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Chapter I  Introduction 

 

I.1 Aerodynamics of bird wings and applications in UAVs 

Birds are very graceful creatures that fly effortless through the air.  Mankind has always been 

fascinated with mimicking this skill; tracing all the way back to 1505 when Leonardo da Vinci 

was intrigued with human mechanical flight, to the present day’s growing interest in micro air 

vehicles (MAVs). Defense Advanced Research Projects Agency (DARPA) defines MAVs as 

robotic flyers that have a wingspan under 15 cm. MAVs are a class of miniature unmanned aerial 

vehicles (UAVs) that have recently taken inspiration from flying insects and birds to achieve 

unprecedented flight capabilities when comparing against the traditional fixed wing design.  This 

study will treat the terms UAVs and MAVs interchangeably. 

There are two common types of UAVs (or better known as drones) that is popular among both 

consumer commercial markets as well as military applications. With recent advances in 

microelectronics and wireless communication devices on board, UAVs and/or MAVs have 

numerous markets and applications which include hobbyist, aerial photography, surveying land, 

aerial inspections for technical installations that may be difficult, dangerous and costly to access 

(e.g., bridges, dams, towers, wind mills, etc.), military intelligence, surveillance and 

reconnaissance missions. The first common type of UAVs is a fixed wing model; these are 

compact, lightweight units that are capable of fast and efficient forward flights. The second style 

is a rotary blade based system that can hover and can fly both vertically and horizontally. A third, 

less common type of UAV is bio-inspired flapping-wing that mimics the natural flight of animals. 

As their biological counterpart, the flapping-wing UAVs can potentially vary several kinematic 

parameters that describe the 3D wing motion and thus the aerodynamic forces on each wing.  The 

resultant forces and torques are high relative to the body inertia and may allow the UAVs to 

perform many kinds of maneuvers in a very short time, e.g., taking off, precision landing, and 

turning.  When both steady flight and unsteady maneuvers are considered, the flapping-wing 

UAVs are potentially more efficient flight than either of the two aforementioned UAV types in 

small scale. Pesavento and Wang (2009) documented the first piece  of evidence  in which unsteady 

aerodynamics makes a flapping motion less costly than the optimal steady wing motion.  More 

specifically, Pesavento and Wang (2009) found at the scale of insects, a 2-D flapping flight can be 

more aerodynamically efficient than the optimal fixed wing flight by taking advantage of the 

interaction of the wing with its wake near wing reversal. That is, the leading-edge vortex generated 

by the previous stroke had the most significant influence on the succeeding unsteady aerodynamic 

force. Since the fixed wings and flapping wings have their distinct advantages and are most suitable 

for different flight modes (i.e., cruise and unsteady maneuvers, respectively), it is conceivable that 

that in the future, these two propulsion approaches could be combined into one hybrid system for 

complex missions.   

I.2 A brief literature survey 

There are generally two research directions in the study of aerodynamics of flapping wings.  The 

first is the direct study of animal’s wings by incorporating the animal-specific wing kinematics. 
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Many experimental and computational studies have been conducted in this direction. Only a few 

representative cases are listed here for brevity. Experimentally, Dickinson et al (1999) validated 

that conventional theory on insect flight based solely on translation mechanisms (i.e., delayed stall) 

could not explain the transient forces generated by hoverfly kinematics. Dickinson et al (1999) 

stated that there are three distinct mechanisms for insect flight: delayed stall, rotational circulation, 

and wake capture. Rotational circulation and wake capture both depend on the pronation and 

supination of the wing during the stroke reversal and are necessary in understanding the rotational 

mechanisms for unsteady aerodynamics in insect flight. Spedding (2003) investigated the wake 

structure of a thrust nightingale over a range of natural flight speeds and found that wake structures 

had enough momentum to provide weight support over the wingbeat. Tobalske et al (2007) found 

that hummingbirds alter specific wing kinematics (e.g., chord angle, angle of attack, wing beat 

amplitude, etc.) during forward flight from slow to fast speeds.  Hedenstrom and Johansson (2015) 

documented that bats use a leading-edge vortex and an inverted wing during the upstroke to aid in 

weight support during hovering and slow speeds. Dudley and Ellington  (1990a)  determined 

several kinematic parameters for bumblebees in forward flight (body angle, stroke plane angle, 

geometrical angle of attack, etc.) varied consistently with airspeed.  Dudley and Ellington  (1990b) 

showed that quasi-steady aerodynamic mechanisms were insufficient to explain the fast forward 

flight of bumblebees. Ortega-Jimenez et al (2013) experimentally determined the kinematic effects 

of moths flying into vortices.  

In computational study, 3D computational fluid dynamics (CFD) has allowed researchers to study 

the unsteady flow and force production associated with animal wings.  For example, Sun and Tang 

(2002) modeled a fruit fly wing in a flapping motion and found when the wing rotation occurs at 

the end of a stroke, the mean lift coefficient can be two times greater than the quasi-steady value. 

Liu and Kawachi (1998) numerically modeled a hawkmoths wing during hovering flight and 

compared the numerical results with smoke-visualized flows around a manmade flapper.   Some 

of these computational studies have incorporated realistic wing motion obtained through 

measurement of high-speed videography and have involved multi-disciplinary collaborations 

between fluid dynamists who seek to understand the phenomenon involved in flapping wings and 

biologists who seek to understand how it relates to live animal flight. For example, Song et al 

(2014)  developed a CFD model for hovering flight of the hummingbird and studied detailed force 

production of downstroke and upstroke; later, the authors (Song et al, 2016) used a similar 

approach to study forward flight of the hummingbird and compared its aerodynamics with that of 

insects and large birds.  

The second direction of study is investigation of basic fluid dynamics involved in flapping wings. 

Wang (2005) provides a thorough literature review in insect flight and discusses the unsteady 

mechanisms for uniform and accelerated motions.  For this purpose, very simple wing shape and 

kinematics could be adopted in the study, for example, an airfoil performing sinusoidal pitching 

and/or heaving motions.  Sometimes even 2D models are very useful, and the effects of linear 

acceleration and pitching on vortex formation, flow separation, and unsteady forces are usually 

main foci of this type of studies.  For example, Wang et al (2004) compared 2D computations with 

3D experiments and found in all cases, the computed drag compared well with the experimental 
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drag and the computed lift agreed with the experimental lift when the sinusoidal changes in angle 

of attack were symmetrical. Of course, only simple wing geometry and kinematics were used for 

comparison.  

In addition to rigid wing models, there have been studies to incorporate elasticity of flapping wings 

that investigate the effect of fluid-structure interaction and aeroelasticity on aerodynamic 

performance of the wings. Yin & Luo (2010)  found that both inertia-induced deformation and 

flow-induced deformation can both enhance lift of an elastic wing. Similarly, Dai et al (2012) 

demonstrated that deformation not only enhances lift but also improves the lift efficiency even 

with an unfavorable camber. Eldredge et al (2010) discovered that a flexible wing consistently 

demonstrated better performance than a rigid wing due to how the leading-edge vortex shed into 

the wake during the return stroke, this led to less interaction with the previously shed trailing-edge 

vortices. From these and several other studies, it is clear that proper structural elasticity would 

significantly improve aerodynamic performance of flapping wings. 

Other than steady flight, bio-inspired transient aerodynamic maneuver studies are a growing 

subject of interest as UAVs are becoming as popular as ever. In this area, again both animal studies 

and simplifying model studies were carried out. For example, Carruthers et al (2007) observed that 

a steppe eagle performing a perching maneuver gained altitude quickly during the landing phase, 

implying that large lift was required at high angles of attack. Specifically, the perching 

aerodynamic maneuver provides the ability for a UAV to land precisely on a narrow platform 

without the requirement to decelerate on the ground like typical fixed-wing UAVs. Even with Cory 

and Tedrake (2008) recent advances that demonstrated the ability for current MAVs to land on a 

perch, these MAVs still fall short in achieving the stability and control, speed, and overall elegance 

of the natural flyers that we seek to emulate. Polet et al (2015) investigated a simple pitch-up 

maneuver that linearly deaccelerates and further validated that a perching bird can maintain high 

lift and drag while slowing to a controlled stop despite the large angles of attack and decreasing 

flow velocity. Using particle image velocimetry (PIV) and simulations, Polet et al (2015) studied 

the differences in forces and vorticity fields as the pitch rate increased and found that the lift and 

drag forces increase super-linearly with the pitch rate (or shape change number). 

