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CHAPTER I 

INTRODUCTION TO THE ROSETTA PROTEIN MODELING SUITE1

ROSETTA is a unified software package for protein structure prediction and functional design. 

It has been applied to predict protein structures with and without the aid of sparse experimental 

data, perform protein-protein and protein-small molecule docking, design novel proteins, and 

redesign existing proteins for altered function. ROSETTA allows for rapid tests of hypotheses in 

biomedical research which would be impossible or exorbitantly expensive to perform via traditional 

experimental methods. Thereby ROSETTA methods gain increasing importance in the interpretation of 

biological findings e.g. in genome projects and in the engineering of therapeutics, probe molecules, 

and model systems in biomedical research. 

 

ROSETTA like all structure prediction algorithms must perform two tasks. First, ROSETTA must 

explore or sample the relevant conformational space and in the case of design sequence space. 

Second, ROSETTA must accurately rank or evaluate the energy of the resulting structural models.  For 

this purpose, ROSETTA implements (mostly) knowledge guided Metropolis Monte Carlo sampling 

approaches coupled with (mostly) knowledge based energy functions. Knowledge based energy 

functions assume that most molecular properties can be derived from available information, in this 

case the Protein Data Bank (PDB) (Bernstein, Koetzle et al. ; Berman, Battistuz et al.). 

                                                      
1 Published as “Practically Useful: what the ROSETTA protein modeling suite can do for you.” Kaufmann 

KW, Lemmon GH, De Luca SL, Sheehan JH, Meiler J Biochemistry 2010 49 2987-2998. Reprinted with permission 
of publisher 
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ROSETTA Conformational Sampling Strategies 

The majority of conformational sampling protocols in ROSETTA use the Metropolis Carlo 

algorithm to guide sampling. Gradient based minimization is often employed for last step refinement 

of initial models. Since each ROSETTA protocol allows degrees of freedom specific for the task, 

ROSETTA can perform a diverse set of protein modeling tasks ( W a n g ,  B r a d l e y  e t  a l .  

2 0 0 7 ) . 

Sampling backbone degrees of freedom 

ROSETTA separates large backbone conformational sampling from local backbone refinement. 

Large backbone conformational changes are modeled by exchanging the backbone conformations of 9 

or 3 amino acid peptide fragments. Peptide conformations are collected from the PDB for 

homologous stretches of sequence (Simons,  Kooperberg et  al .  1997)  which capture the 

structural bias for the local sequence ( By s t r o f f ,  S i mo n s  e t  a l .  1 9 9 6 )  . For local refinement of 

protein models ROSETTA utilizes Metropolis Monte Carlo sampling of phi, psi angles calculated not to 

disturb the global fold of the protein. Rohl ( R o h l ,  S t r a u s s  e t  a l .  2 0 0 4 )  provides a review of 

the fragment selection and backbone refinement algorithms in ROSETTA. 

Sampling side chain degrees of freedom 

Systematic sampling of sidechain degrees of freedom of even short peptides quickly becomes 

intractable (Levin tha l  1968) . ROSETTA drastically reduces the number of conformations sampled 

through use of discrete conformations of side chains observed in the PDB ( D u n b r a c k  a n d  

K a r p l u s  1 9 9 3 ;  K u h l m a n  a n d  B a k e r  2 0 0 0 )  . These ”rotamers” capture allowed 

combinations between side chain torsion angles as well as the backbone phi, psi angles and thereby 

reduce the conformational space (Dunbrack  and  Karp lus  1993 ) . A Metropolis Monte Carlo 
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simulated annealing run is used to search for the combination of rotamers occupying the global 

minimum in the energy function ( K u h l m a n  a n d  B a k e r  2 0 0 0 ;  L e a v e r - F a y ,  K u h l m a n  e t  

a l . ) . This general approach is extended to protein design by replacing a rotamer of amino acid A with 

a rotamer of amino acid B in the Monte Carlo step. 

ROSETTA Energy Function 

Simulations with ROSETTA can be classified based on whether amino acid side chains are 

represented by super atoms or centroids in the low-resolution mode or at atomic detail in the high-

resolution mode. Both modes come with tailored energy functions that have been reviewed previously 

by Rohl ( R o h l ,  S t r a u s s  e t  a l .  2 0 0 4 ) . 

ROSETTA knowledge based centroid energy function 

The low-resolution energy function treats the side chains as centroids ( S i m o n s ,  

K o o p e r b e r g  e t  a l .  1 9 9 7 ;  S i m o n s ,  R u c z i n s k i  e t  a l .  1 9 9 9 ) . The energy function models 

solvation, electrostatics, hydrogen bonding between beta strands, and steric clashes. Solvation effects 

are modeled as the probability of seeing a particular amino acid with a given number of alpha carbons 

within an amino acid dependent cutoff distance. Electrostatic interactions are modeled as the 

probability of observing a given distance between centroids of amino acids. Hydrogen bonding 

between beta strands is evaluated based on the relative geometric arrangement of strand fragments. 

Backbone atom and side chain centroid overlap is penalized and thus provides the repulsive 

component of a van der Waals force. A radius of gyration term is used to model the effect of van der 

Waals attraction. All probability profiles have been derived using Bayesian statistics on crystal 

structures from the PDB. The low resolution of this centroid-based energy function smoothes the 

energy landscape at the expense of its accuracy. The smoother energy landscape allows structures 
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which are close to the true global minima to maintain a low energy even with structural defects that 

a full atom energy function would stiffly penalize. 

ROSETTA knowledge based all-atom energy function 

The all-atom high-resolution energy function used by ROSETTA was originally developed for 

protein design ( K u h l m a n  a n d  B a k e r  2 0 0 0 ;  K u h l m a n ,  D a n t a s  e t  a l .  2 0 0 3 ) . It 

combines the 6-12 Lennard Jones potential for van der Waals forces, a solvation approximation 

(Lazaridis and Karplus 1999), an orientation dependent hydrogen bonding potential (Kortemme, 

Morozov et al. 2003), a knowledge based electrostatics term, and a knowledge based conformation 

dependent amino acid internal free energy term (Dunbrack and Karplus 1993). An important 

consideration when constructing this potential was that all energy terms are pairwise decomposable. 

The pairwise decomposition of each of the terms limits the total number of energy contributions to 

½ N (N-1) when N is the number of atoms within the system. This limitation allows pre-computation 

and storage of many of these energy contributions in the computer memory which is necessary for 

rapid execution of the Metropolis Monte Carlo sampling strategies employed by ROSETTA during 

protein design and atomic-detail protein structure prediction. 

