OPTIMIZATION TECHNIQUES FOR ENHANCING MIDDLEWARE QUALITY
OF SERVICE FOR SOFTWARE PRODUCT-LINE ARCHITECTURES

By

Arvind S. Krishna

Dissertation
Submitted to the Faculty of the
Graduate School of Vanderbilt University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY
in
Computer Science
December, 2005

Nashville, Tennessee

Approved:
Professor Douglas C. Schmidt
Professor Aniruddha Gokhale
Professor Janos Sztipanovits

Professor Gabor Karsai

Professor Adam Porter

Copyright (© by Arvind S. Krishna 2005
All Rights Reserved

To my wife, Sriranjani, for always being there for me
and
To my parents for their support and prayers

iii

ACKNOWLEDGMENTS

This quest for knowledge would not have been possible without the encourage-
ment, support and guidance from researchers and practitioners in academia and in-
dustry. I am ever grateful to the following individuals for their help with my graduate
education in the University of California, Irvine and Vanderbilt University.

First, I would like to thank my advisors and mentors. Dr. Douglas C. Schmidt
has been my advisor and guide during my graduate education. Learning from and
working with Dr. Schmidt has been a rewarding experience both professionally and
personally. I am very thankful to him for guiding me through the various phases of
graduate education. Dr. Aniruddha (Andy) Gokhale was my co-advisor and helped
me in my research on Model-driven techniques. Andy’s help has been important in
concretizing the research ideas and translating them to conference/journal publica-
tions. The Quality Assurance research in this dissertation was guided by Dr. Adam
Porter and his group at University of Maryland. His great sense of humor made
our research discussions and teleconferences memorable. Dr. John Hatcliff at Kansas
State University helped me with the specialization work presented in this disserta-
tion. Dr. Raymond Klefstad was my co-advisor in the University of California, Irvine
and provided me the opportunity to work with him on the ZEN project. I am also
grateful to my dissertation defense committee Dr. Aniruddha Gokhale, Dr. Gabor
Karsai, Dr. Adam Porter, Dr. Douglas C. Schmdit and Dr. Janos Sztipanovits for
their time and effort spend-spent on reviewing and suggesting improvements to this
dissertation. Thanks are also due to Dr. Michael Stal from Siemens Corporate Tech-
nology who read an earlier version of this dissertation and suggested improvements
to the related work and dissertation format.

I am thankful to the following agencies provided financial support for research con-

ducted in this dissertation. The research conducted on ZEN was funded by DARPA

v

program. Research on Model-driven development was funded by AFRL #F33615-03-
C-41. Research on Skoll and Quality Assurance processes was funded by NSF and
ONR #N00014-05-1-0421S. The specialization research was funded by a grant from
Qualcomm. Other corporate sponsors include Lockheed Martin Eagen, Raytheon (
Internal R&D) Rhode Island.

Over the past five years, I had the good fortune to have interacted and learned
from several members of the DOC group. I would like to thank Dr. Carlos O’ Ryan
and Ossama Othman for helping me understand CORBA concepts and the intricacies
involved with building middleware when I first joined the DOC group in Irvine. Their
comments and guidance were crucial to the design of the ZEN POA. Discussion
sessions with Dr. Angelo Corsaro helped me integrate Real-time Java features in ZEN.
After moving to Nashville, Balachandran (Bala) Natarajan has been a constant source
of guidance and support. The FOCUS tool and specialization strategies discussed in
this paper would not have been possible without his suggestions. Bala also helped
me understand the design of the TAO ORB. Dr. Nanbor Wang and Dr. Diego Sevilla
Ruiz helped me understand the workings of different CCM implementations which
was integral to the design of CCMPerf benchmarking suite. The work on middleware
specializations techniques was motivated by Gary Daugherty at Rockwell Collins
during the DARPA PCES program. Dr. Venkatesh Prasad Ranganath helped me to
come up and implement the specialization techniques to TAO. Dr. Atif Memon and
Dr. Cemal Yilmaz helped me in integrating BGML with the Skoll Quality Assurance
tool.

An integral part of any Ph.D is the lasting relationship with one’s cohorts. The
discussions, debates, joys, frustrations and happy hours that I have shared with the
following individuals Jaiganesh Balasubramanian, Krishnakumar Balasubramanian,

Gan Deng, Amogh Kavimandan, Jeff Parsons and Nishanth Sankaran at Vanderbilt

University and Mayur Deshpande, Priyanka Gontla, Malli, Mark Panahi, and Krishna
Raman at University of California Irvine will be fresh in my memory for a long time.

I will always be indebted to my parents for their love, support and encouragement
all my life. Finally, to my wife for making this endeavor special. Without her I could

not have come this far.

Arvind S. Krishna
Vanderbilt University

Nov 2005

vi

TABLE OF CONTENTS

Page
DEDICATION e e iii
ACKNOWLEDGMENTS e iv
LIST OF TABLES e e X
LIST OF FIGURES e h e xi
Chapter
L. INTRODUCTION e
Research Challenges 6
Research Approach 8
Dissertation Organization 10
IT. RESEARCH EVOLUTION 11
General-purpose Optimizations 12
Dimensions of General-purpose Optimizations 13
What Remains to be Done 16
Configuration-driven Optimization Techniques 17
Dimensions of Configuration-driven Optimizations 18
What Remains to be Done 22
Specialization Optimizations 23
Dimensions of Specialization Mechanisms 24
What Remains to be Done 27
SUMMATY . . .« . o v vt e e e e e e e e 28
I11. TECHNIQUES FOR FINE-GRAIN COMPONENTIZATION OF PLA
MIDDLEWARE 29
Micro ORB Designs 30
Pluggable Middleware Component Design - A Cast Study 32
Portable Object Adapter Functionality and Architecture . 33
Alternate POA Designs 36
Design of the ZEN Fine-grain POA 39
Empirical Results0 0. 49
Summary e e 54
V. TECHNIQUES FOR SPECTALIZATING PLA MIDDLEWARE . . . 56
Middleware Specialization Challenges 57
DRE PLA Case Study o7

vil

Common Types of Excessive Generality in Middleware
Applicability of Middleware Generality Challenges
Resolving Middleware Generality Challenges
Applying Context-Specific Specializations to Middleware
A Toolkit for Automating Context-Specific Specializations
Discussion L o
Applying Specializations to TAO — A Case Study
Analyzing General-purpose Middleware
Specializing TAO Middleware
Evaluating FOCUS
SUMMATY . . .« & o v v e v e e e e e e e e

V. TECHNIQUES FOR VALIDATING PLA MIDDLEWARE CONFIG-
URATION TO ENSURE QOS

Model Driven Distributed Continuous QA Process.
Overview of Skoll DCQA Architecture
Skoll in Action L.
Overview of BGML MDD Tool
Integrating BGML With Skoll
Applying Model-driven DCQA Process - A Case Study
Overview of Classification Trees
Hypotheses
Experimental Process 0oL
Summary . . o. ... e e

VI CONCLUDING REMARKS AND FUTURE RESEARCH DIREC-
TIONS . . o e

Research Integration & Validation.
Lessons Learned & Research Contributions
Future Research Directions
Specializing Middleware Frameworks
Specializing Component Middleware Implementations . . .
Managing Specialized Middleware and Component Imple-
mentationo,
Model-Driven Specialization Approaches

Appendix

A. BGML GENERATED CODE
Build File code snippet 0L
Component IDL file code snippet
Benchmark code snippeto L.

B. LIST OF PUBLICATIONS

Referred Journal Publications

viii

Referred Conference Publications
Referred Workshop Publications

BIBLIOGRAPHY

ix

Table

I1.1.

I1.2.

I1.3.

IV.1.

IV.2.

IV.3.

V.1.

V.2.

LIST OF TABLES

Page
Dimensions of General-purpose Optimizations 15
Dimensions of Configuration-driven Specialization Mechanisms . . . 21
Dimensions of Different Specialization Mechanisms 26
Summary of Specialization Techniques 77
Performance Speedup as a Function of Sequence Length 92

Cumulative Specialization Results as a Function of Sequence Length 95

The Configuration Space: Run-time Options and their Settings . . 117

Generated Code Summary for BGML 118

Figure

I.1.
L.2.
L.3.

I.4.

L.5.

II.1.
I1.2.
I1.3.

I1.4.

ITI.1.
I11.2.
I1I.3.
I11.4.
ITL.5.
ITI.6.
II1.7.
ITI.8.
IT1.9.
ITI.10.
ITI.11.

ITI.12.

LIST OF FIGURES

Page
SCV Analysis for Boeing Bold Stroke PLA 2
PLA Development Process 3
Layered Middleware Architecture 4
Application-specific vs. Application-independent Dimensions of PLAs
and Middleware Lo 6
Dimensions of OPTEML Research 9
Research Taxonomy 11
General-purpose Optimizations 13
Configuration-driven Optimizations 18
Specialization Optimizations. 23
Monolithic ORB Architecture 30
Micro ORB Architecture 31
The POA Architecture L. 34
Pluggable Object Adapters 37
Fine-grain Architecture of the ZEN POA 38
ZEN’s Thread Strategy 39
ZEN’s Lifespan Strategy 41
ZEN’s Activation Strategyo 42
ZEN’s Id Assignment Strategy 44
ZEN’s Id-Uniqueness Strategy 45
ZEN’s Servant Retention Strategy 46
ZEN’s Active Object Map Interface 46

xi

ITI1.13.

I1I.14.

ITI.15.

I11.16.

II.17.

IV.1.

IV.2.

IV.3.

IV.4.

IV.5.

IV.6.

IvV.7.

IV.8.

IV.9.

IV.10.

IV.11.

IV.12.

IV.13.

IV.14.

IV.15.

IV.16.

V.1.

V.2.

V.3.

Request Processing Strategy 48

Root POA Footprint 50
Child POA Footprint Results 52
Child POA Creation Time 53
Cost in Memory per Object Activation 54
BasicSP Application Scenario 58
BasicSP Specialization Points 59
Reactor & Protocol Specialization 66
Opportunities for Request Creation Specialization 68
Specializing Request Dispatching 69
Capturing Specialization Transformation as Rules 73
Annotating Middleware Source Code 74
Steps in the FOCUS Transformation Process 76
End-to-End Request Processing Path 78
Specialization Points for TAO Real-time CORBA Middleware . . . 80
Results for Reactor & Protocol Specializations 85
Results for Request Creation/Initialization Specialization 88
Results for Dispatch Resolution Specialization 90
Results for Request (De)marshaling Specialization 92
Results for Specializing Deployment Platform 94
Results for Cumulative Specialization Application 95
Skoll QA Process View 105
QoS Validation via BGML 107
CoSMIC MDD Tool Chain 111

xii

V4.

V.5.

V.6.

V.1.

V.8.

V..

V.10.

V.11.

V.12.

V.13.

V.14.

V.15.

VIL1.

VI.2.

VL3.

VI1.4.

VIL5.

Model Driven DCQA Approach 112

BGML Use Case Scenario 115
Associating QoS Metrics in BGML 116
Accessing Performance Database 119
15 Tteration 120

1% Tteration: Main Effects Graph (Statistically Significant Options
are Denoted by an *)o oL 0oL 121

27 THEration . . « « v o e e e e 122

274 Tteration: Main effects graph (Statistically Significant Options

are Denoted by an *)o 123
374 Tteration: Main Effects Graph (Statistically Significant Options

are Denoted by an *) 00000 124
3rd Tteration: Step 3 L 125
Classification Tree Modeling Poorly Performing Configurations . . 126
Treemap Visualization 127
Research Contributions, 133
Middleware Evolution & Variability 134
CCM Container i 135
DAnCE Repository Manager 136
Model-driven Middleware Specialization Approach 138

xiii

CHAPTER 1

INTRODUCTION

Software development processes are increasingly becoming demanding. For ex-
ample, there is a growing need for software development organizations to innovate
rapidly, provide capabilities that meet their customer needs, and sustain their com-
petitive advantage. Adding to these demands are increasing time-to-market pressures
and limited software resources, which often force organizations to innovate by leverag-
ing existing artifacts and resources rather than hand-crafting software products from
scratch. Product-line architectures (PLAs) [12] and middleware [79] are promising
technologies for addressing these demands.

In contrast to conventional software processes that produce separate point solu-
tions, in a PLA-based process, a family of product variants [89] is developed to share
a common set of capabilities, patterns, and architectural styles. For example, Fig-
ure 1.1 illustrates a portion of the Boeing Bold Stroke avionics mission computing
PLA [91], which is designed to support a family of Boeing aircraft, including many
variants of F/A-18, F-15, A/V-8B, and UCAV. Bold Stroke is a component-based,
publish/subscribe platform built atop Real-time CORBA [61] and heavily influenced
by the Lightweight CORBA Component Model (CCM) [60, 75].

PLAs in general — and Bold Stroke in particular — can be characterized using
the Scope, Commonality, and Variabilities (SCV) analysis [13]. SCV is a domain
engineering process that identifies common and variable properties of an application
domain. Domain/systems engineers and software architectures use this information
in the SCV process to guide decisions about where and how to address possible
variability and where the common development strategies can be used.

Applying the SCV process to Bold Stroke yields:

e S, e.g., the scope is Boeing’s component architecture and associated set of com-
ponents that address the domain of avionics mission computing, which includes
services such as heads-up display, navigation, auto-pilot, targeting, and sensor

management.

e C, e.g., the commonalities are the set of common components and connections
between, such as connection management, data transfer, concurrency, synchro-

nization, demultiplexing, error-handling, etc. that occur in all product variants.

e V, e.g., the variabilities include how various subsets of components are con-
nected together to support the requirements of different customers (such as
F/A-18E vs. F-15K), their different implementations (such as which algorithms
are chosen for each product variant), and components that are specific to a vari-

ant (such as restrictions due to foreign military sales).

.| 3| .| .|
GPS Display Airframe Heads Up
Component Component Component Display

‘ Bold Stroke Common Components ‘

GPS = 40 Hz \ GPS=20Hz

Na F"/:’;E AP Nay FVAI’:‘E HUD Fr/:inﬂe Nav _GPS
HUD %UR AP @LIR AP %un
PR ps GPS IFF| | HUD IFF
FIA18F F 15K UCAV

b= e g

VARIABILITIES
GPS: Global Positioning/Intertial Navigation System
System Interactions: How the different pieces are composed together
Frequencies: 20 Hz/40Hz rate generators

Figure 1.1: SCV Analysis for Boeing Bold Stroke PLA

After a PLA has been developed and has matured, the ensuing development of
product variants ideally proceeds in top down manner. Figure 1.2 illustrates the

process of developing a product variant, which starts with a clear statement of the

required capabilities and QoS. Higher level models and analysis tools [30,34] com-
pose, analyze, and validate the product-line to ensure semantic compatibility. The
next step involves the composition of a variant from existing components from the
repository. This phase also involves mapping of the requirements on to PLA ar-
tifacts, such as communication protocols, service-level agreements, and configura-
tion/deployment policies/mechanisms. Finally, the system is deployed on a platform

such as CORBA [62], J2EE [94] or .NET [56].

Component £ =
Repository EE:
Feature

Requirements

QoS
Requirements

- W RAE -
Deployment Platforms

Figure 1.2: PLA Development Process

Although PLAs can be developed and applied to many domains, an increasingly
important domain for applying PLAs is distributed, real-time and embedded (DRE)
systems [19,89,91]. Examples of DRE systems include applications with hard real-
time requirements, such as avionics mission computing [87], as well as those with
softer real-time requirements, such as telecommunication call processing and stream-
ing video [86]. These types of systems are characterized by their multiple, simultane-

ous constraints across different QoS dimensions (such as memory footprint, weight,

and performance), which often makes them harder to develop, maintain, and evolve
than mainstream desktop and enterprise software. These challenges have hitherto
forced developers of DRE systems to repeatedly reinvent custom solutions that are
tightly coupled to specific hardware and platforms, which is tedious, error-prone, and
costly over product lifecycles.

A key enabling technology for developing and customizing PLAs is middleware,
which is systems software that resides between the application and the underlying
operating system that (1) functionally bridges the gap between application pro-
gram and lower-level hardware and (2) simplifies the integration of components de-
veloped by multiple technology suppliers [79]. During the past decade, quality of
service (QoS)-enabled middleware has emerged to help developers of DRE systems
(1) factor out reusable concerns (such as component lifecycle management, authen-
tication/authorization, and remoting) to enhance reuse and (2) shield from low-level
tedious, error-prone, and non-portable platform details, such as socket and threading

programming.

Component
(Servant)

L L]
I]
SKEL

Container

COMPONENT
MIDDLEWARE
LAYER

S92IAIBS

DISTRIBUTION
MIDDLEWARE
LAYER

Object Adapter

HOST
INFRASTRUCTURE
MIDDLEWARE LAYER

OS/KERNEL OS/KERNEL
PROTOCOLS PROTOCOLS

NETWORK NETWORK NETWORK
INTERFACE INTERFACE

Figure 1.3: Layered Middleware Architecture

Figure I illustrates a widely applied middleware architecture [27] that underlies

PLAs used for DRE systems [27,49,89-91]. This figure illustrates two key character-
istics of middleware:

e Design for generality, where each layer is designed to host different applica-
tions. For example, the Java Virtual Machine (JVM) [48] is middleware that
provides concurrency, synchronization, serialization, and messaging portably
via common set of API across a wide range of platforms.

e Layered architecture, where different middleware layers are stacked to ad-
dress end-to-end QoS needs. For example, CORBA is a standard distribution
middleware layer that provides network programming capabilities (such as con-
nection management, data transfer protocols, concurrency control, demultiplex-
ing, marshaling/demarshaling, and error-handling) and location transparency
to applications.

Standards-based QoS-enabled middleware technologies, such as Real-time CORB-
A [61] and Real-time Java [6], support the provisioning of key QoS properties, such
as (pre)allocating CPU resources, reserving network bandwidth/connections, and
monitoring/enforcing the proper use of DRE system resources at runtime to meet
end-to-end QoS requirements, such as throughput, latency, and jitter. QoS-enabled
component middleware technologies, such as Lightweight CCM [60] and Prism [89],
simplify QoS provisioning via metadata and tools that help to (1) automate DRE
system development lifecycle phases, such as packaging, assembly, configuration, and
deployment, and (2) improve component reusability and performance by prevent-
ing premature commitment to specific QoS provisioning decisions, such as allocating
components to thread pools and selecting the underlying transport protocols. As a
result, software for DRE systems is increasingly being assembled from reusable mod-
ular components in PLAs using standards-based middleware platforms, rather than

hand-crafted manually from scratch.

Research Challenges

Although middleware is a crucial technology for PLAs, key challenges must be
overcome before it can be applied seamlessly to support the QoS needs of DRE
systems developed using PLAs. In particular, Figure 1.4 illustrates the current tension
between (1) application-specific product variants, which require highly-optimized and
customized PLA middleware implementations and (2) general-purpose, standards-
based, reusable middleware, which is designed to satisfy a broad range of application

requirements.

Product Line Architectures
Feature QoS Footprint App"(_:_ation
Requirements Requirements Regquirements SpeC|f|C
|
i B [NEED FOR
VN N N N7 IRESOLUTION
’ [7¢)
Platform- o
Highly Lean o
specific
/x CONFLICTS
Wide]
Portability Applicability Reusability % Application
! “J | Independent

U— U T U U RESOLUTIOI;!

Platform Flexible & Multilayered &
Independent Configurable Modular

Middleware Architectures

Figure [.4: Application-specific vs. Application-independent Dimensions of PLAs and
Middleware

Resolving this tension is essential to ensure that middleware can support the
QoS requirements of DRE systems developed using PLAs. Unfortunately, even to-
day’s leading standards-based QoS-enabled middleware technologies, such as Real-
time CORBA [61] and Real-time Java [6] are not yet capable of supporting PLAs for

DRE systems due to the following limitations:

1. Monolithic middleware implementations that include more capabilities
than are needed for particular product variants. Standards-based middleware
for PLAs is often implemented in a monolithic “one-size-fits-all” manner, i.e., it
includes code supporting many mechanisms (such as connection and data transfer
protocols, concurrency and synchronization management, request and operation de-
multiplexing, marshaling/demarshaling, and error-handling), even when this code is
not used/needed. A key research challenge is therefore making middleware extensible
to enable the selection of necessary middleware mechanisms.

2. Overly general middleware implementations that incur excessive time
and space overhead for particular product variant use cases. Standards-based
middleware is designed for generality, i.e., its capabilities support a range of applica-
tions, e.g., CORBA middleware supports many different types of applications running
over many different types of transports. However, standards-based middleware often
incurs excessive generality imposed by the standard. For example, (de)marshaling for
standard CORBA incur byte order test overhead, even if the machines on which they
are hosted conform to the same hardware instruction set. A key research challenge
is therefore to use ahead-of-time properties for each product-line variant to specialize
middleware.

3. Ad hoc techniques for validating and understanding how middleware
configurations influence end-to-end QoS. Middleware for PLAs often provides a
range of options that can be parameterized into various configurations. Many of these
settings (such as concurrency strategies, buffer sizes and locking) directly affect end-
to-end QoS. It can be hard, however, to tune and validate the QoS properties of such
configurable middleware. Product variants often use ad hoc approaches to identify the
right set of middleware configurations that satisfy the system end-to-end latency and
QoS requirements. Moreover the process they use is not repeatable (reusable across

different variants) and suffers from accidental complexities stemming from the need

to write low level source code (XML configuration files, interface declaration and QoS
and benchmarking code) for capturing impact of middleware configurations on QoS.
A key research challenge is therefore devising a systematic approach for evaluating,
validating, and capturing impact of middleware configurations on end-to-end QoS.
In summary, key challenges that remain to be addressed center on developing and
validating technologies and tools for (1) capturing application-specific requirements
of particular product variants and (2) using these requirements to drive the opti-
mization of PLA middleware implementations to eliminate the time/space penalties
associated with using general-purpose, standards-based, and reusable middleware for
DRE systems. Resolving these challenges is essential to support the new generation
of standards-based middleware that will be easy-to-use, extensible, and flexible, as

well as providing the appropriate QoS to meet the needs of PLAs for DRE systems.

Research Approach

To address the challenges described in Section I, this dissertation has developed
Optimization Techniques for Enhancing Middleware QoS for PLAs (OPTEML). The
different dimensions of this approach are shown in Figure 1.5 and described below.
1. Componentize PLA middleware at a fine level of granularity to include
only capabilities required for each product variant. This approach factors out
different middleware mechanisms into modular pluggable components that are not
loaded until they are used. Each factored service itself can in turn be considered
as a monolithic element and factored out into modular components at a finer level
of granularity. In particular, the contribution of this portion of the dissertation is
the fine-grain componentization of the CORBA Portable Object Adapter (POA) [71]
using policy-driven approaches. Chapter III describes this approach for fine-grained

componentization of PLA middleware in detail.

Modal P\ssocl...le
Experima
Expenmenter
Charac!er stics

Component Interactian

< - LR

3. Systematic —
validation of PLA :
middleware -

Feedback

Test bed

1. Fine-grain Componentization of

PLA middleware 2. Specialization of
Ysmo 7/ T MIN 7 “MCAST/ PLA middleware
POA/ N gT / ‘POA/ \POA/ | I | ’ I
/ Protocol omponen ervice:
\ POA 4) J W Int;.trFaLe CIntapr‘;atel \f\(erfa:e
'/ Object '
Adapters \

Client

S Message ==
P§[>r Buffer o

| Allocators \ L / Parsers —

e —
- GIOP \ -
g!‘-‘l efsggi ng —|\ M!cro-ORB = Any]

Component
(Servant)

ut orgs
return

SBITALIEG

\ Kernel /
CDR / \ =l
D.D stream RSsthritrsm;j . q@"' ORB - —
Readers = INTERFACE \ﬁa Object Adapter
Transport
_Potocols__ |
/nop . ;;: . (amm) / VH;E \ Customization points

Specialized Path

Figure [.5: Dimensions of OPTEML Research

2. Specialize PLA middleware to eliminate unnecessary time and space
overhead. This approach focuses on the use of context-specific specializations to en-
hance the QoS of PLA-based DRE systems by alleviating excessive generality in
middleware implementations. Context-specific specialization techniques are related
to partial evaluation, which creates a specialized version of a general program that is
more optimized for time and/or space than the original [39]. Chapter IV describes
this approach for specialization of PLA middleware in detail.

3. Systematically validate configurations of PLA middleware that satisfy

the QoS requirements of product variants. This approach uses model-driven

development (MDD) techniques to capture the QoS requirements of product-line vari-
ants in higher level models and synthesize validation code, include (1) the XML con-
figuration settings that are to be evaluated, (2) the XML deployment data that will
be used to deploy the component on to target platform, and (3) the QoS evaluation
and benchmarking code that will measure the QoS and identify the right configura-
tions that maximize QoS. This MDD approach is combined with advanced statistical
techniques to evaluate empirically how specialized and general-purpose optimizations
of middleware affect end-to-end QoS for different PLAs and product variants. Chap-
ter V describes the proposed approach for validating PLA middleware configurations

in detail.

Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter II presents a
taxonomy of existing research efforts that are related to OPTEML and uses the tax-
onomy to show how the key challenges discussed in Section I have not been addressed
adequately in existing research on PLAs; Chapter I1I illustrates how fine-grain middle-
ware componentization techniques can be applied to customize monolithic middleware
implementations thereby minimizing middleware footprint and facilitating ease of
adaptation; Chapter IV describes how context-specification specialization techniques
can be applied for alleviating the time/space overhead stemming from excessive gen-
erality in standards-based middleware implementations and improving its QoS, such
as reducing latency and jitter; Chapter V shows how model-driven distributed con-
tinuous QA tools are synergistically combined to evaluate how general-purpose and
specialized middleware optimizations affect PLA QoS; and Chapter VI presents con-

cluding remarks, discusses research contributions, impact and outlines future work.

10

CHAPTER I1
RESEARCH EVOLUTION
This section systematically explores and documents research addressing different

issues relating to OPTEML. To structure the discussion, a taxonomy, i.e., classifica-

tion, is presented that categorizes related research across the following two dimensions

Design Time

Binding Time

Run Time

General Specific

Applicability

Figure II.1: Research Taxonomy

shown in Figure II.1:

e Applicability, i.e., research contributions that are broadly applicable (general)
across different product-lines architectures versus techniques that are applicable
to only a given variant.

e Binding time, :.e., research that deals with optimizations that are applied at

run-time versus optimizations that are built into the middleware at design-time

or at deployment time.

11

The use of the taxonomy allows research to be categorized into an evolving con-
tinuum of optimizations (progressing from general-purpose optimizations to more
application specific design-time optimizations) that are described below:

e General-purpose optimizations, that classify research on algorithmic and
data structural optimizations that have been applied at different layers of mid-
dleware to improve performance.

e Configuration-driven optimizations, that classify research on analysis tech-
niques that evaluate and quantify impact of different software configuration
settings on product-line level QoS.

e Specialization optimizations, that classify research on program optimization
and specialization techniques that modify software implementation based on
ahead of time (AOT) binding software configuration parameters.

The remainder of this chapter is organized as follows: For each class of optimization,
a succinct description of related research is presented. Each section then describes

the research areas that require resolution.

General-purpose Optimizations

Research on customizing middleware for different PLAs originated with research
in the early 1990’s on how to optimize middleware to improve performance. As il-
lustrated in Figure I1.2, this research greatly focused on examining different data
structures and algorithmic optimizations that can be applied at different layers, such
as operating systems, network protocols and middleware layers to improve applica-
tion QoS. These optimizations are not applied ad hoc, but ultimately lie along the
critical request/response path of QoS enabled middleware implementations. Such
optimizations addressed application concerns such as end-to-end predictability, scal-

ability and latency/throughput. This section categorizes this body of knowledge as

12

general-purpose optimizations as these techniques are very generic, i.e., these opti-

mizations can be leveraged universally across different product-line variants.

@
=
s
=
k=
&
2
3
a STATIC & DYNAMIC
SCHEDULING
END-TO-END PRIORITY
PRESERVATION
o Bria
o . PRESENTATION
OBJECT ——— " LAVER
Ut args + return_vaius (servanT)
E 4 a0 DATA COPYING
= — & MEMORY
ALLOCATION
g
] — oemuxive &
=
£ t— DISPATCHING
om
CONCURRENCY
— MODELS
TRANSPORT
0S KERNEL PROTOCOLS
5 SUBSYSTEM
—HEMORK INTERFACES _HETWDHK INTERFACES,
- «———NETWORK
& NETWORK ADAPTER
General Specific
Applicability

Figure I1.2: General-purpose Optimizations

In addition, these optimizations are applied at run-time and fall into our taxonomy

as general-purpose run-time optimization techniques.

