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CHAPTER I  

 

INTRODUCTION 

 

The functions of the heart have intrigued scientists for over 2000 years.  In 

ancient times, the heart was thought of as the body’s soul and even today is 

associated with human emotion.  However, since 1628 when William Harvey 

described the circulatory system we have come to understand that the heart is an 

intricate biological pump that beats without pause for life (Bodi et al., 2005).  It is 

estimated that the human heart beats over two billion times.  Each beat is a 

result of the integration of ionic current resulting in mechanical output, both of 

which must be transmitted precisely in time and space.  In 1883 Sydney Ringer 

discovered that calcium (Ca2+) is a critical mediator of this process later termed 

excitation-contraction coupling (Ringer, 1883).   

Heart disease is the number one cause of death in the United States 

(Thom et al., 2006).  There are many forms of heart disease including heart 

failure and arrhythmias.  One underlying theme in heart disease and many other 

diseases is disrupted Ca2+ homeostasis.  Calcium is a charge carrier and 

universal mediator of diverse cellular processes.  In cardiac myocytes, these 

processes include excitation-contraction coupling, gene transcription and 

apoptosis.  Thus, intracellular Ca2+
 operates core functions ranging from 

contraction that is required for all vertebrate life, to programmed cell death.  Ca2+ 

enters cardiac myocytes through L-type Ca2+ channels (LTCC) where it activates 
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signaling molecules such as the multifunctional Ca2+/calmodulin dependent 

protein kinase II (CaMKII).  CaMKII is one of many specialized proteins poised to 

respond to Ca2+ signaling in cardiac myocytes.  Growing evidence has linked 

CaMKII signaling events to normal and pathological conditions in the heart.   

 

An overview of cardiac physiology  

 

Gross cardiac anatomy 

The heart is a muscle; its function is to contract, creating a pressure 

gradient to pump blood throughout the circulatory system.  Mammals have a 

four-chambered heart consisting of two atria and two ventricles (Figure 1).  The 

right atria collects oxygen depleted blood from the systemic circulatory system 

and transfers it to the right ventricle.  The right ventricle contracts sending blood 

through the pulmonary arteries to the lungs where the blood becomes 

oxygenated.  The oxygen rich blood returns to the left atria and is transferred to 

the left ventricle.  The left ventricle comprises a majority of the mass of the heart.  

Upon contraction, it is responsible for pumping blood throughout the organs of 

the body.  

After centuries of study, the organization of myoctyes within the ventricles 

still remains controversial (Anderson et al., 2005; Woodcock and Matkovich, 

2005).  The heart as a muscle is distinct from skeletal muscle in that it has no 

origin or insertion.  It is formed from blood vessels during development. The 

architecture of the left ventricle wall consists of three layers.  From outside to 
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inside are the epicardium, myocardium and endocardium (Anderson et al., 2005; 

Woodcock and Matkovich, 2005).  It is accepted that the layers of cells within the 

ventricles are arranged in a pattern that enables the left ventricle to contract in a 

twisting manner.  The epicardium and myocardium are oriented at 90° relative to 

one another and at 45° relative to the equatorial axis.  The cells within the 

myocardium are oriented parallel to the equatorial axis of the heart (Anderson et 

al., 2005; Woodcock and Matkovich, 2005).   

 

Structure of a myocyte 

Cardiac myocytes are large multinucleated cells that are rich in 

mitochondria.  They are highly structured rectangular cells that are aligned in an 

orderly fashion to function as one contractile unit.  Cardiac myocytes directly 

interact with each other at each end of the cell and at various points along the 

long axis.  The sites of cell-cell contact form intercalated discs.  These discs are 

specialized structures that directly connect the cells and contain gap junctions, 

allowing passage of ions and peptides between cardiac myocytes.  They also 

function to enhance electrical conduction throughout the ventricle.  Further 

details about electrical conduction are discussed below (Ganong, 1999; 

Woodcock and Matkovich, 2005).
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Figure 1.  Anatomy of the heart and blood flow 
The diagram represents a cross section of the heart labeled with: the four 
chambers: right atrium, right ventricle, left atrium, left ventricle, valves and major 
blood vessels.  The arrows depict the flow of blood entering the right atria from 
the vena cava, passing through the atrioventricular valve into the right ventricle.  
From the right ventricle deoxygenated blood flows through the pulmonary artery 
to the lungs.  Blood becomes oxygenated and enters the left atrium from the 
pulmonary vein.  The blood flows through the left atrial ventricular valve into the 
left ventricle.  The left ventricle contracts, pumping blood through the aorta and 
the entire body.  (Modified from Wikipedia, September 2006) 
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Transverse tubules 

Adult mammalian cardiac myocytes have adapted structurally to convert 

an electrical impulse into a functional output in a timely manner.  Cardiac 

myocytes contain an elegant transverse-tubular (T-tubules) system that facilitates 

the process of E-C coupling.  The T-tubules are structural components that 

function to position proteins involved in Ca2+ cycling.  Among the proteins 

positioned within the T-tubules are the Na+/Ca2+ exchanger, Na+ channels and 

the LTCCs (Mohler et al., 2002).  Directly opposed to the LTCC on the 

sarcoplasmic reticulum (SR) are ryanodine receptors (RyR).  RyRs are large 

Ca2+ channels that function to regulate Ca2+ efflux from the SR.  The SR Ca2+ 

release constitutes a striking majority of the increase in intracellular Ca2+ 

concentration.  Ca2+ within the SR is buffered by calsequestrin and is thought to 

be positioned in a manner to enhance the efficiency of Ca2+ efflux (Knollmann et 

al., 2006).  Upon coordinated Ca2+ release via RyR the intracellular Ca2+ 

concentration reaches a threshold for activation of the contractile machinery 

(Song et al., 2005). 

 

Contractile machinery 

The function of a myocyte is to contract.  The contractile machinery of a 

cardiac myocyte consists of a Ca2+ sensor, Troponin C, a structural component, 

actin, and the enzyme myosin.  When the Ca2+ concentration increases to a 

sufficient level to bind to troponin C, this causes a conformational change in 

troponin C revealing an actin-binding site.  Binding of troponin C to actin leads to 
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a direct interaction of actin with myosin.  ATP bound to myosin is hydrolyzed and 

the power stroke by myosin leads to sliding of actin on myosin.  The sarcomere is 

shortened by about 10nm per power stroke.  The cumulative effect is cardiac 

myocyte shortening by about 10% of its diastolic length.  The process is reversed 

upon a decrease in intracellular Ca2+ concentration by Ca2+ uptake into the SR 

(Ganong, 1999).  

 

Electrical conduction in the heart 

Action potential (AP) propagation in the myocardium occurs via electrical 

conduction from cell to cell through gap junctions.  The firing of an AP in 

specialized cells is conducted by functional syncytia throughout the atria or 

ventricles.  The specialized myocytes involved in pacemaking are the Sino-Atrial 

node (SA node).  Other self-depolarizing cardiac myocytes include cells in the 

Atrial-Ventricular node (AV node) and Purkinje fibers.  The pace of the heart rate 

is determined by the fastest of these cells that are typically those in the SA node 

(Figure 2).  The AP then spreads throughout the ventricle via cell-cell contact to 

act as one functional unit. 

Precise timing of cardiac electrical conduction is necessary for cardiac 

contraction and therefore blood flow.  Alterations in the conduction lead to 

disease states, specifically arrhythmias.  As mentioned previously, regulation of 

the heart rate is mainly a function of the SA node.  The sympathetic nervous 

system can regulate the heart rate by direct innervation and hormonal release 

(epinephrine).  Parasympathetic neural activity decreases heart rate via 
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acetylcholine (Ganong, 1999).  Together these regulatory mechanisms establish 

the heart rate at rest and under stress. 

 

Cardiac disease 

The critical need for mechanical and therefore electrical spatio-temporal 

uniformity is apparent in most if not all forms of heart disease including cardiac 

arrhythmias, hypertrophy, and heart failure. Clinical treatment of these disease 

states has been challenging due to many factors including unknown causes of 

disease as well as adverse side effects of the current treatments.  Targeting 

cardiac arrhythmias is extremely challenging mainly because the underlying 

mechanism for arrhythmias is unknown although many factors including LTCC 

and CaMKII misregulation have been implicated. Three separate mechanisms 

are thought to cause ventricular arrhythmias:  re-entry, abnormal automaticity 

and triggered activity due to early-afterdepolarizations and delayed-

afterdepolarizations (Winslow et al., 2005).  Re-entry involves the depolarization 

of a region of the heart due primarily to alterations in the conductance pathway or 

conduction block.  Abnormal automaticity occurs when cells within the heart other 

than the SA node are initiating the AP.  Early-afterdepolarizations and delayed-

afterdepolarizations are action potentials that are membrane depolarizations 

occurring before the cell completely repolarizes or in between normal APs.  The 

treatment approaches taken are nonpharmacological (pacemakers, ablations etc) 

or pharmacological, although the options are limited and have not been proven to 

enhance mortality (Gilmour and Zipes, 2004).  For ventricular arrhythmias, 
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common therapeutic treatments include Na+ and K+ channel blockers.  These 

treatments are aimed at reducing the development of ventricular 

tachyarrhythmia’s.  Acceleration of ICa inactivation may be an important treatment 

strategy.  Targeting arrhythmias requires more specific drug targets. 

Heart failure is simply a condition in which the heart can’t pump enough 

blood to properly supply the body.  As the blood flow from the body to the heart 

backs up there is increased edema and overall congestion.  Treatment is 

typically aimed at the volume overload involved with chronic heart failure and 

therefore diuretics are used.  The use of angiotensin-converting enzyme (ACE) 

inhibitors which target angiotensin receptors, β blockers and aldosterone 

blockers are typical therapeutic approaches to treating congestive heart failure 

(Landmesser and Drexler, 2005).  The role of CaMKII in different cardiac disease 

states is addressed in later sections of this chapter. 

 

The Cardiac Action Potential 

 The cardiac AP varies slightly within the heart depending on the cell type.  

The separation of charge by the plasma membrane and the balance between 

intra- and extracellular ionic concentrations establish the membrane potential.  

This is maintained by selective permeability of specific ion channels, both 

passive and active.  The established gradient then creates an electrochemical 

driving force that, upon activation or opening of channels, allows ions to pass 

down the electrochemical gradient until either the channels close or the ion 

reaches its Nernst equilibrium potential (Hille, 2001).   
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Figure 2.  The electrical conduction system of the heart. 
A. The electrical impulse within the heart begins at the SA node.  It is conducted 
throughout the atria to the AV node.  A slightly delayed impulse is generated at 
the AV node and propagates through the purkinje fibers then throughout the 
ventricles as a functional syncytia. (Modified from Wikipedia, September 2006)  
B.  The five phases of the action potential of a single left ventricular myocyte.   
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The cardiac AP can be divided into five phases (Figure 2b).  In phase four, 

the resting phase, the membrane potential is about -90mV.  This is mainly due to 

the passive transport of K+ near its equilibrium potential.  Upon stimulation Na+ 

channels open, leading to the rapid depolarization of the plasma membrane.  In a 

ventricular myocyte, voltage-gated Na+ channels are activated to initiate the AP.  

The rapid depolarization of the sarcolemma activates a select group of K+ 

channels leading to an outward IK at phase 1.  At the same time, Na+ channels 

enter the inactive state and are therefore unable to open for a given period 

preventing back propagation of the AP.   During this time, LTCCs open leading to 

influx of Ca2+.   The delicate balance between Ca2+ influx and K+ efflux results in 

the plateau phase (phase 2) of the cardiac AP making it unique in comparison to 

APs of other excitable cells.  Ultimately, Ca2+ channels inactivate and the cell 

repolarizes completely (phase 3). 

 

Ca2+ homeostasis 

 

Intracellular Ca2+ can regulate multiple diverse physiological processes 

simultaneously, requiring the precise regulation of local and global Ca2+ 

concentrations.  This is achieved by grading Ca2+ influx through the plasma 

membrane, modulating Ca2+ release and reuptake into the SR, controlling Ca2+ 

efflux through Ca2+ pumps and exchangers and Ca2+ buffering by a multitude of 

Ca2+ binding proteins (Bers, 2002b; Hille, 2001).  Well established functions of 

Ca2+ in cardiac myocytes include enzyme activation (Maier and Bers, 2002),  
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Figure 3.  Voltage-gated Ca2+ channel dendogram. 
A.  A dendogram representing the conservation of amino acid sequence among 
the 10 known pore forming subunits of the VGCC complex.  They are divided into 
three classes based on homology.  The CaV 1 and 2 groups are high-voltage 
activated (HVA) and all are thought to directly associate with β subunits while the 
CaV3 group is composed of the low-voltage activated (LVA) class that do not 
associate with β subunits. 
B.  Four genes encoding VGCC β subunits and their relative tissue distribution 
are represented in this dendogram.  Any of the four isoforms can associate with 
the high-voltage activated class of α1 subunits and differentially modulate the 
biophysical properties of the channel. 
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Regulation of gene transcription (Muth et al., 2001) and activation of signaling 

molecules such as calmodulin (CaM- a small Ca2+ binding protein) (Pitt et al., 

2001; Zuhlke et al., 1999; Zuhlke et al., 2000).  CaMKII is a key CaM-dependent 

regulator of cardiac Ca2+ cycling (Maier and Bers, 2002; Wu et al., 2001a).  

Alterations in Ca2+ transients in cardiac myocytes lead to disease states including 

arrhythmias and apoptosis (Anderson, 2002; Anderson, 2004; Yang, 2006; Zhu 

et al., 2003). 

 

Voltage-Gated Calcium Channels (VGCC)  

 Voltage-gated Ca2+ channels are multimeric protein complexes that 

consist of a large pore-forming α1 subunit and are usually associated with 

accessory proteins such as β, α2δ, and γ depending on the α1 subunit and cell 

type (Catterall, 2000).  The VGCC act as gatekeepers for Ca2+ entry into many 

cell types including all excitable cells, endocrine cells and other specialized cell 

types.  Regulation of VGCC occurs at many levels and varies depending on the 

subunit composition.  The α1 subunit forms a pore that opens upon 

depolarization of the plasma membrane allowing Ca2+ to selectively flow down it’s 

electrochemical gradient into the cell.   

Ten genes have been identified that encode VGCCs α1 subunits 

(Catterall, 2000).  They are divided into three groups based on homology and 

within the groups by their pharmacological properties (Figure 3).  The high-

voltage activated Ca2+ channels include the CaV1 (L-type Ca2+ channels) and 

CaV2  (N, P/Q and R-type Ca2+ channels) groups that all form multimeric protein 
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complexes.  CaV3 (T-type Ca2+ channels) are low-voltage activated and vary in 

that they do not typically associate with a β subunit. The α1 subunit contains the 

necessary components for activation, inactivation, ion selectivity and drug 

interactions. The α1 subunit is a 170-240 kDa protein that contains 24 

transmembrane spanning α helices arranged in four homologous repeats (motifs 

I-IV). The loops connecting the motifs and the C- and N-termini are cytoplasmic, 

and are known to be important docking and regulatory sites within the α1 subunit 

(Anderson, 2001).    

    

a2δ subunit 

LTCC auxiliary subunits bind to α1 and regulate expression and functional 

properties.  The α2δ subunit is the product of a single gene.  The effects on 

channel kinetics are minor.  There are four known genes encoding the α2δ 

subunit (α2δ1-4).  α2δ is almost completely extracellular and may modulate gating 

effects of β.  There is little known about the in vivo function of the α2δ subunit 

compared to the α1 and β subunits (Brickley et al., 1995).  Some work using 

heterologous cell systems suggests that the α2δ subunit enhances surface 

expression of the Ca2+ channel complex and enhancing drug binding.  The 

protein product is cleaved into two separate proteins.  The α2 portion is an 

extracellular protein that is glycosylated.  It interacts directly with the extracellular 

portion of the α1 subunit.  The δ subunit is small containing one transmembrane 

domain.  The α2 and δ subunits bind to one another via disulfide bonds.   
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Figure 3. A schematic diagram of the VGCC complex. 
The α1 and β subunits of the VGCC complex are depicted.  Also displayed are 
the PKA phosphorylation sites on α1 and β. (modified from Catterall 2000)
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VGCC regulation 

Activation and inactivation of VGCCs are regulated by multiple mechanisms 

including via accessory proteins such as the β subunit.  For LTCC, and P/Q type 

Ca2+ channels it has been shown that Ca2+-dependent feedback via Ca2+/CaM  

enhances channel inactivation (Lee et al., 2000; Zuhlke et al., 1999; Zuhlke et al., 

2000).  CaM is a small Ca2+ binding protein containing four EF hand motifs each 

with different affinities for Ca2+ that regulates many Ca2+ processes.  

Posttranslational modifications of the proteins within the complex as well as 

regulation of protein association modify the biophysical properties of the LTCC.    