Protein Structure Prediction 

The central tenet of structural biology is that structure determines function. Thus, the structure 

of a protein is critical for a full understanding of its function. Experimental structure determination 

techniques such as X-ray crystallography, nuclear magnetic resonance, electron paramagnetic 

resonance, and electron microscopy require significant investments of effort to produce structures of a 

molecule. Conversely, the advent of the genomic revolution created an explosion in the number of 

known sequences for biopolymers. For example, from October 2008 to March 2009 approximately 
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eight million (!) new, non-redundant sequences were added to the BLAST database. ROSETTA 

remedies the shortfall in structural information by predicting high probability structures for a given 

amino acid sequence. 

De Novo folding simulation 

The ”protein folding problem” given an amino acid sequence predict the tertiary structure it 

folds into is considered the greatest challenge in computational structural biology. The ROSETTA de 

novo structure prediction algorithm has been reviewed and described in detail elsewhere (S imons ,  

Kooperberg  e t  a l .  1997;  S imons ,  Ruczinsk i  e t  a l .  1999;  Rohl ,  S t rauss  e t  a l .  2004;  

Brad ley ,  Misura  e t  a l .  2005) . Briefly, ROSETTA begins with an extended peptide chain. Insertion 

of backbone fragments rapidly ”folds” the protein using the low resolution energy function and 

sampling approaches (Figure 1). ROSETTA attempts approximately 30,000 nine residue fragment 

insertions followed by a another 10,000 three residue fragment insertions to generate a protein model 

(Rohl, Strauss et al.  2004). Usually 20,000-50,000 models are folded for each individual protein 

(Bradley, Misura et al. 2005). The resulting models can either undergo atomic-detail refinement or if 

computational expense is an issue, clustering based on Cα-RMSD ( B o n n e a u ,  S t r a u s s  e t  a l .  

;  D a s ,  Q i a n  e t  a l .  2 0 0 7 )  can reduce the number of models before performing refinement. 

The clustering parameters are chosen by the user to generate clusters that maintain the same overall 

fold (i.e. Cα-RMSD < 5 ) while maximizing coverage of the structure space sampled. The lowest 

energy models and the structures at the center of the clusters enter atomic-detail refinement (read 

below). In 2009, Das et al. implemented an addition to the existing de novo protein folding protocol 

that allowed for accurate prediction of homomeric proteins (Das, André et al. 2009). They combined 

elements of ROSETTA de novo structure prediction (Raman, Vernon et al. 2009) with protein-protein 

docking (Mandell and Kortemme 2009) to develop ROSETTA Fold-and-Dock. Fold-and-Dock 

alternates between cycles of symmetric fragment insertion as in ROSETTA de novo prediction, and 



6 

rigid body docking between the two partially assembled models. Following complex assembly, the 

entire complex undergoes full atom refinement. Fold-and-Dock assumes that secondary structural 

elements of a homomer are symmetric, and inserts the same fragments into every subunit. As the 

interface between a homomer is highly buried, docking while folding allows this region to be 

protected and stabilized during the folding simulation, which greatly improved accuracy. Using this 

method, the structure of a K138A mutant of 1510-N membrane protease (PDB code: 3bbp) 

(Yokoyama, Hamamatsu et al. 2008) was predicted to within 1 RMSD of the crystal structure in a 

Figure 1. De novo Folding Algorithm Rosetta starts from a) fragment libraries 
with sequence dependent phi-psi angles which capture the local conformational space 
accessible to a sequence. b) Combining different fragments from the libraries folds the 
protein through optimization of non-local contacts. The low resolution energy function 
depicted in c) smoothes the rough energy surface resulting in a deep, broad minimum for 
the native conformation. Metropolis Monte Carlo minimization drives the structure 
towards the global minimum. Reprinted with permission from (Kaufmann, Lemmon et 
al.). 
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blind prediction test. To further improve resolution, sparse NMR-derived chemical shift restraints were 

added yielding models with RMSD-values smaller 1. Typically, structure elucidation for homomers 

with NMR-derived restraints would have required extensive datasets of RDCs, NOEs, chemical shifts, 

and scalar couplings. 

Comparative modeling 

Comparative modeling in ROSETTA starts after the alignment of a target sequence to a 

template protein, using sequence-sequence or sequence-structure alignment tools as described by 

Raman et al (Raman, Vernon et al. 2009).The quality of the alignment determines the aggressiveness of 

the sampling in ROSETTA (Raman, Vernon et al. 2009). In case of high sequence homology (sequence 

identity larger than 50%), the protein backbone is only rebuilt in regions surrounding insertions and 

deletions in the sequence alignment (Rohl, Strauss et al. 2004; Raman, Vernon et al. 2009). 

Consequently, ROSETTA starts with the template structure and builds in missing loops using fragment 

insertion or randomization of phi, psi angles followed by one of the loop closure algorithms such as 

cyclic coordinate descent or kinematic closure (Canutescu  and Dunbrack 2003;  Couts ias ,  

Seok et  a l .  ;  Mandel l ,  Couts ias  e t  a l . ) . In the case of medium to low sequence identity between 

template and target, Raman et al. applied a more aggressive iterative stochastic rebuild and refine 

protocol that allowed the complete rebuilding of large regions of the protein, which in some cases 

included entire secondary structure elements ( R a m a n ,  V e r n o n  e t  a l .  2 0 0 9 ) . 

Mandell et al.(Mandell, Coutsias et al. 2009) recently developed a Loop Closure algorithm in 

ROSETTA that achieves RMSD-values better than 1. Their adaptation of Kinematic closure (KIC) first 

selects 3 Cα atoms as pivots. Next non-pivot (φ,ψ) torsion angles are sampled, leading to a chain 

break at the middle pivot. Finally KIC is used to find torsion angles for the pivot atoms that close 

the loop. For a dataset of 25 loops containing 12 residues each, ROSETTA achieved a median accuracy 

of 0.8 RMSD (see Figure 2). This demonstrates an improvement over both the standard ROSETTA 
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cyclic coordinate descent protocol and a state-of-the-art molecular dynamics protocol (median 

accuracies of 2.0 RMSD and 1.2 RMSD respectively). 

