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CHAPTER 1 – INTRODUCTION 
 

 
Cells are dynamic biological systems that require the coordinated activity of multiple gene 

products for growth and survival. With the advent of next-generation sequencing, bioinformatics 

methods have been developed to unravel gene function relationships, however most methods utilize 

steady state sequence data. The decreased cost of sequencing in recent years has made it feasible to 

obtain multi-tissue sequence data from the same patient 2-3. This means that samples from diseased 

and adjacent normal tissue can both be sequenced and the patient specific alterations that caused a 

transition to the disease state can be analyzed. It is currently unknown how best to integrate these 

multi-tissue data sets and what unique information can be extracted.     

Co-expression network analysis is a common technique used for gene function prediction. 

Previous studies have suggested that networks constructed using the ratio of values can offer 

performance improvement 4-5. Using ratios to construct a network is one way to integrate multi-

tissue information; however, the interpretation of these networks is slightly different than 

traditional co-expression networks. Ratio networks capture coordinated change and I hypothesize 

that these networks will be more functionally relevant since the edges represent alterations that 

influenced deviations from the normal state. A systematic study of the utility of ratio-based co-

expression networks applied to cancer data has not been performed. A common method to evaluate 

the utility of a co-expression network is to test for the enrichment of functionally similar edges, 

which can be accomplished using semantic similarity scores6.  

Semantic similarity is a knowledge driven approach used to quantify the relationship between 

terms of an ontology7.  Once term-wise similarity score have been computed, they can be used to 

evaluate the performance of co-expression networks 6,8. Several methods use these scores to derive 

meaning from large high-dimensional NGS data sets with applications that include: gene function 

prediction, validation of gene product interactions, and gene product localization prediction7-9. 

However, calculating similarity scores is computational intensive 9-10. Since every score can be 

computed independently, it is a fine-grained parallel problem and I hypothesize that implementing 

the scoring algorithms on a GPU will be orders of magnitude faster than equivalent CPU 

approaches. 

Here, I develop a GPU implementation of a semantic similarity measure then use the scores to 

evaluate the performance of cancer type specific ratio-based co-expression networks compared to 

tumor and consensus tumor networks. 
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CHAPTER 2 – BACKGROUND 
 
 

2.1 Semantic Similarity  
 

The gene ontology (GO) project provides a vocabulary of terms that describe the properties of 

gene products11. It is organized as a directed acyclic graph, which means that links connecting 

terms are directionally distinct and the GO structure does not contain a set of links that form a loop 
11-12. In other words, if A and B are terms then (A à B) is different from (A ß B), and if (A à B) 

and (B à C) both exist then (C à A) cannot exist. GO is organized as three separate sub-

ontologies that describe specific features within a living system. The biological process (BP) sub-

ontology terms describe the biological objectives to which gene products contribute.  The 

molecular function (MF) sub-ontology terms describe the biochemical activity of gene products. 

The cellular function (CC) sub-ontology terms describe locations within the cell where gene 

products are active11-13. Semantic similarity measures are used to quantify how similar one GO term 

is to one another8. 

There are three major approaches used to define GO term-wise semantic similarity: path- 

(edge-) based, information content (IC) based, and a hybrid of both7-8. The earliest approaches were 

path-based; these measures defined similarity based on the path from the root term of the ontology 

to the term of interest. A major drawdown of path-based measures is a lack of specificity since 

terms at the same level within the ontology are given identical scores14. Information content-based 

methods were introduced next; these approaches borrow concepts from information theory to 

define similarity. More specifically, these methods define the information stored within a term as 

the negative log of the frequency with which the term is annotated. The basic idea is that a sparsely 

annotated term will have higher information content because that term is more specific15. For 

example, if one GO term only has five gene annotations then it is more specific, and has more 

information, than the root term which might have several thousand gene annotations. If two terms 

have a sparsely annotated term as a common ancestor then the two terms are likely very similar to 

one another.  