Dimensions of General-purpose Optimizations

Research on general-purpose optimizations can be categorized based on two prin-
cipal activities that are essential for improving performance, and scalability of ap-
plications. These include, (1) efficient and optimized layer-to-layer demultiplexing
techniques that find the target servicing each request and (2) optimal concurrency
strategies, that determine the number of such request that can be processed simulta-
neously and efficiently. Research on these two dimensions are explained below:
Request Demultiplexing approaches. Research on improving demultiplexing per-

formance has focused on eliminating layered demultiplexing approaches in both the

13

protocol stack and within middleware. For instance, [18,23,97] study demultiplexing
issues in communication systems and show how layered demultiplexing is not suit-
able for applications requiring real-time quality of service guarantees. Packet filters
are a mechanism for efficiently demultiplexing incoming packets to application end-
points [57]. A number of schemes to implement fast and efficient packet filters are
available. These include the BSD Packet Filter (BPF) [54], the Mach Packet Filter
(MPF) [105], PathFinder [3], demultiplexing based on automatic parsing [38], and the
Dynamic Packet Filter (DPF) [22].

In the CORBA middleware, research efforts have focused on ensuring O(1) de-
multiplexing time bound for different layers within CORBA middleware. Perfect
hashing [83] is a technique that generates collision free hash functions when the keys
to be hashed are known a priori. In many hard real-time systems (such as avionic
control systems [32]), the objects and operations can be configured statically. Re-
search effort in [29] has used perfect hashing to generate hash functions for operation
names defined in IDL. In other efforts [69], de-layered active demultiplexing strategy
is used to flatten hierarchy and locate the target object in one table lookup.
Concurrency approaches. Concurrency strategies describe how multiple tasks will
be executed simultaneously. For web servers or CORBA servers, a task is a set of
server request handling steps. Several concurrency strategies, such as iterative, single-
threaded, thread-per connection and thread-pool strategies have been applied in web
and CORBA servers.

Research in [53] measured the impact of synchronization on Thread-per-Request
implementations of TCP and UDP transport protocols built within a multi-processor
version of the z-kernel; [58] examined performance issues in parallelizing TCP-based
and UDP-based protocol stacks using a Thread-per-Request strategy in a different
multi-processor version of the z-kernel; and [78] measured the performance of the

TCP/IP protocol stack using a thread-per-connection strategy in a multi-processor

14

version of System V STREAMS. The ADAPTIVE [7] framework examines research

on parallelizing transport architectures.

Table I1.1: Dimensions of General-purpose Optimizations

General-purpose Optimization Alternatives
Lookup-based Alternatives
fixed perfect-hashing
dynamic linear-search, dynamic hashing, active demultiplexing
Concurrency Alternatives
request-processing models | asynchrony (client/server side), synchrony
threading models thread-per request, thread-per connection, thread-pool
Domains Implementations
protocol ADAPTIVE
application/web servers JAWS, POSA patterns

The JAWS [35] framework provides different concurrency strategies for building
high performance web-servers. Research work on concurrency ties closely with issues
of synchronous versus asynchronous request processing. Research in [20] has looked
into implementation of continuations in the MACH kernel, which decouples the re-
quest demultiplexing from the processing. In ORBs, Asynchronous Method Handling
(AMH) [17] provide similar mechanisms like continuations. On the client side, the
Asynchronous Method Invocation (AMI) [10] ameliorates clients blocking overheads
when waiting for reply for a long running request.

Summary. The research efforts discussed earlier and related efforts documented
in [80-82] to better implement high performance architectures have distilled into sys-
tematic body of knowledge in the form of design patterns [26]. The Pattern Oriented
Software Architecture (POSA) 2 [88] book describes a pattern language for build-
ing concurrent high performance servers by discussing patterns for service access and
configuration, event handling, synchronization and concurrency. Table II categorizes
different general-purpose optimizations across three dimensions. The first dimension
categorizes research on request demultiplexing strategies into fixed (constant time

and space) versus variable (variable time/space) strategies. The second dimension

15

categorizes research on concurrency, i.e., request processing models synchronous and
asynchronous processing and threading models. Finally, the table illustrates the dif-

ferent domains on which these optimizations have been applied.

What Remains to be Done

Traditional general-purpose optimizations have looked at performance related is-
sues of middleware. These have attained maturity and also have demonstrated mid-
dleware as a mature solution for DRE product-line systems. However, an orthogonal
issue to performance is the concern of componentizing the ORB services at a fine-
grain level to allow product-line variants to select the set of middleware features.
This concern is accentuated by DRE product-line architecture size requirements. As
embedded systems, DRE systems have weight, cost, and power constraints that limit
their computing and memory resources. For example, embedded systems often can-
not use conventional virtual memory, since software must fit on low-capacity storage
media, such as EEPROM or NVRAM.

The evolution of middleware has resulted in architectures that are inherently
monolithic, in which all middleware features reside in a single executable. Static
mechanisms/tools, such as conditional compilation and smart static linkers, allow
a variety of different configuration options. This approach is harder to code and
maintain due to accidental complexities involved with conditional compilation [44].
Further achieving a small footprint is possible only if the architecture is initially de-
signed to achieve it. It is much harder to reduce footprint in later stages of design.
Chapter III describes in detail how this limitation is resolved using the OPTEML
approach.

In addition to the fine-grain componentization concerns, general-purpose opti-
mizations are exposed as configurable and tunable knobs. For mature middleware

implementations, such as ACE+TAO [36] open-source middleware, this has resulted

16

in an exponential increase in the number of configuration settings'. This trend re-
quires product-line variants to understand how the interplay between middleware
configurations affect and influence end-to-end QoS. The next section describes how

configuration-driven optimization techniques are addressing some of these issues.

Configuration-driven Optimization Techniques

In middleware implementations, general-purpose optimization techniques are ex-
posed as middleware configuration settings that can be enabled /disabled at build/run
time. These options therefore require product-line architects to understand the trade-
off, in terms of application QoS, accrued by enabling/disabling these configuration
settings. This dependency is akin to the optimization settings that can be used with
an optimizing compiler. For example gcc [25], which provides a compiler suite, allows
setting and un-setting different configuration knobs that optimize for speed (-O3, -
02 options), size (-Os) or different processor architectures (all options that have -m
perpended).?

Similar to how one needs to understand the consequences of enabling different com-
piler options, Figure I1.3 illustrates the need for product-line variants to understand
the consequences of middleware settings. This problem is exacerbated by the fact
that (1) not all combinations of middleware options form a semantically compatible
set, and (2) match the application QoS requirements onto middleware configuration
settings to maximize QoS. Configuration-driven optimizations are techniques
to tune middleware configuration knobs to maximize application QoS. These tech-
niques are bound either at run-time via online techniques or are evaluated by Quality

Assurance (QA) engineers at test/evaluation time.

!Examples of highly configurable middleware in other domains include (1) SQL Server 7.0, which
has ~50 configuration options, (2) Oracle 9, which has over 200 initialization parameters, and (3)
Apache HTTP Server Version 1.3, which has ~85 core configuration options.

2A comprehensive list of compiler options for gec are available from: http://gcc.gnu.org/
onlinedocs/.

17

oBJ operation OBJECT
1 -

Hook for

marshaling

strategy
)
E
=
o
£
T
£
m

Hook for the] Hook for the underlying
o gonnectian transport strategy
E management
% strategy
@
General Specific

Applicability

Figure I1.3: Configuration-driven Optimizations

These optimization techniques are applied on a per-application basis but them-

selves are generalizable across different product-line variants.

Dimensions of Configuration-driven Optimizations

This section builds a taxonomy, i.e., categorizes configuration-driven optimization
approaches into feedback-driven techniques (online, offline and hybrid techniques),
techniques for QoS evaluation (generative programming approaches and performance
patterns) and techniques for functional correctness of software configurations (testing
approaches and test coverage).

Feedback-driven techniques. Feedback driven approaches can be categorized into
the following three broad analysis techniques:

Offline analysis, which has been applied to program analysis to improve compiler-
generated code. For example, the ATLAS [40] numerical algebra library uses an
empirical optimization engine to decide the values of optimization parameters by
generating different program versions that are run on various hardware/OS platforms.

The output from these runs are used to select parameter values that provide the best

18

performance. Mathematical models are also used to estimate optimization parameters
based on the underlying architecture, though empirical data is not fed into the models
to refine it.

Online analysis, where feedback control is used to dynamically adapt QoS mea-
sures. An example of online analysis is the ControlWare middleware [107], which
uses feedback control theory by analyzing the architecture and modeling it as a feed-
back control loop. Actuators and sensors then monitor the system and affect server
resource allocation. Real-time scheduling based on feedback loops has also been ap-
plied to Real-time CORBA middleware [50] to automatically adjust the rate of remote
operation invocation transparent to an application.

Hybrid analysis, combines aspects of offline and online analysis. For example, the
continuous compilation strategy [11] constantly monitors and improves application
code using code optimization techniques. These optimizations are applied in four
phases including (1) static analysis, in which information from training runs is used
to estimate and predict optimization plans, (2) dynamic optimization, in which mon-
itors apply code transformations at run-time to adapt program behavior, (3) offline
adaptation, in which optimization plans are actually improved using actual execution,
and (4) recompilation, where the optimization plans are regenerated.

Functional correctness based techniques. The following are different approaches
for evaluating the correctness of software across different configurations:

The MODEST [76] tool provides a generative approach for producing (1) test
cases, i.e., test-code that is used to test the system and (2) test-harness, i.e., the
scaffolding code required for test setup and tear down. In MODEST, test cases are
generated in parallel with the actual system. The motivation being to provide the
users with not only the system but also the test-code to reduce maintenance costs.

SoftArch/MTE [31] provides a framework for system architects to define higher

level abstractions of their system by specifying characteristics such as middleware,

19

database technology, and client requests. SoftArch/MTE then generates an imple-
mentation of the system along with the performance tests that measure these system
characteristics. These results are then displayed (i.e., annotated in the high level
diagrams) using tools such as Microsoft Excel, thereby allowing architects to refine
the design for system deployment.

Skoll [55] is a distributed continuous quality assurance (DCQA) tool for developing
and validating novel software QA processes and tools. Skoll leverages the extensive
computing resources of worldwide user communities in a distributed, continuous man-
ner to significantly and rapidly improve software quality. In particular, Skoll provides
an integrated set of technologies and tools that run coordinated QA activities around-
the-world, around-the-clock on a virtual computing grid provided by user machines
during off-peak hours.

Techniques for configuration tuning. The following are different approaches for
quantifying impact of software configuration on QoS:

Performance Patterns [59] and Performance Pattern Languages (PPL) provide an
automatable, script-based framework within which extensive ORB endsystem perfor-
mance benchmarks can be described efficiently and executed automatically. These
patterns are embodied in the NetSpec tool developed at the Kansas University. The
patterns themselves are written using PPL. Examples of such patterns include Cubit
Tests (measuring (de) marshaling overhead), Client-Server benchmarks (simple client
server two node approach for benchmarking) and Proxy benchmarks (introducing a
proxy that acts as an intermediary between the client and server).

Performance tuning approaches in [92] are examining the importance of webser-
vice parameters for different workloads and request types using statistical techniques.
Their approach analyzes how end-to-end performance varies for different commonly

used web service requests, e.g., buy request, product query and search requests. For

20

each kind of request, they use different workloads published in the web-service bench-
marks, e.g., varying the user think time and number of users. An initial configuration
space is chosen and different possibilities of each configuration setting are exercised
to measure their influence on end-to-end quality of service. This data is used as in-
put in the ANOVA [47] analysis to determine the statistical significance of different
web-server options.

Summary. Table II categorizes configuration driven approaches along two dimen-

sions. The first dimension describes

Table II.2: Dimensions of Configuration-driven Specialization Mechanisms

Configuration-Driven Specialization Alternatives
Time-based | Alternatives
online Controlware middleware
offline ATLAS, MODEST, Soft/ARCH
hybrid continuous compilation, Skoll
guidance performance patterns, ANOVA
| Type of Exploration | Alternatives |
manual performance-patterns and regression tests
automated Skoll, continuous compilation, ATLAS
hybrid generative-approaches mapped onto automated frameworks
| Cost-based | Alternatives |
none continuous compilation, ANOVA, performance-patterns, Skoll
amortized ATLAS
non-trivial controlware

the approaches based on time. An offline approach is run a priori while an online
approach is turned on while the software is run. In a guidance approach, data collected
either from online/offline approach is used to build body of knowledge, which in turn is
used to guide configuration selection. The second dimension compares the technique
used for configuration exploration. For example, a manual approach may exhaustively
or minimally try to explore the different configuration knobs. Automated/hybrid
approaches may use techniques to build a configuration model or generate the right
configuration space required for evaluation.

The final dimension explores the cost of the configuration space exploration. An

21

offline technique does not incur any run-time cost, whereas the online technique incurs

a non trivial overhead for monitoring performance.

What Remains to be Done

The configuration-driven optimization techniques present online, offline, empirical
and statistical tools for mapping higher level application concerns on to software

configurations. These techniques however suffer from:

e Repeatability limitations, which stymie each product-line variant to execute
the same process [65] to identify the pertinent configuration settings,

e Cost limitations, which increase the accidental complexities involved in actu-
ally handcrafting the scaffolding code for different product-line variants to map
QoS requirements onto middleware configurations, and

e Validation limitations, which prevent the validation of these approaches

across different platforms, hardware, compiler and OS options.

Earlier efforts on benchmarking distribution middleware implementations [42, 43]
identified how tedious and error-prone the process of evaluating these configurations
really were. Chapter IV describes in detail how this limitation is resolved using the
OPTEML approach.

Another significant limitation of these techniques is that middleware or soft-
ware cannot be tailored or customized once the required configuration knobs are
determined. For example, if the right concurrency strategy to be used within mid-
dleware is determined to be single-threaded, this approach cannot remove the no-
implementation locking code from within the middleware. The next section discusses

techniques that can be applied to resolve this limitation.

22

Specialization Optimizations

Jones et al. [39], define specialization as a technique that creates a specialized
version of a general program, which is more optimized for speed and size than the
original program. This technique draws from and has characteristics of language
mechanisms such as program optimization techniques [37], compilers [1], program
generation [98] and generative programming techniques [14]. Specializations tailor
implementations using Ahead of Time (AOT) known system properties or invariants.
These techniques are applied very early in the development process i.e., at design

time rather than at run-time. In addition, these techniques are very application

) Protocol Component Services
e Interface Interface Interface
<
2
S \
a
(O Conponent 0
(- (Servant) <
out args + e
return i @
Cont ai ner
[0}
E ’
}—
o
c Wi
o A
=
m apt er
Customization
points
Specialized Path
General Specific

Applicability

Figure 11.4: Specialization Optimizations

specific. Figure I1.4 illustrates how AOT properties can be used to specialize

middleware.

23

Dimensions of Specialization Mechanisms

This section analyzes different dimensions of specializations by first building a
taxonomy based on different mechanisms and then describing how these have been
applied to different areas including operating systems, databases and neural networks.
Time-based mechanisms. Specialization can be carried out both offline and on-
line. An offline technique occurs in two steps: In the first step, a binding-time analysis
annotates the program code with static and dynamic information. This step is re-
ferred to as binding time analysis. In the second step, a code generator actually
produces the optimized code. An online specialization uses the actual values directly
rather than the two step process of annotation and program optimization. The on-
line technique is more powerful than offline techniques as it deals with the actual
value. However, offline specialization enables runtime adaptation as the information
is already propagated within the code. Different tradeoffs are listed in [21].
Language mechanisms. Common specialization mechanisms at the language level
include approaches that are two level in nature as described in [100]. Common ex-
amples include, macros (C and C++ language) for code expansion and templates in
C—++. In these examples, the code expansions are explicitly programmed. In the tem-
plates approach, each optimization, i.e., a specialization can be explicitly programmed
providing a fine grained control. This serves as its bane because optimizations have to
be explicit. C++ templates are offline mechanism, the reason being, during the, first
pass the compiler does not generate code but checks the syntax of the template code.
The specializations are instantiated only when used. Macros are online specializations
as they directly substitute code with no code annotation.
Specification-level mechanisms. Specification level specialization approaches in-
clude, code generators such as CORBA IDL compilers [101] and rpcgen [93] (IDL

compiler for Sun RPC). These code generators generate glue-code for (de) marshaling

24

data, connection management and error handling. A common example is specializa-
tion based on object location where the IDL compiler generates special glue code of
the objects that are within the same address space. Specification level specializa-
tion leverages language level specialization. For example, the generated code from
a IDL to C++ compiler uses a specific marshaling routine implemented as generic
templates.
Pattern matching mechanisms. Similar to specification level mechanisms, pattern
matching approaches take regular expression as input and perform the specified action
when there is a match. The matching serves as a mechanism of enabling specialization.
For example, the code woven in via pattern matching can be partially specialized
code rather than un-optimized code. The key difference here between pattern and
language partial specialization approaches is that pattern matching can be global
while language mechanisms are local. A common example in this category is AspectJ.
Application of specialization techniques. Specialization mechanisms have been
applied to different domains including scientific applications, functional program-
ming, operating systems and database systems. This section provides examples of
specialization techniques that have been applied to optimize different algorithms. In
computer graphics for example, ray tracing algorithms compute information on how
light rays traverse a scene based on different origination. Specialization of these al-
gorithms [2] for a given scene have yielded better performance rather than general
purpose approaches. Similarly in databases [77], general purpose queries have been
transformed into specific programs optimized for a given input. Similarly, training
neural networks [46] for a given scenario has improved its performance.

In addition to the aforementioned domains, specialization techniques have also
gained importance within the operating systems domain. The earliest of the efforts
in Synthesis Kernel [67] pioneered the idea of generating custom system calls for

specific situations. The motivation was to collapse layers and to eliminate unnecessary

25

Table I1.3: Dimensions of Different Specialization Mechanisms

Specialization Alternatives

Tazonomy | Alternatives

Time based Online & Offline

Language based Macros, templates, template meta-programming

Specification based | IDL compiler, rpcgen

Pattern based AspectJ

Effort manual (Language-based), automatic (pattern/specification based)
| Domains | Applications |

0S Synthesis Kernel, HP_UX incremental specialization

Databases dedicated read queries

Physics Ray Tracing specialization

AT Neural network specialization
| Languages | specialization tools

Lambda Calculus Lamdamix

Prolog Logimix

Scheme Similix

C C-mix

procedure calls. Others have extended this approach to use incremental specialization
techniques. For example in their work [68], Pu et al., have identified several invariants
for a operating system read call for HP_UX platform. Based on these invariants,
code is synthesized to adapt to different situations. Once the invariants fail, either
re-plugging code is used to adapt to a different invariant or default unoptimized code
is used.

Summary. Table II categorizes specialization initiatives across three different di-
mensions. The first dimension shows the different specialization mechanisms. These
approaches are then applicable to different domain as shown in the second dimension.
Finally, the table shows several partial specialization tools that have been developed
to specialize programs written in the corresponding languages. We do not discuss

each of the tools in detail, more information about each tool is available in [39].

26

What Remains to be Done

Traditional specialization techniques have been used to optimize applications in
function/logic programming. There does not exist any specialization tool for ob-
ject oriented programming languages such as C++ or Java. Specialization variants,
such as program specialization techniques are commonly used in optimizing compil-
ers. Middleware displays several characteristics amenable to specialization such as
(1) ability to run on different platforms, (2) multitude of configuration options and
(3) design for flexibility and generality. Using a similar approach as an optimiz-
ing compiler, specialization may be used to produce leaner and meaner middleware
implementations more tailored to the operating context

Middleware implementations traditionally are designed for generality i.e., design
facilitates use in different operating contexts. Middleware architectures are layered
to support pluggable context-specific implementations. To improve performance and
footprint, middleware implementations incorporate several horizontal (general pur-
pose) optimizations such as predictable and scalable (1) request demultiplexing tech-
niques, that ensure O(1) look up time [41] and collocation optimization, which by-
passes the network when client and server reside in the same address space. However,
these optimizations are still generic, for example redundant checks for remoting are
performed to accommodate for generality, i.e., capability to communicate over the
wire as well.

The configuration driven optimizations, help in choosing the right set of middle-
ware configurations, however, do not eliminate the generality in middleware. There-
fore, the research challenge is to explore the use of program specialization techniques
to remove middleware generality. Chapter IV how this limitation is resolved using

the OPTEML approach.

27

Summary

The research evolution and taxonomy presented in this chapter clearly show a
trend from general-purpose run-time optimizations to highly applicable design time
optimizations for enhancing middleware for PLA based application development. This
chapter also described the missing pieces that have not been addressed by research
approaches thus far. Addressing these principal challenges will herald the next gen-
eration of configurable and customizable middleware in the following manner.

e Resolution of feature subsetting challenges, will enable each product-line
variant to select the middleware pieces that match the product line’s feature
requirements.

e Resolution of specialization challenges, will use the chosen configuration
as drivers for removing middleware generality.

¢ Resolution of configuration & validation challenges, will enable the selec-
tion of right middleware configurations using a tool-driven repeatable process.

The remaining portion of this dissertation describes in detail how OPTEML addresses

the aforementioned research challenges.

28

CHAPTER III

TECHNIQUES FOR FINE-GRAIN COMPONENTIZATION OF PLA
MIDDLEWARE

A standards compliant CORBA ORB provides several services including support
for multiple protocols, marshaling and demarshaling, multiple formats for exporting
references and multiple object adapters that map client requests to implementation
defined servants. Product-line variants then choose the set of middleware services
that are required for satisfying their feature requirements. The taxonomy on general-
purpose optimizations (described in Section II) identified limitations with existing

middleware architectures including:

e Lack of feature subsetting - Implementing a full-service, flexible, specification-
compliant ORB can yield a monolithic ORB implementation with a large mem-
ory footprint as shown in Figure III.1. Moreover, the footprint grows with each
extension (adding support for a new protocol), and extensibility is hard.

e Inadequate support for extensibility — Designing middleware for PLAs not
only require a full range of CORBA services but also need middleware to be
adaptable, i.e., meet the needs of wide variety of PLA applications develop-
ers. Current CORBA middleware designs are not designed with the aim of
applicability in various domains.

Custom software development and evolution is labor-intensive and error-prone for
complex DRE applications. Next generation middleware design should therefore be
simultaneously extensible, provide feature subsetting, and be easy to use, thereby
minimizing the the total system acquisition and maintenance costs. The remainder of
this chapter describes novel techniques for fine-grain componentization of middleware

for PLA. These techniques (1) enable different levels of middleware componentization,

29

e.g., coarse-grain (decomposing a monolithic component into sub components) and

fine-grain (further decomposition of the already factored out pieces),

RB
STD CAST RT
OA OA OA

Object Adapters

(0]

Message Buffer Other IOR Parsers

Igcator ORB C)C)
===> >0 O

Object
Messaging CDR Stream Resolvers

Components

Transport Protocols

(s

Figure III.1: Monolithic ORB Architecture

(2) are transparent to the application (no changes to the PLA application code),
(3) significantly reduces middleware footprint and (4) allow easy addition of new

features without sacrificing performance.

Micro ORB Designs

To enhance the customizability and flexibility of middleware implementations, an
ORB should allow an application to select the minimal set of components required.
To address the limitations with monolithic ORB architectures, this research applies

the following design process systematically.

1. Identify the ORB services whose behaviors may vary. This variation stems from

which standard CORBA features are actually used and user’s optional choice

30

for certain behavior. For example, CORBA provides an Any datatype that can
store any other data-type. This feature is optional until used.

2. Apply the Virtual Component pattern [27] to make each ORB service pluggable,
i.e., factor it out of the core ORB implementation.

3. Write concrete implementations for the different alternatives. For example, an
implementation of the TCP/IP protocol or Secure Socket Layer (SSL) proto-
col. A factory [26], for example, a protocol factory, creates different protocols

depending on configuration settings.

MIN MCAST
A RT PO PO
PO

Object
Adapters
% Message IOR |
[Buffer
Allocators \ / Parsers |
[= clop Micro-ORB |_ An |
> essaging Kernel y : ‘
>R N Object =T
Resolvers \
Readers
Transport
Protocols

Figure I11.2: Micro ORB Architecture

The systematic application of this design process to middleware results in a flexible
and extensible Micro ORB design. The micro ORB design is based on the concept of
layered pluggability, as shown in Figure II1.2. In this architecture only a small ORB
kernel is loaded in memory, with various components linked and loaded dynamically

on demand. The advantage of this design is the significant reduction in footprint

31

and the increase in extensibility. In particular, independent ORB components can be
configured dynamically to meet the needs of different applications. The remainder of
this chapter uses a case study to demonstrate how a pluggable design based on the
Virtual Component pattern, promotes customizability and simultaneously minimizes

footprint.

Pluggable Middleware Component Design - A Cast Study

The POA is a standard component that enables programmers to compose servants
portably across ORB implementations. Unlike its woefully underspecified predecessor—
the basic object adapter (BOA)—the POA specification is well designed and provides
standardized APIs for the POA operations. The following paragraphs summarize the
important functionality provided by the POA:

1. Generating object references. The POA is responsible for generating object
references for the CORBA objects it maintains. These references contain addressing
information that allows remote clients to invoke operations on each object in a dis-
tributed system. This information is provided to the POA by the ORB Core and
underlying operating system transport.

2. Behavior governed by policies. The POA provides a extensible mechanism
for associating policies with servants in a POA. The values for policies are specified
when a POA is created. Currently there are seven standard policies for the POA:
thread, lifespan, object id uniqueness, object id assignment, servant retention, request
processing, and implicit activation.

3. Activation and deactivation of objects. The creation of object references
stem from the creation of a CORBA object. Once created, an object can alternate
between activated and deactivated states. An object can service requests only if it is

activated. The deactivate_object() operation is used to deactivate an object. It

32

is important to note that the lifetime of a CORBA object is different from that of
the servant that implements it.

4. Incarnation and etherealization of servants. Servants implement CORBA
object interfaces and can be registered with the POA implicitly or explicitly by ap-
plication developers. To have requests delivered to it, however, an object must be
incarnated by a servant. The POA can incarnate servants on demand. Etherealization
of a servant breaks the association between it and its CORBA object.

5. Demultiplexing requests to servants. Client requests are sent as messages
across the underlying OS transport. The POA demultiplexes these requests to the
appropriate servants. The POA then invokes the appropriate operation on this ser-
vant.

6. SSI and DSI support. The POA allows programmers to construct skeletons
that inherit from static skeleton interface (SSI) classes or a dynamic skeleton interface
(DSI) class. Clients need not be aware that the request is serviced by a SSI or a DSI
servant. Two CORBA objects supporting the same interface can be serviced, one by
a DSI servant and one by a SSI servant. Further an object can be serviced by a DSI
servant for some period of time, while being serviced by the static skeleton servant

for the remaining time.

Portable Object Adapter Functionality and Architecture

The ORB is an abstraction visible to both the client and server. The POA, in
contrast, is only necessary in a process performing the server role, so clients do not
require the services of a POA. In ZEN, the ORB and the POA interact through a well-
defined ServerRequestHandler interface. This design prevents the tight coupling of
the ORB and the POA. This interface is specific to ZEN since the OMG has not
standardized the interface between the ORB and the POA. In ZEN, the POA is only

33

one specific type of ServerRequestHandler. Variants, such as Real-time POA or
Multicast POA, may handle requests and perform other POA activities, as well.
User-supplied servants are registered with the POA. Each client has an object
reference, representing the remote servant, upon which it can invoke requests. When a
request is made, it is passed as a message to the server. The POA then decides which
servant the request corresponds to and invokes that operation on the appropriate
servant. Figure II1.3 shows the POA architecture. The architecture shown in this
figure is implied by the interface to, and specification of, the POA in the CORBA
specification. As long as an implementation of this architecture meets the designated

CORBA semantics, however, it need not follow any prescribed design.

T
POA A
SERVANT
default servant
POA Manager
4dv Actlve.ObJect Map// SERVANT
' T Object Id O
Object Id O
Object Id O » SERVANT
Object Id O]
T <
ROOtPOA) YU Adapter
o - ¥| Activator
aciveebiecilon adapter activator f ’
ObjectId O | Servant
servant | 4- Activator
activator
SERVANT Active Object Map SERVANT
Objectld O]
Objectld O » SERVANT
Legend Object Id O—\\ SERVANT
| S —
Object reference ! |
,,,,,,,, - , .
. . Servant
Pointer "\ L ocator
! v
User defined
object |

Figure II1.3: The POA Architecture

Figure II1.3 shows a special POA (called the RootP0A) that is always available to

an application through the ORB factory method resolve_initial_references().

34

Application developers can register servants with the root POA if the policies of the
root POA specified in the POA specification are suitable for their applications.

A server application may establish multiple POAs to create a naming hierarchy
(similar to the hierarchical directory structure found in an OS file system) that also
allows setting of individual servant policies. For example, a server application might

have two POAs:

e one supporting transient CORBA objects, whose lifetime can not exceed the
POA in which it was activated, and
e the other supporting persistent CORBA objects, whose lifetime can exceed that
of its activating POA.