Model relaxation and refinement 

After constructing a protein backbone via de novo protein folding or comparative modeling, 

the model enters atom-detail refinement (Bradley ,  Misura et  a l .  ;  Misura,  Chivian  et  al .  ;  

Qian,  Raman et  al . ) . During the iterative relaxation protocol φ and ψ angles of the backbone are 

perturbed slightly while maintaining the overall global conformation of the protein. The side chains 

Figure 2. Kinematic Loop Closure a) The kinematic loop closure algorithm samples 
(φ, ψ) torsion angles at the cyan Cα spheres from a residue specific Ramachandran map. The (φ, 
ψ) torsion angles at green Cα spheres are determined analytically to close the loop. b) The 
energy versus RMSD plot shows that the improved sampling offered by the kinematic closure 
protocol results in a sub angstrom prediction for the loop conformation. c) The kinematic 
closure prediction better resembles the crystallographic conformation. Reprint with permission 
from (Mandell, Coutsias et al. 2009). 
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of the protein are adjusted using a simulated annealing Monte Carlo Metropolis search of the rotamer 

space. Finally, gradient minimization is applied to all torsional degrees of freedom (φ, ψ, ω, and χ). 

The repulsive portion of van der Waals potential is increased incrementally, moving the structure to 

the nearest energy minimum. Extensive use of the all-atom model refinement has proven integral to 

the success of ROSETTA in the recent Critical Assessment of Structure Prediction (CASP) experiments. 

The Relax protocol has been extremely valuable for performing rapid Monte-Carlo minimization of 

protein backbones. Recently, Qian et al ( Q i a n ,  R a m a n  e t  a l .  2 0 0 7 )  applied the refinement 

protocol to protein structures determined de novo, via comparative modeling, or using NMR-derived 

restraints. 

In this protocol, protein models derived from NMR constraints or comparative modeling were 

used as a basis for solving the crystallographic phase problem. The model was initially minimized 

using ROSETTA’s all atom Monte Carlo Refinement protocol. The results of this refinement were used 

to identify regions likely to deviate from the native structure, as regions of high variability between 

refined models often correlate to areas of deviation from the native structure. These areas were re-

sampled using the fragment assembly approach used by Rosetta’s de novo structure prediction 

protocol. These re-sampled models are then subjected to all atom refinement. This cycle of refinement 

and rebuilding is preformed iteratively, each time using a small selection of the lowest energy 

structures from the previous round of refinement. The iterative refinement process is repeated until 

the system converges. These structures were then used to in molecular replacement to solve the 

crystallographic phase problem, and as a means of refining models derived from medium resolution 

NMR data. In a blind test, this ab initio phase solution method resulted in significant improvement in 

structural resolution over the original unrefined models ( Q i a n ,  R a m a n  e t  a l .  2 0 0 7 ) . 
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ROSETTA in Practice 

ROSETTA’s performance in the CASP experiment 

ROSETTA has displayed remarkable success in de novo structure prediction in the last several 

blind critical assessment of structure prediction (CASP) experiments as is evidenced by the method’s 

ranking among the top structure prediction groups ( B o n n e a u ,  T s a i  e t  a l .  2 0 0 1 ;  B r a d l e y ,  

C h i v i a n  e t  a l .  2 0 0 3 ;  C h i v i a n ,  K i m  e t  a l .  2 0 0 3 ;  R o h l ,  S t r a u s s  e t  a l .  2 0 0 4 ;  

B r a d l e y ,  M a l m s t r o m  e t  a l .  2 0 0 5 ;  D a s ,  Q i a n  e t  a l .  2 0 0 7 ;  R a m a n ,  V e r n o n  e t  

a l .  2 0 0 9 ) . During CASP sequences of proteins not yet reported in the PDB are distributed among 

participating laboratories. Within a given time limit predictions are collected and assessed based on 

the experimental structure that is typically available shortly after the CASP experiment 

(www.predictioncenter.org). Generally ROSETTA has superseded competing approaches at predicting 

the structure of small to moderately sized protein domains with less than 200 amino acids de novo. 

Shortly after the CASP6 (held in 2004) Bradley et al. showed that for a benchmark of small proteins 

ROSETTA de novo structure prediction found models at atomic detail accuracy in an encouraging 8 

out of 16 cases (Brad ley ,  Misura  e t  a l .  2005) . In that same year, Misura et al. found that 

homology models built with ROSETTA can be more accurate than their templates ( M i s u r a ,  

C h i v i a n  e t  a l .  2 0 0 6 ) . During CASP 7 with the assistance of the  ROSETTA@HOME distributed 

computer network, several moderately sized domains were predicted to atomic-detail accuracy within 2 

of the experimental structure for the first time { Das, 2007}. Based on the performance of ROSETTA in 

improving models over the best template structures available ( R a m a n ,  V e r n o n  e t  a l .  2 0 0 9 )  

(  s e e  F i g u r e  3 ) , Raman et al. suggest that the limitation of the ROSETTA structure prediction 

protocol remains in the sampling algorithms rather than the energy function. For this reason, prediction 

of larger domains becomes possible upon introduction of experimental data which restricts the 

conformational space. 

http://www.predictioncenter.org/�
mailto:ROSETTA@Home�
mailto:ROSETTA@Home�
mailto:ROSETTA@Home�
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ROSETTA leverages sparse data from NMR and EPR experiments 

ROSETTA allows incorporation of many types of experimental restraints. ROSETTA’s ability to 

deal with restraints derived from Nuclear Magnetic Resonance (NMR) spectroscopy is the most 

developed (Rohl 2005). NMR restraints have two entry points into the ROSETTA protein structure 

prediction routine. Chemical shift assignments for backbone atoms can be converted to phi, psi 

backbone angle restraints (Cornilescu, Delaglio et al. 1999) and are used during the selection of the 

fragment libraries. Distance and orientation restraints (e.g. nuclear Overhauser effect (NOE) restraints 

and Residual Dipolar Couplings (RDCs) respectively) are incorporated into the scoring function used 

during folding. Bowers et al. showed that a sparse mixture of short and long range NOE restraints ( 1 

restraint per residue) in addition to the backbone chemical shifts enables ROSETTA to build models at 

atomic-detail accuracy ( B o w e r s ,  S t r a u s s  e t  a l .  2 0 0 0 ) . Rohl and Baker ( R o h l  a n d  

B a k e r  2 0 0 2 )  likewise demonstrated that limited RDC measurements ( 1 per residue) in 

combination with backbone chemical shifts identify the correct fold. Meiler and Baker presented a 

protocol that uses unassigned NMR restraints for rapid protein fold determination ( M e i l e r  an d  

Bak e r  2 0 0 3 ) . More recently, Shen et al. showed the use of a modified fragment selection protocol 

Figure 3. Comparative Modeling CASP Performance 
Raman and colleagues demonstrated that comparative models 
refined with Rosetta improved upon the best template structure 
available for several targets, for example a) T0492 and b) T0464. 
The native structure is shown in blue, the best submitted Rosetta 
model in red, and the best template structure in green. The Rosetta 
models for T0492 resulted in atomic level accuracy for side chains 
in the core. For T0464 a 25 residue insertion was predicted 
resulting in models significantly improved over the best templates 
available. One of the models was further improved in the model 
refinement category. Reprinted with permission from (Raman, 
Vernon et al. 2009) 
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that ROSETTA can be used to generate structures of a quality comparable to those from traditional 

NMR structure determination methods (Shen, Lange et al. 2008). Furthermore, Shen found that 

ROSETTA sampling can compensate for the incomplete and incorrect NMR restraints (Shen, Vernon et al. 

