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CHAPTER 1

Introduction

1.1 Overview and Motivation

Bed load sediment transport in turbulent shear flows is a topic with broad implications

for problems in ecology, river geomorphology, and river engineering. Sediment transport is

an essential component of bed form development and, more generally, river morphodynam-

ics. Despite the importance of this topic, we do not fully understand how sediment moves.

Bed load sediment transported within a turbulent shear flow experiences complex motions

in response to forces associated with near-bed fluid motions, particle-particle interactions,

and particle-bed interactions. These particles move in a combination of rolling, sliding, and

low saltating motions. Given the complexity of coupled particle-fluid physics contributing

to sediment transport, there is value in gaining a clearer understanding of sediment mo-

tions at the grain scale in relation to near-bed turbulence. Many current descriptions of bed

load sediment transport largely involve semi-empirical formulations that attempt to relate

sediment motions to macroscopic quantities such as the bed stress (e.g., Stelczer, 1981;

Seminara et al., 2002; Parker et al., 2000a; Lajeunesse et al., 2010). Numerous formu-

lae of this type are available, but typically involve large uncertainties. These formulations

tend to perform well only under controlled laboratory conditions and are difficult to apply

to field conditions (e.g., Wilcock, 2001; Frey and Church, 2009). We turn to probabilistic

descriptions of sediment transport as an alternative to current methods, with the aim of

gaining a clearer understanding of the statistically expected particle behavior.

Bed load transport is inherently a stochastic process (Paintal, 1971; Nikora et al., 2002;

Furbish et al., 2012a), which merits probabilistic descriptions of sediment motions. We

cannot predict the motion of an individual particle, but we can expect to gain a clearer

understanding of statistically expected particle behavior based on high-resolution experi-
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mental measurements. We build on ideas first presented by Einstein (1937, 1942, 1950),

wherein we adopt concepts and language from probability to describe bed load particle

motions and transport. Indeed, there has been a recent, renewed interest in probabilistic de-

scriptions of bed load particle motions pertaining to the ingredients of the particle flux (e.g.,

Parker et al., 2000b; Ancey, 2010; Furbish et al., 2012a,b; Furbish and Schmeeckle, 2013;

Ancey and Heyman, 2014; Armanini et al., 2014; Heyman et al., 2014) as well as the behav-

ior of tracer particles (e.g., Nikora et al., 2002; Schumer et al., 2009; Foufoula-Georgiou

and Stark, 2010; Bradley and Tucker, 2010; Ganti et al., 2010; Voller and Paola, 2010; Hill

et al., 2010; Ball, 2012; Martin et al., 2014; Lajeunesse et al., 2013; Hassan et al., 2013;

Pelosi et al., 2014; Martin et al., 2014). This renewed interest by the scientific community

in recent years has been combined with advances in laboratory measurement techniques.

Namely, the use of high-speed videos of particle motions has allowed for increased resolu-

tion in the measurement of sediment particle motions (Lajeunesse et al., 2010; Roseberry

et al., 2012; Martin et al., 2012; Radice et al., 2013; Campagnol et al., 2013; Heyman

et al., 2014; Ancey and Heyman, 2014). These data allow for an improved understanding

of bed load sediment motions and transport. However, even with advances in imaging, we

still lack macroscopic descriptions of sediment transport that are consistent with features of

particle scale motions. Probabilistic theories are emerging, but these need to be supported

by detailed observations.

Of particular interest to us is the possibility of integrating certain concepts from clas-

sical statistical mechanics into probabilistic descriptions of bed load particle motions and

transport. I will use data sets from experiments, which are incomparable in terms of pre-

cision, resolution, and the total number of observations of particle motions, to support this

probabilistic approach. Herein, I build on the work of Ancey et al. (2006), Ancey and Hey-

man (2014), Furbish et al. (2012a,b), and Furbish and Schmeeckle (2013), wherein the

authors provide a foundation to apply ideas from statistical mechanics to describe sedi-

ment behavior, where the details of sediment motions are revealed by high speed imagery.
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Within this context, the work acts as a step to better define the probabilistic behavior of sed-

iment transport, and thereby contributes to a broader theory to describe expected particle

behaviors for specific bed and flow conditions.

1.2 Structure of Dissertation

The chapters of this dissertation are written as standalone manuscripts, with the ex-

ception of this chapter (Chapter 1), which serves as an introduction, and the final chapter

(Chapter 5), which provides a summary of the findings within this dissertation and offers

ideas for future work. The manuscript-style chapters (2 through 4) address three primary

aspects of bed load sediment transport. (1) We characterize the underlying ensemble dis-

tributions of key measures of particle motions (particle velocities, accelerations, hop dis-

tances, and travel times) from measurements obtained from high speed imagery, in order

to better inform the stochastic process of bed load sediment transport. (2) We then work to

reinforce and elaborate key elements of previous results reported by Furbish et al. (2012c)

and Furbish et al. (2012b). Specifically, we apply several methods to determine the nature

of bed load particle diffusion using sizable data sets. (3) Finally, we analyze patterns and

controls on sediment entrainment and disentrainment. Here we focus on sediment entrain-

ment and disentrainment in relation to near-bed fluid velocity measurements. Throughout

this dissertation, I use a probabilistic approach to describe the processes that control sedi-

ment motions, the entrainment and disentrainment of sediment particles, and the associated

patterns of particle motions in relation to turbulence structures. Specific objectives and

findings from Chapters 2 through Chapter 4 are described below.

Chapter 2 presents the work reported in Fathel et al. (2015), which uses a high-resolution

data set of particle motions to define the forms and qualities of the ensemble distributions

of particle velocities, accelerations, hop distances and travel times. The size and resolution

of the data sets presented in this chapter allow us to confidently describe the forms and

qualities of the ensemble distributions of these particle motions under specific experimen-
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tal conditions. The autocorrelation functions of frame-averaged values (and the decay of

these functions) support the idea that the forms of these distributions become time-invariant

within the five second imaging interval. Additionally, we consider the effects of experimen-

tal censorship associated with a finite sampling window and show that the experimental

results may indeed be biased by the window size. Overall, these ensemble distributions

best represent the probabilistically expected behavior of particle motions consistent with

the macroscopic sediment and flow conditions, and thus provide a clear target for further

analyses of transport, including statistical mechanics theory and numerical simulations.

In Chapter 3, we investigate the diffusive contribution to the sediment flux, as elab-

orated in Fathel et al. (2016). The start-and-stop motions of sediment particles on a

streambed mimic aspects of the Einstein-Smoluchowski description of the random-walk

motions of Brownian particles, where particles diffuse normally. However, recent work

suggests that the spreading rate of sediment particles differs from Brownian behavior. We

use measurements of particle motions obtained from high-speed imaging of bed load trans-

port to demonstrate that conventional measures of particle spreading reveal different at-

tributes of bed load particle behavior depending on details of the calculation. We find

ballistic-like behavior at the shortest (10−2 s) timescale, followed by apparent anomalous

behavior due to correlated random walks in transition to normal diffusion (>10−1 s) —

similar to Brownian particle behavior but involving distinctly different physics. However,

when treated as a ‘virtual plume’ over this timescale range, particles exhibit inhomoge-

neous diffusive behavior because both the mean and the variance of particle travel distances

increase nonlinearly with increasing travel times, a behavior that is unrelated to anomalous

diffusion or to Brownian-like behavior. Our results indicate that while there are similarities

between bed load transport and Brownian systems, care is needed in suggesting anoma-

lous behavior when appealing to conventional measures of diffusion formulated for ideal

particle systems.

Chapter 4 acts to provide a clearer understanding of the transport and spreading be-
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havior of bed load particles and tracers by providing detailed descriptions of key features

associated with the processes of particle entrainment and disentrainment. Here we address

the “initial motion problem” by analyzing the initial direction and magnitude of activated

particles along with the spatial distribution of entrainment. We also provide an analysis of

simultaneous measurements of near-bed fluid velocities and particle motions, which indi-

cates that fluid velocities are not necessarily higher near entrainment events. This further

suggests that the connection between the fluid and particle entrainment is complex and will

require attention to detail to better define this relationship. Furthermore, the high resolution

of the data presented, which contains positions of particles measured start-to-stop, allows

us to measure the distributions of particle wait times (the duration of time between succes-

sive particle motions in an area) and of particle rest times (the duration of time between

the disentrainment of a particle and the reentrainment of that particle). Wait times in com-

bination with the particle entrainment determines the intensity of transport. In turn, rest

times, following disentrainment, bear on descriptions of particle spreading during trans-

port. More specifically, particle disentrainment determines the distance that particle move

following entrainment, that is, the distribution of hop distances, and together with interven-

ing rest times, influence the virtual velocity and spreading of tracer particles. This work

provides an important step towards empirically defining the distribution of rest times, yet

we also highlight the experimental limitations of these measurements. The combination of

the work contained in this chapter acts to highlight and reveal important aspects of the me-

chanical behavior of particles during entrainment and disentrainment, and ultimately shows

that these processes involve more than ‘starting’ and ‘stopping’. At the time of writing this

dissertation this manuscript is “in preparation” (Fathel et al., in prep.).

In addition to these chapters, I have contributed substantively as coauthor on two sepa-

rate published papers, and one manuscript, that are closely related to the material presented

in this dissertation, and which make use of the data sets described below. The first paper

(Furbish et al., 2016a) concerns theoretical aspects of the entrainment form of the particle
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flux and the Exner equation, and appeals to the ensemble distributions of particle mo-

tions described in Chapter 2, specifically the relationship between particle hop distances

and travel times. The second paper (Furbish et al., 2016b) builds directly from my work

presented in Chapter 2. We describe the most likely forms of the probability distribution

of bed load particle velocities, accelerations, hop distances and travel times based on E.

Jayness principle of maximum entropy — honoring mechanical and kinematic constraints

imposed by equilibrium transport conditions — to show that the most likely distributions

are consistent with the distributions reported in Chapter 2. We also have prepared a paper

for publication (Furbish et al. in prep.) that places concepts raised in Chapter 3 concern-

ing bed load sediment diffusion within a broader context. This manuscript is written as

a “State of Sciences” article for the journal Earth Surfaces Processes and Landforms, and

therefore provides a more general description of the essential elements of particle diffusion

during sediment transport, clarifying important details not usually covered in descriptions

of diffusive behavior in sediment systems.
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CHAPTER 2

Experimental Evidence of Statistical Ensemble Behavior in Bed Load Sediment

Transport

2.1 Abstract

A high-resolution data set obtained from high-speed imaging of coarse sand particles

transported as bed load allows us to confidently describe the forms and qualities of the

ensemble distributions of particle velocities, accelerations, hop distances and travel times.

Autocorrelation functions of frame-averaged values (and the decay of these functions) sup-

port the idea that the forms of these distributions become time-invariant within the five

second imaging interval. Distributions of streamwise and cross-stream particle velocities

are exponential, consistent with previous experiments and theory. Importantly, streamwise

particle velocities possess a “light” tail, where the largest velocities are limited by near-

bed fluid velocities. Distributions of streamwise and cross-stream particle accelerations

are Laplace in form and are centered on zero, consistent with equilibrium transport condi-

tions. The majority of particle hops, measured start-to-stop, involve short displacements,

and streamwise hop distances possess a Weibull distribution. In contrast to previous work,

the distribution of travel times is exponential, consistent with a fixed temporal disentrain-

ment rate. The Weibull distribution of hop distances is consistent with a decreasing spatial

disentrainment rate, and is related to the exponential distribution of travel times. By taking

into account the effects of experimental censorship associated with a finite sampling win-

dow, the relationship between streamwise hop distances and travel times, Lx ∼ T α
p , likely

involves an exponent of α ∼ 2. These experimental results — an exponential distribution

of travel times Tp and a Weibull distribution of hop distances Lx with shape parameter k < 1

— are consistent with a nonlinear relationship between these quantities with α > 1.
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2.2 Introduction

Sediment particles transported as bed load within a turbulent shear flow experience

complex motions in response to forces exerted on them by near-bed fluid motions, and in re-

sponse to forces associated with particle-particle interactions and particle-bed interactions.

Individual particle motions involve combinations of rolling, sliding and low saltations. Par-

ticles hops — measured start-to-stop — may be brief and short, involving displacements of

only one or a few particle diameters, or involve relatively long displacements during which

particles experience a few to tens of collisions with the bed between the onset and cessation

of motion, or consist of motions intermediate to these. Some particles may move upstream.

When viewed at timescales longer than that associated with the ballistic-like behavior

of particles between successive particle-bed collisions (Nikora et al., 2002; Furbish et al.,

2012b), bed load particle motions are inherently stochastic. Herein, probabilistic descrip-

tions of bed load particle motions and transport, building from ideas introduced by Einstein

(1937, 1942, 1950), become valuable inasmuch as the concepts and language of probability

are particularly well suited to the problem of describing these motions. Indeed, there has

been a recent, renewed interest in probabilistic descriptions of bed load particle motions

pertaining to the ingredients of the particle flux (e.g., Parker et al., 2000b; Ancey, 2010;

Furbish et al., 2012a,b; Ancey and Heyman, 2014; Armanini et al., 2014; Heyman et al.,

2014; Heyman, 2014) as well as the behavior of tracer particles (e.g., Nikora et al., 2002;

Schumer et al., 2009; Foufoula-Georgiou and Stark, 2010; Bradley and Tucker, 2010; Ganti

et al., 2010; Voller and Paola, 2010; Hill et al., 2010; Ball, 2012; Martin et al., 2012; Laje-

unesse et al., 2013; Hassan et al., 2013; Pelosi et al., 2014; Martin et al., 2014). This effort

is aimed at a deeper understanding of the transport of sediment and sediment-borne sub-

stances, the influence of stochastic motions on bedform evolution, and, in turn, the effect of

changes in streambed elevation on tracer particle motions. In addition, new measurement

techniques, including high-speed imaging, are providing an unprecedented opportunity to

observe and measure particle motions, and to test and constrain theories of particle be-
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havior during transport, including advanced numerical renditions of this behavior (e.g.,

Schmeeckle, 2014a,b; Kidanemariam and Uhlmann, 2014).

Of particular interest to us is the possibility of integrating certain concepts from clas-

sical statistical mechanics into probabilistic descriptions of bed load particle motions and

transport. As outlined in Furbish et al. (2012a) and Furbish and Schmeeckle (2013), this

effort is aimed at describing the probabilistically expected behavior of particles, subject to

mechanical constraints imposed on the particle system. A central element of this approach

involves appealing to the idea of ensemble behavior, wherein we envision an ensemble of

configurations of particle positions and velocities, much as Gibbs (1902) described for gas

particles. To be clear, ‘ensemble behavior’ is not to be misinterpreted as the collective be-

havior of a group (an ‘ensemble’) of particles. Rather, ‘ensemble’ refers to the statistical

mechanics idea of a Gibbs-like ensemble of independent but nominally identical systems

of particles, so that ‘ensemble behavior’ means the statistically expected states of particles

as reflected by the forms and moments of the distributions of these states measured over

the ensemble — an idea that we elaborate in Section 2. The approach then focuses on the

ensemble distributions of particle velocities, accelerations, hop distances and associated

travel times as a basis for describing ingredients of, say, the particle flux or particle diffu-

sion, notably pertaining to the rarefied (versus continuum) conditions that occur at low to

moderate transport stages (Schmeeckle and Furbish, 2007; Furbish and Schmeeckle, 2013;

Heyman et al., 2014; Heyman, 2014). Of critical importance in support of this approach

are experimental measurements of particle motions that can be used to reveal, with high

fidelity, the forms and parametric values of these distributions, together with associated

levels of particle activity (the number of particles in motion per unit streambed area).

The experiments reported by Roseberry et al. (2012) involving high-speed imaging of

particle motions under four different transport stages provided important initial insights re-

garding details of particle motions and activity pertaining to ensemble behavior. As noted

by Furbish et al. (2012b), however, these measurements were not entirely satisfactory. Sev-
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eral of the sets of measurements had sufficiently large imaging windows to sample a suite

of particle hop distances, but suffered from short sampling times. In contrast, several of the

sets of measurements involved sufficient sampling times, but suffered from small imaging

windows. Keeping this in mind, the experimental data indicated that the distributions of

streamwise and cross-stream particle velocities are exponential, and that the probability

distribution of streamwise velocities has a “light” tail. The results also suggested that hop

distances vary nonlinearly with associated travel times. Furthermore, the measurements in-

dicated that the particle activity exhibits quasi-periodic variations over multiple timescales,

a behavior that is related to turbulent sweep events as well as higher frequency variations

that reflect the response of particles to small-scale near-bed turbulence and particle-bed in-

teractions (see auxiliary video of particle motions). The measurements, involving sub-pixel

resolution of particle displacements, importantly revealed that particle motions are domi-

nated by small displacements and small velocities, and moreover, that particle motions are

intrinsically periodic (Furbish et al., 2012b).

The purpose of this paper is to reinforce, and elaborate, key elements of the measure-

ments and results reported by Roseberry et al. (2012), and to clarify uncertain results pre-

sented therein. Specifically, we present results from an unusually large, high-quality data

set obtained from tracking individual particle motions from the high-speed imaging of five

consecutive seconds of bed load sediment transport. This rich data set provides the ba-

sis for defining the underlying forms of the ensemble distributions of particle motions, in

particular, the distributions of streamwise and cross-stream particle velocities and accelera-

tions, and the distributions of particle hop distances and associated travel times. We appeal

to features of the autocorrelation functions of frame-averaged values to suggest that these

distributions quickly approach their time-invariant (ensemble) forms compatible with the

experimental conditions. Similar to the experimental results of Lajeunesse et al. (2010) and

Roseberry et al. (2012), we find that the probability density functions of both the stream-

wise and cross-stream velocities have exponential forms. The data set allows us to confirm
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that the streamwise velocity distribution possesses a “light” tail, consistent with the idea

that the largest particle velocities are limited by the magnitude of near-bed fluid velocities

(Roseberry et al., 2012; Furbish and Schmeeckle, 2013; Schmeeckle, 2014b). The distri-

butions of the streamwise and cross-stream particle accelerations are Laplace in form and

are centered on zero, consistent with the concept of equilibrium transport (Furbish and

Schmeeckle, 2013). The data also reveal that the probability density fLx(Lx) [L−1] of parti-

cle hop distances Lx [L] has the form of a Weibull distribution that is physically related to

the exponential form of the associated density fTp(Tp) [T−1] of travel times Tp [T]. A plot

of measured values of Lx versus Tp represents a sample drawn from the joint probability

distribution fLx,Tp(Lx,Tp). On average Lx varies with Tp as Lx ∼ T α . Whereas Roseberry

et al. (2012) suggested that α ∼ 5/3, a value reproduced by the simulations of Fan et al.

(2014), here we illustrate that this value likely reflects bias due to experimental censorship

(e.g., Furbish et al., 1990) associated with the sampling window size, and that more likely

Lx ∼ T 2
p .

As described in the Methods and Measurements section below, our measurements of

particle motions (particle tracking) are quite laborious, given the level of precision to which

we aspire. Indeed, one of our points in the Conclusions section involves an appeal for im-

proving automated (high-fidelity) particle-tracking methods. Whereas we report one set of

measurements here, we note that our results and conclusions are entirely consistent with

those pertaining to a second set of measurements involving a higher transport stage, for

which we have simultaneous measurements of near-bed fluid velocities (to be reported

separately). Given the significance of the idea of ensemble distributions of quantities de-

scribing particle motions (i.e., particle velocities, accelerations, hop distances and travel

times), we start by elaborating the idea of a sediment particle ensemble, adding key points

to previous descriptions (Furbish et al., 2012a; Furbish and Schmeeckle, 2013).
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2.3 Theoretical Basis of Ensemble Distributions of Particle Velocities, Hop

Distances and Travel Times

As described in Furbish et al. (2012a) and Furbish and Schmeeckle (2013), we start by

envisioning an ensemble of particle configurations and velocities in a manner similar to that

outlined by Gibbs (1902) for gas particle systems. As Kittel (1958) notes... “The scheme

introduced by Gibbs is to replace time averages over a single system by ensemble averages,

which are averages at a fixed time over all systems in an ensemble. . . It may be argued, as

Tolman (Tolman, 1938) has done, that the ensemble average really corresponds better to the

actual situation than does the time average.” Specifically, we envision bed load particles

moving over an area B on a streambed subjected to steady macroscopic flow conditions, and

assume that the streambed is planar (e.g., Lajeunesse et al., 2010; Roseberry et al., 2012),

albeit possibly involving small, stationary fluctuations in elevation (e.g., Wong et al., 2007).

Here we are focusing on motions of particles that are entrained from the streambed and then

return to it after traveling some distance. Thus, of particular interest are motions measured

parallel to the surface; of less concern are the details of motions normal to the surface. This

is intrinsically a two-dimensional problem.

We initially choose B to be sufficiently large that, during any small interval of time dt,

any difference in the number of particles leaving B and the number arriving is negligibly

small relative to the total number Na of active particles within B. Similarly, any difference

in the number of particles that stop and start within B during dt is negligibly small relative

to the total number Na. Then, Na may be considered fixed from one instant to the next.