Child POAs are created by invoking the create_POA() factory method on a parent
POA. The server application in Figure IT1.3 contains three other nested POAs: A, B,
and C. POA A and B are children of the root POA; POA C is B’s child. Each POA has
an active object map that associates object ids to servants. Other key components
in a POA are discussed below.
Adapter Activator. An adapter activator can be associated with a POA by an
application. The ORB will invoke an operation on an adapter activator when a
request is received for a child POA that does not yet exist. The adapter activator
can then decide whether or not to create the required POA on demand.
POA Manager. A POA manager encapsulates the processing state of one or more
POAs. By invoking operations on a POA manager, server applications can cause
requests for the associated POAs to be queued or discarded.
Servant Manager. A servant manager is a locality constrained servant that is pro-
vided by the application developer. The ORB uses a servant manager to activate
and deactivate servants on demand. Servant managers are responsible for (1) man-
aging the association of an object (as characterized by its Object Id value) with a

particular servant and (2) for determining whether or not an object exists. There are

35

two types of servant managers: ServantActivator and ServantLocator. The type used
in a particular situation depends on the policies in a POA, which are described in

section /refPOAarch.

Alternate POA Designs

Having described the functionality of a POA, this section presents an overview
of each of the three alternative POA design architectures that were implemented,

measured, and compared: monolithic POA, coarse-grain POA, and fine-grain POA.

Monolithic POA Architecture

In a monolithic POA architecture, the POA is a single large component that con-
tains the semantics needed to implement (1) policies in the OMG’s POA specification
and (2) ORB-specific policies. The monolithic design can increase the footprint (both
code and data size) of the POA considerably since the POA implements the behavior
required by the entire set of policies, rather than a minimal subset.

Monolithic POA also cannot be easily extended as new polices are added to the
CORBA POA specification. Moreover, monolithic POA implementations complicate
the addition of ORB-specific policies. Monolithic POA implementations also suffer
from inefficiency in terms of redundant checking required to determine the appropriate
course of action based on POA policies.

For example, during most operations a monolithic POA needs to check for the
presence/absence of policies to incorporate the necessary behavior dictated by the
policies associated with the POA. This overhead is incurred each time the operation
is performed. For example, to process a client request, the POA must check for the
request processing policy value associated with the POA, which then dictates how

the request is processed.

36

Coarse-grain POA Architecture
In a coarse-grain POA architecture, the POA is still a single, large component.
However by applying the Virtual Component pattern, the POA is treated as one

component so it can be plugged-in or removed as shown in Figure I11.4.

MIN STD

POA POA
RT

POA

%
E &
o =
A

Figure II1.4: Pluggable Object Adapters

A coarse-grain POA architecture is useful for pure clients, which need no object
adapter and can reduce their footprint by completely removing all POA methods.
It also useful for pure servers, which can reduce their footprint and achieve custom
functionality by loading the most appropriate POA (e.g., the RootPOA or a special
group communication POA [51]) on demand. The coarse-grain pluggable POA design
also simplifies the addition of new object adapters as they are standardized by the
OMG. This coarse-grained POA architecture has been implemented in TAO [36] using
the Component Configurator [88] pattern and dynamic link libraries (DLLs) to load

each POA implementation variant.

Fine-grain POA Architecture

Aggressive use of the Virtual Component pattern allows greater subsetting of
portions of the POA based on the application’s needs. This architecture is called the
"fine-grain POA architecture.” In this approach, instead of an all-or-nothing loading

of the POA, individual components of the POA can be loaded as needed. It is possible

37

to divide the POA into smaller pieces and make them virtual components. Such a
fine-grain level of control can further reduce the footprint of a POA when it is needed
by an application. It useful to decompose the POA as dictated by the values of the
POA policies. Each of the CORBA POA policies has a set of policy values that

specify the behavior of the POA with that policy. By breaking down the policies

[

Single POA A

Thread - Thread Strategy

Strategy N
Servant Retention
Strategy Retain Strategy

Id Uniqueness SERVANT

uniqueld | |y - —" — Strateg Active Object Map~]|
Strategy Activation Strategy Object Id 9/ SERVANT

. i e//
- Id ASslsl?nment Object Id || SERVANT

- rateg o—1

. 4 Object Id
P Request

Processing %
// Strategy

,/ Lifespan Strategy |, Active Object Map
————————X Only Strateg

Ay

Implicit
Activation
Strategy

s

POA Manager S N
User Id - g\ Persistent
Strategy = Strategy
AN

A
POA B -

Lifespan Strategy |-
" Servant Retention | | o Non Retain
P N Strateg —
No Implicit Strategy
Activation & Ny N IdAssignment
Strategy ~ Strateg
Activation Strategy Default Servant

< Id Uniqueness
Multiple Id =i Strateg

/
'~

ORB

Strategy
Request P Control
Processing . Model
Strategy 7

LEGEND
Thread Strategy |

-- Object Reference ~ -------- »
=~ Adapter Activator Flweights E— S

Singletons

Adpater
Activator

Pointers

Figure IIL.5: Fine-grain Architecture of the ZEN POA

according to their possible values, it is therefore possible to load only the pieces that
the POA needs, based on the list of policies specified at POA creation time. For
example, Figure I11.5 shows the fine-grain architecture of the ZEN POA, where each
POA policy is factored out into a separate class hierarchy by applying the Strategy

pattern [26], as described next.

w

8

Design of the ZEN Fine-grain POA
The remainder of this section describes how ZEN’s POA is decomposed into mod-

ular components in accordance with POA policy values.

Primary POA Components

The four strategies described below are considered to be primary components in
ZEN, i.e., their behavior does not depend on other components. At POA creation
time, these components are created first and hold the smallest amount of state. The
following are the primary components of the POA.

ThreadStrategy component. This component implements the Thread policy, which
is used to specify the threading model used in the POA. The POA can have one of
the following threading models: single thread, ORB controlled, or main thread. If
the POA is single-threaded, all the requests of the POA are processed sequentially.
In a multi-threaded environment, all upcalls to the servant are invoked in a manner
that is safe for multi-thread unaware code. In contrast, in the ORB-controlled model,

multiple requests may be delivered simultaneously using multiple threads.

Thread Strategy

#singl eThreadStrategy: SingleThreadStrate
#mul ti ThreadedStrat egy: ORBControl Strat egy

+ent er (i nvokeHandl er: | nvokeHandl er): void
+exi t (i nvokeHandl er: | nvokeHandl er): void
+init(): ThreadStrategy

|

SingleThread Strategy ORBControl Strategy

-l ock: (bject

Figure I11.6: ZEN’s Thread Strategy

All requests to a main thread POA are processed sequentially in the thread that

39

runs the main() function. All upcalls made by POAs with this policy to servants
are made in a manner that is safe for thread-unaware code. If the environment has
special requirements that some code must run on a distinguished main thread, servant
upcalls will be processed on that thread.

Using the Strategy pattern, the semantics of implementing the Thread policy can
be strategized into two alternatives: class SingleThread and class ORBControlModel.
Each class encapsulates the state and the logic of implementing the behavior specified
by the policy. In ZEN,the main thread model strategy and the single thread strategy
are equivalent. Figure II1.6 shows the class diagram for ZEN’s ThreadPolicyStrategy
alternatives..

At POA creation time, a factory method init () in the base class ThreadPolicyStr-
ategy creates the appropriate strategy instance based on the POA’s policy list. Since
the ORBControl component does not maintain state specific to a POA, it is im-
plemented using the Flyweight pattern [26]. This pattern uses sharing to support
large numbers of fine-grain objects efficiently, which means there is one instance of
the ORBControl object. Each POA with that value for the ThreadPolicyStrategy
policy will have a reference to that single object, thereby reducing memory usage.

Prior to making the upcall on the servant, the POA uses the ThreadPolicyStrate-
gy’s enter () method. If the SingleThread strategy is in place, this method acquires
a mutex lock. After the upcall is performed, the exit () method releases the lock.
This synchronization is not present in the ORBControlModel strategy.
LifespanStrategy component. This component implements the Lifespan policy,
which is used to specify whether the CORBA object references created within a POA
are persistent or transient. Persistent object references can outlive the process in
which they are created. Unlike persistent object references, transient object references

cannot outlive the POA instance in which they were first created. After the POA is

40

deactivated, the use of object references generated from it will result in an 0BJECT_
NOT_EXIST exception.

The mechanism for implementing the POA’s Lifespan policy has been separated
into ZEN’s Persistent and Transient strategies. Figure III.7 shows the class dia-

gram of the LifespanStrategy component.

LifespanStrategy

#persi stent: PersistentStrategy

+init(policylList:Policy): LifespanStrateqgy
+create(path_name: String, oid: byte[]): ObjectKey
+val i dat e(policyType:int): void

-

TransientStrategy LifespanStrategy

#ti meStanp: | ong

Figure II1.7: ZEN’s Lifespan Strategy

The responsibilities of the strategy include the creation of object ids for objects
registered with the POA and validation of object keys contained in the client requests.

When asked to activate an object, the POA uses the create () method to generate
an object id for the CORBA object. The object id generated depends on the concrete
strategy loaded into the ORB. For example, the object id generated by a transient
transient POA has a time stamp. When a client request is received, the validate ()
method of the LifespanStrategy determines whether it was this POA that generated
the object id. If the POA is transient and the above is not true then a 0BJECT_NOT_
EXIST exception is returned to the client. In the persistent case, the adapter activator
of the closest existing ancestor is used to create the POA automatically.

In ZEN, the persistent strategy does not maintain state specific to a POA, so it

can be implemented as a flyweight PersistentStrategy object.

41

ActivationStrategy component. This component implements the Activation pol-
icy, which is used to specify whether implicit activation of servants is supported in
the POA. If the implicit activation policy is active, it causes two things to happen

when the servant method _this () is called:

1. The servant is registered with the POA and

2. The object reference for that servant is implicitly created.
Without this policy, the server must call either activate_object() or activate_
object_with_id() to achieve this effect.

ZEN uses the ActivationStrategy shown in Figure II1.8, to implement the be-

havior required by the ImplicitActivation policy.

ActivationStrategy

#inplicitActivation: InplicitActivation
#explicitActivation: ExplicitActivation

+init(policylist:Policy): ActivationStrate
+val i dat e(policyType:int): bool ean

i

ImplcitActivationStrategy ExplicitActivationStrategy

{1 |

Figure I11.8: ZEN’s Activation Strategy

The validate() method is invoked to check if implicit activation is permitted,
on this POA. Depending on the concrete strategy that is plugged into the ORB, the
operation returns true or false. For example, the servant_to_id() and servant_to_
reference () operations use the method to check if implicit activation is allowed.

Both of the following concrete strategies, ImplicitActivationStrategy and Expl-
icitActivationStrategy maintain no state within them and are implemented as

flyweights to conserve memory.

42

Secondary POA Components

The secondary components in ZEN are strategies whose behavior depends on the
values of primary strategies. These dependencies can lead to conflicts. When two
policies cannot co-exist they are said to be in confiict. If the policy list specified at
POA creation has conflicts, the strategies would also be in conflict. For example, if
the ImplicitActivation policy value is IMPLICIT_ACTIVATION, the IdAssignment policy
value cannot be USER_ID.

In ZEN, these conflicts are identified at strategy creation time (that is, before

processing client requests), and appropriate response can be taken (for instance, raise
an exception to the user, apply reflection to automatically select a non-conflicting set
of policies, etc).
IdAssignmentStrategy component. This component implements the IdAssign-
ment policy, which is used to specify whether object ids in the POA are generated
by the application or by the POA. The possible object id assignment policy values
are either User-assigned or System-assigned. Moreover, if the POA has both the
SYSTEM_ID IdAssignment policy and PERSISTENT Lifespan policy enabled, ob-
ject ids generated must be unique across all instantiations of the same POA. If the
POA has the ImplicitActivation policy, this policy’s value cannot be USER_ID. This
subtle interaction between POA policy values is implicit, but must be enforced at
POA creation time.

In ZEN, the IdAssignmentStrategy class models the behavior required by the
Id Assignment policy. The interface of the IdAssignmentStrategy is shown in Fig-
ure II1.9.

The init() factory method, that creates the concrete strategy also checks for
conflicts and raises the WRONG_POLICY exception if necessary. The only responsibility
of this strategy is to generate object ids for registering objects with the POA.

Under certain conditions, POA operations, such as activate_object () and servant_

43

to_id (), can activate servant using POA generated object ids. The nextId() method
generates the new object id if the system id policy value is present in the POA. If the
user id policy value is present, a WRONG_POLICY exception is raised. The semantics of

incorporating the above behavior is present each of the concrete strategies.

IdAssignmentStrategy

#userld: Userl|dStrategy

+init(policylist:Policy): |dAssignnentStrategy
+next I d(): byte[]
+val i dat e(policyType:int): bool ean

‘Fﬁ

SystemldStrategy UserldStrategy

#l dGenerator: int

Figure I11.9: ZEN’s Id Assignment Strategy

The UserIdStrategy does not maintain any state specific to a POA, so it is
designed as a flyweight.
IdUniquenessStrategy component. This component implements the IdUnique-
ness policy, which is used to specify if the servants activated in the POA must have
unique object ids. If the policy value is unique id, servant activated by the POA
support exactly one object Id. With the multiple id policy, servants activated by the
POA may support multiple object Ids. The use of unique id policy value in conjunc-
tion with the NonRetain policy is meaningless. The OMG specification allows the
ORB not to report an error if this combination is used, in ZEN this is considered to
be in conflict and a WRONG_POLICY exception is raised.

The IdUniquenessStrategy enforces the behavior required by the policy. Fig-
ure II1.10 shows the class diagram and the concrete strategies that extend the IdUnique-

nessStrategy. The validate () method is used by the POA to check for the policy

44

value associated with the POA. For example, activate_object() operation before

activation of an already existing servant, calls the validate() method to check if

IdUnigquenessStrategy

#multipleld: MiultipleldStrategy
#uni quel d: Uni quel dSt r at egy
+init(policylist:Policy): |1dUniquenessStrategy
+val i dat e(policyType:int): bool ean

(I

UniqueldStrategy MultipleldStrategy

{1 [1

Figure I11.10: ZEN’s Id-Uniqueness Strategy

re-registration is permitted. Both the concrete strategies do not maintain any state
within them and hence are designed as flyweight references.
ServantRetentionStrategy component. This component implements the Servant
Retention policy, which is used to specify if the POA retains the active servants in an
active object map. This policy can either have retain or non-retain as the possible
policy values. Some combinations of POA policies are not allowed. For example, the
ServantRetention policy may have a value of NON_RETAIN and an ImplicitActivation
policy may have a value of IMPLICIT_ACTIVATION, but they cannot have those values
simultaneously since they conflict with one another. Again, these implicit and subtle
issues must be enforced at POA creation time.

In ZEN, the ServantRetentionStrategy models the behavior required by the
ServantRetention policy. Figure II1.11 shows the concrete strategies that extend the
ServantRetentionStrategy.

The ServantRetentionStrategy maintains an active object map where the as-

sociation between the CORBA object and the servant is maintained. If a POA has

45

ServantRetentionStrategy

#nonRet ai n: NonRet ai nSt r at eqy
+init(): ServantRetentionStrateqgy
+get Servant (): Servant

+get Cbj ect Key(): Obj ect Key

+add(Qbj ect Key, Servant): void

+val idate(): void

+servant Present (Servant): bool ean

+0bj ect KeyPresent (Servant): Obj ect Key

]

RetainStrategy NonRetainStrategy
#AOM Acti vebj ect Map

+initialize()
+get AOM): ActiveObj ect Map
+deact i vat eQbj ect (Obj ect Key)

+dest r oyQbj ect Key(Obj ect Key)
Figure I11.11: ZEN’s Servant Retention Strategy

unique id and retain policies, there exists a one-to-one relationship between the object

ids and servants and vice versa.

«I'nterface»

ActiveObjectMap

+add(Obj ect Key, Servant): void

+get bj ect Key(): Obj ect Key

+get Servant (Cbj ect Key) : Servant
+servant Present (Servant): bool ean
+obj ect KeyPresent (Servant): bool ean
+renove(Obj ect Key): void

DualMap SingleMap
#keyToSer vant Map: HashTabl e #keyToSer vant Map: HashTabl e
#ser vant ToKeyMap: HashTabl e

Figure II1.12: ZEN’s Active Object Map Interface

In this case, operations servant_to_id() and servant_to_reference() support
reverse lookups (e.g., given a pointer to a servant, return the object associated with
it). To speed up these operations, ZEN uses a reverse map that maps servants to
their object ids. Since this reverse map is only needed in certain cases, the active
object map is further strategized into SingleMap and DualMap. Figure I11.12 shows

the active object map interface.

46

The optimization describe above further reduces the footprint of the POA when
a multiple id policy value is used. In the traditional approach, operations requiring
lookups on the active object map would have to be preceded by guard conditions that
check if the POA has the retain policy. In ZEN, depending on the concrete strategy in
place, these either produce the desired behavior or raise the WRONG_POLICY exception.

The NonRetainStrategy encapsulates the mechanism of enforcing the non-retain
policy. This strategy does not maintain any state specific to the POA and is imple-
mented as a flyweight. All POA’s having the non-retain policy have references to this
flyweight.
RequestProcessingStrategy component. This component implements the Re-
questProcessing policy, which specifies how the POA should process requests. On
receipt of a request, the POA based on the request processing policy value can do

one of the following.

e Consult the active object map only. The POA using the object id searches
the map for the associated Servant. It then uses that servant to process the
request. If unsuccessful, an exception is returned to the client.

e Use a default servant. If the POA has the Retain policy and Step 1 is
unsuccessful, then a default servant if present is used to service the request. If
a default servant has not been associated or the POA does not have the policy
an exception is returned to the client.

e Use Servant Manager. If the POA has the UseServantManager policy, the
application supplied manager can be asked to incarnate/activate a servant for
the object id. This servant is used by the POA to service the request. Depending
on the ServantRetention policy, the servant manager can either be a servant

activator or a servant locator.

47

RequestProcessingStrategy

+init(): RequestProcessingStrate

+set | nvokehandl er (): void

+get Request Processor (pol i cType:int): oject
+val i date(policyType:int): void

+handl eRequest (): I nt
T

AOMOnlyStrategy DefaultServantStrategy
#aom _Acti veQbj ect Map +servant: Servant

+initialize(): void +initialize(): void

ServantManagerStrategy

L

ServantActivatorStrategy ServantLocatorStrategy
#manager: Servant Activator #manager : Ser vant Locat or
#aom ActiveGbj ect Map +initialize(): void

+initialize(): void

Figure I11.13: Request Processing Strategy

The RequestProcessing policy is strategized along the three alternate courses of ac-
tion mentioned above. Figure II1.13 shows the class diagram for the RequestProcess-
ingStrategy.

ActiveObjectMapOnlyStrategy encapsulates the logic of request dispatch if the
active object map only policy is used. The POA uses the handleRequest () method
of the base strategy strategy to service request.

The DefaultServantStrategy is associated with the POA if the appropriate
policy value is used. Depending on the servant retention policy value, this strategy
either consults the active object map first for request dispatch, or uses the default
servant. If the non-retain policy value is used the POA, the servant is directly used.

In either of the cases, if no servant is associated with the POA, an exception is raised.

48

The ServantManagerStrategy is associated with the POA if the Use Servant
Manager policy value is specified. Moreover, depending on the ServantRetention pol-
icy for the POA, this is strategized into a ServantActivatorStrategy or a Servant-
LocatorStrategy. Each of these concrete strategies have the semantics necessary for
request, dispatch.

In a traditional POA implementation, each time a POA receives a request it must
check the value of the request processing policy. In ZEN, however, the semantics of
request processing in each case is present in the concrete strategy for that policy, so

the policy value need not be checked at all.

Empirical Results

This section presents the results of blackbox benchmark measurements that com-
pares the pluggable architecture of the ZEN POA with a monolithic POA architec-
ture. All the experiments in this section were performed on an Intel Pentium III
851 Mhz processor with 512 MB of main memory running on Linux 2.4.7-timesys-
3.1.214 kernel. For these experiments, ZEN version 1.0 and JacORB [9] version 2.2
was executed on a Java SDK JVM version 1.4.2. To eliminate differences in the POA

configurations, the following properties were set in both ZEN and JacORB:
1. Logging was turned off

2. POA monitoring was turned off for JacORB in the properties file.

3. The number of threads in the thread pool was set to 10

4. Maximum queue size was set to 100 and

5. No priority was set for the threads doing the request processing.

6. Interceptors were turned off

7. Servants are normal CORBA servants that inherit from org.omg.PortableServ-

er.Servant, i.e., DIT and DSI were not considered

49

Root POA metrics

As discussed earlier in this section, the root POA is an integral part of every
CORBA server and is always present, whether or not any other child POAs exist. A
root POA suffices for many applications, unless the server needs to provide different
QoS guarantees, such as object reference persistence. Thus, minimizing the footprint
of the root POA is vital to minimizing server footprint. This test measures the
increase in footprint after the root POA has been associated with the ORB. The
memory increase prior to and after the call to the resolve_initial_references()

gives the foot print increase contributed by the root POA.

120

- Zen
100 - JacORB

80

Size (kB)

40

20

ORB

Figure II1.14: Root POA Footprint

Figure II1.14 illustrates that the footprint of the Root POA in ZEN is 65 kilo-
Bytes, while that of JacORB is 120 kiloBytes. Thus, ZEN’s root POA is almost half
the size of JacORB’s Root POA. In ZEN, the creation of the root POA results in
initialization of all the base abstract strategies and the creation of the appropriate
concrete strategies for the root POA policies. The root POA configuration maintains

the maximum state among all POAs in ZEN. This small footprint bolsters the micro

20

POA design in the ZEN. Since JacORB is designed monolithically, it suffers from a
larger memory footprint. Further, the creation time for ZEN RootPOA was ~250

(usecs) while JacORB incurred an higher latency of ~375 (usecs).

Child POA footprint metrics

A CORBA server creates child POAs for the CORBA objects if the QoS pa-
rameters differ from those provided by the Root POA. For example, an application
developer creates a Child POA to provide object reference persistence or to associate
multiple objects with a single servant, etc. This test measures the variation of foot-
print with the number of POAs created. The increase in footprint prior to and after
the call to the create_POA() method is measured in each of the case. The following

two scenarios were measured:

A The child POAs have the same policies as the root POA
B The child POAs have the following policy values: (1) NonRetain policy, (2)
ServantManager policy, and (3) Userld policy.
The configuration (A) in ZEN, holds the maximum state while (B) corresponds to
the least state. These configurations thus represent the minimum and maximum
foot-print range for ZEN.

Figure II1.15 shows how memory increases with the number of child POAs. For
both cases, JacORB and ZEN, grow linearly. However, the growth of ZEN is more
gradual. For example, in Configuration (A), for 32 POAs, JacORB’s footprint is ~650
kiloBytes while that of ZEN is ~175 kiloBytes and for Configuration (B) JacORB
footprint is ~675 kiloBytes while ZEN incurs ~120 kiloByes. For configuration A,
the average POA size for ZEN is ~7 kiloBytes where as JacORB’s child POA is ~15
kiloBytes, a factor of two difference. For configuration B, the average POA size for
ZEN is ~4.5 kiloByes while for JacORB it is ~20.5 kiloBytes. Configuration B in

ZEN corresponds to the scenario where maximum flyweight [26] references are used,

ol

Configuration (A) Configuration (B)

2 4 8 16 32 0 2 4 8 16 32
ORB ORB

Figure I11.15: Child POA Footprint Results

i.e., state is shared rather than duplicated for each POA. As shown in the results, this
provides a factor of 5 improvement in footprint. Configuration A on the other hand
represents the case where least amount of state is shared which limits the footprint
improvements to a factor of 2. The results are again in agreement with the RootPOA

results as both represent the same configuration.

Child POA creation time metrics

The design of the ZEN POA is expected to reduce the creation time of the POA
since most of the concrete strategies are implemented as flyweights. In many appli-
cations, a POA could also be created as a side-effect of an upcall on the servant. In
this scenario, a slow creation time for a child POA could decrease throughput and
increase jitter. This test measures the variation in creation time with the number of
POAs created. The child POAs that are created have the same policies as the root
POA. In ZEN, default policy values (which are those used by the root POA) require

more memory and are more expensive to create than are non-default policy values,

52

so this test exercises the worst-case scenario. Figure I11.16 shows that both ZEN and

1000

900 | Il JacORB
L H Zen

800 |

700 |
600 7
500 7
400 7
300 7
200 7
100 7
0 50 100 1!
ORB

Latency (u.s)

10 50 200

Figure I11.16: Child POA Creation Time

JacORB grow linearly with the increase in the number of child POAs. However, the
rate of increase for ZEN is very gradual and marginal than that of JacORB. From
the samples, the average time for POA creation in ZEN is ~3.5 usecs while that for
JacORB is ~7.2 usecs. On a average, therefore, JacORB is twice slower than ZEN
for child POA creation.

Cost in memory per object activation

One key function of the POA is to generate object references. Thus, the cost in
memory per object activation provides an indication of footprint increase as servants
are associated with the POA. In this test, a servant is activated multiple times. Each
time the servant is activated the POA creates an association between the servant with
its object id in the active object map. The increase in footprint prior to and after the

activation of servants is measured for each case. For this experiment both the ZEN

93

and JacORB POAs were associated with Id assignment policy of MULTIPLE_ID and
Id assignment policy of SYSTEM_ID.

Figure IT1.17 illustrates that memory increases linearly with an increase in the
number of activations. The increase of ZEN is slower than that of JacORB. For ZEN,
on an average, the cost of memory per object activation is around ~176 bytes while

that of JacORB is ~260 bytes.

250
225
r Il JacORB B
200 |- B Zen
175
150
@ L |
X
3 125
N
& L |
100
75
50
) Ij I‘
0 ||
10 100 250 500 750 1000

ORB

Figure I11.17: Cost in Memory per Object Activation

For both ZEN and JacORB the contributing factors include creation of object
keys and tables to store the association between the object keys and servants. The
strategization of the POA in ZEN ensures that the object keys hold only necessary

state.

Summary

This chapter showed how aggressive use of design patterns help in addressing QoS
concerns of the PLA based DRE systems. Using the POA as an example, this chapter

illustrated how micro ORB designs:

54

e minimize footprint. ZEN’s POA design achieves a small memory footprint
for middleware suitable for DRE systems. Each application incorporates only
the sections of middleware code that it actually needs. By decomposing the
POA into Virtual Components, the POA requires minimal memory for each
application using ZEN.

e Facilitate ease of adaptation. A pluggable, highly-modular POA design
applies the core software engineering concept of separation of concerns. Each
of the Virtual Components in ZEN’s POA encapsulates the implementation for
a particular POA policy. This enables ZEN to associate custom POA policies,
e.g. new algorithms, data structures, and capabilities.

e Facilitate ease of configurability. A pluggable, highly-modular POA design
allows other custom policies to be associated with minimal cost. This allows

the POA to be tailored according to the application domain.

95

CHAPTER IV

TECHNIQUES FOR SPECIALIZATING PLA MIDDLEWARE

General-purpose, standard middleware implementations are designed to be reusable
since they need to satisfy a broad range of functional and QoS application require-
ments. PLAs define a family of systems that have many common functional and
QoS requirements, as well as variability specific to particular products built using
the PLA. Resolving the tension between generality and specificity is essential to en-
sure that middleware can support the QoS requirements of PLA-based DRE systems.
Unfortunately, implementations of standards-based, QoS-enabled middleware, such
as Real-time CORBA and Real-time Java, can incur time/space overheads due to
excessive generality.

This paper extends earlier research on general-purpose middleware optimizations [69,
70,72] by describing the results of developing and applying a toolkit to help resolve
key aspects of the generality /specificity tension between general-purpose standards
based middleware and application specific product variants in a PLA. This toolkit
automates the specialization [16] of general-purpose, standards-based middleware to
meet the needs of specific PLA-based DRE systems. In particular, this chapter pro-

vides the following research contributions:

1. It uses a representative PLA case study to identify key dimensions of ezxcessive
generality in standards-based middleware, focusing on Real-time CORBA [61],
which is standard middleware used in Boeing Bold Stroke [75,89,91], which is
a PLA-based DRE system in the domain of avionics mission computing.

2. It shows how context-specific specialization techniques [33] (such as code refac-
toring [24], and code weaving [106]) can be used to customize the widely used

TAO [87] Real-time CORBA implementation to remove excessive generality and

26

thus better support application-specific QoS needs of PLA-based DRE systems,
such as Bold Stroke.

3. It describes the design of a domain-specific language, tools, and a process for
automating the specialization techniques discussed in the paper.

4. It presents and analyzes quantitative results that demonstrate the improvement
in performance and predictability of specializations applied to TAO in the con-

text of the PLA case study.

Middleware Specialization Challenges
This section uses a representative PLA-based DRE system scenario to identify and
illustrate common types of excessive generality in standard middleware. Section IV
then outlines how context-specific middleware specialization techniques and tools help

to alleviate the time/space overhead stemming from this generality.

DRE PLA Case Study

This section uses a concise, yet representative, DRE PLA scenario to (1) illus-
trate how the generality /specificity tension outlined above occurs in production DRE
systems and (2) identify concrete system invariants that drive the specialization ap-
proach. The scenario is based on the Boeing Bold Stroke avionics mission computing
PLA [91], which supports the Boeing family of aircraft, including many product vari-
ants, such as F/A-18E, F/A-18F, F-15E, F-15K, etc. Bold Stroke is a component-
based, publish/subscribe platform built atop the TAO Real-time CORBA ORB.

