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CHAPTER I 

INTRODUCTION 

 

History of Prostaglandins (PGs) and Non-Steroidal Anti-inflammatory Drugs (NSAIDs) 

 

Willow bark, the prehistoric anti-inflammatory. As is the case for many therapeutics, the 

story of Aspirin begins with a plant preparation recognized to lower fever and the four 

symptoms of inflammation: tumor, rubor, calor, dolor; or swelling, redness, heat, and 

pain. Use of the leaves and bark of the willow trees as treatments for the many symptoms 

of inflammation likely predates recorded history. Stone tablets document the prescription 

of willow leaves for inflammation by Assyrian physicians. One of the hundreds of recipes 

in the ancient Egyptian Ebers papyrus (ca. 1500 B.C.) prescribes cooling substances (e.g., 

the leaves of a willow tree) to draw out the heat of an inflamed wound
1
. While the ancient 

Egyptians seemed to have missed the mark with their death-repelling potion (half an 

onion in beer froth promised “a delightful remedy against death”
2
), history is replete with 

fever, pain, and inflammation treatments that include the bark or leaves of the willow 

tree. The bark and leaves of Salix alba, as well as a number of other plants, contains the 

glucoside salicin. When salicin is consumed, the glucoside is cleaved to glucose and 

salicyl alcohol in the digestive tract. The alcohol is absorbed and oxidized by a 

cytochrome P450 to salicylic acid, the active anti-inflammatory and anti-pyretic (Figure 

1)
3
. Salicin and salicylic acid derive their names from Salix, the genus of willow trees. 
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Salicylates are still used in many over-the-counter topical applications (e.g., wart 

treatment) and analogues of salicylic acid are common inflammatory bowel disease and 

ulcerative colitis therapies
4
. 

 

 

Figure 1 - Salicin, the pharmacological agent of Salix bark and leaves; salicylic acid; and 

acetylsalicylic acid, or Aspirin 

 

  

Bayer, discovery of Aspirin, and World War I. In 1853, Charles Frederic Gerhardt 

became the first to synthesize Aspirin by acetylating salicylic acid. In an attempt to 

alleviate the gastrointestinal (GI) toxicity of salicylic acid by raising the pH of its 

solution, he “buffered” salicylic acid solutions with sodium and acetyl chloride, 

acetylating salicylic acid to make acetylsalicylic acid (ASA), or Aspirin. Gerhardt’s form 

of ASA was impure and prone to decomposition and the project lost attention
5
. Felix 

Hoffman is credited with synthesizing and commercializing ASA in 1897 while working 

for Bayer. Bayer was concerned by the high propensity for addiction to morphine and 

Hoffman was studying chemical modifications that would reduce this troubling side 

effect. Similar to acetylation of salicylic acid, he synthesized diacetylmorphine, 

trademarked Heroin, so named for the “heroic” feeling it instilled in its users. Aspirin and 
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Heroin were both registered intellectual property of Bayer. At the conclusion of World 

War I, Bayer along with most of the booming German chemical industry was forced by 

the Treaty of Versailles to surrender their intellectual property as reparations. The rights 

to Bayer’s intellectual property were bought by Sterling, and eventually the market 

exclusivity on Aspirin expired, flooding the market with generics
6
. The molecular target 

and mechanism of action for Aspirin remained a mystery until the 1970s. 

 

von Euler, prostaglandin, and vesiglandin. Ulf S. von Euler is best known for his Nobel 

Prize winning research around norepinephrine and its production and storage in the axon 

terminals of neurons
7
. In 1936, while working from the Karolinska Institute in Sweden, 

von Euler published his seminal work describing vasodilating and muscle contracting 

substances isolated from the accessory genital glands of humans
8
. Using a battery of 

physical chemistry approaches, he characterized the active component of human semen 

extracts, suspecting his previous discovery Substance P. After purifying and 

characterizing the active component, von Euler had excluded all previously known 

hormones and concluded he must be working with some novel substance. Since the active 

compound was isolated from prostate gland extracts and secretions, he referred to the 

mystery agent as “prostaglandin.” He evaluated its effect on various organ preparations. 

Intravenous injection of prostaglandin produced a rapid and sustained drop in the blood 

pressure of anesthetized rabbits. Prostaglandin added to isolated frog heart preparation 

increased the rate of contraction as well as exaggerating the systolic phase of contraction, 

which he noted was “similar to that caused by an excess of calcium.” Prostaglandin was 

demonstrated to relax frog hind limb vessels, and constrict the intestines and uteri of 
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humans and a variety of other animals. von Euler also identified a substance he referred 

to as “vesiglandin” for its concentration in vesicular gland extracts. Vesiglandin had 

similar but less potent properties to prostaglandin. “Prostaglandin” in this case was 

probably a mixture of prostaglandin E1 (PGE1), prostaglandin E2 (PGE2), 19-OH-PGE1, 

and 19-OH-PGE2. “Vesiglandin” likely referred to 19-OH-PGE1
9
 (Figure 2). World War 

II all but stopped research in the field. Sune Bergström led the prostaglandin field when 

work resumed
10

. 

 

 

Figure 2 – The components of the mixtures referred to by Ulf von Euler as 

“prostaglandin” and “vesiglandin”
8
. 

 

The “prostaglandin synthetase” postulate and discovery of the prostanoid family. 

Prostaglandin E (PGE) and prostaglandin F (PGF) derive their names from the original 

purification of the compounds. Bergström and Sjövall described a prostaglandin in the 

ether fraction (PGE) of the purification and another in the phosphate fraction (PGF, 

“phosphate” is fosfat in Swedish)
11

. Prostaglandin A (PGA) was formed by dehydration 
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of PGE2 in acid and prostaglandin B by isomerization of PGA in base
12

. The gaps in the 

alphabet were filled in with the other prostaglandins (PGD2, PGG2, PGH2, and PGI2) as 

they were discovered. In 1960, Sune Bergström published back-to-back papers describing 

the composition and structure of PGF
13

 and PGE
14

. Bergström and van Dorp 

simultaneously published papers in 1964
15,16

 describing the synthesis of PGE2 starting 

with radiolabeled arachidonic acid. They attributed this enzymatic activity to a 

“prostaglandin synthetase,” now known as cyclooxygenase (COX). By now it was 

appreciated that prostanoid synthesis was not restricted to accessory genital glands. Bengt 

Samuelsson is credited with first proposing and later confirming prostaglandins are 

synthesized from arachidonic acid by a dioxygenation reaction that yields a cyclic 

endoperoxide intermediate that is then isomerized by separate enzymes into the different 

prostanoids (Figure 3)
17,18

. 
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Figure 3 – Biosynthesis of the five principal prostanoids from membrane-derived 

arachidonic acid 

 

 

Biosynthesis of prostanoids. Prostanoids are a family of oxidized lipid autacrine and 

paracrine signaling molecules that are arachidonic acid metabolites of COX (Figure 3). 

Arachidonic acid is freed from the phospholipid bilayer by phospholipase A2 (PLA2). 

COX catalyzes the dioxygenation of arachidonic acid to form the unstable intermediate 

prostaglandin G2 (PGG2). A second active site on COX catalyzes the reduction of PGG2 

to prostaglandin H2 (PGH2). The five tissue-specific synthase catalyze the isomerization 

of PGH2 into the five principal prostanoids: prostaglandin F2α (PGF2α), prostaglandin D2 

(PGD2), PGE2, prostacyclin (PGI2), and thromboxane A2 (TXA2). The molecular targets 

of prostanoids are G-protein coupled receptors (GPCRs). PGF2α is the endogenous 
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agonist for the F-prostanoid (FP) receptor, PGD2 for the D-prostanoid (DP) receptor 

subtypes 1 (DP1) and 2 (DP2, or CRTH2), PGE2 for the E-prostanoid (EP) receptor 

subtypes 1 – 4 (EP1 – EP4), prostacyclin for the I-prostanoid (IP) receptor, and TXA2 for 

the T-prostanoid (TP) receptor. 

 

Sir John Vane and the mechanism of action of “Aspirin-like drugs”. While the 

prostaglandin field was purifying and characterizing the prostanoid family, a number of 

investigators had noted the formation of these prostanoids was sensitive to Aspirin, 

indomethacin, or salicylate pretreatment. In 1971, Sir John Vane published a study 

demonstrating the mechanism by which “Aspirin-like drugs” act
19

. He showed that 

indomethacin, Aspirin, and salicylate each inhibited PGF2α formation in a dose-

dependent manner. He also suggested the mechanism of action of these drugs is what is 

responsible for the well-known GI toxicity of the class of drugs. His body of work 

ultimately earned Sir John Vane election as Fellow of the Royal Society in 1974, the 

Nobel Prize in Physiology or Medicine in 1982, and knighthood from Great Britain in 

1984
20

. 

 

Side effects of NSAIDs. For as long as salicylates and Aspirin have been marketed 

therapeutics, their toxicities have been well documented. As will be discussed in some 

detail below, NSAIDs are known to affect the cardiovascular system, the GI, and even 

respiration. Salicylates are known to uncouple oxidative phosphorylation thus increasing 

respiration and, in severe cases, causing hyperventilation. At long-term high doses, they 

also directly stimulate the respiratory center of the medulla
4
. Ensuing bicarbonate 
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excretion in the kidney to normalize blood pH is accompanied by sodium and potassium 

excretion. 

Several studies point to a link between chronic NSAID use and increases in blood 

pressure. In 1994, Anthony Johnson et al. published a meta-analysis combining 38 

randomized, placebo-controlled clinical studies and 12 randomized, head-to-head clinical 

studies in which two or more NSAIDs were directly compared. The results showed 

NSAID use was associated with a 5.0 mmHg increase in supine mean arterial pressure 

(MAP). The magnitude of effect varied between each NSAID and was worst for 

piroxicam, perhaps due to its exceptionally long terminal half-life of elimination
21

. 

Other studies indicate NSAIDs may exacerbate pre-existing hypertension even in the 

face of pharmacological therapy. In the Johnson meta-analysis, investigators noticed 

NSAID use reduced the efficacy of different classes of anti-hypertensive therapy, 

especially antagonizing the effect of β-blocker anti-hypertensives
21

. Another meta-

analysis showed that even when controlling for salt intake patients taking some types of 

NSAIDs for less than 24 hours had a significant increase in MAP
22

. 

In 1986, Cinquegrani and Liang showed an effect of indomethacin on hydralazine 

anti-hypertensive therapy in human patients. The exact mechanistic details of how 

hydralazine functions are not known; however, hydralazine is a direct vasodilator and 

was a popular anti-hypertensive and heart failure therapeutic in the past. Cinquegrani and 

Liang found that indomethacin treatment significantly blunted the vasodepressor activity 

of hydralazine, but that the vessel beds they were studying, the renal and limb 

vasculature, were not likely to be the site of action. Indomethacin did not augment the 

amount of catecholamines released in response to hydralazine. Also, a fraction of the 
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hydralazine vasodepressor activity remains in the face of indomethacin treatment, 

suggesting there are additional vasodepressor substances or mechanisms aside from 

prostaglandins
23

. 

The therapeutic action of other anti-hypertensives can be antagonized by NSAIDs, 

including diuretics
24-26

, β-blockers
25,26

, calcium channel blockers
27

, and angiotensin 

converting enzyme (ACE) inhibitors
28-30

. In addition to exacerbating hypertension, a few 

clinical cases of acute renal toxicity with co-administration of captopril and NSAIDs 

have been reported
31,32

. NSAIDs can cause acute renal failure in patients with 

compromised renal function. With reduced renal perfusion, the renin-angiotensin-

aldosterone system (RAAS) will stimulate the formation of angiotensin II (Ang II), which 

constricts the pre- and post-glomerular arterioles. Only in the pre-glomerular arterioles 

does Ang II stimulate synthesis of vasodilating prostaglandins which act as a local 

counter-regulator to maintain afferent arteriolar patency, leaving the efferent arteriole 

constricted, and stabilizing glomerular filtration rate (GFR)
33

. Elimination of this counter-

regulator with NSAIDs would be expected to reduce glomerular perfusion and therefore 

GFR in a patient population whose renal function is already compromised. 

In patients with renal insufficiency, flurbiprofen acutely decreased experimental 

measures of GFR (inulin and creatinine clearance). This effect appeared an hour after the 

first dose of flurbiprofen and eventually resolved despite continued dosing. The effect of 

flurbiprofen on sodium excretion was significant and sustained; patients receiving 

flurbiprofen had 75 % - 85 % less sodium excretion than the placebo controls that 

reached a peak by four hours and remained through the end of the study. Patients had 

significantly more urinary sodium excretion after one and four weeks of chronic 
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flurbiprofen compared to the acute dose of flurbiprofen. Flurbiprofen significantly 

increased serum potassium but not sodium. As one would expect, sodium retention lead 

to an increase in body weight for patients taking flurbiprofen, likely from mild edema, 

and this effect was more pronounced in the out-patient arm of the study where patients 

were not on a controlled diet. Most significantly, chronic flurbiprofen treatment increased 

blood pressure by 27 mm Hg systolic / 12 mmHg diastolic and this effect resolved when 

flurbiprofen was withdrawn, highlighting the net hypotensive role of the prostaglandin 

family as a whole
34

. 

The deleterious effects of chronic NSAID use in hypertensive patients may be dose 

related. Smith et al. demonstrated low-dose Aspirin combined with captopril did not 

exacerbate hypertension and may have beneficial anti-thrombotic effects. ACE inhibitors 

increase vasodilatory prostaglandins through the build-up of bradykinin, which feed-

forward activates PLA2, the enzyme that catalyzes the rate-limiting step for prostaglandin 

biosynthesis
28,35,36

. It was hypothesized that if ACE inhibitors also increased the 

production of platelet TXA2, then selective blockade of this potent vasoconstrictor and 

not PGE2 or PGI2 should have additional benefit. Patients were randomized to 

captopril/placebo and captopril/low-dose Aspirin treatment arms after a two week 

washout period. As expected, captopril/placebo significantly increased circulating 

thromboxane as well as urinary excretion of PGE2. Patients in the captopril/low-dose 

Aspirin arm had suppressed levels of TXA2, even lower than during the washout period. 

Blood and urinary PGI2 concentrations and blood pressures were not different in any 

treatment arm. While the antihypertensive effects of captopril were not enhanced by 
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addition of low-dose Aspirin therapy, it stands to reason that attenuation of captopril-

augmented TXA2 synthesis would reduce the risk of thrombotic events
37

. 

Perhaps the best appreciated side effect of the entire class of NSAIDs is their GI 

toxicity. These side effects include gastric ulceration, exacerbation of peptic ulcers, and 

in severe cases gastric hemorrhage
38,39

. The GI toxicity of Aspirin is particularly severe 

because of the irreversible nature of its inhibition of COX. PGI2 and PGE2 prevent acid 

secretion, increase mucosal blood flow, and increase mucus secretion at the GI 

epithelium. Inhibition of COX-1 by NSAIDs prevents the formation of these 

cytoprotective eicosanoids in the gastric epithelium. Therapeutics that can be used to treat 

conditions of chronic pain without these side effects represent a significant unmet 

medical need. 

 

Discovery of an inducible isoform of COX and separation of NSAID side effects. A major 

indication for NSAIDs and pain relievers in general is for the treatment of pain associated 

with rheumatic diseases, specifically rheumatoid arthritis and osteoarthritis. These 

diseases are characterized by, among a host of other symptoms, chronic pain. A 

therapeutic that alleviates this symptom without the dependency and GI toxicity of 

established remedies would be a boon to arthritis patients. The search for a better 

tolerated NSAID began anew with the discovery of a novel, inducible isoform of COX, 

COX-2. In 1989, two independent laboratories studying genes modulated during the cell 

cycle reported identification of an inducible form of Gallus gallus COX from chicken 

embryo fibroblasts (CEF-147)
40,41

 and Mus musculus COX from 3T3 cells (TIS-10)
42,43

. 

These isoforms were first found as one of many transcripts induced by a number of 
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stimuli and were subsequently identified as a novel isoform of COX. Basal expression of 

COX-2 was low but upregulated in response to cytokines, phorbol esters, and oncogenes. 

Subsequent to the discovery of COX-2, the dogma became: COX-1 was a constitutively 

expressed enzyme responsible for normal tissue homeostasis such as the maintenance of 

GI epithelium; COX-2 had negligible basal expression and could be induced in response 

to insult, producing the pain and inflammatory phenotypes. The field began to focus on 

selectively inhibiting the activity of COX-2 and thereby pain and inflammation while 

leaving COX-1 activity untouched in hopes of sparing the integrity of the gut lining. 

With the X-ray crystal structures of COX-1 and COX-2 solved, subtle differences in 

the architecture of the two enzymes emerged. COX-1 and COX-2 are structurally similar; 

they both are peripheral membrane proteins that pull their substrate, arachidonic acid, 

from the phospholipid bilayer through a lobby and deep into the active site of the enzyme 

where a tyrosine radical catalyzes the cyclooxygenase reaction. Traditional NSAIDs are 

non-selective because they bind around a gate between the lobby and the active site 

common to COX-1 and COX-2 and occlude substrate entry to the active site. A few 

differences in amino acid sequence of the active site form a small, hydrophobic side 

pocket in the active site that COX-1 lacks 
44

. Exploitation of this hydrophobic side pocket 

is the basis for molecules that are selective for COX-2 versus COX-1. Rofecoxib (Vioxx) 

and etoricoxib are Merck products. Valdecoxib (Bextra) and celecoxib (Celebrex) are 

products of Pfizer. A few previously discovered NSAIDs were later appreciated to have 

COX-2 “preferring” activity; that is, the molecule is not truly selective for inhibition of 

COX-2 over COX-1, but it more potently inhibits COX-2 than COX-1. Nimesulide, 



 

13 

 

 

meloxicam, and diclofenac are such NSAIDs that are now known to inhibit COX-2 more 

potently than COX-1
45

. 

 

Coxibs – a cautionary tale. As rofecoxib was being studied against pain and colorectal 

cancer, it became apparent that long-term administration of rofecoxib was associated with 

a significant increase in the risk of adverse cardiovascular events
46,47

. Placebo-controlled, 

randomized clinical trials using three coxibs (celecoxib, rofecoxib, and valdecoxib) all 

indicated an increased risk of myocardial infarction, stroke, and thrombosis with chronic 

use of these drugs
47-49

. The design of the rofecoxib studies to compare rofecoxib head-to-

head with naproxen rather than placebo is a confounding factor. It is possible naproxen 

has some cardioprotective properties
50

 and comparison of naproxen to rofecoxib would 

therefore exaggerate any deleterious cardiovascular trends observed for rofecoxib. The 

cardiovascular phenotype was not exclusive to the purpose-made COX-2 selective 

inhibitors: COX-2 “preferring” NSAIDs were found to be have a similar cardiovascular 

risk profile
51

. It seemed the toxicity was mechanistic and the severity of toxicity was 

proportional to the ratio of inhibition of COX-2 to COX-1. 

 COX-2 selective inhibitors remain on the market, despite Merck’s dramatic and 

arguably premature withdrawal of rofecoxib from the market. Celecoxib is still on the 

market and is prescribed for the treatment of pain associated with arthritis. Coxibs have 

been demonstrated to be one of the most potent classes of chemicals against colorectal 

cancer
52,53

. Careful consideration of which patients to whom these drugs are prescribed 

may be a more appropriate course of action for this class than complete removal of the 

product from the market. 
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 It is now appreciated that the source of the surprise cardiovascular toxicity was an 

underdeveloped understanding of the roles of the cyclooxygenases in homeostasis and 

disease. Thrombogenesis is under tight regulation by, among many other things, the 

balance of the anti-thrombotic action of endothelial COX-2-derived prostacyclin and the 

pro-thrombotic action of platelet COX-1-derived thromboxane. Selective inhibition of 

COX-2 removes the counter-regulatory actions of prostacyclin, making the system more 

pro-thrombotic
54

. One possibility to mitigate this imbalance is co-administration of low-

dose Aspirin so as to specifically inhibit TXA2 production in platelets
55

. 

 

Roles of the PGE2 Signaling Pathway in Disease 

 

 Prostaglandins are critical to the normal homeostatic function of a variety of systems 

and are key mediators of a number of disease processes. Chronic use of Aspirin or 

salicylates causes severe GI toxicity, highlighting the role of prostaglandins in the 

maintenance of GI epithelium. Willow tree bark and Aspirin have long been used to 

reduce symptoms of inflammation and risk of stroke and myocardial infarction, implying 

involvement of prostaglandins in the pathobiology of inflammation and thrombotic 

diseases. 

 With the aid of powerful chemical, pharmacological, and genetic tools prostanoids 

are now known to be involved in a host of physiological and pathophysiological 

processes. PGD2 and PGE2 are potent mediators of the immune system, demonstrated to 

be involved in normal and abnormal immune function
56

. Prostacyclin is a potent 
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vasodilator and anti-thrombotic agent required for normal hemodynamics and regulation 

of thrombus formation
57-59

. Thromboxane plays a role in hemodynamics, 

bronchoconstriction, and platelet aggregation
60-63

. PGE2 has paradoxical actions on blood 

pressure; depending on how it is administered, PGE2 is a vasodepressor
64,65

 or a 

vasopressor
66

. More recently, attention has been focused on the role of PGE2 in the 

following conditions: pain
67-72

, thrombosis
73-76

, diabetes mellitus
77-79

, hypertension
80-83

, 

patent ductus arteriosis
84-87

, cancer
88-91

, and salt/water handling
83,92,93

. The connection 

between PGE2 and diabetes and hypertension is discussed below. 

 

Diabetes Mellitus. Diabetes mellitus (DM) is a chronic disease characterized by 

hyperglycemia with insufficient insulin production, type 1 DM (T1DM), or insufficient 

response to insulin and subsequent overproduction of insulin, type 2 DM (T2DM). Of the 

patients in the U.S. currently under care for end-stage renal disease (ESRD), DM is the 

primary cause of 38 % of these cases. DM is the primary cause of 44 % of the more than 

100,000 new cases of ESRD in the U.S. each year
94

. The use of NSAIDs to treat diabetes 

mellitus has been documented as far back as 1876 when Ebstein noticed oral salicylate 

given to diabetic patients reduced their glucosuria
95

. In 1957, Reid reported treatment of 

diabetic patients with oral Aspirin reduced blood glucose levels and glucosuria and that 

this effect reversed when Aspirin was withdrawn
96

. 

The link between PGs and insulin regulation came from the observation that PGE1 or 

PGE2 modulates the effects of adrenergic stimulation and that α-adrenergic stimulation 

was known to oppose insulin release
97

. Infusion of PGE1 into humans and dogs increases 

circulating glucose levels and blocks glucose-stimulated insulin release (GSIS)
97,98

. This 
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attenuation of insulin release in response to increased circulating glucose is the basis of 

the hypothesis that PGE2 plays a role in the pathophysiology of DM. PGE1 has been 

shown to increase hepatic glucose release in rats
99,100

. It was hypothesized that tonic 

synthesis of PGE2 by pancreatic cells functions as a suppressor of GSIS. When rat 

pancreatic cells cultured in high glucose were exposed to ibuprofen or salicylate, insulin 

levels increased with a coincident with a fall in PGE2 and addition of PGE1 reversed this 

effect
101

. In normal human volunteers, infusion of PGE2 blunted acute GSIS and infusion 

of salicylate augmented acute GSIS
102

. In patients with type II DM (T2DM), acute GSIS 

is typically absent. However, in these patients infusion of ASA or salicylate partially 

restored both the acute and second phase GSIS and improved the acute insulin response 

to the direct insulin secretagogue arginine
102,103

. Other investigators have found the effect 

of salicylate on arginine-stimulated insulin release is only observed in diabetic patients, 

not normal control volunteers
104

. This would suggest a role for prostaglandin signaling in 

suppressing insulin release per se and not necessarily the upstream glucose sensing 

mechanisms. 

 Interleukin-1β (IL-1β) is known to upregulate expression of COX-2 and EP3 in 

pancreatic islets and to suppress insulin secretion through the action of PGE2
105

. 

Misoprostol, a synthetic analog of PGE1, was shown to block GSIS from rat islets in 

culture and that this effect was sensitive to salicylate and pertussis toxin pretreatment, 

suggesting the effect was COX-2/PGE2/EP3-mediated
106

.  

 Long-term DM causes vasculopathies that manifest as diabetic retinopathy, diabetic 

nephropathy (DN), hypertension, stroke, and myocardial infarction. In mesenteric arteries 

from a rat model of T2DM, endothelial dysfunction was demonstrated by a deficit in 
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acetylcholine (ACh)-stimulated, endothelial-dependent dilation of the mesenteric artery. 

This phenotype was blocked by pretreatment with metformin or with indomethacin, 

implicating a vasoconstricting prostanoid in the pathophysiology of endothelial 

dysfunction. Production of TXA2 and PGE2 in ACh-stimulated mesenteric arteries was 

increased in diabetic rats compared to nondiabetic controls. This augmentation of TXA2 

and PGE2 was completely blocked by chronic metformin treatment
107

. 

 In a rat model of DN, animals were treated with a selective EP1 antagonist or Aspirin 

for a period of several weeks and evaluated for kidney damage. Diabetic rats had a 

significant increase in PGE2 excretion into their urine, implying an increase in local PGE2 

synthesis in the kidney. Aspirin treatment blocked PGE2 production while the EP1 

antagonist had no effect. Protein excretion into the urine, a marker of renal failure, was 

increased in untreated and Aspirin treatment diabetic rats and absent with EP1 antagonist 

treatment. This pattern was recapitulated in measures of glomerular hypertrophy by 

morphometry and glomerulosclerosis by histology
77

. This difference in therapeutic 

potential between the selective receptor antagonist and pan-prostanoid blockade with 

Aspirin supports the hypothesis that receptor subtype selective PGE2 antagonists have a 

greater therapeutic potential than pan-prostanoid inhibition. 

