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Chapter 1 

Graphene-based nanomaterials and the brain 

 

Introduction 

The promises of nanomedicine are extensive. Graphene, the first true two-dimensional 

material to exist in isolation, is the type of new nanomaterial that results in interest for novel 

biomedical applications. From Michael Chrichton’s tragic protagonist in The Terminal Man to the 

recent growth in start-up companies seeking to transfer consciousness, the fictive present and 

future call to mind visions of devices that enable neural interfacing and control. Although these 

ideas may create questions as to ethics for neuroscience in the future, the current state-of-the-art 

for implanted devices is far more limited in scope. Progress in brain-computer interfaces holds 

great promise for patients following stroke (Ramos-Murguialday, Broetz et al. 2013), to control 

prosthetic limbs (Hochberg, Serruya et al. 2006, Donoghue, Nurmikko et al. 2007), with the motor 

degeneration characteristic of Parkinson’s disease (Little, Pogosyan et al. 2013), and for a number 

of other disorders and diseases (Chaudhary, Birbaumer et al. 2016). Graphene may be poised for 

incorporation into such devices. As the presence of graphene becomes more widespread and 

commonplace across the biomedical sciences, the relatively larger body of work detailing the 

biological effects of carbon nanotubes may serve as a template guiding the utility of graphene for 

biological applications (Kostarelos, Bianco et al. 2009).  

Graphene-based materials for interfacing with the peripheral nervous system have been 

reviewed elsewhere (Domínguez-Bajo, González-Mayorga et al. 2017). We instead focus on new 

directions for application to the central nervous system. This review is limited to preclinical 

applications, although graphene and graphene-based devices may someday advance to clinical 
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implementation.  We begin with an overview of graphene manufacturing advances, applications 

to hybrid materials systems as well as drug delivery strategies. This is followed by an overview of 

work performed with non-murine models.  Finally, the interaction of graphene with murine neural 

systems, both in vivo and in-vitro is examined.  Despite a sizable body of work, to date there remain 

many unresolved questions as to cytotoxicity and the mechanisms underlying the graphene-cellular 

interaction that must be addressed moving forward.  

 

Manufacturing advances 

2D graphite was long believed to be relegated to the realm of theoreticians and condensed 

matter physicists, as the thermodynamic stability of such crystals was believed to be prohibitive 

for their existence (Geim and Novoselov 2007). 2D graphite – or graphene – was first isolated 

through mechanical exfoliation (Novoselov, Geim et al. 2004, Novoselov, Jiang et al. 2005). These 

small sheets provided the ability to study transport in this new class of material (Novoselov, Geim 

et al. 2004), but the small size of the sheets (< 10 µm) necessitated the development of alternative 

approaches that would produce graphene in sizes large enough for practical transistor-based 

applications. Of note, for high quality single and few layer graphene sheets, mechanical exfoliation 

remains the process of choice for transport measurements to date.  

The development of chemical-vapor deposition as a manufacturing strategy (Li, Cai et al. 

2009, Reina, Jia et al. 2009) allows the production of graphene with higher areal coverage than 

was previously possible with exfoliation-based methods. To date, the majority of devices that 

demonstrate compatibility for in vivo imaging use single or multi-layer graphene produced via 

chemical vapor deposition (Kuzum, Takano et al. 2014, Park, Schendel et al. 2014, Du, Wu et al. 

2015, Park, Brodnick et al. 2016, Park, Ness et al. 2017). Indeed, advances in CVD technology 
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have allowed the production of rectangular graphene sheets with a cross-length as long as 30 inches 

(Bae, Kim et al. 2010). Although these large size sheets should be of sufficient size for any neural 

application, the solution transfer process often results in alteration of the properties of the graphene 

sheet (Suk, Kitt et al. 2011, Suk, Lee et al. 2013). Thus, continued research into scalable transfer 

of CVD graphene or alternative processes (Pang, Mendes et al. 2017) should help generate more 

reliably responsive devices. Additionally, ensuring that devices are processed in such a way as to 

remain relatively sterile is a necessary step to consider for long-term interfacing. 

As an alternative to the large-scale growth of graphene, it is now possible to produce large 

quantities of single-layer and multi-layer graphene through bulk exfoliation (Hernandez, Nicolosi 

et al. 2008, Li, Müller et al. 2008, Lotya, Hernandez et al. 2009, Shih, Vijayaraghavan et al. 2011, 

Paton, Varrla et al. 2014). Graphite in a colloidal suspension can be sonicated to yield thin flakes 

(G), ranging from single to a few layers. A variety of solvents are compatible with this approach 

– and more recently it has been demonstrated that G and graphene oxide (GO) can be exfoliated 

directly into biological media (Castagnola, Zhao et al. 2018). GO flakes produced by this method 

are more largely monolayer than G flakes, however oxidization comes with costs, for example, 

reduced carrier mobility. Flakes of graphene produced by exfoliation, while not matching the 

transport properties of micromechanical isolation, can be considered graphene, as no chemical 

functionalization is required. Thus, G flakes may prove advantageous for applications where the 

electronic properties of graphene are not of primary importance but where large quantities of G 

are desirable.  

 

Graphene oxide 
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The ease with which GO can be chemically modified remains of interest for drug delivery 

and bio-scaffolding applications. A number of different processes have been developed to produce 

bulk quantities of GO flakes (Brodie 1860, Hummers and Offeman 1958), although GO is 

traditionally produced through the reduction of bulk graphite in the presence of both acids and 

oxidants (Park and Ruoff 2009).  Reduction of GO yields graphene-like sheets (rGO) which 

improve electrical conductivity, (Stankovich, Dikin et al. 2007), but the electronic properties of 

rGO still lag far behind those of pure graphene, even with the numerous efforts that have been 

made via modifying annealing processes to improve the figures of merit. The inherently lower 

electrical conductivity and inability to greatly increase it has resulted in less interest to date in the 

use of GO as an electrode material. Indeed, even chemical reduction of GO to rGO yields room 

temperature conductivity values 3 orders of magnitude below that measured for pristine G 

(Gómez-Navarro, Weitz et al. 2007). Mobility values for GO produced via the Hummers method 

are ~850 cm2/(V s), but other methods report a device mobility of around ~1-10 cm2/(V s) (Eda, 

Fanchini et al. 2008, Wang, Chia et al. 2008, Su, Xu et al. 2009). Importantly, future device design 

may take into account contact resistance in production, as use of all-carbon transistors improves 

both electron and hole mobility relative to using gold electrodes (Wang, Ang et al. 2010), which 

may prove a more practical approach to improving device performance. Further attempts to reduce 

GO to graphene-like sheets via chemical (Li, Wang et al. 2009, Moon, Lee et al. 2010) or thermal 

(Becerril, Mao et al. 2008, Jung, Field et al. 2009, Barroso-Bujans, Alegría et al. 2010) processing 

have improved the fraction of graphitic areas in the structure, but also introduced nanoscale holes 

and defects that deleteriously affect final performance. rGO’s improved device characteristics also 

come at the cost of a reduction in hydrophilicity (Rourke, Pandey et al. 2011), and surface 

properties remain an important consideration for bio-interfacing applications. It was recently 
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demonstrated that solution-exfoliated GO flakes could be processed to recover properties more 

resembling those of CVD-graphene. Reduction of the concentration of in-plane oxygen via 1-2 s 

microwave pulses produced 2D and G peaks closer to those of graphene and greatly increased 

electron and hole carrier mobility to ~1000 cm2/(V s) in a FET (Voiry, Yang et al. 2016). Thus, 

the ability to modify in-plane oxygen concentration to improve electronic properties may open 

new doors to the use of GO and GO-based materials for sensor applications.  

Similar to applications for the photoluminescence of CNTs (Welsher, Liu et al. 2008), the 

photoluminescence of GO may be useful in for optical readout and/or in combination with drug 

delivery. The photoluminescence of GO, which arises from bond disorder throughout the structure, 

which induces energy gaps (Cao, Meziani et al. 2013), is to some extent a tunable property, 

depending on the oxidization state (Luo, Vora et al. 2009). This stands in contrast to the lack of 

photoluminescent emission observed for defect-free G. GO luminescence is broadband in as-

prepared samples, with a wide peak across the visible spectrum (Luo, Vora et al. 2009, Qian, Wang 

et al. 2012). PEGylated GO sheets exhibit intrinsic near infrared red (NIR) photoluminescence 

(Sun, Liu et al. 2008), a property of great interest for in vivo imaging applications due to the 

enhanced light penetration in this wavelength range. It has been more recently demonstrated that 

GO also exhibits photoluminescence under both 2-photon and 3-photon excitation (Qian, Wang et 

al. 2012), in addition to the broad photoluminescence in the visible range. By exploiting the ability 

of GO to undergo a 2-photon process, Qian et al. imaged PEGylated-GO nanoparticles in a skull-

removed whole brain to a depth of 300 µm. Growth in the commercial availability of three-photon 

sources may lead to studies at even greater depths within the intact rodent brain. As new advances 

in genetic engineering and microscopy enable deeper and faster cellular resolution imaging in head 

fixed or freely moving specimens, it is likely GO/G-based imaging will also move toward 
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applications compatible with this type of experiment. Although the broadband nature of the 

emission from GO may be somewhat of a limiting factor for multiplexing multiphoton imaging 

processes, advances in hyperspectral detection and fast fluorescence lifetime detection may help 

to make GO of greater utility for in vivo brain imaging. 

 

Graphene/polymer composite materials & applications 

Polymer electronics remain of great interest to ultimately offer an alternative to traditional 

materials to minimize mechanical mismatch between cells/tissue and the recording probe (for a 

more in-depth discussion see (Rivnay, Wang et al. 2017)). Elastic modulus mismatch between 

brain tissue and recording device leads to increased tissue damage both upon insertion and during 

chronic interface (Polikov, Tresco et al. 2005), as the elastic moduli of brain tissue (~150 kPa) and 

an implanted electrode (~150 GPa for silicon) differ by six orders of magnitude.  Thus, much 

current research has focused on the ability to better match the modulus of electrodes to that of 

brain tissue (for a more in-depth review on interfacing tissue with electrodes see Fattahi et al. 

(Fattahi, Yang et al. 2014)). Graphene electrodes have been of interest for such designs, as it can 

be incorporated into flexible electronics (Fiori, Bonaccorso et al. 2014); and for applications in the 

brain, where techniques like optogenetics and calcium imaging require optical access to brain 

regions of interest, the large degree of optical transparency of single or few-layer G may be 

uniquely advantageous. 

 

PEDOT 

Poly(3,4-ethylene dioxythiophene)(PEDOT) is an electroconductive polymer produced 

from 3,4-ethylene dioxythiophene (EDOT) monomers. Polymerization results in a positively-
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charged backbone, whereby negatively charged materials can then be incorporated to balance 

charge. Neurons embedded in PEDOT matrices remain viable for around 1 week (Richardson-

Burns, Hendricks et al. 2007) and neurons grown on PEDOT-based substrates show unaltered 

electrophysiological characteristics (membrane potential, membrane capacitance, input resistance) 

after 21 DIV (Cellot, Lagonegro et al. 2015). Although the surface charge of graphene limits its 

utility in PEDOT-based composites without further surface modification, the negative surface 

charge of graphene oxide may be better adaptable to such composites. PEDOT/GO composites 

have been used as electrode coatings to improve sensitivity and decrease the lower detection limit 

of dopamine in fast-scan cyclic voltammetry (Taylor, Robbins et al. 2017), a widely-used 

technique for measuring dopamine release in rodents in vivo (Robinson, Venton et al. 2003). 

Carbon nanotube-PEDOT composites have also been demonstrated to perform well in interfacing 

applications (Jan, Hendricks et al. 2009, Luo, Weaver et al. 2011). PEDOT-coated microelectrode 

arrays show good performance characteristics and lowered impedance relative to iridium oxide 

(IrOx), suggesting potential for long-term neural interfacing applications (Wilks, Richardson-

Burns et al. 2009). As both GO and CNT incorporation into PEDOT-based composites has 

improved overall performance, future work may seek to fabricate composite polymer electrodes.  

 

Chitosan 

Chitosan composites have been demonstrated both for GO (Yang, Tu et al. 2010, Bao, Pan 

et al. 2011) and for rGO (Fang, Long et al. 2010). It can be produced in relatively abundant 

quantities from the deacetylation of chitin. Like with many polymers, applications may be limited 

by the low mechanical strength of the material. GO as a nanofiller is one route to achieve enhanced 

mechanical properties. Chitosan-GO nanocomposites can be assembled in a manner of ways. pH-
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responsive functionality is possible with chitosan (Yi, Wu et al. 2005); increased pH leads to amine 

deprotonation, decharging of the polymer, and ultimately insolubility. Interestingly, preparations 

of such suspensions seem to be greatly affected by the preparation method: addition of GO to 

chitosan yields a uniform suspension while addition of chitosan to GO yields agglomerations 

(Fang, Long et al. 2010). This is due to the way that excess GO will create bridges between sheets 

via multiple attachment points on the polymer chains. Reducing GO allows chitosan attachment 

by zwitterionic interactions and hydrogen bonding between the remaining oxygen groups of the 

rGO and the amino and hydroxyl groups of chitosan. The reversibility of the molecular chain 

interactions with GO sheets between different pH values may provide an opportunity to modulate 

graphene-based composite materials within different cellular compartments. This could potentially 

allow for pH-based assembly strategies in acidic intracellular compartments (e.g. late endosomes, 

lysosomes), where chitosan would stabilize GO composites relative to higher pH extracellular 

spaces. 

 

Hydrogels 

The use of graphene for regenerative approaches has been reviewed previously (Ding, Liu 

et al. 2015), however the pace of new methodologies in neuroscience has opened new directions 

for scaffolding technologies, with a particular resurgence in hydrogel-based techniques for 

connectomics applications (Chung, Wallace et al. 2013, Chen, Tillberg et al. 2015). G/GO and 

other nanomaterials may be of interest for cleared or expanded tissue applications where added 

structural stability is desirable. Composite scaffolds for regenerative medicine remain and area of 

great interest. Hydrogels can be chemically tuned to impart different surface properties, for 

example to modify surface charge or conductivity, before functionalization to GO (Liu, Miller et 
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al. 2017). Biomolecules such as DNA can also be incorporated via stacking interactions (Xu, Wu 

et al. 2010), enabling payload delivery within the hydrogel matrix. This is one possible route to 

achieve more biologically realistic synthetic minimal brain circuits, which to date have largely 

been limited in structure to two-dimensional culture systems or proteins or liposomes (Adamala, 

Martin-Alarcon et al. 2016). Overall mechanical strength can be tailored by the degree to which 

G/GO are incorporated, with mechanical strength being inversely correlated to the amount of 

swelling in the composite. 

Local delivery of polymerized materials may someday be a route to a new form of tissue 

scaffolding in vivo. In such applications, graphene and graphene-based materials may play a 

multifunctional role, both as structural support and as part of a stimulation or recording device. 

 

Graphene in ‘stretchable’ electronics applications 

Advances in both computational and analytical models have recently begun to enable the 

fabrication of nanoscale semiconductor materials that will tolerate relatively large amounts of 

strain (Su, Ping et al. 2017, Yu, Yan et al. 2017), advances in the manufacturing of graphene may 

allow similar structures to be produced (Wang, Boutilier et al. 2017). Although measurements of 

second-order stiffness in graphene have yielded in-plane stiffness values of ~340 N/m (Lee, Wei 

et al. 2008), crumpling from static wrinkling in free-standing graphene at biologically relevant 

temperatures effectively reduces this value (Nicholl, Conley et al. 2015). p-type doping of 

graphene may be one way forward for flexible graphene electrodes, as it decreases sheet resistance 

and increases the effective work function (Han, Kwon et al. 2016). Multilayer-based approaches 

using graphene may also improve stretchability performance through strain relaxation (Won, 

Hwangbo et al. 2014). In fact, the addition of graphene ‘nanoscrolls’ between layers in transparent 
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transistors showed improved performance under strain relative to monolayer graphene (Liu, 

Chortos et al. 2017). 

 

Drug delivery applications and conjugation strategies 

Chemical modifications for drug delivery applications 

G/GO have been most widely demonstrated for cancer-related drug delivery applications 

(Liu, Robinson et al. 2011, Liu, Zhao et al. 2017), however, the chemical and surface modifications 

used to enable loading and release may also be used to enable new applications in the brain. The 

ability to harness hydrophobic interactions and pi-pi stacking to deliver aromatic, hydrophobic 

compounds may extend the utility of graphene for brain-specific drug delivery beyond simply 

proof-of-concept. For example, polyethylene glycol modification (PEGylation) of GO results in 

excellent solution stability (Liu, Robinson et al. 2008). Alternative strategies also include PAMAM 

functionalization of both GO (Gu, Guo et al. 2017) and G (Quintana, Montellano et al. 2011) and 

hyperbranched polyglycerol (hPG) (Tu, Wycisk et al. 2017). Amide linkage between GO and 

chitosan yields sheets that are relatively stable in cell culture media for up to 48 h (Bao, Pan et al. 

2011), an example of a myriad of alternative approaches to stabilize G/GO in aqueous solution. 

Dextran can also be used to increase the hydrophilicity of GO via amine modification and EDC 

coupling chemistry (Zhang, Yang et al. 2011). GO functionalized with cyclodextrin molecules, 

again via pi-pi adsorption, reduced to G sheets in an ammonia solution also serves as an effective 

peptide carrier (Dong, Li et al. 2013). Thus, the versatility of pi-pi adsorption onto G/GO surfaces 

allows for a wide scope of possible molecular delivery types.  

Chemical reaction methods can also be selected to control the location of functional groups 

onto G sheets. 1,3-dipolar cycloaddition results in conjugation within the large central area of the 



11 
 

sheets, whereas amide concentration reactions concentrate conjugates to the edges of G sheets 

(Quintana, Montellano et al. 2011). Azide modified dopamine has been used for simultaneous 

capping and reduction of GO (Kaminska, Das et al. 2012), where the aromatic structure of the 

dopamine molecule likely interacts via pi-stacking on the surface. As many monoamines contain 

contain aromatic groups, molecules such as serotonin, cathecholamine, and epinephrine may find 

utility as stabilizers for GO while also acting to alter neural function. 

Although click chemistry opens new doors to functionalization strategies for G/GO, 

approaches that utilize a copper catalyst elicit concern regarding toxicity to living tissue (Baskin, 

Prescher et al. 2007).  

Interestingly, the overall surface charge of a GO sheet was shown to play a role in the 

effectiveness of intracellular drug delivery. Positively-charged aminolated surfaces were shown to 

be more effective at releasing DOX in intracellular compartments than negatively charged 

sulfonated surfaces (Tu, Wycisk et al. 2017). Given the relative ease of modifying the surface 

charge of GO, this may be a new avenue to site-specific intracellular drug release. The different 

surface characteristics across a graphene sheet may also be a useful strategy for orthogonal delivery 

of different classes of compound: the negatively charged surface regions may better adsorb 

positively charged molecules while the outer edges, decorated with carboxyl groups, can for 

example be modified with zwitterionic lipid vesicles (Wang, Liu et al. 2013). 

 

Payload delivery 

The delivery of various forms of genetic payload has been demonstrated as a possible 

application for G/GO-based materials, however, to date, low transduction efficiencies limit the 

utility of graphene in comparison to traditional methods for genetic delivery. For example, 
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chitosan-stabilized GO sheets had a lower transfection efficiency for luciferase transduction into 

HeLa cells (Bao, Pan et al. 2011) compared to traditional methods. Polymer-based assemblies are 

some of the most widely used nanomaterial strategies for transduction, and relative to polymer-

based approaches, GO used to attach plasmid DNA and PEI shows improved transfection 

efficiency (Feng, Zhang et al. 2011). Graphene can also bind ssDNA, although cannot bind dsDNA 

to the same extent. This property has been exploited to deliver hairpin-shaped DNA into cells, 

which will be unloaded upon interaction with an mRNA target (Lu, Zhu et al. 2010). GO has also 

been employed as a delivery vehicle for aptamers, delivering an ATP binding aptamer (Wang, Li 

et al. 2010) to cells. G/GO may ultimately be most advantageous for applications where 

simultaneous delivery of both genetic payloads and pharmacological compounds is desirable. For 

example Polyamidoamine (PAMAM) functionalized GO was demonstrated as a vehicle for both 

Doxorubicin (DOX) and shRNA (Gu, Guo et al. 2017) delivery. 

 

Photothermal therapy 

Reduced graphene oxide (rGO) has been exploited for its photothermal properties for drug 

delivery. Chitosan/rGO composites were shown to deliver drug payloads on a timescale of 

minutes; addition of rGO to Chitosan acts to increase the photothermal absorption of the composite 

with respect to chitosan alone (Matteini, Tatini et al. 2014). Here, DOX delivery to HeLa cells was 

increased with short-pulse laser illumination. DOX has also been loaded onto GO for photothermal 

delivery in a glioma-bearing rat model (Liu, Shen et al. 2013, Dong, Jin et al. 2016). Laser 

irradiation results in local surface heating, ultimately leading to drug release. DOX release was 

also demonstrated to be effective on gliomas when loaded on PEGylated silica-coated G sheets 

(Wang, Wang et al. 2013). Carboxy-modified GO covalently linked to Thioflavin S selectively 
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attaches to amyloid-B fibrils (Li, Yang et al. 2012), suggesting an avenue toward the photothermal 

dissociation of AB fibrils and demonstrating the potential of G/GO-based materials for therapeutic 

application to Alzheimer’s disease. Hydrazine reduction of GO at elevated temperatures increases 

NIR absorbance by > 6-fold relative to unreduced GO (Robinson, Tabakman et al. 2011), a 

function of the restoration of PI conjugation. In the most widely used state, largely due to the 

relative ease of production and low cost, graphene flakes exist as a semimetal with zero bandgap. 

More recently, the discovery that a ‘nanomesh’ structure can open up a bandgap in graphene 

(Akhavan 2010, Bai, Zhong et al. 2010) can be used to tune photothermal absorption properties. 

PEGylated rGO nanomesh suspension showed a much steeper temperature increase over time for 

NIR irradiation heating than PEGylated rGO (Akhavan and Ghaderi 2013). Although CNTs have 

been more widely used for photothermal therapy to date, the superior response of G (Markovic, 

Harhaji-Trajkovic et al. 2011) may lead to increased focus in this direction. 

Laser irradiation with NIR light enables a relatively high degree of spatial precision. 

However, for in vivo applications, the ability to control release will ultimately be limited by the 

ability to deliver light within the brain. As such, NIR will be a useful tool for fundamental studies, 

as differential effects between even superficial subregions within the brain are still not well 

understood. Alternative triggering methods may be better suited to studies where pharmaceutical 

effects are elicited in deep brain regions. Electrical, magnetic, or even acoustic-based triggered 

release would allow such control in deeper brain regions. Layer-by-layer assembly approaches 

utilize protein adsorption onto substrates and subsequent capping with modified GO in either a 

sheet (Hong, Shah et al. 2012) or a capsule (Kurapati and Raichur 2012) format. Additional layers 

can be stacked together to control overall release time (Hong, Shah et al. 2012). Passive release 

may be sufficient for the delivery of certain drug classes, but active release allows more precise 
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control of treatment dose received. PAE (Choi, Kim et al. 2015) or PPy (Weaver, LaRosa et al. 

2014) films can incorporate GO, resulting in a more conductive polymer matrix, whereby electrical 

stimulation is applied and elicits drug release. Modification of the number of GO layers and the 

overall areal size of the GO sheets also alters the total drug loading capability (Weaver, LaRosa et 

al. 2014); smaller and fewer layered sheets have increased surface area for adsorption relative to 

more multilayered stacks. Photothermal irradiation has also been utilized to target delivery to 

cytosolic locations. Although G/GO sheets can insert into membranes directly, small sized and 

few-layered sheets will also be taken up into the cell through endocytic processes. Ultimately these 

sheets will then be trafficked to endosomal compartments. rGO sheets have been used to help 

payload escape this fate by application of NIR irradiation to induce endosomal disruption (Kim, 

Lee et al. 2013). 

 

Magnetic applications 

The ability to modify the properties of G/GO, to confer magnetic sensitivity for example, 

will extend the utility of its applications. The presence of fluorine in the GO basal plane can induce 

paragmagnetic centers, making fluorinated-GO compatible with MRI applications (Romero-

Aburto, Narayanan et al. 2013). Magnetic nanoparticles such as iron oxide (Fe3O4) can also be 

loaded on the surface of GO, conferring sufficient contrast enhancement to enable MRI (Yang, 

Hua et al. 2013). This does not disrupt the ability of G/GO to act as a drug delivery vehicle, further 

extending its utility.  

 

Beyond the murine model: the use of graphene in other model systems in neuroscience 
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To date, most current understanding of the uses for and effects of graphene result from 

studies in murine models. Many of these studies are based on in vitro culture systems using 

neurons; future directions should include mechanistic characterization of the biological effects of 

G/GO in vivo. The large array of transgenic modifications possible in mice and increasingly rats 

have enabled the study of ever more complex behaviors in a cell-type specific manner. These new 

techniques have resulted in a concurrent rise in the number of studies using other model systems, 

which have provided fundamental insights into the function of molecules, cells, circuits, and brain 

regions. Drosophila Melanogaster, for example, is a widely used system for the study of synapses 

and synaptic proteins (Keshishian, Broadie et al. 1996). And historically, the sea slug Aplysia 

provided some of the earliest causal insight into the mechanisms of plasticity in the brain (Kandel 

2009). We here provide a general introduction to model systems where G/GO have been used to 

date. 

 

C. Elegans 

The worm C. Elegans is a soil nematode with 302 neurons in its nervous system, whose 

connectome, a map of all neural connections, has been characterized (Varshney, Chen et al. 2011, 

Jarrell, Wang et al. 2012), leading to ongoing efforts to develop causal rules governing structure 

and function relationships during behavior. It lacks a blood-brain barrier, enabling screening of 

molecules by delivery routes not available to traditional murine models. Although graphene-based 

device interfaces have yet to be demonstrated in C. Elegans, Li et al. have demonstrated that 

chronic exposure to graphene elicits toxicity effects that are dosage-dependent, cell-type specific, 

and dependent upon the type of graphene (Li, Xu et al. 2017). Nematodes typically have a lifetime 

of ~ 2 weeks, and underwent a 6 day chronic exposure that resulted in graphene being distributed 
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throughout the digestive system. 100 mg/l graphene flakes did not significantly alter overall 

survival rate after 6 days, but the same concentration of GO flakes was largely lethal. Interestingly, 

>10 mg/l GO nanoparticles were shown to decrease expression levels of dat-1 and eat-4p, 

fluorescent genes encoding dopaminergic and glutamatergic neurons respectively, without 

significant downregulation of unc-47, which encodes GABAergic neurons. This is in contrast to 

the behavior of graphite nanoplatelets, where no acute in vivo toxicity was observed at 

concentrations up to 250 mg/l (Zanni, De Bellis et al. 2012). This could be due in part to differences 

in surface energy between GO and graphite nanoplatelets, for example hydrophilic vs. 

hydrophobic wettability properties, but further investigation is warranted with more standardized 

concentrations between materials. As computational models and subsequent experiments have 

suggested that similar concentrations of graphene flakes should be destructive to the membrane, 

regardless of cell type (Luan, Zhou et al. 2017), it would thus be helpful for future studies interested 

in assessing toxicity to take into account the concentrations used in previous studies for better 

cross-comparison. 

 

Zebrafish 

Zebrafish represent another interesting possibility for demonstrating the utility of graphene 

interfaces. A developed zebrafish has ~100,000 neurons, fewer than any murine model, while still 

preserving many basic electrical and chemical signaling processes. This, combined with optical 

transparency, confers many advantages for single-cell resolution studies involving a whole 

population of neurons rather than the subsets that are optically accessible by even the most recent 

imaging approaches, for example light field microscopy in freely moving rodents (Skocek, 

Nöbauer et al. 2018). The availability of detailed genomic information and the relatively high 
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degree of homology to the human genome (~70%)(Howe, Clark et al. 2013) confer distinct 

advantages to their use as a model system. The relative ease of breeding and maintaining zebrafish 

and their short lifespan are also advantageous relative to rodents or non-human primates for 

reducing cost in larger scale toxicology screens (Fako and Furgeson 2009). Although a 

concentration of > 120 mg/L SWNT was shown to delay hatching in zebrafish (Cheng, Flahaut et 

al. 2007), primary sensory neurons were not developmentally effected. Further studies using GO/G 

to assess toxicology in zebrafish are necessary for comparison to the effects observed using 

SWNTs.  

 

Future directions 

 The use of graphene has largely been limited in non-human primate models, due in part to 

lingering questions as to toxicity. However, organizations such as the European Graphene flagship 

have issued calls for the production of graphene electrode arrays for recording in both non-human 

primates and humans. This will necessitate further study of the biological effects of G and G-based 

devices. As new strategies are developed to handle and integrate the vast and wide-ranging data 

streams becoming more prevalent in modern neuroscience, non-traditional model systems will 

continue to play a role in helping to elucidate the brain. Thus, future research on the compatibility 

of graphene with other model organisms will help to clarify the utility of graphene to these systems. 

 

Toxicity in murine systems 

The extent to which G/GO become practically applicable to neuroscience will in part be 

determined following a systematic understanding of the long-term toxicity. As many paths toward 

clinical application begin with pre-clinical testing in murine models, understanding the biological 
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tolerance of rats and mice to G/GO represents an important first step.  Here, we focus on toxicity 

specifically relevant to neuronal and brainwide function, for discussion of overall, environmental, 

or antimicrobial toxicity, which have been widely reviewed, see elsewhere (Seabra, Paula et al. 

2014). 

Various studies have also focused on the interaction between graphene and the cell 

membrane in either in vitro culture systems (Kitko, Hong et al. 2018) or lipid bilayer preparations. 

Using a 2-dimensional Langmuir-Blodgett approach, it has been suggested that the hydrophobic 

tail of lipids does not play a role in any bilayer interactions, but a positively charged head group 

would favor interactions with the carboxy-containing regions of GO (Li, Stein et al. 2013) and 

minimal interactions would occur between neutrally or negatively charged lipids. The size of the 

G/GO flakes is also a determining factor in the bilayer response. Flakes of GO that are large 

relative to the size of an artificial liposome cause rupture of the bilayer attached to a substrate 

surface (Frost, Jönsson et al. 2012). Addition of GO to supported lipid bilayers (SLBs) composed 

of DPPC/DOPC causes detachment of bilayer regions (Lei, Zhou et al. 2014), but as this was a 

function of relatively high levels of calcium used in SLB preparation, may not be viewed as 

representative of in vivo membrane damage.  

Results based on computational modeling generally agree that once inside of a lipid bilayer, 

either via endocytic uptake or by direct membrane penetration, graphene will stably reside between 

phospholipid tails (Titov, Král et al. 2010, Guo, Mao et al. 2013). It is generally agreed that 

membrane penetration would favor an ‘edge-in’ rather than a ‘face-in’ initial contact. 

Although computational models are powerful tools to provide fundamental insights into 

the forces governing G/GO nanomaterial and cellular interactions, these studies are often 

performed under different conditions than most application studies. For example, it is 
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computationally prohibitive to model G/GO flakes on the same size scales that are produced for 

experimental studies. A ‘large G/GO flake’ in a computational study may be on the length scale 

of 5 nm (Li, Yuan et al. 2013) – whereas for experimental studies the smallest reported average 

dimensions are on a length scale of  >200 nm (Rauti, Lozano et al. 2016, Castagnola, Zhao et al. 

2018). It if furthermore prohibitive to model the membrane bilayer with the full complexity of 

proteins, lipids, and other molecules within a neuronal bilayer. Thus, it may be difficult to draw 

direct parallels between toxicity claims from simulations and toxicity claims from experimental 

results.  Study of lipid-membrane specific effects is more efficiently enabled by allowing graphene 

to penetrate a membrane after addition to biological media. However, many studies, even using 

small flakes of G/GO, deposit the material onto a glass substrate for chronic cellular interface. The 

membrane interactions here would be very different from G/GO located within the bilayer, further 

complicating arguments as to the membrane effects of G/GO. 