Reduced-order aerodynamic models that can faithfully capture the unsteady flow are a key area of 

research for successful engineering applications of flapping wings. Many parallel efforts are 

ongoing with various levels of success. For example, Wang and Eldredge (2012) created a low-

order model to predict the dynamics of the leading edge vortex (LEV) during both pitching and 

perching maneuvers. Wang and Eldredge (2012) low-order (e.g., less than ten degrees of freedom) 

impulse matching approach enabled more accurate force predictions on 2-D pitching and perching 

maneuvers than the Brown-Michael model when compared with both experiments and high-

fidelity simulations. 

I.3 The specific objectives of this study 

In general, acceleration and deceleration of the wing, as well as rotation around the wing axis, are 

critical features of flapping wings, but the fundamental fluid dynamics is not yet well understood.  

Basically, there is a lack of simple models that can accurately describe force production in relation 
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with the wing velocity, acceleration, rotational velocity, and rotational acceleration. This thesis 

aims to better understand how the wing-pitching affects the force production, boundary layer 

detachment, and vortex formation in the flow.  For this purpose, extremely simplified cases are 

considered, i.e., the pitching-only and perching wings, and this study numerically simulates the 

flow to obtain the unsteady velocity field, pressure distribution, and total lift and drag.  Their 

dependence on the wing motion will be studied. 

To be more specific, in this thesis I aim to investigate the viscous, unsteady flow over a NACA 

0012 airfoil that pitches to a high angle of attack (𝛼) by using a 2D laminar flow and time-

dependent study.  For the perching maneuver, the airfoil is also assumed to go through a 

deceleration process while pitching.  Since flow separation and vortex generation are going to be 

dominant features of the flow, the effect of viscosity has to be included in the computational model 

to accurately predict these unsteady flow behaviors.  For this investigation, a rigid wing is assumed 

in order to simplify the problem.  To validate the simulation, I will first compare the results in this 

study with the results of Polet et al (2015) and Wang and Eldredge (2012). After model validation, 

I will then move on to study details of flow in two separate scenarios: (1) a controlled pitch-up 

maneuver and (2) a perching maneuver where the wing experiences simultaneous deceleration and 

pitching motion. 
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Chapter II  Model description and validation 

II.1 Description of the wing model and simulation setup 

To investigate the fundamental unsteady fluid dynamics and force production of flapping wings, 

highly simplified situations where wings only perform combined linear translational and pitching 

motion were considered.  In addition, three-dimensional (3D) effects were ignored and this study 

concentrated only on two-dimensional (2D) models.  (Carruthers et al., 2007) 

Consider a NACA0012 airfoil that is immersed in a uniform fluid traveling at a time-varying 

velocity, U(t). The airfoil is initially at an angle of attack 𝛼=0° and is made to rapidly pitch up to 

𝛼=90° at an angular velocity 𝜔(𝑡). Two distinct classes of translational motion are considered, 

first pitching where U(t)= 𝑈0, a constant velocity, and then perching which Granlund et al (2010) 

defines as the airfoil linearly decelerates from the initial velocity  𝑈0 to rest during the pitch-up 

maneuver. A perching maneuver performed by a Steppe Eagle Aquila nipalenis is shown in Figure 

1.  
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Figure 1:  Visualization of perching maneuver by Carruthers et al (Carruthers et al., 2007) 
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Commercial package COMSOL Multiphysics 4.4 was chosen to model this problem using its 

Rotating Machinery module. COMSOL Multiphysics is a finite-element modeling, simulation, and 

visualization software package that has a friendly user interface and a much more forgiving 

learning curve than some in-house packages, e.g., a boundary data immersion method (BDIM) that 

Zhao et al (2011) use or the viscous vortex particle method (VVPM) used by Peskin and Dora 

(2002) while still providing impressive accuracy results. The NACA0012 airfoil profile was 

imported into COMSOL Multiphysics using 140 data points to ensure that enough resolution could 

be achieved around the airfoil. The computational domain is a square box shown in Figure 2. The 

following boundary conditions were applied: the left side of the square is designated as the inlet, 

the right side is the outlet, and both the top and bottom are open flow boundaries. The inside of 

the circle enclosing the airfoil is set as a rotating domain, for which the rotational velocity and 

rotational axis are specified. The rotating wall node in COMSOL is a boundary condition that is 

applied to the airfoil, which essentially represents the no-slip condition for the fluid at the airfoil 

surface.  Fluid continuity is specified along the perimeter of the circle and is suitable for pairs 

where the boundaries match; it prescribes that the flow field is continuous across the pair. The 

freestream flow speed at the inlet is U(t); thus the airfoil does not have to translate in the domain. 

To account for the non-zero inertial effect that results from the deceleration of the airfoil in the 

actual situation, a uniform volumetric force is included for the perching case to decelerate the flow 

correspondingly. The uniform volumetric force is given by Eq. (1) below, 

 

 
𝜌

𝜕𝑈(𝑡)

𝜕𝑡
 (1) 
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Figure 2: Illustration of the complete computational domain with boundary conditions 

The mesh discretization is shown in Figure 3.  It can be seen that the flow field immediately 

surrounding the airfoil has a much finer mesh in the area of interest (domain 1 is inside the cycle) 

than domain 2 (outside of the circle); this was done to resolve the vortices around the airfoil while 

minimizing the overall computational cost. Note that the two domains are meshed separately but 

share the same mesh nodes along the domain interface (the circle); this ensures that mesh 

continuity across the two domains. The mesh was created using a two part mesh in COMSOL. The 

first part uses COMSOL’s pre-defined ‘fine’ setting for the outside domain (outside of the circle) 

while the inner domain (inside the circle) uses a user-controlled custom mesh. Adjusting the size 

parameters from the ‘extremely fine’ default settings within the circle domain; the maximum 

element size limits how large each individual mesh element can be, which is set to be 0.134 times 

the chord length (c); while the maximum element growth rate limits the size ratio between two 

adjacent mesh elements and is set to be 1.02c; therefore, lowering both of these parameters created 

a much finer mesh for the inner domain. The predefined ‘fine’ mesh setting was utilized on the 

outer domain, the maximum element size was 1.34c and the maximum element growth rate was 

1.13c.  The inner domain, outer domain and total combined mesh consisted of 154,640, 2,154, and 

156,784 elements respectively and can be seen in the zoomed in view shown in Figure 3. 
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Figure 3: Mesh used in the simulation, where the inner region and outer region were meshed 

separately 

 

II.2 Validation study: case 1 

Two validation cases were carried out to verify the current model setup and assess the accuracy of 

COMOSL simulation. In the first validation study, the perching maneuver kinematics as specified 

in Polet et al (2015) were used, where the time-dependent inlet velocity and angle of attack are 

given as functions of time as: 

 

 U =  𝑈0(1 - 𝑡∗)  (2) 

 

 
𝛼(𝑡) =  

𝜋

2
[𝑡∗ −

𝑠𝑖𝑛 (2𝜋𝑡∗)

2𝜋
] 

 

(3) 

 

Here 𝑡∗ is the non-dimensional time (0 ≤ 𝑡∗  ≤ 1) and is defined as 𝑡∗ = 𝑡/𝑇, where t is the actual 

time, and T the total time period for the airfoil to complete the perching maneuver. Eq. (3) is 

incorporated into the COMSOL model by specifying the angular velocity located in the rotating 
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domain section; this requires taking the time derivative of Eq. (3), which produces the following 

angular velocity equation, 

 𝜔(𝑡) =  
𝜋

2
[ 

1

𝑇
−

𝑐𝑜𝑠 (2𝜋𝑡∗)

𝑇
]  (4) 

In order to compare the results with those in Polet et al (2015), the flow conditions were non-

dimensionalized. The current study was limited to low Reynolds number aerodynamics, where 

both the boundary layer and the bulk fluid are laminar. Consider the viscous, incompressible 

unsteady flow over a NACA 0012 airfoil that has a chord length c=1.0 m, under the following 

conditions: initial velocity 𝑈0 =1 m/s, fluid density 𝜌  =1.0 kg/m3, and dynamic viscosity 𝜇 

=0.0005 Pa•s. The Reynolds number can be thus calculated according to the following equation: 

 
𝑅𝑒 =

𝜌𝑈0𝑐

𝜇
 (5) 

This Reynolds number of 2,000 matches the Reynolds number in Polet et al (2015). In that 

reference, the shape change number (SC) is used to parametrize the ratio between the translational 

speed and the rotational speed, or rate of the shape change of the system (as viewed by the flow). 