2009). A major point to note is that in each of these examples ROSETTA is used to complement 

structure restraints obtained early in the structure determination process. Consistently ROSETTA 

models are accurate at atomic detail that would only be apparent from either significantly more or 

higher resolution experimental information. For example, Rohl and Baker found that ROSETTA 

produced ubiquitin models less than 4 RMSD of the experimental structure using RDC restraints that 

were also consistent with models that have a RMSD greater than 20 (Rohl and Baker 2002). Beyond 

NMR restraints, any experimental data suitable to represent the distance between atoms can be used 

in the simulation. Through site-directed spin-labeling (SDSL) such distance restraints can be obtained 

from Electron Paramagnetic Resonance (EPR) spectroscopy ( A l e x a n d e r ,  B o r t o l u s  e t  a l .  

2 0 0 8 ) . Alexander et al. generated accurate atomic-detail models of T4-Lysozyme (see Figure 4) and 

Figure 4. De novo Protein Structure Prediction from 
Sparse EPR Data Alexander et al. demonstrated that 
approximately one low resolution distance restraint for every four 
residues is sufficient to determine a model of T4-Lysozyme that is 
accurate at atomic-detail. The didstance restraints had been 
determined using SDSL-EPR experiments. The native T4-
Lysozyme structure is show in grey, while the model with an 
RMSD of 1.0Å is shown in a rainbow coloring scheme. Side 
chain conformations in the core of the protein are accurately 
represented in the model. Reprinted with permission from 
(Alexander, Bortolus et al. 2008) 
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the heat shock protein alpha crystalline using SDSL-EPR data using as few as a single distance 

restraint for every four residues. Similar approaches can be used to model multimeric complexes from 

monomers as Hanson et al. showed for the Arrestin tetramer in solution ( H a n s o n ,  D a w s o n  e t  

a l .  2 0 0 8 ) . 

ROSETTA models assist determining molecular structures from electron diffraction data 

De novo predicted models have also been used to assist in phasing of X-ray diffraction data (see 

Figure 5) ( Q i a n ,  R a m a n  e t  a l .  2 0 0 7 ;  D a s  a n d  B a k e r  2 0 0 8 ;  R a m e l o t ,  

R a m a n  e t  a l .  2 0 0 9 ) . Das and Baker found that for 15 of 30 benchmark cases ROSETTA de novo 

models successfully solved the phase problem by molecular replacement(Das and Baker 2009). Das 

and Baker suggest that approximately one in six X-ray diffraction data sets for proteins of 100 residues 

or less in length can be solved via molecular replacement using ROSETTA generated de novo models. 

In a subsequent study, Ramelot et al. showed that refinement of NMR ensembles using ROSETTA 

results in higher quality molecular replacement solutions to X-ray diffraction data than directly using 

the NMR ensembles(Ramelot, Raman et al.). DiMaio et al. extended ROSETTA to directly build 

models from electron density(DiMaio, Tyka et al. 2009). Both Lindert and DiMaio have obtained 

atomic accuracy models into cryo-electron microscopy density maps at resolutions of 4-7 using 

ROSETTA (DiMaio, Tyka et al. ; Lindert, Staritzbichler et al. ; Lindert, Stewart et al.). In both cases 

resulting models are of a higher resolution than the density from which they were built. 

Protein structure prediction servers 

Large parts of the ROSETTA protein structure prediction protocol including generation of 

fragments, de novo folding, and comparative modeling have been replicated in an automated server 

ROBETTA(Chivian, Kim et al. 2003; Kim, Chivian et al. 2004; Chivian, Kim et al. 2005). Chivian found 

that comparative models built with early versions of ROBETTA generally did not improve upon templates 
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from close homologs(Chivian,  Kim et  al .  2005) , however recently ROBETTA performed well in 

fold recognition and produced models which serve as good starting points for further refinement. In 

the most recent CASP however ROBETTA produced several models with accuracy comparable to the 

best human predictions (Raman, Vernon et al. 2009). For instance ROBETTA’s top model for the server 

only target, T0513 domain 2, had an RMSD of 0.84. In general ROBETTA performance compared to 

other servers increases as the quality of template structures decreases(Raman ,  Vernon  e t  a l .  

2009) . ROBETTA is publicly accessible at robetta.bakerlab.org. 

Figure 5. The Crysallographic Phase Problem. Qian 
et al. demonstrated that Rosetta-predicted protein models can be 
used in conjunction with automated molecular replacement 
algorithms to determine phases for electron density maps. The 
coordinates deposited in the PDB (2hh6)  (shown in red) fit well 
into the isosurface of the electron density solved by molecular 
replacement using a Rosetta prediction for T0283 at CASP 7. 
Reprinted with permission from (Qian, Raman et al. 2007) 
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Protein-Protein Docking 

While protein function is often determined by interactions with other proteins, most structures 

found in the Protein Databank contain single chains. Because of the difficulties in determining structures 

of protein complexes, computational methods for predicting protein/protein interactions are important. 

ROSETTADOCK provides tools for predicting the interaction of two proteins (Gray, Moughon et al. 2003). 

ROSETTADOCK employs first a low-resolution rigid-body docking. The second high-resolution refinement 

stage provides for side-chain conformational sampling and backbone relaxation. 

The ROSETTADOCK algorithm begins with random reorientation of both proteins (Gray, 

Moughon et al. 2003). Next one protein slides into contact with the other. The following low resolution 

docking conformational search involves 500 Monte Carlo rigid body movements. These moves rotate and 

translate one protein around the surface of the other with movements chosen from a Gaussian distribution 

centered at 5° degrees and 0.7 Å. Each conformation is scored using the low-resolution energy function 

based on residue pair interaction statistics, residue environment statistics, and van der Waals attractive 

and repulsive terms. In this low resolution step, side-chains are represented by their centroids.  