 In a genetic screen comparing human patients with T2DM and healthy controls, 

polymorphisms in Ptger3 were associated with T2DM, though the study could not 

conclude whether the polymorphism was activating or inactivating in nature. Previous 

literature would indicate activation of EP3 suppresses insulin secretion and increases 

blood glucose, so perhaps these are not inactivating polymorphisms. Using a mouse 

model of T2DM in which mice are fed a “Western diet” and administered streptozotocin 
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(STZ), the role of the EP3 receptors in glucose regulation in this pathological state was 

studied. A selective EP3 receptor antagonist acutely lowered blood glucose in “Western 

diet”-fed, diabetic mice, and this reduction persisted for at least five hours. Twice daily 

administration of the EP3 antagonist for two weeks dose-dependently lowered blood 

glucose in “Western diet”-fed, diabetic mice down to the level of nondiabetic controls
108

. 

The literature suggests EP1 and EP3 are involved in the pathophysiology of diabetic 

nephropathy, hyperglycemia, insulin release, and insulin insensitivity. Taken together, 

these studies suggest EP1 and EP3 are involved in the pathophysiology of DM and 

simultaneous blockade may have benefit beyond individual receptor antagonism alone. 

 

Hypertension. Data regarding NSAID use in hypertensive patients are clear that 

prostaglandins play some role in at least the pathophysiology of hypertension if not 

normal physiological hemodynamics. Chronic NSAID use has a dose-dependent 

hypertensive effect, with daily low-dose users being 55 % more likely to initiate 

antihypertensive therapy, medium-dose users 64 % more likely, and high-dose users 82 

% more likely than similar patients not using NSAIDs
109

. Long-term hypertension is 

detrimental for the kidney, causing deterioration of kidney function and eventual renal 

failure. Hypertension is the primary cause of 24 % of the cases for the 500,000 patients in 

the U.S. currently under care for ESRD. Of the 100,000 new patients diagnosed with 

ESRD each in the U.S., hypertension is the primary cause of 28 % of these cases
94

. 

 The role of PGE2 in hypertension has been studied clinically for several years. In 

an early study, an interaction between PGE2, renin, and hypertension was investigated. 

The correlation between urinary PGE2 excretion and plasma renin activity was direct and 
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significant, even in the normotensive controls. Indomethacin treatment in 

normoreninemic hypertensive patients increased body weight, presumably due to mild 

edema; indeed, urinary sodium excretion was reduced. This volume load likely is the 

cause of the increase in mean blood pressure. GFR was reduced, contributing to the salt 

and water retention. Urinary PGE2 excretion was suppressed as expected, as were plasma 

renin activity and aldosterone levels
110

. This study supports the hypothesis that 

downstream targeting of a subset of prostanoid receptors involved in disease (e.g., pain) 

but sparing receptors involved in homeostatic processes (e.g., salt and water handling) 

may show therapeutic efficacy with fewer side effects. 

Instantaneous arterial pressure is only one facet of cardiovascular disease. Risks of 

cardiovascular and renal diseases are higher in treated hypertensive patients with the 

same blood pressure as normotensive controls. Reduction of blood pressure to 

normotensive levels does not account for the damage already done by the hypertensive 

insult. In hypertensive patients with cardiovascular or renal comorbidities, suppression of 

RAAS has been shown to be more protective than normalization of blood pressure per 

se
111,112

. Some pathophysiological action of RAAS exists outside of strictly increasing 

arterial pressure
113

.  

 High blood pressure, to a point, is not lethal in and of itself. High blood pressure 

does, however, induce a number of pathological changes in various organs, a 

phenomenon referred to as “end organ damage.” Some of these pathological changes 

include endothelial dysfunction, atherosclerosis, aortic aneurysm, stroke, vascular 

dementia, left ventricular hypertrophy, heart failure, renal insufficiency, and renal failure. 

Chronic hypertension leads to a remodeling of the arteries, making the vessels more rigid 
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and reducing their ability to dilate. Hypertension causes a number of structural and 

functional changes to the heart. Arterial pressure is the resistance the left ventricle has to 

push against to move blood into circulation. As this “afterload” increases, the left heart 

has to contract harder to eject the same amount of blood through the aortic valve. This 

stress on the myocardium leads to myocardial hypertrophy and eventually inefficient 

filling and pumping manifest as reduction in ejection fraction. These structural changes 

will eventually devolve into overt heart failure. Hypertensive kidney disease can usually 

be detected by urinary excretion of small amounts of albumin, a protein usually 

electrostatically excluded from the urine by the glomerular basement membrane. This so-

called microalbuminuria is a robust indicator of kidney disease and indicates destruction 

of some component of the filtration apparatus (i.e., endothelium, glomerular basement 

membrane, or podocytes). As vascular damage is not limited to the glomerular arterioles, 

but is systemic, albuminuria is also a predictor of cardiovascular complications in 

general. Most hypertension complications are treated by RAAS blockade
114

. After several 

years of hypertensive nephropathy, untreated or undertreated patients progress to overt 

renal failure, requiring dialysis or transplantation for survival. 

 Prostaglandin signaling has also been implicated in renovascular hypertension, a 

disease distinct from essential hypertension in that it is caused by compensatory renal 

mechanisms secondary to renal artery stenosis. The roles of prostaglandins in 

renovascular hypertension versus essential hypertension in humans have been compared 

using Aspirin to block prostanoid synthesis. In patients with unilateral renal arterial 

stenosis, the ischemic kidney produced significantly more PGE2 than the contralateral 

kidney and each was higher than the concentration in aortic plasma. Patients in the 
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essential hypertension group had no measurable renal arterial stenosis. PGE2 was 

produced to similar extents by both kidneys and was higher than aortic PGE2 

concentrations. IV Aspirin treatment significantly attenuated PGE2 production in all three 

compartments. Patients with renovascular hypertension receiving Aspirin had a 

significant attenuation in plasma renin activity and a concomitant reduction in systolic 

and diastolic blood pressure. Patients with essential hypertension showed a small but 

significant increase in MAP. This study illustrates the context dependence of the role of 

prostaglandins in hemodynamics. In the setting of renovascular hypertension, the 

overproduction of PGE2 in the ischemic kidney likely augments the release of renin in an 

effort to raise arterial pressure and increase perfusion. Treatment with Aspirin reduces 

PGE2 production and plasma renin activity for the ischemic kidney and lowers MAP by 

10 mmHg
115

. 

Modulation of cardiac function in humans by PGE1 or PGE2 has also been studied. 

Intravenous infusion of PGE1, an EP and IP agonist, or PGE2 increased heart rate, cardiac 

output, and stroke volume in humans. For each of these measures of cardiac function, 

PGE1 was much more potent than PGE2. PGE1 or PGE2 each decreased MAP in humans, 

though by a very small amount. PGE1 or PGE2 each reduced forearm vascular resistance, 

but in this case PGE2 was more potent. Because of the small reduction of MAP upon 

infusion of PGE1 or PGE2, the increase in stroke volume caused by PGE1 and PGE2 is 

likely a direct inotropic effect and not an indirect effect of reduced afterload on the left 

heart
116

. 

Chronic prostaglandin exposure has been explored in dogs. It has long been 

appreciated that prostaglandins are paracrine and autocrine signaling molecules, not 
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systemic hormones, as they are almost entirely inactivated by a single pass through 

pulmonary circulation
117

. Indeed, no effect was observed for one week chronic 

intravenous infusion of PGE2. However, chronic intrarenal infusion of PGE2 for one 

week dramatically increased water intake and urine output with a decrease in urine 

osmolality and no changes in GFR. Chronic intrarenal PGE2 infusion caused a transient 

increase in urinary sodium excretion and no effect on plasma sodium concentration. As 

hypothesized above for humans with renal artery stenosis, chronic renal artery infusion of 

PGE2 increased plasma renin activity and MAP. This study presents further support for 

the hypothesis that PGE2 produced by the kidney acts locally to stimulate renin release, 

ultimately raising blood pressure
118

. 

Using individual genetic disruptions of the four EP receptor subtypes, investigators 

studied the effect of PGE2 on acute hemodynamics and the sexual dimorphisms therein. 

As observed in humans, acute intravenous infusion of PGE2 acutely and dose-

dependently lowers MAP in wild-type anesthetized mice. In a group of male and female 

EP2
-/-

 mice, acute PGE2 infusion resulted in an attenuated but not abrogated decrease in 

blood pressure, suggesting a second vasodepressor EP receptor. A similar attenuation in 

PGE2 vasodepressor activity was observed in a group of male and female EP4
-/-

 mice 

compared to wild-type controls. When mice are stratified by genotype and not sex, the 

vasodepressor responses to PGE2 in EP1
-/-

 or EP3
-/-

 mice were indistinguishable for their 

wild-type controls
119

. 

Other investigators have studied the vasoactivity of the EP receptors using a 

combination of genetic and pharmacological tools. In these studies, when the EP2 

receptor was deleted the vasopressor activity of PGE2 through EP3 was unmasked. 
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Confirming a vasopressor role for EP1 and EP3, synthetic agonists selective for EP3 and 

EP1/EP3 induced potent and dose-dependent increase in MAP. An EP4-selective agonist 

was still able to reduce MAP in EP2
-/-

 mice. From these experiments it can be concluded 

that under normal conditions, the net action of PGE2 is to cause a decrease in MAP 

through EP2. Next, PGE2 activates EP3 which produces a potent vasopressor activity. 

Lastly, PGE2 produces a small but significant vasodepressor activity through EP4 (Figure 

4). There appears to be no role for EP1 in the normal homeostatic regulation of blood 

pressure by PGE2
120

. These two studies demonstrate the primary homeostatic role for 

PGE2 in blood pressure regulation is a vasodepressor action. Pan-inhibition of PGE2 

production with a mPGES-1 inhibitor or a COX inhibitor could be predicted to have a net 

hypertensive effect as PGE2 is one of the most abundant prostanoids and is a 

vasodepressor. These data underscore the importance of selecting a target more distal 

from PGE2 in order to separate the pathological actions of PGE2 from the homeostatic 

activity of PGE2. 
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Figure 4 – Diagram of the vasopressor and vasodepressor PGE2 receptors and their 

relative contribution to the hemodynamic response to PGE2. 

 

 

Other Therapeutic Targets in PGE2 Pathway 

 

The many side effects of chronic NSAID use illustrates an unmet medical need at the 

same therapeutic indications as NSAIDs (e.g., pain and thrombosis) but with a better 

safety profile. COX lies at the top of the biosynthetic pathway for the entire family of 

prostanoids (Figure 3). The side effects of COX inhibition are derived from inhibiting the 

synthesis of homeostatic prostanoids while also eliminating the deleterious prostanoid. A 
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molecular target further down the biosynthetic chain would limit the breadth of affected 

systems. Enzymes that catalyze the isomerization of PGH2 to PGE2 and the catabolism of 

PGE2 as well as the prostaglandin transporter and the GPCR targets of PGE2 are other 

potential therapeutic targets. 

 

Prostaglandin Synthase (mPGES-1). Human microsomal prostaglandin E synthase-1 

(mPGES-1) was first cloned and characterized by Bengt Samuelsson’s laboratory in 

1999
121

. They reported the enzyme was an inducible membrane-bound protein that 

required reduced glutathione as a cofactor. mPGES-1 is known to be functionally coupled 

to COX-2
122

, allowing the two to produce large amounts of PGE2 in response to 

inflammatory stimuli. Other prostaglandin E synthases have been identified: cytosolic 

prostaglandin E synthase (cPGES), a constitutively expressed enzyme that couples 

mainly to COX-1
123

; and mPGES-2, also constitutively expressed and functionally 

coupled to both COX-1 and COX-2
124,125

. 

Given the complex hemodynamic effects of PGE2 in vivo, predicting the effect of 

mPGES-1 deletion on blood pressure is difficult and turns out to be genetic background-

dependent. On the DBA/1 background, mPGES-1
-/-

 mice and wild-type mice had similar 

baseline blood pressures. Ang II infusion caused similar increases in blood pressure, 

minimal albuminuria, and no changes in urinary excretion of thromboxane. On the 

129/SvEv background, mPGES-1
-/-

 mice had significantly higher basal blood pressures 

than their wild-type controls. Ang II infusion caused significantly worse hypertension in 

mPGES-1
-/-

 mice than wild-type controls, worse albuminuria, and had significantly more 

urinary thromboxane excretion
126

. These data not only indicate a genetic background 
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dependence for the mPGES-1
-/-

 phenotype, but also suggest that in some situations 

mPGES-1 deletion may shunt excess PGH2 to other synthetic pathways, thromboxane in 

this case. The excess thromboxane synthesis likely contributed to the phenotype of the 

mPGES-1
-/- 

129 mice. 

Using mice on a DBA/1 C57BL/6 mixed background, the involvement of mPGES-1 

in Ang II-induced abdominal aortic aneurysm in hyperlipidemic mice was studied. Ang II 

infusion upregulated COX-2 and mPGES-1 and augmented synthesis of PGE2. Chronic 

administration of Ang II in these mice induced aortic aneurysm formation. Mice with 

these aneurysms were prone to sudden death due to aneurysm rupture. mPGES-1
-/-

 in this 

setting lowered aneurysm incidence and severity as well as reduced mortality compared 

to wild-type controls. At no point in the study were blood pressures different between the 

two genotypes. Again, these investigators saw signs of substrate shunting with deletion of 

mPGES-1. Urinary excretion of PGD2 and PGI2 metabolites was augmented in mice 

lacking mPGES-1
127

. It would seem the genetic background of the mice may determine 

which prostanoid the excess PGH2 is shunted to with mPGES-1 deletion. 

 

 

Figure 5 – Inhibitors of mPGES-1 
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Analogues of prostaglandins have been shown to weakly inhibit mPGES-1 (Figure 5). 

15-deoxy-Δ
12,14

-PGJ2 has submicromolar potency at mPGES-1
128

. A known inhibitor of 

5-lipoxygenase activating protein, MK-886, also has low micromolar potency at mPGES-

1 and analogues based on MK-886 have yielded low nanomolar potency inhibitors
129

. A 

third compound, from a series of phenanthrenes had low nanomolar potency and 

displayed analgesia in an animal model of hyperalgesia
130

. 

 

Prostaglandin Transporter (PGT). The existence of a selective and active transport 

process for moving prostaglandins across the plasma membrane was hypothesized based 

on the observation of differential metabolism of prostanoids by intact pulmonary cells 

versus lysed pulmonary cells
131,132

. Broken pulmonary cells completely metabolized any 

prostanoids they came into contact with, whereas intact cells metabolized a subset of 

prostanoids. A prostaglandin transporter was hypothesized to explain this selectivity, and 

discovery and characterization of PGT was carried out by Victor Schuster’s laboratory
133

. 

PGT belongs to the family of organic anion transporters (OATs) and indeed shares a 

considerable amount of secondary structure homology with other OATs. The transporter 

is composed of a positively-charged anion binding site and a compartment to 

accommodate the hydrophobic chains that make up the bulk of a prostaglandin’s 

structure. Evidence to support this ultrastructure lies in the ability of an anionic thiol-

modifying reagent to inactivate the transporter but not a similar cationic reagent
134

, and 

removal of the carboxylate moiety of PGE2 abolishes affinity of the channel for the 

substrate
135

. It has been demonstrated that a crucial lysine residue mediates the 

electrostatic interaction with the carboxyl terminus of PGE2 and that the lysine side chain 
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must have a positive charge for optimal substrate translocation
136

. A small molecule that 

inhibits this transporter would be expected to decrease delivery of extracellular 

prostanoid to the intracellular compartment, reducing its metabolism and increasing its 

activity. 

Compounds that are known to block other OATs also block PGT (Figure 6). Some 

COX inhibitors have also been found to block PGT
133,137

. More selective inhibitors of 

PGT have recently been developed
138,139

. 

 

 

Figure 6 – Inhibitors of the prostaglandin transporter 

 

15-Hydroxyprostaglandin Dehydrogenase (HPGD). HPGD is a NAD-dependent alcohol 

dehydrogenase that is responsible for the inactivation of prostaglandins in circulation. 

Anggard and Samuelsson demonstrated the existence of HPGD from guinea pig lung 
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homogenate in 1964
140

. HPGD is highly expressed in the pulmonary circulation and a 

single pass through the pulmonary circuit eliminates >90 % of prostaglandins from 

circulation
117

. Human HPGD was cloned by screening the products of a human lung 

complementary DNA (cDNA) library against an antibody raised against purified 

placental HPGD
141

. This enzyme catalyzes the oxidation of the 15-OH common to 

prostaglandins to a ketone; these compounds are inactive at their GPCRs. Other catabolic 

enzymes reduce the Δ
13

 double bond or oxidize either the α or ω chain of PGE2
142

. 

 A few inhibitors of HPGD have been described (Figure 7). Samuelsson’s group 

demonstrated prostaglandins of the B series and a synthetic epimer of PGE1 inhibited 

HPGD
131

. Pharmacia developed an inhibitor, Ph CL 28A, with low nanomolar potency
143

. 

Other inhibitors of HPGD have been identified by high-throughput screen efforts
144

. 

 

 

Figure 7 – Inhibitors of HPGD 

 

PGE2 Receptors. PGE2 signals through four subtypes of GPCRs, each with distinct 

downstream signaling cascades (Figure 8). Targeting the GPCRs downstream of PGE2 

synthesis can be expected to have fewer side effects than blocking the activity of the 

enzymes upstream of the EP receptors. Prostanoids are involved in several homeostatic 
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processes and evidence of this can be seen in the many side effects of chronic NSAID 

use. Moreover, the subtypes of PGE2 receptors have different roles in homeostasis. EP2 

and EP4 are known to reduce blood pressure when activated
81

. EP4 has been shown to be 

cardioprotective against ischemia-reperfusion injury
145

. Positive allosteric modulators of 

EP2 have been shown to be protective against NMDA-induced excitotoxicity injury
146

. 

Inhibitors of EP1 are protective against diabetic nephropathy
77

 and EP1 genetic deletion 

has shown beneficial effects in a number of hypertensive models
83

. Blockade of EP3 has 

been shown to be beneficial in thrombotic diseases
73

, ischemic injury due to stroke
147,148

, 

diabetes
108

, and morphine withdrawal
149

. Specifically blocking activity through EP1 and 

EP3 while leaving EP2 and EP4 as well as the other prostanoids untouched could provide 

enhanced therapeutic benefit beyond blockade of EP1 or EP3 alone. 
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Figure 8 – Signal transduction pathways through which the four subtypes of GPCRs for 

PGE2 function 

 

E-Prostanoid Receptor Subtype 1 (EP1). The mouse EP1 receptor was first cloned from a 

mouse kidney cDNA library using a human thromboxane receptor expressed sequence 

tag (EST)
150

. The clone was found to be similar to the previously identified mouse EP2 
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and EP3 receptors, but not identical. When heterologously expressed in Chinese Hamster 

Ovary (CHO) cells, the authors confirmed the receptor bound [
3
H]PGE2 with high 

affinity and had a unique order of affinity for endogenous prostanoids and synthetic 

prostanoid receptor ligands. The receptor stimulated an increase in intracellular calcium 

([Ca
2+

]i) when PGE2 was added to mEP1-expressing, Fura-2-loaded CHO cells. The 

human EP1 receptor was originally cloned out of cDNA library derived from a human 

erythroleukemia cell line using a human thromboxane receptor EST. The human EP1 

receptor also stimulated calcium flux when activated by PGE2 and displayed ligand 

affinities characteristic of an EP1 receptor
151

. 

EP1 is generally accepted to be a Gq-coupled receptor. Mouse EP1-stimulated inositol 

trisphosphate (IP3) formation is modest at best. In CHO cells stably expressing mEP1, 

PGE2 induced a 20 % increase over baseline in IP3. When considering the primary 

sequence of mEP1, consensus sequences for protein kinase A (PKA) and protein kinase C 

(PKC) phosphorylation have been noted
150

. [
3
H]PGE2 binding to mEP1-expressing CHO 

cell membranes is GTPγS sensitive, with its equilibrium dissociation constant (KD) 

increasing from 23 nM to 34 nM with no change in receptor density (Bmax). This was due 

to an increase in the off-rate (koff) for [
3
H]PGE2 at mEP1 when GTPγS is in the system 

and receptor-G protein complexes are disrupted. Mouse EP1 is known to increase [Ca
2+

]i 

when activated, demonstrated to be mostly due to calcium influx with a small calcium 

mobilization contribution. Sulprostone-induced calcium flux was insensitive to 

phospholipase C (PLC) inhibitor, pertussis toxin, verapamil, or nifedipine pretreatment, 

calling into question whether this pathway truly is Gq-mediated. The small calcium 

mobilization response, evident when EP1 is stimulated in the absence of extracellular 
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calcium, was abrogated by PLC inhibition. Sulprostone activation of EP1 stimulated a 40 

% increase in IP formation which was dependent on extracellular calcium and was 

pertussis toxin insensitive. Previous reports have suggested second messenger kinase 

phosphorylation sites in the mouse EP1 receptor. To investigate an effect of PKA on 

mEP1 function, investigators measured calcium flux stimulated by sulprostone activation 

of mEP1 after pretreatment with either forskolin (a direct adenylate cyclase activator) or 

dbcAMP (dibutyryl-cyclic AMP, a cell-penetrant cAMP mimetic). Neither treatment 

affected calcium signaling stimulated by mEP1. Pretreatment with phorbol ester (a 

diacylglycerol mimetic, a direct PKC activator) completely blocked any calcium 

signaling in response to mEP1 activation, suggesting PKC may phosphorylate mEP1 and 

that desensitizes mEP1. Pretreatment with phorbol ester for 5 minutes, but not dbcAMP 

or forskolin pretreatment, reduced specific binding to [
3
H]PGE2. Binding to control 

preparations and preparations exposed to dbcAMP or forskolin for five minutes was 

reduced to the level of phorbol ester-treated preparations when the binding experiments 

were performed in the presence of GTPγS, suggesting PKC phosphorylation of mEP1 

uncouples the receptor for its G-protein. When cells were exposed to phorbol ester for 

even longer, 24 hours, specific radioligand binding was further reduced as well as 

production of mEP1 mRNA
152

. 

It is now appreciated that EP1 can couple to other pathways. Recently, a study 

reported the human EP1 receptor can couple to Gi proteins
153

. Activation of EP1 caused a 

pertussis toxin sensitive increase in the expression of hypoxia-inducible factor-1α (HIF-

1α) which was found to involve the PI3K (phosphoinositol 3 kinase)/Akt/mammalian 

target of rapamycin (mTOR) pathway. Evidence also exists for EP1 modulating the 
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function of other receptors by forming heterodimers. Activation of EP1 in the airway did 

not constrict mouse trachea. EP1 did blunt the vasodilatory action of β2AR, but not of 

forskolin, suggesting an interaction upstream of Gs-adenylate cyclase interaction. 

Investigators showed EP1 and β2AR colocalized by bioluminescent resonance energy 

transfer (BRET) assays and that in cell membrane [
35
S]GTPγS binding assays the 

presence and activation of EP1 uncoupled β2AR from its G protein
154

. 

 Using genetic deletion of EP1 in mice, several roles of EP1 in physiology and disease 

have been explored. In one study, investigators evaluated a role of EP1 in pain perception 

and blood pressure regulation. Using intraperitoneal injection of one of two different 

irritants as a model for pain, a writhing response was compared between wild-type and 

EP1
-/-

 mice. EP1
-/-

 mice had a significantly reduced stretch response to both noxious 

stimuli, and this reduction was equal in magnitude to piroxicam, a positive control. This 

may suggest piroxicam acts to block the formation of PGE2 as a ligand for the EP1 

receptor in nociception. As in previous studies, plasma renin activity was measured in 

mice of each genotype, stratified as well by sex. A genotype-specific effect was only 

observed for male mice: male EP1
-/-

 mice had higher plasma renin activity than male 

wild-type controls and female EP1
-/-

 mice had indistinguishable plasma renin activity 

from female wild-type controls. EP1
-/-

 mice had significantly lower baseline systolic 

blood pressure on a “normal”-salt diet, possibly explaining the increase in plasma renin 

activity seen in the male EP1
-/-

 mice. When the mice were placed on a low-salt diet, the 

EP1
-/-

 but not wild-type mice had a significant reduction in systolic blood pressure, 

suggesting some defect in salt-handling in the absence of the EP1 receptor
155

. 
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 Other studies have shown an attenuation of Ang II-driven hypertension in EP1
-/-

 mice 

and blood pressure normalization in spontaneous hypertensive rats treated with an EP1 

antagonist
80

. In a mouse model of cerebrovascular dysfunction, chronic Ang II 

administration reduced cerebral blood flow. Genetic deletion or pharmacological 

blockade of either COX-1 or EP1 attenuated this phenotype, suggesting a role for EP1 in 

the cerebral ischemia associated with cerebrovascular dysfunction
156

. 

 

 

Figure 9 – Antagonists of the EP1 receptor 

 

EP1 is a therapeutic target for various types of pain. SC-19220
157

, SC-51322
158,159

, 

and AH6809
160

 comprise a set of first generation EP1 antagonists with poor selectivity 

and affinity. Ono Pharmaceuticals developed ONO-8711 (Figure 9) that has been shown 

analgesic properties in animal models of inflammatory
161

 and post-operative pain
162,163

. 
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GlaxoSmithKline has published several papers on their pursuit of an antagonist of EP1 

for pain indications
164-170

. 

 

E-Prostanoid Receptor Subtype 2 (EP2). The first EP2 receptors to be cloned for mouse 

and human were not the EP2 receptor at all! Cloning and characterization of an imposter 

mouse EP2 receptor isolated from a mouse mastocytoma cDNA library using a mouse 

EP3 EST was described in 1993
171

. A different group then used an EST from this mouse 

“EP2” receptor to clone a human EP2 receptor from a lung cDNA library
172

. These new 

receptors were pharmacologically consistent with an EP2 receptor, except that neither 

was responsive to the EP2 agonist butaprost
171,172

. In an independent laboratory, John 

Regan published in 1994 the cloning of a different human EP2 receptor from a human 

placental cDNA library. This receptor was the true human EP2 receptor and as such 

possessed all of the pharmacological hallmarks of an EP2 receptor. These investigators 

posited the previously identified human and mouse EP2 receptors may be misidentified 

EP4 receptors
173

. The investigators from the mouse study later published the 

reassignment of their cloned receptor as the mouse EP4 receptor
174

. 