Here the shape change number and pitch rate, K, are used interchangeably which is defined as:  

 𝑆𝐶 = 𝐾 =
𝑐

𝑇 𝑈0
 (6) 

The center of pitch rotation was located c/6 from the leading edge. 

 

II.3 Results from validation case 1 

Three simulations were conducted keeping other parameters constant except the value of pitching 

time, which is T= 2, 4 and 8 seconds. These aforementioned values of T lead to three distinct pitch 

rates, from fastest to slowest, K= 
1

2
,

1

4
 and 

1

8
 .   

The forces the airfoil experiences for the three different pitch rates are shown in Figure 4 along 

with the reference results. The lift and drag coefficients, Cl and Cd, are defined using the chord 

length c, fluid density 𝜌, and velocity 𝑈0. Looking at the lift and drag coefficients as functions of 

the non-dimensionalized time, it can be seen that in all three cases lift reaches the maximum value 

at approximately t*=0.44 and drag reaches the maximum around t*=0.51. Note that there is a 

general trend for both lift and drag: as the pitch rate increases, so does the magnitudes of the forces.  

Most importantly, the results shown here are in very good agreement with the results in Polet et al 

(2015).  

To visualize the flow field in this study, we plot the vorticity and pressure contours, both of which 

are normalized properly. Unless specified otherwise, the vorticity is normalized by 𝑈0/𝑐, and the 

pressure is normalized by 𝜌𝑈0
2.  
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Figure 4: Lift and drag coefficients for three pitch rates.  Solid lines represent the current study, 

and dashed lines are the results from Polet et al (Polet et al., 2015) 

The vorticity fields are shown Figure 5 and Figure 6 that result from the perching maneuver for 

pitch rates ¼ and ½, which represent moderate and fast pitching, respectively.  The top panel of 

the figure is the results from Polet et al (2015), where the first row of plots is for experimental 

results and the second row is for the numerical simulations. It can be seen from these two figures 

that the current simulation results are in good agreement with those in the reference, including 

both numerical and experimental data.  In particular, the vortex structures in the current 

simulations, such as the leading edge and trailing edge vortices, have similar patterns as those 

simulated by Polet et al (2015), which are in turn consistent with experiment observation. The 

experiment was carried in a water tunnel and particle imaging velocimetry (PIV) was used to 

measure the flow field and derive vorticity. In addition to vortex patterns, the formation time and 

convection of the vortices from the airfoil, as measured by the distance between the vortices and 

the airfoil, are consistent between our results and those in the reference. It is also worth noting that 

for both pitch rates, the horizontal distance between the leading edge and trailing edge vortices is 

decreasing as the airfoil is increasing its angle of attack. 
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Figure 5: Vorticity field of perching motion with K =1/4 at 𝛼 = 17°, 73°, 87°, 90°.  Upper panel: 

results from Polet et al (2015); lower panel: present study. 

 

 

 

Figure 6: Vorticity field of perching motion with K =1/2 at 𝛼 = 17°, 73°, 87°, 90°. Upper panel: 

results from Polet et al (2015); lower panel: present study. 
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II.4 Validation study: case 2 

A second validation case was considered, where the airfoil performs either pitching or perching 

motion, and the case was numerically studied by Wang and Eldredge (2012) using a highly 

accurate viscous vortex particle method.  In this case study, the time-dependent angle of attack is 

given by: 

𝛼(𝑡) =

𝛼𝑜 log[
cosh (

𝑎𝑠𝑈0(𝑡−𝑡1)
𝑐 )

cosh (
𝑎𝑠𝑈0(𝑡−𝑡2)

𝑐
)
]-𝑎𝑠𝑈0(𝑡1−𝑡2) 

2𝑎𝑠𝑈0(𝑡2−𝑡1)/𝑐
    (5) 

Where the smoothing parameter 𝑎𝑠  controls the speed of the transitions between kinematic 

intervals, t1 and t2 are the start and stop instances for the pitch-up maneuver, and 𝛼𝑜  is the 

maximum angle and is set to be π/2. 

The Reynolds number, defined in the same way as before, is set at Re=1,000 for comparison 

purposes. Wang and Eldredge (2012) defines the nominal pitch rate, 𝛼𝑜̇ , by setting the value of a 

dimensionless pitch rate, k: 

𝑘 =
𝛼𝑜̇𝐶 

2𝑈0
      (5) 

Two different types of translational motion were considered; the first is pitching where U(t)= 𝑈0 

(i.e., constant speed) and the second case is perching which is defined by Granlund et al (2010), 

where the wing starts at an initial speed 𝑈0 and decelerates linearly until rest during the pitch-up 

maneuver.  For the both cases, the pitch axis is located at the leading edge. 

II.5 Results from validation case 2 

The lift and drag forces produced during the pitching maneuver are first compared and are shown 

in Figure 7. Two pitch rates are considered here, k=0.2 (slower pitching) and k=0.7 (faster 

pitching). As shown in the figure, the present results are overall consistent with those in the Wang 

and Eldredge (2012). For the slower pitch rate case, k=0.2, the matching is better as compared 

with that for the faster pitch rate, k=0.7. However, neither case agrees as strongly as in validation 

case study 1. This is likely because in case study 1, both our simulation and the reference study 

used the same NACA airfoil, while in the current case study, Wang and Eldredge (2012) used a 

flat plat with rounded leading and trailing edges and the plate thickness is 0.023c.  Such difference 

in the geometry of the airfoil likely have caused the discrepancy seen in the validation. 
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Figure 7: Comparison of lift and drag coefficients of a pitching wing at k=0.2 and k=0.7 

 

The vorticity fields at three distinct angles of attack, or time moments, during the pitching 

maneuver at k=0.2 are shown in Figure 8 By comparing the results obtained during this 

investigation (left column) with the results described in Want and Eldredge (2012), both 

experimentally and numerically (middle and right column), it can be seen that the flow fields of 

all three studies are very similar. A starting vortex at the trailing edge, or trailing-edge vortex 

(TEV) is generated first, and the leading-edge vortex (LEV) forms at a later time during the pitch-

up maneuver. The LEV remains close to low pressure side of the airfoil, while initial TEV is 

significantly further downstream. The distance between the LEV and TEV is measured for angle 

of attack at 53 and 90 deg., and the result appears to be in good agreement with that in the reference.  
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Figure 8: Flow field of pitching motion for k=0.2 at 𝛼 = 15°, 53°, 90°. The results in the middle 

and right columns are from Wang and Eldredge (2012) 

 

The flow field for the pitch rate of k=0.7 at angles of attack 33 and 90 deg are shown in Figure 9. 