We now envision all possible instantaneous configurations of the Na active particles as

defined by their xy-coordinate positions within B at a fixed time, with the understanding

that this set of configurations need not represent the same set of particles, only that Na

is fixed. This imagined set of possible configurations constitutes an ensemble of active

particle positions. Moreover, each active particle in each possible configuration possesses

an instantaneous velocity up = iup + jvp. We now envision the ensemble as consisting of
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all possible instantaneous states defined by the joint occurrence of particle positions and

velocities up and vp.

Here we emphasize that each instantaneous state satisfies the physics of coupled fluid-

particle motions compatible with the macroscopic flow conditions. Let us therefore imagine

randomizing the time series of particle states in order to remove any temporal correlation

in particle configurations and velocities from one instant to the next. At this point we may

imagine that each of the states represents an instant in an independent system subjected to

the same macroscopic flow conditions. Indeed, we may imagine that the great number of

states represents a great number of independent but nominally identical systems at a fixed

time, in which case the ensemble of configurations and velocities is like that envisioned

by Gibbs. To be clear, we are referring to an ensemble of systems, not an ensemble of

particles nor, as yet, an ensemble distribution. As Kittel [1958, p. 8] notes, “The word

ensemble is used in a special sense in statistical mechanics, a sense unrecognized by most

lexicologists.”

Focusing on particle velocities, suppose that we calculate the average streamwise ve-

locity of the Na active particles for each member of the ensemble, then, in turn, calculate

the “grand” average of these averages. This is an ensemble averaged velocity (e.g., Kittel,

1958). Let us now reassemble the members of the ensemble into their original serial order.

We can again calculate the average streamwise velocity of the Na active particles at each

instant in the time series, then, in turn, calculate the grand average of these averages. This

is a time averaged velocity. But noting that we are using the same average for each of

the systems in both calculations, by definition the time average is equal to the ensemble

average. Hence, we are in this example justified in concluding that the ergodic hypothesis

is satisfied (e.g., Tolman, 1938). Also note that we are interested in higher statistical mo-

ments, for example, the variance of the particle velocities. Such moments are statistically

expected (averaged) quantities, so this example concerning ensemble and time averages

also applies to the calculation of these higher moments.
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We also are interested in the distribution of particle velocities. This distribution may

vary from one member of the ensemble to another. Our objective, therefore, is to describe

the most probable velocity states of the particles compatible with the extant fluid-particle

physics, leading to the ensemble distribution of velocities whose moments coincide with

the expected ensemble values (Furbish and Schmeeckle, 2013). In this point of view, each

member of the ensemble represents a sample drawn from the ensemble distribution. More-

over, the form of each distribution and its parametric quantities, being consistent with the

physics of coupled fluid-particle motions, therefore are considered to be a signature of the

transport process for specified sediment and macroscopic flow conditions.

We now broaden our view of an ensemble of independent systems at a fixed time to one

that allows these systems to evolve over a specified period. This is important for concep-

tualizing an ensemble involving quantities that are not instantaneous, namely, particle hop

distances and associated travel times. Specifically, we envision an ensemble of indepen-

dent systems wherein particle motions begin within an area bdx during the interval from t

to t+dt at the fixed time t, allowing each independent system to evolve long enough for the

N particles starting during dt to complete their motions. As in the example above involving

particle velocities, we may consider this set of travel distances Lx for each system as being

a sample of size N drawn from an ensemble distribution fLx(Lx). For a given width b, N

varies from one system of the ensemble to the next. Moreover, in general any one sample

has the appearance of an irregular histogram of hop distances rather than a smooth distribu-

tion. Then, upon collecting all such samples from all members of the ensemble and pooling

them, the resulting distribution converges to its ensemble form. Or, with respect to time,

we may imagine letting an individual system evolve. During successive intervals dt, suc-

cessive sets of N particles begin their hops from within bdx, each set leading after a period

of time to a histogram of travel distances Lx. Assuming the process acting on the particles

does not change over time, then with sufficient time T we may assume the accumulated

samples converge to the ensemble distribution fLx(Lx), which is invariant with respect to
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time. Similarly we may assume these accumulated samples yield the ensemble distribution

fTp(Tp) of travel times Tp. As with ensemble distributions of instantaneous quantities (e.g.,

velocities), these ensemble distributions are to be considered a signature of the transport

process for specified sediment and macroscopic flow conditions.

For reference below we can relate this idea of an ensemble distribution of hop distances

and associated travel times to instantaneous quantities. Specifically, let tp [T] denote the

travel time (‘age’) of a particle measured from the instant that its motion begins, and let

lx(tp) [L] denote the associated travel distance. If ftp(tp, t) [T−1] denotes the probability

distribution of particle ages tp at time t, then at any instant conservation of probability

requires that
∂ ftp(tp, t)

∂ t
=−

∂ ftp

∂ tp
−D f , (2.1)

which is a simple rendering of the Master equation, a general expression of conservation

of probability (Appendix A). The first term on the right side describes ‘advection’ of prob-

ability over the domain tp due to particle aging at a rate dtp/dt = 1, and D f [T−2] denotes

a ‘failure rate’ associated with deposition of particles with age tp = Tp; note that D f may

be a function of tp or ftp , or both. Note that tp ≤ Tp and lx ≤ Lx, where tp −→ Tp and

lx(Tp)−→ Lx only when motion ceases. With steady conditions where entrainment and de-

position are balanced, then at any fixed time, d ftp/dtp =−D f . The solution of this requires

a fixed boundary condition ftp(0) = E f [T−1] associated with steady entrainment of parti-

cles with starting age tp = 0. Moreover, in this situation ftp(tp)→ fTp(Tp) represents the

distribution of expected age states of the particles compatible with the extant fluid-particle

physics, that is, the ensemble distribution of particle travel times. By a similar develop-

ment we may assert that the steady distribution flx(lx)→ fLx(Lx) represents the ensemble

distribution of hop distances. These quantities are jointly distributed as fLx,TP(Lx,Tp).

There is a practical task of estimating, from experimental measurements, the forms and

parametric values of ensemble distributions. To do this we must appeal to the ergodic hy-

pothesis to assess whether the estimated distributions represent ensemble distributions. The
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key is determining whether the measured time series of quantities characterizing particle

motions are of sufficient duration that estimated distributions are approximately time invari-

ant. As described below (Section 2.4), our principal diagnostics involve assessing whether

time series of frame-averaged quantities are approximately stationary, and whether the to-

tal sampling time exceeds the time in which the autocorrelation function decays to zero for

these quantities.

Note that sediment transport involves a significant serial correlation in motions as tur-

bulent flow structures move over the bed. We expect that when persistence (i.e., memory

or temporal correlation) is present in the time-series data, statistical convergence generally

requires a larger sample size (more frames) relative to the convergence time of a weakly

correlated series.

2.4 Methods and Measurements

The experimental data presented here were collected in the River Dynamics Laboratory

at Arizona State University using an 8.5 × 0.3 m recirculating flume. Flow velocities were

measured using an acoustic Doppler velocimeter (ADV) positioned approximately 1 cm

above the bed. As reported by Roseberry et al. (2012) and Furbish et al. (2012b), these

experiments involved four flow conditions. (The Froude number varied from 0.30 to 0.35,

and the Shields number varied from 0.034 to 0.063.) Here we present a reanalysis of Run

3, in which the time-averaged velocity near the bed was 31.0 cm sec−1 with a flow depth

of 12.5 cm. The bed material used in this experiment is a uniform, coarse sand with an

average diameter D50 of 0.05 cm. The stream bed was prepared by smoothing it flat prior

to the start of the experiment.

The sediment bed is photographed through a plexiglass “sled” window placed on the

surface of the water. This provides a clear view of the bed, preventing distortion of the

images caused by light refraction from fluctuations in the water surface. The flow is suffi-

ciently deep that the plexiglass window does not interfere with the flow at the bed surface.
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The high-speed imagery captures an area of the sediment bed that is 7.57 cm long (stream-

wise) and 6.05 cm wide (cross-stream), with a corresponding resolution of 1280 × 1024

pixels. The set of images, taken at a rate of 250 frames per second, spans a total of 19.4 sec-

onds (4912 frames). We analyzed five consecutive seconds (1250 frames) of the imagery,

where virtually every moving particle was tracked.

Particle tracking was performed using the open-source software ImageJ. This involved

marking the centroid of each particle as it moves through successive frames. ImageJ pro-

vides sub-pixel resolution of the centroid coordinates. The software records the pixel co-

ordinates for each particle throughout the set of consecutive images as individual particle

“tracks.” The pixel coordinates from each particle track were then converted into stream-

wise xp [L] and cross-stream yp [L] coordinate positions. Within the video, approximately

95% of the particles in motion were tracked, amounting to more than 150,000 unique spa-

tial positions from more than 10,000 active particles. The 5% of particles that were not

tracked either left the field of view early or proved too difficult to follow through the course

of the video. Particle hops, counted only if the particles started and stopped within the field

of view, represent a subset (∼65%) of the tracked motions.

Particles were tracked only after they began to move. We did not track the motions of

particles that “wiggled” back and forth within their pockets, but otherwise did not move or

hop. All particle motions were manually tracked by one individual to maintain consistency.

This manual method provides accurate measurements of all motions without a bias towards

short or long displacements. Individual hops were measured from incipient motion to a

stopped position such that both streamwise and cross-stream velocities are zero. We also

note that 0.4 seconds (100 frames) of imagery from this same experiment is presented as

the data for Run R3B in Roseberry et al. (2012). Whereas we use these data for comparison

to our own, we do not pool these data with the set described here.
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2.5 Time Series of Features of Particle Motions

Here we describe the experimental time series of key features of particle motions (Fig-

ure 2.1) as context for our descriptions of the probability distributions of particle velocities,

accelerations, hop distances and travel times presented in the next section. These series in-

clude: 1) the particle activity (the number of particles in motion within each frame); 2)

the frame-averaged streamwise and cross-stream velocities of active particles; and 3) the

frame-averaged streamwise and cross-stream accelerations of active particles. These quan-

tities are based on all particle motions that occurred during the measurement period. Note

that the ‘instantaneous’ velocity of an individual particle is estimated as the displacement

between successive frames divided by the time interval (0.004 sec in this case), and its ac-

celeration is similarly estimated by differencing successive velocities and dividing by the

time interval. In addition we calculate the frame-averaged travel time (‘age’) and the frame-

averaged travel distance of active particles, measured from the times and positions of initial

motion. These quantities are based only on those particles (N ∼ 4,000) that completed full

hops (start-to-stop) within the imaging area. We also consider the autocorrelation functions

(Figure 2.2) of these time series.

The particle activity fluctuates over more than an order of magnitude, from a low of

about 20 particles to more than 330 particles, with an average of 118 and a coefficient of

variation CV = 0.56 (Table 2.1). Consistent with previous measurements (e.g., Roseberry

et al., 2012; Heyman and Ancey, 2014), this series reflects the effects of patchy, intermit-

tent turbulent sweeps and smaller structures over the scale of the imaging window, and the

associated balance between entrainment and deposition, and the intervening travel times of

particles (see auxiliary video). The fluctuations involve multiple frequencies, noticeably

at approximately one-second intervals, and are reflected in the irregularly oscillating auto-

correlation function (Figure 2.2). The time in which the autocorrelation function decays

is several (∼3) seconds. Note that, based on the birth-death Markov model of particle-bed

exchanges provided by Ancey et al. (2008) involving particle entrainment with particle-bed
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Figure 2.1: Time series of frame-averaged key particle motions.
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Figure 2.2: Autocorrelation functions of the frame-averaged time series presented in Figure
2.1.
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collisions (‘collective entrainment’), Heyman (2014) suggests that the variance of the ac-

tivity systematically varies with window size in relation to the correlation length associated

with particle-bed exchanges.

Note that the frame-averaged velocities and accelerations described next involve the

particle activity. That is, these averages are based on the varying numbers of active parti-

cles.

Table 2.1: This table contains the minimum, maximum, mean, and standard deviation for
each of the calculated quantities in Figure 2.1. The coefficient of variation is calculated as
the ratio of the standard deviation to the mean.

Na u∗p v∗p a∗x a∗y l∗x l∗y t∗p
Minimum 17 1.33 0.58 246.09 140 0.023 0.005 0.008
Maximum 335 7.18 2.85 1195.39 524.88 0.98 0.21 0.34
Mean 118.08 4.08 1.30 557.76 263.51 0.54 0.10 0.12
St. Dev. 65.91 0.87 0.30 150.66 52.22 0.16 0.039 0.035
Coeff. Var. 0.56 0.21 0.23 0.27 0.20 0.30 0.38 0.28

The frame-averaged streamwise velocity and the frame-average of the magnitudes of

cross-stream velocities each fluctuate by a factor of about four, with CV = 0.21 and CV =

0.23, respectively. These series co-vary with each other as well as with the particle activity,

and involve high-frequency fluctuations superimposed on lower frequencies present in the

activity series. The time it takes for the autocorrelation functions to decay to zero are

similar to that of the particle activity.

In contrast, the frame-averaged streamwise and cross-stream particle accelerations are

dominated by high-frequency fluctuations about zero means. The magnitudes of the stream-

wise and cross-stream accelerations have CV = 0.27 and CV = 0.20, respectively. The au-

tocorrelation functions reveal that these effectively are white noise signals. At any instant,

accelerations and decelerations are approximately balanced, and short-lived imbalances are

quickly damped (Furbish and Schmeeckle, 2013). The averaged accelerations are relatively

insensitive to the number of particles in motion. Note that our calculations of accelerations

effectively represent a first-differencing of the velocities (e.g., Box and Jenkins, 1976), the
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effect of which is to reduce serial correlation relative to that associated with the velocities.

The frame-averaged streamwise travel distance, the frame-average of the magnitudes

of cross-stream travel distances, and the frame-averaged particle age, are all approximately

stationary signals, and have CV = 0.30, CV = 0.38, and CV = 0.28, respectively. Notice that

there is a lag of approximately 0.5 sec before each of these signals reaches a steady level

following the start of the signal Figure 2.1. This lag reflects the growing travel distances

and ages of the subset of motions representing complete hops early in the series as these

converge to the average total hop distances and associated travel times. The fluctuations

within the particle ‘age’ signal result from the balance between entrainment and disentrain-

ment (and intervening particle aging). Here, the autocorrelation functions reveal that these

series are much like the particle activity and frame-averaged velocities, in both the form

and the time for the function to decay.

These time series and their autocorrelation functions indicate that the measurement in-

terval of five seconds is sufficiently long to assert that the forms of the distributions of

particle velocities, accelerations, hop distances and travel times, as described in the next

section, are approximately time-invariant and representative of the ensemble conditions in

the experiments. Of the series, the particle activity exhibits the strongest persistence. The

variance is dominated by intermediate frequencies (relative to the record length); high-

frequency fluctuations are notably absent in comparison with the other signals. We cannot

guarantee that the experimental conditions do not involve lower frequency variations not

sampled by the five-second record, which may influence the behavior of these time se-

ries. Nonetheless, for comparison a much longer (96 second) time series of streamwise

velocity measurements using an acoustic Doppler velocimeter (50 Hz) at positions ∼1

cm above the bed possesses an autocorrelation function that decays well within (i.e., ∼2

s) a five second interval (as opposed to exhibiting a slowly decaying signature of a non-

stationary signal). Inasmuch as the particle activity is responding to near-bed turbulence

fluctuations, we therefore may assume that the autocovariance structure of this series is
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reasonably steady and representative of the macroscopic flow conditions. Moreover, the

autocorrelation functions of the other signals, with shorter decay times, are consistent with

the idea that these features of sediment motions (particularly particle accelerations) become

statistically steady relatively quickly. We also note that there are two dominant periodici-

ties present within the first (lag) second of the autocorrelation functions of the velocities,

travel distances, particle ages, and (more subtly) particle activity.

Longer time series could possibly lead to changes in the estimated parametric values

of the distributions, but less likely in their forms, if these series involved lower-frequency

variations, or strong intermittent variations, that are significantly different from the mea-

sured sampling interval. We suspect that this would be more likely for series (e.g., particle

activity) with significant persistence than with series (e.g., particle accelerations) with little

persistence — assuming steady macroscopic flow conditions.

2.6 Probability Distributions of Features of Particle Motions

2.6.1 Particle Velocities

The data presented here represent a large sample (∼148,000) of particle velocities that

occur under the flow conditions of the experiment. We pool the measurements for the

streamwise velocities up and the cross-stream velocities vp in the distributions presented

below.

Streamwise particle velocities, neglecting the small proportion of small negative veloc-

ities, are well approximated by an exponential distribution (Figure 2.3), namely,

fup(up) =
1
up

e−up/up up ≥ 0 , (2.2)

where up is the average velocity. This result is consistent with similar experiments (La-

jeunesse et al., 2010; Roseberry et al., 2012) and with theory (Furbish and Schmeeckle,

2013). High velocity values fall below the exponential fit, and the highest measured values
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Figure 2.3: Discrete probability density of streamwise velocities up, and semi-log plot
(inset) of probability density versus up, with straight-line fit to data illustrating exponential
form of distribution.

(Figure 2.3) are less than the average fluid velocity measured by the ADV positioned 1 cm

above the bed. The richness of this data set, including a significant number of values in the

largest histogram bins, allows us to reinforce the idea that the streamwise velocity distribu-

tion indeed exhibits a light tail under these experimental conditions, and that near-bed fluid

velocities act as a control on the maximum particle velocity, where particles generally do

not move faster than the fluid (Roseberry et al., 2012; Furbish and Schmeeckle, 2013).

This presence of a light tail, for physical reasons, means that the particle velocity dis-

tribution is not strictly exponential, as probability is repartitioned (in an unknown manner)
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from the tail area to lower velocity states. For this reason we previously have correctly

referred to this as being an ‘exponential-like’ distribution [Roseberry et al., 2012; Furbish

and Schmeeckle, 2013], although for simplicity we use the shorter wording in reference to

this and other distributions.

The cross-stream velocity distribution is approximately symmetrical about vp = 0 (Fig-

ure 2.4). The form of this distribution is a two-sided exponential distribution, or Laplace

distribution (inset, Figure 2.4), with the form,

fvp(|vp|) =
1

|vp|
e−|vp|/|vp| , (2.3)

where |vp| is the mean magnitude of the cross-stream velocity. This result also is consistent

with previous measurements (Lajeunesse et al., 2010; Roseberry et al., 2012) and with

theory (Furbish and Schmeeckle, 2013).

2.6.2 Particle Accelerations

Uniform, quasi-steady (‘equilibrium’) transport requires that the ensemble averaged

particle acceleration be zero (Furbish et al., 2012c; Furbish and Schmeeckle, 2013), which

in turn means that the average force on the particles must equal zero. Specifically, if fax(ax)

[L−1 T2] denotes the distribution of streamwise particle accelerations ax [L T−2], then

∫
∞

−∞

ax fax(ax)dax = 0 . (2.4)

A similar expression pertains to the distribution fay(ay) [L−1 T2] of cross-stream accelera-

tions ay [L T−2].

We plot the distributions of the streamwise (Figure 2.5) and cross-stream (Figure 2.6)

particle accelerations ax and ay. The distributions are both centered on zero, such that the

positive and negative accelerations are balanced. These distributions have a Laplace form,

25



Figure 2.4: Discrete probability density of cross-stream velocities vp, and semi-log plot
(inset) of probability density versus |vp|, with straight-line fit to data illustrating exponential
form of distribution.

which, when expressed as a two-sided exponential distribution, is given by

fax(|ax|) =
1

|ax|
e−|ax|/|ax| , (2.5)

where |ax| is the mean magnitude of the streamwise acceleration. The magnitude of the

cross-stream acceleration |ay| possesses a similar distribution.
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Figure 2.5: Discrete probability density of streamwise accelerations ax, and semi-log plot
(inset) of probability density versus |ax|, with straight-line fit to data illustrating exponential
form of distribution.

2.6.3 Particle Hop Distances and Travel Times

We identified approximately 4,000 complete hops (measured start-to-stop) within the

field of view during the five seconds of analyzed imagery. Here we present the ensemble

distributions of the streamwise hop distances Lx, the cross-stream hop distances Ly and the

associated travel times Tp.

Particle travel times Tp are well approximated by an exponential distribution (Figure
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Figure 2.6: Discrete probability density of cross-stream accelerations ay, and semi-log plot
(inset) of probability density versus |ay|, with straight-line fit to data illustrating exponential
form of distribution.

2.7), namely,

fTp(Tp) =
1
Tp

e−Tp/Tp , (2.6)

where Tp is the mean travel time, estimated from the data to be Tp = 0.12 seconds. The form

of this distribution emphasizes that the bulk of the particle motions are short in duration and

is consistent with the results of Martin et al. [2012] for mobile bed experiments involving

steep, shallow flows.

Moreover, this form is consistent with the idea that, with respect to time following en-
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Figure 2.7: Discrete probability density of the hop travel times Tp, and semi-log plot (inset)
of probability density versus Tp, with straight-line fit to data illustrating exponential form
of distribution.

trainment, particles are likely to be disentrained with equal probability during any small

interval of time dt (Furbish et al., 2012a; Roseberry et al., 2012). That is, particles expe-

rience a constant temporal disentrainment rate PTp = 1/Tp [T−1] defined by (Furbish and

Haff , 2010; Furbish et al., 2012a)

PTp =
fTp(Tp)

1−FTp(Tp)
, (2.7)

where FTp(Tp) is the cumulative distribution function of the travel times Tp.
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This conclusion, which has a rudimentary theoretical basis (Furbish et al., 2016a), is

entirely consistent with the idea that the rate of disentrainment (deposition) is proportional

to the number of particles in motion and ‘available’ to be disentrained (e.g., Heyman et al.,

2014; Ancey and Heyman, 2014). At any instant the active particles within an area B are

in all possible states of entrainment, acceleration, deceleration and disentrainment. Some

proportion of this number of particles is in a state of imminent disentrainment (and then

does so during any small interval dt). The simplest defensible assumption is that, for steady

(equilibrium) transport conditions, this proportion of particles in a state of imminent dis-

entrainment is fixed for all Tp, inasmuch as equilibrium transport involves a time-invariant

distribution of all possible particle states.

