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Chapter 1 

 

INTRODUCTION 

 

1.1 Background 

 Initial reports suggested that human perception of sound source laterality depended solely 

on the differences in level of a signal at the two ears (e.g., Rayleigh, 1875); however, this notion 

was amended in favor of the duplex theory of sound localization (Rayleigh, 1907), which has 

persisted for more than a century. The duplex theory states that sound source localization in the 

horizontal plane is determined primarily by two frequency-dependent binaural cues: the 

difference in level at the two ears (interaural level difference; ILD), and the difference in the 

arrival time, or phase, of sound at the two ears (interaural time difference and interaural phase 

difference; ITD and IPD). Specifically, Rayleigh suggested the ILD is more effective for high 

frequencies, above about 1.5 kHz, where the head is able to attenuate short wavelengths and 

create a level imbalance between the two ears, with the more intense side indicating the origin of 

the sound source. Conversely, frequencies below about 1.5 kHz are able to bend around the head, 

and therefore provide much weaker ILDs, if any. Instead, the comparatively longer wavelengths 

below about 1.5 kHz provide ITDs that indicate laterality based on arrival time, with perceived 

azimuth drawn toward the earlier side. As will be discussed below, subsequent work has 

provided a more comprehensive, but ultimately incomplete understanding of the relationship 

between these two binaural cues.  
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1.1.1 Binaural cues for azimuthal sound source localization 

 In an elegant experiment, Mills (1960) put the duplex theory to the test by comparing the 

just noticeable differences (JNDs) in time and level of a sound-field stimulus to JNDs in level 

obtained using a dichotic stimulus under headphones, across a range of frequencies (octaves and 

inter-octaves from 0.25 – 8 kHz, and 10 kHz). Results revealed that the dichotic intensity JND 

function matched that of the sound-field JND function between 1.5 – 6 kHz, while the functions 

diverged significantly at frequencies below 1.5 kHz, as predicted by the duplex theory. 

Complimentary findings were reported by Zwislocki and Feldman (1956), who measured JNDs 

in dichotic phase as a function of frequency. They showed interaural phase JNDs increased with 

increasing frequency, becoming too large to measure at approximately 1.3 kHz. Taken together, 

these studies provide evidence in favor of the frequency-specific nature of ITDs and ILDs for 

pure tone stimuli.  

 However, as pure tones rarely exist in natural settings, it is important to examine the 

nature of binaural cues using more complex stimuli. Wightman and Kistler (1992) asked listeners 

to judge the perceived locations of wideband and 5 kHz highpass filtered signals. They filtered 

all stimuli using sound-field-to-eardrum transfer functions measured for each participant, which 

simulated sound-field cues under headphones (see Wightman & Kistler, 1989 for details of the 

stimulus generation). Specifically, they manipulated the interaural phase to indicate a static 

location (0°, -45°, or 90°) and recorded listener responses of apparent location to ILDs (and 

spectral cues) indicating various other directions. Results showed that listeners’ perception 

corresponded to the ITD for wideband stimuli (which contained both high and low frequencies), 

regardless of the ILD value. In contrast, the perceived azimuth of the 5 kHz highpass stimuli 

relied on the ILD. These results support the general duplex theory, and also suggest that ITD is 
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the dominant cue for localization when both high and low frequencies are present in the same 

signal.  

 McFadden and Pasanen (1976) measured lateralization accuracy using noise signals of 

various bandwidths (centered around either 500 or 4000 Hz), as well as two-tone complexes that 

varied in rate and depth of modulation. They found that as stimulus bandwidth increased, smaller 

ITDs were able to achieve the same lateralization accuracy as larger ITDs. Interestingly, with a 

bandwidth of 800 Hz, lateralization performance was the same for stimuli centered around 500 

Hz and 4000 Hz. For two-tone complexes, ITD cues were more effective for larger frequency 

separations (up to a point) and deeper modulation depths. McFadden and Pasanen interpreted 

their findings as suggesting three types of interaural timing cues: (1) onset time differences 

(arrival time is earlier at one ear); (2) ongoing time differences (fine structure phase 

relationship); and (3) envelope time differences (slow envelope fluctuations present in a signal at 

least 1 ms in duration). The existence of envelope differences in complex signals invalidates the 

frequency specificity of the duplex theory for signals other than pure tones; that is, envelope cues 

provide timing differences at frequencies above the physiological limits of phase locking. 

 Hafter and Dye Jr (1983) further studied the effects of rate of change in the stimulus 

envelope by manipulating the interclick interval (ICI) present in trains of clicks (ICIs tested were 

1, 2, 5, or 10 ms). The listeners’ task was to indicate the perceived directional shift from one 

interval to another in a two-interval, forced choice experiment. Results showed that with longer 

ICIs, most listeners were able to use the ITD present in each click with equal efficiency. 

However, at shorter ICIs, performance decreased, suggesting ITD information was not fully 

integrated at high click rates. Findings from Freyman et al. (1997) aid in understanding these 

results by demonstrating a relationship between onset delay and the degree of ambiguity of 
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ongoing cues. Specifically, Freyman et al. (1997) showed that lateralization is determined largely 

by onset cues when ongoing cues are ambiguous (as in the short ICI trains of Hafter and Dye, 

1983). Conversely, if the ongoing cues are salient then onset dominance does not play a major 

role in lateralization. Macpherson and Middlebrooks (2002) confirmed several of the findings 

already discussed, as well as adding that monaural spectral cues have little or no influence on 

perceived azimuth (see also Hofman et al., 1998).  

 Thus, the duplex theory provided early insight into the relationship between ITD and ILD 

cues for pure tone stimuli, but fails to account for the observed data involving complex stimuli. 

While subsequent work has accounted for several behavioral phenomena in violation of the 

duplex theory, the relationship between interaural differences in time and level have yet to be 

fully understood. For instance, the seemingly straightforward question of determining the ITD 

required to offset an opposing ILD has yielded a variety of results that depend on a number of 

factors (e.g., David Jr et al., 1959; Hafter & Carrier, 1972; Ignaz et al., 2014; McFadden et al., 

1972; Young Jr & Levine, 1977). The discrepancies in perceived azimuth when directly setting 

one binaural cue against the other represents a fundamental unexplained phenomenon in the 

processing of binaural cues for spatial hearing, and is the focus of the current study. The sections 

that follow discuss the literature pertaining to binaural interaction and propose a novel research 

study to address an existing gap in the current knowledge base.  

 

1.1.2 Trading of interaural time and level differences 

 A direct method used to investigate the relationship between ITDs and ILDs is to set the 

cues into opposition; that is, to create a time delay favoring one ear, and a level difference 

favoring the opposite ear. According to Blauert (1997, p. 165), the first reports of cue trading 
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were Klemm (1920) and (Wittmann, 1925). Klemm (1920) positioned a listener between two 

telephones that had been modified to produce identical intensity and timber. Among various 

other binaural hearing experiments, the following scenario and experimental question emerged:  

 

…ließ sich ein Intensitätsunterschied herstellen, unter dessen Wirkung das 

subjektive Hörfeld sicher auf die Seite des stärkeren Schalls hinüberrückte. 

Läßt sich nun dieser Einfluß des Intensitätsverhältnisses durch einen 

entgegengesetzten Zeitunterschied so ausgleichen, daß das Hörfeld wieder 

in die Mitte rückt? (pg. 130) 

 

…a level difference was introduced, with the effect that the subjective 

auditory sensation was clearly pushed over to the side of the stronger sound. 

Does this intensity relationship balance out with the introduction of a time 

difference in the opposite direction, in such a way that the subjective 

sensation is pushed back to the center? (Translation: Travis Moore) 

 

Classically, the unit of measure of the time or level difference required to offset the 

complimentary cue has been in ratio form: µs/dB. Shaxby and Gage (1932) coined the term 

trading ratio, which is commonly used in the literature, and reported a value of 1.7 µs/dB. That 

is, listeners required 1.7 µs of right-leading ITD per decibel of left-favoring ILD to center an 

intracranial image. Because this terminology assumes a linear relationship between ITD and ILD 

effectiveness, and that assumption can be violated, this document uses the term trading relation, 
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after Lang and Buchner (2008). The section below discusses several methods used to measure 

trading relations, followed by a review of the major findings.  

 

1.2 Psychophysical paradigms in the cue-trading literature 

1.2.1 Centering 

 While results of trading studies are often described in µs/dB, there are a variety of 

methods to obtain the data. For instance, Shaxby and Gage (1932) introduced a centering method 

of measuring the equivalence function by asking listeners to adjust the amount of right-leading 

ITD in a stimulus with a fixed, left-biased ILD until the intracranial image was centered at the 

midline (see also David Jr et al., 1959; Deatherage & Hirsh, 1959; Harris, 1960). The data were 

plotted as values of ITD (in µs) along the ordinate as a function of several fixed ILD levels tested 

along the abscissa. A constant was derived from linear fits of the data that explained the linear 

relationship between the two cues (a trading ratio per se).  

 

1.2.2 Pointing 

 Moushegian and Jeffress (1959) introduced a type of matching procedure using a target 

and pointer. Experimenters presented a pure tone with a fixed ITD and ILD (the target), while 

listeners adjusted the ITD of a noise “pointer” until it matched the perceived azimuth of the 

target (see also Feddersen et al., 1957). They reported a trading relation of 2.5 µs/dB using a 500 

Hz pure tone. Whitworth and Jeffress (1961) employed a similar technique, using 500 Hz pure 

tones for both target and pointer. The target and pointer were presented in alternation, with the 

listener adjusting the ITD in real time. Trading ratios ranged from 0.3 µs/dB to 20 µs/dB 

(discussed in depth below). In yet another variation, Young Jr and Levine (1977) asked listeners 
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to adjust a pure tone pointer to match the location of a noise target. They reported trading 

relations ranging from 40 – 80 µs/dB at 500 Hz. Hafter and Jeffress (1968) tested pure tone and 

noise stimuli in the same experiment, both with and without a standard diotic reference. They 

report a range of trading relations, ranging from 20 – 50 µs/dB for tonal stimuli, and 85 to 150 

µs/dB for high-pass clicks.  

 

1.2.3 Method of limits 

 Young (1976) used the method of limits to obtain a trading relation by asking listeners to 

report the position of an intracranial image using the terms “left,” “right,” or “midline” as the 

experimenters adjusted the ILD in the presence of a fixed ITD. Listeners made these reports as 

the auditory image moved from a random starting position and crossed the midline. The intensity 

needed to center the intracranial image when moving it back across the midline was considered 

the ILD value required to offset the ITD. At 400 Hz, the trading relation was approximately 80 

µs/dB.  

 

1.2.4 Detection 

 Hafter and Carrier (1972) measured psychometric functions using a same-different 

method. Each trial consisted of two, 500 Hz tone bursts in a 2-interval, forced choice (2IFC) task 

(see also Domnitz & Colburn, 1977). For the “same” condition, both signals were diotic, while 

the “different” condition contained a diotic standard followed by a dichotic test signal. Listeners 

responded “different” if there were any perceived differences between standard and test, 

otherwise they responded “same.” Measures of d' were plotted along the ordinate as a function of 
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fixed ILD values tested along the abscissa. The parameter tested was the ITD value. The mean 

trading relation was approximately 19 µs/dB.  

 

1.3 Response indication techniques 

 While there are a variety of techniques used to collect participants responses of perceived 

azimuth, this document divides them into two main types: allocentric and egocentric. Both types 

are discussed below. 

 

1.3.1 Allocentric responding 

 This document refers to “allocentric” response techniques as those which require the 

observer to indicate the perceived location of a target using an external reference. Examples of 

this technique include asking participants to indicate an apparent source by positioning a dot on a 

diagram of a head wearing earphones as seen from behind (Lang & Buchner, 2008), or pointing 

to a location on a sphere positioned in front of the participant (Gilkey et al., 1995).  

 

1.3.2 Egocentric responding 

 This document refers to “egocentric” response strategies as those which do not require a 

shift in first-person perspective. Examples of reporting that maintain a participant-centered 

reference include shining a spotlight on a semicircular strip placed in front of the participant 

(Butler & Naunton, 1962) and verbally calling out response coordinates (Wightman & Kistler, 

1992). A particularly intuitive example was implemented by Stecker (2010). In a centering task, 

participants were asked to adjust the ILD present in a stimulus with a fixed ITD by rotating their 

heads. The ILD was calculated to be equal in magnitude and opposite in sign to the head 
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azimuth. Turning the head toward the ITD caused the image to move toward the interaural 

midline, and turning in the opposite direction moved the image away from center (i.e., when the 

ILD and ITD favored the same direction). In a separate task, Stecker (2010) also asked 

participants to indicate the perceived azimuth of single stimulus presentations (using the method 

of constant stimuli; MOCS) by head-turn. The current study made use of the second type of task.  

 

1.3.3 Head-pointing, lateralization and virtual reality 

 Gilkey et al. (1995) introduced the “God’s eye localization pointing” (GELP) method, 

and compared it to several other response techniques used for recording perceived azimuth. The 

GELP method, mentioned briefly above, makes use of a sphere positioned in front of the listener, 

who uses a stylus to point to the corresponding location of an acoustic signal. This technique was 

compared to localization data from studies that recorded perceived azimuth by asking listeners to 

call out coordinates (Wightman & Kistler, 1989) and point their heads in the direction of the 

perceived source (Makous & Middlebrooks, 1990). They found the head-pointing technique 

produced results that most closely matched the actual sound-field locations of the stimuli. It 

seems reasonable that an intuitive action, such as orienting toward a sound source, yielded more 

accurate localization judgments than the GELP method, which requires the listeners to alter the 

frame of reference to an externalized object. Head-pointing also proved more accurate than 

verbally calling out estimated coordinates, despite the egocentric nature of both tasks. It appears 

that the instinctiveness of orienting the head in the direction of a sound might offer an advantage 

over other egocentric techniques.  

 Considering that head-pointing yields the most accurate localization results, a pertinent 

question is whether this technique can be used to indicate the perception of an intracranial image 
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presented under headphones. Results from Stecker (2010) suggest head-pointing is a valid 

method even without the use of sound-field stimuli. Localization data from his study were 

systematic and sensitive to the study parameters, and participants reported turning their heads in 

the direction of a perceived intracranial image was quick and intuitive. The ease of translating a 

“lateralization” task outside the head is in line with a report from Jeffress and Taylor (1961), 

who compared an externalized lateralization task (assigning an azimuthal position in space to 

stimuli presented under headphones) to similar data obtained in the sound-field (Stevens & 

Newman, 1936). They showed that judgments were very similar between headphone and sound-

field stimuli, without the need for additional practice to externalize the headphone stimuli. 

Participants reported the task was easy, despite the fact they perceived the sound intracranially 

and indicated position using lamps positioned approximately 6 ft away. In a binaural interaction 

study, Lang and Buchner (2008) trained listeners using head-related transfer functions (to 

simulate the sound-field and achieve percepts outside the head), but used unfiltered stimuli 

during the testing session. They also reported systematic and sensitive results, without reported 

difficulty from participants.  

 In light of the results described above, the current study used a head-pointing technique 

to record participant responses. In an effort to increase the intuitive nature of the technique and 

create improved realism, the head-pointing procedure was performed in a virtual reality (VR) 

environment. Van Veen et al. (1998) advocate that virtual reality offers several benefits to 

laboratory tests. For instance, they mention the precise control of stimuli, easy manipulation of 

parameters, interactivity between subject and environment, improved multisensory realism, and 

multiple methods of recording responses. The current study utilized VR to simulate an outdoor, 

free-field environment. This step adds realism to previous head-pointing procedures, which 
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required listeners to orient to sound sources in the presence of a variety of potential visual 

anchors present in the laboratory (e.g., speakers, wall and floor patterns). VR also offers the 

potential for consistent visual input when testing across studies and physical laboratory locations. 

