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Chapter 1

Introduction

1.1 Objective

Magnetic Resonance Imaging (MRI) enables imaging the human body with a wide va-

riety of manipulatable contrasts and views, and produces images without the use of harmful

ionizing radiation. Its ability to acquire high-resolution images in a short time makes it ide-

ally suited for many challenges in medicine today. While most clinical scanners today are

3 Tesla (3T) or 1.5T systems, there is motivation to move to higher field strengths given the

many benefits, including increased spectral resolution, better contrast due to longer T1 re-

laxation times, higher signal-to-noise ratio (SNR), and better parallel imaging performance.

The latter two properties can be traded for increased speed and resolution. These strong

advantages are the basis for much research occurring at field strengths of 7T and above.

Despite these advantages, high field MRI presents several challenges to be addressed be-

fore it can see widespread adoption for clinical use. In practice, many imaging techniques

require fast imaging readouts and strong flip-angle uniformity to eliminate image artifacts

and non-uniform decreases in SNR.

One obstacle in rapid acquisitions is that many fast techniques use non-Cartesian k-

space readouts, which are particularly sensitive to trajectory errors caused by gradient eddy

currents, delays, and non-ideal gradient amplifier characteristics, which can result in se-

vere image distortions. Another commonly-used trajectory for fast readouts is echo-planar

imaging (EPI), which also is very susceptible to trajectory errors because of the fast switch-

ing of the gradients. Existing techniques to correct for trajectory errors typically require

measurement probes or extra calibration scans. In Chapter 2, we present a calibrationless

method called Trajectory Auto-Corrected image Reconstruction (TrACR) to reconstruct

images free of trajectory errors. This method uses a flexible gradient-based trajectory op-
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timization approach. It jointly estimates images and k-space errors, can be adapted to

multiple trajectories, and can be used with multiple existing parallel imaging reconstruc-

tion techniques. In Chapter 3, the TrACR algorithm is extended to incorporate the unique

trajectory and phase errors encountered in fast EPI acquisitions.

Another challenge encountered in imaging at high field is that B1 field inhomogeneities

often critically affect scan results. At field strengths of 7T and above, the wavelength of

the transmit radio-frequency (RF) pulse is on the same order of magnitude as the size of

the imaged object; this causes spatially varying flip angle and hence spatially varying SNR

and changes in tissue contrast. In practice, this inhomogeneity could cause pathology to be

mistaken for normal tissue or vice versa.

Several methods exist to address the problem of flip-angle homogeneity, but the most

successful approach for general purposes has been the design of patient-tailored pulses

for parallel transmission. However, this requires measuring transmit sensitivities with the

patient already in the scanner and then optimizing a set of shim weights to excite the de-

sired pattern. To do this requires a design time that is prohibitively long for clinical use,

since optimization of these RF shims requires the solution of a non-convex optimization

problem, and is therefore computationally complex. Chapter 4 addresses this problem by

implementing machine learning techniques to discover relationships between optimized RF

shims and the transmit RF field maps for which they are tailored, with minimal calibration

data. The algorithm presented can quickly predict patient-tailored RF shims to produce

homogeneous excitations, without explicitly simulating the underlying MR physics.

Overall, this work significantly reduces image artifacts due to gradient eddy currents

and decreases RF inhomogeneities in high field MR. This is accomplished by employ-

ing functions that 1) optimize and exploit redundancies inherent in parallel imaging and

2) exploit redundant information in multi-subject data to learn characteristic relationships

between RF pulses and patient-specific parameters.
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1.2 MR Theory

This chapter gives a brief review of the origin of the MR signal, before introducing

some MR excitation and image reconstruction principles, techniques, and shortcomings

that will be expanded in later chapters.

An MR scanner works by manipulating nuclear spins. Hydrogen nuclei –protons– are

typically targeted in MRI because of their prevalence due to the abundance of water and

fat within biological tissue. Spin is a property of atomic nuclei, analogous to the nucleus

having an angular momentum. This spin gives rise to a small magnetic moment defined by:

µ = γS, (1.1)

where γ is the Larmor frequency of the spins (42.58 MHz/T for hydrogen nuclei). At

resting state, nuclear spins within an external magnetic field are oriented according to the

Boltzmann distribution:
N+

N−
= e−∆E/kT , (1.2)

where N− and N+ represent the number of nuclear spins in lower and upper energy states,

respectively, ∆E is the difference in energy between these states, k is Boltzmann’s constant

(1.3805×10−23J/K), and T is temperature. The energy difference ∆E is dependent on the

Larmor frequency of the spins γ (42.58 MHz/T for protons) and the strength of the main

magnetic field B0:

∆E = h̄γB0 (1.3)

where h̄ is Planck’s constant. At equilibrium, slightly more spins are aligned with the main

magnetic field (parallel) than against it (antiparallel). The bulk magnetization of the tissue

M (an integral over the magnetic moments µ of the targeted nuclei within a region of tissue)

tends toward a static value M0:

M0 ≈
B0γ2h̄2P

4kT
, (1.4)
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where P is the proton density. The bulk magnetization M = (Mx,My,Mz) bears a relation-

ship to a bulk angular momentum J that mirrors Eq. 1.1:

M = γJ. (1.5)

The presence of a dynamically varying external magnetic field generates a torque, accord-

ing to
dJ
dt

= M×B, (1.6)

and this translates to an expression for the rate of change of the magnetization M:

dM
dt

= γM×B (1.7)

Therefore, the time course of the magnetization that is not initially aligned with the mag-

netic field is a precession about an axis parallel to it with frequency ω0 = γB0. If we define

the direction of the main magnetic field as ẑ, then the component of magnetization that is

actually measured in MRI is that which lies in the transverse (xy) plane. Due to precession,

this magnetization rotating in the radiofrequency (RF) range yields a signal that can be de-

tected as a voltage induced in an RF coil placed near the spin system. But all this requires

that some spins are initially not aligned with the main magnetic field; otherwise, the RF

coil will not detect any signal. RF excitation is the means by which spins are rotated into

the transverse plane.

1.3 RF Excitation

In order to generate a signal from these spins, we must disturb the system from its equi-

librium state– by putting energy into the system. A magnetic field oscillating at the Larmor

frequency of the spins can “tip” them such that they have a component perpendicular to the

direction of the main magnetic field. This is known as RF excitation. For the following, we
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will consider the simplifying assumption that the coordinate frame of reference is rotating

about ẑ at a frequency of ω0. When the RF field or transmit B1 field, oriented perpendicular

to B0, is applied at this frequency, the spins experience another torque and tip away from

the z axis at an angle α determined by the strength of this applied magnetic field and the

time T over which it is applied:

α(r) = γs(r)
∫ T

0
B1(t)dt, (1.8)

where s(r) is the transmit coil sensitivity (B+
1 ) at position r, and B1(t) is an applied RF

waveform known as the RF pulse. The signal measured by the receive RF coils is propor-

tional to the transverse (xy) component of the magnetization vector, (which when tipped at

angle α , begins precessing). This signal will relax back to its original orientation along the

z-axis at a rate R1 = 1/T1, where T1 is the longitudinal relaxation time constant; meanwhile,

the signal is also decaying in the xy plane at a rate R2 = 1/T2, where T2 is the transverse re-

laxation time constant. In this dissertation, we will neglect these relaxation effects. Ideally,

the flip angle– and thus the excited signal profile– is uniform across the spatial volume of

interest; however, in reality, the applied field interacts with and is distorted by the imaged

object. This distortion manifests as a spatially varying, inhomogeneous flip angle α .

1.3.1 Transmit Field Inhomogeneity

Transmit field inhomogeneity increases with field strength, and, at field strengths of

7T and above, often critically affects scan results. At 7T, the wavelength of the transmit

RF pulse is on the same order of magnitude as the size of the imaged object (e.g. the

brain); the resulting interaction of the RF field and tissue deforms the transmit RF field [2],

causing spatially varying flip angles and hence spatially varying SNR and tissue contrast.

[3–5] Often at high field, this results in a center-brightening effect in the brain, as shown in

Fig. 1.1. The effects of RF inhomogeneity are pronounced in many scans, particularly in
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Figure 1.1: At field strengths of 7T and above, the transmit RF (B+
1 ) field is inhomogeneous

and contains a center brightening artifact.

T ∗2 -weighted blood oxygenation level dependent (BOLD) functional magnetic resonance

imaging (fMRI) [6], diffusion tensor imaging (DTI) [7], scans of structures that are located

in regions of typically high inhomogeneity, such as the cerebellum and temporal lobes of

the brain [8], as well abdomen and whole-body imaging [9].

Several methods exist to mitigate the effects of transmit RF inhomogeneity. Adiabatic

pulses, which apply a frequency sweep during an RF excitation envelope, have been em-

ployed to combat the inhomogeneity problem [10]. However, these pulses are long and

require high peak power, and therefore have relatively high specific absorption rate (SAR).

(Limits are placed on SAR to ensure patient safety, as will be discussed in detail in Section

1.3.2.2.) These factors severely limit the use of adiabatic pulses for inhomogeneity correc-

tion. Another proposed solution to the inhomogeneity problem at high field is the use of

dielectric pads [11, 12]. These pads have a high dielectric constant and are placed around

the patient’s head in the scanner. They have the effect of altering the field distribution such

that it is flatter, especially close to the dielectric pads themselves. These dielectric pads

improve field homogeneity in superficial regions of the brain, but the effect is not signifi-

cant deep within the tissue. It is also simply impractical to make additions to the necessary

equipment in an already crowded scanner bore.

1.3.2 Parallel Transmission

Parallel transmit (pTx) is a promising alternative to these other methods for mitigating

inhomogeneity. Instead of a single coil being used for excitation, multiple coils are used,
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Figure 1.2: Example brain B+

1 maps for a set of 8 transmit channels in a single axial slice.

each with a unique spatial sensitivity profile. Parallel transmission has many benefits, in-

cluding the ability to drive each coil separately in order to “steer” the field dynamically to

achieve different desired excitation patterns. In the past, MR transmit coils have been built

with the capability to drive a single element and adjust its amplitude on a patient-by-patient

basis based on a calibration of the 90° flip angle. However, having multiple transmit coils

provides a number of degrees of freedom that can be used to achieve a more homogeneous

excitation.

1.3.2.1 RF Shimming

RF shimming is one method of using pTx for inhomogeneity correction. This is done

by separately adjusting the transmit gain and phase and for each coil. This changes the

spatial excitation profile of the coils’ combined fields, and based on where the coils interfere

constructively and destructively, careful choice of complex weights (shims) with which to

drive each of the channels will result in a more uniform transmit field [4, 13]. Design of

patient-tailored RF shims requires as input an individual’s B+
1 maps–showing the spatial

sensitivity profile of each coil– acquired through a separate acquisition. Fig. 1.2 shows

example brain B+
1 maps for a set of 8 coils. However, the need to acquire these maps on an

individual and scan-specific basis means that the patient and scanner must lie idle while the

appropriate tailored shims are computed. Fast methods of B+
1 field mapping and patient-

tailored pulse design have therefore been a topic of much research (see, e.g. [14–18]).

For the RF shimming problem, we must consider the combined excitation pattern pro-
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duced by all coils:

m(x) =
Nc

∑
c=1

B+
1,c(x)bc, (1.9)

where m(r) is the total realized excitation pattern, which is a function of spatial location

(x), c indexes transmit coils, Nc is the total number of coils, B+
1,c(x) is the measured spatial

transmit sensitivity profile (B1 map) corresponding to coil c, and bc is the complex weight

(magnitude and phase) applied to coil c. We can concatentate the individual coil B+
1 maps

and RF shim weights and rewrite Eq. 1.9 as:

m = [ B+
1,1 B+

1,2 ... B+
1,Nc

]


b1

...

bNc

= Ab (1.10)

From here on, we will refer to only the full multicoil matrices above, and drop the subscripts

for succinctness. The RF shimming problem can then be posed to minimize the difference

between a desired excitation m (typically a vector of ones for a uniform profile) and the

weighted B+
1 maps:

argmin
b
‖m−Ab‖2

W (1.11)

where W are spatially dependent weights that may select only samples within the brain.

RF shimming attempts to minimize the cost in Eq. 1.11 such that transmit sensitivity is as

uniform as possible in a region of interest.

While shims can be obtained by directly minimizing Eqn. 1.11, in many cases, the

phase of the desired excitation is not important to the design problem. This is true for cases

in which only magnitude images are required. Therefore, it is possible to gain additional

degrees of freedom and achieve a more homogeneous excitation by instead minimizing the

difference between a desired excitation and the magnitude of the excited profile, as follows:

[19, 20]

argmin
b
‖m−|Ab|‖2

W . (1.12)
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Eqn. 1.12 is known as the magnitude least squares (MLS) formulation of the RF shim

problem. Although this formulation trades variation in phase for a more homogeneous

global optimum, it introduces another problem in that it is non-convex, and therefore it can

be difficult to solve in a reasonably efficient manner or to ensure a global optimum is found.

1.3.2.2 SAR and RF Power

Additionally, Eq. 1.12 only captures part of the problem; it is also necessary that de-

signed RF shims meet constraints on specific absorption rate (SAR) in order to prevent

excessive heat deposition in the tissue. SAR is a measure of the rate of RF energy absorbed

in a given mass of tissue, and typically has units of W/kg . High SAR can cause tissue

damage from RF heating, a serious concern for RF design, but it is difficult to explicitly

design pulses to meet SAR constraints. It is desirable to directly constrain the temperature

reached by the body tissue in the context of the MR scan, as tissue damage from RF fields is

directly dependent on temperature. To date, however, it has been a challenge to efficiently

and accurately measure local temperature and tissue electrical properties needed to simu-

late the thermodynamics involved; many factors affect local body temperature, including

the ambient temperature, metabolism, and dissipation of heat that is dependent on charar-

acteristics of the tissue itself, as well as blood flow and the body’s own thermoregulatory

response. Therefore, SAR is used as an indirect safety measure. RF pulses are designed to

stay well within a SAR safety factor set by the U.S. Food and Drug Administration (FDA)

at 3 W/kg over 10 minutes, globally averaged over the head, and 4 W/kg over 15 minutes

over the body [21].

Other requirements must also be satisfied in regards to the capabilities of the amplifier;

the amplitude and average power for each channel must be limited. Regularization is an

alternative to implementing strict constraints for SAR and RF power. This can be incorpo-

rated into the tailored shim design problem in Eq. 1.12 with a regularization term, as in the
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following:

argmin
b
‖m−|Ab|‖2

W +λR(b) , (1.13)

where λ controls the strength of the regularization R(b).

Solving Eqn. 1.13 is time-consuming, and because it is non-convex and sensitive to ini-

tialization, there is no guarantee that the arrived-at solution will be globally optimal. Chap-

ter 4 will introduce an efficient alternative – a machine learning approach to the problem

that sidesteps the computational and scan burdens required for conventional RF shimming.

1.4 Image Acquisition

Once spins have been excited, or tipped into the transverse plane–ideally uniformly and

in a SAR-efficient manner– they can be measured. However, if the transmit RF (B1) field

and main magnetic field (B0) are the only fields present, the signal from all spatial locations

(for the region over which the coil is sensitive) will be superimposed, and there will be no

image to retrieve; there must be a way to localize spins in order to acquire an image.

1.4.1 Spatial Localization

Gradient fields are typically introduced in order to localize nuclear spins so that an

image can be reconstructed. These are fields of the form G = (Gx,Gy,Gz) that are linearly

proportional to position in each dimension, such that:

B0 = B0 +G(t) · r, (1.14)

where r = (x,y,z) is the position vector. The signal that is acquired becomes:

S(t) ∝

∫ ∫ ∫
m(x,y,z)e[−ıγ

∫ T
0 G(t)·r]dtdxdydz, (1.15)
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where m(x,y,z) is the spatially distributed magnetization (from the 3-dimensional target

imaged object), and t = 0 corresponds to the beginning of the acquisition window. The

received signal is the Fourier transform of the imaged object.