Since a single gene can be annotated to multiple terms within GO, different combination 

methods are required to produce gene-wise similarity scores. Just as there are different term-wise 

semantic similarity scoring methods there are different methods of combining term-wise scores 

with the optimal method being condition specific14.  

Once term- and gene-wise similarity scores are generated they can be used in many 

applications. For example, they can be used to validate proposed protein-protein interactions with 

the idea being that gene products that interact are likely to be involved in similar biological 
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processes and active at similar parts within the cell, that is, they should have high semantic 

similarity using the biological process and cellular component sub-ontologies7. These scores can 

also be used to assess the quality of co-expression networks where higher quality networks will be 

enriched with edges of higher gene-wise semantic similarity6.  

 
2.2 GPU Computing 

 
Computer programs are typically written to execute on a central processing unit (CPU) 

although programs can also be written to execute on a graphics processing unit (GPU)16-17. 

Sometimes implementing a solution on a GPU can result in dramatic performance improvements18. 

The main difference between a CPU and a GPU is the underlying computing architecture. A greater 

portion of a graphic processing unit is composed of arithmetic logic units (ALUs) and less space is 

allocated for control logic and caching; both of which are emphasized on a CPU16. More ALUs 

mean that many arithmetic calculations can occur in parallel and result in a potential performance 

boost.  

Previous studies have shown that GPUs can be used effectively in bioinformatics because of 

the nature of the problems being solved 18-20. A key attribute of the ideal problem is that the 

computational workload can be broken up into independent parts, that is, they display fine-grained 

parallelism. Since computing semantic similarity score can be done in parallel I hypothesize that a 

GPU based approach will perform better than CPU based approach.  

 
2.3 Co-expression Network Analysis 

 
A network consists of a collection of nodes with links connecting one node to another21. The 

network is a flexible data structure since the nodes and links of a network can represent any general 

entity and relationship22-25. Networks are used extensively in bioinformatics research and different 

types of networks are constructed depending on the data type used6. Some commonly studied 

biological networks include: protein-protein interaction networks, metabolic processing networks, 

and gene co-expression networks27-29. 

Two key applications of co-expression network analysis include: 1) to suggest the biological 

process a gene may be involved in using functional enrichment and 2) to find novel genes that may 

be part of a specific biological process26. These applications rely on a key assumption of co-

expression network analysis known as the guilt by association (GBA) principle. The GBA principle 

states that genes that are co-expressed likely have a functional relationship28.  

There are many ways to construct a co-expression networks, however, all construction methods 

follow a similar pattern. First, a similarity measure is chosen to quantify the relationship between 
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expression patterns. Common co-expression similarity measures include: spearman correlation, 

pearson correlation, and mutual information. Once pairwise similarity scores are computed you 

must determine whether two genes should be considered co-expressed. The simplest approach is to 

use a numerical cutoff where all gene pairs with a score higher than the threshold are considered 

co-expressed. Other approaches include clustering, using random permutations of the expression 

matrix to determine a significance threshold, and Bayesian approaches. Different approaches 

perform better under different conditions, but the best method is often determined empirically. 

Once a network is constructed, the performance of the network can be evaluated based on how the 

quality of the edges it identifies as being co-expressed. One method of doing this is to use semantic 

similarity to assess whether the edges identified are similar based on their gene-wise score.  
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CHAPTER 3 – METHODS 
 

 
GPU Semantic Similarity Tool Implementation GPUGOSim is an open-source command line 

utility I developed using C++11 and the CUDA 7.0 software platform. The tool was developed 

using the Maxwell compute architecture. The Resnik scoring method (see below) was implemented 

and used in this study.  

 
mRNA Expression Data Log base 2 transformed gene-level mRNA expression data was 

downloaded from The Cancer Genome Atlas (TCGA) using the Firehose web portal. All data sets 

analyze were generated using Illumina sequencing technology and normalized with the RSEM 

algorithm29. 