It is important to note that this dissertation does not concern the influence of visual cues or VR 

on TRs. Rather, these experiments were a first step toward using VR in future studies for 

increased face validity and more complex manipulation of audiovisual interaction. The VR 

environment is described in detail in the General Methods.  

 

1.4 Complications in quantifying trading relations 

 Consistent with the variety of factors at play in determining the frequency selectivity of 

binaural cues discussed above, multiple parameters affect ITD/ILD equivalence relations: the cue 

being adjusted (Young Jr & Levine, 1977); task (Lang & Buchner, 2008); adaptation (Thurlow & 

Jack, 1973); cue magnitude (David Jr et al., 1959); feedback (Carlile et al., 2001); the distance of 

the cues from the listener (Shinn-Cunningham et al., 2000); interclick interval (Stecker, 2010); 

relative laterality between cues (Moushegian & Jeffress, 1959); naturalness (Gaik, 1993); 

masking (Teas, 1962); and whether a reference tone is present (Ignaz et al., 2014).  

 

1.4.1 Incomplete trading 

 The complex nature of binaural cue interaction is complicated by the finding that the 

trade between time and intensity is incomplete (e.g., Hafter & Carrier, 1972). In other words, 

there is no value of one cue that perceptually offsets the other cue completely. Hafter and Carrier 

(1972) demonstrated this by measuring psychometric functions for listeners’ ability to detect a 

difference between a diotic and dichotic signal in a 2IFC task (described earlier). Following a 
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standard, diotic signal, a fixed ITD was presented (0, 10, 20, 30 and 40 µs; the parameter) over a 

range of ILDs (abscissa). Listeners’ sensitivity was calculated as d', which was plotted along the 

ordinate. The range of ILDs tested included values that were both higher and lower than the ILD 

that yielded poorest detection, which produced “V” shaped functions with minima indicating the 

least sensitive combination of ITD and ILD values. Notably, all of the function minima revealed 

sensitivity above d' = 0, implying incompleteness of the trade between time and intensity. From 

these results, Hafter and Carrier determined (1) the trade between time and intensity is 

incomplete; and (2) a partial trade does exist (function shapes depended on the ITD and ILD 

values). A third observation was that the weight of each cue differed widely across participants, 

despite well-practiced listeners (no less than 32,000 observations).  

 

1.4.2 Perception of dual images 

 A related complicating factor when measuring trading relations is the perception of two 

auditory images reported by some studies examining binaural interaction under headphones (e.g., 

Banister, 1926; Hafter & Jeffress, 1968; Whitworth & Jeffress, 1961). Whitworth and Jeffress 

(1961) investigated a phenomenon described by Banister (1926), wherein opposing interaural 

cues led to the perception of two separate auditory images. As described above, Whitworth and 

Jeffress (1961) asked listeners to adjust the ITD of a 500 Hz pointer until it coincided with the 

perceived azimuth of a fixed 500 Hz target. The target ILD was always 0 dB, with the ITD fixed 

at one of seven values (0, ±90, ±180, and ±270 µs). The pointer ILD was also fixed at one of 

seven values (0, ±3, ±6, and ±9 dB) while listeners adjusted the ITD. The results were plotted as 

the ILD of the signal along the abscissa, the ITD of the signal as the parameter, and the ITD 

adjustment, in µs, along the ordinate (see Figure 1). The data revealed listeners were able to use 
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the acoustic pointer to indicate the perceived azimuth of two intracranial images: one image that 

was determined almost entirely by the ITD (the “time” image; lower plot of Figure 1), and one 

image that was determined by a combination of time and intensity (termed the “intensity” image; 

upper plot of Figure 1). Whitworth and Jeffress reported TRs with values of 0.3 µs/dB and 20 

µs/dB for the time and intensity images, respectively.  

 

 

Figure 1. Perception of dual auditory images taken from Whitworth and Jeffress (1961). The upper part of the plot 

shows responses for the time/intensity image when binaural cues were set into opposition. The slope depicts the 

change in perceived azimuth depending on the fixed ILD value (abscissa). The lower portion of the plot shows 

responses when listeners focused on the time image. The flat slope indicates the time image was not affected by the 

fixed ILD. From “Time vs Intensity in the Localization of Tones,” by R. H. Whitworth and L. A. Jeffress, 1961, The 

Journal of the Acoustical Society of America, 33, pg. 1441–1445. Copyright 1961 by AIP Publishing. Reprinted 

with permission.  

 

 

 While the absolute values of the time and intensity relations reported by Whitworth and 

Jeffress (1961) do not always agree precisely with other reported values, a consistent finding 
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across studies of TRs shows the time image produces a comparatively smaller ratio than the 

intensity image. Hafter and Jeffress (1968) suggested that the wide range of trading relations 

across studies may be due to the presence of dual images. They argue that because it takes 

extensive training for a listener to perceive and interact with double images, participants may 

unwittingly respond to one image on some trials and the complimentary image on others, within 

the same experimental session. For example, a listener who responded to the intensity image on 

one trial would require a larger offsetting ITD than when the same listener responded to the time 

image.  

 The existence of a poorly understood, confounding factor that leads to variations in 

trading relations is a fundamental deficit in obtaining reliable information pertaining to binaural 

cue interaction. As mentioned above, two main hypotheses have been proposed to account for 

the different trading relations that seem to depend on either time or a combination of time and 

intensity cues (discussed below).  

 

1.4.3 Existing hypotheses for cue-dependent trading 

Regression 

 In contrast to the theory proposed by Hafter and Jeffress (1968), that variations in trading 

relations can be explained by the perception of dual images, Trahiotis and Kappauf (1978) 

proposed a judgmental bias can account for the cue-specific trading data. They cite similar 

differential results in the psychophysical literature at large when using the MOA to measure a 

common function obtained by matching variables of different dimensions. They discuss 

vibrotactile data from Sheldon (1973), as discussed by Kappauf (1975). In brief, participants 

matched the abruptness of a vibrotactile standard by adjusting one of two parameters of a similar 
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vibrotactile target: rise time, and final amplitude. A different “equal-surge contour” was 

produced depending on whether the participants adjusted rise time or amplitude. Specifically, 

when time was adjusted, the final value was closer to the rise time of the standard. Conversely, 

when amplitude was adjusted, the final value was closer to the amplitude value of the standard. 

 In other words, “the observer’s matching settings regress toward the level of the standard 

on the dimension being adjusted” (Kappauf, 1975). Thus, adjusting the ILD of a pointer to match 

a diotic standard would result in a smaller ILD denominator because the adjusted ILD value 

would regress toward 0 dB, resulting in an artificially large trading value. For example, a TR of 

33 µs/dB (ITD = 400 µs, ILD = 12 dB) increases with an ILD biased closer to 0 dB: 80 µs/dB 

(ITD = 400 µs, ILD = 4 dB). The opposite effect on the ratio occurs when the ITD is adjusted. 

The original 33 µs/dB would shrink to just 8 µs/dB (ITD = 100 µs, ILD = 12 dB). These trading 

relations are biased in the same direction as the reported time- and intensity-based equivalence 

relations reported in existing studies.  

Attentional upweighting 

 Lang and Buchner (2008, 2009) propose a different account for the difference in TRs 

depending on the cue being adjusted. In a first experiment, TRs were measured using the MOA, 

where listeners used a slider presented on a computer screen to adjust the ILD (or ITD) of a 

target with a fixed, opposing value of the complimentary cue. The listeners were instructed to 

center the auditory image. The stimulus was played in a loop (ISI = 500 ms) until adjustments 

were completed, and the final values of ITD and ILD that produced a centered percept were 

recorded. In a second experiment, participants judged the location of stimuli presented a single 

time that contained the same values of ITD and ILD required to center the target from the 

previous experiment. Listeners indicated perceived azimuth by positioning a red dot in relation to 
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a representative drawing of a head. The results revealed that previously centered percepts 

obtained using the MOA no longer appeared at midline when presented in isolation. Instead, 

Lang and Buchner reported a “shift-back” effect, wherein the previously centered stimulus was 

perceived closer to the location of the static cue presented during the adjustment experiment 

(Figure 2).  

 Lang and Buchner (2008, 2009) argue that increased attention to the cue being adjusted 

during the MOA task results in a perceptual upweighting of the adjusted cue. For example, the 

artificially inflated weight of the ILD cue during adjustment would lead to an ILD insufficient to 

offset the opposing ITD when both cues were presented as a single stimulus in a localization task 

(i.e., when neither cue benefited from increased attention). The insufficient ILD creates an 

imbalance favoring the ITD, resulting in a percept shifted more toward the location indicated by 

the now-dominant ITD. The implication for measuring TRs is that adjusting the ILD leads to 

smaller required level differences, and thus larger trading ratios. Conversely, adjusting the ITD 

leads to smaller required time differences and smaller trading ratios. This pattern of cue-specific 

trading relations is consistent with the regression hypothesis, as well as the values reported in the 

binaural interaction literature.  
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Figure 2. Graphical representation of the shift-back effect described by Lang and Buchner (2008). A. The auditory 

image is perceived 35° to the left due to a 400 µs ITD favoring the left ear. B. Method of adjustment experiment, 

requiring the participant to offset the fixed ITD by adjusting the ILD. The green arrow shows the perceived location 

of the intracranial image at midline after the participant introduced an opposing 4 dB ILD. The effectiveness of the 

ILD is increased due to attending to that cue during adjustment. C. Localization experiment, presenting the same 

values obtained in A, in isolation (i.e., without the attentional benefit). The green arrow shows the intracranial image 

is no longer sufficient to center the auditory image, and the percept has “shifted back” toward the fixed ITD. 

 

Regression and attentional upweighting  

 In an effort to determine whether regression or upweighting acted alone or in concert to 

influence trading relations, Ignaz et al. (2014) measured equivalence relations both with and 

without the presence of a reference tone in the same participants. They found that while cue-

specific trading relations occurred in the absence of a reference tone, confirming the experiments 

of Lang and Buchner (2008, 2009), the shift-back effect was greater when a reference was 

presented in alternation with the target, in support of the regression hypothesis. Taken together, 

the data reveal the existence of a perceptual phenomenon that differentially affects trading 

relations depending on the cue being adjusted in an MOA task. The mechanism may involve top-
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down control from attentional processes, but is also modulated by stimulus parameters (i.e., the 

presence or absence of an acoustic reference).  

Adaptation 

 The current study suggests a third possibility to account for the cue-dependent nature of 

TRs: auditory spatial adaptation. The section below introduces the concept of spatial adaptation 

in the auditory system and illustrates how adaptive processes can account for the existing 

binaural cue trading relationship findings.  

 

1.5 Adaptation in the spatial auditory system 

1.5.1 Adaptive localization aftereffects 

 Flügel (1920) first investigated the effect of prolonged, monaural exposure to sound on 

the azimuthal localization ability of the human auditory system. He showed that while binaural 

presentation of a tone resulted in a centered percept in the head, following monaural exposure to 

an adapting tone (from 0.25 – 12 minutes), the same binaural presentation resulted in a perceived 

shift in the auditory image away from the adapted ear. Because the auditory image shifted in 

apparent location away from the adapted ear, Flügel reasoned the adaptor induced fatigue in the 

exposed ear, creating a preponderance of perceptual sensitivity favoring the unadapted ear. 

However, Bartlett and Mark (1922) found similar results using a binaural adaptor, suggesting the 

mechanism is more nuanced than simple neuronal fatigue (see also Jones & Bunting, 1949). 

Thurlow and Jack (1973) systematically tested the lateral placement of adaptors and probes for 

both ITD and ILD cues. Consistent with the early literature, they always noted a shift in the 

probe away from the adaptor. Specifically, eccentric adaptors of either cue type caused eccentric 

probes of the same cue type to shift toward the midline, while midline adaptors caused probes to 
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shift away from the midline (Figure 3). The effects of using adaptor/probe pairs of mixed cue 

types revealed results that were inconclusive.  

 

Figure 3. An illustration of the auditory localization aftereffect from Thurlow and Jack (1973). A. The green 

arrow illustrates midline perception of the intracranial image resulting from a diotic stimulus. B. The green arrow 

shows that following a preceding adaptor (the signal carrying a 400 µs ITD), the same diotic stimulus is 

perceived displaced away from the adaptor (i.e., away from the midline).  

 

 

 Canévet and Meunier (1994) measured the shift of a 15-degree probe following a midline 

adaptor, and found increasing drift of the probe with increasing duration of the adaptor. Canévet 

and Meunier (1996) repeated their findings in the sound-field as well as under headphones. 

Meunier et al. (1996) tested the adaptive aftereffect over a range of stimulus frequencies and 

bandwidths. They found the shift of the probe was larger using a narrow-band-noise (NBN) 

centered at 4 kHz compared with an NBN centered at 1 kHz. They also found that the effect was 

greatest when a broadband adaptor (2 – 6 kHz) overlapped in frequency with the probe (i.e., 

greater effect for 4 kHz NBN than 1 kHz NBN). The direction of the shift was always away from 

the position of the adaptor.  
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 Kashino and Nishida (1998) systematically examined the frequency and ITD selectivity 

of the localization aftereffect. They found the effect was greatest when the frequencies of the 

adaptor and probe were similar, with the perceived shift disappearing for frequency separations 

greater than one-half octave. The results also suggested the aftereffect is selective to ITD value. 

The magnitude of the shift in the probe’s apparent location was greatest when ITDs differed by 

250 µs, and decreased for ITDs greater and lesser than this value for a tone at 4000 Hz. 

Consistent with previous work, the perceptual shift in probe location was always away from the 

position of the adaptor. Braasch and Hartung (2002) also confirmed the seemingly repulsive 

effect of an adaptor on a probe, and showed that the effect was greater in reverberation, 

compared to anechoic conditions.  

 

1.5.2 Similarities across psychophysical tasks 

 An interesting observation is the similarity in methodologies between studies of trading 

relations using the MOA and studies of auditory spatial adaptation. Many of the trading relation 

studies using the MOA described earlier use a paradigm that presents a standard and target in 

alternation. The result is repeated exposure to a static cue, followed by a changing (adjusted) 

complimentary cue. Kopčo et al. (2007) showed that displacement of a probe in the presence of a 

preceding stimulus can occur with a single adaptor presentation, with an adaptor duration of only 

2 ms. One interpretation of these results is that a lengthy period of adaptation is not a prerequisite 

to elicit the localization aftereffect.  

 Another similarity across MOA and adaptation tasks is the interstimulus interval (ISI). 

The ISIs used in MOA studies of binaural interaction typically range from roughly 200 to 500 ms 

(e.g., Hafter & Carrier, 1972; Lang & Buchner, 2008). This range overlaps with ISIs that 
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produce the localization aftereffect (e.g., Kashino & Nishida, 1998; Kopčo et al., 2007; Phillips 

et al., 2006). Furthermore, the standard and target in MOA tasks can be of the same frequency 

(e.g., Lang & Buchner, 2009; Whitworth & Jeffress, 1961), which has been shown to produce 

spatial adaptive aftereffects of the greatest magnitude (e.g., Kashino & Nishida, 1998).  

 It seems reasonable that cue-specific trading relations reported by studies of binaural 

interaction using the MOA could be contaminated by introducing the auditory localization 

aftereffect, due to the similar methodologies across studies.  

 

1.5.3 Adaptation and binaural interaction 

 While it seems reasonable that similar methods could lead to similar perceptual effects, 

an important consideration is whether one binaural cue can adapt the complimentary cue at all. 