β adrenergic receptor activation has been shown to regulate LTCC by 

activation of adenylyl cyclase to enhance cAMP concentrations.  Increased 

cAMP leads to the release of A protein kinase (PKA) catalytic subunit and 

ultimately phosphorylation of the α1c subunit at Ser1928 or, in the absence of the 

C-terminal  portion of the α1c subunit, Ser478/9 of the β2a subunit (Bunemann et 

al., 1999; Gao et al., 1997a; Gerhardstein et al., 1999).  Recent publications 

suggest additional PKA sites may be the functionally relevant sites  

(Ganesan et al., 2006).  Furthermore, PKA regulation of the cardiac LTCC 

requires localization via A kinase anchoring protein (AKAP) (Gao et al., 1997b). 

 

Regulation of LTCC by β subunits    

There are four genes identified that encode for β, each consists of multiple 

splice variants and is expressed in a tissue specific manner (Figure 3b) (Perez-

Reyes et al., 1992).  The β subunit has multiple regulatory roles including 
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modulating the biophysical properties of the channel and acting as a molecular 

chaperone that enhances surface expression (Bichet et al., 2000; Birnbaumer et 

al., 1998; Gao et al., 1997b).  β2a causes enhanced ICa by acting as a chaperone 

for the α1 subunits, causes a hyperpolarizing shift in voltage-dependent 

activation, increases inactivation in whole cell recordings and increases LTCC 

open probability (Po) in single channel recordings (Bichet et al., 2000; Hersel et 

al., 2002).  The β isoforms exert a dominant effect when transfected in primary 

adult cardiac myocytes (Colecraft et al., 2002) and appear to be the "rate limiting" 

factor for LTCC expression in myocytes (Wei et al., 2000).  The regulation of 

whole cell calcium current (ICa) is β subunit isoform dependent with β2a ≈ β4 > β1b 

> β3.   The most common and well-characterized isoform in cardiac tissue is β2a 

which is the major focus of these studies.   

The β subunits are completely cytosolic.  The primary interaction occurs 

with the α1 subunit at the I-II linker domain.  Recent work disrupting the primary 

interaction between α and β suggests that secondary interactions are involved in 

regulating the voltage-dependent properties of the N-type Ca2+ channel whereas 

occupancy is necessary for enhanced channel trafficking by β (Butcher et al., 

2006; Leroy et al., 2005).  Other sites of interaction include the C-terminus of the 

CaM binding domains (Zhang et al., 2005a).  The α/β complexes of several β 

subunits bound to α-interacting domain peptides have been crystallized (Chen et 

al., 2004; Opatowsky et al., 2004; Van Petegem et al., 2004).  The crystal 

structure and sequence homology suggests that β subunits have two major 

structural domains, a shaker-homology 3 (SH3) domain and a guanylate kinase 
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like (GK) domain similar to those found in the membrane associated guanylate 

kinase (MAGUK) family of structural proteins (Takahashi et al., 2004; Takahashi 

et al., 2005).   

Phosphorylation of β2a in situ by PKA significantly enhances ICa in 

response to β adrenergic receptor stimulation.  Key PKA phosphorylation sites on 

β were identified using a mutagenesis approach (Gerhardstein et al., 1999).  

Mutation of serines 478 and 479 to alanine rendered ICa insensitive to PKA, in the 

presence of truncated α1 (lacking Ser 1928) (Bunemann et al., 1999).  Both 

CaMKII and PKA cause increases in LTCC openings, suggesting the possibility 

that they operate through a similar mechanism of β phosphorylation.  

 

CaMKII regulation of cardiac Ca2+ homeostasis 

CaMKII is a multifunctional kinase that can phosphorylate multiple target 

proteins sharing consensus motifs containing serine or threonine.  CaMKII is able 

to integrate changes in Ca2+ cycling at multiple cell membrane-delimited protein 

targets.  This includes regulation of Ca2+ entry into the cell throughLTCC, Ca2+ 

release from the intracellular sarcoplasmic reticulum (SR) stores through 

ryanodine receptors (RyR) and by SR Ca2+ uptake through the 

sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) (Anderson, 2005). 

CaMKII is a downstream effector of multiple signaling pathways activated under 

physiological and pathophysiological conditions (Figure 4).  CaMKII expression 

and activity are up-regulated in structural heart disease (Hoch et al., 1999) 

(Figure 5).  Multiple model systems have been utilized to study the role of  
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Figure 4.  CaMKII activation occurs upon increases in stimulation frequency, α 
and β adrenergic activation, increased action potential duration and potentially 
other currently undefined mechanisms. 
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Figure 5.  CaMKII binding and phosphorylation targets involved in cardiac Ca2+ 
cycling.    
A. Under physiological conditions CaMKII can interact with and regulate multiple 
partners involved in Ca2+ mobilization including the LTCC, RyR and IP3R.  
CaMKII can also phosphorylate PLB and potentially SERCA regulating Ca2+ 
reuptake.  B. In disease states CaMKII protein expression and activity levels 
increase with an increase in RyR and PLB phosphorylation and potentially other 
CaMKII targets. 
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CaMKII in cardiac disease including transgenic mouse models overexpressing 

CaMKIIδΒ (Zhang et al., 2002), CaMKIIδC (Maier et al., 2003; Zhang et al., 2003) 

and CaMKIV (Passier et al., 2000) as well as transgenic mouse models with 

universal (Zhang et al., 2005b) and targeted (Ji et al., 2003; Ji et al., 2006) 

chronic CaMK inhibition.  CaMKIV is a monomeric CaM-dependent kinase that is 

not thought to be expressed in the heart but has been used study the effects of 

CaMK dependent actions in the heart (Passier et al., 2000). The prominent role 

of CaMKII in heart disease makes it an attractive candidate for targeted therapy.   

 

CaMKII structure determines function 

CaMKII is a dodecameric holoenzyme.  Four genes encode CaMKII 

subunits (α, β, γ and δ), but only γ and δ have been detected in heart (Hagemann 

et al., 1999; Tobimatsu and Fujisawa, 1989).  The catalytic and regulatory 

domains of all four gene products are about 90% identical.  Upon activation the 

catalytic domain transfers the γ phosphate from ATP to a serine/threonine within 

the substrate.  The regulatory domain binds Ca2+/CaM and contains multiple 

phosphorylation sites including Thr287.  The variable region of CaMKII links the 

association domain to the catalytic and regulatory domains and is responsible for 

a majority of the differences between splice variants (Fig.3).   The association 

domain binds other CaMKII association domains (Kolodziej et al., 2000), allowing 

for assembly of the dodecameric holoenzyme.  Variable splicing allows for 

distinct localization of CaMKII to specific compartments, thus enhancing 

specificity (Ramirez et al., 1997; Srinivasan et al., 1994).  CaMKIIδ was 
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demonstrated to be the predominant isoform in mammalian heart (Singer et al., 

1997).  According to studies by Hagemann et.al., δΒ (also called  δ3) 

predominates in the adult heart while δC (δ2) is abundant in the embryonic heart 

(Hagemann et al., 1999).  The δB isoform is predominantly nuclear due to a 

nuclear localization sequence in the variable domain, located at the N terminal 

region of the association domain that directs δB to the nucleus.  CaMKIIδC lacks 

this sequence and so is predominantly resident in cytoplasm.   Heteromultimeric 

complexes form between the different CaMKII isoforms and splice variants.  The 

localization of the holoenzyme complex is determined ‘democratically’ according 

to whether the majority of subunits express or lack a nuclear localization 

sequence (Srinivasan et al., 1994). 

In the absence of Ca2+, parts of the regulatory domain bind to the catalytic 

domain, occluding the binding of nucleotides and protein substrates.  This 

interaction is disrupted by Ca2+/CaM binding to the regulatory domain, 

presumably due to a change in protein conformation (Rosenberg et al., 2005). 

Ca2+/CaM activation of CaMKII occurs to different degrees depending upon the 

frequency, amplitude and duration of Ca2+ transients (De Koninck and Schulman, 

1998).   Thr287 within the regulatory domain of CaMKII is a critical 

phosphorylation site.  Trans-autophosphorylation of Thr287 requires activation of 

two adjacent subunits (Figure 6).  Phosphorylation of CaMKIIα at Thr286 

enhances the binding affinity for CaM by 1000 fold from nanomolar to picomolar 

(Meyer et al., 1992).  Phosphorylation at Thr287 also confers 20-80% Ca2+/CaM 

independent activity, depending on the experimental conditions (Maier and Bers, 
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2002; Meyer et al., 1992).  The ability of CaMKII to sustain its activity through 

autophosphorylation, even in the absence of elevated Ca2+/CaM, confers 

remarkable flexibility for extending CaMKII-dependent regulation over time and 

changes in the frequency of Ca2+ transients (Figure 7).  Thus, CaMKII is well 

configured to integrate Ca2+ signals to provide feedback regulation of Ca2+ and to 

‘connect’ these transients to Ca2+-dependent transcriptional tasks that are 

important for production and maintenance of the contractile apparatus in cardiac 

myocytes.       

 

CaMKII localization 

 In addition to the direct regulation of enzymatic activity by Ca2+/CaM 

activation and autophosphorylation, CaMKII appears to be dynamically targeted 

to its substrate in diverse subcellular compartments.  Recent studies have 

demonstrated direct interactions between CaMKII and the RyR (Currie et al., 

2004; Hain et al., 1995), the IP3R (Bare et al., 2005) and α1c subunits of the 

LTCC complex (Grueter et al., 2006; Hudmon et al., 2005).  Indirect evidence 

also suggests a localized pool of CaMKII exists at the longitudinal SR that 

regulates Ca2+ uptake into the SR (Ji et al., 2003; Ji et al., 2006).  Unlike protein 

kinase A (PKA) which is targeted to specific microdomains by scaffolding 

proteins known as AKAPs (Gao et al., 1997b), studies involving CaMKII 

localization suggest CaMKII is targeted by direct interaction with the signaling  

domains, the predominant cardiac Ca2+ channel (CaV1.2) is highly responsive to 
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Figure 6.  CaMKII activation.   
A. Top, a schematic diagram of CaMKII showing the catalytic domain interacting 
with the regulatory domain in the inactive conformation.  CaMKII forms a 
dodecameric holoenzyme in a stacked hexameric ring conformation (only one 
hexameric ring is shown) via interactions between the association domains of 
each monomer as depicted in the bottom panel.  B. CaMKII activation via 
Ca2+/CaM interaction with the regulatory domain, relieving the inhibition.  
Activation of two adjacent monomers enables trans autophosphorylation at Thr 
287.  Phosphorylation of Thr287 confers a constitutively active kinase. 
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Figure 7.  CaMKII activity is dependent on the frequency of Ca2+ transients. 
Inactive CaMKII subunits (open circles) within the holoenzyme (shown as a 
hexamer for simplicity) become active when bound to CaM (purple) after Ca2+ 
transients (red lines), thus increasing kinase activity (blue line).  During high 
frequency Ca2+ transients (above), CaM does not have time to fully dissociate, 
allowing binding to adjacent subunits and Thr287 autophosphorylation (black 
dot).  This slows the rate of CaM dissociation (“trapping” CaM) and loss of activity 
(compare to dotted orange line).  Low frequency stimulation (below) leaves 
ample time for CaM dissociation, and thus does not promote Thr287 
autophosphorylation or “trapping.”  (Adapted from (Hudmon and Schulman 2002) 
and A. J. Robison thesis). 
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Ca2+
i signals for feedback control.  Our laboratory (Dzhura et al., 2000; Dzhura et 

al., 2003; Wu et al., 2001a; Wu et al., 2001b; Wu et al., 2002; Zhang et al., 

2005a) and others (Hudmon et al., 2005; Pitt et al., 2001; Zuhlke et al., 1999) 

have demonstrated an important role for Ca2+, CaM and CaMKII as feedback 

mechanisms for LTCC regulation of cardiac contraction and arrhythmias (Dzhura 

et al., 2000; Kirchhefer et al., 1999; Wu et al., 2001b; Wu et al., 2002).  Ca2+-

dependent facilitation of ICa (enhanced peak ICa and decreased inactivation) was 

first described in 1982 by Marban and Tsien. CaMKII was first implicated in ICa 

facilitation in smooth muscle (McCarron et al., 1992) and later three labs found 

CaMK inhibitors prevented ICa facilitation in cardiac myocytes (Anderson et al., 

1994; Xiao et al., 1994; Yuan and Bers, 1994).  Dzhura et al. demonstrated that 

phosphorylation by CaMKII drives channels into a high activity gating mode with 

prolonged openings (Dzhura et al., 2000).   

Regulation of voltage-gated LTCC is critical for Ca2+ homeostasis and 

signaling in many normal cells.  Defective LTCC regulation contributes to many 

disease states associated with abnormal levels of Ca2+ influx.  Several proteins 

provide for sophisticated regulation of Ca2+ influx through the pore-forming α1 

subunit of LTCCs (Arikkath and Campbell, 2003; Bers, 2002a; Bers, 2002b; 

Dzhura et al., 2000; Pogwizd and Bers, 2002; Walker and De Waard, 1998) 

including CaMKII.  CaMKII preferentially phosphorylates the 55kDa protein vs. 

the 165kDa protein (the β subunit vs. the α1 subunit) from skeletal muscle Ca2+ 

channel purifications.  PKA, PKC, PKG and casein kinase II all phosphorylate 

both the α1 and β subunits but not the α2δ or γ subunits (this work was done 
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before the function of the auxiliary subunits was known) (Jahn et al., 1988).  In 

Chapter III we show that CaMKII regulation of single LTCCs requires the β 

subunit when transiently expressed in heterologous cells and that mutating β2a 

Thr498 to alanine ablates CaMKII-dependent regulation of LTCC in heterologous 

cells and in primary adult cardiac myocytes (Figure 8).  Other groups have 

demonstrated an α1c-dependent mechanism for a form of CaMKII- dependent 

facilitation in oocytes and voltage-dependent facilitation (Hudmon et al., 2005; 

Lee et al., 2006).  Together these reports suggest multiple modes for CaMKII 

actions at the LTCC complex. 

 

Ryanodine receptor (RyR) 

 The second phase of the Ca2+ cycle, Ca2+ release from internal stores, 

occurs via Ca2+ activation of the RyR.  The RyR is a signaling complex with four 

RyR subunits forming the pore of the channel and a multitude of binding proteins.  

Included in this constellation of associated proteins are CaM and CaMKII (Currie 

et al., 2004).  Depending on the experimental conditions, CaMKII has been 

shown to both increase and decrease Ca2+ release via RyR (Wehrens et al., 

2004; Witcher et al., 1991; Wu et al., 2001a).  Endogenous CaMKII is associated 

with purified RyR, then reconstituted in lipid bilayers, thus decreasing the channel 

open probability (Hain et al., 1995).  Consistent with this effect, the use of CaMK 

inhibitor peptide AC3I in acutely isolated rabbit cardiac myocytes  enhances RyR 

Ca2+ release while blocking CaMK dependent ICa facilitation, thus enhancing the 

gain of excitation-contraction coupling.  Addition of a constitutively active CaMKII 
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yielded the opposite result suggesting that CaMK can act as a functional link 

between LTCC and RyR during excitation-contraction coupling (Wu et al., 

2001a).  In contrast, acute overexpression of CaMKII in cultured cardiac 

myocytes by viral transduction enhances the phosphorylation of RyR at both 

Ser2815 (CaMKII site) and 2809 (also a PKA site) and also increases in Ca2+ 

sparks (Kohlhaas et al., 2006).  Chronic overexpression of CaMKIIδC results in 

altered Ca2+ handling with severe cardiac hypertrophy (Maier et al., 2003).  

Enhanced Ca2+ sparks from the RyR and reduced SR content were both 

observed.  This could be a direct result of CaMKII; however, the chronic 

overexpression of CaMKII also leads to changes in the protein expression level 

of key Ca2+ cycling proteins such as a decrease in SERCA2 and phospholamban 

(PLB) expression coupled with an increase in the Na/Ca2+ exchanger (Maier et 

al., 2003; Zhang et al., 2003).  Thus, it is clear that CaMKII is an important 

regulator of SR Ca2+ release.  However, the details of how this process works 

mechanistically remain to be fully elucidated. 

 

SERCA/PLB 

 Calcium reuptake into the SR occurs via SERCA on the longitudinal SR.  

SERCA has been proposed to be directly regulated by CaMKII (Narayanan and 

Xu, 1997).  Other evidence suggests that CaMKII can regulate the frequency 

dependence of relaxation in the absence of PLB (DeSantiago et al., 2002). 

However, most studies have focused on SERCA regulation by PLB.  SERCA is 

negatively regulated by PLB (Brittsan and Kranias, 2000).  Upon phosphorylation 
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of PLB by PKA (Bilezikjian et al., 1981) or by CaMKII the inhibition of SERCA is 

removed allowing for uptake of cytosolic Ca2+ back into the SR (Brittsan and 

Kranias, 2000; Davis et al., 1983; Simmerman et al., 1986). Thr17 (CaMKII site) 

phosphorylation can occur independently of Ser16 (PKA site) phosphorylation in 

vitro and Thr17 phosphorylation is directly enhanced by increasing stimulation 

frequency (Hagemann et al., 2000).  However, physiological increases in Thr17 

phosphorylation probably follow catecholamine-stimulated increases in 

chronotropy and inotropy (Luo et al., 1998).  Thus, Thr17 phosphorylation 

potentially correlates with an adaptive response to sudden changes in heart rate.  