It can be easily seen that the flow fields are very similar for this case as well. Looking at 𝛼 = 90 

deg, the flow separation on the suction side near the trailing edge is present in both studies, and 

both studies have a similar distance between the leading-edge and trailing-edge vortices. The main 

discrepancy between the two studies appears to be at 𝛼 = 33 deg, where the LEV from the present 

simulation is not completely formed or as distinct as it is in Wang and Eldredge (2012).  This 

difference is again likely due to the rounded edges and smaller thickness of the plate used in Wang 

et al. 
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Figure 9: Flow field of pitching motion for k=0.7 at 𝛼 = 33° and 90°. Top: present study; bottom: 

results from Wang and Eldredge (2012) 
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Figure 10: Force production comparison for k=0.2 and 0.7 for perching cases 

 

Next the perching maneuver study is examined. The lift and drag coefficients are shown in Figure 

10 for k=0.2 and 0.7. As in the pitching maneuver study, the agreement between our results and 

those from Wang and Eldredge (2012) is better for the slower pitch rate (k=0.2) than for the faster 

pitch rate (k=0.7).  Nevertheless, the agreement is generally acceptable. Due to differences in the 

airfoil geometry, result matching is not as strong as that in the validation case study 1. 

The flow field for these two cases is shown in Figure 11 and Figure 12.  In Figure 11 where k=0.2, 

the LEV remains close to the suction side, while the TEV is convected further downstream. The 

LEV travels slightly further downstream between 53 and 90 deg; this corresponds to the drop in 

lift that is produced when pitched at such extreme angles of attack. The LEV and TEV appear to 

be in good agreement for the current simulation and Wang and Eldredge (2012), particularly so 

when 𝛼° = 53 deg. 

Again, the agreement at k=0.7 between our study and Wang and Eldredge (2012) can be seen in 

Figure 12. It can be seen that the LEV is significantly closer to the suction side of the airfoil for 

k=0.7 as compared to when k=0.2 in the previous figure. This LEV proximity even at high angles 

of attack is what provides the necessary lift for the perching maneuver. The distance between the 

LEV and TEV is significantly smaller for this faster pitch rate.  
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 Figure 11: Flow field of perching motion for k=0.2 at 𝛼 = 15°, 53° and 90°. Left: present study; 

right: results from Wang and Eldredge (2012) 
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Figure 12: Flow field of perching motion for k=0.7 at 𝛼 = 33° and 90°. Top: present study; 

bottom: results from Wang and Eldredge (2012) 

To summarize this chapter, I have performed two validation studies for the present flapping wing 

model against previous numerical and experimental studies and have carefully examined the force 

production and flow field of both pitching maneuver and perching maneuver. The agreement with 

previous data is overall satisfactory. These successful validations show that my COMSOL model 

setup (including the use of the rotating framework and a non-inertial coordinate system), 

assumptions, and mesh design are all correct or appropriate.  Next, I will move forward to study 

details of unsteady fluid dynamics involved in pitching and perching maneuvers. 
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Chapter III   Unsteady aerodynamics of a pitching airfoil 

In this chapter, I will describe the results for an airfoil immersed in a uniform flow while 

performing the prescribed pitching motion. I will discuss the force production, pressure 

distribution, vorticity field, and their dependence on the pitch rate.  The model assumptions and 

simulation setup have been described in Chapter II.  For the current pitching airfoil, the freestream 

velocity is set to be constant. Simulation for a stationary airfoil at zero deg angle of attack was run 

first to achieve the steady state of the flow; then the airfoil performs the pitching motion as 

prescribed by the sinusoidal function in Eq. (3) at time t=0.  The pitch rate is set to be 1/2 (fastest), 

1/4, 1/8, and 1/64 (slowest). 

III.1 Force production 

The lift and drag generated by the NACA 0012 airfoil are shown below in Figure 13. It can be 

seen that as the pitch rate (K) increases, so do the peak lift and drag that are produced. Except for 

the case of slowest pitching at K=1/64, in the other cases, lift and drag generally first increase and 

then decrease. Note that neither the lift or drag peak at consistent times or angles across the 

different pitch rates, even though the angular velocity always has a maximum at 45 deg. The 

angular velocity as a function of angle of attack is shown in Figure 14. Looking at fastest pitching 

at K=1/2, the lift peaks at approximately 𝛼 = 38 deg while the drag doesn’t peak until 𝛼 = 60 deg.  

For K=1/4 and 1/8, the lift peak is slightly delayed to a great angle of attack; however, the drag 

peak is not consistently varying.  Specifically, the peak drag for K=1/4 is Cd = 5.11 at 𝛼 = 66 deg, 

and for K=1/8 is Cd = 3.61 at 𝛼 = 56 deg. The detailed statistics are tabulated in Table 1 for easy 

comparison. For K=1/64, lift and drag become highly oscillatory when 𝛼 is greater than 20 deg., 

which indicates that vortex shedding is happening, as in the case of a stationary airfoil at stall state.  

Comparing the different pitch rates, the Cl/Cd remains favorable until 𝛼 = 52, 50, 47 and 41 deg 

for pitch rates k= ½, ¼, 1/8 and 1/64, respectively.  That is, the pitch motion clearly has delayed 

stall and provided enhancement to the airfoil performance. 
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Figure 13: Lift (top) and drag (bottom) coeffcients as a function of angle of attack,𝛼, for K = 1/2, 

1/4, 1/8 and 1/64 

 

 

Figure 14: Specified angular velocity as a function of angle of attack for K = 1/2, 1/4, 1/8 and 

1/64. 
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Table 1: Detailed lift and drag statistics for the pitching airfoil (note that the spike in the drag 

history for the case of K=1/8 was ignored) 

 

The lift over drag ratio that was generated by the NACA 0012 airfoil is shown in Figure 15 . It can 

be seen that as the pitch rate K increases, so do the peak lift over drag ratios that are produced. As 

the pitch rate increases, the lift over drag peaks at a smaller α. Looking at fastest pitching at K=1/2, 

the lift over drag peaks at a Cl/Cd=10.01 at approximately 𝛼 = 2 deg. For K=1/4, 1/8, and 1/64, 

the lift over drag peaks are slightly delayed to larger angles of attack; the lift over drag ratios peak 

approximately 2 deg later between the pitch rates. Specifically, the peak lift over drag for K=1/4 

is Cl/Cd = 6.94 at 𝛼 = 4 deg, for K=1/8 is Cl/Cd = 5.44 at 𝛼 = 6 deg, and for K=1/64 is Cl/Cd = 

3.91 at 𝛼 = 8 deg. As the angle of attack increases, the different pitch rates converge and are nearly 

identical as early as 40 deg; the only exception to this is for the oscillatory behavior due to the 

vortex shedding that is present for K=1/64. 

 

 

 

Figure 15: Lift over drag ratio as a function of α 

 

K Avg Cl Avg Cd Avg Cl/Cd

 1/2 8.91 38.28 8.01 60.36 10.01 1.91 3.92 3.81 1.03

 1/4 4.97 40.51 5.11 66.38 6.94 4.38 1.99 2.36 0.84

 1/8 3.33 42.75 3.61 56.11 5.44 6.10 1.15 1.77 0.65

 1/64 2.36 53.38 3.46 68.73 3.91 8.18 0.67 1.68 0.40

Max Cl at α Max Cd at α Max Cl/Cd at α
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III.2 Flow field for pitch rate at K = 1/2 

Now I examine the details of the flow field for each pitch rate, by plotting the pressure, velocity 

vector, and vorticity fields. The case with K=1/2, i.e., the fastest pitch rate case, is discussed first. 