Phillips et al. (2006) investigated the relationship between ITD and ILD by measuring 

psychometric functions for each cue type alone, and then following an adaptor of the 

complimentary cue type (e.g., an ITD adaptor followed by an ILD probe). The psychometric 

functions were consistently displaced from the adaptor, indicating that complimentary cue types 

can indeed serve as adaptors. Consistent with the same-cue adaptation literature, the probe was 

always displaced away from the adaptor, suggesting a common mechanism.  

 

1.5.4 Adaptation and cue-specific trades 

 It seems possible that auditory spatial adaptation could account for the observed findings 

in trading relations obtained using the MOA. As in the discussion concerning regression and the 

attention-shift model, a 33 µs/dB ratio (ITD = 400 µs, ILD = 12 dB) decreases when adjusting 

the ITD in an MOA centering task. The repeated presentation of a fixed standard ILD (ITD = 0 
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µs) favoring the left could serve as an adaptor to the adjusted ITD target. The result is that a 

smaller ITD is required to offset the ILD to center the percept, because as the target approaches 

the ILD “adaptor” it is displaced toward midline. Thus the full ITD required to offset the ILD 

and center the image is not necessary using the MOA. This effect could conceivably occur with 

or without a reference tone. In the absence of a reference, the static ILD could serve as an 

adaptor and the changing ITD cue as the probe. The physical presence of a midline reference 

tone would lead to an even greater displacement of the percept from midline, because the 

repeated reference tone would become the adaptor. This scenario could account for the same 

pattern of results demonstrated by Ignaz et al., (2014) (i.e., greater shift-back effect in the 

presence of a reference tone).  

 Another possible role for adaptation is to increase neural thresholds for the static cue over 

time, creating an artificial imbalance favoring the adjusted cue. This is, in essence, a scenario 

opposite that proposed by Lang and Buchner (2008), who argued that attention to the adjusted 

cue led to greater weighting. There is in fact precedence for the weakening of a cue leading to 

changes in TR, rather than an increase in weighting. Stecker (2010) showed that decreasing the 

interclick interval between Gaussian-filtered impulses below 5 ms abolished the envelope cues 

necessary to extract ITD. This led to a shift in the equivalence function that favored the ILD. 

Subsequent analysis confirmed the shift was due to weakened ITD cues, rather than an increase 

in ILD effectiveness. Consistent with the findings of Stecker (2010), adaptation of the repeated 

cue would create a preponderance of activation favoring the adjusted cue due to a reduction in 

neural response to the static cue – not an increase in firing to the adjusted cue.  
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1.6 Purpose of the current study 

 It has been shown that despite great advances in our understanding of the relationship 

between the azimuthal cues for sound source localization, current knowledge cannot explain the 

cue-specific nature of their interaction. The motivation behind this study was to provide novel 

insight into the fundamental nature of binaural spatial cues in order to advance current 

understanding of basic auditory spatial perception. To that end, this study investigated the 

potential influence of the auditory localization aftereffect on binaural cue TRs, using a head-

pointing technique in a virtual reality environment.  

 Three experiments were carried out. Experiment 1 measured TRs obtained using the 

MOA. Listeners adjusted the amount of ITD required to center a stimulus containing one of 

several fixed ILDs, and vice versa. Experiment 2 measured TRs obtained using a head-pointing 

technique similar to Stecker (2010). Combinations of ITD and ILD were presented in isolation, 

and the oriented head angle indicated perceived azimuth. Experiment 3 was identical to 

Experiment 2, with the addition of an adapting train preceding each probe.  

 It was hypothesized that the results from Experiment 1 and Experiment 3 (the MOA task 

and the adaptation paradigm) would produce similar TRs. That is, adaptation present in the 

MOCS adaptor conditions would reproduce the cue-dependent effects obtained from the MOA 

task. Accordingly, the results obtained from Experiment 2 (the no-adaptor head-pointing task) 

should differ from Experiments 1 and 3, because the no-adaptor MOCS task does not allow for 

adaptation. Specifically, the TR from the no-adaptor MOCS task should lie between those 

obtained from the other experiments. If these hypotheses are validated, similar TRs between the 

MOA and adaptation paradigm will provide evidence suggesting auditory spatial adaptation is 
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involved in trading ITDs and ILDs. Such a finding would have implications for the interpretation 

of past work and for the design of future studies investigating binaural cue interaction.  
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Chapter 2 

 

GENERAL METHODS 

2.1 Participants 

 Ten adult listeners were recruited from Vanderbilt University for this study. One 

participant was excluded due to inability to complete the task. The remaining nine participants (8 

females; aged 24 – 33 years; M = 28 years) completed all tasks. All participants had normal, 

symmetrical hearing at octave frequencies from 250 – 8000 Hz (< 25 dB HL), verified using 

standard audiometric procedures for air conduction thresholds. There was no history of 

neurogenic or otologic disease, as evidenced by self-report. All participants reported normal, or 

corrected normal visual acuity and color vision. Participants were compensated for their time. 

This study was approved by the Vanderbilt Institutional Review Board.  

 

2.2 Testing environment and apparatus 

 All sessions were conducted in a sound-treated room. Participants wore an Oculus Rift 

virtual reality headset (https://oculus.com), while seated in a swivel chair approximately 1 m 

from dual motion sensors. The custom virtual environment was coded using the Unity3D game 

engine (https://unity3d.com; version 2018.2.1f1) on a custom-built PC running Steam VR 

(version 2017-01-30, Valve Corporation, Bellevue WA USA). The virtual environment placed 

the participant in the center of a circular platform, with red helium balloons “tied” around the 

outer platform perimeter in 1-degree steps. The only orienting cue was that the balloon at midline 

was green. The larger area was an outdoor setting consisting of uniform grass and clear sky to 

avoid visual reference points, while also creating the visual equivalent of a free field (Figure 4).  

https://oculus.com/
https://unity3d.com/
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Figure 4. The virtual reality environment seen during the localization experiments. The green balloon visually marks 

the midline. The reticle (above green balloon) moves with the head and is used to indicate perceived azimuth. 

 

 

Participants interacted with the environment to make responses via standard Oculus handheld 

controllers. Each controller had two push buttons, a thumbstick button, a trigger, and a grip 

button. Various input methods were used for each experiment (discussed in the experiment-

specific methods). The spatial position of the head-mounted device (HMD) was tracked using the 

Rift’s onboard gyroscope.  

 A reticle in the center of the visual field followed participant head movements, allowing 

them to aim at individual balloons simply by orienting the head. This paradigm was also used to 

maintain proper head position at the onset of each trial. Participants were instructed to keep the 

reticle centered on the green balloon (midline) either throughout the experiment (Experiment 1), 

or to begin a new trial after head pointing (Experiments 2 and 3). If the reticle moved away from 
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the green balloon, the experiment stopped and a green box appeared at midline. The experiment 

continued only after the reticle was returned to the green box for 2 seconds.  

 A second PC (Dell, Inc.) running MATLAB (Mathworks, Natick, MA) communicated 

with the presentation computer running the Unity3D game engine via transmission control 

protocol/Internet protocol (TCP/IP). Behavioral tasks for all experiments were coded in 

MATLAB. These scripts also controlled the virtual reality environment via triggers to call 

custom Unity3D functions (e.g., balloon pop, reset environment), and to store responses and 

HMD position data. A diagram of the setup is provided in Figure 5.  

 

 

Figure 5. The experimental setup. The blue (bottom) computer runs MATLAB, which controls the virtual scene, 

rendered by the green (top) computer. The blue computer also delivers audio directly to the insert earphones. The 

green computer records and sends responses and head position to the blue computer for storage.  
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2.3 Stimuli 

 All sounds were synthesized using MATLAB. Because synchronization between auditory 

and visual stimuli were not of importance to the study, no timing calibration measurements were 

made between the audio onset and Unity3D function execution. Auditory stimuli were 

synthesized at 48.828 kHz (Tucker-Davis Technologies RP2.1, Alachua, FL) and presented via 

ER-2 insert earphones (Etymotic, Elk Grove Village, IL). Stimuli were presented from the 

MATLAB PC, bypassing the Unity3D audio device completely. All stimuli consisted of 500 Hz 

pure tones with a duration of 500 ms. Unless modified by introducing an ILD, all stimuli were 

presented at a level of 65 dBA. Tones were gated using raised cosine ramps of 20 ms duration to 

avoid spectral transients. Differences in arrival time at the two ears were computed by shifting 

the whole waveform of one channel relative to the other in time. Level differences were achieved 

by halving the desired ILD and applying offsets as a reduction to one channel, and as an increase 

to the other channel.  

 Pure tones at 500 Hz were chosen for several reasons. First, 500 Hz provides a robust, 

lateralizing cue for manipulation of ITDs (Zwislocki & Feldman, 1956), while also being 

sensitive to ILDs under headphones. Second, 500 Hz tones allow the results of the current study 

to be compared with existing studies of binaural cue interaction, which have commonly used 500 

Hz pure tone stimuli (e.g., Harris, 1960; Lang & Buchner, 2009; Whitworth & Jeffress, 1961). 

Third, the use of 500 Hz pure tones allowed for precise control over the frequency content of the 

stimuli. Due to the exploratory nature of this study, we felt it reasonable to accept the drawbacks 

of using pure tones, which include being contrived, laboratory stimuli, and the relative 

ineffectiveness of ILD cues at low frequencies in sound-field listening (Mills, 1960).  
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2.4 Procedure 

 A total of three experiments were conducted. Experiment 1 sought to replicate the MOA 

literature, by using a centering task to obtain TRs when adjusting the ITD and ILD, respectively. 

Experiment 1 consisted of two visits, each consisting of approximately two hours. Experiment 2 

obtained TRs using a single-presentation localization task, in order to remove the possibility of 

adaptive effects. This experiment consisted of one visit of approximately 2 hours. Experiment 3 

was the same as Experiment 2, but introduced adapting trains before the single presentations of 

the probe stimulus. This experiment resulted in TRs affected by either ITD or ILD adaptors that 

matched the corresponding cue in the probe. Experiment 3 consisted of two visits of 

approximately 2 hours each. The total time required to for each participant was then 

approximately ten hours over five visits.  

 Where possible, each experiment presented stimuli using one of two presentation 

patterns: cue types were either intermixed within a single experimental session (e.g., trials 

contained ITD and ILD adaptors within the same block), or only a single cue type was presented 

in any one session (e.g., session 1 contained ITD adaptors only, session 2 contained ILD 

adaptors only). This was done to examine whether repeated exposure to a single cue type over 

time rendered listeners more sensitive to adaptive effects. To this end, one group of participants 

was presented intermixed cues (the Mixed group; S1, S2, S3, S5 and S6) and one group of 

participants was presented a single cue type during any one session (the Fixed group; S4, S7, S8, 

S9). Conditions were counterbalanced for Experiment for both groups, and further 

counterbalanced by cue type for the Fixed group.  
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 Chapters 3 through 5 present each experiment as a self-contained data set. Comparisons 

across experiments are first made in Chapter 6. Chapter 7 serves as a general discussion of the 

study as a whole, and Chapter 8 is a concise summary of the major conclusions.  
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Chapter 3 

 

EXPERIMENT 1: MOA (CENTERING TASK) 

3.1 Experimental methods 

3.1.1 Stimuli 

 The stimuli in Experiment 1 were synthesized using the parameters described in the 

General Methods. Trials consisted of looped, alternating presentations of standard and target 

tones. The standard tone always carried a 0 dB ILD and a 0 µs ITD. The target tone consisted of 

either a fixed ILD (0, ±3, ±6, or ±9 dB), or a fixed ITD (0, ±100, ±200, or ±300 µs) and a 

variable, complimentary cue used to center the test tone to midline. This yielded 14 different 

conditions. The cue values were chosen after Whitworth and Jeffress (1961), who had 

successfully demonstrated incomplete trading using these values with 500 Hz tones. The variable 

complimentary cue was adjusted by the participant (described below in the Procedure), and 

started at a random value ranging from ±3 to ±9 dB, or ±100 to ±300 µs for ILD and ITD cues, 

respectively. The standard and target tones were separated by a 400 ms interstimulus interval. 

Each standard-target pair was separated by a silent interval of 600 ms. The increased duration of 

the intertrial interval was introduced to render standard-target pairs more easily recognizable, 

due to reported difficulty segregating the pairs during pilot testing (see also Domnitz & Colburn, 

1977).  
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3.1.2 Procedure 

 Participants completed a centering task with insert earphones. Stimuli were presented 

using the method of adjustment (MOA). Participants initiated each trial by pulling the trigger on 

the right Oculus Rift controller. A brief animation (three balloons bobbing) indicated the trigger 

pull had been read and the trial had begun. In this experiment, the virtual environment served to 

ensure participants kept their heads centered during the task (described in the General Methods) 

and to provide visual consistency across experiments, but otherwise there was no interaction with 

the VR surroundings for the MOA task. The variable cue of the target tone was adjusted by the 

participant using the handheld Oculus Rift controllers until the target tone was perceived as 

coming from the midline (i.e., overlapping the standard tone in perceived azimuth). The right 

controller increased the time or level advantage to the right ear (arrival time lead or higher level). 

The left controller increased the time or level advantage to the left ear. Adjustments were made 

by pressing one of the push buttons or the grip button of each controller. When the adjustable cue 

was the ITD, pressing the push button increased the time lead in steps of 10 µs, and pressing the 

grip button increased the time lead in steps of 100 µs (up to a ±900 µs maximum). When the 

adjustable cue was the ILD, pressing the push button increased the level difference in steps of 0.1 

dB, and pressing the grip button increased the level difference in steps of 1 dB (up to a 15-dB 

maximum). After participants were satisfied that the target tone had been centered, they pushed 

the thumbstick on the right controller to end the trial and record the cue value. Another 

animation (color changes) signaled the thumbstick press had been read and the trial had ended.  

 Each session began with at least 8 practice trials. During this time, participants could ask 

questions and were given as much time as necessary to familiarize themselves with the controls. 

After 8 practice trials, additional practice was provided until a participant reported comfort with 
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the task. Practice data were inspected to ensure performance was broadly consistent with 

expectations: e.g., a fixed, right-ear level advantage was perceptually centered by the participant 

introducing a left-ear time advantage. A total of 8 judgements were made during data collection 

for each of the 14 conditions (112 recorded responses).  

 Five participants were presented trials randomly from any of the seven possible ITD (0, 

±100, ±200, or ±300 µs) and ILD (0, ±3, ±6, or ±9 dB) fixed cue values. That is, those 5 

participants adjusted both cue types intermixed within the same session or day (the Mixed 

group). The remaining 4 participants were only presented trials of one cue type per session (the 

Fixed group).  

 

3.1.3 Data and Analyses 

 The final cue value chosen to center the static, complementary cue was recorded at the 

end of each trial. The values of the 8 judgments per condition were averaged into a single data 

point, after removing outliers by determining their the absolute deviation from the median (Leys 

et al., 2013). A total of 28 outliers were removed across all participants and conditions 

(approximately 6.5% of data points). All data were plotted with ITD (µs) along the ordinate, and 

ILD (dB) along the abscissa. Therefore, ITD judgments are fixed along the abscissa according to 

the fixed ILD value against which the adjustment was made. ITD values indicate timing 

judgments along the ordinate. Conversely, the ILD judgments are fixed along the ordinate, 

according to the fixed ITD value against which the level judgments were made. Level 

judgements are indicated along the abscissa. Data from both conditions are shown within a single 

plot (see Figure 7).  
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 The data points for ITD and ILD fixed cue values were fit using linear regression. The 

resulting slope was taken as the trading relation in that condition. In other words, each 

participant produced two TRs: one based on the slope of the data points when adjusting the ITD 

(henceforth ITDadj), and one based on the slope of the data points when adjusting the ILD 

(henceforth ILDadj). The group mean ITDadj and ILDadj TRs were compared using a bootstrapped 

paired-samples t-test. If cue trading required differing TRs based on the cue being adjusted to 

center the auditory percept (as hypothesized and consistent with the literature), the t-test will 

reveal the mean TRs are statistically different from each other.  