Chronic CaMKII inhibition reduces the variability of Ca2+ induced Ca2+ release in 

cardiac myocytes by regulation of both SR Ca2+ release from stores and Ca2+ 

reuptake by SERCA (Wu et al., 2006b; Wu et al., 2006c).  As a result of CaMKII 

inhibition, PLB Thr17 phosphorylation is significantly reduced (Wu et al., 2006c).  

Transgenic mice with targeted inhibition of CaMKII at the longitudinal SR show a 

decrease in PLB Thr17 phosphorylation.  These mice exhibit dilated heart failure 

when stressed by gestation and parturition (Ji et al., 2003), but this result should 

be interpreted cautiously because the targeting strategy requires over-expression 

of protein in the SR membrane and no model has yet been developed to control 

for potential side effects of this strategy.  Further studies in these mice also 

suggest that CaMKII activity at the longitudinal SR contributes to cardiac 

contractility and Ca2+ handling.  The rate of contraction and relaxation in whole 

heart and in isolated myocytes is decreased (Ji et al., 2006).  

 

 28



Inositol 1,4,5-Triphosphate Receptor (IP3R) 

 The IP3R is a Ca2+ channel activated by IP3 and Ca2+.  It is localized on 

intracellular membranes, the nuclear membrane (Wu et al., 2006a) and SR in 

neonatal cardiac myocytes (Mohler et al., 2004a) and forms a tetrameric complex 

similar to the RyR.  IP3R2 is the predominant isoform found in the heart (Lipp et 

al., 2000).  The expression of the receptor complex in cardiac myocytes is about 

50 fold lower than RyR.  The function of the IP3R in the heart is still being 

defined.  In contrast to RyR, IP3R are not thought to play a major role in beat-to-

beat Ca2+ cycling (Go et al., 1995; Marks, 2000).  However, studies have 

suggested a role for IP3R regulation of transcription in the heart (Go et al., 1995; 

Marks, 2000).  It has been reported that in heart disease IP3R are up-regulated 

and may be involved in altered Ca2+ homeostasis and cardiac arrhythmias 

(Mackenzie et al., 2002).  IP3Rs have been shown in one study to localize to the 

nuclear envelope where they may regulate Ca2+ influx into the nucleus to 

regulate gene transcription by activation of CaMKII.  CaMKII can co-precipitate 

with the IP3R and the IP3R are a CaMKII substrate (Bare et al., 2005).  IP3R 

signaling activates CaMKII by releasing Ca2+ in the immediate vicinity of the 

nucleus to phosphorylate histone deacetylase 5 (HDAC5) thus regulating 

transcription in a manner independent of the cyclic Ca2+ oscillations from beat to 

beat (Wu et al., 2006a).  Together these studies provide evidence that CaMKII 

localization is necessary for efficient substrate recognition and signal specificity.  
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CaMKII regulation of myocyte enhancer factor 2 (MEF2) activity 

 Ca2+ signaling requires precise mechanisms to discriminate between 

changes in local Ca2+ concentrations.  CaMK has been implicated in activation of 

a fetal gene program via MEF2 signaling (Blaeser et al., 2000; Passier et al., 

2000).  MEF2 regulates structural genes and genes involved in growth, stress 

response and apoptosis.  Mice overexpressing CaMKIV have a 100 fold increase 

in MEF2 activity when interbred with transgenic mice expressing a MEF2 sensor 

(Passier et al., 2000).  The pathway mediating CaMKII-dependent increases in 

MEF2 transcription activity involves CaMKII interaction with class II histone 

deacetylases (HDACs).  HDAC4 and five are transcriptional repressors that are 

targeted by multiple serine/threonine kinases including CaMKII acting at two 

conserved serine residues.  Phosphorylation of HDACs at these serines creates 

a binding site for 14-3-3 protein that occludes a nuclear retention signal to favor 

movement of HDAC to the cytoplasm. Since HDAC is a MEF2 repressor, 

prevention of HDAC binding with or without export to the cytoplasm results in 

enhanced MEF2 activity (McKinsey et al., 2000; Youn et al., 2000).  Specifically, 

CaMKII binding to and signaling via HDAC4 results in hypertrophy (Backs et al., 

2006).  Thus CaMKII acts as an interpreter and a modulator of local Ca2+ 

concentrations that regulate long term changes in cardiac myocyte gene 

expression. 
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Pathways mediating CaMKII activation 

 During the cardiac Ca2+ cycle local intracellular Ca2+ concentration ranges 

from ~0.1μM at diastole to over 100μM in the microdomain of the LTCC and RyR 

during systole (Bers and Guo, 2005).  It was demonstrated that CaMKII has a 

tonic level of activity under basal conditions and that activated (Thr287 

autophosphorylated) CaMKII localizes to the sarcolemma with a T-tubule staining 

pattern (Xiao et al., 1994).  The major questions remaining include: under what 

physiological or pathological conditions is CaMKII activated and what is its 

function within specific pathways (Figure 4)?  Many studies have begun to 

address these questions.  These include experiments showing that increased 

frequency and action potential duration both enhance CaMKII activity (Anderson 

et al., 1998; De Koninck and Schulman, 1998; Wu et al., 1999b).    

The β-adrenergic system is the most prominent regulator of cardiac 

function and ‘β blockers’ have been the major therapy for treating patients with 

structural heart disease and myocardial dysfunction (Gottlieb, 1998; Tendera and 

Ochala, 2001).  The traditional pathway mediating β-adrenergic signaling 

involves activation of Gs-protein coupled receptors.   Activation of Gs leads to 

activation of adenylyl cyclase to enhance cAMP production and ultimately 

activate PKA.  PKA targets many of the same proteins in the Ca2+ cycle as 

CaMKII, leading to enhanced Ca2+ mobilization.  Recent studies have revealed 

other means of β-adrenergic signaling via CaMKII (Wang et al., 2004; Zhang et 

al., 2005b; Zhu et al., 2003).  Our recent findings support the hypothesis that 

CaMKII is a key downstream effector of the β-adrenergic receptor signaling 
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cascade.  It is intriguing that CaMKII inhibition does not appear to affect the “fight 

or flight” responses to βAR activation.  However, chronic inhibition of CaMKII in 

AC3I mice and acute inhibition using KN93 also protects the mice from 

cardiomyopathic responses to chronic βAR stimulation.  Transgenic over-

expression of AC3I, a CaMKII inhibitory peptide, mitigates the deleterious impact 

of myocardial infarction on left ventricular function (Zhang et al., 2005b).  These 

studies show that CaMKII activity directly contributes to loss of Ca2+ homeostasis 

in two cardiac disease models associated with βAR activation.  Zhu et al studied 

the effects of β1 adrenergic activation on apoptosis in the presence of several 

PKA inhibitors and found that activation of CaMKII not PKA was responsible for 

increased programmed cell death during excessive isoproterenol in vitro (Zhu et 

al., 2003).   They found that CaMKII activation was required for this response.  

Subsequent findings support CaMKII activation upon β1AR stimulation as an 

integral part of the enhanced cardiac contractility (Wang et al., 2004).  Our group 

found that CaMKII inhibition protected against apoptosis in vivo during 

myocardial infarction or excessive β1AR stimulation with isoproterenol (Yang, 

2006).  These studies suggested that the proapoptotic actions of CaMKII were 

related to its regulation of SR Ca2+ content because the benefits of CaMKII 

inhibition for reducing apoptosis were lost when AC3I mice were bred into a PLB 

null background with SR Ca2+ overload. 

 The α1-adrenergic signaling cascade activates CaMKII by a mechanism 

requiring PKC activation.  The functional outcome of α-adrenergic stimulation of 

CaMKII is enhanced ICa from LTCC and an increase in activated CaMKII 
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localization at the T-tubules (O-Uchi et al., 2005).  Activation of the α-adrenergic 

system also turns on genes involved in cardiac hypertrophy and the response is 

prevented by CaMKII inhibition (Ramirez et al., 1997).  This suggests that 

CaMKII activation by the α-adrenergic system could potentially regulate local 

Ca2+ signaling as well as global gene expression. 

 

CaMKII as a signal in structural heart disease: fulfilling Koch’s postulates 

Robert Koch established a systematic guideline in the 1890’s to identify a 

microorganism as the source of a disease (Koch, 1893).  Simply stated, the 

microorganism must be found in all cases of the disease.  It must be isolated 

from the host and grown in pure culture.  It must reproduce the original disease 

when introduced into a susceptible host and it must be found in the experimental 

host so infected (Chien, 2000).  Koch’s postulates can be adapted and partially 

applied to structural heart disease (Chien, 2000).  Molecules fulfilling Koch’s 

postulates would first need to have altered expression or be misregulated in 

disease.  In the case of CaMKII, knocking out the protein or inhibiting its activity 

would be protective against the disease.  Reintroducing an excess or 

constitutively active mutant would lead to the disease in a previously normal 

tissue.  Finally, over-activity of CaMKII would then be verified in the host tissue.  

Much work has been published implicating CaMKII as an integral part of many 

forms of cardiomyopathy in human and animal models.    

CaMKII expression and activity are increased in patients with end stage heart 

failure (Hoch et al., 1999; Kirchhefer et al., 1999) and in animal models (Colomer 
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and Means, 2000; Wu et al., 2002) of heart disease.  Transgenic mice over-

expressing CaMKIIδc develop dilated cardiomyopathy and sudden death (Zhang 

et al., 2003).  According to Koch’s postulates, the cause of the disease must be 

isolated from the experimental host.  In order to isolate CaMK as a significant 

focal point in cardiomyopathy, a transgenic mouse was engineered with a CaMK 

inhibitory peptide (AC3I).  These mice exhibit a significant cardioprotective effect 

following myocardial infarction and chronic β-AR stimulation (Zhang et al., 

2005b).  Transgenic mice over-expressing CaMKIV in heart have severe 

cardiomyopathy, and addition of constitutively active CaMKII “restores” ICa 

facilitation (Wu et al., 1999a).   While Koch’s postulates for infectious disease do 

not provide a completely parallel analysis for the study of structural heart 

disease, it is becoming increasingly clear that CaMKII is a critical 

cardiomyopathic signal in structural heart disease in patients and in numerous 

animal models of cardiomyopathy (Zhang and Brown, 2004). 

 

CaMKII in structural heart disease 

 Structural heart disease is characterized by 1) electrical instability and 

arrhythmias, 2) myocardial dysfunction, and 3) myocardial hypertrophy and 

chamber dilation (Jessup and Brozena, 2003).  One possibility is that targeted 

inhibition of CaMKII could improve the fundamental changes in structural heart 

disease (Anderson, 2005). 

 Electrical changes are seen in heart disease due to remodeling of Ca 

signaling proteins and other ion transport proteins.  In heart disease CaMKII 
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protein and activity levels are increased along with changes in ion channel 

expression.  The changes in proteins involved in electrical propagation and Ca2+ 

cycling may result in an increased probability of developing arrhythmias 

(Anderson, 2004; Shah et al., 2005).   In addition,  structural heart disease 

creates a substrate that favors arrhythmias.  The formation of a physical barrier 

for electrical conduction along with remodeling of key Ca2+ regulatory proteins 

and increased neurohormonal stimulation combine to provide favorable 

circumstances for arrhythmias to occur.  These include AP prolongation 

(electrical remodeling) and prolongation of the Ca2+ transient (‘Ca2+’ remodeling).   

Due to the high electrical resistance of the cell membrane at the plateau 

phase of the cardiac AP, slight changes in ICa or Ik lead to dramatic changes in 

the AP, including early-after depolarization’s (Keating and Sanguinetti, 2001).  

Chronic CaMKII over-expression leads to electrical remodeling and increased 

susceptibility to sudden death (Maier et al., 2003) and CaMKII is proarrhythmic in 

various models of AP prolongation in structurally normal hearts and isolated 

cardiac myoctyes (Anderson et al., 1998; Gbadebo et al., 2002; Kirchhof et al., 

2004; Pak et al., 1997; Wu et al., 1999b).  CaMKII actions at LTTCs are 

particularly important under voltage and SR Ca2+ release conditions present at 

the action potential plateau (Wu et al., 2004).  Enhanced RyR Ca2+ leak or 

general increases in intracellular Ca2+ concentration due to altered CaMKII 

activity can lead to increased Na+/Ca2+ exchanger activity, thus enhancing the 

probability of producing delayed after-depolarizations.  CaMKII inhibition reduces 

the Na/Ca2+ exchanger current (also called the transient inward current) by 
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reducing SR Ca2+ release under conditions of cellular Ca2+ overload (Wu et al., 

1999b).  Because CaMKII can enhance ICa it was thought to potentially play a 

role in mediating early-afterdepolarizations.  Indeed, in studies where early-

afterdepolarizations were induced, CaMKII inhibition significantly decreased the 

occurrence of early-afterdepolarizations (Wu et al., 1999a; Wu et al., 1999b).  

Taken together, these diverse mechanisms for CaMKII signaling in heart disease 

conspire to build proarrhythmic inward currents under conditions of adverse 

electrical and Ca2+ remodeling that are a fundamental characteristic of structural 

heart disease.   

Other triggers for arrhythmias are neurohormonal activation of signaling 

pathways such as the β-adrenergic pathway that leads to increased heart rate 

and frequency.  Activation of this pathway also recruits CaMKII and enhances 

Ca2+ cycling (Zhang et al., 2005b; Zhu et al., 2003).  These findings suggest to 

us that the efficacy of βAR antagonist drugs (‘β blockers’) in preventing sudden 

cardiac death may be in part related to their inhibition of CaMKII activity.  

 

Strategies for targeting CaMKII 

 Protein kinases are second only to G-protein coupled receptors as 

therapeutic drug targets.  They have been highly researched in the cancer field 

and now comprise as much as 20-30% of the research at many pharmaceutical 

companies (Cohen, 2002).  Most kinase inhibitors, however, target the ATP 

binding domain, thus limiting the identification of selective inhibitors for specific 

kinases (Cohen, 2002).  Importantly, the structural information that is steadily 
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becoming available for many kinases provides useful clues for development of 

more specific inhibitors.  Among the recently crystallized structures is a structure 

of the regulatory and catalytic domains of CaMKII (Rosenberg et al., 2005).  This 

new information suggests that specific inhibitory agents could be developed by 

allosterically altering the ATP binding pocket.  As pointed out by Cohen, critical 

studies that remain are a detailed analysis of inhibitors and their effects on 

catalytic and regulatory properties (Cohen, 2002).   

CaMKII is emerging as an attractive candidate for drug therapy in 

structural heart disease and arrhythmias.  However, there are many caveats to 

targeting this multifunctional kinase.  Among the many known roles for CaMKII is 

gene regulation and molecular memory (Colbran and Brown, 2004; Lisman et al., 

2002).  New studies of CaMKII target proteins are providing evidence for the 

mechanism of CaMKII action.  An attractive model may be to target CaMKII 

substrates that are critical components of Ca2+ cycling, thus taking a more 

specific approach to regulating CaMKII in Ca2+ signaling. 

CaMKII inhibitors such as KN62 and KN93, whose mode of action is to 

bind to the Ca2+/CaM domain and inhibit CaMKII activation have provided useful 

information on the function of CaMKII in cardiac myocytes.  However, these data 

should be interpreted with care because of the effects of these drugs on multiple 

ion channels (Anderson et al., 1998).  More selective CaMKII inhibitors are 

needed. 

 Endogenous inhibitors of CaMKII have been identified: the kinase itself 

contains an autoregulatory domain that reversibly binds to the catalytic domain 

 37



and inhibits the kinase (as discussed previously).  A brain-specific protein 

CaMKIINβ was identified by yeast-2-hybrid and found to selectively inhibit 

CaMKII (Chang et al., 1998).  Another endogenous inhibitor of CaMKII is the 

NR2B subunit of the NMDA receptor (a glutamatergic ligand-gated ion channel).  

It contains a motif mimicking the autoregulatory domain of CaMKII that directly 

interacts with the kinase (Bayer et al., 2001; Robison et al., 2005; Strack et al., 

1997; Strack and Colbran, 1998; Strack et al., 2000a) and this interaction inhibits 

CaMKII activity in vitro.   Zhang et. al. showed marked protection of cardiac 

function in a structural and neurohumoral model by chronic inhibition of CaMK 

throughout the cell (Zhang et al., 2005b).  Some studies have been done looking 

at the effect of inhibition of localized pools of CaMKII; however, more work is 

needed (Ji et al., 2003; Ji et al., 2006).    