 The EP2 receptor is a Gs-coupled receptor with lower affinity for [
3
H]PGE2 than EP3 

or EP4 (KD = 13 nM175
). The EP2 receptor forms signaling complexes with β-arrestin. In 

a mouse study of papilloma development, investigators determined a G-protein 

independent signaling cascade through EP2: β-arrestin1 carries active Src to EP2, Src 

phosphorylates and activates the epidermal growth factor receptor (EGFR), and EGFR 

then activates H-Ras, ERK1/2, and Akt signaling cascades
176

. Due to a lack of EP2-
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selective antagonists, in vivo function of EP2 has been studied using genetic deletions of 

the receptor gene Ptger2. 

The most obvious phenotype of the EP2
-/-

 mice is a fertility defect. Female EP2
-/-

 

became pregnant less frequently than wild-type controls. When EP2
-/-

 mice did become 

pregnant, their litters were significantly smaller than wild-type controls. The reduction in 

pregnancy rate is due to a lower rate of fertilization likely caused by a deleterious change 

in the oviduct microenvironment and not a defect in the timing of ovulation or the ova 

themselves. Abnormalities in regulation of blood pressure were observed in EP2
-/-

 mice. 

EP2
-/-

 mice on a normal-salt diet (0.4 % NaCl) had a significantly lower MAP than wild-

type controls. This blood pressure deficit could be reduced by putting the mice on a high-

salt diet (6 % NaCl). This would suggest some defect in salt handling in EP2
-/-

 mice. A 

decrease in blood pressure should stimulate a compensatory release of renin. Plasma 

renin activity was indistinguishable with respect to genotype under each diet, suggesting 

a deficiency in the signaling that triggers renin release in response to hypotension. This 

signaling event may be a direct activity of EP2. Chronic PGE2 infusion increases blood 

pressure due to a direct stimulation of renin release, and renin release can be stimulated 

by hormones that increase intracellular cAMP ([cAMP]i)
177

. 

Similarly, investigators have observed a significant reduction in embryo implantation 

in female EP2
-/-

 mice independent of whether they were mated with male wild-type or 

EP2
-/-

 mice. The fertility defect was further narrowed to the number of eggs released and 

subsequently fertilized per ovulation: EP2
-/-

 mice released significantly fewer eggs per 

ovulation and fewer of these eggs were fertilized when compared to wild-type controls. 
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As before, abnormalities in blood pressure regulation and salt-handling were also 

observed in EP2
-/-

 mice. Bolus intravenous injection of an EP2-selective agonist 

produced an acute and transient decrease in MAP in wild-type mice. This response was 

completely absent in EP2
-/-

 mice. In EP2
-/-

 mice, the depressor response to PGE2 is absent 

and instead a potent, transient vasopressor response to PGE2 is unmasked. Vasodepressor 

responses to an EP4 agonist and vasopressor responses to an EP1/EP3 agonist were 

indistinguishable between wild-type and EP2
-/-

 mice.  

Female EP2
-/-

 mice had a higher baseline systolic blood pressure than wild-type 

female controls. Deletion of EP2 did not affect male baseline systolic blood pressure. 

When wild-type mice were placed on a high-salt diet no change in blood pressure was 

observed, due to a compensatory increase in urinary salt output. When EP2
-/-

 mice were 

moved from a “normal”-salt diet to a high-salt diet, systolic blood pressure increased by 

25 - 30 mmHg. This salt-sensitive hypertension again suggests a salt-handing defect in 

mice lacking the EP2 receptor
178

. 

 

 

Figure 10 – Agonists and allosteric modulators of the EP2 receptor 
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AH6809 is the primary EP2 antagonist available, despite its affinity for the EP1 

receptor (Figure 10). Butaprost, once known as TR4979, is a select EP2 agonist once the 

compound is metabolically activated by ester hydrolysis
179

. Next generation EP2 agonists 

and positive allosteric modulators have been developed. ONO-AE1-259 is a potent and 

selective EP2 agonist generated by Ono pharmaceuticals using butaprost as a template
180

. 

Selective, positive allosteric modulators were identified and demonstrated to be 

neuroprotective in the NMDA-induced excitotoxicity model of cell injury
146

. 

 

E-Prostanoid Receptor Subtype 3 (EP3). The mouse EP3 receptor was first cloned from 

lung cDNA pools using a human thromboxane receptor EST
181

. The mouse EP3 receptor 

exists as three isoforms differing only in their alternatively spliced C-terminal tails
182,183

. 

The human ortholog of EP3 was subsequently cloned from human small intestine
184

, a 

human kidney cDNA library
185

, a human megakaryocyte cell line
186

. Eight alternative 

splice variants of hEP3 have been identified
187

. 

 The EP3 receptor exists as a number of different C-terminal splice variants and these 

differences in C-terminus composition have been shown to affect the receptor 

desensitization and trafficking as well as to which pathway the receptor couples. For the 

mouse EP3 receptors, the splice variants are designated mouse EP3α, EP3β, and EP3γ in 

the order they were discovered. The first mouse EP3 receptor splice variant was 

identified in 1992 and was shown to have classical [cAMP]i-suppressing Gi activity
181

. 

The second isoform discovered, mEP3β, was characterized in comparison to mEP3α. 

In radioligand binding assays, the KD for mEP3α decreased from 3.0 nM to 1.1 nM when 
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the binding was performed in the presence of GTPγS. For mEP3β, the KD increased from 

2.8 nM to 5.9 nM. Neither receptor had a decrease in Bmax when incubated with GTPγS. 

Both of these GTPγS-dependent changes in KD are pertussis toxin sensitive
188

. These data 

indicate the association of mEP3β with Gαi increases the affinity of the receptor for 

[
3
H]PGE2, as would be predicted by the ternary complex model (Figure 11)

189
. No 

change in KD or Bmax for mEP3β when incubated with GTPγS suggests the receptor is 

only weakly G-protein coupled, if at all. Indeed, Sugimoto et al. saw the IC50 for mEP3β 

against [cAMP]i accumulation was three orders of magnitude higher than that for mEP3α. 

These data demonstrate a difference in G-protein coupling for mouse EP3 receptors with 

different C-terminal tails. 

 

 

Figure 11 – Ternary Complex Model. L represents a ligand, either an agonist, 

antagonist, or inverse agonist. R and R* represent an inactive and an active G-protein 

coupled receptor, respectively. G represents the G-protein to which the receptor 

couples
189

. 

 

 

The susceptibility of each splice variant to agonist-stimulated receptor desensitization 

and internalization was also studied. For mEP3α, 30 minute pre-incubation of mEP3α 

expressing CHO cells with PGE2 right-shifted the concentration response curve of PGE2-
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stimulated [cAMP]i suppression. Pre-incubation for 24 hours further right-shifted the 

concentration response curve and also reduced the maximum efficacy (Emax) for the 

system. Neither pre-treatment for 30 minutes nor for 24 hours affected the concentration 

response curve of PGE2 in CHO cells expressing mEP3β. Time- and concentration-

dependent internalization from the surface of intact CHO cells was observed for mEP3α 

and not for mEP3β. Pre-treatment of cells with PGE2 for 24 hours before membrane 

harvest reduced the Bmax for mEP3α by 75 % while mEP3β was unaffected
190

. Taken 

together these data demonstrate a difference in receptor desensitization and 

internalization that was dependent on the alternatively spliced C-terminal tails. 

Discovery of the third splice variant of mouse EP3, mEP3γ, was reported in 1993
183

. 

Mouse EP3γ was shown to be Gi-coupled like the other mouse EP3 splice variants. At 

high concentrations of agonist, mEP3γ also stimulated the accumulation of [cAMP]i. 

Pertussis toxin treatment reduced the GTPase activity stimulated by mEP3γ activation. 

The diversity in downstream signaling from these alternatively spliced receptors was 

captured well in a study of bovine EP3 receptors. Four isoforms of the EP3 receptor 

(EP3A – EP3D) were identified from a bovine adrenal medullary cDNA library using a 

mouse EP3 receptor EST. Surprisingly, the bovine EP3 receptor splice variants were 

found to stimulate [cAMP]i accumulation to varying degrees in forskolin-naïve CHO 

cells in a pertussis toxin-insensitive manner. This suggests the bovine EP3 receptor can 

couple to Gs proteins in addition to its canonical Gi coupling. The bovine EP3A splice 

variant did not effectively raise [cAMP]i but was the splice variant with the highest Emax 

for Gi-mediated [cAMP]i suppression. EP3A stimulated IP3 turnover and a small increase 

in [Ca
2+

]i, both of which were pertussis toxin-sensitive. The bovine EP3D splice variant 
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showed modest Gs-coupling and similar Gi activity to EP3A. EP3D also stimulated IP3 

turnover and a large increase in [Ca
2+

]i, neither of which were pertussis toxin sensitive. 

The net effect of EP3B or EP3C activation seemed to be limited to increasing [cAMP]i 

accumulation 
191

. 

The EP3 receptor is known to exhibit a large amount of constitutive activity, 

depending on the splice variant. In some contexts the activity of mEP3γ can be 

completely agonist-independent and one might interpret the lack of an agonist-dependent 

increase in signal as a lack of receptor activity. Without a formally-defined inverse 

agonist, constitutive activity was not apparent until it was observed that basal [cAMP]i 

levels of EP3-transfected cells actually increased when the cells were treated with 

pertussis toxin
192-194

. 

EP3 can activate a number of other signaling pathways. One pathway relevant to 

blood pressure and insulin sensitivity is the RhoA pathway. The EP3 receptor is known to 

couple to G12/13 proteins, which through RhoGEF activate the small GTPase RhoA and its 

kinase ROCK. ROCK has a number of functions related to the cytoskeleton. In vascular 

smooth muscle cells, ROCK sensitizes the cell to contraction by inactivating myosin light 

chain phosphatase
195

. In other countries, ROCK inhibitors are used clinically to treat 

hypertension and diseases related to vasomotor dysfunction
196-198

. EP3 activation 

increases [Ca
2+

]i as well as sensitizes vascular smooth muscle cells contraction through 

RhoA/ROCK. It is therefore not surprising that activation of EP3 can be a direct 

vasoconstrictor, depending on the vascular bed
199-201

. Guinea pig aorta is a robust 

bioassay of EP3-mediated vasoconstriction, as well as TP-mediated 

vasoconstriction
200,202

. Robert Jones et al. have published studies indicating a critical role 
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for RhoA/ROCK in transducing the vasoconstrictor response to EP3 receptor activation 

in guinea pig aorta
200,202

. 

In other cells, ROCK stimulates the formation of actin stress fibers
203

. In 

intermedullary collecting duct cells, the diuretic hormone arginine vasopressin (AVP) 

induces translocation of vesicles of water-permeable aquaporin 2 (AQP2) channels to the 

cell surface, increasing water excretion into the urine. PGE2 has long been shown to 

antagonize this diuretic effect
204,205

. Recently, a mechanism for how PGE2 antagonizes 

AVP was proposed. Selective activation of EP3 was shown to suppress AVP-stimulated 

membrane insertion of AQP2 with a concomitant increase in actin stress fiber formation 

independent of [cAMP]i and [Ca
2+

]i levels. AVP reduced basal RhoA activation, while 

EP3 increased RhoA activation over baseline. It was proposed that EP3 caused a 

reduction in membrane AQP2 by inducing stress fibers that prevented the movement of 

the AQP2 vesicles to the membrane
206

. 

Through a similar mechanism, insulin stimulates insertion of GLUT4 vesicles into the 

membranes of its target tissues. Inactivation of Rho with Clostridium botulinum C3 

exoenzyme stimulated glucose uptake in cells similar to levels achieved by insulin 

stimulation
207

. Data exists to suggest a role of PGE2 in reducing tissue responses to 

insulin
208,209

. It is therefore possible that in a setting of chronic inflammation, like 

diabetes mellitus, when PGE2 would be expected to be high, signaling through EP3 could 

suppress GLUT4 translocation to the membranes of target tissues by inducing actin stress 

fiber formation. 

 Central PGE2 is known to have a number of EP3-mediated effects: fever
210

, activation 

of sympathetic efferents of the autonomic nervous system
66,211,212

 possibly in response to 
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the baroreflex, and prevention of withdrawal symptoms from drugs of abuse
149,213,214

. 

Immunostaining of EP3 in the rat central nervous system is extensive
215,216

. Of particular 

interest is localization of EP3 to the locus coeruleus, the raphe nuclei, several locations 

lining the ventricles, the tractus solitarius, ganglia of the autonomic nervous system, and 

dorsal root ganglia. 

The locus coeruleus contains noradrenergic neurons that may be involved in sleep
217

 

and memory
218

. One of the roles of serotinergic raphe neurons is to mediate the analgesic 

properties of opiates
219

. Some nuclei adjacent to the ventricles of the brain have poorly 

formed blood-brain barriers. These nuclei sense circulating hormones and cytokines, like 

IL-1β which augments PGE2 production in ventricle adjacent nuclei of the hypothalamus, 

mediating the febrile response to IL-1β
220

. EP3 has been shown to be both pre-synaptic
221

 

and post-synaptic in localization
216

. 

EP3 has been described in multiple structures of the baroreflex circuit (Figure 12). 

The baroreflex is a centrally-mediated vasomotor response. When blood pressure 

increases, mechanoreceptors in the aortic arch and carotid bodies detect distension of the 

vessels and stimulate efferents to the nucleus tractus solitarius (NTS). Stimulatory 

glutamatergic efferents from the NTS stimulate the caudal ventrolateral medulla 

(CVLM), which trigger inhibitory GABAergic efferents to the rostral ventrolateral 

medulla (RVLM). The RVLM is the central activator of the sympathetic nervous system. 

The baroreflex inhibits the RVLM through GABAergic CVLM projections, which also 

activates vagal efferents. The net effect is to reduce chronotropy and inotropy of the 

heart, acutely lowering arterial pressure
222

. 
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Figure 12 – Baroreflex and basal sympathetic tone are controlled by the central 

vasomotor center. NTS, nucleus tractus solitarius; CVLM, caudal ventrolateral medulla; 

RVLM, rostral ventrolateral medulla. 

 

 

EP3 is hypothesized to either directly or indirectly activate the sympathetic outflows 

of the RVLM. Intracerebroventricular (ICV) injection of PGE2 and EP3-selective 

agonists into rats increased circulating levels of norepinephrine in a dose-dependent 

manner
211

. Whether EP3 directly stimulates the RVLM or inhibits the CVLM, which then 

disinhibits the RVLM, cannot be known from these data. In another study, PGE2 was 

demonstrated to raise blood pressure, heart rate, and renal sympathetic nerve activity 

(RSNA) in a dose-dependent manner. These effects were abolished by ganglionic 

blockers and antagonism of adrenergic receptors, but not an EP1 antagonist. The same 

sympathomimetic effect was observed with an EP3-selective agonist, but not with EP1-, 
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EP2-, or EP4-selective agonists
66

. These data support a role for central EP3 receptors in 

the central regulation of cardiovascular function, especially in the setting of inflammation 

when PGE2 production would be augmented. 

 

 

Figure 13 – Antagonists of the EP3 receptor 

 

 

 EP3 receptor antagonists have been developed as therapeutic candidates for 

thrombotic disorders (Figure 13)
73,76

, urinary bladder dysfunction
223

, and stroke injury
147

. 

DG-041 is a high-affinity and selective EP3 antagonist that progressed to Phase II clinical 

trials as an adjunct therapy to clopidogrel for prevention of thrombotic diseases
73,224-226

. 

DG-041 was able to block PGE2-stimulated platelet aggregation in vitro and ex vivo 

without increasing bleeding time in rats, representing a novel class of antiplatelet 

therapeutics. In a mouse model of acute cerebral infarction, intraperitoneal injection of 

the EP3 antagonist ONO-AE3-240 significantly reduced infarct size, edema, and 

neurological dysfunctions to approximately the same levels as genetic deletion of EP3
147

. 
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L-798,106 is another high-affinity, selective antagonist of EP3 that was developed by 

Merck Frosst
227

. 

 

E-Prostanoid Receptor Subtype 4 (EP4). As detailed above, cloning and initial 

characterization of the mouse
171

 and human
172

 EP4 receptors were reported in 1993 and 

1994, respectively. At the same time, a group at Glaxo published a study in which they 

pharmacologically identified the EP4 receptor in ovine saphenous vein
228

. Shortly 

thereafter, John Regan reported cloning the human EP2 receptor
173

 and it became clear 

the originally reported mouse and human EP2 receptors were actually this newly 

identified EP4 receptor
174

. 

EP4 is a Gs-coupled receptor with an affinity for [
3
H]PGE2 20 times tighter than EP2 

for [
3
H]PGE2 (KD = 0.59 nM

175
). Like the EP2 receptor, EP4 has also been shown to 

signal through G-protein independent β-arrestin mediated signaling complexes. In models 

of lung and colorectal cancer, signaling of EP4 through β-arrestin1/c-Src transactivation 

of EGFR has been shown to augment cancer cell migration
229,230

. Functional selectivity 

of ligands at EP4 for Gs versus Gi/β-arrestin coupled pathways has been reported. PGE2 

potently activated the classical Gs-coupled pathway through EP4; PGF2α and PGE1-OH 

preferentially activated the Gi/β-arrestin pathways
231

. 

 Of the four subtypes of PGE2 receptors, deletion of EP4 has the most striking 

phenotype. Fetal circulation has a special arterial shunt called the ductus arteriosis (DA) 

that redirects blood from the fetal pulmonary circuit to the placenta for oxygenation. At 

and after birth, the DA must constrict shut and be permanently occluded. In about 0.06 % 

of full-term births and more for premature births, the DA fails to close, a condition 
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referred to as patent ductus arteriosis, rapidly resulting in arterial pressures reaching the 

pulmonary circuit, causing pulmonary edema and congestive heart failure. Treatment for 

patent DA is indomethacin. EP4 deletion on the 129 background was 100 % fatal by the 

second postnatal day. On mixed backgrounds, EP4 deletion was fatal to almost the entire 

litter of EP4
-/-

 mice. These mice died of heart failure secondary to patent DA
87,232

. 

Studies in EP4 knockout mice have been challenging because of their perinatal 

lethality. Small cohorts can be assembled by breeding mice on a mixed genetic 

background. EP4, along with EP2, is a vasodepressor receptor. Activation of endothelial 

EP4 has been shown to induce an eNOS-dependent vasodilation in aortic rings
65

. EP4-

selective agonists and antagonists (Figure 14) have confirmed a systemic vasodepressor 

response to activation EP4
64

. First generation EP4 agonists and antagonists were 

nonselective and low affinity
233

. Current EP4 ligands have better affinity but lack 

specificity (Figure 14)
234

. 
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Figure 14 – Agonists and antagonists of the EP4 receptor 

 

Specific Aims 

 

Generate and characterize a mutant of the mouse EP3γ receptor devoid of all cysteine 

residues for overexpression in E. coli. The three-dimensional architecture of a protein 

provides a wealth of information concerning a protein functions and how to artificially 

disrupt or augment those functions
235-237

. Protein structures are inferred using 

biochemical techniques or solved using a number of low-resolution (atomic force and 

electron microscopy) and high-resolution (NMR, X-ray crystallography) techniques. 

High-resolution structural studies of proteins require large amounts of pure protein. 
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Traditionally, overexpression in E. coli is the method of generating large amounts of 

protein that can then be purified by affinity chromatography. One obvious problem to 

synthesizing functional GPCRs in E. coli is the lack of membrane-bound organelles in the 

prokaryote which makes proper folding of the GPCR unlikely. While a GPCR is 

synthesized in eukaryotic cells, an N-terminal signal sequence feeds the first 

transmembrane domain of the nascent protein through the bilayer of the endoplasmic 

reticulum, promoting a sequence of events that result in proper folding of the seven-

transmembrane domain receptors (Figure 15). When proteins are overexpressed in E. 

coli, they are often driven into insoluble aggregates of misfolded protein called inclusion 

bodies. However, these inclusion bodies can sometimes be solubilized and the proteins 

refolded into their native conformations. 
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Figure 15 - Model of the three dimensional structure of the mouse EP3γ receptor based 

on homology to the 2.2 Å crystal structure of bovine rhodopsin (PBD ID 1U19
238

). 

 

 

 When refolding proteins from aggregates, the various cysteine residues of the protein 

can crosslink, forming covalent disulfide bonds. In many proteins, properly assembled 

disulfide bonds are absolutely required for natively folded, active protein. In GPCRs, it is 

well established at least one disulfide bond exists in most if not all Class A GPCRs 
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between the first and second extracellular loops of the receptor
239-242

. Second and third 

disulfide bonds occur but are less conserved. Cross-linked, misfolded aggregates can be 

avoided by determining which cysteine residues are required for native receptor function 

and mutating the remaining residues
243

. 

 In this Specific Aim (Chapter II), mutants of a hemagglutinin (HA)-tagged mouse 

EP3γ receptor were generated, each with a different cysteine-to-alanine missense 

mutation. Retention of native function for each receptor was evaluated using radioligand 

binding and cell-based signaling assays. In two cases, replacement of a cysteine residue 

with an alanine abolished radioligand binding and signal transduction through the mutant 

receptor. To determine whether these deficits were due to a misfolded receptor or failure 

of the mutant receptor to traffic to the cell surface, surface expression was determined 

using ELISA against the N-terminal HA tag and intact cell radioligand binding assays. 

 

Synthesize and characterize novel antagonists of the mouse EP1 and EP3 receptors. EP1 

and EP3 receptors have been implicated in the pathophysiology of DM and 

cardiovascular disease. EP1 antagonists have been shown to lower blood pressure in 

spontaneously hypertensive rats
80

 and to prevent the progression of DN in STZ-treated 

rats
77

. Genetic deletion of EP1 has prevented development of Ang II-dependent 

hypertension
80,244

 and attenuated mortality in the face of chronic Ang 

II/deoxycorticosterone acetate (DOCA)-driven hypertension
83

. Activation of central EP3 

receptors has been shown to increase blood pressure through the sympathetic nervous 

system
66

. EP3 may augment other vasoconstrictors by increasing calcium sensitivity in 

smooth muscle cells
200,245

. EP3 may also dampen target tissue sensitivity to insulin
108,209

. 
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EP3 has been implicated in thrombotic diseases
73

 and brain injury from stroke
147

 and 

excitotoxicity
148

. 

In this Specific Aim (Chapter III and IV), a lead compound was identified in the 

literature
168

 that was reported to be a high-affinity antagonist of the human EP1 receptor. 

The compound had significant off-target affinity for the TP receptor, potentially 

complicating the interpretation of any in vivo studies in which the compound would be 

employed. Also, the compound has poor in vivo pharmacokinetics, being rapidly 

eliminated from circulation. Hypothesizing the lead compound was eliminated by Phase 

II conjugation reactions at the carboxylate, a small library of amide and N-

acylsulfonamides based on the lead compound was synthesized. The in vitro 

pharmacology of these compounds was characterized at the mouse EP1, EP2, EP3, EP4 

and TP receptors using radioligand competition binding and calcium mobilization assays 

(Chapter III). JD-200, a compound previously described to have affinity for both the EP1 

and EP3 receptors, and DG-041, a potent and selective antagonist of the EP3 receptor, 

were synthesized. The in vitro pharmacology of these compounds at mouse EP1 and EP3 

receptors was characterized using radioligand competition binding, calcium mobilization, 

and CRE reporter assays (Chapter IV). 

 

Determine the in vitro and in vivo pharmacokinetic properties of novel antagonists. Drug 

metabolism and pharmacokinetics assays allowed the study of dosing strategies and 

potential for drug-drug interactions with novel compounds. With the goal of using these 

novel EP1 and/or EP3 antagonists in mouse models of diabetes and hypertension, 

information about how rapidly these compounds are eliminated from circulation, how 
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they are eliminated, and which routes of administration are optimal for chronic dosing 

was required. Knowing how a compound distributes in an animal and how it is eliminated 

can help predict changes in drug exposure when the animal has compromised renal 

function or large difference in fat mass of a diabetic mouse, for example. 

 Intrinsic hepatic clearance of compounds with the best selectivity and affinity for EP1 

and/or EP3 was determined and the data used to decide for which compounds to 

determine in vivo pharmacokinetic properties. Plasma protein binding data were also 

collected for the most selective compounds. Recognizing that the intrinsic clearance of 

these molecules was high, in vitro metabolite identification assays were also performed to 

determine whether a compound is being metabolized in several different ways or in a 

small, manageable set of reactions (Chapter III). 

 An in vitro metabolite identification experiment for DG-041 was also performed once 

it was recognized the elimination of DG-041 from the mouse was rapid. These 

experiments used incubation with mouse liver microsomes with and without glutathione 

to detect oxidative metabolism at DG-041 and trap potentially reactive metabolites 

formed in the assay (Chapter IV). 