1.4.2 Trajectories and Transforms

Now, with a signal that has been excited, and a way to localize spins, the signal must

be read out or acquired. The signal is read out in the Fourier domain, i.e. it is acquired at

“locations” in k-space— or frequency space— along some trajectory. In Eqn. 1.15, we can

substitute:

kx(t) =
γ

2π

∫ T

0
Gx(t)dt

ky(t) =
γ

2π

∫ T

0
Gy(t)dt

kz(t) =
γ

2π

∫ T

0
Gz(t)dt,

(1.16)

where k = (kx,ky,kz) is the 3-dimensional k-space trajectory in units of cycles per unit

distance (typically cm−1). Trajectories are used both for excitation and acquisition; this

dissertation will discuss their application in acquisition only.

Readout trajectories for MRI have typically followed a Cartesian pattern through k-

space, with sample points acquired at equispaced points in 2 and 3 dimensional k-space.

Fig. 1.3a shows an example Cartesian trajectory. This allows image reconstruction with

a simple inverse Fourier transform of the data, which can be performed efficiently using

fast Fourier transforms (FFTs). However, sampling on a Cartesian grid is slow and does

not allow for undersampling in an optimal manner in terms of the resulting signal-to-noise

ratio (SNR).
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Figure 1.3: Different k-space trajectories used for data acquistion are shown. a) Cartesian
acquisitions are the most common way to sample k-space. Non-Cartesian trajectories (b-d)
such as (b) radial, (c) center-out radial and (d) spiral, are typically used for fast acquisitions.
(e) Echo-planar imaging (EPI) trajectories are also used for fast readouts, but are designed
to still acquire samples on a Cartesian grid.
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1.4.2.1 Non-Cartesian Readout Trajectories

Non-Cartesian trajectories include radial, center-out radial, and spiral, (examples shown

in Fig. 1.3b-d) among many others. These were introduced as methods of increasing the

speed of traversal of k-space while maintaining high SNR-efficiency. They are designed

generally to oversample the center of k-space where signal is highest. They are often used

in dynamic MRI, including functional brain imaging [22], cardiac imaging [23, 24], and

in applications where the MR signal is short-lived, such as sodium imaging [25] and ultra-

short echo time (UTE) imaging [26].

1.4.2.2 NUFFTs

Non-Cartesian acquisitions require a more complicated image reconstruction than Carte-

sian trajectories; since the data are not acquired on a Cartesian grid, direct inverse FFTs can-

not be applied to arrive at an image. The exact inverse operation to go from acquired non-

Cartesian data to image is the inverse non-uniform discrete Fourier transform or NUDFT,

which computes an image f from the data d in the Fourier domain:

f j =
N−1

∑
i=0

cidie−ı2πx jωi,

0≤ j ≤ N−1,

(1.17)

where i indexes k-space frequencies, j indexes spatial locations, ci are sampling-density

compensation weights, f j is the complex image, x are spatial positions, and ωi are the

k-space frequencies. However, this operation is too computationally complex for most ap-

plications; therefore, the inverse non-uniform FFT (NUFFT) is used instead. This involves

gridding the non-Cartesian data to an oversampled Cartesian grid by convolving it with a

kernel, then performing an inverse FFT and multiplying with a deapodization function to

compensate for the effects of the kernel convolution in k-space. Applying density compen-

sation is also necessary when performing an NUFFT, but in iterative image reconstructions
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the need for this obviated. In Chapter 2, NUFFTs are employed for non-Cartesian image

reconstructions; additionally, Chapter 3 will introduce an alternative to the NUFFT for EPI

reconstructions, compensating for trajectory delays.

1.4.2.3 Gradient Eddy Currents

Compared to Cartesian k-space readouts, non-Cartesian trajectories are sensitive to tra-

jectory errors caused by gradient eddy currents, delays, and non-ideal gradient amplifier

characteristics, which can result in severe image distortions. This is due to the fact that

non-Cartesian acquisitions typically use fast readouts and require rapid switching of the

gradients. Gradient eddy currents produced on conducting structures in the scanner (e.g.

gradient and RF coils, the imaged object) are the result of Faraday induction due to the fast

switching of the gradients. These gradient eddy currents can be modeled by the deriva-

tive of the nominal gradient convolved with exponential decay functions of varying time

constants τ [27] :

ge(t,τ) =
dG(t)

dt
∗
{

H(t)e−t/τ

}
, (1.18)

where G is the time-varying gradient waveform, H(t) is the Heaviside step function, and

∗ denotes the convolution operation. These eddy currents have the effect of applying a

low-pass filter to the requested gradient waveforms. The resulting errors are pronounced in

non-Cartesian trajectories, particularly because they often involve sampling on the ramps

of the gradients. Figure 1.4a shows an example gradient used for a single line of a center-

out radial trajectory. The desired gradient waveform is shown in dashed green. Without

compensation, gradient eddy currents distort the waveform so that it looks like the dashed

black waveform. Modern scanners typically apply gradient pre-emphasis, which attempts

to correct for some of these gradient errors. A pre-emphasized waveform is essentially a

high-pass filtered version of the nominal or desired gradient waveform (blue line in Fig.

1.4a), such that it compensates in advance for the low-pass filtering effect of gradient eddy

currents. However, the gradient pre-emphasis methods that scanners typically use to com-

14



a b

Figure 1.4: In non-Cartesian acquisitions, gradient eddy currents can cause significant tra-
jectory errors, as shown in this example for a center-out radial trajectory. a) Shown are
the nominal (desired) gradient waveform (dashed green), the waveform distorted by eddy
currents (dashed black) and the pre-emphasized waveform. b) The corresponding k-space
trajectory (solid blue) is shown, as well as the (actual) trajectory distorted by eddy currents
(dashed blue), and the error between the two (orange).

pensate for these types of eddy current errors are often targeted to optimize gradient trape-

zoids used for Cartesian imaging only, and are limited in the scope of errors for which

they can compensate. Fig. 1.4b shows an example of center-out radial trajectory errors

for a single line of the readout; the solid and dashed blue lines correspond to the nominal

and distorted (actual) k-space trajectory, and the orange line shows the error between the

two. Residual uncompensated trajectory errors such as these can result in severe image

distortions.

1.4.2.4 Echo-Planar Imaging

Echo-planar imaging (EPI) is another fast-imaging technique which can yield signif-

icant image distortions due to the fast switching of the gradients. Samples of adjacent

lines in k-space are acquired directly by reversing the direction of the gradient, instead of

rewinding after each line, as shown in Fig. 1.3e. The errors resulting from effective de-

lays applied to alternating lines in k-space produce replicas of the imaged object, known

as Nyquist ghosts. Furthermore, the small magnitude of the phase-encoding blips relative

to the gradient-switching in the fast-readout dimension results in much larger EPI trajec-

tory errors in the readout dimension than in the phase-encoding dimension. In addition
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to trajectory errors, EPI acquisitions are susceptible to global phase differences between

odd and even lines or multiple shots. A variety of sources contribute to these errors, in-

cluding patient respiration and motion, heating of the magnet, gradient and shim coils, and

eddy currents in the main magnet and shim coils [28]. These errors are normally corrected

by estimating a k-space shift and phase difference that can be applied to all odd or even

lines, based on scanner calibration measurements. Jesmanowicz et al. demonstrated that

EPI phase errors could be estimated by playing out several lines of an EPI trajectory with-

out the phase blips and calibrating out the difference in the repeatedly acquired line [29].

Similarly, one can also integrate a calibration into the existing EPI sequence, in which the

center of k-space is acquired twice, once with an odd echo and once with an even one. Hu

and Le presented a method to calibrate out the differences of two acquisitions, one that

is shifted by a line such that odd echoes in the first acquisition correspond to even in the

second [30]. All of these methods, however, are limited in the fact that they require the

acquisition of reference data. A new method for correcting trajectory and phase errors in

EPI trajectories without calibration data is discussed in detail in Chapter 3.

1.4.3 Parallel Imaging Reconstructions

Another common technique for efficient signal acquisition in MRI is parallel imaging,

in which several coils placed around the imaged volume are used to sample the signal si-

multaneously. Since the coils are sensitive to different regions in the volume, they each

collect a uniquely weighted version of the underlying signal. This redundant sampling

enables image reconstruction that exploits this fact and allows higher fidelity recovery of

the underlying signal, providing a signal-to-noise ratio (SNR) benefit. Further, it enables

undersampling of the signal in k-space with recovery of the signal via the spatial encoding

provided by the separate coils. In turn, this allows increased temporal resolution and pro-

vides a basis for reduced-artifact image reconstructions that take advantage of redundantly

sampled data over multiple coils.
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There are several methods of exploiting the redundancies in multicoil datasets. The two

methods specifically used in this work are SENSE and SPIRiT reconstructions, and these

are discussed in detail in the following sections.

1.4.3.1 SENSE

A brief summary of the SENSE (sensitivity encoding) technique used for the parallel

imaging reconstructions in this work follows. A more detailed account can be found in the

work of Pruessmann et al.[31, 32]. When we measure signal along an arbitrary trajectory

in k-space, the corresponding signal model is:

yc(~k) =
∫

VOI
p(~r)ec(~k,~r)d~r (1.19)

where yc(~k) is the k-space signal measured by coil c as a function of k-space position,

p(~r) is a function of the imaged object and imaging parameters at spatial coordinates ~r,

and ec(~k,~r) are encoding functions. To reconstruct an image, these encoding functions are

discretized and form the elements of an encoding matrix E defined as follows:

E(ci), j = eı~ki·~r jsc j (1.20)

where~ki is the ith sampled k-space coordinate, and sc j is coil c’s sensitivity at~r j. Image

reconstruction then follows a linear model:

f = Gy (1.21)

where f represents the image object, and the reconstruction matrix G is the pseudoinverse:

G = (EH
Ψ
−1E)−1EH

Ψ
−1 (1.22)
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where Ψ is the sample noise covariance matrix, which here is used to optimize SNR in

the reconstruction. However, direct solution of this equation is extremely computationally

expensive, and therefore, iterative methods are typically employed. Since the noise is com-

plex additive white Gaussian, the maximum-likelihood solution to the non-Cartesian image

reconstruction problem is the minimizer of a cost J as follows:

J(f) =
1
2

Nc

∑
c=1

Nk

∑
i=1

dci

∣∣∣∣∣yci−
Ns

∑
j=1

e−ı2π(~ki)·~r jsc j f j

∣∣∣∣∣
2

(1.23)

where Nc is the number of receive coils, the dci are optional coil- and k-space location-

dependent weights, which compensate for sampling-density,~r j is the jth spatial coordinate

in the image, and sc j is coil c’s receive sensitivity at ~r j. This minimization problem can

be solved using a conjugate gradient (CG) routine. The reconstruction requires accurate

measurement of coil sensitivities. The resulting image f̂ j will be a body-coil or ground truth

image, on top of which the known or measured coil sensitivities are multiplied to get back

the full-coil image set. The technique enables corrections of undersampled data, which

can lead to pixel aliasing. While the aliased spatial pattern is the same for all coils, the

aliasing weights are different for each coil, so coil sensitivity information can be exploited

to account for undersampling errors.

1.4.3.2 SPIRiT

Iterative self-consistent parallel imaging reconstruction (SPIRiT) is a method that uti-

lizes the redundancies in a multicoil MR dataset to minimize errors, particularly in non-

Cartesian and undersampled image reconstructions [33]. Like the earlier GRAPPA method

[34], SPIRiT introduces a calibration kernel that enforces consistent relationships between

each acquired k-space sample and its surrounding neighborhood. The SPIRiT kernel is

iteratively applied to the reconstructed, coil-dependent, fully-sampled k-space data arrays

to ensure that data can be synthesized from its neighbors in a manner consistent with the
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parallel imaging signal model. The SPIRiT kernel is calibrated on multi-coil data at the

center of k-space; it develops a set of weights that minimize the difference between the

acquired data points and the same points synthesized by the weighted sum of neighboring

data in k-space (including that from other coils). Again, the data are represented by a linear

model:

y = Gf (1.24)

where G is a reconstruction system matrix that relates the reconstructed image f to the

collected k-space data y. This is a requirement that reconstruction be consistent with the

acquired data. Additionally, SPIRiT requires consistency between acquired and synthe-

sized k-space data:

x = Cx (1.25)

where x represents acquired and non-acquired k-space data, and C performs a series of

convolution operations based on the derived set of SPIRiT calibration weights. Figure

1.5 demonstrates, for Cartesian and non-Cartesian trajectories, which k-space points may

influence the data consistency and kernel consistency constraints for a given sample.

Image reconstruction is then formulated as a minimization problem that enforces both

data consistency and self-consistency with the SPIRiT calibration kernel:

J(f) =
1
2

Nc

∑
c=1

Nk

∑
i=1

dci

∣∣∣∣∣yci−
Ns

∑
j=1

e−ı2π(~ki)·~r j fc j

∣∣∣∣∣
2

+
λ

2
||Sf||2 (1.26)

where S is the SPIRiT calibration kernel, and λ controls the strength of the SPIRiT reg-

ularization (i.e. the relative importance of consistency between synthesized and acquired

k-space).

Both the SPIRiT and SENSE reconstruction methods lend themselves to modifications

further exploiting data redundancy. In that vein, Chapter 2 introduces a similar cost function

to that employed here, in order to allow the estimation of trajectory errors typically caused
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Figure 1.5: In Cartesian SPIRiT, a k-space sample not acquired (red circle) is synthesized
from a weighted kernel applied to those acquired (solid black) in the surrounding neigh-
borhood, including other coils. Arrows indicate the samples that contribute to this point.
For non-Cartesian SPIRiT reconstruction, data consistency is enforced between sampled
non-Cartesian points and the synthesized points on the Cartesian grid, and calibration con-
sistency is enforced with the Cartesian data synthesized from the surrounding Cartesian
k-space points.
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by gradient eddy currents, and Chapter 3 extends this method to allow the estimation of

additional trajectory and phase errors in EPI trajectories.
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Chapter 2

Automatic Correction of Non-Cartesian Trajectory Errors

2.1 Introduction

This chapter proposes a new method for automatic correction of trajectory errors for

non-Cartesian acquisitions, without the need for additional measurements or hardware.

Non-Cartesian k-space readout trajectories are used in several MRI applications, includ-

ing functional brain imaging [22], cardiac imaging [23, 24], sodium imaging [25], and

ultra-short echo time (UTE) imaging [26]. However, compared to Cartesian k-space read-

outs they are particularly sensitive to trajectory errors caused by gradient eddy currents,

delays, and non-ideal gradient amplifier characteristics, which can result in severe image

distortions. Modern scanners use gradient coil shielding and waveform pre-emphasis to

prospectively avoid significant trajectory deviations in typical MR acquisitions. However,

those methods are limited in terms of the magnitude and temporal dynamics of the errors

for which they can compensate, and non-Cartesian trajectory gradient waveforms can easily

push past those limits. Consequently, much research has focused on developing methods

to compensate for non-Cartesian trajectory errors retrospectively.

One approach to retrospective trajectory error correction is to measure or predict the

erroneous trajectory waveforms and use them in place of the nominal trajectory for image

reconstruction. Mason et al. [35] proposed an early gradient waveform measurement tech-

nique using a point phantom to localize and measure the phase progression of a set of spins.

To eliminate the need for precise placement of a physical phantom, Duyn et al. [36] and

Zhang et al. [37] proposed measuring the phase accrual of spins due to a gradient wave-

form of interest by performing slice selection along the same axis as the encoding gradient.

Gurney et al. [38] later introduced a modification to Duyn’s method to additionally allow
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the measurement of B0 eddy currents. Magnetic field monitoring is another measurement

approach that uses susceptibility-matched NMR probes placed around the imaging volume

in the scanner and has the advantage of flexibility, in that it can be performed concurrently

with any scan protocol [39]. The primary disadvantage of this approach is that it requires

specialized hardware to be situated inside the already-crowded magnet bore. All gradient

measurement approaches share the disadvantage that they cannot be performed retroac-

tively as a post-processing step, for example after attempts at image reconstruction without

corrections reveal the presence of artifacts in previously-acquired data. Predictive methods

have also been proposed based on the calibration of a gradient system model; subsequently

this model may be applied to predict errors for new input waveforms that might differ

in terms of the orientation of the imaging plane [40] or the trajectory itself [41–43]. All

of these techniques require calibration scans that can lengthen overall examination time.

Some require only one-time or periodic calibration, but cannot predict transient gradient

errors such as those caused by variations in the gradient system response with gradient coil

temperature increases. Predictive methods are also fundamentally limited by the models on

which they are based. For example, linear time-invariant models cannot predict errors due

to gradient amplifier nonlinearity, and most do not account for concomitant gradient terms

due to the difficulty in measuring them.