At this pitch rate, the airfoil would travel through a distance of two times chord length when it 

rotates from zero to 90 deg.  It can be seen in Figure 16, that the pitch motion, or increasing the 

angle of attack, creates large velocity and pressure gradients around the airfoil. Looking at the 

pressure contour plots superimposed with velocity vectors, the figure shows that as the angle of 

attack increases, the stagnation point is located on the lower side of the airfoil and initially closer 

to the leading edge. Then, the stagnation point moves further away from the leading edge toward 

the trailing edge. This occurs due to the angle of attack exposing more of the lower surface to the 

freestream flow, creating effectively a larger cross-sectional area. Additionally, as the angle of 

attack increases, the difference in flow speed between the upper (or dorsal) and lower (ventral) 

surfaces increases significantly. This difference in the flow speed leads to pressure difference and 

lift generation. Alternatively, it can be seen in Figure 16 that as the angle of attack increases, the 

pressure on the upper surface drops drastically while the pressure on the lower surface decreases 

(at a slower rate). Also, it should be noticed that the region of lowest pressure on the upper surface 

occurs near the leading edge, which will cause more lift to be produced by the leading half of the 

airfoil than the trailing half. At α=54 and 77 deg., the low pressure zone above the airfoil is clearly 

more contracting toward the leading edge. On the other hand, separated low pressure regions have 

been developed in the wake away from the trailing edge.  As shown later, such isolated low 

pressure zones correspond to vortices in the wake. Another observation is that the trailing edge 

stagnation point is not exactly located at the trailing edge for all four angles of attack shown, thus 

violating the steady Kutta condition that is in attached flow assumed by traditional aerodynamic 

theory. This Kutta condition break is consistent with what has been discussed previously by  Polet 

(2015). 
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Figure 16: Pressure contour plot with velocity vectors for K= 1/2 at α= 25 (top left), 36 (top 

right), 54 (bottom left),  and 77 (bottom right) deg. 

The surface plots of the vorticity field around the airfoil are shown in Figure 17.  The vorticity plot 

shows that initially the anticlockwise (red or positive) vorticity is along the entire ventral  side as 

a shear layer and as the angle of attack increases, the anticlockwise shear layer moves further from 

the trailing edge and extends out further away from the airfoil. On the dorsal side, a negative (blue) 

shear layer is developed and is initially stably attached to the wing surface. Note that maximum 

lift occurs at α= 38 deg. At approximately 54 deg, separation of the shear layer on the dorsal side 

becomes visible and a clockwise leading vortex starts to be formed. As the angle of attack further 

increases, both the leading and trailing edge vortices grow in size while the leading edge vortex 

remains closer to the airfoil and has a larger velocity gradient than the trailing edge anticlockwise 

vortex. Flow separation is considered to be minimal for this rapid pitch-up maneuver.  
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Figure 17: Vorticity contour plot with velocity vectors for K= 1/2 at α= 25 (top left), 36(top 

right), 54 (bottom left),  and 77 (bottom right) deg. 

 

III.3 Flow field for pitch rate at K = 1/4 

The pressure field arising for a pitch-up maneuver at a rate K= 1/4 is shown in Figure 18. At this 

pitch rate, the airfoil would travel through a distance of four times chord length when it rotates 

from zero to 90 deg. When comparing with the previous case of K=1/2, it can be seen that K=1/4 

has similar pressure behavior in general, that is, a large low pressure zone on the dorsal side and a 

large high pressure zone on the ventral side. In addition, the low pressure zone corresponds to the 

leading-edge vortex being formed above the airfoil, and its shape evolves as the angle of attack 

increases.  However, the difference between K=1/4 and K=1/2 cases is also evident.  In particular, 

K=1/4 has more flow separation along the dorsal side of the airfoil at the same time moment. 

K=1/4 also produces less pressure difference between the dorsal and ventral sides; therefore, 

K=1/4 produces less lift than the previous case. Maximum lift occurs approximately at α=41 deg. 

and has much more flow separation at this maximum lift moment than that of K=1/2 in Figure 16 

at its corresponding maximum lift.  
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Figure 18: Pressure contour plot superimposed with velocity vectors for K= 1/4 at α= 25 (top 

left), 41 (top right), 50 (bottom left),  and 77 (bottom right) deg. 

 

When comparing the vorticity field of K=1/4 shown in Figure 19 with that of K=1/2 in Figure 17, 

the leading-edge vortex that forms with K=1/4 is larger in size, has less of a velocity gradient 

surrounding it, and is located further away from the airfoil. The trailing-edge vortex never seems 

to form as distinctly as it does for the faster pitch rate. Flow separation, as indicated by the 

vorticity, has increased and is easily visible at α=50 deg. 
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Figure 19: Vorticity contour plot superimposed with velocity vectors for K= 1/4 at α= 25 (top 

left), 41 (top right), 50 (bottom left),  and 77 (bottom right) deg. 

 

III.4 Flow field for pitch rate at K = 1/8 

At this pitch rate, the airfoil would travel through a distance of eight times chord length when it 

rotates from zero to 90 deg. The pressure contour plots are illustrated in Figure 20. It can be seen 

that pressure difference between the two sides is again less than both of the previous pitch rates. 

Flow separation as indicated by the velocity field is actually visible as early as α=25 deg., and 

maximum lift occurs at α=43 deg. with significant flow separation along the leading edge of the 

airfoil.   

When comparing the vorticity plot in Figure 21 with the previous two cases, a few noteworthy 

differences can be seen. Maximum lift occurs at 43 deg; two clockwise roll-up vortices are shown 

on the dorsal side, one near the leading edge and the other closer to the trailing edge; yet there isn’t 

a clearly defined anticlockwise vortex until α=70 deg. At 70 deg., one large clockwise vortex is 

shown just behind the leading edge, and two to three much smaller anticlockwise vortices are 

downstream of the trailing edge. 
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Figure 20: Pressure contour plot with velocity vector for K= 1/8 at α= 25 (top left), 36 (top 

right), 43 (bottom left),  and 70 (bottom right) deg. 
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Figure 21: Vorticity contour plot with velocity vectors for K= 1/8 at α= 25 (top left), 36 (top 

right), 43 (bottom left),  and 70 (bottom right) deg. 

III.5 Flow field for pitch rate at K = 1/64 

At this pitch rate, the airfoil would travel through a distance of 64 times of the chord length when 

it rotates from zero to 90 deg. The pressure field for this slowest pitch rate is shown below in 

Figure 22. Since the pitch rate is K=1/64, this should not be considered as a rapid pitch-up mauever 

and thefore will have significantly less rotational effects. As one might expect given the trend in 

the three previous pitch rates, flow separation is significantly worse than any of the previous cases, 

and the pressure difference between the two sides of the airfoil is even less. It’s interesting to note 

that this was the only pressure field that resulted in two large low pressure zones downstream of 

the airfoil. In comparison, the previous pitch rates have only one large low pressure area. 

 

 

Figure 22: Pressure contour plot with velocity vector for K= 1/64 at α= 15 (top left), 20 (top 

right), 42 (bottom left),  and 71 (bottom right) deg. 

As mentioned earlier, the pitch rate is significantly slower than the previous cases and will have 

much lower inertial effects (in terms of flow attachment). Figure 23 shows that flow starts to 

separate from the dorsal surface as early as α=15 deg. Furthermore, this figure uniquely shows that 

the clockwise vortex that initially forms is located closer to the trailing edge than the leading edge. 

As the angle of attack increases, the clockwise vortex moves closer towards the leading edge of 

the airfoil. A single large anticlockwise vortex initially forms close to the tailing edge, but as the 

angle of attack increases, this positive vortex moves further downstream and pinches off from the 

trailing edge of the airfoil.  Overall, the flow behaves like the unsteady flow would in the case of 

a stationary airfoil at the same angle of attack. 
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Figure 23: Vorticity contour plot with velocity vectors for K= 1/64 at α= 15 (top left), 20 (top 

right), 42 (bottom left),  and 71 (bottom right) deg. 

 

III.6 Discussion and conclusions 

The study of the pitching wing has led to the following observations and conclusions.   

First, the pitching rotation has very high impact on the temporary force production of the wing.  

From the four cases presented in this chapter, the peak lift increases by nearly four times as the 

pitch rate increases from K=1/64 to 1/2.  Meanwhile, drag increase is also great (more than twice) 

when K increases from 1/64 to 1/2.  These force spikes would be very useful for birds to perform 

highly controlled maneuvers.  In particular, the high lift would allow a bird to maintain lift without 

significant stall while slowing down, and the high drag would help the bird to reduce its speed to 

come to stop.  