 

Evaluate the activity of novel antagonists in vivo. In this Specific Aim (Chapters III and 

IV), compounds were subjected to in vivo assays to determine whether the compounds 

were functional antagonists of their target receptors in vivo. Acute infusion of 

sulprostone, 17-phenyl-ω-trinor PGE2 (17PTPGE2), or phenylephrine are known to 

transiently increase MAP in anesthetized mice. Using the vasopressor response to 

sulprostone and 17PTPGE2 as a bioassay for EP1 and EP3 activity, the p-
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chlorophenylsulfonamide analogue of the lead EP1 antagonist was evaluated for 

antagonism in vivo (Chapter III). Similarly, the ability of pretreatment with DG-041 to 

block the vasopressor activity of 17PTPGE2 in anesthetized mice was determined 

(Chapter IV). 
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CHAPTER II 

EVIDENCE FOR THE PRESENCE OF A CRITICAL DISULFIDE BOND IN THE 

MOUSE EP3GAMMA RECEPTOR 

 

Introduction 

 

 Although the molecular pharmacology of the EP receptors has been studied in 

detail
152,192,246-248

, the structural features of the EP receptors themselves have been 

incompletely characterized. EP receptors are seven transmembrane domain, Class A 

GPCRs. A number of cysteine residues are highly conserved within GPCRs, suggesting a 

critical role for these cysteines in receptor function. Evidence suggests a pair of highly 

conserved cysteines, one in extracellular loop 1 (ECI) or just after that loop at the start of 

Helix 3 and one in extracellular loop 2 (ECII), which often form a disulfide bond in the 

extracellular domain of GPCRs
239,241,242,249

. A covalent bond between two such positions 

is known to constrain helix topology, promote functional tertiary arrangement, and 

stabilize the ligand-binding pocket of seven transmembrane domain receptors
242,250

. 

Intracellular cysteine side-chains can be the targets of enzymatic S-acylation and S-

alkylation (isoprenylation) reactions. Cysteine residues in the C-terminal tail of GPCRs 

often have a molecule of palmitic acid covalently attached via a thioester bond
241,242,251

 or 

an isoprene polymer covalently attached via a thioether bond
252,253

. The lipid moieties are 

thought to insert into the inner leaflet of the plasma membrane, forming a fourth 
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intracellular loop. A number of studies have indicated these post-translational 

modifications are necessary for proper receptor expression
254-256

 and function
251,257,258

. 

The contribution of each of the 13 cysteines present in mEP3γ was evaluated with 

respect to ligand binding affinity, cell surface expression, and downstream effector 

coupling of the receptor. While most cysteine-to-alanine mutations were well tolerated, 

two mutations abrogated detectable radioligand binding and cell signaling and attenuated 

surface trafficking of the receptor. These cysteines correspond to a pair of conserved 

cysteines located in ECII and the extracellular end of Helix 3 that are the site of an 

extracellular disulfide bond in > 90% of the Class A GPCRs. Our results indicate that 

these conserved cysteine residues are important in enabling efficient surface expression 

and are also required for the function of surface-expressed EP3 receptor. 

 

Materials and Methods 

 

Materials. HEK293 cells were purchased from ATCC (#CRL-1573, Manassas, VA). 

PGE2 and sulprostone were purchased from Cayman Chemical (Ann Arbor, MI). 

[
3
H]PGE2 was purchased from Perkin Elmer (Waltham, MA). Mouse anti-HA mAb, 

clone 6E2 was purchased from Cell Signaling (Danvers, MA). Horseradish peroxidase 

(HRP)-conjugated goat anti-mouse antibody was purchased from Jackson 

ImmunoResearch (West Grove, PA). Indomethacin, sodium butyrate, bovine serum 

albumin (BSA), and poly-D-lysine were purchased from Sigma Aldrich (St. Louis, MO). 

Chlorophenolred-ß-D-galactopyranoside (CPRG) was purchased from Roche Applied 
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Science (Indianapolis, IN). High-glucose, no L-glutamine Dulbecco’s Modified Eagle 

Medium (DMEM), OptiMEM I, and Lipofectamine 2000 were purchased from 

Invitrogen (Carlsbad, CA). L-glutamine and penicillin/streptomycin were purchased from 

MediaTech (Manassas, VA). Fetal bovine serum (FBS) was purchased from Atlanta 

Biologicals (Lawrenceville, GA). HRP substrate kit was purchased from Bio-Rad 

(Hercules, CA). Bicinchoninic Acid (BCA) Protein Assay kit was purchased from 

Thermo Scientific (Rockford, Il). 

 

Generation of Mutant HAmEP3γ cDNA. Mutants of mEP3γ were generated as previously 

described
259

. Mutant HAmEP3γ cDNAs were generated by Mutagenex (Piscataway, NJ) 

using HA-tagged wild-type mouse EP3 gamma cDNA in pcDNA3 as a template. Wild-

type receptor and all mutant receptors contained a single threonine-to-serine variant from 

published sequence
183

 that appears to have no effect on receptor function. Primers used 

for mutagenesis are listed in Table 1. DNA sequences of mutant receptors were 

confirmed by Mutagenex and independently at the Vanderbilt DNA Sequencing facility. 
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Table 1 – Forward and reverse primers used by Mutagenex to produce missense 

mutations in wild-type mEP3γ plasmid. Lowercase nucleotides indicate the mutagenic 

sequence. 

   

Mutant Primer ID Primer Sequence 

C24A 403-1F 5’-AAAGGTCTC GgctGGCTCCGTGTCCGTGG 

 403-1R 5’-AAAGGTCTC CCAGCGTCGTCGGTAGTACTT 

C68A 403-2F 5’-AAAGGTCTC GgctATTGGCTGGCTGGCGC 

 403-2R 5’-AAAGGTCTC ATAGCCAGCAGGAAAGACTTCTT 

C107A 403-3F 5’-AAAGGTCTC GgctACCTTCTTCGGGCTAAC 

 403-3R 5’-AAAGGTCTC GTAGCCAGACGCCCCGATGG 

C184A 403-4F 5’-AAAGGTCTC gctTTCATCAGCACCGGGCCG 

 403-4R 5’-AAAGGTCTC GAAAGCCCACGTGCCCGGCCA 

C212A 403-5F 5’-AAAGGTCTC gctTTGGGCTTGCTGGCTCTG 

 403-5R 5’-AAAGGTCTC CAAAGCGGCGAAGGCGGAGG 

C224A 403-6F 5’-AAAGGTCTC CgctAACCTGGCGACCATCAA 

 403-6R 5’-AAAGGTCTC TTAGCGGCAAAGGTCACCACCA 

C236A 403-7F 5’-AAAGGTCTC GCgcTCGGGCCAAAGCCGC 

 403-7R 5’-AAAGGTCTC GAGCGCGGGACACCAGGGCT 

C265A 403-8F 5’-AAAGGTCTC GgcTGTGCTGTCCGTCTGTTG 

 403-8R 5’-AAAGGTCTC ACAGCCATGATCCCCATGAGCT 

C270A 403-9F 5’-AAAGGTCTC TCgcTTGGTCGCCGCTATTGA 

 403-9R 5’-AAAGGTCTC AAGCGACGGACAGCACACACA 

C291A 403-10F 5’-AAAGGTCTC AgctAAGACACAGATGGGAAAG 

 403-10R 5’-AAAGGTCTC TTAGCTTGCTCAACCGACATCTG 

C301A 403-11F 5’-AAAGGTCTC GgctAATTCCTTTCTAATTGCAGT 

 403-11R 5’-AAAGGTCTC TTAGCCTCCTTCTCCTTTCCCAT 

C334A 403-12F 5’-AAAGGTCTC TCgctCAGGTAGCAAACGCTGT 

 403-12R 5’-AAAGGTCTC GAGCGAACTTCCGAAGAAGGAT 

C343A 403-13F 5’-AAAGGTCTC gctTCTAGTGATGGACAGAAAG 

 403-13R 5’-AAAGGTCTC AGAAGCACTGGAGACAGCGTTTG 

 

 

Cell Culture. HEK293 cells were maintained at 37 ˚C / 5% CO2 in complete media 

(DMEM supplemented with 10% FBS, 2 mM L-glutamine, 100 units/mL penicillin, and 

100 μg/mL streptomycin). Cells were cotransfected with 3 μg receptor cDNA plasmid 

and 3 μg pCRE/lacZ reporter plasmid 
260

 using Lipofectamine 2000. Six hours after 

adding DNA-Lipofectamine 2000 complexes, media was replaced with complete media 
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containing 20 μM indomethacin and 5 mM sodium butyrate. Cells were allowed to 

recover for 18 to 24 hours before being plated in 96-well plates (5 x 10
4
 cells/well) for 

the reporter assay and 100 mm dishes to prepare membranes. Cells were incubated for an 

additional 24 to 48 hours, until confluence was reached. 

 

CRE/LacZ Reporter Assay. HEK293 cells in 96-well plates cotransfected with HAmEP3 

receptor plasmid and pCRE/lacZ reporter plasmid were incubated with PGE2 (1 nM – 1 

μM) in Opti-MEM containing 5 mM sodium butyrate and 20 M indomethacin. After 

cells were stimulated with agonist for six hours, media was aspirated and cells were 

washed with phosphate-buffered saline (PBS). Cells were incubated for 10 minutes at 

room temperature in 25 L of lysis buffer (10 mM sodium phosphate, 0.2 mM MgSO4, 

and 10 M MnCl2, pH 8.0). Assay plates were developed as described
261

. Concentration 

response curves to PGE2 were determined by measuring relative enzyme activity as 

absorbance at 570 nm on Multiskan Ascent plate reader (Thermo Labsystems, Waltham, 

MA).  

 

Saturation Radioligand Binding. Total cell membranes from HEK293 transfectants used 

in CRE/LacZ assays described above were prepared as described
262

. Membranes (5 - 10 

g) were incubated with [
3
H]PGE2 (0.25 – 8 nM) in 200 L of binding buffer (25 mM 

potassium phosphate, 1 mM EDTA, and 10 mM MgCl2, pH 6.2) for 2 hours at 30 ˚C.  

Nonspecific binding was determined in the presence of the unlabeled sulprostone (5 μM). 



 

61 

 

 

Binding reactions were terminated and radioactivity was quantified as previously 

described
262

. 

 

Cell Surface Radioligand Binding. Cells transfected with HAmEP3γ receptor plasmids 

were plated 18 hours post-transfection at a density of 2 x 10
5
 cells/well in poly-D-lysine 

coated 24-well plates in media containing 20 μM indomethacin and 5 mM sodium 

butyrate 24 hours prior to assay. Cells were washed with ice-cold 0.5 % FBS in PBS. 

Cells were incubated with [
3
H]PGE2 (5 nM) in the presence and absence of unlabeled 

sulprostone (5 μM) for 2 hours on ice. Cells were washed twice with ice-cold PBS and 

lysed with 0.1 M NaOH. Cell surface radioligand binding was quantified by liquid 

scintillation counting. 

 

Immunodetection of Cell Surface Receptor Expression. Transfected cells were plated in 

poly-D-lysine-coated 24-well plates at a density of 2 x 10
5
 cells/well in media containing 

20 μM indomethacin and 5 mM sodium butyrate 24 hours prior to assay. Cells were 

washed with PBS and fixed with 250 μL of 3.7 % formalin in Tris-buffered saline (TBS) 

for 5 minutes at 23 °C and washed with TBS. Cells were blocked with 1 % BSA in TBS 

for 30 minutes at 23 °C. HA-tagged EP3 receptor was detected by incubation of cells 

with mouse anti-HA antibody (1:1000 in 1 % BSA) for 1 hour at 23 °C. Cells were 

washed with TBS and blocked with 1 % BSA in TBS for 15 minutes at 23 °C. HRP-

conjugated goat anti-mouse antibody (1:1000 in 1 % BSA) was added to cells for 1 hour 

at 23 °C. Cells were washed with TBS and developed using HRP substrate kit as 

prescribed with the exception of using 300 μL of substrate and stop solutions per well. 
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Results 

 

 

Figure 1 – Primary sequence of the mouse EP3γ receptor. The location of the 13 

cysteines are indicated in shaded residues. The location of a putative disulfide bond is 

illustrated between ECI and ECII. 

 

 

C107A or C184A mutations abolish signal transduction through the mouse EP3γ 

receptor. To determine the functional importance of each cysteine residue of mEP3γ 

(Figure 1), ligand binding and signaling characteristics were determined for each of 13 

cysteine-to-alanine point mutants of HA-tagged wild-type mEP3γ transiently expressed 

in HEK293 cells. Signal transduction for each mutant was evaluated by a cell-based CRE 

reporter assay for mEP3γ activation
260,261

. As observed previously for the rabbit EP3 

receptor, agonist activation of the mouse EP3 receptor lead to a dose dependent increase 
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in CRE reporter activity
261

. Each receptor bearing a cysteine-to-alanine mutation (e.g., 

C24A) was similarly able to transduce an agonist-stimulated reporter signal, with the 

exception of receptors with mutations at C107 or C184 (Figure 2). 

 

 

Figure 2 - CRE/LacZ cell signaling assay. HEK293 cells transiently coexpressing the 

pCRE/LacZ reporter plasmid with either wild-type HA-mEP3γ cDNA, mutant HA-

mEP3γ cDNA, or empty pcDNA3 vector.  A) Concentration response curves of () 

wild-type, (☐) C24A, and () C68A transfected and () pcDNA3 transfected cells to 

PGE2. B) Concentration response curves of  () C107A, (☐) C184A, () C212A, and 

() C224A transfected cells to PGE2. C) Concentration response curves of (☐) C236A, 

() C265A, and () C270A transfected cells to PGE2. D) Concentration response curves 

of (☐) C291A, () C301A, () C334A, and () C343A transfected cells to PGE2. 

Wild-type and pcDNA3 transfectant concentration response curves from A were replotted 

in each panel for comparison. 
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C107A or C184A mutations prevent specific binding of [
3
H]PGE2 to membranes. 

Radioligand binding KD and Bmax for wild-type mEP3γ and each mutant receptor were 

determined from saturation binding isotherms on broken-cell membranes prepared from 

transiently transfected HEK293 cells. Radioligand binding was undetectable from two 

mutant receptors, C107A and C184A, suggesting that if expressed these receptors have 

KD values at least 50-fold weaker than wild-type, below the limit of detection (Figure 3). 

Other receptors had no significant decrease in affinity for [
3
H]PGE2 (Table 2). Although 

variation of receptor density in these transient transfectants was statistically significant 

for many of the mutant receptors, only three of the mutants (C68A, C270A, and C301A) 

displayed dramatically reduced binding levels, indicative of reduced receptor expression. 

 

 

Figure 3 - Saturation radioligand binding curves for membranes prepared from () wild-

type HA-mEP3γ, mutant HA-mEP3γ, and pcDNA3 transiently-transfected HEK293 cells. 

Specific binding of 5 nM [
3
H]PGE2 was undetectable for () pcDNA3, (☐) C107A, and 

() C184A samples; these symbols are manually displaced horizontally for clarity. 

Shown are representative data (mean ± SEM) from three separate experiments conducted 

in triplicate. 

 

 



 

65 

 

 

Table 2 – Phenotypic analysis of cysteine mutants 

Genotype 
KD 

(nM) 

Bmax 

(pmol/mg) 

Wild-Type 2.6 ± 0.4 (3) 6.9 ± 0.4 (3) 

C24A 1.2 ± 0.3 (3) 
a
 5.0 ± 0.4 (3) 

a
 

C68A 0.7 ± 0.3 (4) 
a
 0.4 ± 0.1 (4) 

c
 

C107A N.D. (3) N.D. (3) 

C184A N.D. (3) N.D. (3) 

C212A 2.1 ± 0.7 (3) 1.6 ± 0.5 (3) 
b
 

C224A 1.3 ± 0.5 (3) 1.6 ± 0.7 (3) 
a
 

C236A 1.7 ± 0.6 (3) 2.4 ± 1.0 (3) 
a
 

C265A 2.0 ± 0.5 (3) 1.2 ± 0.1 (3) 
b
 

C270A 0.7 ± 0.1 (3) 
a
 0.3 ± 0.1 (4) 

c
 

C291A 1.9 ± 0.6 (3) 1.2 ± 0.2 (3) 
b
 

C301A 0.6 ± 0.1 (3) 
a
 0.3 ± 0.03 (3) 

c
 

C334A 1.3 ± 0.4 (3) 
a
 1.6 ± 0.7 (3) 

a
 

C343A 2.0 ± 0.5 (3) 2.7 ± 1.3 (3) 
a
 

 

Table 2 – Summarized results from saturation binding isotherm experiments (mean ± 

SEM) collected for wild-type and mutant HAmEP3γ. 
a
 P < 0.05, 

b
 P < 0.001, and 

c
 P < 

0.0001 by two-tailed t-test vs. wild-type. N.D. not detected. 

 

 

Cell surface presentation of N-terminal HA-labeled C107A or C184A mouse EP3γ 

receptor was attenuated. To evaluate surface expression of nonfunctional mutant 

receptors, cell surface ELISAs were performed. The N-terminal HA-tag epitope of 

mutants C107A and C184A was detected at the cell surface by ELISA, although at 

significantly attenuated levels as compared to cells expressing HA-tagged wild-type 

receptor (Figure 4A). Given that a small amount of C107A and C184A receptor proteins 

could be detected at the cell surface, the ability of the cell surface receptors to bind 

radioligand was assessed in intact cells. Cell surface radioligand binding was 
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undetectable however, suggesting that the population of C107A and C184A receptors that 

were trafficked to the cell surface was unable to bind ligand (Figure 4B). 

 

 

Figure 4 – Surface expression of wild-type and mutant HA-mEP3γ receptors. A) Cell 

Surface ELISA. Anti-HA detection of N-terminus receptor located in extracellular 

domain of cell detected by horseradish peroxidase activity and expressed as absorbance at 

415 nm (mean ± SEM). Shown are representative data from three separate experiments 

conducted in triplicate. * P < 0.001 vs. WT, † P < 0.05 vs. pcDNA3. B) Intact cell 

radioligand binding. Binding of [
3
H]PGE2 to the surface of intact HEK293 cells 

expressing wild-type and mutant HA-mEP3γ receptors expressed as liquid scintillation 

counts per minute (mean ± SEM). Shown are representative data from three separate 

experiments conducted in triplicate. * P < 0.001. 
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Discussion 

 

To facilitate structural studies of integral membrane proteins, our lab and 

others
243,263,264

 have utilized mutant proteins lacking free cysteine residues; a protein 

lacking the free sulfhydryl groups of cysteine residues is less prone to irreversible 

aggregation and can be used for site-directed chemical  modifications. In this study we 

characterized the phenotype of individual cysteine-to-alanine mutations of each cysteine 

residue in the mouse EP3γ receptor. We found that substitutions at 11 of the 13 cysteine 

residues in mEP3γ were well-tolerated with respect to receptor expression, ligand 

affinity, and signal transduction as assessed by radioligand binding and cell-based signal 

transduction assays. 

 Two cysteine residues at sites that correspond to an extracellular disulfide bond 

highly conserved among Class A GPCRs were required both for efficient cell surface 

expression and for the function of that population of the receptor that reaches the cell 

surface. If the disulfide bond is required and these cysteines do indeed compose a 

disulfide crosslink, loss of function and efficient trafficking should result from mutating 

either cysteine of the pair as was observed for C107 and C184 of mEP3γ. It is interesting 

to note that previous studies on the rabbit ortholog of the mouse EP3 receptor (EP3 77A) 

showed no dependency for the cysteine residue on the extracellular end of Helix 3 

(corresponding to C184 in mEP3γ)
247

. The region of ECII distal to C184 is one of least 

conserved regions of the entire receptor between mouse and rabbit sequences; this may 

contribute in part to the interspecific functional differences in the EP3 receptor. 
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Data presented here show multiple defects in receptors having disulfide bonded 

cysteines mutated. Cell surface ELISA (Figure 4B) demonstrated that C107A and C184A 

mutant receptors trafficked to the cell surface in significantly reduced numbers. The 

highly conserved disulfide bond is likely required to achieve and maintain proper tertiary 

structure and stability of a GPCR
265

; misfolded receptors may be retained within the 

cell
266

.  

The reduced trafficking seen for the C107A and C184A mutant forms of mEP3γ may 

be due to much of the newly translated receptor failing to fold properly in the 

endoplasmic reticulum and being targeted for degradation by ER protein folding quality 

control. Based on experiments with model membrane proteins and cell biological 

characterization of ER quality control, it has been argued that most mutations that lead to 

targeting of nascent membrane proteins for degradation are mutations that result in 

thermodynamic destabilization of those proteins
267

.  It is therefore probable the stability 

of C107A and C184A receptors is decreased with respect to wild-type. 

While C107A and C184A mutants have trafficking defects, the remaining receptor 

that does traffic to the cell surface appears to be nonfunctional. These mutants have 

detectable cell surface expression as demonstrated by ELISA (Figure 4A); neither 

displayed detectable radioligand binding in assays of intact cells (Figure 4B) and isolated 

membranes (Figure 3). Similarly, neither mutant exhibited receptor activation in the CRE 

reporter assay (Figure 2). This phenotype is consistent with data from other investigators 

showing a role for GPCR disulfide bonds in ligand binding and receptor-effector 

coupling
268-270

.  
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Intracellular cysteine residues of GPCRs may be targets of lipid modification. 

Cysteines in the intracellular C-terminal tail of GPCRs may be palmitoylated or, less 

frequently, isoprenylated. These lipid modifications can be required for receptor 

expression
254-256

 and function
251,257,258

. However, if mEP3γ is lipid modified, the 

modification does not appear to be necessary for receptor expression or function. This has 

also been observed for other GPCRs including the α2A adrenergic receptor (α2AAR), 

which is palmitoylated, but mutation of the palmitoylation site does not affect ligand 

binding or effector coupling to α2AAR
271

, consistent with the idea that receptor 

palmitoylation is not required for receptor function. 

In the transmembrane environment of the seven-helix bundle, cysteine side chains can 

participate in hydrogen bonding networks
272,273

. Hwa and colleagues reported deficits in 

expression of the human prostacyclin receptor when any of three conserved, 

transmembrane cysteines were mutated to alanines
269

. Similarly, we have found 

attenuated receptor expression, as evidenced by greater than ten-fold lower Bmax than 

wild-type mEP3γ, for three transmembrane cysteines: C68, C270, and C301. Cysteines 

68 and 301 are conserved across orthologs of EP3. Cysteine 270 is conserved across the 

entire superfamily of GPCRs
247

. While the variance in Bmax may be an artifact of a 

transiently-transfected system, the reduction in expression of these mutant receptors 

while maintaining high affinity for [
3
H]PGE2 could suggest a role for these residues in 

maintaining the stability of the receptor, potentially by hydrogen bonding interactions. 

Further experiments are needed to evaluate this hypothesis. 

In summary, we have shown through mutagenesis that 11 of 13 of cysteine residues 

present in mEP3γ are not required for receptor trafficking, ligand binding, or signal 
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transduction. One pair of cysteines that likely comprise a disulfide bond between ECI and 

ECII is required for proper function and cell surface expression of the receptor. While 

future experiments are required to confirm the precise nature of the defect caused by 

these mutations, these data begin to cast light on some of the structural characteristics of 

EP receptors. 
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CHAPTER III 

 

DEVELOPMENT OF AN IN VIVO ACTIVE, DUAL EP1 AND EP3 SELECTIVE 

ANTAGONIST BASED ON A NOVEL ACYL SULFONAMIDE BIOISOSTERE 

 

Introduction 

 

Hypertension and diabetes are the primary causes of 62 % of patients with End-Stage 

Renal Disease (ESRD) and 72 % of patients that develop ESRD each year
94

, which 

requires life-long dialysis or kidney transplantation for survival. Elimination of PGE2 

production with COX inhibitors
46,48

, like NSAIDs
109

, is not a viable option as highlighted 

in a number of clinical trials. Recent studies in rodents and humans have suggested a role 

for the EP1 receptor in mediating at least part of the pathophysiology of DM
77,78,274

 and 

hypertension
66,80,119,275

. EP1 has been prosecuted as a potential therapeutic target for 

chronic pain
158,276-279

. As such, small molecule, drug-like antagonists of EP1 have been 

developed. Human prostanoid receptor-targeting molecules are often nonselective
175

, 

owing to the evolution of the EP family of GPCRs to recognize the same endogenous 

ligand, PGE2. The molecular pharmacology of these compounds at mouse prostanoid 

receptors is less well known, often poorly selective, and not always comparable to human 

pharmacology
280

. In order to study these molecular targets more precisely, we developed 

EP1 antagonists selective for the mouse receptor to use in mouse models of hypertension 

and DM. 
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Materials and Methods 

 

General medicinal chemistry procedures. Standard methods (thin layer chromatography 

and liquid chromatography-mass spectrometry) were used to monitor the progress of 

reactions. Products were purified by automated silica gel flash chromatography using the 

Teledyne Isco CombiFlash Rf system. Reactions performed in a microwave irradiated 

reactor utilized a Biotage Initiator-60 single mode microwave synthesizer. All nuclear 

magnetic resonance spectra (NMR) were proton resonance spectra (
1
H NMR) at 400 

megahertz (MHz) taken on a Bruker AMX NMR using deuterated chloroform (CDCl3) as 

the solvent. Chemical shifts are reported as parts per million (ppm) δ downfield of the 

trimethylsilane internal standard. Positive ion electrospray ionization (ESI) mass spectra 

were obtained on an Agilent 1200 liquid chromatography mass spectrometry (LCMS) 

system with a Kinetex 2.1 x 50 mm C18 column running a gradient of 10 – 95 % (over 1 

minute) acetonitrile and 0.1 % trifluoroacetic acid in water with evaporative light 

scattering detector (ELSD) and ultraviolet (UV) detection at 214 nm and 254 nm. Final 

products to be used in biological assays were purified by preparative high-performance 

liquid chromatography (HPLC) using a Gilson 215 preparative HPLC system and a 

Phenomenex 30 x 50 mm C8 column at room temperature, a gradient of 0.1 % aqueous 

TFA / acetonitrile = 50 / 50 to 0 / 100 over 5.0 min, a flow rate of 50.0 mL/min, and 

detection by UV at 220 nm.  
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Ethyl 6-(hydroxymethyl)picolinate (2). To a solution of diethyl dipicolinate 1 (5 g, 22.4 

mmol) dissolved in ethanol (50 mL) was added sodium borohydride (0.5 g, 13.2 mmol). 