Several recently-proposed methods for trajectory error correction do not require addi-

tional measurements, calibration scans or hardware [44–46], and focus on correcting errors

in radial scans. These are iterative methods that estimate trajectory errors from the k-space

data themselves, and work by exploiting a) data redundancy resulting from oversampling

in the center of k-space, which is a universal characteristic of non-Cartesian trajectories in

use today, and b) data redundancy provided by parallel imaging. They are members of a

broader class of methods that aim to jointly estimate both images and other quantities such

as receive sensitivity maps [47] and off-resonance maps [48] from k-space data. Desh-

mane et al. [44] proposed a method that iteratively shifts data in k-space with the goal of
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finding the set of shifts that produces the highest sum-of-squares (SOS) signal; the set of

best shifts is then used to update the k-space trajectory used for reconstruction. Wech et

al. [46] proposed a method that iteratively shifts radial projections in k-space, choosing the

direction of those shifts based on the concordance of the resulting k-space data with the re-

mainder of the dataset. These methods have the advantage that transient gradient errors can

be captured retrospectively without the need for additional measurements. However, they

are limited in their range of potential applications because the need to select specified shift

directions and magnitudes would make for a large and potentially intractable combinatorial

solution space when applying them to trajectories other than radial.

In the following, we propose a more general method to reconstruct images free of tra-

jectory errors, called TRajectory Auto-Corrected image Reconstruction (TrACR), that is

based on the same basic idea as the aforementioned measurement-free methods but uses

a flexible gradient-based trajectory optimization approach. The method jointly estimates

images and k-space errors, can be adapted to multiple trajectories, and can be used with

multiple existing non-Cartesian parallel imaging reconstruction techniques. The method is

evaluated with in vivo 7 Tesla brain data from radial, center-out radial, and spiral acquisi-

tions in five human subjects. Performance of the method is investigated as a function of

k-space acceleration factor and the number of receive coils. Center-out radial and spiral

trajectory error estimates are validated against trajectory measurements.

2.2 Theory

2.2.1 Problem Formulations

The TrACR method is formulated as a joint estimation of images and k-space trajec-

tory errors, using extensions of the cost functions for SENSE [31, 32] and SPIRiT [33]

non-Cartesian parallel imaging reconstruction to incorporate trajectory errors as additional
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variables. The cost function used for SENSE reconstruction is:

Ψ(f ,∆~k) =
1
2

Nc

∑
c=1

Nk

∑
i=1

dci

∣∣∣∣∣yci−
Ns

∑
j=1

e−ı2π(~ki+∆~ki)·~r jsc j f j

∣∣∣∣∣
2

, (2.1)

where f is a length-Ns vector of image samples to be reconstructed, ∆~k is a length-Nk vector

of trajectory errors to be estimated, Nc is the number of receive coils, the dci are optional

coil- and k-space location-dependent weights, yci is coil c’s ith k-space data sample, ı =
√
−1,~ki is the nominal ith k-space location,~r j is the jth spatial coordinate in the image,

and sc j is coil c’s receive sensitivity at~r j. In this work the dci are used to apply k-space

density compensation to accelerate algorithm convergence. The cost function used for

SPIRiT reconstruction is:

Ψ(f ,∆~k) =
1
2

Nc

∑
c=1

Nk

∑
i=1

dci

∣∣∣∣∣yci−
Ns

∑
j=1

e−ı2π(~ki+∆~ki)·~r j fc j

∣∣∣∣∣
2

+
λ

2
‖Sf‖2 , (2.2)

where f is now a length-NsNc vector of images for all coils, and λ

2 ‖Sf‖
2 is the SPIRiT

regularization, where λ is a user-specified regularization parameter and S is the SPIRiT

operator. Equation 2.2 is an extension of Eq. 10 in Ref. [33]. The individual coil images

can be combined after SPIRiT reconstruction using any coil combination method [33].

Sum-of-squares coil combination was used in this work. In both the SENSE and SPIRiT

cases we model the k-space trajectory errors ∆~ki as a sum of weighted error basis functions:

∆~ki =
Nb

∑
b=1

~ebiwb =
{
~Ew

}
i
, (2.3)

where Nb is the number of error basis functions~eb. In order to minimize the required num-

ber of error basis functions, we construct them in a trajectory-dependent manner. Useful

error basis construction approaches for radial, center-out radial, and spiral trajectories are

described further in the Methods.
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2.2.2 Algorithm

TrACR is an iterative method based on an alternating minimization approach, in which

one of the parameters f or ∆~k is kept fixed while the other is updated. Accordingly, the

algorithm comprises an outer loop which in each iteration invokes an f update, followed

by a ∆~k update. For fixed ∆~k, the cost functions in Eqs. 2.1 and 2.2 reduce to the original

non-Cartesian SENSE and SPIRiT reconstruction problems and are typically minimized

with respect to f using the Conjugate Gradient (CG) algorithm [49]. To update the k-space

error weights w in Eq. 2.3 for fixed f , a nonlinear Polak-Ribière CG algorithm is used

[49]. Each iteration of that algorithm requires the derivatives of the cost function with

respect to w, in order to calculate the next search direction. Since by Eq. 2.3 each error

weight wb affects all k-space trajectory dimensions, the total derivative for each weight will

comprise a sum over the k-space dimensions. For the SENSE reconstruction problem, the

contribution to the derivative of wb from the kx-dimension is:

{
∂Ψ

∂wb

}
x
=

Nc

∑
c=1

Nk

∑
i=1

ℜ

{
Ns

∑
j=1
−ı2πx jex

bie
ı2π(~ki+∆~ki)·~r jdcis∗c j f ∗j rci

}
, (2.4)

where ℜ denotes the real part of the complex number in the braces, ∗ indicates a complex

conjugate, and rci is the residual:

rci = yci−
Ns

∑
j=1

e−ı2π(~ki+∆~ki)·~r jsc j f j. (2.5)

Once the derivatives for each k-space dimension are computed, they are summed to obtain

the total derivative for each weight, and the gradient vector of collected derivatives for all

weights is returned to the CG algorithm. The derivatives of the SPIRiT cost function are

obtained by replacing sc j f j with fc j in Eqs. 2.4 and 2.5. The TrACR algorithm alternates

between image and k-space error weight updates until a stopping criterion is met.
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2.3 Methods

2.3.1 Algorithm Implementation

The TrACR algorithm was implemented in MATLAB 2014a (The Mathworks, Natick,

MA, USA) on a desktop PC with an Intel Xeon E3-1240 3.4 GHz CPU (Intel Corporation,

Santa Clara, CA, USA) and 16 GB of RAM. Image updates were initialized with zeros

each outer iteration to avoid noise amplification. Except where otherwise noted, all im-

ages were reconstructed using MATLAB’s lsqr function, with a fixed tolerance of 10−2,

both inside and outside the TrACR algorithm. This allowed the number of CG image it-

erations in each image update step to vary as needed; typically 2 to 10 iterations were

used. All non-uniform discrete Fourier transforms were computed using a non-uniform

fast Fourier transform (NUFFT) algorithm [50]. Density compensation weights (dci in

Eqs. 2.1 and 2.2) were calculated using the method of Zwart et al. [51] using the nominal

trajectories. For SPIRiT image reconstructions, the regularization parameter λ (Eq. 2.2)

was fixed to 10% of the median of the absolute value of the k-space data. To enable di-

rect comparison of SENSE and SPIRiT reconstructions, the SPIRiT kernel was calibrated

using images obtained by applying the receive sensitivities measured for SENSE to a sum-

of-squares Cartesian reconstruction. The CG algorithm for the k-space updates used a

maximum of 5 iterations and a backtracking line search ([52], p. 464) with a maximum

allowed trajectory change in one CG iteration of 1/FOV, where FOV is the reconstructed

field-of-view. The outer loop of the TrACR algorithm was stopped when the k-space back-

tracking line search returned a zero step size in its first iteration. MATLAB code to im-

plement the algorithm and a demonstration with an in vivo radial dataset are available at

https://bitbucket.org/wgrissom/tracr/downloads.
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2.3.2 Experiments

In vivo experiments were performed at 7 Tesla (Philips Achieva, Philips Healthcare,

Best, Netherlands) using a quadrature volume coil for excitation and a 32-channel head

coil (Nova Medical, Wilmington, MA, USA) for reception. Scans were performed in 5

healthy volunteers with approval from the Institutional Review Board of Vanderbilt Uni-

versity. Data were collected using 3 non-Cartesian trajectories: golden-angle (GA) ra-

dial, center-out radial, and multi-shot spiral, detailed further below. Cartesian scans were

also collected and used to synthesize a body coil image and an estimate of the sum-of-

squares receive sensitivity using a polynomial fit; the receive sensitivity was divided out

of the reconstructed non-Cartesian images. Coil sensitivity measurements were collected

for SENSE reconstructions. All scans were gradient echo sequences with repetition time

and echo time matched for all trajectories, at 200 ms and 7.9 ms, respectively, and with

2.5 mm slice thickness. Center-out radial and spiral trajectory measurements for valida-

tion were collected in a spherical phantom for each scan session using a modified Duyn

method [36, 38]. Trajectory measurements began 1 ms prior to the expected start of the

gradient waveforms in order to capture components generated by the scanner’s gradient

pre-emphasis.

The GA radial trajectory comprised 201 projections, each containing 256 sample points.

Trajectory-specific acquisition parameters were: readout duration 0.46 ms, maximum gra-

dient amplitude 16.1 mT/m and maximum gradient slew rate 7.9 T/m/s, water/fat shift

0.741 pixels. The center-out radial trajectory comprised 402 projections, each containing

170 sample points. Trajectory-specific acquisition parameters were: readout duration 0.34

ms, maximum gradient amplitude 25.5 mT/m, maximum gradient slew rate 114 T/m/s.

The spiral trajectory comprised 16 shots of length 5.7 ms. Maximum gradient amplitude

was 14.3 mT/m and the maximum gradient slew rate was 70 T/m/s. The trajectory was

designed using Brian Hargreaves’ spiral design toolbox [53]. The resolution of each tra-

jectory matched that of the 128 × 128 reconstruction grid. The reconstructed field of view
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was 25.6 cm and all trajectories were designed to sample k-space to a maximum frequency

of ±2.5 cycles/cm. Where indicated, the data were coil-compressed prior to image recon-

struction using singular value truncation [54].

2.3.2.1 Incorporating B0 inhomogeneity correction

An additional experiment was performed to demonstrate the capability of using TrACR

with off-resonance correction incorporated into the reconstruction system matrix as fol-

lows. A B0 map was measured in the first subject. Reconstructions were then performed

incorporating off-resonance correction using the time-segmentation method of Fessler et.

al [1]. In this method, the system matrix is split up into a series of L time segments The

off-resonance term is approximated as:

e−ı(∆ω) jti ≈
L

∑
l=1

bilcl j, (2.6)

where (∆ω) j is the measured B0 offset at spatial location j, i indexes time, l indexes time

segments, bil are temporal interpolation functions, and cl j are complex exponential func-

tions evaluated at the middle of the interpolation windows, given by:

cl j = e−ı(∆ω) jtl , (2.7)

where tl is time at the center of window l. This enables efficient computation using L

separate NUFFTs that are subsequently combined. The signal model is as follows:

yi =
L

∑
l=1

bil

[
N

∑
j=1

f jcl je−ı2π~ki·~r j

]
, (2.8)

where yi is the data at time ti, f j is the imaged object at spatial location j,~ki are the k-space

locations, and~r j are the spatial coordinates.

In this work, 4 time segments were used. Off-resonance was incorporated in TrACR re-
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constructions of the first subject’s spiral scan in two schema: 1) Off-resonance incorporated

throughout TrACR and in the final reconstruction system matrix also and 2) Off-resonance

incorporated solely in the final image reconstruction system matrix.

2.3.2.2 Error Basis Generation

2.3.2.2.1 Golden-Angle Radial Data sampling occurs only during the flat parts of the

trapezoids in conventional and golden-angle radial acquisitions, so the majority of trajec-

tory errors can be captured by linear translations of the radial lines in k-space [44]. This

leads to a straightforward trajectory error basis matrix construction ~E = (Ex,Ey), as:

Ex =

[
INpro j ⊗1Nsamp×1 0Npro jNsamp×Npro j

]
, (2.9)

Ey =

[
0Npro jNsamp×Npro j INpro j ⊗1Nsamp×1

]
, (2.10)

where INpro j is an Npro j ×Npro j identity matrix in which Npro j is the number of radial

projections, ⊗ represents a Kronecker product, 1Nsamp×1 is a length-Nsamp vector of ones

with Nsamp being the number of sample points per projection, and 0Npro jNsamp×Npro j is a

matrix of zeros.

2.3.2.2.2 Center-Out Radial and Spiral In ramp-sampled center-out radial and spi-

ral acquisitions, data are acquired while the gradients change amplitudes. The majority

of trajectory errors are the result of eddy currents generated on conducting structures in

the scanner which produce gradient field errors. These gradient field errors are typically

modeled as a weighted linear combination of terms of the form ([55], p. 320):

ge(t,τ) =−
dG(t)

dt
∗
{

H(t)e−t/τ

}
, (2.11)

where each term has a different value of the time constant τ , t is time, G(t) is the nominal

gradient waveform, and H(t) is the Heaviside step function. For a given center-out radial
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or spiral readout gradient waveform G(t), this model was used to calculate error basis

vectors by generating functions ge(t,τ) for 1000 time constants spaced linearly between 1

µs and 2 ms, and sampled with the same dwell time as the measured k-space data. The

functions were integrated to arrive at a k-space error basis set, then compressed down to six

linearly-independent waveforms by stacking them into a matrix Ge, calculating its singular

value decomposition (SVD) Ge =USV ′, and taking the first six columns of the matrix U

(corresponding to the six largest singular values) as the error basis for that input gradient

waveform. For the center-out radial case, the compressed error basis matrix was calculated

for a single trapezoid and was rotated for each projection, forming the final error basis

matrix ~E = (Ex,Ey) as:

Ex =



G̃

G̃cos 2π

Npro j
...

G̃cos 2π(Npro j−1)
Npro j


, (2.12)

Ey =



0

G̃sin 2π

Npro j
...

G̃sin 2π(Npro j−1)
Npro j


, (2.13)

where G̃ is the SVD-compressed error basis matrix. For the spiral case, compressed error

basis matrices were calculated for the Gx(t) and Gy(t) waveforms for one of the 16 shots.

31



These were then rotated to form the final error basis matrix ~E = (Ex,Ey) as:

Ex =



G̃x 0

G̃x cos 2π

Nshot
G̃y sin 2π

Nshot
...

...

G̃x cos 2π(Nshot−1)
Nshot

G̃y sin 2π(Nshot−1)
Nshot


, (2.14)

Ey =



0 G̃y

−G̃x sin 2π

Nshot
G̃y cos 2π

Nshot
...

...

−G̃x sin 2π(Nshot−1)
Nshot

G̃y cos 2π(Nshot−1)
Nshot


. (2.15)

In total, 6 error weights were fit in the center-out radial case and 12 in the spiral case. The

definitions in Eqs. 2.12-2.15 are based on the empirical observation that the trajectory errors

were very similar for the x and y gradient channels, so a single set of error coefficients can

be estimated that applies to all shots/projections. For non-axial slice planes, it may be more

accurate to estimate separate error coefficients for each gradient channel. Finally, on our

scanner, the vendor’s gradient pre-emphasis resulted in a temporal gradient delay that was

found to be constant between scans, subjects, and trajectories; this shift was measured and

applied to the nominal gradient waveforms provided to our algorithm. Alternatively, one

could disable waveform pre-emphasis for such acquisitions.