Figure IV.1 illustrates the BasicSP application scenario, which is an assembly
of avionics mission computing components reused in different Bold Stroke product
variants and representative of rate-based DRE systems in avionics, vetronics, and
process control. This scenario involves four avionics mission computing components

that periodically send GPS position updates to a pilot and navigator cockpit displays

o7

at a rate of 20 Hz. The time to process inputs to the system and present output to

cockpit displays should therefore be less than a single 20 Hz frame.

get data () get_data ()

Figure IV.1: BasicSP Application Scenario

Communication between components uses the event-push/data-pull model, with
data producing components pushing an event to notify new data is available and data
consuming components pulling data from the source. A Timer component pulses
a GPS navigation sensor component at a certain rate, which in turn publishes the
data_avail events to an Airframe component. Aware that new data is available,
this component then calls a method provided by the Read_Data interface of the GPS
component to retrieve the current location. After formatting the data, Airframe
sends a data_avail event to the Nav_Display component, which then pulls the lo-
cation and velocity data from the Airframe component and displays this information
on the pilot’s heads-up display.

The BasicSP scenario illustrates a range of commonalities and variabilities in the
Bold Stroke PLA. Commonalities include the set of reusable components (such as
Display, Airframe, and GPS) in Bold Stroke and middleware capabilities (such as
connection management, data transfer, concurrency, synchronization, (de)marshaling,
(de)multiplexing, and error-handling) that occur in all product variants. Variabilities
include application-specific component connections (such as how GPS and Airframe
components are connected in an F/A-18E vs. an F-15K), different implementations
(such as whether GPS or inertial navigation algorithms are used), and components

specific to particular customers (such as restrictions on exporting certain encryption

o8

algorithms). The rates at which these components interact is yet another variability
that may change in different product variants.

Analysis of commonalities and variabilities in the BasicSP scenario helps identify
functional (e.g., specific communication protocols) and QoS (e.g., end-to-end latency)
characteristics of PLAs. In turn, these characteristics map to specific requirements

on — and potential optimizations of — the underlying middleware.

Common Types of Excessive Generality in Middleware

Resolution of the same
dispatch

Redundant Request
Creation get data ()

get_data ()
o1 NAV isp ¢
- 0 Redundant de-| marshalmg checks
L

Framework
g Generality

Deployment
@ Generality

NETWORK

Figure IV.2: BasicSP Specialization Points

This section identifies and describe key types of excessive middleware generality
that are relevant to PLA-based DRE systems. The BasicSP scenario from Figure IV.1
is used to show how this generality manifests itself in a PLA-based DRE system. The
challenges of each type of generality are shown in Figure IV.2 and discussed below.
These challenges are not limited to Real-time CORBA or the BasicSP PLA, which

are simply used as examples to make the discussion concrete.

99

Challenge 1. Overly extensible object-oriented frameworks. Middleware is
often developed as a set of object-oriented frameworks that can be extended and con-
figured with alternative implementations of key components, such as different types
of transport protocols (e.g., TCP/IP, VME, or shared memory), event demultiplex-
ing mechanisms (e.g., reactive-, proactive-, or thread-based), request demultiplexing
strategies (e.g., dynamic hashing, perfect hashing, or active demuxing), and concur-
rency models (e.g., thread-per-connection, thread pool, or thread-per-request). A
particular DRE product variant, however, may only use a small subset of the poten-
tial framework alternatives. As a result, general-purpose middleware may be overly
extensible, i.e., contain unnecessary overhead for indirection and dynamic dispatching
that is not needed for use cases in a particular context.

In the BasicSP scenario, for instance, the transport protocol is VME, the event
demultiplexing mechanism is reactive, the request demultiplexing mechanisms are
perfect hashing and activate demuxing, and the concurrency model is thread pool. A
different variant of this scenario for a different set of customer requirements, however,
may use a different set of framework components. A challenge is to develop mid-
dleware specialization techniques that can eliminate unnecessary overhead associated
with overly extensible object-oriented framework implementations for certain product
variants or application-specific contexts.

Challenge 2. Redundant request creation and/or initialization. To send a
request to the server, the middleware creates a request, which contains buffer space to
hold the header and payload information for each invocation. Rate-based DRE sys-
tems often repeatedly generate periodic events, such as timeouts that drive periodic
system execution. Since most request information (such as message size, operation
name, and service context) does not change across events, middleware implemen-

tations can use buffer caching [69] strategies to minimize request creation. This

60

approach, however, can still incur the overhead of initializing the header and payload
for every request.

In the BasicSP scenario, for instance, the Timer component always sends the same

timeout event to the GPS component. Similarly, the GPS and Airframe components
send the same data_avail event to their consumers. A different variant of this sce-
nario, however, may not send the same events to consumers repeatedly. A challenge
1s to develop middleware specialization techniques that can reuse pre-created requests
(i.e., from previous invocations) partially and/or completely to avoid redundant ini-
tialization for certain product variants or application-specific contexts.
Challenge 3. Repeated resolution of the same request dispatch. To mini-
mize the time/space overhead incurred by opening multiple connections to the same
server, middleware often multiplexes requests on a single connection between client
and server processes. Multiple client requests targeted for different request handlers
in a server process are therefore received on the same multiplexed connection. Stan-
dard Real-time CORBA servers typically process a client request by navigating a
series of middleware layers, e.g., ORB core, object adapter(s), servant, and opera-
tion. To optimize request demultiplexing, Real-time CORBA implementations can
combine active demultiplexing [69] and perfect-hashing [69] strategies to bound worst
case lookup time to O(1), irrespective of the nesting of the layers. This optimization,
however, can still incur non-trivial overhead when navigating middleware layers and is
redundant when the target request handler remains the same across different request
invocations.

In the BasicSP scenario, for instance, the Airframe and Nav_Display components
repeatedly use the same get_data() operation to fetch new GPS and Display updates.
In a connection between GPS and Airframe components, therefore, the get_data()
operation is sent and serviced by the same request dispatcher. A different variant of

this scenario, however, may service operations via different request dispatchers. A

61

challenge is to develop middleware specialization techniques that avoid the expense
of navigating layers of middleware to resolve the same request dispatch for certain
product variants or application-specific contezts.

Challenge 4. Redundant (de)marshaling overheads. PLA-based DRE systems
may be deployed on platforms with different instruction set byte orders. To support
interoperable request processing regardless of byte order, standard Real-time CORBA
implementations therefore use the General Inter-ORB Protocol (GIOP), which per-
forms byte order tests when (de)marshaling requests/responses. These tests incur
unnecessary overhead, however, when all the DRE system computing nodes have
the same byte order. The GIOP protocol also requires alignment of primitive types
(such as long and double) within a request/response for certain hardware archi-
tectures, which forces middleware implementations to maintain offset information
within a request/response buffer and pad buffers upto the next readable/writable
locations. Frequent alignment and padding can force costly buffer resizing and data
copying. The overhead associated with alignment can be eliminated in homogeneous
environments, i.e., when the same ORB implementation and compiler are used for
(de)marshaling.

In the BasicSP scenario, for instance, the two nodes on which the components
are deployed (NodeA and NodeB) have the same byte order. The standard TAO
Real-time CORBA middleware residing on these nodes, however, still tests whether
(de)marshaling is needed when requests/responses are exchanged between nodes. A
different variant of this scenario, however, may run on nodes with different byte
orders, but with the same compiler/middleware implementation, in which case data
need not be aligned. A challenge is to develop middleware specialization techniques
that evaluate ahead-of-time deployment properties to remove redundant (de)marshal-

ing overheads for certain product variants or application-specific contexts.

62

Challenge 5: Generality of deployment platform. Another key dimension of
generality stems from the deployment platforms on which middleware and PLA appli-
cations are hosted. Examples of this deployment platform generality include different
OS-specific system calls, compiler flags and optimizations, and hardware instruction
sets. Every OS, compiler, and hardware platform provides different configuration set-
tings that perform differently and can be tuned to minimize the time/space overhead
of middleware and applications.

In the BasicSP scenario, for instance, a product variant could run the Linux OS
with Timesys kernel and g++ compiler on NodeA and the VxWorks OS with the
Greenhills compiler on Node B. Yet other variants could use different combinations
of OS, complier, and hardware. A challenge is to develop specialization techniques
that discover and automate the selection of right combination of OS, compiler, and

hardware settings for a given deployment platform.

Applicability of Middleware Generality Challenges

This section described key dimensions of excessive middleware generality, using
Real-time CORBA middleware as an example. These challenges are also applicable to
other popular middleware platforms that use common patterns [26,88] to accommo-
date PLA variability, such as different protocols, concurrency, synchronization, and
(de)marshaling mechanisms. Alleviating unused object-oriented framework generality
(challenge 1) can specialize the middleware for different product variants. Avoiding
redundant request creation (challenge 2) occurs in middleware implementations that
provide notion of a request message, including CORBA, .NET, and Web Services.
Optimizing repeated resolution of same the dispatch (challenge 3) can benefit mid-

dleware implementations (such as CORBA, COM, and EJB) that navigate multiple

63

layers/lookup tables to process target requests. Specializing (de)marshaling (chal-
lenge 4) and deployment platform generality (challenge 5) can be applied to other

middleware that target heterogeneous OS, compiler, and hardware platforms.

Resolving Middleware Generality Challenges

This section examines techniques that focus on the use of context-specific special-
izations to enhance the QoS of PLA-based DRE systems by alleviating excessive gen-
erality in middleware implementations. Context-specific specialization techniques are
related to partial evaluation, which creates a specialized version of a general program
that is more optimized for time and/or space than the original [39]. Context-specific
specializations can be realized using code-refactoring and weaving [24,106], which uses
aspect-oriented programming mechanisms to factor out and weave crosscutting con-
cerns, as well as language mechanisms, such as program optimization techniques [37].
This section, next describes how context-specific specializations have been applied to
TAO to resolve the challenges described in Section IV. The specialization techniques

and tools are reusable and applicable to various middleware implementations beyond

TAO.

Applying Context-Specific Specializations to Middleware

Context-specific specializations described in this paper include constant propaga-
tion, layer-folding, memoization, code-refactoring, and aspect weaving. These spe-
cialization are driven by invariant properties [52], which are specific application-,
middleware-, and platform-level characteristics that remain fixed during system ex-
ecution, but which may vary for different system configurations/requirements. The
invariants themselves may be specific for a particular PLA or applicable to many
PLAs. Invariant properties covered in this paper include particular attribute set-

tings (such as timer rates), parameter values (such as arguments to a method), and

64

internal /external contexts (such as a dispatcher for a request and hardware, OS and
compiler settings).

In simple cases, an invariant property manifests itself in the form of a call to
method m(), where one or more of the parameters of the method is always bound to
the same value. The program specialization strategies push invariant data through
the middleware code, simplifying along the way. For example, the techniques cre-
ate a specialized version of m() where the parameters with fixed values are removed
and the body of m() is simplified according to the information provided by the fixed
parameter values. This section describes the intent (purpose), invariance assump-
tions (conditions in the BasicSP case study that enabled certain specializations), and
type (technique) of specialization that have been applied to resolve the middleware
generality challenges described in Section IV.

To evaluate the middleware specializations in a realistic context, they have been
applied them to the TAO implementation of Real-time CORBA, which is written
in C++ and contains many general-purpose ORB optimizations [70,72]. General-
purpose optimized TAO is used as a baseline to quantify the benefits of specializations
that help resolve the challenges for PLAs described in Section IV. The techniques
focus on TAO since it is a mature, efficient, and open-source implementation of the
Real-time CORBA standard that is used widely in production DRE systems (www.

dre.vanderbilt.edu/users.html).

Specialize Middleware Framework Extensibility via Aspect Weaving

This specialization technique resolves challenge 1 in Section IV.
Intent. Eliminate unnecessary extensibility mechanisms (such as indirections and dy-
namic dispatching) in object-oriented frameworks along the critical request /response
processing path. This specialization can be applied to many internal ORB frameworks

that handle transport protocols, request demultiplexing, and concurrency models.

65

For this case study, the following TAO components are specialized (1) Reactor frame-
work [85], which is responsible for demultiplexing connection and data events to their
corresponding GIOP event handlers, and (2) pluggable protocol framework [64] which
allows ORBs to communicate transparently via different protocol implementations,
such as TCP/IP, VME, SSL, SCTP, UNIX-domain sockets, and/or shared memory.
Invariance assumptions. After a Reactor framework implementation is selected for
the BasicSP scenario, it does not change during the lifetime of the ORB. Likewise,
after a protocol implementation is selected it also does not change during the lifetime
of the ORB.

Specialization. Figure IV.3(A) shows different Reactor implementations supported

by TAO.

Reactor_Impl Transport
1
+send(): I
select () +receive(): Profile
N
+endpoint_info():
| 1

Select Reactor | | WFMO_Reactor Thread_Pool llOP_Transport I T
| Reactor | FEEETaT lOP_Transport
select () select () select () +receive(): Aot InTo0

Figure IV.3: Reactor & Protocol Specialization

The Select_Reactor uses the single-threaded select ()-based event demuxer, the
Thread_Pool_Reactor uses the multi-threaded select ()-based event demuxer, and
the WFMO_Reactor uses the Windows WaitForMultipleObjects() event demuxer.
To work transparently across all Reactor framework implementations, TAO uses an
abstract base class (i.e., a generic Reactor_Impl) that delegates to concrete subclasses
via virtual method calls. Specializing the Reactor framework with a concrete subclass
(i.e., a subclass with no virtual methods) eliminates the indirection (generality) by

using the concrete reactor instance directly.

66

TAQ'’s pluggable protocol framework uses the Template Method pattern [26] to
configure different protocol implementations during the ORB initialization phase. As
shown in Figure IV.3(B), this framework consists of protocol-independent compo-
nents, such as the Transport class that provides send () and recv() hooks to encap-
sulate a connection and provide a protocol-independent means of sending/receiving
data. Protocol-specific classes, such as the II0P_Transport class, override these
hooks to implement protocol-specific functionality. The Transport class interacts
with other framework components, such as the Profile class that encapsulates ad-
dressing information in TAQO, which in turn uses the Template Method pattern to
support multiple protocol implementations. Specializing the hook methods in a tem-
plate method with protocol-specific behavior eliminates the indirection (i.e., the wvir-
tual hook methods).

The specializations described above are an example of aspect weaving, where the
generality (i.e., virtual methods and indirections) that crosscuts different classes and
files is customized for a specific context. For example, the BasicSP PLA scenario only
uses the Select_Reactor and VME protocol, so there is no need to incur additional

indirection and generality overhead.

Specialize Request Creation/Initialization via Memoization

This specialization technique resolves challenge 2 described in Section IV.
Intent. Rather than creating a new CORBA request repeatedly for each invocation,
create/initialize a request once and only update its state that changes.
Invariance assumption. Many (often most) operation parameters and/or context
information in a request do not change across invocations in DRE systems.
Specialization. Figure IV.4 shows the structure of a two-way CORBA request using
GIOP version 1.2.

As shown in the figure, every request has three components defined by the CORBA

67

R t
[Giop [ver[1]2] sze | 7? e
| b | 3] Pad [OkeySize|
‘ Object Key ‘ z Message CORBA Request
s Specific
‘ | ::Sth Operation Name ‘ 5 Header Parameters
| SERVICE CONTEXT DATA | Message
specific
’ DATA ‘ }Parameters Header
Request
1 — Flags (Little and Big Endian) Header
2 — Message Type (8 possible GIOP Types)
3 — Response Flag (Is Response Expected)

Figure IV.4: Opportunities for Request Creation Specialization

specification: (1) a request header that indicates the type of CORBA request (i.e.,
GIOP version 1.0, 1.1, or 1.2) and the total size of the message, (2) a request-specific
header containing the object key that uniquely identifies the servant and service con-
text information containing service-specific information, such as the required priority
and transaction/security contexts, and (3) optional parameters that were passed as
arguments to the operation.

Figure IV.4 also shows three types of specializations of increasing strength that
can be applied. In some situations only the request header can be specialized, i.e.,
its contents are held constant, updating only the total size of the message. In other
situations, both the request and the request-specific headers can be held constant,
updating only the payload. Finally, the entire CORBA request can sometimes be
reused wholesale across multiple request invocations.

This specialization is an example of memoization, where a result is precomputed
and saved rather than recomputed each time. In the BasicSP PLA case study, the
precomputed “result” is the CORBA request. This specialization thus avoids unnec-

essary creation and/or initialization of requests.

68

Specialize Dispatch Resolution via Layer-Folding

This specialization technique resolves challenge 3 described in Section IV.
Intent. Resolve the target request dispatcher once for the first request and reuse it
to service all other requests sent over the same dedicated connection.
Invariance assumptions. The same operation or operations in the same IDL inter-
face are invoked on a multiplexed connection.
Specialization. Figure IV.5 shows a normal layered demultiplexing path through a
CORBA server, i.e., the ORB core locates the target POA, which locates the servant,
which locates the skeleton, which dispatches the request to an application-defined

method. Rather than navigating this layered path, a specialized implementation

[-?KEL 1 | [SKEL2 |ee@e®| SKELK |
I - |
= Perfect
< " Hashing
Servant 2 EI ®®@ ServantM E
| Active
e SRS i Demuxing
POA1 | [POA2 |e®ef POAN | NFral e
| ‘ path

Active
.

emuxing | J
s—

RoolPOA

Optimized fast
path

Figure IV.5: Specializing Request Dispatching

can cache the skeleton servicing the request and invoke the method on the skeleton
directly. A similar approach can be applied to cache the target POA(s) and servant.

This specialization is an example of layer-folding plus memo-ization, where an an-
swer (in this case the dispatcher) is saved for later use than recomputing it each time.

This enables multiple middleware layers to be collapsed during request processing.

69

Specialize Request Demarshaling via Constant Propagation

This specialization techniques resolves challenge 4 described in Section IV.
Intent. Eliminate redundant tests for byte order when demarshaling a CORBA re-
quest and do not align the individual fields within the request.
Invariance assumptions. The communicating entities reside on nodes with the
same byte order, compiler padding/alignment rules, and the same (de)marshaling
mechanisms for client(s) and server(s).
Specialization. Standard-compliant CORBA ORBs are required to test for byte
order compatibility for every part of a CORBA request (not just the payload), in-
cluding all fields in the CORBA request and request-specific headers. Figure IV.4
shows the different parts of a CORBA request. For a typical request with a few basic
types (such as long, short, and octet parameters), these tests translate to ~15-20
byte order tests per request. Removing these redundant tests on homogeneous com-
piler/middleware platforms can significantly improve demarshaling efficiency, partic-
ularly as the data type complexity increases. Similarly, while marshaling a CORBA
request, ORB implementations align the individual components, e.g., request size, id
and objectkeys, to their natural boundaries. For a typical request with basic types, all
the ~15-20 components must be aligned. Ignoring alignment can improve marshaling
efficiency and eliminate padding, thereby reducing request size.

These specializations are an example of constant propagation, where the byte-
order is propagated along with the request to the recipient and checked to ensure the
validity of the invariance assumption. Similarly, unaligned data is sent along with

the request to the recipient, where demarshaling fails if data should be aligned.

Specialize Platform Generality via Autoconf Mechanisms

This specialization technique resolves challenge 5 described in Section IV.

70

Intent. Choose the right hardware, OS, and compiler settings to maximize applica-
tion QoS without affecting portability, interoperability, or correctness.

Invariance assumptions. The deployment platform that hosts the product variant
remains fixed during the system’s lifetime.

Specialization. GNU’s autoconf (www.gnu.org/software/autoconf) toolkit is used

to apply platform-specific specialization techniques, including:

e Exception support. For certain DRE systems, the use of native exception
support is unavailable (e.g., not supported by older C++ compilers) or undesir-
able (e.g., incurs excessive time/space overhead). Certain middleware solutions
support platforms that lack exceptions, e.g., CORBA can emulate exceptions
by adding an Environment parameter at the end of each operation signature.
TAO is extended to use GNU autoconf to automatically emulate exceptions
when compilers lack such capabilities, when users explicitly select this configu-
ration, or when performance tests indicate that emulated exceptions are more
efficient than native exceptions.

e Loop unrolling. Middleware implementations need to copy data between
kernel and middleware and application buffers. An optimization applicable
to certain OS/compiler platforms is to unroll the loop of memcpy() standard
library function up to a certain buffer size. TAO was extended to use GNU
autoconf to configure middleware automatically to use the either the optimized
or default version of memcpy (), depending on performance tests that deem one
more efficient than the other.

For both specializations, GNU autoconf was used to perform these performance

tests automatically just before the ORB compilation process begins. Based on the
test results, GNU autoconf sets certain macros in the TAO source code, which are

then used to select which specializations to apply.

71

A Toolkit for Automating Context-Specific Specializations

Large-scale DRE systems, such as Boeing’s Bold Stroke PLA, contain millions of
lines of source code. Implementing specialization techniques by manually handcraft-
ing the optimizations described in Section IV into such large code bases will clearly
not scale. To augment GNU autoconf, this research has created a domain-specific
language (DSL) and associated tools that help simplify two steps in the specialization
process: (1) identifying specialization points and transformations and (2) automat-
ing the delivery of the specializations. The remainder of this section describes the
Feature Oriented Customizer (FOCUS), which is an open-source DSL-based toolsuite
and process developed to automate the specialization of middleware for PLA-based

DRE systems. FOCUS is available at www.dre.vanderbilt.edu/~arvindk/FOCUS.

FOCUS Requirements and Goals

The primary goal for FOCUS was to build a general-purpose DSL, supporting
tools, and a process to automate context-specific middleware specializations and then
to validate this approach by applying it to TAO. The types of specializations discussed
in Section IV yielded the following requirements for FOCUS:

1. Ability to manipulate code. Applying aspect weaving to framework special-
ization requires the ability to manipulate code, such as performing search and replace
specializations to devirtualize hook methods in the Reactor_Impl base class and
replace them with the name of concrete reactor implementation.

2. Ability to refactor code regions. Object-oriented framework specializations
need to move specialized code (e.g., concrete implementations of hook methods) from
a derived class to the new concrete class. Similarly, additional header files and meth-
ods may may need to be moved from/to a derived class to/from a new concrete
class. Likewise, layer-folding optimizations require the capability to inject code that

bypasses layers at specific locations in the code.

72

3. Ability to remove code. Code refactoring, memoization, and aspect weaving
specializations require the removal of certain redundant functionality. In memoization
optimizations, for instance, redundant functionality that repeatedly creates the same
request must be replaced with code that caches the request header.

To support these requirements, FOCUS uses generative programming techniques [15]
that combine annotations (directives) with code templates [74] to specialize middle-
ware implementations. FOCUS annotations are embedded within the middleware
source to identify points of variability, e.g., where a dispatching decision is made or a
particular protocol is created. This approach enables most of the basic infrastructure
of the middleware to remain fixed, but identifies well-defined variability points where
specializations can be woven automatically. It also enables middleware developers to
explicitly know the variability points when source code changes are made, thereby

minimizing the skew between specializations and an evolving middleware source base.

Automating Middleware Specializations with FOCUS

The process of applying FOCUS DSL and tools can be executed in three phases

by middleware developers and application PLA developers, as discussed below.

/I0P_Connection_Hander:
in process_reguest ():
add: TAQ_ServerRequest &request =

incoming.get_request ();
replace: next_layer->process_request ();
final_layer->process_request
Objfact (request);

Client (Servant)

s
oeraiion
e
S Y reum
ot DL
12} SKEL
DL ORB y
STUBS INTERFACE Object Adapte/
5
- CIOP/IIOP/ESIOPS

@ speciization on Location @) Pre-create Request
Request Header Optimize for Target
@ Caching (5] Location
Eliminate un-necessary
9 checks

Figure IV.6: Capturing Specialization Transformation as Rules

73

Phase 1: Capturing specialization transformations. In this phase, as shown in
Figure IV.6 middleware developers capture the code-level transformations required to
implement a specialization using the FOCUS Specialization Language (FSL), which
is a DSL that supports the following types of specializations: (1) search and replace
transformations (<search> ... <replace>), (2) copying text from different positions in
multiple files onto a destination file (<copy-from-source>), (3) commenting regions
of a program (<comment>), and (4) removing text from a program (<remove>).
FSL uses an XML DTD to capture the transformations, which facilitates ease of
(1) extension, i.e., additional transformations can be represented via new XML tags
and (2) transformation, i.e., XSLT transformations can be used to transform the
specializations onto different tool input formats. Similar approaches have been used
in commercial tools, such as Ant (ant.apache.org), which use XML to capture build
steps and rules.

The output of phase 1 is a set of FSL specialization files that capture all the
transformations needed for the specializations. Section IV illustrates portions of the

transformations required to automate aspect weaving specializations in TAO.

Middleware
developers:
Specify
transformations as
rules: multiple rules
in a database

in process_request ():
add: TAQ_ServerRequest &request =
incoming.get_request ();

Middleware
developers:
Annotate source
with hooks

e
I/hook

Figure IV.7: Annotating Middleware Source Code

Phase 2: Middleware annotation. In this phase, as shown in Figure IV.7, mid-

dleware developers use the FSL specialization files to annotate the middleware with

74

metadata required for the desired transformations. Annotations in FOCUS are only
required for transformations that copy, comment, or add code, i.e., when using the
<comment>, <copy-from-source>, or <add> tags, respectively. Other transforma-
tions, such as search and replace, and remove do not require annotation. Metadata
is inserted as special comments in the source code using source language syntax for
comments. This metadata is used by FOCUS to aid in the transformation of source
code, but is opaque to compilers for general-purpose languages like C++ or Java and
imposes no extra overhead on general-purpose middleware source code.

During middleware evolution, such as feature addition/modification, middleware
developers must respect the annotations. For example, any new code between annota-
tions that mark the begin and end of a copy/comment does not require changes to the
specialization files. Section IV illustrates how annotations along with <copy-from-
source> tags can be used to minimize skew between specializations and middleware
source code.

Annotations help the FOCUS transformation process by enabling a lightweight
specialization approach that does not require a full-fledged language front-end to parse
the entire source code to identify the specialization points (hooks). This approach
enables FOCUS to work across middleware implementations in different languages,
e.g., hooks can be left within a C+-+- or Java-based middleware implementation for
FOCUS to weave in code. FOCUS ascribes no significance to the names for hooks, i.e.,
they can be arbitrary as long as there is a corresponding name in the specialization
file.

Phase 3: Executing specialization transformations. In this phase, PLA devel-
opers perform the steps shown in Figure IV.8.

First, they select the specializations suitable for the variant (step 1) during the

offline SCV analysis phase. Based on the features selected for specialization, the FO-

CUS transformation engine queries the specialization repository to select the right

75

7]
Rule Selection I
Application Devloper o
e Source-to-Source
Transformations
Protocol Component Services
Interface Interface Interface

l Component
O

(Servant)

Services
Interface

Protocol
Interface

Interface

Component I

L

Container

9" Customization
points

Figure IV.8: Steps in the FOCUS Transformation Process

file(s) (step 2). Based on the transformation rules in the specialization file, the trans-
formation engine executes the transformations (step 3). A compiler for the general-
purpose language used to write the middleware is then used to generate executable
platform code from the modified source file(s) (step 4).

The FOCUS transformation engine is written in Perl to leverage its mature regular
expressions support. Regular expressions enhance the richness of the transformations
that can be specified within FSL specialization files. For example, search and replace
capabilities in FOCUS leverage regular expressions to ignore leading trailing white

spaces and newline characters.

Discussion

This section described the specialization techniques, language, and tools developed
to resolve middleware generality challenges in

Section IV. Table IV.1 lists the specialization techniques along with the cor-

responding FSL features we applied to resolve the generality challenges (Section IV

76

Table IV.1: Summary of Specialization Techniques

Specialization Technique FSL features
Request creation Memoization search, replace, add
Demarshaling checks Constant, propagation Not Applicable
Dispatch resolution Memoization + layer-folding | search, replace, add
Framework generality | Aspect weaving add, copy-from-source
search, replace
Deployment generality | autoconf Not Applicable

describes why FOCUS was not used to resolve (de)marshaling checks and deployment
generality).

Similar to the challenges, the FOCUS specialization techniques we describe are
reusable and applicable to middleware that incur generality challenges. These tech-
niques modify only copies of the object-oriented framework and middleware code and
do not necessitate any modifications to application code or original frameworks and
middleware. FSL tag names minimize the accidental complexity involved in specifying
maintaining and adding specializations. Capabilities to capture specialization depen-
dencies will be added as part of the future work on FOCUS. Ultimately, specialized
middleware implementations will be synthesized from higher level PLA system models

and functional specifications. FOCUS approach represents a step in this direction.

Applying Specializations to TAO — A Case Study

This section presents the results of applying the specialization tools described in
Section IV to a TAO-based implementation of the BasicSP scenario. These results
help in quantitatively and qualitatively evaluating the extent to which specializations
improve the throughput, average- and worst-case latency, and jitter of standard-
based middleware implementations. The constant propagation and code refactoring
techniques described in the paper were automated using GNU autoconf conditional
compilation techniques described in Section IV. The memoization, layer-folding, and

aspect weaving were automated via the FOCUS toolkit described in Section IV.

