depending on the normalization scheme used for deriving 

relative quantities, there is potential for an induced correlation structure that is not being 

accounted for in the use of statistical tests. The group-level correlation between samples is in 

direct violation of the independence assumption of both parametric and non-parametric tests. 

Finally, recall that equation (4.8), only yields the 2−∆∆𝐶𝑇 relative measure due to the 

assumption that the amplification efficiency is equal to one. Previous work has quantified the 

impact of this efficiency assumption in terms of error percent [17]. 

 
𝐸𝑟𝑟𝑜𝑟𝑃𝑒𝑟𝑐𝑒𝑛𝑡 =  (100 ×

2𝐶𝑇

(1 + 𝐸)𝐶𝑇
) − 100, (4.11) 

meaning, that if the efficiency is actually 0.9 instead of 1 in 25 cycles, for example, we will have 

a very high percentage of error (Equation 4.12), calling into question the practicality of this 

assumption. 
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𝐸𝑟𝑟𝑜𝑟𝑃𝑒𝑟𝑐𝑒𝑛𝑡 =  (100 ×

225

(1 + 0.9)25
) − 100 = 261% (4.12) 

 

4.4   NORMALIZATION SCENARIOS 

There are several plate setups used by various scientific labs which dictate how the 

relative quantities used for comparison are derived. Within a single target gene, the calculation of 

∆𝐶𝑇 remains the same, regardless of scenario type. The calculation of ∆∆𝐶𝑇, however, depends 

on the setup of the plate and the research question being asked as described in sections (4.4.1-4) 

below.  

 

4.4.1   Single Treated relative to Single Untreated 

Suppose, for the purposes of explanation, that we have a single set of treated samples and 

a single set of untreated samples for both the wild-type and knockout groups. In this setting, we 

assume that 𝐶𝑇 𝐺𝑎𝑝𝑑ℎ  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(20, 2) and 𝐶𝑇 𝐼𝑙23𝑎 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(30, 2) regardless of whether the 

sample was treated or untreated. Table 4.1 shows an example of simulated data from one run of 

the simulation under this normalization scenario. 

 

Table 4.1: Single IL23a target gene subset of simulated Applied Biosystems instrument data when 

normalization is performed on a single treated relative to a single untreated sample. 

 

Let’s examine the steps for deriving the treated wild-type relative quantity of 1.95. First, recall 

that the 𝐶𝑇 values are randomly generated from the designated normal distributions and note that 
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there are two wells assigned for each cytokine. We calculate the 𝐶𝑇 𝑀𝑒𝑎𝑛 values as the average of 

the two wells for each target or housekeeping gene within each wild-type group. 

 

Column:   CT.Mean               CT             CT.Mean              CT  

Untreated WT: 18.20 =  
17.06 + 19.33

2
;          28.31 =

26.26 + 30.37

2
 

(4.11) 

Treated WT: 21.83 =
23.32 + 20.33

2
;           30.98 =

30.06 + 31.89

2
  

Next, the ∆𝐶𝑇 values (are calculated by subtracting the housekeeping 𝐶𝑇 𝑀𝑒𝑎𝑛  from the target 

𝐶𝑇 𝑀𝑒𝑎𝑛 within each treated status wild-type group. 

Column:                  Delta.CT.Mean        CT.Mean  

Untreated WT: 10.12 = 28.31 − 18.20 
(4.12) 

Treated WT:    9.15 = 30.98 − 21.83 

The standard errors of the ∆𝐶𝑇 values are calculated according to equation (4.9). 

Column:                    Delta.CT.SE              CT.sd  

Untreated WT: 2.35 =  √
2.912

2
+

1.612

2
 

(4.13) 

Treated WT: 1.75 = √
1.292

2
+

2.122

2
 

The ∆∆𝐶𝑇 values are derived as the difference between the treated and untreated ∆𝐶𝑇 values of 

the wild-type group. 

Column:                            DelDel.CT    Delta.CT.Mean  

Untreated WT:             0 = 10.12 − 10.12 
(4.14) 

Treated WT: −0.97 = 9.15 − 10.12 

Finally, the relative quantity is calculated as 2−∆∆𝐶𝑇. 

Column:                                           RQ     DelDel.CT  

Untreated WT: 1 = 2−0 
(4.15) 

Treated WT:     1.95 = 2−(−0.97) 

A similar exercise may be performed to yield the relative quantities within the knockout group. 

Note that in this scenario, statistical tests may not be performed as there is only one wild-type 

and one knockout value to be compared. We instead view this example as an illustration of 

relative measure derivation. 
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4.4.2   Multiple Treated relative to Single Untreated  

In this scenario, the 𝐶𝑇 𝑀𝑒𝑎𝑛, ∆𝐶𝑇, ∆𝐶𝑇𝑆𝐸, and relative quantity 2−∆∆𝐶𝑇 values are 

calculated in the same way as in the previous normalization setting (equations 4.11, 4.12, 4.13, 

4.15). What deviates is the derivations of ∆∆𝐶𝑇 values. Table 4.2 shows an example of simulated 

data that may be seen in this normalization scenario. 

 

Table 4.2: Single IL23a target gene subset of simulated Applied Biosystems instrument data when 

normalization is performed on multiple treated samples all relative to the same single untreated sample. 