The use of viral mediated transduction of specific gene products or mutants 

has become a valuable tool for identifying the role of CaMKII target proteins in 

vivo (Colecraft et al., 2002; Kohlhaas et al., 2006; Mohler et al., 2003; Wu et al., 

2006c).  Work has been done demonstrating the possibility of injecting virus 

directly into live animals and studying the effect on whole heart physiology 

(Gregorevic et al., 2004).  Viral approaches provide an alternative approach to 

production of transgenic mice and are more easily used to study effects in other 

animal models such as rabbits whose cardiac physiology is more closely related 

to humans. 
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Summary 

 

 In cardiac disease, it has been well documented that there is an 

underlying mishandling of Ca2+.  Whether an alteration in Ca2+ cycling is a cause 

or effect of the disease is still under investigation.  Importantly, key Ca2+ signaling 

molecules such as the multifunctional CaMKII are emerging as focal points for 

studying cardiac disease.  CaMKII has been identified as a determinant of the 

severity of the outcome of a structural and neurohormonal model of 

cardiomyopathy with inhibition of CaMKII having a significant functional benefit.  

Further studies are needed to identify the mechanisms for CaMKII regulation of 

the proteins regulating Ca2+ cycling and the contribution of these points to 

cardiac disease.  Increased effort to develop novel clinically-relevant strategies 

for CaMKII inhibition is clearly warranted. 

CaMKII facilitates cardiac ICa in response to multiple forms of activation 

including repeated stimulation (Figure 4).  The proposed physiological role of 

increased ICa is to increase Ca2+ influx, therefore enhancing the force of 

contraction upon increased heart rate. The focus of my research has been to 

elucidate the mechanism for CaMKII dependent regulation of cardiac LTCCs, 

focusing on the involvement of the β subunit.  The following chapters discuss the 

important findings of my research.  Chapter III focuses on the identification and 

characterization of CaMKII regulation of cardiac LTCCs mediated by 

phosphorylation of β2a Thr498 in heterologous cells and adult cardiac myocytes.  

Also described in this chapter is the identification of the β2a subunit as a CaMKII 
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associated protein (CaMKAP).  Chapter IV continues to delineate the mechanism 

for CaMKII interaction with β2a as well as other β isoforms.  The final chapter 

summarizes the work completed as well as provide a roadmap for the many new 

exciting avenues of research that have resulted from the findings within this 

thesis. 
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Hypothesis 

 

We hypothesized that CaMKII regulates cardiac LTCC function via the β subunit.  

Four aims were designed to address this hypothesis.   

 

Specific Aims 

 

Aim 1 determined the CaMKII phosphorylation sites on the β subunit using 

biochemical and proteomic approaches.   

Aim 2 tested the functional consequence of β subunit phosphorylation by CaMKII 

in a model heterologous cell system.   

Aim 3 tested the regulation of LTCC by CaMKII phosphorylation of the β subunit 

in adult cardiac myocytes. 

Aim 4 tested the interaction between CaMKII and β subunits. 
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CHAPTER II 

 

 

  MATERIALS AND METHODS 

 

 

Generation of plasmid constructs 

The open reading frame of rat β2a (Accession Number M80545) was 

amplified by PCR and ligated into pGEX-4T1 (Amersham Pharmacia Biotech), 

pFLAG-CMV-2 (Sigma-Aldrich) pIRES (Clontech), and pLenti (Invitrogen) 

vectors.  Other vectors used include pcDNA3 (Invitrogen) containing murine 

CaMKIIα a generous gift from Y. Nikandrova, Vanderbilt University) and pGW1H 

(British Biolabs) containing α1c (Accession Number X15539, a generous gift from 

Dr. T. Kamp, University of Wisconsin). The cDNAs encoding β2a mutants were 

made using the QuikChange Mutagenesis kit, essentially as described by the 

manufacturer (Stratagene). DNA sequences of all mutated and wild type 

sequences were confirmed. 

 

GST fusion protein expression and purification 

BL21DE3 pLysS E.coli were transformed with pGEX-4T1 constructs, 

grown at 37°C to a density of >0.75 and GST fusion protein expression was 

induced with IPTG (1 mM final).  Cells were harvested 3 hours later and proteins 

were purified using glutathione-agarose, dialyzed into storage buffer (50 mM 
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Tris-HCl pH 7.5, 200 mM NaCl, 0.05% Triton X-100, 0.05 mM benzamidine, 

0.125 mM PMSF, 0.125 mM EDTA) and stored at -80°C.  Protein concentrations 

were determined by Bradford assay (BioRad), using bovine serum albumin as 

standard. 

 

CaMKII purification and autophosphorylation  

 Recombinant rat CaMKIIδ2 or mouse CaMKIIα purified from baculovirus-

infected Sf9 insect cells was autophosphorylated at Thr287 ([P-T287]) or Thr286, 

respectively, using ATP or [γ-32P]ATP, essentially as described previously (Strack 

et al., 2000b).   

 

Glutathione-agarose co-sedimentation assay 

GST fusion proteins (300 pmol) were incubated at 4°C for 1 hour with 

CaMKIIδ2 or [P-T287]CaMKIIδ2 (100 pmol subunit) in Binding Buffer (50 mM Tris-

HCl, pH 7.5, 150 mM NaCl, 0.1% Triton X-100; 0.4 ml total volume). Glutathione-

agarose (10 µl packed resin) was added, and the incubation was continued for 1 

hour. Resin was collected in a microcentrifuge (1 min, 4,500 g) and washed 4 

times in Binding Buffer. Bound proteins were resolved by SDS-polyacrylamide 

gel electrophoresis, transferred to nitrocellulose membranes and then 

immunoblotted for CaMKII. 
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CaMKII plate binding assays 

GST fusion proteins in plate-binding buffer (50 mM Tris-HCl pH 7.5, 200 

mM NaCl, 100 mM EDTA, 5 mM 2-mercaptoethanol, 0.1 % Tween-20, 5 mg/ml 

bovine serum albumin) were incubated at 4°C in glutathione-coated wells for 18-

24 hours (5 pmol in 0.2 ml).  After 3 washes with buffer, wells were incubated at 

4°C with [32P-T287]CaMKIIδ2 (0.2 ml, indicated subunit concentration) for 2 hours 

then washed (8 times, 0.2 ml ice-cold buffer). Bound kinase was quantified in a 

scintillation counter. 

 

CaMKII gel overlays 

GST fusion proteins (50 pmoles) were resolved by SDS-polyacrylamide 

gel electrophoresis and transferred to nitrocellulose.  Approximately equal protein 

loading was confirmed by staining membranes using Ponceau S.  Membranes 

were blocked in 50 mM Tris-HCl, pH 7.5 containing 200 mM NaCl, 3% (v/v) 

Tween-20, 5% (w/v) milk, and then incubated at 4°C for 2 hours with [32P-

T287]CaMKIIδ2 (100 nM).  After washing, membranes were exposed using a 

phosphoimager to quantify the bound CaMKII.  

 

Kinase assays 

 GST-β2a (wild-type or mutated) was incubated at 30 °C in 50 mM HEPES, 

pH 7.5, 10 mM magnesium acetate, 1 mg/ml bovine serum albumin, 1 mM 

dithiothreitol, 0.4 mM [γ-32]ATP (≈ 500 cpm/pmol) or 0.4 mM ATP containing 

either CaMKII (at the indicated subunit concentration), 0.5 mM calcium chloride, 
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1 µM calmodulin, or PKA catalytic subunit (generous gift from Dr. J.D. Corbin, 

Vanderbilt University). PKA and CaMKII displayed similar specific activities (2-3 

µmol/min/mg) toward model peptide substrates (100 µM Kemptide and 20 µM 

syntide-2, respectively).  Phosphorylation stoichiometries were determined by 

spotting aliquots on P81 phosphocellulose paper and washing prior to quantifying 

32P incorporation using a scintillation counter. Counts detected in control 

reactions containing GST alone rather that GST-β2a was subtracted to correct for 

kinase autophosphorylation.  Alternatively, reactions were quenched by adding 

4x SDS sample buffer: gel samples were resolved by SDS-polyacrylamide gel 

electrophoresis. Coomassie Blue-stained gels were dried and exposed to film or 

a phosphoimager followed by densitometry using BioRad imaging software.   

 

CaMKII inhibition by β2a

CaMKII phosphorylation of a synthetic peptide, syntide 2, was assayed in 

the presence of various concentrations of GST-β2a wild-type and mutants or 

GST-NR2B wild type (1180-C-terminus) and Ser1303Ala (1190-1339) .  Assays 

were performed using preautophosphorylated kinase in the presence of 

Ca2+/CaM.  The assay contained 0.4mM [γ-32P]ATP and 0.2 mM syntide-2 .   

 

Phosphoamino acid analysis  

     Radiolabeled GST-β2a (WT or 410-604) was excised from dried Coomassie 

Blue-stained SDS-polyacrylamide gels.  Protein was extracted in 3.2 M 

ammonium bicarbonate, 2-mercaptoethanol (5%, v/v) and 0.1% SDS, 
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precipitated using ice-cold trichloroacetic acid, and then partially hydrolyzed with 

5.7 M HCl at 110°C for 60min.  Samples were mixed with non-radioactive 

phospho-serine and phospho-threonine in a pH 1.9 buffer (2.2% (v/v) formic acid, 

7.8% (v/v) glacial acetic acid), spotted on thin layer cellulose plates and then 

separated in one dimension by thin-layer electrophoresis using a Hunter Thin-

Layer Peptide Mapping system. Cellulose plates were stained with ninhydrin to 

detect nonradioactive standards and then exposed to X-ray film.  

 

Mass spectrometry 

Phosphorylated GST-β2a was re-purified from the phosphorylation mixture 

using glutathione-agarose.  Excess glutathione was removed using a 30kDa 

Ultrafree MC regenerated cellulose filter (Millipore) and protein was digested 

(Manza et al., 2005) using either trypsin (18 hr, 37°C) or chymotrypsin (18 hr, 

room temperature). Peptides were separated for LC-MS/MS analysis by HPLC 

using a capillary column (Monitor C18, 100 μm x 11 cm, 5 micron, 100 Å, Column 

Engineering).  The flow rate was 0.7 μl min-1 with a gradient from Solvent A 

(0.1% formic acid in H2O) to solvent B (0.1% formic acid in acetonitrile) as 

follows: 0-3 min, linear gradient from 0-5% B; 3-5 min, 5% B; 5-50 min, linear 

gradient to 50% B; 50-52 min, linear gradient to 80% B; 52-55 min, linear 

gradient to 90% B; 55-56 min, 90% B. MS/MS scans of peptides were acquired 

using a ThermoFinnigan LTQ linear ion trap mass spectrometer equipped with a 

ThermoFinnigan Surveyor LC pump, NanoSpray source (Thermo Electron), and 

Xcalibur 1.4 instrument control and data analysis software, with an isolation width 
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of 3 m/z, an activation time of 30 ms, and activation Q of 0.250 and 30% 

normalized collision energy using 1 microscan and ion time of 100 for each 

MS/MS scan. The mass-spectrometer was tuned prior to analysis using the 

synthetic peptide TpepK (AVAGKAGAR), typical tune parameters were as 

follows: spray voltage of between 1.8 KV, a capillary temperature of 150ºC, a 

capillary voltage of 50V and tube lens 100V.  Tandem MS analysis was 

performed using data-dependent scanning in which one full MS spectra (mass 

range of 400-2000 amu) was followed by 3 MS/MS spectra.  Peptides and 

modifications were identified using both the SEQUEST algorithm with SEQUEST 

Browser software (Thermo Electron, San Jose, CA) and P-Mod software 

(Hansen et al., 2005). Candidate modifications found by software were verified 

by visual inspection of corresponding spectra.  

 

Co-immunoprecipitations from HEK293 cells  

 HEK293 cells (10cm dish) transfected using Fugene6 with vectors (4 μg 

each) containing FLAG-β2a (WT or T498A), CaMKIIα, and/or empty vector were 

lysed in 50 mM Tris-HCl pH 7.5 containing 150 mM NaCl, 1 mM EDTA, 10 mM 

NaF, 1 μM microcystin-LR, 10 mM PMSF, 1 mM benzamidine, 1X general 

protease inhibitor cocktail plus 1 μg/ml pepstatin (Sigma). Aliquots of the cell 

lysates, FLAG immunoprecipitates (40 μl: Sigma) and immune supernatants 

were immunoblotted for FLAG proteins and CaMKII using enhanced 

chemiluminescence development. 
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Western blot  

 Western blots were done using standard procedures.  Briefly, membranes 

were blocked in 5% milk in TTBS, then incubated with primary antibodies 

overnight at 4ºC.  The membranes were washed six times for at least 5 minutes 

each followed by incubation of the appropriate HRP conjugated secondary 

antibody at room temperature for one hour followed by washing.  The 

membranes were developed using enhanced chemiluminescence.   

 

tsA201 cell culture and transfection  

The tsA201 cells (modified HEK293 cells stably expressing small T 

antigen) were maintained at 37°C in 5% CO2 in DMEM media supplemented with 

10% fetal bovine serum and 1% penicillin (100 U/ml)/streptomycin (100 μg/ml).  

Cells were transfected with pGW1H-α1c (1 μg) with or without pIRES-β2a (2 μg) 

using Lipofectamine (Invitrogen) according to the manufacturer’s protocol. After 

24 hours, cells were placed in a 28°C incubator. 

 

Single channel recordings 

 Currents were recorded from excised patches of tsA201 cells (48-96 hours 

post-transfection) in the inside-out configuration at depolarizing steps from -

70mV to 0mV for 200 ms.  The bath solution contained 150mM KCl, 10 mM 

EGTA, 10 mM HEPES, 7.5 mM or 11 mM CaCl2, 5.5 mM glucose, 1mM EDTA, 

0.01 mM ATP; the pH was adjusted to 7.4 with 10 N KOH.  The pipette solution 

contained 110 mM BaCl2, 5 mM HEPES, 0.03 mM TTX; the pH was adjusted to 

 48



7.4 with Trizma base. Samples were taken at 20 kHz and low-pass filtered at 2 

kHz using 4 pole Bessel.  Only patches containing a single Ca2+ channel were 

analyzed. 

 

Lenti virus production 

 DNA inserts containing eGFP-IRE-FLAGβ2a (WT and T498A) and vGFP 

were inserted into the pLenti6 plasmid and then co-transfected into 293FT cells 

with three viral packaging plasmids (pLP1, pLP2, and pLP/VSVG) using 

Lipofectamine 2000 (Invitrogen) (Mohler et al., 2004b).  Culture medium was 

replaced after 24 hours.  After 48 hours the virus containing media was removed 

and centrifuged to remove cellular debris. 

 

Myocyte isolation, culture and infection 

 Adult Sprague-Dawley rats were anesthetized using Avertin (0.2 ml/10 

g,IP) with heparin.  Hearts were excised and ventricular myocytes isolated by 

enzymatic digest with Collagenase type II and Proteinase using a Langendorrf 

perfusion apparatus.  Isolated cells were filtered and washed 3 times in MEM 

1081 culture medium (Sigma) containing ITS liquid media supplement (Sigma), 

penicillin (100 U/ml)/streptamycin (100 μg/ml), 4 mM NaHCO3, 2.5% fetal bovine 

serum, and adjusted to pH 7.4 with NaOH.  Myocytes were plated at low density 

on laminin coated plates for 1 hour at 37°C at 95% O2 and 5% CO2.  Cells were 

washed briefly in phosphate-buffered saline then culture medium was added.  
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Virus (20 μl) with a similar multiplicity or infection was added and cultures were 

maintained for 15-24 hours before analysis. 

 

Immunofluorescence 

 Briefly, cultured adult cardiac myocytes were washed with warm 

phosphate-buffered saline (PBS, pH 7.4) and fixed in 2% paraformaldehyde for 

20 minutes (37°C). Cells were blocked/permeabilized in PBS containing 0.075% 

Triton X-100 and 2 mg/ml bovine serum albumin (Sigma), and incubated with 

primary antibody overnight at 4°C.  Following washes (PBS plus 0.075% Triton 

X-100), cells were incubated in secondary antibody (goat anti-mouse, goat anti-

rabbit Alexa 568, 633; Molecular Probes) for eight hours at 4° C and mounted 

using Vectashield (Vector) and #1 coverslips.  Images were collected on a Zeiss 

510 Meta confocal microscope (40 power oil 1.4 NA (Zeiss), pinhole equals 1.0 

Airy Disc) using Carl Zeiss Imaging software. All channels were collected on 

PMT3.  Images were imported into Adobe Photoshop for cropping and linear 

contrast adjustment (Mohler et al., 2004b).   

 

ICa recordings 

 To determine current-voltage (I-V) relationships, cultured cardiac 

myocytes were stimulated at 0.5 Hz by holding at -80 mV and stepping to more-

positive potentials at 10 mV intervals (T=23-25°C).  For ICa facilitation, cells were 

stimulated by stepping from -80 to 0 mV for 150ms at 0.5 Hz.  The intracellular 

solution contained: 120 mM CsCl, 3 mM CaCl2, 10 mM tetraethylammonium 
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chloride, 1 mM MgATP, 1mM NaGTP, 5 mM phosphocreatine, 10 mM HEPES, 

10 mM EGTA, titrated to pH 7.2 using 1 M CsOH.  The cells were bathed in: 137 

mM NMDG, 10 mM HEPES, 10 mM glucose, 1.8 mM CaCl2, 0.5 mM MgCl2, 25 

mM CsCl titrated to pH 7.4 using 12.1 M HCl.  