 The reliability of the data over time was measured using the split-half method. This 

approach groups the first 4 judgments and the second 4 judgments for each cue condition. The 

correlation between the early and later judgments is an indication of the extent to which first-half 

and second-half responses contributed to the mean response. If the scores are well correlated to 

each other, the data are considered reliable.  

 

3.2 Results 

 Data from all nine participants contributed to the results. No participants were reliably 

able to offset ILD values of ±6 or ± 9 dB with any amount of ITD. Participants were only 

consistently able to offset ILD cues at values of 0 dB and ±3 dB. Consequently, the TRs for the 

MOA task are derived from the slope of three data points per condition instead of the intended 

seven. It should be noted that the last four listeners were not tested in the ±9 dB ILD condition at 

all. Potential explanations for the truncated range of testable ILD values are considered in the 

Discussion.  
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3.2.1 Descriptive statistics for the MOA task 

 For all but one listener (r = 0.29), the split-half reliability of the data revealed significant 

correlations between the first 4 and second 4 judgments (range: r = 0.56 to r = 0.94). Individual 

plots of the correlations are provided in Figure 6. Overall, the data indicate participant responses 

were stable throughout the task, excluding learning effects, fatigue or changes in response 

strategy accounting for the results. Similar statistical results were achieved whether the listener 

displaying low split-half reliability was retained or not, therefore that participant has been 

included in all subsequent analyses.  

 A further quantification of the data is provided in Figure 7, where error bars denote the 

standard error around the mean for each individual mean judgment, for each condition. In 

addition to the reliability over time revealed by the split-half test, the standard error bars show 

little deviation of individual judgments around the mean for both ITDadj and ILDadj TRs (SEM = 

3.45 µs/dB and 5.79 µs/dB, respectively).  

 The results of the Shapiro-Wilk normality test revealed the MOA task data were normally 

distributed. However, Bartlett’s test for homogeneity of variance between ITD and ILD 

conditions failed to reject the null hypothesis (K-squared = 22.93, p < 0.05), indicating the 

variance across conditions was unequal. Appropriate statistical tests were chosen to account for 

the violation.  

 

3.2.2 Mixed vs. Fixed groups 

 Unequal variance t-tests (Welch two-sample test) comparing the Mixed and Fixed group 

TRs were conducted to determine whether the manner in which the cues were presented (i.e., 

mixing cue types, or presenting only a single cue type per session) influenced the results. The t-
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tests revealed no significant differences between the Mixed and Fixed groups for either the 

ITDadj TR (Mmixed = 25.8 µs/dB; Mfixed = 30.5 µs/dB; t(4.5) = 0.6, p > 0.5) or the ILDadj TR 

(Mmixed = 37 µs/dB; Mfixed = 41.5 µs/dB; t(4.3) = 0.33, p > 0.5), suggesting the MOA is not 

sensitive to intermixing cue types within a session. Because there were no statistical differences 

between groups, subsequent analyses of the MOA took place on the pooled data. It is interesting 

to note, that despite the lack of statistical difference between the Mixed and Fixed groups, there 

is a visual trend for more consistency in responses over time for the Fixed group (see Figure 6).  

 

3.2.3 TR: Adjusting ITD (fixed ILD) 

 Individual TRs obtained when participants adjusted the value of the ITD in the presence 

of various fixed ILDs are shown in Figure 7 (blue points). The mean TR while adjusting the ITD 

was 27.91 µs/dB (range = 15 to 44.9 µs/dB, SEM = 3.45 µs/dB).  

 

3.2.4 TR: Adjusting ILD (fixed ITD) 

 Individual TRs when participants adjusted the value of the ILD in the presence of various 

fixed ITDs are shown in Figure 7 (green points). The mean TR while adjusting the ILD was 

39.01 µs/dB (range = 19.9 to 69.1 µs/dB, SEM = 5.79 µs/dB).  

 

3.2.5 Comparison between ITDadj and ILDadj trading relations 

 A bootstrapped paired-samples t-test (10,000 replications) comparing TRs between 

conditions revealed a significant difference between the ITDadj (M = 27.91 µs/dB) and ILDadj (M 

= 39.01 µs/dB) for the MOA task (t(8) = 3.87, 95% CI(-1.88, 1.81), p < 0.01, d = 1.29). 

Individual (thin lines) and mean (thick lines) slopes are superimposed in Figure 8.   
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Figure 6. Split-half reliability for Experiment 1, for each participant. The last 4 judgments are plotted as a function 

of the first 4 judgments. Each panel includes responses collapsed across ITDadj and ILDadj conditions. Each circle 

represents a single response. The red line shows the best linear fit of the data. 
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Figure 7. Individual TRs from Experiment 1. Blue circles indicate the required ITD (µs) to offset a variety of fixed 

ILDs (fixed values labeled along the abscissa in dB). Green squares indicate the required ILD (dB) to offset a 

variety of fixed ITDs (fixed values labeled along the ordinate in µs). Error bars denote standard error of the mean. 

Each panel represents data from one participant. The slopes of the respective data points were taken as trading 

relations and are given in the lower left of the panels.  
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Figure 8. Mean TRs from Experiment 1. Thin, solid blue lines represent the slopes from all participants while 

adjusting the ITD. Thin, dashed green lines represent the slopes from all participants while adjusting the ILD. Thick 

lines (solid and dashed) show the group mean slopes (i.e., TRs) when participants adjusted the ITD and ILD, 

respectively.  
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3.3 Discussion 

 Consistent with the literature, the results of this study show that TRs obtained using the 

MOA differ based on the cue being adjusted. Furthermore, the relationship between the TRs in 

this study replicate existing findings showing the ITDadj produces a smaller TR (i.e., shallower 

slope) compared with the ILDadj TR. These results will serve as a basis for comparison with TRs 

obtained using the MOCS within the same individuals (Experiments 2 and 3). The current study 

findings are considered within the context of the existing literature below.  

 

3.3.1 TRs from MOA tasks in the literature 

Centering tasks 

 Röser (1965) reported on a number of interaural trading values from various studies, 

which ranged from 1.7 to 230 µs/dB. In this most general test, the mean TRs of the current 

experiment fit within the extremes of previously observed limits. The actual TRs from a number 

of studies using the MOA are provided in Table 1. The table includes centering tasks, similar to 

the method used here, as well as related pointing type tasks (described in the Introduction). 

When comparing TRs, it is important to keep in mind that early centering studies measured TRs 

for the ITDadj condition only.  

 The ITDadj TR measured here (27.9 µs/dB) is most similar to the ~28.3 µs/dB reported by 

Harris (1960). Other early ITDadj TRs range from 25 µs/dB (David Jr et al., 1959) to 63.6 µs/dB 

(Deatherage & Hirsh, 1959), with larger TRs resulting from stimuli other than pure tones (e.g., 

clicks and impulses). The current findings are most dissimilar to the earliest reported TRs: 

Klemm (1920) observed a TR of 130 µs/dB, while Shaxby and Gage (1932) measured a TR of 

1.7 µs/dB.  
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 The TR from Klemm (1920) likely differs due to the disparity in stimulus type. In 

Klemm’s study, participants adjusted a telephone ring stimulus, thus it seems more appropriate 

to compare the TR from Klemm to the clicks used by David Jr et al. (1959). Depending on 

sensation level, David Jr. and colleagues reported click TRs over 200 µs/dB at 10 dB SL and 

approximately 100 µs/dB presented over a range of 30 dB SL to 50 dB SL, which are more 

comparable with Klemm (1920). Conversely, the extremely small TR from Shaxby and Gage 

(1932), may be due to “dual images,” which have been postulated to skew results if participants 

unwittingly respond to a mixture of “time” and “intensity” images during the same 

session/experiment (e.g., Hafter & Jeffress, 1968).  

 More recently, Lang and Buchner (2009) reported an ITDadj TR roughly half that of the 

present study (i.e., 12.9 µs/dB). They also measured an ILDadj TR, whose value was 19.9 µs/dB, 

which is also approximately half that of the ILDadj seen here. Thus the absolute magnitude of the 

TRs differ from this experiment, but the relationship between TRs is roughly consistent (within 

about 3 µs/dB). Stecker (2010) obtained an ILDadj TR higher than both values just mentioned 

(i.e., 72.4 µs/dB), but used an unorthodox response technique (i.e., adjusting cue via head-turn) 

and click train stimuli, which have been shown to result in higher TRs (e.g., Deatherage & Hirsh, 

1959). Considering the wide variability in TRs between subjects and across tasks, this survey of 

the literature suggests existing TRs are generally in agreement with the results reported here. It 

seems reasonable to assert the current MOA task successfully replicated the existing literature.  

Pointing tasks  

 Studies employing pointing tasks mostly focus on cue-dependent trading through the use 

of training listeners to become sensitive to two “images” when complementary cue types are put 

into opposition. The main difference from centering tasks is that instead of directly adjusting one 
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cue to offset the complementary cue to midline, participants adjust the ITD (most typically) of a 

pointer with a 0 dB ILD (most typically) to match the position of an eccentric marker consisting 

of opposing cue values. While positioning the pointer, listeners match either an image driven 

almost entirely by the ITD, or another image composed of a combination of ITD and ILD. In this 

type of paradigm, the time image TR is typically quite small, as evidenced in Table 1. In essence, 

it seems participants can always identify the ITD, but do not perceive an image driven solely by 

the ILD. While this phenomenon is quite interesting, it may not add much to the topic of cue 

trading per se. First, the ITD has been shown to dominate the ILD in wideband stimuli (e.g., 

Macpherson & Middlebrooks, 2002), suggesting ITD is generally the more potent cue. Second, 

low frequency ILD cues do not occur naturally (i.e., only under headphones) and may be more 

easily ignored by the auditory system. Third, the auditory image has been shown to become more 

diffuse and harder to localize with increasing ILD, rendering the intensity cue itself less 

discernible under certain conditions. It may be due to these factors that well-practiced listeners 

are sometimes able to parse the binaural stimulus to find the ITD cue. This author feels the time 

image contributes little to the percept arising from the mixture of antagonistic ITD and ILD cues. 

TRs derived from the level image have always included the effect of both cues; in fact, “level-

image” is shorthand for an image that contains both time and intensity (for review see Hafter & 

Jeffress, 1968; Whitworth & Jeffress, 1961). This point is discussed further in the next 

subsection. For clarity, the level-image is henceforth referred to as the time/intensity image. 

Participants in the current study were instructed to center the leftmost image should two images 

be perceived, in order to account for the possibility of randomly centering one or the other image 

within a session and thereby artificially reducing the observed TR.  
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Collapsing across tasks 

 When considering TRs derived from the time/intensity image, the values are similar to 

ITDadj TRs from centering experiments. For example, the time/intensity TRs from Table 1 range 

from approximately 18 µs/dB (Moushegian & Jeffress, 1959) to 30 µs/dB (Domnitz & Colburn, 

1977; Hafter & Jeffress, 1968). TRs from both centering and pointing tasks, excluding those 

obtained from the time image, all cluster around 20 µs/dB to 50 µs/dB when measured using 

stimuli similar to the current study. Thus, the image of interest, the time/intensity image, seems 

relatively stable across task type. It is also interesting to note in centering tasks that directly 

offsetting the cues leads to TRs well above ~1 µs/dB for both ITDadj and ILDadj. One of the few 

studies to measure both ITDadj and ILDadj TRs using a centering task, Lang and Buchner (2009) 

also show TRs well above the traditional time image, reporting TRs of 12.9 µs/dB and 19.9 

µs/dB for ITDadj and ILDadj, respectively.  

 Taken together, one interpretation of the literature as a whole is that the cue-dependent 

nature of TRs may be of a smaller magnitude than indicated by “dual image” studies, where 

time/intensity TRs are compared with time image TRs. That the time image can be discerned 

with adequate practice might be more of an indication the ITD is the dominant cue under certain 

conditions, and that ITD and ILD cues are ultimately processed in separate perceptual channels. 

However, the percept arising from a mixture of opposing cues, the time/intensity image, suggests 

binaural cues are capable of interaction. The nature of this interaction, as investigated via directly 

offsetting one cue with the complementary cue, suggests there is at least some tendency for the 

ITDadj TR to be smaller than the ILDadj TR; however, this discrepancy might be accounted for by 

the type of task. If it can be shown that binaural spatial adaptation can be induced using timing 
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and stimulus parameters common to MOA tasks, it would constitute a step toward accounting for 

the difference between ITDadj and ILDadj.   
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Table 1. Trading relations from the literature using tasks and stimuli similar to the current study. When multiple 

intensities or frequencies were tested, the reported trading relations reflect those most similar to the parameters of 

this study. Under the stimulus column, “pointer” refers to the stimulus adjustable by the listener, while “target” 

refers to a stimulus off-midline that the pointer must match in perceived laterality. 

Study Task Stimulus Trading Relation 

Klemm (1920) 
Centering 

ITDadj 
Telephone ring 130 µs/dB 

Shaxby and Gage 

(1932) 

Centering 

ITDadj 
Tone (0.5 kHz) 1.7 µs/dB 

David Jr et al. (1959) 
Centering 

ITDadj 

1) Impulse 

2) Click 

1) ~ 25 µs/dB 

2) ~ 50 µs/dB 

Deatherage and 

Hirsh (1959) 

Centering 

ITDadj 
Click train ~ 63.6 µs/dB 

Harris (1960) 
Centering 

ITDadj 
Tone (0.5 kHz) ~ 28.3 µs/dB 

Young Jr and Levine 

(1977) 

Centering 

ITDadj, ILDadj 
Tone (0.5 kHz) 

ITDadj: ~ 40.4 µs/dB 

ILDadj: ~ 79.4 µs/dB 

Lang and Buchner 

(2009) 

Centering 

ITDadj, ILDadj 
Tone (0.5 kHz) 

ITDadj: ~ 12.9 µs/dB 

ILDadj: ~ 19.9 µs/dB 

Stecker (2010) 
Centering 

ILDadj 
Click train 72.4 µs/dB 

Moushegian and 

Jeffress (1959) 

Pointing 

ITDadj 

Pointer: Noise (0.1 – 3 kHz) 

Marker: Tone (0.5 kHz) 

SS1: 2.5 µs/dB 

SS2: 18 µs/dB 

SS3: 27 µs/dB 

Whitworth and 

Jeffress (1961) 

Pointing 

ITDadj 

Pointer: Tone (0.5 kHz) 

Marker: Tone (0.5 kHz) 

Time: 0.65 µs/dB 

Int: 19.9 µs/dB 

Hafter and Jeffress 

(1968) 

Pointing 

ITDadj 

Pointer: Tone (0.5 kHz) 

Marker: Tone (0.5 kHz) 

Time: ~ 5 µs/dB 

Int: ~ 30 µs/dB 

Domnitz and Colburn 

(1977) 

Pointing 

ILDadj 

Pointer: Tone (0.5 kHz) 

Marker: Tone (0.5 kHz) 
30 µs/dB 
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3.3.2 Range of tradable ILD values 

 While the overall results of this study were consistent with the existing literature, 

participants were only able to offset a truncated range (i.e., 0 dB and ±3 dB) of the fixed ILD 

values included here. This finding warrants attention, because the full range of ILD values 

presented here have been used successfully in other studies. For example, Hafter and Jeffress 

(1968), Whitworth and Jeffress (1961) and Moushegian and Jeffress (1959) all obtained 

responses out to an ILD of ±9 dB. All of these studies also used the pointing method, whereas 

the current study used the centering method. Thus, one potential explanation for the difference in 

tradable ILD values may be due to specific differences across tasks. For instance, it may be an 

easier task to manipulate the pointer, which consists of an adjustable cue with the 

complementary cue held at midline (i.e., either 0 dB or 0 µs), which allows a participant to 

“point” across the entire useable range of a given azimuthal cue. This is in stark contrast to the 

centering technique, where cues are directly opposed and must offset the other completely to 

midline.  