 

In this case, within the wild-type group, each treated ∆𝐶𝑇 value is relative to the same untreated 

∆𝐶𝑇 value of 10.12 in calculating ∆∆𝐶𝑇 values. 
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Column:                           DelDel.CT     Delta.CT.Mean  

Untreated WT:            0 = 10.12 − 10.12 

(4.16) 
Treated WT 1: −0.97 = 9.15 − 10.12 

Treated WT 2: −0.76 = 9.36 − 10.12 

Treated WT 3: −5.23 = 4.88 − 10.12 

We run several simulation settings, altering the number of treated samples between 2 and 5 and 

the extremes of 9 and 90 as well as the standard deviations of the 𝐶𝑇 values of 2 and 0.2. The 

error rates output from the simulation may be examined for patterns of statistical validity.  

 

Table 4.3: Type I error rates for the normalization scenario where relative measures are calculated for 

multiple treated samples all relative to the same single untreated sample where  

𝜇 = {𝜇𝑈𝑇,𝐺𝑎𝑝𝑑ℎ , 𝜇𝑇,𝐺𝑎𝑝𝑑ℎ , 𝜇𝑈𝑇,𝐼𝐿23𝑎 , 𝜇𝑈𝑇,𝐼𝐿23𝑎} and 𝜎 = {𝜎𝑈𝑇,𝐺𝑎𝑝𝑑ℎ , 𝜎𝑇,𝐺𝑎𝑝𝑑ℎ , 𝜎𝑈𝑇,𝐼𝐿23𝑎 , 𝜎𝑈𝑇,𝐼𝐿23𝑎}. 
 

  Type I Error Rate 

  T-test on 

∆∆𝐶𝑇  

Wilcox test on 

∆∆𝐶𝑇  

T-test on 

2−∆∆𝐶𝑇  

Wilcox test on 

2−∆∆𝐶𝑇  


=

{
2
0
, 
2
0
, 
3
0
, 
3
0
}
, 


=

{
2
, 
2
, 
2
, 
2
}
 

1 Untreated,  

2 Treated 
0.061 0 0.037 0 

1 Untreated,  

3 Treated 
0.186 0 0.038 0 

1 Untreated, 

4 Treated 
0.30 0.23 0.054 0.23 

1 Untreated, 

5 Treated 
0.36 0.31 0.083 0.31 

1 Untreated, 

9 Treated 
0.50 0.47 0.22 0.47 

1 Untreated, 

90 Treated 
0.84 0.83 0.74 0.83 


=

{
2
0
, 
2
0
, 
3
0
, 
3
0
}
, 


=

{
0
.2

,0
.2

,0
.2

,0
.2

}
 

1 Untreated,  

2 Treated 
0.06 0 0.043 0 

1 Untreated,  

3 Treated 
0.19 0 0.063 0 

1 Untreated, 

4 Treated 
0.29 0.23 0.095 0.23 

1 Untreated, 

5 Treated 
0.36 0.31 0.14 0.31 

1 Untreated, 

9 Treated 
0.51 0.48 0.34 0.48 

1 Untreated, 

90 Treated 
0.83 0.83 0.79 0.83 

 

As shown in Table 4.3, under this normalization scenario, a 10-fold decrease in the standard 

deviation of 𝐶𝑇 values did little to alter the error rates observed. This is a surprising pattern; 

based on the results from the fold change simulation, we expected that the significantly smaller 
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variance would have very different error rates. Again, in contrast to the fold change setting, we 

see that an increase of sample size leads to a greater inflation of Type I error. This is likely seen 

since there is more correlation present that when there are more treated samples and this 

dependency is not accounted for in statistical testing. We also observe that for this particular 

scenario, the t-test on 2−∆∆𝐶𝑇 is statistically valid and only slightly underpowered when no more 

than 3 treated samples are normalized to a single untreated sample for each group, as is a 

common sample size for these experiments.  

 

4.4.3   Multiple Treated relative to Multiple Pairwise Untreated 

This scenario is also known as the triplicate case, where single treated and untreated 

samples are placed on 3 different plates and the relative quantities are paired accordingly. Again, 

the only deviation in the derivation equations from section 4.4.1 is in the calculation of ∆∆𝐶𝑇 

values. Table 4.4 shows an example of simulated data seen in this normalization scenario. 
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Table 4.4: Single IL23a target gene subset of simulated Applied Biosystems instrument data when 

normalization is performed on multiple treated samples all relative to multiple paired untreated samples 

across 3 plates. 

 

In this case, within the wild-type group, each treated ∆𝐶𝑇 value is relative to its paired untreated 

∆𝐶𝑇 value when calculating ∆∆𝐶𝑇. 

Column:                           DelDel.CT     Delta.CT.Mean  

Treated WT 1: −0.97 = 9.15 − 10.12 

(4.17) Treated WT 2: −1.46 = 9.36 − 10.81 

Treated WT 3: −6.74 = 4.88 − 11.62 
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We run several simulation settings, altering the number of treated and untreated samples from 3 

to 9 as well as the standard deviations of the 𝐶𝑇 values of 2 and 0.2. The error rates output from 

the simulation may be examined for patterns of statistical validity.  

 

Table 4.5: Type I error rates for the normalization scenario where relative measures are calculated for 

multiple treated samples relative to paired untreated samples where  

𝜇 = {𝜇𝑈𝑇,𝐺𝑎𝑝𝑑ℎ , 𝜇𝑇,𝐺𝑎𝑝𝑑ℎ , 𝜇𝑈𝑇,𝐼𝐿23𝑎 , 𝜇𝑈𝑇,𝐼𝐿23𝑎} and 𝜎 = {𝜎𝑈𝑇,𝐺𝑎𝑝𝑑ℎ , 𝜎𝑇,𝐺𝑎𝑝𝑑ℎ , 𝜎𝑈𝑇,𝐼𝐿23𝑎 , 𝜎𝑈𝑇,𝐼𝐿23𝑎}. 
 