GO was demonstrated to be toxic to gram-negative bacteria (Akhavan and Ghaderi 2010, 

Tu, Lv et al. 2013), yet bacteria containing more complex outer membranes are more resistant to 

damage. Reduction of GO increases susceptibility to membrane damage (Akhavan and Ghaderi 

2010). Akhavan et al. created nanowalls of GO, which were designed such that there would be a 

maximal amount of direct contact between bacteria and the sharp edges of the nanomaterial. This 

represents a condition that would induce mechanical stress on the membrane, and indeed can result 

in membrane damage. Tu et al. later extended this work both through molecular dynamics 

simulations and experiments using E. Coli. Course-grained molecular dynamic simulations of 

relatively large few-layer graphene (FLG) sheets suggest that the most hydrophobic edge of 

graphene near a lipid bilayer will penetrate orthogonal to a bilayer, and then fully embed in a 

membrane, driven by an attraction between the graphene and lipids within the core (Li, Yuan et 



20 
 

al. 2013). Interestingly, this spontaneous process does not result in membrane destruction, 

suggesting that the degree of mechanical stress on the membrane plays a role in membrane damage 

when exposed to G/GO. That spontaneous membrane incorporation does cause membrane 

destruction is in agreement with experimental observations using cultured PC-12 cells, where 24 

h exposure to few-layer G sheets did not increase lactate dehydrogenase activity or increase 

reactive oxygen species below 100 µg/ml treatment concentrations (Zhang, Ali et al. 2010).  

Of note, these configurations, where membrane stress is likely a factor in the toxicity of 

G/GO, are different than most studies to date using neuronal cultures, where G/GO is more 

commonly used as a culture substrate. Three different mammalian cell types cultured on rGO, but 

not GO, for up to 5 days proliferated normally and exhibited less cytotoxicity and more outgrowth 

than on CNT films (Agarwal, Zhou et al. 2010). HT-29 cells also displayed increased attachment 

on GO-coated substrates within 6 hours compared to bare glass substrates (Ruiz, Fernando et al. 

2011). Thus, studies aimed at addressing nanotoxicity should draw a distinction between scenarios 

where mechanical stress may be an additional factor and scenarios where spontaneous membrane 

incorporation alone is being studied.  

 

The role of the biological protein corona in mediating the toxicity of G/GO 

Simulations also suggest that the hydrophobicity of G/GO plays a role in its interaction 

with the bilayer and that the surface energy can be modified by the formation of a protein corona 

on the surface. For example, computational  models demonstrate that the presence of a protein 

corona surrounding the flakes would modify the membrane response to graphene, in which case 

graphene would orient in parallel to and attach to the outer layer of the lipid bilayer (Li, Yuan et 

al. 2013). Experimental studies of protein adsorption on G/GO alone have shown that nanoflakes 



21 
 

can adsorb 1.6-2x their weight in BSA, largely on the timescale of minutes (Hu, Peng et al. 2011, 

Chong, Ge et al. 2015). A recent development, where G is exfoliated directly into a serum 

containing media, has given some insight into the composition of the biological corona formed. 

Proteomic analysis of these media-exfoliated G flakes reveals a variety of proteins and other 

cellular materials that make up the protein corona formed on G (Castagnola, Zhao et al. 2018): 

serum albumin, apolipoproteins, and vitronectin are all found on G nanoflakes in relative large 

abundances. Although the physicochemical interactions, kinetics, and thermodynamic processes 

that govern the formation and evolution of the corona that forms around nanomaterial surfaces 

when interfaced with a biological system is still not fully understood, general frameworks have 

been established as to the governing forces underlying nano-bio interactions. Because the 

individual environment G/GO encounter will vary widely depending upon desired neural 

application, the exact composition of the corona formed cannot necessarily be described a priori 

or results extended from one biological system to the next. Indeed, the chemical concentration, 

surface functionalization, degree of crystallinity, and surface roughness, among many properties, 

all play a role in the composition and evolution of biomaterials that adsorb on a nanomaterial 

surface (Nel, Mädler et al. 2009). 

The formation of a protein corona on G/GO surfaces also differs between bacterial cultures 

and what would be observed in murine models in vivo due to differences between media 

compositions in cell culture or fluid composition in the extracellular space. Previous studies 

demonstrating membrane destruction in bacteria have suspended G flakes with E.Coli (Tu, Lv et 

al. 2013) or suspended in agar/water and dropped onto a substrate surface and later recovered 

(Akhavan and Ghaderi 2010). However, the presence of a protein corona (Cedervall, Lynch et al. 

2007) likely plays a role in mitigating these effects. Using A549 cells, multiple reports have 
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demonstrated that the presence of FBS in normal culture media (Hu, Peng et al. 2011, Duan, Kang 

et al. 2015) or the addition of BSA (Li, Feng et al. 2014, Duan, Kang et al. 2015) result in lower 

cytotoxicity of GO flakes relative to serum-free media. Using a DPPC membrane, molecular 

dynamics simulations revealed that BSA-coating of graphene reduces the total amount of lipid 

removal relative to bare graphene. The coating of graphene by proteins is governed by hydrophobic 

interactions, van der Waals forces, and π- π interactions (Chong, Ge et al. 2015). The composition 

of the protein corona may vary depending upon method of introduction to the brain and the 

presence of any surface modifications to increase biocompatibility; this may also serve to explain 

the variation in effects seemingly exerted by graphene (Radic, Geitner et al. 2013). As the 

adsorption of proteins to GO is strong and long-lasting, this may serve as one route for the low-

cost modification of GO for drug delivery application or to achieve loss or gain of function cellular 

control in some manner (Belling, Jackman et al. 2016).  

Although many studies that attempt to evaluate the effects of G may lessen the extent to 

which a protein corona is involved by incubation in serum free-media (Zhang, Ali et al. 2010, 

Pampaloni, Lottner et al. 2018), the relatively long exposure times used may still result in the 

coating of nanomaterial surfaces by excreted proteins in cell culture. Indeed, proposed mechanisms 

for the effects underlying chronic culture on graphene have suggested that graphene still plays a 

large and direct mediatory role, rather than an indirect through a protein corona (Kitko, Hong et 

al. 2018, Pampaloni, Lottner et al. 2018). Understanding the role of cell secretion in mediating the 

toxicity of graphene-based materials remains an important line of future investigation. 

 

The role of surface functionalization of G/GO in mediating toxicity 
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Surface functionalization has also been shown to play an important role in the toxicity of 

GO/G. For example, PEGylation decreases the overall cytotoxicity of GO (Li, Feng et al. 2014). 

And bilayer graphene functionalized with carboxyl groups showed improved viability in kidney 

cells relative to pristine bilayer graphene at concentrations above ~ 5 mg/l (Sasidharan, 

Panchakarla et al. 2011). Tu et al. modified GO with –OCH3, -NH2, or -PABS via PEGylated 

chains and cultured hippocampal neurons to 7 DIV to determine the effect of surface charge on 

neuronal viability and outgrowth. PEG-amine modified GO exhibited the most positive surface 

charge and the most neuronal outgrowth relative to other surface treatments or the native –COOH 

group (Tu, Pang et al. 2014), suggesting the importance of the surface in determining neuronal 

responses to GO. This is in line with what was observed for mouse hippocampal neurons on CVD-

graphene substrates, where pristine G was shown to improve viability and connectivity up to 5 

DIV, whereas disordered noncrystalline graphene did not result in any neuronal attachment 

(Veliev, Briançon-Marjollet et al. 2016). Thus, the crystallinity of graphene is also an important 

consideration in evaluating neuronal responses to graphene. Given the overall inconsistency 

among assessments of nanotoxicity for GO/G, it is likely that surface charge plays a role. Given 

the number of fabrication methods, transfer processes, and application methods for these materials, 

a comprehensive study of toxicity should include measurement and reporting of relevant surface 

characteristics (Faria, Björnmalm et al. 2018). 

 

Distribution and trafficking of G/GO in vivo 

Trafficking of G/GO to the brain 

Mass spectrometry is a common approach to determine the bio-distribution of 

nanomaterials. For G/GO, most distribution studies to date have focused on overall distribution 
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following tail vein injection, with results indicating that very little trafficking to the brain will 

happen via this route. MALDI-TOF was used to determine that tail vein injection of GO results in 

very little accumulation in the brain after 24 h (Chen, Xiong et al. 2015), in good agreement with 

what was observed using radiolabeled GO for similar time periods (Zhang, Yin et al. 2011). Tail 

vein studies performed using rGO indicate uptake in the brain within 15 min for tail vein injection, 

peaking around 3 hours and decreasing by 7 days, which was corroborated by confocal microscopy 

(Mendonça, Soares et al. 2015). This is somewhat surprising given the relatively large sized flakes 

used (~340 nm), suggesting that rGO may be able to cross the blood brain barrier and may be 

cleared through some as yet not well understood mechanism. 

 

In vivo assessments of trafficking and toxicity 

For in vivo applications, further study is needed to characterize any potential brain region or cell-

type specific effects. To date, most studies, such as detailed above, are performed in vitro. 

However, a few studies have characterized some of the effects of G/GO in vivo. Defterali et al. 

studied the effects of thermally reduced G on viability via stereotaxic injection into the mouse 

olfactory bulb. After 7 or 21 days, thermally reduced G had minimal effects on cell viability or 

number, and no significant increase in microglia number compared to injection only controls 

(Defteralı, Verdejo et al. 2016). Tail vein injection of > 250 mg/kg dextran-modified G did not 

show any brain toxicity after 30 days (Kanakia, Toussaint et al. 2014). However, this is not the 

way that graphene would encounter the brain in most intended applications, thus requiring further 

toxicity study in vivo via direct G/GO injection. Although this has not been characterized for 

G/GO-based materials, LDH activity has been shown to be differentially affected in a brain region 

specific manner in MWNTs (Bussy, Al-Jamal et al. 2015). Thus, further study is warranted to 
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determine if the toxicity is cell-type specific, as has been both suggested (Agarwal, Zhou et al. 

2010) and argued against (Ruiz, Fernando et al. 2011).  

 

Graphene and neurons in vitro 

To date, even for in vitro systems, where there have been an array of studies using G/GO, 

questions remain as to toxicity. It is increasingly widely accepted that as a substrate for in vitro 

growth, graphene is a permissive surface both with and without the addition of extracellular matrix 

coatings. Flakes of graphene applied in culture have resulted in somewhat conflicting outcomes, 

but results generally support the idea that either or both high enough treatment dose or a long 

enough incubation times will result in cellular toxicity. Below these dosage on time thresholds, 

flakes of graphene also have been studied for their ability to exert biological effects. Here, we 

move beyond toxicity to a discussion of hypotheses as to the causal underpinnings of biological 

changes reported on G/GO. 

 

Cellular growth on ECM-coated graphene 

Most early studies using G/GO were conducted using a protein layer sandwiched between 

the substrate and neurons. For example, neural stem cells were grown on laminin-coated tissue 

culture polystyrene and soaked in tissue culture media overnight (Tang, Song et al. 2013). Chronic 

culture resulted in increases in: Ca2+ transient frequency, both spontaneous EPSC amplitude and 

frequency, and miniature EPSC frequency. These cellular changes occurred without altering 

overall stem cell morphology. Later versions of similar studies using neural stems cells did not 

observe changes in firing frequency, although were in overall agreement with increased cell 

signaling, here realized as increases in the percentage of cells firing action potentials during both 
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proliferation and differentiation stages (Guo, Zhang et al. 2016) and an increase in the density of 

neurites. Longer-term culture of stem cells on graphene also acts in a supportive manner by 

increasing overall cell count on graphene after one month (Park, Park et al. 2011). The specific 

effects of G/GO seem to be variable even within stem cell type, but overall results collectively 

suggest that graphene holds promise as a scaffold material for regenerative medicine and stem cell-

based technologies. 

Observations regarding the formation of synaptic connections, a fundamental unit of 

neuronal signaling, largely indicate that graphene is both permissive and to some extent may also 

enhance synaptic transmission. E18 cortical (Keshavan, Naskar et al. 2018) or E18 hippocampal 

(Lorenzoni, Brandi et al. 2013) neurons cultured on poly-d-lysine coated graphene ‘stripes’ have 

been used to investigate synaptogenesis, with results indicating that functional synaptic 

connections are formed on graphene substrates covered with an adhesion coating. P0-P1 rat (He, 

Zhang et al. 2016) or mouse hippocampal neurons grown on graphene coated with poly-lysine and 

pre-incubated in culture media demonstrated longer and more branched dendrites after 7 DIV and 

increased synapse number after 21 DIV (He, Zhang et al. 2016), suggesting that the enhancements 

observed on graphene may be the result of some sort of conserved mechanism. This collection of 

studies has used pre-incubation in media overnight in addition to ECM coating, as it was elsewhere 

demonstrated to mitigate the cytotoxicity of GO (Hu, Peng et al. 2011). The observed decrease in 

cytotoxicity after overnight media incubation calls raises questions regarding the complex 

interactions between nanomaterial surfaces, the adhesion layer, and growth factors, lipids, etc. that 

are contained in fetal serums. We have investigated some of the issues related to the formation of 

this so-called ‘protein corona’ on G in Chapter 2 of this thesis. 
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Cellular growth on ECM-free substrates 

Increasing numbers of studies are interfacing directly to G/GO, omitting the intermediate 

protein-coating layer. This omits confounding factors both of additional surface charges due to the 

complex nature of such coatings and the physical gap created between the biological material of 

interest and the substrate. For example, differences in surface charge been shown to alter neurite 

outgrowth on GO (Tu, Pang et al. 2014), with positively charged surfaces overall exhibiting 

increased neurite outgrowth at 7 DIV. More broadly, coatings like polylysine are polycatanionic 

polymers, increasing cell attachment and outgrowth – but it is unclear whether there would be 

coupling between the coating and G/GO, masking direct biological effects. And recent studies 

have begun to systematically investigate the different biological effects observed even between 

different classes of ECM substrate (Fischer, Zhang et al. 2018), suggesting that a single underlying 

mechanistic explanation of the biological effects of graphene must fully account for the 

composition of the substrate. The biological compatibility of G/GO substrates also does not appear 

to be cell-type specific, as retinal ganglion cells (Bendali, Hess et al. 2013, Fischer, Zhang et al. 

2018), cortical neurons (Rauti, Lozano et al. 2016), hippocampal neurons (Veliev, Briançon-

Marjollet et al. 2016, Kitko, Hong et al. 2018, Pampaloni, Lottner et al. 2018), and recently dorsal 

root ganglion neurons (Convertino, Luin et al. 2018) have all been cultured on bare G. However, 

neurite outgrowth and total number were reduced in comparison to a bare glass control for retinal 

ganglion cells (Bendali, Hess et al. 2013). Interestingly, this same study shows no significant 

enhancement on coated graphene compared to coated glass in these same properties, in contrast to 

much of the published literature that utilizes a protein coating layer. And later studies have made 

somewhat different observations, where neurons were not viable on bare glass controls but formed 

synaptic connections on uncoated graphene (Veliev, Briançon-Marjollet et al. 2016). This also 
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included comparisons to protein-coated graphene, where enhancements in neuronal surface area 

relative to bare graphene were observed over the duration of the study (up to 5 DIV). Although 

this and other studies have suggested that synaptic connections are formed on graphene, later 

studies were left to determine synaptic function. And the effect of extracellular matrix addition on 

the ability to utilize the properties of graphene for neural recordings, for example, remains to be 

well-characterized. 

The functional effects of graphene substrates have become an increasingly important area 

of study for neural interfacing applications. Multiple studies have now collectively suggested both 

that the frequency of neuronal firing is increased on bare graphene (Kitko, Hong et al. 2018, 

Pampaloni, Lottner et al. 2018) and that synaptic strength is increased on bare graphene (Rauti, 

Lozano et al. 2016, Kitko, Hong et al. 2018), whereas high enough concentration treatment of 

neurons with GO flakes reduces EPSC frequency (Rauti, Lozano et al. 2016). The work presented 

in Chapter 3 of this thesis further suggests that low concentrations of G flakes also acutely increase 

synaptic strength. However, there are somewhat conflicting explanations for the mechanisms 

underlying this synaptic enhancement. We hypothesize (Kitko, Hong et al. 2018) that chronic 

growth on graphene results in increased neuronal membrane cholesterol. This increase in 

cholesterol, possibly through extraction of cholesterol from a serum-containing media during the 

formation of a protein corona, is sufficient to explain the functional changes were observe on G. 

Specifically, G substrates result in an enlarged pool of synaptic vesicles and a higher vesicle release 

probability in neurons, and potentiated Ca2+ release in 3T3 cells. More recently, an alternative 

explanation has been proposed for the increased firing frequency on graphene (Pampaloni, Lottner 

et al. 2018). Pampaloni et al. hypothesize that K+ ions are depleted on bare graphene in the cleft 

between neurons and the substrate. This depletion of K+ ions alters neuronal signaling, increasing 
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EPSC frequency and altering adapting vs. tonic firing phenotypes. Computational models support 

this hypothesis, with the caveat that no protein deposition is present. 

 

Graphene electrodes for in vivo imaging 

Although optical technologies hold great promise for pre-clinical application, to date, 

electrodes remain the most widely used and sought-after new technology for neural interfacing for 

clinical applications. Traditionally, electrodes are designed based upon a silicon manufacturing 

workflow, allowing for larger scale production than is currently available for graphene – and any 

carbon-based – nanomaterials. Advances based upon this technology that may hold promise for a 

path to clinical applicability were recently demonstrated (Park, Ness et al. 2017). Graphene 

electrodes with over 90% transmittance have been fabricated on parylene-C or polyethylene 

terephthalate (PET) substrates, permitting simultaneous optogenetic stimulation (Park, Schendel 

et al. 2014, Liu, Lu et al. 2018), optical coherence tomography (Park, Schendel et al. 2014), deep 

vasculature (Thunemann, Lu et al. 2018) or Ca2+ imaging (Park, Ness et al. 2017, Thunemann, Lu 

et al. 2018) in areas where the pial surface would normally be blocked by the opacity of traditional 

recording materials. 

 An ongoing area of research will be to improve the electronic properties of graphene to 

better improve recording quality while, at the same time, maintaining transparency and flexibility, 

important for in vivo imaging applications. Recent data have suggested that nanoparticle doping 

may be an approach to meet all of these requirements. For example, platinum nanoparticles 

electrodeposited onto CVD G overcome the quantum capacitance limits of G electrodes alone and 

enable improved signal quality ECoG and EEG signals (Lu, Liu et al. 2018). These signals can be 
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simultaneously acquired with signals from genetically encoded indicators such as GCaMP at 

depths up to 250 microns using two-photon excitation. 

 

Prospectus 

The ultimate utility of graphene will be determined in part by its ability to be used in 

conjunction with the large array and wide variety of optical, chemical, and electrical tools 

commonly utilized in modern neuroscience. The ability to combine fast optical control that is tuned 

via real-time device-based feedback is another promising direction (Kim, Adhikari et al. 2017). 

Graphene was quickly recognized as a ‘wonder material’ after its isolation, including 

recognition as the 2010 Nobel Prize in physics. The number of publications referencing graphene 

has jumped to several thousand per year, a quick rise from several hundred only ten years ago. 

Spurred on by several large initiatives, including the NIH’s BRAIN and Europe’s graphene 

flagship, which represents the European Union’s largest single research initiative, new applications 

for graphene to broad areas of brain research should continue to be developed at a rapid pace. Yet 

there are still challenges remaining, including addressing the widespread utility of many graphene 

applications. The promises of nanomedicine are extensive; what remains to be seen is the extent 

to which new applications for nanomaterials deliver on the great promise so often espoused. 
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Chapter 2  
 

Membrane cholesterol mediates the cellular effects of monolayer graphene 
substrates 

 

Abstract 
 

Graphene possesses extraordinary properties which promise great potential in biomedicine. 

However, fully leveraging these properties requires close contact with the cell surface, raising the 

concern of unexpected biological consequences. Computational models have demonstrated that 

graphene preferentially interacts with cholesterol, a multifunctional lipid unique to eukaryotic 

membranes. Here, we demonstrate an interaction between graphene and cholesterol. We find that 

graphene increases cell membrane cholesterol and potentiates neurotransmission, which is 

mediated by increases in the number, release probability, and recycling rate of synaptic vesicles. 

In fibroblasts grown on graphene, we also find an increase in cholesterol, which promotes the 

activation of P2Y receptors, a family of receptor regulated by cholesterol. In both cases, direct 

manipulation of cholesterol levels elucidates that a graphene-induced cholesterol increase 

underlies the observed potentiation of each cell signaling pathway. These findings identify 

cholesterol as a mediator of graphene’s cellular effects, providing insight into the biological impact 

of graphene. 

 

Introduction 
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Graphene is a two-dimensional material composed of a single-layer of hexagonal sp2-

hybridized carbon atoms (Geim 2009). A consequence of its unique atomic structure, graphene 

possesses a myriad of attractive chemical and physical properties: exceptionally high electron 

mobility, thermal conductivity, optical transmittance, mechanical strength, chemical stability, and 

surface area-to-volume ratio (Geim 2009, Novoselov, Fal′ko et al. 2012). This combination of 

features has made graphene a promising material for a broad range of biomedical applications, 

including drug delivery, tissue engineering, biosensing, and neuroprosthetics (Zhang, Nayak et al. 

2012, Bitounis, Ali-Boucetta et al. 2013, Mao, Laurent et al. 2013). Furthermore, its superior 

carrier mobility enables graphene-based electrodes to detect electrochemical changes associated 

with a variety of cellular activities or to deliver optical or electrical stimuli. For example, graphene 

electrodes have been used as voltage sensors to measure membrane potential changes at the single 

cell level and to record electrical activity in neuronal networks in vitro and in vivo (Kuzum, Takano 

et al. 2014, Zhang, Dodson et al. 2016). However, a significant drawback to the use of graphene-

based devices remains, in that detection efficiency exponentially decreases as the distance from 

the cells or tissue increases. Therefore, graphene needs to be close to cell or tissue surfaces (Zhang, 

Dodson et al. 2016) in order to maximize its utility in bioapplications. This then raises a 

fundamental question: how graphene affects the plasma membrane and related cellular functions. 

 

Prior studies have documented that graphene flakes are destructive to gram-negative 

bacteria such as Escherichia coli through the disruption of plasma membrane integrity (Akhavan 

and Ghaderi 2010, Hu, Peng et al. 2010, Liu, Zeng et al. 2011). Computational modeling and 

electron microscopy have suggested that this is the result of nanoscale graphene flakes penetrating 

the bacterial plasma membrane and dispersing phospholipids (Li, Yuan et al. 2013), which leads 
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to membrane disintegration and cell death (Tu, Lv et al. 2013). Interestingly, no such cytotoxicity 

has been reported in eukaryotic cells. Instead, cell proliferation (Nayak, Andersen et al. 2011), 

differentiation (Wang, Lee et al. 2012), and morphogenesis (Li, Zhang et al. 2011) were improved 

when graphene with traditional tissue culture coatings was used as a culture substrate. For mouse 

neurons grown on bare graphene, Veliev et al demonstrated that the crystallinity of graphene 

promotes cell adhesion and neurite outgrowth (Veliev, Briancon-Marjollet et al. 2016), suggesting 

the significance of close contact between graphene and the cell surface in mediating graphene’s 

effects. Aggregated graphene flakes used as a substrate or applied acutely to mature neuronal 

cultures resulted in few developmental or morphological changes (Bendali, Hess et al. 2013, 

Fabbro, Scaini et al. 2016, Rauti, Lozano et al. 2016). Aggregated graphene flakes, however, have 

very different surface characteristics and physicochemical properties from monolayer graphene 

substrates (Bo, Zhou et al. 2016). Given the variation in experimental outcomes and the increasing 

interest in bioapplications of graphene, it remains important to understand how graphene interacts 

with the eukaryotic plasma membrane and how its diverse cellular effects are realized. 

 

We reasoned that since the plasma membrane is the initial point via which any downstream 

cellular responses to graphene would be realized, membrane-associated molecule(s) were 

responsible for the variation of cellular effects in response to graphene. We hypothesized that 

cholesterol was involved for two reasons: it is unique to and abundant in the eukaryotic plasma 

membrane but absent from prokaryotic membranes, and it is related to many cellular processes, 

realized through both direct and indirect interactions with other lipids and proteins (Ikonen 2008). 

For example, cholesterol influences membrane fluidity (Korade and Kenworthy 2008), facilitates 

exo-/endocytosis (Subtil, Gaidarov et al. 1999), regulates integral membrane proteins like G 
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protein-coupled receptors (GPCRs) (Cherezov, Rosenbaum et al. 2007), and organizes 

cytoskeletal attachment as well as cell adhesion (Head, Patel et al. 2014). The distribution of 

cholesterol within the cell membrane is highly heterogeneous and dynamic (Ikonen 2008), with 

trafficking between surface and intracellular membranes helping to maintain overall cholesterol 

homeostasis. Intriguingly, it has been empirically demonstrated that the planar tetracyclic ring 

structure of cholesterol may permit it to stack on the graphene surface (Gburski, Górny et al. 2010, 

Gburski, Gorny et al. 2011, Hibino and Tsuchiya 2014, Zhang and Wang 2015, Zhang, Xu et al. 

2016). We thus sought to investigate if and how the cellular effects of monolayer graphene are 

related to the cell membrane, membrane cholesterol, and associated cellular processes. 

 

Here, we use liquid-phase exfoliation (LPE) of graphene powder to produce suspended 

graphene flakes (GFs), which enables solution-based measurements to investigate a graphene-

cholesterol interaction. GFs extract cholesterol from cholesterol-containing culture media and 

effectively quench a fluorescent cholesterol analog, suggesting an interaction between graphene 

and cholesterol. For cell-based studies, we grew both neurons and fibroblast cells on large-area 

monolayer graphene sheets. In neurons on graphene, we find increased cell membrane cholesterol 

and significant increases in the number, the release probability, and the turnover rate of synaptic 

vesicles - all of which are modulated by membrane cholesterol (Chang, Kim et al. 2009, Dason, 

Smith et al. 2010, Puchkov and Haucke 2013, Yue and Xu 2015). Bidirectional manipulations of 

membrane cholesterol demonstrate that a graphene-induced membrane cholesterol increase is an 

underlying mechanism for the potentiated neurotransmitter release. Furthermore, we demonstrate 

that graphene substrates allosterically enhance the Ca2+-responses of P2Y receptors to ATP 
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stimulation in a cholesterol-dependent manner. Our findings collectively reveal that cholesterol is 

a key mediator of graphene’s biological effects on eukaryotic cells. 

 

Methods 

Graphene production 

To produce GFs, we used liquid exfoliation of graphite powder (ASBURY CARBONS, 

Grade: 2299) in the presence of 2 wt% PVP (molecular weight: 1,300,000 g mol-1, from Sigma) 

water solution and sonicated for 9 h in a bath sonicator. The uniform GF suspension was then 

centrifuged with a Thermo Scientific Fiberlite F15-6 X 100y rotor at 4000 r.p.m. and at room 

temperature for 1 h to sediment large graphite aggregates. The upper 50% of supernatant was 

carefully decanted, resulting in PVP-functionalized GF suspension (Hernandez 2008) . The 

transmission characterization of GF suspension was carried out on a Varian Cary 5000 UV-VIS-

NIR spectrophotometer. The concentration of GF was estimated with an absorption coefficient of 

2460 L/g/m at 660 nm (Hernandez 2008), which is typically 26 mg L-1 for freshly made GF 

suspension. The suspension is stored at 4 °C and remains stable for >3 years. Single-layer graphene 

sheets were synthesized by CVD on a copper foil with 100 sccm (standard cubic centimeter per 

minute) hydrogen and 10 sccm methane as the feed gases (Li 2009). A layer of poly(methyl 

methacrylate) (PMMA) was then spin-coated onto the graphene film that was grown on the copper 

foil, which was later removed through wet etching in ferric chloride solution. Subsequently, the 

graphene film was transferred onto glass coverslips, and the PMMA support was dissolved in 

acetone. 

 

Raman spectroscopic characterization of graphene 
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The quality of graphene sheets was examined by a DXR Raman Microscope (Thermo 

Scientific). A 532-nm laser (~5 mW power) was expanded and focused to a diffraction-limited 

laser spot (<1 μm) through a 50× Olympus objective. The intensity features of graphene Raman 

spectra could be found at ~1590 and ~2680 cm−1, corresponding to the G and 2D modes, 

respectively. The high 2D-to-G intensity ratio (>1) and symmetric shape of the 2D peak indicate 

that the graphene is monolayer. For Raman mapping, the samples were moved by a motorized 

microscope stage at a step of 1 μm for both x and y axis. A Raman spectrum was recorded at each 

position, and the intensities of the G and 2D modes were plotted to form spatially resolved images. 

 

Cholesterol assay 

An enzymatic assay (Amplex Red Cholesterol Assay Kit, Life Technologies) was used to 

quantify free cholesterol concentrations according to the manufacturer’s instructions (Amundson 

and Zhou 1999). Briefly, a serial dilution of cholesterol standard (0, 2, 5, 10, 15 and 20 μM) was 

used to generate a calibration curve. One-milliliter aliquots of media were incubated as prepared 

or with the addition of 0.002 wt% PVP in phosphate-buffered saline (PBS), or 260 ng mL-

1 graphene nanoflakes (GFs) with 0.002 wt% PVP in PBS at 37 °C and 5% CO2 for 24 h. Graphene 

fractions were separated from media using Amicon centrifugal filters (100 kDa, Millipore) and 

resuspended in 1 mL of fresh media. The flow-through media was also collected for the graphene 

fraction. Media alone, media incubated with PVP, GNFs separated from media, and flow-through 

media were assayed. The fluorescence intensities of all enzymatic reaction products were 

measured using a spectrofluorometer (FluoroMax-4, Horiba). Excitation and emission slit widths 

were set at 5 nm for all measurements. Samples were excited at 570 nm, and emission was 

measured at 590 nm. For each group, four different batches of media were used, and four 
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independent measurements were performed for each media sample. Cholesterol concentrations 

were then calculated using the standard curve. 

 

Spectrofluorometer measurements 

TFC (Avanti) or BODIPY (Thermo Fisher) were diluted in water at a final concentration 

of 1.3 µM and incubated at room temperature for all time points. All fluorescence emission 

measurements were performed using a FluoroMax-4 spectrofluorometer (Horiba). Excitation and 

emission slit widths were set at 5 nm for all measurements. Samples were excited at 400 nm to 

avoid spectral bleed-through and non-specific excitation in mixed solutions. Emission spectra were 

collected from 500 to 650 nm. Three replicates were scanned three times each for every sample 

and the result averaged. Subsequently, averaged intensities were corrected for the broadband 

absorbance of either graphene or PVP across the emission spectra, as defined by: 

FTFC,λ+(1−T)FTFC,λFTFC,λ+(1-T)FTFC,λ, 

where F is the fluorescence emission value at a wavelength for TFC and T is the 

transmittance value at that same wavelength for graphene or PVP calculated from the Beer–

Lambert relationship. Data smoothing was performed using a nine-point Savitzky–Golay filter in 

Matlab. 

 

Cell culture 

All animal procedures and all experimental procedures were approved by the Vanderbilt 

University Animal Care and Use Committee (VUACUC, #M1500052) and were performed in 

accordance with the VUACUC approved guidelines and regulations. Rat hippocampal cultures 

were prepared as previously described. Hippocampal neurons (CA1–CA3) derived from postnatal 
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(P0/P1) Sprague–Dawley rats of both sexes were used. Neurons were dissociated to a single-cell 

suspension, recovered by centrifugation, and resuspended in plating media composed of Minimal 

Essential Medium (MEM, Life Technologies) containing (in mM) 27 glucose, 2.4 NaHCO3, 

0.00125 transferrin, 2 L-glutamine, 0.0043 insulin, and 10%/vol fetal bovine serum (FBS, Omega). 

Because of the addition of FBS, all neuronal media contained cholesterol. Cell resuspension was 

deposited on round 12 mm coverslips at a density of ~200,000 cells/mL for two different surface 

conditions: bare glass or graphene-coated glass. After 2 h, 1 mL of culture media was added, a 1:1 

mixture of plating and 4-Arac-containing media: MEM containing (in mM) 27 glucose, 2.4 

NaHCO3, 0.00125 transferrin, 1.25 L-glutamine, 0.0022 insulin, 2 Ara-C, 1 %/vol B27 supplement 

(Life Technologies), and 7.5 %/vol FBS. Ara-C mimimized astroglia proliferation. For cell 

attachment studies, coverslips were washed three times with Hank’s solution and cells remaining 

in randomly selected fields of view were counted. Sister cultures supplying conditioned media 

were prepared in the same manner, except that 1 mL of plating media was added 4 h after plating 

to allow glial cell proliferation. After the confluence of glial cells (~2 DIV), 1 mL of 4-Arac media 

was added. For cells growing on graphene and glass, after 2 DIV, 1 mL of culture media was 

replaced with an equal volume of conditioned media from sister cultures. Experiments were 

performed on cultures at 3 and 7 DIV for developmental studies and between 13 and 17 DIV for 

all other studies using neurons. 