 

Statistics 

 Data are expressed as means ± S.E.M.  Student’s t-test was performed 

for paired analysis.  Multiple group analyses were done using ANOVA.  The null 

hypothesis was rejected if p<0.05. 
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CHAPTER III 

 

 

L-TYPE CA2+ CHANNEL FACILITATION MEDIATED BY PHOSPHORYLATION 
OF THE BETA SUBUNIT BY CAMKII 

 

 

Introduction 

 

Intracellular calcium (Ca2+) concentrations are dynamically regulated in all 

eukaryotic cells to permit Ca2+ to function as a second messenger yet prevent 

adverse consequences of sustained Ca2+
 elevation. Voltage-dependent Ca2+ 

channels are major portals for Ca2+ entry in many cells (Mikami et al., 1989) and 

can regulate cell contraction (Tanabe et al., 1990), gene transcription (Dolmetsch 

et al., 2001), synaptic plasticity (Yasuda et al., 2003) and hormone secretion 

(Artalejo et al., 1994).  The ion-conducting pore of voltage-gated calcium 

channels is formed by one of a large family of α1 subunits, which are typically 

associated with auxiliary subunits and other proteins that modulate the targeting 

and biophysical properties of the channels (Arikkath and Campbell, 2003; 

Catterall, 2000).  Flux through voltage-gated Ca2+ channels is also dynamically 

regulated by Ca2+-dependent feedback mechanisms as well as by protein 

phosphorylation (Dolphin, 2003), permitting cross-talk with other second 

messenger signaling pathways. 
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The L-type voltage-gated calcium channels (LTCC) are formed from α1c or 

α1d subunits that associate with one of a family of β subunits (β1- β4) (Arikkath 

and Campbell, 2003).  Ca2+/calmodulin acts both directly on α1c to inactivate 

neuronal (Zuhlke et al., 1999) and cardiac (Colecraft et al., 2002) LTCCs and 

indirectly via Ca2+/calmodulin-dependent protein kinase II (CaMKII) to facilitate 

whole cell Ca2+ currents (ICa) in cardiac myocytes (Anderson et al., 1994; Yuan 

and Bers, 1994).  Dodecameric CaMKII holoenzymes undergo inter-subunit 

Ca2+/calmodulin-dependent autophosphorylation within the regulatory domain (at 

Thr286 in the α isoform or Thr287 in the β, γ and δ isoforms).  

Autophosphorylation at Thr286/7 enhances the affinity of the kinase for 

calmodulin approximately 1000-fold and confers constitutive Ca2+/calmodulin-

independent kinase activity until dephosphorylated by a protein phosphatase. 

This provides a unique ability for CaMKII to integrate information conveyed by 

the amplitude, duration and frequency of repeated Ca2+ transients that cause 

contraction of cardiac myocytes or induce synaptic plasticity in neurons (De 

Koninck and Schulman, 1998). Indeed, changes in neuronal firing frequency 

modulate the amount of constitutive CaMKII activity (Eshete and Fields, 2001) 

and increasing the rate of heart contraction enhances CaMKIIδ 

autophosphorylation at Thr287 (Wehrens et al., 2004).  Moreover, prolongation of 

the cardiac action potential associated with early-afterdepolarizations increases 

Ca2+/calmodulin-independent kinase activity, consistent with enhanced Thr287 

autophosphorylation of CaMKIIδ (Anderson et al., 1998). In cardiac myocytes, 

Ca2+ release from sarcoplasmic reticulum (SR) activates CaMKII to facilitate 
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whole cell ICa (Wu et al., 2004) and CaMKII is an essential element in excitation-

contraction coupling (Wu et al., 2001a). Consistent with this role, CaMKII and the 

LTCC α1 and β subunits are each localized along the Z-line of cardiac myocytes 

in close proximity to T-tubules (Gao et al., 1997b; O-Uchi et al., 2005; Wu et al., 

1999a; Xiao et al., 1994).  Moreover, CaMKII is associated with the cytosolic face 

of LTCCs in excised cardiac myocyte membrane patches, increasing the channel 

open probability (Po) (Dzhura, 2000; Dzhura et al., 2002).  Recent data suggest 

that CaMKII can interact with several domains in the LTCC α1 subunit in vitro 

(Hudmon et al., 2005), but the molecular basis for localized facilitation of LTCCs 

by CaMKII in cardiac myocytes or any other excitable cell has not been identified.   

Here we define a molecular mechanism for the actions of CaMKII that 

requires the β2a subunit. CaMKII interacts with β2a to strategically target the 

kinase to LTCCs, and preferentially phosphorylates β2a at Thr498.  Our data 

indicate that Thr498 phosphorylation is essential for CaMKII modulation of both 

single LTCCs in tsA201 cells and whole cell ICa in cardiac myocytes, thereby 

defining a molecular basis for CaMKII modulation of Ca2+ entry via LTCCs in 

native cells. 
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Results 

 

CaMKII binds to the LTCC β2a subunit 

As a first step toward investigating whether LTCC β subunits play a role in 

CaMKII phosphorylation-mediated facilitation of cardiac LTCCs (Dzhura et al., 

2000), we performed glutathione agarose co-sedimentation assays using a 

glutathione-S-transferase (GST) fusion protein containing the entire sequence of 

the rat β2a subunit (GST-β2a(WT)). The major cardiac and neuronal isoforms of 

CaMKII (CaMKIIδ and CaMKIIα, respectively) associated with GST-β2a(WT), 

depleting kinase subunits from solution (Figure 8A). Binding required prior 

activation of CaMKII by autophosphorylation in the regulatory domain (Thr287 in 

CaMKIIδ or Thr286 in CaMKIIα).  In a glutathione-plate binding assay, GST-

β2a(WT) bound CaMKII with apparent Ka ≈90 nM (Figure 8B), more than an order 

of magnitude lower than estimated levels of CaMKII in heart and brain and 

roughly equilivant to the levels of autonomously activated CaMKII in the heart 

(McNeill and Colbran, 1995; Wu et al., 1999a).   

In order to identify the relationship of the CaMKII-binding site to conserved 

domains in the β2a subunit, we screened a library of GST-fusion proteins 

containing various fragments of β2a using gel overlay assays.  CaMKII bound to 

all fragments that contained residues 410-505 of β2a, but not to fragments that 

lacked this region (Figure 8C).  The structure of SH3/GK domains in several β 

subunit isoforms has been recently reported (e.g., (Van Petegem et al., 2004)) 

revealing insights into the mechanism for constitutive association of the α and β 
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subunits, but residues 410-505 were not resolved in these structures.  Inspection 

of the primary amino acid sequence of the CaMKII-binding domain revealed that 

residues 486-500 are homologous to a portion of the CaMKII autoregulatory 

domain (residues 274-289 in CaMKIIα) and to a well-established CaMKII binding 

domain (residues 1298-1305) in the NR2B subunit of the NMDA receptor (Figure 

8D) (Bayer et al., 2001; Strack and Colbran, 1998; Strack et al., 2000a). The 

binding parameters for CaMKII interaction with GST-β2a(WT) were very similar to 

those for CaMKII interaction with GST-NR2B(1260-1339) (Figure 8A,B). 

To investigate whether CaMKII associates with β2a subunits in intact cells, 

CaMKII was co-expressed with FLAG-tagged β2a proteins in HEK293 cells. 

Immunoprecipitations using FLAG antibodies resulted in the co-precipitation of 

CaMKII from cell lysates containing FLAG-β2a(WT), but not from lysates that did 

not contain FLAG proteins (Figure 8E).   Taken together, these findings identify 

the β2a subunit as a bona fide CaMKII-binding protein, and suggest that β2a is a 

CaMKII Associated Protein (CaMKAP) in situ.  

 

CaMKII preferentially phosphorylates Thr498 in β2a

We next investigated whether CaMKII efficiently phosphorylates GST-

β2a(WT) in comparison to PKA, which can enhance whole cell currents (ICa) of 

recombinant LTCCs by phosphorylating β2a at Ser478 and 479 (Bunemann et al., 

1999).  CaMKII phosphorylated GST-β2a(WT) at a substantially faster initial rate 

than an equimolar concentration of PKA (Figure 9A), even though these kinases  
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Figure 8. Binding of CaMKII to the LTCC β2a subunit.  
(A)  Thr287 autophosphorylation-dependent binding of CaMKIIδ to GST-
β2a(WT) and GST-NR2B using co-sedimentation assays. The input, 
soluble and bound fractions were analyzed by immunoblotting for CaMKII. 
GST-β2a(WT) displayed similar autophosphorylation-dependent binding to 
CaMKIIα (not shown).   
(B)  CaMKIIδ binds β2a (●) and NR2B (○) with similar affinity in a 
glutathione plate binding assay. The inset table reports equilibrium binding 
parameters (Kd and Bmax).  Data is displayed as mean ±S.E.M. 
(C)  Mapping the CaMKII-binding domain to amino acids 410-505 using 
gel overlay assays.   
(D)  β2a domain map. SH3- and GK-homology domains are indicated in 
gray and the CaMKII-binding domain is indicated in black. Partial amino 
acid sequences of β2a, CaMKIIα, CaMKIIδ, and NR2B are aligned below 
with sequence identities and similarities within black and gray boxes, 
respectively. 
(E) CaMKII co-immunoprecipitates with FLAG-β2a. HEK293 cells were 
transiently transfected to express CaMKII with either FLAG-β2a(WT) or 
FLAG-β2a(T498A).  Control cells were mock transfected or expressed 
CaMKII alone.  Cell lysates were immunoprecipitated using anti-FLAG 
agarose beads and aliquots of inputs, supernatants (supe) and immune 
pellets (IP) were immunoblotted for CaMKII (top) and FLAG proteins 
(bottom).  (Experiments in panel A-C were performed by Sunday Abiria)  
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displayed similar specific activities toward model peptide substrates (see 

Methods).  Moreover, CaMKII phosphorylated GST-β2a(WT) to a much higher  

final stoichiometry than PKA (Figure 9B), suggesting that CaMKII can 

phosphorylate multiple sites in the β2a subunit.  A similar CaMKII phosphorylation 

stoichiometry was observed using a C-terminal domain fragment of β2a (residues 

410-604) that contains the CaMKII-binding domain (Figure 10).  

As an initial step toward identifying CaMKII phosphorylation sites(s) in β2a 

we performed phosphoamino acid analysis on GST-β2a(WT) and GST-β2a(410-

604) following phosphorylation by CaMKII to stoichiometries of 2.9 and 1.5 

mol/mol, respectively. CaMKII phosphorylated both threonine and serine 

residues in each protein, whereas only serine(s) were targeted by PKA (Figure 

9C). Tryptic or chymotryptic digests of CaMKII-phosphorylated GST-β2a(WT) 

were then analyzed by tandem mass spectrometry, identifying several 

phosphorylation sites (Figure 11B) but providing no information about relative 

phosphorylation stoichiometries at each site. Among the sites identified in both 

tryptic and chymotryptic digests was Ser459, which was previously identified as a 

PKA site with no known functional role (Bunemann et al., 1999).  However, 

mutation of all known PKA sites in β2a (Ser459, Ser478 and Ser479) had no 

significant effect on CaMKII phosphorylation (Figure 12). Close examination of 

the tandem mass spectrum for a tryptic peptide containing Thr498 showed a 

fragmentation pattern that was consistent with Thr498 phosphorylation (Figure 

11D). Thr498 lies within the CaMKII-binding domain of β2a, and the surrounding 

amino acid sequence is similar to sequences surrounding Thr287 in CaMKIIδ, 
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Figure 9.  Thr498 in the β2a subunit is a preferred CaMKII phosphorylation site.  
(A) Time course for in vitro phosphorylation of GST-β2a(WT) by CaMKII (●) and 
PKA (○). Aliquots were removed at the indicated times and resolved by SDS-
PAGE. The Coomassie Blue stained gel and corresponding autoradiograph are 
shown (“prot” and “32P” in the inset), along with the phosphorylation stoichiometry 
in the main graph (p<0.05 at all points).  Data are displayed as mean ±S.E.M.   
(B) Kinase concentration dependence of GST-β2a(WT) phosphorylation. Data are 
displayed as in panel A (p<0.05 at all points). Data are displayed as mean 
±S.E.M. 
(C) Phosphoamino acid analysis showing that CaMKII phosphorylates threonine 
residues in the C-terminal domain of β2a. Internal phosphoamino acid standards 
were detected colorimetrically and their positions are marked by dashed circles 
on the autoradiograph.  
(D) Thr498 in β2a is a preferred site for CaMKII phosphorylation. Timecourse of 
phosphorylation of GST-β2a(WT) (●) and GST-β2a(T498A) (○) using 10 nM 
CaMKII at 4°C normalized to GST-β2a(WT) at 20 minutes (p<0.02 at all points). 
Data are displayed as mean ±S.E.M. 
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Figure 10.  In vitro phosphorylation of β2a subunit domains by CaMKII.   
GST-β2a(WT), -β2a(1-252), -β2a(252-410), or -β2a(410-604) (1 µM) were incubated 
at 30°C for 2.5 minutes with [γ-32P]ATP and CaMKIIδ2 (100 nM).  Aliquots were 
spotted on P81 paper for scintillation counts. The graph represents average 
phosphorylation stoichiometries from duplicates in a single experiment that is 
representative of 3-4 experiments. CaMKII phosphorylates the C-terminal domain 
of β2a (residues 410-604) to a similar stoichiometry as the full length (WT) 
protein, but the N-terminal domain (residues 1-252) is also phosphorylated.
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Figure 11.  Tandem mass spectrometry spectrum demonstrating Thr498 
phosphorylation.   
GST-β2a(WT) was phosphorylated to a stoichiometry of ≈3 mol/mol by 
CaMKII and re-purified using glutathione-agarose. The protein was 
digested with trypsin and then analyzed by LC-MS-MS.  A tandem mass 
spectrum is displayed showing relative abundance of peptide fragments 
vs. mass/charge (mz) ratio.  Y-ions are highlighted in red, b-ions in blue.  
An 80 dalton shift in mass from the predicted fragment value is denoted 
with an asterisk, indicating the presence of a phosphate. This 
fragmentation pattern conclusively identifies Thr498 as a phosphorylated 
residue. (LC-MS-MS performed by Amy Ham and the Proteomics Core)  
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Figure 12.  In vitro phosphorylation of β2a subunit wild type, PKA site mutants and 
CaMKII site mutant by CaMKII.  
Full length GST-β2a(WT), -β2a(S459, 477-479A), or -β2a(T498A) (1 µM) were 
incubated at 30°C for 20 minutes with [γ-32P]ATP and CaMKIIδ2 (10 nM).  
Aliquots were spotted on P81 paper for scintillation counts. The graph represents 
average phosphorylation stoichiometries from duplicates in a single experiment 
that is representative of 2-4 experiments. 
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Thr286 in CaMKIIα and Ser1303 in NR2B (Figure 11C), which are all potently 

phosphorylated by CaMKII (Colbran, 1993; Omkumar et al., 1996).  In contrast, 

amino acids sequences surrounding the other CaMKII phosphorylation site in 

GST-β2a exhibited very limited similarity with these previously identified CaMKII 

phosphorylation sites (Figure 11C). 

Mutation of Thr498 to Ala in the context of full-length β2a (GST-β2a(T498A)) 

significantly reduced the initial rate of CaMKII phosphorylation (Figure 9D) 

(p<0.02).  In combination, these data show that Thr498 in the β2a subunit is both 

a highly efficient and preferred CaMKII substrate.   

  

CaMKII regulation of recombinant LTCCs requires Thr498 in β2a

 

To directly test the hypothesis that the β2a subunit is required for CaMKII 

regulation of LTCCs, α1c subunits were transiently-expressed in tsA201 cells with 

and without β2a subunits.  Recordings of single LTCC activities in excised cell 

membrane patches confirmed previous observations (Wakamori et al., 1993; 

Zhang et al., 2005a) that β2a(WT) significantly increases the probability of 

channel opening (Po) under basal conditions (Figure 13, compare open bars).  