  Type I Error Rate 

  T-test on 

∆∆𝐶𝑇  

Wilcox test on 

∆∆𝐶𝑇  

T-test on 

2−∆∆𝐶𝑇  

Wilcox test on 

2−∆∆𝐶𝑇  


=

{
2
0
, 
2
0
, 
3
0
, 
3
0
}
, 


=

{
2
, 
2
, 
2
, 
2
}
 

3 Untreated,  
3 Treated 

0.035 0 0.0085 0 

9 Untreated,  

9 Treated 
0.048 0.041 0.011 0.041 


=

{
2
0
, 
2
0
, 
3
0
, 
3
0
}
, 


=

{
0
.2

,0
.2

,0
.2

,0
.2

}
 

3 Untreated,  

3 Treated 
0.034 0 0.014 0 

9 Untreated,  

9 Treated 
0.048 0.040 0.018 0.040 

 

As shown in Table 4.5, under this normalization scenario, a 10-fold decrease in the standard 

deviation of 𝐶𝑇 values did relatively little to change the observed error rates. Based on the results 

from the fold change simulation, this is another surprising pattern. We see that increasing sample 

size increases Type I error marginally, but not above the 0.05 level. In this case, performing a t-

test on the 2−∆∆𝐶𝑇 relative quantity yields a highly conservative Type I error due to the large 

spread of potential relative quantity values as displayed conceptually in Figure 4.1. Of particular 

interest in this scenario is the fact that performing a t-test on the ∆∆𝐶𝑇 quantities instead yields a 

less conservative test. This observation is likely due to the fact that the distribution of ∆∆𝐶𝑇 

quantities is theoretically normal, and thus not in violation of the t-test’s assumption of 

normality. 
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4.4.4   Multiple Treated relative to Single Averaged Untreated  

This scenario is an expansion of the triplicate case in section 4.4.3, where single treated 

and untreated samples are placed on 3 different plates, but the relative quantities are calculated 

relative to the average of the 3 untreated samples. Again, the only deviation in the derivation 

equations from section 4.4.1 is in the calculation of ∆∆𝐶𝑇 values. Table 4.6 shows an example of 

simulated data seen in this normalization scenario. 

 

Table 4.6: Single IL23a target gene subset of simulated Applied Biosystems instrument data when 

normalization is performed on multiple treated samples all relative to a single averaged untreated sample 

across 3 plates. 
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In this case, within the wild-type group, each treated ∆𝐶𝑇 value is relative to a single average of 

untreated ∆𝐶𝑇 values when calculating ∆∆𝐶𝑇. 

Column:                            DelDel.CT    Delta.CT.Mean  

Treated WT 1: −1.70 = 9.15 − 10.85 

(4.18) Treated WT 2: −1.49 = 9.36 − 10.85 

Treated WT 3: −5.97 = 4.88 − 10.85 

We run several simulation settings, altering the number of untreated samples to be averaged and 

treated samples from 3 to 9 as well as the standard deviations of the 𝐶𝑇 values of 2 and 0.2. The 

error rates output from the simulation may be examined for patterns of statistical validity.  

 

Table 4.7: Type I error rates for the normalization scenario where relative measures are calculated for 

multiple treated samples relative to a single untreated sample which was derived via averaging where  

𝜇 = {𝜇𝑈𝑇,𝐺𝑎𝑝𝑑ℎ , 𝜇𝑇,𝐺𝑎𝑝𝑑ℎ , 𝜇𝑈𝑇,𝐼𝐿23𝑎 , 𝜇𝑈𝑇,𝐼𝐿23𝑎} and 𝜎 = {𝜎𝑈𝑇,𝐺𝑎𝑝𝑑ℎ , 𝜎𝑇,𝐺𝑎𝑝𝑑ℎ , 𝜎𝑈𝑇,𝐼𝐿23𝑎 , 𝜎𝑈𝑇,𝐼𝐿23𝑎}. 
 

  Type I Error Rate 

  T-test on 

∆∆𝐶𝑇  

Wilcox test on 

∆∆𝐶𝑇  

T-test on 

2−∆∆𝐶𝑇  

Wilcox test on 

2−∆∆𝐶𝑇  


=

{
2
0
, 
2
0
, 
3
0
, 
3
0
}
, 


=

{
2
, 
2
, 
2
, 
2
}
 

3 Untreated 

averaged,  

3 Treated 

0.086 0 0.026 0 

9 Untreated 

averaged,  

9 Treated 

0.12 0.098 0.040 0.098 


=

{
2
0
, 
2
0
, 
3
0
, 
3
0
}
, 


=

{
0
.2

,0
.2

,0
.2

,0
.2

}
 

3 Untreated 

averaged,  

3 Treated 

0.085 0 0.037 0 

9 Untreated 

averaged,  

9 Treated 

0.077 0.065 0.043 0.065 

 

As shown in Table 4.7, under this normalization scenario, decreasing the standard deviation of 

𝐶𝑇 values by 10-fold did help deflate the Type I error rate when 9 untreated samples were 

averaged, and we saw little change when 3 untreated samples were averaged. We see that in this 

case, an increased sample size only marginally increases Type I error regardless of variability 

parameters. Again, in this case, performing a t-test on the 2−∆∆𝐶𝑇 relative quantity yields an error 

rate below the 0.05 level. Although, even the error rates from the non-parametric tests are 

inflated. We were surprised in this scenario not to see more parallels to the standard fold change 
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setting. With the common averaged untreated sample used in the 2−∆∆𝐶𝑇 in these cases, the setup 

is similar to a fold change ratio with common averaged control. However, the inflation we see in 

the RT-PCR case is not as great.  