NIH-3T3 cells were grown at 37 °C with 5% CO2 in Dulbecco’s modified Eagle’s medium 

containing 4.5 g L-1 glucose and l-glutamine supplemented with 10% FBS, 100 units/mL 

penicillin, and 100 μg mL-1streptomycin. Because of the addition of FBS, this media also contains 

cholesterol. Cells were regularly passaged to maintain adequate growth and were passaged at least 

five times before trypsinization and plating on either graphene-coated or bare glass coverslips 
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(25 μL or ~2 × 106cells per coverslip). Cells were grown to 50–80% confluence for 24 h on 

coverslips prior to imaging. 

 

Filipin staining and image analysis 

Cells were fixed in PBS containing 4% paraformaldehyde for 30 min, washed, and 

incubated with filipin (1:500 in PBS, Sigma-Aldrich) for 2 h at room temperature. Fluorescence 

imaging was performed on an Olympus IX-81 inverted microscope using a Nikon Intensilight 

illuminator, a Nikon Plan Apo VC 20× objective (N.A. 0.75) and a fluorescence filter set (Ex 

390/40, DiC T425LPXR, Em 460/50, Semrock). Images were acquired with a CoolSnap K4 CCD 

camera (Photometrics) via Micro-manager with the same acquisition settings (exposure 

time = 300 ms and gain = 1) across each experimental group. For analysis, three independent 

batches of cultures were analyzed (n > 9 different coverslips). The total number of neurites or cells 

analyzed are reported (see figure legends). For the analysis of neurons, we manually selected ROIs 

covering neurites (Figs. 3 and 8) of morphologically identified neurons. Neurite selections were 

drawn to be approximately the same length for each ROI. For analysis of 3T3 cells, we used a 

threshold-based approach in ImageJ with a common threshold setting for all images in all 

experimental groups to select ROIs corresponding to cells. Average ROI intensity was measured 

in ImageJ. For every field of view (FOV), at least three ROIs from cell-free regions were manually 

selected, and their mean fluorescence intensities were calculated in the same manner. For 

background subtraction, the mean intensity value of every cell-containing ROI was subtracted by 

the average intensity of the three background ROIs in the same image. 

 

Immunocytochemistry and image analysis 
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For immunostaining after electrophysiological recordings, coverslips containing recorded 

cells were fixed in PBS containing 4% paraformaldehyde, washed, blocked for 1 h with PBS 

containing 1% BSA, and incubated overnight at 4 °C with diluted primary antibodies (TuJ1—

1:500, Synaptophysin—1:2000, and Streptavidin—1:500, all from Synaptic Systems). Secondary 

antibodies with distinct fluorophores (Alexa 488, 568 and 647, 1: 500 dilution for all, Biotium) 

were then incubated at room temperature for 2 h. Fluorescence imaging was performed on an 

Olympus IX-51 inverted microscope with a 60× UPlanFL (N.A. = 1.25) objective and a Flash 4.0 

sCMOS camera (Hamamatsu). The optical filter sets (Chroma and Semrock) for Alexa 488, 568, 

and 647 fluorescence were, respectively: Ex 470/20 DiC 510LP 535/25, Ex 565/25 DiC 585LP 

Em 630/90, and Ex 630/60 DiC 660LP Em 695/100. For each fluorescence channel, images were 

taken with the same acquisition settings (excitation light intensity and exposure time: 500 ms for 

Alexa 488 anti-mouse, 500 ms for CF568 Streptavidin, 50 ms for Alexa 647 anti-guinea pig). 

Biocytin-positive neurons were positioned approximately in the center of the fields of view for 

imaging. Not all electrophysiologically recorded neurons were identified and imaged, as some 

were damaged during Biocytin infusion. 

For Syp intensity analysis, a set of overlapping masks were used to restrict analysis to 

synapses on the processes of cells that were recorded (biocytin+). Binary masks of biocytin+ cells 

were generated by intensity-based global thresholding in ImageJ using a common threshold setting 

for the minimum value. Syp images corresponding to the same FOV were also thresholded to 

generate a second binary mask. Using the Boolean logic function in ImageJ, a new mask was 

generated from the intersection of the Syn+ and biocytin+ masks (AND function). This mask was 

then subjected to minimum particle size restrictions and ROI sets were generated for each FOV. 

These ROI sets were applied to the original Syp image and mean intensities were measured. For 
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cluster analysis, the standard deviation of the values obtained from the Syp intensity measurement 

were used. Background subtraction was performed on intensity values measured from each FOV 

by subtraction of the average of at least three different manually selected ROIs from cell-free areas 

of the Syp channel. Data were pooled for analysis, and the total number of synapses analyzed for 

each condition are reported in the figure legends. 

 

Sholl analysis 

Using the immunolabeled streptavidin-filled neurons from above, Sholl analysis was 

performed on images taken on an Olympus IX-51 inverted microscope with a 60× UPlanFL 

(N.A. = 1.25) objective and a Flash 4.0 sCMOS camera (Hamamatsu). The center of the filled 

soma was marked as the starting point and concentric circles spaced equidistantly were drawn. At 

each distance, the number of intersections was manually counted. Manual counting was taken as 

the best ground truth to exclude possible artifacts from image thresholding and further to ensure 

that all counted projections originated from the cell of interest. Error bars represent the S.E.M. of 

the pooled intersections from all cells in a treatment group at each distance. 

 

Electrophysiology 

At least three coverslips from five batches of neuronal culture were selected for recording, 

using at least one neuron per coverslip. Whole-cell voltage clamp recordings were performed on 

13–17-DIV neurons using a Multi-Clamp 700B amplifier, digitized through a Digidata 1440 A, 

and interfaced via pCLAMP 10 (all from Molecular Devices). All recordings were performed at 

room temperature. Cells were voltage clamped at −70 mV for all experiments. Patch pipettes were 

pulled from borosilicate glass capillaries with resistances ranging from 3 to 6 MΩ when filled with 
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pipette solution. The bath solution (Tyrode’s saline) contained (in mM): 150 NaCl, 4 KCl, 2 

MgCl2, 2 CaCl2, 10 N-2 hydroxyethyl piperazine-n-2 ethanesulphonic acid (HEPES), 10 glucose, 

pH 7.35. The pipette solution contained (in mM): 120 Cesium Methanesulfonate, 8 CsCl, 1 MgCl2, 

10 HEPES, 0.4 ethylene glycol-bis-(aminoethyl ethane)-N,N,N’,N’-tetraacetic acid (EGTA), 2 

MgATP, 0.3 GTP-Tris, 10 phosphocreatine, QX-314 (50 μM), 5 biocytin (Tocris), pH 7.2. For the 

recordings of mEPSCs, bath solution was supplied with 1 µM tetrodotoxin (TTX, Abcam). The 

last 50 mEPSCs at the end of 5 min recordings in the presence of TTX were collected and analyzed 

using template-based event detection. The template was generated from our own representative 

data. To measure AMPA receptor currents, 20 µM D-(-)-2-Amino-5-phosphonopentanoic acid (D-

AP5, Abcam), an NMDA receptor antagonist, was added to the bath solution. NMDA receptor 

currents were recorded in the presence of 10 µM 2,3-dihydroxy-6-nitro-7-

sulfamoylbenzo[f]quinoxaline-2,3-dione (NBQX, Abcam), an AMPA receptor antagonist, in 

0 mM [Mg2+]/3 mM [Ca2+] bath solution at −70 mV holding potential. Isolated AMPA and NMDA 

EPSCs were recorded from the same neurons sequentially by first applying D-AP5 then completely 

replacing it with NBQX. The NMDA/AMPA ratio for every neuron was calculated from the 

average amplitudes of the last 10 NMDA and AMPA events during 5 min D-AP5 or subsequent 

NBQX application. No postsynaptic currents were detected if D-AP5 and NBQX were applied 

together. All signals were digitized at 20 kHz, filtered at 2 kHz, and analyzed offline in Clampfit 

(Molecular Devices). 

 

Live cell fluorescence imaging and image analysis 

Live cell imaging was performed with 13–17 DIV cells using an Olympus BX-51WI 

microscope equipped with a 60× LUMPPlanFl water-immersion objective (N.A. 0.9), a Sutter 



58 
 

Instrument MP-78 xyz motorized stage, a Solamere laser combiner and launcher (405, 480, 561, 

and 640 nm lasers), a Yokogawa CSU-X1 spinning disk confocal head, and an Evolve 512 

EMCCD (Photometrics). For TFC, GP, and Ca2+imaging, cells growing on bare or graphene-

covered glass coverslips were pre-incubated with TFC (20 min, 1 µM, Avanti), C-laurdan (1 h, 

1 µM, TP Probes), or Rhod-2 AM ester (30 min, 1 µM, Biotium) at 37 °C with 5% CO2. After dye 

loading, coverslips were washed and mounted in an RC-26G imaging chamber (Warner 

Instruments) bottom-sealed with a 24 × 40 mm2 size 0 cover glass (Fisher Scientific). The chamber 

was fixed in a PH-1 platform (Warner Instruments) fixed on the MP-78 stage and bath solutions 

were applied via gravity perfusion with a constant rate of ~50 μL/s. All perfusion lines were 

merged into an SHM-6 in-line solution heater (Warner Instruments). The temperatures of both the 

imaging chamber and the perfusion solution were maintained at 34 °C by a temperature controller 

(TC344B, Warner Instruments). For FM dye or Quantum dot (Qdot) loading of the evoked pool 

of synaptic vesicles, mounted coverslips were incubated with 10 µM FM1-43, 10 µM FM4-64, or 

100 or 0.8 nM Qdots (Qdot 605, Thermo Fisher) for 2 min in high K+bath solution containing (in 

mM): 64 NaCl, 90 KCl, 2 MgCl2, 2 CaCl2, 10 N-2 hydroxyethyl piperazine-n-2 ethanesulphonic 

acid (HEPES), 10 glucose, 1 μM TTX, pH 7.35. For Qdot loading of the spontaneous pool of 

synaptic vesicles, cells were incubated with 100 nM Qdots for 15 min in normal Tyrode’s solution. 

The Qdots used here had a hydrodynamic diameter of ~15 nm, limiting loading to one per synaptic 

vesicle (~25 nm luminal diameter) (Zhang, Cao et al. 2007, Zhang, Li et al. 2009). After FM or 

Qdot loading, cells were washed with normal Tyrode’s solution containing 10 µM NBQX and 

20 µM D-AP5 for 5 or 10 min, respectively, to remove surface dye/Qdots. Electric field stimulation 

(10 Hz, 70 V) was triggered by a 5-V 2-ms TTL pulse generated by the Clampex software 30 s 

after imaging began and delivered via a pair of platinum wires attached to both sides of the imaging 
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chamber by a Grass SD9 stimulator. Synchronization of perfusion with image acquisition was via 

a VC-6 valve system (Warner Instruments) and controlled in Clampex. 

For TFC imaging, a 100 mW 480-nm laser (20% power) and a filter combination of DiC 

500LX and Em 520/20 were used. Exposure time was 100 ms and the EM gain was 250 for all 

images. For every FOV, 10 repeated images were taken and averaged. For FM1-43 imaging, laser 

and filter sets were the same as those for TFC. Exposure time was 50 ms, the EM gain was 300, 

and the acquisition rate was 1 Hz. For GP imaging using C-laurdan, a 405-nm laser (40% power) 

and a filter combination of a DiC 409LP and an Em 440/40 or 483/32 (for blue or green channels, 

respectively) were usually used. For TFC pretreated cells, we used an arc lamp (LUMen 200, Prior) 

and a D350x excitation filter (Chroma) to avoid spectral cross-excitation of TFC. The exposure 

time was 50 ms with an EM gain of 900 for all images. For every FOV and each fluorescence 

channel, 10 repeated images were taken and averaged. For Ca2+ imaging, a 100 mW 561-nm laser 

(20% power) and a filter combination of DiC 580LPXR and Em 605/52 were used. The exposure 

time was 150 ms, the EM gain was 500 for all images, and the acquisition rate was 1 Hz. For Qdot 

imaging, a 480-nm laser (80% power) and a filter combination of DiC 510LX and Em 605/10 were 

used. The exposure time was 200 ms, the EM gain was 250 for all images, and the acquisition rate 

was 5 Hz. For FM4-64 imaging, a 50-mW 640-nm laser (30% power) and a filter combination of 

DiC 660LX and Em 710/50 were used. The exposure time was 50 ms, the EM gain was 500 for all 

images, and the acquisition rate was 1 Hz. For static images, 10-frame stacks were averaged. All 

images were taken with the same acquisition settings between sample groups (laser intensity, 

exposure time, and EM gain). 

Image analyses were performed in ImageJ. Four rectangular ROIs were drawn in cell-free 

regions in every FOV and their intensities averaged. For fluorescence imaging of TFC, C-laurdan 
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(blue channel), FM1-43 (first 10 frames), FM4-64 (first 10 frames), and Rhod-2 AM, we pooled 

all background ROIs regardless of treatment differences in order to calculate the mean and standard 

deviation of the background intensity. Again, a masked threshold approach was applied in ImageJ, 

and the mean intensity plus two standard deviations was used as the common threshold for all 

images or image stacks. For every FOV, ROIs were generated by particle analysis based on a 

binary threshold mask. For TFC loading, watershed segmentation was used to generate ROIs. For 

FM1-43 and FM4-64, watershed segmentation and particle size limits (0.3–3 μm) were applied in 

ImageJ to isolate ROIs for synaptic boutons (~1 μm). ∆FM4-64 is defined here as the difference 

of FM4-64 fluorescence intensity before and after four rounds of exhaustive stimulation. 

For Rhod-2, FM1-43, and FM4-64 time-lapse data, the average intensity from four 

background ROIs was subtracted from the average intensity of each individual ROI in the same 

FOV. Normalization was performed using the average intensity of the first 10 frames. For C-

laurdan images, ROIs generated from blue channel images were used to analyze both channels. 

GP value was calculated as IGP = (Iblue − G × Igreen)/(Iblue + G × Igreen), in which G is the sensitivity 

correction factor between the two channels. G was empirically determined by imaging 1 μM C-

laurdan diluted in dimethyl sulfoxide (DMSO) using the prescribed protocol. Given 

GPDMSO = 0.006, the G value of our imaging setup was calculated using the following 

formula: G = (Iblue × (1 − GPDMSO))/(Igreen × (1 + GPDMSO)). For Qdot images, FM4-64-defined 

ROIs were applied and the mean Qdot photoluminescence intensity in each ROI was calculated. 

Quantal analysis for single Qdots was performed as described previously (Zhang, Cao et al. 2007, 

Zhang, Li et al. 2009). Briefly, maximum likelihood estimates were used to fit Qdot counts to a 

distribution of intensities. Qdot intensities were binned every 30 a.u. without background 

subtraction. The estimated threshold based on the mean background signal plus two standard 
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deviations was near 3000 a.u. by which we set the cut-off for a single Qdot. To analyze the 

behavior of vesicles labeled by single Qdots, we selected ROIs having only one Qdot. Time-

dependent Qdot photoluminescence traces were extracted with a five-frame moving window. 

 

Statistical analysis 

All experiments were carried out blindly and repeated in at least three different batches of 

cultures (N ≥ 3). All imaging experiments were repeated with at least three randomly selected 

coverslips per batch with one randomly chosen FOV per coverslip. No statistical methods were 

used to predetermine sample size. All values presented are mean ± S.E.M. All fluorescence 

intensity values are background corrected except in Figure S5a. For two-group comparison of 

average values, data were first assessed for normality using the Lillefors test. Unpaired two-

tailed t-tests or the Wilcoxin rank-sum test were used for two-group comparison of average values. 

Cumulative distribution functions (FM dye and Qdot imaging) or histograms (GP imaging) were 

used for two-group comparison of pooled values. Cumulative distributions are an accepted 

measure to provide an overview of intensity distributions from synapses (Thiagarajan, Lindskog 

et al. 2005) and more clearly demonstrate the overall trend of the individual data points than an 

average measure. For GP imaging data, all individual pixels from each FOV were pooled from 

each treatment condition as the GP distributions for the generation of test statistics. Kolmogorov–

Smirnov tests were used to compare distributions. For Sholl analysis datasets, statistics were 

calculated using two-way analysis of variance (ANOVA) with repeated measures followed by the 

Bonferroni multiple comparisons test. ω2 values were calculated as effect-size metrics for relevant 

ANOVA data. A one-way ANOVA and the Tukey–Kramer method as post-hoc analysis was used 

for three or more groups. Fisher z-tests were used to compare correlation coefficients. Because the 
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sample sizes of several reported values are large and thus may overestimate true significance 

(Sullivan and Feinn 2012), Cohen’s d-statistic (Hentschke and Stuttgen 2011) was also reported 

for some datasets. 

 

Characterizing an interaction between graphene and cholesterol 

To test graphene’s ability to attract cholesterol, we produced GFs from graphite powder 

using a well-established LPE protocol (Hernandez, Nicolosi et al. 2008). GFs were suspended in 

2 wt% polyvinylpyrrolidone (PVP) at 260 ng/mL to prevent aggregation. We mixed this 

suspension with serum-containing neuronal culture media and incubated for 24 hours to mimic 

chronic exposure during culture. Serum in our culture media contains cholesterol (see result below 

and Methods), which enabled us to measure cholesterol adsorption onto the graphene surface. GFs 

were separated out by size-dependent filtration and subjected to an enzymatic cholesterol assay 

(Amundson and Zhou 1999). The remaining fraction, untreated fresh media, and media mixed with 

PVP (as a vehicle control) were assayed in the same manner.  

 

 
Figure 2.1 Graphene interacts with cholesterol.  (a) Cholesterol concentrations (based on the 
working curve generated from cholesterol standards, gray circles and line) in fresh serum-
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containing (orange triangle), untreated (black triangle), PVP-treated (green triangle), graphene-
treated media (blue triangle), and graphene incubated with media (red triangle). n = 4 samples per 
batch, N = 4 total batches. Error bars are S.E.M. (b) Spectrofluorometer measurements of BODIPY 
(dashed line) and TFC (solid line) emission after 1-hour incubation with graphene (light or dark 
red), adjusted for the concentration-dependent broadband absorbance of graphene (Fig. 2.2) and 
normalized to the maximum value of 0 mg/L graphene and minimum value of 10 mg/L graphene 
at each measured wavelength for both dyes. 
 

 

After calibration by a cholesterol standard, we determined that cholesterol concentrations 

in the PVP-treated media (12.4  2.3 M) and untreated fresh media (12.3  0.9 M) were similar. 

The GFs fraction (graphene incubated with media) showed a significantly higher cholesterol 

concentration (18.0  1.0 M), while there was a correspondingly lower concentration (4.3  0.1 

M) in the remaining fraction (graphene-treated media) (Figure 2.1a), suggesting that GFs extract 

cholesterol from culture media. To verify that this was due to an interaction between graphene and 

cholesterol rather than the non-specific adsorption of proteins that cholesterol is complexed with, 

we used a fluorescent cholesterol analog, TopFluor Cholesterol (TFC, a.k.a. BODIPY-

cholesterol). TFC is biophysically similar to cholesterol and thus can be used to study cell 

membrane cholesterol in live cells (Hölttä-Vuori, Uronen et al. 2008, Holtta-Vuori, Sezgin et al. 

2016, Sezgin, Can et al. 2016). Since graphene is a highly efficient acceptor in Förster resonance 

energy transfer (Kasry, Ardakani et al. 2012), we reasoned that TFC fluorescence would be 

quenched if an interaction stabilized cholesterol on the GFs surface. In line with this prediction, 

spectrofluorometry measurements demonstrated that GFs significantly reduced TFC fluorescence 

in a concentration- and time-dependent manner (Figure 2.1b and Figure 2.2). 
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Figure 2.2 Spectrofluorometry demonstrates an interaction between TFC and graphene. (a) 
Transmission spectra of 5 and 10 mg/L graphene (gray and black, respectively) in H2O with 2 wt% 
PVP show a concentration-dependent broadband graphene absorbance. (b) Time-lapse emission 
spectra of 2 wt% PVP in H2O. (c) 1.3 M TFC in H2O shows a time-dependent fluorescence decay 
in the 530-549 nm range (cyan box, the peak of TFC fluorescence in H2O) and the 565-584 nm 
range (beige box). (d) Addition of 2 wt% PVP to 1.3 M TFC in H2O. (e) Time-lapse emission 
spectra of 1.3 M TFC in H2O containing 2 wt% PVP and 10 mg/L graphene, adjusted by the 
absorbance of 10 mg/L graphene. (f) Time-lapse emission spectra of 1.3 M TFC in H2O 
containing 2 wt% PVP and 5 mg/L graphene, adjusted by the corresponding absorbance of 5 mg/L 
graphene.  
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Furthermore, GFs had little effect on BODIPY fluorescence (Figure 2.1b), suggesting the 

interaction between GFs and TFC is specific to the cholesterol group.  

 

Production and characterization of graphene substrates 

Having demonstrated an interaction between GFs and cholesterol, we set out to test if this 

interaction plays a role in mediating graphene’s cellular effects. We produced large films of planar 

graphene via chemical vapor deposition (CVD), which were solution transferred to bare glass 

coverslips to be used as culture substrates (Figure 2.3a). 
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Figure 2.3 Characterization of graphene films. (a) Bright field image shows the field of view. 
Scale bar, 1 mm. (b) Raman spectrum at the graphene covered area shows characteristic G and 2D 
peaks. The high 2D vs. G ratio and a symmetric 2D peak are consistent with those of monolayer 
graphene. Corresponding spatially-resolved map of (c) Raman G-peak intensity and (d) 2D-peak 
intensity from the same field of view. Scale bar, 1 mm. (e) Bright field image shows the edge of a 
Matrigel droplet (upper-left) on a graphene-coated glass coverslip. (f) Corresponding Raman 2D-
peak intensity map. Scale bar, 5 m. (g) Raman spectrum of the bare graphene area (black) shows 
a high 2D vs. G ratio and a symmetric 2D peak, indicating monolayer graphene. At the Matrigel-
coated graphene area (red), there is a strong reduction of intensity of both the G and 2D peaks. (h) 
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Bright field image shows the edge of a cell (upper-left) growing on a graphene-coated glass 
coverslip. (i) Corresponding Raman 2D-peak intensity map. Scale bar, 5 m. (j) Raman spectrum 
at the cell-covered graphene area (red) also exhibits an intensity reduction for both G and 2D peaks 
in comparison to that at the bare graphene area (black). 
 

 The quality of the CVD graphene was examined by Raman spectroscopy. The 

characteristic 2D and G peaks as well as the large ratio between them (Li, Cai et al. 2009, Lee, Lee 

et al. 2014) suggest that the graphene films are monolayer (Figure 2.3b). Spatially-resolved 

Raman intensity maps of the G and 2D peaks further demonstrate their uniformity (Figure 

2.3c&d). Because previous reports have demonstrated that neurons remain viable on uncoated 

graphene during long-term culture (Bendali, Hess et al. 2013, Fabbro, Scaini et al. 2016, Veliev, 

Briancon-Marjollet et al. 2016), we omitted Matrigel, an extracellular substrate commonly used 

for hippocampal cultures (see Methods), and plated dissociated neurons directly on pristine 

graphene. Conventional hippocampal cultures contain a considerable number of astrocytes (Liu 

and Tsien 1995), which if allowed to proliferate over the length of the culture period would have 

covered the substrate surfaces, further limiting the exposure of neurons to graphene. To minimize 

potential effects from the astrocyte layer, we applied a mitotic inhibitor (Ara-C) immediately after 

cell plating, which blocks astrocyte proliferation without any effect on non-proliferative cells (i.e. 

neurons) (Liu and Tsien 1995). However, astrocytes play important developmental and functional 

roles for neurons, so to compensate for the lack of astrocytes, we routinely supplied cultures with 

conditioned media (see Methods) harvested from conventional hippocampal cultures prepared in 

parallel. As a negative control, the same astrocyte-deprived hippocampal cultures were grown on 

bare glass coverslips and maintained in the same manner. 

 

It is well-established that nanomaterial surfaces will be covered by a variety of 

biomolecules (i.e. a protein corona) after introduction to any biological system. Although we 
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omitted a much thicker artificial protein-coating layer (Matrigel) in plating our cultures, we cannot 

exclude the likelihood of the formation of a protein corona on the graphene surface. However, our 

cell-free assays demonstrate that cholesterol enrichment on graphene still occurs even in the likely 

presence of a protein corona after 24-hour incubation (Figure 2.1a). We performed Raman 

spectroscopy on neurons grown on graphene and found that the intensity of both 2D and G peaks 

were suppressed in cell-containing regions (Figure 2.3h-j), similar to what was observed in 

Matrigel-coated areas (Figure 2.3e-g), suggesting that plated neurons change graphene’s Raman 

spectra in the same manner that Matrigel does.  

 

Increased cholesterol in neurons on graphene substrates 

Computational studies predict that graphene oriented parallel to the cell surface can induce 

a local enrichment of cholesterol (Gburski, Gorny et al. 2011, Zhang, Xu et al. 2016). To 

experimentally investigate possible changes in cholesterol after chronic growth on graphene, we 

first performed Filipin staining, a conventional method for labeling cholesterol in fixed cells 

(Maxfield and Wustner 2012).  
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Figure 2.4 Graphene increases cell membrane cholesterol. (a) Sample images of Filipin staining. 
Scale bar, 100 m. (b) Filipin fluorescence intensity in neuronal neurites (nglass = 118 and ngraphene 

= 112 neurites, N = 3 batches, ***, p < 0.001, Wilcoxin rank-sum test, Cohen’s d  = 1.89). (c) 
Sample generalized polarization (GP) images. Scale bar, 20 m. (d) distributions of GP values 
over individual image pixels (n = 7 FOVs, N = 3 batches for each group; p < 0.05, Kolmogorov-
Smirnov test of the distributions of GP values, see data analysis section of the methods). Error bars 
are S.E.M. 
 

We found a 27% increase in Filipin staining intensity in the neurites of neurons cultured 

on graphene (Figure 2.4a&b), suggesting that graphene indeed increased cholesterol in neurites. 

To determine if a cholesterol increase occurred in live neurons, we turned to generalized 

polarization (GP) imaging, which uses a ratiometric reporter based on a fluorescent dye sensitive 

to membrane fluidity. Since membrane fluidity is in turn inversely correlated to membrane 

cholesterol concentration, GP imaging is commonly used to indirectly measure cholesterol 
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changes in the cell membrane (Gaus, Zech et al. 2006). We used C-laurdan, a more sensitive and 

photostable derivative of the commonly used Laurdan (Kim, Choo et al. 2007). GP value was 

calculated as (Iblue-GIgreen)/(Iblue+ GIgreen), in which G is a correction factor and Iblue and Igreen are 

fluorescence intensity values (Gaus, Zech et al. 2006). We found that C-laurdan fluorescence 

exhibited a blue-shift on graphene, which translated to an overall shift toward increased GP values, 

indicating increased plasma membrane cholesterol on graphene substrates (Figure 2.4c&d). 

 

Given that TFC has been demonstrated to behave similarly to endogenous cholesterol in 

membrane incorporation and phase partitioning (Hölttä-Vuori, Uronen et al. 2008, Holtta-Vuori, 

Sezgin et al. 2016, Sezgin, Can et al. 2016), we used TFC to mimic the membrane distribution of 

endogenous cholesterol and thus to examine graphene’s effect on cell membrane cholesterol. 

Because of reported differences between TFC and cholesterol in intracellular transportation and 

lysosomal accumulation (Holtta-Vuori, Sezgin et al. 2016, Sezgin, Can et al. 2016) we used a 

shorter loading time (1 hour) and lower concentration (1 M) of TFC; this should largely result in 

TFC incorporation into the plasma membrane. However, we cannot exclude the possibility that 

membrane turnover will also result in some intracellular membrane labelling.  
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Figure 2.5 Graphene increases synaptic membrane cholesterol. (a) Sample images of 
TopFluor-Cholesterol (TFC) staining of neurons. Scale bar, 10 m. (b) Average TFC staining 
intensity of threshold defined ROIs (n = 9 FOVs, N = 3 batches for each group, **, p < 0.01, two-
tailed t-test). (c) Sample images of FM4-64 staining of neurons. Same scale bar as a. Arrowheads 
indicate examples of synaptic boutons defined by FM4-64 labelling. (d) Overlay of a and b, 
arrowheads from b. (e) ∆FM 4-64 fluorescence intensity (see Methods) vs. TFC intensity in FM4-
64 defined synaptic boutons (both n = 9 FOVs, N = 3 batches for each group; p < 0.05, two-tailed 
t-test). Linear regression fittings indicate correlation for graphene (FTFC = 1.2083  FFM4-64 – 
253.29 a.u., Pearson correlation coefficient = 0.6629, red solid line) and glass (FTFC = 0.6273 
FFM4-64 + 837.85 a.u., Pearson correlation coefficient = 0.5698, black solid line). Error bars are 
S.E.M. 

 

We found that TFC is distributed throughout neurites (Figure 2.5a). Intriguingly, neurons 
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on graphene showed significantly increased TFC labeling (Figure 2.5b). As synaptic boutons 

generally have a higher cholesterol concentration than other parts of the neuronal membrane 

(Takamori, Holt et al. 2006, Wilhelm, Mandad et al. 2014) which might thus limit the ability of 

the membrane to incorporate cholesterol analogue, we then asked if graphene could also increase 

TFC’s membrane insertion within synaptic boutons. To this end, we measured TFC intensity in 

areas defined by FM4-64 labeling (i.e. synaptic boutons) (Figure 2.5c&d, arrow heads), a far-red 

fluorescent dye which preferentially labels synaptic vesicles (Rouze and Schwartz 1998). Since an 

increase of synaptic vesicles can increase the total presynaptic membrane area and consequently 

TFC staining, we examined the relationship between TFC staining and FM4-64 staining (Figure 

2.5e, scatter plots and regression fits). The overall increase of TFC intensity relative to increases 

in FM4-64 intensity was higher on graphene (Figure 2.5e), suggesting that graphene increases 

membrane cholesterol regardless of possible changes in synaptic vesicle numbers at synaptic 

boutons. 

 

Physiological properties of neurons on graphene 

To probe if an increase in cholesterol elicited functional effects, we recorded synaptically 

connected neurons on graphene or glass between 13 and 17 DIV (days in vitro) (Figure 2.6a).  
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Figure 2.6 Graphene increases spontaneous firing frequency in neurons. (a) Sample traces 
from neurons on glass (black) or graphene (red). (b) Mean sEPSC amplitudes (nglass = 13 cells, 
ngraphene = 15 cells, N > 4 batches; p > 0.1, two-tailed t-test, Cohen’s d  = 0.10). (c) Mean sEPSC 
inter-event intervals (nglass = 13 cells, ngraphene = 15 cells, N > 4 batches, *, p < 0.05, two-tailed t-
test, Cohen’s d  = 1.30). (d) INMDAR/IAMPAR (nglass = 10 cells, ngraphene = 9 cells, N > 3 batches; p > 
0.1, two-tailed t-test, Cohen’s d  = 0.27). Error bars are S.E.M. 
 

The amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) was slightly but 

not significantly larger in neurons on graphene (Figure 2.6b), while sEPSC frequency was 

significantly higher (i.e. a shorter inter-event interval) (Figure 2.6c). Glutamate is the major 

excitatory neurotransmitter in our culture configuration and sEPSCs are largely mediated by two 

ionotropic glutamate receptors: -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors 

(AMPARs) and N-methyl-D-aspartate receptors (NMDARs), which have distinct activation and 

decay kinetics (Figure 2.7).  
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Figure 2.7 Sequential recording of AMPA and NMDA receptor-mediated EPSCs from the 
same neurons. 0 mM Mg2+ Tyrode releases the voltage gating of NMDARs and thus results in 
readily distinguishable AMPAR and NMDAR contributions to the sEPSC records. Addition of the 
NMDAR antagonist D-AP5 isolates the fast AMPAR component. Addition of the AMPAR 
antagonist NBQX after wash off of D-AP5 allows the isolation of the slow NMDAR component. 
Addition of both D-AP5 and NBQX completely eliminates sEPSCs, and washout with 2 mM Mg2+ 

Tyrode’s solution recovers sEPSCs that are largely mediated by fast AMPAR components which 
can also be seen in the traces in (1). 0 mM Mg2+, as shown in (1), also acts to remove the NMDA 
receptor blockade that exists in normal physiological solution 1. Thus, the contribution of NMDA-
receptor mediated currents are more readily visible in (1) than in (5). 

 

Because changes in sEPSC frequency could be modulated through changes in presynaptic 

neurotransmitter release or by changes in the postsynaptic composition of NMDARs and AMPARs 

(measured as the INMDAR vs. IAMPAR ratio (Malinow and Malenka 2002)), to determine if the 

increased sEPSC frequency on graphene was driven by postsynaptic mechanisms, we measured 
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INMDAR/IAMPAR. Here we observed a small but non-significant decrease in this ratio (Figure 2.6d). 