The distribution of streamwise hop distances Lx (Figure 2.8), ignoring the small num-

ber of short upstream hops, has the form of a two parameter Weibull distribution (see (8)

below), where hop distances are predominantly small. Similarly, the distribution of the

absolute value of the cross-steam hop distances has a Weibull form (Figure 2.9). Estimated

values of the mean hop distance in the streamwise and cross-stream directions are Lx = 0.46

cm and |Ly|= 0.036 cm.

Focusing on streamwise motions, the Weibull distribution (with shape parameter k < 1)

is consistent with the idea that, with respect to travel distances following entrainment, par-

ticles are likely to be disentrained with decreasing probability within any small interval of

distance dx (Furbish et al., 2012a; Roseberry et al., 2012). That is, particles initially have

a high likelihood of disentrainment but then experience a decreasing spatial disentrainment

rate PLx(Lx) [L−1] with increasing hop distance Lx. Note that with respect to time, the like-

lihood of disentrainment is Poissonian (i.e., the probability in a time interval is constant),

but in space disentrainment is more likely at the beginning of a hop.

The distribution of streamwise hop distances is closely related to the distribution of

travel times as follows. As described in the next section, streamwise hop distances vary

with travel times as Lx = aT 2
p + ε , where a [L T−2] is a characteristic particle acceleration
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Figure 2.8: Discrete probability density of the streamwise hop distances Lx, and semi-log
plot (inset) of probability density versus Lx, where the line represents a Weibull distribution
fit to the data.
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Figure 2.9: Discrete probability density of the cross-stream hop distances Ly, and semi-log
plot (inset) of probability density versus |Ly|where the line represents a Weibull distribution
fit to the data. The approximate symmetry of the distribution of Ly results from defining
the centerline of the flume as zero.
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and ε [L] denotes a stochastic deviation about the expected value. If the distribution fTp(Tp)

of travel times Tp indeed is exponential, then it is straightforward to demonstrate (Appendix

B) that the expected distribution fLx(Lx) of hop distances Lx has the form of a Weibull

distribution,

fLx(Lx) =
A

2L1/2
x

e−AL1/2
x , (2.8)

where A =
√

2/Lx. The shape parameter k = 1/2 and the scale parameter λ = Lx/2.

Estimated values of the shape and scale parameters are k = 0.67 (rather than 0.5) and

λ = 0.33 (rather than 0.22). This difference of values is partly due to the fact that the

transformation leading to (8) (Appendix B) does not account for effects of residual variance

associated with ε . Nonetheless, that the data possess a Weibull form with k < 1 is consistent

with the expected relationship between hop distances and travel times inasmuch as Lx∼ T 2
P ,

as elaborated below.

The data for the hop distances Lx and Ly together with the associated travel times Tp

represent a sample drawn from the joint probability density function fLx,Ly,Tp(Lx,Ly,Tp). To

visualize this, plots of streamwise hop distances Lx versus travel times Tp (Figure 2.10) and

cross-stream hop distances |Ly| versus travel times Tp (not shown) represent this sample as

being drawn from the joint probability density functions fLx,Tp(Lx,Tp) and fLy,Tp(Ly,Tp),

which are marginal (joint) distributions of fLx,Ly,Tp(Lx,Ly,Tp).

Both the streamwise and cross-stream hop distances vary nonlinearly with travel time

Tp. At first glance, these relationships appear to follow those suggested by Roseberry et al.

(2012), namely, that Lx ∼ T 5/3
p (Figure 2.10) and |Ly| ∼ T 4/3

p . As described in the next

section, the exponents 5/3 and 4/3 likely reflect effects of experimental censorship due to

the finite imaging window size, where long hop distances and associated travel times are

preferentially censored. Focusing on streamwise motions, more likely Lx ∼ T 2
p , which has

both an empirical basis (next section) and a theoretical basis (Furbish et al., 2016a). This in

turn leads to a Weibull distribution of streamwise hop distances Lx with k < 1 as described

above (Appendix B).
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Figure 2.10: Plot of streamwise hop distances Lx versus travel times Tp; note that points
significantly below Lx ∼ 0.01 are effectively zero, representing measurement error.
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These nonlinear relationships between hop distances and travel times are indicative of

the behavior of the hopping motions. With short travel times, particle velocities on average

remain low and the net travel distances therefore are on average short. With longer travel

times, the hop distances on average disproportionately increase as the particle velocities

increase. That is, particles that gain higher velocities are more likely to travel farther in a

shorter amount of time than slower moving particles (Roseberry et al., 2012; Furbish et al.,

2012b; Ball, 2012). This behavior also is highlighted within the online supplementary

video, which shows particles in motion that are colored based on their current velocity.

Within this video, it is apparent that particles must achieve a minimum velocity in order to

travel a ‘long’ hop distance.

2.7 Effects of Experimental Censorship of Hop Distances and Travel Times

2.7.1 Bias due to Censorship

Video imaging of particle motions (e.g., Drake et al., 1988; Lajeunesse et al., 2010;

Roseberry et al., 2012; Campagnol et al., 2013; Seizilles et al., 2014) provides particularly

valuable data to infer the forms of the distributions fLx(Lx) and fTp(Tp) as well as to esti-

mate the moments of these distributions. These techniques likely will become increasingly

popular, so there is value in paying attention to the details of what is actually being esti-

mated. In particular, the motions of particles that enter or leave the video sampling area

are spatially censored, and particles that are in motion when the video starts or stops are

temporally censored. This means that estimates of fLx(Lx) and fTp(Tp) and their moments

based only on hops of length Lx and duration Tp completed within the sampling area are

biased.

Consider a sampling area B with streamwise length X . We set x = 0 at the upstream

boundary of B and x = X at its downstream boundary. Suppose that during a sampling

interval Ts a large number of particle motions occur within B. Many represent full hops, but
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some particles enter B then stop during Ts, and some particles start within B then exit during

Ts. These are spatially censored motions. We momentarily exclude from consideration

those particle motions censored in time, that is, particles that are in motion within B at

times t = 0 and t = Ts. For simplicity we also exclude particles that enter or leave B across

its transverse boundaries during Ts. An image of such motions is provided by Roseberry

et al. (2012).

Following the formulation of Furbish et al. (1990), let Pu(x;Lx,X) denote the probabil-

ity that a particle motion with hop distance Lx starts within between the upstream boundary

and the downstream boundary, specifically between the interval 0 < x < X −Lx. This de-

fines the case in which a motion is uncensored. The notation Pu(x;Lx,X) indicates that this

probability may be a function of position x, where Lx and X are treated as parameters. The

probability that a motion occurs within the small interval Lx to Lx+dLx and starts within the

interval 0 < x < X−Lx is Pu(x;Lx,X) fLx(Lx)dLx, and the censored, cumulative distribution

function is

GLx(Lx) =

∫ Lx
0 Pu(x;Lx,X) fLx(w)dw∫ X
0 Pu(x;Lx,X) fLx(w)dw

, (2.9)

where w is a variable of integration.

We now assume that a sufficient number of motions occurs such that any initial patch-

iness in starting positions during Ts vanishes and Pu(x;Lx,X) is independent of position x,

that is, Pu(x;Lx,X) = Pu(Lx,X). In this case Pu(Lx,X) = (X−Lx)/X , and (2.9) becomes

GLx(Lx) =

∫ Lx
0 (X−w) fLx(w)dw∫ X
0 (X−w) fLx(w)dw

. (2.10)

We now rewrite this as

GLx(Lx) =
XFLx(Lx)−

∫ Lx
0 w fLx(w)dw

XFLx(Lx)−
∫ X

0 w fLx(w)dw
, (2.11)

where FLx(Lx) is the cumulative distribution of fLx(Lx). Taking the derivative of (2.11)
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with respect to Lx and factoring X then yields the probability distribution of censored hop

distances, namely,

gLx(Lx) =
fLx(Lx)− (1/X)Lx fLx(Lx)

FLx(X)− (1/X)
∫ X

0 w fLx(w)dw
. (2.12)

Notice that in the limit of X→∞, the second term in both the numerator and denominator of

(2.12) goes to zero while the first term in the denominator goes to unity, so the distribution

gLx(Lx) approaches the underlying distribution of hop distances, fLx(Lx).

To gain a clearer sense of the bias introduced by the finite widow size X let us factor

fLx(Lx) and FLx(Lx) from (2.12) to give

gLx(Lx) =
fLx(Lx)

FLx(X)

(
1−Lx/X

1− [1/XFLx(X)]
∫ X

0 w fLx(w)dw

)
. (2.13)

We now observe that

L∗x =
1

FLx(X)

∫ X

0
w fLx(w)dw (2.14)

is a biased mean hop distance, that is, the mean based on values Lx < X . Substituting this

into (2.13) and expanding the result as a binomial series then gives

gLx(Lx) =
fLx(Lx)

FLx(X)

(
1− Lx

X
+

L∗x
X
− . . .

)
. (2.15)

At lowest order gLx(Lx) differs from fLx(Lx) by the factor 1/FLx(X). That is, gLx(Lx) is a

truncated version of fLx(Lx). The term Lx/X indicates that small values of Lx (Lx � X)

are well represented in gLx(Lx), but that values of Lx as Lx increases and approaches X are

increasingly underrepresented. The contribution of the term involving L∗x to the bias of

gLx(Lx) is negligible if L∗x � X . As a practical guide, therefore, the censored distribution

gLx(Lx) based on completed hops is likely to be a good approximation of the underlying

distribution fLx(Lx) if L∗x � X and if the fraction of the longest measured hop distances

Lx� L∗x is small.

In our experiments the sampling interval Ts is sufficiently long that travel times Tp are
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negligibly censored with the start and stop of the video. Nonetheless, values of the travel

time Tp associated with censored values of Lx are, by definition, also censored. Because Lx

and Tp are in general correlated, this means that estimates of the distribution fTp(Tp) and

its moments based only on completed motions also are biased.

2.7.2 A Demonstration of Censorship, and the Relation between Hop Distances and

Travel Times

To explore the effects of censorship, particularly spatial censorship, we examine various

window sizes and compare differences in the measured quantities. Within this experiment,

we have recorded complete particle hops within the entire window length X , where X =

7.57 cm, such that all hops that start and stop between x = 0 and x = X are measured. We

then compare this to complete hops within x = 0 to x = X/2 and within x = 0 to x = X/4.

If x′ denotes the starting position of a hop, then these three sets of measurements involve

censorship of hop distances Lx > X − x′, Lx > X/2− x′ and Lx > X/4− x′. By nature, the

associated values of the travel time Tp also are censored.

Consider a plot of Lx versus Tp (Figure 2.11), with data for each window size denoted

by a different shading. The largest window size contains all hops recorded in Figure 2.11,

and the color-coding highlights the hops that occur just within the two smaller windows.

On average Lx varies with Tp as Lx ∼ T α
p . As seen in this plot, whereas some proportion

of all hop distances and associated travel times is censored, the visual effect of censorship

is a preferential reduction in the largest hop distances and travel times, which gives the

appearance of a less steep overall relationship between these quantities. This provides the

empirical basis for suggesting that, in the relation Lx ∼ T α
p , the value α ∼ 2 rather than 5/3

as suggested by Roseberry et al. (2012) (a value which was supported by Fan et al. (2014)).

In addition, on dimensional grounds we may assume that Lx = aT 2
p + ε if a is interpreted

as a characteristic particle acceleration. In physical terms this relationship represents a

particle-averaged impulse over the period Tp (Furbish et al., 2016a).
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Figure 2.11: Plot of streamwise hop distances Lx versus travel times Tp, where the points are
color-coded according to the window size; black points are censored by the half window,
and black and white points are censored by the quarter window.
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This relationship and the specific value of α merit further attention. Inasmuch as α > 1,

then an exponential distribution of travel times Tp necessarily leads to a Weibull distribution

for the hop distances Lx with scale parameter k < 1 (Appendix B). We therefore suggest that

the experimental results presented here — an exponential distribution of travel times Tp, a

Weibull distribution of hop distances Lx with k < 1, and a nonlinear relationship between

Lx and Tp with α > 1 — reflect a clear internal consistency concerning expected particle

behavior.

2.8 Significance of Measurements

The measurements presented above bear on several topics pertaining to the details of

bed load sediment transport, and also point to key ideas that merit further attention. Here

we highlight several of these topics and ideas.

Foremost, our measurements provide clear empirical results that can be viewed as a

target for testing and constraining theories of particle behavior during transport, including

numerical treatments of this behavior. Demonstrating ensemble particle behavior is key,

inasmuch as we may then appeal to the idea that this behavior, as reflected by time-invariant

distributions of quantities describing particle motions, is a signature of the transport pro-

cess for specified sediment and macroscopic flow conditions. For example, whereas there

is a theoretical basis, grounded in statistical mechanics, for expecting an exponential dis-

tribution of particle velocities (Furbish and Schmeeckle, 2013), there is not yet a clear

theoretical basis for predicting the moments of this distribution in a way that connects par-

ticle motions with fluid motions. Making this connection requires a clear empirical target

which can only be achieved through precise measurements to first define the distributions

of sediment motions. In this vein, we note that the distributions of particle hop distances

and associated travel times reported above may actually represent special cases (consistent

with the experimental conditions) of a more general family of distributions. For example,

the exponential distribution used here to describe travel times is a special case of both the
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gamma and the Weibull distributions.

Furthermore, to produce a clear theoretical basis for sediment motions in bed load trans-

port, it is key to produce formulations based on the physics of the particle motions for vary-

ing sediment and flow conditions, beyond the conditions reported here. For example, our

results suggest that the disentrainment rate with respect to time is fixed, but we still need

an underlying theory to set this rate. Understanding the controls on particle disentrainment

is particularly important. Namely, whereas our understanding of the physics of particle

entrainment is reasonably well developed in certain areas of sediment transport, our un-

derstanding of the physics of disentraiment is rudimentary at best. But it is this process of

disentrainment that determines key features of particle motions, notably the distances over

which particles are dispersed following the initiation of motion, that is, the distribution of

hop distances. We also emphasize that our results specifically pertain to a uniform grain

size, and that work ultimately is needed to understand the behavior of mixed-grain sizes.

Second, recent work (Furbish et al., 2012a; Ancey and Heyman, 2014) indicates that

the ‘activity’ form of the bed load flux generally consists of advective and diffusive terms,

for example,

qx(x, t) = upγ− 1
2

∂

∂x
(κxγ), (2.16)

where qx(x, t) [L2 T−1] is the streamwise flux, γ [L] is the volumetric particle activity (the

volume of particles in motion per unit streambed area), and κx [L2 T−1] is the particle

diffusivity. Here, the first two moments of the particle velocity distribution fup(up) are

key. Namely, the average particle velocity up is an element of the advective term in (2.16),

and the diffusivity κx in the diffusive term is related to the variance σ2
up

[L2 T−2] of the

velocities as κx = σ2
up

τL, where τL [T] is the Lagrangian integral timescale of the particle

velocities. Inasmuch as the velocity distribution is exponential, then σ2
up
= up

2 so that κx ∼

upδ , where δ ∼ upτL [L] is a characteristic distance of motion that is similar in magnitude to

the average hop distance Lx (Furbish et al., 2012b). These points reinforce the significance

of establishing the form of the ensemble distribution of particle velocities.
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In turn, the probabilistic properties of particle hop distances and travel times are central

in ‘entrainment’ forms of the particle flux and the Exner equation. For example, focusing

on one-dimensional transport parallel to x involving only downstream motions,

cb
∂η(x, t)

∂ t
=−E(x, t)

+
∫ t

−∞

∫ x

−∞

E(x′, t ′) fLx,Tp(x− x′, t− t ′)dx′dt ′ . (2.17)

Here, cb = 1−φ is the volumetric particle concentration of the sediment surface where φ

is the porosity, η [L] denotes the local elevation of the sediment surface, E [L T−1] denotes

the volumetric rate of sediment entrainment, x′ = x−Lx, and t ′ = t−Tp. This ‘nonlocal’

formulation emphasizes that particles arriving at x at time t started their motions at many

preceding times t ′ at many positions x′ far upstream (Furbish et al., 2012a, 2016a). Simpli-

fications of (2.17) (e.g., Parker et al., 2000b; Pelosi et al., 2014) assume negligible travel

times Tp or involve temporal averaging such that the integral with respect to time is ne-

glected and the joint probability distribution fLx,Tp(Lx,Tp) is replaced with the distribution

of hop distances, fLx(Lx). In either case, it is important to note that this formulation in-

volves the distribution of hop distances measured start-to-stop, not a distribution of travel

distances involving multiple hops and intervening rest periods. We also note that the re-

lated, entrainment form of the flux for equilibrium transport conditions reduces to the result

originally provided by Einstein (1950), that qx = ELx. These points reinforce the signifi-

cance of establishing the forms of the ensemble distributions of particle hop distances and

associated travel times, and the relationship between these.

2.9 Conclusions

The size and resolution of the data set presented in this paper allow us to confidently

describe the forms and qualities of the ensemble distributions of particle velocities, ac-

celerations, hop distances and travel times for the experimental conditions. Convergence
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statistics support the idea that the forms of these distributions are time-invariant. These

ensemble distributions best represent the probabilitistically expected behavior of particle

motions consistent with the macroscopic sediment and flow conditions, and thus provide

a clear target for further analyses of transport, including statistical mechanics theory and

numerical simulations. Our principal conclusions are:

1) Our data show exponential distributions for the streamwise and cross-stream particle

velocities, consistent with previous experiments and theory. Importantly, we can confirm

the presence of a “light” tail in the streamwise velocities, where the largest particle veloc-

ities are limited by near-bed fluid velocities. Distributions of streamwise and cross-stream

particle accelerations are Laplace in form and centered on zero means, consistent with

equilibrium transport conditions.

2) The majority of sediment ‘hops’ involve short positive displacements, and the stream-

wise and cross-stream components of the hop distances possess Weibull distributions. In

contrast to previous work involving a smaller data set, the distribution of travel times of

individual hops is exponential, consistent with a fixed temporal disentrainment rate. The

Weibull distribution of hop distances is consistent with a decreasing spatial disentrainment

rate, and is physically related to the exponential distribution of travel times.

3) Streamwise and cross-stream components of the hop distances vary nonlinearly with

travel times. If particles gain a sufficiently high velocity, they tend to travel farther in a

shorter amount of time than similar slower moving particles. Thus, with increasing travel

times, hop distances on average disproportionately increase as particle velocities increase.

4) By taking into account the effects of experimental censorship, the relationship be-

tween streamwise hop distances and travel times, Lx ∼ T α
p , likely involves an exponent of

α ∼ 2. This differs from previous measurements, and is dimensionally consistent with an

averaged impulse integrated over the period Tp.

5) The experimental results presented here — an exponential distribution of travel times

Tp, a Weibull distribution of hop distances Lx with shape parameter k < 1, and a nonlinear
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relationship between Lx and Tp with α > 1 — reflect a clear internal consistency concerning

expected particle behavior.

6) There is a pressing need for improving automated particle tracking methods that can

provide high fidelity measurements of the small particle displacements and velocities that

dominate bed load particle motions.

2.10 APPENDIX: Advection of Probability with Particle Aging

The advection equation (1) can be obtained several ways. To illustrate its probabilistic

basis in a simple manner, let n(tp, t) [T−1] denote the number density of particles with age

tp at time t. That is, n(tp, t)dtp is the expected number of particles whose ages are within

the interval tp to tp + dtp. If N denotes the total number of particles, then ftp(tp, t)dtp =

n(tp, t)dtp/N is the expected proportion of the particles within the interval tp to tp + dtp.

That is, ftp(tp, t) [T−1] is the probability density of particle ages tp.

In the absence of a source (entrainment) or sink (deposition), the substantive derivative

of n(x, t) yields [∂n(x, t)/∂ tp](dtp/dt)+ ∂n(tp, t)/∂ t = 0. Dividing this by N and adding

the failure rate D f gives (1) in the text, where dtp/dt = 1 is the aging rate of the particles.

One may think of each particle as possessing a probability equal to 1/N that is ‘advected’

to larger values with aging.

Alternatively, we note that (1) is a Fokker-Planck equation (an approximation of the

Master equation) with a sink term, absent the usual diffusive term, as aging at a rate

dtp/dt = 1 is a fixed quantity without variations that are required for diffusion of prob-

ability. Thus, (1) also can be obtained following the developments of the Master equation

presented in Furbish et al. [2012b].