 This logic is supported by studies using the centering task. For instance, Harris (1960) 

stated: “As the ILD is increased, the image spreads out and becomes harder to locate. For large 

intensity differences, the image sometimes splits.” For this reason, he restricted the range of 

fixed ILDs to no greater than 6 dB. Despite this precaution, he still found that centering accuracy 

decreased with increasing ILD. Harris (1960) also reported pure tone stimuli produced less 

accurate data compared to clicks, with participants indicating pure tone stimuli sounded very 

diffuse. Lang and Buchner (2009) measured TRs with fixed ILD values up to ±7.5 dB. They 

included a “Not enough” option participants could use if they were unable to center the stimulus. 

The “Not enough” option was checked most often when the fixed ILD value was ±7.5 dB.  
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 It has become clear that the present study should have chosen fixed ILD values based on 

the centering literature, rather than a study using a pointing task (i.e., Whitworth & Jeffress, 

1961). Future studies should take as many study parameters into account as possible when 

building on existing work relating to TRs.  

 

 

 

 

  



49 

 

Chapter 4 

 

EXPERIMENT 2: MOCS (HEAD-POINTING TASK) 

4.1 Experimental methods 

4.1.1 Stimuli 

 The stimuli in Experiment 2 were synthesized using the parameters described in the 

General Methods. Similar to Experiment 1, cue combinations consisted of fixed ILD values (0, 

±3, ±6, or ±9 dB), and fixed ITD values (0, ±100, ±200, or ±300 µs). In this experiment, all 

possible combinations of ITD and ILD were used, resulting in 49 different combinations.  

 

4.1.2 Procedure 

 Participants completed a “localization” task with insert earphones. That is, unfiltered pure 

tones resulted in intracranial images that participants mentally extrapolated into space. Stimuli 

were presented using the method of constant stimuli (MOCS). Participants wore the Oculus 

HMD and were immersed in the same virtual environment as Experiment 1 (see Figure 4). 

Participants were seated in a swivel chair and held the right Oculus controller. Pulling the trigger 

started a brief animation (three balloons bobbing) to indicate the trigger pull had been read and 

the trial had begun. Participants had to position the head-locked reticle into a green box at 

midline in order for the stimuli to play. Each trial consisted of the presentation of a single, 500-

ms tone containing one of the 49 possible cue combinations. Participants were required to keep 

their heads centered until the stimulus had completely finished playing. Participants were then 

instructed to extrapolate the intracranial image outside the head, and to position the reticle over 

the balloon at that location via head turn. Consistent with existing reports (e.g., Jeffress & 
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Taylor, 1961; Stecker, 2010), participants had no difficulty extrapolating the lateralized stimulus 

to an external location. Once the reticle was satisfactorily aligned with the perceived azimuth of 

the tone, the participant pulled the trigger on the Oculus Rift controller. Immediately after the 

trigger pull, the balloon “popped,” providing visual confirmation of the selection, and recording 

the current head position. The next trial began after the participant recentered the reticle inside 

the green box at midline, with a delay of 2 seconds. Participants made 8 judgments for each cue 

combination (392 responses).  

 There were no mixed or fixed presentation patterns for this experiment, due to the nature 

of the task: participants were all presented single presentations from the same pseudorandomly 

chosen 49 cue combinations.  

 

4.1.3 Data and Analyses 

 The azimuth of the head position when a participant responded was recorded for each 

trial. That is, the data collected represent the participants’ perceived azimuth of the stimuli. To 

account for differences in potential bias and range of responses across the session, individual 

data were normalized to z-scores. The 8 judgments per condition were averaged into a single 

data point for plotting and analyses. Participant responses to all 49 cue combinations were 

plotted in a 7 X 7 matrix with individual values represented as colors (i.e., a heatmap). Following 

the convention from Experiment 1, fixed ITD values are plotted along the ordinate, while fixed 

ILD values are plotted along the abscissa. The color scale ranges from blue (to the extreme left) 

to tan (to the extreme right) with midline represented by green. For comparison, idealized 

heatmaps are given in Figure 9, and represent maps resulting from a completely dominant ITD, a 

completely dominant ILD, and equal dominance between the cues.  
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 TRs were calculated from an individual’s data by fitting contour lines to the heatmaps. 

Because the MOA data from Experiment 1 were the result of a centering task, wherein 

participants offset the complementary cue so that the auditory percept appeared at midline, the 

contour line of interest for the MOCS task was at 0, indicating the cue values at which 

participants perceived the stimuli at midline. TRs were calculated by fitting the data points of the 

contour lines at 0 using linear regression, taking the resultant slope as the TR.  
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Figure 9. Idealized heatmaps for the MOCS task, showing scenarios where the ITD and ILD cues are equally 

dominant (top), the ITD is dominant (middle), and where the ILD is dominant (bottom). Fixed cue values are plotted 

along the axes, the response parameter is perceived azimuth. 

  

ITD and ILD Equally Dominant 

ITD Dominant 

ILD Dominant 
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4.2 Results 

4.2.1 Descriptive statistics for the MOCS task 

 Reliability of the data over time was measured using the split-half method (described in 

Experiment 1). Individual results are shown in Figure 10. Judgments were similar across time, 

with correlations ranging from r = 0.79 to r = 0.94. This finding indicates the first and second 

half of judgments made similar contributions to the mean.  

 Individual heatmaps using color to display the magnitude of the SEM are provided in 

Figure 11. These plots show the extent of deviation around the mean of the 8 judgments for each 

cue combination, after conversion to z-scores. Visual inspection revealed the lowest deviations 

typically occurred for smaller values of ILD, consistent with Harris (1960); however, some 

participants exhibited very low deviation around the mean even at the largest fixed ILD values. 

 The contour lines at 0 were fit using linear regression to characterize the slope of the 

values at which participants perceived the stimuli at midline. Linear functions accurately 

represented the contour lines at 0, with correlations ranging from r = 0.88 to r = 0.99.  

 A Shapiro-Wilk normality test revealed the data for this experiment were normally 

distributed.  

 

4.2.2 TRs obtained using the MOCS 

 Data from all 9 participants were included in the analyses. Individual heatmaps using 

color to display perceived azimuth are shown in Figure 12. Individual and mean slopes of the 

contour line at 0 (i.e., TRs) are superimposed in Figure 13. The mean TR was 40.8 µs/dB (range 

= 20.2 to 64 µs/dB; SEM = 5.08 µs/dB). The overall diagonal pattern of the data indicates the 

ITD and ILD carried similar perceptual weight for most cue combinations.   
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Figure 10. Split-half reliability for Experiment 2, for each participant. The first- and second-half participant 

responses are plotted on the abscissa and ordinate, respectively. Each data point represents a single judgment. The 

red line shows the linear regression fit of the data.  
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Figure 11. Individual SEM heatmaps for Experiment 2. The color in each square displays the amount of deviation 

around the mean of the 8 judgments in each cue combination (after conversion to z-scores).  
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Figure 12. Individual perceived-azimuth heatmaps for Experiment 2. Colors represent perceived azimuth, and are fit 

with contour lines. TRs were calculated from the slope of the contour line at 0, using linear regression. The TR 

values are provided in the panel titles in µs/dB. The color scale represents left, midline and right locations using 

blue, green and tan, respectively. 
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Figure 13. Mean and individual slopes for Experiment 2 (thick and thin lines, respectively). Slopes are plotted on the 

same scale as the heatmaps, where they were derived from the contour line at 0 (cue combinations at which listeners 

perceived the stimulus at midline). The value of the mean slope (i.e., mean TR) is given in the lower left-hand 

corner.  
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4.3 Discussion 

4.3.1 TRs from MOCS tasks in the literature 

 Stecker (2010) reports TRs for a paradigm similar to the current experiment. Participants 

indicated the perceived location of single stimuli containing different combinations of ITD and 

ILD (-225 to 225 µs in 50 µs steps; and -5 to 5 dB in 2 dB steps). The response technique 

utilized an electromagnetic position sensor that captured participant head movements, allowing 

for a response technique that was similar to the present study; listeners indicated the perceived 

location of the stimulus by orienting their heads to the extrapolated azimuth of the intracranial 

image. Despite the similarities in task and response technique, Stecker (2010) observed a TR of 

80.2 µs/dB; double that found in the current study. This is most likely due to Stecker’s use of 

click train stimuli, which have been shown to yield larger TRs than 500 Hz pure tones (e.g., 

Deatherage & Hirsh, 1959). Thus, the main conclusion to be drawn between the TRs of these 

two studies is further confirmation that broadband stimuli provide larger TRs than pure tones. 

 Lang and Buchner (2009), as well as studies in the same vein (Ignaz et al., 2013, 2014; 

Lang & Buchner, 2008), have also used the MOCS in the context of cue trading; however, the 

MOCS task stimuli consist solely of the chosen cue values used to center the stimuli during an 

MOA task. That is, after centering a stimulus using the MOA, these authors then presented 

listeners with single presentations of the cue values that were judged at midline in a MOCS task. 

Thus, the traditional TR in µs/dB is exactly the same across task types. The analyses in these 

types of studies concern the differences in perceived azimuth depending on task type, rather than 

TRs. For this reason, TRs cannot be compared here, but the findings of these studies are 

discussed in Chapter 7.  
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 Unfortunately, the cue trading literature is rather sparse regarding lateralization tasks 

using the MOCS, compared with the number of studies using the MOA (centering and pointing). 

The majority of work not using the MOA has employed some form of forced choice task (e.g., 

Babkoff et al., 1973; Hafter & Carrier, 1972). For instance, Hafter and Carrier (1972) employed 

a 2-interval forced choice (2IFC) discrimination task using 500 Hz tones. The ISI between 

standard and test signals was 200 ms, which is near the most effective value of the auditory 

localization aftereffect (250 µs) for same-frequency adaptor and probes at 400 Hz (Kashino & 

Nishida, 1998). These parameters render TRs susceptible to adaptative effects, similar to the 

MOA. Indeed, TRs obtained from Hafter and Carrier (1972) were around 25 µs/dB, which is 

quite similar to the ITDadj reported here from Experiment 1 (i.e., 27.6 µs/dB). Due to the 

sensitivity of TRs to task and stimuli, further discussion of discrimination tasks is outside the 

scope of this section.  
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Chapter 5 

 

EXPERIMENT 3: MOCS (HEADING-POINTING WITH ADAPTORS) 

5.1 Experimental methods 

5.1.1 Stimuli 

 The stimuli were the same as in Experiment 2, with the addition of a train of 5 pure tones 

preceding the probe. All tones in the train were synthesized using the parameters given in the 

General Methods so that the train and the probe stimuli were identical (e.g., 500 Hz, 500 ms in 

duration), except for the binaural cues they carried. The pure tone train served as an adaptor and 

always contained one of the same binaural cues as the probe. The unadapted cue was presented 

at midline during the adaptor (i.e., 0 µs or 0 dB, depending on the cue), with the probe containing 

a pseudorandomly-chosen value from the same range as the previous experiments (i.e., ±300, 

±200, ±100 and 0 µs, or ±9, ±6, ±3 and 0 dB, for ITD and ILD respectively). These combinations 

yielded the same 49 cue combinations as in Experiment 2, with the addition of a probe-matched 

ITD or ILD adaptor in the preceding train. Therefore, the data set from this experiment consisted 

of two matrices of judgments (perceived azimuth) obtained in the presence of an ITD or ILD 

adaptor.  

 In order to approximate the parameters used in the MOA task, each tone in the entire 

stimulus (5 adaptors and 1 probe) was separated by an ISI of 400 ms; the same ISI used in 

Experiment 1 to separate the standard and target tones in the MOA task. The goal of this 

experiment was to evoke adaptive processes during the MOCS task in a controlled, cue-specific 

manner, while employing the same timing and frequency parameters as the MOA task.  

5.1.2 Procedure 
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 The task was identical to that in Experiment 2, except each trial contained a stimulus 

composed of 6 tones (5 adaptors and 1 probe) instead of a single tone. Participants were 

instructed to ignore the first 5 tones, and to indicate via head turn the perceived azimuth of the 

last tone only. Participants were required to keep their heads centered by placing the reticle in a 

green box at midline until the entire stimulus finished playing. A single adaptor type was 

presented for all 49 combinations in any given block. Listeners made 8 judgments for each type 

of adaptor, for a total of 784 responses (49combination * 8judgment * 2adaptor).  

 As in Experiment 1, the participants were divided into Mixed and Fixed groups. 

Participants were assigned to the same group as in Experiment 1. Five participants completed 

blocks with probes preceded by either type of adaptor within the same session (Mixed), and 4 

listeners completed blocks with the same adaptor type in any given session (Fixed). Trials for the 

Fixed group also began with 1 second of uncorrelated white Gaussian noise, at an RMS level of 

65 dB relative to the level of a 500 Hz pure tone at 65 dB. Each Fixed trial thus consisted of 

Noise → 1.5 s Silence → Stimulus. The Gaussian noise was inserted to obviate any carryover 

effects from one trial to another (e.g., Ignaz et al., 2014).  

 

5.1.3 Data and Analyses 

 This experiment resulted in the same data structure as Experiment 2: heatmaps depicting 

perceived azimuth (color) for each cue combination (ITDs along the ordinate and ILDs across 

the abscissa). TRs were obtained using the same methods as Experiment 2: fitting each heatmap 

with contour lines, and calculating the slope of the line at 0. The difference between data from 

Experiment 2 and this experiment is that two sets of TRs were produced: those obtained in the 

presence of an ITD and ILD adaptor, respectively.  
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 The results of a Shapiro-Wilk normality test revealed the data were normally distributed. 

Bartlett’s test for homogeneity of variance across adaptor types revealed the assumption of 

homogeneity was valid. Therefore, the data were analyzed using a two-way mixed model 

ANOVA, with a single within-subjects factor of adaptor type (ITDadaptor, ILDadaptor), and a 

between-subjects factor of stimulus presentation group (Mixed, Fixed). Effect sizes for the 

ANOVA are reported as generalized eta squared (𝜂̂𝐺
2), which is comparable across a wide range 

of research designs (Olejnik & Algina, 2003). A general recommendation for interpretation of 𝜂̂𝐺
2  

is 0.02 as small, 0.13 as medium, and 0.26 as large (Bakeman, 2005).  

 It is important to keep in mind the ITDadaptor condition implies the ILD is the dominant 

cue, and the ILDadaptor condition implies the ITD is the dominant cue. That is, with ILD plotted 

along the abscissa, an ITD adaptor would lead to ILD dominance, and therefore more vertical 

slopes.  

 

5.2 Results 

5.2.1 Descriptive statistics for the MOCS-Adaptor task 

 Individual plots showing the split-half reliability of the data are given in Figure 14 and 

Figure 15 for the ITDadaptor and ILDadaptor conditions, respectively. The first 4 and last 4 

judgments contributed approximately equally to the mean, with correlations ranging from r = 

0.84 to r = 0.94 for the ITDadaptor condition, and r = 0.84 to r = 0.92 for the ILDadaptor 

condition.  