7

Analyzing General-purpose Middleware

To specialize general-purpose Real-time CORBA middleware for PLA-based DRE
systems, this section first analyzed the end-to-end critical code path of the following
synchronous two-way CORBA operation in TAO:

result = object—operation (argl, arg2)

A path represents a segment of the overall end-to-end flow through the system. The
critical path is the sequence of steps that are always necessary in TAO to process
events, requests, or responses for synchronous and asynchronous operation invoca-
tions. This code path is the same for processing the get_data() two-way operation
and data_avail and timeout events in the BasicSP scenario described in Section IV.
This code path is used to provide a baseline for comparing the context-specific special-
izations to quantify the number of steps specialized along the critical request /response

processing path shown by the numbered bullets in Figure IV.9.

Server ORB Client ORB

Pargers

GIOP
Message

: 1.0 11 1.0
(Object Adapter

Buffer Manager

GIOP

s)

Buffer Manager

Connection
Cache
@ (4 pe

Figure IV.9: End-to-End Request Processing Path

Connector)

-

Using this figure as a guide, the section now describe the steps involved when
a client invokes a synchronous two-way operation. After the connection from client

to server process has been established, the following activities are performed by the

78

TAO client ORB when a client application thread invokes an operation on an object

reference that designates a particular target object on a TAO server ORB:!

1. Buffer_Manager allocates a buffer from a memory pool. The GIOP message
parser is used to marshal the parameters in the operation invocation.

2. Send the marshaled data to the server using the established connection e.g., Cs.

3. The leader thread waits on the Reactor for a reply from the server. The follower
thread waits on a condition variable or a semaphore.

The server ORB activities for processing a request are described below:

4. Read the header of the request arriving on connection Cy5 to determine the size
of the request.

5. Buffer_Manager allocate a buffer from a memory pool to hold the request and
an appropriate GIOP message parser is used to read the request data into the
buffer.

6. Demultiplex the request to locate the target portable object adapter (POA) [71],
servant, and skeleton — then dispatch the designated upcall to the servant after
demarshaling the request parameters.

7. Send the reply (if any) to the client on connection Cs.

8. Wait in the reactor’s event loop for new connection and data events.

Finally, the client ORB performs the following activities to process a reply from the

server:

9. The leader thread reads the reply from the server on connection Cs.
10. The leader thread hands off the reply to the follower thread by signaling the
condition variable used by the follower thread.
11. The follower thread demarshals the parameters and returns control to the client

application, which processes the reply.

!This discussion has been generalized using the Reactor, Acceptor-Connector, and
Leader /Followers patterns [88], which are used in many popular CORBA ORBs, such as e*ORB,
ORBacus, Orbix, and TAO.

79

Specializing TAO Middleware

Having outlined the activities at the client and server, this section now (1) describe
how specializations have been applied to TAO using invariance assumptions to resolve
the challenges for PLAs described in Section IV in the context of the Bold Stroke
BasicSP scenario and (2) quantitatively compare the end-to-end latency, throughput,
and predictability improvements accrued from this approach. All experiments were
performed on an Intel Pentium III 851 Mhz processor with 512 MB of main memory
running on Linux 2.4.7-timesys-3.1.214 kernel, which contains a very predictable real-
time kernel module. The TAO middleware used for the experiments was version 1.4.7,
which was compiled with gcc version 3.2.2.

To ensure portability and interoperability, the specializations largely comply with
the Real-time CORBA specification and do not modify any standard interfaces or

BasicSP application code.

in args Object
operation() (Servant)
out args +

return

ORB
INTERFACE

[Object Adapter e

GIOP/IIOP/ESIOPS 3

o Specialize Middleware e Eliminate redundant

frameworks demarshaling checks
e Specialize CORBA Specialize Dispatch
Request Resolution

Figure IV.10: Specialization Points for TAO Real-time CORBA Middleware

Figure IV.10 illustrates where these specializations were applied to the Real-time

80

CORBA architecture. Our specializations are applied along the critical request/-
response processing path and affect end-to-end QoS. Our approach specializes most
of the steps (1, 3, 11 on the client and 4, 6, 8 on the server).

TAO provides a wide range of configuration options (see www.dre.vanderbilt.
edu/~schmidt/TAO-options.html). For this analysis, the following configuration
was used: (1) portable interceptors are not used, (2) servants inherit statically from
org::omg: :PortableServer: :Servant, i.e., CORBA’s dynamic invocation/skeleton
features were not considered, (3) no proprietary policies were used in the ORB, and
(4) TAO’s general-purpose optimizations (e.g., active demultiplexing, perfect hashing,
and buffer caching strategies) were enabled for all experiments. These assumptions
are representative of ways in which DRE systems commonly apply Real-time CORBA
middleware [75,91].

To showcase the results, a sample size of 100,000 data points was used to gener-
ate results from following types of experiments for each specialization presented in
Sections IV through IV:

1. End-to-end latency metrics, which measure the differences in end-to-end

latency /throughput between general-purpose and specialized versions of TAO.
For each experiment, high-resolution timers on the client collected end-to-end
measurement, data used for analysis.

2. Path specialization metrics, which compare latency measures for specialized
vs. general-purpose critical paths. For each experiment, high-resolution timers
within TAO’s ORB core measured latency improvements for the code path
specialized within TAO.

3. Cumulative metrics, which measure the end-to-end latency and predictability
improvements accrued by applying all specializations.

For each specialization, the specialization description illustrates (1) the steps spe-

cialized along the request/response processing path, (2) how the specialization was

81

automated, and (3) consequences of applying our specialization in terms of CORBA
compliance and applicability. For the experiments, predictability is defined as the

measure of standard deviation of the data points.

Applying the Aspect Weaving Specialization
This specialization corresponds to step 3 and 9 in the client side and step 8 in the

server side of Figure IV.9.

Specialization automation. Specializing the Reactor component involved (1) re-
placing the ACE_Reactor_Impl class with the concrete ACE_Select_Reactor imple-
mentation within the reactor, (2) replacing the creation of other reactors with the
specialized version in ORB factory methods [26], and (3) eliminating virtual methods
from the reactor and interfaces within the middleware. To automate the specializa-

tion, FSL was used to capture the transformations, some of which are shown below.

1: <module name="ace">

2: <file name="Reactor.h">

3: <remove>virtual</remove>

4: <substitute>

5: <search>ACE_Reactor_Imp1</search>

6: <replace>ACE_Select_Reactor</replace>
7: </substitute>

8: </file>

9: </module>
10: <module="TAO/tao">

11: <file name="advanced_resource.cpp">

12: <comment>

13: <start-hook>TAO_REACTOR_SPL_COMMENT_HOOK_START</start-hook>
14: <end-hook>TAO_REACTOR_SPL_COMMENT_HOOK_END</end-hook>

15: </comment>

16: </file>

17: </module>

82

Lines 1-2 capture the module (directory or package) and file on which the trans-
formations are done. Devirtualizing interfaces of the reactor is captured in line 3.
Lines 4-8 allow replacing the ACE_Reactor_Impl with the desired concrete select re-
actor. Similarly, lines 12-15 show how unspecialized code within two points in the
file (<start-hook> ... <end-hook>) is commented out for the transformations. Code
snippet below shows how the middleware source code was annotated with hooks based

on the FSL specialization file shown earlier.

//File: advanced_resource.cpp
ACE_Reactor_Implx
TAO_Default_Resource_Factory::

allocate_reactor_impl (void) const

ACE_Reactor_Impl *impl = O;
/* FOCUS: Comment hook */
//@@ TAO_REACTOR_SPL_COMMENT_HOOK_START
ACE_NEW_RETURN (impl, ACE_TP_Reactor, 0);
//@@ TAO_REACTOR_SPL_COMMENT_HOOK_END

return impl;

Code snippet below illustrates how FOCUS transformed source code so that the
base Reactor (ACE_Reactor_Impl) is replaced with the specialized Reactor (ACE_

Select_Reactor).

//File: Reactor.h

class Reactor

{

public:
int run_reactor_event_loop (REACTOR_EVENT_HOOK = 0);
// Other public methods

private:

// Code woven by FOCUS:

ACE_Select_Reactor *reactor_impl_;

83

// End Code woven by FOCUS

I

// File: advanced_resource.cpp
// Code woven by FOCUS:
ACE_Select_Reactorx*

// End Code woven by FOCUS

TAO_Default_Resource_Factory::allocate_reactor_impl (void) const
{
// Code woven by FOCUS:
ACE_Select_Reactor *impl = 0;
// End Code woven by FOCUS
/* FOCUS: Comment hook */
//@@ TAO_REACTOR_SPL_COMMENT_HOOK_START
// ACE_NEW_RETURN (impl, ACE_TP_Reactor, 0);
//@@ TAO_REACTOR_SPL_COMMENT_HOOK_END
// Code woven by FOCUS:

}

This specialization is validated by our invariance assumption that after ACE_
Select_Reactor is selected, it does not change for the BasicSP scenario. Another
observation is that the annotations are preserved during the transformation process,
which enables multiple specializations to use the same hook for specifying transfor-
mations, thus avoiding cluttering of hooks within the middleware source code. To
specialize TAQO’s pluggable protocol implementation, <copy-from-source> capabili-
ties provided by FSL was used.

Code snippet below shows how the concrete protocol specific implementations of
template methods defined in the Profile class are copied from the II0P_Profile
class.

<file name="Profile.cpp">

<copy-from-source>

<source>II0P_Profile.cpp</source>

84

<copy-hook-start>PROFILE_METHODS_COPY_HOOK</copy-hook-start>

<copy—hook—end>PROFILE_METHGDS_CUPY_HDGK_END</Copy—hook—end>

<dest-hook>PROFILE_SPL_ADD_HOOK</dest-hook>
</copy-from-source>

</file>

As shown in the listing, <copy-hook-start> <copy-hook-end> tags signify the
start and end locations of the template method implementations in the IIOP_Profile
class. These concrete implementations are copied on to the base Profile class at a
location defined within the Profile.cpp file. The advantage of this design is that
changes made to the implementations of the template methods in IIOP_Profile.cpp
do not necessitate a change to the specialization file. In fact, after this specialization
was completed, support of IPv6 protocol was added to TAO, but our specializations

required no changes.

Average 99%
350 350
0O et I 00
250 L W Genera .]
& - % Reactor-spl S - B
R 55 Protocol-spl [| £ 200 - k- E——
5 7 = N = b
I U]
100} i I o
S 2 e e
Z & #

N
T

Latency(us)
w
e

N
T T

e

e

1
Figure IV.11: Results for Reactor & Protocol Specializations

Empirical results. Figure IV.11 illustrates the improvements to end-to-end latency
by specializing two object-oriented frameworks used in TAQO. Since reactors and pro-

tocols are used by both client and server ORB, the most representative end-to-end

85

results are presented. Our specialization results in average latency improvements of
~8usecs (4%) for the reactor case and in ~10usec (5%) for the protocol case. These
specializations also minimize dispersion measures for both the specializations, though
not appreciably. The 99% and worst-case measure also decrease, thereby showing how
removing virtual method indirection enhances predictability.

Our results show how minimizing dynamic dispatch along the critical path can
improve performance. Similar approaches can be applied to specialize other frame-
works used within middleware. Based on the results obtained in this case study,
future work in this area will specialize other object-oriented frameworks in TAO to
further improve its performance.

Applicability and CORBA compliance. Specialization of object-oriented frame-
work extensibility can be applied to all ORB implementations that use virtual meth-
ods, yet can be customized via a single concrete instance late in the system lifecycle,
e.g., during deployment or initialization. This specialization is CORBA-compliant
since the reactor is part of TAO’s ORB core implementation, not part of the public
API defined by the Real-time CORBA specification. Similarly the specialization of
the protocol framework does not modify any standard APIs or application code, but

only affects hook methods specific to TAO’s implementation.

Applying the Memoization Specialization

This specialization corresponds to step 1 in the client side of Figure IV.9.
Specialization automation. In TAO, the GIOP engine creates protocol specific
request /response objects. Listing below illustrates a portion of the transformations

for this specialization.

<add>
<hook>TAO_HEADER_CACHING_ADD_HOOK</hook>

<data>

86

1. if (__header_cached__)

2. |

3. // First invocation -- normal path

4. __header_cached__ = 0;

5. this->write_header (...);

6. skip_length__ = this->total_length ();
7 }

8. else

9 {

10. // All invocations -- Optimized path

11. this->skip (skip_length)
12. }
</data>

</add>

During the first invocation of a request/response, the length of the actual header
is computed and cached (as shown in lines 1-6). For subsequent requests the cached
pre-marshaled header is used by moving the current writable location by the total
header size.

We applied specialized request creation to TAO on a per-connection basis, i.e.,
the request headers cached are specific to a connection. This design stems from the
invariance assumption from BasicSP scenario, where the get_data and data_avail
operation are sent along separate connections.

Empirical results. Figure IV.12 illustrates the end-to-end and code path special-
ization improvements that result from applying the request creation/initialization
specialization on the request and request-specific CORBA header. The average end-
to-end latency measures improved by ~8usec (4%), while the path specialization
results improved by 25%. This discrepancy shows how much the specialized code
path influences end-to-end latency. The dispersion measures improve, but not signif-

icantly, by applying this specialization. Both 99% and worst-case measures improve,

87

which show this specialization improves predictability. These results show how the
end-to-end path specialization results are influenced by the contribution from the
actual path specialized.

Applicability and CORBA compliance. Specializing the entire request is possi-
ble only if the request does not change, which is the case for control messages sent
between Timer and GPS components. Specializing the request and request-specific
header is possible if only the contents change between requests, which is the case for
the get_data() operation. This specialization can be applied for the standard Real-
time CORBA SERVER_DECLARED priority model, where the priority information is
set a prior: during object reference creation. Specializing only the request header is
applicable to all requests, though it has the least payoff in terms of improvements in

performance since it represents a relatively small portion of the request. All three

Average 99%
350 350

300 -=mmmmmmmmmm s 300 f--mmmmmmmmmme oo
250 L End-to-End (general) 250 o]
o) r % End-to-End (spl) 7 r b
52 Path (general) 5 200k g T
z 1 Path (spl) LT A g 77777777777777777777777

— l L — L /

00 f-------[l-Z e mmm e
,,,,,,,,,,,,,,,,,,,,,,,,,, 7
B =
Max
350

300 -----------J}- T
250 ----nmmmee é 7777777777777777777777
£} N D]

H 52000 7
3 8 150 f-----oeeo- é 77777777777777777777777
100 f--mmmmme é 7777777777777777777777

%
50 f----------- I - g~ o mmmm oo

A E

Figure IV.12: Results for Request Creation/Initialization Specialization

approaches comply with the CORBA specification since they do not change the type

of the CORBA request message. The third approach, however, does not update the

88

request identifier, which is used to uniquely identify the client thread processing the

response when multiplexed connections are used.

Applying the Layer-Folding Specialization

This specialization corresponds to step 6 to step 8 in the server side of Figure IV.9.
Specialization automation. We implemented the layer-folding specialization (Sec-
tion IV) by caching the target request dispatcher determined when the first request
from the client on a connection is serviced. Subsequent requests used the cached dis-
patcher directly, i.e., the skeleton that services the requests. FSL annotations were
add to TAO’s POA so FOCUS can weave in code that cached the skeleton servicing
the request. Another annotation within the ORB core marked the start of the normal
request path.

These specialization transformations were similar to the aspect weaving and mem-
oization specializations discussed in Section IV and are applied on a per-connection
basis. Multiple simultaneous client connections that have different request dispatcher
can therefore be serviced concurrently. This design conforms to the invariance as-
sumption from the BasicSP scenario that the operations are same only on a per-
connection basis.

Empirical results. Figure IV.13 illustrates the end-to-end and code path perfor-
mance improvements resulting from the dispatch resolution specialization. The aver-
age end-to-end latency measures improved by ~30usecs, which is ~16% better than
the general-purpose TAO implementation. For the actual code path specialized this
translates to ~40% improvement in latency. The dispersion measures for end-to-end
latencies improved by a factor of ~1.5, while those for the specialized path were twice
as good as those for the general-purpose path. The 99% measures are similar to the
dispersion measures, indicating improvement in predictability. The worst-case mea-

sures improved by 20% when applying the dispatch resolution specialization to the

89

350 350

300 [---mmmmmmmmmmm o s oo oo oo oo oo 300 f---mmmmmmmmmmm oo

250 I H End-to-End (general) 250 L]
- 7% End-to-End (spl) r b

Latency(us)
BN
a 9
S O

Path (genera)
= Path(spl)

Latency(us)
=N
8

specialized path and by ~14% for the end-to-end results. These results show that
applying layer-folding specialization to the TAO middleware improves predictability
and latency considerably.

Applicability and CORBA compliance. This specialization applies to the get_
data() operation in the BasicSP scenario where the same operation is invoked re-
peatedly. Caching the target servant and skeleton sacrifices some CORBA compliance
since thread-specific state (e.g., CORBA Current and POA Current are not main-
tained. This context information is often unnecessary, however, e.g., the POA cur-
rent interface is used primarily when the POA is associated with a Default_Servant
(where one servant handles all invocations) or Servant_Manager (which creates a
servant dynamically to handle requests). Since these dynamic CORBA policies are
rarely — if ever — used in DRE systems, the impact on CORBA compliance is negligible

in this context.

90

Applying the Constant Propagation Specialization

This specialization corresponds to steps 1 and 11 on the client and steps 4 and 6
in the server of Figure IV.9.
Specialization automation. The (de)marshaling engine within TAO used sev-
eral OS platform-specific capabilities that were automatically (un)set using GNU
autoconf. GNU autoconf necessitated the use of conditional compilation to im-
plement this specialization. Two flags, CDR_IGNORE_ALIGNMENT and DISABLE_SWAP_
ON_READ were added to the write() and read() methods within TAO’s Common
Data Representation (CDR) engine to ignore alignment and byte-order values in the
request /response fields. This design conforms to our invariance assumption that the
communicating entities run on homogeneous middleware, OS, compiler, and hardware
platforms, which is often the case for production DRE systems.
Empirical results. Figure IV.14 illustrates the end-to-end and path performance
improvements from applying the request (de)marshaling specialization. The spe-
cialized path for this experiment began when a server demarshaled a request until
the response was returned to the client. Applying the specialization that ignored
alignment improved end-to-end latencies by ~8usecs (a 4% improvement over the
general-purpose TAO implementation), while eliminating byte order checks improved
byte order checks by ~9usec (a 4% improvement over the general-purpose TAO imple-
mentation). Path specialization results improved by ~ 4 —5usec (a 10% improvement)
for both the cases. Although the general-purpose TAO implementation performs tests
on the client and server for all fields in a CORBA request header, the specialization
improvements were relatively small since the initial experiment sent a single long data
type, which required very few byte order tests. To quantify the improvements from
this specialization for more complex data types, another experiment was conducted
that sent an IDL structure with four primitive types, a short, long, double and

float interspersed with a char. The use of a char type forced the general-purpose

91

Average 99%

350 350
300 T M End-to-End (general) 300 T]
250 f------------- 7 End-to-End (no-swap) 250
3 [@ Path (general) ()
B 200 L o = Path(no-swap)) 2
g 1501 ,g,g,, & End-to-End (no-align) % 1
100 ’é"\i&i" T Path(no-align) 100
sof 7]
L 7 @- =z |
Standard Deviation
4 350
L . , 300 -
oy,
. 77] 250
Nl LE T,
- | 7/ =] -
L % # R i
1 7 B BT

Figure IV.14: Results for Request (De)marshaling Specialization

TAO middleware to re-align the individual primitive types. The specialized TAO

middleware, however, did not incur this overhead.

Table TV.2: Performance Speedup as a Function of Sequence Length
Sequence Length | Speedup
64 11.5%

128 17.35%

1,024 20.12%

2,048 25.64%

4,096 30.12%

A sequence of this structure with varying sizes was sent over the network to
measure the improvement in performance. Both specializations were enabled simul-
taneously for this experiment. Table IV.2 illustrates the speed up in average end-to-
end latency accrued from applying the specialization. The results show that latency
measures improve between 12 — 30% with increasing sequence lengths. These results
underscore the fact that the benefits of specializations often depend heavily on the

use cases that exercise the specialized code.

92

Applicability and CORBA compliance. Elimination of byte-order checks and
ignoring alignment specializations are applicable to deployments on homogeneous
environments i.e., nodes with the same byte order, e.g., NodeA and NodeB in the
BasicSP scenario, and/or the same platform implementations at sender and receiver.
These specializations are not CORBA compatible. A middleware implementation,
however, can add recovery mechanisms, such as checking for byte order within the
request before using the aforementioned specializations, though these mechanisms

violate the invariance assumption.

Applying Autoconf Techniques for Platform Specialization

This specialization corresponds to the underlying platform on which the BasicSP
scenario was run.
Specialization automation. To automate the loop unrolling optimization, GNU
autoconf’s AC_RUN_IFELSE capability was used that compiled and executed a bench-
mark to compare performance both with and without the optimization. If our opti-
mization was faster, autoconf sets the ACE_HAS_MEMCPY_LOOP_UNROLL flag to enable
the feature. For exception support, GNU autoconf’s AC_COMPILE_IFELSE feature
was used to determine if a compiler supported exceptions and then empirically eval-
uated whether using native exceptions was faster than emulated exceptions.
Empirical results. Figure IV.15 illustrates how applying the loop unrolling and
exception emulation specialization techniques together improved average end-to-end
latency measures by ~17%. Worst-case latency improved by ~12%, while the 99%
latency measures were closer to the average for the specializations, thereby indicating
better predictability. These results show that specializing deployment platforms via
GNU autoconf can improve QoS significantly.
Applicability and CORBA compliance. The GNU autoconf specialization tech-

niques do not affect specification compliance at all.

93

350 350
300 f--mmmmmmmememe e em oo oo 300 [-==---mmomommomomn oo oo em oo
- e W Geed || o =0r
R % Specidized | < 200
S eolo W 1 8l
& 1501 g 1 8150
100 f---------------J- 9 777777777777777777 100
C % i C
50 f----------------J- e 50
: 2

(2]
T

350

300
L L
. 250
] G LSRR R 2 500l
5 5 200
%] e s & R % 150
é 100
] e B ——
| g 50
1 Z

Figure IV.15: Results for Specializing Deployment Platform

Applying the Specializations Cumulatively

Figure IV.16 illustrates the QoS improvements accrued by applying all of the mid-
dleware specializations discussed above to a remote CORBA operation. The average
end-to-end latency for the specialized TAO dropped by ~43%, while the dispersion
measure was twice as good as general-purpose optimized TAO implementation, indi-
cating considerable improvement in predictability, which is essential for DRE systems.

Similarly, the 99% bound values for the specialized TAO improved by ~40% while
worst-case measures improved by ~150usecs, which is a 45% improvement over the
general-purpose TAO implementation. End-to-end throughput measures improved
by an average of ~65%. To measure performance speed up for a complicated data
structure, the experiment ran using the complex data structure from the demarshaling
experiments.

Table IV.3 shows that as the sequence length increases average end-to-end latency
reduces considerably. For example, when the sequence length is 64 average latency

improves by ~26% while for length 4,096, latency measures improve by ~51%.

94

Average 99%
350 350
300 f---=m=mmmmmmmmmmmmmmmm oo 300 |---mmmmmmmm e
250 250
< 200 < 200
g 150 g 150
-l -
100 100
50 50
6 350
i 1 300
5 ,,
L] 250
B Ao 2 500l
Al | im
E 3 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, E 150
r 1 100
RGN B oo
| é | 50
Z

1

Figure IV.16: Results for Cumulative Specialization Application

Table IV.3: Cumulative Specialization Results as a Function of Sequence Length

Sequence Length | Speedup
64 26%
128 35%
1024 39%
2048 46%
4096 51%

Evaluating FOCUS

Having illustrated how FOCUS’s DSL, tools, and process can be applied to help
middleware developers build and evaluate middleware specializations, this section
evaluates its benefits and drawbacks.

Benefits. In resolving the challenges described in Section IV, FOCUS has the fol-

lowing benefits:

e It preserves portability of the middleware implementations it specializes, i.e.,
the specialized middleware should run on all platforms on which the middleware
runs. The FSL snippets in Section IV do not change the interface of Reactor or

protocol components in TAO.

95

e It has no external dependencies, i.e., it does not require external libraries to be

linked for execution.

It supports role separation, i.e., middleware developers capture the specializa-
tion and annotate the middleware, whereas PLA application developers select

the specializations based on SCV analysis.

It uses COTS tools and standard technologies, such as Perl and XML, to au-
tomate the delivery of these specializations to enhance its use in production

middleware platforms.

Its transformations incur no unnecessary overhead at runtime since they are per-
formed statically at compile-time, similar to other source-to-source transforma-
tions, such as AspectC++ (www.aspectc.org/), DMS (www.semdesigns.com),
TXL (www.txl.ca), and Stratego-XT (www.program-transformation.org/S-
tratego/). The transformed middleware source code woven by FOCUS (Sec-
tion IV) illustrates that there is no tool-specific code inserted as a part of the
transformation process.

e Its specializations do not affect business logic and only modify the structure
of middleware implementations, particularly object-oriented frameworks. The
non-transformed versions of the frameworks are therefore still available when
other developers need to use their object-oriented extensibility features. None of
the specializations described earlier modified or specialized BasicSP application
code.

Drawbacks. Since FOCUS was developed primarily to help us evaluate the bene-
fits of middleware specializations, in general, and the TAO ORB, in particular, it

currently has the following limitations:

e It automates the delivery of specializations, but not the identification of spe-
cializations suitable for a PLA or an individual variant.

e Developers are responsible for ensuring that annotations are synchronized with

96

specialization rules, i.e., if the annotations are changed the specialization files
also need change. This can be ameliorated somewhat by providing guidelines to
middleware developers and enhancing the parser to first make sure the required
hooks are present in the middleware before performing the transformations.

e Modifications/enhancements to the state and/or- interface of implementations
require manual changes to the specializations, i.e., if the name of an operation
or its parameters change, the specialization files need to be updated. This
limitation, however, is not specific to FOCUS but also to DMS and AspectC++.

e The FOCUS transformation engine does not check that the woven code executes
correctly, which is a common limitation with other source-to-source transforma-
tion tools, such as AspectC++, that rely upon general-purpose compilers and
automated quality assurance tools to ensure the transformations compile and
run properly.

Having validated the benefits of automating middleware specializations, the limita-
tions presented above will be addressed in the future work on more powerful special-

ization languages.

Summary

Specialization is a promising technique for alleviating the time/space overhead
stemming from excessive generality in standards-based middleware implementations
and improving its QoS, such as reducing latency and jitter. This section quantified
the benefits of specializations applied to the TAO Real-time CORBA based on invari-
ants stemming from the BasicSP scenario, which itself is based on the SCV analysis
embodied in the Boeing Bold Stroke PLA. Our empirical results illustrate the viabil-
ity of the approach to improve the QoS of PLA-based DRE systems, where stringent
performance requirements must be met while also preserving application source code

and middleware portability /interoperability as much as possible.

97

The specialization techniques discussed in this section are targeted to PLA devel-
opers who identify the applicability of various specialization techniques to a variant in
the PLA during SCV analysis. Among the specializations examined and implemented
in this paper, deployment platform-specific time/space specializations yielded the
most improvement in QoS, followed by memoization, layer-folding, and aspect weav-
ing, in that order. We show how context-specific specializations based on the Bold
Stroke avionics mission computing PLA can be used to optimize the TAO Real-time
CORBA implementation. Our middleware specialization results collectively improved
the throughput of Bold Stroke BasicSP scenario by ~65%, its average- and worst-case
end-to-end latency measures by ~43% and ~45%, respectively, and its predictabil-
ity by a factor of two, without affecting portability, standard middleware APIs, or
application software implementations, while preserving interoperability wherever pos-
sible. These improvements are particularly notable since TAO has already been tuned
via many general-purpose middleware optimizations [69,70,72]. We also described
how GNU autoconf, FOCUS DSL and tools were used to automate the middleware
specializations described in the paper.

The remainder of this section discusses the consequences and implications of the

specialization techniques and tools.
Implications on QoS. The specializations discussed in this paper had no inter-
dependencies, i.e., the specializations do not overlap in the end-to-end code path.
As middleware and system architects develop a catalog of specializations, it will be
necessary to document the interplay between the specializations and analyze the im-
plications on mixing and matching different specializations. Similarly, not all the
specializations will be applicable to every PLA application scenario, so PLA devel-
opers will need to work in conjunction with middleware developers to determine the
applicability of the different specialization techniques to product variants.

Quantitative results show that improvements from applying our specializations

98

can be scenario-specific. For example, the demarshaling results showed how a com-
plicated structure benefited more from the specialization than a simple type. When
the specialized path is traversed more often, therefore, its influence on end-to-end
performance is more significant.

Implications on applicability to different middleware implementations. The
magnitude of the QoS improvements from the specialization are specific to a partic-
ular implementation (TAO). Preliminary results [16] from applying context-specific
specializations to ZEN (which is an open-source Real-time Java implementation of
Real-time CORBA available at www.zen.uci.edu) were somewhat better than those
shown in this paper. The difference stems in part from the fact that TAO is much more
mature and optimized than ZEN, so there was less time/space overhead to optimize.
To enable other middleware developers to analyze and implement the specializations
the future work on this research will work on developing a comprehensive CORBA
specialization model based on [16] that — independent of a particular CORBA im-
plementation — identifies (1) points in an ORB architecture where specialization is
beneficial and (2) API extensions to the architecture that provide hooks for achieving
effective specialization.