2.11 APPENDIX: Distribution of Hop Distances

At the outset we assume from the results of section 2.7.2 that hop distances vary with

travel times as Lx = aT 2
p + ε , where ε denotes a stochastic deviation about the expected
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value. Taking averages, Lx = aT 2
p . Further assuming that Tp indeed is exponentially dis-

tributed, then T 2
p = 2Tp

2, or Lx = 2aTp
2. The distribution fLx(Lx) of hop distances Lx is

then given by

fLx(Lx) =

∣∣∣∣ d
dLx

[g−1(Lx)]

∣∣∣∣ fTp [g
−1(Lx)] , (2.18)

where, neglecting the random deviation ε , the function Lx = g(Tp) = aT 2
p so that the inverse

function g−1(Lx) is Tp =
√

Lx/a. These relations then yield

fLx(Lx) =
A

2L1/2
x

e−AL1/2
x , (2.19)

where A =
√

2/Lx. This has the form of a Weibull distribution with shape parameter equal

to 1/2 and scale parameter equal to Lx/2.

Experimental evidence of statistical ensemble behavior in bed load sediment transport

by Siobhan L. Fathel, David Jon Furbish, and Mark W. Schmeeckle. ©2015 by Journal

of Geophysical Research: Earth Surface (a Wiley journal). Reproduced with “Fair Use”

permission of Wiley.
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CHAPTER 3

The Source of Anomalous Versus Normal Spreading of Bed Load Sediment Particles

3.1 Abstract

Bed load sediment transport is the basic physical ingredient of river evolution. Formu-

lae exist for estimating transport rates, but the diffusive contribution to the sediment flux,

and the associated spreading rate of tracer particles, are not clearly understood. The start-

and-stop motions of sediment particles transported as bed load on a streambed mimic as-

pects of the Einstein-Smoluchowski description of the random-walk motions of Brownian

particles. Using this touchstone description, recent work suggests the presence of anoma-

lous diffusion, where the particle spreading rate differs from the linear dependence with

time of Brownian behavior. We demonstrate that conventional measures of particle spread-

ing reveal different attributes of bed load particle behavior depending on details of the

calculation. When we view particle motions over start-and-stop timescales obtained from

high-speed (250 Hz) imaging of coarse-sand particles, high-resolution measurements re-

veal ballistic-like behavior at the shortest (10−2 s) timescale, followed by apparent anoma-

lous behavior due to correlated random walks in transition to normal diffusion (>10−1 s)

— similar to Brownian particle behavior but involving distinctly different physics. How-

ever, when treated as a ‘virtual plume’ over this timescale range, particles exhibit inho-

mogeneous diffusive behavior because both the mean and the variance of particle travel

distances increase nonlinearly with increasing travel times, a behavior that is unrelated to

anomalous diffusion or to Brownian-like behavior. Our results indicate that care is needed

in suggesting anomalous behavior when appealing to conventional measures of diffusion

formulated for ideal particle systems.
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3.2 Introduction

Bed load sediment particles entrained by a turbulent shear flow undergo a series of start-

and-stop motions involving a combination of rolling, sliding and small saltations between

successive states of rest. Because of the significance of bed load particle transport in river

science and engineering (Church and Ferguson, 2015), including aquatic ecology (Hassan

et al., 2008), numerous studies over the past century have focused on calculating bed load

transport rates (e.g., Shields, 1936; Einstein, 1950; Wilcock, 2001; Ancey et al., 2006). As

part of this continuing effort, the idea of diffusion of bed load particles has emerged as a

key element of their behavior during transport. Indeed, diffusion of bed load particles is

central in two compelling problems within sediment transport research, namely, character-

izing the spreading behavior of tracer particles in flume experiments and natural channels

(Sayre and Hubbell, 1965; Hassan et al., 1991; Nikora et al., 2002; Ganti et al., 2010;

Martin et al., 2012, 2014; Pelosi et al., 2014), and determining the contribution of bed load

particle diffusion to the sediment flux under nonuniform transport conditions (Schmeeckle

and Furbish, 2007; Furbish et al., 2012a,c; Seizilles et al., 2014).

Recent studies of the downstream spreading of bed load tracer particles (Nikora et al.,

2002; Bradley and Tucker, 2010; Ganti et al., 2010; Hill et al., 2010; Martin et al., 2012,

2014) indicate the possibility of anomalous diffusion, where the rate of particle spreading

may be slower (subdiffusion) or faster (superdiffusion) than the Gaussian spreading asso-

ciated with normal (or Brownian, or Fickian) diffusion — the touchstone description of

the behavior of Brownian particles undergoing quasi-random walk motions within a fluid

(Einstein, 1905; von Smoluchowski, 1906). The presence of anomalous versus normal dif-

fusion bears on formulations of transport rates and particle dispersion (e.g., Schumer et al.,

2009; Furbish et al., 2012b), which raises a key question: What is the physical basis for

the appearance of anomalous diffusion in bed load particle motions?

Bed load particle motions involve frequent collisions with the bed (Drake et al., 1988;

Lajeunesse et al., 2010; Roseberry et al., 2012; Fathel et al., 2015), which, together with
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effects of near-bed turbulence, produce stochastic variations in particle displacements and

velocities (Einstein, 1937, 1950; Roseberry et al., 2012; Furbish et al., 2012c; Fathel et al.,

2015). These motions mimic random-walk behavior of particles (e.g., Brownian particles)

in fluid systems. But individual bed load particle motions are brief, and involve far fewer

collisions (Roseberry et al., 2012; Fathel et al., 2015) than particles in fluid systems over

geometrically scaled timescales and distances. As a point of reference, Nikora et al. (2002)

defined three characteristic spatial and temporal scales of particle motions. A “local” scale

is defined by motions between successive particle-bed collisions and is analogous to the

ballistic regime of Brownian particles. An intermediate scale is associated with the dura-

tions and distances of particle motions between successive states of rest, herein referred

to as particle ‘hops.’ A “global” scale involves multiple particle hops and intervening rest

times.

We focus here on particle behavior associated with the local and intermediate scales,

deferring consideration of the effects of rest times that dominate particle spreading behav-

ior at long times (Martin et al., 2012; Hassan et al., 2013), and which are not reflected

within the data presented here. Our analysis involves a comparison of conventional mea-

sures of particle spreading that are based on the mean squared displacement of particles

(Einstein, 1905) and the particle velocity autocovariance (Taylor, 1922). Specifically, we

demonstrate that these measures of particle diffusion, developed for particle motions that

continue indefinitely under statistically homogeneous conditions, reveal different attributes

of bed load particle behavior depending on details of the calculation. We start by outlining

key elements of these conventional calculations of particle diffusion. We then provide an

analysis of these measures of diffusion using an unusually large, high-resolution data set

obtained from high-speed imaging of the motions of coarse sand transported as bed load

in two flume experiments (Fathel et al., 2015). We demonstrate that the start-and-stop

motions of bed load particles yield apparent signatures of anomalous as well as normal

diffusion. We suggest that the anomalous behavior may be attributed in part to the intrinsic
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periodicities of motion (Furbish et al., 2012b), and in part to the effects of a nonlinearly in-

creasing variance in hop distances with increasing travel times. Namely, the mean squared

displacement “sees” a small variance for many particles at small times and an increasing

variance about the expected travel distances for fewer particles with increasing transport

times, resulting in a behavior that appears to be anomalous. These effects are transient and

dominate spreading behavior at small times.

3.3 Three Measures of Particle Diffusion

Studies of bed load particle diffusion have appealed to three key measures, each involv-

ing a Lagrangian perspective of particle displacements. Specifically, if xp(t) denotes the

position of a particle at time t so that r(τ) = xp(t +τ)−xp(t) denotes the particle displace-

ment during an interval τ , then the Einstein-Smoluchowski equation as originally applied

to Brownian particle motion in one dimension is

2κxτ = 〈[r(τ)−〈r(τ)〉]2〉= Rx(τ) , (3.1)

where κx is the particle diffusivity and the angle brackets denote averaging over all dis-

placements during τ calculated for an individual particle or for a group of particles. This

indicates that the mean squared displacement Rx(τ) increases linearly with the time interval

τ for sufficiently large τ (Einstein, 1905). More generally we may write Rx(τ)∼ τa, where

0 < a < 1 indicates subdiffusion, 1 < a < 2 indicates superdiffusion, and the special case

of a = 2 coincides with ballistic behavior at small τ (Huang et al., 2011). For reference

below we refer to (1) as an ensemble calculation of Rx(τ).

A second measure treats the sediment motions as a virtual plume of tracer particles

starting from the same position xp(0) = 0 at time t = 0, namely,

Rx(t) = 〈[xp(t)−〈xp(t)〉]2〉. (3.2)
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where now the angle brackets denote averaging over the group of particles (Nikora et al.,

2002; Bialik et al., 2012, 2015). To be clear, whereas the mean squared displacement

using (1) involves averaging over all paired coordinate positions separated by the interval τ

without regard to starting time, the mean squared displacement using (2) involves averaging

over a group of particles at time t rather than over paired coordinate positions. We refer to

(2) as a tracer calculation of Rx(t).

A third measure is provided by G. I. Taylor’s description of the behavior of continuous

particle motions in a homogeneous turbulent flow (Taylor, 1922), although it is entirely

relevant to Brownian-like particle motions, and is based on the autocovariance of particle

velocities. Imagine a tracer particle with small Stokes number moving with the fluid. Let-

ting u′p(t) = up(t)− up denote a deviation about the average streamwise particle velocity

up, then for a sampling interval Ts the velocity autocovariance is

C(τ) =
1

Ts− τ

∫ Ts−τ

0
u′p(t)u

′
p(t + τ)dt . (3.3)

When τ = 0, the autocovariance equals the variance of the streamwise velocity up, that

is, C(0) = σ2
up

. The autocorrelation is Ax(τ) = C(τ)/C(0) = C(τ)/σ2
up

. In turn, the La-

grangian integral timescale is τL =
∫

∞

0 Ax(τ)dt, which is a measure of persistence within

the velocity signal. If the integral converges such that τL is finite, then particle spreading

becomes Fickian at t ≥ τL with diffusivity κx = 2σ2
up

τL. The absence of convergence indi-

cates superdiffusive behavior. The autocovariance (3) can be generalized for many particle

motions (Furbish et al., 2012a), and represents an ensemble calculation for all paired ob-

servations separated by τ , regardless of starting times. This calculation is consistent with

the description of the mean squared displacement Rx(τ) embodied in (3.1).

Einstein, von Smoluchowski and Taylor were quite clear that their measures of parti-

cle diffusion describe the statistically expected spreading of an individual particle whose

motion continues indefinitely, and whose behavior is fully representative of ensemble be-
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havior, including the associated property of time invariance. By this we mean the following.

The mean squared displacement Rx(τ) and the velocity autocorrelation function Ax(τ) cal-

culated for an individual particle are the same as those calculated for any other identical

particle and surrounding fluid. Moreover, if we imagine setting t = 0 at any instant in the

random-walk lifetime of a particle, its statistically expected spreading behavior measured

from any such instant is the same. For these reasons the measures (1) and (2) yield iden-

tical results for particles subjected to statically homogeneous, time invariant conditions.

Formally, the joint probability density function fxp(t),xp(t+τ)[xp(t),xp(t + τ)] is invariant

with respect to an arbitrary translation in time t for all intervals τ . Moreover, the joint

probability density function fu′p(t),u′p(t+τ)[u′p(t),u
′
p(t + τ)] also is invariant with respect to a

translation in time t for all τ .

This behavior of a Brownian-like particle is quite different from the expected behavior

of bed load sediment particles that start and stop during transport. The expected spreading

behavior of an individual bed load particle varies during its random-walk lifetime, and this

behavior also varies from one particle to the next. That is, the statistically expected behavior

of an individual bed load particle is rarely the same as that of any other particle nor that

of the ensemble, and it is not time invariant. As a consequence, the previous measures of

spreading, (1) and (2), reveal different elements of diffusive particle behavior; and (1) and

(3) reveal key differences between individual and collective particle behavior. We elaborate

these points after describing our experimental measurements.

3.4 Methods and Measurements

Advances in measurement techniques centered on imaging are providing increased res-

olution of sediment particle motions in flume studies (Lajeunesse et al., 2010; Roseberry

et al., 2012; Martin et al., 2012; Radice et al., 2013; Campagnol et al., 2013; Heyman,

2014; Ancey and Heyman, 2014). Here we describe measurements from high-speed (250

Hz) imaging of coarse sand (D50 = 0.05 cm) transported as bed load under equilibrium
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conditions in two flume experiments conducted in a 8.5 m × 0.3 m recirculating flume

in the River Dynamics Laboratory at Arizona State University. The high-speed imagery

captures an area of the sediment bed that is 7.57 cm long (streamwise) and 6.05 cm wide

(cross-stream), with a corresponding resolution of 1280 × 1024 pixels (see Supplementary

Material, Movie S1 and S2 to view imagery). Flow conditions in both experiments were

fully turbulent with Reynolds numbers of approximately 9.3 × 104 (Run 1) and 1.2 × 105

(Run 2), and Froude numbers of 0.30 and 0.37 (Table 1). The experimental conditions in

Run 1 Run 2
Run Time (s) 5.0 2.0
Flow Depth (cm) 12.5 10.3
Velocity at 1 cm (cm/s) 31.0 36.7
Reynolds Number 9.3 × 104 1.2 × 105

Froude Number 0.30 0.37
Shear Velocity (cm/s) 2.0 2.4
Mean Particle Velocity (cm/s) 4.4 5.6
Mean ‘Hop’ Length Lx(cm) 0.79 0.37
Max ‘Hop’ Length (cm) 7.1 6.0
Mean Travel Time Tp (s) 0.12 0.16
Max Travel Time (cm) 1.3 1.1

Table 3.1: Summary of experimental conditions and particle measurements in Run 1 and
Run 2. Note that the mean fluid velocity is recorded 1 cm above the bed using an acoustic
Doppler velocimeter.

these two runs are similar, although the particle activity (the number of particles in motion

per unit streambed area) in Run 2 is on average approximately 250% higher than in Run 1.

Particle tracking was performed using the open-source software ImageJ. This involved

marking the centroid of each particle as it moves through successive frames. We manually

tracked particle motions, frame-by-frame, in each experiment. Approximately 95% of the

particles in motion were tracked; the 5% of particles that were not tracked either left the

field early or proved too difficult to follow through the course of the video. For Run 1 we

measured more than 150,000 particle coordinate positions involving more than 10,000 ac-

tive particles during 5 seconds, and nearly 170,000 positions in Run 2 involving more than

11,000 active particles during 2 seconds. We also identified approximately 4,000 complete
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hops (measured start-to-stop) in Run 1 and approximately 3,500 hops in Run 2. Particles

were tracked only after they began to move. We did not track the motions of particles that

“wiggled” back and forth within their pockets but otherwise did not move or hop. Indi-

vidual hops were measured from incipient motion to a stopped position such that both the

streamwise and cross-stream velocities are zero. All particles were manually tracked by

one individual to maintain consistency. This manual, time-intensive measurement tech-

nique yields sub-pixel resolution measurements and provides high fidelity characterization

of particle motions, notably including measurements of small motions which dominate the

probability distributions of particle velocities, hop distances and associated travel times

(Fathel et al., 2015).

3.5 Diffusive Nature of Individual Particles

With reference to our high-resolution measurements of particle motions, the behavior

of an individual particle as measured by its mean squared displacement Rx(τ) using (1)

(Fig. 3.1) and its velocity autocorrelation function Ax(τ) (see Supplementary Material

for examples) is distinct, unlike any other particle or the ensemble behavior (described

below). The basic source of this result resides in the fact that particle travel times are too

short for the stochastic signature of individual particle-fluid and particle-bed interactions to

become statistically similar to those of other particles. These calculations moreover reveal

the inherent periodicities of start-and-stop motions (Furbish et al., 2012b).

Specifically, Rx(τ) for an individual particle reflects the effect of the dominant harmonic

in its motion. By definition these hops start from rest, then stop, with a peak velocity in

between. So regardless of how the velocity varies during the hop, at a basic level the hop

possesses a fundamental harmonic, often the dominant harmonic. Indeed, Furbish et al.

(Furbish et al., 2012b) show that the shape of the function Rx(τ) is well described by the

mean squared displacement calculated for a single sinusoid having period T and amplitude

A coinciding with the dominant harmonic. The mean squared displacement for an individ-
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Figure 3.1: Plot of calculated (filled circles) and theoretical (solid lines) values of the mean
squared displacement Rx(τ) versus time interval τ for individual particle motions in Run
1 whose dominant harmonics have periods T = Tp and amplitudes A, where ballistic-like
regime is given by (2π2A2/T 2)τ2. The short-dashed red line possesses a log-log slope of
2, whereas the long-dashed blue line has a log-log slope equal to 1. Figure modified from
(Furbish et al., 2012b). Copyright ©2012. American Geophysical Union.
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ual particle thus characteristically shows ballistic-like behavior (a = 2) at small τ given by

(2π2A2/T 2)τ2, followed by a declining slope (1≤ a≤ 2) with increasing τ (Fig. 3.1). The

value of Rx(τ) in (1) peaks and thereafter declines toward zero as a consequence of the finite

travel time Tp, that is, as the interval τ → Tp, where (1) must equal zero when τ = Tp. The

ballistic-like behavior reflects that particle velocities are approximately constant over small

τ , likely representing a characteristic interval between particle-bed collisions (Nikora et al.,

2002). But with strong particle-fluid coupling with small Stokes number, this is not true

ballistic behavior in the sense of a Brownian particle moving through a vacuum between

successive collisions. It is for this reason that we refer to the behavior Rx ∼ τ2 associated

with a bed load particle as being “ballistic-like” rather than ballistic (Furbish et al., 2012b).

Moreover, the declining slope over the range 2 < a < 1 then over 1 < a < 0 before the peak

value of Rx(τ) reflects that particle motion is essentially a correlated random walk. Like a

Brownian particle this is a transitional behavior; it does not represent anomalous diffusion,

as it is not an emergent, time-invariant behavior. But unlike a Brownian particle, it is not

attributable to inertial effects.

In comparison, experiments (Li et al., 2010; Huang et al., 2011) reveal that the form of

Rx(τ) for a Brownian particle is similar to that above, including the ballistic regime (a = 2)

described by (kBT/m∗)τ2, where kB is Boltzmann’s constant, T is temperature and m∗ is

the effective particle mass, followed by an inertially influenced transition (1 < a < 2) to the

normal regime (a→ 1). In these experiments the peak and the decline to zero as τ → Ts

observed with sediment particles is replaced with a plateau in Rx(τ) due to effects of the

optical trap used to contain the Brownian particle (Huang et al., 2011).

3.6 Calculations for Groups of Particles Reveal both Normal and Inhomogeneous

Diffusion

We use both (1) and (2) to calculate the mean squared displacement for groups of par-

ticles. In the first case, because the ensemble calculation (1) averages over all paired co-
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ordinate positions (for all particle motions) associated with the interval τ (Furbish et al.,

2012b; Martin et al., 2012), we are not concerned with when particles start and stop. We

thus include all tracked particle motions, rather than just completed hops. In the second

case, because the tracer calculation (2) treats the particles as a virtual plume, averaging

over all particles (rather than all paired coordinate positions), the starting position xp(0)

and time t = 0 matter. We thus include only completed hops, treating these particles as

tracers.

The ensemble calculation of Rx(τ) involving all motions reveals ballistic-like behav-

ior at small τ , similar to the plots of Rx(τ) for individual particles (Fig. 3.2). Then, over

small to intermediate τ , the exponent a > 1 suggests an apparent superdiffusive behavior.

The slope of Rx(τ) then declines and approaches a = 1 with increasing τ , indicating nor-

mal diffusive behavior. Finally, similar to the plot of Rx(τ) for individual particles, Rx(τ)

reaches a peak then declines towards zero with increasing τ , as the sample size of paired

observations also decreases with increasing τ .

The apparent superdiffusive behavior (a >1) represents the collective effect of corre-

lated (sinusoidal) random walks of the many particles included in the calculation of Rx(τ),

which then become increasingly randomized by brief, rapid accelerations due to particle-

fluid and particle-bed interactions (Furbish et al., 2012b). As the motions become increas-

ingly randomized through longer travel times, they tend towards normal diffusion (a = 1).

The slope of Rx(τ) from Run 2 approaches Fickian diffusion more quickly than Run 1,

highlighted by the fitted lines in Figure 3.2. This is likely due to the higher activity in

Run 2, wherein moving particles have increased interactions with the bed and other active

particles. Importantly, for comparison the ensemble calculation of Rx(τ) using only those

particles completing full hops (start-to-stop) yields virtually identical results (Fig. 3.2).

This is expected, as these hops represent a sample of all possible motions.