 
Computing Functional Similarity Between Gene Pairs The Gene Ontology (GO) structure and 

annotation data was downloaded July 2017. To ensure high quality GO annotations IEA and ND 

annotations were excluded. The Resnik semantic similarity method was used to compute term wise 

scores30. Given two GO terms, x and y, the Resnik scoring method is defined as follows: 

 

 
 
where P (x, y) represents the set of common ancestor terms including the root term of the given sub 

ontology. After defining term wise similarity scores, functional similarity was generated using the 

average combination method.  

 

 
 

where go1 and go2 represent the set of GO terms that have genes g1 and g2 annotated, and m and n 

represent the total number of go terms with g1 and g2 annotations. After computing functional 

similarity scores for all gene pairs, the top 25% scoring gene pairs were classified as similar and the 

bottom 25% scoring gene pairs were classified as dissimilar. 

 
 Co-expression Network Construction The NetSAM R package31 was used to construct all co-

expression networks. The rank method, a K-means clustering approach, was used to construct all 

networks. The optimal K for each network was determined by varying K from 0.1%×D to 1%×D, 

where D is the number of genes in the data set. The K that produced the highest functional 

relevance (see below) while producing less than 15% of nodes with degree 1 was selected for 
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downstream analysis.  

 
Computing Functional Relevance Of Co-expression Network Given pairwise gene similarity 

scores, the functional relevance of a co-expression network was defined as follows: 

 

 
 
where P ( S | N ) represent the frequency of similar gene pairs in the network, P ( D | N ) represents 

the frequency of dissimilar gene pairs in the network, P(S) represent the frequency of similar genes 

pairs, and P(D) represent the frequency of dissimilar gene pairs.  

 
Gene Function Prediction Using Random Walk With Restart Gene function prediction was 

performed using the random walk with restart algorithm32. Briefly, this procedure takes a network, 

n, and a set of m seed genes (m > 0) that exists within the network as input and outputs a priority 

score for every other gene in the network using the following iterative procedure: 

 
where p0 represents the initial priority vector that contains scores of all genes in the network, pt  and 

pt+1 represent the priority vectors at time t and t+1 respectively, W represents the column 

normalized adjacency matrix of the network, and r represents the restart frequency. Initially, all 

seed genes are given uniform probability and every other gene is given a probability of 0. This 

procedure is repeated until Σ | pt+1  - pt | < 1 x 10-6. The final vector will contain priority scores with 

higher scores implying a closer relationship to the seed genes based on the topology of the 

network32.  

The predictive ability of the scores was assessed using GO BP terms. To compute the AUC 

associated with a single GO term a gold-standard positive gene set was defined as those genes 

annotated to the term and appearing within the network and a gold-standard negative gene set was 

defined as the other genes in the network. Prediction was done using five-fold cross validation 

where four of the five equally sized subgroups were combined as the training set to predict the 

remaining subgroup. AUC scores were computed using the scikit-learn toolkit.    

 
Consensus co-expression network construction I explored the following two consensus 

construction techniques: Method 1) Pearson’s correlation coefficients were first computed for all 

gene pairs of each cancer type. Gene pairs were then binned based on their correlation coefficient, 
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ranging from -1.0 to 1.0 in 0.1 increments. The log likelihood of each bin for each cancer type was 

then computed as follows: 

 

 
 

where P ( S | Nij ) represents the frequency of similar gene pairs in the network of cancer type i and 

correlation bin j, P ( D | Nij ) represents the frequency of dissimilar gene pairs in the network of 

cancer type i and correlation bin j, P(S) represent the frequency of similar genes pairs, and P(D) 

represent the frequency of dissimilar gene pairs.  

Each gene pair was then given a score based on the LLR of the bin it fell into across all the 

cancer types. For example, the score of gene pair k would be computed according to the following 

formula: 

 
where i represents the cancer data set index and j represents whichever bin gene pair k appears. 

Method 2) Compute co-expression networks using clustering approach described above for all 

cancer data sets available. Next, select those edges that appear in x number of cancer types. The 

optimal x was chosen such that the number of nodes with a single edge was kept under 15%. In this 

study the optimal x was 4.   
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CHAPTER 4 – RESULTS 
  

 
4.1 Performance comparison of GPU and CPU semantic similarity tools 

 
Table 1 summarizes the term-wise running times of several semantic similarity tools. 