2.4 Results

Figure 2.1 illustrates the accuracy with which the generated error basis functions can

be fit to the measured trajectory errors in the center-out radial and spiral cases. This was

investigated by directly fitting (by least-squares, without the TrACR algorithm) the error

basis functions to the measured errors for the first projection/shot, while varying the size

of the SVD-compressed error bases. Figure 2.1a plots the root-mean-square (RMS) error
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Figure 2.1: Investigation of the number of SVD-compressed error basis functions necessary
to accurately model trajectory errors. (a) Residual error for direct least-squares fits of basis
functions to the measured trajectory error for the center-out radial and spiral trajectories
versus the number of independent basis functions used. (b) Direct least-squares fits of 2, 3,
or 6 independent basis functions to the measured error for one projection of the center-out
radial trajectory. (c) Direct least-squares fits of 4, 6, or 12 independent basis functions to
the measured error for one shot of the spiral trajectory in the kx dimension.
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in fitting the measured trajectory errors, as a function of the number of basis functions

used. For both trajectories, as the size of the SVD-compressed basis set increased, the error

monotonically decreased to a minimum value and then flattened out. Figure 2.1b plots

least-squares fits of 2, 3 and 6 basis functions to the error measured for the first projection

of the center-out radial trajectory. For 6 basis functions, the measured and fit curves nearly

coincide.

Figure 2.1c plots least-squares fits of 4, 6 and 12 basis functions to the error measured

for the first shot of the spiral trajectory (only the kx error waveform is shown). For 12 basis

functions, the measured and fit curves nearly coincide. These results support the use of 6

basis functions for the center-out radial TrACR reconstructions that follow, and 12 basis

functions for the spiral TrACR reconstructions.

Figures 2.2-2.4 show golden-angle radial, center-out radial, and spiral images recon-

structed using the nominal trajectories, the measured trajectories (center-out radial and spi-

ral only) and the trajectories estimated using TrACR with SENSE and SPIRiT, in the same

subject and slice. For each case, the displayed image was formed as a sum-of-squares com-

bination of the individual coil images reconstructed by CG using the final trajectory. Be-

fore running TrACR, the 32-channel coil data was compressed to 15 channels. In all cases,

the uncorrected image contains considerable intensity modulations and blurring across the

brain, which are removed in both SENSE and SPIRiT TrACR reconstructions. The differ-

ence images are similar in all cases, indicating that both TrACR-SENSE and -SPIRiT were

effective in estimating the corrected trajectories, and (in the center-out radial and spiral

cases) yielded similar image reconstructions as the measured trajectories. Across subjects,

the mean number of TrACR iterations was: 27 (golden-angle radial), 779 (center-out ra-

dial), and 205 (spiral). The mean compute time was: 8.7 minutes (golden-angle radial),

2.7 hours (center-out radial), and 1.1 hours (spiral). The TrACR-SPIRiT reconstructions

required between 10-40% more iterations/longer compute times.

Figure 2.5 illustrates the estimated trajectories and errors for the subject shown in Figs.
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Figure 2.2: Final CG image reconstructions on nominal (uncorrected), TrACR-SENSE, and
TrACR-SPIRiT trajectories for the golden-angle radial dataset in one subject. The second
row shows intensity differences between the TrACR reconstructions and the uncorrected
image.
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Figure 2.3: Final CG image reconstructions on nominal, TrACR-SENSE, TrACR-SPIRiT,
and measured k-space trajectories for the center-out radial dataset in one subject. The
second row shows intensity differences between the corrected reconstructions and the un-
corrected image.
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Figure 2.4: Final CG image reconstructions on nominal, TrACR-SENSE, TrACR-SPIRiT,
and measured k-space trajectories for the spiral dataset in one subject. The second row
shows intensity differences between the corrected reconstructions and the uncorrected im-
age.

2.2-2.4.

Figure 2.5a shows the center of the nominal golden-angle radial trajectory and the tra-

jectories estimated by TrACR-SENSE and -SPIRiT. The TrACR-SENSE and -SPIRiT tra-

jectories are indistinguishable on this plot, and differ considerably from the nominal tra-

jectory. Figure 2.5b plots the measured and estimated k-space errors for a single projection

of the center-out radial trajectory, as a function of time. While both trajectory estimates

fit the measured error well at the beginning of the projection in the center of k-space, at

higher spatial frequencies near the end of the projection, the TrACR-SENSE estimate is

closer to the measured error. The higher accuracy achieved at low spatial frequencies re-

flects the fact that the MR signal amplitude is much higher in the center of k-space, so

the algorithm favors minimizing trajectory errors there. Figure 2.5c shows an analogous

result for the spiral case: the error estimates are very close to the measured trajectory near

the center of k-space, and diverge somewhat with increasing time/spatial frequency, and

the TrACR-SENSE estimate comes closer to the measured trajectory than does TrACR-
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Figure 2.5: Trajectory errors for the image reconstructions in Figs 1-3. (a) A subset of nom-
inal golden-angle radial projections and their corresponding TrACR-SENSE and TrACR-
SPIRiT projections in the center of k-space. The TrACR-SENSE and TrACR-SPIRiT pro-
jections coincide. (b) Measured, TrACR-SENSE and TrACR-SPIRiT center-out radial k-
space trajectory error curves as a function of time, for one projection. (c) The same curves
in (b) for the kx(t) waveform of one shot of the spiral trajectory. Trajectories and errors are
plotted in units of multiples of 1/FOV.
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SPIRiT. Although the trajectories estimated by TrACR-SENSE and TrACR-SPIRiT differ

in the high spatial frequencies in the center-out radial and spiral cases, those differences

did not result in significant differences in the final reconstructed images in Figures 2.3 and

2.4.

To investigate the dependence of the trajectory error on k-space acceleration and the

number of receive channels, the golden-angle radial TrACR-SENSE reconstructions in this

subject were repeated for acceleration factors between 1 and 8, and for numbers of receive

channels between 1 and 32. Acceleration was realized by uniformly dropping projections,

and the number of channels was varied using SVD coil compression. Figure 2.6a shows

fully-sampled and 4x-accelerated (50 projection) image reconstructions using CG-SENSE

and the final TrACR trajectories (in this case images were reconstructed using lsqr with a

stopping tolerance of 10−1). With 4× acceleration, there is an apparent loss of SNR but no

noticeable aliasing artifacts. The same figure also plots the root-mean-square (RMS) trajec-

tory error for each acceleration factor, referenced to the fully-sampled 32-channel TrACR-

SENSE result. The errors were calculated after subtracting off the mean k-space trajectory

shift, and were low for all acceleration factors, increasing only slightly with acceleration.

Figure 2.6b plots the trajectory errors across numbers of receive channels, referenced to

the fully-sampled 32-channel TrACR-SENSE result. As the number of coils used for re-

construction increased, the trajectory error decreased for both acceleration factors. For less

than 10 coils, the error was higher with both full sampling and 4× acceleration than it was

at any acceleration factor with 15 coils, indicating that in the golden-angle radial case the

trajectory error depends more on the number of coils than on the acceleration factor.

Figure 2.7 shows the evolution of the k-space error estimates and images over TrACR

outer loop iterations, for center-out radial TrACR-SENSE. Images are shown on top, with

center-out radial k-space estimates shown at the same TrACR iteration numbers on the

bottom and the measured trajectory error provided for reference. The image improves

rapidly with early TrACR iterations as the lower k-space locations are corrected, whereas
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Figure 2.6: Error vs. radial acceleration. (a) TrACR-SENSE corrected CG-SENSE recon-
structions for full sampling and 4× acceleration. (b) RMS k-Space trajectory error versus
radial acceleration factor for GA radial TrACR-SENSE reconstructions with 15 coils. (c)
Error versus number of coils used for TrACR-SENSE, for full sampling and 4× accelera-
tion. All errors are expressed as multiples of 1/FOV and are referenced to the fully-sampled
32-channel TrACR-SENSE trajectory estimate.
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high frequency corrections build up more slowly.

Figure 2.8 summarizes the performance of TrACR across the 5 subjects, 3 trajectories,

and SENSE and SPIRiT formulations. Figure 2.8a shows how much lower (in percent;

higher numbers are better) the final TrACR trajectories’ cost functions (Eqs. 2.1 and 2.2)

were, compared to no correction. All instances of TrACR significantly reduced the un-

corrected image cost, with a median cost reduction across subjects and trajectories of 76%.

The same figure also shows the SENSE and SPIRiT cost reductions for the measured trajec-

tories, which in all cases were not markedly higher than the TrACR cost reductions. Figure

2.8b shows the increase in normalized image gradient squared for each case, compared to

the uncorrected images. The normalized image gradient squared is an image quality metric

that has been reported as having a high correlation with observer image quality rating [56].

It was calculated from the final SENSE and SPIRiT image reconstructions. All reconstruc-

tions resulted in increased normalized image gradient squared, which were comparable to

values for images reconstructed using the measured k-space trajectories.

Lastly, Fig. 2.9 shows that the TrACR-SPIRiT reconstructions are relatively insensitive

to the SPIRiT regularization parameter λ , at least over two orders of magnitude for each

trajectory. Figure 2.10 shows that a measured off-resonance map can be incorporated into

the signal model for TrACR reconstruction. This may be desirable in body imaging where

the range of off-resonances can be larger than in the brain, which may result in blurring

that confounds trajectory error estimation. The spiral trajectory had the longest readout

duration, and incorporating the measured map resulted in marked signal recovery in the

front of the brain, but did not significantly affect the trajectory error estimate.

2.5 Discussion

In vivo experiments demonstrated TrACR’s ability to correct image artifacts caused

by k-space trajectory errors in non-Cartesian acquisitions. TrACR corrections made sig-

nificant visible improvements (reduced streaking and blurring, and enhancement of fine
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trajectories. (a) Cost function (Eqs. 1 and 2) reduction as a percentage of the uncorrected
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incorporated both in the TrACR and the final reconstruction, (center) image reconstructed
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details) to the reconstructed images in the in vivo experiments, with comparable image

quality to images reconstructed using measured k-space trajectories. Golden-angle radial

reconstructions across acceleration factors demonstrated that TrACR-estimated trajectories

were less accurate at higher radial acceleration factors; however, the errors remained rela-

tively low across acceleration factors due to the large signal magnitude and oversampling

at the center of k-space even with sub-Nyquist radial sampling. The golden-angle radial

reconstructions with varying numbers of coils demonstrated that the method benefits from

parallel imaging due to the data redundancy it provides, since error increased as the number

of coils decreased. The algorithm performed consistently across five subjects, in terms of

the amount by which the SENSE and SPIRiT cost functions were reduced, and in terms of

the increase in normalized image gradient squared.

TrACR reconstructions were able to correct most of the measured errors in the center-

out radial and spiral trajectories, as shown in Fig. 2.5. Due to the higher signal and higher

sampling density in the center of k-space, the algorithm preferentially corrected trajec-

tory errors there, and converged with somewhat higher residual errors at the higher spatial

frequencies. Though it was not observed in our reconstructions, it is possible that the

TrACR-estimated trajectory will have higher error than the uncorrected trajectory at the

high spatial frequencies. This potential problem could be mitigated by multiplying the er-

ror basis functions with a window that decreases to zero at the high frequencies. We have

tested this approach with the spiral reconstructions (results not shown) and found that it

performed similarly to the unwindowed reconstructions, with negligible image differences

when the windows truncated the error functions at approximately 75% of the maximum k-

space radius. Windowing the error basis may also accelerate algorithm convergence, since

(as demonstrated in Fig. 2.7) the low frequencies are fitted early in the TrACR iterations.

The center-out radial and spiral results suggest that accurate corrections at high spatial

frequencies may be precluded for cases in which there is a long separation in time between

sampling the center of k-space and the end of the trajectory. The algorithm’s success also
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depends on the provision of a suitable error basis. In this work, error bases for spiral and

center-out radial trajectories were derived from eddy current models, and this construction

approach can be applied to any existing readout trajectory. However, error basis functions

derived from eddy current models may not be effective in capturing other sources of error,

such as errors due to gradient amplifier non-linearity and long time constant eddy currents

that persist between TRs. Developing suitable error bases in those cases may require the

incorporation of hysteresis models (for amplifier non-linearity) and whole-sequence eddy

current modeling (for long-time constant eddy currents). Furthermore, while an eddy cur-

rent error basis can be constructed for any trajectory, properties of the trajectory itself may

still preclude effective corrections.

An important consideration in the TrACR-SPIRiT reconstruction is the choice of im-

ages used to calibrate the SPIRiT operator. We have found that, in many cases, the algo-

rithm will converge to an acceptable solution if the operator is initially calibrated using

low-resolution images reconstructed with the nominal trajectory, and is periodically re-

calibrated during the TrACR iterations using the latest trajectory error estimate (results not

shown). However, due to model inconsistencies inherent in that approach, it is possible for

the iterations to diverge or converge to an unacceptable solution. Therefore a more cau-

tious alternative is to calibrate the operator using Cartesian images of the same geometry,

as described in [33]. This is the approach that was used here. Another consideration that

may affect both TrACR-SENSE and -SPIRiT performance is the density compensation. In

this work, density compensation weights for all TrACR reconstructions were calculated

using the nominal trajectory, and were held fixed over the iterations. The weights were

then updated using the TrACR error estimate for the final image reconstruction. Slightly

better trajectory estimates may be possible by either periodically updating the density com-

pensation, or by not using density compensation at all, which would require increasing the

number of iterations used in each image update.

The computation times for the algorithm were shortest for golden-angle radial, and
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longest for center-out radial. This result was expected since the golden-angle radial trajec-

tory error basis functions were uniform across each projection, so determining their weights

could likely be performed using only the center of k-space, and it was found that the algo-

rithm preferentially corrected trajectory errors there first. The large difference between the

computation times for the spiral and center-out radial trajectories is likely due to the fact

that the initial center-out radial RMS trajectory errors neared 1/FOV, or the Nyquist sam-

ple spacing, whereas the spiral and golden-angle radial trajectory errors were about half as

large. Overall, the reported computation times of several minutes (golden-angle radial) to

a few hours (center-out radial) were not compatible with online use. However, in the cur-

rent implementation, the TrACR algorithm was stopped when the backtracking line search

returned a zero step size in the first iteration. The motivation for this stopping criterion

was to demonstrate the very best possible trajectory correction with the algorithm. In prac-

tice we have found that the reconstructed images stop changing significantly well before

this stopping criterion is satisfied, and that a more practical criterion that is predictive of

this may be to stop the algorithm when the difference between consecutive cost function

values falls below 0.1% of the current cost. Using this criterion resulted in approximately

75% shorter computation times/fewer iterations, with worse trajectory errors at high spatial

frequencies compared to measurements in the center-out radial and spiral cases, but with

negligible final image differences (results not shown). The algorithm’s computations could

be accelerated using parallel computing [57, 58], and its convergence may be accelerated

by jointly (rather than alternately) updating the images and trajectory errors each iteration.

The alternating update approach used here was chosen primarily for its flexibility in de-

coupling the k-space error and image update codes. While CG is widely accepted as an

efficient method for MR image reconstruction, algorithms other than CG may work better

for the k-space error updates, such as Newton or Gauss-Newton methods. These could

accelerate convergence at the cost of increased computational cost per iteration compared

to CG.

47



2.6 Conclusions

In this chapter, the TrACR approach to auto-correct non-Cartesian images for k-space

trajectory errors was described and validated in vivo for three non-Cartesian trajectories.

It is a more general formulation than existing methods, and can be extended to any non-

Cartesian trajectory for which a suitable trajectory error basis can be derived. It does not

require trajectory measurements or prior calibration data and exploits data redundancy pro-

vided by oversampling in non-Cartesian acquisitions and parallel imaging. The method

can be used in conjunction with multiple parallel imaging reconstruction techniques. In the

following chapter, TrACR is extended for EPI trajectories.
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Chapter 3

Echo-Planar Imaging

3.1 Introduction

In this chapter, a method is presented to automatically correct trajectory delays and

line-to-line phase errors in echo-planar imaging (EPI) via a new extension of the TrACR

algorithm introduced in Chapter 2. EPI is a fast MRI technique in which multiple lines

of k-space are measured per excitation. It is widely used in functional and diffusion MRI.

However, EPI images contain ghosting artifacts due to trajectory delays and phase errors

between adjacent k-space lines that result from eddy currents created by rapidly switched

readout gradients.