Taken together with a small but non-significant increase in sEPSC amplitude, this suggested that 

the effects of graphene are presynaptic. 

 

Morphological characterization of neurons on graphene 

To understand the cellular basis of our observed electrophysiological changes, we 

performed immunofluorescence labeling using antibodies against a selective synaptic vesicle 

marker, Synaptophysin (Syp), and a neurite-specific marker, -III Tubulin (Tuj1). Recorded 

neurons were retrospectively identified by biocytin infused through the patch electrodes (Figure 

2.8a). 
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Figure 2.8 Morphological comparison of neurons on glass or graphene. (a) Sample images of 
immunofluorescence staining for the synaptic vesicle marker, Synaptophysin (Syp, green), and 
neuron-specific class III -tubulin (TuJ1, blue) in recorded cells (biocytin filled, red). Scale bar, 
30 m. (b) Inset regions from the sample images are indicated by white boxes. Scale bar, 15 m. 
Arrowheads indicate examples of Syp puncta. (c) Sholl analysis (** p = 0.01, F(1,323) = 6.7, Two-
Way ANOVA with repeated measures followed by a Bonferroni multiple comparisons test, ω2 = 
0.017, nglass = 12 cells, ngraphene = 11 cells, N > 4 batches). (d) Lateral density of Syp puncta along 
the neurites of recorded neurons (Tuj1-positive and biocytin-positive) (nglass = 12 cells, ngraphene = 
11 cells, N > 4 batches; p > 0.1, two-tailed t-test). (e) Average Syp immunostaining (n > 10,000 
synapses analyzed, N > 3 batches, *** p < 0.001, two-tailed t-test, Cohen’s d = 0.500). (f) Average 
Syp clustering within individual synaptic boutons (n ≥ 3 FOVs, N = 3 batches; * p < 0.05, two-
tailed t-test, Cohen’s d = 0.65). Error bars are S.E.M. 
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We first examined neurite complexity, as complexity is correlated to synaptic connectivity 

(Missaire and Hindges 2015). It is generally established that increased neurite complexity is 

associated with more synaptic connections between neurons, and more synaptic connections in 

turn lead to more synaptic inputs (i.e. higher sEPSC frequency) (Citri and Malenka 2008). We 

performed Sholl analysis to quantify arborization, which counts the number of neurite intersections 

at concentric circles of increasing radius originating at the neuronal soma (Sholl 1953). 

Although there was an overall increase in neurite complexity on graphene between 12-18 

DIV (Figure 2.8c and Table 2.1), the effect was small (see Figure 2.8c legend) and furthermore 

not significant at any distance. 

 

Table 2.1 Summary Sholl analysis at 12-18 DIV. 
 

 
Graphene Glass 

p - value 

(one-way ANOVA) 

Critical Value 78.89 98.57 0.5567 

Dendrite Maximum 17.56 20.43 0.0721 

Schoenen Ramification Index 3.6582 5.1643 0.0490 

Regression Coefficient 0.0439 0.0522 0.1568 
 
 

 However, we did note a non-significant increase on graphene at 68 m. To determine if 

the overall increase was a result of early developmental changes, we performed Sholl analysis on 

neurons at 3 or 7 DIV.  
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Figure 2.9 Graphene does not substantially alter early synaptic development. (a) Sample 
images of fluorescence immunostaining for the synaptic vesicle marker Synaptophysin (Syp, 
green), neuron-specific class III -tubulin (TuJ1, red) and nuclear marker DAPI (blue) at 3 DIV. 
Scale bar, 50 m. (b) Sholl analysis at 3 DIV (p > 0.05, Two-Way ANOVA with repeated 
measures, nglass = 17 cells and ngraphene = 22 cells). (c) Intensity of Syp staining in TuJ1(+) processes 
at 3 DIV (nglass = 1524 synapse sand ngraphene = 1715 synapses, *** p < 0.001, two-tailed t-test, 
Cohen’s d = 0.188) Solid lines indicate mean value. (d) Sample images of fluorescence 
immunostaining for Syp (green), TuJ1 (red) and DAPI (blue) at 7 DIV. Scale bar, 50 m. (e) Sholl 
analysis at 7 DIV (p > 0.05, Two-Way ANOVA with repeated measures, nglass = 17 cells and 
ngraphene = 11 cells). (f) Intensity of Syp staining in TuJ1(+) processes at 7 DIV (nglass = 4381 
synapses and ngraphene = 3990 synapses, *** p < 0.001, two-tailed t-test, Cohen’s d = 0.146). Solid 
lines indicate mean value. All error bars are the S.E.M. of the number of intersections from each 
FOV. 

 

Here we found no differences in overall complexity (i.e. number of intersections); there 

were also only very small increases in Syp staining intensity (Figure 2.9). Collectively, our 

analysis of neurite complexity throughout development suggests that graphene does not 

substantially alter early outgrowth (up to 7 DIV), but does slightly increase the overall dendritic 

arbor during late phase development (7-12 DIV). To determine if neurons on graphene had more 

synaptic connections per neurite, we measured the lateral density of synaptic boutons along 
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neurites (the number of Syp-positive puncta in a unitary length of Tuj1- and biocytin-positive 

process) (Figure 2.8b). The lateral density of boutons was not altered on graphene (Figure 2.8d), 

in line with the idea that developmental changes on graphene are limited and do not act to alter 

synaptic connectivity in mature neurons.  

 

Given that our functional data documented synaptic potentiation on graphene (Figure 

2.6c), we next examined Syp immunostaining. Syp is highly localized to within synaptic vesicles 

(Granseth, Odermatt et al. 2006), thus differences in Syp staining intensity are positively correlated 

to differences in the number of vesicles within presynaptic terminals. We found that the mean 

fluorescence of Syp-positive puncta was ~21% greater in the graphene group (Figure 2.8e). We 

also analyzed the standard deviation of the pixel intensity (i.e. clustering index) within individual 

Syp-positive puncta. Within an individual ROI (see Methods), distributed vesicles would lead to a 

more uniform overall intensity, thus a lower standard deviation – i.e. a lower clustering index. 

Conversely, more clustered vesicles would be less uniform, resulting in a larger clustering index 

within individual boutons (Wilhelm, Mandad et al. 2014). We found a significantly increased 

average clustering index across all ROIs on graphene (Figure 2.8f), suggesting that synaptic 

vesicles are more tightly clustered in individual presynaptic terminals. 

  

Graphene substrates potentiate neurotransmitter release 

Our electrophysiological and immunolabeling results collectively suggested synaptic 

vesicle changes in presynaptic terminals. Because cholesterol is essential for synaptic vesicle 

origination, distribution, and turnover (Pfrieger 2003), we turned our attention to changes in 

synaptic vesicles on graphene substrates. To study synaptic vesicles, we used FM1-43, a styryl dye 
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with better kinetic properties than FM4-64 (Betz and Bewick 1992).  
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Figure 2.10 Graphene induces presynaptic potentiation. (a) Sample images of FM1-43 labeling. 
Scale bar, 30 m. (b) Cumulative distributions of FM1-43 intensities at synaptic boutons (black, 
glass; red, graphene, same color coding hereafter). nglass = 207 ROIs, ngraphene = 139 ROIs, N = 3; 
* p < 0.05, Kolmogorov-Smirnov test). Inset. Average FM1-43 fluorescence. ** p < 0.01, 2-tailed 
t-test. (c) Sample images of FM1-43 labeling after destaining. Scale bar, 30 m. (d) FM1-43 
fluorescence during destaining. Inset is average fluorescence from 170-180s (nglass = 207 ROIs, 
ngraphene = 139 ROIs, N = 3; *** p < 0.001, two-tailed t-test). (e) Sample images of single Qdot 
loading. Scale bar, 30 m. (f) Cumulative distributions of Qdot intensity after background 
subtraction in ROIs defined by retrospective FM4-64 labeling (single Qdot loading, dotted line; 
total recycling pool loading, solid lines). The average single Qdot intensity after background 
subtraction is 378±41 a.u.. The average total Qdot intensities after background subtraction are 
8,787 ± 156 a.u. for glass and 11,050 ± 224 a.u. for graphene (nglass = 187 ROIs, ngraphene = 211 
ROIs, N = 4; *** p < 0.001, Kolmogorov-Smirnov test). The estimated average numbers of total 
recycling vesicles are 23.2 for glass and 29.2 for graphene. (g) Sample images of single Qdot 
labeling after stimulation. Scale bar, 30 m. (h) Fast-and-reversible fusion (FRF) ratio (out of all 
fusion events) during 1-min 10-Hz field stimulation (nglass = 174 ROIs, ngraphene = 181 ROIs, N = 
3; *** p < 0.001, two-tailed t-test on the average FRF values from a 5-frame window at the end of 
each time course). Error bars are S.E.M. 

 

The amount of FM1-43 uptake reflects the number of the releasable synaptic vesicles (Betz 

and Bewick 1992). In good agreement with FM4-64 loading (Figure 2.5e) and Syp staining 

(Figure 2.8e), there was significantly more FM1-43 uptake (~27%) by neurons on graphene 

(Figure 2.10a&b and 2.10b inset), suggesting an increase in releasable vesicles. Subsequent high-

K+ stimulation with a dye-free external solution causes FM1-43 loss from synaptic vesicles as they 

undergo evoked exocytosis. The amount and the rate of dye loss reflect synaptic vesicle release 

probability (Betz and Bewick 1992). We observed a ~30% increase in total dye loss in neurons on 

graphene (Figure 2.10c&d and 2.10d inset) and an increase in the rate of dye loss (Figure 2.11), 

indicating an increased pool of releasable vesicles and an increase in their release probability. 
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Figure 2.11 FM1-43 destaining rate suggests increased vesicle release probability in neurons 
on graphene. Raw FM1-43 fluorescence intensity values for graphene (red solid line) or glass 
(black solid line) during the stimulation period. 

 

Together, our results suggest that graphene leads to an increase of releasable vesicles, 

which acts to potentiate neurotransmission. 

 

To further elucidate the mechanisms underlying this presynaptic potentiation, we 

performed single vesicle imaging using quantum dots (Qdots), an approach which provides a more 

precise estimate of releasable synaptic vesicle amounts and their release probability. We began by 

loading Qdots into all releasable vesicles (the total releasable pool, TRP) using a combination of 

a high concentration of Qdots (100 nM) and strong stimulation (2-minute 90 mM-K+) (Zhang, Cao 

et al. 2007, Zhang, Li et al. 2009) (Figure 2.10e). Based on the unitary photoluminescence of a 

single Qdot (see supplementary discussion), we estimated that the average numbers of total 

releasable pool vesicles per synapse were 23.2 ± 0.4 on glass and 29.2 ± 0.6 on graphene, a ~26% 

increase (Figure 2.10f). We next applied Qdots at a low concentration (0.8 nM) to randomly load 

single vesicles across the total releasable pool (Figure 2.10g). Quantal analysis of Qdot 

photoluminescence (Zhang, Cao et al. 2007, Zhang, Li et al. 2009) in FM4-64 defined synaptic 
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boutons confirmed that a large fraction of terminals were loaded with single Qdots inside 

individual synaptic vesicles (Figure 2.12).  

 

 

Figure 2.12 Single Qdot imaging to measure single vesicle turnover. (a) The distribution of 
mean intensity values (without background correction) in individual synaptic boutons defined by 
retrospective FM4-64 staining. The intensity distribution was fit with Gaussians of equal offset 
(i.e. mean and variance increase in folds). Quantal analysis (black and gray lines, Gaussian fits 
based on a maximal likelihood estimate) indicates that the mean intensity representing the unitary 
Qdot photoluminescence is 378 ± 41 a.u. with an average background intensity of 2719 ± 54 a.u. 
(b) Sample traces showing prototypical photoluminescence traces of single Qdots for the four 
different treatments: neurons on glass without (black) or with TFC pretreatment (green) and 
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neurons on graphene without (red) or with MCD pretreatment (purple). A small and transient 
increase in Qdot fluorescence (uptick) represents fast-and-reversible fusion (FRF), and a large and 
unitary decrease following an uptick represents full-collapse fusion (FCF). (c) Vesicle release 
probability (measured as the first fusion events of individual Qdot-loaded synaptic vesicles) is 
significantly higher in neurons on graphene (red) than on glass (black) (p < 0.05) but is 
significantly reduced by MCD pretreatment (purple) (ngraphene = 231, ngraphene+MCD = 214, nglass = 
183, nglass+TFC = 225 Qdots, N = 3 for every group; p < 0.05, two-tailed t-test). In contrast, the 
release probability on glass (black) is significantly increased by TFC pretreatment (green) (p < 
0.05, two-tailed t-test). (d) Number of synaptic vesicles (y-axis) conducting the specified numbers 
of FRF events during the stimulation (x-axis) in neurons on graphene (red) or glass (black) (n = 3 
FOVs from N = 3 for each group *, p < 0.05, two-tailed t-test). Error bars are the S.E.M. from each 
FOV. 

 

We stimulated neurons for 1-minute with high-K+ solution and imaged Qdot release from 

synaptic vesicles. The size and inherent pH-sensitivity of Qdots allows for discrimination between 

recycling modes via patterns of photoluminescence changes (Figure 2.12): a small and transient 

increase in Qdot photoluminescence alone indicates fast and reversible fusion (FRF), while such 

an increase immediately followed by a unitary Qdot loss indicates full-collapse fusion (FCF) 

(Zhang, Li et al. 2009). In neurons on graphene, individual synaptic vesicles conducted more FRF 

(Figure 2.12) and, correspondingly, a significantly larger fraction of FRF out of all vesicle release 

events (Figure 2.10h), which would be expected for a cholesterol increase in the plasma and 

vesicular membranes of presynaptic terminals (Chang, Kim et al. 2009, Dason, Smith et al. 2010, 

Puchkov and Haucke 2013, Yue and Xu 2015). Thus, we concluded that graphene promotes fast 

synaptic vesicle turnover in addition to increases in vesicle number and their release probability. 

 

Synaptic potentiation on graphene is cholesterol dependent 

To further investigate the extent to which membrane cholesterol levels mediate presynaptic 

potentiation on graphene, we sought to directly manipulate cell membrane cholesterol levels. We 

first increased membrane cholesterol levels in neurons grown on glass by the addition of TFC as 
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an exogenous cholesterol supply (Lund, Lomholt et al. 2012). Neurons were treated with 1 M 

TFC for 1 hour, which was sufficient to allow incorporation into the plasma membrane.  

 

 

Figure 2.13 Cholesterol mediates graphene-induced presynaptic changes. (a) Sample Filipin 
staining images of neurites on graphene with (purple) or without (red) MCD treatment and on 
glass with (green) or without (black) TFC loading. Scale bar, 50 m. Same color coding hereafter. 
(b) Average Filipin staining intensities in neurites (ngraphene = 107 neurites, ngraphene+MCD = 151 
neurites, nglass = 188 neurites, nglass+TFC = 152 neurites, N = 3 batches for every group; for graphene 
vs. graphene + MCD, graphene vs. glass, and glass vs. glass + TFC, *** p < 0.001, all Wilcoxin 
rank-sum tests). (c) Distributions of GP values over individual image pixels (n = 6 FOVs, N = 3 
batches for every group; for graphene vs. graphene + MCD and glass vs. glass + TFC, both p < 
0.05, for graphene vs. glass + TFC, p = 0.073, Kolmogorov-Smirnov test of the distributions of 



87 
 

GP values, see data analysis section of the Methods). (d) FM 4-64 fluorescence changes before 
and during 2-min 90-mM K+ and (inset) average fluorescence decrease using a 5-frame window 
at the end of the stimulation period (n = 6 FOVs, N = 3 batches per group; for graphene vs. 
graphene + MCD, graphene vs. glass, and glass vs. glass + TFC, *** p < 0.001, for graphene vs. 
glass + TFC and graphene + MCD vs. glass, N.S. p > 0.05, all two-tailed t-tests). (e) FRF ratios 
during 1- min 30-Hz electrical stimulation (n = 3 FOVs, N = 3 batches for every group; for 
graphene vs. graphene + MCD and glass vs. glass + TFC, both p < 0.05, two-tailed t-tests on the 
average of a 5-frame window at the end of the stimulation period). Error bars are S.E.M. 

 

We used two independent measurements to assess Cholesterol levels: Filipin staining 

(again measured in neurites) (Figure 2.13a&b) of fixed neurons and GP imaging (Figure 2.13c) 

of live neurons. To avoid the cross-excitation of TFC when imaging C-laurdan, all GP imaging 

experiments involving the manipulation of membrane cholesterol levels were performed using a 

different optical configuration (see Methods and Figure 2.14).  

 

 

Figure 2.14 GP values with two different excitation settings. (a & b) Sample GP images with a 
405 nm laser (a) or Prior 200 light source and D350x filter (b)(Chroma). Scale bar, 20 m. (c) The 
distribution of GP pixel values for both conditions. 

 

Notably, although Filipin staining intensity was greater for the acute addition of TFC than 

for chronic growth on graphene, the similarity in GP distributions suggests that cholesterol levels 

within the plasma membrane were similar between graphene and TFC-treated glass samples. TFC 
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treatment of neurons on glass increased the FM4-64 destaining rate, increased the FRF ratio, and  

also increased release probability (Figure 2.13d-e and Figure 2.14b&c), similar to the effects we 

observed on graphene. We next used methyl--cyclodextrin (MCD), a cholesterol-binding 

compound (Zidovetzki and Levitan 2007), to decrease cholesterol levels in neurons on graphene. 

To limit its effect to the cell membrane, we applied a low concentration (0.5 mM) of MCD for a 

short time (10 minutes). 10 µM D-AP5 and 5 µM NBQX were co-applied to prevent the activity-

induced exposure of intracellular membrane cholesterol. Again, independent assessment of 

cholesterol levels by both Filipin staining in fixed neurites (Figure 2.13a&b), and GP imaging of 

live neurons (Figure 2.13c and Figure 2.15) confirmed a reduction of cholesterol levels.  

 

 

Figure 2.15 Cholesterol depletion after MCD treatment reduces GP values. (a) Sample 
images of the same field of view after treatment with 0, 0.5-mM 5-min, or 10-mM 30-min 
MCD. Scale bar, 20 m. (b) Distributions of GP values over individual image pixels (n = 3 
FOVs, N = 3 batches for every treatment; for 0.5 and 10 mM in comparison to 0 mM, p < 0.01 
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and < 0.001 respectively, Kolmogorov-Smirnov test of the distributions of GP values, see data 
analysis section of the methods). 

 

We then imaged FM4-64 and Qdots unloading during high-K+ stimulation. MCD 

treatment decreased the rate of FM4-64 loss, the amount of fast vesicle fusion, and the vesicle 

release probability (Figure 2.13d&e) of neurons on graphene, demonstrating that reversing the 

graphene-induced cholesterol increase via MCD application also reverses graphene’s effect on 

synaptic vesicles. Our data collectively demonstrate that cholesterol, most likely in the plasma 

membrane, is an important mediator of graphene’s ability to potentiate neurotransmission. 

 

Cholesterol dependent potentiation of P2YR signaling on graphene 

As membrane cholesterol plays an integral role in the binding and regulation of many 

transmembrane proteins (Song, Kenworthy et al. 2014), we asked if and how cholesterol 

enrichment on graphene substrates could affect transmembrane proteins and the signaling 

pathways they mediate. Using the same approach that was used for our neuronal culture 

configuration, mouse fibroblast cells (NIH 3T3) were plated directly on graphene or glass. Filipin 

staining demonstrated a ~49%  increase of fluorescence intensity in 3T3 cells on graphene (Figure 

2.16a&b), a much greater increase than what was observed in neurons, possibly due to lower 

homeostatic concentrations of plasma membrane cholesterol in 3T3 cells (Pankov, Markovska et 

al. 2006) than in neurons (Calderon, Attema et al. 1995).  
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Figure 2.16 Graphene enhances P2Y receptor-mediated Ca2+-responses. (a) Sample images of 
Filipin staining of 3T3 cells on graphene with (purple) or without (red) MCD treatment and on 
glass with (green) or without (black) TFC loading. Same color coding hereafter. Scale bar, 50 m. 
(b) Average intensities of Filipin staining (ngraphene = 1536 cells, ngraphene + MBCD = 2286 cells, nglass 
= 1317 cells, nglass + TFC = 1487 cells, N = 3 batches for every group; for graphene vs. graphene + 
MCD, graphene vs. glass, and glass vs. glass + TFC, ***, p < 0.001, all Wilcoxin rank-sum tests). 
(c) Distributions of GP values over individual image pixels (n = 6 FOVs, N = 3 batches for every 
group; for graphene vs. graphene + MCD and glass vs. glass + TFC, both p < 0.05, for graphene 
vs. glass +TFC, p > 0.05, Kolmogorov-Smirnov test of the distributions of GP values, see data 
analysis in the method section). (d) Two consecutive 100-µM ATP applications elicited the release 
of Ca2+ from internal Ca2+-stores (n = 6 FOVs, N = 3 batches for every condition). The 2nd Ca2+-
response was smaller than the 1st with a 1 min interval between. Both Ca2+-responses were blocked 
by 50 M PPADS (pyridoxalphosphate-6-azophenyl-2’,4’-disulphonic acid), a P2YR inhibitor 
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(white triangles). 1 M Thapsigargin (blue dots) elicited a similar Ca2+-response as ATP, but 
significantly reduced the 2nd response by exhausting internal Ca2+-stores. In the absence of 
extracellular Ca2+ (the source for refilling internal Ca2+-stores) (orange diamonds), the 2nd response 
was also significantly reduced (n = 6 FOVs, N = 3 batches for every condition). (e) ATP-elicited 
Ca2+ release from internal stores was facilitated by graphene or TFC pretreatment and reduced by 
MβCD (n = 6 FOVs, N = 3 batches for every group; for graphene vs. graphene + MCD, graphene 
vs. glass, and glass vs. glass + TFC, *** p < 0.001, two-tailed t-tests). Error bars are S.E.M. 

 

GP imaging suggested a modest reduction of lipid membrane fluidity on graphene (Figure 

2.16c). Among many cholesterol-sensitive transmembrane proteins, we chose therapeutically 

valuable P2Y receptors (P2YRs) (Wu, Holstein et al. 2007), a class of GPCR. GPCRs are one of 

the largest protein families in the human genome (Fredriksson, Lagerstrom et al. 2003), and 

represent about half of all modern pharmaceutical targets (Fabbrizio, Le Cam et al. 1999). 

Structural models have elucidated that membrane cholesterol allosterically promotes GPCR 

activity by binding to the transmembrane domain (Cherezov, Rosenbaum et al. 2007). In 3T3 cells, 

P2YRs mediate a fast Ca2+-response to extracellular ATP (Fabbrizio, Le Cam et al. 1999), which 

can be quantitatively measured at high spatiotemporal resolution via Ca2+-imaging. We applied 

two ATP stimuli at a 1-minute interval and observed that the second Ca2+-response was 

significantly diminished (Figure 2.16d). This is consistent with P2YR-mediated Ca2+ release from 

internal stores, which require longer than 1 minute to refill. We then pharmacologically isolated 

relevant components in the transmembrane signaling pathway. Application of PPADS (a selective 

P2YR antagonist) inhibited Ca2+-responses, confirming P2YRs as the ATP receptor (Figure 

2.16d). Both Tharpsigargin (an agonist for Ca2+-release from internal stores) and Ca2+-free bath 

solution (preventing the refilling of internal Ca2+ stores) reduced the 2nd Ca2+-response, 

collectively confirming internal stores as the Ca2+ source (Figure 2.16d). 
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We observed a significantly larger Ca2+-response to the 1st ATP stimulus and, 

subsequently, a smaller response to the 2nd stimulus in 3T3 cells on graphene relative those on 

glass (Figure 2.16e), demonstrating that P2YR-mediated Ca2+-responses are enhanced. Since ATP 

stimulation was still required for Ca2+-release, the facilitation we observed in cells on graphene 

was likely allosteric. In the same manner as the studies we performed using neurons, we next 

manipulated cholesterol to study its role in the enhanced Ca2+ responses we observed on graphene. 

3T3 cells growing on graphene or glass were pretreated with MCD or TFC, respectively, using 

the same protocols we used for neurons. TFC pretreatment increased Filipin staining intensity in 

3T3 cells on glass (~15%, Figure 2.16a&b), although not to the levels observed on graphene, and 

membrane fluidity was moderately reduced (Figure 2.16c). Conversely, MβCD treatment of 3T3 

cells on graphene reduced Filipin staining intensity (Figure 2.16a&b) and increased membrane 

fluidity (Figure 2.16c). Although we did observe differences in Filipin intensity when comparing 

non-treatment vs. treatment conditions, our GP data demonstrate that our treatments were 

consistent in altering plasma membrane cholesterol in that MβCD application resulted in GP 

distributions similar to glass (Figure 2.16c) and TFC application resulted in GP distributions 

similar to those on graphene. Our data are consistent with the idea that membrane cholesterol levels 

are increased within a certain physiological range, but over the length of our 3T3 cell culture, 

additional cholesterol may be trafficked to and distributed homogeneously in intracellular 

membrane areas. Again, our bidirectional manipulations of cholesterol resulted in functional 

outcomes similar to what we observed for neurons on glass or graphene (Figure 2.16e). Enhanced 

Ca2+-responses on graphene were significantly diminished by MCD treatment, and Ca2+-

responses on glass were significantly potentiated by TFC application (Figure 2.16e). Together, 

these results suggest that a graphene-induced cholesterol increase is capable of potentiating cell 
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signaling pathways via transmembrane proteins whose activities are allosterically regulated by 

cholesterol.  

 

Discussion 

Here, we show that pristine monolayer graphene, when in chronic contact with the cell 

membrane, can modify cellular processes via increased cholesterol. In cell-free systems, we 

observed that graphene extracts cholesterol from cell culture media and quenches a fluorescent 

cholesterol analog, consistent with prior predictions of a graphene-cholesterol interaction. Cell-

based measurements cooperatively revealed that graphene increased plasma membrane 

cholesterol. In neurons, this results in a presynaptic potentiation of neurotransmission, realized by 

increases in synaptic vesicle number, release probability, and turnover rate. Notably, all of these 

are regulated by membrane cholesterol (Pfrieger 2003, Chang, Kim et al. 2009, Dason, Smith et 

al. 2010, Puchkov and Haucke 2013, Yue and Xu 2015). Manipulation of membrane cholesterol 

levels validated the correlation between graphene-induced membrane cholesterol increase and 

changes in synaptic vesicle number and behavior. We extended our findings by studying 

graphene’s impact on integral membrane receptors that are known to be affected by cholesterol 

concentration and observe enhanced P2YR-mediated Ca2+-responses in fibroblast cells on 

graphene. Congruent with our findings in neurons, we demonstrate that this potentiation is 

facilitated by cholesterol. 

 

Both LPE and CVD produce single- and few-layer graphene with similar surface 

characteristics (Hernandez, Nicolosi et al. 2008, Geim 2009, Li, Cai et al. 2009, Lee, Lee et al. 

2014). Thus, the interaction demonstrated using LPE graphene flakes should remain valid for the 
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CVD graphene films used in our cell-based studies. The nature of this interaction likely involves 

both a hydrophobic interaction and stacking between cholesterol’s planar tetracyclic ring group 

and graphene’s hexagonal lattice (Gburski, Górny et al. 2010, Gburski, Gorny et al. 2011, Hibino 

and Tsuchiya 2014, Zhang and Wang 2015, Zhang, Xu et al. 2016). Our spectral data (Figure 2.1b 

and Figure 2.2) suggest that the interaction may be more complex than a simple hydrophobic 

interaction. Further work, including both empirical studies and computational modeling, will aid 

in elucidating the mechanisms of this interaction within complex membranes which contain many 

types of molecules. This will clarify the relative selectivity of cholesterol in comparison to other 

types of biomolecules, including phospholipids, peptides, and carbohydrates, which are common 

constituents of culture media and also located on the cell surface.  

 

Given the importance of minimizing the distance between graphene and cells, we chose an 

approach similar to previous studies (Fabbro, Scaini et al. 2016, Veliev, Briancon-Marjollet et al. 

2016) - cells were plated directly on bare CVD graphene films without a Matrigel (e.g.) coating. 

Because it gels upon incubation at physiological temperatures, Matrigel acts as an effective 

interlayer between the substrate and the cell membrane in traditional culture configurations. We 

reasoned that removal of this layer would better resemble scenarios where graphene is used as a 

biosensor. However, this approach does not prevent biomolecule deposition from our culture 

media onto the graphene surface. A protein corona is likely formed over the length of our culture 

period. Hu et al. recently demonstrated that within minutes of exposure to serum-containing media 

a stable protein corona will form on graphene oxide (Hu, Peng et al. 2011), which has a more 

favorable surface for protein adsorption than graphene. We have found a similar time course for 

dissociated neurons to attach to bare glass surfaces (Figure 2.17).  
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Figure 2.17 Cell adhesion after plating. Dissociated hippocampal neurons were plated on bare 
glass coverslips and incubated in plating media for designated periods of time before washing with 
Hank’s solution. Cells in randomly chosen FOVs were counted to calculate cell densities. Error 
bars are S.E.M for each time point. 

 

This suggests that as cells are adhering to graphene there may still be areas where protein 

adsorption does not completely cover the surface, which would allow for contact between 

graphene and the cell membrane. Intriguingly, when neurons were cultured in conditioned media, 

previous reports have demonstrated that the crystallinity of the graphene surface is a determinant 

of axon outgrowth, suggesting that even with biomolecule deposition, graphene still acts to alter 

cell function (Veliev, Briancon-Marjollet et al. 2016). This is in line with the findings of our 

cholesterol assay (Figure 2.1a), where chronic exposure resulted in cholesterol enrichment on the 

graphene surface. The development of biocompatible surface modification strategies to minimize 

fouling on carbon nanomaterials remains an important issue for improving biosensor lifetime, but 

our results demonstrate that even in the presence of a biomolecular corona, cholesterol is a 

mediator of graphene’s functional effects. 
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We employed two independent approaches to evaluate changes in cellular cholesterol 

levels on graphene substrates: Filipin staining and generalized polarization imaging. Filipin 

fluoresces upon cholesterol binding and is a well-accepted qualitative reporter for cellular 

cholesterol in fixed cells. It permeabilizes the cell membrane and binds intracellular cholesterol as 

well as other lipids (Maxfield and Wustner 2012). This may explain the inconsistency in the 

absolute difference between graphene and glass (Figure 2.3b vs. Figure 2.8b); notably the overall 

increase on graphene was substantial across experiments. To obtain an additional measure of 

cholesterol that would not disturb the membrane, we employed GP imaging in live cells. The 

magnitudes of GP distribution shifts across different experiment sets were consistent (~0.15). 

Although much smaller than the relative changes we observed for Filipin staining, such changes 

are in line with what has been observed previously for GP value at different cholesterol amounts 

(Weber, Wagner et al. 2010): modest absolute changes correlate to much larger differences in 

overall cholesterol content. To empirically demonstrate how GP shifts represent differences in 

neuronal membrane cholesterol, we performed GP imaging on neurons after weak or strong 

cholesterol depletion by MCD (Figure 2.15) (Zidovetzki and Levitan 2007). Because the GP 

changes we observed on graphene or after bidirectional manipulations (~ 0.15) lie between the 

shifts we observed for weak (~0.089) and strong (~0.191) MCD treatment, we conclude that the 

membrane cholesterol changes were moderate. Broadly, both GP and Filipin were qualitatively 

consistent with the observation that cells on graphene had increased TFC labeling (Figure 2.4), all 

of which support our conclusion that graphene increases cholesterol. However, because TFC acts 

as an exogenous source of cholesterol and was applied acutely, quantitative comparison of TFC 

labeling to Filipin staining or GP shift is challenging.  
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After the addition or removal of cholesterol from neurons on glass or graphene 

respectively, Filipin staining seemingly reported large changes in cellular cholesterol (Figure 

2.13b) whereas neither neuronal membrane rigidity (Figure 2.13c) nor synaptic vesicle release 

(Figure 2.13d&e) reported changes exceeding those on glass or graphene. We speculate that 

although cholesterol levels can be increased, there are additional factors which place some limit 

on cholesterol’s ability to modulate cellular function. For example, membrane rigidity also 

requires the involvement of saturated or unsaturated fatty acids to maintain or modify lipid phase 

order. And for synaptic vesicles, changes in number were likely confined by the sizes of the 

different vesicle pools. As only a subpopulation of synaptic vesicles is releasable, this may explain 

why Syp staining, which labels all vesicles, exhibited a smaller increase (~21%) in the graphene 

group than FM or Qdot loading, which only label releasable vesicles (~26-30%). Furthermore, the 

ability of excess cholesterol to be incorporated into fusion machinery as well as the limited number 

of release sites may help to set bounds beyond which overall homeostasis would be irreparably 

disrupted. We also cannot exclude the possibility that Filipin labels intracellular cholesterol, which 

may be affected by our manipulations but is not accounted for in GP or FM/Qdot imaging. 