Next, 50 cycles of high resolution refinement at atomic detail are performed. Each cycle consists 

of a 0.1 Å random rigid-body translation, Monte Carlo based side-chain rotamer sampling (packing), and 

gradient-based rigid-body minimization to find a local energy minimum. Finally backbone flexibility is 

introduced around the protein interface. ROSETTADOCK is available as a web server 

(rosettadock.graylab.jhu.edu) but is limited to complexes for which the approximate binding orientation is 

known. The server produces 1,000 structures and returns details for the 10 lowest energy models (Lyskov 

and Gray 2008). 

ROSETTADOCK successfully recovered the native structures of 42 out of 54 benchmark targets 

from which side-chains had been removed (Gray, Moughon et al. 2003). Starting with randomly placed 

proteins, ROSETTADOCK predicts more than 50% of the interface contacts for 23 out of 32 benchmark 
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targets (Gray, Moughon et al. 2003). These results have improved with the addition of backbone 

flexibility (Wang, Bradley et al. 2007), and conformational sampling (Chaudhury and Gray 2008). 

ROSETTADOCK has been used to predict the structures of anthrax protective antigen 

(Sivasubramanian, Maynard et al. 2008) and epidermal growth factor (Sivasubramanian, Chao et al. 

2006) bound to monoclonal antibodies. Both docking studies led to predicted interface structures 

consistent with known mutant binding properties and were used to select residues for site directed 

mutagenesis. The antibody modeling protocol has been made accessible through a web server 

(antibody.graylab.jhu.edu). 

ROSETTADOCK was benchmarked in the Critical Assessment of PRediction of Interactions 

(CAPRI) experiment (Figure 6), where it achieved full-atom RMSDs of better than 1.6 Å for most targets 

(Schueler-Furman, Wang et al. 2005). Its success has been attributed to advances such as the inclusion of 

gradient-based energy minimization of side-chain torsion angles (Schueler-Furman, Wang et al. 2005), 

incorporation of biochemical data (Chaudhury, Sircar et al. 2007), and coupling of docking with loop 

modeling (Chaudhury, Sircar et al. 2007). 

Sircar and Gray recently reported on an extension of the ROSETTADOCK algorithm that allows for 

accurate modeling of antibody-antigen complexes in the absence of an antibody crystal structure (Sircar 

and Gray 2010). SNUGDOCK simultaneously samples the rigid body antibody-antigen positions, the 

Figure 6. Protein Interface Prediction High-resolution 
CAPRI prediction of Colicin D /Immunity protein D interface.  
Both rigid-body orientation and side-chain conformation were 
modeled. The crystal structure is shown in red and orange, the 
Rosetta model is shown in blue. a) Whole protein complex.  b) 
The interface shows the side-chains of the catalytic residue 
His611 and additional positively charged residues that are thought 
to bind to the RNA, as well as their matching negatively charged 
residues in the immunity protein. Reprinted with permission from 
(Schueler-Furman, Wang et al. 2005) 
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orientation of antibody light and heavy chains and the conformations of the six complementary 

determining loops. Additionally antibody conformational ensembles can be provided to mimic 

conformational selection. As in ROSETTADOCK side chain rotamers are sampled during high resolution 

refinement.  

 SNUGDOCK was compared with ROSETTADOCK in a blind prediction of human MCP-1 binding 

11k2 antibody (PDB ID 2bdn) (Reid, Rushe et al. 2006). While the lowest energy structure produced by 

ROSETTADOCK is incorrect, the model produced by SNUGDOCK meets the CAPRI acceptable criterion of 

having more than 30% of the residue-residue contacts predicted correctly (39%). When combined with 

ensemble sampling, five of the ten lowest energy models meet the CAPRI medium quality criterion of 

correctly predicting more than 50% residue-residue contacts. Similar results were seen in a benchmark of 

15 antibody/antigen complexes. 

Protein-Ligand Docking 

Ligand docking seeks to predict the interaction between a protein and a small molecule. Most 

ligand docking applications struggle to correctly predict conformational selection or induced-fit effects 

(Taylor, Jewsbury et al. 2002) resulting from ligand and protein flexibility. As applications originally 

designed for protein/ligand docking, flexibility is often a feature added as an afterthought. On the other 

hand ROSETTA was originally developed for de novo structure prediction. As such it was designed from 

its inception to efficiently model flexibility. 

ROSETTALIGAND is an application for docking a small molecule in the binding pocket of a 

protein that considers both ligand and protein flexibility (Meiler and Baker 2006). The ROSETTALIGAND 

algorithm is a modification of the ROSETTADOCK algorithm. First, a ligand conformer is chosen randomly 

from a user provided ligand conformational ensemble. Second, the ligand is moved to a user defined 

putative binding site. A low-resolution shape-complementarity search translates and rotates the ligand 
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optimizing attractive and repulsive score terms. In the high-resolution phase cycles of Monte Carlo 

minimization perturb the ligand pose and optimize amino acid side-chain rotamers and ligand conformers. 

Lastly all torsion degrees of freedom in ligand and protein undergo gradient minimization and the model 

is output. 

In a benchmark by Meiler and Baker (Meiler and Baker 2006), ROSETTALIGAND successfully 

recovered the native structure of 80/100 protein/ligand complexes with RMSD better than 2.0 Å. When 

docking ligands into experimental protein structures determined with different binding partners (cross-

docking), ROSETTALIGAND recovered the native structure in 14 of 20 cases. Comparing binding energy 

predictions with 229 experimentally determined binding energies from the Ligand-Protein Database 

(lpdb.chem.lsa.umich.edu) (Roche, Kiyama et al. 2001), ROSETTALIGAND achieved an overall correlation 

coefficient of 0.63, which is comparable to the best scoring functions available for protein-ligand 

interfaces (Ferrara, Gohlke et al. 2004).  

Recently, backbone flexibility was added to the docking algorithm which led to improved 

predictions, including lower RMSDs among top scoring ligands (Davis and Baker 2009). Backbone 

flexibility allows prediction of induced-fit effects that occur upon ligand binding. When tested in a blind 

study on a set of lead-like compounds ROSETTALIGAND performance was comparable to other 

commercially available docking programs (Davis, Raha et al. 2009). The authors caution however that 

current docking programs fail 70% of the time on at least one of the receptor in the test set. 
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CHAPTER II 

 

SMALL MOLECULE ROTAMERS ENABLE SIMULTANEOUS OPTIMIZATION OF 
SMALL MOLECULE AND PROTEIN DEGREES OF FREEDOM IN 

ROSETTALIGAND DOCKING1

Introduction 

 

Representing protein flexibility through side chain rotamers (Dunbrack and Karplus 1993) has 

been central to the success of protein structure prediction, protein docking, and protein design. This 

discretization of  protein side chain conformations observed in the Protein Databank is, for example, used 

by the ROSETTA program in the de novo prediction of protein structure (Bradley, Misura et al. 2005). 