The mixture was stirred at room temperature for 6 hours. More sodium borohydride (160 

mg, 4.2 mmol) was added and the mixture was stirred at room temperature overnight. 

The mixture was diluted in water (5 mL) and neutralized with glacial acetic acid (1 mL) 

and the mixture was stirred for 30 minutes. The mixture was extracted with 

dichloromethane. The organic layers were combined, washed with saturated sodium 

bicarbonate and water, dried, and evaporated. The product was purified by flash 

chromatography in ethyl acetate / hexane to yield 2 (1.91 g, 47 %). 

 

Ethyl 6-((5-chloro-2-hydroxyphenyl)(hydroxy)methyl)picolinate (5). To a solution of 2 

(500 mg, 2.76 mmol) in dichloromethane (2 mL) was added dimethylsulfoxide (DMSO; 

0.4 mL, 5.5 mmol) and then triethylamine (Et3N; 1.5 mL, 11 mmol) in a 5 mL Biotage 

microwave reactor vessel. Sulfur trioxide pyridine complex was added (Pyr·SO3; 0.9 g, 

5.5 mmol) and the vessel was sealed and heated to 120 °C in a microwave reactor for 15 

minutes. When reactions had cooled they were neutralized with 2 M HCl (3 mL). The 

organic phase was washed with saturated sodium bicarbonate and water, dried, and 

evaporated. The crude aldehyde 4 was carried to the next step without further 

purification. 

 In a clean flask, a solution of p-chlorophenol (0.8 g, 6.2 mmol) in dichloromethane (5 

mL) under argon was chilled in an ice water bath. A solution of 1 M ethylmagnesium 

bromide (EtMgBr; 5.5 mL) was added dropwise under argon. When the last of EtMgBr 

had been added, the solution was moved to room temperature and a solution of the crude 
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aldehyde in dichloromethane was added. The solution was stirred at room temperature for 

2 hours. The reaction was slowly quenched by dropwise addition of 2 M HCl (3 mL) and 

saturated sodium bicarbonate (3 mL). The organic phase was washed with water and 

brine, dried, and evaporated. The product was isolated by flash chromatography in ethyl 

acetate / hexane to yield 5 (448 mg, 54 %) in two steps. MS (ESI, Pos.) m/z 308.2 

(M+H)
+
. 

 

Ethyl 6-(5-chloro-2-hydroxybenzyl)picolinate (6). A mixture of the diarylmethanol 5 (400 

mg, 1.3 mmol) and palladium on carbon (Pd/C; 10 wt% Pd, 40 mg) in ethyl acetate (5 

mL) was added to a PAR Hydrogenator vessel. ZnBr2 (10 mg) was added to the vessel 

followed by dropwise addition of concentrated H2SO4 (0.4 mL) and the vessel was 

purged with argon. The reaction was shaken under 1 atm H2 overnight. The reaction was 

filtered through Celite, washed with brine and water, dried, and concentrated. The 

product was purified by flash chromatography in ethyl acetate / hexane to yield 6 (261 

mg, 69 %). 

 

6-(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)picolinic acid (7). A mixture of the 

phenol 6 (200 mg, 0.69 mmol), K2CO3 (354 mg, 1.37 mmol), and 4-chloro-2-

fluorobenzyl bromide (110 µL, 0.70 mmol) was prepared in ethanol (2 mL) in a 5 mL 

Biotage microwave reactor vessel. The reaction was heated to 120 °C in a microwave 

reactor for 15 minutes. NaOH (2 M, 10 mL) was added to the reaction and the mixture 

was refluxed for 1 hour. The reaction was diluted in water, extracted with 

dichloromethane, washed with brine and water, dried, and concentrated. The crude 
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product was diluted in toluene (5 mL) and water (1 mL). Glacial acetic acid (1 mL) was 

added dropwise and the reaction was heated to 60 °C and stirred overnight. The cooled 

organic phase was washed with brine and water, dried, and concentrated. The product 

was isolated by flash chromatography in ethyl acetate / hexane to yield 7 (192 mg, 68 %) 

in two steps. 
1
H NMR (400 MHz, CDCl3) δ 7.99 (d, 1H), 7.90 (d, 1H), 7.44 (m, 2H), 7.20 

(m, 4H), 7.01 (d, 1H), 4.88 (s, 2H), 3.32 (s, 2H); MS (ESI, Pos.) m/z 406.0 (M+H)
+
. 

 

6-(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-N-(cyclopropylmethyl)picolinamide 

(8). To a solution of acid 7 (10.0 mg, 0.025 mmol), EDC·HCl (5.3 mg, 0.0275 mmol, 1.1 

eq), HOBt (6.8 mg, 0.05 mmol, 2 eq), and N-methylmorpholine (3.0 μL, 0.0275 mmol, 

1.1 eq) in DMF (1.5 mL) was added 1-cyclopropylmethanamine HCl (3.0 mg, 0.0275 

mmol, 1.1 eq). The solution was stirred for 18 h at room temperature under argon. The 

reaction was diluted with water and extracted with EtOAc. The organic layer was washed 

with NaHCO3, water, and brine, dried over MgSO4, and concentrated in vacuo. The 

resultant residue was purified by preparative HPLC to yield 8 (1.2 mg, 9.8%). 
1
H NMR 

(400 MHz, CDCl3) δ 8.09 (s, 1H), 8.04 (d, 1H), 7.72 (t, 1H), 7.14 (m, 6H), 6.89 (d, 1H), 

5.04 (s, 2H), 4.02 (s, 2H), 3.33 (t, 2H), 1.05 (m, 1H), 0.56 (m, 2H), 0.27 (m, 2H); MS 

(ESI, Pos.) m/z 459.2 (M+H)
+
.  

 

(6-(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)pyridin-2-yl)(pyrrolidin-1-

yl)methanone (9). The titled compound was synthesized in the same manner as described 

for 8 using pyrrolidine instead of cyclopropylmethanamine (1.5 mg, 12 %). 
1
H NMR 
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(400 MHz, CDCl3) δ 7.71 (t, 1H), 7.60 (d, 1H), 7.18 (m, 6H), 6.85 (d, 1H), 5.03 (s, 2H), 

4.17 (s, 2H), 3.65 (d of t, 4H), 1.88 (d of sext, 4H); MS (ESI, Pos.) m/z 459.2 (M+H)
+
.  

 

6-(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-N-cyclobutylpicolinamide (10). The 

titled compound was synthesized in the same manner as described for 8 using 

cyclobutylamine HCl instead of cyclopropylmethanamine (1.5 mg, 12 %). 
1
H NMR (400 

MHz, CDCl3) δ 8.16 (s, 1H), 8.03 (d, 1H), 7.71 (t, 1H), 7.13 (m, 6H), 6.90 (d, 1H), 5.04 

(s, 2H), 4.59 (sextuplet, 1H), 4.19 (s, 1H), 2.44 (m, 2H), 2.01 (quintuplet, 2H); MS (ESI, 

Pos.) m/z 459.2 (M+H)
+
.  

 

6-(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-N-isobutylpicolinamide (11). The 

titled compound was synthesized in the same manner as described for 8 using 

isobutylamine instead of cyclopropylmethanamine (1.8 mg, 15 %). 
1
H NMR (400 MHz, 

CDCl3) δ 8.10 (s, 1H), 8.04 (d, 1H), 7.72 (t, 1H), 7.19 (m, 6H), 6.88 (d, 1H), 5.03 (s, 2H), 

4.17 (s, 2H), 3.29 (t, 2H), 1.88 (m, 1H), 0.97 (d, 6H); MS (ESI, Pos.) m/z 461.2 (M+H)
+
. 

 

N-(sec-butyl)-6-(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)picolinamide (12). The 

titled compound was synthesized in the same manner as described for 8 using sec-

butylamine instead of cyclopropylmethanamine (2.1 mg, 17 %). 
1
H NMR (400 MHz, 

CDCl3) δ 8.04 (m, 2H), 7.75 (t, 1H), 7.15 (m, 6H), 6.90 (d, 1H), 5.03 (s, 2H), 4.18 (s, 

2H), 4.09 (m, 1H), 1.59 (m, 2H), 1.25 (d, 3H), 0.95 (t, 3H); MS (ESI, Pos.) m/z 461.2 

(M+H)
+
.  
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N-(tert-butyl)-6-(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)picolinamide (13). The 

titled compound was synthesized in the same manner as described for 8 using t-

butylamine instead of cyclopropylmethanamine (1.7 mg, 14 %). 
1
H NMR (400 MHz, 

CDCl3) δ 8.02 (m, 2H), 7.72 (t, 1H), 7.15 (m, 6H), 6.89 (d, 1H), 5.04 (s, 2H), 4.17 (s, 

2H), 1.48 (s, 9H); MS (ESI, Pos.) m/z 461.2 (M+H)
+
.  

 

6-(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-N,N-diethylpicolinamide (14). The 

titled compound was synthesized in the same manner as described for 8 using 

diethylamine instead of cyclopropylmethanamine (2.0 mg, 16 %). 
1
H NMR (400 MHz, 

CDCl3) δ 7.71 (t, 1H), 7.47 (d, 1H), 7.18 (m, 6H), 6.87 (d, 1H), 5.05 (s, 2H), 4.20 (s, 2H), 

3.57 (quadruplet, 2H), 3.28 (quintuplet, 2H), 1.29 (t, 3H), 1.09 (t, 3H); MS (ESI, Pos.) 

m/z 461.2 (M+H)
+
.  

 

N-(bicyclo[2.2.1]heptan-2-yl)-6-(5-chloro-2-((4-chloro-2-

fluorobenzyl)oxy)benzyl)picolinamide (15). The titled compound was synthesized in the 

same manner as described for 8 using 2-aminonorborane HCl instead of 

cyclopropylmethanamine (1.3 mg, 10 %). 
1
H NMR (400 MHz, CDCl3) δ 8.10 (s, 1H), 

8.02 (d, 1H), 7.73 (t, 1H), 7.10 (m, 5H), 6.88 (d, 1H), 5.02 (s, 2H), 4.29 (m, 1H), 4.18 (s, 

2H), 2.49 (s, 1H), 2.28 (s, 1H), 2.15 (m, 1H), 1.59 (m, 7H), 0.82 (d, 1H); MS (ESI, Pos.) 

m/z 499.2 (M+H)
+
.  

 

6-(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)picolinamide (16). The titled 

compound was synthesized in the same manner as described for 8 using ammonia (2.0 M 
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in ethanol) instead of cyclopropylmethanamine (1.3 mg, 10 %). 
1
H NMR (400 MHz, 

CDCl3) δ 8.06 (d, 1H), 7.82 (broad s, 1H), 7.73 (t, 1H), 7.17 (m, 6H), 6.83 (d, 1H), 5.62 

(broad s, 1H), 5.03 (s, 2H), 4.17 (s, 2H); MS (ESI, Pos.) m/z 404.9 (M+H)
+
.  

 

6-(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-N-((4-

chlorophenyl)sulfonyl)picolinamide (17). To a solution of 28 % aqueous NH4OH (1.0 

mL) was added p-chlorophenylsulfonyl chloride (10.5 mg, 0.05 mmol, 2 eq) dropwise in 

CHCl3 (1.0 mL). The solution was stirred for 2 h at room temperature. Solution was 

diluted with water (5.0 mL) and extracted with DCM (5.0 mL). The organic layer was 

washed with water and brine, dried under argon, and used in the following reaction 

without further purification. To a solution of acid 7 (10.0 mg, 0.025 mmol), HATU (13.3 

mg, 0.035 mmol, 1.4 eq), and DIPEA (13.1 μL, 0.075 mmol, 3 eq) in DMF (1.0 mL) was 

added p-chlorophenylsulfonamide dropwise in DMF (0.5 mL). Reactions were stirred for 

24 hours at room temperature. Reactions were diluted in water and extracted with ethyl 

acetate. Combined organic layers were washed with brine and water, dried, and 

concentrated. Crude product was purified by preparative HPLC to yield 17 (1.6 mg, 11 

%). 
1
H NMR (400 MHz, CDCl3) δ 8.12 (d, 2H), 7.98 (d, 1H), 7.74 (t, 1H), 7.55 (d, 2H), 

7.17 (m, 6H), 6.94 (d, 1H), 5.07 (s, 2H), 4.18 (s, 1H); MS (ESI, Pos.) m/z 578.7 (M+H)
+
.  

 

6-(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-N-((2,5-

dichlorophenyl)sulfonyl)picolinamide (18). The titled compound was synthesized in the 

same manner as described for 17 using 2,5-dichlorobenzene-sulfonyl chloride instead of 

p-chlorophenylsulfonyl chloride. Yield 2.9 mg, 19 % in two steps. 
1
H NMR (400 MHz, 
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CDCl3) δ 8.37 (d, 1H), 7.92 (d, 1H), 7.75 (t, 1H), 7.52 (d of d, 1H), 7.38 (d, 1H), 7.35 (d, 

1H), 7.15 (m, 5H), 6.93 (d, 1H), 5.08 (d, 2H), 4.20 (d, 2H); MS (ESI, Pos.) m/z 612.7 

(M+H)
+
.  

 

6-(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-N-tosylpicolinamide (19). The titled 

compound was synthesized in the same manner as described for 17 using tosyl chloride 

instead of p-chlorophenylsulfonyl chloride. Yield 1.3 mg, 9 % in two steps. 
1
H NMR 

(400 MHz, CDCl3) δ 8.06 (d, 2H), 7.94 (d, 1H), 7.72 (t, 1H), 7.37 (d, 2H), 7.15 (m, 6H), 

6.93 (d, 1H), 5.07 (s, 2H), 4.18 (s, 2H), 2.45 (s, 3H); MS (ESI, Pos.) m/z 558.8 (M+H)
+
.  

 

6-(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-N-(propylsulfonyl)picolinamide 

(20). The titled compound was synthesized in the same manner as described for 17 using 

n-propylsulfonyl chloride instead of p-chlorophenylsulfonyl chloride. Yield 1.1 mg, 9 % 

in two steps. 
1
H NMR (400 MHz, CDCl3) δ 7.67 (t, 1H), 7.33 (d, 1H), 7.15 (m, 6H), 6.86 

(d, 1H), 5.07 (s, 2H), 4.19 (s, 2H), 3.61 (d of penta, 2H), 1.57 (d, 2H), 1.12 (d, 3H); MS 

(ESI, Pos.) m/z 510.9 (M+H)
+
.  

 

6-(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-N-((3,4-

dichlorophenyl)sulfonyl)picolinamide (21). The titled compound was synthesized in the 

same manner as described for 17 using 3,4-dichlorophenylsulfonyl chloride instead of p-

chlorophenylsulfonyl chloride. Yield 2.1 mg, 14 % in two steps. 
1
H NMR (400 MHz, 

CDCl3) δ 8.26 (d, 1H) 8.03 (d, 1H), 7.94 (d, 1H), 7.75 (t, 1H), 7.66 (d, 2H), 7.15 (m, 5H), 

6.94 (d, 1H), 5.07 (s, 2H), 4.19 (s, 2H); MS (ESI, Pos.) m/z 612.6 (M+H)
+
.  
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Cell Culture. HEK293 cells were maintained at 37 ˚C / 5% CO2 in DMEM supplemented 

with 10 % FBS, 2 mM L-glutamine, 100 units/mL penicillin, and 100 μg/mL 

streptomycin. CHOk1 cells were maintained at 37 ˚C / 5% CO2 in F12k supplemented 

with 10 % FBS, 100 units/mL penicillin, and 100 µg/mL streptomycin. For cell 

membrane / receptor preparations, HEK293 cells were transfected with 6 μg receptor 

cDNA plasmid using Lipofectamine 2000 in DMEM lacking penicillin and streptomycin. 

Six hours after adding DNA-Lipofectamine 2000 complexes, media was replaced with 

complete DMEM containing 20 μM indomethacin and 5 mM sodium butyrate. Cells were 

allowed to recover for 18 to 24 hours before being plated in three to five 100 mm cell 

culture dishes for membrane harvest. Cells were incubated for an additional 24 to 48 

hours, until confluence was reached. 

 

Competition Radioligand Binding. Total cell membranes from HEK293 transfectants 

described above were prepared as described
262

. Membranes (5 - 10 g) were incubated 

with [
3
H]PGE2 (5 nM for EP2, 2 nM for EP3 and EP4) and a range of unlabeled test 

compound (1 nM – 10 µM) in 200 L of binding buffer (25 mM potassium phosphate, 1 

mM EDTA, and 10 mM MgCl2, pH 6.2) for 1 hour at 30 ˚C. PGE2 (10 µM) was used as a 

positive control for receptor binding. Binding reactions were terminated and radioactivity 

was quantified as previously described
262

. 

 

Calcium mobilization assay. CHOk1 cells stably expressing N-terminal HA-tagged 

mouse EP1 receptor or HEK293 cells stably expressing N-terminal HA-tagged mouse 
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thromboxane receptor were plated (6 x 10
5
 cells / well) in clear-bottom, black-wall 96-

well plates in 100 µL complete cell culture media containing 20 µM indomethacin 18 – 

24 hours prior to experiment. On the day of the experiment, cell culture media was 

replaced with 50 µL calcium assay buffer (50 mM HEPES pH 7.4, 2.5 mM probenicid, 

100 µM brilliant black, 20 µM indomethacin in Hanks Buffered Salt Solution (HBSS)) 

containing varying concentrations of test antagonist (1 nM – 100 µM). A 1:1 solution of 

fluo-4AM and 10 % pluronic acid F-127 was diluted in calcium assay buffer and 50 µL 

of this solution was added to each well of cells (2 µM final). The fluorophore was 

allowed 1 hour at 37 °C to load into the cells. Solutions of agonist (17PTPGE2 for mEP1 

and U46619 for mTP) were prepared at 2X in calcium assay buffer and aliquoted in V-

bottom, 96-well FLEXstation compound plates. Raw fluorescence (rfu)-time curves were 

collected using the following settings on a FLEXstation in FLEX mode: excitation 494 

nm, emission 516 nm, cut off 495 nm, sensitivity 6, addition speed 1. Baseline corrected 

areas under the curve (AUCs) were calculated for each trace and plotted in the style of 

Schild
281

. 

 

Mouse liver intrinsic clearance assay. The intrinsic clearance (CLint) of test compound 

was studied in mouse hepatic microsomes using substrate depletion methodology, 

reported as % parent compound remaining. In separate 96-well plates for each time point, 

triplicate mixtures of 0.1 M potassium phosphate buffer, pH 7.4, 1 µM test compound, 

0.5 mg/mL male CD-1 mouse liver microsomes, and 1 mM NADPH (for time points 3, 7, 

15, 25, and 45 minutes) or buffer (for 0 min time point) were incubated at 37 °C. At each 

time point, a plate was quenched by precipitation with 2 volumes of ice-cold solution of 
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50 ng/mL glyburide internal standard in acetonitrile. The plate was centrifuged at 3000 

rpm at 4 °C for 10 minutes. Supernatants were transferred into new 96-well plates and 

diluted 1:1 with water. Amount of remaining test compound in each sample was 

determined by HPLC/MS/MS analysis of diluted supernatants. Percent remaining parent 

compound was calculated by the ratio of amount of test compound at time t to the amount 

of test compound at time t = 0 minutes. In vitro half-life (t1/2) is calculated by nonlinear 

regression of the % Remaining-time data. Calculated CLint (Figure 1) and predicted 

hepatic clearance (CLH, Figure 2) were calculated by the following equations: 

 

      (      
       )

 
   

    
 

    

                
 
               

         
 
            

        
 

Figure 1 – Formula to calculate an estimate of CLint from t`1/2 of test compound from in 

vitro microsomal clearance assays. 
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Figure 2 – Formula to calculate a prediction of in vivo CLH from CLint where QH is 

hepatic blood flow, 90 mL·min
-1

·kg
-1

 for a mouse. 

 

In vitro metabolite identification. Solutions of test compound (40 µM), NADPH (2 mM), 

glutathione (GSH; 2 mM), UDP-glucuronic acid (UDPGA; 2 mM), phosphoadenosine-

phosphosulfate (PAPS; 100 µM), MgCl2 (3 mM), and hepatic S9 protein or hepatic 

microsomal protein (1 mg/mL for microsomes, 5 mg/mL for S9 fractions) in potassium 
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phosphate buffer (pH 7.4, 0.1 M) were incubated for 1 hour at 37 °C. Reactions to 

monitor microsome-mediated metabolism only were assembled by replacing 

GSH/UDPGA/PAPS with more buffer. Reactions to control for metabolism not due to 

Phase I or Phase II enzymes were assembled by replacing GSH/UDPGA/PAPS and 

NADPH with more buffer. After 1 hour, reactions were quenched by precipitation with 1 

mL of ice-cold acetonitrile. Samples were centrifuged at 3700 rpm at 4 °C for 10 

minutes. Samples were incubated on ice for 5 minutes until organic-aqueous phase 

interface was apparent. An aliquot of the organic phase (750 µL) was transferred to a 

clean tube, dried at 30 °C under nitrogen, and reconstituted in 85:15 water:acetonitrile 

(125 µL). A “neat” sample of the test compound was prepared by making a 20 µM 

solution of compound in 85:15 water:acetonitrile. Samples were analyzed by HPLC/MS. 

 

Plasma protein binding. Protein binding of test compounds to mouse plasma proteins was 

determined by equilibrium dialysis using single-use RED plates (ThermoFisher 

Scientific). Triplicate mixtures of mouse plasma (220 µL) and test compound (5 µL, 5 

µM final) were prepared in 96-well plates and mixed thoroughly. An aliquot of the 

plasma-test compound mixture (200 µL) was transferred to one chamber and phosphate 

buffer (350 µL; 25 mM, pH 7.4) was added to the other chamber. The plate was sealed 

and incubated with shaking for 4 hours at 37 °C. Aliquots (50 µL) from each chamber 

were diluted 1:1 with either plasma (for aliquots from the plasma-test compound 

chamber) or buffer (for aliquots from the phosphate buffer chamber) and transferred to a 

clean 96-well plate. Analyte was extracted by addition of an ice-cold solution of the 

internal standard carbamazepine (50 ng/mL) in acetonitrile (100 µL) and the plate was 
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centrifuged at 4 °C at 3000 rpm for 10 minutes. Supernatants were diluted 1:1 with water 

and analyzed for amount of test compound remaining bound to plasma by 

HPLC/MS/MS. Data are reported as the fraction unbound (Fu), calculated as ratio of the 

concentration of test compound in the buffer chamber to the concentration of test 

compound in the plasma chamber. 

 

In vivo pharmacokinetics. For EP1A: Sixteen week old male C57B/6J mice, weighing in 

excess of 30 g, were administered either 1 mg/kg EP1A in 1:1 PEG400:saline (50 µL) 

intravenously (IV) via tail vein injection or 10 mg/kg EP1A in 1:1 PEG400:saline (100 

µL) by mouth (PO) via gavage at time t = 0. At time points out to 4 hours (5 min, 15 min, 

1, 2, and 4 hours for IV administration; 0.25, 1, 2, and 4 hours for PO administration) 

serial collections of venous blood (60 µL) by saphenous venesection into EDTA-fortified 

Microvette capillary tubes were made. Plasma at terminal time points (at 6 hours for IV 

administration; at 7 hours for PO administration) was similarly isolated from blood 

collected by cardiac puncture of euthanized mice. 

 For 1-J: Sixteen week old male C57B/6J mice, weighing in excess of 30 g, were 

administered either 1 mg/kg 1-J in 1:1 PEG400:saline (50 µL) IV via tail vein injection or 

5 mg/kg 1-J in 1:1 PEG400:saline (100 µL) subcutaneously (SC) by intrascapular 

injection at time t = 0. At several time points (5 min, 15 min, 1, 2, and 4 hours for IV 

administration; 0.25, 0.5, 1, 2, 4, and 8 hours for SC administration) serial collections of 

venous blood (60 µL) by saphenous venesection into EDTA-fortified Microvette 

capillary tubes were made. Plasma at terminal time points (at 6 hours for IV 
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administration; at 24 hours for SC administration) was similarly isolated from blood 

collected by cardiac puncture of euthanized mice. 

Plasma was isolated by centrifugation at room temperature at 5000 rpm for 15 

minutes. Plasma was stored at -80 °C until HPLC/MS/MS analysis. Analyte was 

extracted by precipitation with an ice-cold solution of internal standard in acetonitrile. 

Mixtures were centrifuged at 3700 rpm at 4 °C for 10 minutes. Samples were incubated 

on ice for 5 minutes until organic-aqueous phase interface was apparent. An aliquot of 

the organic phase (750 µL) was transferred to a clean tube, dried at 30 °C under nitrogen, 

and reconstituted in 85:15 water:acetonitrile (125 µL). Samples were analyzed by 

HPLC/MS/MS. Test compound plasma concentrations were calculated by comparing the 

ratio of analyte mass spectrometer response AUC to internal standard mass spectrometer 

response AUC to a calibration curve of known analyte concentration analyte 

AUC:standard AUC values. 

 

HPLC/MS and HPLC/MS/MS analysis. For samples collected from intrinsic clearance, 

plasma protein binding, and in vivo pharmacokinetics experiments, samples were 

analyzed on a Thermo Electron TSQ Quantum Ultra triple quadrapole mass spectrometer 

via ESI with two Thermo Electron Accella pumps and a Leap Technologies CTC PAL 

autosampler. Analytes were separated by gradient elution on a dual column system with 

two Thermo Hypersil Gold (2.1 x 30 mm, 1.9 µm) columns held at 40 °C. HPLC mobile 

phase A was 0.1 % formic acid in water and mobile phase B was 0.1 % formic acid in 

acetonitrile. The gradient started at 10 % B with a 0.2 minute hold; was linearly increased 

to 95 % B over 0.8 minutes; was held at 95 % B for 0.2 minutes; and returned to 10 % B 
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over 0.1 minutes. The total gradient run time was 1.3 minutes and the HPLC flow rate 

was 0.8 mL/min. While pump 1 ran the gradient method, pump 2 equilibrated the 

alternate column isocratically at 10 % B. Compound optimization, data collection, and 

processing were performed using Thermo Electron QuickScan software (version 2.3) and 

Xcalibur (version 2.0.7 SP1). 