In contrast, by treating these full hops as tracer particles, the tracer calculation (2) of

Rx(t) yields both apparent superdiffusive (Run 1) and apparent super-ballistic (Run 2) be-
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Figure 3.2: Plot of the mean squared displacement Rx(τ) versus the time interval τ for all
particles motions within Run 1 (black circles) and Run 2 (light gray circles), and for all
complete hops within Run 1 (dark gray triangles) and Run 2 (white triangles). The short-
dashed red line possesses a log-log slope of 2, whereas the long-dashed blue line has a
log-log slope equal to 1.
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Figure 3.3: Plot of the mean squared displacement Rx(t) versus time t for all complete hops
within Run 1 (black circles) and Run 2 (gray circles). Here, the dotted-dashed purple line
has a log-log slope equal to 4, the short-dashed red line possesses a log-log slope of 2, and
the long-dashed blue line has a log-log slope equal to 1.
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haviors (Fig. 3.3). The essential reason for this apparent anomalous behavior resides in the

joint probability distribution of hop distances Lx and associated travel times Tp (Supplemen-

tary Material, Figures S2-S3). Specifically, experimental data and dimensional analysis

(Fathel et al., 2015; Furbish et al., 2016a) suggest that

Lx = axT 2
p + ε, (3.4)

where ax [L T−2] is a characteristic acceleration and ε denotes a stochastic deviation

about the expected hop distance. Importantly, the deviation ε is heteroscedastic in arith-

metic space involving an increase in the variance about the expected hop distance with

increasing travel times (Supplementary Material, Figure S2), whereas it is approximately

homoscedastic in log-log space such that the variance about the expected hop distance is

uniform with increasing travel times (Supplementary Material, Figure S3). This means that

the local variance in hop distance for a given travel time, denoted as Vε , increases with Tp

as

Vε(Tp)∼ T b
p , (3.5)

with exponent b > 1 (Supplementary Material). Indeed, b ≈ 3 (Fig. 3.4), which is con-

sistent with values reported by Campagnol et al. (2015). This result influences the mean

squared displacement Rx(t) as follows.

Particle hops in both experiments are distributed as a Weibull distribution with shape

parameter k < 1, such that the majority of hops involve short displacements (Fathel et al.,

2015). Whereas there is not a direct correspondence between Rx(t) and Vε(Tp) for t = Tp,

this correspondence is exact for the subset of particles that come to rest within an interval

Tp to Tp + dTp. Moreover, particles that move beyond this interval (eventually stopping

at longer total travel times) are likely distributed in a manner at t = Tp that is similar to

those particles stopping within this interval. We may thus assume that Rx(t) ∼ Vε(Tp) for

t = Tp. This means that at small times the tracer calculation of Rx(t) on average “sees”
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Figure 3.4: Plot of the local variance in hop distances Vε versus travel time Tp for Run 1
(black circles) and Run 2 (gray circles). The variance Vε is calculated for arithmetic values
of hop distances within equally spaced bins (log values) of travel times Tp.
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a small variance about the expected travel distance from many particles. With increasing

time this calculation sees an increasing variance about the expected distance dominated by

fewer particles with larger travel times. The tracer calculation therefore reflects the be-

havior of mostly short hops (and the early stages of longer hops) at small times, and the

behavior of increasingly longer hops with increasingly larger times. This behavior is sta-

tistically inhomogeneous and time dependent. Moreover, the calculated average displace-

ment, which increases nonlinearly with time, is associated with an expected time-average

velocity 〈Lx/Tp〉 that also increases with time. This is not an average velocity in the sense

of a uniform mean motion with superimposed, homogeneous diffusion. For these reasons

the behavior represented in Figure 3.3 represents inhomogeneous diffusion, not anomalous

diffusion.

3.7 Velocity Autocorrelations Show Normal Diffusion

The ensemble calculation of the autocorrelation function A(τ) involves all paired ve-

locity values (for all particle motions) separated by the interval τ , and therefore is the same

for pooled motions and for particles completing full hops (Fig. 3.5). Numerical integration

of the functions Ax(τ) reveals rapid convergence to fixed timescales for these experiments.

However, contrary to previous assertions (Furbish et al., 2012b; Fathel et al., 2015), we

cannot use these integrations to provide a Lagrangian timescale as Taylor intended. In both

runs the lag-one value of Ax(τ) is substantially less than one, and the second and higher

lags then decay exponentially more slowly than what would be anticipated based on the

lag-one value. This behavior also appears in similar data (Martin et al., 2012) and in calcu-

lations of Ax(τ) for individual particles. It represents an unstructured noise in the velocity

signals of individual particles, which may in part be associated with the limits of image

resolution. It also is the signature of a mixture of velocity signals with different covariance

structures (and degrees of persistence), reflecting the point made above, that particle travel

times are too short for the stochastic structure associated with individual particles to be-
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come statistically similar to those of others. Moreover, values of Ax(τ) with increasing lag

τ are increasingly represented by fewer particles with travel times Tp ≥ τ . The significance

of these functions therefore is that their convergence is consistent with a normal diffusive

behavior, that is, lacking any long-term memory in collective velocity behavior — a result

that cannot be readily inferred from the autocorrelation functions of individual particles.

Figure 3.5: Plot of the particle velocity autocorrelation function Ax(τ) for Run 1 (black
circles) and Run 2 (gray circles), with inset showing exponential decay after first lag.

3.8 Conclusions: Parsing the Different Diffusive Behaviors

In the context of the tracer calculation of Rx(t), the longest travel times are approxi-

mately 1.2 s, and the mean travel times are 0.12 s (Run 1) and 0.16 s (Run 2). Therefore,
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we suspect that apparent anomalous behavior represents a small proportion of the total du-

ration of particle spreading that occurs within a flume experiment or natural system. In our

experiments, apparent anomalous diffusion at the intermediate timescale of particle hops is

a brief transition behavior preceding the onset of effects of rest times on the spreading of a

plume of particles, for which there is reason and experimental evidence to expect emergent

anomalous behavior (Martin et al., 2012).

Because the ensemble calculation of Rx(τ) is based on all paired coordinate positions

associated with intervals τ without reference to when the motions started, this calculation is

appropriate for describing particle diffusion in relation to the particle flux. Envision a cloud

of particles which are moving with varying velocities through a surface A normal to the x

axis under conditions of steady transport. For sufficiently large A, the particles intersecting

this surface at time t represent a sample of all velocity states in proportion to all stages

of motion during hops, whether these involve (mostly) short or long travel times. That

is, these particles at any instant represent the ensemble distribution of particle velocities

for given sediment and macroscopic flow conditions. The ensemble calculation of Rx thus

provides a measure of the rate of particle spreading within the vicinity of A. From Figure

3.2 where the slope a = 1, the pooled data give κx equal to 0.71 cm2 s−1 (Run 1) and 1.37

cm2 s−1 (Run 2).

Inhomogeneous diffusion indeed represents the spreading of tracer particles, and whereas

the mean squared displacement has the signature of anomalous diffusion, this behavior is

not anomalous diffusion as normally envisioned. It is a consequence of the tracer cal-

culation of Rx, which start all full hops at the same time and averages over particle dis-

placements rather than all paired observations separated by the interval τ as is done in

the ensemble calculation. The behavior of particle spreading differs in these calculations,

such that the apparent superdiffusive (Run 1) and apparent super-ballistic behaviors (Run

2) reveal the nonlinear rate of increase in the local variance of particles displacements as

reflected in the ‘static’ distribution of hop distances Lx versus travel times Tp.
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The data presented here are specific to our experimental conditions. Details of the

statistical behavior of bed load particles will change with different sediment and flow con-

ditions. Thus, there is a pressing need to improve automated particle tracking techniques

that provide high fidelity measurements of the small particle displacements and velocities

that dominate bed load particle motions (Fathel et al., 2015) in order to explore a wider

range of sediment and flow conditions. Meanwhile, the key ideas presented here are trans-

ferable to other conditions, as bed load particle motions share common attributes that are

strongly manifest in the calculations of particle spreading, most notably their start-and-

stop behavior in response to particle-fluid and particle-bed interactions, and the statistical

inhomogeneity amongst particle motions over start-and-stop timescales. Moreover, parti-

cles in other complex natural systems may similarly exhibit start-and-stop motions that are

statistically inhomogeneous, likely including biotic ‘particles’ (Viswanathan et al., 2005;

de Jager et al., 2014). Our analysis indicates that care is needed in suggesting anoma-

lous behavior when appealing to conventional measures of diffusion formulated for ideal

particle systems. Despite the similarity between the behavior of sediment and Brownian

particles as measured by the ensemble calculation of the mean squared displacement Rx(τ),

the ballistic-like behavior, followed by apparent anomalous behavior due to correlated ran-

dom walks in transition to normal diffusion, involves distinctly different physics between

these systems.

Parsing anomalous versus normal diffusive behavior of bed load sediment particles by

Siobhan L. Fathel, David Jon Furbish, and Mark W. Schmeeckle. ©2016 by Earth Surface

Processes and Landforms (a Wiley journal). Reproduced with “Fair Use” permission of

Wiley Journal.
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CHAPTER 4

Experimental Exploration of Elements of Sediment Entrainment and

Disentrainment

4.1 Abstract

Detailed measurements of individual sand grains moving on a streambed allow us to ob-

tain a deeper understanding of the characteristics of incipient motion and evaluate spatial

and temporal patterns of particle entrainment. We use bed load particle motions measured

from high-speed imaging (250 Hz) of uniform, coarse grained sand from two flume exper-

iments, which have different mean fluid velocities near the bed. Particle tracking reveals

more than 6,000 entrainment events in 5 seconds (Run 1) and over 5,000 events in 2 sec-

onds (Run 2). We manually track particles from entrainment to either disentrainment or

until the particle leaves the frame. Within these experiments we find that over 90% of all

initial motions contain a cross-stream component of motion where approximately a third of

the motions may be cross-stream dominated, and furthermore, up to 7% of the motions may

be negative (i.e., move backwards). We propose that the variability in the direction of initial

motion is, in part, a product of the bed microtopography, where we find that with increasing

mean fluid velocity, the initial motion of the sand particles are less sensitive to bed topog-

raphy, and are more likely to be dominated by fluid forces. The high resolution of this data

set, containing positions of particles measured start-to-stop, allows us to examine the distri-

butions of particle rest times (the duration of time between the disentrainment of a particle

and the reentrainment of that particle) and particle wait times (the duration of time between

successive particle motions in an area). Our examination of particle rest times reveals a

distribution that is distinctly not exponential and provides a clear example of experimental

censorship. The distribution of wait times indicates an intermittency in sediment transport.

Analysis of simultaneous measurements of near-bed fluid velocities and particle motions
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in Run 2 indicate that fluid velocities are not necessarily higher near entrainment events.

These results suggest the connection between the fluid and particle entrainment is complex

and will require a clearer understanding of the factors that jointly influence entrainment at

the particle scale. Our work suggests that the probability of entrainment likely depends on

physical factors such as bed microtopography and the magnitude of the fluid velocity, in

addition to varying with space and time scales.

4.2 Introduction

4.2.1 Key Elements of Bed Load Transport

Recent probabilistic formulations of bed load sediment transport and the spreading be-

havior of tracer particles in flumes and natural channels have focused on the entrainment

form of the Exner equation (Parker et al., 2000b; Ganti et al., 2010; Furbish et al., 2012a,

2016b; Pelosi et al., 2014) in which the local rate of change in streambed elevation or tracer

concentration is expressed as the difference between the rate of particle entrainment and the

rate of deposition (Tsujimoto, 1978). The rate of deposition, in turn, may be expressed as a

convolution of the upstream entrainment rate, modulated by the distribution of particle hop

distances (Furbish et al., 2012a; Parker et al., 2000b). As a general probabilistic descrip-

tion of conservation, this form of the Exner equation explicitly accounts for the motions

of all particles (including tracer particles), and its use therefore is particularly appealing in

studies of both streambed morphodynamics and the spreading behavior of tracer particles

(Furbish et al., 2016a, b; Pelosi et al., 2013), notably involving coarse-sediment rivers in

which sediment transport predominantly occurs as bed load close to threshold (e.g., Pitlick

and Cross, 2002; Mueller et al., 2005; Phillips and Jerolmack, 2016), where rarefied con-

ditions likely are the norm.

The central elements of the entrainment form of the Exner equation include the volu-

metric entrainment rate and the distribution of particle hop distances measured start-to-stop.
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When formulated specifically to describe the motions of tracer particles, key elements also

include particle rest times between successive motions. Until recently, these elements of

particle motions have been described based on experimental measurements of transport

involving limited resolution, or their properties (e.g., the forms and moments of the dis-

tributions of hop distances and rest times) have been based on limited data, or assumed

(Furbish et al., 2016a). This has had the effect of limiting efforts to more fully develop

and constrain theoretical treatments of transport. For example, starting with the early work

of Einstein (1937), researchers have examined the consequences of various forms of the

distributions of hop distances on morphodynamic behavior and tracer particle spreading

(Hubble and Sayre, 1964; Sayre and Hubble, 1965; Yang and Sayre, 1971; Bradley et al.,

2010; Bradley and Tucker, 2012), but this is limited to comparing the spreading behavior of

tracer particles with predicted behavior predicated on the assumed distribution. Recently,

however, experimental methods, centered on high-speed imaging of both particles and fluid

motions (e.g. Martin et al., 2012; Radice et al., 2013; Houssais et al., 2015; Fathel et al.,

2015, 2016), are providing the opportunity describe details of the motions of particles trans-

ported as bed load. For example, these methods have led to recent advances in clarifying

the distributions of hop distances and associated travel times (Martin et al., 2012; Ancey

and Heyman, 2014; Heyman et al., 2013; Fathel et al., 2015; Furbish et al., 2016a), al-

though little work has been focused on direct measurements of rest times and wait times.

In addition, these methods are capable of revealing details that suggest elements of the

physics of entrainment and disentrainment in relation to fluid motions, thereby providing

the opportunity to gain a deeper mechanical understanding of these quantities, and move

beyond semi-empirical formulations of entrainment and disentrainment, and other features

of particle motions that influence particle spreading.

With respect to particle entrainment, the “initial motion problem” centered on sediment

particles has been a focus of study for many years (e.g., DuBoys, 1879; Komar and Li,

1986; Bridge and Bennett, 1992; Buffington and Montgomery, 1997; Papanicolaou et al.,
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2001). At a macroscopic scale larger than the particle scale, the volumetric entrainment

rate E typically has been expressed as a semi-empirical function of the shear velocity u∗ or

the bed stress τb = ρu2
∗, where ρ is the fluid density. Early formulations are represented by

those of Einstein (1950), Fernandez Luque (1974), Fernandez Luque and van Beek (1976),

Yalin (1977) and Nakagawa and Tsujimoto (1976, 1980), and have been elaborated more

recently by, for example, Seminara et al. (2002) and Parker et al. (2000a). These formula-

tions mostly suggest that E ∼ (τb−τc)
3/2, where τc is a critical stress required for initiation

of particle motion. Furthermore, studies have also shown that a variety of factors may in-

fluence initial motion, such as grain protrusion and exposure (Fenton and Abbott, 1977;

Raudkivi and Ettema, 1982), friction angle (Buffington and Dietrich, 1992), bed packing

(Church, 1977), and bed relief (Laronne and Carson, 1976) among others. Although we

recognize the influence of these factors on incipient motion and understand the general

stress conditions required to mobilize sediment (Shields, 1936), predicting initial sediment

motions often proves to be more difficult (Buffington and Montgomery, 1997). In general,

bed load transport equations tend to perform well only under specific conditions (Gomez

and Church, 1989), and often errors are substantial such that transport rates are overesti-

mated by several orders of magnitude (e.g Yager et al., 2007; Rickenmann, 2001; Recking,

2012).

In addition to the factors influencing the incipient motion of particles, predicting bed

load sediment entrainment likely will require a better understanding of near-bed fluid tur-

bulence. Studies have shown that turbulence is related to bed load sediment transport (e.g.,

Sumer et al., 2003) and now researchers often include turbulence within models of incip-

ient particle motions (e.g., Zanke, 2003; Vollmer and Kleinhans, 2007). Researchers have

also demonstrated the existence of coherent turbulence structures which span scales from

small near-bed eddies to structures occupying the entire flow depth (e.g., Grass, 1971; Nezu

et al., 1994; Dwivedi et al., 2010). It has been suggested that these structures play a key

role in sediment entrainment and transport (e.g., Grass, 1970; Jackson, 1976; Drake et al.,
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1988; Mazumder, 2000). The coupling between turbulent structures and bed load sediment

motions is frequently mentioned in research on this topic, and is thought to be important to

bedform initiation (e.g., Nelson et al., 1995; Nikora et al., 2002; Lajeunesse et al., 2010;

Singh et al., 2012; Bialik, 2013). Yet, despite the suggested importance of turbulence struc-

tures, direct observations of coupled fluid and sediment motions are sparse.

With respect to the spreading behavior of tracer particles, early work envisioned this

problem as involving motions of particles only over the bed surface or confined within a

thin “active layer” (Hirano, 1971; Parker, 1991), where particle hops are separated by rest

times with a well-defined probability distribution. Like treatments of the hop distances,

this early work was largely limited to exploring the consequences of assumed forms of

the distribution of rest times for comparison with experiments (e.g. Bialik et al., 2015).

In addition, recent theoretical and experimental evidence has emerged suggesting that the

idea of a thin active layer is an over-simplification (Parker et al., 2000b; Furbish et al.,

2012a, 2016b), and that lengthened rest times associated with particle exchanges with the

streambed can have a strong influence on the downstream spreading of tracer particles as

well as overall particle residence times (Hassan et al., 2013; Voepel et al., 2013).

Within this context, achieving a clearer understanding of the transport and spreading

behavior of bed load particles and tracers requires a more detailed description of key fea-

tures associated with the processes of particle entrainment and disentrainment. Particle

entrainment, together with wait times between successive entrainment events, determines

the intensity of transport. Particle disentrainment determines the distance that particles

move following entrainment, that is, the distribution of hop distances, and together with

intervening rest times, influences the virtual velocity and spreading of tracer particles.

The processes of entrainment and disentraiment, however, involve more than ‘starting’ and

‘stopping.’ As outlined next, we are aimed at describing details of particle behavior that

may reveal important aspects of the mechanical behavior of particles during entrainment

and disentrainment, as well as provide guidance concerning limitations of experimental
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measurements of particle rest times.

4.2.2 Objectives

The purpose of this paper is to provide details of particle behaviors pertinent to the

processes of bed load sediment entrainment and disentrainment. We begin by addressing

factors that specifically concern particle entrainment: a description of the initial direction

of particle motions, the spatial distribution of entrainment, and connections between the

near-bed fluid and sediment entrainment. We then turn to the distribution of wait times

between entrainment events, which informs the transport intensity. Finally we address

the problem of particle rest times, or the durations of time between entrainment events

for a single particle, which, although a consequence of disentrainment rather than being

a part of disentrainment, bears importantly on the spreading behavior of tracer particles.

To investigate each of these factors, we utilize precise measurements of particle motions

and fluid velocities obtained from two different flume experiments: Run 1 and Run 2. The

details of these experiments can be found in the following section. In the remainder of this

section, we provide information concerning each of our objectives and place them within

the context of the larger problem of sediment entrainment and disentrainment.

In Section 4.4, we use detailed measurements of particle motions to evaluate the dis-

tribution of angles and magnitudes of the first motion of a particle. Microtopography in

stream beds has been analyzed in various studies, wherein researchers have shown that

cluster microforms, which stand above an otherwise planar bed, effectively shield particles

and lower the probability of entrainment (Laronne and Carson, 1976; Brayshaw, 1985).

While this process has been noted in both natural systems (Dunkerley, 1990) and experi-

mental work (Church et al., 1998), generally microtopography is not considered to have a

substantial consequence on particle entrainment on the grain-size scale. Yet, our measure-

ments of initial particle motions from Run 1 and 2 suggest that microtopography influences

the direction and magnitude of initial sediment motions and therefore may also provide a
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certain amount of shielding to particle motions.

Section 4.5 provides an analysis of the spatial distribution of entrainment using a near-

est neighbor analysis to determine if entrained particles are clustered, uniformly distributed,

or dispersed. Previous studies have indicated a patchiness in spatial entrainment associated

with selective entrainment and deposition controlled by the mean diameter of local sedi-

ment (e.g., Paola and Seal, 1995). Furthermore, Powell and Ashworth (1995) show that

variations in bed structure and stability can lead to spatial variability in entrainment. In ad-

dition, micro-bedforms (as described above) can create areas of preferential entrainment.

While this has been a topic of study, the majority of data available analyzes the distribution

of entrainment on the reach scale, and often involves a heterogeneous mixture of grain-

sizes and persistent bedforms. The scale and nature of these studies differ from this study.

Here, we find that entrainment positions are highly clustered, especially when considering

particle positions from large groups of frames. We suspect that the clustered nature of en-

trainment may be a product of microtopography and collective entrainment, where resting

particles may be activated by moving particles which can interact directly (collision) or

indirectly (wake effect, advection of turbulent structure) to entrain particles (Ancey et al.,

2008; Ancey, 2010).

Within Section 4.6, we begin to analyze the complex relationship between the near-

bed fluid velocities and newly activated particles. Here we use a combination of particle

tracking measurements taken from Run 2 along with near-bed fluid velocity measurements

obtained from particle image velocimetry, which allows us to gain a better understanding

of fluid controls on incipient motion. These simultaneous measurements provide an initial

step towards describing the dynamic relationship between the fluid and particle entrain-

ment. Correlating the fluid velocities and the initiation of sediment transport may seem

simple, but properly delineating this relationship is likely more complex. Section 4.6 is

separated into two subsections which analyze correlations between near-bed fluid veloci-

ties and entrained particles by utilizing two different methods. First we apply an Eulerian a
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priori method, where we grid the analyzed area and compare the fluid velocity time series

to the time series of entrainment events within each grid. We progressively increase the size

of the grids and monitor the correlation between the time series. In the second subsection,

we take an a posteriori method, such that we focus on the fluid velocities in the vicinity of

entrained particles, both at the moment of entrainment and prior to the initiation of motion.