GOSemSim had the worst performance with the 10M term calculation and 100M term calculation 

failing to complete within 24 hours. The tools A-DaGO-Fun and SML had similar term-wise 

performance until the 10M term calculation. At this point, the SML tool began to display superior 

performance. The GPU based tool I’ve developed, called GPUGOSim, had the best overall term-

wise performance with the difference becoming more exaggerated as the number of terms 

increased. For the 100M term calculation, GPUGOSim performed approximately 3x faster than the 

nearest competitor.  

Table 2 summarizes the gene-wise running times of the same semantic similarity tools. Once 

again, the GOSemSim tool had the worst performance compared to the other tools while the GPU 

based tool performed the best. As the number of calculations increased the difference became more 

exaggerated. The 100M term running time of the GPU approach completed more than 6x faster 

than the nearest competitor.  

 
4.2 Summary of mRNA profiling data sets 

 
Table 3 summarizes the number of tumor, normal, and matched tumor normal samples for each 

cancer type considered in this study. Only cancer types with more than 20 samples were used when 

comparing tumor- and ratio-based co-expression networks. However, all cancer types were 

considered during construction of the tumor consensus network.  

 
4.3 Comparing of tumor- and ratio-based co-expression network structure 

 
The networks produced displayed good coverage with all networks containing greater than 

10,000 nodes (Figure 1). There was also a high level of overlap between the nodes that appeared in 

the tumor network compared to the nodes that appear in the ratio-based networks. The percentage 

of overlapping nodes was always above 70%. The number of edges appearing within the network is 

shown in Figure 2. There was consistent small overlap between network edges suggesting that each 

type of network is capturing different functional relationships.   

 

 

 
4.4 Functional relevance of ratio-, tumor-, and consensus networks 
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The functional relevance of all co-expression networks is shown in Figure 3. Although most of 

the top performing networks were ratio-based (9 / 12), the scoring differences were not 

significantly different based on the Wilcoxon sign rank test (p ≈ 0.1099). The functional relevance 

of both consensus networks (see methods) were computed, however, the method that selected 

frequently appearing edges produced a higher score (log(LLR) =1.63) compared to the other 

approach (log(LLR) = 1.42). The consensus network producing the highest score was chosen for all 

downstream analysis.  

 
4.5 Comparing gene function prediction ability of ratio- versus tumor-networks and consensus- 

versus tumor networks 
 

The AUCs of ratio- versus tumor- networks are shown in Figure 5. The ratio-based networks 

performed slightly better than the tumor networks with 7/12 of the networks having a majority of 

term AUCs above the 50% line. Furthermore, the difference between the number of top performing 

(AUC > 0.7) ratio- and tumor- terms was significant based on the Wilcoxon sign rank test (p ≈ 

0.0111).  

The AUCs of the same consensus network versus tumor- networks is shown in Figure 6. The 

consensus network performed consistently worse than the tumor networks with 10/12 of the 

networks having most AUCs below the 50% line, additionally, the difference between the top 

performing (AUC > 0.80) consensus and tumor-terms was not significant (Wilcoxon sign rank test 

p ≈ 0.2298)  

 

4.6 Examining the top performing ratio- and consensus- network terms 
 

The top performing terms (AUC > 0.80) of each network type were examined to determine if 

any processes were consistently better predicted using a particular type of network. The top 

performing terms identified using the ratio networks were related mainly to DNA damage repair, 

with the highest frequency term related to mitotic spindle organization. 

The top performing terms identified using the consensus network were related to different 

forms of nucleus activity and different forms of cell signaling. The highest frequency term 

identified was related to protein import into the nucleus.
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CHAPTER 5 – DISCUSSION 

  
 

Using the CUDA parallel computing platform, we have developed the first tool capable of 

computing common semantic similarity measures on a GPU. Previous studies have focused on 

developing high performance multi-threaded solutions10, but none to date have attempted to 

implement the algorithms on a GPU.  