Another observation is that the dispatch resolution optimization improved latency
measures by 16% beyond active demultiplexing and perfect hashing general-purpose
optimizations. These optimizations ensure O(1) lookup time bound for all dispatch
operations in TAO for the general case and incur the least overhead compared to other
strategies [69]. Naturally, using other lookup techniques (such as linear search, which
incurs O(n) time bound) would yield an even greater payoff from the specializations.
Implications on adaptability. The specialization mechanisms discussed in this pa-

per do not consider adaptation costs, i.e., the overhead of handling and recovering

99

from situations where the invariance assumptions are violated. Adding such mecha-
nisms require activities (such as loading new libraries or adding run-time checks) that
can incur considerable jitter, and thus are not desirable for DRE systems.

Implications on schedulability. In many DRE systems, real-time tasks are sched-
uled and analyzed offline to ensure they complete before their deadlines. Latency
overheads caused by general-purpose middleware implementations may cause dead-
line misses for critical tasks scheduled a priori. Applying the specializations could
reduce middleware overhead considerably, helping ensure that critical tasks complete
before their deadlines. Our optimizations might also enable such tasks to finish well
ahead of their deadlines, thereby increasing the total slack, i.e., time interval available
for scheduling other tasks (such as soft real-time tasks), in the system. More available
slack could potentially increase the number of schedulable soft real-time tasks in the

system.

100

CHAPTER V

TECHNIQUES FOR VALIDATING PLA MIDDLEWARE
CONFIGURATION TO ENSURE QOS

An inherent characteristic of high performance flexible and customizable mid-
dleware is (1) it runs on many hardware/OS platforms and interoperate with many
versions of related software frameworks/tools and (2) provides support for end-to-end
QoS properties, such as low latency and bounded jitter. These implementations have
10’s - 100’s of configuration options and customization parameters that PLA appli-
cation developers can adjust to tailor the middleware to meet various functional and
QoS needs. Specialized middleware (as described earlier) also influence end-to-end
QoS of PLA applications.

Mapping product-line QoS requirements onto highly flexible middleware can be
problematic, however, due in large part to the complexity associated with configuring
and customizing (QoS-enabled middleware. Time and resource constraints often limit
developers to assessing the QoS of their DRE systems on very few configurations
and extrapolating these to the much larger configuration space. In this context, the
research challenges include (1) developing software processes to systematically and ef-
ficiently evaluate system QoS and (2) designing tools to synthesize necessary artifacts,
such as benchmarking code to evaluate system QoS for various configuration options
and (3) validating the general-purpose or specialized versions of middleware across
different platforms. The remainder of this chapter discusses how these challenges

have been addressed in OPTEML.

101

Model Driven Distributed Continuous QA Process

To specifically address the repeatability, cost and automation limitations of mid-
dleware configuration tuning approaches discussed in Section II, this research syner-
gistically combines Model-Driven Development (MDD) techniques with Quality As-
surance (QA) approaches. An MDD approach (for example the CoSMIC [28] project)
resolves the accidental complexities involved in handcrafting scaffolding code such as
XML-meta data, configuration files and benchmarking code for evaluating the QoS of
middleware configurations across a range of product-line variants. Combining MDD
approaches with Distributed Continuous Quality Assurance (DCQA) techniques [55]
enables the validation of the different middleware configurations for functional cor-
rectness and performance across diverse platforms by executing QA tasks continuously

and intelligently. In particular this process:

1. Minimizes the time and effort associated with testing various configuration op-
tions on particular platforms,

2. Provides a framework for seamless addition of new test configurations corre-
sponding to various platform environment and application requirement con-
texts,

3. Facilitates automation, i.e., continuously run tests that allow developers and
end-users to evaluate the performance of software in various contexts and

4. Analyzes empirical data gathered and feedback results into modeling and deci-
sion making tools that systematically identify bottlenecks and optimize perfor-
mance.

The remainder of this section provides a detailed description of the Model-driven

DCQA environment and uses a concrete case study to show how this process can be
applied to the BasicSP (described in Section IV) PLA scenario to quantify the impact

of different middleware configurations on QoS.

102

Overview of Skoll DCQA Architecture

To address limitations with in-house QA approaches, the Skoll project is develop-
ing and empirically evaluating feedback-driven processes, methods, and supporting
tools for distributed continuous QA. In this approach software quality is improved
— iteratively, opportunistically, and efficiently — around-the-clock in multiple, geo-
graphically distributed locations. To support distributed continuous QA processes,
the following set of components and services have been called the Skoll infrastructure,
which includes languages for modeling system configurations and their constraints,
algorithms for scheduling and remotely executing tasks, and analysis techniques for
characterizing faults.

The Skoll infrastructure performs its distributed QA tasks, such as testing, cap-
turing usage patterns, and measuring system performance, on a grid of computing
nodes. Skoll decomposes QA tasks into subtasks that perform part of a larger task.
In the Skoll grid, computing nodes are machines provided by the core development
group and volunteered by end-users. These nodes request work from a server when
they wish to make themselves available. The remainder of this section describes the
Skoll infrastructure and processes.

Skoll QA processes are based on a client /server model. Clients distributed through-
out the Skoll grid request job configurations (implemented as QA subtask scripts)
from a Skoll server. The server determines which subtasks to allocate, bundles up
all necessary scripts and artifacts, and sends them to the client. The client executes
the subtasks and returns the results to the server. The server analyzes the results,
interprets them, and modifies the process as appropriate, which may trigger a new
round of job configurations for subsequent clients running in the grid.

At a lower level, the Skoll QA process is more sophisticated. QA process designers
must determine (1) how tasks will be decomposed into subtasks, (2) on what basis

and in what order subtasks will be allocated to clients, (3) how subtasks will be

103

implemented to execute on a potentially wide set of client platforms, (4) how subtask
results will be merged together and interpreted, (5) if and how should the process
adapt on-the-fly based on incoming results, and (6) how the results of the overall
process will be summarized and communicated to software developers. To support
this process we’ve developed the following components and services for use by Skoll
QA process designers (a comprehensive discussion appears in [55]):

Configuration space model. The cornerstone of Skoll is its formal model of a
DCQA process’ configuration space, which captures all valid configurations for QA
subtasks. This information is used in planning the global QA process, for adapting
the process dynamically, and aiding in analyzing and interpreting results.
Intelligent Steering Agent. A novel feature of Skoll is its use of an Intelligent
Steering Agent (ISA) to control the global QA process by deciding which valid config-
uration to allocate to each incoming Skoll client request. The ISA treats configuration
selection as an Al planning problem. For example, given the current state of the global
process including the results of previous QA subtasks (e.g., which configurations are
wn to have failed tests), the configuration model, and metaheuristics (e.g., nearest
neighbor searching), the ISA will chose the next configuration such that process goals
(e.g., evaluate configurations in proportion to known usage distributions) will be met.
Adaptation strategies. As QA subtasks are performed by clients in the Skoll grid,
their results are returned to the ISA, which can learn from the incoming results. For
example, when some configurations prove to be faulty, the ISA can refocus resources
on other unexplored parts of the configuration space. To support such dynamic
behavior, Skoll QA process designers can develop customized adaptation strategies
that monitor the global QA process state, analyze it, and use the information to

modify future subtask assignments in ways that improve process performance.

104

Skoll in Action

At a high level, the Skoll process is carried out as shown in Figure V.1.

Developer Server User
Site Site Site

Step 2 ool
Step 1 D U

ion
. form .
Prepare Register Sign-in
client kit
Client kit Distribute

client kit

Client kit
Storage

Skoll
database

Model
editor

QA job [Step3
request

Intelligent
steering

Contig
request

Step 7

Step 6
ollect

Process
esults

Cvs
checkout

Execute
test suite

Send
results

Prep.
visualization

Ccvs
repository

QA job
result

Step 5

Figure V.1: Skoll QA Process View

1. Developers create the configuration model and adaptation strategies. The ISA
automatically translates the model into planning operators. Developers create the
generic QA subtask code that will be specialized when creating actual job configura-
tions.

2. A user requests Skoll client software via the registration process described earlier.
The user receives the Skoll client software and a configuration template. If a user
wants to change certain configuration settings or constrain specific options he/she
can do so by modifying the configuration template.

3. A Skoll client periodically (or on-demand) requests a job configuration from a

Skoll server.

105

4. The Skoll server queries its databases and the user-provided configuration template
to determine which configuration option settings are fixed for that user and which
must be set by the ISA. It then packages this information as a planning goal and
queries the ISA. The ISA generates a plan, creates the job configuration and returns
it to the Skoll client.

5. A Skoll client invokes the job configuration and returns the results to the Skoll
server.

6. The Skoll server examines these results and invokes all adaptation strategies.
These update the ISA operators to adapt the global process.

7. The Skoll server prepares a virtual scoreboard that summarizes subtask results
and the current state of the overall process. This scoreboard is updated periodically

and/or when prompted by developers.

Overview of BGML MDD Tool

The initial Skoll prototype provided a distributed continuous QA infrastructure
that performed functional testing, but did not address QoS issues, nor did it minimize
the cost of implementing QA subtasks. In particular, integrating new application
capabilities into the Skoll infrastructure (such as benchmarks that quantified various
QoS properties) required developers to write test cases manually. Likewise, extending
the configuration models (e.g., adding new options) required the same tedious manual
approach.

In the initial Skoll approach, creating a benchmarking experiment to measure
QoS properties required QA engineers to write (1) the header files, source code,
that implement the functionality, (2) the configuration and script files that tune the
underlying ORB and automate running tests and output generation, and (3) project
build files (e.g., makefiles) required to generate the executable code. Initial feasibility

studies [55] revealed how this process was tedious and error-prone. The remainder

106

of this section describes how the model-based techniques [95] have been applied in
OPTEML to design the Benchmak Generation Modeling Language (BGML).

BGML provides visual representations for defining entities (components), their
interactions (operations and events) and QoS metrics (latency, throughput and jit-
ter). Further, the visual representations themselves are customizable for different
domains. BGML has been tailored towards evaluating the QoS of implementations
of the CORBA Component Model (CCM) [5]*.

BGML is built atop the Generic Modeling Environment (GME) [45], which pro-
vides a meta-programmable framework for creating domain-specific modeling lan-
guages and generative tools. GME is programmed via meta-models and model inter-
preters. The meta-models define modeling languages called paradigms that specify
allowed modeling elements, their properties, and their relationships. Model inter-
preters associated with a paradigm can also be built to traverse the paradigm’s mod-

eling elements, performing analysis and generating code.

r
3

e v | Base: [/ Zoom: [100%

getTime,

WA AN
=)

[=}

ai S
get_data

Latency v

Re:

adly

&
EventRef

Latency

we)| s |

LR
OperationRef

Task

TaskSet

Throughput

¥ TimeProbe

Companenthietrcs |

EDIT [100% PICML [11:18 PM

Figure V.2: QoS Validation via BGML

'BGML focuses on CCM since it is standard component middleware that is targeted for the QoS
requirements of DRE systems. As QoS support for other component middleware matures BGML
will be enhanced and applied to them as well.

107

BGML captures key QoS evaluation concerns of performance-intensive middle-
ware. Middleware/application developers can use BGML to graphically model inter-
action scenarios of interest as shown in Figure V.2. Given such a model, BGML then
generates most of the code needed to run experiments, including scripts that start
daemon processes, launch components on various distributed system nodes, run the

benchmarks, and analyze/display the results. BGML allows CCM users to:

1. Model interaction scenarios between CCM components using varied configura-
tion options, i.e., capture software variability in higher-level models rather than
in lower-level source code.

2. Automate benchmarking code generation to systematically identify performance
bottlenecks based on mixing and matching configurations.

3. Generate control scripts to distribute and execute the experiments to users
around the world to monitor QoS performance behavior in a wide range of
execution contexts.

4. Evaluate and compare CCM implementation performances in a highly auto-
mated way the overhead that CCM implementations impose above and beyond
CORBA 2.x implementations based on the DOC model.

5. Enable comparison of CCM implementations using key metrics, such as through-
put, latency, jitter, and other QoS criteria.

With BGML, QA engineers graphically model possible interaction scenarios. Given
a model, BGML generates the scaffolding code needed to run the experiments. This
typically includes Perl scripts that start daemon processes, spawn the component
server and client, run the experiment, and display the required results. BGML is
built on top of the Generic Modeling Environment (GME) [45], which provides a
meta-programmable framework for creating domain-specific modeling languages and

generative tools. GME is programmed via meta-models and model interpreters. The

108

meta-models define modeling languages called paradigms that specify allowed model-
ing elements, their properties, and their relationships. Model interpreters associated
with a paradigm can also be built to traverse the paradigm’s modeling elements,

performing analysis and generating code.

BGML model elements

To capture QoS evaluation concerns of different component middleware solutions,

the BGML provides:

e Build elements such as project, workspace, resources and implementation
artifact that can be used to represent projects and their dependencies such as
DLLs, shared objects. For example, the projects modeled can be mapped to
Visual Studio project files (Windows platforms) or onto GNUMake/Make files
(*NIX platforms). The build commands can be used to represent compilers for
different platforms such as gcc, g++ and ant. Appendix A illustrates the build
files generated by BGML.

e Test elements such as operations, return-types, latency and throughput that
can be used to represent generic operation or a sequence or operation steps
and associate functional QoS properties with them. For example, the operation
signature (name, input parameters and return-type) can be used to generate
platform specific benchmarking code via language mappings (C++/Java) dur-
ing the interpretation process.

e Workload elements such as tasks and task-set that can be used to model and
simulate background load present during the experimentation process. These
workload elements are then mapped to individual platform specific code in the
interpretation process. Appendix A illustrates the generated work-load and

benchmark files from BGML.

109

e QoS elements In addition to building blocks required to model the exper-
iment, BGML provides constructs to associate QoS parameters with the ex-
periment modeled. BGML associates QoS parameters with EventTypes on a
per-operation basis with IDL interfaces. The metrics that can be gathered
via BGML include: Latency — For a given operation/event, this metric com-
putes the mean roundtrip time at client.?. Throughput — For a given oper-
ation/event, this metric computes the mean number of invocations completed
per-second at the client. Jitter — For a given operation/event, this metric com-
putes the variance in the latency measures. Each metric describe above has
two attributes: (1) warmup iterations, which indicates the number of iterations
the operation under test will be invoked before start of actual measurement,
and (2) sample space, which indicates the number of sample points that will be
collected to determine each metric value.

BGML has been integrated with a MDD toolchain called CoSMIC [28] as shown in
Figure V.3 and can be downloaded from www.dre.vanderbilt.edu/cosmic/. In par-
ticular, BGML leverages capabilities provided by other modeling paradigms in CoS-
MIC including the Options Configuration Modeling Language (OCML) [99], which is
an MDD tool that simplifies the specification and validation of complex DRE mid-
dleware and application configurations, and The Platform Independent Component
Modeling Language [4] tool which supports visual modeling of components, ports,

interfaces, and operations.

Integrating BGML With Skoll

This section describes how BGML modeling tools interact with the existing Skoll
infrastructure to enhance its DCQA capabilities referencing the steps shown in Fig-

ure V.4.

2Here a client refers to a CORBA 2.x client or a CCM component playing the role of a client.

110

& Enum & Enum
ba— vae—
1a 10

fSysternjds ORBACt

Component Package

nnnnnnnnnnnn

Component

Assembly L_—9e

and_expr

X

Component
configurator Assembly

9 Deployment
> e
(5) deployment planning

i Assembly

Component
deployer Assembly

Component
packager

Component
Assembly

nnnnnnnnnn
S o

f cosmiC £

H

Component
Assembler

(6) analysis &

- S oo oo ooy benchmarking

ponen T = . N

..Imp .Imp ..Imp i . . h
Resource Properties - . ’ system
Requirements —— /N analyzer

Figure V.3: CoSMIC MDD Tool Chain

1. QA engineers define a test configuration using BGML models. The necessary
experimentation details are captured in the models, e.g., the ORB configuration op-
tions used, the IDL interface exchanged between the client and the server, and the
benchmark metric performed by the experiment.

2. QA engineers then use BGML to interpret the model. The OCML paradigm
interpreter parses the modeled ORB configuration options and generates the required
configuration files to configure the underlying ORB. The BGML paradigm interpreter
then generates the required benchmarking code, i.e., IDL files, the required header
and source files, and necessary script files to run the experiment. Steps A, B, and C
are integrated with Step 1 of the Skoll process.

3. When users register with the Skoll infrastructure they obtain the Skoll client soft-
ware and configuration template. This step happens in concert with Step 2, 3, and 4
of the Skoll process.

4. The client executes the experiment and returns the result to the Skoll server, which
updates its internal database. When prompted by developers, Skoll displays execution

results using an on demand scoreboard. This scoreboard displays graphs and charts

111

Avionics
Scenario

Internet

Machine=

Generators Artifacts

Source
files

Interface
Definition
files

LEGEND

Asynchronous
communication

Synchronous
communication

Figure V.4: Model Driven DCQA Approach

for QoS metrics, e.g., performance graphs, latency measures and foot-print metrics.

Steps E and F correspond to steps 5, 6, and 7 of the Skoll process.

Applying Model-driven DCQA Process - A Case Study

In this section, BGML and Skoll infrastructure have been applied to execute a
formally-designed experiment using a full-factorial design, which executes the exper-
imental task (benchmarking in this case) exhaustively across all combinations of the
experimental options (a subset of the configuration parameters of the CIAO QoS-
enabled component middleware).

The data from these experiments is returned to the Skoll server, where it is or-
ganized into a database. The database then becomes a resource for developers of
applications and middleware who wish to study the system’s performance across its
many different configurations. Since the data is gathered through a formally-designed
experiment, statistical methods (e.g., analysis of variance, wilcox ran sum tests, and

classification tree analysis) are used to analyze the data. To demonstrate the utility

112

of this approach, two use cases are presented that show how (1) CTAO developers can
query the database to improve the performance of the component middleware soft-
ware and (2) application developers can fine-tune CIAQO’s configuration parameters

to improve the performance of their software.

Overview of Classification Trees

Classification trees use a recursive partitioning approach to build a model that
predicts a configuration’s class (e.g., passing or failing) in terms of the values of
individual option settings. This model is tree-structured. Each node denotes an
option, each edge represents an option setting, and each leaf represents a class or set
of classes (if there are more than 2 classes).

Classification trees are constructed using data called the training set, which con-
sists of configurations, each with the same set of options, but with potentially dif-
ferent option settings together with known class information. Based on the training
set, models are built as follows. First, for each option the training set is partitioned
based on the option settings. The resulting partition is evaluated based on how well
the partition separates configurations of one class from those of another. Commonly,
this evaluation is realized as an entropy measure [8].

The option that creates the best partition becomes the root of the tree. To
this node an edge for each option setting is added. Finally, for each subset in the
partition, the process is repeated. The process stops when no further split is possible
(or desirable). Our system uses the Weka implementation of J48 classification tree
algorithm with the default confidence factor of 0.25 [104] to obtain the models.

To interpret the model, each path from the root to leaf denotes a set of rules.
The interpreter begins with the option at the root of the tree and follows the edge

corresponding to one option setting. This process continues until a leaf is encountered.

113

The class label found at the leaf is interpreted as the predicted class for configurations

having same combinations of option settings as those found on the path.

Hypotheses

The use cases presented in this section explore the following hypotheses:

1. The Skoll grid can be used together with BGML to quickly generate bench-
mark experiments that pinpoint specific QoS performance aspects of interest to
developers of middleware and/or applications, e.g., BGML allows QA process
engineers to quickly setup QA processes and generate significant portions of the
required benchmarking code.

2. Using the output of BGML, the Skoll infrastructure can be used to (1) quickly
execute benchmarking experiments on end-user resources across a Skoll grid
and (2) capture and organize the resulting data in a database that can be used
to improve the QoS of performance-intensive software.

3. Developers and users of performance-intensive software can query the database
to gather important information about that software, e.g., obtain a mix of
configuration option settings that improve the performance for their specific

workload(s).

Experimental Process

The following experimental process was used to evaluate the hypotheses outlined

in Section V:

Step 1: Choose a software system that has stringent performance requirements. Iden-
tify a relevant configuration space.

Step 2: Select workload application model and build benchmarks using BGML.

Step 3: Deploy Skoll and BGML to run benchmarks on multiple configurations using

a full factorial design of the configuration options. Gather performance data.

114

Step 4: Formulate and demonstrate specific uses of the performance results database

from the perspective of both middleware and application developers.

Step 1: Subject Applications

The ACE+TAO+CIAO middleware was used for this study. ACE, TAO, and
CTAO run on a wide range of OS platforms, including most versions of UNIX, Win-
dows, and real-time operating systems, such as Sun/Chorus ClassiX, LynxOS, and
VxWorks. CIAO adds component support to TAO [87], which is distribution middle-
ware that implements key patterns [88] to meet the demanding QoS requirements of

DRE systems.

Step 2: Build Benchmarks
Figure V.5 describes how the ACE+TAO+CIAO QA engineers used the BGML
tool to generate the screening experiments to quantify the behavior of latency and

throughput.

o

Exn;g;?n F Associate
Experimenter QoS_ _

Characteristics

e Component Interaction

TR T
=

Throughgut

fi

3
i

(8

Synthesize

&
e Execute

Script ~
> | files
IDL PP

Test bed

Figure V.5: BGML Use Case Scenario

115

As shown in this figure, the following steps were performed:

1. QA engineers used the BGML modeling paradigm to compose the experiment.
In particular, QA engineers use the domain-specific building blocks in BGML
to compose experiments.

2. In the experiment modeled, QA engineers associated the QoS characteristic
(in this case roundtrip latency and throughput) that will be captured in the
experiment. Figure V.6 depicts how this is done in BGML.

3. Using the experiment modeled by QA engineers, BGML interpreters generated
the benchmarking code required to set-up, run, and tear-down the experiment.
The generated files include component implementation files (.h and .cpp), IDL
files (.idl), component IDL files (.cidl), and benchmarking code (.cpp) files.

4. The generated file was then executed using the Skoll DCQA process and QoS
characteristics were measured. The execution was done in Step 4 described in

Section V.

TN

pir : | angs \

7\ N
makeCall
Test ==
operation Latency

Figure V.6: Associating QoS Metrics in BGML

Step 3: Execute the DCQA process

For this version of ACE+TAO+CIAQO, 14 run-time options were identified that
could affect latency and throughput. As shown in Table V.1, each option is binary,

so the entire configuration space is 2'* = 16, 384. The benchmark experiments were

116

executed on each of the 16,384 configurations. This is called a full-factorial experi-
mental design. Clearly such designs will not scale up to arbitrary numbers of factors.

In the current example, however, the design is manageable.

Table V.1: The Configuration Space: Run-time Options and their Settings

Option Index | Option Name Option Settings
optl ORBReactorThreadQueue {FIFO, LIFO}
opt2 ORBClientConnectionHandler {RW, MT}
opt3 ORBReactorMaskSignals {0, 1}
opt4 ORBConnectionPurgingStrategy {LRU, LFU}
opth ORBConnectionCachePurgePercentage {10, 40}
opt6 ORBConnectionCacheLock {thread, null}
opt7 ORBCorbaObjectLock {thread, null}
opt8 ORBObjectKeyTableLock {thread, null}
opt9 ORBInputCDRAllocator {thread, null}
opt10 ORBConcurrency {reactive, thread-per-connection}
optll ORBActiveObjectMapSize {32, 128}
opt12 ORBUseridPolicyDemuxStrategy {linear, dynamic}
opt13 ORBSystemidPolicyDemuxStrategy {linear, dynamic}
opt14 ORBUniqueidPolicyReverseDemuxStrategy {linear, dynamic}

For a given configuration, the BGML modeling paradigm was used to model the
configuration visually and generate the scaffolding code to run the benchmarking
code. The experiment was run three times and for each run the client sent 300,000
requests to the server. In total, ~50,000 benchmarking experiments were run. For
each run, the latency values for each request and total throughput (events/second)
was measured.

The BGML modeling tool helps improve the productivity of QA engineers by al-
lowing them to compose the experiment visually rather than wrestling with low-level
source code. This tool thus resolves tedious and error-prone accidental complexi-
ties associated with writing correct code by auto-generating them from higher level
models. Table V.2 summarizes the BGML code generation metrics for a particular
configuration.

This table shows how BGML automatically generates 8 of 10 required files that

117

Table V.2: Generated Code Summary for BGML

Files Number | Lines of Code | Generated (%)
IDL 3 81 100
Source (.cpp) 2 310 100
Header (.h) 1 108 100
Script (.pl) 1 115 100

account for 88% of the code required for the experiment. Only the XML descrip-
tor files must be written manually. This improvement is accrued for each of the
16,348 configurations, cumulatively representing an order of magnitude improvement

in productivity for performing benchmarking QA tasks.

Step 4: Example Use Cases

Below two use cases that leverage the data collected by the Skoll DCQA process
are presented. The first scenario involves application developers who need informa-
tion to help configuring CIAO for their use. The second involves CIAO middleware
developers who want to prioritize certain development tasks.
Use case #1: Application developer configuration. In this scenario, a devel-
oper of a performance-intensive software application is using CTAQO. This application
is expected to have a fairly smooth traffic stream and needs high overall through-
put and low latency for individual messages. This developer has decided on several
of the option settings needed for his/her application, but is unsure how to set the
remaining options and what effect those specific settings will have on application
performance. To help answer this question, the application developer goes to the
ACE+4TAO+CTAO Skoll web page and identifies the general workload expected by
the application, the platform, OS, and ACE+TAO+CIAO versions used. Next, the
developer arrives at the web page shown in Figure V.7.

On this page the application developer inputs those option settings (s)he expects

to use and left unspecified (denoted “*”) those for which (s)he needs guidance. The

118

@Skﬂll Database Query Form - Microsoft Internet Explorer g@
File Edt View Favorites Tools Help w
) Eack Q - Iﬂ Ig‘ ;} /.-) Search ‘ Favorites @Medua 8 RP-éa 8- m f‘}
e [{8] g w5l ecusersfcyimazfis_oui e [v] B o
Skoll Database Query Form:
Software Operating System Compiler
Software Version Family a8 Version CompilerVersion
sl ||—all— —all— |l~all— |[—all— —all- ||-al—
ACE+TAOD+CIAD |52 [Mindiows Fedhat || 2.4.18-sctp (PEL |12.96
5.3 Linusx Debian ||2.4.19 gce [ick
54 Solaris SusE 2.4.20-24.8smp 133
LynxO0S
Configuration Space
Ciption Setting Option
ORER eactorThreadQuene * :\f_ ORBObjectKeyTableLock
ORBClisntConnectionHandler (MT %| ORBInputCDRAllocator
ORBReactorMaskSignals [¥] ORBConcurency
OREConnectionPurgingStrategy i "5 ORBActiveObjectMap3ize |
OREBConnectionCachePurgePercentage ™ |¥ OEBUsendPelicyDermxStrategy linear 'V'
ORBConnectionCacheLock thread f:“':ORBSystemdPohcstmuxShategy linear v
ORECorbaObjectLock i thread ‘"50RBUquEldPOhEyREVErSEDEmUXStratEgy: linear v;

Figure V.7: Accessing Performance Database

developer also indicates the performance metrics (s)he wishes to analyze and then
submits the page.

Submitting the page causes several things to happen. First, the data correspond-
ing to the known option settings is located in the Skoll databases. Next, the system
graphs the historical performance distributions of both the entire configuration space
and the subset specified by the application developer (i.e., the subset of the configura-
tion space consistent with the developer’s partially-specified options). These graphs
are shown in Figure V.8 and Figure V.9.

Last, the system presents a statistical analysis of the options that significantly
affect the performance measures, as depicted in Figure V.9. Together, these views
present the application developer with several pieces of information. First, it shows
how the expected configuration has performed historically on a specific set of bench-
marks. Next, it compares this configuration’s performance with the performance of
other possible configurations. It also indicates which of the options have a significant
effect on performance and thus should be considered carefully when selecting the final

configuration.

119

Latency Distribution

140
|

o
°)
e S S

Latency
120
L

100
1

80

T T
all.options subset

Figure V.8: 1% Iteration

Continuing the use case example, the application developer sees that option opt10
(ORBConcurrency) has not been set and that it has a significant effect on performance.
To better understand the effect of this option, the developer consults the main effects
graph shown in Figure V.9). This plot shows that setting ORBConcurrency to thread-
per-connection (where the ORB dedicates one thread to each incoming connection)
should lead to better performance than setting it to reactive (where the ORB uses
a single thread to detect, demultiplex and service multiple client connections). The
application developer therefore sets the option and reruns the earlier analysis. The
new analysis shows that, based on historical data, the new setting does indeed improve
performance, as shown in Figure V.10.

However, the accompanying main effects graph shown in Figure V.11 shows that
the remaining unset options are unlikely to have a substantial effect on performance.