Each of these methods provides us with a direct look at interactions between the fluid and

particle motions. The results of both methods, perhaps surprisingly, do not indicate a strong

correlation between the nearby fluid velocities and locations of entrainment.

In Section 4.7, we consider particle wait times Tw. The distinction here between a wait

time and rest time is that a wait time is defined as the time elapsed between successive

particle motions in an area, rather than looking at an individual particle. Importantly, the

distribution of wait times informs the intensity of transport, as it measures the frequency

of entrainment events over a given area. Furthermore, if sediment entrainment is a Pois-

son process, wherein particles are entrained only when the fluid-derived forces acting on a

stationary particle exceed the resisting force and there is no collective entrainment, the dis-

tribution of wait times should be exponentially distributed (e.g. Ancey et al., 2008; Bradley

and Tucker, 2012). Ancey et al. (2008) proposed a “birth-death” Markov model, where

the number of particles in motion can be entrained due to water effects and interaction

with moving particles (i.e. collective entrainment). Within this model, an estimate of the

wait time between entrainment events is required, but often these values are estimated from

hop distances and travel times or are assumed, rather than being obtained from direct mea-

surements (Ancey et al., 2008; Ancey, 2010; Turowski, 2010). Our work provides a direct,

albeit limited, measurement of the wait time distribution, which provides a step towards

understanding the nature of the bed load transport.

Section 4.8 illustrates and examines the distribution of particle rest time Tr measured in

Run 1 and Run 2. Here, we define a rest time as the duration of time elapsed between the

disentrainment of a particle and the rentrainment of that particle. Bed load sediment trans-
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port involves the movements of individual grains. These particle motions are discrete and

are comprised of a series of particle ‘hops’ consisting of brief active periods separated by

periods of rest (e.g., Einstein, 1937; Hassan et al., 1991; Lajeunesse et al., 2010; Roseberry

et al., 2012; Fathel et al., 2015). Therefore, to properly define entrainment and, more gen-

erally, bed load transport, we must also gain an understanding of these rest periods. Many

probabilistic models of bed load transport consider particle velocities, hop times (continu-

ous periods of motion), rest times (continuous periods of inactivity), and rates of entrain-

ment and disentrainment (e.g., Nikora et al., 2002; Lajeunesse et al., 2010; Furbish et al.,

2012a; Furbish and Schmeeckle, 2013). While new measurement techniques, including

high speed imaging, are providing an unprecedented opportunity to observe and measure

particle motions, information on the nature of rest times is limited. As summarized by Bia-

lik et al. (2015), available data indicate that this distribution is either exponential (Einstein,

1937, 1950; Habersack, 2001) or may take the form of a power law if deposited particles

are buried by other particles (Martin et al., 2012, 2014; Voepel et al., 2013). Here lies a

distinct problem: Governing partial differential equations for sediment transport are highly

responsive to heavy-versus light-tailed rest times distributions. For example, the commonly

used advection-diffusion equation, which describes a diffusive change in particle concen-

tration with time as a function of average velocity and spread around that average, is only

valid for light-tailed particle rest times (Ganti et al., 2010; Hassan et al., 2013). Addi-

tionally, Nikora et al. (2002) suggest that anomalous diffusion on intermediate to global

timescales may arise from rest periods with a heavy tail. The tail (either light or heavy) of

the rest time distribution acts as a control over diffusion, such that if particle rest times are

heavy tailed, then the dynamics of rest times should dominate the dispersive behavior of

particles (Martin et al., 2012; Hassan et al., 2013; Voepel et al., 2013).

Another clear implication of the form of the rest time distribution deals with inconsis-

tencies in the conceptualization of bed load discharge. More specifically, Einstein (1937)

considered bed load transport as a compound Poisson process which is comprised of short
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periods of motion of random distances with intervening rest periods of random length.

Consistent with this, Einstein and others have assumed that both the hop distances and rest

times are exponentially distributed, but recent work has shown the distribution of rest times

may not follow an exponential distribution (Martin et al., 2012, 2014; Heyman et al., 2013;

Voepel et al., 2013). These examples all highlight the importance of obtaining more empir-

ical evidence of the distribution of rest times. Data from Run 1 and 2 indicate that the rest

time distributions are distinctly non-exponential and take a form similar to a power-law dis-

tribution. We fundamentally recognize that our measurements of rest times are limited by

our sampling times (0.4 seconds) and window size (∼ 45 cm2). Therefore in the latter part

of Section 7, we examine whether the form of this distribution is a product of the system,

or rather a result from the spatial and temporal censorship of these data.

4.3 Methods and Measurements

The experimental data presented here were collected in the River Dynamics Labora-

tory at Arizona State University using an 8.5 × 0.3 m recirculating flume. Measurements

were taken from high-speed (250 Hz) imaging of coarse sand (D50 = 0.05 cm) transported

as bed load under equilibrium conditions in two flume experiments. The sediment bed

is photographed through a plexiglass “sled” window placed on the surface of the water.

This provides a clear view of the bed, preventing distortion of the images caused by light

refraction from fluctuations in the water surface. The flow is sufficiently deep that the plex-

iglass window does not interfere with the flow at the bed surface. The high-speed imagery

captures an area of the sediment bed that is 7.57 cm long (streamwise) and 6.05 cm wide

(cross-stream), with a corresponding resolution of 1280 × 1024 pixels. Flow conditions in

both experiments were fully turbulent with Reynolds numbers of approximately 9.3 × 104

(Run 1) and 1.2 × 105 (Run 2), and Froude numbers of 0.30 and 0.37.

In Run 2, our experimental set-up differs in order to capture simultaneous measure-

ments of sediment transport and near-bed fluid velocities. Here, we use two high speed
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cameras positioned above the bed, which focus on the same area, and are operated in syn-

chronization. An 808 nm laser diode light sheet illuminated a plane as close as possible to

the bed (within 1-3 mm). Then neutrally buoyant, tracer particles are added to the flume

to illuminate the flow field, allowing us to use particle image velocimetry to evaluate the

near-bed fluid velocity. The frames are split into interrogation areas. Within each region

a displacement vector is calculated, which can then be converted into a cross-stream and

streamwise velocity measurement.

The experimental conditions in these two runs are similar, although the particle activity

(the number of particles in motion per unit streambed area) in Run 2 is on average ap-

proximately 250% higher than in Run 1. We manually tracked particle motions, frame-by-

frame, in each experiment, using the open-source software ImageJ. This involved marking

the centroid of each particle as it moved through successive frames. ImageJ provides sub-

pixel resolution of the centroid coordinates. The software records the pixel coordinates for

each particle throughout the set of consecutive images as individual particle “tracks.” The

pixel coordinates from each particle track were then converted into streamwise xp [L] and

cross-stream yp [L] coordinate positions. Approximately 95% of the particles in motion

were tracked; the 5% of particles that were not tracked either left the field early or proved

too difficult to follow through the course of the video. We measured more than 150,000

particle coordinate positions involving more than 10,000 active particles during 5 seconds

in Run 1, and nearly 170,000 positions involving more than 11,000 active particles during

2 seconds in Run 2 . We also identified approximately 6,000 individual entrainment events

in Run 1 and more than 5,000 events in Run 2. These large data sets are based on sub-pixel

resolution measurements and provide high fidelity characterization of particle motions, in-

cluding measurements of small motions which dominate the probability distributions of

particle velocities, hop distances and associated travel times (Fathel et al., 2015).

Particles were tracked only after they began to move. We did not track the motions of

particles that “wiggled” back and forth within their pockets, but otherwise did not move or
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hop. All particle motions were manually tracked by one individual to maintain consistency.

This manual method provides accurate measurements of all motions without a bias towards

short or long displacements. Individual hops were measured from incipient motion to a

stopped position such that both streamwise and cross-stream velocities are zero.

4.4 Magnitude and Direction of Motion

Here, detailed measurements of particle motions are used to develop distributions of

initial particle trajectories, providing a description of the direction and magnitude of initial

particle motions. The distribution of these motions bears on the relationship between the

local flow conditions and the microtopography of the bed. Ultimately, these measurements

provide information concerning particle motions at the moment of entrainment which may

be used to better model and understand this process.

The data presented here represent a large sample of initial particle motions which occur

under the flow conditions in Run 1 (∼ 6000 ) and Run 2 (> 5000). The direction of initial

motion is calculated (in degrees) for all active particles within Run 1 and 2 following the

first time step (0.004 s) of motion. The angle associated with these motions is measured as

the deviation from the downstream direction, such that particles may move from 0◦, purely

streamwise, to 180◦, purely backward, or any combination in between. More specifically,

for each active particle we calculate the angle associated with the vector of motion as a

particle moves from its initial position to a position a single time step (or frame) later.

Within these experiments we find that over 90% of all initial motions contain a measur-

able cross-stream component of motion, where approximately a third of the motions may

be cross-stream dominated, and furthermore, up to 7% of the motions may be negative (i.e.

move backwards) (Figure 4.1). With increasing time, the vector of these motions becomes

streamwise-dominated and increasingly controlled by the fluid as the particles are accel-

erated and interact with the bed with decreasing frequency, whereas, at small times the

variability in the direction of motions may be a product of the microtopography of the bed.
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Figure 4.1: Plot of streamwise hop distance Lx and the associated first direction of motion
Ap. The white circles represent data from Run 1 and the black squares represent the data
from Run 2.

Additionally, it appears that with a higher mean fluid velocity (Run 2), the initial motions

of the particles are less sensitive to bed topography and are more likely to be dominated by

the fluid.

The initiation of bed load transport is typically described as the moment when the fluid

force on the particle exceed the resisting force of the particle which results from the weight

of the particle and the friction coefficient. Research has also shown that the degree of expo-

sure and shielding due to clustering may inhibit entrainment. Yet, both of these factors are

typically associated with a mixed-alluvial system where there is a wide range of sediment

sizes, such that the larger grains act to shield nearby (smaller) particles (e.g., Laronne and

Carson, 1976; Brayshaw, 1985). However, little research regarding the potential impacts

of microtopography in single grain-size systems has been performed.

Within these experiments, we start with a smooth bed surface and do not allow bed

forms to initiate, such that large clusters of grains are not evident. Nevertheless, we see
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a wide range of angles associated with the initial motion of a particle, especially within

lower velocity flows. We suspect that this range of motions is related to the particle-scale

microtopography of the streambed, where particles must roll out of their resting position

to be entrained by the flow. Yet, in higher flow velocities the fluid overcomes resistance

created by the microtopography, and there are fewer particles that initially move in the

cross-stream direction. This behavior is consistent with work performed by Seizilles et al.

(2014), in that particle tracking reveals cross-stream motions as a result of the bed rough-

ness or with associated variations in the fluid.

We must also consider the persistence that may be inherent within the initial direction

of motion for a particle. For example, if a particle starts its motion in a cross-stream or

upstream dominant dominant direction (which accounts for approximately 29% and 21%

of the motions within Run 1 and Run 2, respectively), then it likely takes a longer period

of time for the particle to become fully streamwise dominated in comparison to particles

that begin their motions in the streamwise direction. The characteristic timescale for all

particles to be streamwise-dominated, such that the vector of motion is less than 45 de-

grees, are similar in each experiment. Within Run 1, 99% of all particles are streamwise-

dominated within 0.104 seconds, whereas the characteristic timescale for 99% of the par-

ticles is slightly shorter in Run 2 at 0.100 seconds. There are a few particles which are not

streamwise-dominated past this threshold, and do not become streamwise-dominated until

0.584 seconds (Run 1) and 0.184 seconds (Run 2) into their continuous motions.

Now, let us put this idea of persistence into the context of travel times associated with

sediment particle ‘hops’. Figure 4.2 presents the distribution of travel times Tp for Run 1

(left) and Run 2 (right). The highlighted region indicates the complete particle hops which

occur within the characteristic timescale for particle motions to be streamwise-dominated.

Approximately 63% (Run 1) and 43% (Run 2) of particle hops are completed in the time

it could potentially take a particle to become streamwise-dominated. This observation may

suggest that short motions contribute early cross-stream spreading, while longer motions
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Figure 4.2: The discrete probability distribution of particle travel times Tp from Run 1
(a) and Run 2 (b). The highlighted regions in red indicate the portion of complete parti-
cle motions which occur within the timescale in which it may take a particle to become
streamwise-dominated.

are more clearly related to streamwise spreading and contribute less to cross-stream spread-

ing. Regardless, the persistence of these cross-stream motions may be particularly relevant

to describing cross-stream diffusion, such that to correctly measure the diffusive flux, one

needs to understand the cross-stream gradient of bed load transport (e.g. Seizilles et al.,

2014), ultimately providing a clearer understanding of particle motions.

4.5 Spatial Distribution of Entrained Particles

In our analysis of entrainment we turn to the spatial distribution of entrainment. Studies

have considered preferential entrainment patches (Paola and Seal, 1995; Powell and Ash-

worth, 1995), yet little work has been performed on the particle-scale. Our analysis of the

spatial distributions of entrained particles acts as a step closer to understanding potential

controls on entrainment and prediction of entrainment locations.

To describe the spatial distribution of entrained particle positions we perform a nearest

neighbor analysis for individual frames and for increasingly large groups of frames. This

method measures the amount of spatial clustering in a set of points. More specifically, we
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measure the distances between each location of entrainment in the data set and its nearest

neighbors, then calculate the average of all these nearest neighbor distances. We then

calculate the nearest neighbor index r, which is a ratio of the observed average nearest

neighbor distance to the expected average distance from a hypothetical, spatially-random

distribution. If the observed average distance is less than the average expected distance,

we consider the distribution to be clustered. Conversely, if the observed distance is greater

than the expected distance, the distribution is dispersed.

Figures 4.3 and 4.4 present the distribution of nearest neighbor ratios for individual

frames for Run 1 and Run 2, respectively. These distributions are strongly skewed towards

clustered values (r <1), with mean values of 0.50 (Run 1) and 0.23 (Run 2). Although

the majority of nearest neighbor ratios r in Figures 4.3 and 4.4 indicate that the locations

of entrainment are clustered, the spatial distribution of entrainment locations in a single

frame may be random (r ∼ 1) or dispersed (r > 1). In particular, Run 1 displays a wider

distribution of r values. This indicates that there is more variability in the distribution of

entrained particles, which is likely a product of the lower mean fluid velocity, such that a

small number of particles are entrained at many time steps and therefore may appear to be

more dispersed or randomly distributed.
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Figure 4.3: Histogram of the nearest neighbor ratio r for individual frames in Run 1.

Figure 4.4: Histogram of the nearest neighbor ratios r for individual frames in Run 2.

Let us expand this type of analysis from examining the spatial distribution of entrain-

ment in individual frames to the distribution of locations in increasingly large groups of

frames. A good visualization to understand our methodology is to imagine a sliding win-

dow of a predetermined number of frames, n. We calculate the nearest neighbor ratio in

this subset of n frames, which considers all the locations within the subset. This subset is
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modified by ‘shifting forward’, where the first frame of the series is excluded and the frame

following the original subset is included. We continue to shift this sliding window forward

until the end of the subset falls on the last frame analyzed. So, for example, if we choose

a sliding window size of 10 frames (n =10) and apply it to Run 1, we shift the window

forward —one frame at a time— until the end of the subset falls on the final frame (Frame

1250), which is the last frame we analyzed. Within this example, we have N − (n− 1)

subsets or 1241, where N is equal to the total number of frames analyzed, and we therefore

calculate the nearest neighbor index r 1241 times, once for each subset. Using this method,

we systematically increase the size of the temporal sliding window from n = 1 (each frame

individually) to n = N for Run 1 and Run 2.

For a sliding window size n of 1 to 20 twenty frames in Run 1 and Run 2, we plot r

values in box plots to depict spread of values (Figures 4.5 and 4.6).
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Figure 4.5: Boxplot of nearest neighbor ratio r values in Run 1, where each box represents a
sliding window size. The body of the box extends from the first quartile to the third quartile.
Within the box, the horizontal line is drawn at the second quartile which is the median of
the data sets. The lower whisker marks the 5th percentile while the upper whisker 95th
percentile of the data. The small dashes above and below the whiskers represent outliers in
the data set.
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Figure 4.6: Boxplot of nearest neighbor ratio r values in Run 2, where each box represents a
sliding window size. The body of the box extends from the first quartile to the third quartile.
Within the box, the horizontal line is drawn at the second quartile which is the median of
the data sets. The lower whisker marks the 5th percentile while the upper whisker 95th
percentile of the data. The small dashes above and below the whiskers represent outliers in
the data set.

First, notice that the first box in Figure 4.5 represents the same data presented in the

histogram in Figure 4.3, and similarly the first box in Figure 4.6 represents the data found

in Figure 4.4. Within both boxplots we see that the range of data quickly condenses toward

clustered r values, with this trend more apparent in Run 2. In Run 1, outliers continue to

show random and dispersed spatial patterns of entrainment for a window size of n = 20

frames, but the vast majority of r values show clustering. The higher range of r values in

Run 1 is likely a product of the flow conditions in the experiment. On average, there are

fewer particles entrained in Run 1 than Run 2 at any given time. Therefore, this lowered

activity may be a factor in the wider range of r values in Run 1, where, for example, if only

2 or 3 particles are activated over the entire window area, the sparse amount of particles

activated are random or dispersed. For example, if only two or three particles are activated
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at any given time, in comparison to tens of particles, entrained sediment may appear to

be dispersed, random, or clustered with too few points to accurately represent the spatial

distribution.

A simplification of these data can be found in Figure 4.7, where we plot the mean near-

est neighbor ratio for each sliding window. Notice that in both runs, the mean nearest ratio

quickly approaches zero which indicates highly clustered distributions. Interestingly, we

do not see complete spatial randomeness within either experiment. This result suggests

that the fluid and bed microtopography both act together to control the activation of parti-

cles, which creates spatial clustering over these relatively short timescales. Additionally,

this may be a result of collective entrainment, where particles may be activated by mov-

ing particles which can interact directly (collision) or indirectly (wake effect, advection of

turbulent structure) to entrain particles (Ancey et al., 2008; Ancey, 2010).

Figure 4.7: Plot of the mean nearest neighbor index ratio, where the black circles represent
Run 1 and the gray circles represent Run 2.
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4.6 Connections Between Near-bed Fluid Velocities and the Entrainment Particles

Research suggests that an increase in the turbulence, or fluctuations in the fluid velocity,

correlates to increased particle activity (e.g., Sumer et al., 2003). Furthermore, there is a

suggested coupling between turbulent structures and bed load motions (e.g., Nelson et al.,

1995; Nikora et al., 2002; Lajeunesse et al., 2010; Singh et al., 2012; Bialik, 2013). Our

work provides novel and direct observations of coupled fluid and entrainment locations,

which acts to better define the relationship between near-bed fluid velocities and particle

entrainment.

To analyze the relationship between fluid velocities and points of entrainment we apply

two different methods which utilize the simultaneous measurements taken in Run 2. The

first method is purely Eulerian in nature, in which we choose locations a priori and then

compare the time series of streamwise fluid velocities to the time series of entrainment.

We then turn to an a posteriori method, wherein we examine the streamwise velocities in

the vicinity of each entrained particle. Ultimately, these methods are sampling different

relationships between the fluid and entrained particles. The following subsections explore

the results of these methods.

4.6.1 Eulerian Analysis of Velocity and Entrainment Time Series

We split each frame into equally spaced, gridded boxes. Within these boxes we compare

the time series of near-bed streamwise velocities to the time series of particle entrainment.

We start at the small scale of the particle image velocimetry interrogation region, of which

there are 4292 in each frame. Figure 4.8 shows an example of one such region, where the

upper plot is the time series of fluid velocities and the lower plot contains the time series of

entrainment events. Given the size of the interrogation regions, entrainment events on this

scale are infrequent and many regions do not experience a single event for the duration of

our measurements. For visualization purposes, the interrogation region in Figure 4.8 was
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chosen as it contains the highest number of entrainment events measured within a single

region.

Figure 4.8: This figure plots the time series of streamwise fluid velocities (upper) and
entrainment events (lower) in Run 2 for the duration of the particle tracking measurements.

Let us summarize this data in a different way. At each time step, for each interrogation

region, we have an associated velocity and entrainment event (or lack thereof). Figure

4.9 is a plot where each box represents the distribution of velocities for each number of

entrainment events. Note that there are many moments where there are no entrainment

events in an interrogation area. Also the maximum number of entrained particles at a given

time is two for this size region. There are close to 2 million data points contained within

the zero entrainment event bar, 4344 points in the one event bar, and only 18 events within

the two event bar (Figure 4.9). We somewhat surprisingly do not see a difference in the

velocities associated with entrained particles compared to moments when particles are not

activated.