Furthermore, rotamers form critical components of successful protein docking and protein design 

strategies such as ROSETTADOCK (Gray, Moughon et al. 2003) (Schueler-Furman, Wang et al. 2005) and 

ROSETTADESIGN (Kuhlman, O'Neill et al. 2001; Dantas, Kuhlman et al. 2003; Kuhlman, Dantas et al. 

2003). Finally, ROSETTA incorporates the rotamer probability when performing alanine scanning 

mutagenesis to identify key residues in protein-protein interfaces (hot spots) (Kortemme, Kim et al. 

2004). The above success of rotamers for modeling protein side chain flexibility makes adapting the 

concept for small molecule flexibility attractive. 

Leach first introduced using rotamers in modeling small molecule flexibility during docking 

(Leach 1994). He took small molecule conformations in local minima of a molecular dynamics forcefield 

as rotamers. However, Leach observed a failure of the energy function on docking of phosphocholine to 

the antibody McPc 603. We independently implemented a similar method using rigid ligands and full side 

chain flexibility in the ROSETTA (Meiler and Baker 2006) protein modeling suite. The ROSETTALIGAND 

energy function identified native conformations for 71 of 100 small molecule protein complexes in a self 

docking test and 14 of 20 small molecule protein complexes in a ”cross docking“ benchmark. In the cross 
                                                      
1 Published as Kristian Kaufmann, Kirsten Glab, Ralf Mueller, and Jens Meiler “Small molecule rotamers 

enable simultaneous optimization of small molecule and protein degrees of freedom in RosettaLigand docking” 
Proceedings from the German Conference on Bioinformatics 2009 September 9-12 Dresden Germany 148-157 



24 

docking benchmark, a small conformational ensemble containing 10 conformations, one of which was 

close to the crystallized conformation, was used to simulate small molecule flexibility. In the present 

work it is our objective to simulate small molecule flexibility using small molecule rotamers generated 

from a crystal structure database of small molecules. This setup mirrors the amino acid side chain rotamer 

approach used in ROSETTA for small molecules and thus capitalizes on “knowledge based” rotamers and 

energy functions deemed responsible for the success of ROSETTA.  

In an analogous manner to the amino acid side chain rotamers, we employ small molecule crystal 

structures from the Cambridge Structural Database (CSD) (Allen 2002) to construct small molecule 

rotamers. Unlike amino acid side chains in the Protein Data Bank (PDB), in the case of small molecules 

we lack multiple conformations of the same chemical configuration. Instead, torsion profiles are created 

from chemical similar groups. OMEGA, a highly regarded program for generating small molecule 

conformations, makes use of such torsion profiles extracted from the CSD. OMEGA generates 

conformational ensembles from overlapping fragments in a rule based manner using torsion 

profiles(Bostrom, Greenwood et al. 2003). Perola and Charifson, in a study of crystallized bioactive small 

molecules, found OMEGA to be the best available tool for generating ensembles containing the bioactive 

conformation (Perola and Charifson 2004). 

Most current small molecule docking programs approach the docking problem from the 

perspective of the small molecule. In contrast, ROSETTALIGAND approaches small molecule docking from 

the perspective of protein modeling. We hypothesize that ROSETTALIGAND will more accurately 

represent small molecule protein interactions because of its focus on the protein point of view which 

allows the accurate simulation of protein flexibility and associated energetics. In our previous paper we 

demonstrated the utility of the ROSETTA energy function to discriminate native-like models (Meiler and 

Baker 2006). Here our objective is to demonstrate that the concept of rotamers in protein structure 

prediction can be extended to small molecules. We show that small molecule rotamers can be created 

using crystal structure data. In addition, these small molecule rotamer ensembles contain conformations 

similar to the bioactive conformation, in particular for small molecules with a number of torsions similar 
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to those in protein side chains (≤ 6 rotatable bonds). We show that these rotamer ensembles successfully 

simulate small molecule flexibility in small molecule docking benchmarks. 

Methods 

Creating Torsion Profiles from the Cambridge Structural Database 

We use 28 atom types to describe atoms in small molecules defined by element type, 

hybridization state, and number of bonded hydrogens (Meiler, Maier et al. 2002). We measure non-

hydrogen atom torsions for each atom type pairing for all structures in the Cambridge Structural Database 

(CSD) (Allen 2002), excluding torsions in ring systems. Histograms are constructed for every pair of the 

28 atom types using bins with a width of 10°. Histograms with less than 100 data points are excluded as 

containing too little information. The distributions are made symmetric by summing counts of symmetry 

equivalent bins. 

A knowledge based torsion energy to model the interactions between atoms separated by three 

bonds is calculated using the inverse Boltzmann equation (Eq. 1) 

 

Ei = −logPtorsion = −log Ni +1
Ntot × Pi,ran

 

 
 

 

 
   (1) 

where Ptorsion is the propensity of the torsion, Ni is the number of counts in a bin, Ntot is the total 

number of torsions observed for this type, Pi,ran is the probability of selecting the bin from a uniform 

distribution. The propensity of the torsion is the probability of the torsion divided by the background 

probability the torsion value occurring by chance. The pseudo count of 1 is added to avoid zero 

probability bins, which result in infinite energies. The background probability is drawn from the uniform 

distribution since we assume that no other forces bias the torsions observed in the CSD. The weighting of 

the other internal energies will counterbalance the error introduced by this assumption. The minima in the 

energy profiles form the set of allowed dihedral angles for the rotamer ensemble generator. 
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Small Molecule Rotamer Ensemble Generation 

The small molecule ensemble generation protocol (see Figure 1) creates an ensemble of 

acceptable energy rotamers. The protocol maximizes coverage of the conformational space accessible to 

the small molecule by maximizing pair-wise root mean squared deviation (RMSD) for all rotamers. 

Starting from a conformation with idealized bond lengths and angles, a set of dihedral angles is chosen 

from the minima of the appropriate torsion profiles. Rotamers containing overlapping atoms are 

discarded. If the energy is acceptable then the rotamer is provisionally accepted. Otherwise, a new set of 

dihedral angles are chosen. Using this protocol a list of 10,000 candidates is obtained for pruning. The 

pruning first selects the lowest energy rotamer from this list and makes it the first rotamer of the ensemble 

considered for docking.  