Addition of CaMKII to the cytosolic face of the membrane further increased the 

Po of α1c/β2a(WT) channels about 2.5-fold but had no effect on channels formed 

from α1c alone (compare black and open bars).  The CaMKII-induced increase in 

Po was abrogated by single point mutation of Thr498 to Ala in β2a (α1c/β2a(T498A) 

channels), but this mutation did not affect basal Po (Figure 13), or the  
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Figure 13. Thr498 in the β2a subunit mediates regulation of recombinant LTCCs.  
Cartoons at the top show LTCCs containing α1c and β2a(WT),  α1c alone or 

α1c and β2a(T498A) expressed in tsA201 cells. Representative sweeps of single 
channel activity are shown following incubation of cytosolic faces of excised 
membrane patches without or with constitutively active CaMKII or PKA (1 µM 
each).  The bar graph shows cumulative open probabilities (Po) for channels 
under each condition. *: p<0.001 compared to absence of kinase. Data are 
displayed as mean ±S.E.M. (Single Channel experiments performed by Igor 
Dzhura) 
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coimmunoprecipitation of CaMKII with β2a subunits (Figure 8E).  In contrast, PKA 

increased the Po of LTCCs formed from α1c alone, α1c/β2a(WT) or α1c/β2a(T498A) 

to a similar extent (≈2.5-fold) (Figure 13). These data show that CaMKII 

increases Po by a mechanism that is distinct from that of PKA and that require 

Thr498 in β2a, indicating that phosphorylation at this preferred site is essential for 

CaMKII regulation of LTCCs.  

 

ICa facilitation in rat cardiac myocytes requires Thr498 in β2a

The β subunit serves dual roles in modulating LTCC currents by acting to 

increase cell surface expression and to augment Po. In order to assess the role 

of Thr498 in the β2a subunit in native cells, FLAG-β2a(WT) or FLAG-β2a(T498A) 

proteins were expressed downstream of GFP and an internal ribosome entry site 

in freshly isolated adult rat cardiac myocytes using recombinant lentivirus. Cells 

were initially analyzed by immunofluorescence using anti-FLAG and anti-CaMKII 

antibodies approximately 15 hours after viral transduction.  Confocal imaging 

revealed that both exogenous FLAG-β2a subunits (WT or T498A) as well as the 

endogenous CaMKII are present in punctae along the cardiac myocyte Z-line, 

overlapping with α-actinin fluorescence (Figure 14), and consistent with their 

normal localization to T-tubule membranes (Gao et al., 1997b). Endogenous 

CaMKII was similarly localized along the Z-line in non-transduced cells and in 

cells transduced with control lentivirus. Strikingly, many of the CaMKII punctae 

co-localized with FLAG-β2a(WT) or FLAG-β2a(T498A) punctae, although some 

CaMKII displayed a unique localization (Figure 15A).  These data show that 
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CaMKII and the FLAG-β2a subunits are present in the same subcellular 

compartment in cardiac myocytes. 

Whole cell patch clamp analyses of cardiac myocytes transduced with 

control, FLAG-β2a(WT) or FLAG-β2a(T498A) lentivirus demonstrated that the 

general form of the current-voltage (I-V) relationship was similar.  However, the 

maximum ICa density was increased by over-expression of FLAG-β2a(WT) or 

FLAG-β2a(T498A) (-8.4±0.51 pA/pF and -8.7±0.45 pA/pF, respectively) compared 

to control cells (-6.8±0.51 pA/pF) (Figure 15B).  The similar modest increases in 

peak ICa 15-24 hours after lentiviral expression of FLAG-β2a(WT) and FLAG-

β2a(T498A) are considerably less than reported in previous studies that 

overexpressed β2a (Chen et al., 2005; Colecraft et al., 2002; Wei et al., 2000).  

Since β subunits are thought to be rate-limiting for expression of functional 

LTCCs (Wei et al., 2000), this discrepancy likely reflects the relative expression 

levels of exogenous β subunits due to differences in viral technology used for 

protein expression and/or the time at which analyses were performed.  Together, 

these data show that mutation of Thr498 to Ala does not affect the I-V 

relationship, disrupt the chaperone activity of β2a subunits, or affect the normal 

pattern of CaMKII localization in adult cardiac myocytes. 

CaMKII-dependent ICa facilitation is a unique physiological readout of 

CaMKII action in cardiac myocytes that has not been demonstrated in 

heterologous cells.  Therefore, we investigated the role of Thr498 in β2a in 

CaMKII-dependent facilitation of ICa in cardiac myocytes (Dzhura et al., 2000; Wu 

et al., 1999a). Facilitation was preserved in untransduced myocytes cultured for  
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Figure 14.  Immunolocalization of endogenous CaMKII and exogenously 
expressed FLAG-β2a WT and T498A lentiviral constructs in adult rat cardiac 
myocytes.  
Note that both CaMKII and FLAG β subunits (in red) are primarily localized over 
the Z-line with α-actinin (blue).  Pink represents the overlapping signal between 
red and blue stains.  Scale bars equal ten microns. (Images by Peter Mohler and 
myself) 
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Figure 15.  ICa facilitation in rat cardiac myocytes requires Thr498 in β2a. 
(A)  Confocal images of GFP fluorescence and immunolocalization of 
FLAG-β2a proteins and CaMKII to T-tubules in non-transduced adult rat 
cardiac myocytes cells (control) and in cells transduced with control 
lentivirus (vector: expresses GFP alone), FLAG-β2a(WT) lentivirus or 
FLAG-β2a(T498A) lentivirus. 
(B)  Current-voltage (I-V) relationships for whole-cell Ca2+ currents (ICa) 
were unaltered, but peak ICa was modestly increased in cardiac myocytes 
transduced with FLAG-β2a(WT) lentivirus (■: n=12) or FLAG-β2a(T498A) 
lentivirus (▲: n=14), relative to control lentivirus (●: n=12). Data is 
displayed as mean ±S.E.M. 
(C) Facilitation of ICa. Repetitive depolarization protocols (0.5 Hz) revealed 
normal facilitation in cardiac myocytes transduced with control (●: n=7) or 
FLAG-β2a(WT) (■: n=7) lentivirus, but not in cells transduced with FLAG-
β2a(T498A) lentivirus (▲: n=10). Representative current traces are shown 
above with horizontal and vertical scale bars representing 50 ms and 2 
pA/pF, respectively. Data are displayed as mean ±S.E.M.  (Panel A 
images by Peter Mohler and myself, panel B by Yuejin Wu and myself) 
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Figure 16.  ICa facilitation in cultured rat cardiac myocytes.   
Whole-cell voltage clamp analysis of adult rat cardiac myocytes cultured for 15-
24 hours. Cardiac myocytes were repetitively depolarized from -80mV to 0mV 
(150 ms each) at 0.5 Hz under control conditions (▲) (n=24) or with 20 μM AC3-I 
CaMKII inhibitor peptide (●) (n=4) in the pipet solution. The graph shows ICa for 
each stimulation, expressed as the percentage change from ICa observed upon 
the first stimulation. As previously observed in freshly isolated murine (Dzhura et 
al., 2000) and rabbit (Wu et al., 2001a) cells, cultured adult rat cardiac myocytes 
exhibit CaMKII-dependent ICa facilitation because AC3-I prevents any changes. 
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15-24 hours (19.4±0.05%), as well as in cells transduced with control lentivirus 

(18.9±0.06%) (Figure 15C and Figure 16). Moreover, intracellular perfusion with 

a CaMKII inhibitory peptide (AC3-I) blocked ICa facilitation, demonstrating that 

CaMKII activity is required for facilitation in cultured cardiac myocytes (Figure 

16). Normal ICa facilitation was observed in cardiac myocytes expressing FLAG-

β2a(WT) (17.1±0.03%), but no facilitation was detected in cells expressing FLAG-

β2a(T498A) (Figure 15C). Thus, targeted FLAG-β2a(T498A) over-expression 

ablates ICa facilitation, demonstrating that CaMKII-dependent ICa facilitation 

requires β2a phosphorylation at Thr498 in cardiac myocytes.    

 

Discussion 

 

The present studies define a molecular mechanism for CaMKII-mediated 

facilitation of Ca2+ influx via LTCCs in adult cardiac myocytes. PKA is known to 

enhance ICa by phosphorylating the α1c subunit at Ser1928 (Gao et al., 1997b) 

and/or the β2a subunit at Ser478 and Ser479 (Bunemann et al., 1999).  However, 

recent work has challenged the functional relevance of PKA phosphorylation at 

these sites (Ganesan et al., 2006), and we show here that β subunits are not 

necessary for PKA-mediated increases in the Po of recombinant channels (Figure 

13B).  Optimal PKA regulation of LTCCs requires targeting of PKA to the channel 

by the scaffolding proteins AKAP15 (Hulme et al., 2003) and/or AKAP 79 (Gao et 

al., 1997b).  In contrast, autophosphorylated (activated) CaMKII directly binds to 

β2a with an apparent KD at least 10-fold lower than physiological concentrations 
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of CaMKII (Figure 8), and CaMKII colocalizes with β2a on T-tubules at the Z-line 

of cardiac myocytes (Figure 15A).  The β2a subunit is required for the CaMKII-

stimulated increase in PO of recombinant LTCCs and we show that a preferred 

CaMKII phosphorylation site (Thr498) within the CaMKII-binding domain is 

required for the increase in PO (Figures 10, 14B).  Most significantly, expression 

of the β2a subunit lacking Thr498 abrogates ICa facilitation in adult cardiac 

myocytes (Figure 15C), presumably because the recombinant mutated protein 

replaces endogenous β subunits in active LTCC complexes.  

Expression of FLAG-β2a had no significant effect on the maximum extent 

of LTCC facilitation (Fig. 16C), suggesting that the endogenous β subunit(s) are 

functionally analogous to the β2a subunit in terms of CaMKII-dependent 

facilitation.  The β2 regulatory subunits are thought to predominate in cardiac 

myocytes (Colecraft et al., 2002; Foell et al., 2004), and residues 486-500 are 

present in all of the known β2 subunit splice variants (Colecraft et al., 2002; Foell 

et al., 2004). Consequently, our findings strongly suggest that phosphorylation of 

β2 subunits is required for Ca2+-dependent feedback facilitation of LTCC by 

CaMKII in native cardiac myocytes. The β1b and β3b subunits that also are 

present in heart also contain amino acid sequences similar to that surrounding 

Thr498, but their relative expression levels in the cardiac myocyte and their 

capacity for influencing α1 subunit gating behavior are incompletely understood. 

Although additional studies will be needed to determine whether other β subunit 

isoforms can play a similar role to the β2a subunit, the sequence homology 

between β subunit isoforms and their broad expression profiles suggest that β 
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subunit mediated regulation of LTCCs by CaMKII will be important across a wide 

range of cell types.   

CaMKII was recently reported to bind to the α1c C-terminus, close to 

multiple calmodulin-binding motifs, as well as to other intracellular domains in the 

α1c subunit (Hudmon et al., 2005). These authors expressed an α1C subunit with 

a mutated calmodulin-binding motif in oocytes and showed that Ca2+-dependent 

facilitation was disrupted by additional mutations that blocked CaMKII binding to 

the α1c C-terminal domain in vitro.  However, these additional mutations did not 

block association of CaMKII with the intact LTCC complex, consistent with our 

results identifying the β subunit as a CaMKII binding partner.  The relationship 

between facilitation of these mutated recombinant channels and CaMKII-

dependent facilitation of native LTCCs in cardiac myocytes is unclear, particularly 

because there is no evidence that CaMKII activity is required for facilitation in 

oocytes and no specific phosphorylation sites were identified (Hudmon et al., 

2005). It is interesting to note that calmodulin-binding domains in the α1c C-

terminus can act as ligands to facilitate LTCCs and ICa by a biophysical 

mechanism that is indistinguishable from CaMKII-dependent ICa facilitation 

(Dzhura et al., 2003; Wu et al., 2001b).  In addition, we recently reported that the 

β2a subunit interacts with the α1c C-terminus in a calmodulin-sensitive manner 

(Zhang et al., 2005a).  Thus, the present studies show that Thr498 

phosphorylation of the β2a subunit is critical for CaMKII-dependent ICa facilitation 

in native cardiac myocytes, but they cannot exclude downstream regulatory 

role(s) for other mechanisms that have been previously defined in heterologous 
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cells, including CaMKII binding to and/or phosphorylation of other proteins in the 

LTCC complex, including the α1 subunit (Erxleben et al., 2006; Hudmon et al., 

2005). 

CaMKII activity is increased in several forms of heart disease (Zhang and 

Brown, 2004) and transgenic overexpression of CaMKII is sufficient to cause 

cardiomyopathy (Zhang et al., 2002; Zhang et al., 2003), which is marked by 

increased LTCC Po and disordered Ca2+ homeostasis (Maier et al., 2003; 

Schroder et al., 1998).  Moreover, CaMKII inhibition reduces cardiomyopathy 

after myocardial infarction and β adrenergic receptor activation (Zhang et al., 

2005b). Phosphorylation of the ryanodine receptor at CaMKII sites is enhanced 

in cardiomyopathy (Ai et al., 2005; O-Uchi et al., 2005; Zhang et al., 2003), and 

rate-dependent CaMKII-mediated phosphorylation of the ryanodine receptor is 

defective in a heart failure model (Wehrens et al., 2004).  The present findings 

suggest that β2a may be an additional target for CaMKII in heart disease.     

This work provides critical mechanistic insight to a growing body of 

evidence implicating CaMKII as a universal coordinator of Ca2+ homeostasis. The 

autoregulatory properties of CaMKII are uniquely adapted to this role (De 

Koninck and Schulman, 1998).  In cardiac myocytes, CaMKII also modulates SR 

Ca2+ release via the ryanodine receptor and SR Ca2+ uptake via phospholamban 

and the SR Ca2+-ATPase (Ji et al., 2003; Ji et al., 2006; O-Uchi et al., 2005), but 

mechanisms for targeting CaMKII to these proteins are not well defined.  While 

the present study focused on feedback regulation of cardiac LTCCs by CaMKII, 

similar mechanisms are likely to operate in many other tissues because both 
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CaMKII and the β2a subunit are widely expressed, particularly in the brain (Bayer 

et al., 1999; Dolphin, 2003). Moreover, β2a subunits modulate several voltage-

gated calcium channel α1 subunits (Dolphin, 2003), and these channels also 

exhibit Ca2+/CaM-dependent facilitation (Lee et al., 2000).  Thus, the CaMKII-β2a 

mechanism described here for facilitation of cardiac LTCCs may be a critical 

component in the modulation of cardiac, neuronal and endocrine signaling 

pathways implicated in excitation-contraction coupling (Tanabe et al., 1990), 

transcription (Dolmetsch et al., 2001), exocytosis (Artalejo et al., 1994), action 

potential physiology (Wu et al., 2004), and synaptic plasticity (Grover and Teyler, 

1990). 
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CHAPTER IV 

 

 

  A REGULATED INTERACTION BETWEEN CAMKII AND SELECT VGCC 
BETA SUBUNITS 

 

 

Introduction 

 

Voltage-gated Ca2+ channels are multimeric protein complexes consisting 

of a pore forming α1 subunit that is usually associated with auxiliary β, α2δ and γ 

subunits (Arikkath and Campbell, 2003).  They are defined by the biophysical 

and pharmacological properties of the α1 subunit (Catterall, 2000; Hille, 2001).  

The high-voltage activated Ca2+ channels (L, N, P, Q, and R type) interact with 

and are regulated by the cytosolic β subunits.  Four genes encoding β isoforms 

have been identified (β1-4) each having multiple mRNA splice variants (Dolphin, 

2003; Perez-Reyes et al., 1992).  The β isoforms function to regulate the 

biophysical properties of the VGCC complex (Dolphin 2003) and act as molecular 

chaperones enhancing surface expression of the complex (Bichet et al., 2000). 

Regulating the subcellular localization of a signaling molecule enhances 

the specificity of the response (Pawson and Nash, 2003).  A well defined 

example is the regulation of PKA localization and signaling by AKAPs (Smith et 

al., 2006).  The multifunctional Ca2+/CaM dependent protein kinase II (CaMKII) 

regulates diverse cellular functions in response to changes in intracellular Ca2+ 
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concentrations and achieves signal specificity by regulated interaction with its 

target protein (Colbran, 2004; Grueter et al., 2006; Strack et al., 2000a).  CaMKII 

is activated by Ca2+ bound CaM directly interacting with the regulatory domain 

within CaMKII (Meyer et al., 1992).  Upon activation of two adjacent subunits 

within the dodecameric holoenzyme CaMKII can trans-autophosphorylate at 

Thr287 resulting in constitutive activity.  It is through this structure/function 

relationship that CaMKII is thought to act as a molecular integrator of Ca2+ 

transients.  Depending on the frequency, duration and amplitude of Ca2+ 

transients, CaMKII is autophosphorylated and remains active in the absence of 

Ca2+ (De Koninck and Schulman, 1998).  Thus a direct interaction with the target 

protein would help ensure an accurate and timely response to stimulation such 

as increased intracellular Ca2+ in the microdomain of high voltage-gated Ca2+ 

channels (VGCC).  

 CaMKII modulates VGCC’s Ca2+ current (ICa) in many cell systems 

including neurons and cardiac myocytes.  CaMKII activation via L-type Ca2+ 

channels leads to a depression of R-type Ca2+ channels in neuronal spines 

(Yasuda et al., 2003).  CaMKII directly interacts with and regulates T-type Ca2+ 

channels at the II-III linker on the α1 subunit (Wolfe et al., 2003; Yao et al., 2006).  