We now expand the area from individual interrogation regions to areas double, triple,

etc. in size. Within increasing grid size, there are more entrainment events occurring within
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Figure 4.9: Each box represents the distribution of velocities associated with the number of
entrainment events for a given frame. The body of the box extends from the first quartile
to the third quartile. Within the box, the vertical black line is drawn at the second quartile
which is the median of the data, and the red line is drawn at the mean of the data.. The
lower whisker marks the 5th percentile while the upper whisker 95th percentile of the data.
The black circles indicate the 1st and 99th percentile outliers in the data.
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Figure 4.10: Each box represents the distribution of velocities associated with the number
of entrainment events for a given frame. From left to right and top to bottom the size of
each gridded area is defined in terms of an interrogation region: double, triple, four and
five times the size. The body of the box extends from the first quartile to the third quartile.
Within the box, the vertical black line is drawn at the second quartile which is the median
of the data, and the red line is drawn at the mean of the data.. The lower whisker marks
the 5th percentile while the upper whisker 95th percentile of the data. The black circles
indicate the 1st and 99th percentile outliers in the data.

a single grid, from a maximum of 2 events per grid in the smallest box size (Figure 4.9)

to a maximum of 6 events per grid in boxes five times the size of an interregation region

(lower left, Figure 4.10). Spatially, the largest grid spacing splits the area into 2 individual

boxes, which each are approximately 3.8 cm by 3 cm in size. Given these dimensions, it is

perhaps surprising that there is only a maximum of 6 entrainment events per frame. This
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highlights the patchiness of entrainment, in that even over relatively large areas there are

few particles activated at any given time. Importantly, we also note that even in larger grid

spacing, there does not appear to be a strong connection between the entrainment events

and the average fluid velocity in the area. This further suggests that there is a patchiness in

the entrainment that is not related in a simple way to the near-bed fluid velocities.

4.6.2 Fluid Velocities in Vicinity of Entrainment Particles

Here we apply the a posteriori method, in which we analyze the relationship between

nearby fluid velocities to entrainment locations. We start by examining the nearest fluid

velocity measurement at the time and location of entrainment events to the average stream-

wise fluid velocity for the entire frame. We suspect that this ratio, of nearby fluid velocity to

average fluid velocity, should be indicative of a relationship between local streamwise ve-

locities and bed load sediment entrainment. We normalize this ratio in Figure 4.11, where

positive values indicate the nearby fluid velocity is greater than the average velocity of the

frame and, conversely, negative values indicate the velocity near the entrained particle is

less than the average frame velocity.

Somewhat surprisingly, Figure 4.11 does not reveal any correlation between local ve-

locities at the time and location of entrainment. Of the over 5000 entrainment events,

approximately 30% of the nearby velocities are ≥ 2 cm/s above than the average velocity,

38% are ≤ 2 cm/s below the average velocity, and 32% of the nearby velocities are similar

to the average velocity and fall in the remaining range (> 2 cm/s and < -2 cm/s).

We further examine the relationship between fluid velocities and entrainment by ex-

panding our analyses to include an area within a radius of the entrained particle in an effort

to capture the larger flow structure. We suspect that the lack of correlation seen in Figure

4.11 may be a result of focusing only on the closest velocity, rather than a range of nearby

velocities. We therefore compare the mean velocity of the fluid in a radius of 1, 3, 5, 7, and

10 mm around an entrained particle to the average streamwise fluid velocity of the entire
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Figure 4.11: Plot of the normalized ratio of the fluid velocities nearest to an entrainment
location to the mean fluid velocity of the frame. Each point in the graph represents an
individual particle entrained within Run 2.

frame (Figure 4.12). Each box in Figure 4.12 summarizes the normalized velocity values

for each radius. Figure 4.12 shows that with a larger radius, values tend to be positive

with the highest mean value found within a 3 mm radius, perhaps suggesting the scale of

turbulence required to initiate sediment motions. While this trend is evident, values in a

wider radius do not tend to be significantly higher than the average fluid velocity for the

entire frame. So, while this suggests that there may be a minimum distance we must con-

sider when analyzing fluid velocities in the vicinity of entrainment events, there is not a

significant correlation that suggests higher velocities are needed to activate particles into

motion.

4.6.3 Investigating a Lagged Relationship Between Entrainment and Fluid Velocities

We hypothesized that the streamwise velocity near the particle should be higher than

the average streamwise velocity, yet the data in Figure 4.12 are not indicative of this idea.
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Figure 4.12: Each box represents the distribution of normalized ratio of nearby velocities
to the mean fluid velocity of the frame for entrained particles in Run 2. Within increasing
radius (from left to right) we consider the average nearby velocity in the determined radius
surrounding each entrained particle. The body of the box extends from the first quartile to
the third quartile. Within the box, the horizontal black line is drawn at the second quartile
which is the median of the data. The lower whisker marks the 5th percentile while the upper
whisker 95th percentile of the data. The black circles indicate the 1st and 99th percentile
outliers in the data.
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There may be a time lag between an increase in the fluid velocity and the actual activation

of the particle (see: Movie 1 in Supplementary). To test this we perform a cross corre-

lation analysis of each particle image velocimetry interrogation region (4292 in total) to

determine any lag between entrainment events and fluid velocities. This utilizes the time

series developed within the Eulerian methodology as seen in Figure 4.8. Again, here, the

upper plot represents the time series of fluid velocities and the lower plot contains the time

series of entrainment events. Within the regions which have at least one entrainment event,

we performed a cross correlation analysis on the time series pairs, and then calculate the

average lag time. The average lag time is approximately 0.236 seconds.

We then return to the analysis described in the previous section to create Figure 4.12,

but rather than examine the velocities surrounding points of entrainment at the moment of

entrainment, we plot the velocities which occur 0.236 seconds prior to entrainment (Figure

4.13). At this lag time –no matter the radius examined– all mean values are positive, which

is evident in the 0 and 1 mm radii boxes. Yet, the distribution of data in the 3 mm to

10 mm radius boxes do not significantly differ from the moment of entrainment (Figure

4.12). While these results may seem compelling, we have to consider that the length of the

measured timeseries is only 2 seconds long. So a lag of 0.236 s, excludes ∼10% of the

particles that occur at the start of the movie. Furthermore, this lag is equal to 59 frames–

which is quite long in the context of our measurement. We would not suspect memory

within this processes to persist on these time scales. So, while there may be a stronger

positive correlation at this lag, we are not confident that the fluid is coupled with sediment

motions at these timescales. This examination further reveals that the relationship between

the fluid and entrainment of particles is complex and does not appear to follow hypothesized

trends. The behavior of the near-bed fluid is fundamentally related to the initiation of

particle motions, yet given the analysis presented here, we are not able to reveal a clear

relationship.
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Figure 4.13: Each box represents the distribution of normalized ratio of nearby velocities
to the mean fluid velocity of the frame for entrained particles at a lag of 0.236 seconds prior
to entrainment locations in Run 2. Within increasing radius (from left to right) we consider
the average nearby velocity in the determined radius surrounding each entrained particle.
The body of the box extends from the first quartile to the third quartile. Within the box, the
horizontal black line is drawn at the second quartile which is the median of the data. The
lower whisker marks the 5th percentile while the upper whisker 95th percentile of the data.
The black circles indicate the 1st and 99th percentile outliers in the data. Furthermore the
dashed line at y = 0 is placed to highlight that each of the mean values is above 0.
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4.7 Distribution of Wait Times

Particle wait times Tw are measurements of the duration of time elapsed between suc-

cessive particle motion in an area. This particularly samples breaks in the sediment load

or particle activity over a set area, and is therefore a measure of the intensity of sediment

transport. Furthermore, in this section we provide empirical evidence of the form of this

distribution, which is essential to the application of the Ancey et al. (2008) “birth-death”

Markov model of bed load transport.

We measure the particle wait times over the full window and within increasingly smaller

windows in both Run 1 and Run 2 (Figure 4.14). Within windows with an area less than the

full window, we compute the mean wait times of the subsection windows; these average

values are plotted in Figure 4.14.

Figure 4.14: Distribution of particle wait times for six different window sizes in Run 1 (A)
and Run 2 (B) in log-log space. For windows smaller than the full window, mean values
were computed and are plotted here. The short-dashed, light gray line represents the fitted
slope for the full window data (white circles) and the long-dashed, dark gray line represents
the fitted slope for the 1/32 window data (light gray triangles)

In both runs and for all window sizes, most wait times are equal to the sampling interval

(0.004 seconds). This indicates most of the time, there are no breaks in the particle activity.

However, in both runs, we find that within increasingly small windows there are longer wait
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times, where no particles are active in the area. This trend is highlighted within Figure 4.14

by the dashed lines for both Run 1 and 2. The lighter, short-dashed line is approximately

fit to the distribution of wait times in the full window; the darker, long-dashed line is fit

to 1/32 sized window. These lines indicate a clear difference in slope, where there are

substantially more long wait times in windows with a smaller area than within larger areas.

This suggests that the relative transport intensity is dependent on the window.

There are key differences between the wait time distributions in Run 1 and Run 2. We

consistently see fewer long wait times in Run 2 than Run 1. This is likely a product of the

higher particle activity in Run 2. In Run 1 the average particle activity is ∼120 whereas

the activity in Run 2 is 250% higher at ∼400. Given that there are many more particles

in motion in Run 2, it is less likely (no matter the window size) that there are long breaks

between active particles. This influences the fitted slopes, such that the fitted lines in Run 2

(Figure 4.14, B) are steeper than those in Run 1 (Figure 4.14, A). In a plot of the mean wait

time TW per window size, Figure 4.15, it is also clearly evident that the average particle

wait time in Run 1 is of a longer duration than the average wait time in Run 2, no matter

the window size. Importantly, in both Figure 4.14 and Figure 4.15 the disparity between

the average wait times in Run 1 and Run 2 increases with increasingly smaller windows.
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Figure 4.15: Plot of average particle wait times TW for six different window sizes in Run 1
(white circles) and Run 2 (black squares).

While these data do indeed represent the wait time distributions, we must note that these

data are limited, such that there are not many breaks in sediment transport (no matter the

size of the window) and that we have analyzed only a limited number of frames in each

experiment. Regardless, we do view this as an important step in clarifying the distribution

of wait times. In log-log space, wait times plot as approximately straight lines, which is

consistent with power law distributions rather than an exponential distribution. This sug-

gests that entrainment within these experiments in not a purely Poissonian representation of

entrainment (Papanicolaou et al., 2002; Ancey et al., 2006), wherein particles are entrained

only when the fluid activates them (Ancey et al., 2008; Bradley and Tucker, 2012). Rather,

the process appears to be more complicated and may involve collective entrainment Ancey

et al. (2008). Furthermore, by examining changes in the form on the distribution with de-

creasing window size, we may better understand intermittence within bed load transport

related to the window size, such that wait time may be scaled with window size.
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4.8 Distribution of Rest Times

Here we examine the distribution of particle rest times, which are not involved in the

process of disentrainment, but rather are a consequence of disentrainment in that rest times

are measurements of the time duration a particle is at rest before being reactiveated. The

form of this distribution is important to characterizing the diffusive nature of the system

(Martin et al., 2012; Hassan et al., 2013) and is key to many formulations of sediment

transport. For example the nature of the tail of this distribution (either light or heavy)

acts as a control over the diffusion of particles (Martin et al., 2012; Hassan et al., 2013).

Furthermore, the form of the distribution is a key component in derivations of the bed load

discharge (Einstein, 1950). While this work provides an important step towards empirically

defining this distribution, we also highlight the experimental limitations of these measure-

ments (4.8.1 and 4.8.2).

Particle rest times Tr are measurements of the duration of time between the disentrain-

ment of a particle and the reentrainment of that particle. Even though we have tracked

particle motions in sampling intervals of Ts = 5 seconds in Run 1 and Ts = 2 seconds in

Run 2, the maximum possible rest time is equal to 0.4 seconds or 100 frames of imagery.

Due to computer memory constraints, particle tracking was performed in 100 frame in-

crements. The notation for this shorter, 100 frame or 0.4 second, recording interval is TS.

Particles that continued motion at the end of 100 frames were maintained and tracked until

the end of the full sampling time Ts or until they left the frame, but particle positions of

disentrained particles were not maintained following the 100 frame interval. Indeed, the

measurements of rest times will certainly be censored due to these time constraints, which

we examine in the following section.
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Figure 4.16: Cumulative distribution function FTr of particle rest time Tr. The white circles
represent data from Run 1 and the black squares represent the data from Run 2.

The cumulative distribution FTr of particle rest times Tr shows that many of the rest

times are short where, in both Run 1 and Run 2, 80% of the rest times are less than 0.1

seconds long (Figure 4.16), with noteably more short rest times in Run 1 than in Run 2. This

is likely indicative of the transport and experimental conditions. Perhaps the longer rest

times in Run 2 result from the higher flow velocity in this experiment, such that particles

are more likely to stay in motion when activated, and if they pause they have fallen into a

pocket whose geometry prevents easy activation. In Run 1, the slower flow velocity allows

for easier deposition of particles without lodging a particle within a pocket.

We can examine the form of the rest time distribution if we plot these data as a survival

function STr , where STr = 1−FTr (Figure 4.17). Figure 4.17 is plotted in semi-log space

to highlight the distinctly non-linear trend of this distribution. These data do not suggest

an exponential distribution, as is commonly assumed following Einstein’s (1937) work.

Rather, at least a portion of these data seems to be more consistent with a power law distri-

bution. Figure 4.18 plots the survival function STr in log-log space to more clearly delineate
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the slope of this distribution. Here we see a break in slope from less than 1 at small rest

times, to a value approximately one at longer rest times.

Heyman et al. (2013)

These data provide an important step in better defining the details of rest times and

provides, to our knowledge, the first empirical data of these distributions on the particle-

scale. On a preliminary level, the presence of a power-law like distribution indicates that the

data may have a heavy-tail. These data are not inconsistent with results from other studies

(Martin et al., 2012, 2014; Voepel et al., 2013). Yet, importantly, we note that the tail of

this distribution appears patchy, which is consistent with the temporal censorship caused by

our shortened recording intervals TS within the full sampling interval Ts. The next section

explores the impacts of experimental censorship due to a finite recording interval TS, where

longer rest times are preferentially censored.

Figure 4.17: Plot of the survival function STr of rest times Tr in semi-log space. Here, the
white circles represent data from Run 1 and the black squares represent the data from Run
2.
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Figure 4.18: Plot of the survival function STr of rest times Tr in log-log space. Here, the
white circles represent data from Run 1 and the black squares represent the data from Run
2. The red-dashed line is plotted at a slope equal to one.

4.8.1 Censorship of Rest Times

The purpose of this and the following section is to investigate the potential conse-

quences of temporal censorship on rest time distributions. In particular, the motions of

particles that enter or leave the video sampling area are spatially censored, and particles

that are in motion when the video starts or stops are temporally censored. This means that

an estimate of fTr(Tr), based on rest times Tr, which occur within the sampling area and

sampling interval are biased. Our prior work indicates that the form of a measured distri-

bution can be influenced by experimental censorship (Fathel et al., 2015). Specifically, we

showed that spatial censorship is evident within measurements of hop distances and their

associated travel times, such that there is a visible effect in the preferential reduction of

the largest hop distances and travel times. Here, we start with a summary of the derivation

provided in Fathel et al. (2015), which is modified for rest times (rather than hop distances).
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Following Furbish et al. (1990) and Fathel et al. (2015), let Pu(t;Tr,T ) denote the

probability that a particle with a rest time Tr starts between the beginning (t = 0) and end

of the sampling time t = TS, specifically between the interval 0 < t < TS−Tr. This defines

the case in which a motion is uncensored. Pu(t;Tr,TS) indicates that this probability may be

a function of time t, where Tr and T are treated as parameters. The probability that a motion

occurs within the small interval Tr to Tr +dTr and starts within the interval 0 < t < TS−Tr

is Pu(t;Tr,T ) fTr(Tr)dTr, and the censored, cumulative distribution function is

GTr(Tr) =

∫ Tr
0 Pu(t;Tr,TS) fTr(w)dw∫ TS
0 Pu(t;Tr,TS) fTr(w)dw

, (4.1)

where w is a variable of integration.

We now assume that a sufficient number of rest times occur such that any initial patch-

iness vanishes and Pu(t;Tr,TS) is independent of time t, that is, Pu(t;Tr,TS) = Pu(Tr,TS). In

this case Pu(Tr,TS) = (TS−Tr)/TS, and (4.1) becomes

GTr(Tr) =

∫ Tr
0 (TS−w) fTr(w)dw∫ TS
0 (TS−w) fTr(w)dw

. (4.2)

We now rewrite this as

GTr(Tr) =
TS FTr(Tr)−

∫ Tr
0 w fTr(w)dw

TS FTr(Tr)−
∫ TS

0 w fTr(w)dw
, (4.3)

where FTr(Tr) is the cumulative distribution of fTr(Tr). Taking the derivative of (4.3) with

respect to Tr and factoring TS then yields the probability distribution of censored rest times,

namely,

gTr(Tr) =
fTr(Tr)− (1/TS)Tr fTr(Tr)

FTr(TS)− (1/TS)
∫ TS

0 w fTr(w)dw
. (4.4)

Notice that in the limit of TS→ ∞, the second term in both the numerator and denominator

of (4.4) goes to zero while the first term in the denominator goes to unity, so the distribution

gTr(Tr) approaches the underlying distribution of travel times, fTr(Tr).
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Given the nature of rest times, in that they are more infrequently measured, in com-

parison to particle travel times or hop distances, these data are fundamentally temporally

censored.

4.8.2 Analytical Demonstrations of the Temporal Censorship of Rest Times

This section acts as a guide to identifying the influence of censorship –in this case, tem-

poral censorship– on the form of a measured distribution. Here, we analytically solve the

probability distribution of censored rest times (4.4), by making some assumptions about

the underlying distribution of rest times. We focus on two known distributions and system-

atically vary the sampling time TS to examine any changes within the resulting rest time

distribution. The two distributions were chosen based on research suggesting that the rest

time distribution is either exponential distributed (Einstein, 1937, 1950; Habersack, 2001)

or may take the form of a heavy-tailed, power law distribution if deposited particles are

buried by other particles (Martin et al., 2012, 2014; Voepel et al., 2013). In the latter case,

we use a Pareto distribution as a proxy for the heavy-tailed distribution. Prior to varying

the sampling time TS parameter, we start by providing analytical solutions of equation 4.4

for an exponential distribution and Pareto distribution,.

If we follow Einstein’s (1950) assertion that the distribution of rest times fTr(Tr) must be

exponential, with a definite mean Tr which informed by our experimental measurements,

we can determine an analytical solution for different sampling intervals T . Consider an

exponential distribution of rest times,

fTr(Tr) =
1
Tr

e−Tr/Tr , (4.5)

where Tr is predefined mean rest time. The censored cumulative distribution FTr(TS) of

(4.5) is therefore,

FTr(TS) = 1− e−TS/Tr . (4.6)
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We now rewrite (2.12), using (4.5) and (4.6), as

gTr(Tr) =

(
1
Tr

)
e−Tr/Tr − (1/TS)Tr

(
1
Tr

)
e−Tr/Tr

1− e−TS/Tr − (1/TS)
∫ TS

0 w
(

1
Tr

)
ew/Trdw

. (4.7)

We can further simplify (4.7) by integrating the third term in the denominator,

gTr(Tr) =

(
1
Tr

)
e−Tr/Tr − (1/TS)Tr

(
1
Tr

)
e−Tr/Tr

1− e−TS/Tr − (Tr/TS)− (1+ Tr
TS
)e−Ts/Tr

. (4.8)

This equation can then be applied to a model where we vary the sample time parameter

TS and view changes to the form of the distribution in comparison to its underlying form,

which is described in equation (4.5)

Similarly, we can solve equation (2.12) for a Pareto distribution of rest times,

fTr(Tr) =
aT a

m

T a+1
r

, (4.9)

where Tm is the minimum rest time and a is a positive parameter which determines the

concentration of data towards the mode. The censored cumulative distribution FTr(TS) of

(4.9) is

FTr(TS) = 1−
(Tm

TS

)a
. (4.10)

We now rewrite (4.4), using (4.9) and (4.10), as

gTr(Tr) =

aT a
m

T a+1
r
− (1/Ts)Tr

(
aT a

m
T a+1

r

)
1−
(

Tm
TS

)a
− (1/Ts)

∫ TS
0 w aT a

m
T a+1

r
dw

. (4.11)

We further simplify (4.11) by integrating the third term in the denominator,

gTr(Tr) =

aT a
m

T a+1
r
− (1/Ts)Tr

(
aT a

m
T a+1

r

)
1−
(

Tm
TS

)a
− (1/Ts)

(
−aT a

mT 1−a
s

a−1

) . (4.12)
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Figure 4.19: Results of analytical solutions for the rest time censorship equation for varying
sample times. The sample times for A-D are as follows: 5, 10, 20, and 50 seconds. The left
column represents the analytical solutions for a exponential distribution in semi-log space,
while the right column shows the solutions for a Pareto distribution in log-log space. Here
the gray circles indicate the uncensored distribution fTr(Tr) and the black squares indicated
the censored distribution gTr(Tr) for increasingly long sampling times, from top to bottom.
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It is important to note that we did not fit either distribution to our data, rather we use

equations (4.8) and (4.9) to demonstrate the impact of short sampling times TS. We chose

the following parameters two use within these equations: the average rest time for an expo-

nential distribution is Tr = 10 seconds and the minimum rest time Tm in the Pareto distribu-

tion is 0.03 seconds. Figure 4.19 plots the censored and uncensored data for an exponential

(left column) and a Pareto (right column) distribution for varying sampling times, where

the censored data are plotted as black squares and the uncensored data are plotted as gray

circles. The sample times TS increase from top to bottom. Specifically, the sample time

interval corresponds with the letter in the upper left corner of each subplot, such that A =

5 s, B = 10 s, C = 20 s, and D = 50 s. Notice that at increasingly large sample times TS, the

censored data approach the uncensored distribution.