Second, the pitching rotation enhances the force production of the wing by delaying boundary 

layer separation to a much higher angle of attack. From the present study, it is clear the faster the 

wings pitch, the more likely the boundary layer stays attached to the dorsal surface of the wing. 

Thus, the rapid pitching motion leads to an “inertial effect” of boundary layer stability and flow 

attachment.  Leading edge vortex could be formed during the pitching process and also tends to 

remain attached to the wing if the pitch  rate is fast enough. 

Third, the leading-edge vortex formation corresponds to reattachment of the boundary layer, and 

the reattachment point moves toward the leading edge as the LEV evolves.  
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Fourth, the boundary layer separation, LEV formation, reattachment, and force production all seem 

to be nonlinear function of the pitch rate and instantaneous angle of attack and do not appear to be 

straightforward to describe using simple quantitative relationships.  
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Chapter IV   Unsteady aerodynamics of a perching airfoil 

In this chapter, I will describe the results for an airfoil immersed in a uniform flow while 

performing the prescribed perching motion. That is, while it performs the pitch-up rotation, the 

wing also comes to stop with respect to the ambient air. I will discuss the force production, pressure 

distribution, vorticity field, and their dependence on pitch rate. The model setup, including the 

prescribed pitch rotation and linear translational velocity, computational domain, and mesh design, 

has been described in detail in Chapter II.  The wing kinematics is the same as that in the validation 

case 1.  In the present chapter, I use pitch rates at K=1/2, 1/4, 1/8, and 1/64 to perform a systematic 

study.  

IV.1 Force production 

The lift and drag forces are normalized in the same way as in previous chapters; that is, the initial 

translational velocity is used to define the lift and drag coefficients, despite that the airfoil 

translation is time-dependent in the perch maneuver.  Before the perch maneuver starts, simulation 

has been performed to establish the initial flow field for the stationary airfoil at zero angle of attack. 

The lift and drag forces generated by the NACA 0012 airfoil are shown below in Figure 24, it can 

be seen that as the pitch rate increases, so does the lift and drag that is produced. Comparing lift 

production with that in the previous chapter for pitching-only cases, the lift and drag forces are 

much lower for the present perching cases.  This effect is understandable, as the freestream 

velocity, or the equivalent flight speed of the wing, is being reduced linearly as the angle of attack 

increases from zero to 90 deg.  Nevertheless, despite the rapid flight speed drop, the force increase 

due to the pitching rotation is still quite impressive.  As seen from this figure, the maximum lift at 

the fastest pitching, K=1/2, is nearly 10 times of that at the slowest pitching, K=1/64.  Meanwhile, 

the maximum drag is also increased by 6 times, from Cd=0.5 to Cd=3.3. For a detailed comparison 

of these cases, I have tabulated the statistical data in Table 2. 

In all cases, lift and drag have a similar trend: first increase and then decrease.  However, the 

detailed force history has significant differences among these cases. Looking at the case of K=1/2, 

the lift peaks at approximately α=28 deg., while the drag doesn’t peak until α=45 deg. As the pitch 

rate is decreased, maximum lift is delayed to a larger angle of attack, while maximum drag is 

slightly brought forward to a smaller angle of attack. 

Comparing the different pitch rates, the Cl/Cd remains favorable until α= 53, 54, 51 and 47 deg. 

for pitch rates k= 1/2, 1/4, 1/8 and1/64, respectively. It is worth noting that like the pitching-only 

cases, neither the lift or drag peak at consistent times or angles across the different pitch rates, even 

though the prescribed angular velocity always has a maximum at α=45 deg. Figure 25 shows the 

angular velocity as a function of angle of attack. 



 34 

 

 

Figure 24: Lift (top) and drag (bottom) coeffcients as a function of angle of attack for K = 1/2, 

1/4, 1/8 and 1/64. 
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Figure 25: Prescribed angular velocity as a function of angle of attack for K = 1/2, 1/4, 1/8 and 

1/64. 

 

 

 

Table 2: Detailed lift and drag statistics for the perching airfoil 

 

The lift over drag ratio that was generated by the NACA 0012 airfoil is shown in Figure 26. As 

with pitching, the perching can be seen that as the pitch rate K increases, so do the peak lift over 

drag ratios that are produced at low angles of attack. As the pitch rate increases, the lift over drag 

peaks at a smaller α. Looking at fastest pitching at K=1/2, the lift over drag peaks at a Cl/Cd=17.46 

at approximately 𝛼 = 1 deg. For K=1/4, 1/8, and 1/64, the lift over drag peaks are slightly delayed 

to larger angles of attack. Specifically, the peak lift over drag for K=1/4 is Cl/Cd = 8.25 at 𝛼 = 3 

deg, for K=1/8 is Cl/Cd = 5.44 at 𝛼 = 6 deg, and for K=1/64 is Cl/Cd = 3.71 at 𝛼 = 8 deg. As the 

angle of attack increases, the different pitch rates converge and are nearly identical as early as 40 

deg. Note that when finding the maximum Cl/Cd and discussing the trends, the oscillations at large 

angles of attack, 𝛼>75 deg, were ignored. At those angles of attack, the airfoil becomes nearly 

vertical.  However, as it is slowing down, the fluid tracing the airfoil tends to maintain its 

momentum and thus pushes the airfoil from the dorsal side, leading to near zero or even negative 

drag seen in Figure 24.  Corresponding, Cl/Cd could become very high, which is not very 

meaningful.  

K Avg Cl Avg Cd Avg Cl/Cd

 1/2 5.04 27.58 3.26 45.00 17.46 1.12 1.96 0.83 2.35

 1/4 2.14 29.64 1.42 47.25 8.25 2.99 0.82 0.40 2.08

 1/8 1.18 33.89 0.84 48.37 5.44 5.64 0.43 0.23 1.87

 1/64 0.66 42.19 0.60 45.00 3.71 9.65 0.18 0.21 0.84

Max Cl at α Max Cd at α Max Cl/Cd at α
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Figure 26: Lift over drag ratio as a function of angle of attack 

 

IV.2 Flow field for pitch rate at K = 1/2 

First, the fastest perching case with K=1/2 is examined. It can be seen in Figure 27 that increasing 

the angle of attack creates large velocity and pressure gradients around the airfoil. Looking at the 

pressure contour plots with velocity arrows, the figure shows that as the angle of attack increases, 

the stagnation point is initially located on the ventral side of the airfoil closer to the leading edge, 

and then the stagnation point moves toward to the trailing edge of the airfoil. This occurs due to 

the angle of attack exposing more of the ventral surface to the freestream flow and creating a larger 

cross-sectional area. Additionally, as the angle of attack increases the difference in flow speed 

between the distal and proximal surfaces increases significantly, this difference in velocity is what 

generates lift. Alternatively, Figure 27 shows that as the angle of attack increases, the pressure on 

the upper surface drops drastically while the pressure on the lower surface decreases (at a slower 

rate). The region of lowest pressure on the upper surface occurs near the leading edge, which will 

cause more lift to be produced by the leading half of the airfoil than the trailing half. At α=54 and 

77 deg, low pressure vorticities are clearly present at the leading edge distal side. Note that the 

trailing edge stagnation point is not located at the trailing edge for all four angles of attack shown, 

thus violating the steady Kutta condition. This Kutta condition break is consistent with what has 

been discussed in Polet (2015). Comparing this perching rate with the corresponding pitching rate 

in Figure 16, it can be seen that the primary distinction between the two figures is that the pitching 
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case experienced a greater pressure differential between the dorsal and ventral sides of the airfoil 

and therefore the pitching case exhibits a stronger velocity gradient. The trailing edge vortex on 

the perching case remains closer to the airfoil at similar α’s when compared with the pitching case.  