 For samples collected for metabolite identification, an Agilent 1100 HPLC system 

coupled to a Supelco Discovery C18 column (5 µm, 2.1 x 150 mm) was employed. 

HPLC mobile phase A was aqueous ammonium formate (pH 4.1, 10 mM) and mobile 

phase B was acetonitrile. The initial mobile phase was 15 % B and by a linear gradient 

was transitioned to 80 % B over 20 minutes. The HPLC flow rate was 0.4 mL/min. The 

HPLC eluate was first passed through an Agilent 1100 diode-array UV detector (single 

wavelength mode at 254 nm) followed by ESI-assisted introduction into a Finnigan LCQ 

Deca XPPLUS ion trap mass spectrometer operated in either the positive or the negative 

ionization mode. Ionization was assisted with sheath and auxiliary gas (ultra-pure 

nitrogen) set a 60 and 40 psi, respectively. The electrospray voltage was set at 5 kV with 

the heated ion transfer capillary set at 300 °C and 30 V. Relative collision energies of 25 

– 35 % were used when the ion trap mass spectrometer was operated in MS/MS or MSn 

mode. 

 

Intracarotid blood pressure measurement. Fourteen to seventeen week old male C57B/6J 

mice were weighed and anesthetized with 120 mg/kg ketamine and 12 mg/kg xylazine 

and maintained on a 37 °C heating pad throughout the remainder of the experiment. 

Carotid artery and jugular vein cannulation was performed as previously described
282

. 
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The right jugular vein was accessed by making a 1 cm vertical incision approximately 5 

mm from the midline with the caudal end of the incision terminating about 1 mm caudal 

to the rostral edge of the pectoral muscle. The rostral end of the right jugular vein was 

ligated with a 6 – 7 cm piece of wax-coated 4-0 braided silk suture (Syneture SOFSILK, 

#S-183). A second 6 – 7 cm piece of suture was placed behind the caudal end of the 

jugular vein, untied, with the ends pulled taut caudally to prevent backflow of blood from 

the right atrium. A small incision was made in the ventral side of the vein and 1.1 cm of a 

Silastic tubing (0.012” internal diameter, Dow Corning #508-001) with a beveled end 

was advanced caudally into the vein, over the caudal suture, angled slightly toward the 

right atrium. The caudal suture was tightened over the vein, sealing catheter flow into the 

vein. Approximately 5 cm of tubing remains outside of the vein and is attached to a 

saline-filled syringe with a blunt-end 23 gauge needle. About 50 µL of saline was 

injected into the vein to ensure patency. 

 A catheter for the artery was prepared as follows. A 5 cm section of PE-10 tubing 

(polyethylene tubing, 0.011” internal diameter, Becton Dickinson #427400) was slowly 

stretched to a length of 8 – 9 cm. A 2 – 3 mm section of this tubing was fed into a 6 cm 

piece of Silastic tubing. The other end of the PE-10 tubing was cut with a bevel 9 mm 

from the Silastic junction. 

 A 1 cm vertical incision was made with the caudal end terminating about 5 mm 

rostral from the sternum. The sternomastoid muscle was exposed by blunt dissection of 

tissue with forceps. The muscle was held aside while the left common carotid artery was 

isolated and cleaned of connective tissue. Two 6 – 7 cm sections and one 10 cm section 

of suture were placed behind the artery. The 10 cm section was used to ligate the rostral 
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end of the artery and taped down next to the head so as to gently pull the artery taut. One 

6 – 7 cm section of suture was used to ligate the caudal end of the artery and the other 

was tied in a loose knot and temporarily placed on the caudal end of the isolated section 

of artery. A small incision was made on the ventral face of rostral end of the artery and 

the lumen of the vessel and cavity were flushed with saline. The catheter was advanced 

into the artery to the caudal knot. The loose section of suture was tightened over the 

artery and catheter about 2 mm caudal to the incision in the vessel. The caudal-most knot 

was untied and the catheter was advanced to the Silastic junction. The caudal-most suture 

was retied over the vessel and catheter. The rostral most suture was tied over the Silastic 

portion of the suture to stabilize the apparatus in place. The other end of the Silastic was 

attached to a syringe filled with 10 % heparin (100 U/mL total) by a blunt-tipped needle 

and 150 µL of heparin was injected into the artery. The arterial catheter was clamped 

while being attached to a TXD-310 pressure transducer. Systolic, mean, and diastolic 

blood pressures as well as heart rate were determined by a Digi-Med Blood Pressure 

Analyzer 400 (BPA400) operated by a personal computer running DMSI-200 control 

software. Saline solutions of test compounds (10 µL) were infused through the jugular 

catheter about 2 hours after subcutaneous injection of 5 mg/kg 1-J in 1:1 PEG400:saline. 

MAP was recorded over time and the changes in MAP (ΔMAP) in response to vasoactive 

substances (sulprostone, 17PTPGE2, and phenylephrine) were reported as an average of 

at least three independent experiments on three different mice. 

 

Animal care and use. All experiments were conducted in accordance with the National 

Institutes of Health regulations for animal care covered in Principles of Laboratory 
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Animal Care (National Institutes of Health publication 85-23, revised 1985) and were 

approved by the Institutional Animal Care and Use Committee. 

 

Results 

 

Synthesis and characterization of the lead acid EP1 antagonist 7. To develop antagonists 

selective for the mouse EP1 receptor, we started with compound 7 (Figure 3), synthesized 

as previously described (Figure 4)
168

. Diethyl dipicolinic acid (1) was reduced with 

NaBH4 to 2. Parikh-Doering oxidation of 2 with sulfur trioxide-pyridine complex and 

DMSO produced the unstable aldehyde 3. 4-chlorophenoxide was then reacted with 3, 

followed by neutralization with HCl to form 4. Reduction of the secondary alcohol of 4 

under H2 and Pd/C with the addition of H2SO4 and ZnBr2 gave 5. Alkylation of 5 with 2-

fluoro-4-chlorobenzyl bromide and cleavage of the ester by refluxing with NaOH 

produced the sodium salt (6) of the lead (7) which was formed by protonation of 6. The 

lead compound was reported to have good affinity for the human EP1 receptor and was 

stable in microsomes and S9 fractions of several species. However, 7 was previously 

reported to have a high-affinity interaction with human TP
168

. We evaluated the 

molecular pharmacology of 7 at the mouse EP receptors as well as the mouse TP 

receptor. 
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Figure 3 - Lead picolinic acid-based human EP1 antagonist 7, and 4-chloro-N-

acylsulfonamide analog 17 

 

 

Figure 4 – Synthetic route for lead antagonist 7 and its analogues 8-21. Reagents: (a) 

NaBH4, EtOH (47%); (b) Pyr·SO3, DMSO, DCM, (c) 4-chlorophenol, EtMgBr, DCM 

(54%); (d) H2, Pd/C, H2SO4, ZnBr2, EtOAc (69%); (e) 2-fluoro-4-chlorobenzyl bromide, 

K2CO3, EtOH, (f) NaOH, reflux, (g) HOAc, PhMe (68%); (h) RNH2, R2NH, or 

RSO2NH2, EDC·HCl, HOBt, DIPEA, DMF (10% – 20%) 
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Compound 7 was confirmed to be a functional antagonist of mEP1 in vitro and to 

have submicromolar affinity for the mouse EP1 receptor by Schild Analysis (Figure 5). 7 

had no detectable affinity for mouse EP3 or EP4 receptors by radioligand binding assays. 

7 had poor, but detectable affinity at mouse EP2, and suppressed signaling through 

mouse TP receptor at concentrations 100-fold higher than at the human receptor (Table 

1), confirming a weak off-target activity of 7 at mouse TP. 

 

Table 1 - Molecular pharmacology of 7 at mouse EP and TP receptors 

mEP1 pKD
a mEP1 KD 

(nM) 
mEP2 pKI

b 
mEP3 pKI

b 
mEP4 pKI

b 
mTP pIC50

b 

7.32 ± 0.08 47.9 5.76 ± 0.21 <6 <6 6.04 ± 0.18 

a
Value represents mean ± SEM of at least two independent experiments measured in 

duplicate. 

b
Values represent mean ± SEM of at least three independent experiments measured in 

triplicate. 

 

 

     

Figure 5 - Concentration response curves (A) and transformed Schild regression (B) for 

mEP1-expressing CHOk1 cells treated with six concentrations of 7 before being 

challenged with a range of concentrations of 17PTPGE2 (m = 0.953 ± 0.085, pKD = 

7.283, r
2
 = 0.9689) 



 

92 

 

 

Results from in vivo pharmacokinetics experiments (Table 2) revealed compound 7 to 

possess a moderate systemic plasma clearance (CLp) and volume of distribution predicted 

at steady-state (Vss), subsequently displaying a short half-life (> 60 min) in mice 

receiving a parenteral administration of the EP1 receptor antagonist. We observed a 

bioavailability (%F) of approximately 14 % following the oral administration (10 mg/kg) 

of 7 to mice. 

 

Table 2 - Pharmacokinetic parameters for compound 7 following IV (1 mg/kg) or PO (10 

mg/kg) dosing 

t1/2 (min) CLp (mL/min/kg) Vss (L/kg) F (%) 

65 ± 8.2 59.2 ± 6.4 0.90 ± 0.1 13.8 ± 2.1 

 

 

Synthesis and characterization of bioisosteres of 7. Recently, Ostenfeld et al. have shown 

that in rats 7 is cleared primarily by glucuronidation and sequestration into the bile
283

. 

With the goal of inhibiting glucuronidation while improving molecular pharmacology of 

7, a series of carboxylic acid bioisosteres of 7 were pursued. N-acylsulfonamides are 

common carboxylic acid bioisosteres that have been successfully implemented in 

antagonists of angiotensin II AT1 receptors
284

 as well as EP3 receptors
285

. A series of 

analogues (8 - 21) resulting from the amidation of 7 was prepared (Table 3). Each was 

synthesized by coupling 7 to a series of primary and secondary amines (8 - 16) and 

sulfonamides (17 – 21) employing common activators such as EDC·HCl, HOBt, HATU, 

and DIPEA in DMF (Figure 4). 
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Table 3 - Molecular pharmacology of amide and acylsulfonamide analogues of 7 at 

mouse EP and TP receptors 

 

Cmpd R 
mEP1 

pKD
a 

mEP1 

KD 

(nM) 

mEP2 

pKI
b mEP3 pKI

b mEP4 

pKI
b 

mTP 

pIC50
b 

8 
 

6.26 ± 0.02 549 <6 <6 <6 <6 

9 
 

4.80 ± 0.05 15800 <6 <6 <6 <6 

10 
 

6.04 ± 0.06 912 <6 <6 <6 <6 

11 
 

6.52 ± 0.36 302 <6 6.67 ± 0.03 <6 <6 

12 
 

5.86 ± 0.01 1380 <6 <6 <6 <6 

13 
 

5.36 ± 0.12 4360 <6 <6 <6 <6 

14 
 

6.35 ± 0.34 447 <6 <6 <6 <6 

15 

 

5.66 ± 0.13 2190 <6 <6 <6 <6 

16 NH2 5.58 ± 0.30 2630 <6 <6 <6 <6 

17 

 

7.39 ± 0.39 40.7 <6 6.97 ± 0.22 <6 <6 

18 

 

7.25 ± 0.32 53.7 <6 6.69 ± 0.13 <6 <6 

19 

 

6.67 ± 0.14 214 <6 <6 <6 <6 

20 
 

N.D.
c
 N.D.

c
 <6 <6 <6 <6 

21 

 

6.67 ± 0.16 214 <6 7.18 ± 0.05 <6 <6 

a
Values represent mean ± SEM of at least two independent experiments measured in 

duplicate. 
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b
Values represent mean ± SEM of at least three independent experiments measured in 

triplicate. 

c
No functional antagonism was evident at concentrations exceeding 100 µM. 

 

The molecular pharmacology observed for 8 - 21 was determined at mEP1 - mEP4 

and mTP (Table 3). Generally, N-acylsulfonamides retained mEP1 affinity higher than 

that for the amide series (Figure 6). Each analog displayed reduced affinity for mEP2 and 

mTP. Interestingly, four analogs (11, 17, 18, and 21) displayed enhanced affinity for 

mEP3, a potential therapeutic target for hypertension- and DM-related ESRD. EP3 is of 

particular interest as it shares signaling pathways and endogenous ligands with EP1 and 

may represent a compensatory signaling pathway in the event of EP1 

blockade
119,192,248,286,287

. These dual-selectivity compounds were confirmed to be 

functional antagonists of mEP3 by calcium mobilization assays in CHOk1 cells 

expressing mouse EP3γ receptor (Figure 7). 

 

     

Figure 6 - Concentration response curves (A) and transformed Schild regression (B) for 

mEP1-expressing CHOk1 cells treated with six concentrations of 17 before being 

challenged with a range of concentrations of 17PTPGE2 (m = 1.20 ± 0.12, pKD = 7.063, r
2
 

= 0.9487) 
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Figure 7 - Calcium mobilization concentration response curves for four EP1/EP3 dual 

selectivity antagonists challenged with 100 nM sulprostone in mEP3γ-expressing CHOk1 

cells. 

 

 

We subsequently determined Clint of several potent amide and N-acylsulfonamide 

analogs (Table 4). Results indicated an exceptional instability to metabolism in vitro, 

displaying estimated predicted CLHEP values that approached the hepatic blood flow in 

mice (90 mL/min/kg). 
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Table 4 - Intrinsic clearance of amide and N-acylsulfonamide analogs of 7 by mouse 

liver microsomes 

Cmpd Clint (mL/min/kg) CLHEP (mL/min/kg) 

7 84.7 43.6 

8 11382 89.3 

11 9806 89.2 

14 7157 88.9 

17 2260 86.6 

19 5039 88.4 

21 2994 87.4 

 

 

Results from metabolite identification studies in hepatic subcellular fractions 

indicated extensive biotransformation of the amide 11 and the N-acylsulfonamide 17, 

including NADPH-independent hydrolysis (i.e., esterases) and NADPH-dependent 

oxidation (i.e., P450) of these analogs. Figure 8 depicts the metabolism of 17, including 

the hydrolysis of the sulfonamide (M1), and P450-mediated oxidation of the methylene 

linker (M2) and benzylic oxidation (M3). The extent of plasma protein binding in mouse 

was determined to be extensive for three compounds assessed (Fu: 7 = 0.005, 11 = 0.010, 

17 = 0.004). 
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Figure 8 - Metabolism of 17 in hepatic subcellular fractions 

 

Given the molecular pharmacology and in vitro metabolism data, we proceeded to 

evaluate the in vivo pharmacokinetics of 17. Mice (n = 3) were subsequently 

administered a SC dose (5 mg/kg) with intermittent plasma collections to measure 

systemic levels of 17 (Figure 9). Compound 17 achieved a maximum plasma 

concentration (Cmax) of 504 nM (± 167) 2 hours (tmax) following subcutaneous 

administration and displayed an AUC of 7508 nM·h. 
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Figure 9 - Plasma concentration-time profile of 17 following SC administration 

 

To evaluate 17 as an antagonist of EP1 and EP3 in vivo, we measured blockade of 

mEP1 and mEP3 acute vasopressor activity in mice. Left common carotid arteries and 

right jugular veins of anesthetized mice were cannulated. Direct arterial pressure was 

measured via carotid catheter. Vasoactive substances were administered via jugular 

catheter. 17PTPGE2 was used to acutely raise MAP via mEP1 and sulprostone was used 

for mEP3 (Figure 10). Agonists were administered IV through the jugular catheter 2 h 

after SC administration of 17. Pretreatment of mice with 5 mg/kg 17 SC significantly 

attenuated the pressor activity of an IV bolus of 20 µg/kg 17PTPGE2 (ΔMAP 50.3 ± 5.5 

mmHg vs. 27.0 ± 3.6 mmHg). Pretreatment with 17 also significantly suppressed pressor 

activity of an IV bolus of 10 µg/kg sulprostone (ΔMAP 53.3 ± 2.3 mmHg vs. 32.0 ± 3.5 

mmHg). To ensure the observed effect was selective for EP-mediated vasoconstriction, 

phenylephrine (10 µg/kg) was shown to be unaffected by pretreatment with 17 (Figure 

11). 
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Figure 10 - Change in MAP after IV infusion of (A) 17PTPGE2 (n = 3 each, *P = 0.024 

by Student’s two-tailed t test) or (B) sulprostone (n = 3 each, **P = 0.007 by Student’s 

two-tailed t test) 2 h after SC injection of 5 mg/kg 17 or vehicle 

 

 

 

Figure 11 - Change in MAP after IV infusion of 8 µg/kg phenylephrine approximately 

2.5 h after SC injection of 5 mg/kg 17 or vehicle 
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Discussion 

 

In conclusion, we have identified a novel, dual-selectivity antagonist (17) of the 

mouse EP1 and mouse EP3 receptors possessing an acylsulfonamide bioisostere for the 

prototypical carboxylic acid moiety of EP ligands. 17 was found to have 

indistinguishable affinity for mEP1 as for mEP3 (mEP1 pKD vs. mEP3 pKI, P = 0.40, 

Student’s two-tailed t test). 17 had improved selectively over mEP2 and mTP. 17 was 

less stable in mouse hepatic microsomes than 7, due in part to hydrolysis of 17 to 7, a 

problem effectively circumvented by SC administration of 17. Finally, we confirmed 17 

is a functional antagonist of mEP1 and mEP3 in vivo by blocking mEP1/mEP3-mediated 

acute vasopressor activity in anesthetized mice. While the attenuation of pressor activity 

appears to be incomplete, these results recapitulate experiments performed in mice with 

genetic disruptions of EP1
80

. Dual selectivity EP1/EP3 antagonists represent a novel class 

of potential ESRD therapeutics we hypothesize will be more beneficial than blocking 

either receptor alone. 
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CHAPTER IV 

STRUCTURE-ACTIVITY RELATIONSHIP OF LIGANDS FOR MOUSE EP1 AND 

EP3 RECEPTORS 

 

Introduction 

 

 In an effort to increase the available tool compounds with which to study the mouse 

EP1 and mouse EP3 receptors in vivo, ligands for the human EP1 and human EP3 

receptors previously identified in the literature were synthesized. DG-041 is high-affinity, 

selective antagonist of human and mouse EP3 receptors that at last report was in Phase II 

clinical trials as an adjunct therapy to clopidogrel to treat thrombotic disorders. JD-200 is 

a compound previously reported to simultaneously antagonize human EP1 and EP3 

receptors. This compound was pursued for its novel pharmacology with the hypothesis 

that antagonism of the EP1 and EP3 receptors simultaneously will have additional 

therapeutic benefit beyond blockade of either receptor alone. The pharmacology of DG-

041 was studied in vitro, its pharmacokinetics studied in vitro and in vivo, and finally its 

ability to block EP-mediated increases in blood pressure was studied. The in vitro 

pharmacology of JD-200 was studied, but work with this compound was stopped in 

preference of a different molecule (Chapter III, Compound 17) with a more efficient 

synthesis. 
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Materials and Methods 

 

General medicinal chemistry procedures. Standard methods (thin layer chromatography 

and liquid chromatography-mass spectrometry) were used to monitor the progress of 

reactions. Products were purified by automated silica gel flash chromatography using the 

Teledyne Isco CombiFlash Rf system. Reactions performed in a microwave irradiated 

reactor utilized a Biotage Initiator-60 single mode microwave synthesizer. All nuclear 

magnetic resonance spectra (NMR) were proton resonance spectra (
1
H NMR) at 400 

megahertz (MHz) taken on a Bruker AMX NMR using deuterated chloroform (CDCl3) as 

the solvent. Chemical shifts are reported as parts per million (ppm) δ downfield of the 

trimethylsilane internal standard. Positive ion electrospray ionization (ESI) mass spectra 

were obtained on an Agilent 1200 liquid chromatography mass spectrometry (LCMS) 

system with a Kinetex 2.1 x 50 mm C18 column running a gradient of 10 – 95 % (over 1 

minute) acetonitrile and 0.1 % trifluoroacetic acid in water with evaporative light 

scattering detector (ELSD) and ultraviolet (UV) detection at 214 nm and 254 nm. Final 

products to be used in biological assays were purified by preparative high-performance 

liquid chromatography (HPLC) using a Gilson 215 preparative HPLC system and a 

Phenomenex 30 x 50 mm C8 column at room temperature, a gradient of 0.1 % aqueous 

TFA / acetonitrile = 50 / 50 to 0 / 100 over 5.0 min, a flow rate of 50.0 mL/min, and 

detection by UV at 220.  

 

Synthesis of DG-041. DG-041 was synthesized on a fee-for-service basis by the 

Vanderbilt Institute of Chemical Biology Synthesis Core as previously described
224

. 
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2-nitro-5-(trifluoromethyl)phenol (6). To a solution of 3-trifluoromethylphenol (1 g, 6.2 

mmol) in EtOAc was added NaNO3 (1.05 g, 12.4 mmol) and glacial acetic acid (100 µL). 

The reaction was refluxed overnight. The organic layer was washed with saturated 

sodium bicarbonate, brine, and water and concentrated. The product was purified by flash 

chromatography in ethyl acetate / hexane to yield 6 (1.28 g, 71 %).
1
H NMR (400 MHz, 

CDCl3) δ 8.27 (d,1 H), 7.49 (s, 1H), 7.27 (d, 1H). 

 

2-(methoxymethoxy)-1-nitro-4-(trifluoromethyl)benzene (7). To a solution of the 

nitrophenol 6 (1 g, 4.8 mmol) in DCM was added DIPEA (1 mL) and the solution was 

stirred at room temperature for an hour. Methoxymethyl chloride (3.5 mL) was added to 

the solution and the reaction was stirred overnight. The organic phase was washed with 

brine and water and concentrated. The product was purified by flash chromatography in 

ethyl acetate / hexane to yield 7 (783 mg, 65 %). 
1
H NMR (400 MHz, CDCl3) δ 7.88 (d,1 

H), 7.61 (s, 1H), 7.39 (q, 1H), 5.36 (s, 2H), 3.57 (s, 3H). 

 

2-(methoxymethoxy)-4-(trifluoromethyl)aniline (8). A mixture of the aniline 7 (500 mg, 

2.26 mmol) and Pd/C (10 wt% Pd, 50 mg) in methanol was purged with argon and stirred 

under an atmosphere of H2 for 1 hour at room temperature. The mixture was filtered over 

Celite and concentrated. The product was carried to the next step without further 

purification. 
1
H NMR (400 MHz, CDCl3) δ 7.27 (s,1 H), 7.13 (d, 1H), 6.76 (d, 1H), 5.25 

(s, 2H), 3.53 (s, 3H). MS (ESI, Pos.) m/z 222.1 (M+H)
+
. 
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Pyridinium 5-methylfuran-2-sulfonate (14). To a solution of 2-methoxyfuran (1 g, 10.2 

mmol) in acetonitrile in a 5 mL Biotage microwave reactor vessel was added sulfur 

trioxide pyridine complex (SO3·Py; 2.2 g, 14 mmol). The reaction was heated to 120 °C 

in a microwave reactor for 30 minutes. The reaction was chilled on an ice water bath and 

the product precipitated. The precipitate was collected by filtration to yield 14 (2.3 g, 88 

%). 

 

5-methoxyfuran-2-sulfonyl chloride (15). To a suspension of sulfonate 14 (2 g, 7.8 mmol) 

in dichloromethane on ice were added thionyl chloride (1 mL, 14 mmol) and then 

dimethylformamide under argon. The mixture was brought to room temperature and 

stirred for 4 hours. The aqueous phase was extracted with dichloromethane and washed 

with brine and water, dried, and concentrated. Crude 15 (689 mg, 45 %) was carried to 

the next step without further purification. 

 

N-(2-(methoxymethoxy)-4-(trifluoromethyl)phenyl)-5-methylfuran-2-sulfonamide (9). 

Pyridine (1.5 mL, 18.2 mmol) was added to a solution of the aniline 8 (500 mg, 2.3 

mmol) in dichloromethane on ice and under argon. A solution of the sulfonyl chloride 15 

(1 g, 5.1 mmol) was added dropwise to the aniline solution. The reaction was allowed to 

come to room temperature and stir for 6 hours. The reaction diluted in water, extracted 

with ethyl acetate, washed with 0.5 M HCl, brine, and water, dried, and concentrated. 

The product was purified by flash chromatography in ethyl acetate / hexane to yield 9 

(311 mg, 37 %). 
1
H NMR (400 MHz, CDCl3) δ 7.62 (d, 1H), 7.45 (s,1 H), 7.34 (s, 1H), 
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6.27 (s, 1H), 6.09 (s, 1H), 5.23 (s, 2H), 3.49 (s, 3H), 2.33 (s, 3H); MS (ESI, Pos.) m/z 

388.1 (M+Na)
+
. 

 

N-isobutyl-N-(2-(methoxymethoxy)-4-(trifluoromethyl)phenyl)-5-methylfuran-2-

sulfonamide (10). To a mixture of the sulfonamide 9 (250 mg, 0.68 mmol) and K2CO3 

(100 mg, 0.72 mmol) in DMF was added methyl iodide (MeI; 100 µL, 1.6 mmol) in an 

argon-purged 5 mL Biotage microwave reactor vessel. The reaction was heated to 150 °C 

in a microwave reactor for 15 minutes. The cooled reaction was diluted with water, 

extracted with ethyl acetate, washed with brine and water, dried, and concentrated. The 

product was carried to the next step without further purification. MS (ESI, Pos.) m/z 

422.2 (M+H)
+
. 

 

N-(2-hydroxy-4-(trifluoromethyl)phenyl)-N-isobutyl-5-methylfuran-2-sulfonamide (11). 