The most common methods to correct EPI ghosting artifacts are based on the collection

of calibration data from which delays and phase errors can be estimated and applied in

image reconstruction [30, 59–63]. Usually this data comes from a separate acquisition

without phase encoding gradient blips, acquired before the imaging scan. Corrections can

also be made by re-acquiring EPI k-space data that is offset by one k-space line so that odd

k-space lines become even and vice versa [30, 64]. The gradient impulse response function

can also be measured and applied to predict errors [65]. However, these methods do not

address dynamic errors caused by effects such as gradient coil heating. Dynamic errors

can be compensated by measuring calibration data within the imaging sequence itself, for

example by reacquiring the center line of k-space within a single acquisition [29]. However,

these approaches result in a loss of temporal resolution. Alternatively, dynamic errors can

be measured during a scan without modifying the sequence using field-probe measurements

[28, 39, 66]. However, the hardware required to make those measurements can take up

valuable space in the scanner bore and is not widely available at the time of writing.

49



As an alternative to separate calibration measurements, many retrospective methods

attempt to correct ghosting based on the EPI data or images themselves. The image-based

methods [67–70] rely on the assumption that some part of the initial image contains no

ghosted signal. Another group of methods makes corrections based on finding phased

array combinations that cancel ghosts [71–75]. Several methods use parallel imaging to

separately reconstruct images from odd and even lines and then combine them, and these

have further been combined with a dynamically alternating phase encode shift or direction

[72–74, 76–78]. However, relying on undersampled data for calibration weights may make

these approaches unstable, and some methods reduce temporal resolution. Importantly,

almost all these calibration-free retrospective methods are either incompatible or have not

been validated with multi-shot EPI, and most are also either incompatible with parallel

imaging acceleration or have only been validated with small acceleration factors of 2× or

less.

In the following section, a flexible EPI-trajectory auto-corrected image reconstruction

(EPI-TrACR) is proposed that alleviates ghosting artifacts by exploiting data redundancy

between adjacent k-space lines in multicoil EPI data. It is an extension of the method

for automatic non-Cartesian trajectory error correction (TrACR-SENSE) [79], described in

Chapter 2, to the joint estimation of images and line-to-line delays and phase errors in EPI.

In the following, we describe the method, including an efficient segmented FFT algorithm

for delayed EPI k-space trajectories. The method is then validated in vivo at 7 Tesla, at

multiple acceleration and multishot factors and in a time series. It is demonstrated that

EPI-TrACR reduces dynamic ghosting and is compatible with multishot EPI and acceler-

ation. Furthermore, the method benefited from initialization with calibration data but did

not require it at moderate acceleration and multishot factors.
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3.2 Theory

3.2.1 Problem Formulation

EPI-TrACR jointly estimates images, delays and phase errors by fitting an extension of

the SENSE MR signal model [31] to EPI k-space data:

yc[m,n] =
Ns

∑
i=1

e−ı2π((kx
m+∆kx

n)xi+ky
nyi)eı∆φnsci fi, (3.1)

where yc[m,n] is the signal measured in coil c at the mth time point of the nth phase-

encoded echo, kx
m is the k-space coordinate in the readout/frequency encoded dimension

and ∆kx
n is the trajectory delay in that dimension for the nth echo (out of N echoes), ky

n

is the nth echo’s k-space coordinate in the phase-encoded dimension, ∆φn is the phase

error of the nth echo resulting from zeroth-order eddy currents, sci is coil c’s measured

sensitivity at (xi,yi), fi is the image at (xi,yi), and Ns is the number of pixels in the image.

The unknown parameters in this model are the image f and the delays and phase errors

{(∆kx
n,∆φn)}N

n=1, which are determined by fitting the model to measured data ỹc[m,n] by

least squares. Assuming additive Gaussian noise in the k-space data, this corresponds to

a maximum likelihood (ML) estimation of the parameters. The delays and phase errors

are constrained so that a single delay and phase error pair applies to all of a shot’s odd

echoes and another pair applies to all of its even echoes, with separate parameters for each

shot. Without loss of generality, the first shot’s odd echoes serve as a reference and are

constrained to have zero delay and phase error. Overall, a total of 2(2Nshot − 1) delay

and phase error parameters are fit to the data along with the image. We note that EPI-

TrACR implicitly estimates phase error maps for each shot’s even and odd echoes that

are constrained to contain only zeroth and first order spatial variations; this represents an

alternative to estimating spatially-resolved phase maps for each set of echoes, which would

typically require spatial regularization.
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3.2.2 Algorithm

The EPI-TrACR algorithm minimizes the data-model error by alternately updating the

estimated image f , the k-space delays {∆kx
n}N

n=1, and the phase errors {∆φn}N
n=1. The

image is updated with a conjugate-gradient (CG) SENSE reconstruction [32]. The delay

and phase error updates are both performed using a nonlinear Polak-Ribière (CG) algorithm

[49], which requires computation of the derivatives of the sum of squared data-model errors

with respect to those parameters. Denoting the sum-of-squared data-model errors as the

function Ψ, the derivative with respect to each delay ∆kx
n is:

∂Ψ

∂∆kx
n
=

Nc

∑
c=1

M

∑
m=1

Ns

∑
i=1

ℜ

{
−ı2πxie−ı∆φneı2π((kx

m+∆kx
n)xi+ky

nyi)s∗ci f ∗i rcmn

}
, (3.2)

and the derivative with respect to each phase error ∆φn is:

∂Ψ

∂∆φn
=

Nc

∑
c=1

M

∑
m=1

Ns

∑
i=1

ℜ

{
ıe−ı∆φneı2π((kx

m+∆kx
n)xi+ky

nyi)s∗ci f ∗i rcmn

}
, (3.3)

where ℜ denotes the real part, ∗ is complex conjugation, and rcmn is the residual error

between the measured data and the model given the current parameter estimates, f̂ , ∆k̂x
n,

and ∆φ̂n:

rcmn = ỹc[m,n]−
Ns

∑
i=1

e−ı2π((kx
m+∆k̂x

n)xi+ky
nyi)eı∆φ̂nsci f̂i. (3.4)

To constrain the delays and phase errors to be the same for the set of odd or even echoes

of each shot, the derivatives above are summed across the echoes in that set, and a single

delay and shift pair is determined for the set each CG iteration. The updates are alternated

until the sum-of-squared data-model error stops changing significantly.

3.2.3 Segmented FFTs

Since a delayed EPI trajectory is non-Cartesian, the model in Equation 3.1 corresponds

to a non-uniform discrete Fourier transform (DFT) of the image. Non-uniform fast Fourier
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transform (FFT) algorithms (e.g., Ref. [80]) are typically used to efficiently evaluate non-

uniform DFTs, but they use gridding, which would result in long compute times in EPI-

TrACR, since Equation 3.1 is repeatedly evaluated by the algorithm. Figure 3.1 illustrates

a segmented FFT algorithm that applies the delays as phase ramps in the image domain,

instead of gridding the delayed data in the frequency domain. In addition to eliminating

Trajectory

Magnitude Phase

x

Hybrid-Space Data

k
y

k
x

k
y

Segment 1D IFT

Phase

Shifts

IFT across

segments

Image

Figure 3.1: Illustration of the inverse segmented FFT, starting with 2-shot x-ky EPI data
corrupted by line-to-line delays and phase errors. First the data are segmented into 2Nshot
submatrices and individually inverse Fourier transformed. Then each image-domain sub-
matrix is phase shifted to account for its offset in ky, its phase error, and its delay. Finally,
an inverse Fourier transform is calculated across the segments, and the result is reshaped
into the image.

gridding, this also enables the data to be FFT’d in the frequency-encoded dimension before

starting EPI-TrACR, so that the algorithm only needs to compute 1D FFTs in the phase-

encoded dimension. The figure shows an inverse segmented FFT (k-space to image space)

for a 2-shot dataset with delays and phase errors, which comprises the following steps:

1. The data in each set of odd or even echoes of each shot are collected into 2Nshot

submatrices of size M× (N/(2×Nshot)), and the 1D inverse FFT of each submatrix

is computed in the phase-encoded dimension.
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2. The estimated phase errors are applied to each submatrix.

3. A phase ramp is applied in the phase-encoded spatial dimension of each submatrix

to account for that set’s relative position in the phase-encoded k-space dimension.

This is necessary since the inverse FFTs assume all the submatrices are centered in

k-space.

4. The phase ramp corresponding to each set’s estimated delay is applied to its subma-

trix in the frequency-encoded spatial dimension.

5. For each submatrix entry, the inverse DFT across submatrices is computed to obtain

2Nshot subimages of size M× (N/(2×Nshot)), which are concatenated in the column

dimension to form the final M×N image.

For efficiency, the phase errors of steps 2 through 4 are combined into a single precomputed

matrix that is applied to each submatrix by elementwise multiplication. To perform the

forward segmented FFT (image space to k-space), the steps are reversed, with the phase

ramps and shifts negated. Steps 1 and 5 dominate the computational cost, and respectively

require O(MNNshot) and O(MN log(N/(2Nshot))) operations.

3.3 Methods

3.3.1 Algorithm Implementation

The EPI-TrACR algorithm was implemented in MATLAB 2016a (The Mathworks,

Natick, MA, USA) on a workstation with dual 6-core 2.8 GHz X5660 Intel Xeon CPUs

(Intel Corporation, Santa Clara, CA) and 128 GB RAM. For each iteration of the algo-

rithm’s outer loop, CG-SENSE image updates were initialized with zeros to prevent noise

amplification, and were performed using MATLAB’s lsqr function and a fixed tolerance

of 10−1, capped at 25 iterations. CG delay and phase updates were each fixed to a max-

imum of 5 iterations per outer loop iteration, and terminated early if all steps were less
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than 10−6 cm−1 (for delays) or 10−6 radians (for phase errors). The maximum permitted

delay step in a single iteration was limited to 1/FOV , and the maximum permitted phase

step in a single iteration was limited to π/10 radians. Enforcing these maximum step sizes

mitigated the effects of phase wraps in the calculated delay derivatives, by preventing the

algorithm from taking large steps that may cause it to become stuck in local minima. Outer

loop iterations stopped when the change in squared error was less than the previous iter-

ation’s error times 10−6. Code and example data for EPI-TrACR can be downloaded at

https://bitbucket.org/wgrissom/tracr.

3.3.2 Experiments

A healthy volunteer was scanned on a 7T Philips Achieva scanner (Philips Healthcare,

Best, Netherlands) with the approval of the Institutional Review Board at Vanderbilt Uni-

versity. A birdcage coil was used for excitation and a 32-channel head coil was used for

reception (Nova Medical Inc., Wilmington, MA, USA). EPI scans were acquired with 24×

24 cm FOV, 1.5 × 1.5 × 3 mm3 voxels, TR 3000 ms, TE 56 ms, flip angle 60°. They were

repeated for 1-4 shots, acceleration factors of 1-4x, and the 2-shot/1x scan was collected

with 20 time points. The TE of 56 ms was chosen to facilitate side-by-side comparisons

between images with different multishot and acceleration factors by maintaining the same

contrast and matrix size between images, and was the shortest possible TE for the single-

shot/1x acquisition, which had a readout duration of 102 ms. A calibration scan with phase

encodes turned off was acquired in each configuration, and delays and phase errors were

estimated from it using cross-correlation followed by an optimization transfer-based refine-

ment [81]. SENSE maps were also collected using the vendor’s mapping scan.

Images were reconstructed to 160 × 160 matrices using CG-SENSE with no correc-

tions, and with phase error and delay estimates from the calibration scans; the latter re-

constructions are hereafter referred to as ‘conventional calibrated reconstructions.’ Images

were also reconstructed using EPI-TrACR initialized with the delays and phase errors from
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the calibration scans, and with zeros. EPI-TrACR was further compared to the calibration-

free PAGE EPI correction method [71]. Since EPI-TrACR’s compute time depends on im-

age and data size, the amount of k-space data necessary to estimate delays and phase errors

was characterized by repeating the algorithm on 2-shot/1x in vivo data that was truncated

in both k-space dimensions, across a range of truncation factors. The reconstructed image

matrix sizes within EPI-TrACR were correspondingly reduced, so that the image matrix

size matched the data matrix size. The final estimated delays and phase errors were then

applied in a full-resolution CG-SENSE reconstruction. In order to characterize the sen-

sitivity of EPI-TrACR to initialization, reconstruction of the 1-shot/1x data was repeated

with a range of combinations of initial magnitude and phase error estimates. Except where

indicated, displayed images shown are windowed down to 20% of their maximum ampli-

tude for clear display of ghosting, and ghosted signals were measured in all images as the

root-mean-square (RMS) signal outside an elliptical region-of-interest that excluded the

brain and skull.

A separate experiment was performed in a phantom at 3T (Philips Achieva), using a

volume coil for excitation and a 32-channel coil for reception (Nova Medical Inc., Wilm-

ington, MA, USA). Data were collected for a single off-axis slice (5°/20°/30°) using a

single-shot EPI scan with 60 dynamics; scan parameters were: 23 × 23 cm FOV, 1.8 × 1.8

× 4 mm voxels, TR 2000 ms, TE 43 ms, flip angle 90°. The trajectory was measured for a

single dynamic using a modified Duyn method [38, 82]. A SENSE map and a calibration

scan with phase encodes turned off were also collected as for the 7T in vivo data. Delays

were estimated from the measured trajectory as the average shift between each pair of odd

and even lines over the middle quarter of the readout dimension. EPI-TrACR was used

to reconstruct the phantom data in the same manner as for the 7T in vivo data. Residual

ghosted signal was calculated for all images as the root-mean-square (RMS) signal outside

an elliptical region-of-interest masking out the phantom.

56



3.4 Results

Figure 3.2 shows reconstructed images across multishot factors. Ghosting was lowest

with EPI-TrACR in all cases. EPI-TrACR achieved lower ghosting than PAGE in all cases,

and the differences between zero initialization and calibrated initialization EPI-TrACR im-

ages are negligible: averaged across multishot factors, the RMS difference between EPI-

TrACR-estimated delays and phase errors with and without calibrated initialization was

0.014%. EPI-TrACR RMS ghosted signals were on average 37% lower than for conven-

tional calibrated reconstructions, and 36% lower than for PAGE reconstructions. In addi-

tion, EPI-TrACR suppressed a strong aliased edge inside the brain which appeared in the

4-shot conventional calibrated reconstruction (indicated by the yellow arrow). Due to the

long readout duration of the 1-shot acquisition, all the 1-shot reconstructions contain a sim-

ilar off-resonance-induced geometric distortion at the back of the brain (indicated by the

green arrow in the conventional calibrated reconstruction). The uncorrected 1-shot acqui-

sition also contains much dimmer ghosts than the multishot acquisitions, so the corrected

1-shot images are more similar than the multishot corrected images.

Figure 3.3 shows reconstructed 2-shot EPI images with 1-4× acceleration. Compared

to conventional calibrated reconstruction, EPI-TrACR with calibrated initialization again

reduced ghosting up to 4× acceleration, and RMS ghosted signals were 18% lower on av-

erage. Compared to PAGE, EPI-TrACR with calibrated initialization had 44% lower ghost-

ing on average. Furthermore, EPI-TrACR estimates matched with and without calibrated

initialization up to 3× acceleration: averaged across factors of 1-3×, the RMS difference

between estimated delays and phase errors with and without calibrated initialization was

0.024%.

Figure 3.4a plots RMS ghosted signal across repetitions for the 2-shot/1× scan, for

conventional calibrated reconstruction, PAGE, and EPI-TrACR.

The signal levels are normalized to that of the first repetition’s EPI-TrACR reconstruc-

tion. On average, residual ghosted signals in the conventional calibrated and PAGE recon-
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Figure 3.2: Multishot echo-planar images (no acceleration) reconstructed with no correc-
tion, conventional calibrated reconstruction, PAGE, EPI-TrACR with calibrated initializa-
tion, and EPI-TrACR with zero initialization. The length and color of the horizontal bars
beneath each image represent the residual RMS ghosted signal as a percentage of maxi-
mum image intensity, as defined by the color scale on the right. The green arrow in the
conventional calibrated 1-shot reconstruction indicates off-resonance-induced geometric
distortion at the back of the head which appears in all of the 1-shot reconstructions. The
yellow arrow in the conventional calibrated 4-shot reconstruction indicates an edge that
aliased into the brain, which is not visible in the EPI-TrACR reconstructions.
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Figure 3.3: 1x-4x 2-shot echo-planar images reconstructed with no correction, conven-
tional calibrated reconstruction, PAGE, EPI-TrACR with calibrated initialization, and EPI-
TrACR with zero initialization. The length and color of the horizontal bars beneath each
image represent the residual RMS ghosted signal as a percentage of maximum image in-
tensity, as defined by the color scale on the right.
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Figure 3.4: 2-shot echo-planar images over 20 repetitions reconstructed using conventional
calibrated reconstruction, PAGE, and EPI-TrACR with zero initialization. (a) Percentage
increase in RMS ghosted signal versus repetition, normalized to that of the EPI-TrACR re-
construction of the first repetition. (b) Weisskoff plot showing the normalized coefficient of
variation over repetitions for an ROI of increasing size, for conventional calibrated recon-
struction, PAGE, and EPI-TrACR compared to the theoretical ideal. (c) Windowed-down
conventional calibrated reconstruction, PAGE, and EPI-TrACR reconstructions, at the 14th
repetition (indicated by the arrow in (a)).
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structions were respectively 80% and 20% higher than in the EPI-TrACR reconstructions.