 

 

Figure 27: Pressure contour plot superimposed with velocity vectors for K= 1/2 at α= 16 (top 

left), 28 (top right), 54 (bottom left),  and 77 (bottom right) deg. 

The surface plots of the vorticity field around the airfoil is shown in Figure 28.  The vorticity plot 

shows that initially the anticlockwise (red or positive) vorticity is along the entire ventral side as a 

shear layer and as the angle of attack increases, the anticlockwise shear layer moves further from 

the trailing edge and extends out further away from the airfoil. On the dorsal side, a clockwise 

(blue or negative) shear layer is developed and is initially stably attached to the wing surface. The 

maximum lift occurs at 28 deg. At approximately 54 deg separation of the shear layer on the dorsal 

side becomes visible and the clockwise leading vortex begins to take shape. As the angle of attack 

increases, both the leading and trailing edge vortices grow in size while the leading edge clockwise 

vortex remains closer to the airfoil and has a larger velocity gradient than the trailing edge 

anticlockwise vortex. Flow separation is considered to be minimal for this rapid perching 

maneuver. Comparing similar α’s with the pitching case in Figure 17, the perching case not only 

shows a difference in the trailing edge vortex location but it shows a distinct difference in the shear 

layer on the dorsal side. For the perching case, the shear layer becomes detached midway along 

the airfoil where the shear layer remained along the airfoil for the pitching case for the entire pitch 

up maneuver.  
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Figure 28: Vorticity surface plot with velocity vectors for K=1/2 at α= 16 (top left), 28 (top 

right), 54(bottom left),  and 77 (bottom right) deg 

IV.3 Flow field for pitch rate at K = 1/4 

The pressure field arising from a perching maneuver at a rate K=1/4 is shown in Figure 29. When 

comparing with the previous perching case of K=1/2, it can be seen that K=1/4 has similar pressure 

behavior in general, that is, a large low pressure zone on the dorsal side and a large high pressure 

zone on the ventral side. In addition, the low pressure zone corresponds to the leading-edge vortex 

being formed above the airfoil, and its shape evolves as the angle of attack increases.  However, 

the difference between K=1/4 and K=1/2 cases is also evident.  In particular, K=1/4 has more flow 

separation along the dorsal side of the airfoil at the same time moment. K=1/4 also produces less 

pressure difference between the dorsal and ventral sides; therefore, K=1/4 produces less lift than 

the previous case. Maximum lift occurs approximately at α=30 deg. and has much more flow 

separation at this maximum lift moment than that of K=1/2 in Figure 27 at its corresponding 

maximum lift. Another observation is that the trailing edge stagnation point is not exactly located 

at the trailing edge for all four angles of attack shown, thus violating the steady Kutta condition 

that is in attached flow assumed by traditional aerodynamic theory. Comparing this perching rate 

of K=1/4 with the corresponding pitching rate in Figure 18, it can be seen that the primary 

distinction between the two figures is that the pitching case experienced a significantly larger 

pressure differential between the dorsal and ventral sides of the airfoil and therefore the pitching 

case exhibits a corresponding stronger velocity gradient.  

 

 



 39 

 

 

Figure 29: Pressure surface plot with velocity vectors for K=1/4 at α= 18 (top left), 30 (top 

right), 50 (bottom left),  and 77 (bottom right) deg 

When comparing the vorticity field in Figure 30 with Figure 28, the leading edge vortex that forms 

is larger in size, has less of a velocity gradient surrounding it and is located further away from the 

distal side of the airfoil. For this case, the trailing edge vortex has several smaller components 

compared to the faster pitch rate that produced one large vortex. Flow separation has increased 

and is easily visible at 50 deg. Comparing similar α’s with the pitching case in Figure 19, several 

distinct differences can be observed. First, in the perching case, the shear layer on the dorsal side 

starts to detach from the airfoil surface at a lower angle of attack, and its leading edge vortex has 

slower development than in the pitching case. In addition, the trailing edge vortex tends to break 

up in the perching case, rather than forming a continuous sheet in the pitching case. These vortex 

behaviors appear to be related to the freestream flow speed that is slowing down in the perching 

case.  This result suggests that in the perching case, the boundary layer has less inertia and is more 

prone to separation than in the pitching case.   
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Figure 30: Vorticity surface plot with velocity vectors for K=1/4 at α= 18 (top left), 30 (top 

right), 50 (bottom left),  and 77 (bottom right) deg 

 

IV.4 Flow field for pitch rate at K = 1/8 

The pressure field resulting from a perching maneuver at a rate K=1/8 is shown in Figure 31. When 

comparing with the previous faster perching cases (K=1/2 and 1/4), it can be seen that K=1/8 has 

similar pressure behavior in general, that is, a large low pressure zone on the dorsal side and a 

large high pressure zone on the ventral side. In addition, the low pressure zone corresponds to the 

leading-edge vortex being formed above the airfoil, and its shape evolves as the angle of attack 

increases.  However, the key difference between K=1/8 and the faster perching cases is that K=1/8 

has more flow separation along the dorsal side of the airfoil at the same time moment. Another 

observation is that the leading edge stagnation point is not exactly located at the leading edge for 

all four angles of attack shown, thus violating the steady Kutta condition that is in attached flow 

assumed by traditional aerodynamic theory. K=1/8 also produces less pressure difference between 

the dorsal and ventral sides; therefore, K=1/8 produces less lift than the previous cases. Maximum 

lift occurs approximately at α=34 deg. and has much more flow separation at this maximum lift 

moment than the faster perching cases at its corresponding maximum lift. Comparing this perching 

rate of K=1/8 with the corresponding pitching rate in Figure 20, it can be seen that the primary 

distinction between the two figures is that the pitching case experienced a significantly larger 

pressure differential between the dorsal and ventral sides of the airfoil and therefore the pitching 

case exhibits a corresponding stronger velocity gradient.  
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Figure 31: Pressure surface plot with velocity vectors for K=1/8 at α= 25 (top left), 34 (top 

right), 43(bottom left),  and 70 (bottom right) deg 

 

When comparing the vorticity field in Figure 32 with Figure 28 and Figure 30 , the leading edge 

vortex that forms is larger in size, has less of a velocity gradient surrounding it and is located 

further away from the distal side of the airfoil. For this case, the trailing edge vortex has several 

smaller components compared to the faster pitch rates. Flow separation has increased and is easily 

visible at 43 deg. At 70 deg, one large clockwise vortex is shown just behind the leading edge and 

three smaller anticlockwise vortices are located farther downstream of the trailing edge. 

Comparing similar α’s with the pitching case in Figure 21, several distinct differences can be 

observed.  Again, the boundary layer in the perching case tends to separate earlier than in the 

pitching case, and the leading edge vortex has much less development at similar angle of attack.  

The corresponding pitching case shows two clearly identifiable clockwise vortices present at 43 

deg, a single clockwise vortex is located at each of the two ends of the airfoil. The perching case 

shows this similar second clockwise vortex but it isn’t as cleanly defined. In addition, the trailing 

edge vortex has shorter extension and is less stable in the perching case.  
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Figure 32: Vorticity surface plot with velocity vectors for K=1/8 at α= 25 (top left), 34 (top 

right), 43(bottom left),  and 70 (bottom right) deg 

 

IV.5 Flow field for pitch rate at K = 1/64 

The pressure field for the slowest perching maneuver is shown in Figure 33. A perching maneuver 

at a rate K=1/64 shouldn’t be considered a rapid pitch-up maneuver and therefore will have 

significantly less inertial effects. As one might expect, the dorsal side flow separation is 

significantly worse than any of the previous cases examined and occurs at a smaller α. The pressure 

differential between the dorsal and ventral sides of the airfoil is less than any of the other cases 

examined which results in the least amount of lift generated. A low pressure region is located near 

the trailing edge of the airfoil as early as 20 deg. Maximum lift occurs approximately at α=42 deg. 