 

4.5   RECOMMENDATIONS 

When using RT-PCR data, the recommendations provided for researchers rely heavily on 

the method their lab uses to set up plates for normalization. We summarize the methods studied 

and our corresponding statistical recommendations in Table 4.8 below. 

 

Table 4.8: Summary table of relative quantification cases and corresponding statistical recommendations 

based on simulation study.  

Case 
Plate 

Setup 
Type I Error Patterns 

Statistical 

Recommendation 

A 
1 Untreated, 

Multiple Treated 
Single 

Analysis on ∆∆𝐶𝑇  values: 

• Type I error rate is above the 

above 0.05 and inflates as 

number of treated samples 

grows regardless of standard 

deviation for both parametric 

and non-parametric tests  

Analysis on 2−∆∆𝐶𝑇  values: 

• Type I error rate inflates as 

number of treated samples 

grows regardless of standard 

deviation for both parametric 

and non-parametric tests, 

although the error rate is below 

0.05 when there are fewer than 4 

infected samples 

Run a Student’s test on 

2−∆∆𝐶𝑇  values as long 

as there are exactly 3 

treated samples. 

B 

Multiple Untreated, 

Multiple Treated 

(Pairwise) 

Multiple 

Analysis on ∆∆𝐶𝑇  values: 

• Type I error rate is slightly 

conservative and increases 

toward 0.05 with higher 

numbers of samples regardless 

of standard deviation for both 

parametric and non-parametric 

tests  

Analysis on 2−∆∆𝐶𝑇  values: 

• Type I error rate is highly 

conservative regardless of 

standard deviation for 

parametric tests and slightly less 

conservative for non-parametric 

tests 

Run a statistical test 

(either parametric or non-

parametric) on ∆∆𝐶𝑇  

values, and the more 

replicates of each sample, 

the better. This 

alternative method makes 

no assumptions about the 

efficiencies of the target 

and housekeeping genes. 
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C 

1 Untreated (via 

averaging), 

Multiple Treated 

Multiple 

Analysis on ∆∆𝐶𝑇  values: 

• Type I error rate is inflated 

above 0.05 with higher numbers 

of samples regardless of 

standard deviation for both 

parametric and non-parametric 

tests  

Analysis on 2−∆∆𝐶𝑇  values: 

• Type I error rate is slightly 

conservative for parametric tests 

and slightly inflated for non-

parametric tests regardless of 

standard deviation 

Run a statistical test 

(either parametric or non-

parametric) on 2−∆∆𝐶𝑇  

values, and the more 

replicates of each sample, 

the better. 

 

In Case A where the relative quantities were calculated using multiple treated relative to a 

single untreated sample, we observed that the t-test maintains an uninflated Type I error rate in 

the case where there are exactly 3 replicates of treated samples. In Case B where triplicate 

untreated controls exist, we make a recommendation to change analytic methods and perform 

statistical testing on the ∆∆𝐶𝑇 quantity instead. The value of this quantity may not be as 

interpretable as the historically used 𝑅𝑄, but it results in a more powerful test. Performing 

statistical tests on the 2−∆∆𝐶𝑇 𝑅𝑄 yields highly conservative Type I error rate which usually 

decreases the power of the test. The patterns seen in Case C where multiple treated relative to 

single averaged untreated were less clear cut. Although, based on conversations with labs using 

RT-PCR data, it does not appear that this normalization method is used at the present time.   
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CHAPTER 5 

 

 

DISCUSSION AND CONCLUSION 

Throughout this work, we detailed various normalization scenarios seen in fold change 

and RT-PCR relative quantity data and ultimately made recommendations to researchers based 

on the patterns observed. In order to thoroughly examine each of these data types, we created 

functions to simulate fold change and RT-PCR relative quantity derivations. Statistical testing, 

Type I error rate evaluation, and graphical outputs were also observed. Based on the results from 

simulations run including the changes of many parameters, we were able to identify patterns in 

error rate inflation. Specifically, we highlighted situations in which the parametric t-test can be 

appropriately used, and also shed light on alternative analytic methods that answer the same 

research question while preserving statistical validity. We made progress in ruling out single 

parameter relationships as sole issues leading to error rate inflation in both fold change and RT-

PCR data, although weren’t able to provide a concise, full picture of which combinations of 

factors are to blame. In creating recommendations for researchers, we are sensitive to the fact 

that experiment parameters are far easier to control in a computer simulation setting than in a 

science lab. We also recognize the preference of researchers to utilize relative quantities for 

comparison purposes and the need to keep the sample size of experiments low. Hopefully, the 

alternative methods we suggest are seen as feasible. 