Figure 3.4b shows a Weisskoff plot [83] for all three reconstructions compared to the theo-

retical ideal; the coefficient of variation over repetitions is plotted for an ROI of increasing

size. The EPI-TrACR time series had a radius of de-correlation (RDC) of 12.94 which

was much higher than for the conventional calibrated and PAGE reconstructions, which

had RDC’s of 1.46 and 1.08, respectively. This indicates that, while PAGE reduced ghost-

ing compared to conventional calibrated reconstruction, it was less temporally stable; i.e.

residual ghosting was lower, but the image less consistent over time.

Figure 3.4c shows conventional calibrated reconstruction, PAGE, and EPI-TrACR (with

zero initialization) images at the 14th repetition. The conventional, PAGE, and EPI-TrACR

images at the 14th repetition respectively have 190%, 35%, and 16% higher RMS ghosted

signal compared to the first repetition’s EPI-TrACR reconstruction.

The truncated 2-shot EPI-TrACR results are shown in Figure 3.5. Figure 3.5a shows

that delay and phase error estimation errors relative to full-data EPI-TrACR estimates are

low up to very high truncation factors, and Figure 3.5b shows that compute time can be

reduced up to 90% by truncating the data by 90%. Figures 3.5c and d show that images

reconstructed with full data and 90%-truncated data delay and phase estimates are indistin-

guishable: RMS ghosted signal was 8% higher in the truncated EPI-TrACR image versus

the full-data reconstruction, but still 40% lower than the conventional calibrated reconstruc-

tion (which appears in Figure 3.2). For greater than 90% truncation though, the compute

time starts to increase again due to increasing iterations. For full data, EPI-TrACR recon-

struction times using the described segmented FFT’s ranged from one minute (for 1 shot,

1× acceleration, and calibrated initialization) to 88 minutes (for 2 shots, 4× acceleration,

and zero initialization). In comparison, reconstructions using NUFFTs [80] in place of the

segmented FFTs ranged from 8 minutes (for 1 shot, 1× acceleration, and calibrated ini-

tialization) to 269 minutes (for 2 shots, 4× acceleration, and zero initialization). Fig. 3.6

shows errors in final delay and phase shift estimates and ghosting, as a function of initial
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Figure 3.6: Sensitivity of EPI-TrACR to initialization. Here, the 1-shot/1x data was re-
constructed using EPI-TrACR across combinations of erroneous initial phase errors and
delays. Shown are the resulting final (a) phase error (multiples of π), (b) k-space delay (cy-
cles/cm), and (c) RMS ghosted signal, for each initialization. The delays and phase shifts
are expressed relative to the actual EPI-TrACR solution, which comprised a phase offset
of -2.96 radians and a k-space delay of 0.075 cycles/cm. The white dashed boxes indicate
the range of observed k-space delay and phase offsets in this work (across all multishot and
acceleration factors).

values for the 1-shot/1× data.

Fig. 3.7a and b show boxplots of the line-to-line trajectory delays and DC phase errors,

respectively, measured in the phantom at 3T. EPI-TrACR estimates (green) and conven-

tional calibration estimates (dashed black) for the delays and phase errors are superim-

posed. The bulk even/odd line shift estimated was approximately 13% different between

the two trajectories. Fig. 3.7c shows the corresponding images for the first repetition, re-

constructed without correction, with the trajectory corrected by conventional calibration,

with the trajectory and phase estimated by EPI-TrACR (with calibrated initialization), and

with the measured trajectory. RMS image ghosting is 19% lower in the TrACR image

than in the measured image. The conventional calibrated reconstruction did not correct for

the large amount of ghosting in the uncorrected image. Both EPI-TrACR and measured-

trajectory reconstructions had lower ghosting than the conventional calibration reconstruc-

tion.
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Figure 3.7: Shown in this figure are boxplots of the measured line-to-line trajectory de-
lays in the readout dimension (a) and DC phase errors (b), with lines superimposed to
mark the conventional calibrated (dashed black) and EPI-TrACR (solid green) estimates.
(c) CG-reconstructed images of the first dynamic of phantom data using the uncorrected
trajectory, the trajectory corrected by conventional calibration, the trajectory estimated by
EPI-TrACR (with calibrated initialization), and the measured trajectory. Images are shown
at full magnitude (top) and windowed to 20% (bottom).

3.5 Discussion

EPI-TrACR is an iterative maximum likelihood algorithm that jointly estimates EPI

echo delays and phase errors, along with images that are compensated for them. Compared

to conventional calibrated corrections, EPI-TrACR consistently reduced image ghosting

across multishot factors, acceleration factors, and a time series, by 27% on average. It

also reduced image ghosting compared to PAGE in all cases, by 40% on average. In most

cases it was able to do so without being initialized with calibrated delays and phase er-

rors. Because EPI-TRACR leverages data redundancy between nearby lines of k-space, its

performance is expected to degrade as the distance between k-space lines increases with in-

creasing acceleration factor, which was observed here in the zero-initialized 4×-accelerated

case. However, when initialized with calibrated delays and phase errors, the method always

reduced ghosting compared to conventional calibrated reconstruction. As can be seen in

Fig. 3.6, when the initial delay values are too far from the global minimum, due to phase

wraps in the calculated derivatives the algorithm becomes stuck in a suboptimal local min-

imum with high ghosting. However, the figure also indicates the ranges of phase shifts and
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delays encountered in our data, which are within the region that converged to the global

minimum. It may also be possible to expand the region of convergence using phase un-

wrapping or regularization [84]. It is demonstrated that EPI-TrACR results in a similar

reconstructed image to the measured-trajectory reconstruction, as shown in Fig. 3.7, which

provides additional confidence in the EPI-TrACR estimates. Residual ghosting apparent

in both measured-trajectory and EPI-TrACR reconstructions may be attributed in part to

the off-axis slice, which yielded particularly large trajectory and line-to-line phase shifts.

The measured trajectory accounted for additional errors, such as slightly reduced k-space

extent in the readout dimension, which are not captured in the EPI-TrACR reconstruction;

however, these errors did not significantly degrade the EPI-TrACR reconstruction.

We chose the Polak-Ribière conjugate-gradient (CG) algorithm to update the delays

and phase errors because it efficiently finds a local minimizer of the data-model error with

respect to these parameters. Related methods could be used, such as gradient or steepest de-

scent, which may have simpler formulations but would generally converge more slowly, and

would still require the derivatives to be computed. Global optimization approaches such as

genetic algorithms may be more robust to local minima than derivative-based methods, but

would be impractical for more than one or two shots due to the number of dimensions that

must be searched over while jointly estimating the image. Furthermore, we showed that the

CG-based updates robustly converged to solutions that reduced image ghosting compared

to conventional methods, especially when initialized with calibrated values.

Off-resonance is not currently modeled in EPI-TrACR, and may degrade delay and

phase error estimates. While a full study of EPI-TrACR’s off-resonance sensitivity is be-

yond the scope of this work, we note that: a) A measured field map could be incorporated in

the signal model of Equation 3.1 [85]; b) Figure 3.5 showed that EPI-TrACR can accurately

estimate delays and phase errors from a small number of k-space lines, over which there

would be very little phase accrual due to off-resonance; and c) One of the main advantages

of EPI-TrACR over previous image data-based methods is that it can be directly applied to

65



multishot and accelerated acquisitions, which have inherently reduced off-resonance sensi-

tivity.

Compared to reconstruction with a fixed calibrated trajectory, the main tradeoff for EPI-

TrACR’s improved delay and phase shift estimates is increased computation, but this can

be mitigated in several ways. First, we showed that compute time can be reduced by trun-

cating the data matrix down to the low frequencies, without compromising the delay and

phase shift estimates. Compute times are also shorter when the algorithm is initialized with

calibrated estimates, since fewer iterations are required to reach a solution. The algorithm

could be applied in parallel across repetitions or slices, or within the algorithm the FFTs

could be parallelized across receive coils.

There are a number of ways the method could be extended. First, in the present work

it was assumed that all the echoes within a set of even or odd echoes of a shot had the

same delay and phase shift. However, it is also possible to estimate different delays and

phase shifts for different echoes within a set by expressing them as a weighted sum of basis

functions. We have previously tested this extension by expanding the delays and phase

shifts of each set of odd and even k-space lines across multiple triangular basis functions,

but found little improvement with our data. Nevertheless, as others may find it useful, this

functionality is included in the provided code. Second, the method could be extended to

jointly estimate a single set of delays and phase shifts over a whole stack of slices simulta-

neously, which would increase the effective signal-to-noise ratio for estimation. This could

help in particular for highly accelerated acquisitions, in which the method is currently more

sensitive to poor initialization. Finally, we note that in its current form, EPI-TrACR is not

suitable for correcting shot-to-shot phase errors caused by bulk and physiological motion

in multishot diffusion-weighted EPI, since these errors are generally higher than first or-

der. It may however be useful as a preprocessing step to correct even/odd delays and phase

shifts within each shot individually, which would then be followed by higher order inter-

shot phase correction using a method such as Ref. [86]. It may also be possible to estimate
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higher order phase error maps using EPI-TrACR by increasing its polynomial order, or to

estimate a spatially resolved phase error map for each shot and set of even or odd lines;

the latter approach would likely require spatial regularization of the estimated phase error

maps [84].

3.6 Conclusions

The EPI-TrACR method alleviates ghosting artifacts by exploiting data redundancy

between adjacent k-space lines in multicoil EPI data. It benefits from initialization with

calibration data but does not require it at moderate acceleration and multishot factors. EPI-

TrACR reduced dynamic ghosting without sacrificing temporal resolution, is compatible

with multishot and accelerated acquisitions, and does not rely on a ghost-free image region.

It was validated in vivo at 7T, at multiple acceleration and multishot factors and in a time

series.
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Chapter 4

RF Shim Learning

4.1 Introduction

In this chapter, a machine learning algorithm is presented to obviate the need for tradi-

tional tailored RF-shimming at high field by predicting RF shims from minimal calibration

data. Despite the advantages afforded by a high signal-to-noise ratio, magnetic resonance

imaging (MRI) at high field strengths has faced several barriers to widespread adoption.

Among these is the increasing spatial inhomogeneity and subject dependence of trans-

mit radiofrequency (RF) (B+
1 ) fields with increasing field strength, resulting from an RF

wavelength on the order of the size of the imaged object [2, 87]. The resulting signal

non-uniformity creates spatially-varying contrast, can obscure underlying pathology, and

complicates quantitative imaging [3, 5].

Several approaches exist to mitigate the effects of B+
1 inhomogeneity. Frequency-swept

adiabatic pulses are relatively insensitive to B1 inhomogeneity [10]. However, they have

long durations and high amplitudes, which leads to high specific absorption rate (SAR)

and renders them impractical for many scans, and they require a tradeoff in frequency

and spatial selectivity. Another approach is to position dielectric pads around the subject

[11, 12]. These typically boost RF fields superficially, but they require subject-specific

positioning and occupy valuable space in RF coils.

Patient-tailored RF shimming with multiple transmit channels and coils is a highly

flexible approach to mitigating B+
1 inhomogeneity, in which each coil in an array is driven

with a unique amplitude and phase to achieve a more uniform combined field across a

slice or volume [4, 13]. The amplitudes and phases can be tuned for each subject and scan

geometry. However, optimizing these variables currently requires the B+
1 fields of each coil
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to be measured in each subject. Furthermore, since only the amplitude of the combined B+
1

field needs to be uniform, optimization of the weights requires solution of a non-convex

magnitude-least squares (MLS) problem [88]. Several advanced optimization approaches

have been proposed to robustly solve this problem [89], but these require considerable

computation, and a globally optimal solution cannot be guaranteed in a short computation

time, especially for a large number of coils and slices. Furthermore, the fastest methods for

full B+
1 mapping currently require approximately 16 s per coil to scan a whole-brain volume

at 3-4 mm isotropic resolution [14]. Mapping the 24 coils used in this work would require

6.5 minutes of scan-time, after which RF shim calculation would require at least 30 seconds

per slice. For a whole-brain volume then, slice-by-slice mapping and RF shim calculation

requires at least 10-15 minutes while the patient lies in the scanner, or approximately 25%

of a total scan duration.

As an alternative to patient-specific B+
1 mapping and RF pulse design, Gras et al. [90]

have proposed the concept of “universal” multidimensional parallel transmission pulses,

which are jointly optimized over a large set of patient brains such that a single pre-optimized

pulse could be applied to any adult brain. However, this approach trades homogeneity for

broad applicability, since by nature solutions cannot be both universal and tailored, and

to our knowledge it has only been applied to 3D non-selective multidimensional kT -points

excitations [8]. Mirfin et al. explored using a neural network for tailored spokes pulse

prediction [91], but this approach was not successful in interpolating over the space of

MLS problem solutions, which can have very different phase profiles. This resulted in an

inability to produce homogeneous flip angle profiles.

In this chapter, a machine learning method is presented and tested in simulation for the

instantaneous prediction of patient-tailored, SAR-efficient RF shims. The method, called

RF Shim Prediction by Iteratively Projected Ridge Regression (PIPRR), avoids the weak-

ness of Mirfin et al’s approach by merging the design of the training shims with the training

of the learner. This makes it possible to interpolate over the training shims using kernelized
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ridge regression. Simulation results show that PIPRR can predict SAR-efficient RF shim

weights with minimal B+
1 map data and negligible online compute times. In the following,

we describe the PIPRR method, characterize it in terms of the amount of training data re-

quired, robustness to noise, and required features, and validate it against directly designed

shims as well as shims predicted by nearest neighbor using the same features. Preliminary

reports of this work were presented in Refs. [92–94].

4.2 Theory

4.2.1 Magnitude Least-Squares RF Shimming

Patient-tailored RF shimming is typically posed as a magnitude least squares optimiza-

tion problem [19, 20, 88, 95–97]:

b̂ = argmin
b

1
2
‖m−|Ab|‖2

W +
λ

2
R(b) , (4.1)

= argmin
b,φ

1
2

∥∥∥diag
(

eıφi
)

m−Ab
∥∥∥2

W
+

λ

2
R(b) , (4.2)

where the length-Nc vector b contains the complex-valued transmit RF weights for each

coil, m is a vector containing the desired excitation pattern at all spatial locations (m is

typically a vector of ones), φ is the desired target phase pattern which replaces the absolute

value around Ab and is jointly optimized with the RF weights, i indexes spatial locations,

A is a matrix containing the B+
1 maps for each coil at each spatial location, which are con-

catenated in the column dimension, the diagonal matrix W contains spatially-dependent

weights that select samples within a tissue mask, λ is a regularization parameter, and R is

a quadratic regularization function that can be used, e.g., to regularize SAR or RF power.

This work focuses on multislice RF shimming, in which a unique shim vector b is deter-

mined for each slice in an imaged volume. A typical iterative approach to solve Equation

4.2 alternates between updating the RF shim weights b while holding the target phase φ
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fixed, and updating the target phase φ for fixed shim weights b by setting it equal to the

phase of Ab. The shim weights can be updated using a standard solver for regularized

least-squares problems, such as regularized pseudoinverse or the conjugate gradients (CG)

algorithm.