When comparing this with the corresponding pitching case in Figure 22, the perching case again 

shows less of a pressure differential that was present during the pitching case.  
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Figure 33: Pressure surface plot with velocity vectors for K=1/64 at α= 15 (top left), 20 (top 

right), 42 (bottom left),  and 71 (bottom right) deg 

 

As mentioned earlier, the pitch rate is significantly slower than the previous cases and will have 

much lower inertial effects. Figure 34 shows that the clockwise vortex that initially forms is located 

closer to the trailing edge; whereas the previous perching cases showed the clockwise vortex 

forming at the leading edge. As α increases, the clockwise vortex moves closer towards the leading 

edge of the airfoil. A single large anticlockwise vortex initially forms close to the tailing edge, but 

as α increases the vortex moves further downstream away from the trailing edge of the airfoil. The 

shear layer detaches closer to the leading edge of the airfoil when compared with the previous 

perching cases. Comparing these results with the pitching case in Figure 23, both the leading shear 

layer and the trailing edge shear layer are much weaker in the perching case, so are the vortices in 

the wake.  
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Figure 34: Vorticity surface plot with velocity vectors for K=1/64 at α= 15 (top left), 20 (top 

right), 42 (bottom left),  and 71 (bottom right) deg 

 

IV.6 Discussions and conclusions 

The study of the perching wing has led to the following observations and conclusions.   

First, like in the pitching maneuver, the pitch-up rotation in the perching maneuver also has very 

high impact on the temporary force production of the wing.  The force enhancement by fast 

perching is very impressive, even though the overall force production of wing is much lower as 

compared with pitching maneuver where the flight speed remains constant. From the four cases 

presented in this chapter, the peak lift increases by nearly eight times as the pitch rate increases 

from K=1/64 to 1/2.  Meanwhile, drag increase is also great (more than five times) when K 

increases from 1/64 to 1/2.  Therefore, the force enhancement from slow perching to fast perching 

is even greater than in the corresponding cases in pitching maneuver. These force spikes would be 

very useful for birds to perform highly controlled maneuvers and in fact might be critical for birds 

during perching maneuver where the slow flight speed alone is likely not sufficient to provide 

enough lift or drag. The present study thus confirms the significant role of pitch rotation in 

aerodynamics of perching maneuver. 

Second, like in the pitching maneuver, the pitch-up rotation enhances force production of the wing 

by delaying boundary layer separation to a much higher angle of attack. From the present study, it 

is clear the faster the wings pitch, the more likely the boundary layer stays attached to the dorsal 

surface of the wing. Thus, the rapid pitching motion also leads to an “inertial effect” of boundary 

layer stability and flow attachment in the current situation, where the relative speed of air with 

respect to the wing drops quickly. Like the pitching wing, a leading edge vortex could be formed 
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during the pitching process and also tends to remain attached to the wing if the pitching rate is fast 

enough.  Compared with the pitching wing, the inertial effect of the boundary layer and leading 

edge vortex are not as strong in the perching case.  However, they still correlate strong with the 

force enhancement introduced by the wing rotation. 

Finally, the boundary layer separation, LEV formation, reattachment, and force production all 

seem to be nonlinear function of the pitch rate and instantaneous angle of attack and do not appear 

to be straightforward to describe using simple quantitative relationship.  
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Chapter V Conclusions and future study 

In this work the force production, pressure distribution, and vorticity field were investigated in a 

controlled pitch-up maneuver. For simplicity, NACA 0012 airfoil was utilized, and a variety of 

pitch rates ranging from 1/64 to 1/2 were used to accurately describe force production in relation 

with the wing velocity, acceleration, rotational velocity, and rotational acceleration. This work 

investigated how the wing-pitching affects the force production, boundary layer detachment, and 

vortex formation in the flow.  

Two validation cases were carried out to verify this study’s model setup and assess the accuracy 

of COMOSL’s simulation. In the first validation study, the perching maneuver kinematics 

specified by Polet et al (Polet et al., 2015) were compared. The simulated vorticity fields presented 

in this study agrees with the simulated vorticity fields and the particle image velocimetry 

measurements that Polet et al (Polet et al., 2015) acquired.  These results demonstrated the same 

wake features, vorticity magnitudes, and force production which builds confidence in this study.  

A second validation case was considered, where two different types of translational motion were 

considered, first pitching where U(t)=  𝑈0  (i.e., constant speed) and the second case, perching 

which is defined by Granlund et al (2010), where the wing decelerates linearly until rest during 

the pitch-up maneuver. The case was numerically studied by Wang and Eldredge (2012) using a 

highly accurate viscous vortex particle method. The simulated vorticity fields, force production, 

and wake features presented in this study are consistent with those in the Wang and Eldredge 

(2012) which further establishes confidence in this study. The pitching wing showed that the 

pitching rotation significantly impacts the temporary force production of the wing. As the pitch 

rate increases from 1/64 to 1/2, the peak lift and drag increase by nearly four and more than two 

times respectievely. For all four pitch rates examined, the lift peaks considerably sooner during 

the pitch-up maneuver than the drag force. In addition, the pitching rotation augments the force 

production of the wing by delaying the boundary layer separation to a higher angle of attack. As 

the pitch rate increases, the boundary layer is more likely to stay attached to the dorsal surface of 

the wing for a longer duration of the pitch-up manuever. This rapid pitching motion results in an 

“inertial effect” of boundary layer stability and flow attachment. The leading-edge vortex 

formation corresponds to the reattachment of the boundary layer, and the reattachment point moves 

closer towards the leading edge of the wing as the LEV evolves throughout this pitch-up manuever. 

The force spikes, delayed boundary layer separation and LEV would be very useful for birds 

performing highly controlled manuevers such as landing on a narrow platform in tight corridors. 

The high lift would allow a bird to maintain lift, the delayed boundary layer separation would 

prevent the bird from stalling while slowing down, and the high drag would help the bird to reduce 

its speed when coming to a stop. 

Similarly to the pitching wing, the perching wing’s pitch-up rotation substantially influences the 

temporary force production of the wing. The fast perching force enhancement is considered 

signifcant, even though the overall force production of the wing is much lower than force 

production during the pitching maneuver where the flight speed remains constant. As the pitch rate 

increases from 1/64 to 1/2, the peak lift and drag increase by nearly eight and more than five times 

respectievely.Therefore, the force enhancement from slow perching to fast perching is even greater 



 47 

than in the correspoinding cases in pitching maneuver. The force spikes would be very useful for 

birds to perform highly controlled maneuvers and in fact might be critical for birds during perching 

maneuver where the slow flight speed alone is likely not sufficient to provide enough lift or drag. 

The present study thus confirms the significant role of pitch rotation in aerodynamics of perching 

maneuver. Again, as the pitching rotation increases,  the force production of the wing increases by 

delaying the boundary layer separation to a higher angle of attack. This rapid pitching motion 

results in an “inertial effect” of boundary layer stability and flow attachment. The leading-edge 

vortex formation corresponds to the reattachment of the boundary layer, and the reattachment point 

moves closer towards the leading edge of the wing as the LEV evolves throughout this pitch-up 

manuever. The inertial effect of the boundary layer and leading edge vortex  presented in this stufy 

for perching were not as strong as for the pitching case.  However, they still correlate strong with 

the force enhancement introduced by the wing rotation.The force spikes, delayed boundary layer 

separation and LEV would be essential for birds attempting the perching maneuver.  

Both the pitching and perching cases showed that the boundary layer separation, LEV formation, 

reattachment, and force production all seem to be nonlinear functions of the pitch rate and 

instantaneous angle of attack and do not appear to be straightforward to describe using simple 

quantitative relationship. 

For the future study, one possible extension of the current study is to investigate the corresponding 

three-dimensional situations.  For that purpose, either a translating or pitching airfoil with a finite 

aspect ratio, or a revolving-pitching wing with non-uniform wing velocity along the span, could 

be considered.  It would be interesting to see how the pitching motion enhances the shear layer 

attachment and leading edge vortex stability in the three-dimensional context.     
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