Recent work in heterologous cells demonstrates that the α1 subunit is a CaMKII 

substrate and can mediate both Ca2+- and voltage-dependent facilitation in 

normal and disease states (Erxleben et al., 2006; Hudmon et al., 2005; Lee et al., 

2006). We have recently defined a molecular mechanism for CaMKII regulation 

of LTCC Ca2+-dependent facilitation mediated by the β2a subunit (Grueter et al., 
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2006).   We also demonstrated that β2a can act as a CaMKII anchoring protein 

(CaMKAP) localizing CaMKII to the LTCC complex potentially enhancing both 

the Ca2+ and voltage-dependent regulation of LTCC by CaMKII.  In the current 

study we show that CaMKII interacts selectively with β subunit isoforms and 

define the CaMKII binding domain.  Thr498 is a critical residue involved in 

CaMKII mediated regulation of LTCC (Grueter et al., 2006), and lies within the 

binding domain. Phosphorylation of Thr498 specifically regulates CaMKII 

interactions with the β subunit. 

 

Results 

 

CaMKII efficiently phosphorylates β1-4 subunits 

CaMKII regulation of LTCC can occur via phosphorylation of β2a Thr498, 

although many other sites can be phosphorylated (Grueter et al., 2006).   In order 

to begin to analyze the potential contribution of the CaMKII phosphorylation sites 

in the other β isoforms, we measured the initial rates of phosphorylation (see 

methods) (Figure 17a).  The rates of phosphorylation of β1b and β2a were 

indistinguishable but β3 and β4 were phosphorylated at slower rates.  Aligned 

amino acid sequences of the domain surrounding β2a Thr498 with the other three 

β subunit isoforms shows similarities between all four isoforms(Figure 18a).  

However, variations at specific amino acid residues that are likely to affect 

CaMKII phosphorylation were evident.  The CaMKII consensus phosphorylation 

motif LXRXXS/T is present in both β2a and β1b and there is substantial amino acid 
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sequence identity outside this motif.  The β3 and β4 subunits are missing key 

residues from the consensus phosphorylation motif and exhibit significantly less 

overall identity.     

We next investigated the extent of CaMKII phosphorylation of the β 

isoforms in vitro (Figure 17b).  CaMKII phosphorylates all β isoforms with a 

similar concentration dependence but the maximal phosphorylation varied 

somewhat between the β isoforms (β2a, β1b, β3 and β4: 13.1±1.3, 10.8±0.4, 

7.4±0.5 and 9.6±1.7 moles of phosphate/mole β respectively). Together these 

data show that all β subunit isoforms are CaMKII substrates but that initial 

phosphorylation may vary. 

 

Select VGCC β subunits interact with CaMKII in vitro 

Thr498 lies within the CaMKII-binding domain in β2a.  Based on the amino 

acid sequence comparison we hypothesized that β1b would interact with CaMKII 

in a similar manner as β2a and neither β3 nor β4 would bind CaMKII.  To test the 

hypothesis we performed GST immobilization assays in glutathione coated 96-

well plates using purified GSTβ subunits incubated with purified 

autophosphorylated CaMKII (Figure 18b).  CaMKII interacts with β1b and β2a but 

not with β3 or β4 (data not shown).  The data was fit using nonlinear regression 

with the calculated relative Kd for β1b and β2a at about 36 and 121nM, 

respectively, well within the estimated levels of CaMKII in neurons and cardiac 

myocytes (McNeill and Colbran, 1995; Wu et al., 1999a).
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Figure 17.  The β subunit isoforms are excellent CaMKII substrates in vitro. 
A.  Initial rate of β isoform phosphorylation by CaMKIIδ2. (n=2).  B.  GSTβ 
isoform phosphorylation by increasing concentrations of CaMKIIδ2. (β2a○, β1b●, 

β3▼, β4▽). (error bars are ±S.E.M.) (n=3)  
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 Figure 18.  CaMKII association with VGCC β subunit isoforms.   
A. Sequence alignment of a homologous domain within β(1-4) and the 
CaMKIIδ autoregulatory domain surround Thr287 (underlined).  Identical 
residues are boxed.  B.  Auto-phosphorylated CaMKIIδ2 interacts with β2a 
and β1b in vitro by glutathione plate binding assay.  C. Preincubation of 
GST-β isoforms with CaMKIIδ2 in the presence or absence of ATP.  
Protein staining is depicted in the top panel.  The middle panel is a 
representative autoradiograph from the 32P CaMKIIδ2 overlay assay.  The 
graph represents the quantitative results from three experiments. (error 
bars are ±S.E.M.) (Experiments in panel B were performed by Sunday 
Abiria) 
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β1b and β2a interact with autophosphorylated CaMKII and contain an 

excellent phosphorylation site within the CaMKII-binding domain.  To test 

whether β subunit phosphorylation regulates CaMKII binding we pre-incubated 

CaMKII with GSTβ with or without ATP.  We then performed a CaMKII overlay 

assay to determine CaMKII interaction (Figure 18c).  Preincubation with ATP and 

CaMKII resulted in a gel shift in the Coomassie Blue stained protein band for the 

β subunit when compared to non-phosphorylated lanes, consistent with 

phosphate incorporation (Figure 18c protein).  Consistent with Figure 18a and b, 

CaMKII binds non phosphorylated β1b and β2a but not β3 or β4.  However, pre-

phosphorylation of the β subunits significantly reduced CaMKII binding by about 

80% and 70% for β1b and β2a, respectively.  The graph represents cumulative 

results from three independent binding experiments.  These data suggest a 

mechanism for autoregulation of CaMKII interaction with β1b and β2a.  

To dissect the mechanism for regulation of CaMKII binding to β2a we 

mutated Thr498 to Glu  (to mimic phosphorylation) or Ala (to remove the 

phosphorylation site).  The Thr498Glu mutant significantly reduced CaMKII 

binding by >90% in glutathione plate binding assays, whereas the Thr498Ala 

mutation had no significant effect.   

Similarly, the Thr498Glu mutation reduced binding by about 80% in the 

CaMKII overlay assays but the Thr498Ala mutation had no significant effect.  

Both the mutated β2a proteins were significantly phosphorylated by CaMKII, as 

evidenced by a shift in electrophoretic mobility on SDS-PAGE (and see below).  

However, pre-phosphorylation by CaMKII had no significant effect on CaMKII 
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binding to either Thr498Ala or Thr498Glu mutated β2a.  Together these results 

suggest that CaMKII interaction with β2a is specifically regulated by 

phosphorylation of β2a Thr498.   

 

Disruption of CaMKII binding does not affect phosphorylation of β2a  

In order to further investigate the relationship between CaMKII binding to 

β2a and the phosphorylation of β2a we created a mutated β2a protein based on 

previous work on another CaMKAP, the NR2B subunit of the neuronal ligand-

gated Ca2+ channel the NMDA receptor.  That work showed that mutation of the 

–5 site from Leu to Ala significantly reduced interaction between CaMKII and 

NR2B (Strack et al., 2000a).  Mutating the homologous site in β2a, Leu493 to Ala 

also significantly reduced CaMKII interaction by >90%.  The Leu493Ala mutant 

had significantly reduced binding in the overlay assay to about 10%.  

Phosphorylation of the mutant protein appeared to further reduce its interaction, 

suggesting that Thr498 could still be phosphorylated. 

The Thr498Ala and Thr498Glu mutations substantially reduced the initial 

rate of phosphorylation consistent with the fact that Thr498 is the initial site for 

CaMKII phosphorylation.  The initial rate of phosphorylation of Leu493Ala by 

CaMKII at 4ºC was indistinguishable from the phosphorylation of wild type β2a 

(Figure 20a).  However, it seemed possible that the Leu493Ala mutation might 

alter the Thr498 specificity exhibited by CaMKII under these conditions.  To 

address this question, we exploited the similarities in protein sequences  
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Figure 19.  Phosphorylation of β2a Thr498 negatively regulates CaMKII 
interaction.   
A.  Glutathione plate binding assays using wild type and mutant GST-β2a 
subunits.  B.  Preincubation of GST-β2a mutants with CaMKIIδ2 in the presence 
or absence of ATP.  Protein staining is depicted in the top panel.  The middle 
panel is a representative autoradiograph from the 32P CaMKIIδ2 overlay assay.  
The graph represents the quantitative results from three experiments. (error bars 
are ±S.E.M.) (Experiments in panel A were performed by Sunday Abiria) 
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Figure 20.  β2a phosphorylation by CaMKII is independent of its interaction with 
this protein.   
A.  Initial rate of β2a phosphorylation by CaMKII is strongly dependent on Thr498 
(wild type●, Thr498Ala▼, Thr498Glu○, Leu493Ala▽). (error bars are ±S.E.M.) 
n=3-4.  B.  CaMKII phosphorylation of β2a is reduced when Thr498 is mutated.  
The top panel is a representative autoradiograph with the protein stain directly 
below.  The third panel is a representative western blot demonstrating Thr498 
phosphorylation in β2a.  The protein stain is shown below. 
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Figure 21.  CaMKII phospho Thr287 antibody cross reacts with β2a.   
Western blot of in vitro phosphorylated GST-β subunits using the Promega active 
CaMKII antibody at Thr287.    
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surrounding Thr498 in β2a and Thr287 in CaMKIIδ.  A commercially available  

phospho-Thr287 antibody specifically detected CaMKII phosphorylated β2a, but 

not non phosphorylated β2a.  The phospho-Thr287 antibody did not detect β3 or 

β4 before or after CaMKII phosphorylation, and only weakly detected 

phosphorylated β1b. 

We then used the phospho-Thr498 antibody to probe CaMKII 

phosphorylation of wild type and mutated β2a proteins.  The phosphorylated wild 

type protein was effectively detected, but the Thr498Ala or Thr498Glu proteins 

were not detected, demonstrating that the antibody specifically recognized 

phospho-Thr498.  Moreover, the phosphorylated Leu493Ala β2a protein was 

detected by the phospho-Thr287 antibody at least as efficiently as the 

phosphorylated wild type β2a protein (Figure 20b).  These data demonstrate that 

Leu493Ala mutation neither affects the initial phosphorylation of β2a at Thr498 nor 

does it affect total phosphorylation in vitro. 

 

 CaMKII interaction with β2a is regulated in HEK cells 

We have demonstrated the interaction between CaMKII and β2a is 

regulated by phosphorylation in vitro.  We next co-expressed CaMKII with FLAG-

tagged β2a Thr498Ala, Thr498Glu proteins in HEK293 cells to test whether  

CaMKII association is regulated by phosphorylation in situ.  In addition, we 

expressed the Leu493Ala mutant to determine the role of this residue on the 

interaction in intact cells.  Immunoprecipitations using FLAG antibodies resulted 

in the co-precipitation of CaMKII from cell lysates containing FLAG
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Figure 22.  CaMKII interaction with β2a is regulated by Thr498 phosphorylation in 
situ.   
The left panel displays the input, supernatant and pellets from 
immunoprecipitations of FLAG-β2a Thr498Ala, Thr498Glu and Leu493Ala.  The 
right panel shows results from the same membrane probed with a CaMKII 
antibody.  Data are representative of 4 experiments 
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-β2a(Thr498Ala) and a reduced interaction with Thr498Glu, but not from lysates 

containing FLAG-β2a(Leu493Ala) (Figure 22).  Co-immunoprecipitation of CaMKII 

with FLAG-β2a(WT) was variable, which is consistent with a regulated interaction 

(data not shown).  These findings further demonstrate a regulated interaction 

between CaMKII and the β2a subunit in situ.  

 

Discussion 

 

 VGCCs regulate Ca2+ entry in a diverse range of cell types including both 

excitable and non-excitable cells.  New studies revealing the regulation of 

VGCCs by posttranslational modification and by protein-protein interactions are 

continuing to be reported.  In the present study, we demonstrate CaMKII 

interactions with β subunits of VGCC containing the LXRXXS/T motif, specifically 

β1b and β2a but not β3 or β4.  Further analysis demonstrates that the interaction 

between β2a and potentially β1b is regulated by CaMKII phosphorylation of Thr498 

both in vitro and in situ. 

The modulation of VGCC by the auxiliary β subunits is still being defined.  

Recent reports demonstrate that the primary docking site for β on the α1 subunit 

I-II linker is necessary for membrane expression of N-type Ca2+ channels.  

However, the β subunit modulation of the biophysical properties of the VGCCs 

appears to occur via secondary interactions (Butcher et al., 2006; Leroy et al., 

2005).  A third and potentially equally important role for the β subunits as 

scaffolding proteins has emerged (Beguin et al., 2006; Finlin et al., 2006; Hohaus 
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et al., 2002).   Signaling proteins such as REM GTPases bind to and inhibit 

VGCCs via the β subunit (Beguin et al., 2006; Finlin et al., 2006).  Other proteins 

including AHNAKs function as large structural proteins linking the VGCC complex 

to the actin cytoskeleton via the β subunit (Hohaus et al., 2002). 

Our previous work demonstrated that CaMKII colocalized with cardiac 

LTCCs and that β2a Thr498 is necessary for CaMKII-dependent facilitation of 

Ca2+ current (Grueter et al., 2006).  The implications of this work are several fold.  

First, CaMKII localization and potentially regulation of VGCC could be dependent 

on the β subunit isoform bound to the channel complex.  Second, CaMKII 

activation and phosphorylation of β2a or β1b leads to a decrease in CaMKII 

association.  However, our results suggest that CaMKII interaction with β2a does 

not have an effect on the initial rate of Thr498 phosphorylation in vitro, which 

raises the question of the role of CaMKII interaction with the β2a subunit.  

Transduction of the β2a Thr498Ala mutant ablates CaMKII-dependent facilitation 

of ICa in cultured adult cardiac myocytes (Grueter et al., 2006).  Whether or not 

phosphorylation of the Thr498 site is directly responsible for the change in the 

biophysical properties of the LTCCs or Thr498Ala binds CaMKII in a constitutive 

manner not enabling it to dissociate remains unanswered.  Dissociation of 

activated CaMKII may allow it to phosphorylate nearby substrates such as the 

recently reported sites on the α1c subunit (Erxleben et al., 2006; Hudmon et al., 

2005; Lee et al., 2006).   All of these publications co-transfected the β2a subunit; 
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thus, the effects via α1 may be β dependent or β specific.  Dissociation of CaMKII 

would also allow protein phosphatases access to the Thr498 site, thus enabling it 

to dephosphorylate Thr498.  Further analysis of the dynamics of this interaction 

are needed to form a more complete model of how these proteins might play a 

role in channel regulation. 

 VGCCs are portals for Ca2+ entry and provide a signaling mechanism for 

translating changes in membrane potential into biochemical responses.  The 

signaling molecules associated with the VGCC complex would therefore be 

important in modulating the downstream signaling effects.  For example, VGCC 

dependent long term potentiation in dendritic spines is thought to involve cross 

talk between L-type Ca2+ channels and R-type Ca2+ channels mediated by 

activation of CaMKII (Yasuda et al., 2003).  Both types of VGCC are regulated by 

β subunits and depending on the β subunit isoform associated with the complex 

CaMKII mediated signaling may vary.  Precise regulation of Ca2+ signaling 

proteins in distinct microdomains may provide a mechanism for signal specificity.   

Alterations in β subunit composition occur in disease, therefore modifying 

signaling/regulation of VGCC.  Bodi et. al.  proposed that β subunit 

channelopathies may be a source of heart failure (Bodi et al., 2003).  The work 

shown here may represent one of the physiological mechanisms cells use to 

adapt to changes in their local environment. 
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CHAPTER V 

 

 

  SUMMARY AND FUTURE DIRECTIONS 

 

 

Summary 

 

The original goal of my thesis project was to identify and characterize the 

potential role of the VGCC β2a subunit in mediating CaMKII-dependent facilitation 

of ICa in cardiac myocytes.  The proposed plan was to identify CaMKII 

phosphorylation sites within the β2a subunit using biochemical and proteomic 

approaches. Electrophysiological techniques would be used to screen mutants 

for functionally significant sites using a heterologous cell system.  Following the 

successful identification of functionally significant CaMKII phosphorylation sites 

within β2a in model cells, we would use viral mediated gene delivery in cultured 

adult cardiac myocytes to test the functional consequence of mutating the 

identified site(s) within β2a on CaMKII dependent ICa facilitation. 

 In theory the proposed experiments and interpretations were logical; 

however, many unknowns and technical difficulties were evident.  First and 

foremost, evidence for β subunit involvement in CaMKII-dependent facilitation 

was preliminary.  Second, there were 99 Ser/Thr residues out of 604 total amino 

acids in β2a, each representing a potential CaMKII phosphorylation site.  Many of 
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the technical requirements necessary for the success of this project were not in 

place at the outset.  Therefore, much time was spent developing new 

technologies and refining old techniques that would directly facilitate progress.  