To a solution of the tertiary sulfonamide 10 (250 mg, 0.59 mmol) in MeOH was added 4 

M HCl in dioxane (1 mL) at room temperature and the reaction was allowed to stir 

overnight. The reaction was neutralized with saturated sodium bicarbonate and extracted 

with ethyl acetate. The organic phases were combined and washed with brine and water, 

dried, and concentrated. The production was carried to the next step without further 

purification. 

 

N-(2-((4-cyanobenzyl)oxy)-4-(trifluoromethyl)phenyl)-N-isobutyl-5-methylfuran-2-

sulfonamide (12). To a suspension of the deprotected sulfonamide 11 (200 mg, 0.53 

mmol) and K2CO3 (100 mg, 0.72 mmol) in DMF under argon in a 5 mL Biotage 
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microwave reactor vessel was added 4-bromomethylbenzonitrile (400 mg, 1.06 mmol). 

The reaction was heated to 150 °C in a microwave reactor for 30 minutes. The cooled 

reaction was diluted with water, extracted with ethyl acetate, washed with brine and 

water, dried, and concentrated. The production was purified by flash chromatography in 

ethyl acetate / hexane to yield 12 (240 mg, 92 %). 

 

N-(2-((4-(1H-tetrazol-5-yl)benzyl)oxy)-4-(trifluoromethyl)phenyl)-N-isobutyl-5-

methylfuran-2-sulfonamide, JD-200. To a solution of 12 (200 mg, 0.41 mmol) in DMF in 

an argon-purged 5 mL Biotage microwave reactor vessel was added tributyltin azide 

(Sn(nBu)3N3; 125 µL, 0.45 mmol). The reaction was heated to 100 °C for 15 minutes. 

Once the reaction had cooled, the solution was poured into saturated sodium bicarbonate 

and extracted with DCM. The aqueous phase was acidified to pH 1 with HCl. The 

aqueous phase was extracted with EtOAc. The organic layers were washed with brine and 

water and concentrated. The product was purified by flash chromatography in ethyl 

acetate / hexane to yield JD-200 (46 mg, 21 %). MS (ESI, Pos.) m/z 536.1 (M+H)
+
. 

 

Cell Culture. HEK293 and LVIP2.0Zc cells were maintained at 37 ˚C / 5% CO2 in 

DMEM supplemented with 10 % FBS, 2 mM L-glutamine, 100 units/mL penicillin, and 

100 μg/mL streptomycin. LVIP2.0Zc cell culture medium also contained 300 µg/mL 

hygromycin B to maintain integration of vasointestinal peptide (VIP) / lacZ reporter 

plasmid
288

. LVIP2.0Zc cells stably expressing N-terminal HA-tagged mouse EP3γ 

receptor were generated by transfection of a pcDNA3 plasmid containing receptor cDNA 

and neomycin résistance cassette. A monoclonal HAmEP3γ-expressing LVIP2.0Zc cell 
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line was generated by limiting dilution method. Incubating in 500 µg/mL G418 in 

addition to hygromycin allowed for maintenance of double transformants. For cell 

membrane / receptor preparations, HEK293 cells were transfected with 6 μg receptor 

cDNA plasmid using Lipofectamine 2000 in DMEM lacking penicillin and streptomycin. 

Six hours after adding DNA-Lipofectamine 2000 complexes, media was replaced with 

complete DMEM containing 20 μM indomethacin and 5 mM sodium butyrate. Cells were 

allowed to recover for 18 to 24 hours before being plated in three to five 100 mm cell 

culture dishes for membrane harvest. Cells were incubated for an additional 24 to 48 

hours, until confluence was reached. Twenty four hours prior to performing CRE assays, 

HAmEP3γ-expressing LVIP2.0Zc cells were plated in 96-well plates at a density of 5 x 

10
5
 cells per well in 100 µL of complete DMEM containing 20 µM indomethacin. 

 

Competition Radioligand Binding. Total cell membranes from HEK293 transfectants 

described above were prepared as described
262

. Membranes (5 - 10 g) were incubated 

with [
3
H]PGE2 (5 nM) and a range of unlabeled test compound (1 nM – 10 µM) in 200 

L of binding buffer (25 mM potassium phosphate, 1 mM EDTA, and 10 mM MgCl2, pH 

6.2) for 1 hour at 30 ˚C. PGE2 (10 µM) was used as a positive control for receptor 

binding. Binding reactions were terminated and radioactivity was quantified as 

previously described
262

. 

 

CRE/LacZ Reporter Assay. LVIP2.0Zc cells in 96-well plates stably expressing the  

HAmEP3 receptor were incubated with sulprostone (1 pM – 0.1 μM) and DG-041 (0.1 

nM – 10 nM) in Opti-MEM containing 5 mM sodium butyrate and 20 M indomethacin. 
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After cells were stimulated for 6 hours, media was aspirated and cells were washed with 

PBS. Cells were incubated for 10 minutes at room temperature in 25 L of lysis buffer 

(10 mM sodium phosphate, 0.2 mM MgSO4, and 10 M MnCl2, pH 8.0). Assay plates 

were developed as described
261

. Concentration response curves to sulprostone in the 

presence of varying amounts of DG-041 were determined by measuring relative enzyme 

activity as absorbance at 570 nm on Multiskan Ascent plate reader (Thermo Labsystems, 

Waltham, MA). Data were analyzed in the method of Schild
281

. 

 

Calcium FLEXstation assay. FLEXstation-based calcium mobilization assays were 

performed as described in Chapter III. 

 

In vitro metabolite identification. Solutions of DG-041 (20 µM), NADPH (2 mM), MgCl2 

(3 mM), and hepatic microsomal protein (1 mg/mL) in potassium phosphate buffer (pH 

7.4, 0.1 M) were incubated for 1 hour at 37 °C. Reactions to monitor potential production 

of reactive intermediates were assembled by including glutathione (GSH; 2 mM). 

Reactions to control for metabolism not due to Phase I or Phase II enzymes were 

assembled by assembling solutions replacing NADPH with more buffer. After 1 hour, 

reactions were quenched by precipitation with 1 mL of ice-cold acetonitrile. Samples 

were centrifuged at 3700 rpm at 4 °C for 10 minutes. Samples were incubated on ice for 5 

minutes until organic-aqueous phase interface was apparent. An aliquot of the organic 

phase (750 µL) was transferred to a clean tube, dried at 30 °C under nitrogen, and 

reconstituted in 85:15 water:acetonitrile (125 µL). A “neat” sample of the test compound 
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was prepared by making a 20 µM solution of compound in 85:15 water:acetonitrile. 

Samples were analyzed by HPLC/MS. 

 

In vivo pharmacokinetics. Male C57B/6J mice were administered 30 mg/kg DG-041 in 

corn oil (200 µL) by mouth (PO) via gavage at time t = 0. At time points out to 24 hours 

(20 min, 45 min, 90 min, 3, 6, 12, and 24 hours) mice were sacrificed in pairs by 

Isoflurane overdose. Blood was collected by cardiac puncture into syringes containing 

3.8 % sodium citrate. 

Plasma was isolated by centrifugation at room temperature at 5000 rpm for 15 

minutes. Plasma was stored at -80 °C until HPLC/MS/MS analysis. Analyte was 

extracted by precipitation with an ice-cold solution of internal standard in acetonitrile. 

Mixtures were centrifuged at 3700 rpm at 4 °C for 10 minutes. Samples were incubated 

on ice for 5 minutes until organic-aqueous phase interface was apparent. An aliquot of 

the organic phase (750 µL) was transferred to a clean tube, dried at 30 °C under nitrogen, 

and reconstituted in 85:15 water:acetonitrile (125 µL). Samples were analyzed by 

HPLC/MS/MS. Test compound plasma concentrations were calculated by comparing the 

ratio of analyte mass spectrometer response AUC to internal standard mass spectrometer 

response AUC to a calibration curve of known analyte concentration analyte 

AUC:standard AUC values. 

 

HPLC/MS and HPLC/MS/MS analysis. HPLC/MS analysis of metabolite identification 

samples was performed as described in Chapter III. Analysis of samples collected from 

the in vivo pharmacokinetics experiment was performed as follows. Liquid 
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chromatographic separation was carried out on a Luna ODS column (5 µm, 2.1 mm x 5 

cm) at a flow rate of 0.3 mL/min. The HPLC mobile phase A was 0.1 % formic acid in 

water and mobile phase B was 0.1 % formic acid in acetonitrile. The initial mobile phase 

was 20 % B and was held for 1 minute, linearly increased to 100 % B over 4 minutes, and 

held at 100 % B for 1 minute. HPLC eluates were ionized by ESI and introduced into a 

ThermoFinnigan TSQ Quantum Ultra triple quadrapole mass spectrometer operating in 

positive ion mode. Xcalibur (version 2.0) software was used to control the instrument and 

collect data. The ESI source was fitted with a stainless steel capillary (100 µm internal 

diameter). Ultra-pure nitrogen gas was used as both the sheath and auxiliary gases. The 

ion transfer capillary was set at 300 °C. Spray voltage, tube lens voltage, sheath and 

auxiliary gas pressures were optimized to achieve optimal response from the test 

compound. 

 

Intracarotid blood pressure measurement. MAP was measured as described in Chapter 

III.  

 

Results 

 

Synthesis and characterization of DG-041. DG-041, a potent and selective EP3 receptor 

antagonist, was synthesized by the Vanderbilt Institute for Chemical Biology Synthesis 

Core as previously described
224

. Briefly, the trihalogenated aniline 1 was alkylated by 

allyl bromide with potassium t-butoxide (KOtBu) in THF. Compound 2 was subjected to 
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one-pot, tandem Heck reactions: first an intramolecular Heck reaction to close the ring 

and form an indole; and second with acrylic acid to yield 3. The nitrogen of the indole 

was alkylated by dichlorobenzyl chloride with KOtBu. DG-041 was prepared by amide 

bond synthesis by EDC/HOBt with 4 and dichlorothiophene sulfonamide (Figure 1). 

 

 

 

Figure 1 – Synthetic route for DG-041. Reagents: (a) KOtBu/THF, allyl bromide; (b) 

Pd(OAc)2, P(o-tolyl)3, CH3CN, Et3N, (c) Pd(OAc)2, P(o-tolyl)3, acrylic acid; (d) 

KOtBu/THF, 2,4-dichlorobenzyl chloride; (e) EDC·HCl, HOBt, DIPEA, 4,5-

dichlorothiophene-2-sulfonamide, CH2Cl2 

 

DG-041 was confirmed to be a high affinity ligand of the mouse EP3 receptor (pKi = 9.16 

± 0.12; Figure 2). However, it was later appreciated that the kinetics of DG-041 binding 

to human EP3 receptor is characterized by slow, tight binding
226,289

. On the time scale of 

these in vitro binding assays (a few hours), DG-041 is a pseudo-irreversible ligand of the 
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EP3 receptor, thereby violating one of the assumptions of the radioligand binding assays 

described above. What can be said is that should DG-041 be an antagonist of the mouse 

EP3 receptor, one would expect it to very effectively block the receptor as the 

dissociation kinetics of DG-041 at EP3 are so slow. 

 

 

Figure 2 – Competition binding curve for DG-041 against 5 nM [
3
H]PGE2 at the mouse 

EP3γ receptor. Data are averages of three independent determinations. 

 

 Interestingly, in the LVIP2.0Zc-based CRE/LacZ assay mEP3γ behaves as a classical 

Gi-coupled receptor, as opposed to its behavior in the CRE assay employing transiently 

pCRE/LacZ-transfected HEK293 cells. In LVIP2.0Zc cells, [cAMP]i must first be 

artificially elevated, either by forskolin or activation of a Gs-coupled receptor such as 

β2AR, to raise the β-galactosidase (β-gal) reporter. In this context, activation of mEP3γ 

potently suppresses expression of the β-gal reporter and therefore [cAMP]i. 
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Figure 3 – Schild analysis of DG-041 at HAmEP3γ in LVIP2.0Zc cells. (left) 

Concentration response curves to sulprostone in the presence of a range of concentrations 

of DG-041. Each point was determined in duplicate. (right) Schild regression of 

concentration response data. 

 

 Using this assay, DG-041 was characterized at the mouse EP3γ receptor using the 

method of Schild
281

. HAmEP3γ-expressing LVIP2.0Zc cells were incubated with a range 

of concentrations of agonist sulprostone in the presence of different concentrations of 

DG-041. Picomolar concentrations of DG-041 right-shifted the concentration response 

curve to sulprostone and DG-041 completely suppressed signaling through the EP3 

receptor at low nanomolar concentrations (Figure 3, left). DG-041 was found to be a 

high-affinity, functional antagonist of the mouse EP3γ receptor (pKD = 10.85, m = 0.72; 

Figure 3, right). DG-041 has pseudo-irreversible binding kinetics in experiments on this 

time scale and these analyses require the system to be at equilibrium. Interpretation of 

these data should be conservative in light of these violations. Qualitatively, very low 

concentrations of DG-041 would be required to block signaling through EP3 receptors. 
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 With the goal of introducing DG-041 into mice to evaluate the role of the EP3 

receptor in the pathophysiology of kidney disease, we characterized the pharmacokinetic 

properties of DG-041 in mice. Mice were dosed by mouth with 30 mg/kg DG-041 

suspended in corn oil. At time points out to 24 hours, pairs of mice were sacrificed and 

blood was collected by cardiac puncture to determine the plasma concentration of DG-

041 at those time points. The results of the HPLC/MS analysis are shown in Figure 4. 

  



 

115 

 

 

 

 

Figure 4 - Plasma concentration-time profile of DG-041 following oral administration. 

(top) Linear-linear plot of plasma concentration-time profile out to 24 hours. (bottom) 

Semi-log plot of plasma concentration-time profile to 3 hours. 

 

 DG-041 was rapidly eliminated from the mouse; plasma concentrations of DG-041 

dropped below the lower limit of detection after 3 hours (Figure 4, top). DG-041 reached 

a maximum plasma concentration of 722 nM by 45 minutes after administration. 

Noncompartmental analysis of the plasma concentration-time profile revealed t1/2 for 
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DG-041 in mice of 1.23 hours (Figure 4, bottom). These data indicate DG-041 would 

have to be administered frequently or more practically from a SC osmotic minipump or 

pellet to maintain plasma exposure. 

 A strategy for improving the pharmacokinetic properties of a molecule is to identify 

the mode of elimination for the compound and block it using principles of medicinal 

chemistry. The data do not definitely prove DG-041 is eliminated by hepatic metabolism; 

however this was the initial hypothesis. To identify the sites of hepatic metabolism on 

DG-041, a metabolite identification experiment was conducted. DG-041 was incubated in 

vitro with mouse hepatic microsomes. A separate sample was prepared using the same 

conditions but also including GSH to trap any potential reactive metabolites of DG-041.  

 

 

 

Figure 5 – Three dimensional stack presentation of UV chromatograms for DG-041 

incubated with microsomes in the absence of NADPH (black), DG-041 + microsomes + 

NADPH (blue), DG-041 + microsomes + NADPH + GSH (orange) 
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 The HPLC/UV traces revealed DG-041 has a retention time of 25 minutes (Figure 5). 

No cytochrome P450-independent metabolites of DG-041were identified, as determined 

by a lack of new chemical species in the sample lacking NADPH (Figure 5, black trace). 

A single metabolite of DG-041 was identified with a retention time of 21 minutes (Figure 

5, blue and orange traces). This product corresponded to a single oxygenation of DG-041 

as indicated by the more polar retention time and mass spectrum. No reactive metabolites 

of DG-041 in the experiment containing GSH were trapped (Figure 5, orange trace). In 

positive ion mode, DG-041 at retention time 24 minutes had a [M+H]
+
 ion m/z of 589 

amu (Figure 6, top). The molecule at retention time 21 minutes had a [M+H]
+
 ion m/z of 

605 amu (Figure 6, bottom), heavier by a single oxygen atom.  
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Figure 6 – MS
1
 spectra of (top) retention time 24 minutes and (bottom) retention time 21 

minutes. 
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Figure 7 – MS
2
 spectra of (top) retention time 24 minutes and (bottom) retention time 21 

minutes. 

 

 DG-041 fragmented poorly under the mass spectrometric conditions of these 

experiments. The main fragment that was detected in these experiments is at 230 – 232 

amu (Figure 7). This fragment corresponds to the sulfonamide moiety. Because of the 

poor structural resolution in these experiments, it can be concluded that the oxygen atom 
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was not added to the sulfonamide portion of the molecule, as both the 21 minute and 24 

minute retention time molecules show 230 – 232 amu fragments (Figure 8). These 

experiments make no indication of relative abundance of compounds; that is, this 

metabolite of DG-041 may be formed in vivo but at concentrations so low as to be 

irrelevant to systemic clearance. Further experiments with hepatic S9 fractions to 

determine Phase II metabolism in vitro have yet to be conducted. It is possible DG-041 is 

eliminated by a conjugation reaction. Moreover, it is possible the primary route of 

elimination for DG-041 is not metabolic at all but excretion into the urine. Further 

experiments will be needed to determine if this is the case and to determine the exact 

placement of the oxygen in the DG-041 metabolite. 

 

 

Figure 8 - Structure of DG-041 and proposed structure of the P450 oxidized DG-041 

metabolite. 
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DG-041 is confirmed to be a high-affinity ligand for the mouse EP3 receptor in vitro 

and to be a functional antagonist, albeit with pseudo-irreversible kinetics. DG-041 was 

also orally bioavailable, though for a brief window of time possibly due to oxidative 

metabolism of DG-041. The ability of DG-041 to block acute vasopressor responses to 

EP3 agonists and other pressor in vivo was evaluated. Sulprostone, an EP1/EP3 agonist, 

has been shown to cause an acute and transient vasopressor response when injected IV 

into anesthetized mice
80,120

. Carotid artery and jugular vein catheters were placed into 

anesthetized mice of different genotypes (wild-type, EP1
-/-

, and EP3
-/-

) and whether 

pretreatment with DG-041 versus vehicle would block the vasopressor activity of 

sulprostone in vivo was determined 

 

 

Figure 9 - Direct intracarotid blood pressure measurement in anesthetized mice dosed 

with sulprostone or angiotensin II after pretreatment with DG-041 or vehicle 

 

 Sulprostone injection into a wild-type, vehicle-treated mouse produced an acute and 

transient vasopressor response on the order of 20 mmHg (Figure 9). Ang II infusion into 
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the same mouse produced a similar response. In an EP1
-/-

 mouse pretreated with vehicle, 

sulprostone and angiotensin II produced similar vasopressor responses to vehicle-treated 

wild-type mice, suggesting the vasopressor activity of sulprostone is exclusively through 

EP3. This is in contrast to the in vitro data that show sulprostone has similar affinities for 

EP1 and EP3. Pretreatment of an EP1
-/-

 mouse with DG-041 completely blocked the 

vasopressor response to sulprostone, leaving the Ang II vasopressor response intact. 

Sulprostone produced no vasopressor response in EP3
-/-

 mice, regardless of vehicle or 

DG-041 pretreatment, again suggesting the entire vasopressor phenotype of sulprostone 

injection is due to EP3 activation. This small, pilot study demonstrated for the first time 

that DG-041 was able to prevent the vasopressor activity of some components of the 

PGE2 signaling cascade. 

 

 

Figure 10 - Direct intracarotid blood pressure measurement in anesthetized mice dosed 

with 17PTPGE2 with and without DG-041 pretreatment. 17PTPGE2 group, P = 0.3538; 

Phenylephrine group, P = 0.9951 by two-tailed Student’s t test. 
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 A larger study was performed in wild-type mice in which 17PTPGE2 was used as the 

study vasopressor and phenylephrine was the positive control. Blood pressure was 

measured and compounds were delivered as described in the previous experiment. 

17PTPGE2 was used as the agonist in this experiment because, like sulprostone, 

17PTPGE2 is approximately equipotent at EP1 as at EP3 in vitro. Acute infusion of 

17PTPGE2 caused a transient increase in MAP of about 45 mmHg (Figure 10). 

Phenylephrine produced a similar response. When mice were pretreated with DG-041, 

the phenylephrine and 17PTPGE2 vasopressor responses were unaffected, though there 

may be a trend toward reduction for 17PTPGE2 activity in DG-041 treated animals. 

Previous studies have shown about a 50 % reduction in vasopressor activity of 

17PTPGE2 when the EP1 receptor is genetically deleted
80

, suggesting the remaining 

17PTPGE2 activity is due to the EP3 receptor. However, that same study found a 

significant effect of EP1 deletion on the vasopressor response to sulprostone, which was 

not seen in Figure 9. These data would suggest the majority of the vasopressor response 

to 17PTPGE2 is EP1-mediated. 

 

Synthesis and characterization of JD-200. JD-200 was synthesized as previously 

described
290

 with a few modifications (Figure 11). Compound 6 was prepared by heating 

3-trifluoromethylphenol with sodium nitrate with sulfuric acid. The phenolic oxygen was 

protected with methyl chloromethyl ether to yield 7. The nitro group was reduced by 

hydrogenation to the aniline 8. In a separate synthetic route, methoxyfuran was 

sulfonated by heating with SO3·Py in a microwave reactor to yield 9. The sulfonyl 
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chloride 10 was formed by reacting 9 with thionyl chloride. The aniline 8 was coupled to 

the thiophene sulfonyl chloride 10 by heating in pyridine to yield 11. The tertiary 

sulfonamide was prepared by alkylation with isobutyl iodide. 12 was prepared by 

deprotecting the phenolic oxygen by heating with HCl. The phenolic oxygen was 

alkylated with p-cyanobenzyl bromide to yield 13. Finally, JD-200 was prepared by 

cycloaddition of tributyltin azide with 13 under microwave conditions. 

 

 

Figure 11 – Synthetic route for JD-200. Reagents: (a) NaNO3, H2SO4, (b) CH3OCH2Cl, 

DIPEA, CH2Cl2, (c) H2, Pd/C, MeOH, (d) 13, pyridine, (e) iBuI, K2CO3, DMF, (f) HCl, 

MeOH, (g) p-cyanobenzyl bromide, K2CO3, DMF, (h) Sn(nBu)3N3, PhMe, µW, (i) 

SO3·pyridine, CH3CN, µW, (j) SOCl2, DMF 

 

 JD-200 was previously reported to have comparable affinity for both the human EP1 

and EP3 receptors. JD-200 was synthesized and characterized on the basis of it being a 

dual selectivity EP1/EP3 antagonist. In radioligand competition binding assays (Figure 

12), JD-200 was a high-affinity affinity ligand of the mouse EP3 receptor (KI = 35.9 nM). 

JD-200 was confirmed to be a functional antagonist of the mouse EP3 receptor by the 
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LVIP2.0Zc-based CRE assay (Figure 13, left; pIC50 = 7.82). Using a FLEXstation 

calcium mobilization assay, JD-200 was confirmed to be a functional against of the 

mouse EP1 receptor (Figure 13, right; pIC50 = 7.52). Further studies will be required to 

determine if JD-200 is selective for EP1 and EP3 over the other prostanoid receptors. 

 

 

Figure 12 – Competition binding of DG-041 (blue) and JD-200 (black) against 5 nM 

[
3
H]PGE2 at the mouse EP3γ receptor expressed in HEK293 cell membranes. 
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Figure 13 – Concentration response curve of JD-200 against (left) sulprostone in the 

mEP3γ-expressing LVIP2.0Zc CRE assay and (right) 17PTPGE2 in the FLEXstation-

based mEP1 calcium flux assay. 

 

Summary 

 

DG-041. DG-041 is a high-affinity, selective antagonist of the EP3 receptor. The only 

other prostanoid receptor DG-041 has appreciable affinity for is the DP1 receptor. 

Whether the subtype selectivity of DG-041 for EP3 is recapitulated in mice is yet to be 

seen. DG-041 has been shown at the human EP3 receptor to have pseudo-irreversible 

binding kinetics. Cell membranes expressing human EP3 receptor were incubated with 

DG-041 and two structural analogues, washed three times, and [
3
H]PGE2 binding to the 

membranes was assessed. DG-041 and its analogues completely blocked [
3
H]PGE2 

binding to the membranes whereas pre-incubation with PGE2 only partially reduced 

subsequent [
3
H]PGE2 binding compared to pre-incubation in buffer alone

226
. 

 The mouse pharmacokinetic properties of DG-041 were disappointing. An oral dose 

of 30 mg/kg DG-041 reached a maximum plasma concentration of approximately 0.75 

µM. Parallel intravenous dosing of DG-041 was not performed, so exact bioavailability 



 

127 

 

 

cannot be known. On first inspection cmax seems to be low compared to a more drug-like 

molecule. The high lipophilicity of DG-041 could partially explain this. DG-041 has a 

predicted n-octanol:water partition coefficient of 7.67
289

, meaning the predicted ratio of 

DG-041 in a lipophilic layer versus aqueous layer is approximately 50 billion to 1. DG-

041 may passively cross the GI lining, but likely would distribute into adipose tissue; 

DG-041 likely has a high Vss. Further experiments will be required to confirm these 

hypotheses. 

 Orally administered DG-041 was bioavailable to some extent, but systemic DG-041 

was rapidly cleared with a t1/2 of 1.23 hours. In vitro metabolite identification 

experiments indicate a single oxygenation event in mouse liver microsomes, which no 

doubt contributes to the rate of elimination of DG-041. Actual rate of metabolism of DG-

041 in mouse liver microsomes will require further experimentation. A common fate for 

molecules metabolized by Phase I enzymes is subsequent conjugation by Phase II 

enzymes. It is possible the metabolite of DG-041 is a substrate for glucuronidation, 

sulfonation, acetylation, or some other Phase II conjugation process. Experiments 

employing mouse hepatic S9 fractions or mouse hepatocytes, or analysis of plasma from 

DG-041 treated mice will be required to answer these questions. 