 Individual heatmaps using color to display the magnitude of the SEM for each cue 

combination are provided in Figure 16. The heatmaps are plotted side-by-side for ease of 

comparison, with the ITDadaptor condition in the left column, and the ILDadaptor condition in 
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the right column. Visual inspection shows the SEM was consistent across conditions for an 

individual listener. The overall trend reveals the largest SEM was for the most extreme cue 

combinations (e.g., a 9-dB ILD presented with a -300 µs ITD).  

 Heatmaps of perceived azimuth at each cue combination were fit with contour lines as in 

Experiment 2. Individual heatmaps are provided in Figure 17, with the ITDadaptor condition 

heatmaps in the left column, and the ILD condition heatmaps in the right column. Linear 

functions accurately described the contour lines at 0, with correlations ranging from r = 0.88 to r 

= 0.98 for the ITDadaptor condition, and r = 0.89 to r = 0.99 for the ILDadaptor condition.  

 

5.2.2 Mixed vs. Fixed groups 

 To explore the relationship between stimulus presentation pattern (Mixed, Fixed) and 

adaptor type (ITDadaptor, ILDadaptor), a two-way mixed model ANOVA was conducted. 

Mauchly’s test for sphericity failed to reject the null hypothesis, indicating variances were not 

significantly different from equal; therefore, no corrections were applied to the degrees of 

freedom. The analysis revealed no main effect of Group (F(1,7) = 0.04, p = n.s.), but did show a 

main effect of Adaptor (F(1,7) = 9.11, p < 0.05, 𝜂̂𝐺
2  = 0.31) and a significant Group X Adaptor 

interaction (F(1,7) = 8.58, p < 0.05, 𝜂̂𝐺
2  = 0.29). These results indicate that listener responses 

differed significantly depending on the adaptor, but collapsing responses across adaptor type did 

not result in a difference between groups. The interaction effect reveals that mixed-cue groups 

and fixed-cue groups differed significantly in how they responded as a function of adaptor type. 

This finding reveals the effect of stimulus presentation pattern (i.e., Group) had a significant 

impact on perceived azimuth during the MOCS tasks. Due to the significant interaction effect, 

data for this experiment will be divided into Mixed and Fixed groups for all further analyses.  



64 

 

5.2.3 Trading relations obtained using ITD and ILD adaptors 

Mixed Group 

 Mean TRs for the Mixed group were 44.2 µs/dB for the ITDadaptor condition (range = 

37.4 to 52.7 µs/dB), and 43.7 µs/dB for the ILD condition (range = 27 to 65.2 µs/dB). Individual 

(thin lines) and mean (thick lines) slopes for each adaptor type are displayed in the bottom panel 

of Figure 18. These findings reveal no effect of the adaptors on listeners’ responses. Data from 

the Mixed group therefore do not support the hypothesis that binaural spatial adaptation 

contributes to the cue-dependent nature of TRs obtained using the MOA.  

Fixed Group 

 Mean TRs for the Fixed group were 63.6 µs/dB for the ITDadaptor condition (range = 

26.7 to 89.1 µs/dB), and 23.9 µs/dB for the ILDadaptor condition (range = 17.4 to 33.3 µs/dB). 

Individual (thin lines) and mean (thick lines) TRs for each adaptor type are given in the top panel 

of Figure 18. A paired-samples t-test compared the TRs between the ITDadaptor and ILDadaptor 

conditions. The result revealed a significant difference (t(3) = -3.22, p < 0.05, d = 1.61), 

suggesting adaptor type differentially influenced perceived azimuth for listeners in the Fixed 

group. These findings support the hypothesis that parameters used in MOA tasks in the cue 

trading literature render the task susceptible to adaptation. The nature of this relationship is 

explored in depth in the next chapter.  

 To rule out order effects as a potential cause for the difference between adaptors for the 

Fixed group, an ANOVA with factors of Adaptor and Day was attempted, but the model was 

saturated due to the reduced number of participants after subsetting listeners into the Fixed 

group. Therefore, two separate post-hoc analyses were performed. A Subject X Adaptor 

ANOVA revealed a main effect of Adaptor (F(2,6) = 9.51, p < 0.05, 𝜂̂𝐺
2  = 0.44), indicating 
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participants responded differently depending on the adaptor condition. Conversely, a Subject X 

Day ANOVA revealed no effect of Day (F(2,6) = 0.17, p = n.s.), indicating participants 

responded similarly regardless of session number. These findings support the validity of the 

Fixed group data.  
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Figure 14. Split-half reliability for Experiment 3 (ITD adaptor), for each participant. The first- and second-half 

participant responses are plotted on the abscissa and ordinate, respectively. Each data point represents a single 

judgment. The red line shows the linear regression fit of the data. Participant S4 has half the number of judgments as 

the other listeners due to technical error.  
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Figure 15. Split-half reliability for Experiment 3 (ILD adaptor), for each participant. The first- and second-half 

participant responses are plotted on the abscissa and ordinate, respectively. Each data point represents a single 

judgment. The red line shows the linear regression fit of the data.  
 

  



68 

 

  

  

  



69 

 

  

  

  



70 

 

  

  

  

Figure 16. Individual SEM heatmaps for Experiment 3. Data for the ITDadaptor and ILDadaptor conditions are 

plotted in the left and right columns, respectively. The color in each square displays the amount of deviation around 

the mean of the 8 judgments in each cue combination (after conversion to z-scores).  
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Figure 17. Individual perceived-azimuth heatmaps for Experiment 3, with the ITDadaptor and ILDadaptor 

conditions plotted in the left and right columns, respectively. Colors represent perceived azimuth. The TR values are 

provided in the panel titles in µs/dB. The color scale represents left, midline and right locations using blue, green 

and tan, respectively.   
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Figure 18. Mean and individual slopes for Experiment 3 (thick and thin lines, respectively). The top two panels 

show data from the Fixed group, and the bottom two panels show data for the Mixed group. Slopes are plotted on 

the same scale as the heatmaps, where they were derived from the contour lines at 0 (cue combinations at which 

listeners perceived the stimulus at midline).    
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5.3 Discussion 

 The results of this experiment confirmed the adapting trains were successful in biasing 

the perceived azimuth of probe tones using a modified MOCS task, at least for the Fixed group. 

This was an essential step in determining whether adaptation could reasonably occur during the 

MOA task. At this point it seems reasonable to infer that adaptation can, and likely does, occur 

during repeated presentations of fixed cues inherent to the MOA. This finding is significant 

because it can explain the variation in cue effectiveness, and thus differing TRs, while centering 

an acoustic image using the MOA. More specifically, it can be argued that the adjusted cue 

changes as the acoustic image is centered and is therefore not adapted; however, the fixed cue 

remains the same throughout the entire trial and becomes susceptible to adaptive effects. The 

next chapter examines the nature of adaptation by considering the data from all three 

experiments.  

 

5.3.1 Mixed and Fixed groups 

 The difference across stimulus presentation patterns in this experiment is an interesting 

finding, because previous studies have been of the fixed-cue type by nature of the study design. 

The existing literature either measured a single type of cue interaction (e.g., adjusting only the 

ITD; Harris, 1960), or tested cues separately in different experiments (e.g., Lang & Buchner, 

2009). The finding that some listeners (i.e., Mixed group) are not sensitive to adaptive effects 

during an MOCS task with adaptors is a novel finding that has implications for future study 

design, and reinforces the sensitivity of cue trading to task and stimulus parameters. It is also 

interesting to note neither the MOA task nor the no-adaptor MOCS task showed differences 

between Mixed and Fixed groups. More work is needed to investigate this phenomenon.   
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Chapter 6 

 

COMPARISON OF TRADING RELATIONS ACROSS EXPERIMENTS 

6.1 Results 

 This chapter examines the relationships between TRs obtained across the entire study, 

with the purpose of discovering whether binaural spatial adaptation influences the cue-dependent 

TRs obtained using the MOA. The individual data across all experiments and conditions are 

presented for each listener in Figure 19. This figure is provided for ease of reference. The mean 

TRs from each experiment and condition are given in Table 2.  

 

6.1.1 Experiment 2 vs. Experiment 3 

 The first comparison of interest in investigating the role of adaptation in cue trading was 

between the TR from the no-adaptor MOCS task and the TRs from the two adaptor conditions. 

Because the stimulus parameters were the same as those used during the MOA task, evidence of 

adaptation between Experiments 2 and 3 would bolster the claim that binaural adaptation occurs 

during the MOA.  
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Figure 19. Individual TRs across all experiments and conditions. Each row displays data for a different listener. From left to right, the panels show TRs from 

(1) the MOA task; (2) the MOCS task; (3) MOCS ITDadaptor condition, and (4) MOCS ILDadaptor condition.  
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Table 2. Mean TRs for every experiment and condition. Values given for Experiment 3 are based on the Fixed 

group only. 

 

 

 A series of planned, paired-sample t-tests were conducted between the MOCS TR from 

Experiment 2, and the two adaptor conditions from Experiment 3. Due to the lack of effect of the 

adaptors for the Mixed group (see Chapter 5), these analyses were restricted to participants in the 

Fixed group from Experiment 3 (i.e., S4, S7, S8, S9). Comparison of the no-adaptor MOCS TR 

and the ITDadaptor TR revealed a significant difference between the conditions (t(3) = -3.47, p < 

0.05, d = 1.73). Comparison of the MOCS TR and the ILDadaptor TR showed the values were 

not statistically different (t(3) = -2, p > 0.05, d = 1); however, the large effect size suggests a 

larger sample would likely yield a significant finding. Supporting this notion, inspection of 

Figure 20 shows a clear visual trend for the MOCS and ILDadaptor slopes to differ in the 

expected direction had adaptation occurred. Reducing the sample size to only those in the Fixed 

group (i.e., 4 participants) is very likely the reason for lack of statistical significance. These 
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findings confirm that binaural spatial adaptation is indeed possible using the parameters 

commonly employed in MOA tasks.  

 It is worth mentioning that the Mixed group produced ITDadaptor and ILDadaptor TRs 

in Experiment 3 that were similar to the MOCS TR in Experiment 2 (44.2 µs/dB, 43.7 µs/dB, 

and 40.8 µs/dB, respectively). These results reveal similarity in TRs not only across adaptor 

types, but also between the adaptor and no-adaptor conditions for the Mixed group. This is 

strong evidence to suggest adaptation did not occur in the Mixed group.  

 The stimulus presentation pattern specific to each group provides some insight into the 

differential effectiveness of adaptation seen here. The Mixed group was presented blocks of 

either adaptor type during a single experimental session, and there was no Gaussian noise 

between trials, leading to three possible explanations for the lack of an effect. First, it may be 

that trial-by-trial adaptation is insufficient to influence perceived azimuth consistently, but that 

behaviorally relevant adaptation requires extended exposure to a single adaptor type. Second, the 

Gaussian noise could have effectively segregated stimulus presentations to a greater extent than 

the no-noise stimuli, potentially rendering trial-by-trial adaptation more potent. Third, a 

combination of prolonged exposure to a single cue, as well as intertrial noise might be required 

to see effects. Unfortunately, the current study design cannot distinguish between these 

possibilities.  
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Figure 20. Mean and individual slopes for each adaptor type (thick and thin lines, respectively). The top two panels 

show data from the Fixed group, and the bottom two panels show data from the Mixed group. Slopes are plotted on 

the same scale as the heatmaps, where they were derived from the contour lines at 0 (cue combinations at which 

listeners perceived the stimulus at midline).  

 

 

  

F
ix

ed
 G

ro
u

p
 

M
ix

ed
 G

ro
u

p
 



83 

 

6.1.2 Experiment 1 vs. Experiment 2 

 The next step in determining whether spatial adaptation influences cue trading during an 

MOA task is to compare the ITDadj and ILDadj TRs to the no-adaptor MOCS TR (i.e., 

Experiment 2). It was hypothesized that repeated presentations rendered the MOA TRs 

susceptible to spatial adaption, while the TR from the no-adaptor MOCS task was derived from 

single presentations. One potential outcome of this comparison is that if an adaptive process 

during the MOA results in artificially low TRs when adjusting the ITD and artificially high TRs 

when adjusting the ILD, the MOCS TR should fall between the MOA values. Another possibility 

is that the MOCS will agree with one of the TRs from the MOA. In the latter case, it is 

hypothesized the MOCS TR will be similar to the ILDadj, consistent with the rationale the ITDadj 

is influenced by adaptation.  

 Planned comparisons between the MOCS TR and the ITDadj and ILDadj TRs were carried 

out using bootstrapped paired-samples t-tests (10,000 replications). The comparison between the 

MOCS TR (40.8 µs/dB) and the ITDadj TR (27.6 µs/dB) revealed a significant difference (t(8) = 

3.57, 95% CI(−1.84, 1.87), p < 0.01, d = 1.19). The comparison between the MOCS TR and the 

ILDadj (39.01 µs/dB) revealed no significant difference (t(8) = 0.55, 95% CI(−1.84, 1.9), p = 

n.s.). These results indicate TRs were similar when obtained using single presentations of cue 

combinations (MOCS) and when adjusting the ILD to offset fixed ITDs; however, the ITDadj 

differed from both values. Thus the MOCS TR did not lie between the MOA TRs, but instead 

agreed with the ILDadj. This relationship strongly implies that no adaptation occurred during the 

ILDadj condition of the MOA, whereas adaptive effects did occur during the ITDadj condition. 

 Two conclusions can be drawn from the findings thus far. The first is that the shallower 

slope of the ITDadj could be due to an adapted ILD during adjustment. That is, repeated 
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presentations of the ILD either (1) led to a reduction in sensitivity of the ILD, requiring less of an 

ITD to perceive the stimulus at midline, or (2) caused the ITD percept to shift away in the 

opposite direction, thereby requiring less of an ITD to center the auditory percept (e.g., as in the 

MOCS task). The second conclusion is that the ILDadj appears unaffected by adaptation during 

the MOA task. This challenges the notion of cue-dependent TRs, in that only the ITDadj appears 

to be affected by adaptation, while the ILDadj is consistent across psychophysical methods, at 

least under the conditions used here.  

 

6.1.3 Experiment 1 vs. Experiment 3 

 The final comparison concerns the ITDadj and ILDadj from Experiment 1, and the TRs 

from the adaptor conditions in Experiment 3. It bears repeating that the adaptor conditions from 

Experiment 3 can be somewhat counterintuitive. Because these conditions are referred to by the 

type of adaptor present, participants became more sensitive to the opposing (i.e., unadapted) cue. 

That is, for the ITDadaptor condition the ILD cue is more prominent, and for the ILDadaptor 

condition the ITD is dominant.  

 It is interesting to note the similarity between the ITDadj and ILDadaptor conditions. The 

TRs from these conditions both favor the ITD, and do not differ statistically from each other (t(3) 

= -1.18, p > 0.05). This is important, because the ILDadaptor condition creates a scenario in 

which the ILD cue is adapted, rendering the ITD the dominant cue. In other words, TRs obtained 

when the ITD is the dominant cue are statistically similar, regardless of task. The similarity in 

TRs between ITD-dominant conditions arising from the MOA and the ILDadaptor tasks is direct 

evidence that suggests the comparatively smaller TR of the ITDadj TR likely arises from adaptive 

effects.  
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 The relationship between the ILDadj and the ITDadaptor conditions is equally 

illuminating. These two conditions both favor the ILD, yet resulted in statistically different TRs 

(t(3) = −4.28, p < 0.025, d = -2.14). The ILDadj is statistically similar to the no-adaptor condition, 

suggesting the ILDadj TR was not susceptible to adaptation during adjustment. It is important to 

note, however, that overtly adapting the ITD produced a significantly larger TR compared with 

other ILD conditions. Thus there is evidence for the possibility of ILD adaptation, and evidence 

that this adaption did not occur during the ILDadj condition of the MOA.  