At this point, the application developer has several choices, e.g., (s)he can stop here

120

130

125 —|

] pg N \ J

110 —

AVERAGE RESPONSE OF LATENCY

106 —|

100 I I I I I I
oPT1 OPT4 OPT5 oPTe oPT10* OPT11

Figure V.9: 1°* Tteration: Main Effects Graph (Statistically Significant Options are
Denoted by an *)

and set the remaining options to their default settings or (s)he can revisit the orig-
inal settings. In this case, the developer reexamines the original settings and their
main effects (See Figure V.12) and determines that changing the setting of opt2
(ORBClientConnectionHandler) might greatly improve performance.

Using this setting will require making some changes to the actual application, so
the application developer reruns the analysis to get an idea of the potential benefits of
changing the option setting. The resulting data is shown in Figure V.13. The results
in this figure show that the performance improvement from setting this option would
be substantial. The developer would now have to decide whether the benefits justify
the costs of changing the application.

Use case #2: Middleware developer task prioritization. In this scenario,
a developer of CIAO middleware itself wants to do an exploratory analysis of the
system’s performance across its configuration space. This developer is looking for
areas that are in the greatest need of improvement. To do this (s)he accesses the

ACE+4+TAO+CIAO and Skoll web page and performs several tasks.

121

Latency Distribution

o
=) 8
2 - e
|
!
I
=)
3
I
o -
(=]
2 |
) =] !
wWON o
A
T
I
!
=} S S—
8
o i
@ 7 —_—
I I
all.options subset

Figure V.10: 2™ Iteration

First, (s)he examines the overall performance distribution of one or more per-
formance metric. In this case, the middleware developer examines measurements of
system latency, noting that the tails of the distribution are quite long (the latency
plots are the same as those found in the “all.options” subplots of Figure V.8). The
developers wants to better understand which specific configurations are the poor per-
formers.?

Our DCQA process casts this question as a classification problem. The middle-
ware developer therefore recodes the performance data into two categories: those in
the worse-performing 10% and the rest. From here out, (s)he considers poor per-
forming configurations as those in the bottom 10%. Next, (s)he uses classification
tree analysis [66] to model the specific combinations of options that lead to degraded

performance. Sidebar V describes how classification trees work.

For the current use case example, the middleware developer uses a classification

3For latency the worst performers are found in the upper tail, whereas for throughput it is the
opposite.

122

130
125 —|
120 —

115 — /
_9

110 —|

AVERAGE RESPONSE OF LATENCY

105 —|

100 \ 1 \ \ \
OoPT1 OPT4 OPTS OPT9 OPT11

Figure V.11: 2™ Tteration: Main effects graph (Statistically Significant Options are
Denoted by an *)

tree to extract performance-degrading option patterns, i.e., (s)he extracts the options
and option settings from the tree that characterize poorly performing configurations.
Figure V.14 shows one tree obtained from the CIAO data (for space reasons the tree
shown in the Figure gives only a coarse picture of the information actually contained
in the tree).

By examining the tree, the middleware developer notes that a large majority of the
poorly performing configurations have ORBClientConnectionHandler set to M7 and
ORBConcurrency set to reactive. The first option indicates that the CORBA ORB uses
separate threads to service each incoming connections. The second option indicates
that the ORB’s reactor [88] (the framework that detects and accepts connections and
dispatches event to the corresponding event handlers when events arrive) are executed
by a pool of threads.

The information gleaned by the classification tree is then used to guide exploratory
data analysis. To help middleware developers organize and visualize the large amount

of data, the Treemaps data visualizer (www.cs.umd.edu/hcil/treemap) is employed,

123

130

125 —

120 —|

115 — .//. \\ .\“. e ./))

110 —

AVERAGE RESPONSE OF LATENCY

105 —|

100 \ \ \ I \ \ \ I
OPT2* OPT3 OPT6 OPT7 OPT8 OPT12 OPT13 OPT14

Figure V.12: 3" Iteration: Main Effects Graph (Statistically Significant Options are
Denoted by an *)

which allows developers to explore multidimensional data. The performance data
described in the previous paragraph is shown in Figure V.15.

This figure shows poorly performing configurations as dark tiles and the acceptably
performing configurations as lighter tiles. The layout first divides the data into two
halves: the left for configurations with ORBClientConnectionHandler set to RW and
the right for those set to MT. Each half is further subdivided, with the upper half
for configurations with ORCConcurrency set to thread-per-connection and the lower
half for those set to reactive. The data can be further subdivided to arbitrary levels,
depending on how many options the middleware developer wishes to explore. The
treemap shown in Figure V.15 depicts how almost all the poor performers are in the
bottom right quadrant, which suggests that the options discovered by the classification
tree are reasonably good descriptors of the poorly performing configurations.

The middleware developer continues to explore the data, checking whether the
addition of other options would further isolate the poor performers, thereby provid-

ing more information about the options that negatively influence performance. After

124

Latency Distribution

140
|

o
°)
e S S

Latency
120
L

100
1

80

T T
all.options subset

Figure V.13: 3"¢ Iteration: Step 3

some exploration, the middleware developer find no other influential options. Next,
(s)he examines the poor performing configurations that are not part of the main
group, ¢.e., those with ORBCurrency set to thread-per-connection rather than reac-
tive. The middleware developer determines that nearly all of the latency values for
these configurations are quite close to the 10% cutoff. In fact, lowering the arbi-
trary cutoff to around 8% leads to the situation in which nearly every poor performer
has ORBConnectionClientHandler set to MT and ORBConcurency set to reactive.
Based on this information, the middleware developer can conduct further studies to

determine whether a redesign might improve performance.

Summary

Reusable software for performance-intensive systems increasingly has a multitude

of configuration options and runs on a wide variety of hardware, compiler, network,

125

ORBClientConnectionHandler

MT
Acceptable ORBConcurency

Thread-per-Connection

Reactive

Acceptable

Figure V.14: Classification Tree Modeling Poorly Performing Configurations

OS, and middleware platforms. This variability has yielded an explosion in the config-
uration and platform space on which the quality assurance (QA) of the software must
be evaluated. The model-driven DCQA techniques play an important role in ensuring
the correctness and quality of service (QoS) of performance-intensive software.

DCQA approaches helps to ameliorate the variability in reusable software contexts

by providing

e Domain-specific modeling languages that encapsulate the variability in soft-
ware configuration options and interaction scenarios within GME modeling
paradigms.

e An Intelligent Steering Agent (ISA) to map configuration options to clients
that test the configuration and adaptation strategies to learn from the results
obtained from clients and

e Model-based interpreters that generate benchmarking code and provide a frame-
work to automate benchmark tests and facilitate the seamless integration of new
tests.

The work on Skoll addresses two key dimensions of applying distributed continu-

ous quality assurance (DCQA) processes to reusable performance-intensive software.

126

Figure V.15: Treemap Visualization

The skoll infrastructure address software functional correctness issues, e.g., ensuring
software compiles and runs on various hardware, OS, and compiler platforms. The
MDD tools address software QoS issues, e.g., modeling and benchmarking interac-
tion scenarios on various platforms by mixing and matching configuration options.
These model-based QA techniques enhance Skoll by allowing developers to model
configuration/interaction aspects and associate metrics to benchmark the interaction.
These techniques also minimize the cost of testing and profiling new configurations
by moving the complexity of writing error-prone code from QA engineers into model
interpreters, thereby increasing productivity and quality. Model-based tools such
as BGML simplify the work of QA engineers by allowing them to focus on domain
specific details rather than write source code.

Our experimental results showed how the modeling tools improve productivity by
resolving the accidental complexity involved in writing error-prone source code for

each benchmarking configuration. Section V showed that by using MDD approach,

127

~90% of the code required to test and profile each combination of options can be gen-
erated, thereby significantly reducing the effort required by QA engineers to empiri-
cally evaluate impact of software variability on numerous QOS parameters. Section V
showed how the results collected using Skoll can be used to populate a data repository
that can be used by both application and middleware developers. The two use case
presented in this feasibility study showed how this approach provides feedback to (1)
application developers, e.g., to tune configurations to maximize end-to-end QoS and
(2) middleware developers, e.g., to more readily identify configurations that should

be optimized further.

128

CHAPTER VI

CONCLUDING REMARKS AND FUTURE RESEARCH
DIRECTIONS

This dissertation focused on techniques for enhancing middleware QoS for software
product-line architectures. Product-line architectures (PLAs) enable organizations to
reconfigure their software quickly to respond to new missions and new business op-
portunities [12]. PLAs are particularly applicable for large-scale distributed real-time
and embedded (DRE) systems since reusable software families can be built for a
domain (such as avionics, vetronics, or ship-board computing) where applications
share many functional and architectural properties and then customized to meet the
specific needs of product variants. Standards-based middleware is a key infrastruc-
ture technology for PLAs since it provides many reusable policies and mechanisms
to simplify the development, customization, and deployment of product variants.
The stringent demands of DRE systems, however, require conservation of resources,
while simultaneously providing the desired QoS. It is therefore essential to customize
standards-based middleware implementations by eliminating extraneous functionality
and extensibility not needed for particular product variants. The OPTEML approach
resolved three key dimensions of challenges pertaining to customizing general-purpose

standards based middleware for PLAs via:

e Fine-grain componetization techniques, that transparently allow middle-
ware implementations to be full featured yet minimal in footprint,

e Specialization techniques, that remove extraneous time/space overhead within
middleware based on functional and QoS requirements of PLAs, and

e Validation techniques, that ensure the correctness of componentized and spe-
cialized middleware implementations across different hardware, OS and compiler

platforms.

129

The remainder of this chapter discusses how OPTEML has been integrated and val-
idated using representative middleware solutions, summarizes the research contribu-

tions and lessons learned and outlines future research directions.

Research Integration & Validation

OPTEML has been integrated and validated on several representative applications
using middleware developed with Real-time Java and C++. The fine-grain middle-
ware componentization techniques have been validated using the ZEN (www.zen.uci.
edu) ORB which is an open-source Real-time CORBA ORB implemented using the
RTSJ and is being used as the middleware implementation in the DARPA PCES
program. The specialization techniques have been implemented and validated using
the open-source TAO (www.cs.wustl.edu/~schmidt/TAO.html) implementation of
Real-time CORBA written in C+4. TAO is a mature, efficient, and open-source
implementation of the Real-time CORBA standard that is used widely in production
DRE systems (www.dre.vanderbilt.edu/users.html). To automate the specializa-
tion a new open-source Feature Oriented Customizer Tool (FOCUS) has been devel-
oped. FOCUS has been applied to ACE (www.cs.wustl.edu/"schmidt/ACE.html)
and TAO middleware implementations. ACE [84,85] implements core concurrency
and distribution patterns [88] for communication software and is the host infras-
tructure middleware on which TAO is implemented. FOCUS is available with the
ACE+TAOQO distribution and can be downloaded from http://deuce.doc.wustl.
edu/Download.html.

The BGML Domain Specific Modeling Language (DSML) has been integrated
with the CoSMIC MDD tool chain www.dre.vanderbilt.edu/cosmic. CoSMIC is
a collection of DSMLs and generative tools that support the development, configu-
ration, deployment, and validation of component-based DRE systems. BGML has

been applied to CIAO [103] which is a QoS-enabled implementation of CCM to help

130

simplify the development of performance-intensive software applications by enabling
developers to declaratively provision QoS policies end-to-end when assembling a DRE
system. Finally, BGML works in conjunction with the Skoll www.cs.umd.edu/skoll
DCQA tool which is begin used to validate the specializations techniques presented

in this dissertation on a range of hardware, OS and compiler platforms.

Lessons Learned & Research Contributions

The following are the lessons learned from OPTEML. The middleware componen-
tization techniques illustrated that middleware subsetting should be planned early in
the design cycle. Reducing middleware footprint after the middleware has become
mature increases the complexity involved in subsetting middleware. Such componen-
tization should also be transparent to the PLA application developers and should not
modify the standard CORBA interfaces. In ZEN for example, the POA componen-
tization case study showed how use of virtual component pattern allows the POA to
be full featured yet minimal in footprint.

The specialization techniques showed that general-purpose standards based mid-
dleware has extraneous functionality that is undesirable for PLA based DRE applica-
tions. The specialization techniques, however, should not affect portability, standard
middleware APIs, or application software implementations, and preserve interoper-
ability wherever possible. Solution approaches that do not honor the above conditions
obviate the benefits accrued from using standards based middleware. In addition, ac-
cidental complexity from manually applying this specialization to mature middleware
implementations renders the specializations tedious and error prone to implement.
Specialization automation is essential for making the specializations viable to ma-
ture, feature rich and large middleware code bases like TAO.

With middleware evolution, it is necessary to validate and quantifying impact of

specializations on performance across different hardware, OS and compiler platforms.

131

The Skoll and BGML approaches, described how model-driven and distributed con-
tinuous QA approaches can be combined to provide a QA framework validating the
specializations approach. In summary this dissertation has made the following con-

tributions to the research on optimizing, specializing and validating middleware for

PLAs.

1. Tt shows how context-specific specialization techniques (such as code refactoring,
and code weaving) can be used to customize the widely used TAO Real-time
CORBA implementation to remove excessive generality and thus better support
application-specific QoS needs of PLA-based DRE systems, such as Bold Stroke.
It describes the design of a domain-specific language, tools, and a process for
automating the specialization techniques discussed in the dissertation.

2. It describes novel model-driven distributed continuous quality assurance ap-
proaches for validating the componentized and specialized middleware across a
range of hardware, OS and compiler platforms.

3. It presents qualitative and quantitative results that demonstrate the benefits of
applying the different dimensions of research discussed in the dissertation.
Figure VI.1 categorizes the research contributions hierarchically. At the base are
novel optimization strategies, patterns, and idioms that help componentize middle-
ware implementation. At the next level are middleware specialization techniques
that transparently specialize middleware to remove unnecessary generality for PLAs.
These techniques improve middleware QoS including end-to-end latency, throughput
and jitter. Finally, the DCQA approaches discussed in this paper help in validating
componentized and specialized middleware on varying hardware, OS and compiler

platforms.

132

DISTRIBUTED CONTINUOUS
QUALITY ASSURANCE

MIDDLEWARE SPECIALIZATION

Optimization
Strategies

MIDDLEWARE COMPONENTIZATION
TECHNIQUES

Virutal
Component
Pattern

Figure VI.1: Research Contributions

Future Research Directions

Recent progress in QoS-enabled component middleware [103] has shown great
promise for DRE systems by enabling reusable services to be composed, configured,
and installed to create applications rapidly and robustly. Component middleware [96]
is a class of middleware that enables reusable services to be composed, configured,
and installed to create applications rapidly and robustly. Conventional component
middleware platforms, such as J2EE and .NET, is not well-suited for these types of
DRE systems since they do not provide real-time quality of service (QoS) support.

QoS-enabled component middleware, such as CIAO [102], Qedo [73], and PRiSm [91],
have been developed to address these limitations by combining the flexibility of com-
ponent middleware with the predictability of Real-time CORBA. The OMG’s De-
ployment and Configuration specification [63] enhances component middleware in
order to (1) deploy component assemblies into the appropriate DRE system target
nodes, (2) activate and deactivate component assemblies automatically, (3) initialize
and configure component server resources to enforce end-to-end QoS requirements of
component assemblies, and (4) simplify the configuration, deployment, and manage-
ment of common services used by applications and middleware. The Deployment and

Configuration Engine (DAnCE), is an open-source (www.dre.vanderbilt.edu/CIAOQ)

133

os3) operation oBJECT
CLIENT REE cut args + return value 1
f T

— ACTIVE = OBSERVER ’—\

« 0 OBJECT
REMOTE COMPONENT
OPERATION evicTor | [CONFIGURATOR

EXTENSION
INTERFACE INTERCEPTOR
i“m [mecerror
ACTIVATOR

LEADER/

STRATEGY [|

THREAD- | ACCEPTOR- FOLLOWERS
HoNToR || specrrc |comecror T I

O0BJECT || srorace FORWARDER- -RmTOR i

5 ASYNCHROKOUS RECEIVER | ;

1 WRAPPER FACADES = CONPLETION TOKEN = WRAPPER FACADES F
BROKER

HALF-ASYNC
Figure VI.2: Middleware Evolution & Variability

MIDDLEWARE
ARCHITECTURE [PROXY

ABSTRACT

EVOLUTION EACTORY

SERIALIZER

0s 10 SUBSYSTEM

ANETWORK INTERFACESS
1 NETWORK

QQoS-enabled middleware framework compliant with the OMG Deployment and Con-
figuration specification [63]. The remainder of this section describes how OPTEML
approach can be synergistically combined with component middleware in general and

DAnCE in particular.

Specializing Middleware Frameworks

Middleware comprise different frameworks that are amenable to specialization via
our FOCUS approach. Figure VI.2 illustrates the variability points within middleware
as configurable hooks. The figure also illustrates how patterns and pattern languages
have been applied to accommodate this variability. FOCUS approach presented in this
paper specialized the Reactor and protocol frameworks in TAO. Other opportunities
for specialization exists within middleware including, locking, concurrency, demulti-
plexing and dispatching frameworks in TAO and middleware. Future research will
therefore need to investigate how specialization approaches can be applied to other

middleware frameworks and services to enhance application QoS.

134

Specializing Component Middleware Implementations

Today’s middleware only provides the assembly and deployment of application-
level components [28] hosted by DRE middleware [103]. There exists a need for
research to significantly advance DRE software systems by developing and validating
novel ideas for bootstrapping the QoS-enabled component middleware itself. This
research illustrated how specialization approaches can be applied to DOC middleware.
Similar opportunities exists in the component middleware as well. For example, in
CCM, a container provides the execution environment need to execute components

in generic component servers as shown in Figure VI.3.

._ o
) W

|Rep|ication‘ ‘ Security | ‘Persistence‘ ‘Notiﬁcation|

‘AN Streamingl ‘Scheduling| | Load Balancing |

Figure V1.3: CCM Container

To suite different applications, containers provide configurable QoS hooks via poli-
cies. Containers also allow components to access middleware services such as event-,
persistence- and security service. Future research, will therefore need to investigate
mechanisms, similar to policy driven specialization approaches discussed in this dis-

sertation to provide a full featured container yet incurring minimal footprint.

135

Managing Specialized Middleware and Component Implementation
DAnCE’s RepositoryManager provides efficient mechanisms where applications
can (1) store component implementations at any time during the system lifecycle and
(2) retrieve different versions of implementations as components are (re)deployed on
various types of nodes. As shown in Figure VI.4, the RepositoryManager can also
act as an HTTP client and download component implementations specified as URLs
in a deployment plan. It caches these implementations in the local host where the
RepositoryManager runs so they can be retrieved by processes on individual hosts

i.e., NodeApplicationManagers.

Install component
ges through

Install . rthe given URL in
___ component Repository _ _ _metadata _ i
packages Manager
manually

System
Deployer

Fetch Fetch Fetch
component

l
Node Node Node

Application Application Application
Manager Manager Manager
Win32 0S8 Linux OS VxWorks OS

Figure VI.4: DAnCE Repository Manager

The FOCUS toolkit presented in the dissertation, allows creation of specialized
middleware implementations based on PLA system invariance. DAnCE’s Repository
Manager can be used to store different specialized middleware implementations. Dur-
ing component deployment, the Repository Manager can be used to retrieve spe-
cialized middleware and component libraries for deployment. Future research will
therefore need to develop mechanisms on how middleware specializations can be in-

tegrated with Deployment and Configuration specification.

136

Model-Driven Specialization Approaches

Customizing middleware for different operating contexts requires a systematic
approach to designing and implementing different context-specific specializations.
Model-driven Development (MDD) offers the right choice to realize a systematic and
scientific approach to resolving the PLA middleware challenges described in this dis-
sertation. The FOCUS approach detailed a process for executing the specializations.
Combining the FOCUS approach with MDD provides a two step process in which (1)
identification of the specialization points and transformations are done via Model-
driven approaches and (2) (2) automating the delivery of the specializations is done
by FOCUS like approach.

Future research will therefore need to focus on:

e Defining and capturing PLA invariants — which will require the model-
ing tool to provide capabilities to capture the PLA-specific feature invariants.
Modeling tools will need to map these invariants to the features in middleware
that will be required to satisfy these invariants.

e Represent middleware models and their configurability — which will
require the modeling tool to provide capabilities to represent middleware as
building blocks that can be configured and customized according to the PLA
and product-specific requirements. This capability is driven by the state of art
in middleware, which comprises a composition and configuration of patterns-
based building blocks.

e Capturing product-specific functional and QoS variability — which will
require the ability to specify product-specific variability incurred due to func-
tional and QoS requirements. This will also govern the variability in the as-
sembly, configuration and deployment of the product variant and the associated
middleware infrastructure.

Figure VL5 illustrates a futuristic view of a specialization process.

137

Specialized

Product-specific | Middleware | |Product-specific
assembly | | Configuration| | deployment
variability model variability

Optimized
Middleware

validation

Figure VI.5: Model-driven Middleware Specialization Approach

In this approach, middleware models and PLA invariance specification is fed to
a middleware specializer that generates a middleware configuration suitable for the
PLA. From this base configuration model, the variability specifications, e.g., the
assembly and deployment aspects are woven by a variability weaver generating an
optimized middleware implementation. QA Techniques similar to the ones discussed

in this dissertation can be applied to validate the synthesized optimized middleware.

138

APPENDIX A

BGML GENERATED CODE

This section shows the generated code from the BGML model interpreters. Each
code snippet, corresponds to a separate capability provided by BGML as described in
Section V. The generated code described is specific to the CTAO QoS enabled mid-
dleware. Other model interpreters can be associated with these aspects to generate

code for other QoS enabled middleware implementations.

Build File code snippet

In this section, shows the format of a build file generate by the Component build
interpreter. In order to focus the discussion, only a part of the generated build file is
shown.

1: project (BMDisplay_stub): ciao_client {

2: after += BasicSP_stub

3: sharedname = BMDisplay_stub

4: idlflags +=
-Wb,stub_export_macro=BMDISPLAY_STUB_Export
-Wb,stub_export_include=BMDisplay_stub_export.h
-Wb,skel_export_macro=BMDISPLAY_SVNT_Export
-Wb,skel_export_include=BMDisplay_svnt_export.h

5: dynamicflags = BMDISPLAY_STUB_BUILD_DLL

7: 1IDL_Files {

8: BMDisplay.idl

10:

139

11: Source_Files {
12: BMDisplayC.cpp
13: } }

The section next explains what the individual lines refer to using the terminology
corresponding to the Visual Studio build file. Line 1 shows a project definition for the
BMDisplay_stub component which inherits from a generic client component (base).
This corresponds to the creation of a project in a Visual Studio environment. The
second line describes a dependency with another project in the same workspace while
sharedname describes the name of the DLL created. Line 4 illustrates flags passed
to the TAO IDL compiler while Line 7 specifies the name of the idl file. Finally lines

11-13 describe the name of the source implementation file.

Component IDL file code snippet

This section shows the format of the Component idl file generated by the Compo-
nent IDL interpreter. This IDL file is fed to an idl compiler to generate “glue-code”
needed by the ORB infrastructure.

1: #ifndef BMDISPLAY_CIDL

2: #define BMDISPLAY_CIDL

3: #include "BMDisplay.idl"

4: composition session BMDisplay_Impl

5: {

6: home executor BMDisplayHome_Exec

7: {

8: implements BasicSP::BMDisplayHome;
9: manages BMDisplay_Exec;

10: };

140

11: };

12: #endif /* BMDISPLAY_CIDL */

Lines 1-3 illustrated the header information. The included IDL file is generated
from the models directly by the IDL compiler. Line 5 defines the type of the Com-
ponent implementation as a “session” component (the other being an entity compo-
nent). Line 6 defines the a home that manages component while Lines 8-9 defines a

composition i.e., binds the home to the type of the component.

Benchmark code snippet

This section illustrates the Benchmarking code generated by the BGML model in-
terpreters to benchmark an operation with the following signature: get_data(longdata).
The interpreters generate the header and source file that follow the following conven-
tion: (1) All files names have the prefix Benchmark and (2) The operation name
is used to complete the file name. This convention ensures that the generated file
names are always unique. Further, the generated files use templates, to provide a
generic benchmarking framework. Below the structure of the header and source files

are illustrated.

1: template <typename T>
2: class Benchmark_Get_Data : BGML_Task_Base
3: {
4: public:
5: Benchmark_Get_Data (T remote_ref,
: :CORBA: :Long argl);

6 “Benchmark_Get_Data ();

7: int svc (void);

141

8: protected:
9: T remote_ref_;

10: ::CORBA::Long argl_;

11:3};

12: #include "Benchmark_Get_Data.cpp"

13: #endif // BENCHMARK_GET_DATA_H

Line 2 shows the template Benchmark_Get_Data class that uses a generic BGML_
Task_Base class which provides the capability to associate the class with a thread
of a given priority. Using the constructor of the class, the remote reference and
the argument are automatically generated (see Line 9). The type of the argument
corresponds to the argument of the get_data operation. The remote reference is a
reference to the target component on which the operation has to be invoked. The svc

method defined in Line 7 is where the actual benchmarking is done as shown below.
template <typename T>
void
Benchmark_Get_Data<T>::svc (void)
{
// Warmup iterations before benchmarking
for (int warm_up = 0; warm_up < 100; warm_up++)

(void) this->remote_ref_->get_data (argl);

// Generate the Background workload
Get_Data_Workload load0 (this->remote_ref_,
argl,

0);

142

Get_Data_Workload loadl (this—>remote_ref_,
argl,
0);
// Activate the Background tasks
if (taskO.activate (THR_NEW_LWP |
THR_JOINABLE, 1, 1) == -1)
ACE_ERROR ((LM_ERROR, "Error activating taskO \n"));
if (taskl.activate (THR_NEW_LWP |
THR_JOINABLE, 1, 1) == -1)

ACE_ERROR ((LM_ERROR, "Error activating taskl \n"));

ACE_Sample_History history (5000);

ACE_hrtime_t test_start = ACE_0S::gethrtime ();

for (i = 0; i < 5000; i++)

{
ACE_hrtime_t start = ACE_0S::gethrtime ();
(void) this->remote_ref_->get_data (argl);
ACE_CHECK;

ACE_hrtime_t now = ACE_0S::gethrtime ();

history.sample (now - start);

ACE_hrtime_t test_end = ACE_0S::gethrtime ();
ACE_DEBUG ((LM_DEBUG, "test finished"));
ACE_UINT32 gsf =

ACE_High_Res_Timer::global_scale_factor ();
ACE_DEBUG ((LM_DEBUG, "done"));

ACE_Basic_Stats stats;

143

history.collect_basic_stats (stats);
stats.dump_results ("Total", gsf);
ACE_Throughput_Stats: :dump_throughput ("Total",
gst,
test_end - test_start,
stats.samples_count ());
}

The actual benchmarking proceeds in three phases (1) given number of warmup
iterations are done before the actual benchmarking. For example, the above code
snippet uses 100 iterations to warmup the system. (2) A corresponding background
load is generated. For example, in the code above four tasks with priority 0 are used
to generate background load. (3) Benchmarking target operation and dumping out

the corresponding statistics like throughput.

144

APPENDIX B

LIST OF PUBLICATIONS

Research on OPTEML has lead to the following referred journal, conference and

workshop publications.

Referred Journal Publications

1. Arvind S. Krishna, Cemal Yilmaz, Adam Porter, Atif Memon, Douglas C.
Schmidt, and Aniruddha Gokhale, Distributed Continuous Quality Assurance
Process for Evaluating QoS of Performance Intensive Software, Studia Infor-

matica Universalis, Volume 4 March 2005.

2. Arvind S. Krishna, Nanbor Wang, Balachandran Natarajan, Aniruddha Gokha-
le, Douglas C. Schmidt and Gautam Thaker, CCMPerf: A Benchmarking Tool
for CORBA Component Model Implementations, The International Journal of
Time-Critical Computing Systems, Springer, Vol. 29, Nos. 2-3, March-April
2005.

3. Arvind S. Krishna, Cemal Yilmaz, Atif Memon, Adam Porter, Douglas C.
Schmidt, Aniruddha Gokhale, and Balachandran Natarajan, Preserving Dis-
tributed Systems Critical Properties: A Model-Driven Approach, the IEEE

Software special issue on the Persistent Software Attributes, Nov/Dec 2004.

4. Krishnakumar Balasubramanian, Arvind S. Krishna, Emre Turkay, Jaiganesh
Balasubramanian, Jeff Parsons, Aniruddha Gokhale, and Douglas C. Schmidt,
Applying Model-Driven Development to Distributed Real-time and Embedded
Avionics Systems, International Journal of Embedded Systems, special issue on

Design and Verification of Real-Time Embedded Software, April 2005.

145

. Cemal Yilmaz, Adam Porter, Atif Memon, Arvind S. Krishna, Douglas C.
Schmidt, and Aniruddha Gokhale, Techniques and Processes for Improving
the Quality and Performance of Open-Source Software, Software Process - Im-
provement and Practice Journal: Special Issue on Free/Open Source Software

Processes, 2006.