Among these was the isolation and culture of adult cardiac myocytes.  Upon 

successful culture of the terminally differentiated cardiac cells another challenge 

arose.  Introducing an exogenous protein in terminally differentiated cells.  A 

lentiviral approach carrying GFP-IRES-β2a was used to transduce cardiac 

myoctyes.  Previous studies by Wei et al and Colecraft et al showed that the β 

subunit is the rate limiting step in LTCC functional expression at the surface of 

the plasma membrane and importantly, that exogenous β subunits act in a 

dominant manner, a fortunate biological phenomenon that made completing my 

project possible (Colecraft et al., 2002; Wei et al., 2000).   

 Ultimately, β2a Thr498 was identified as a significant CaMKII 

phosphorylation site by proteomic and biochemical methods.  Mutating Thr498 to 

Ala abrogated CaMKII-dependent increases in single channel open probability in 

transiently transfected heterologous cells.   Mutating this site in β2a ablated 

CaMKII dependent facilitation in cultured adult cardiac myocytes.  

Immunohistochemical analysis revealed β2a and CaMKII colocalization at Z-lines 

in cardiac myocytes.  I also recognized that the sequence surrounding Thr498 is 

similar to the CaMKII autoregulatory domain and the CaMKII binding site in the 

NR2B subunit of the NMDA receptor. This led to studies showing that β2a and β1b 

are CaMKAPs.  Further analysis of the interaction demonstrated that binding is 

negatively regulated by Thr498 phosphorylation. 
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In summary, I have identified a mechanism for CaMKII dependent 

facilitation of ICa in cardiac myocytes that is mediated by the regulatory β2a 

subunit as proposed.  In addition I have characterized a mechanism for CaMKII 

localization to LTCC in cardiac myocytes and the intricate modes of cross talk 

between β2a and CaMKII.  Taken together this work provides a strong foundation 

for future work involving CaMKII regulation of Ca2+ signaling in diverse cell types. 

 

Future directions 

 

CaMKII-dependent ICa facilitation 

Our data strongly suggest that CaMKII regulates LTCCs via β2a Thr498.  

While functional studies using the dominant negative β2a Thr498Ala mutant in 

adult cardiac myocytes to ablate ICa facilitation strongly support this statement, 

the actual mechanism for this regulation remains elusive.  There are at least two 

potential modes of regulation.  One mode is that β2a Thr498 phosphorylation 

directly regulates the biophysical properties of the channel.  A second possibility 

is that β2a Thr498 phosphorylation enhances CaMKII dissociation, therefore 

releasing CaMKII to phosphorylate an additional site(s) such as the recently 

identified sites on the C-terminus of the α1c subunit (Figures 23 and 24).  

Experiments have been designed to address the question of the mode of 

regulation using the β2a Leu493Ala mutant.  Biochemical analysis of the 

Leu493Ala mutant in Chapter IV shows that Thr498 phosphorylation is not 

altered, but that CaMKII interaction is significantly reduced.  Assuming it would 
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function in a dominant fashion when transduced into adult cardiac myocytes, as 

did the Thr498Ala mutant, ablation of ICa facilitation would support our first 

hypothesis.  However, if ICa facilitation was the same as with wild type β2a it would 

support our second hypothesis.  One caveat is that the Leu493Ala mutant might 

reduce CaMKII localization to the LTCC complex, thus reducing CaMKII 

regulation of the channel.  In any event, the experiment would provide evidence 

for the importance of the β2a subunit in mediation of CaMKII localization to the 

LTCC complex.  

 

Deciphering the physiological role of CaMKII-dependent facilitation 

It has been postulated that the physiological role for CaMKII-dependent ICa 

facilitation is to allow for an increase in the force of contraction upon increase in 

the frequency of stimulation (Bers and Guo, 2005; Pitt et al., 2006).  However, 

direct evidence was lacking because the mechanism for CaMKII-dependent 

facilitation was unknown.  Based on the results presented in this thesis, a 

transgenic mouse model with β2a Thr498 mutated to Ala may provide a tool to 

test this hypothesis.   

Another potential experiment to address this hypothesis is to evaluate 

whether or not β2a Thr498Ala alters cardiac myocyte contractility under various 

conditions.  The established culture conditions and transductions could be  
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Figure 23.  Flow chart representing multiple interpretations for the β2a dependent 
CaMKII facilitation of LTCC ICa. 
CaMKII associated with the LTCC complex becomes activated and 
phosphorylates β2a Thr498.  Ablation of this site abolishes CaMKII dependent 
facilitation that could potentially occur by two different mechanisms (arm 1 vs. 
arm 2 in the diagram).  First, Thr498 phosphorylation could directly regulate the 
biophysical properties of the channel enhancing ICa directly.  Another potential 
mechanism is Thr498 phosphorylation leads to CaMKII dissociation freeing 
CaMKII to phosphorylate an additional target such as the α1c C-terminus, 
ultimately resulting in LTCC ICa facilitation. 
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Figure 24.  Schematic diagram representing CaMKII dependent facilitation of 
LTCC.   
A.  Activated CaMKII can associate with the C-terminus of the LTCC β2a subunit 
and with the C-terminus of the α1C subunit.  B. Phosphorylation of β2a at Thr498 
is sufficient for CaMKII dependent facilitation of ICa in cardiac myocytes.  
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utilized.  Experimental parameters could include altering the pacing frequency, β-

adrenergic stimulation and pharmacological inhibition of CaMKII.  We would 

anticipate an increase in peak contraction following CaMKII activation.  A 

decrease in peak contraction compared to wild type would suggest that the β2a 

Thr498 plays a functional role in regulating the force-frequency relationship. 

Both CaMKII and the LTCC have been implicated in generating EADs 

during the cardiac action potential plateau phase.  Early-afterdepolarizations are  

triggers for cardiac arrhythmias (Anderson, 2005).  To determine if CaMKII 

mediated EADs are a result of β2a Thr498 phosphorylation, experiments 

transducing β2a Thr498Ala could be performed and analyzed by current clamp.  

We would predict that, if this site is a trigger point for EADs, eliminating the site 

would significantly reduce EADs when compared to wild type.   

 

Other CaMKII phosphorylation sites on β2a

 The major goal of this work was to identify a mechanism for CaMKII-

dependent facilitation involving the β2a subunit.  Other potential regulatory 

processes may be occurring via CaMKII phosphorylation that was not directly 

addressed.  The in vitro data show that Thr498 is the initial phosphorylation site 

but that other sites do exist.  A short list of sites identified by mass spectrometry 

are included in Figure 11.  These sites include a PKA phosphorylation site, 

Ser459, that has no known function (Bunemann et al., 1999).  Another potential 

CaMKII site is Ser574.  Phosphorylation of this site by PI3 kinase enhances 

membrane expression of the VGCC complex (Viard et al., 2004).  Other 
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unidentified phosphorylation sites may play an important role in regulating the 

association of other regulatory proteins with the β2a subunit.   

  

LTCC complex ICa “remodeling” in disease states 

 The predominant β subunit expressed in the heart is thought to be the β2 

isoform.  However, evidence suggests that β subunit expression may vary 

depending on the disease state of the heart with an increase in β3 expression 

with the LTCC complex.  Many questions arise when considering the differences 

between β2a and β3 in the experiments done in Chapter IV.  First, does the β3 

subunit (or β1b and β4) support facilitation in the same manner as β2a?  The 

sequences are quite similar at the CaMKII phosphorylation motif; however, one 

significant difference is a Pro at the -5 position where β2a has a Leu.  The β3 

subunit does not bind CaMKII when compared to β2a; however, it is an excellent 

substrate.  Overexpressing β3 in cultured adult myocytes in the same manner as 

done with β2a may provide evidence for the mechanism of CaMKII-dependent 

facilitation.  More experiments to support that CaMKII phosphorylates the 

homologous motif and the differences in the intrinsic regulatory properties of the 

LTCC are needed.    

 

CaMKII regulation of HVA Ca2+ channels 

 The work described here has focused on CaMKII-dependent regulation of 

LTCCs via the β2a subunit in model cells and in adult cardiac myocytes.  The 

LTCC complex is expressed in many cell types including neurons, pancreatic 

 102



beta cells and chromaffin cells.  Its functional role is continuing to be evaluated 

as well as its regulation by CaMKII.  We hypothesize that the mechanism for 

CaMKII regulation of LTCC in myocytes occurs in other cell types as well.  The 

major caveat is that the electrophysiological readout for CaMKII regulation of 

LTCC in myocytes is dependent on SR Ca2+ release.  An experimental protocol 

specific for CaMKII regulation in each cell type may prove to be technically 

challenging.  In addition to regulating LTCCs there is increasing evidence for 

CaMKII regulation of other HVA Ca2+ channels (Yasuda et al., 2003).  The same 

caveat exists for the other HVA Ca2+ channels as does for the LTCCs in other 

cell types.  T-type Ca2+ channels (low voltage-activated channels) have been 

shown to bind to and be modulated by CaMKII directly (Barrett et al., 2000; 

Welsby et al., 2003; Wolfe et al., 2002).  CaMKII binds in the II-III linker of the α1 

subunit in a phosphorylation dependent manner and regulates the channel by 

phosphorylation of the loop directly (Yao et al., 2006).  In T-type Ca2+ channels, 

this intracellular loop is much longer and is thought to compensate for the role 

the β subunit plays in regulation of HVA Ca2+ channels.  Ultimately, the role of 

CaMKII regulation of VGCC in normal and disease states may provide useful 

therapeutic targets for treatment.   

  

CaMKII binding/phosphorylation motif and its implications 

 The novel regulatory site identified on β2a is highly homologous to the 

CaMKII autoregulatory domain and the NR2B subunit of the NMDA receptor.  All 

three are excellent substrates and bind directly to CaMKII.  The existence of 
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three homologous domains suggests the possibility that other proteins may have 

similar domains and may have an important role in Ca2+ signaling.  Using this  

motif it may be possible to identify and characterize other CaMKAPs in different 

signaling pathways.  Table 1 contains the results of a blast search with select 

proteins containing a sequence homologous to the CaMKII binding domain.  The 

exact amino acids involved in the interaction are unknown.  A more defined 

binding motif would allow for a directed approach to identifying potential novel 

CaMKAPs.  Some work using traditional site directed mutagenesis of residues 

thought to be involved in the interaction between CaMKII and the β2a subunit and 

the NR2B subunit has been done in our lab (Strack et al., 2000a).  Further 

characterization of the domain could be achieved by peptide mapping using 

synthetic peptides with specific amino acid substitutions.  Ultimately, identification 

of CaMKAPs utilizing the binding motif outlined here may parallel that of AKAPs, 

thus providing spatio-temporal regulation of Ca2+ signaling mediated by CaMKII. 

 

CaMKAP’s regulate CaMKII activation 

 Up to this point we have shown CaMKII co-localization with and regulation 

of LTCCs are mediated via the β2a subunit.  A major question remains as to 

whether or not the β2a subunit can reciprocate by regulating CaMKII activity.  

Previous studies in our lab and others have shown that the NR2B interaction with 

CaMKII can enhance or inhibit CaMKII activity in vitro (Bayer et al., 2001; 

Robison et al., 2005).  Preliminary studies with β2a suggest that it can also 

regulate CaMKII activity in a similar manner as seen with NR2B.   Preliminary 
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Table 1.  Blast search for CaMKII phosphorylation/ binding motif 

 Name of protein sequence 

 Phosphorylation motif/binding motif  

1 spectrin alpha chain TLLTKQETFD

2 mitochondrial ribosomal protein S5 RGLSRQETHQ

3 zinc finger protein 592 KNTSRQESFE

4 Sac domain-containing inositol phosphatase 3 variant MTQNRQESFD

5 plasminogen activator FSLPRQETYR

6 SNF1-like kinase 2 LPLPRQETPP

7 SH3 and multiple ankyrin repeat domains 2 isoform 1 GPLRRQETEN

8 TATA element modulatory factor 1  SASSRQETTD

9 NF-kappa B inhibitor HFPAFQETVD

10 Src-like adapter protein SLAP  PVTLRQKTFD

11 neuron navigator 2 isoform 2 LRIRRQHSSD

12 similar to von Willebrand factor PDLHRQHSD 

13 regulating synaptic membrane exocytosis 1  DRMHRQRSPT

14 rab3 interacting protein variant 2  ERMHRQRSPT

15 PQKKRQITVD

  

dystrophin, muscular dystrophy  
DLRQRQISVD

   

 binding motif  

16 MHC class I antigen LRGYRQHAYD

17 huntingtin interacting protein 1-related LGELRRQHVL

18 nuclear factor kappa-B, subunit 1  KELIRQAALQ

19 laminin, beta 4  LNLSRQAKAD

20 cardiotrophin-like cytokine  RGLNRQAATA

21 cyclin I variant  TDLSRQEGHA

22 
four domain-type voltage-gated ion channel alpha-1 
subunit  

LGLSRQELGY

23 V-crk sarcoma virus CT10 oncogene homolog  GRLSRQEAVA

24 myelin expression factor-3  AELSRQEAPK

25 HUMAN Myosin-18B  GFLSRQEFKK

26 
epidermal growth factor-receptor-binding protein 
GRB-3 

GRLSRQEAVA

27 voltage gated channel like 1  LGLSRQELGY

28 proteinase inhibitor, clade I (neuroserpin) LVLSRQEVPL

29 apoptosis inducing factor  CSLIRQNGNF

30 HDAC 4 ELLFRQQALL
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data show that β2a significantly inhibits CaMKII activity (data not shown).  

Recently we have uncovered evidence that the presence of a Thr498 

phosphorylation-competent GST-β2a subunit is able to enhances CaMKII 

autophosphorylation while the phosphorylation-incompetent mutants inhibit 

CaMKII autophosphorylation (Figure 25).  CaMKII can autophosphorylate at 

many sites under the assay conditions used; however, preliminary evidence 

suggests that Thr287 phosphorylation is not altered (Figure 24).  Interestingly, 

using antibodies generated to phospho-Thr305/6, autophosphorylation appears 

to be altered in a manner consistent with the results from the quantification of the 

autoradiographs (Figure 25 ).  CaM binding to CaMKII is inversely regulated by 

Thr305/6 phosphorylation, termed CaM “capping”.  Additionally, Thr287 

autophosphorylation enhances CaM association with CaMKII by 1000 fold in a 

process termed CaM trapping (De Koninck and Schulman, 1998; Hudmon and 

Schulman, 2002).  One interpretation of the enhanced Thr305/6 

autophosphorylation in the presence of the phosphorylation competent β2a is that 

association of the CaMKAP in some way reduces CaM association. 

Upon activation, CaMKII binds β2a.  In this state CaMKII is inhibited.  Upon 

phosphorylation of Thr498, the complex dissociates. However, the mechanism 

could be due directly to phosphorylation at Thr498 or due to the dissociation of 

CaMKII, thus reducing CaM affinity and increasing the probability of 

phosphorylation at Thr305/6.  Additional phosphorylation sites with unrecognized 

roles could also be involved in regulating CaM affinity and CaMKII 

autophosphorylation as well (Figure 26).  Further experiments testing the 
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Figure 25.  CaMKII autophosphorylation is enhanced in the presence of  
GSTβ2a mutants.   
A.  Incubation of GST-β2a wild type (dark blue), Thr498Ala (red), 
Thr498Glu (yellow) or Leu493Ala (light blue) with CaMKII regulates 
CaMKII autophosphorylation.  32P incorporation into CaMKII at 40nM in 
the presence of 1000nM GST protein was quantified by pixel density using 
a phospho-imager.  Experiments were normalized to GST (purple).  (n=4, 
error bars are ±S.E.M.)  B.  Western blot of in vitro phosphorylation assay 
containing  wild type and mutant β subunits using phospho Thr286 CaMKII 
antibody.  The CaMKII phospho Thr286 antibody cross reacts with 
phosphorylated β2a Thr498.  C.  Western blot from the same assay as in 
panel b using the CaMKII phospho Thr305/6 antibody. 

 108



 

Figure 26.  Proposed model of CaMKII interaction with and regulation by β2a. 
Activated CaMKII interacts with β2a thus inhibiting CaMKII activity.  
Phosphorylation of β2a at Thr498 releases β2a.   
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proposed change in CaM affinity in the presence of wild type β2a compared to 

Thr498Ala β2a may provide insight into the biochemical mechanism observed.   

The physiological role for feedback regulation of the CaMKAP on CaMKII itself is 

uncertain, but we speculate that it is a mechanism for keeping CaMKII activation 

and regulation of Ca2+ entry either via LTCC or the NMDA receptor in check.   

 

Final Summary 

 

 The results of this thesis suggest that the β subunit is a key mediator of 

CaMKII dependent regulation of cardiac LTCCs.  We have defined a novel 

mechanism for CaMKII interaction with and regulation of the LTCC via 

phosphorylation of β2a Thr498.  The binding/regulatory site is conserved in β1b but 

not in β3 nor β4.  Together this provides a more comprehensive model for CaMKII 

dependent regulation of LTCCs and potentially other HVA Ca2+ channels, 

CaMKII interaction with its targets and Ca2+ cycling within a cardiac myocyte.  

Future work based on these findings may identify a potential pharmacological 

target for the treatment of heart disease. 
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