 The ITDadaptor TR is also more consistent with the TR reported in Stecker (2010), who 

abolished the ITD and measured TRs with the dominant ILD (though the use of click trains could 

also account for the large TR). At this point, it can be said with some confidence that adapting 

the ITD can lead to increased perceptual sensitivity to the ILD, but this increase was not seen 

during the MOA task. These findings strongly imply the ITDadj was biased by an adaptive 

process during the MOA, while the ILDadj was not influenced, accounting for the “cue-

dependent” TRs obtained using an MOA task.  

 

6.2 Discussion 

 For the stimulus parameters used here, the results of these experiments indicate the ITD 

is affected by adaptation using the MOA, but the ILD is not. Specifically, the ILD becomes 

adapted only when it serves as the repeated cue (i.e., while adjusting the ITD), but is unaffected 

by adaptation when being actively adjusted. A reasonable assumption is that adaptation occurs 

during the repeated presentations, but the changing value of the ILD during adjustment provides 

no opportunity for adaptation. The result is a lower TR in the ITDadj condition, due to either a 

decrease in the amount of ITD necessary to offset the perceptually weaker ILD, or a repulsive 



86 

 

shift of the ITD percept away from the adapted ILD. Conversely, TRs derived from the ILDadj 

condition reflect percepts based on the presence of both cues, as neither cue serves as an adaptor 

in this condition. Accordingly, the ILDadj condition produces a TR similar to the no-adaptor 

MOCS task.  

 Extrapolating these findings to the dual images reported from pointing tasks using the 

MOA, it seems reasonable to conclude that the unadapted time image reflects the ability to 

perceive the ITD component of a mixed cue with training, and the time/intensity image produces 

TRs based on the presence of competing cues. Indeed, it was discussed in Experiment 1 that the 

time/intensity TRs from pointing tasks are consistent with those from the ILDadj TRs from 

centering tasks. Both of these types of TRs are similar to the no-adaptor MOCS reported here.  

 From these observations, the following statements can be reasonably made: 1) the ILDadj 

(centering), time/intensity image (pointing) and the no-adaptor MOCS (head-pointing) produce 

similar TRs when stimulus parameters are similar, and are based on cue interaction; 2) the time 

image (pointing) and ITDadj (centering) produce TRs comparatively smaller than their task-

respective counterparts; 3) the time image simply represents a listener’s ability to identify the 

ITD when cues are in opposition; and 4) the ITDadj TR is based on cue interaction, but is a 

product of spatial adaptation that overestimates the TR (i.e., produces a smaller TR) for a given 

cue combination.  

 These conclusions successfully account for the cue-dependent nature of TRs reported in 

the literature across a variety of methodologies. This study argues that binaural spatial adaptation 

should be considered as a major contributor to differences in TRs obtained using an MOA task. 

The next chapter (Chapter 7) considers the broader impact of the results of the experiments 
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presented here, both in light of existing literature, and in terms of specific adaptive mechanisms.  

Study limitations and directions for future work are also discussed.  
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Chapter 7 

 

GENERAL DISCUSSION 

7.1 Adaptation, attention and regression 

 As discussed in the Introduction, Lang and Buchner (2009) recorded the final ITD and 

ILD cue values chosen by participants to center a 500 Hz pure tone using the MOA, and then 

played those same cue values as single presentations using a lateralization MOCS task. The 

results revealed that perceptions were no longer centered when MOA values were presented 

during the MOCS task. Instead, the perceived azimuth deviated away from midline, moving 

toward the perceived location of the fixed cue during adjustment. That is, the adjusted cue value 

was no longer sufficient to offset the complementary cue to midline, resulting in perceptions 

“shifted back” toward the fixed cue. Lang and Buchner (2009) explained this phenomenon as 

attentional upweighting of the cue being adjusted; increased perceptual salience of the adjusted 

cue rendered it more effective than the fixed cue.  

 The findings of the present study run counter to the idea of attention increasing the 

effectiveness of the adjusted cue; in fact, this study argues the opposite is true. The results 

presented here support the notion that (1) artificial salience of the adjusted cue is due to 

decreased salience from the fixed cue, or (2) the fixed cue becomes an adaptor through repeated 

presentations and causes perception of the adjusted cue to be pushed away from the adaptor. In 

essence, the attentional upweighting theory focuses on the adjusted cue and suggests an increase 

in its effectiveness, whereas the adaptation theory proposed here focuses on the fixed cue and 

argues its effectiveness is either decreased, or the fixed cue repulses the percept of the adjusted 

cue away.  
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 While the present study was not designed to state definitively whether adaptation, 

attention (Lang & Buchner, 2009), or regression (Trahiotis & Kappauf, 1978) accounts for cue-

dependent TRs, it is noteworthy that binaural spatial adaptation can account for both theories. 

Figure 21 shows data from the current study plotted according to the convention of Lang and 

Buchner (2008, 2009): as deviation in perceived azimuth from midline between MOA and 

MOCS tasks. Deviations in Figure 21 occur in the same direction as the Lang and Buchner 

investigations, reproducing their findings based on data clearly derived from adaptive effects. 

Specifically, deviations from perceived midline appear to “shift back” toward the value of the 

fixed cue. In general, when a fixed cue favored the left during adjustment, the MOCS task 

revealed a shift in perceived azimuth to the left, and vice versa. The very use of the term “shift” 

in this context suggests adaptation, as described in a number of adaptive localization aftereffect 

studies (e.g., Canévet & Meunier, 1996; Kashino & Nishida, 1998; Meunier et al., 1996; 

Thurlow & Jack, 1973). Moreover, Lang and Buchner (2008) separated stimuli during their 

MOA task with 500 ms of silence, which is within the range of adaptive spatial effects.  

 Not only does adaptation account for the “shift-back” effect attributed to attentional 

upweighting, it also reconciles heretofore unexplained findings relating attentional upweighting 

and the regression theory. In an extension of the work of Lang and Buchner described above, 

Ignaz et al. (2014) found that the shift-back effect increased in the presence of a reference tone. 

The authors attributed this phenomenon to the tendency of the adjusted cue to move toward the 

value of the same cue in the reference (i.e., the regression theory). Ignaz et al. (2014) postulated 

that both attentional upweighting and regression contributed to their results, though the details of 

such an interaction were uncertain. Spatial adaptation, however, offers a simpler solution to 

greater deviations in perceived azimuth in the presence of an adaptor. As described throughout 
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this document, it has been well established that perceived azimuth shifts away from the location 

of a binaural adaptor. A repeated reference tone at midline (used in Ignaz et al., 2014) itself 

becomes an adaptor, causing a greater shift of the adjusted cue away from midline than when the 

reference tone is absent. This scenario requires even less of an ITD to center the auditory image 

than when the fixed cue in the opposite hemifield acts as the repulsing adaptor, and therefore 

leads to a greater shift-back effect as well.  

 The role of attention in the cue trading literature seems better suited to explaining the 

time image from pointing tasks. In these experiments, participants are overtly instructed to attend 

to one image or the other. Historically, this has been an extremely difficult task that only some 

listeners can perform after significant practice (e.g., Hafter & Jeffress, 1968). Parsing the 

stimulus for the presence of the ITD therefore requires practice and focused attention. In 

contrast, statistically differing TRs are easily obtained using the MOA, which might indicate the 

involvement of an automatic perceptual phenomenon that does not require attention to achieve. It 

is, however, important to reiterate that the current study design cannot exclude attentional 

upweighting as a possible influence.  
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Figure 21. Data plotted to show the “shift-back” effect. Top panels: Data from the current study plotted following 

the convention of Lang and Buchner (2009) to show the “shift-back” effect. Top left: each point represents the 

perceived azimuth (ordinate) of ITD and ILD cue combinations from the MOCS that most closely matched the 

values obtained during the MOA task to center the percept. Deviations from the grey dotted line indicate leftward 

(negative values) or rightward (positive values) deviation from perception at midline. Top right: same as top left, but 

for fixed values of ILD. Bottom panels: corresponding plots from Lang and Buchner (2009). The black lines are the 

points of comparison with the top plots. From “Relative influence of interaural time and intensity differences on 

lateralization is modulated by attention to one or the other cue: 500-Hz sine tones,” by A. Lang and A. Buchner, 

2009, The Journal of the Acoustical Society of America, 33, pg. 2536–2542. Copyright 2009 by AIP Publishing. 

Reprinted with permission.  
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7.2 Implications 

7.2.1 Past literature 

 The finding that the ILDadj TR is consistent across MOA and no-adaptor MOCS tasks 

affects the way in which past studies are interpreted. This finding goes against the conventional 

belief that differing TRs from an adjustment task are biased by each cue. Instead, it appears the 

ITDadj condition is the only scenario in which the TR is influenced by processes other than 

perception of the stimulus under certain conditions. The implication is that, insofar as MOCS 

tasks produce TRs more directly related to the interaction of the cues, the ILDadj TRs should 

produce TRs of equal “accuracy.” Unfortunately, the early literature investigating cue trading 

only measured TRs when the ITD was adjusted to offset a fixed ILD, which may have yielded 

TRs more sensitive to the stimulus parameters than would otherwise have been the case. Had 

past work explored the ILDadj, there may have been more evidence to show consistent TRs 

across methodologies using the parameters so often employed in those studies. Early TRs likely 

overestimate (smaller TRs imply a more dominant ITD) the actual nature of perceptions caused 

by the opposition of binaural spatial cues, at least for 500 Hz pure tones. Going forward, it seems 

as though the general advice against using the MOA to obtain TRs (e.g., Young Jr & Levine, 

1977) should be modified to apply only to the ITDadj condition when using parameters similar to 

those used here. It seems the ILDadj TR reflects contributions from both the ITD and ILD, and 

therefore can be considered a valid representation of cue trading. Furthermore, it seems 

reasonable to argue that the more intuitive head-pointing procedure, which yields TRs similar to 

the ILDadj condition, is likely the best method for quantifying cue interaction.  
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7.2.2  Relative effectiveness of adaptation 

 One of the most interesting findings of the present study is the relative sensitivity of each 

cue to adaptation. It was shown that while the ILDadj TR was unaffected by adaptive effects, the 

ITDadj condition produced a lower (more dominant) TR. In order to understand this phenomenon, 

it is useful to recall the parameters used in this study, and the known effects those parameters 

have on binaural cues. As discussed in Experiment 1, there are three main points to consider. 

First, the ITD is known to drive perception in wideband stimuli (e.g., Macpherson & 

Middlebrooks, 2002), giving rise to the general rule that the ITD is the dominant cue. Second, 

low frequency ILDs are contrived stimuli that exist only under headphones, and therefore may be 

more easily ignored by the auditory system. Third, Harris (1960) found that larger values of ILD 

created diffuse percepts that proved difficult to lateralize.  

 Taken together, a reasonable conclusion is that, under the conditions used in this study, 

the ITD was the more coherent cue, while the ILD was more diffuse and less effective. 

Therefore, in the ILDadj condition, the ITD either remained dominant despite repeated 

presentations, or the ILD was too incoherent to shift away from the fixed ITD. Conversely, in the 

ITDadj condition, the fixed ILD was either successfully weakened by adaptation, or the ITD was 

sufficiently coherent to shift away from the ILD adaptor. This logic is consistent with the 

ILDadaptor condition producing a TR similar to the ITDadj condition (i.e., the ITD was dominant 

in both conditions). It is noteworthy that the only ILD-dominated TR occurred when the ITD was 

overtly adapted with a train of pure tones, suggesting the adaptive effects arising from the MOA 

were insufficient to adapt the ITD enough to allow the ILD to dominate.  

 This differential effectiveness of binaural cues depending on the stimulus parameters 

used is consistent with the wide range of TRs observed across tasks, stimulus type, level, and 
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frequency. Thus, it is possible spatial adaptation may be highly context-sensitive, and depend to 

a great extent on the relative strength of the stimulus parameters of a given task.  

 

7.2.3 Processing of binaural spatial cues 

Psychophysical considerations 

 The specific nature of how ITDs and ILDs are represented in the auditory system remains 

unknown. Older models explained binaural percepts of laterality as originating solely from time 

or level differences via conversion from one cue to another (e.g., Deatherage & Hirsh, 1959; van 

Bergeijk, 1962). For example, level differences could be converted to time differences because 

more intense stimuli produce shorter latency firing of the auditory nerve. Conversely, time could 

be converted to a level difference because variations in onset time produce temporary level 

differences at the onset slopes. However, more recent work has largely shown these peripheral 

conversion processes to account for only a small portion of the overall perception of laterality 

(e.g., Joris et al., 2008; Joris et al., 1998).  

 Phillips and Hall (2005) commented on peripheral and central mechanisms of binaural 

cue processing. In a novel paradigm, they used two adaptors, each carrying either exclusively 

ITDs or exclusively ILDs, at two different frequencies. Further, each frequency carried binaural 

cues that caused perceived laterality to occur on opposite sides of the head. After exposure to the 

adaptors, participants were asked to indicate whether their perceptions of a diotic stimulus was 

shifted to the right or left. Psychometric functions plotting the number of right-shifted percepts 

revealed that in both ITD and ILD experiments, perceived laterality was shifted in opposite 

directions for the two frequencies. Due to the complex nature of the stimuli, Phillips and Hall 

argued against any bias in responses at the cognitive level.  
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 Building on these findings, Phillips et al. (2006) used a similar paradigm, but tested ITD 

adaptors on ILD targets, and vice versa. The results were similar to their previous experiment, 

with psychometric functions showing displacement of the auditory percepts away from the 

adaptors. Phillips et al. (2006) offer two interpretations of their data. First, they postulated the 

existence of a single, central “spatial processor” that receives convergent inputs from ITD and 

ILD cues. Within this framework, the cue type becomes irrelevant, because either (1) the output 

of the spatial processor would not contain information about the adapted cue, or (2) the output 

would be the result of the high-level processor itself being adapted. This possibility seems 

unlikely for several reasons. One reason is because, with practice, listeners are able to identify 

the time image in a pointing task, which seems to imply the ability to focus on a single 

component of the otherwise cohesive auditory percept at will. Another reason is that cue trading 

is incomplete. In a model where cue types are irrelevant, inputs converging onto a single spatial 

processor would arguably trade completely, in a linear fashion.  

 Second, Phillips et al. (2006) speculated on the possibility of independent processing of 

ITDs and ILDs. For instance, they cite physiological evidence demonstrating the neural 

representations of time and level differences only partially overlap (e.g., Schröger, 1996), and 

that ILDs can alter the processing of ITDs through a subset of neurons in the inferior colliculus 

of the cat (e.g., Kuwada & Yin, 1983). (The discussion becomes circular when one asks whether 

the collicular modulation is inherent to the neurons, or achieved via converging inputs.) Phillips 

et al. (2006) and the current study show that binaural spatial cues interact, inasmuch as one cue 

can adapt the other. This strongly suggests at least enough independence for ITDs and ILDs to be 

coded as separate but related perceptual features, albeit perhaps within a shared, more general 
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spatial processing channel. In other words, the spatial information carried by each cue provides 

similar information, but is not completely redundant.  

Neuroanatomical considerations 

 As a point of comparison, it is worth briefly considering the neural processing of color 

vision. The visual system uses parallel color-opponent channels to carry information to the 

cortex, where is it integrated at a later stage (Chatterjee & Callaway, 2003). Similarly, the 

auditory system projects spatial information carried by ITDs and ILDs to the cortex for further 

interpretation (Yin, 2002). Primary auditory cortex contains patches of binaurally-selective 

neurons (Imig & Adrian, 1977; McLaughlin et al., 2016; Middlebrooks & Zook, 1983; Stecker et 

al., 2005), just as color might be processed using a similar distributed system of patch activation 

(e.g., Bird et al., 2014; Conway, 2009; Li et al., 2014). That is, in lieu of a topographical map, 

color and auditory space are both calculated quantities that arise from multiple perceptual 

channels.  