. Aniruddha Gokhale, Krishnakumar Balasubramanian, Arvind S. Krishna, Jaiga-
nesh Balasubramanian, and George T. Edwards, Gan Deng, Emre Turkay,
Jeffrey Parsons, and Douglas C. Schmidt, Model Driven Middleware: A New
Paradigm for Deploying and Provisioning Distributed Real-time and Embedded
Applications, Elsevier Journal of Science of Computer Programming: Special

Issue on Model Driven Architecture, Edited by Mehmet Aksit, 2004.

Referred Conference Publications

. Arvind S. Krishna, Aniruddha Gokhale, Douglas C. Schmidt, John Hatcliff, and
Venkatesh Prasad Ranganat, Towards Highly Optimized Real-time Middleware
for Software Product-line Architectures, Proceedings of the 26th IEEE Real-
time Systems Symposium (RTSS), Work in Progress Session, Miami, Florida,
Dec 5-8, 2005

. Arvind S. Krishna, Douglas C. Schmidt, and Michael Stal Context Object: A
Design Pattern for Efficient Middleware Request Processing, Proceedings of
the 12th Pattern Language of Programming Conference, Allerton Park, Illinois,
September 7-10, 2005.

. Arvind S. Krishna, Emre Turkay, Aniruddha Gokhale, and Douglas C. Schmidt,
Model-Driven Techniques for Evaluating the QoS of Middleware Configurations
for DRE Systems, Proceedings of the 11th IEEE Real-Time and Embedded

Technology and Applications Symposium, San Francisco, CA, March 2005.

146

4. Cemal Yilmaz, Arvind S. Krishna, Atif Memon, Adam Porter, Douglas C.
Schmidt, Aniruddha Gokhale, and Bala Natarajan, Main Effects Screening: A
Distributed Continuous Quality Assurance Process for Monitoring Performance
Degradation in Evolving Software Systems, proceedings of the 27th Interna-

tional Conference on Software Engineering, St. Louis, MO, May 15-21, 2005.

5. Arvind Krishna, Douglas C. Schmidt, Adam Porter, Atif Memon, Diego Sevilla-
Ruiz, Improving the Quality of Performance-intensive Software via Model-integr-
ated Distributed Continuous Quality Assurance, The 8th International Confer-

ence on Software Reuse, ACM/IEEE, Madrid, Spain, July 2004.

6. Arvind S. Krishna, Nanbor Wang, Balachandran Natarajan, Aniruddha Gok-
hale, Douglas C. Schmidt and Gautam Thaker, CCMPerf: A Benchmarking
Tool for CORBA Component Model Implementations, Proceedings of the 10th
IEEE Real-time Technology and Application Symposium (RTAS ’04), Toronto,
CA, May 2004.

7. Arvind S. Krishna, Douglas C. Schmidt, and Raymond Klefstad, Enhancing
Real-Time CORBA via Real-Time Java, Proceedings of the 24th IEEE Inter-
national Conference on Distributed Computing Systems (ICDCS), March 23-26,
2004, Tokyo, Japan.

8. Arvind S. Krishna, Douglas C. Schmidt, Krishna Raman, and Raymond Klefs-
tad, Enhancing Real-time CORBA Predictability and Performance, Proceedings
of the Proceedings of the 5th International Symposium on Distributed Objects

and Applications (DOA), Catania, Sicily, November 2003.

9. Arvind S. Krishna, Douglas C. Schmidt, Raymond Klefstad, and Angelo Cor-

saro, Towards Predictable Real-time Java Object Request Brokers, Proceedings

147

10.

of the 9th IEEE Real-time/Embedded Technology and Applications Symposium
(RTAS), Washington DC, May 27-30, 2003.

Raymond Klefstad, Arvind S. Krishna, and Douglas C. Schmidt, Design and
Performance of a Modular Portable Object Adapter for Distributed, Real-Time,
Embedded CORBA Applications, Proceedings of the Distributed Objects and

Applications (DOA) conference, Irvine, CA, October/November, 2002.

Referred Workshop Publications

. Arvind S. Krishna, Aniruddha Gokhale, Douglas C. Schmidt, Venkatesh Prasad

Ranganath, and John Hatcliff, Model-driven Middleware Specialization Tech-
niques for Software Product-line Architectures in Distributed Real-time and
Embedded Systems, MODELS 2005 workshop on MDD for Software Product-

lines: Fact or Fiction?, October 2, 2005, Jamaica.

. Arvind S. Krishna Enhancing Middleware Quality of Service, 19th ACM OOP-

SLA Student Research Competition, Vancouver, Canada, Oct 2004.

. Arvind S. Krishna, Emre Turkay, Cemal Yilmaz, Douglas C. Schmidt, Anirud-

dha Gokhale, Atif Memon and Adam Porter, Model-driven Software Tools for
Configuring and Customizing Middleware for Distributed Real-time and Em-
bedded Systems, 19th ACM OOPSLA Workshop on Managing Variabilities

Consistently in Design and Code, Vancouver, Canada, Oct 2004.

. Arvind S. Krishna, Cemal Yilmaz, Atif Memon, Adam Porter, Douglas C.

Schmidt, Aniruddha Gokhale and Balachandran Natarajan, A Distributed Con-
tinuous Quality Assurance Process to Manage Variability in Performance-intens-
ive Software, 19th ACM OOPSLA Workshop on Component and Middleware

Performance, Vancouver, Canada, Oct 2004.

148

5. Cemal Yilmaz, Arvind S. Krishna, Atif Memon, Adam Porter, Douglas C.
Schmidt, Aniruddha Gokhale, and Balachandran Natarajan, A Model-based
Distributed Continuous Quality Assurance Process to Enhance the Quality of
Service of Evolving Performance-intensive Software Systems, Proceedings of the
2nd ICSE Workshop on Remote Analysis and Measurement of Software Systems
(RAMSS), Edinburgh, Scotland, UK, May 24, 2004

6. Arvind S. Krishna, Jaiganesh Balasubramanian, Aniruddha Gokhale, Douglas
C. Schmidt, Diego Sevilla, Gautam Thaker, Empirically Evaluating CORBA
Component Model Implementations, Proceedings of the ACM OOPSLA 2003
Workshop on Middleware Benchmarking, Anaheim, CA, October 26, 2003.

149

1]

[10]

BIBLIOGRAPHY

S.M. Abramov and N.V. Kondratjev. A Compiler Based on Partial Evalua-
tion. In Problems of Applied Mathematics and Software Systems, pages 66—69.
Moscow State University, Moscow, USSR, 1982. (In Russian).

P.H. Andersen. Partial Evaluation Applied to Ray Tracing. DIKU Research
Report 95/2, DIKU, 1995.

Mary L. Bailey, Burra Gopal, Prasenjit Sarkar, Michael A. Pagels, and Larry L.
Peterson. PathFinder: A Pattern-Based Packet Classifier. In Proceedings of
the 1% Symposium on Operating System Design and Implementation. USENIX
Association, November 1994.

Krishnakumar Balasubramanian, Jaiganesh Balasubramanian, Jeff Parsons,
Aniruddha Gokhale, and Douglas C. Schmidt. A Platform-Independent Compo-
nent Modeling Language for Distributed Real-time and Embedded Systems. In
Proc. of the 11th IEEFE Real-Time and Embedded Technology and Applications
Sym., San Francisco, CA, March 2005.

Krishnakumar Balasubramanian, Douglas C. Schmidt, Nanbor Wang, and
Christopher D. Gill. Towards Composable Distributed Real-time and Embedded
Software. In Proc. of the 8" Workshop on Object-oriented Real-time Dependable
Systems, Guadalajara, Mexico, January 2003. IEEE.

Greg Bollella, James Gosling, Ben Brosgol, Peter Dibble, Steve Furr, David
Hardin, and Mark Turnbull. The Real-Time Specification for Java. Addison-
Wesley, 2000.

Donald F. Box, Douglas C. Schmidt, and Tatsuya Suda. ADAPTIVE: An
Object-Oriented Framework for Flexible and Adaptive Communication Proto-
cols. In Proceedings of the 4" IFIP Conference on High Performance Network-
ing, pages 367-382, Liege, Belgium, 1993. IFIP.

L. Breiman, J. Freidman, R. Olshen, and C. Stone. Classification and Regression
Trees. Wadsworth, Monterey, CA, 1984.

Gerald Brose, Nicolas Noftke, and Sebastian Miiller. JacORB 1.4 Program-
ming Guide. jacorb.inf.fu-berlin.de/ftp/doc/ProgrammingGuide_1.4.
pdf, 2001.

Darrell Brunsch, Carlos O’Ryan, and Douglas C. Schmidt. Designing an Effi-
cient and Scalable Server-side Asynchrony Model for CORBA. In Proceedings of

the Workshop on Optimization of Middleware and Distributed Systems, Snow-
bird, Utah, June 2001. ACM SIGPLAN.

150

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

Bruce Childers, J. Davidson, and M.L Soffa. Continuous Compilation: A New
Approach to Aggressive and Adaptive Code Transformation. In Proceedings of
the International Parallel and Distributed Processing Symposium, April 2003.

Paul Clements and Linda Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, Boston, 2002.

James Coplien, Daniel Hoffman, and David Weiss. Commonality and Variability
in Software Engineering. IEEE Software, 15(6), November/December 1998.

Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, Boston, 2000.

Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Meth-
ods, Tools, and Applications. Addison-Wesley, Reading, Massachusetts, 2000.

Gary Daugherty. A Proposal for the Specialization of HA/DRE Systems. In
Proceedings of the ACM SIGPLAN 2004 Symposium on Partial Evaluation and
Program Manipulation (PEPM 04), Verona, Italy, August 2004. ACM.

Mayur Deshpande, Douglas C. Schmidt, Carlos O’Ryan, and Darrell Brunsch.
Design and Performance of Asynchronous Method Handling for CORBA. In
Proceedings of the 4th International Symposium on Distributed Objects and Ap-
plications, Irvine, CA, October/November 2002. OMG.

Zubin D. Dittia, Guru M. Parulkar, and Jerome R. Cox, Jr. The APIC Approach
to High Performance Network Interface Design: Protected DMA and Other
Techniques. In Proceedings of INFOCOM °97, pages 179-187, Kobe, Japan,
April 1997. IEEE.

Bryan S. Doerr and David C. Sharp. Freeing Product Line Architectures from
Execution Dependencies. In Proceedings of the 11th Annual Software Technology
Conference, April 1999.

Richard P. Draves, Brian N. Bershad, Richard F. Rashid, and Randall W. Dean.
Using Continuations to Implement Thread Management and Communication in

Operating Systems. In Proceedings of the 13" Symposium on Operating System
Principles, pages 122-136, Pacific Grove, CA, October 1991. ACM.

E. Ruf and D. Weise. Opportunities for Online Partial Evaluation. Technical
Report CSL-TR-92-516, Computer Systems Laboratory, Stanford University,
Stanford, CA, April 1992.

Dawson R. Engler and M. Frans Kaashoek. DPF': Fast, Flexible Message Demul-
tiplexing using Dynamic Code Generation. In Proceedings of ACM SIGCOMM
96 Conference in Computer Communication Review, pages 53-59, Stanford

151

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

University, California, USA, August 1996. ACM Press.

David C. Feldmeier. Multiplexing Issues in Communications System Design. In

Proceedings of the Symposium on Communications Architectures and Protocols
(SIGCOMM), pages 209-219, Philadelphia, PA, September 1990. ACM.

Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring - Improving the Design of Existing Code. Addison-Wesley, Reading,
Massachusetts, 1999.

Free Software Foundation. GCC Home Page. gcc.gnu.org, 2003.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Read-
ing, MA, 1995.

Chris Gill, Douglas C. Schmidt, and Ron Cytron. Multi-Paradigm Scheduling
for Distributed Real-Time Embedded Computing. IEEE Proceedings, Special
Issue on Modeling and Design of Embedded Software, 91(1), January 2003.

Aniruddha Gokhale, Krishnakumar Balasubramanian, Jaiganesh Balasubrama-
nian, Arvind S. Krishna, George T. Edwards, Gan Deng, Emre Turkay, Jeffrey
Parsons, and Douglas C. Schmidt. Model Driven Middleware: A New Paradigm
for Deploying and Provisioning Distributed Real-time and Embedded Applica-
tions. The Journal of Science of Computer Programming: Special Issue on
Model Driven Architecture, 2005 (to appear).

Aniruddha Gokhale and Douglas C. Schmidt. Evaluating the Performance of
Demultiplexing Strategies for Real-time CORBA. In Proceedings of GLOBE-
COM °97, Phoenix, AZ, November 1997. IEEE.

Aniruddha Gokhale, Douglas C. Schmidt, Balachandra Natarajan, and Nanbor
Wang. Applying Model-Integrated Computing to Component Middleware and
Enterprise Applications. The Communications of the ACM Special Issue on
Enterprise Components, Service and Business Rules, 45(10), October 2002.

J. Grundy, Y. Cai, and A. Liu. Generation of Distributed System Test-beds from
High-level Software Architecture Description. In 16 th International Conference
on Automated Software Engineering, Linz Austria. IEEE, September 2001.

Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt. The Design
and Performance of a Real-time CORBA Event Service. In Proceedings of
OOPSLA 97, pages 184-199, Atlanta, GA, October 1997. ACM.

John Hatcliff. An Introduction to Online and Offline Partial Evaluation using
a Simple Flowchart Language. Partial Evaluation — Practice and Theory DIKU

152

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

1998 International Summer School, Springer Verlag, 1706:20 — 82, Jun 1998.

John Hatcliff, William Deng, Matthew Dwyer, Georg Jung, and Venkatesh
Prasad. Cadena: An Integrated Development, Analysis, and Verification Envi-
ronment for Component-based Systems. In Proceedings of the 25th International
Conference on Software Engineering, Portland, OR, May 2003.

James Hu and Douglas C. Schmidt. JAWS: A Framework for High Performance
Web Servers. In Mohamed Fayad and Ralph Johnson, editors, Domain-Specific

Application Frameworks: Frameworks Experience by Industry. Wiley & Sons,
New York, 1999.

Institute for Software Integrated Systems. The ACE ORB (TAO).
www.dre.vanderbilt.edu/TAO/, Vanderbilt University.

V.E. Itkin. On Partial and Mixed Program Execution. In Program Optimization
and Transformation, pages 17-30. CCN, 1983. (In Russian).

Mahesh Jayaram and Ron Cytron. Efficient Demultiplexing of Network Packets
by Automatic Parsing. In Proceedings of the Workshop on Compiler Support
for System Software (WCSSS 96), University of Arizona, Tucson, AZ, February
1996.

N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Englewood Cliffs, NJ: Prentice Hall, 1993.

Kamen Yotov and Xiaoming Li and Gan Ren et.al. A Comparison of Empirical
and Model-driven Optimization. In Proceedings of ACM SIGPLAN conference
on Programming Language Design and Implementation, June 2003.

Arvind S. Krishna, Douglas C. Schmidt, Raymond Klefstad, and Angelo Cor-
saro. Towards Predictable Real-time Java Object Request Brokers. In Proceed-

ings of the 9th Real-time/Embedded Technology and Applications Symposium
(RTAS), Washington, DC, May 2003. IEEE.

Arvind S. Krishna, Emre Turkay, Aniruddha Gokhale, and Douglas C. Schmidt.
Model-Driven Techniques for Evaluating the QoS of Middleware Configurations
for DRE Systems. In Proceedings of the 11th IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 180-189, San Francisco, CA,
March 2005.

Arvind S. Krishna, Cemal Yilmaz, Adam Porter, Atif Memon, Douglas C.
Schmidt, and Aniruddha Gokhale. Distributed Continuous Quality Assurance
Process for Evaluating QoS of Performance Intensive Software. Studia Infomat-
ica Unwversalis, 4, March 2005.

153

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

John Lakos. Large-scale Software Development with C++. Addison-Wesley,
Reading, Massachusetts, 1995.

Akos Ledeczi, Arpad Bakay, Miklos Maroti, Peter Volgysei, Greg Nordstrom,
Jonathan Sprinkle, and Gabor Karsai. Composing Domain-Specific Design En-
vironments. IEEE Computer, pages 44-51, November 2001.

L. Lei, G.-H. Moll, and J. Kouloumdjian. A Deductive Database Architecture
Based on Partial Evaluation. SIGMOD Record, 19(3):24-29, September 1990.

DM Levine, P.P Ramsey, and R.K Schmidt. Applied Statistics for Engineers
and Scientists: using Microsoft Excel and MINITAB. Prentice Hall, 2001.

Tom Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley, Reading, Massachusetts, 1997.

J. Loyall, J. Gossett, C. Gill, R. Schantz, J. Zinky, P. Pal, R. Shapiro, C. Ro-
drigues, M. Atighetchi, and D. Karr. Comparing and Contrasting Adaptive
Middleware Support in Wide-Area and Embedded Distributed Object Appli-

cations. In Proceedings of the 21st International Conference on Distributed

Computing Systems (ICDCS-21), pages 625—634. IEEE, April 2001.

Chenyang Lu, John A. Stankovic, Gang Tao, and Sang H. Son. Feedback
Control Real-Time Scheduling: Framework, Modeling, and Algorithms. Real-
Time Systems Journal, 23(1/2):85-126, July 2002.

Silvano Maffeis. The Object Group Design Pattern. In Proceedings of the 1996
USENIX Conference on Object-Oriented Technologies, Toronto, Canada, June
1996. USENIX.

Renaud Marlet, Scott Thibault, and Charles Consel. Efficient Implementa-
tions of Software Architectures via Partial Evaluation. Automated Software
Engineering: An International Journal, 6(4):411-440, October 1999. Available
from: citeseer.csail.mit.edu/marlet99efficient.html.

Mats Bjorkman and Per Gunningberg. Locking Strategies in Multiprocessor
Implementations of Protocols. Transactions on Networking, 3(6), 1996.

Steven McCanne and Van Jacobson. The BSD Packet Filter: A New Archi-
tecture for User-level Packet Capture. In Proceedings of the Winter USENIX
Conference, pages 259-270, San Diego, CA, January 1993.

Atif Memon, Adam Porter, Cemal Yilmaz, Adithya Nagarajan, Douglas C.
Schmidt, and Bala Natarajan. Skoll: Distributed Continuous Quality Assur-
ance. In Proceedings of the 26th IEEE/ACM International Conference on Soft-
ware Engineering, Edinburgh, Scotland, May 2004. IEEE/ACM.

154

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Microsoft Corporation. Microsoft NET Development.
msdn.microsoft.com/net/, 2002.

Jeffrey C. Mogul, Richard F. Rashid, and Michal J. Accetta. The Packet Filter:
an Efficient Mechanism for User-level Network Code. In Proceedings of the 11t
Symposium on Operating System Principles (SOSP), November 1987.

Erich M. Nahum, David J. Yates, James F. Kurose, and Don Towsley. Per-
formance Issues in Parallelized Network Protocols. In Proceedings of the 1%
Symposium on Operating Systems Design and Implementation. USENIX Asso-
ciation, November 1994.

S. Nimmagadda, C. Liyanaarnchchi, A. Gopinath, D. Niehaus, and A. Kaushal.
Performance Patterns: Automated Scenario-Based ORB Performance Evalua-
tion. In Conference on Object Oriented Technologies and Systems, pages 1528,
San Diego, CA, 1999.

Object Management Group. Lightweight CCM RFP, realtime/02-11-27 edition,
November 2002.

Object Management Group. Real-time CORBA Specification, OMG Document
formal/02-08-02 edition, August 2002.

Object Management Group. The Common Object Request Broker: Architecture
and Specification, 3.0.2 edition, December 2002.

Object Management Group. Deployment and Configuration Adopted Submis-
sion, OMG Document ptc/03-07-08 edition, July 2003.

Carlos O’Ryan, Fred Kuhns, Douglas C. Schmidt, Ossama Othman, and Jeff
Parsons. The Design and Performance of a Pluggable Protocols Framework for
Real-time Distributed Object Computing Middleware. In Proceedings of the
Middleware 2000 Conference. ACM/IFIP, April 2000.

David L. Parnas. A Rational Design Process: How and Why to Fake it. IEEE
Transactions on Software Engineering, February 1986.

Adam Porter and Richard Selby. Empirically Guided Software Development
Using Metric-Based Classification Trees. IEEE Software, March 1990.

C. Pu, H. Massalin, and J. Ioannidis. The Synthesis Kernel. Computing Sys-
tems, 1(1):11-32, Winter 1988.

Calton Pu, Tito Autery, Andrew Black, Charles Consel, Crispin Cowan,

Jonathan Walpole Jon Inouye, Lakshmi Kethana, and Ke Zhang. Optimistic
Incremental Specialization: Streamlining a Commercial Operating System. In

155

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

Symposium of Operating System Principles, Copper Mountain Resort, Col-
orado, December 1995.

Irfan Pyarali, Carlos O’Ryan, Douglas C. Schmidt, Nanbor Wang, Vishal
Kachroo, and Aniruddha Gokhale. Applying Optimization Patterns to the
Design of Real-time ORBs. In Proceedings of the 5 Conference on Object-
Oriented Technologies and Systems, pages 145-159, San Diego, CA, May 1999.
USENIX.

Irfan Pyarali, Carlos O’Ryan, Douglas C. Schmidt, Nanbor Wang, Vishal
Kachroo, and Aniruddha Gokhale. Using Principle Patterns to Optimize Real-
time ORBs. IEEE Concurrency Magazine, 8(1), 2000.

Irfan Pyarali and Douglas C. Schmidt. An Overview of the CORBA Portable
Object Adapter. ACM StandardView, 6(1), March 1998.

Irfan Pyarali, Douglas C. Schmidt, and Ron Cytron. Techniques for Enhancing
Real-time CORBA Quality of Service. IEEE Proceedings Special Issue on Real-
time Systems, 91(7), July 2003.

Tom Ritter, Marc Born, Thomas Unterschiitz, and Torben Weis. A QoS Meta-
model and its Realization in a CORBA Component Infrastructure. In Proceed-
ings of the 36" Hawaii International Conference on System Sciences, Software

Technology Track, Distributed Object and Component-based Software Systems
Minitrack, HICSS 2003, Honolulu, HW, January 2003. HICSS.

Richard J. Rodger. Jostraca: a Template Engine for Generative Programming.
In ECOOP 2002 Workshop on Generative Programming. Springer Verlag, 2002.

Wendy Roll. Towards Model-Based and CCM-Based Applications for Real-
Time Systems. In Proceedings of the International Symposium on Object-
Oriented Real-time Distributed Computing (ISORC), Hakodate, Hokkaido,
Japan, May 2003. IEEE/IFIP.

Matthew Rutherford and Alexander L. Wolf. A Case for Test-Code Genera-
tion in Model-Driven Systems. In International Conference on Generative Pro-
gramming and Component Engineering (GPCE) 2003, Erfurt Germany. ACM
SIGPLAN SIGSOFT, September 2003.

C. Sakama and H. Itoh. Partial Evaluation of Queries in Deductive Databases.
New Generation Computing, 6(2,3):249-258, 1988.

Sunil Saxena, J. Kent Peacock, Fred Yang, Vijaya Verma, and Mohan Krishnan.
Pitfalls in Multithreading SVR4 STREAMS and other Weightless Processes. In
Proceedings of the Winter USENIX Conference, pages 85-106, San Diego, CA,
January 1993.

156

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

88

[89]

Richard E. Schantz and Douglas C. Schmidt. Middleware for Distributed Sys-
tems: Evolving the Common Structure for Network-centric Applications. In
John Marciniak and George Telecki, editors, Encyclopedia of Software Engi-
neering. Wiley & Sons, New York, 2002.

Douglas Schmidt and Steve Vinoski. Comparing Alternative Programming
Techniques for Multi-threaded CORBA Servers: Thread-per-Object. C++ Re-
port, 8(7), July 1996.

Douglas Schmidt and Steve Vinoski. Comparing Alternative Programming
Techniques for Multi-threaded CORBA Servers: Thread-per-Request. C++
Report, 8(2), February 1996.

Douglas Schmidt and Steve Vinoski. Comparing Alternative Programming
Techniques for Multi-threaded CORBA Servers: Thread Pool. C++ Report,
8(4), April 1996.

Douglas C. Schmidt. GPERF: A Perfect Hash Function Generator. In Proceed-
ings of the 2 C++ Conference, pages 87102, San Francisco, California, April
1990. USENIX.

Douglas C. Schmidt and Stephen D. Huston. C++ Network Programming,
Volume 1: Mastering Complexity with ACE and Patterns. Addison-Wesley,
Boston, 2002.

Douglas C. Schmidt and Stephen D. Huston. C++ Network Programming, Vol-
ume 2: Systematic Reuse with ACFE and Frameworks. Addison-Wesley, Reading,
Massachusetts, 2002.

Douglas C. Schmidt, Vishal Kachroo, Yamuna Krishnamurthy, and Fred
Kuhns. Applying QoS-enabled Distributed Object Computing Middleware to
Next-generation Distributed Applications. IEEE Communications Magazine,
38(10):112-123, October 2000.

Douglas C. Schmidt, David L. Levine, and Sumedh Mungee. The Design and
Performance of Real-Time Object Request Brokers. Computer Communica-
tions, 21(4):294-324, April 1998.

Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann.
Pattern-Oriented Software Architecture: Patterns for Concurrent and Net-
worked Objects, Volume 2. Wiley & Sons, New York, 2000.

David C. Sharp. Reducing Avionics Software Cost Through Component Based
Product Line Development. In Proceedings of the 10th Annual Software Tech-
nology Conference, April 1998.

157

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

David C. Sharp. Avionics Product Line Software Architecture Flow Policies.
In Proceedings of the 18th IEEE/AIAA Digital Avionics Systems Conference
(DASC), October 1999.

David C. Sharp and Wendy C. Roll. Model-Based Integration of Reusable
Component-Based Avionics System. In Proc. of the Workshop on Model-Driven
Embedded Systems in RTAS 2003, May 2003.

Monchai Sopitkamol and Daniel A. Menasce. A Method for Evaluating the Im-
pact of Software Configuration Parameters on E-Commerce Sites. In Proceed-
ings of the 2005 Workshop on Software and Performance, Palma de Mallorca,
Spain, July 2005.

Sun Microsystems. RPC: Remote Procedure Call Protocol Specification. Tech-
nical Report RFC-1057, Sun Microsystems, Inc., June 1988.

Sun Microsystems. JavaT™ 2 Platform Enterprise Edition.
java.sun.com/j2ee/index.html, 2001.

Janos Sztipanovits and Gabor Karsai. Model-Integrated Computing. [EEE
Computer, 30(4):110-112, April 1997.

Clemens Szyperski. Component Software—Beyond Object-Oriented Program-
ming. Addison-Wesley, Santa Fe, NM, 1998.

David L. Tennenhouse. Layered Multiplexing Considered Harmful. In Proceed-
ings of the 1%t International Workshop on High-Speed Networks, May 1989.

P. Thiemann and M. Sperber. Program Generation With Class. In M. Jarke,
K. Pasedach, and K. Pohl, editors, Informatik’97, Aachen, Germany, September
1997. Berlin: Springer-Verlag, 1997.

Emre Turkay, Aniruddha Gokhale, and Bala Natarajan. Addressing the Middle-
ware Configuration Challenges using Model-based Techniques. In Proceedings
of the 42nd Annual Southeast Conference, Huntsville, AL, April 2004. ACM.

Todd Veldhuizen. Using C++ Template Metaprograms. C++ Report, 7(4):36—
34, 1999.

Andreas Vogel, Brett Gray, and Keith Duddy. Understanding any IDL-Lesson
one: DCE and CORBA. In P. Honeyman, editor, Proceedings of Second In-
ternational Workshop on Services in Distributed and Networked Environments,
Los Alamitos, CA, 1996. IEEE Computer Society Press. In Press.

Nanbor Wang, Chris Gill, Douglas C. Schmidt, and Venkita Subramonian. Con-
figuring Real-time Aspects in Component Middleware. In Proc. of the Inter-
national Symposium on Distributed Objects and Applications (DOA’04), Agia

158

103]

[104]

[105]

[106]

[107]

Napa, Cyprus, October 2004.

Nanbor Wang, Douglas C. Schmidt, Aniruddha Gokhale, Craig Rodrigues, Bal-
achandran Natarajan, Joseph P. Loyall, Richard E. Schantz, and Christopher D.
Gill. QoS-enabled Middleware. In Qusay Mahmoud, editor, Middleware for
Communications, pages 131-162. Wiley and Sons, New York, 2003.

Tan H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations. Morgan Kaufmann, 1999.

M. Yuhara, B. Bershad, C. Maeda, and E. Moss. Efficient Packet Demultiplex-
ing for Multiple Endpoints and Large Messages. In Proceedings of the Winter
Useniz Conference, January 1994.

C. Zhang and H. Jacobsen. Re-factoring Middleware with Aspects. IEEE
Transactions on Parallel and Distributed Systems, 14(11):1058-1073, Nov 2003.

R. Zhang, C. Lu, T. Abdelzaher, and J. Stankovic. Controlware: A Middleware
Architecture for Feedback Control of Software Performance. In Proceedings of
the International Conference on Distributed Systems 2002, July 2002.

159