This study opens the door to future work in the field of normalization analysis for basic 

science research. It would be useful in the future to examine other measures of statistical validity 

outside of Type I error alone. Additionally, more emphasis could be placed on the standard error 

calculations and confidence intervals surrounding various relative quantity measures in future 

work. We began the process of examining patterns seen under a variety of simulation settings in 

the hopes of identifying the causes of t-test Type I error inflation when using normalized 

quantities, but there are more scenarios that could be tried and more input from basic science 

researchers that could be gained. 
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APPENDIX 

A.1   FOLD CHANGE FUNCTION R CODE 

#Include relevant libraries 
library(kableExtra) 
library(ggplot2) 
library(ggpubr) 
 
#Define Simulation Inputs 
#sims: Number of simulation runs 
#dist={‘Normal’, ‘Lognormal’, ‘Exponential’}: representing data-generating distribution 
#n={nc1,nc2,nt1,nt2}: representing number of control and treatment groups, respectively 
#m={mc1,mc2,mt1,mt2}: representing means of control and treatment groups, respectively 
#s={sc1,sc2,st1,st2}: representing standard deviations of control and treatment groups, 

respectively 
#r={rc1,rc2,rt1,rt2}: representing exponential parameters for control and treatment groups, 

respectively 
 
#Run simulation 
mousesim <- function(sims, dist, n, m, s, r){ 
  ## Wild-type is group 1 
  ## Knockout is group 2 
   
  #Calculate Variance of Ratio based on parameters for both  
  #wild-type and knockout groups 
  m <- ifelse(rep(dist=='Exponential', length(n)), 1/r, m) 
  s <- ifelse(rep(dist=='Exponential', length(n)), sqrt(1/r^2), s) 
  mu.WT1.TRT <- m[3] 
  mu.WT1.Cont <- m[1] 
  var.WT1.TRT <- s[3]^2/n[3] 
  var.WT1.Cont <- s[1]^2/n[1] 
  var.ratio.WT1 <- (mu.WT1.TRT/mu.WT1.Cont)^2*(var.WT1.TRT/mu.WT1.TRT^2 +  
                                                 var.WT1.Cont/mu.WT1.Cont^2) 
   
  mu.KO2.TRT <- m[4] 
  mu.KO2.Cont <- m[2] 
  var.KO2.TRT <- s[4]^2/n[4] 
  var.KO2.Cont <- s[2]^2/n[2] 
  var.ratio.KO2 <- (mu.KO2.TRT/mu.KO2.Cont)^2*(var.KO2.TRT/mu.KO2.TRT^2 +  
                                                 var.KO2.Cont/mu.KO2.Cont^2) 
   
  #Initialize output variables 
  simdat <- matrix(NA, nrow=sims, ncol=25) 
  colnames(simdat) <- c('seed', 'denom1', 'denom2', 'denomc', 'numer1', 'numer2',  
                        'fc1', 'fc2', 'fcc1', 'fcc2', 'log2fc1', 'log2fc2',  
                        'log2fcdiv1', 'log2fcdiv2', 'sdfc1', 'sdfc2', 'p.ttest',  
                        'p.ztest', 'p.ttest.c', 'p.ttest.log2', 'p.ttest.log2div',  
                        'p.wilcoxtest', 'p.lmUnweighted', 'p.lmWeightedSigma',  
                        'p.lmWeightedSd') 
  simdat[,'seed'] <- sample(1:100000, sims) 
   
  #Run simulation 
  for(i in seq_len(sims)){ 
    set.seed(simdat[i,'seed']) 
   
    #Create dataframe with raw and derived quantities 
    y <- if (dist=='Normal') {rnorm(sum(n), mean=rep(m,n), sd=rep(s,n)) 
    } else if (dist=='Lognormal') {rlnorm(sum(n), meanlog=rep(m,n), sdlog=rep(s,n)) 
    } else {rexp(sum(n), rate=rep(r,n)) 
    } 
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    gen <- rep(c('WT1','KO2','WT1','KO2'), n) 
    trt <- rep(c('Cont','TRT'), c(n[1]+n[2],n[3]+n[4])) 
    gentrt <- paste(gen,trt, sep='.') 
    dat <- data.frame(gen=factor(gen, levels=unique(gen)), 
                      trt=factor(trt, levels=unique(trt)), 
                      gentrt=factor(gentrt, levels=unique(gentrt)), 
                      n=rep(n,n), 
                      distribution=rep(dist,sum(n)), 
                      mu=ifelse(rep(dist=='Normal'|dist=='Lognormal',sum(n)),  
                                rep(m,n), rep(1/r,n)), 
                      sigma=ifelse(rep(dist=='Normal'|dist=='Lognormal', sum(n)),  
                                   rep(s,n), rep(1/r^2,n)), 
                      lambda=ifelse(rep(dist=='Exponential', sum(n)), rep(r,n),  
                                    NA), y=y) 
    dat$xbar <- rep(aggregate(dat$y, list(dat$gentrt), mean)$x, n) 
    dat$sd <- rep(aggregate(dat$y, list(dat$gentrt), sd)$x, n) 
    denominators <- c(dat$xbar[dat$gentrt=='WT1.Cont'][1],  
                      dat$xbar[dat$gentrt=='KO2.Cont'][1]) 
    dat$denom <- rep(rep(denominators,2), n) 
    dat$fc <- dat$y/dat$denom 
    dat$fcnoavg <- dat$y 
    dat$log2fc <- log2(dat$fc) 
    dat$log2fcdiv <- log(dat$y)/log(dat$denom) 
     