4.2.2 Kernelized Ridge Regression Prediction of RF Shims

Instead of designing RF shims by solving the problem in Equation 4.2, we will apply

kernelized ridge regression (KRR) to predict the complex RF weights b from a length-

N f eat complex vector of slice-specific features f, which includes a bias entry. The RF shim

weight b̂ j for coil j predicted by KRR can be written as:

b̂ j = pT
j f, (4.3)

where the length-N f eat complex-valued feature weight vector p j relates each feature to coil

j’s shim weight. The entries of f are normalized by the mean and standard deviation of

each feature across the training slices. The method is kernelized because we include non-

linear transformations (specifically, first order cross-products) of features in f, as will be

described later. KRR learns the feature weights contained in the p j vectors by fitting a

regularized linear model to a set of training shim weights for each coil, as:

p̂ j = argmin
p j

1
2

∥∥b j,train−Fp j
∥∥2

+
β

2

∥∥p j
∥∥2

, (4.4)

where the length-Ntrain vector bi,train contains coil i’s shim weights for all the training

slices, F is an Ntrain×N f eat matrix of features for each training slice, and β is the ridge

regression regularization parameter. Each column of F is normalized to have zero mean and

standard deviation one. Given this model, one might directly use a set of training shims

that are solutions to Equation 4.2 to solve Equation 4.4 for the feature weights. However,

as will be shown later, this results in very poor shims due to large variations in shimmed
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phase between MLS problem solutions. In the following, we describe the RF Shim PIPRR

algorithm, which solves this problem by merging the design of a set of training shims for

KRR with learning the coil-specific feature weights.

4.2.3 RF Shim Prediction by Iteratively Projected Ridge Regression (PIPRR) Algorithm

In order to derive a set of training shims that can be fitted with low errors to each slice’s

features using KRR, we propose to merge the design of the training shim weights for KRR

(the b j,train vectors) with learning the coil-specific feature weights (the p j vectors). This

is realized by alternately taking a few iterations towards the solution to Equation 4.2, and

projecting the current training shim weights b̂ j,train onto the space of shim weights that are

predictable by KRR, as:

b̂ j,train← F(FHF+β I)−1FH b̂ j,train, (4.5)

for each coil, where H denotes Hermitian transpose. Note that the regularized projector

matrix F(FHF+ β I)−1FH does not change and is calculated once, before the iterations

start. The steps of the training algorithm are summarized as follows, and are also shown in

the yellow box of Figure 4.1:

PIPRR: Training shim design and weight learning

1: Set target phase φ to circularly polarized mode (CP) phase.

2: repeat

3: Update training shims b̂ to minimize Equation 4.2 for each training slice individu-

ally, using a few CG iterations (Equation 4.2).

4: Project training shim weights onto the set that is predictable by KRR (Equation 4.5).
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5: Update target phase φ to that produced by current shims b̂.

6: until change in cost (Equation 4.2 summed across training slices) < tolerance

7: Calculate final feature weights for each coil by solving Equation 4.4, using regularized

pseudoinverse.

Testing

Figure 4.1: The RF shim Prediction by Iteratively Projected Ridge Regression (PIPRR)
algorithm. (Blue box) Features for each slice include DC coefficients of the coils’ B+

1 maps
and tissue mask metrics, including mask centroid, standard deviation of x and y coordinates
within the brain mask, slice position, Fourier shape descriptors of the mask contour, and
all first-order cross-terms of these features. (Yellow box) The training stage consists of
feeding the features, B+

1 maps and SAR matrices into an alternating minimization targeting
SAR-efficient, homogeneous RF shim solutions that are predictable via kernelized ridge
regression. (Green box) Testing involves predicting RF shims for new subjects by applying
the kernelized ridge regression weights learned in the training stage to the new subject’s
features.

Overall, this procedure corresponds to an alternating minimization over a non-convex

set (the set of solutions to Equation 4.2) and a convex set (the vector space spanned by the

feature projector matrix) [98].
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4.3 Methods

4.3.1 Electromagnetic Simulations and Features

A 100-subject 3D in silico phantom dataset of B+
1 maps was generated by simulating a

24-element loop coil array with shielding at 7T in XFDTD (Remcom Inc., State College,

PA, USA). The coils were arranged in 3 rows of 8, as shown in Figure 4.2. The total

Figure 4.2: The 24 channel loop coil, simulated in XFDTD to obtain B+
1 maps and SAR

matrices. The loops were arranged in 3 rows of 8 elements each. The total height of the
array was 20.5 cm, and its diameter was 30 cm.

height of the array was 20.5 cm, and the diameter was 30 cm. The 100 subjects were

generated by magnifying Ella and Duke head phantoms from the Virtual Family [99] in

three dimensions, according to a population-based normal distribution [100]. Magnification

factors ranged from 0.93x to 1.10x, 0.87x to 1.08x, and 0.92x to 1.21x in the left-right,

anteroposterior, and craniocaudal dimensions, respectively. This corresponds to head sizes

ranging from 13.5-16.5 cm left-right and 17.7 to 21.9 cm anterior-posterior. Figures 4.3a

and b show the range of independent scaling factors of original Duke and Ella models in

each dimension. The resolution of the simulated maps was 5 mm isotropic, with a slice-

gap of 0 mm. The dataset contained 31 axial slices for each subject, centered in the middle

of the coil; slices containing fewer than 20 voxels were discarded. To regularize local

and global SAR, virtual observation point (VOP) SAR matrices were calculated for each

simulated head using a parameter u equal to 20% of the maximum spectral norm [101], and
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Figure 4.3: a) Tissue masks for the center transverse slice in five subjects, to demonstrate
the variation in head sizes across all subjects. Maximum and minimum head widths and
lengths are shown, as well as the median size (middle). b) Central sagittal tissue masks for
the subjects with maximum, median, and minimum head height. The numbers next to the
names indicate the amplification factor applied to the original Duke or Ella model in the
corresponding dimension.

were summed with a global SAR matrix which was scaled by 3.1 to reflect the tighter limit

on global head SAR. With this construction, the regularization term in Equation 4.2 had the

form: R(b), bHCb, where C is the total SAR regularization matrix. For comparison with

RF Shim PIPRR, directly-designed shims were computed for every slice of every subject

by solving Equation 4.2 using 100 random target phase initializations, which were obtained

by generating 100 random sets of shim weights. The result that minimized the cost function

of Equation 4.2 was taken as the ‘Direct Design’ shim for each slice.

A vector of 561 features was calculated for each simulated brain slice. This included

the DC Fourier coefficient of each coil’s B+
1 map, the tissue mask centroid, standard devi-
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ations of the within-mask x and y coordinates, slice z-position, the central 3 Fourier shape

descriptors [102] of the slice mask, all 1st-order cross-terms of these features, and a bias

term. The features are illustrated in the blue box of Figure 4.1.

4.3.2 Algorithm Implementation

PIPRR was implemented in MATLAB R2015a (The Mathworks, Natick, MA, USA)

using Vanderbilt University’s Advanced Computing Center for Research and Education

(ACCRE) cluster to parallelize computation across k-folds. The RF shim weight updates

used 3 CG iterations, the SAR regularization parameter λ was 0.01, and the KRR regular-

ization parameter β was 1. The target excitation pattern vectors m were set to one inside

the tissue masks for each slice. The PIPRR stopping criterion was set as described below.

4.3.3 Experiments

4.3.3.1 Comparison to Other RF shim Designs

To evaluate the PIPRR algorithm, a 10-fold random cross-validation was performed

across all the simulated heads, with 90 of the phantom heads used for training and 10

used for testing; slices from the same head were not split between the sets. Shims were

predicted for slices in the test sets using the learned feature weights from the training set.

The first k-fold of test data was used to determine a stopping tolerance for PIPRR, to prevent

overfitting in the other k-folds. The tolerance was set equal to the maximum of 10−6 and

the consecutive difference in training shim costs (the sum of the cost in Equation 4.2 across

all training slices) immediately before the test shim costs started increasing. The first k-

fold was then omitted from all results, and the other k-folds used the determined stopping

tolerance. PIPRR shims were compared to shims obtained by nearest-neighbors (NN),

directly designed shims, and CP mode shims, in terms of shimmed B+
1 standard deviation

and the calculated SAR regularization term R(b).
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4.3.3.2 Required Training Data and Features, and Noise Sensitivity

Four additional experiments were performed to characterize the PIPRR algorithm, in

terms of required training data, sensitivity to noise, importance of different feature classes,

and the amount of B+
1 mapping data required. First, to characterize the amount of training

data required by the algorithm, PIPRR training was repeated using 10 to 90 randomly-

selected training heads from each fold, and the shimmed test B+
1 standard deviation was

calculated for each number of training heads. The effect of additive noise in the test fea-

tures was studied by adding noise over a range of signal-to-noise ratios (SNRs) to the test

B+
1 maps in each fold, calculating the corresponding SNRs of the B+

1 map DC Fourier

coefficients, and then adding noise to the remaining features to achieve the same SNRs.

A total of 10 B+
1 map SNR levels between 10 and 100 were simulated, and the shimmed

B+
1 standard deviation was calculated for each level. The importance of each feature class

was determined by calculating the norm of the set of weights assigned to each feature in

PIPRR’s final KRR weight learning step, while varying the regularization parameter β over

several orders of magnitude. The weight norms were combined across folds, and the fea-

ture classes were ranked according to their norms. The effect of each feature class on the

quality of test shim predictions was then calculated by dropping all feature classes from the

model and then individually re-incorporating them in their order of importance. Finally, the

effect of further reducing the required B+
1 mapping data for PIPRR was characterized by

leaving out coils’ B+
1 DC Fourier coefficients from the PIPRR training and predictions for

each fold. This ranged from the full set of 24 coils, down to zero coils, with approximately

equidistant spacing of retained coils.
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4.4 Results

4.4.0.1 Comparison to Other RF Shim Designs

Figure 4.4 shows the best-, median-, and worst-case B1+ patterns across all slices and

folds in terms of B+
1 standard deviation for CP mode, NN, Direct Design, and PIPRR

training and test shims. Figure 4.5a shows box plots of B+
1 inhomogeneity for each method,
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Figure 4.4: Shimmed B+
1 patterns for the best-, median-, and worst-case (in terms of

shimmed B+
1 inhomogeneity) slices across all test slices, for circularly polarized (CP)

mode, direct design, nearest neighbors (NN), kernelized ridge regression (KRR) applied
to the Direct Design shims, and PIPRR (PIPRR Test). PIPRR training shim patterns are
also shown.

across all test slices. Mean |B+
1 | standard deviation was 21.3% for CP mode shims, 2.1%

for Direct Design shims, 4.1% for NN shims, 38.9% for KRR shims, and 3.1% for PIPRR-

predicted training and test shims. Thus, direct design produced the most uniform shims,

followed by PIPRR. There is also little difference between the PIPRR training shims and

the Direct Design shims, indicating that the projection step did not significantly degrade

the quality of the training shims. NN also produced relatively uniform shims on average,
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Figure 4.5: a) B+
1 pattern inhomogeneity across all test slices for circularly polarized (CP)

mode, Direct Design, Nearest Neighbors (NN), kernelized ridge regression (KRR) applied
to the Direct Design shims, and PIPRR (PIPRR Test). PIPRR training shims are also
shown. b) The corresponding SAR penalty terms across all test slices. The values are nor-
malized to the mean SAR penalty of the Direct Design shims. Blue box edges delineate
the 25th and 75th percentiles, and medians are indicated by the red bars. Red crosses indi-
cate outliers (values that exceeded the 75th percentile by greater than 1.5 × the difference
between the 75th and 25th percentiles). The black whiskers indicate the extent of data not
considered outliers.

but also produced outliers with very poor shims. Conventional KRR applied to the Direct

Design shims failed because of the large variation in phase between the training shims.

Figure 4.5b shows the SAR penalty terms for each test slice, normalized to the mean of the

Direct Design SAR penalties. The mean SAR penalty term, normalized to that of the Direct

Design shims, was 8.78 a.u. for CP mode, 0.98 a.u. for NN, 1.40 a.u. for KRR, 0.89 a.u. for

PIPRR training shims and 0.88 a.u. for PIPRR test shims. The PIPRR SAR penalty values

are similar to or lower than the Direct Design values, and are lowest among the predicted
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shims. The average time to calculate PIPRR shims for a single new test slice was 4.92

ms (4.86 ms for feature calculation and 0.06 ms for prediction via multiplication with the

feature weights).

4.4.0.2 Required Training Data and Features, and Noise Sensitivity

Figure 4.6 shows box plots of one fold’s test set B+
1 inhomogeneity when the final KRR

weights are learned using a varying number of randomly-chosen heads from the training

set. A steep drop-off in predicted profile inhomogeneity occurs between 50 and 60 heads.
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Figure 4.6: Shimmed B+
1 inhomogeneity of one fold’s test set slices, when varying the num-

ber of heads included in the final KRR weight learning. The homogeneity of the predicted
shim profiles is comparable to those predicted with the full 90-head training set when at
least 60 heads are included in the weight learning.

Inhomogeneity of predicted shims was comparable when 60 heads was used for training

versus the full 90-head training set. Figure 4.7 shows that PIPRR predictions tolerate a

moderate amount of noise in the features without significant degradation in homogeneity

of the shim predictions. Box plots of test B+
1 pattern inhomogeneity are shown with increas-

ing feature SNR, which is reported as a function of the equivalent B+
1 map SNR. Linearly

increasing feature SNR results in approximately exponentially decreasing inhomogeneity.

A feature SNR of 40 or above produces approximately the same level of homogeneity in

the predictions as noise-free features, at 3.4% and 3.1%, respectively. Figure 4.8 shows the
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Figure 4.7: Shimmed B+
1 inhomogeneity of one fold’s test set slices, with noise of varied

amplitude added to the features used for PIPRR prediction. Noise level is reported in terms
of equivalent B1 map SNR. The no-noise case is indicated by SNR = ∞.

test set B+
1 inhomogeneity versus the feature classes included in the KRR model, beginning

with the feature class of highest importance, which is the product of the mask centroids and

the B+
1 map DC Fourier coefficients, and adding in the other feature classes in order of im-

portance, which was determined as described in the Methods. The inhomogeneity levels

off after five feature classes are included, and the most important classes involve products

of B+
1 map DC coefficients and tissue mask features. Figure 4.9 shows how the homogene-

ity of PIPRR shims depends on the number of coils whose B+
1 map DC coefficients are

included as features. Average B+
1 inhomogeneity increased approximately linearly with a

reduced number of coils, but remained less than 6% even with no coils.

4.5 Discussion

4.5.1 Summary and Implications of Results

Computational experiments demonstrated that RF shim PIPRR can predict SAR-efficient

tailored RF shims with homogeneous B+
1 patterns in 100 simulated heads with population-

representative dimensions. The predicted shims were consistently more homogeneous than
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Figure 4.8: Analysis of feature importance. The box plot shows |B+
1 | standard deviation of

one fold’s test set slices, as feature groups are accrued into the final KRR weight learning
and testing, in order of importance. The number of features in each class is reported in
parentheses next to each class. Importance was measured as the norm of the KRR weights
on each feature class over a range of KRR regularization parameters. The number of fea-
tures included in each class is shown in parenthesis next to the feature group. Cross-terms
of mask centroids, B+

1 DC Fourier coefficients, Fourier shape descriptors (FSDs), and slice
position were the most important features.

CP mode and NN-predicted shims, and were only slightly less homogeneous than Direct

Design shims (3.1% versus 2.1% average |B+
1 | standard deviation), with 12% lower SAR

penalty. Compared to Direct Design shims, which require full B+
1 maps of all coils in a

slice, RF shim prediction with PIPRR required only a tissue mask and the DC coefficients

of the coils’ B+
1 maps in a slice. A tissue mask can be derived from a fast low-flip angle

gradient-recalled echo scan, which is commonly performed as a prescan step for B0 shim-

ming or receive sensitivity mapping. The B+
1 map DC coefficients could be measured with

a single excitation for each coil and slice, which would be approximately two orders of

magnitude faster than full B+
1 mapping since no in-slice phase encoding would be required.