First, we focus on the exponential simulation plots in Figure 4.19. Qualitatively, over

much of the domain, the censored data resemble an exponential distribution, and would

plot on a straight line in semi-log space. It is evident that the uncensored and censored data

do not precisely coincide at short sampling times, yet the form of the censored distribution

still appears to be exponentially distributed. These general trends are not evident within the

Pareto simulation plots in Figure 4.19. At small rest times, the censored and uncensored

distributions coincide, but with increasingly long rest times, there is a break in slope and

values quickly become negative as a result of truncation (and therefore do not plot in log-

log space). Interestingly, at short sample intervals, the censored Pareto distribution data

plot approximately on a straight line, and therefore may appear exponential.

Let us consider these plots as a tool for identifying the form of a distribution. We

fundamentally understand that the rest time data measured from Run 1 and 2, or any similar

experiment, must be temporally censored. The results of this simulation indicate that if the

underlying distribution is exponential, the censored data will still plot as an exponential

distribution. However, a censored heavy-tailed, Pareto distribution appears quite different

than the underlying uncensored distribution, where the slope changes from approximately
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1, to significantly less than 1. This trend was not seen within our data found in Figure 4.17,

where the slope changed from approximately 1, to slightly greater than 1.

From this simple test, we can conclude that measurement of rest times in Run 1 and Run

2 are likely not exponentially distributed. Although we suspect they may possess a heavy-

tail, our analytical simulation of a Pareto distribution does not support this trend. More

generally, this section highlights the need to consider the consequences of experimental

censorship and to recognize potential biases inherent within measurements. This style of

analysis, wherein we compare a theoretical distribution to a censored distributions, is a

helpful starting point to analyzing experimental data.

4.9 Discussion

As summarized in the Introduction, to achieve a clearer understanding of the trans-

port and spreading behavior of bed load sediment particles and tracers, more detailed de-

scriptions of key features associated with the processes of particle entrainment and disen-

trainment are required. This is a data-rich paper, yet we note that a clearer understanding

of these behaviors could be gained with high-fidelity automated particle tracking (Fathel

et al., 2015; Furbish et al., 2016a). Our manual method provides accurate particle positions

and the timing of entrainment and disentrainment events, but is time-intensive and does not

allow for quick analysis of many images or of large areas. However, even with these limi-

tations, our analysis has revealed a few interesting conclusions related to entrainment and

disentrainment which merit elaboration.

Importantly, for the given bed stress conditions, there is no simple correlation between

near-bed fluid velocities and particle entrainment locations. This result is unanticipated, yet

revealing. By searching for a correlation between these two properties we assume that the

near-bed fluid velocities are a measure of the drag force on the particle. In absence of this

correlation, we find that (1) we must think more deeply about collective entrainment and

how it ‘works’, and (2) we must consider how the microstructure of the particles on the bed
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act to set up entrainment. The highly clustered nature of the spatial distributions of entrain-

ment locations (Section 4.5) and the power-law like form of the distribution of particle wait

times (Section 4.7) both suggest that collective entrainment may act as a control to activate

particles. Although evidence shown here and similar work (e.g., Ancey et al., 2008; Ancey,

2010) indicate that collective entrainment occurs is indeed evident, we need to better under-

stand the spatio-temporal timescales and mechanics associated with this process to better

understand its influence on bed load entrainment. With regard to the microstructure of the

bed, we have found that microtopography likely influences the direction of initial particle

motions (Section 4.4) and may also influence the ease at which a particle is activated (Sec-

tion 4.7). We may therefore consider particle entrainment to ensue when the near-bed fluid

velocity has a sufficiently high drag on the particle and when the bed surface microtopog-

raphy is conducive to particle activation. We may imagine this joint occurrence similar to

a joint probability distribution of particle entrainment wherein certain, yet unknown, joint

conditions are needed from both the fluid and the microstructure of the bed to activate a

given particle.

Let us further expand upon the microtopography of the bed as it pertains to the length

of particle rest times. Within our analysis, we found that there are more long rest times in

the higher activity experiment, Run 2, than within the lower activity experiment, Run 1. We

suggest that this counterintuitive result may be caused by the microtopography of the bed,

in that particles are more likely to stay in motion in Run 2 given the higher fluid velocity,

and if particles pause it is more likely they have been lodged in a pocket that does not allow

for easy reactivation. This parsimonious explanation for a phenomenon seen with this and

other experiments (Lamb et al., 2008; Prancevic and Lamb, 2015). Prancevic and Lamb

(2015) suggest that models for lowland rivers significantly over-predict sediment transport

rates in steep mountain streams due to increased friction angles caused by interlocking

grains and particle burial. Perhaps a simplified explanation for this behavior is the trade-off

between fluid velocities and pocket angles suggested within this paper.
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Our analysis of wait times, while preliminary, suggests that these cannot be simply

defined as a exponential distribution. Recent work (e.g., Ancey et al., 2008; Bradley and

Tucker, 2012) has shown interest in the nature of this distribution, yet empirical evidence

of its form is limited. The data presented here indicates an amount of intermittence in

sediment transport dependent on the size of the examination area. This highlights that care

must be taken when examining these sorts of measurements, as the form of the distribution

varies with the window size and therefore we must consider this relationship when setting

the transport intensity. We must also be careful when analyzing rest time distributions, as

we show that rest time distributions exhibit temporal censorship. Rest times are measured

infrequently within our sampling, which fundamentally censors these data. These results

point to the importance of addressing censorship, both spatial and temporal, within data

sets.

4.10 Conclusions

This paper presents an abundant, myriad of data. In particular this work presents many

measurements which have never before been presented with this precision. Although much

of this work is preliminary, we are left with several main conclusions.

(1) Microtopographic evidently influences initial motion. We find that the first direction

of particle motions is highly varied, and the particle microtopography seems to have a larger

consequence on the direction of motion in lower-velocity flows. We also suggest that the

spatial clustering of entrained particles may also be a product of microtopography, wherein

there are preferentially activated patches on the stream-bed defined by local topography.

(2) Somewhat surprisingly, within both methods for analyzing the relationship between

near-bed fluid velocities and entrained particles, we find that there is not a strong correla-

tion between the two measurements. This work is decidedly preliminary, yet it seems to

suggest that the relationship between these two measures are more complicated than we

first suspected. To further investigate the relationship between particle motions and the
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near-bed fluid, in the future we need to examine the influence of collective entrainment and

the the microstructure of the bed in terms of particle entrainment.

(3) We provide empirical evidence of the wait time distribution which may be used to

understand the transport intensity in varying windows sizes. Furthermore, the form of the

distribution appears to follow a power-law distribution and therefore suggests that bed load

transport may not be defined in terms of a Poisson process wherein particles are entrained

only when the fluid-derived forces acting on a stationary particle exceed the resisting force

and there is no collective entrainment.

(4) Measurements of particle rest times are inconsistent with a purely exponential dis-

tribution, but also seem to be more complicated than a simple heavy-tailed distribution.

We note that this result may be a function of experimental censorship, and provide a guide

to analyzing potential consequences of temporal (and spatial) censorship within measure-

ments.

(5) There is a pressing need for improving automated particle tracking methods that

can provide high fidelity measurements of the bed load particle motions, which will ulti-

mately allow us to gain a clearer understanding of the properties and controls on particle

entrainment.
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CHAPTER 5

Conclusions and Looking Forward

We start with a summary of the primary conclusions found within Chapters 2 through

4, then move to reoccurring conclusions found throughout this dissertation, and finally

address areas of future work that would nicely follow this dissertation.

Within Chapter 2, we used particle tracking of sediment motions from an experiment

to define the forms and qualities of the ensemble distributions of particle velocities, accel-

erations, hop distances, and travel times. This acts to best represent the probabilistically

expected behavior of particle motions consistent with the macroscopic and sediment flow

conditions. More specifically, our data show exponential distributions for the streamwise

and cross-stream particle velocities. Importantly, we confirm the presence of a “light” tail

in the streamwise velocities, such that the largest velocities are limited by the near-bed

fluid. We find that both the streamwaise and cross-stream components of hop distances

possess Weibull distributions, which is contrary to previous work and supports a decreas-

ing spatial disentrainment rate. Furthermore, streamwise and cross-stream components of

the hop distances vary nonlinearly with travel times, which suggests that if particles gain a

sufficiently high velocity, they tend to travel farther in a shorter amount of time than similar

slower moving particles.

Chapter 3 reveals variations in the apparent type of diffusion based on differences in

the calculation of the mean-squared displacement. We find that the ensemble calculation

of the mean squared displacement reveals ballistic-like behavior at the shortest (10−2 s)

timescale, followed by apparent anomalous behaviors. Because the ensemble calculation

is based on all paired coordinate positions associated with time intervals without reference

to when the motions started, this calculation is appropriate for describing particle diffusion

in relation to the particle flux. In the context of the tracer calculation, which treats particles
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as a ‘virtual plume’, particles exhibit inhomogeneous diffusive behavior because both the

mean and the variance of the particle travel distances increase nonlinearly with increasing

travel times. Inhomogeneous diffusion indeed represents the spreading of tracer particles,

and whereas the mean squared displacement has the signature of anomalous diffusion, this

behavior is not anomalous diffusion as normally envisioned. It is a consequence of the

tracer calculation of mean squared displacement, which start all full hops at the same time

and averages over particle displacements rather than all paired observations separated by a

time interval as is done in the ensemble calculation. The analysis presented in this chapter

indicates that care is needed in suggesting anomalous behavior when appealing to conven-

tional measures of diffusion formulated for ideal (Brownian) particle systems.

In Chapter 4 we focus on key measurements associated with the processes of entrain-

ment and disentrainment. We find that the effects of microtopography on initial motion

are evident on the particle-scale and influence the initial directions of motion and may

also create preferential entrainment areas. Somewhat surprisingly, our analysis did not

reflect a relationship between near-bed fluid velocities and the entrainment of particles.

This suggests that the relationship may be more complicated than we anticipated, possibly

indicating that we must further examine the influence of collective entrainment and the mi-

crostructure of the bed in relation to sediment entrainment. In addition to these findings

from each chapter, there is also a certain amount of overlap within these final conclusions.

Firstly, the probabilistic methods used within this dissertation have proven to be valuable.

In recent years, researchers have built on ideas introduced by (Einstein, 1937, 1942, 1950),

wherein research has provided probabilistic descriptions of bed load motions and transport

which pertain to the particle flux (e.g., Ancey et al., 2006; Furbish et al., 2012a; Ancey and

Heyman, 2014; Heyman, 2014) and to tracer particles (e.g., Nikora et al., 2002; Schumer

et al., 2009; Bradley and Tucker, 2010; Hill et al., 2010; Ball, 2012; Lajeunesse et al.,

2013; Martin et al., 2014). While this field is certainly growing, this style of analysis is

still in its infancy and current research (including the work presented in this dissertation)
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is working to explore the limits of new measurement techniques, including high-speed im-

agery, to better observe and measure particle motions. The combination of work presented

here is aimed at describing the probabilistically expected behavior of particles and we have

utilized this methodology with respect to the idea of ensemble behavior, the process of

particle diffusion, and to the processes of entrainment and disentrainment. In each of these

cases, it is clear that these probabilistic methods provide and reveal additional information

concerning the behavior and nature of sediment transport.

To confidently define statistical descriptions of key bed load particle motions and be-

haviors, large data sets must be obtained. In this dissertation, I manually tracked particle

motions from start-to-stop in two different experiments which amounted to over 300,000

individual particle positions. This time-intensive method provides high-fidelity measure-

ments of small particle displacements and velocities which dominate bed load particle mo-

tions (Fathel et al., 2015). The data extracted from particle tracking allows for careful

characterization sediment motions and behaviors, but has certain limitations. The time-

intensive nature of this process makes analysis of many different experimental conditions

or of long time periods exceedingly difficult. Thus, there is a pressing need for improving

automated particle tracking methods that can provide high fidelity measurements of the bed

load particle motions. Furthermore, the manual tracking in this dissertation could act as an

ideal set of measurements to test the performance of automated tracking softwares.

Throughout this dissertation, I also consider limitations of the data sets by acknowl-

edging experimental censorship of the measured quantities, both in space and time. Video

imaging of particle motions provides valuable data to infer the forms of distributions of

key elements of bed load transport. These techniques are becoming increasingly popular,

so there is value in paying attention to the details of what is actually being estimated. In

particular, the motions of particles that enter or leave the video sampling area are spatially

censored, and particles that are in motion when the video starts or stops are temporally

censored. For example, in Chapter 2 we show that spatial censorship of streamwise hop
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distances and associated travel times has the visual effect of preferentially reducing the

largest hop distances and associated travel times, which gives the appearance of a less

steep overall relationship between these quantities. Similarly, in Chapter 4, we indicate

that the distribution of rest times is fundamentally temporally censored given the relatively

small number of frames analyzed.

The rich nature of the data sets obtained from manual particle tracking along with mea-

surements of near-bed fluid velocities provides multiple avenues for future work. Perhaps

the most intriguing future work is related to the relationship between the fluid and particle

motions. The relationship between sediment entrainment and near-bed fluid velocities is

decidedly complex and merits closer analysis. Also, we have yet to address the relation-

ship between moving particles and the near-bed fluid velocities, which may reveal a clearer

connection between these properties, especially as a given particle interacts less with the

bed and motions become fluid-dominated.

Importantly, the methods used throughout this dissertation are applicable to other ex-

perimental conditions and natural systems. The entirety of data presented here is from two

controlled, single particle-size experiments. This work focused on a single particle size

has proven to be important to understanding fundamental particle motions, yet to properly

understand natural systems we must analyze sediment transport in mixed particle systems,

like those found in nature. For example, future work should be conducted to determine

underlying ensemble distributions of particle motions in mixed-size systems. Also com-

parisons of the ensemble distributions of individual particle sizes within the mixed system

to these data to similar, single-size sediment systems. We expect complexities introduced

by interactions between particles of varying sizes, such as shielding from entrainment and

particle sorting and burial of smaller particles. By using the same methodology under

different experimental conditions, we move a step closer to providing more accurate de-

scriptions of sediment transport that may be used to better understand bed load sediment

transport.
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of the Royal Society of London B: Biological Sciences, 281(1774), 20132,605, doi:

10.1098/rspb.2013.2605.

Drake, T. G., R. L. Shreve, W. E. Dietrich, P. J. Whiting, and L. B. Leopold (1988), Bed-

load transport of fine gravel observed by motion-picture photography, Journal of Fluid

Mechanics, 192, 193–217.
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Einstein, H. A. (1942), Formula for the transportation of bed load, Trans. Am. Soc. Civ.

Eng., 107, 561–597.

Einstein, H. A. (1950), The bed-load function for sediment transportation in open channels,

Department of Agriculture Technical Bulletin.

Fan, N., D. Zhong, B. Wu, E. Foufoula-Georgiou, and M. Guala (2014), A mechanistic-

stochastic formulation of bed load particle motions: From individual particle forces to

the fokker-planck equation under low transport rates, Journal of Geophysical Research:

Earth Surface, 119(3), 464,482, doi:10.1002/2013JF002823.

Fathel, S., D. Furbish, and M. Schmeeckle (2016), Parsing anomalous versus normal dif-

fusive behavior of bed load sediment particles, Earth Surface Processes and Landforms,

pp. n/a–n/a, doi:10.1002/esp.3994.

Fathel, S., D. Furbish, and M. Schmeeckle (in prep.), Experimental exploration of elements

of sediment entrainment and disentrainment.

Fathel, S. L., D. J. Furbish, and M. W. Schmeeckle (2015), Experimental evidence

of statistical ensemble behavior in bed load sediment transport, Journal of Geo-

118



physical Research: Earth Surface, 120(11), 2298–2317, doi:10.1002/2015JF003552,

2015JF003552.

Fenton, J., and J. Abbott (1977), Initial movement of grains on a stream bed: The effect of

relative protrusion, 352(1671), 523537, doi:10.1098/rspa.1977.0014.

Foufoula-Georgiou, E., and C. Stark (2010), Introduction to special section on stochastic

transport and emergent scaling on earth’s surface: Rethinking geomorphic transport-

Stochastic theories, broad scales of motion and nonlocality, Journal of Geophysical Re-

search, 115, doi:10.1029/2010JF001661.

Frey, P., and M. Church (2009), How rivers move, Science Magazine, 325(5947), 1509–

1510, doi:DOI:10.1126/science.1178516.

Furbish, D., and P. Haff (2010), From divots to swales: Hillslope sediment transport

across divers length scales, Journal of Geophysical Research, 115(F3), doi:10.1029/

2009JF001576.

Furbish, D., and M. Schmeeckle (2013), A probabilistic derivation of the exponential-like

distribution of bed load particle velocities, Water Resources Research, 49(3), 15371,551,

doi:10.1002/wrcr.20074.

Furbish, D., A. Arnold, and S. Hansard (1990), The species censorship problem: A general

solution, International Association for Mathematical Geology.

Furbish, D., P. Haff, J. Roseberry, and M. Schmeeckle (2012a), A probabilistic description

of the bed load sediment flux: 1. theory, Journal of Geophysical Research, 117(F3),

doi:10.1029/2012JF002352.

Furbish, D., A. Ball, and M. Schmeeckle (2012b), A probabilistic description of the bed

load sediment flux: 4. fickian diffusion at low transport rates, Journal of Geophysical

Research, 117(F3), doi:10.1029/2012JF002356.

119



Furbish, D. J., J. C. Roseberry, and M. W. Schmeeckle (2012c), A probabilistic description

of the bed load sediment flux: 3. the particle velocity distribution and the diffusive flux,

Journal of Geophysical Research, 117(F3).

Furbish, D. J., S. L. Fathel, and M. Schmeeckle (2016a), Particle Motions and Bed Load

Theory: The Entrainment Forms of the Flux and the Exner Equation, John Wiley and

Sons.

Furbish, D. J., M. Schmeeckle, R. Schumer, and S. L. Fathel (2016b), Probability dis-

tributions of bed-load particle velocities, accelerations, hop distances and travel times

informed by Jayness principle of maximum entropy, Journal of Geophysical Research:

Earth Surface, doi:10.1002/2016JF003833.

Ganti, V., M. M. Meerschaert, E. Foufoula-Georgiou, E. Viparelli, and G. Parker (2010),

Normal and anomalous diffusion of gravel tracer particles in rivers, Journal of Geophys-

ical Research: Earth Surface, 115(F2), doi:10.1029/2008JF001222.

Gibbs, J. W. (1902), Elementary Pinciples in Statistical Mechanics, Yale University Press.

Gomez, B., and M. Church (1989), An assessment of bed load sediment transport formu-

lae for gravel bed rivers, Water Resources Research, 25(6), 1161–1186, doi:10.1029/

WR025i006p01161.

Grass, A. J. (1970), Initial instability of fine bed sand, Journal of the Hydraulics Division,

96(3), 619–632.

Grass, A. J. (1971), Structural features of turbulent flow over smooth and rough boundaries,

Journal of Fluid Mechanics, 50, 233–255, doi:10.1017/S0022112071002556.

Habersack, H. (2001), Radio-tracking gravel particles in a large braided river in new

zealand: A field test of the stochastic theory of bed load transport proposed by einstein,

Hydrological Processes, 15(3), 377–391.

120



Hassan, M., H. Voepel, R. Schumer, G. Parker, and L. Fraccarollo (2013), Displacement

characteristics of coarse fluvial bed sediment, Journal of Geophysical Research: Earth

Surface, 118(1), 155,165, doi:10.1029/2012JF002374.

Hassan, M. A., M. Church, and A. P. Schick (1991), Distance of movement of coarse

particles in gravel bed streams, Water Resources Research, 27(4), 503–511, doi:10.1029/

90WR02762.

Hassan, M. A., et al. (2008), Salmon-driven bed load transport and bed morphology in

mountain streams, Geophysical Research Letters, 35(4), doi:10.1029/2007GL032997.

Heyman, J. (2014), A study of the spatio-temporal behaviour of bed load transport rate

fluctuations, Ph.d. thesis, École Polytechnique Fédérale de Lausanne.

Heyman, J., and C. Ancey (2014), Tracking bed load particles in a steep flume: methods

and results, CRC Press.

Heyman, J., F. Mettra, H. B. Ma, and C. Ancey (2013), Statistics of bedload transport over

steep slopes: Separation of time scales and collective motion, Geophysical Research

Letters, 40(1), 128–133, doi:10.1029/2012GL054280.

Heyman, J., H. B. Ma, F. Mettra, and C. Ancey (2014), Spatial correlations in bed load

transport: Evidence, importance, and modelling., Journal of Geophysical Research:

Earth Surface, doi:10.1002/2013JF003003.

Hill, K., L. DellAngelo, and M. M. Meerschaert (2010), Heavy-tailed travel distance in

gravel bed transport: An exploratory enquiry, Journal of Geophysical Research, 115,

doi:10.1029/2009JF001276.

Hirano, M. (1971), River-bed degredation with armoring, Proceedings of the Japan Society

of Civil Engineers, 1971(195), 5565, doi:10.2208/jscej1969.1971.195 55.

121



Houssais, M., C. P. Ortiz, D. J. Durian, and D. J. Jerolmack (2015), Onset of sediment

transport is a continuous transition driven by fluid shear and granular creep, Nature Com-

munications, 6(6527), doi:10.1038/ncomms7527.

Huang, R., I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin
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