    dat$denomc <- mean(dat$y[dat$trt=='Cont']) 
    dat$fcc <- dat$y/dat$denomc 
     
    #Simulation Outputs 
    simdat[i,'denom1'] <- denominators[1] 
    simdat[i,'denom2'] <- denominators[2] 
    simdat[i,'denomc'] <- mean(dat$y[dat$trt=='Cont']) 
     
    simdat[i,'numer1'] <- dat$xbar[dat$gentrt=='WT1.TRT'][1] 
    simdat[i,'numer2'] <- dat$xbar[dat$gentrt=='KO2.TRT'][1] 
     
    simdat[i,'fc1'] <- mean(dat$fc[dat$gentrt=='WT1.TRT']) 
    simdat[i,'fc2'] <- mean(dat$fc[dat$gentrt=='KO2.TRT']) 
     
    simdat[i,'log2fc1'] <- mean(dat$log2fc[dat$gentrt=='WT1.TRT']) 
    simdat[i,'log2fc2'] <- mean(dat$log2fc[dat$gentrt=='KO2.TRT']) 
     
    simdat[i,'log2fcdiv1'] <- mean(dat$log2fcdiv[dat$gentrt=='WT1.TRT']) 
    simdat[i,'log2fcdiv2'] <- mean(dat$log2fcdiv[dat$gentrt=='KO2.TRT']) 
     
    simdat[i,'sdfc1'] <- sd(dat$fc[dat$gentrt=='WT1.TRT']) 
    simdat[i,'sdfc2'] <- sd(dat$fc[dat$gentrt=='KO2.TRT']) 
     
    simdat[i,'fcc1'] <- mean(dat$fcc[dat$gentrt=='WT1.TRT']) 
    simdat[i,'fcc2'] <- mean(dat$fcc[dat$gentrt=='KO2.TRT']) 
     
    #Perform statistical tests between wild-type and knockout groups  
    #and capture p-values 
    t.testFC <- t.test(dat$fc[dat$gentrt=='WT1.TRT'],  
                       dat$fc[dat$gentrt=='KO2.TRT']) 
    simdat[i,'p.ttest'] <- t.testFC$p.value 
     
    z.testFC <- (mean(dat$fc[dat$gentrt=='WT1.TRT']) -  
                   mean(dat$fc[dat$gentrt=='KO2.TRT']))/sqrt(var.ratio.WT1/n[3] +  
                                                               var.ratio.KO2/n[4]) 
    simdat[i,'p.ztest'] <- 2*pnorm(-abs(z.testFC)) 
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    t.testFCc <- t.test(dat$fcc[dat$gentrt=='WT1.TRT'],  
                        dat$fcc[dat$gentrt=='KO2.TRT']) 
    simdat[i,'p.ttest.c'] <- t.testFCc$p.value 
     
    t.testlog2FC <- t.test(dat$log2fc[dat$gentrt=='WT1.TRT'],  
                           dat$log2fc[dat$gentrt=='KO2.TRT']) 
    simdat[i,'p.ttest.log2'] <- t.testlog2FC$p.value 
     
    t.testlog2FCdiv <- t.test(dat$log2fcdiv[dat$gentrt=='WT1.TRT'],  
                              dat$log2fcdiv[dat$gentrt=='KO2.TRT']) 
    simdat[i,'p.ttest.log2div'] <- t.testlog2FCdiv$p.value 
     
    t.testFC.wilcoxtest <- wilcox.test(dat$fc[dat$gentrt=='WT1.TRT'],  
                                       dat$fc[dat$gentrt=='KO2.TRT']) 
    simdat[i,'p.wilcoxtest'] <- t.testFC.wilcoxtest$p.value 
     
    lmUnweighted <- lm(y ~ gen*trt, data=dat) 
    simdat[i,'p.lmUnweighted'] <- summary(lmUnweighted)$coefficients[4,4] 
     
    lmWeightedSigma <- lm(y ~ gen*trt, weights=1/sigma^2, data=dat) 
    simdat[i,'p.lmWeightedSigma'] <- summary(lmWeightedSigma)$coefficients[4,4] 
     
    lmWeightedSd <- lm(y ~ gen*trt, weights=1/sd^2, data=dat) 
    simdat[i,'p.lmWeightedSd'] <- summary(lmWeightedSd)$coefficients[4,4] 
  } 
  simdat <- data.frame(simdat) 
   
  #Calculate Type I Errors 
  typei <- data.frame(sum(simdat$p.ttest<0.05)/sims, 
                      sum(simdat$p.ztest<0.05)/sims, 
                      sum(simdat$p.ttest.c<0.05)/sims, 
                      sum(simdat$p.ttest.log2<0.05)/sims, 
                      #sum(simdat$p.ttest.log2div<0.05)/sims, 
                      sum(simdat$p.wilcoxtest<0.05)/sims, 
                      sum(simdat$p.lmUnweighted<0.05)/sims, 
                      sum(simdat$p.lmWeightedSigma<0.05)/sims, 
                      sum(simdat$p.lmWeightedSd<0.05)/sims) 
  names(typei) <- c('typei.ttest',  
                    'typei.ztest',  
                    'typei.ttest.c',  
                    'typei.ttest.log2',  
                    #'typei.ttest.log2div',  
                    'typei.wilcoxtest',  
                    'typei.lmUnweighted',  
                    'typei.lmWeightedSigma',  
                    'typei.lmWeightedSd') 
   
  #Observed Variance of Ratio 
  var.obs.WT1 <- sd(simdat$fc1)^2 
  var.obs.KO2 <- sd(simdat$fc2)^2 
  varFC <- data.frame(var.ratio.WT1, var.obs.WT1, var.ratio.KO2, var.obs.KO2) 
   