It was further shown that inhomogeneity degraded slowly as the number of B+
1 map coef-

ficients was reduced, indicating that coils could be skipped altogether. Additionally, the

B+
1 inhomogeneity of PIPRR-predicted shims also rose slowly as the SNR of the features
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Figure 4.9: PIPRR test performance with reduced sets of B+
1 map DC coefficients. a)

Shimmed B+
1 inhomogeneity of one fold’s test set slices, versus the number of coils whose

DC Fourier coefficients were included in the final KRR weight learning. b) Shimmed B+
1

patterns for the best-, median-, and worst-case predicted test slices when 6 coils’ coeffi-
cients were included, and when zero coils’ coefficients were included (i.e., only the tissue
mask size, shape, and position features were used for prediction).

was decreased, indicating that it is not highly sensitive to noise. The computational burden

of making a set of RF shim predictions with PIPRR is also much lower than for Direct

Design of RF shims (approximately 5 ms to both compute the features and make a predic-

tion). Overall, the PIPRR method could alleviate the prescan and computational burdens

of slice-specific RF shimming for high-field MRI.

4.5.2 Importance of Iterative Training

PIPRR is fairly unique among machine learning techniques for its iterative re-design of

its own training data. The need for this was demonstrated by the very poor performance

of shims predicted by conventional KRR when it was trained on Direct Design shims, as

was shown in Figures 4.4 and 4.5. Even the best KRR slice had a null in the field pattern,

and the shims were overall less homogeneous than CP mode shims. This resulted from
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the fact that the MLS shim design problem is non-convex with many local minima and

infinite solutions (since any phase-shifted solution is also a solution), which makes it very

difficult for any ML method to learn the relationships between the features and the shims,

without a very high order model. Early in this work, we investigated whether MLS shim

solutions in a training set could be made more similar by removing the average phase shifts

between them prior to learning the KRR weights, but this did not significantly improve the

KRR training error or predictions (results not shown). An alternative approach may be to

regularize differences in target phase patterns or RF shims between slices and subjects, but

this would make the MLS problem more complicated and may overly constrain the designs

without significantly improving KRR training error. PIPRR overcomes this problem by

regularizing the training shims so that they can be more easily fit by KRR. It is possible

to use other ML methods in the same iterative framework introduced by PIPRR; KRR was

chosen for this work because it is a simple, fast learning method that predicted shims of

similar quality to Direct Design shims. With non-linear feature transforms (which were

shown to be the most important feature classes), it was able to accurately relate features to

shims and model the variations in shims between slices and subjects. More sophisticated

learning methods, such as random forests or neural networks, could also be used within

this framework, but would in most cases require more training data and would require

significantly more computation than KRR, which may be prohibitive for iterative training.

4.5.3 Extensions and Future Work

This study used simulations to validate and characterize the PIPRR algorithm in 100

simulated human heads, using a 24-element transmit coil array at 7T. The next step in de-

velopment is to implement it in vivo. Training based on numerical simulations of a coil ar-

ray should be compared to training based on B+
1 map scans of a population of subjects with

the same transmit coil. Numerical simulation-based training would be more convenient

since the learner could more easily incorporate changes in the coil or its electromagnetic
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environment. The method should also be extended to predict shims for slices with arbitrary

orientations (coronal, sagittal, and angled), which will require the addition of slice angles

as features, as well as for subjects whose heads are not perfectly centered and oriented in

the coil.

Another important consideration for human implementation is SAR. As shown in Fig-

ure 4.5b, PIPRR predictions had somewhat lower SAR penalty values than Direct Design

shims. In this work, SAR was implemented as a regularization term in the training data,

and not as an explicit constraint, since the shims were not designed for a specific pulse

sequence. While it is possible to implement strict constraints in the training shim design

for a specific flip angle and TR, it is not yet clear how to constrain the predictions to also

meet these constraints, without dilating RF pulses or increasing TR. One approach might

be to predict shims as a weighted average of SAR-constrained shims, where the weights

collectively have norm one. This could be achieved using, e.g., a softmax function at the

output of a neural network.

Finally, PIPRR could be extended to predict not just RF shims, but full RF parallel

transmission waveforms. For example, spokes [103, 104] and kT -points [8] pulses are ef-

fectively trains of RF shims, so it should be possible to predict all the shims in the train.

It may also be possible to predict parameterized gradient waveforms for such pulses, such

as the gradient moments between the subpulses. Designing these pulses requires consid-

erably more computation than RF shimming, especially for large-tip-angles, so the ability

to predict them rapidly would have a greater impact on the parallel transmission workflow.

More finely sampled waveforms such as spirals could also be predicted, though it is not yet

clear how the target pattern could be flexibly resized or positioned in the imaged volume.

4.6 Conclusions

This simulation study showed that the RF shim PIPRR method predicts SAR-efficient

tailored slice-specific RF shims. Because it does not require full B+
1 mapping, it would
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save considerable prescan time compared to directly designed RF shims, and computation

of predicted shims requires only feature calculation and a single matrix multiply.
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Chapter 5

Contributions and Future Work

Overall, this research has introduced enabling techniques for faster, more homogeneous

imaging at high field strengths. Optimization and machine learning techniques that use

minimal calibration data were employed to automatically correct for trajectory errors and

excite uniform flip angle profiles with parallel imaging and transmission. The specific

contributions of this dissertation are:

• TrACR, an automatic trajectory correction method which jointly reconstructs images

and non-Cartesian k-space trajectory errors without calibration data. It is the first

method to correct non-Cartesian trajectory errors without additional measurements

or hardware that is applicable to multiple trajectory types. (Chapter 2)

• An extension of the TrACR method to EPI trajectories, enabling the correction of

trajectory and phase errors in accelerated, multishot, and dynamic acquisitions. It is

novel in its demonstrated capability to successfully correct dynamic trajectory and

phase errors in multishot and/or accelerated EPI acquisitions, without any additional

measurements or hardware. (Chapter 3)

• A new machine learning algorithm, PIPRR, that rapidly predicts patient-tailored RF

shims for fast, uniform parallel excitations at high field strengths. PIPRR is the

first machine learning method to successfully predict patient-tailored RF-shims for

parallel transmission, or any other RF pulse design. (Chapter 4)

This chapter will summarize contributions from these bodies of research and conclude by

suggesting avenues for building off of the techniques presented herein.

87



5.1 Non-Cartesian Trajectory Correction

In Chapter 2, the TrACR algorithm was introduced and shown to reduce image artifacts

from k-space trajectory errors due to gradient eddy currents and delays. TrACR images

were comparable to those reconstructed with trajectories measured using a modified Duyn

method, for both center-out radial and spiral reconstructions. It was also shown that TrACR

is capable of incorporating off-resonance into the reconstruction, as well as reconstructing

accelerated data. Importantly, TrACR can make use of SPIRiT, SENSE, or any other par-

allel imaging reconstruction, and has been validated for golden-angle radial, center-out

radial, and spiral trajectories, but is a general model that can be extended to many trajec-

tories. As part of this work, software for implementing TrACR has been provided online,

and TrACR has already been implemented to improve reconstructions in several thermom-

etry applications. [105, 106]. Additionally, this work has inspired a new joint image and

trajectory reconstruction for wave-CAIPI trajectories [107].

All non-Cartesian acquisitions suffer from trajectory errors, and TrACR could be an

enabling factor for some applications. For example, trajectories for compressed sensing

require fast readouts with fast switching of gradients. As Feng et al. note [108], an ex-

tension of TrACR for compressed sensing could improve those reconstructions. Though

non-Cartesian TrACR has been validated only in golden-angle radial, center-out radial and

spiral trajectories, the eddy current model used to develop error basis functions is generally

applicable; it only requires knowledge of the nominal gradient waveforms. The recon-

structions in this work took advantage of the rotational symmetry inherent in the center-out

radial and spiral trajectories to simplify the trajectory error models, as well as the empirical

knowledge that the x- and y- gradients are similarly calibrated. There are certainly trajec-

tories that do not meet this criteria, and for these, one may need to find another way to

reduce the number of parameters to estimate or otherwise artificially increase redundancy

in the data. For example, one could optimize jointly over several slices, which should ex-

hibit similar errors and introduce additional data redundancy that allows estimation of more
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error parameters. TrACR for golden-angle radial trajectories can faithfully estimate many

parameters (1 for each line and dimension) due to its robust oversampling of the center of

k-space without changing gradients there, but this is not true of many non-Cartesian tra-

jectories. (PROPELLER trajectories [109] are an exception to this and therefore TrACR

should be easily extended for this application).

The main weakness of TrACR is the compute time required for the iterative reconstruc-

tion. Compute times for reconstructions in this work ranged from several minutes for the

golden-angle radial trajectory, to several hours for center-out radial and spiral trajectories,

and are prohibitively long for practical integration with imaging workflows. Future work

should therefore focus on methods to accelerate the reconstruction. It may be possible to

truncate the data to leave only the center of k-space and reconstruct low-resolution images

within TrACR, as was demonstrated with EPI-TrACR in Chapter 3. This approach should

be straightforward for golden-angle radial trajectories in particular. For center-out radial

and spiral trajectories, it may be necessary to gradually re-introduce the higher frequency

data to the reconstruction as it progresses. As was shown in Chapter 2, TrACR exhibits a

tendency to estimate trajectory errors for the lower frequencies first, so this seems a feasi-

ble approach, and should decrease the time required for reconstruction. Depending on the

application, it may also be possible to terminate the algorithm at an earlier time point, since

later iterations do not significantly change the image.

If the compute time can be significantly brought down, more possibilities open up for

this method; if TrACR reconstructions can be performed online, it should also be possible

to introduce a tailored online pre-emphasis, for example in a dynamic series. This might

work by performing an initial TrACR reconstruction at the beginning of a dynamic series

and feeding the estimated error into the design of gradient waveforms pre-emphasized to

compensate for those errors. These waveforms would be played out on the next dynamic,

for which an image is also reconstructed with TrACR (and with new error basis waveforms

based on an eddy-current model and derived from the new gradient waveforms). If this can
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be done quickly enough that gradient coil heating is not a relevant factor, then one may find

a stable, eddy-current-optimal regime. In concept, this would be like an acquisition version

of gradient iterative predistortion (GrIP) [110].

5.2 EPI Trajectory and Phase Correction

Chapter 3 presented an extension of TrACR and demonstrated its capability to correct

trajectory delays and line-to-line phase errors in EPI acquisitions. EPI-TrACR outper-

formed both PAGE and the conventional correction method at acceleration factors up to

4x and up to an EPI shot factor of four, as well as in a dynamic series. Its flexibility in

application to multishot and accelerated datasets makes it unique among uncalibrated EPI

correction methods, and may allow for more accurate and aggressive parallel acquisitions,

particularly in applications like functional imaging or DTI that require many repetitions.

As for non-Cartesian TrACR, future work for EPI-TrACR should focus on a fast im-

plementation, to make it practical for clinical use. Although it is much faster than non-

Cartesian TrACR, since it does not use NUFFTs and much of the development focused on

speed, EPI-TrACR could be more practical in an online implementation. There are several

possible ways to gain additional speed-ups. Firstly, in multislice acquisitions, the same

trajectory is used for multiple slices which exhibit similar errors; in initial experiments,

EPI-TrACR was able to jointly estimate errors for multiple slices. After initial joint correc-

tion, it may take less time to separately fine-tune corrections for each individual slice, since

empirically, EPI-TrACR takes less time to converge with better initialization. In a similar

vein, it may be practical for some applications to perform an initial calibration to initialize

EPI-TrACR, but then use EPI-TrACR to correct for dynamic errors that occur in long time

series. Better initialization (and faster performance) can also be achieved by initializing

each dynamic with the estimates from the last; in practice, in a small sample set, this re-

sulted in about a 50% decrease in compute time. However further experiments are needed

to determine whether initializing reconstructions in this manner is reasonably stable. Ad-
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ditionally, it would be interesting to see whether it is possible to gain some improvement

in speed by time-windowing a dynamic series to perform joint corrections over several

repetitions, and separately fine-tuning them (similar to multi-slice corrections) in a multi-

temporal resolution approach. Ultimately, as for non-Cartesian TrACR, pursuing a tailored

online pre-emphasis to mitigate EPI trajectory delays would be a worthwhile future direc-

tion for this project. For EPI, line-to-line and shot-to-shot phase errors could prove more

difficult to compensate prospectively by pre-emphasis, since they are not very stable from

one dynamic to the next; likely these would still need to be corrected in post-processing.

However, it will take less time to perform phase-only corrections using EPI-TrACR than to

perform full delay and phase correction.

While the largest trajectory errors in EPI are delays that occur in the readout dimension,

EPI trajectories also exhibit smaller errors in the phase encode dimension, as well as some

non-uniform readout-dimension shifts at high frequencies [28, 82]. Future development

of EPI-TrACR should extend this method to incorporate these additional types of errors

in cases for which it benefits the reconstruction. These errors primarily manifest as eddy-

current errors induced during the fast switching of the gradients at these high frequencies,

and therefore should be well-captured by an eddy current model similar to that used for

TrACR in the center-out radial and spiral error basis generation. The non-Cartesian TrACR

reconstructions found difficulty in estimating trajectory errors which occur at high spatial

frequencies, and therefore one might think that this formulation would suffer similarly.

However, an eddy-current error basis model for EPI would constrain the error estimates

such that the estimated delay at the center of k-space is dependent on accurate estimates at

high-frequencies; since TrACR is robust for low frequency estimates, this should prevent

the algorithm from finding poor solutions. EPI-TrACR could be further improved by incor-

porating B0 maps into the reconstruction, as was demonstrated with non-Cartesian TrACR,

particularly for longer, unaccelerated acquisitions that exhibit significant B0 distortion.

Finally, though the current EPI-TrACR model is restricted to estimating line-to-line
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phase shifts, it should be possible to extend this method to estimate higher-order phase

maps to correct phase errors from patient motion and respiration, which is a requirement

for diffusion imaging. This would require some sort of regularization to require estimated

phase maps to be smooth. This may be done with a finite-differencing regularization as

in the work of Zhao et al. [86], or by a total-variation (TV)-based regularizer, since TV

is already widely used in motion-correction for diffusion imaging with EPI [111]. How-

ever, new variability will be introduced by the requirement to tune a regularization pa-

rameter, particularly within an iterative method, therefore it may be desirable to estimate

these motion phase errors as weights on several smooth functions, thereby implementing a

constrained model rather than regularization.

5.3 Fast Prediction of RF Shims

Chapter 4 introduced PIPPR and validated its performance in simulated head phantoms

to predict tailored RF shims that produce uniform excitation profiles in a SAR-efficient

manner. PIPRR brings the compute time required to implement tailored shimming down

several orders of magnitude, to just several milliseconds. Furthermore, it all but eliminates

the B+
1 mapping required for RF shimming, since it is only necessary to have the central

Fourier coefficient from the maps of as few as 1/4 of the transmit coils. This is another

increase in speed of several orders of magnitude over current RF shimming procedures,

representing a major advance in the pTx workflow, and could ultimately allow parallel

transmission and RF shimming to transition to the clinic.

The most obvious next step for this research is to implement PIPRR in vivo. In vivo

implementation will always introduce new sources of variability, and it is important to en-

sure that training sets incorporate variation in all forms – noise (in B+
1 maps and other

measurements), patient position (rotation, translation), anatomical variation, scan volume

prescription, etc. In vivo implementation may therefore require additional training data

over what was needed in the simulations presented in this dissertation, in order to make
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predictions for a more varied dataset. SAR is a more important concern in this domain;

particularly since PIPRR implements this as a regularization term, solutions are not guar-

anteed to meet SAR constraints. However, SAR is already calculated before implementing

directly designed RF shims in an in vivo setting; this would also be done before implement-

ing PIPRR predictions, and pulses could simply be dilated if they do not meet constraints.

Currently, PIPRR does not attempt to restrict RF power or amplitude, but this could be

implemented in a manner analogous to the current SAR regularization.

Another area for future development is in the extension of PIPRR for full RF design.

Dynamic shimming with a fixed trajectory should be a straightforward extension of this

method, since kT-points [8] or spokes [103, 104] pulses are simply a train of RF shims.

One could also imagine predicting tailored parameterized gradient waveforms to go along

with these pulses, either jointly or via an alternating optimization. Additionally, while it is

a more complicated problem, full RF waveform prediction for more sophisticated pulses

might also be possible through an extension of PIPRR. One challenge in implementing

these methods, or in transitioning PIPRR to an in vivo method, is that the training process

is lengthy. For the data presented in this dissertation, training requires several days compute

time in a cluster implementation. Some future work in optimizing the training process to

reduce compute time will allow for faster development of the next-generation of PIPRR

extensions.
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