 

After bidirectional manipulation of cholesterol levels, we observed that the resulting 

changes in cellular cholesterol and membrane rigidity were larger in neurons than 3T3 cells 

(Figure 2.13b vs. 2.16b and Figure 2.13c vs. 2.16c). This discrepancy may be due to metabolic 

and homeostatic differences in membrane cholesterol between neurons and 3T3 cells (Calderon, 

Attema et al. 1995, Pankov, Markovska et al. 2006, Lange, Ye et al. 2014). Moreover, neurons 

have higher levels of plasma membrane cholesterol (Calderon, Attema et al. 1995) than 3T3 cells 
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(Pankov, Markovska et al. 2006) and cells may respond differently to MCD or TFC depending 

upon both concentration and treatment time. 

 

We have demonstrated that neurons grow and form functional synapses on both glass and 

monolayer graphene substrates without significant developmental or gross morphological defects. 

This is seemingly different from a recent report (Veliev, Briancon-Marjollet et al. 2016) which 

focused on neuronal development and noted that neurons were unable to grow normally on bare 

glass. There are several technical differences that may explain this discrepancy, including species 

and age of cells at plating. The use of serum in our culture media serves as a rich source of 

cholesterol in comparison to the reported study (Veliev, Briancon-Marjollet et al. 2016) where 

serum-free conditioned media was used. Our culture media contains approximately 12-14 M 

cholesterol (Figure 2.1a), whereas astrocyte conditioning only further increases this concentration 

by 2 M (Figure 2.1a). The additional growth and attachment factors present in serum likely help 

to mitigate any deficits in neuronal adhesion and development. Functionally, we observe no 

difference in neuronal membrane conductance (similar sEPSC amplitudes, Figure 2.6) and no 

Ca2+ leakage in 3T3 cells (stable basal cytosolic Ca2+ concentration without stimulation or after 

P2YR inhibition, Figure 2.16d) on graphene, extending the findings of previous studies which 

have demonstrated that graphene substrates do not damage the eukaryotic membrane (Akhavan 

and Ghaderi 2010, Hu, Peng et al. 2010, Liu, Zeng et al. 2011). TFC and FM dye labeling further 

indicate that membrane integrity and trafficking are uncompromised, as labeling would have 

appeared atypical with significant membrane degradation. 

 

There are two scenarios that explain the enrichment of cholesterol we observe. Chronic 
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contact between graphene and cells may attract cholesterol to areas nearest to the graphene surface, 

reducing cholesterol in other membrane compartments such as the endoplasmic reticulum (where 

cholesterol sensors reside (Goldstein and Brown 2015)). Consequently, cholesterol synthesis 

and/or uptake is upregulated, resulting in a total cholesterol increase over time (Figure 2.4, 

2.13a&2.16a). An alternative scenario seems equally possible: that graphene adsorbs cholesterol 

from the culture media onto its surface (Figure 2.1a), providing an enriched local cholesterol 

supply to the neighboring plasma membrane. Membrane cholesterol levels are elevated and over 

time excess cholesterol is trafficked to internal membranes (Figure 2.16a-c). This is in line with 

evidence demonstrating that the uptake of exogenous cholesterol is critical for mature neuronal 

function (Pfrieger 2003). Differentiating between these two scenarios will require the acute 

application of graphene and the ability to monitor cholesterol trafficking in live cells at adequate 

spatiotemporal resolution. 

 

Although graphene has been documented to damage bacterial cell membranes (Tu, Lv et 

al. 2013), it has seemingly few adverse effects on eukaryotic cells based on our own and others’ 

previous observations (Bendali, Hess et al. 2013, Fabbro, Scaini et al. 2015, Veliev, Briancon-

Marjollet et al. 2016). This difference between cell types can be explained in part by our cell 

culture configuration and in part by the presence or absence of membrane cholesterol. Prokaryotic 

membrane destruction was caused by nanometer-sized graphene flakes that pierced through the 

bacterial membrane causing lipids to disperse (Tu, Lv et al. 2013). In our and an additional 

study(Veliev, Briancon-Marjollet et al. 2016), large CVD graphene films are essentially fixed on 

a surface (Figure 2.3). The extremely high in-plane strength of graphene effectively prohibits 

small flakes from breaking off of the glass surface and inserting into the cell membrane. Therefore, 
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graphene remained parallel to the cell membrane during culture and was unlikely to cause 

membrane disruption in the same manner as previously described. Fully distinguishing the role 

cholesterol plays in the cellular responses to different types of graphene will require further study 

using both graphene flakes applied to eukaryotic cells and chronic growth on graphene of 

prokaryotic cells. 

 

Cholesterol modulates many membrane-associated proteins and other cellular functions in 

addition to its role in the structural integrity of the eukaryotic plasma membrane.  Thus, it would 

be interesting to further study graphene’s impact on other signaling pathways regulated by 

cholesterol. For example, it helps to define the fluidity of the lipid bilayer, which in turn regulates 

the dynamics and subcellular distribution of many transmembrane proteins (Subtil, Gaidarov et al. 

1999). Cholesterol is also essential for the activity of various disease-associated membrane 

proteins like -secretase, an amyloidogenic enzyme thought to be an important therapeutic target 

in Alzheimer’s disease. In addition, cholesterol is a key constituent of membrane nanodomains 

(a.k.a. lipid rafts), which are believed to act as the nexus for transmembrane protein complexes, 

mediating signal transduction across the plasma membrane, carrying out receptor-mediated 

endocytosis and more (Simons and Toomre 2000). Therefore, further study is warranted for a 

comprehensive view of graphene’s effect on the organization and trafficking of eukaryotic cell 

membranes as well as membrane protein distribution and mobility.  

 

For the majority of graphene-based bioapplications, especially those seeking to harness its 

unique electrical properties, cells or tissue need to be directly interfaced with the surface to 

maximize detection efficiency. Given our findings, these applications should further consider the 
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involvement of the cell membrane when evaluating the effect of the material on any biological 

system. The effects we observe may also occur in other carbon allotropes, for example carbon 

nanotubes. It is possible that the variation of atomic structure among different allotropes may 

uniquely influence their cholesterol affinity; thus investigating the shared or unique effects of other 

carbon allotropes on the plasma membrane and whether cholesterol is involved in these effects 

will be highly informative. New advances in the ability to modify carbon nanomaterials without 

compromising their electrical properties may help to tailor interactions with cholesterol or other 

biomolecules. Since cholesterol is a precursor for many steroids, which also contain the same 

tetracyclic ring, graphene could potentially be utilized to detect, deliver, or manipulate steroids in 

vitro and in vivo. This opens future directions for graphene in biomedicine, but also demands 

further structural and mechanistic investigation of the membrane interaction between graphene 

and diverse biomolecules. 
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Experiments and data from Chapter 2 have been published in: 

Kitko, K. E., T. Hong, R. M. Lazarenko, D. Ying, Y. Q. Xu and Q. Zhang (2018). "Membrane 

cholesterol mediates the cellular effects of monolayer graphene substrates." Nat Commun 9(1): 

796. 
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Chapter 3  
 

Graphene nanoflakes acutely modify cell signaling via lipid packing 

 
 

Abstract 

Graphene-based nanomaterials are increasingly used as interfaces with biological systems, 

yet there still remains controversy as to the structural and functional effects of graphene on cells. 

In cell membranes, cholesterol is structurally essential within the lipid bilayer and functionally 

influential for transmembrane signaling. Here, we report that graphene nanoflakes (GNFs) have a 

preferential affinity to cholesterol. We further demonstrate that GNFs acutely alter the biophysical 

properties of the cell membrane. As secretory vesicles and receptors are major mediators for 

membrane signal output and input respectively, we demonstrate using two representative systems, 

synaptic vesicles and G protein-coupled receptors, the utility of GNFs for modulating 

transmembrane signaling via plasma membrane packing. In cultured hippocampal neurons, GNFs 

promote neurotransmitter release, leading to presynaptic potentiation. In fibroblasts, GNFs 

enhance ATP-induced Ca2+-responses by enhancing P2Y receptor activity in a membrane-packing 

dependent manner. Together, our results provide a framework for cell membrane-associated 

bioapplications of graphene-based nanomaterials. 

 

Introduction 

In eukaryotic cells, the plasma membrane acts as the sole interface between cells and the 

environment. Recent work has demonstrated that cells growing on graphene, a single-layer carbon 

crystal (Novoselov, Geim et al. 2004), exhibit elevated membrane cholesterol, resulting in 
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cholesterol-associated functional changes (Kitko, Hong et al. 2018). This and similar studies have 

further demonstrated that graphene substrates are largely biocompatible and in fact serve to 

strengthen neuronal synapses (Bendali, Hess et al. 2013, Fabbro, Scaini et al. 2016, Rauti, Lozano 

et al. 2016, Veliev, Briancon-Marjollet et al. 2016, Pampaloni, Lottner et al. 2018). However, other 

results suggest that nanometer-scale graphene flakes are toxic to cells. Results from both 

computational modeling and electron microscopy studies have indicated that single- or few-layer 

graphene nanoflakes (GNFs), with their sharp edges and hydrophobic surfaces, can insert into the 

lipid bilayer, extracting phospholipids and thus disrupting the integrity of the prokaryotic plasma 

membrane (Li, Yuan et al. 2013, Tu, Lv et al. 2013). However, eukaryotic cells exposed to 

graphene are seemingly resistant to such membrane disruption (Li, Zhang et al. 2011, Nayak, 

Andersen et al. 2011, Wang, Lee et al. 2012). Intriguingly, computational simulations have 

suggested that cholesterol, unique to eukaryotic membranes, tightly surrounds inserted GNFs 

(Zhang, Xu et al. 2016), which may prevent cell membrane destruction. This motivated us to 

understand the specificity of a potential graphene-cholesterol interaction. As we uncover that the 

interaction between GNFs and cholesterol is relatively specific, we then explored the utility of 

GNFs for manipulation of membrane organization and function in live cells, which led to the 

discovery that GNFs can acutely increase lipid packing and modify transmembrane signaling 

pathways. 

 

Methods 

Preparation and characterization of graphene nanoflakes (GNFs) suspensions 
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 GNFs suspension was prepared by liquid exfoliation of graphite powder. Graphite powder 

was purchased from ASBURY CARBONS (Grade: 2299). Polyvinylpyrrolidone (PVP, MW: 

1,300,000 g/mol) was purchased from Sigma. Hydrophobic graphite powder was added into 2 wt% 

PVP or 1 wt% SDS (sodium dodecyl sulfate) water solution and sonicated for 9 h in a bath 

sonicator (Wajid, Das et al. 2012). The uniform GNFs suspension was then centrifuged with a 

Thermo Scientific Fiberlite F15-6 X 100y rotor at 4,000 rpm and at room temperature for 1 h to 

sediment large graphite aggregates. The upper 50% of supernatant was carefully decanted, 

resulting in PVP-functionalized GNFs suspension (O'Connell, Bachilo et al. 2002, Hernandez, 

Nicolosi et al. 2008). The transmission characterization of GNFs suspension was carried out on a 

Varian Cary 5000 UV-VIS-NIR spectrophotometer. The concentration of GNFs was estimated 

with an absorption coefficient of 2460 L g-1 m-1 at 660 nm (Hernandez, Nicolosi et al. 2008), which 

is typically 26 mg/L for freshly-made GNFs suspension. The suspension is stored at 4 ºC and 

remains stable for more than a year. As shown in Figure 3.1, a one-year old GNFs suspension (left) 

shows no precipitation and is as evenly-distributed as a freshly-prepared sample (right). 

 

Characterization of GNFs 

GNFs suspension was characterized using transmission electron microscopy (TEM). TEM 

samples were prepared by drop casting a small volume (~ 2 l) of GNFs suspension onto carbon 

grids (300 mesh size, Ted Pella). Samples were air dried for 2 h, and then rinsed with DI water to 

remove excessive solvent. Bright field TEM images of representative GNFs were taken by an 

Osiris TEM (FEI) at an accelerating voltage of 200 kV. Raman spectroscopy was also employed 

to characterize the quality of the GNFs. GNFs were drop-casted onto an Si/SiO2 wafer (300 nm 
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SiO2) and then washed with DI water to remove excess suspension agents. Raman spectra were 

taken by a DXR Raman microscope (Thermo Scientific) with 532 nm laser excitation. The size 

and thickness of GNFs were further investigated by a Nanoscope III atomic force microscope 

(AFM). GNFs suspension was spin-coated onto a Si wafer with 300 nm SiO2, and washed with DI 

water to remove solvent residue. The AFM was operated in tapping mode with a typical image 

size of 2-5 μm. 

 

Cell culture 

Murine procedures and all relevant experimental protocols were approved by the 

Vanderbilt University Animal Care and Use Committee. Rat postnatal hippocampal cultures were 

prepared as previously described (Liu and Tsien 1995), with modifications. Rat hippocampi (CA1-

CA3) from both hemispheres were dissected from P0-1 Sprague-Dawley rats and dissociated into 

a single-cell suspension. Dissociated cells were recovered by centrifugation (x 200 g, 5 minutes) 

at 4 C and re-suspended in plating media composed of Minimal Essential Medium (MEM, Life 

Technologies) with (in mM) 27 glucose, 2.4 NaHCO3, 0.00125 transferrin, 2 L-glutamine, 0.0043 

insulin and 10%/vol fetal bovine serum (FBS, Omega). 100 μl of cell suspension was added onto 

round 12mm- glass coverslips (200-300 cells/mm2). 100 l of Matrigel (BD Biosciences, 1:50 

dilution) was deposited on the coverslips and incubated at 37C with 5% CO2 for ~ 2 h, then 

aspirated before cells were plated. Cells were allowed to settle on the coverslip surfaces for 4 h 

before the addition of 1 mL culture media made of MEM containing (in mM) 27 glucose, 2.4 

NaHCO3, 0.00125 transferrin, 1.25 L-glutamine, 0.0022 insulin, 1 %/vol B27 supplement (Life 

Technologies) and 7.5 %/vol FBS. 1 to 2 days after plating, 2% Ara-C was introduced with another 
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1 mL of culture media, which efficiently prevented astroglia proliferation. All experiments were 

performed using cultures between 12-18 DIV. 

NIH 3T3 cells were grown at 37C with 5% CO2 in Dulbecco’s modified Eagle’s medium 

containing 4.5 g/L glucose and L-glutamine supplemented with 10% fetal bovine serum, 100 units 

mL-1 penicillin, and 100 μg mL-1 streptomycin. Cells were regularly passaged to maintain adequate 

growth and were passaged at least 5 times before trypsinization and plating on Matrigel-coated 

round 12mm- glass coverslips (75 μL of 1-3 x 106 cell solution per coverslip). Cells were grown 

to 50-80% confluency for 24 h on coverslips prior to experiments. 

 

Fluorescence lifetime measurements 

Fluorescence lifetime images were acquired using a custom-built multiphoton fluorescence 

system (Bruker) built on an inverted microscope (Nikon Ti-E). For bulk solution measurements, 

500 μL sample volumes were illuminated using a 40x oil-immersion objective (N.A. 1.3). TFC 

(TopFluor Cholesterol, Avanti), TFSM (TopFluor Sphingomyelin, Avanti), TFPC (TopFluor 

Phosphotidylcholine, Avanti), or BODIPY (boron-dipyrromethene, Thermo Fisher Scientific) 

were added to suspended GNFs (26 ng/mL) or 0.002 wt% PVP in H2O at a final concentration of 

1 µM for 1 h prior to imaging. NIH-3T3 cell samples were illuminated using a 100x oil-immersion 

objective (N.A. 1.45). For cell membrane loading experiments, GNFs suspension was added to 

cells at a final concentration of 260 g/L in normal Tyrode for 10 min before TFC was added at 

a final concentration of 1 µM. Samples were excited with a Ti:Sapphire laser (Coherent, Inc.) 

tuned to 960 nm, passed through a 550/100 emission filter, and detected using a GaAsP 

photomultiplier tube (H7422P-40, Hamamatsu). Pixel dwell time was 4.8 μs and the acquired 
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images were 256x256 pixels with a 60 s acquisition time at an average incident power of 

approximately 10 mW. Fluorescence lifetime images were acquired using time-correlated single 

photon counting electronics (SPC-150; Becker & Hickl). The instrument response function (IRF) 

was generated by measuring the second harmonic generation of urea crystals excited at 900 nm. 

The full width at half maximum of the IRF was 244 ps. Fluorescence lifetime was validated before 

each experiment by imaging a fluorescent bead standard (Polysciences, Inc.). The measured 

lifetime of this bead was 2.1 ± 0.005 ns (n=3), in good agreement with published values (Bird, 

Yan et al. 2005). Phasor analysis was performed as described previously (Digman, Caiolfa et al. 

2008), using custom-written Matlab algorithms based on a previously published phasor analysis 

software (Stefl, James et al. 2011). 

 

Giant plasma membrane vesicle preparation 

NIH-3T3 cells at greater than 85% confluency were washed 3 times with PBS and labeled 

at 5 µg/ml for 10 min at 37C with 1,1’-Dilinoleyl-3,3,3’,3’-tetramethylindocarbocyanine,4-

chlorobenzenesulfonate (FAST-DiI, C-18, Life Technologies). GPMV isolation was performed as 

previously described(Sezgin, Kaiser et al. 2012). Cells were blebbed in deionized water 

containing, in mM: 10 HEPES, 150 NaCl, 2 CaCl2, pH 7.4, with 25 mM PFA and 2mM DTT at 

37C for 2-3 h. PVP or GNFs treatments (final concentration 260 g/L of either 0.002 wt% PVP 

or GNFs suspension) were performed either prior to or following GPMV isolation (see figure 

legends). For treatments prior to GPMV isolation, the supernatant, containing GPMVs, was 

collected and allowed to settle for at least 1 hour at 4C prior to imaging. Three independent GPMV 
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preparations were performed for each treatment group and a minimum of 60 GPMVs were imaged 

at each individual temperature point.  

 

GPMV fluorescence imaging and lipid phase separation 

Lipid phase separation was achieved using a commercial liquid-nitrogen cooled 

temperature stage equipped with two heating elements (GS350, Linkam Scientific Instruments). 

Thermal grease (Linkam) was applied to stage surfaces for each sample to minimize thermal 

contact resistance and maximize conductive heat transfer. 60 uL of GPMV solution was added to 

the center of a 20x40 mm size 0 coverslip, which was top-sealed with another coverslip of the 

same size using vacuum grease. Samples were allowed to equilibrate for 1 min at each temperature 

point prior to image acquisition. Images were acquired with a 60X LUMP PlanFl Olympus water-

immersion objective (N.A. 0.9) on a customized spinning disk confocal setup built on an Olympus 

BX-51WI microscope with a CSU-X1 (Yokogawa) spinning disk head and an Evolve 512 

EMCCD (Photometrics). Samples were visualized with a 561 nm laser (Coherent) and an Em 

605/52 filter set. All data collected for quantitative comparisons were collected with identical 

imaging parameters. Images stacks were analyzed manually to determine phase separated vs. non-

separated fractions. Ld fraction was quantified by manually drawing arc lengths on GPMVs in 

ImageJ. 

 

Folch extraction 
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500 µL and 250 µL of 5% HCl were added to cells and to 250 µL of media, respectively. 

750 µL of Folch solution (2:1, CHCl3:MeOH with 17 mg/L BHT, butylated hydroxytoluene) was 

utilized for extraction and 10 µL of 1.25 mg/mL 5β-cholestan-3α-ol was added as an internal 

standard for cholesterol quantitation. The Folch solution was vortexed and centrifuged briefly to 

allow distinct organic and aqueous layers to separate. The organic layer was then used for 

cholesterol identification and quantification (GC-FID, Gas chromatography – Flame ionization 

detector, and GC-MS, Gas chromatography – Mass spectrometry). 

 

Cholesterol derivatization 

Folch extractions from both cells and media were dried down and reconstituted in 40 µL 

of bistrimethylsilyltrifluoroacetamide (BSTFA) kit solution (Sigma-Aldrich) for at least 2 h with 

internal standard to account for extraction and derivatization efficiencies. 

 

Gas chromatography – flame ionization detector (GC-FID) 

Cholesterol quantification was carried out in duplicates for all biological replicates with a 

GC-6890 gas chromatograph (Hewlett-Packard) equipped with a DB-5 (30 mm × 0.32 mm × 0.25 

mm) fused silica column (Sigma Aldrich). Briefly, sterols were separated using a temperature 

program as follows: samples were heated from 220 to 275 °C at 15 °C/min, then further heated to 

280 °C at 1 °C/min and maintained for 2 min, followed by heating to 290 °C at 5 °C/min rate and 

holding for 10 min. 
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Determination of total protein content 

Proteins separated during Folch extraction were MeOH washed, pelleted, and dried before 

re-suspension in 2% SDS (Sigma Aldrich). A Pierce BCA assay (Life Technologies) was 

performed according to manufacturer specifications using 25 µL of protein sample per microwell. 

Sample absorption was measured at 560 nm using a Glomax Discover (Promega) 96-well 

microplate reader. 

 

Filipin staining and image analysis 

Cells were fixed in PBS containing 4% paraformaldehyde for 30 min, washed, and 

incubated with filipin (1:500 in PBS, Sigma-Aldrich) for 2 h at room temperature. Fluorescence 

imaging was performed on an Olympus IX-81 inverted microscope using a Nikon Intensilight 

illuminator, a Nikon Plan Apo VC 20X objective (N.A. 0.75) and a fluorescence filter set (Ex 

390/40, DiC T425LPXR, Em 460/50, Semrock). Images were acquired with an EMCCD (Andor) 

via Micro-manager with the same acquisition settings across each experimental group. For 

analysis, three independent batches of cultures were analyzed (n > 9 different coverslips). The total 

number of cells analyzed are reported (see figure legends). For the analysis of 3T3 cells, we 

manually selected ROIs covering cell-containing regions. ROIs corresponding to out of focus cells 

were manually excluded. Average ROI intensity was measured in ImageJ. For every field of view, 

at least three ROIs from cell-free regions were manually selected and their mean fluorescence 

intensities were calculated in the same manner. For background subtraction, the mean intensity 



118 
 

value of every cell-containing ROI was subtracted by the average intensity of the three background 

ROIs in the same image.  

 

Live cell fluorescence imaging and analysis 

All live cell imaging except generalized polarization imaging was performed using the 

spinning disk confocal setup used for GPMV imaging. For generalized polarization imaging(Kim, 

Choo et al. 2007), cells were pre-incubated with culture media containing 1 M C-laurdan (TP 

Probes) at 37C and 5% CO2 for 1 h. For TFC imaging, cells were pre-incubated in culture media 

containing 1 µM TFC at 37 C with 5% CO2 for 20 min. For DiO imaging, cells were pre-loaded 

with 10 M DiO (Invitrogen) in culture media at 37C with 5% CO2 for 15 min. For voltage 

imaging, the DiO containing solution was replaced with 20 mM DPA (dipicrylamine) in normal 

Tyrode. For Ca2+ imaging, cells were pre-incubated with culture media containing 10 M XRhod-

1AM (Life Technologies) at 37C with 5% CO2 for 30 min. For FM dye or Quantum dot (Qdot) 

loading of the evoked pool of synaptic vesicles, cells were incubated with 10 µM FM1-43 or FM4-

64, or 100 or 0.8 nM Qdots (Qdot 605, Life Technologies) for 2 min in high K+ bath solution 

containing (in mM): 64 NaCl, 90 KCl, 2 MgCl2, 2 CaCl2, 10 N-2 hydroxyethyl piperazine-n-2 

ethanesulphonic acid (HEPES), 10 glucose, 1 M TTX, pH 7.35. After loading, cells were washed 

with normal bath solution containing 10 µM NBQX (2,3-dihydroxy-6-nitro-7-

sulfamoylbenzo[f]quinoxaline-2,3-dione) and 20 µM D-AP5 (D-(-)-2-Amino-5-

phosphonopentanoic acid) for at least 10 min prior to imaging. Coverslips were mounted in an RC-

26G imaging chamber (Warner Instruments) bottom-sealed with a 24X40 mm size 0 cover glass 

(Fisher Scientific). The chamber was fixed in a PH-1 platform (Warner Instruments) placed on the 
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microscope stage. Gravity perfusion was controlled by a VC-6 valve control system (Warner 

Instruments) with a constant rate of ~50 μL/sec. All perfusion lines were combined into an SHM-

6 in-line solution heater (Warner Instruments). The temperatures of both the imaging chamber and 

the perfusion solution were maintained at 34C by a temperature controller (TC344B, Warner 

Instruments). Image acquisition and synchronized perfusion were controlled via Micro-manager 

software. 

For generalized polarization imaging, C-Laurdan loaded cells were imaged using a Nikon 

Ti-E equipped with an iX897 EMCCD (Andor) and a 100X ApoVC objective (N.A. 1.40). A filter 

combination of D350x for excitation and a DiC 409LP with an Em 440/40 or 483/32 (for blue or 

green channels, respectively) were used. The acquisition rate was 0.5 Hz. For TFC, FM1-43, and 

DiO/DPA imaging, a 480-nm laser (Coherent) and a filter combination of DiC 500LX and Em 

520/20 were used. The acquisition rate was 1 Hz for all imaging. For Ca2+ imaging, a 561-nm laser 

(Coherent) and a filter combination of DiC 580LPXR and Em 605/52 were used. The acquisition 

rate was 1 Hz. For Qdot imaging, a 480-nm laser and a filter combination of DiC 510LX and Em 

605/10 were used. The acquisition rate was 5 Hz. For FM4-64 imaging, a 561-nm laser (Coherent) 

and a filter combination of DiC 600LX and Em 620/20 were used. The acquisition rate was 1 Hz. 

For static images, ten-frame stacks were averaged. All images were taken with the same acquisition 

settings among different treatment groups (laser intensity, exposure time, and EM gain). For each 

dye, images were taken with the same acquisition settings (excitation light intensity, spinning disk 

speed, exposure time, and EM gain) for all samples.  

All image analyses were performed in ImageJ as described previously (Zhang, Li et al. 

2009). Four rectangular ROIs were drawn in cell-free regions in every FOV and their intensities 

averaged for background correction. For every type of fluorescence imaging, we pooled all 
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background ROIs regardless of treatment differences. Again, a masked threshold approach was 

applied in ImageJ, and the mean intensity plus two standard deviations was used as the common 

threshold for all images or image stacks. For every FOV, ROIs were generated by particle analysis 

based on the binary threshold mask image. For FM1-43 and FM4-64, watershed segmentation and 

particle size limits (0.3 – 3m) were applied in ImageJ to isolate ROIs for synaptic boutons 

(~1m). Background correction was performed by subtracting the average of four rectangular 

ROIs from the average intensity of each individual ROI in the same FOV. Normalization was 

performed using the average intensity of the first 10 frames. For C-laurdan images, ROIs generated 

from blue channel images were used to analyze both channels. For generalized polarization 

images, ROIs generated from blue channel images were used to analyze both channels. GP value 

was calculated using the following formula: IGP=(Iblue-GIgreen)/(Iblue+GIgreen), in which G is the 

sensitivity correction factor between the two channels (Hansen and Helix-Nielsen 2011). G was 

empirically determined by imaging 1 M C-laurdan diluted in DMSO using the standard protocol. 

Given GPDMSO = 0.006, the G value of our imaging setup was calculated using the following 

formula: G=(Iblue(1-GPDMSO))/(Igreen(1+GPDMSO)). For Qdot images, FM4-64-defined ROIs 

were applied and the mean Qdot photoluminescence intensity in each ROI was calculated. Quantal 

analysis for single Qdots was performed as described previously(Zhang, Cao et al. 2007, Zhang, 

Li et al. 2009). Briefly, maximum likelihood estimates were used to fit Qdot numbers to a 

distribution of intensities. Qdot intensities were binned every 30 a.u. without background 

subtraction. The estimated threshold based on the mean background signal plus two standard 

deviations was near 3,000 a.u., by which we set the cut-off threshold for a single Qdot. To analyze 

the behavior of vesicles labeled by single Qdots, we selected ROIs having only one Qdot. Time-

dependent Qdot photoluminescence changes were extracted with a 5-frame moving window.  
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Electrophysiology 

Whole-cell voltage clamp recordings were performed on neurons from 12 - 18 DIV cultures 

using a Multi-Clamp 700B amplifier, digitized through a Digidata 1440A, and interfaced via 

pCLAMP 10 software (all from Molecular Devices). All recordings were performed at room 

temperature. Cells were voltage clamped at -70 mV for all experiments. Patch pipettes were pulled 

from borosilicate glass capillaries with resistances ranging from 3 - 6 MΩ when filled with pipette 

solution. The bath solution (Tyrode’s saline) contained (in mM): 150 NaCl, 4 KCl, 2 MgCl2, 2 

CaCl2, 10 HEPES, 10 glucose, pH 7.35. The pipette solution contained (in mM): 120 Cesium 

Methanesulfonate, 8 CsCl, 1 MgCl2, 10 HEPES, 0.4 EGTA, 2 MgATP, 0.3 GTP-Tris, 10 

phosphocreatine, QX-314 (50 M), 5 biocytin (Tocris), pH 7.2. For tmEPSC recordings, bath 

solution was supplied with 1 µM tetrodotoxin (TTX, Abcam). The last 50 mEPSCs at the end of 

5 min recordings with TTX were collected and analyzed using template based event detection. The 

template was generated from our own representative data. To measure AMPA receptor currents, 

D-AP5 (Abcam), an NMDA receptor antagonist, was added to the bath solution. NMDA receptor 

currents were recorded in the presence of 10 µM NBQX (Abcam), an AMPA receptor antagonist, 

in 0 mM [Mg2+] / 3 mM [Ca2+] bath solution at -70 mV holding potential. Isolated AMPA and 

NMDA EPSCs were recorded from the same neurons sequentially, by first applying D-AP5 then 

completely replacing it with NBQX. The INMDAR/IAMPAR ratio for every neuron was calculated from 

the average amplitudes of the last 10 NMDA and AMPA events during 5 min D-AP5 or subsequent 

NBQX application. No postsynaptic currents were detected if D-AP5 and NBQX were applied 

together. All signals were digitized at 20 kHz, filtered at 2 kHz, and analyzed offline with Clampfit 

software (Molecular Devices).  
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Statistical analysis 

No statistical methods were used to predetermine sample size. All experiments were 

repeated in at least three different batches of cells to ensure reproducibility and adequate sample 

power. Values presented are mean  s.e.m. For calculating statistics, Lillefors tests were first used 

to assess the normality of all data. The Student’s t-test was used for 2-group comparison of average 

values when data were distributed normally, otherwise Wilcoxin rank-sum tests were used. Fisher 

z-tests were used to compare correlation coefficients. 2-sided Kolmogorov-Smirnov tests were used 

to test for equivalent distributions.   

 

Production and characterization of GNFs 
 

 To obtain high quality GNFs, we used liquid-phase exfoliation (LPE) of graphite powder, 

which produces single- and few-layer GNFs in a scalable fashion (Hernandez, Nicolosi et al. 2008, 

Geim 2009). We suspended GNFs uniformly in H2O containing 2 wt% polyvinylpyrrolidone 

(PVP), which effectively prevented GNFs aggregation (Fig. 3.1a). 
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Figure 3.1 Characterization of graphene nanoflakes. (a) Samples of GNFs suspension. The left 
is one-year old and the right is freshly prepared. Both contain 26 mg/L GNFs. (b) Raman spectra 
for GNFs suspended in 2 wt% PVP (red) and bulk graphite (black), respectively. (c) Sample TEM 
image of a GNF. Scale bar, 100 nm. (d) Sample AFM image of dispersed GNFs from the 
suspension. Scale bar, 500 nm. (e) Line profile of a GNF along the white dashed line in (d). (f) 
The distributions of GNFs thickness (left) and lateral dimension (right) obtained from AFM images 
(N = 37 FOVs).  
  