  #Produce descriptive plots 
  plot.fc1 <- ggplot(simdat, aes(x=fc1)) + geom_density() +  
    labs(x="Average Wild Type Fold Change", y="Density") 
  plot.fc2 <- ggplot(simdat, aes(x=fc2)) + geom_density() +  
    labs(x="Average Knock Out Fold Change", y="Density") 
  plot.fc <- ggplot(simdat, aes(x=fc1, y=fc2, color=p.ttest<0.05)) +  
    geom_point(shape=1) + 
    xlab("Avg WT FC") + ylab("Avg KO FC") + theme(legend.position="none") 
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  plot.denom <- ggplot(simdat, aes(x=denom1, y=denom2, col=p.ttest<0.05)) +  
    geom_point(shape=1) + 
    xlab("Avg WT FC Denom") + ylab("Avg KO FC Denom") 
  plot.numer <- ggplot(simdat, aes(x=numer1, y=numer2, col=p.ttest<0.05)) +  
    geom_point(shape=1) + geom_abline() + 
    xlab("Avg WT FC Num") + ylab("Avg KO FC Num") 
  plots <- ggarrange(ggarrange(plot.fc1, plot.fc2, ncol = 2), 
                     plot.fc,  
                     ggarrange(plot.denom, plot.numer, ncol = 2,  
                               common.legend = TRUE, legend="bottom"), nrow = 3)  
   
  #Output simulation-specific outputs 
  list(simdat, typei, plots, varFC) 
} 
 
#Example of implementation (Normal distribution) 
sim.norm.1a <- mousesim(sims=10000, dist='Normal', n=c(3,3,9,9), m=c(200,200,400,400), 
s=c(10,10,20,20)) 
simdat.norm.1a <- sim.norm.1a[[1]] 
sim.norm.1a[[2]] %>% kable() %>% kable_styling() 
sim.norm.1a[[4]] %>% kable() %>% kable_styling() 
sim.norm.1a[[3]] 
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A.2   RT-PCR FUNCTION R CODE 

#Include relevant libraries 
library(knitr) 
library(kableExtra) 
library(ggplot2) 
library(ggpubr) 
 
#Define Simulation Inputs 
#sims: Number of simulation runs 
#case: 2 if Single Treated relative to Multiple Untreated 

3 if Multiple Treated relative to Multiple Pairwise Untreated 
4 if Multiple Treated relative to Single Averaged Untreated 

#n={n.ui, n.i}: representing number of untreated and treated samples, respectively 
#m={m.gapdh.ui,m.gapdh.i,m.il23.ui,m.il23.i}: representing means of housekeeping Gapdh genes 

and target IL23a genes, respectively 
#s={s.gapdh.ui,s.gapdh.i,s.il23.ui,s.il23.i}: representing standard deviations of housekeeping 

Gapdh genes and target IL23a genes, respectively 
#Simulation of error rates from Delta-Delta normalization of RT-PCR data 
rtpcrsim <- function(sims, case, n, m, s){ 
  #Initialize output variables 
  var.ui <- NULL 
  var.deldel.wt <- NULL 
  var.deldel.ko <- NULL 
  var.rq.wt <- NULL 
  var.rq.ko <- NULL 
  pval.deldel <- NULL 
  pval.w.deldel <- NULL 
  pval.rq <- NULL 
  pval.w.rq <- NULL 
   
  #Assign number of treated and untreated samples based on function input 
  nsamp.ui=n[1] 
  nsamp.i=n[2] 
   