The superior performance of our tool provides another example of the usefulness of GPU 

computing in bioinformatics tool development, and I believe future work may result in increased 

performance. Since only a single graphics card was used in this study, the data had to be split into 

chunks before execution. Scaling to multiple GPU cards will eliminate this problem and result in 

improved performance.  

Ratio based networks showed a modest improvement over tumor networks and the difference 

between the number of top performing terms was significant. However, whether ratio networks had 

better overall performance often depended on the cancer type. In certain cancer types the ratio-

based approach performed better than tumor networks by a wide margin (e.g. LUAD and KICH), 

while in others the difference was marginal. This suggests that the ratio approach could be 

beneficial in some cases, but not all. Many of the top performing terms identified using ratio 

networks were related to DNA damage repair, meaning that these networks could be useful in 

helping researcher predict gene relationships involved in these processes.  

A potential reason for the low performance of the ratio networks is that the genes were not 

filtered for variance in the normal expression vector. Low variance in the normal expression vector 

would cause the ratio and tumor results to be biased since you’d be dividing by a constant. Future 

work will explore whether selecting for highly variable normal expression leads to any 

performance improvement.  

In conclusion, the GPU tool developed represents a performance improvement over 

existing methods. However, ratio-based co-expression networks showed only a modest 

improvement in predictive capability compared to tumor networks.  
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APPENDIX 

 
Tables 1 – 3 

 
 
Table 1: Performance comparison of term wise semantic similarity score generation 
Tool Lang. 1K 10K 100K 1M 10M 100M 
GOSemSim R 1m57s 12m31s 2h14m11s 23h18m51s X X 
A-DaGO-Fun Python 0m02s 0m03s 0m12s 1m49s 13m52s X 
SML Java 0m09s 0m10s 0m11s 0m11s 1m22s 13m03s 
GPUGOSim C++  0m09s 0m09s 0m09s 0m13 0m23s 4m06s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2: Performance comparison of gene wise semantic similarity score generation 
Tool Lang. 1K 10K 100K 1M 10M 100M 
GOSemSim R 0m44s 6m26s 1h03m36s 16h33m13s X X 
A-DaGO-Fun Python 0m05s 0m26s 4m33s 31m56s 4h39m58s X 
SML Java 0m09s 0m10s 0m11s 0m53s 6m54s 1h08m30s 
GPUGOSim C++ 0m09s 0m09s 0m09s  0m14s 0m58s 10m23s 
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Table 3: Summary of TCGA mRNA profiling data sets 

 Tumor 
mRNA 

Normal 
mRNA 

Matched 
data 

Cancer Type Sample # Sample# Sample # 
ACC 79 0 0 

BLCA 408 19 19 
BRCA 1093 112 112 
CESC 304 3 3 
CHOL 36 9 9 
COAD 285 41 26 
DLBC 48 0 0 
ESCA 184 11 11 
GBM 153 5 0 
HNSC 520 44 43 
KICH 66 25 25 
KIRC 533 72 72 
KIRP 290 32 32 
LGG 516 0 0 
LIHC 371 50 50 
LUAD 515 59 58 
LUSC 501 51 51 
MESO 87 0 0 

OV 303 0 0 
PAAD 178 4 4 
PCPG 179 3 3 
PRAD 497 52 52 
READ 94 10 6 
SARC 259 2 2 
SKCM 103 1 0 
STAD 415 35 32 
TGCT 150 0 0 
THCA 501 59 59 
THYM 120 2 2 
UCEC 176 24 7 
UCS 57 0 0 
UVM 80 0 0 
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Figures 1 – 7 

 
 
 
Figure 1 - Cancer type specific number of network nodes 

 
 
 
 
 
 
 
Figure 2 - Cancer type specific number of network edges 
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Figure 3 - Functional relevance of co-expression networks 
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Figure 4 - Gene function prediction using tumor- and ratio-based networks 
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Figure 5 - Gene function prediction using tumor- and conserved network 
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Figure 6 - Ratio-based network top performing terms 
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Figure 7 - Conserved network top performing terms 
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