  Notably, over more than two years, we did not observe any aggregation in the prepared 

suspensions. We estimated that our suspended GNFs concentration is ~26 mg/L, based on an 
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absorption coefficient at 660nm (Hernandez, Nicolosi et al. 2008). We characterized the GNFs 

using Raman spectroscopy (Fig. 3.1b). At 532 nm excitation, GNFs suspensions exhibited 

characteristic G peaks (~1,580 cm-1) and 2D peaks (~2,700 cm-1) similar to bulk graphite 

(Hernandez, Nicolosi et al. 2008). However, unlike graphite, Raman D peaks (~1,350 cm-1) were 

larger in the GNFs suspensions, matching the strong edge effects of nanometer-size GNFs (Ferrari, 

Meyer et al. 2006). To better estimate the size distributions within our suspensions, we performed 

both transmission electron microscopy (TEM) and atomic force microscopy (AFM) to estimate 

GNFs lateral dimension and thickness. As shown in Figure 3.1c, representative TEM micrographs 

suggest that GNFs have smooth planar structures and uniform flake edges, supporting an estimate 

of one to few layers. We then quantified AFM measurements to obtain a better estimate of average 

GNFs size and thickness (Fig. 3.1d). Our analysis of AFM data demonstrates that the majority of 

the flakes are 1-2 nm thick with lateral dimensions of a few hundred nanometers (Fig. 3.1e&f). 

This is expected for single- or few-layer GNFs because of the tendency for aggregation during 

AFM sample preparation (Lotya, Hernandez et al. 2009) and the presence of PVP on the GNFs 

surface (Hernandez, Nicolosi et al. 2008). Importantly, median GNFs thickness (~ 1.3 nm) and 

size (~ 180 nm) (Fig. 3.1f) were consistent with previous reports (Hernandez, Nicolosi et al. 2008). 

 

Preferential interaction between GNFs and cholesterol 

Previous work has suggested that GNFs can extract cholesterol from culture media 

containing serum. However, the relative selectivity of cholesterol compared to other major 

membrane components is less understood. To better understand the selectivity of GNFs to 

cholesterol, we employed fluorescence lifetime imaging microscopy (FLIM) (Bastiaens and 
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Squire 1999) to measure proximity-dependent Förster resonance energy transfer (FRET) (Kasry, 

Ardakani et al. 2012) between GNFs and fluorophore conjugated cholesterol, TFC (cholesterol 

tagged with boron-dipyrromethene, a. k. a BODIPY) (Hölttä-Vuori, Uronen et al. 2008), or other 

membrane lipids. BODIPY is relatively nonpolar and electrically neutral, minimizing the dye-

induced perturbation of conjugated lipids (Hölttä-Vuori, Uronen et al. 2008). Because graphene is 

an acceptor in energy transfer exchanges (Kasry, Ardakani et al. 2012), we reasoned that the degree 

of interaction between GNFs and lipid molecules would correlate to shorter fluorescence lifetimes 

of BODIPY (the donor fluorophore). FRET-FLIM is less affected by fluorophore concentration 

than intensity-based approaches. 
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Figure 3.2 GNFs preferentially shorten the fluorescence lifetime of a cholesterol analog.  (a) 
Representative fluorescence lifetime decays (circles) and corresponding fits (lines). The data are 
best fit by 1 or 2-component exponential decays (for the decay constants in ns, TFC&PVP = 3.36, 
BODIPY&GNFs = 4.47, and TFC&GNFs(1) = 0.15 and TFC&GNFs(2) = 3.19; N = 3). (b1-b4) Representative 
phasor plots of BODIPY-labelled cholesterol and other major membrane lipid classes (see 
methods). G components were calculated as Mcos() and S components were calculated as 
Msin() (see methods). Insets represent the lipid dye in PVP-containing solution. (c) 3T3 cell 
membrane loading of TFC and treatments. (d) Representative fluorescence lifetime decays 
(circles) and corresponding fits (lines). The data are best fit by 1 or 2-component decays (in ns, 
GNFs(1) = 0.165 and GNFs(2) = 3.41, PVP = 3.79). (e1&e2) Representative pseudocolor FLIM 
images of treated 3T3 cells. Scale bars, 20 m. (f1&f2) Corresponding phasor plots from the same 
FOV. G components were calculated as Mcos() and S components were calculated as Msin() 
(see methods). 
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1 M TFC mixed with 260 g/L GNFs in 0.02 wt% PVP exhibited a shortened 

fluorescence lifetime relative to TFC mixed with PVP at the same concentrations (Fig. 3.2a). For 

a data representation that was unbiased to fit parameters, we used phasor analysis, which 

transforms a fluorescence decay at every pixel to a data point in a phasor plot (Digman, Caiolfa et 

al. 2008). In the absence of FRET, for a fluorophore with a single component fluorescence lifetime 

decay, data points are concentrated at a spot on the semicircle, representing uniformly single-

exponential decays of fluorescence lifetime; when FRET interactions occur, data points are shifted 

towards the inside of the semicircle. BODIPY phasors were almost identical between the presence 

of GNFs (Fig. 3.2b1) and PVP (Fig. 3.2b1 inset), i.e. >99% of points in each clustered on the 

semicircle, suggesting GNFs do not change the lifetime of BODIPY. In contrast, GNFs dispersed 

the TFC phasor to inside the semicircle in comparison to PVP (Fig. 3.2b2 and inset), reflecting 

FRET between GNFs and TFC and thus suggesting an interaction between GNFs and cholesterol. 

If the mechanism for the reduction in lifetime was nonspecific among membrane lipids, for 

example a hydrophobic interaction, similar changes in phasor distributions in the presence of 

GNFs should be expected for other lipids. To test this, we repeated FRET-FLIM measurements of 

GNFs and PVP (insets) using BODIPY-conjugated sphingomyelin (TFSM) and phosphocholine 

(TFPC), which are among the most abundant lipids in the plasma membrane. GNFs had little effect 

on the fluorescence lifetimes of TFPC or TFSM, as most data points remained close to the 

semicircle (Fig. 3.2b3-4 and insets). To address if GNFs shorten the fluorescence lifetime of TFC 

in the plasma membrane of live cells, we labeled the membranes of 3T3 cells, a fibroblast cell line, 

with TFC and performed FRET-FLIM (Fig. 3.2c). GNFs shortened TFC fluorescence lifetime 

relative to PVP controls (Fig. 3.2d&e), and dispersed phasor data towards a shorter lifetime 
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location (Fig. 3.2f). Interestingly, spatially resolved lifetime maps suggest that FRET of TFC in 

the presence of GNFs occurs in patches across the cell surface (Fig.3. 2e).  

 

Figure 3.3 Acute application of GNFs does not affect DiO fluorescence or its voltage sensing 
capabilities. (a) Effect of PVP or 260 ngml-1GNFs (white bar, starting at 60s and lasting 600s) on 
DiO fluorescence (both N = 5 coverslips). (b) DiO fluorescence (when paired with DPA) in 
response to 90 mM K+ after a 5 min treatment with PVP or GNFs (both N = 5 coverslips). 

 

Furthermore, GNFs do not quench membrane-embedded DiO (a common lipophilic 

fluorescent dye), even after a longer incubation (Fig. 3.3). 
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Figure 3.4 Effect of 1-hour GNFs or graphene oxide flake treatment on cell viability. Neurons 
were treated with (a) GNFs or (b) graphene oxide nanoflakes for 1-hour and viability was assessed 
using Trypan Blue staining (for paired comparisons to untreated: 130 nmgl-1 GNFs = 0.8267, 260 
ngml-1 GNFs = 0.4423, 5 µgml-1 GO = 0.1750, 10 µgml-1 GO = .0015, 20 µgml-1 GO = 0.001, 50 
µgml-1 GO = 1.7e-4, 100 µgml-1 GO = 1.9e-4. n > 6, N > 3, Wilcoxin rank-sum test). *** p < 
0.001, **** p < 0.0001. 

 

We also did not observe significant cell death after treatment with GNFs or for low 

concentrations of graphene oxide nanoflakes (Fig. 3.4). 

 Taken together, our results support a relatively selective interaction between GNFs and 

cholesterol in solution and in the plasma membrane of live cells. 

 

GNFs increase membrane lipid packing 
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The selective affinity to cholesterol prompted us to ask if and how GNFs treatment would 

change cellular cholesterol. Filipin staining, a histochemical marker for cholesterol, revealed that 

cell membrane cholesterol was increased by GNFs (Fig. 3.5). 

 

Figure 3.5 Filipin staining demonstrates a GNFs-induced cell surface cholesterol increase.   
3T3 cells were treated for 1 hour with either PVP, 260 ngml-1 GNFs or MβCD. Scale bar, 100 m; 
N = 6. Data points are individual coverslips; solid bars are mean values. For paired comparisons, 
GNFs vs. PVP, p = 0.0022, GNFs vs. MβCD, p = 0.0019, PVP vs. MβCD, p = 0.0048, Wilcoxin 
rank-sum tests. ** p < 0.01. 
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Because Filipin staining is only a semi-quantitative measure of cholesterol, we also 

performed Gas chromatography coupled with a flame ionization detector mass spectroscopy (GC-

FID) to quantitatively assess whole cell cholesterol levels, and found no significant increases in 

total cellular cholesterol, even after 24-hour GNFs treatment (Fig. 3.6).  

 

Figure 3.6 GNFs treatment does not change total cellular cholesterol.  Total cellular cholesterol 
quantifications by gas chromatography coupled with a flame ionization detector after specified 
periods of incubation with PVP or 260 ngml-1 GNFs (all n = 3, N = 3; all p > 0.05 for either paired 
comparisons or comparison to sham treatment, Wilcoxin rank-sum tests).  Error bars are S.E.M.. 

Together, these results suggest that GNFs induce redistribution of cholesterol towards the 

plasma membrane rather than upregulating cell-wide cholesterol metabolism. 

Because cholesterol governs lipid packing and membrane fluidity (Yeagle 1985, Baumgart, 

Hammond et al. 2007), we asked if GNFs alter plasma membrane biophysics. We began with cell-

derived giant plasma-membrane vesicles (GPMVs), whose molecular composition and biophysical 

properties resemble those of the plasma membrane (Sezgin, Kaiser et al. 2012). GPMVs exhibit a 

temperature-dependent separation into micron-sized lipid ordered (Lo) and disordered (Ld) phases 

(Levental, Byfield et al. 2009) (Fig. 3.7a). The temperature at which 50% of GPMVs contain co-

existing Lo and Ld domains is defined as the average miscibility temperature, Tmisc.  
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Figure 3.7 Graphene nanoflakes increase membrane lipid packing. (a) Temperature-dependent 
lipid phase separation of GPMVs. Scale bar, 5 m. (b) Tmisc of GPMVs isolated from 3T3 cells 
after 1-hour pretreatment. Phase separated fraction was calculated from the numbers of phase-
separated and non-separated GPMVs. Area of light shading shows the 95% CI on the sigmoidal 
fit function. For each temperature point, n > 70 GPMVs imaged. (c) Tmisc of GPMVs isolated from 
3T3 cells that were then treated for 1-hour. For each temperature point, n > 70 GPMVs imaged; N 
= 3. (d) Cumulative distribution of Ld fractions of GPMVs in (c) at 15 ºC. (e) GP imaging of 3T3 
cells after a 5 minute treatment. White arrowheads indicate puncta with high GP values. Scale bar, 
10 m. (f) Pixel GP value distributions after 5-minute treatment (n = 6 FOVs; p < 0.05, K-S test). 
(g) Time-resolved average GP values in 3T3 cells in response to treatment. Both n = 6 FOVs. 
(h&i) Box plots. Solid center lines represent the median value, boxed areas extend from the 25th 
to 75th percentiles, dashed whiskers represent full data range. (h) Area  values (p = 0.006, Wilcoxin 
Rank-Sum test. (i) GP values (p = 0.08, Wilcoxin Rank-Sum test). * p < 0.05, ** p < 0.01. 



133 
 

Pretreatment of 3T3-cells with GNFs or PVP for 1 hour and then subsequent formation of 

GPMVs results in an average Tmisc decrease from 27.8 °C in PVP-treated controls to 25.2 °C with 

GNFs (Fig. 3.7b and Fig. 3.8), a change correlated to an increase in membrane cholesterol 

(Levental, Byfield et al. 2009). 

 

Figure 3.8 Application of GNFs prior to GPMV isolation reduces miscibility temperature . 
Phase separation of 3T3 cells pre-incubated with media containing either PVP (black) or 260 ngml-

1 GNFs (red). Phase separated fractions were calculated from the total numbers of phase-separated 
and non-separated GPMVs at each temperature point. Areas of light shading show the 95% 
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confidence interval on the sigmoidal fit function, defined as: f(x) = A + B ∗ ቆ1 −
ଵ

ଵାୣ
ష
౮షి
ీ

ቇ. Each 

plot represents an independent preparation. Error bars are S.E.M.. 

  

Given that GPMVs, once vesiculated, are cut off from intracellular cholesterol supplies, 

we next isolated GPMVs and then treated with GNFs or PVP to determine if GNFs would stabilize 

cholesterol-rich Lo domains (Baumgart, Hammond et al. 2007, Gray, Karslake et al. 2013). We 

indeed found that in GPMVs isolated prior to treatment, GNFs application increased Tmisc (Fig. 

3.7c and 3.9) and Lo fraction (Fig. 3.7d). Taken together, these results suggest that GNFs alter 

membrane lipid packing. 

 

Figure 3.9 1-hour application of GNFs after GPMV isolation increases miscibility 
temperature. Phase separation of isolated GPMVs treated with either PVP (black) or 260 ngml-1 

GNFs (red) for 1 h. Phase separated fractions were calculated from the total numbers of phase-
separated and non-separated GPMVs at each temperature point. Areas of light shading show the 

95% confidence interval on the sigmoidal fit function, defined as: f(x) = A + B ∗ ቆ1 −
ଵ

ଵାୣ
ష
౮షి
ీ

ቇ. 

 
 

Next, we examined the biophysical impact of GNFs on the plasma membranes of live cells. 

For this, we performed generalized polarization (GP) imaging, a ratiometric approach based on 
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fluorescent reporters like Laurdan which are sensitive to membrane lipid polarity and packing 

(Barrantes, Antollini et al. 1999). We loaded 3T3 cells with C-Laurdan, a derivative of Laurdan 

with higher photostability and better correlation to membrane polarity (Kim, Choo et al. 2007). 

During continuous GP imaging, we sequentially applied 0.02 wt% PVP followed by 260 g/L 

GNFs, and observed that GNFs increased GP value (Fig. 3.7e) in a time-dependent manner (Fig. 

3.7g). Within 90s of application, GNFs skewed the distribution of pixel GP values to the right (Fig. 

3.7f), consistent with the idea that GNFs acutely increased lipid membrane packing in live cells. 

Intriguingly, bright GP puncta started to emerge or enlarge (Fig. 3.7e, white arrowheads). Since 

GP is a membrane-specific reporter, this suggests the emergence of membrane ‘hotspots’ due to 

GNFs. Analysis of puncta with a minimum intensity threshold (mean pixel GP value > 0.25) 

revealed that GNFs significantly increased average area (Fig. 3.7h) (from 0.31  0.02 m2 to 0.46 

 0.03 m2 before and after GNFs application, respectively; p = 0.006, Wilcoxin Rank-Sum test) 

without a corresponding increase in average mean pixel GP value (Fig. 3.7i) (0.26  0.02 vs. 0.27 

 0.03 before and after GNFs application, respectively; p = 0.08, Wilcoxin Rank-Sum test). Taken 

together, FLIM, GPMV, and GP imaging results collectively demonstrate that GNFs favorably 

interact with cell membrane cholesterol and increase membrane lipid packing on a timescale of 

seconds to minutes. 

 

GNFs induce highly-packed membrane subareas in the plasma membrane 

GP puncta that appeared after GNFs application (Fig. 3.7e) led us to ask if GNFs could 

induce highly-packed subareas in the plasma membrane. This is best investigated in live cells, as 

fixation methods may artificially change membrane packing. Visualization of GNFs via optical 
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methods is challenging, as they are both sub-diffraction limit and optically transparent. Given the 

relative specificity of the TFC-GNFs interaction (Fig. 3.2), we reasoned that TFC could be used 

to fluorescently label GNFs. To prepare TFC-coated GNFs complexes, we mixed PVP-suspended 

GNFs (2.6 mg/L) with TFC (100 M) and sonicated for 12 hours, similar to the preparation of 

DNA-coated GNFs (Liu, Li et al. 2010, Lv, Guo et al. 2010). Subsequently, we concentrated the 

product via size-dependent filtration and resuspended it in solution (see methods). 

 

Figure 3.10 GNFs induce acute and local membrane packing increases.  (a) Sample images of 
the same FOV 1 minute before and 1 minute after the application of TFC-coated GNFs. White 
triangles indicate pre-existing puncta; white arrowheads indicate puncta appearing after TFC-
coated GNFs application. Scale bar, 10 m. (b) Pixel GP value distributions after a 1 minute 
treatment (N = 6 FOVs; all p < 0.05 for pairwise comparisons to PVP, K-S test on the distribution 
of raw values). (c) 2D histogram of TFC fluorescence vs. GP value from thresholded ROIs (GP > 
-0.1 and FTFC > 10,000 a.u.). Dashed line is a linear regression fitting. Slope (1.11  0.24)  10-5. 
Pearson’s R= 0.7600, N = 6 FOVs. (d) Size distributions of TFC puncta (GNFs vs. PVP, p = 
0.0078, K-S test; TFC vs. PVP, p = 0.0003, K-S test; TFC-labeled GNFs, p = 0.000087, K-S test). 
All N = 6 FOVs. (e) Average TFC fluorescence (background subtracted) vs. GP values from the 
same ROIs in (d). Linear regression fitting (dashed line). Slope (8.91  2.73)  10-6. Pearson’s R= 
0.7347, p = 0.0002, n = 202 ROIs, N = 6 FOVs. 
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We preloaded cultured neurons with a low-concentration of TFC (10 nM) and C-Laurdan 

(1 M) to visualize the plasma membrane and membrane fluidity, respectively. In both TFC and 

GP images, we observed a low number of spatially co-localized puncta (Fig. 3.10a) with an 

average size of 0.36  0.04 m2. This is unlikely an artifact of spectral bleed-through based on 

blank controls for single dye loading (Fig. 3.11). 

 

Figure 3.11 Spectral separation of TFC and C-Laurdan.  (a) TFC-loaded neurons imaged using 
an OptoSplitII (simultaneous dual-channel) with a filter combination optimized for TFC (left) or 
C-Laurdan (right). Signals in the right image are likely autofluorescence. TFC also emits weak 
orange fluorescence, making it detectable using a 570/25nm emission filter. Scale bar, 10 m. (b) 
C-Laurdan-loaded neurons imaged with a filter combination optimized for TFC (left) or C-
Laurdan green fluorescence emission (right). Scale bar, 20 m. 

 Importantly, we observed the appearance of additional GP and TFC puncta after the 

application of TFC-coated GNFs (Fig. 3.10a), suggesting that GNFs were integrated into the 

membrane architecture. Application of GNFs alone or TFC alone also increased GP value – 

although to a lesser extent than TFC-coated GNFs (Fig. 3.10b). Differences in the average GP 

value between TFC-coated GNFs and GNFs are likely due to an additive effect of GNFs being 

complexed with TFC or the more hydrophilic nature of TFC-coated GNFs compared to GNFs. 

Pixel-based analysis (Costes, Daelemans et al. 2004) confirmed a correlation between TFC 

fluorescence intensity and GP value (Fig. 3.10c, R = 0.7600). Furthermore, comparison of the size 

of TFC puncta in all four conditions demonstrates the bimodal nature of the size distribution for 
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TFC-coated GNFs, with one subpopulation significantly larger than PVP controls (0.29  0.18 for 

PVP and 0.42  0.26 m2 for TFC-coated GNFs) and another even larger subpopulation (1.12  

0.35 m2) unique to TFC-coated GNFs (Fig. 3.10d). Puncta in the larger subpopulation mostly 

emerged after the application of TFC-coated GNFs, and TFC fluorescence intensities were 

correlated to GP value (Fig. 3.10e), suggesting a relationship between GNFs’ cell membrane 

deposition and an increase of membrane lipid packing. Average puncta sizes also increased after 

TFC (0.46  0.28 m2) or GNFs (0.31  0.20 m2) treatment (Fig. 3.10d) (Hölttä-Vuori, Uronen 

et al. 2008). Additionally, co-localized TFC and GP puncta appeared in neurites within 20 minutes 

after application of TFC-coated GNFs, whereas longer TFC treatment failed to further increase 

puncta size (Fig. 3.12a vs. 3.12b).  

 
Figure 3.12 Effect of GNFs on neurite membranes after 20 minutes of incubation. (a) For 
GNFs-TFC complexes. Scale bar, 10 m. (b) For TFC alone. Scale bar, 10 m. 

Our data indicate that TFC-coating allows visualization of the cell surface deposition of 

GNFs and suggest that GNFs focally promote lipid packing in the plasma membrane of live cells. 
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GNFs acutely potentiate neurotransmitter release 

Cholesterol is not only an indispensable structural component of the plasma membrane, 

but also modulates a number of transmembrane signaling pathways. The ability of GNFs to modify 

membrane packing, likely via cholesterol, led us to explore GNFs’ potential in modulating 

transmembrane signaling. Generally, intercellular communication involves the release of signaling 

molecules and subsequent binding or uptake by specific receptors, both of which are affected by 

membrane cholesterol and lipid packing. Neurotransmitter release from synaptic vesicles (SVs) at 

axon terminals is a representative example. It has been documented that cholesterol is essential for 

the origination and maintenance of vesicle pools (Mauch, Nägler et al. 2001, Dason, Smith et al. 

2014), the distribution and function of release machinery (Lang 2007, Enrich, Rentero et al. 2015, 

Yang, Kreutzberger et al. 2016), and membrane fusion/fission during exo-/endocytosis (Chang, 

Kim et al. 2009, Kreutzberger, Kiessling et al. 2015). Therefore, we asked if and how GNFs could 

be used to modulate neurotransmitter release. 
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Figure 3.13 GNFs acutely potentiate lipid packing and modulate neurotransmission. (a) 
Representative GP images of neurons after 1-hour treatment. White arrowheads indicate areas with 
high GP values. Scale bar, 20 m. (b) Average GP values after PVP (black bars) or GNFs (red 
bars) application (nneuron, PVP = 46, nneuron, GNFs = 53; nglia, PVP = 111, nglia, GNFs = 95). Data plotted as 
mean ± s.e.m.. (c1) Cumulative distribution of amplitudes. Inset are representative sample 
traces. p = 0.0934, K-S test. (c2) Cumulative distribution of inter-event intervals. p = 0.0001, K-
S test. (d1) Representative PPR traces and (d2) Average PPR (NPVP = 4, NGNFs = 5, p = 0.0159, 
Wilcoxin rank-sum test). Data plotted as mean  ± s.e.m.. (e) Representative GP (green) images of 
neurons after 1-hour treatment superimposed with FM4-64 (red) images from the same FOV. 
Arrowheads indicate overlapping puncta of GP and FM4-64. Scale bar, 10 m. (f) FM4-64 
intensity vs. GP value. Linear regression fits: for PVP, FFM4-64 = 11,024.45  GP + 1,202.42, R = 
0.5620; For GNFs, FFM4-64 = 10,538.30  GP + 1,307.99, R = 0.7344. (g1) FM4-64 destaining 
during 90 mM K+. (all n = 6 FOVs; all at 180-s time point, for average values: 
PVP vs. GNFs(5m), p = 0.5142; PVP vs. GNFs(1h), p = 0.021; for PVP vs. GNFs+MCD, p = 
0.0062; unpaired two-tailed t-tests).  Decay curves were fit with 2-component exponential decays, 
representing fast (g2) and slow (g3) decay curve contributions. Data plotted as mean  ± s.e.m.. (h1) 
FM 4-64 destaining after 1-hour treatment with SDS. (all n = 50, N = 6; at the 180-s time point: 
GNFs vs.  SDS, p = 0.33; GNFs vs. SDS-GNFs, p = 0.019, unpaired two-tailed t-tests). Decay 
curves were fit with 2-component exponentials, representing fast (h2) and slow (h3) decay curve 
contributions. (i) Qdot-based measurement of fusion modes during 1-minute 10-Hz electric field 
stimulation, reported as the ratio of FRF vs. all fusion events (all n = 20, N = 6). Data are plotted 
as mean (solid line) ± s.e.m. (shaded regions). (j) Qdot-based measurement of fusion modes during 
1-minute 10-Hz electric field stimulation, reported as the ratio of FRF vs. all fusion events (all n 
= 20, N = 6). Data plotted as mean (solid line) ± s.e.m. (shaded regions). * p < 0.05. 

Because we previously demonstrated that GNFs treatment acutely increases membrane 

packing in 3T3 cells, we first asked if GNFs would also increase membrane packing in neurons. 

In comparison to PVP, 1-hour GNFs treatment increased GP value (Fig. 3.13a), and interestingly, 

time-lapse GP imaging showed that the relative increase in neurons was slower and smaller than 

in neighboring astrocytes (Fig. 3.13b). To measure the functional impact, we performed whole-

cell patch clamp recordings and measured miniature evoked postsynaptic currents (mEPSCs). 1-

hour GNFs treatment had no effect on mEPSC amplitude, whereas inter-event interval was 

significantly reduced after GNFs treatment (Fig. 3.13c). This suggests a possibly presynaptic 

mechanism, in line with a previous report (Kitko, Hong et al. 2018). To corroborate synaptic 

mechanisms, we also measured the paired-pulse ratio of evoked postsynaptic currents. This ratio 

was higher in GNFs-treated neurons than in PVP controls, suggesting synaptic alterations in 
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response to GNFs treatment (Fig. 3.13d). To confirm that GNFs did not change membrane 

conductance (i.e. by perforating the plasma membrane (Tu, Lv et al. 2013) or altering extracellular 

K+ concentration (Pampaloni, Lottner et al. 2018)), we measured current-voltage relationships of 

neurons following 1-hour treatment.  

 

Figure 3.14 1-hour GNFs treatment does not change neuronal activity via extracellular K+.   
(a) Representative traces of spontaneous firing with or without hyperpolarization in GNFs or PVP-
treated neurons. (b) Proportions of neurons with or without hyperpolarization. (c) Representative 
traces of evoked firing with tonic or adapting patterns in GNFs or PVP-treated neurons. (d) 
Proportions of neurons with tonic or adapting patterns. (e) I/V curves for 1-hour PVP or GNFs 
treatment. Inset are representative records for both groups and the gray box indicates the (100 ms) 
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interval for average measurement at steady-state. (f) Resting membrane potentials in response to 
0, 4, and 20 mM extracellular K+ in neurons after 1-hour GNFs treatment. n = 5, 6, and 5 neurons 
for 0, 4, and 20 mM K+, respectively; between 0 and 4 mM K+, p = 0.049, unpaired two-tailed t-
test; between 4 and 20 mM K+, p = 0.024, unpaired two-tailed t-test. 

There was no difference between treatments (Fig. 3.14a&b), suggesting that GNFs do not 

compromise membrane integrity – in good agreement with viability data. Furthermore, resting 

membrane potential, firing pattern, and hyperpolarization after action potential were also 

unchanged (Fig. 3.14c-f), indicating unaltered extracellular K+ concentration. 

     To verify that electrophysiological changes were presynaptic, we used FM dyes, whose loading 

and unloading are used to estimate the number of releasable vesicles and their release probability 

(Pr,v), respectively (Betz and Bewick, 1992). We chose FM4-64 to minimize spectral overlap with 

both C-Laurdan and TFC. 1-hour GNFs treatment increased FM4-64 uptake (Fig. 3.13e), 

suggesting an enlarged pool of releasable SVs. This SV pool enlargement may explain PPR 

increase described previously (Hanse and Gustafsson, 2001). FM4-64 loading is correlated to GP 

value at synaptic boutons (Fig. 3.13f), suggesting a relationship between membrane packing and 

releasable SVs at synaptic boutons. During subsequent stimulation to induce vesicle turnover, the 

rate of FM4-64 destaining and the total amount of destaining were both greater following 1-hour, 

but not 5 minute, GNFs treatment (Fig. 3.13g), indicating a higher release probability (Pr,v) and/or 

a larger fraction of releasable synaptic vesicles. Membrane cholesterol reduction by the co-

application of 0.5 mM Methyl--cyclodextrin (MCD) significantly decreased FM4-64 destaining 

amount (Fig. 3.13g). Because PVP-coating generally results in limited surface coverage, 

potentially leaving portions of the GNFs surface unexposed, we tested if GNFs surface exposure 

was required to increase Pr,v. In the same manner that carbon nanotubes have previously been 

prepared (O'Connell, Bachilo et al. 2002), exfoliation of GNFs in 1% w/v SDS results in complete 
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surface coverage (SDS-GNFs hereafter) without causing GNFs aggregation (Hsieh, Korkut et al. 

2013, Hsieh, Punckt et al. 2013). 1-hour treatment with SDS-GNFs failed to alter destaining rate 

or amount in comparison to SDS or GNFs controls (Fig. 3.13h), demonstrating the importance of 

the graphene surface in inducing changes in neurotransmitter release. 

To further illustrate kinetic changes in SV turnover, we performed quantum dot (Qdot) 

enabled single vesicle imaging (Zhang, Li et al. 2009). The hydrodynamic diameter of the Qdots 

(~15 nm) is smaller than the luminal diameter of SVs (~25 nm) but much larger than the estimated 

fusion pore size (~1-3 nm). This leads to the loading of only one Qdot per SV (Zhang, Cao et al. 

2007) (Fig. 3.15a), and allows for an accurate estimate of the total releasable pool (TRP) of 

vesicles at every synaptic bouton. 
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Figure 3.15 Single Qdot imaging reports single vesicle fusion kinetics. (a) Sample images of 
single synaptic vesicle loading for releasable pool (0.8 nM Qdot) or TRP loading (100 nM Qdot). 
(b) Synaptic Qdot photoluminescence intensities from single vesicle and TRP loading were 
measured with the same settings and plotted on the same scale. The background intensity was 
2,784 ± 96 a.u. and the detection threshold was set at 2,900 a.u.. Under single vesicle loading, the 
mean Qdot photoluminescence intensity was 402 ± 43 a.u.. Under total recycling pool loading, the 
mean Qdot photoluminescence intensities were 8,913 ± 144 a.u. for neurons treated with PVP and 
9,980 ± 185 a.u. for neurons treated with graphene, which is significantly higher (p <  0.05). Based 
on these intensity values, we estimated that the average numbers of total recycling vesicles are 
23.4 for neurons on glass and 26.2 for those on graphene. (c) The distribution of mean Qdot 
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photoluminescence in individual synaptic boutons defined by retrospective FM4-64 staining. 
Quantal analysis (black and gray lines) indicates that the mean photoluminescence intensity of 
loaded single Qdots was 388 ± 71 a.u. after background subtraction. (d) Sample 
photoluminescence traces of single Qdots for four different types of synaptic vesicle release 
behaviors. (e) Synaptic vesicle release probability (measured as the first fusion event of Qdot-
loaded synaptic vesicles) in neurons treated with PVP, GNFs or GNFs+MβCD (GNFs 1 hr,* p < 
0.05). (f) Distribution of individual synaptic vesicles conducting different rounds of FRF.  *p < 
0.05. Error bars represent the S.E.M. 

  

We calculated the total number of Qdots taken up after maximal loading — i.e. strong 

stimulation (2 minutes, 90 mM K+) with a high concentration of Qdots (100 nM) (Zhang, Li et al. 

2009). In agreement with FM4-64 destaining, 1-hour treatment, on average, resulted in a 12% 

increase of the releasable SV pool size (measured as mean Qdot photoluminescence at synaptic 

boutons; FPVP = 8,913 ± 144 a.u. and FGNFs = 9,980 ± 185 a.u.; p < 0.0001, Kolmogorov-Smirnov 

test) (Fig. 3.15b). Using single-Qdot imaging, we analyzed the kinetics of SV turnover. We 

applied the same stimulation but used a much lower concentration of Qdots (0.8 nM) to randomly 

label SVs across the TRP (Zhang, Li et al. 2009). Quantal analysis of Qdot photoluminescence in 

FM4-64 defined individual synaptic boutons (Zhang, Li et al. 2009) confirmed single SV loading 

(Fig. 3.15c). Deconvolution of Qdot photoluminescence changes resulting from SV exo-

/endocytosis during a 10-Hz 60-s stimulation (see methods) allowed us to distinguish between two 

different modes of SV turnover, the classical full-collapse fusion (FCF), or fast and reversible 

fusion (FRF): a small increase immediately followed by the complete loss of unitary Qdot 

photoluminescence or a small increase alone, respectively (Zhang, Li et al. 2009) (Fig. 3.15d). 1-

hour GNFs treatment increased SV release probability, measured as the latency of first fusion 

events of Qdot-labeled SVs (Fig. 3.15e) and the number of FRF events by individual SVs (Fig. 