  #Run simulation 
  for(i in 1:sims){ 
    #Create dataframe of raw data based on function inputs 
    dat <- data.frame("sample" = rep(1:nsamp.i, times=2), 
                      "trt" = rep(c('WT', 'KO'), each=nsamp.i), 
                      "ui1.gapdh" = ifelse(rep(case==2, each=nsamp.i*2),  
                                           rep(rnorm(nsamp.ui*2, m[1], s[1]),  
                                               each=nsamp.i), 
                                           rep(rnorm(nsamp.i*2, m[1], s[1]))), 
                      "ui2.gapdh" = ifelse(rep(case==2, each=nsamp.i*2),  
                                           rep(rnorm(nsamp.ui*2, m[1], s[1]),  
                                               each=nsamp.i), 
                                           rep(rnorm(nsamp.i*2, m[1], s[1]))), 
                      "i1.gapdh" = rnorm(nsamp.i*2, m[2], s[2]), 
                      "i2.gapdh" = rnorm(nsamp.i*2, m[2], s[2]), 
                      "ui1.il23" = ifelse(rep(case==2, each=nsamp.i*2),  
                                          rep(rnorm(nsamp.ui*2, m[3], s[3]),  
                                              each=nsamp.i), 
                                          rep(rnorm(nsamp.ui*2, m[3], s[3]))), 
                      "ui2.il23" = ifelse(rep(case==2, each=nsamp.i*2),  
                                          rep(rnorm(nsamp.ui*2, m[3], s[3]),  
                                              each=nsamp.i), 
                                          rep(rnorm(nsamp.ui*2, m[3], s[3]))), 
                      "i1.il23" = rnorm(nsamp.i*2, m[4], s[4]), 
                      "i2.il23" = rnorm(nsamp.i*2, m[4], s[4])) 
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    #Perform derivations to yield relative quantities 
    dat$ui.ct.mean.gapdh.raw <- rowMeans(dat[,c('ui1.gapdh', 'ui2.gapdh')]) 
    dat$ui.ct.mean.gapdh <- ifelse(rep(case==4, each=nsamp.i*2),  
                                   rep(c(mean(dat[which(dat$trt=='WT'),  
                                                  'ui.ct.mean.gapdh.raw']), 
                                         mean(dat[which(dat$trt=='KO'),  
                                                  'ui.ct.mean.gapdh.raw'])),  
                                       each=nsamp.i), dat$ui.ct.mean.gapdh.raw) 
    dat$i.ct.mean.gapdh <- rowMeans(dat[,c('i1.gapdh', 'i2.gapdh')]) 
    dat$ui.ct.mean.il23.raw <- rowMeans(dat[,c('ui1.il23', 'ui2.il23')]) 
    dat$ui.ct.mean.il23 <- ifelse(rep(case==4, each=nsamp.i*2),  
                                  rep(c(mean(dat[which(dat$trt=='WT'),  
                                                 'ui.ct.mean.il23.raw']), 
                                        mean(dat[which(dat$trt=='KO'),  
                                                 'ui.ct.mean.il23.raw'])),  
                                      each=nsamp.i), rep(dat$ui.ct.mean.il23.raw)) 
    dat$i.ct.mean.il23 <- rowMeans(dat[,c('i1.il23', 'i2.il23')]) 
    dat <- transform(dat, ct.sd.gapdh=apply(dat[,c('i1.gapdh', 'i2.gapdh')], 1, sd)) 
    dat <- transform(dat, ct.sd.il23=apply(dat[,c('i1.il23', 'i2.il23')], 1, sd)) 
    dat$delta.ct.mean <- dat$i.ct.mean.il23 - dat$i.ct.mean.gapdh 
    dat$delta.ui <- dat$ui.ct.mean.il23 - dat$ui.ct.mean.gapdh 
    dat$delta.ct.se <- sqrt(dat$ct.sd.il23^2/2 + dat$ct.sd.gapdh^2/2) 
    dat$delta.delta.ct <- dat$delta.ct.mean - dat$delta.ui 
    dat$rq <- 2^-dat$delta.delta.ct 
     
    #Capture variance of Untreated Deltas that are subtracted from each measure 
    var.ui[i] <- var(unique(c(dat[which(dat$trt=='WT'),'delta.ui'],  
                              dat[which(dat$trt=='KO'),'delta.ui']))) 
     
    var.deldel.wt[i] <- var(unique(dat[which(dat$trt=='WT'),'delta.delta.ct'])) 
    var.deldel.ko[i] <- var(unique(dat[which(dat$trt=='KO'),'delta.delta.ct'])) 
    var.rq.wt[i] <- var(unique(dat[which(dat$trt=='WT'),'rq'])) 
    var.rq.ko[i] <- var(unique(dat[which(dat$trt=='KO'),'rq'])) 
     
    #Test w/ Delta Delta 
    ttest.deldel <- t.test(dat[which(dat$trt=='WT'),'delta.delta.ct'],  
                           dat[which(dat$trt=='KO'),'delta.delta.ct']) 
    wiltest.deldel <- wilcox.test(dat[which(dat$trt=='WT'),'delta.delta.ct'],  
                                  dat[which(dat$trt=='KO'),'delta.delta.ct']) 
    pval.deldel[i] <- ttest.deldel$p.value 
    pval.w.deldel[i] <- wiltest.deldel$p.value 
     
    #Test w/ RQ 
    ttest.rq <- t.test(dat[which(dat$trt=='WT'),'rq'],  
                       dat[which(dat$trt=='KO'),'rq']) 
    wiltest.rq <- wilcox.test(dat[which(dat$trt=='WT'),'rq'],  
                              dat[which(dat$trt=='KO'),'rq']) 
    pval.rq[i] <- ttest.rq$p.value 
    pval.w.rq[i] <- wiltest.rq$p.value 
  } 
   
  #Output table of error rates for statistical tests on various relative quantities 
  tab <- kable(dat) %>% 
    kable_styling() %>% 
    scroll_box(width = "100%") 
  tie <- data.frame("Delta-Delta t-test" = sum(pval.deldel<0.05)/sims, 
                    "Delta-Delta Non-parametric" = sum(pval.w.deldel<0.05)/sims, 
                    "RQ t-test" = sum(pval.rq<0.05)/sims, 
                    "RQ Non-parametric" = sum(pval.w.rq<0.05)/sims) 
  tab.tie <- kable(tie) %>%  
    kable_styling() 
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  list(tab.tie, tab, var.ui, pval.deldel, pval.w.deldel, pval.rq, pval.w.rq,  
       var.deldel.wt, var.deldel.ko, var.rq.wt, var.rq.ko) 
} 
 
#Example of implementation (Case 2, 3 Treated relative to 1 Untreated: 
c2.n2 <- rtpcrsim(sims=10000, case=2, n=c(1,2), m=c(20,20,30,30), s=c(2,2,2,2)) 
c2.n2[[1]] 
c2.n2[[2]] 
par(mfrow=c(1,2)) 
plot(c2.n2[[3]], c2.n2[[4]], xlab="Var[delta.ui]", ylab="p-value from Delta-Delta t-test") 
plot(c2.n2[[3]], c2.n2[[6]], xlab="Var[delta.ui]", ylab="p-value from RQ t-test") 

 

 