 DG-041 fragmented poorly in the mass spectrometer in metabolite identification 

assays. This is a common problem for DG-041 and was seen with both electrospray and 

chemical ionization techniques on a triple quadrapole mass spectrometer. If possible, the 

mass spectrometry conditions should be optimized for DG-041 fragmentation to identify 

the location of hydroxylation on the DG-041 metabolite with better resolution. 
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 DG-041 was able to block sulprostone-induced vasopressor responses in wild-type 

and EP1
-/-

 mice. These were pilot experiments using a single mouse per data point and 

will have to be repeated with a larger sample size before too much weight is placed on 

the data. However, these data would indicate the majority of the pressor response to 

sulprostone is due to EP3 signaling and not EP1. This was demonstrated with both 

genetic deletion of EP3 and pharmacological blockade of EP3 with DG-041 in these 

experiments. The vasopressor responses to Ang II and phenylephrine were intact 

regardless of genotype or pharmacological treatment. DG-041 did not appear to 

effectively block 17PTPGE2 vasopressor activity in vivo, though perhaps a larger sample 

size or larger dose of 17PTPGE2 would have yielded statistically significant data. In any 

case, it seems the bulk of the vasopressor response to 17PTPGE2 is EP1-mediated. 

 JD-200 was synthesized as part of an effort to identify single ligands that could 

simultaneously antagonize the EP1 and EP3 receptors. EP1 and EP3 are involved in the 

pathophysiology of diabetes, hypertension, and other cardiovascular diseases and at least 

on the molecular level have some functionally redundant signaling pathways. JD-200 was 

confirmed in radioligand binding and cell-based signaling assays to antagonize the mouse 

EP1 and EP3 receptors in vitro. However, the synthesis of this molecule was lengthy and 

inefficient. These studies add to the toolbox of available ligands to study the EP1 and 

EP3 receptors in mice and also to the understanding of how EP-selective ligands act on 

the cardiovascular system in vivo. Future work will involve optimizing the synthetic 

route to more efficiently yield quantities suitable for in vivo use. 
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CHAPTER V 

DISCUSSION AND FUTURE DIRECTIONS 

 

Structure-function studies of the EP3 receptor 

 

Subsequent to the initiation of the cysteine mutagenesis project described in Chapter 

II, several GPCR structures have been published
291-295

. The major limitation of the work 

to optimize mouse EP3 receptor expression in E. coli (Chapter II) is the use of E. coli. 

However, heterologous expression of target proteins in E. coli is required to isotopically 

label proteins for NMR-based structural studies. Overexpression of natively folded 

membrane proteins in E. coli is not unprecedented
264,296-299

, but more efficient techniques 

have evolved. One of the most established methods of expressing complex proteins like 

GPCRs is the baculovirus insect cell expression system. Baculoviruses most commonly 

infect the larva of moths. A cell line, Sf9, was generated from armyworm ovarian tissue 

and is used to overexpress heterologous proteins by infecting the insect cells with 

baculovirus carrying the genetic code for a protein of interest. This system has been used 

to overexpress a number of proteins, including the COX enzymes and the constructs used 

to crystallize some of the known structures of GPCRs. Other expression systems have 

been developed to more effectively overexpress membrane proteins for structural studies. 

Pichia pastoris, a strain of yeast, has been adapted for laboratory use to overexpress 

membrane proteins
300,301

. Other methods rely on massive culture systems for common 

laboratory mammalian cell lines. This method has been used to express GPCRs
302

 and is 
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commonly used in the biopharmaceutical industry for large scale synthesis (e.g., for 

antibody production) using bioreactors on the scale of tens of thousands of liters
303

. 

 Work to adapt mEP3γ to these methods of expression has already begun. Previously, 

attempts have been made to overexpress the β2-adrenergic receptor in mammalian cells in 

a bioreactor as a proof of concept study. The goal was to demonstrate the method as 

effective using β2AR and later try overexpressing the EP3 receptor this way. Efforts are 

currently focused on optimizing expression strategies for EP3 receptor in both Pichia and 

Sf9 expression systems. 

 Structural determination by X-ray crystallography requires the formation of an 

ordered lattice of purified, homogenous receptor protein. GPCRs are composed of seven 

transmembrane alpha helices linked together by loops; these structures are inherently 

flexible and indeed require this flexibility to switch from inactive and active 

conformation states. Furthermore, receptors are often post-translationally modified. 

Extracellular residues of GPCRs are typically heterologously glycosylated and these 

glycosylations may be required for receptor function, impeding efforts to crystallize the 

target protein. GPCRs are often lipid modified on the intracellular side of the molecule. 

However, these modifications are typically homogenous and may not affect protein 

crystallization. 

 To circumvent these conformational concerns with crystallizing GPCRs, a number of 

approaches have been developed. One is to generate chimeric receptor constructs that 

have another protein (e.g., T4 lysozyme) in one of the intracellular loop domains. These 

fusion proteins are demonstrated to aid in crystal packing of proteins. Another strategy 

has been to employ antibodies against the receptor to aid in protein packing. Traditional 
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antibodies against β2AR were used initially
291

; however, it was appreciated that camelids 

(e.g., llamas and alpacas) and sharks produce much smaller, single-chain antibodies, so-

called “nanobodies.” These nanobodies raised against GPCRs have been used to improve 

the crystal packing of purified receptor protein
304,305

. 

 The cysteine mutagenesis study (Chapter II) mutated each cysteine to an alanine. 

Future work for this project should involve consideration of different missense mutations 

than simply conversion to alanine. If a cysteine residue is in a hydrophobic region of the 

protein, a more lipophilic amino acid such as valine or leucine may be more appropriate 

and may improve receptor expression. Likewise, if a cysteine is in a solvent-accessible 

region of the protein, a more hydrophilic amino acid may be more appropriate. 

 Chapter II identified a pair of cysteine residues absolutely required for proper 

receptor expression and function. These cysteines correspond to a pair of cysteines 

absolutely conserved in Family A GPCRs (Chapter II, Figure 1). These cysteines form a 

disulfide bond that likely provides critical tertiary structure support either while the 

nascent receptor is folding or maintaining its native fold. Mutation of either of these 

cysteine residues resulted in a significant decrease in receptor protein presentation at the 

cell surface, as determined by cell surface ELISA (Chapter II, Figure 4A). It is possible 

the protein at the cell surface is not the full-length receptor and that mutation of these 

cysteines to alanines destabilizes the translational machinery, prematurely terminating 

synthesis of the mutant EP3 receptor. Western blot analysis of membrane fractions of 

cells expressing these mutant constructs with detection of the N-terminal HA-tag will be 

performed. Heterologous glycosylation may complicate interpretation of these 

experiments, so incubation with the glycosidase PNGase F before electrophoretic 
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resolution will also be performed. These experiments will determine the size of the 

expressed mutant receptors compared to wild-type receptor. Additionally, moving the 

HA-tag to the C-terminus may provide a handle with which to selectively purify fully 

translated protein. 

What is more likely is that these mutant receptors are misfolded during translation. 

Detection of misfolded proteins would promote the degradation of these misfolded 

receptors, reducing surface presentation of the N-terminal HA tag antigen. Protein that 

did successfully traffic to the cell surface was undetectable by radioligand binding 

(Chapter II, Figures 3 and 4B). None of the other mutations significantly affected receptor 

function. Large differences in expression of some constructs were observed, though these 

data must be interpreted with caution as transiently-transfected HEK293 cells have 

variable expression levels. It is possible substitution of alternate amino acids into these 

positions may stabilize receptor structure and/or function. Ott et al. generated a mutant of 

the κ-opioid receptor in which cysteines were mutated to a different amino acid that has 

some conservation among the opioid receptor family
243

. This strategy will be employed 

when constructing mutant mEP3γ receptors lacking all but the disulfide cysteines. 

 It is also possible that mutation of C184 in the second extracellular loop of the mouse 

EP3 receptor uncouples agonist binding to the receptor from transduction of an 

intracellular signal. Residues in this region are known to be absolutely conserved among 

prostanoid receptors. Despite this conservation, mutation of many of these residues 

including the cysteine did not affect radioligand binding or ligand selectivity, though they 

have been shown to prevent the signal transduction through the mutant receptor
306

. 

Separation of the two roles of a GPCR (i.e., agonist binding and stimulation of some 
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intracellular response) is not unprecedented
307

 and underlies the concept of functional 

selectivity. An agonist preferentially shifting the conformation of a receptor toward β-

arrestin recruitment independent of G-protein activation, for example, is an example of 

the same phenomenon but with a more complete description of the system. More 

proximal measurement of mutant receptor activation using [
35

S]GTPγS binding in 

response to PGE2 or sulprostone will be performed to more closely study the interaction 

of mutant receptors and their downstream effectors. 

 This study provides interesting information about the tertiary structure of the mouse 

EP3 receptor and the role of the many cysteine residues of the receptor in supporting the 

normal function of the receptor. Combination of several of these mutations into a single 

construct is likely to maintain at least some native receptor function. Consideration of 

alternate missense mutations for some sites will likely improve the function and/or 

expression of these mutants. These data indicate a mutant of the mouse EP3 receptor 

completely devoid of all cysteine residues is not feasible, but overexpression can still be 

performed on a protein containing a single pair of cysteine residues that likely require 

crosslinking for normal receptor expression and function. 

 

Improvement of the pharmacokinetic properties of DG-041 

 

DG-041 is a valuable tool compound with which to study the role of the EP3 receptor 

in physiology and disease
73,108,147,148

. In Chapter IV, DG-041 was confirmed to be a high-

affinity antagonist of the mouse EP3 receptor both in vitro and in vivo. The rapid 

clearance of the compound (Chapter IV, Figure 4) is not optimal for a pharmacological 
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probe, but could be improved in a number of ways. The molecule itself will be 

synthetically altered so that hydroxylation cannot occur. Further analytical chemistry will 

be required to determine precisely where the oxygen is added to DG-041 when incubated 

in mouse liver microsomes. Bare regions on the indole head group and the phenyl ring, 

the methyl side chain, and the methylene linker between the indole and phenyl ring are all 

possible sites of Phase I metabolism. Using an improved mass spectrometric method or 

NMR analysis, the exact site of modification by P450 enzymes can be identified and then 

blocked synthetically by substitution with a fluorine atom. Alternatively, each of the 

modifications can be synthesized in advance and screened for metabolism in mouse liver 

microsomes. It is also possible that the DG-041 metabolite is subsequently conjugated by 

Phase II metabolic enzymes. Further studies using mouse hepatic S9 fractions will be 

performed to determine whether this metabolite is a substrate for conjugation reactions. 

 DG-041 clearance may be independent of hepatic metabolism and the observed Phase 

I metabolism may be but a minor mode of clearance. To estimate in vivo CLH of DG-041 

in mice, intrinsic clearance experiments of DG-041 in mouse liver microsomes will be 

performed. The results of these experiments will predict the extent to which DG-041 is 

cleared by the liver in vivo. 

Urinary excretion of DG-041 was not assessed. It is possible DG-041 is either 

passively filtered or actively secreted in the kidney into the urine. However, renal 

clearance is most common with hydrophilic compounds. Indeed, part of the goal of Phase 

I and II metabolism is to increase the water solubility of a molecule to promote its renal 

excretion. DG-041 may not be efficiently cleared by the kidney but Phase I or Phase I 

and II metabolism may increase the hydrophilicity (as observed by the left shift in 
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retention time for the metabolite in HPLC/metabolite identification experiments; Chapter 

IV, Figure 5) then becoming susceptible to renal clearance. Mice will be dosed similarly 

to Chapter IV, Figure 4 and urine will be collected and analyzed for DG-041 excretion. 

These data will provide a measure of renal clearance (CLR) which will also indicate 

passive or active renal excretion of DG-041. 

 Another important consideration is whether the metabolite is pharmacologically 

active. On a 600 g/mol molecule, a single oxygenation may be a subtle enough change 

that the metabolite is still biologically active. The exact structure of the metabolite will be 

identified and the molecule synthesized. The molecular pharmacology of the metabolite 

will be determined. If the metabolite is a functional antagonist, further pharmacokinetic 

experiments will be performed to determine the plasma exposure of the metabolite in 

addition to the parent compound, as the metabolite would be expected to be biologically 

active as well. 

 Whatever the mode of clearance of DG-041, it is not likely to be the case that the 

DG-041 metabolite is pharmacologically active. DG-041 has been studied in acute blood 

experiments in mice dosed similarly to the pharmacokinetics experiment for DG-041. 

Oral administration of DG-041 blocked sulprostone-induced increases in blood pressure 

with a time course similar to that of the plasma [DG-041]-time profile, indicating no 

extended “biological half-life” that would be expected in the case of a pharmacologically 

active metabolite. 

 An interesting property of DG-041 and closely related molecules is that they display 

pseudo-irreversible binding as a result of slow, tight binding kinetics. Compounds similar 

to DG-041 also display a delay in the onset of receptor binding. Jones et al. hypothesize 
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this is due to a slowing of the tissue distribution of DG-041 as it is nonspecifically 

dissolved into phospholipid bilayers and exchanged back out
289

. Once bound to the EP3 

receptor, the off-rate of DG-041 is long enough to appear irreversible on the time scale of 

a few hours. DG-041 blockade of the EP3 receptor was resistant to three washes over the 

course of at least four hours
226

. DG-041 pretreatment of adrenal chromaffin cells 

prevented PGE2/EP3 mediated attenuation of voltage-dependent calcium currents, and 

this blockade of EP3 remains despite extensive washing
308

. The possibility of covalent 

addition of DG-041 to the receptor protein was considered. Michael addition by a 

nucleophile at the α,β-unsaturated carbonyl moiety was suspected but dismissed after 

incubation with DTT did not affect DG-041 binding to EP3 and after an analogue of DG-

041 lacking the α,β-unsaturation displayed similar slow, tight binding kinetics
226

. More 

precise experiments will be performed using mass spectrometric detection of protein:DG-

041 adducts. 

Despite these observations, DG-041 administered to mice consistently shows EP3 

antagonism for no more than a few hours (unpublished observations). It is possible some 

mechanism for dissociating DG-041 and recycling functional EP3 is at play. Chronic 

agonist stimulation of GPCRs is known to induce internalization, dissociation of the 

ligand within the endosomal compartment, and recycling of free receptor back to the 

membrane. Dissociation of DG-041 from EP3 in vivo may employ a similar mechanism 

to restore EP3 function faster than what is seen in vitro. Further characterization of the 

discrepancy between the functional half-life of DG-041 in vitro versus in vivo will be 

performed. Differential centrifugation will be used to separate endosomal from cell-

surface receptors. Western blot analysis of subcellular fractions will be used to confirm 



 

137 

 

 

receptor internalization and radioligand binding to these fractions will be used to 

determine DG-041 binding to the receptor. Alternatively, genetic and pharmacological 

tools are available to prevent endosomal recycling of proteins. These manipulations can 

be employed against cells expressing mEP3γ and exposed to DG-041 to determine the 

requirement for recycling in restoration of receptor binding. 

 

Developing a more efficient route for JD-200 synthesis 

 

JD-200 was previously identified to have affinity for the human EP1 and EP3 

receptors. JD-200 was confirmed to be an antagonist of the mouse EP1 and EP3 receptors 

in vitro (Chapter IV, Figures 12 and 13). The synthetic route for JD-200 was 

prohibitively inefficient to produce quantities required for in vivo use. Minor 

modifications to the structure of JD-200 will allow completion of the synthesis more 

efficiently. Synthesis will begin with a 2-bromo-4-trifluoromethylaniline, attaching p-

cyanobenzyl moiety to the phenyl head group by Suzuki coupling of a benzylboronic acid 

to the phenyl ring at the bromine or Heck reaction coupling a styrene analogue to the 

same starting material. These will eliminate the phenolic linker but will also avoid the 

protection and deprotection steps. Use of a similar, commercially available thiophene 

sulfonamide will eliminate the thiophene sulfonyl chloride side route. The molecular 

pharmacology of the product and a series of bioisosteres will be characterized to ensure 

retention of receptor affinity and selectivity. These works will broaden the chemical 

scaffolds available for EP1 and/or EP3 antagonist tool compounds. 
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Use of a novel, dual-selectivity EP1/EP3 antagonist to evaluate the role of PGE2 

receptors in hypertensive and diabetic kidney diseases 

 

Alternative chemical scaffolds for dual EP1/EP3 antagonists were pursued (Chapter 

III, Figure 4). Compound 17 is a dual-selectivity mouse EP1/EP3 antagonist. The starting 

compound upon which the analogues are based (Compound 7) is an antagonist of the 

human EP1 receptor and has significant affinity for the human TP receptor and modest 

affinity for the mouse TP receptor. It also had weak affinity for the mouse EP2 receptor 

(Chapter III, Table 1). Amide and N-acylsulfonamide analogues of the lead compound 

were generated in an effort to not only block reported glucuronidation of the molecule at 

the carboxylate, but to improve the selectivity of the compound. Each analogue lost 

affinity for the mouse TP and EP2 receptors and four (11, 17, 18, and 21) gained affinity 

for the mouse EP3 receptor (Chapter III, Table 3). Future work with these molecules will 

be to screen their affinity for a large panel of other targets rather beyond the subset of 

prostanoid receptors reported here. Additionally, many more substitutions of different 

classes will be evaluated at the same position of the lead molecule (e.g., inverse amides 

and tetrazoles of varying substitutions). Special focus will be placed on isosteres of 17 

that lack the hydrolysable sulfonamide bond (Chapter III, Figure 8). 

The highest affinity EP1 selective and EP1/EP3 selective molecules were screened 

for intrinsic clearance in mouse hepatic microsomes (Chapter III, Table 4). The starting 

molecule (7) displayed moderate predicted CLH while each of the six compounds 

subjected to the assay (8, 11, 14, 17, 19, and 21) had greatly increased CLH, all at values 
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approaching hepatic blood flow for a mouse (the theoretical maximum for the assay). In 

vitro metabolite identification experiments for one amide (11) and one sulfonamide (17) 

dual-selectivity analogues were performed using mouse hepatic microsomes and mouse 

hepatic S9 fractions for the in vitro detection of Phase I and Phase II metabolism 

(Chapter III, Figure 8). The data indicated the amide analogue (11) was metabolized into 

greater than a dozen different low abundance metabolites; whereas, the sulfonamide 

analogue (17) was metabolized into three different major metabolites. In the future, this 

information can be used to synthesize analogues of this compound that are resistant to 

these modes of metabolism. The metabolic profile of the amide analogue does not appear 

to be salvageable. Other amide analogues of the lead compound will be screened in this 

assay for better metabolic profiles. 

 One of the metabolites (M1) of the lead sulfonamide compound (17) is a 

hydrolysis product back to the starting carboxylic acid (Chapter III, Figure 8). This is 

notable because when the compound is administered in vivo, 7 will be generated and 

subsequent blockade of the TP receptor and loss of activity at the EP3 receptor may 

occur. Blocking hydrolysis at this site will be explored synthetically. 17 is thermally 

unstable (30 % degradation after four hours at 37 °C) and extensively plasma protein 

bound (Fu = 0.004), though no more so than the lead carboxylic acid compound 7 (Fu = 

0.005). 

 Administration of 17 SC displayed excellent plasma exposure, amenable to chronic 

dosing required to study hypertension and diabetes in mice. 17 slowly reached cmax and 

was slowly eliminated from circulation, with the terminal time point (24 hours) 

remaining above the lower limit of detection for this assay. These pharmacokinetic 
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properties lend the molecule to chronic administration with a SC osmotic minipump. 

However, 17 was unstable in mouse plasma at 37 °C. Incubation in chemical stabilizers 

such as ascorbate or cyclodextrin will be performed to determine if they prevent the 

thermal breakdown of 17. Stability of 17 in a pellet will be determined. DOCA is 

chronically delivered to mice via a SC pellet. 17 will be similarly compounded and 

keeping the compound out of solution may prolong its integrity. 

 In an in vivo assay for EP-mediated vasopressor activity (Chapter III, Figures 10 and 

11), SC administration of 17 attenuated sulprostone- and 17PTPGE2- stimulated 

vasopressor activity. 17 will be used as a tool compound to investigate the role of EP1 

and EP3 in the pathophysiology of diabetic kidney disease. Lepr
db/db

 eNOS
-/-

 BKS mice 

are a well-characterized mouse model of T2DM
309

. These mice have endothelial 

dysfunction and are hypertensive, hyperinsulinemic, hyperglycemic, hyperlipidemic, and 

progress to overt DN by 24 weeks of age. Chronic administration of 17 through a SC 

pellet would start at 8 weeks of age. Weight, fasting blood glucose, systolic blood 

pressure, and urinary albumin-to-creatinine ratio (ACR) will be measured weekly. GFR 

will be measured by FITC-inulin clearance immediately prior to 17 pellet implantation 

and at the end of the study. When the DN phenotype is severe (28 – 36 weeks of age, will 

require determination by a preceding pilot study), a cohort of mice in each treatment 

group will have MAP determined by direct carotid catheterization. Periodic-Schiff and 

Masson’s trichrome stains of kidney sections from each treatment group will be 

collected. 

 The untreated diabetic mice are expected to be hypertensive and hyperglycemic, to 

have significantly increased ACR and possibly reduced GFR. Histology should reveal 
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wide-spread glomerulosclerosis, tubulointerstitial fibrosis, and tubular proteinaceous 

casts in the kidneys of untreated diabetic mice. Chronic administration of the dual-

selectivity EP1/EP3 antagonist 17 is expected to significantly attenuate each of these 

markers of DN. Of additional interest is whether starting administration of 17 after 

development of disease (20 -24 weeks of age) will improve the outcome of the mice with 

DN. 

 

Determination of the tissue distribution of 17PTPGE2 and sulprostone 

 

The tissue compartments where sulprostone, 17PTPGE2, and PGE2 elicit their 

vasoactive responses will be more closely studied. In radioligand competition binding 

assays in cell membranes and cell-based functional assays, 17PTPGE2 and sulprostone 

are agonists for EP1 and EP3 and both agonists have higher affinity for the mouse EP3 

receptor than the mouse EP1 receptor
280

. The simplest explanation is a difference in 

intrinsic efficacies of the two agonists for EP1 versus EP3; that is, 17PTPGE2 may have a 

higher intrinsic efficacy for EP1 and negligible for EP3 and the reverse for sulprostone. 

However, this is not likely the case. Earlier studies characterizing the mouse EP1 receptor 

in vitro successfully used sulprostone to study the calcium flux response to activation of 

EP1 in vitro
152

. Using a CHO cell-based calcium mobilization assay for the mouse EP3 

receptor, sulprostone, PGE2, and 17PTPGE2 were each shown to be full agonists for the 

mouse EP3 receptor (Figure 1). 
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Figure 1 – FLEXstation calcium mobilization concentration response curves for 

sulprostone, PGE2, and 17PTPGE2 at the mouse EP3γ receptor expressed in CHOk1 

cells. 

 

 

 These in vitro data drive the hypothesis that it is not a difference in ligand binding 

and activation of EP1 versus EP3 receptors, but a difference in delivery of the ligand to 

the necessary tissue compartment to elicit its activity in vivo. The in vivo 

pharmacokinetic properties of sulprostone and 17PTPGE2 are unknown. Ionization in 

solution (reported as pKa) is a physiochemical property that can determine passive 

diffusion across a lipid membrane, as an ionized molecule cannot passively cross a 

membrane. However, sulprostone, a N-acylsulfonamide, and 17PTPGE2, a carboxylic 

acid, are predicted to have very similar pKas
310,311

. The ratio of ionized to unionized 

sulprostone or 17PTPGE2 could be as high as 1000:1 (plasma pH 7.4; pKa ~4.5
310

), so 

these molecules are unlikely to efficiently diffuse across a membrane. Large differences 



 

143 

 

 

in lipophilicity between the two molecules are not expected. Metabolism to a compound 

that prefers one of the two receptors is a possibility; for example, 17PTPGE2 may be a 

substrate for Phase I metabolism, converting the EP1 and EP3 agonist to an EP1 

preferring agonist. Future experiments on the metabolism and disposition of these two 

molecules will be performed in an effort to explain the mechanism by which these 

ligands transduce their vasopressor responses through EP1 and EP3. 

EP3, and not EP1, is known to mediate a vasopressor response when selective 

agonists are infused ICV
66

. It is possible sulprostone is a substrate for an organic anion 

influx transporter on the blood brain barrier and 17PTPGE2 is not. This would 

preferentially transport sulprostone into the CNS while excluding 17PTPGE2. If the EP3 

vasopressor response is mediated predominately by central EP3 receptors, this may 

explain why the vasopressor response to sulprostone appears to be chiefly EP3-mediated 

and the vasopressor response to 17PTPGE2 seems to almost completely EP1-mediated. 

Cell-based, transwell transporter assays will be performed with cultured endothelial cells 

and Caco-2 cells expressing blood-brain barrier transporters. Transport of 17PTPGE2 or 

sulprostone across these monolayers will be assessed as a surrogate for transport across 

the blood-brain barrier. Also, in vivo brain penetrance experiments will be performed in 

which mice are administered an IV dose of 17PTPGE2 or sulprostone and the 

concentration of the analyte in brain homogenates will be determined at various time 

points after administration. 
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Summary 

 

In closing, these studies provide novel information on the relationships between 

structure and function of the mouse EP3 receptor. Additionally, these studies add more 

evidence in support of the hypothesis that simultaneous blockade of EP1 and EP3 in vivo 

is beneficial beyond blockade of either receptor alone. These two subtypes of PGE2 

receptors have been shown to be deleterious in chronic kidney diseases and selectively 

targeting them may be of greater therapeutic value with fewer side effects than inhibiting 

the molecular targets upstream of these receptors (e.g., mPGES-1 or COX-1/2). Further 

studies will provide structural information for the mouse EP3 receptor, preliminary data 

to test this hypothesis, develop better tool compounds for in vivo study of EP1 and EP3, 

and explain the conflicting in vitro and in vivo pharmacodynamics of EP ligands. 
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