The energy incorporates van der Waals interaction for atoms separated by four or more covalent 

bonds (Kuhlman, O'Neill et al. 2001), the knowledge based torsion energy described in the previous 

section, an intra-molecular hydrogen bonding term (Morozov and Kortemme 2005), a desolvation energy 

based on the Lazaridis-Karplus approximation (Lazaridis and Karplus 1999), and a coulomb electrostatics 

term (Kuhlman, O'Neill et al. 2001). 

Next the protocol iteratively identifies the candidate rotamer that has the largest RMSD to all 

current members of the docking ensemble and adds it to this ensemble. The protocol continues until the 

desired number of 500 rotamer has been reached or all candidate rotamers are within a user defined cutoff 

of 0.2 Å RMSD of one member of the docking ensemble. 
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Flexible Small Molecule Docking 

Given a protein structure and small molecule conformation the protocol (see Figure 1) first 

generates a conformational ensemble for the small molecule. Next iteratively conformations are chosen 

from the ensemble and placed at a random position and orientation within the manually defined binding 

site. 

a) b) 

Figure 1. Small molecule docking protocol incorporates a 
rotamer ensemble generating protocol into a monte carlo search 
of protein side chain conformations. Reprinted with permission 
from (Kaufmann, Glab et al. 2008) 
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 The first 100 non-clashing placements are incorporated as small molecule rotamers into the 

protein side-chain rotamer conformational optimization. After completion of this optimization a local 

ensemble of up to 100 rotamers is created for refinement by allowing small random changes sampled 

from a uniform distribution of [-5°, +5°] to all rotatable bonds of the optimized small molecule 

conformation. After four rounds of side chain optimization with this local discrete conformational 

ensemble, a gradient minimization of the amino acid side chain χ angles and the small molecule position 

and orientation take the structure to a local minimum. This structure is then written out. The sequence is 

repeated until 4,000 models have been generated. 

Small Molecule Flexibility Benchmark Sets 

Compounds for the ensemble generation test set were taken from the 2007 PDBBind database 

(Wang, Fang et al. 2004). All molecules with ≤ 6 rotatable non-hydrogen atom torsions were selected. 

Two docking benchmarks were carried out. The self docking benchmark tests whether our 

protocol recovers the correct position, orientation, and conformation of a small molecule in the protein 

crystal structure solved with that same small molecule. Using the protein structure crystallized with the 

small molecule ensures the backbone of the protein is in the correct conformation for binding of this 

substance. The structures used in the self docking benchmark are listed in Table 1. The set contains 10 

small molecules crystallized in 7 proteins. The cross docking benchmark is comprised of the same small 

molecules, but uses protein coordinates from other crystal structures. Hence, the cross docking benchmark 

assesses the capacity of the protocol to recover the placement of a small molecule in a real world situation 

where the protein was not crystallized with the small molecule of interest. The structures used are listed in 

Table 1. Meiler and Baker previously evaluated all structures in both docking benchmarks (Meiler and 

Baker 2006). The set was reduced to contain only small molecules with ≤ 6 rotatable non-hydrogen atom 

torsions. 
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Results and Discussion 

Small Molecule Flexibility Benchmark Sets 

The torsion profiles generated cover 103 common bond types (see supplement). The profiles 

obtained show similar characteristics to profiles seen in the AMBER (Wang, Wolf et al. 2004) forcefield 

(see Figure 2a). 

Table 1. Crystal structures forming small molecule benchmark sets. Reprinted with permission from (Kaufmann, Glab 
et al. 2008). 

However, some profiles exhibit minima not present in the AMBER forcefield. The aryl oxygen 

profile, shown in Figure 2b, displays additional minima at ± 90º. Klebe and Meitzner found that these 

additional minima arise from meta substituted compounds (Klebe and Mietzner 1994). The additional 

minima give the CSD torsion profiles an advantage, since they allow the ensemble generator to sample 

conformations that might otherwise be excluded. 

Self docking protein structure Small molecule Number of 
torsions 

Cross docking 
protein structures 

1aq1 human Cyclin Dependent Kinase 2 Straurosporine 1 1dm2 
1dm2 human Cyclin Dependent Kinase 2 Hymenialdisine 0 1aq1 

1dbj IGG1-κ DB3 FAB Aetiocholanolone 0 2dbl 

2dbl IGG1-κ DB3 FAB 5-α-pregnane-3-β-ol-
hemisuccinate 

6 1dbj 

1pph Trypsin m-aminophenyl-3-
alanine 

5 1ppc 

1p8d Liver X receptor β small molecule 
binding domain 

24(S),25-
epoxycholesterol 

4 1pq6,1pqc 

2ctc carboxypeptidase A L-phenyl lactate 3 7cpa 
2prg small molecule binding domain of 

peroxisome proliferator activated 
receptor γ 

2,4-thiazolidiinedione, 5-
[[4-[2-(methyl-2-

pyridinylamino) ethoxy] 
phenyl]methyl]-(9cl) 

5 1fm9 

4tim Triosephosphate isomerase 2-phosphoglyceric acid 4 6tim 
6tim Triosephosphate isomerase SN-Glycerol-3-

phosphate 
4 4tim 
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Small Molecule Rotamer Ensemble Generation 

The ensemble generator created ensembles for 628 small molecules with ≤ 6 rotatable bonds. The 

atomic coordinates of no two conformations within the ensemble were allowed to be closer 0.2 Å RMSD. 

Ten thousand conformations were generated while constructing the ensemble. The final ensembles 

contained up to 500 conformations. On the set of 628 molecules, the ensemble generator produced a 

rotamer with 0.46 ± 0.31 Å RMSD to the crystallized conformation. As expected, the accuracy decreases 

from 0.14 ± 0.16 Å RMSD to 0.79 ± 0.32 Å RMSD as the number of rotatable torsion angles increases 

from 1 to 6 (see Table 2). Improvement of these numbers might be possible by increasing the size of the 

Table 2. Performance of rotamer ensemble generator evaluated by computing RMSD of closest and furthest 
conformation in the ensemble to the crystallized conformation of the small molecule Reprinted with 
permission from (Kaufmann, Glab et al. 2008) 

Number of 
Torsions 

Number of 
Molecules 

Average RMSD of closest 
conformation 

Average RMSD of furthest 
conformation 

1 92 0.14 ± 0.16 1.12 ± 0.47 
2 118 0.33 ± 0.26 1.74 ± 0.69 
3 118 0.41 ± 0.22 2.13± 0.62 
4 135 0.47 ± 0.21 2.45 ± 0.69 
5 97 0.61 ± 0.30 2.83± 0.81 
6 118 0.79 ± 0.32 3.07 ± 0.87 

Overall Totals 628 0.46 ± 0.31 2.23± 0.94 
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b) 
Dihedral Angle 

Figure 2. Torsion profiles for phosphate ether and aromatic carbon oxygen bond. 
Histograms for a) phosphate ether torsion and b) aromatic carbon oxygen torsion yield energy. 
Reprinted with permission from (Kaufmann, Glab et al. 2008) 
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ensemble,and increasing the number of rotamers generated during construction of the ensemble. The 

additional cost of such increases may outweigh the benefits.  