3.15f), cooperatively leading to a higher FRF ratio (Fig. 3.13i). To address the role of membrane 

cholesterol and lipid packing in the presence of GNFs, we co-applied MCD, which offset 
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increases by GNFs. As expected, there was no increase in FRF ratio (Fig. 3.13i). To confirm the 

importance of the GNFs surface interaction with the plasma membrane, we again used SDS-GNFs. 

1-hour SDS-GNFs application failed to modulate FRF ratio in the same manner as PVP-suspended 

GNFs (Fig. 3.13j). Taken together, these results suggest that, within 1-hour, GNFs enhance 

membrane lipid packing, enlarge the releasable SV pool, and increase SV release probability. 

Collectively, these changes result in an overall presynaptic potentiation of synaptic transmission. 

 

GNFs Acutely and Allosterically Modulate Transmembrane Receptors 

Much of signal input into and across the plasma membrane is mediated through 

transmembrane proteins such as receptors. Increasing evidence demonstrates that, within the 

plasma membrane, such proteins are sensitive to the local microenvironment (Groves and Kuriyan 

2010, Chabanon, Stachowiak et al. 2017); thus lipid packing directly or indirectly regulates 

membrane protein-mediated signaling pathways (Lingwood and Simons 2010, Oates and Watts 

2011, Yeagle 2014). For this reason, we set out to explore the utility of GNFs in manipulating 

receptor-mediated transmembrane signaling. We examined ubiquitously expressed and 

therapeutically important P2Y receptors (P2YRs), a class of GPCR preferentially localized within 

cholesterol-enriched nanodomains (N and Volonte 2013). We reasoned that modulation of 

membrane packing in the presence of GNFs would alter the activity of P2YRs on the plasma 

membrane. Extracellular ATP application activates P2YRs and subsequently triggers Ca2+-release 

from internal stores, which can be measured using fluorescent Ca2+-indicators (Zhang, Pangrsic et 

al. 2004). Pharmacological isolation of components of this process confirmed that P2YRs 

predominantly mediate ATP-induced Ca2+-responses in 3T3 cells (Fig. 3.16). 
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Figure 3.16 P2YRs mediate ATP-induced Ca2+-release from internal Ca2+-stores.  (a) Average 
Ca2+-response to 100 µM ATP application in Tyrode’s solution or Tyrode’s containing Suramin 
(100 µM) or 0 Ca2+/EGTA (2 mM). (b1) Representative record of a 3T3 cell before, during, and 
after 100 M ATP application. (b2) Average currents within the 10 s period before, during, and 
after 100 M ATP application (n = 11 cells; p > 0.05 for baseline vs. ATP, ATP vs. washout, and 
baseline vs. ATP, paired t-tests). 

 

Membrane conductance also remained unchanged after either 5 minute or 1-hour GNFs 

treatment, again demonstrating that GNFs do not compromise membrane integrity (data not 

shown). 

To measure P2YR responses, we applied two consecutive ATP stimuli at a 1-minute 

interval, which is insufficient to replenish internal Ca2+ stores. Because the amount of internal Ca2+ 

available for release is thus limited, enhanced P2YR activity should increase the first response and 

decrease the second. We quantified the ratio of 2nd vs. 1st peak Ca2+-responses as this would be 
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less affected by the number of cell surface P2YRs and the capacity of internal Ca2+ stores, both of 

which can be variable among cells. Interestingly, 5-minute GNFs treatment potentiated the first 

response and reduced the second (Fig. 3.17a1), resulting in a smaller 2nd vs. 1st response ratio (Fig. 

3.17a2). 

 

Figure 3.17 GNFs acutely potentiate P2YR signaling in 3T3 cells.  (a1) Ca2+-responses to 100 
M ATP. (a2) Ratios of 2nd to 1st peak amplitude (nPVP = 131, nGNFs, 5m = 119, nGNFs, 1h = 146, 
nGNFs+MCD = 120 cells; **, p = 0.0057 for PVP vs. 5-min GNFs and p = 0.0072 for PVP vs. 1-hr 
GNFs, n.s., p = 0.293 for PVP vs. GNFs+MCD, unpaired two-tailed t-tests). (b1) Effect of SDS 
coating on ATP-induced Ca2+-responses. (b2) Ratios of 2nd to 1st peak amplitude (nGNFs = 146, 
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nSDS = 133, nGNFs+SDS = 119 cells; **, p < 0.01, unpaired two-tailed t-tests). (c1) Effect of co-
application of GNFs with either the 1st or 2nd ATP application. (c2) Ratios of 2nd to 1st peak 
amplitude (nPVP = 130, nGNFs,1st ATP = 153, nGNFs,2nd ATP = 127 cells; *, p = 0.029, unpaired two-
tailed t-test). ** p < 0.01, * p < 0.05. 

 

1-hour treatment also led to a smaller ratio, although the 2nd response was slightly larger 

than that of controls (Fig. 3.17a1). The increase in 2nd ATP response following 1-hour GNFs 

treatment could result from changes in intracellular membrane cholesterol distribution, which 

reportedly promote the refilling of internal Ca2+-stores (Dionisio, Galan et al. 2011, Gwozdz, 

Dutko-Gwozdz et al. 2012). To confirm the involvement of membrane cholesterol, we again 

treated 3T3 cells with 0.5 mM MCD co-applied with GNFs. 1-hour MCD treatment reversed 

GNFs-induced enhancement of Ca2+-responses (Fig. 3.17a1&2). And to confirm the importance 

of the GNFs’ surface for the observed P2YR enhancement, we again employed SDS-GNFs. 1-

hour SDS-GNFs treatment did not potentiate ATP-induced Ca2+-responses in the same manner as 

PVP-GNFs (Fig. 3.17b). Importantly, GNFs alone did not elicit a Ca2+-response (Fig. 3.17c), 

suggesting that any potentiation in Ca2+ responses by GNFs is allosteric.  
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Figure 3.18 Acute application of GNFs does not alter current-voltage characteristics in 3T3 
cells.  (a) Trace overlays for a 3T3 cell in Tyrode or Tyrode containing either PVP or 260 ngml-1 

GNFs. (b) Average I-V curves of the same 3T3 cells (n = 5 cells; for blank control vs. PVP, PVP 
vs. GNFs, blank control vs. GNFs, p > 0.05, unpaired two-tailed t-tests). Values presented are 
mean ± S.E.M. 

 

Furthermore, GNFs did not alter cell membrane permeability (Fig. 3.18), arguing against 

the idea that Ca2+-responses were Ca2+ influx through membrane punctures created by GNFs. To 

further confirm whether GNFs act on P2YRs orthosterically or allosterically, we added ATP and 

GNFs simultaneously or separately. Only addition of GNFs simultaneously with either the 1st or 

2nd ATP increased the corresponding Ca2+-response (Fig. 3.17c1). These results suggest that GNFs 

act allosterically and acutely alter receptor activity. 
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Discussion 

The biological impact and associated cytotoxicity of nanomaterials remains a key issue 

moving toward clinical translation. Graphene has been hypothesized to be cytotoxic due to its 

nanometer size and sharp edges (Seabra, Paula et al. 2014), yet a framework explaining its toxicity 

to some systems and not others has yet to be established. Experimental studies of prokaryotic cells 

and computational simulations of phospholipid bilayers suggest graphene is destructive, especially 

to the cell membrane (Li, Yuan et al. 2013, Tu, Lv et al. 2013). However, studies using graphene 

as a substrate for eukaryotic cell growth have found increases in synaptic strength (Kitko, Hong et 

al. 2018), neuronal connectivity (Veliev, Briancon-Marjollet et al. 2016), and stem cell 

proliferation (Nayak, Andersen et al. 2011) and differentiation (Wang, Lee et al. 2012). These 

seemingly contradictory findings led us to the idea that distinct eukaryotic membrane moieties 

mediate graphene’s cellular effects. Consistent with previous reports, eukaryotic membranes were 

undamaged by low concentrations of GNFs, supporting that idea. We discovered a preferential 

interaction between GNFs and cholesterol, which is unique to and abundant in the eukaryotic 

plasma membrane. This preference over other lipid molecules indicates that the interaction 

between GNFs and cholesterol is more complex than a hydrophobic interaction alone, involving 

weak interactions such as stacking or Van der Waals forces. Given the diversity of biomolecules 

within the plasma membrane, likely more unique interactions remain to be explored. 

Improvements in computational techniques, for example more biophysically realistic membrane 

models, will provide a better understanding of the underlying physics governing the interaction 

between graphene and diverse biomolecules including proteins, lipids, and carbohydrates. And 
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new technologies that enable quantitative study of membrane properties in live cells may allow 

more precise evaluation of nanomaterial – membrane interactions. 

Here, we present multiple lines of evidence that cholesterol mediates GNFs’ biological 

effects (Filipin staining, GC-FID, miscibility temperatures in GPMVs and GP imaging with C-

Laurdan) through increased cell membrane cholesterol and thus increased membrane packing. 

Using TFC-coated GNFs and co-imaging of TFC and C-Laurdan, we further demonstrate that 

GNFs heterogeneously increase lipid packing in submicron areas of the plasma membrane, 

morphologically resembling stable membrane microdomains. GNFs may cause the focal clustering 

of cholesterol at membrane deposition points, forming or stabilizing microdomains. As current 

methods to selectively modify cholesterol distribution in subareas of the plasma membrane lack 

spatial precision, GNFs may be engineered to acutely and focally manipulate membrane packing, 

opening new doors to understanding the role of cholesterol and membrane packing in cell 

membrane organization and dynamics. 

As the interface between intracellular and extracellular environments, the plasma 

membrane plays an important and multifunctional role in a variety of cellular processes including 

signal transduction. Here, we illustrate the functional effects of GNFs on transmembrane signaling 

pathways using two representative systems: the secretion of neurotransmitters from axon terminals 

as signal output, and the activation of P2Y receptors by extracellular ATP as signal input. For the 

former, GNFs potentiate secretion by promoting vesicle origination, recycling, and membrane 

fusion/fission, processes regulated by membrane cholesterol (Mauch, Nägler et al. 2001, Chang, 

Kim et al. 2009, Dason, Smith et al. 2014, Kreutzberger, Kiessling et al. 2015). For the latter, 

GNFs allosterically promote P2YR activity, likely through cholesterol and other membrane lipids’ 

role in receptor localization, trafficking, stability, and dimerization (Cherezov, Rosenbaum et al. 
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2007, Hanson, Cherezov et al. 2008, N and Volonte 2013). The time course for GNFs’ effects 

varied by more than an order of magnitude between P2Y receptor activation (Fig. 3.17a1&2) and 

SV release (Fig. 3.13g&i). This may be due to differences in the role that cholesterol and 

membrane packing play in each system. Receptor conformations, for example, may be much more 

sensitive to perturbations in local lipid environment. Given that cholesterol modulates many lipid 

and protein complexes in the cell membrane and is pathologically linked to many disorders 

(Maxfield and Tabas 2005), biofunctionalization of graphene may open new venues for the 

investigation of membrane-related diseases. 
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Chapter 4  
 

Monovalent quantum dot-aptamer conjugates for single particle tracking of 
synaptic vesicles 

 

Background 

 The term ‘quantum dot’, coined in the 1980s (Reed, Bate et al. 1986), encompasses an 

array of core/shell combinations, but to date the majority of biological applications for these small 

nanocrystals have utilized CdSe core structures. The motivation behind the use of ‘dot’ is not 

structure related, but rather the result of quantum confinement effects. Quantum dots (Qdots) are 

ordered nanocrystals - either zincblende or wurtzite in crystal structure (Subila, Kishore Kumar et 

al. 2013). A widely exploited feature across both biological and engineering applications of 

semiconductor nanocrystals is their size-dependent properties. For example, Qdots exhibit a large 

shift in photoluminescence emission as a function of size (Alivisatos 1996). Unlike conventional 

fluorophores, where particle tracking has only recently been extended to a length scale of ~ 7 min 

with the addition of a cocktail of chemicals designed to minimize triplet state transitions through 

consecutive redox reactions (Tsunoyama, Watanabe et al. 2018), Qdots may potentially be tracked 

inside of biological tissue for a time period of up to ~ hours (Michalet, Pinaud et al. 2005). The 

‘blinking’ of Qdots is increasingly understood in terms of underlying physics (Efros and Nesbitt 

2016), and has been an area of investigation, although controversial at times, for either control of 

blinking frequency or suppression of blinking (Chen, Vela et al. 2008, Mahler, Spinicelli et al. 

2008). However, for single particle tracking applications, blinking is often advantageous, as it 

allows for the discrimination of single versus multiple labeling of a target. Furthermore, for a single 

excitation wavelength, the narrow emission spectra of Qdots enables greater multiplexing 
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capabilities than with either organic dyes or fluorescent proteins, which are generally limited to 

two color-labeling due to broad emission spectra tails. To date, simultaneous 5-6 color labeling 

has been demonstrated using Qdots, although sample preparations have been largely limited to 

immunolabeled fixed cell - and not live-cell - samples (Giepmans, Deerinck et al. 2005, Liu, Lau 

et al. 2010, Zrazhevskiy and Gao 2013). The recent growth in molecular recorders (Shipman, 

Nivala et al. 2017, Farzadfard and Lu 2018) and barcode-based connectomics (Peikon, Kebschull 

et al. 2017, Han, Kebschull et al. 2018, Kalhor, Kalhor et al. 2018) suggests that combinatorial 

mixtures of Qdots may someday find application in greatly increasing the number of molecular 

species simultaneously detectable with traditional optical techniques (Han, Gao et al. 2001). 

 The specific biological applications of Qdots encompass a variety of methods across 

neuroscience. Many such applications predate, yet are complementary to, an array of more recent 

neuroscience techniques that allow optical manipulation or readout in genetically defined cell 

populations, such as optogenetics (Boyden, Zhang et al. 2005) or calcium imaging (Chen, Wardill 

et al. 2013). The engineering of new shell chemistries aimed at enhancing photoluminescence 

stability (Dabbousi, Rodriguez-Viejo et al. 1997) has enabled high signal to noise ratio single 

particle tracking at fast frame rates (Dahan, Lévi et al. 2003, Geng, Qian et al. 2008, Lévi, 

Schweizer et al. 2008, Mikasova, Groc et al. 2008, Chang, Tomlinson et al. 2012, Park, Li et al. 

2012). A different subset of applications has exploited the pH-sensitivity of Qdots to allow 

different modes of synaptic vesicle fusion to be distinguished (Zhang, Cao et al. 2007, Zhang, Li 

et al. 2009, Kitko, Hong et al. 2018). Lastly, the energy spectra of Qdots is advantageous for donor-

receptor pair interactions, where Qdots act as donors when paired with organic dyes (Medintz, 

Clapp et al. 2003, Clapp, Medintz et al. 2004, Mandal, Zhou et al. 2018) or fluorescent proteins 

(Boeneman, Delehanty et al. 2012, Dennis, Rhee et al. 2012) for Förster resonance energy transfer 
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studies. Recently, there has been increasing interest in incorporating Qdots in applications where 

labelling targets with small numbers of fluorophores results in insufficient signal brightness or 

where resistance to photobleaching would be advantageous, for example in-situ hybridization in 

hydrogel composites (Chen, Wassie et al. 2016, Sylwestrak, Rajasethupathy et al. 2016). 

Sequencing applications are of interest for connectomics, allowing molecular identification of 

RNAs of interest in cell populations. Although recent progress in optical measurement of neuronal 

activity – via calcium or voltage imaging – has greatly increased the number of neurons whose 

activity can be recorded simultaneously in vivo, for non-invasive deep-brain imaging these tools 

are limited to largely depth-limited superficial brain regions. It has recently been proposed that by 

embedding Qdots within the lipid bilayer, sufficient fluorescence changes during action potential 

firing may enable optical voltage sensing at high spatial resolution (Efros, Delehanty et al. 2018), 

potentially enabling direct deep-brain readout of membrane depolarization events. The proposed 

mechanism for this is via electric field changes during neuronal depolarization, which would result 

in a red-shift of Qdot photoluminescence (Miller, Chemla et al. 1984). To date, however, the focus 

for most applications of Qdots remains largely on single particle tracking. Future applications, for 

example in vivo single particle tracking used in combination with optogenetic perturbation or 

calcium/voltage imaging, will greatly enhance the understanding of how protein trafficking acts in 

concert with cellular activity, but will require improvements in the ability to target Qdots to small 

and confined cell membrane regions. 

 

Materials and methods 
 

Reagents 
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All reagents were from Sigma-Aldrich unless otherwise noted. Organic phase quantum 

dots were purchased from Thermo Fisher (Em 605, CdSe/ZnS ITK, Q21701MP and Em 545, 

CdSe/ZnS ITK, Q21791MP) or Ocean Nanotech (Em 600, CdSe/ZnS, QSP-600-0010). 

Steptavidin-conjugated quantum dots were purchased from Thermo Fisher (Em 605, Strepatividin 

Conjugate, Q10101MP). Secondary antibody quantum dots were purchased from Thermo Fisher 

(Em 605, F(ab')2-Goat anti-Mouse IgG (H+L) Secondary Antibody, Q-11001MP). Gold 

nanoparticles were purchased from Nanocs (Streptavidin Nanoparticles 5 nm, GNA5). 

2,5,8,11,14,17,20-heptaoxadocosane-22-thiol was purchased from Polypure (mPEG thiol, 

molecular weight (MW) 356.5 g/mol, 95% purity). HS-(CH2)11-(OCH2CH2)6-OCH2CO2H was 

purchased from ProChimia (HSC11EG6CO2H). Sodium borate buffer was purchased from Alfa 

Aesar. 

 

Oligonucleotide sequences 

All DNA or RNA sequences were purchased from IDT or Midland Scientific and stored at 

-20 ºC until immediately prior to usage. 

 

Phase transfer of organic Qdots  

Quantum dots were phase transferred as previously described (Farlow et al. 2013), with 

modifications. Organic phase quantum dots first underwent three successive washes in methanol, 

followed by precipitation by centrifugation, to clean the Qdots surface. 1.5 mL of organic Qdots 

were diluted 1:1 with an equal volume of chloroform. 2.0 mL of 0.3 M TBAB and 100 uL of 

mPEG thiol were added to the dilute Qdots from the previous step. This mixture was added to a 

shaker and allowed to shake at room temperature for up to 24 hours. After shaking, 4.0 mL 0.2 M 
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NaOH was added dropwise while stirring. The aqueous phase was recovered and additional 

volumes of NaOH were added in the same manner until Qdots were largely recovered. Recovered 

Qdots were then concentrated in a centrifugal filter (30 kDa, Amicon) to a volume of 1-1.5 mL 

and solution exchanged into 1-1.5 mL of 10 mM Tris containing 30 mM NaCl (pH 8.0) buffer with 

a desalting column (NAP 10, GE Healthcare). Concentration was estimated by absorption 

measurement at 350 nm. 

 

ptDNA wrapping of Qdots 

ptDNA addition was performed as previously described (Farlow et al. 2013). 200 µL of 

200 nM ptDNA was added dropwise to 200 nM Qdots while stirring. The ptDNA-Qdot mixture 

was allowed to stir at 4 ºC overnight before assessment of stoichiometry via gel electrophoresis. 

Samples of unreacted Qdots and ptDNA-wrapped Qdots were loaded onto gels following 2:1 

dilution into a 70% glycerol solution. 0.8% agarose gels were prepared using 200 nM sodium 

borate buffer both for the gel and for the running solution and run at 8 V/cm for 17 min. Additional 

ptDNA was titrated in if Qdots remained in well locations that corresponded to the locations of 

bare Qdots. The mPEG thiol surface ligand should result in a neutrally charged Qdot, thus 

unreacted Qdots should remain in wells. To limit the effects of DNA degradation, once ptDNA 

wrapping was performed, Qdots were used immediately for aptamer conjugation or were stored at 

4 ºC and used within a few days. 10 µL of 10 mM carboxy PEG6 alkane thiol 

(CO2H)CH2O(CH2CH2O)6C11H23SH in the same Tris buffer used for buffer exchange were added 

to 100 µL of ptDNA-wrapped Qdots while stirring and stirred for 10 min. Qdots were then run 

through NAP5 desalt column (GE Healthcare) to remove excess alkane thiol ligands. At this step, 
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Qdots were used within 24 hours, as the alkane thiol ligand may displace the ptDNA on the Qdots 

surface. 

 

RNA aptamer hybridization 

RNAse inhibitor was used in all solutions after the addition of the RNA aptamer at a 

dilution of 100 units/mL. 200 µL ptDNA-wrapped Qdots were mixed with 30 µL GFP aptamer in 

the presence of 10 µL RNAse inhibitor for 15 min in the dark at 4 ºC. The mixture was then heated 

to 55 ºC for 10 min to break any secondary structures, and then placed on ice to cool. 

 

Transmission electron microscopy 

Following RNA hybridization, Qdots were used immediately to complex with Au NPs. 

Aptamer-Qdots were treated with 2 equivalents of Streptavidin-Au NPs that had previously been 

incubated for 1 hour at 4 ºC with 1 nM of a biotinylated anti-GFP antibody (Abcam). The 

Streptavidin-Au NPs complexes were then incubated overnight with 1 nM recombinant GFP 

(Abcam) prior to treatment with aptamer Qdots. Qdot-Au complexes were mixed for 30 min at 4 

ºC then drop cast onto ultrathin carbon TEM grids (Ted Pella), let dry overnight, and imaged on 

an Osiris TEM (FEI). All micrograph analysis was performed manually except for centroid 

distances, which were calculated manually using ImageJ line functions. 

 

Neuronal culture 

Rodent procedures and all relevant experimental protocols were approved by the 

Vanderbilt University Animal Care and Use Committee. Rat hippocampi (CA1-CA3) from both 

hemispheres were dissected from P0-1 Sprague-Dawley rats and dissociated into a single-cell 
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suspension. Dissociated cells were recovered by centrifugation (x 200 g, 5 minutes) at 4 C and 

re-suspended in plating media composed of Minimal Essential Medium (MEM, Life 

Technologies) with (in mM) 27 glucose, 2.4 NaHCO3, 0.00125 transferrin, 2 L-glutamine, 0.0043 

insulin and 10%/vol fetal bovine serum (FBS, Omega). 100 μl of cell suspension was added onto 

round 12mm- glass coverslips (200-300 cells/mm2). 100 l of Matrigel (BD Biosciences, 1:50 

dilution) was deposited on the coverslips and incubated at 37C with 5% CO2 for ~ 2 h, then 

aspirated before cells were plated. Cells were allowed to settle on the coverslip surfaces for 4 h 

before the addition of 1 mL culture media made of MEM containing (in mM) 27 glucose, 2.4 

NaHCO3, 0.00125 transferrin, 1.25 L-glutamine, 0.0022 insulin, 1 %/vol B27 supplement (Life 

Technologies) and 7.5 %/vol FBS. 1 to 2 days after plating, 2% Ara-C was introduced with another 

1 mL of culture media, which efficiently prevented astroglia proliferation. All experiments were 

performed using cultures between 12-18 DIV. 

 

Plasmid transfection 

Neurons were transfected using a calcium phosphate method at 7-10 DIV. 

pcDNA3.1/Puro-CAG-ASAP1 was a gift from Michael Lin (Addgene plasmid # 52519). SV2a-

pHluorin was a gift from Ed Chapman (University of Wisconsin, Madison). CMV::SypHy A4 was 

a gift from Leon Lagnado (Addgene plasmid # 24478). SNAP-CB1R was purchased from Cisbio 

(Cobolet, France). 

 

Fluorescence microscopy 

Fluorescence imaging was performed on a custom-microscope built on an Olympus IX-81 

base using either wide-field illumination (Nikon Intensilight) or a resonance scanning confocal 
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system (ThorLabs) at 100x with a Nikon oil immersion objective (1.45NA Plan Apo VC). 

Fluorescent protein fields of view were acquired with a 488 nm laser line at 15% power output. 

Qdot fields of view were acquired using wide-field illumination with a 400 nm (400/25, Semrock) 

excitation filter and a 600 nm (600/75, Chroma) emission filter. All tracking experiments were 

performed at 34 C using a sample heater (PH-1, Warner Instruments) on a ThorLabs motorized 

stage. Image acquisition was controlled using Micro-Manager. Qdot images were acquired on an 

Andor EMCCD (iXon 897) at a 10 Hz frame rate, gain = 75. Fields of view were the same for both 

channels and selected based on the fluorescent protein channel. All live cell imaging was 

performed using cells that were bathed in a 4 mM K+ Tyrode solution. The bath solution 

composition for all cell-based experiments was (in mM): 150 NaCl, 4 KCl, 2 MgCl2, 2 CaCl2, 10 

N-2 hydroxyethyl piperazine-n-2 ethanesulphonic acid (HEPES), 10 glucose, pH 7.35. 

 

Qdots immobilization 

Aptamer-Qdots or Streptavidin-Qdots were diluted to 5 pM in Tris containing HCl and 

mixed with a 1% agarose in sodium borate buffer solution immediately after heating to dissolve 

agarose. Prior to cooling, a thin layer of agarose-containing Qdots was spread on glass coverslips 

and imaged at 100x with a Nikon oil immersion objective (1.45NA Plan Apo VC). Immobilized 

Qdots were imaged on an Olympus IX-81 based with a Nikon Intensilight shutter and a 400 nm 

(400/25, Semrock) excitation filter and a 600 nm (600/75, Chroma) emission filter. Image 

acquisition was controlled using Micro-Manager. Qdot images were acquired on an Andor 

EMCCD (iXon 897) at a 10 Hz frame rate, gain = 75. Image stacks were analyzed in Matlab using 

custom algorithms. 
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Trypan blue viability 

Neurons were treated for 1 hour with either 10 µL/mL RNAse inhibitor in Fluorobrite or 

Fluorobrite (Thermo Fisher). Pre-warmed 4K Tyrode solution was diluted 1:1 with Trypan Blue 

(0.4%, Sigma) and neurons were incubated at room temperature for 2 min. Viability was assessed 

on an inverted microscope with a 10x objective (0.25 NA, Nikon) and a CCD camera 

(Photometrics CoolSNAP K4). 

 

Calcium imaging 

Neurons were treated for 1 hour with either 10 µL/mL RNAse inhibitor in Fluorobrite or 

Fluorobrite and then stained with 5 μM Fluo-4 in Fluorobrite and incubated for 10 min at 37 C 

and 5% CO2. Fluorescence imaging was performed on a custom-built Olympus IX-81 microscope 

using an mCherry filter cube combination (Semrock) and a 10x objective (0.25 NA, Nikon). Image 

acquisition was controlled using Micro-Manager. All calcium imaging experiments were 

performed at 34 C using a sample heater (PH-1, Warner Instruments) on a ThorLabs motorized 

stage. Images were acquired on an Andor EMCCD (iXon 897) with a 25 ms exposure time, gain 

= 15. Field stimulation was controlled via a Grass stimulator using custom-written protocols and 

triggered through Micro-Manager. Image analysis was performed using custom written algorithms 

in Matlab. 

 

Single particle tracking and analysis 

Quantum dot tracking videos were analyzed using the u-track function in Matlab based on 

published analyses from Jaqaman et al. (Jaqaman et al. 2008). Centroid positions (xi,yi) were 

determined for each time t and custom algorithms were used to calculate the mean squared 
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displacement (MSD) versus time (τ) curves for each particle trajectory, which were fit to a model 

of anomalous diffusion to give a diffusion coefficient (D). Tracks shorter than 25 frames were 

discarded. 

 

Statistical analysis 

Lillefors tests were used to determine appropriateness of 2-group comparison test. Either 

unpaired two-tailed t-tests or Wilcoxin rank-sum tests were used for two-group comparisons.  

 

Results 

 Single-particle tracking applications where a large number of possible targets may be 

accessible for binding within a confined space, for example proteins with multiple copy numbers 

present at the luminal surface of synaptic vesicles, still largely employ traditional biotin-

streptavidin conjugates. However, in these scenarios a monovalent tag would be advantageous to 

ensure better estimates of the true underlying dynamics of the system of interest by excluding the 

possibility of a single Qdot being conjugated to multiple binding sites, which would result in an 

underestimation of the true dynamics of the biological entity of interest. To achieve this for 

synaptic vesicles, we set out to modify and extend a previously established method to generate 

monovalent Qdots (Farlow, Seo et al. 2013). This approach generates monovalent Qdots based on 

the proposed mechanism that biomolecules or other conjugates attached to a Qdot surface will 

create steric effects that can be exploited to result in largely monovalent surface conjugation. 

Farlow et al. previously determined that phosphorothioate DNA containing a 50-Adenosine 

sequence generated the most favorable surface interaction with Qdots after transfer to an aqueous 

phase, where the 50-A DNA bases wrap around the thiol-rich Qdot surface. Using this approach, 
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commercially available Qdots (Qdot ITK, Life Technologies) are first ligand exchanged in the 

presence of mPEG thiols, TBAB, and NaOH to an aqueous solution. The resulting surface is 

enriched in mPEG thiols, which was previously demonstrated to result in the most stable ptDNA 

wrapping (Farlow, Seo et al. 2013). Modifications to the previous approach increase the phase 

transfer yield for VIVID Qdots and also result in fewer failed phase transfers than for commercially 

available core/shell Qdots tested, which are stabilized in the organic phase by octadecylamine 

(ODA) surface ligands (e.g., Ocean Nanotech). Farlow et al. previously observed relatively poor 

phase transfer yields for VIVID Qdots, but following modification of the ligand exchange 

procedure, we used these Qdots in all further experiments due to the relatively poor phase transfer 

we observed for ODA-surface capped Qdots. Thus, phase transfer parameters may be optimized 

based upon the surface ligand present on the Qdot in the organic phase. Of note, we also found 

that phase transfer yield was greatly increased by modifying the NaOH addition process to achieve 

phase transfer: NaOH addition was performed while stirring rather than by static addition followed 

by vortexing (see Methods). We reasoned that this approach would be less disruptive to the 

relatively weak surface interactions between the Qdots and mPEG thiols, while still allowing 

sufficient mixing to encourage phase exchange. Following NaOH addition, Qdots continued to stir 

for 1 min before removal and collection of the aqueous phase. Repeating this step several times 

resulted in increased yields of stably ligand exchanged Qdots. Excess solvent was then removed 

by centrifugal filtration followed by buffer exchanging Qdots through a desalt column (Figure 

4.1a). ptDNA was then titrated in to Qdots as described previously (Farlow, Seo et al. 2013). 
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Figure 4.1 Production of monovalent Qdots. (a) Production steps for monovalent Qdots. (b) 
Electrophoretic separation to assess overall wrapping. Gel on the left shows both wrapped Qdots 
(left) and neutrally charged bare Qdots after thiol addition (right). Gel on the right shows Qdots 
where sufficient ptDNA has not been added and a continuous band is observed. (c) 605 nm ptDNA 
emission spectra before the final aptamer hybridization step.  
 

After sufficient ptDNA addition, ptDNA-wrapped and bare Qdots were electrophoresed to 

grossly assess overall surface charge (Figure 4.1b): Qdots with mPEG thiols on the surface are 

relatively neutrally charged, thus should not migrate a large distance from the loading wells, while 

ptDNA wrapping imparts a net negative charge and causes Qdots migration. Prior to proceeding 

to aptamer hybridization, electrophoresis was repeated each time titration of ptDNA was 

performed, and addition was halted when ptDNA-wrapped Qdots collapsed onto a largely single 

and defined band (Figure 4.1b). Aptamer hybridization was performed prior to the addition of the 

alkane thiol PEG as described previously (Farlow, Seo et al. 2013). Notably, significant peak 

broadening was not observed for Qdots emission spectra following phase transfer and ptDNA 
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addition (Figure 4.1c), suggesting that the ability to multiplex Qdots is preserved and thus 

monovalency may be achieved for a combination of distinct Qdot sizes. 

 To extend the utility of monovalent Qdots, we chose a hybridization procedure that confers 

several distinct advantages. Antibody or nanobody conjugation to biotin followed by conjugation 

to Streptavidin-Qdots remains the most common strategy for target-of-interest linkage to either 

organic dyes or Qdots for single particle tracking. However, as much previous effort has focused 

on improvements in tracking algorithms, for example by the incorporation of Bayesian statistics 

into the estimation of particle trajectories, or the generation of compact Qdots for more accurate 

representations of true protein or vesicle mobility, alternative strategies designed to reduce the size 

of the targeting group would be beneficial. To this end, the small size of aptamers is advantageous. 

After ptDNA wrapping, a number of different biomolecules can be attached via complementary 

DNA pairing. Here, we chose to take an aptamer-based approach to take advantage of the small 

size and the possibility of easily generating large libraries of aptamers using SELEX-based 

screening. Thus, we designed a hybrid DNA/RNA aptamer, whose RNA sequence results in a 

structure that binds GFP with nanomolar affinity (Shui, Ozer et al. 2012). The overall hybrid 

structure is 72 base pairs of RNA with an additional 12 base pairs of DNA that enable two-step 

hybridization between the ptDNA-wrapped Qdots and the RNA aptamer. Prior to hybridization, 

the DNA/RNA aptamer was heated to 55 ºC and then rapidly cooled to room temperature to break 

any secondary structures and allow the proper conformations necessary for RNA binding to form. 