 Despite the similarities, there is an important difference in how color and auditory space 

are initially encoded. The visual system perceptual channels remain primarily segregated through 

the brainstem and thalamus. For instance, the lateral geniculate nucleus (LGN) of the visual 

system is composed of three classes of cell layers, each optimized for processing specific 

stimulus features from retinal inputs, and passes these segregated streams, including color, to 

primary visual cortex (for review see Kaufman et al., 2011).  

 In contrast, the binaural integration required to code auditory space leads to significant 

crossing of the left/right and ITD/ILD streams in the auditory brainstem. For example, the 

inferior colliculus (IC) receives excitatory and inhibitory inputs from diverse brainstem 

locations, such as the dorsal and ventral nuclei of the lateral lemniscus, the medial and lateral 
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superior olives (MSO and LSO, respectively) and the cochlear nuclei (for review see Pickles, 

2012). Loftus et al. (2004) used anterograde tracers in the cat to map the projections from the 

MSO (largely ITD sensitive) and LSO (largely ILD sensitive) to their terminations in the central 

nucleus of the IC (ICC). They found MSO inputs were segregated from contralateral LSO inputs, 

suggesting ITDs and ILDs are processed independently; however, they also showed that 

ipsilateral LSO projections, largely inhibitory in nature, converged with the MSO inputs, 

suggesting cue integration. The overall conclusion from Loftus et al. (2004) was that several 

neural circuits likely exist in the ICC that make use of different input combinations. This 

information is then projected from the ICC and terminates in patches in the medial geniculate 

body (MGB). Patches in the MGB are maintained at the level of primary auditory cortex and 

make up the binaurally sensitive patches mentioned above (Velenovsky et al., 2003).  

 The brief comparison between visual and auditory parallel processing seems to confirm 

the aptness of the term color-opponency, describing independent perceptual channels that are 

preserved through the visual thalamus. The comparison also reveals the processing of ITD and 

ILD is not as straightforward. Animal work has shown there is sufficient circuity in the 

integrative nuclei of the ICC and MGB to combine ITD and ILD information, yet cortical 

patches not only show general binaural sensitivity, but can also respond preferentially to cue type 

(Higgins et al., 2017).  

 In piecing together the psychophysical and neurophysiological findings, it is interesting 

to note that the perception of dual images described in early cue trading studies is a difficult task 

that does not resemble the phenomenon of auditory bistability: the spontaneous transition 

between different auditory percepts when presented with ambiguous stimuli (Hupé et al., 2008). 

Bistable stimuli capitalize on grouping principles (for review see Bregman, 1994), allowing for 
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multiple perceptions of a constant stimulus. The lack of bistability in perceiving the time and 

time/intensity images suggests ITD and ILD cues are not auditory “objects” in themselves, and 

there is likely no local neuronal competition for perception (arguably what drives bistability; e.g., 

Hupé et al., 2008). The lack of bistable percepts suggests the relative coherence of cue-traded 

percepts stems from an integration of ITD and ILD information, which agrees with the central 

spatial processor proposed by Phillips et al. (2006). In contrast, the results of the present study 

show that perceived laterality is context-dependent, and that adaptation of a single cue type is 

possible. These findings imply independence of ITD and ILD processing, at least at early stages. 

Taken together, a simple model for binaural spatial processing emerges: (1) ITD and ILD cues 

are treated independently at early stages of processing, (2) the cues are later combined into a 

single percept at the cognitive level, and (3) cue-selectivity in the cortex suggests not all cue-

specific information is lost during integration.  

 

7.2.4 Technology 

Assistive devices 

 Previous work has shown that sound localization performance can become degraded with 

the use of hearing aids (for review see Diedesch, 2016). More specifically, factors such as 

microphone placement, disruption of pinna cues, and dynamic range compression haven been 

shown to contribute to difficulty localizing (e.g., Diedesch, 2016; Diedesch et al., 2018; 

Hassager et al., 2017). Hassager et al. (2017) reported hearing aid processing can lead to auditory 

images that are broad, intracranial or split, which falls within the purview of the current study. 

Localization performance may be improved in these instances by carefully examining the cue 
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interactions caused by hearing aid processing. It is possible that knowledge of the most 

disruptive cue combinations could inform hearing aid processing algorithms.  

 Furthermore, developing consistent, objective techniques to quantify binaural 

performance can impact diagnostic testing and equipment in the audiology clinic. Amassing 

normative data on binaural spatial performance can lead to a better understanding of how 

auditory spatial cues interact with hearing aids, and the types of real-world benefits spatial 

hearing can offer. In the hearing science laboratory, knowledge of binaural spatial cues could 

become a routine part of testing hearing aid features, similar to work that is currently done with 

directional microphones, speech intelligibility and listening effort (e.g., Picou et al., 2017; 

Simpson et al., 2018). TRs also provide a convenient way to quantify spatial hearing results from 

such tests, allowing comparison across hearing aid features, manufacturers, and listening 

conditions. For example, bilateral cochlear implant patients might perform a localization task 

that prompts the listener to orient toward a lateral cue, achieved by manipulating the ILD. 

Subsequently, various amounts of ITD can be introduced to the fixed ILD signal to determine the 

effectiveness (or ineffectiveness) of a particular processing strategy of incorporating ITD cues.  

Virtual reality 

 An important aspect of this study was that all experiments were conducted in VR. The 

reliability of participant responses suggests the use of VR did not negatively affect the quality of 

the data. Furthermore, TRs obtained in this study were comparable to those obtained using a 

variety of technologies, ranging from analog circuits (e.g., Deatherage & Hirsh, 1959) to touch-

screen tablets (Stecker, 2010).  

 Establishing the use of VR as a legitimate tool for psychophysical studies is useful for 

several reasons. For instance, VR allowed for the natural and intuitive response technique of 
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simply orienting the head to a stimulus, and pulling a trigger to “shoot” balloons. Spontaneous 

participant comments revealed the more interactive tasks (i.e., MOCS) were noticeably more 

enjoyable than the less interactive tasks (i.e., MOA). These comments imply interactive virtual 

environments may lead to more engaged listeners, potentially delaying the effects of mental 

fatigue and reducing the overall number of visits required to complete data collection. VR tasks 

can also be shared easily. Virtual scenes can be saved as stand-alone files, and require only 

inexpensive and commercially available equipment (e.g., Oculus Rift) to implement. Not only 

does VR remove visual distractions from the laboratory surroundings, but virtual environments 

provide excellent consistency for comparing results across different laboratories.  

 Virtual reality is already being used by physical therapists in a clinical setting (for review 

see Sveistrup, 2004). Improved methods of customizing binaural spatial information on an 

individual basis could have a major impact on the realism and effectiveness of virtual 

environments. More realistic environments could be especially useful in training individuals who 

rely more heavily on auditory spatial awareness, such as those with visual and vestibular 

impairments. The ready availability and affordability of VR equipment could even allow patients 

to train at home. An early step toward such technology was introduced by Sechler et al. (2017), 

who created a portable VR system for objective sound localization testing for cochlear implant 

users.  

 The results of this study can also contribute to the virtual and augmented reality 

industries. Greater understanding of the individual differences in sensitivity to binaural cues will 

allow for finer control over spatial audio and more effective calibration techniques. For example, 

more people may be willing to take the time to calibrate their virtual audio if the task is made 

into a game similar to that used here. Better understanding of cue trading can lead to the capture 
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of information about ITD and ILD effectiveness simultaneously, reducing the duration of the 

calibration process. Libraries of established TRs could be used in personalized calibration of the 

generic head-related transfer function (HRTF) that is commonly used in virtual audio software. 

That is, automatic software adjustments to the HRTF, based on the results of a brief cue-trading 

task, have the potential to provide more individualized information on the relative weighting of 

binaural cues under different conditions, thereby increasing realism in the virtual environment.  

 

7.3 Study limitations 

7.3.1 Fixed group sample size 

 The major drawback of splitting the participants into two groups was the subsequent 

reduction in sample size. Data from only 4 listeners resulted in a lack of statistical significance 

between the no-adaptor and ILDadaptor MOCS conditions. While the effect size was quite large 

and the data exhibited a trend toward significance, the findings of this study would be 

strengthened by a larger Fixed group sample size.  

 

7.3.2 Restricted range of fixed ILD values 

 Another limitation was the failure to obtain responses at all levels of the fixed ILD during 

the MOA task. Part of the problem may have been due to the fact this study used cue values 

based on a centering task (i.e., Whitworth & Jeffress, 1961), rather than a pointing task. In 

retrospect, aligning the fixed ILDs in this study with those commonly used in centering tasks 

would likely have increased the range of useable ILDs. The fact remains, however, that even at 

±6 dB participants consistently struggled to center the percept. Other studies using a centering 

task and the MOA have reported difficulty around this ILD value, but have typically been able to 
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salvage sufficient data for reporting (e.g., Lang & Buchner, 2009; Moushegian & Jeffress, 1959). 

 Another potential cause for the truncated range of fixed ILDs may be the number of trials 

presented. The present study required 8 ILD and 8 ITD adjustments for each of either 14 

conditions (first five listeners) or 12 conditions (last four listeners). The total number of 

judgments for the current experiment was therefore either [(8ITD + 8ILD) * 14Condition)] 224 

judgments, or [(8ITD + 8ILD) * 12Condition] 192 judgments, respectively. In comparison, Whitworth 

and Jeffress (1961) collected two sets of 8 ILD judgments and 4 ITD judgments for each of 49 

conditions, resulting in a total number of 590 responses. Harris (1960) reported a comparable 

560 responses, while Deatherage and Hirsh (1959) reported a total of only 165 judgments per 

listener. More similar to the current study, Stecker (2010) obtained at least 240 responses per 

participant. Considering the literature in general, the current study falls into the lower end of the 

number of trials presented. It is possible more trials and therefore more experience with the task 

in general would have yielded responses across a greater range of fixed ILDs. It should be noted, 

however, that all participants completed practice sessions, and that split-half reliability and 

standard error of the data were good.  

 

7.3.3 Generalizability 

 An important limitation inherent to cue trading literature as a whole is the ability to 

generalize findings to other stimuli and study designs. It has been shown throughout this 

document that TRs are highly sensitive to a variety of parameters, such as presentation level 

(David Jr et al., 1959), task (Lang & Buchner, 2008, 2009), spectral content (Harris, 1960), and 

the use of reference tones (Ignaz et al., 2013, 2014), to name a few. Therefore, the results of the 

experiments reported here have relatively little generalizability outside the conditions used in this 
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study. The larger concept of adaptive effects in cue trading can, however, be taken as a general 

rule, and used to make predictions for other tasks and stimulus parameters.  

  

7.3.4 Ecological validity 

 The rather poor ecological validity of this study is also a limitation. For instance, the 

experiments were all conducted using insert earphones, rather than in the sound field; the stimuli 

contained low-frequency ILDs, which do not occur in everyday life; and the effects are 

dependent on a strict set of conditions. It should be noted, however, that the use of virtual reality 

increased realism in these experiments, and the response technique of orienting the head in a 

direction of a sound is intuitive and common in daily life. It should also be noted that 

experiments conducted in the sound field support the findings of a shift in the auditory percept 

using adaptors and probes (e.g., Kopčo et al., 2007), increasing the relevance of spatial 

adaptation to more realistic environments.  

 

7.4 Future directions 

7.4.1 Differentiating adaptation and attention 

 The current study provided strong evidence for the contribution of binaural spatial 

adaptation to the cue-dependent nature of TRs. However, the study was not designed to 

demonstrate causation, and so adaptation can only be offered as a likely mechanism. The most 

immediate next step is to discover which process or processes contribute to the differential TRs 

obtained using the MOA, and to quantify those relationships. A psychophysical experiment 

might include measuring TRs over frequencies that produce a range of ITD effectiveness, to 

determine whether TRs reflect changes in the usefulness of the ITD as an adaptor, or whether 
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TRs remain constant due to the influence of attention. Conversely, an electrophysiological 

experiment might present stimuli in a passive listening scenario, effectively removing attentional 

effects, to examine changes in the EEG signal for signs of adaptation during cue adjustment. 

Such an experiment could be implemented using the EEG-based binaural spatial adaptation 

paradigm used by Magezi and Krumbholz (2010).  

 Another important piece of information that needs to be resolved is differentiating 

between the two possible types of adaptation proposed here; that is, whether the fixed cue 

decreased in potency, or caused the adjusted cue to shift away.  

 

7.4.2 Next steps 

 Kawashima and Sato (2012) investigated timing differences in amplitude modulated 

tones at high frequencies (above 2 kHz), and determined the envelope ITD also contributes to the 

localization aftereffect in the expected direction (i.e., the test signal shifted away from the 

adaptor signal). Future work should examine the role of the envelope ITD in cue-trading 

experiments to determine whether the same adaptive effects are involved in broader-spectrum 

signals. Similarly, additional work is needed to examine TRs at frequencies where the ILD 

dominates the ITD, to determine whether the ITD dominance observed in this study can be 

reversed using sinusoidal tones. Another factor that should be studied is whether the use of 

generic cue values significantly affects the TRs observed using the MOA. That is, would ITDs 

and ILDs that were perceptually matched for each listener (e.g., Yost et al., 1975) show more 

sensitivity to the ILD using the same parameters as this study?  

 Future studies also need to define what constitutes an “accurate” TR. For instance, this 

study showed the ITDadj condition produced a smaller (more dominant) TR than the ILDadj 
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condition, and that the ILDadj TR was consistent with the no-adaptor MOCS task. Which TR is 

more accurate? Was it the ILDadj TR, that was not influenced by adaptation, or was it the ITDadj 

TR that correctly revealed the ITD was the dominant cue? Carefully controlled studies 

investigating TRs under a variety of circumstances are needed to produce a richer data set than 

what is currently available. Hafter and Carrier (1972) interpreted the lack of a complete trade 

between time and intensity as a refutation of the existence of a single TR. A larger set of TRs 

may prove that a constant TR does exist, but changes in a predictable way based on the context 

in which it is measured.  
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Chapter 8 

 

CONCLUSIONS 

 

 The series of experiments presented here strongly suggest binaural spatial adaptation 

contributes to the cue-dependent TRs obtained using the MOA. In fact, spatial adaptation 

accounts for the variation in TRs observed across a variety of tasks and conditions reported in the 

literature. In general, task conditions that favor the ITD appear susceptible to adaptive effects, 

while conditions favoring the ILD are only susceptible when the ITD is overtly suppressed. 

These claims arise from considering the TRs across all three experiments. The major findings 

include: (1) introducing adaptors to an MOCS task leads to greater sensitivity to the unadapted 

cue; (2) the unadapted MOCS TR is similar to the ILDadj TR, suggesting adaptation does not 

occur when adjusting the ILD to offset a fixed ITD; (3) the MOCS ILDadaptor condition (ITD 

dominant) yields a TR similar to the ITDadj TR, suggesting the ITD is affected by adaptation 

during an MOA task; (4) the notion of cue-dependent TRs is too broad, as only the ITDadj 

differed from the no-adaptor MOCS TR under the conditions used here; and (5) at least at early 

stages, the auditory system may process binaural cues as distinct features of the same perceptual 

channel, allowing for interaction between cue types. While further work in the area of cue 

trading is needed, the results of this study offer new insights and promising directions for future 

research.  
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