 After hybridization of the DNA/RNA aptamer to ptDNA-wrapped Qdots, we first assessed 

the effect of the incorporation of the RNA aptamer on Qdots monovalency. For an approach that 

allowed a more direct examination of Qdot binding than gel electrophoresis, we prepared 

complexes to be used for visualization via transmission electron microscopy (TEM). To quantify 
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binding valencies, an additional electron dense material was required that was readily 

distinguishable from CdSe/ZnS nanocrystals. For this we used commercially available 

streptavidin-conjugated Au nanoparticles (NPs) with an ~5 nm diameter. Although the size 

distributions between Qdots and Au NPs are thus relatively similar, differing electron densities 

allowed facile discrimination between Au NPs and Qdots. 

 

Figure 4.2 Verification of monovalency following aptamer hybridization. (a) Complexes for 
transmission electron microscopy. (b) Representative TEM micrographs showing complexes with 
a representative 1:1 Qdot:Au complex shown as an inset (upper right). Scale bars, 50 nm. (c) 
Valencies observed in TEM micrographs. (d) Particle counts of valencies with the average centroid 
distance between particles for 1:1 Qdot:Au (inset).  
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Complex formation was achieved as follows: recombinant GFP was first bound to 

DNA/RNA aptamer-conjugated Qdots. The complex was then conjugated to a biotinylated 

monoclonal anti-GFP antibody, where the biotin group binds to SAv-Au NPs and the antibody 

binds to the recombinant GFP-aptamer Qdots (Figure 4.2a). We observed these particles under 

TEM (Figure 4.2b&c) and noted that, although there were large populations of unbound Qdots or 

Au NPs, likely since we did not purify our complexes by electrophoresis prior to deposition on 

TEM grids, the majority of complexes (~95%) that bound were monovalent (Figure 4.2d). We 

further quantified the centroid distances for all 1:1 bound particles, which were normally 

distributed around a ~7.6 nm spacing (Figure 4.2d). 

 One challenge to the widespread adoption of RNA aptamers for live cell applications has 

been RNA stability (Mayer 2009). As synthesized, the GFP-binding aptamer validated in Shui et 

al. does not incorporate modifications such as fluorine modified oligonucleotides, which enhance 

stability by preventing nuclease degradation (Kawasaki, Casper et al. 1993). Thus, to determine 

the length of time our RNA aptamer was stable in conventional live cell imaging solutions (see 

Methods), we ran a series of RNA gels. We determined that within 5 minutes, incubation in either 

serum-containing or serum-free imaging media resulted in almost complete RNA degradation. To 

circumvent rapid RNA degradation without the additional rounds of SELEX screening required 

when balancing RNA binding strength with the time required to select through many more 

screening rounds, we included RNAse inhibitor in all of our hybridization steps and imaging 

solutions. We again ran RNA gels to assess RNA degradation, and determined that the addition of 

RNAse inhibitor resulted in aptamer stability over a time window of ~2 hours.  
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Figure 4.3 Effects of RNAse inhibitor addition on neuronal viability and excitability. (a) 
Trypan blue viability following 1-hour treatment with RNAse inhibitor. N = 6 coverslips. (b) 
Calcium imaging following 1-hour treatment with RNAse inhibitor. Individual neurons are shown 
as color coded, and (c) the percent responsiveness to 4 rounds of electrical stimulation are 
quantified for N = 9 (RNAse inhibitor) or N = 10 (untreated blank control) coverslips. 
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 RNAse inhibitor is widely used in RNA-based experimental methods, for example RNA 

isolation, however, how it effects neuronal viability and function is less understood. To determine 

the effect of RNAse inhibitor addition on neurons, we measured both neuronal viability and 

responsiveness to multiple rounds of electrical stimulation. Neuronal viability was determined 

after a 1-hour incubation with RNAse inhibitor in concentrations matched to those used during 

Qdots incubation. To assess viability, we used Trypan blue staining of cultured hippocampal 

neurons, a traditional assay for quantitation of the number of live/dead cells (Strober 1997). We 

observed no significant differences in neuronal viability compared to blank controls (Figure 4.3a), 

suggesting that RNAse inhibitor is not toxic to neurons for the concentrations and incubation times 

used in Qdots labelling. To further address the possibility that neuronal signaling was grossly 

altered due to the presence of RNAse inhibitor, we performed calcium imaging. Neurons were 

treated for 1 hour with RNAse inhibitor and pre-loaded with Fluo-4 for 10 min in a serum-free 

solution before imaging (Figure 4.3b). To assess overall neuronal responsiveness to electrical 

stimulation, we designed a stimulation paradigm where both frequency and intensity were such 

that control neurons would return to baseline following stimulation, and recovery time between 

stimuli was sufficient to allow neurons to undergo subsequent rounds of stimulation (Figure 4.3b). 

We observed no differences between RNAse inhibitor and untreated controls in the overall percent 

responsiveness to 4 rounds of stimulation (Figure 4.3c), suggesting that RNAse inhibitor does not 

grossly alter neuronal excitability. 

 Although we previously demonstrated that the Qdots photoluminescence spectra were not 

broadened during the ligand exchange process, ligand exchange and subsequent DNA-wrapping 

could still alter Qdots photoluminescence emission properties, for example intensity. Of note, the 

surface ligands present on the Qdot surface have been shown to play a role in photoluminescence 



178 
 

efficiency (Grandhi, M et al. 2016), and decreases in photoluminescence intensity have been noted 

following the phase transfer process (Farlow, Seo et al. 2013). 

 

Figure 4.4 Qdot spectral characterization.(a) Qdots were immobilized in an agarose gel (left) 
and photoluminescence traces tracked (right). Scale bars, 20 µm. (b) Power spectral densities for 
aptamer Qdots (left) and SAv Qdots (right). 
 

 To assess emissive properties at the single Qdot level, we immobilized both ptDNA-

wrapped Qdots and SAv Qdots (Figure 4.4a), which are commonly used for single particle 

tracking studies. We first qualitatively examined Qdot ‘blinking’ (Figure 4.4a). The on-off states 

that are characteristic of Qdots are the result of two processes: light-driven charging and 

discharging of the nanoparticle core and charging and discharging of electron traps (Galland, 

Ghosh et al. 2011, Yuan, Gómez et al. 2018). We observed similar photoluminescence traces in 

time for ptDNA-wrapped and SAv-conjugated Qdots (Figure 4.4a). To examine the distribution 

of spectral intensities, we performed quantal analysis (Zhang, Li et al. 2009) to distinguish single 

Qdots from multiple Qdots. Gaussian fits to multiplicative increases in peak intensity revealed a 
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greater number of single particle immobilized Qdots for ptDNA-wrapping, consistent with 

observations that commercial SAv Qdots often possess ‘sticky’ surfaces that result in greater 

degrees of multi-Qdot labeling. Interestingly, we also note that on a per particle basis, 

photoluminescence intensity is not significantly decreased for ptDNA-wrapped Qdots. We further 

examined the power spectral densities of ptDNA-wrapped Qdots, which appear similar to those of 

SAv Qdots (Figure 4.4b). Thus, our data indicate that overall photoluminescence properties are 

not substantially altered during the ligand exchange and subsequent wrapping and hybridization 

processes. 

 To validate aptamer-Qdot labelling in neurons, we began by expressing a general 

membrane label to examine co-localization of Qdots with membrane labelling. For this, we used 

the genetically encoded fluorescent voltage indicator ASAP1 (St-Pierre, Marshall et al. 2014), 

expressed in excitatory neurons. The majority of genetically encoded voltage or calcium indicators 

are designed such that the fluorophore is located within the cytoplasm (Lin and Schnitzer 2016). 

However, the mechanism of action for ASAP1 is somewhat different, where a circularly 

permutated GFP is located in the extracellular domain to report fluctuations in voltage across the 

membrane. Given that our RNA aptamer binds to GFP, we reasoned that this would provide a 

facile tag that may further enable simultaneous readout of membrane voltage in addition to single-

particle positions. We transfected neurons between 7-10 DIV and imaged ASAP1 expression at 

12-14 DIV (Figure 4.5a). After verifying expression of plasmid DNA, we optimized our labelling 

approach to minimize incubation time while still allowing sufficient numbers of Qdots in each 

field of view to generate sample statistics (see Methods, Figure 4.5b). Neurons were incubated in 

a serum-free solution with 4% BSA for 5 min before tracking experiments were performed. Of 
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note, we also tested using FBS to reduce non-specific binding, but found that labelling density was 

greatly reduced without outperforming BSA in the overall reduction of non-specific binding. 

 

Figure 4.5 Single particle tracking of membrane bound aptamer-Qdots using the genetically 
encoded voltage indicator ASAP1. (a) Representative FOV of ASAP1 expression in 12 DIV 
neurons. (b) Representative FOV of ASAP1 expression in 12 DIV neurons with aptamer-Qdot 
labeling. (c) Representative FOV of aptamer-Qdot labeling for single particle tracking. Scale bars 
as shown. FOV, Field-of-view. 
 

Single particle tracking experiments in neurons were performed over a 60 s duration and 

at a 10 Hz frame rate (Figure 4.5c). Particle trajectories were recovered using previously described 

tracking algorithms (see Methods) (Jaqaman et al. 2008). We uncovered a heterogeneous 

distribution of diffusion coefficients for ASAP1-labeled aptamer-Qdots (Figure 4.6). 

 Synaptic vesicle recycling, a process whereby filled synaptic vesicles fuse with a 

presynaptic active zone, release neurotransmitter, and are then recycled for later reuse, has been 

well characterized at the molecular level (Südhof 2004). However, the role of synaptic vesicle 

mobility in maintaining these important and homeostatically regulated processes has yet to be 

established (Kamin, Lauterbach et al. 2010). We thus set out to demonstrate that, because of their 

monovalent nature, aptamer-Qdots are useful tools to study synaptic vesicle mobility. To enable 

the conjugation of aptamer-Qdots to synaptic vesicle proteins, we expressed SV2a-pHluorin 

(Kwon and Chapman 2011), a pH-sensitive GFP commonly used to study synaptic vesicle fusion 
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(Sankaranarayanan, De Angelis et al. 2000, Kavalali and Jorgensen 2013), in 7-10 DIV neurons, 

and performed particle tracking experiments between 12-14 DIV. pHluorins expressed in synaptic 

vesicle proteins are in part well-suited to report vesicle fusion events due to the location of the 

GFP chromophore within the vesicle lumen; as with ASAP1, the localization of the GFP molecule 

to a site on the neuronal surface remains necessary to enable aptamer binding. Additionally, 

pHluorins are advantageous as tags for single particle tracking due to the relatively lower degree 

of fluorophore intensity when localized to within the vesicle lumen, where the acidic pH results in 

effective quenching of fluorophore emission. Alkalinization, for example by addition of NH4Cl to 

the imaging solution, allows visualization of SV2a-pHluorin expression. We verified that SV2a-

pHluorin expression was localized to synapses by post-hoc immunostaining against the commonly 

used synaptic marker Synaptophysin. 

 

Figure 4.6 Single particle tracking in synaptic vesicles using aptamer-Qdots. Left. Diffusion 
coefficients for immobilized (top, black), synaptic vesicle loaded (middle, purple), or membrane-
bound (bottom, green) aptamer Qdots. Right. Comparisons to literature values are shown (right). 
Individual coverslips are shown as individual circles, with the box plot for all individual 
trajectories shown to the right. 
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To assess the utility of monovalent aptamer-Qdots to study synaptic vesicle dynamics, we 

next performed single particle tracking using aptamer-Qdots loaded into synaptic vesicles (Figure 

4.6). Notably, based on our earlier results, which suggested that in the presence of RNAse inhibitor, 

the aptamer would be stable for up to ~2 hours in imaging media, suggested that longer incubation 

periods would be possible, although whether there would be faster degradation in the presence of 

cells remained unclear. We used a 45 min incubation to load synaptic vesicles with aptamer-Qdots, 

an established incubation length to ensure sufficient vesicle turnover. We observed labeling of 

Qdots that was largely co-localized to SV2a-pHluorin expression, confirming that aptamer 

labelling remained specific after 45 min incubation, and suggesting that only negligible 

degradation occurs. We again tracked aptamer-Qdots at a 10 Hz imaging rate. To compare vesicle 

mobilities, we also performed tracking of immobilized aptamer-Qdots and ASAP1-tagged 

aptamer-Qdots. We observed largely heterogeneous and unimodal distributions of diffusion 

coefficients across all 3 conditions, with a tail of small diffusion coefficients for immobilized 

aptamer-Qdots. Analysis of average diffusion coefficient for individual neurons demonstrates an 

overall increase in diffusion coefficient for both SV2a-pHluorin and ASAP1 aptamer-Qdots in 

comparison to immobilized aptamer-Qdots. The range of diffusion coefficients we obtained for 

SV2a-pHluorin labelling is in good agreement with a Brownian motion analysis-based approach, 

similar to the one used here, for trajectories obtained by tracking antibody-conjugated Qdots 

(Guillaud, Dimitrov et al. 2017). Overall diffusion coefficients for aptamer-Qdots, which were 

imaged at 34 ºC, were also larger than for antibody-conjugated Qdots imaged at room temperature 

(Jordan, Lemke et al. 2005), in agreement with previous demonstrations that vesicle mobility is 

temperature-dependent (Renden and Gersdorff 2007, Guillaud, Dimitrov et al. 2017). Confinement 

of Qdots within synaptic vesicles also results in lower overall diffusion coefficients than membrane 
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machinery related to active cellular transport. We observed that SV2a-pHluorin tagged aptamer-

Qdot mobilities were lower than a monoamine transporter (Kovtun, Sakrikar et al. 2015) – and 

furthermore that hippocampal synaptic vesicles exhibit lower diffusion coefficients than vesicles 

at ribbon synapses (Holt, Cooke et al. 2004), in good agreement with previous results. 

 Lastly, as a proof-of-principle, we demonstrate multicolor monovalent labeling using a 

SNAP-tagged endocannabinoid receptor (CB1R) paired with a benzylguanine DNA-hybridized 

Qdots (Em 605) in combination with aptamer-Qdots targeted to a Synaptophysin-pHluorin (Em 

545) (Figure 4.7). 

 

 

Figure 4.7 Multicolor monovalent quantum dot labeling. Scale bar, 20 µm. 
 
 
Discussion 
 

We present an approach for tagging cell surface or synaptic vesicle proteins with 

monovalent Qdots that are hybridized to an RNA aptamer. This method is broadly generalizable 

to any target of interest where GFP-based expression can be used as a handle for aptamer binding. 

We demonstrate that monovalency is preserved even after aptamer hybridization, which may be 



184 
 

important at cell surfaces sites where a large protein copy number increases the likelihood of 

multivalent conjugation. Furthermore, the use of RNA hybridization and aptamer binding as a 

conjugation strategy may open new doors for the utility of Qdots to examine the mobility of 

cellular components where generating antibodies against specific targets has proven challenging. 

DNA or RNA-based cell tagging have been of interest for a variety of applications beyond single 

particle tracking, and the use of Qdots may enable far greater multiplexing than is possible with 

traditional fluorophores. For example, using combinatorial combinations of Qdots with DNA 

barcodes could allow increased diversity in neuronal connectome sequencing – a long-sought 

advance for neuroscience (Zador, Dubnau et al. 2012). 

 Here, we further extend the utility of previous efforts to generate monovalent Qdots 

(Farlow, Seo et al. 2013) that are facile to produce, without complicated conjugation chemistries 

that would be prohibitive for many biological laboratories. DNA-wrapping of Qdots to achieve 

steric hindrance, thus conferring monovalency, represents a different approach, with both 

advantages and challenges ahead. The use of monomeric Streptavidin represents an alternative 

strategy to achieving a monovalent Qdot. Using this method, a distribution of valencies would be 

generated and monovalent Qdots are excised following gel electrophoresis (Howarth, Liu et al. 

2008). However, the need to electrophoretically isolate Qdots would reduce overall yield, and the 

interaction between a 6His tag on the monomeric Streptavidin and the Qdot surface is not 

irreversible, limiting the lifetime of the monovalent complex to on the order of hours. ptDNA-

wrapped Qdots production consists of several steps, where the initial ligand exchange step results 

in thiol-rich surfaces that persist for a period of months. The less labor intensive DNA-wrapping 

and RNA hybridization processes are limited by DNA and RNA degradation rates, but we have 

found that it is possible to store DNA-wrapped Qdots at 4 ºC for up to a week without loss of 
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binding. However, RNA hybridization must be performed immediately prior to imaging due to the 

relatively limited timeframe before RNA degradation onset (> 2 hours). Future efforts to increase 

RNA stability, for example by fluorine modification (Lipi, Chen et al. 2016), will extend the 

working lifetime of aptamer-hybridized Qdots. However, this will require additional rounds of 

SELEX screening to ensure that a balance is maintained between RNA stability and binding 

affinity. Alternatively, small-sized probes such as affimers or nanobodies may be hybridized on to 

monovalent Qdots, enabling tracking of neuronal proteins over extended timeframes.  
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Chapter 5  
 

Conclusions and future directions 

 

 The major findings and contributions from each of the preceding sections are detailed 

below, followed by a broad overview of ways in which the work presented here might motivate or 

inform future investigations.  

 

Chronic growth on graphene results in alterations in membrane-associated signaling 

 In Chapter 1 of this thesis, much of the previous work to date on the topic of graphene and 

the brain was reviewed. There is increasing interest in the use of graphene-based materials for 

biological applications. For example, in neuroscience applications, a combination of optical 

transparency and high carrier mobility make graphene appealing for transparent and flexible 

electrodes. And ultimately, new device strategies must be explored if one fundamental limitation 

of current implanted electrodes is to be overcome: traditional electrodes are spatially limited to 

recording in the vicinity of a physical stud. Recently, however, the use of photocurrents has been 

explored for both neuronal stimulation (Parameswaran, Carvalho-de-Souza et al. 2018) and 

recording (Wang, Shi et al. 2018). Because certain 2-dimensional materials such as graphene 

generate electron-hole pairs in response to optical excitation, this approach would in theory only 

be spatially limited in recording by the ability to deliver laser light. Development of such new 

platforms normal proceeds from in vitro studies using either cell lines or primary neuronal cultures. 

Structural changes in response to the presence of a foreign material have been an active area of 

study.  
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 In Chapter 2 of this thesis, we took inspiration from experimental device configurations 

that require chronic growth on graphene to understand the structural and functional changes that 

one would observe and further to gain mechanistic insight into the underlying mechanisms for any 

observed changes. We cultured hippocampal neurons, an established system for the study of 

synaptic transmission in vitro, on graphene substrates and characterized morphology and neuronal 

firing. Neurons on graphene exhibited an increase in firing frequency and a preference for fast 

vesicle fusion – without large morphological differences – indicative of an increase in synaptic 

strength (Kitko, Hong et al. 2018). Increased synaptic strength on graphene has more recently been 

independently confirmed (Pampaloni, Lottner et al. 2018), although the underlying mechanism is 

proposed to be different. By manipulating membrane cholesterol levels, we uncovered that 

cholesterol is a key mediator of the observed synaptic potentiation on graphene. We thus propose 

a model where chronic growth on graphene increases cholesterol levels in neuron, which in turn 

modulates neurotransmitter release and potentiates receptor signaling. 

 Prior to the work presented here in Chapter 2 (Kitko, Hong et al. 2018), there were 

numerous proposed explanations for a variety of cellular effects in response to chronic culture on 

graphene. Some of the earliest studies using graphene as a culture substrate focused on stem cells 

– it was demonstrated that graphene promoted stem cell differentiation and outgrowth. One key 

difference between these early studies and more recent work, which must be considered, is the use 

of an extracellular matrix coating. These protein-based coatings are common for cell culture 

systems, but introduce potential confounds for investigating the direct effect of graphene on cells. 

1. They are poly-ionic and introduce additional surface charges which may electrostatically 

interact with graphene and 2. At physiological temperature, gel-based protein coatings gel – 

thereby creating a physical gap between graphene and the biological subject of interest. Recent 
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studies have demonstrated that such matrix coatings are not necessary for chronic growth (Veliev, 

Briançon-Marjollet et al. 2016, Kitko, Hong et al. 2018, Pampaloni, Lottner et al. 2018). 

 A key consideration for future work with graphene – but also broadly for nanomaterials to 

be designed for neuroscience applications - is the formation of the protein corona. Within minutes 

of exposure to biological media, both ‘soft’ and ‘hard’ protein coronas are formed around 

nanomaterials (Lundqvist, Stigler et al. 2011, Lee, Choi et al. 2015, Lo Giudice, Herda et al. 2016), 

thus precluding any ‘direct’ exposure of the nanomaterial surface to a biological surface. As many 

computational models suggest a variety of interactions between proteins, lipids, and graphene, 

more studies are warranted to first understand the makeup of the biological corona formed at a 

graphene surface. The findings of Castagnola et al. (Castagnola, Zhao et al. 2018) are a first step 

to this end. Although this work did not focus on fluids within the brain, the use of mass 

spectrometry to precisely quantify both the components of the protein corona and further their 

percentage makeup are an important step towards understanding the complex relationship between 

the graphene surface, a protein corona, and cellular effects. 

 We propose in Chapter 2 that cholesterol plays an important role in mediating the effects 

of graphene substrates. K+ ion adsorption on graphene surfaces has more recently also been 

proposed as a mechanism to induce potentiated signaling on CVD-graphene. Although our later 

work, presented in Chapter 3, suggests that the effect of modulating K+ levels is not substantial, 

additional work may still help to inform all the potential routes through which graphene could 

modify membrane signaling – beyond lipid reorganization or changes in extracellular ion 

availability. 

 

GNFs acutely modulate lipid membrane packing 
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 Based on our results which demonstrate that cholesterol enrichment occurs on graphene 

substrates after chronic culture, we next sought to determine whether graphene could also acutely 

alter membrane signaling. We present our findings in Chapter 3. Flakes of graphene result in 

membrane packing increases within an hour, functionally modifying cell signaling processes in a 

similar manner to the results outlined in Chapter 2.  

 Although we demonstrate in Chapter 2 that membrane cholesterol is a key mediator of the 

potentiated signaling we observe on graphene (Kitko, Hong et al. 2018), the plasma membrane is 

a complex and dynamic microenvironment containing a myriad of molecules, some of whose roles 

remain undetermined. Thus, in Chapter 3 we investigated the interaction of GNFs with several 

additional molecules present in large molar percentages in the cell membrane. In a cell-free system, 

a fluorescent cholesterol analog exhibited a large overall change in lifetime than fluorescent SM, 

PC, or PE analogs, suggesting some specificity to the interaction between graphene and cholesterol 

beyond a hydrophobic interaction. Treatment with GNFs changes lipid membrane packing within 

1 hour, resulting in changes in neurotransmitter release and P2YR signaling. 

Graphene is now largely accepted to be a biocompatible culture substrate (Veliev, 

Briançon-Marjollet et al. 2016, Fischer, Zhang et al. 2018, Kitko, Hong et al. 2018). However, 

there remain concerns as to the overall toxicity of graphene. This stems from early work using 

prokaryotic cells, which demonstrated that at 100 µg/ml concentrations, flakes of graphene would 

disrupt membrane integrity, killing bacteria within a few hours of treatment. We have 

demonstrated that treatment with low concentrations of GNFs does not affect overall cell viability 

or membrane conductance within 1 hour. Further studies could explore several avenues – 1 hour 

was sufficient in our work to modify cell signaling, but ultimately longer term toxicity must be 

characterized. The results presented here suggest that up to 24-hour treatment is not toxic to cells, 
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but days or even weeks of treatment time may result in toxicity. Future efforts to understand the 

underlying mechanisms for longer term toxicity (> 18 DIV on G substrates, > 24 h GNFs 

treatment) will aid in determining the clinical applicability of G/GO-based nanomaterials. And 

creating a framework for the toxicity of carbon-based nanomaterials will involve resolving any 

differences or parallels between G/GO and CNTs. For example, lines of evidence that suggest that 

the presence of residual impurities (e.g. precursor) may be important to overall toxicity for CNTs 

(Aldieri, Fenoglio et al. 2013), suggest that production methods may play a role. Thus, production 

methods may be modified to reduce toxicity if necessary.  

Targeting GNFs to specific cell surface sites presents an engineering challenge for the 

future. GO flakes can be easily modified using widely-available conjugation chemistries due to 

the presence of oxygen groups across the surface. However, if the GNFs surface is important for 

the nature of its membrane interactions, routes by which the surface can be modified normally 

result in modification from the graphene structure. 

We demonstrate that the effects of GNFs are realized on different timescales for different 

cell types and different cell signaling pathways (Chapter 2 & Chapter 3). We hypothesize that 

these differences are due to the ways cholesterol is involved in each cell signaling process. For 

neurotransmitter release, cholesterol plays an important role in maintaining homeostatic 

physicochemical membrane properties and molecular organization. There are several possible 

ways for cholesterol to act, through which vesicle fusion mode preference could be changed and 

vesicle pool size increased, and future studies could further examine these alternatives. Cholesterol 

binds the synaptic vesicle proteins synaptophysin and synaptotagmin (Thiele, Hannah et al. 1999), 

for example, and may thus act to segregate membrane components. Or more directly, cholesterol 

may play a structural role in changing membrane curvature, altering release properties (Rosa and 
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Fratangeli 2010). For receptor activation, cholesterol may act through lipid signaling domains or 

through its role as a ligand for effector proteins. Cholesterol is an important component of lipid-

rich domains (Simons and Ehehalt 2002) which serve as concentrating platforms for receptors, 

which may be stabilized or enlarged after GNFs treatment. And G-protein coupled receptors can 

be modulated by altered concentrations of membrane cholesterol. Smoothened for example, which 

is part of the canonical Hedgehog signaling pathway, can be directly activated by cholesterol 

engaging its extracellular domain (Huang, Nedelcu et al. 2016, Luchetti, Sircar et al. 2016). Future 

work may distinguish between these possibilities. Computational models are beginning to 

elucidate the role cholesterol plays in activation for a variety of different receptors (Prasanna, 

Chattopadhyay et al. 2014, Pluhackova, Gahbauer et al. 2016, Sengupta, Prasanna et al. 2018), and 

in the future G/GO may be incorporated into such models to provide greater insight into the physics 

underlying these complex membrane phenomena. 

 

Aptamer-conjugated quantum dots to study synaptic vesicle mobility 

 Prior to the method developed by Farlow et al. (Farlow, Seo et al. 2013), monovalent Qdots 

were largely obtained by isolation of the monovalent product from a mixture of valencies, for 

example by gel purification (Howarth, Liu et al. 2008, Liu and Gao 2011) or magnetic bead 

separation (Uddayasankar, Zhang et al. 2014). DNA-wrapping represents a more facile method to 

generate batches of monovalent Qdots that, in our results presented in Chapter 4, did not require 

isolation when the amount of DNA titrated into Qdots was carefully calibrated. Our work extends 

this approach by using DNA/RNA hybridization to target monovalent Qdots to cell surface or 

synaptic vesicle sites via GFP expression in the extracellular environment or vesicle lumen, 

respectively. Using a hybrid aptamer we designed based on a published RNA aptamer (Shui, Ozer 
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et al. 2012), we found that vesicle mobility was similar with our approach to previous studies 

(Guillaud, Dimitrov et al. 2017). Future work may extend these results. Synaptic vesicle proteins 

are commonly used as tags and then results are generalized to overall synaptic vesicle mobility 

(Lee, Jung et al. 2012, Park, Li et al. 2012, Guillaud, Dimitrov et al. 2017). However, in line with 

similar approaches to the study of the mobility of different proteins on the cell surface, questions 

remain as to the idea that different vesicle proteins may have different mobilities. This could be 

systematically studied using our aptamer-Qdots combined with the large array of synaptic vesicle 

proteins that are already available with a pHluorin-tag. For example, synaptophysin (Royle, 

Granseth et al. 2008), VAMP (Sankaranarayanan, De Angelis et al. 2000), and synaptotagmin 

(Dean, Dunning et al. 2012), among others, have all been used to study vesicle kinetics. And as 

with any system where proteins are overexpressed, future studies should determine differences in 

mobility between the ‘additive’ overexpression model that was used here and a knock-

down/knock-out scenario (e.g. via CRISPR). The latter should be more carefully matched to 

endogenous levels of protein expression and thus may be more representative.  

 From a nanoparticle surface engineering perspective, one major line of future work which 

could greatly improve the end result after Qdot-wrapping with DNA is to modify the second PEG, 

for example, to neutralize the negative surface charges on the final product. Although our results 

suggest that DNA interacting with the Qdot surface will indeed sterically hinder multiple binding, 

after the addition of the carboxy-PEG specified by Farlow et al., the overall charge on the wrapped 

Qdot will still remain negative. This is problematic for any biological usage scenario, as many 

charged biomolecules can thus electrostatically interact with the ptDNA-Qdot. In cell culture, for 

example, poly-lysine is a commonly used substrate coating to increase cell adhesion, and is also 

positively charged - thus a significant amount of non-specific binding would be expected (Cai, Ge 
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et al. 2014). We find that a combination of extensively washing neurons after Qdot loading and 

pre-incubation of aptamer-Qdots in a serum-containing solution (4% BSA in loading media) 

greatly reduces the amount of non-specific binding compared to loading media alone. However, 

electrostatic interactions still likely result in an increase of hydrodynamic diameter after incubation 

in serum-containing media. As the size of Qdots must be sufficiently small to enable synaptic 

vesicle loading, future work should also investigate the increase in hydrodynamic diameter after 

contact with serum-containing and biological media and attempt to mitigate such increases. 

 

Concluding remarks and future directions 

The experiments detailed in this thesis present new ways to both study and manipulate the 

plasma membrane and plasma membrane-associated signaling pathways. Nanomaterials, with 

their small size and tailorable properties, offer an exciting new avenue to study the brain. 

 Ultimately, the success of any new methodology for neuroscience be determined by the 

ability to integrate it with other complementary tools in vivo. The work detailed here, suggesting 

that graphene has specific effects on membrane signaling, must be extended beyond in vitro culture 

systems to whole tissue. For example, myelinated axons transmit electrical signals across cm 

length scales within the brain. Myelin is largely composed of cholesterol – which may open the 

door for many interesting and novel uses of graphene. From a compliance standpoint, given the 

results presented here, what is the effect of graphene on myelinated structures in vivo? This could 

initially be tested by applying GNFs to whole brain or tissue slices. Transmission electron 

microscopy would allow high-resolution examination of myelin layers, allowing examination of 

the effects of GNFs on myelin at unprecedented resolution. From an engineering standpoint, could 
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an interaction between graphene and sterols or lipids be used to mitigate device integration issues 

traditionally encountered in brain implantation? 

 Quantum dots have played an important role in elucidating the motion of transporters, 

receptors, and synaptic vesicles. Monovalent conjugation may become an increasingly important 

design feature when designing nanoparticle probes. The work presented in Chapter 4 builds on 

longstanding efforts to design production strategies that are readily learned by the average 

neuroscience laboratory, for example not requiring complex chemical modifications after the 

initial surface passivation step. Further incorporation of non-traditional tagging approaches may 

unlock previously unexplored targets. Although the work here we present for nanoparticle tagging 

is limited to CdSe/ZnS quantum dots, the approaches and design considerations presented are 

broadly relevant to many types of nanoparticle. For example, upconverting nanoparticles have now 

been demonstrated to enable optogenetic stimulation in deeper brain regions than previously 

possible with infrared light delivery only. Ultimately, orthogonal advances are needed to truly 

enable practical single-particle tracking in deep brain regions: ultra-small nanoparticles that better 

diffuse, highly specific and long-term stable tags, methods to ensure clearance of non-bound 

particles, and non-invasive strategies that permit deep brain light delivery. 

 In conclusion, the work presented in this thesis highlights new potential for nanomaterials 

in neuroscience or cell signaling applications. Both acute treatment with flakes of graphene and 

chronic growth on graphene result in specific changes to membrane packing, which result in 

altered cell signaling. New methods for targeting nanomaterials such as quantum dots to different 

local sites will yield new insights into the role that protein diffusion or vesicle movement plays in 

normal physiological function in vivo. Richard Feynman’s eponymous statement ‘there’s plenty 

of room at the bottom’ is as true for neuroscience as for any field; some of the smallest features in 
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the brain, synaptic connections, which play a fundamental role in communication between cells, 

are of a size well-suited to these ‘bottom-dwelling’ tools. 
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