Flexible Small Molecule Docking 

 The small molecule docking results are summarized in Table 3 and Table 4. For the self docking, 

9 of the 10 cases show a native-like model in the top 1 % by energy. In 7 of the 10 cases the top ranked 

model is native-like. For the cross docking benchmark 8 of 11 cases show a native-like structure in the 

top 1 % by energy. 

Table 3. Summary of small molecule cross docking benchmark. Rank is determined by energy of best 
structure recapturing the binding mode. RMSD is of best structure recapturing the binding mode. 
Reprinted with permission from (Kaufmann, Glab et al. 2008) 

Source structure for 
small molecule 

Source structure for 
protein 

Rank RMSD 

1aq1 1aq1 1 0.56 
1dm2 1dm2 1 0.31 
1dbj 1dbj 1 1.36 
2dbl 2dbl 1 1.45 
1p8d 1p8d 1 1.63 
1pph 1pph 6 1.49 
2prg 2prg 639 1.94 
2ctc 2ctc 3 0.82 
4tim 4tim 1 1.87 
6tim 6tim 1 1.77 

 

In only 2 of the 11 cases was the top ranked model a native-like model. In Figure 3a the RMSD 

energy plot demonstrates that the scoring function identifies the native binding mode as the most 

favorable (see Figure 3c). However, in other cases the RMSD energy plots appear like that of Figure 3b. 

Some models are present in the native binding mode (see Figure 3d), but low energy does not imply low 

RMSD. 

The self docking results are comparable to those in Meiler and Baker (Meiler and Baker 2006). 

Meiler and Baker achieved a 71% success rate in a self docking benchmark of 100 small molecules. We 

see the same success rate on our reduced set despite the increased conformational space sampled for the 

small molecule. However in the cross docking benchmark our results fall short. One possible cause is the 

much increased conformational space sampled for small molecules in the present protocol. 
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The previous evaluation used an ensemble size of only ten in which one conformation was close 

to the crystallized conformation. Here, we create unbiased ensembles with up to 500 conformations. The 

increase in conformational diversity represents an increased challenge to the search process as well as the 

scoring function.  

Table 3. Summary of small molecule cross docking benchmark. Rank is determined by energy 
of best structure recapturing the binding mode. RMSD is of best structure recapturing the 
binding mode. Reprinted with permission from (Kaufmann, Glab et al. 2008) 

Source Structure for 
small molecule 

Source Structure for 
protein 

Rank RMSD 

1aq1 1dm2 4296 1.87 
1dm2 1aq1 1 0.56 
1dbj 2dbl 1 1.80 
2dbl 1dbj 468 3.49 
1p8d 1pq6 181 1.62 
1p8d 1pqc 10 1.28 
1pph 1ppc 2 1.96 
2ctc 7cpa 3 0.95 
2prg 1fm9 16 2.02 
4tim 6tim 2 1.90 
6tim 4tim 5 1.77 

Conclusion 

We have extended the amino acid concept of rotamers to include small molecules. When the 

number of torsions is in the same range as those seen in amino acids, small molecule rotamer ensembles 

contain conformations close to those seen in crystal structures of protein small molecule complexes. In 

such cases rotamer ensembles can efficiently simulate flexibility for small molecules. 

However, as the number of rotamers grow (due to increased flexibility) and the precision of the 

protein structures decrease (due to inaccuracy in the protein backbone), the discriminatory power of the 

scoring function decreases. The components of the scoring function have not been optimized for the 

increased flexibility; doing so may yield increased discrimination. Improved fine grain sampling of 

protein backbone motion may also assist in the docking process. 
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Additionally, the method must be extended to larger small molecules. We intend on expanding 

our method by breaking small molecules into multiple residues. The residues would then be reassembled 

in the protein binding site to form the small molecule. Thereby, we decrease the conformational 

complexity and incorporate information from the protein environment.  
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CHAPTER III 

 

A PHYSICAL MODEL FOR PDZ-DOMAIN/PEPTIDE INTERACTIONS1

Introduction 

 

Protein/peptide interactions play an important biological role in an array of cellular processes. 

One frequently used motif for such interactions is the well characterized PDZ (PSD-95, Discs large, Zona 

occludens 1) domain(Kim and Sheng 2004). Within Homo sapiens, Drosophila melanogaster, and 

Caenorhabditis elegans Schultz et al. have estimated the existence of 440 PDZ domains in 259 different 

proteins, 133 PDZ domains in 86 proteins, and 138 PDZ domains in 96 proteins, respectively(Schultz, 

Copley et al. 2000). PDZ domains perform critical roles in signaling cascades of bacteria, yeast, plants, 

and animals(Ponting 1997) by acting as intracellular scaffolding proteins(Pawson and Scott 1997; 

Kurschner and Yuzaki 1999). Pathogens disrupt host-signaling processes using linear peptide motifs to 

target PDZ binding sites.(Tonikian, Zhang et al. 2008) Developing inhibitors of these interactions is one 

avenue of therapeutic development.(Dev 2004)  The wide-spread presence of the PDZ domain in nature 

and its integral role in numerous biological processes and diseases make it an ideal focus for studying the 

specificity of protein/peptide interactions.  

PDZ domains bind peptides through strong backbone hydrogen bonds 

PDZ domains are typically composed of 80-90 amino acids(Hung and Sheng 2002) and consist of 

a central bent six-stranded β-sheet surrounded by two α-helices. The peptide binding interface (Figure 1) 

lies at the edge of the β-sheet.  The peptide binds in an extended, antiparallel conformation, using the 

unsatisfied hydrogen bonding capabilities of PDZ β-strand 2 (β2) to extend the β-sheet by one additional 

strand. The ligand also engages in side chain interactions with the second α-helix (α2) of the PDZ domain 
                                                      
1 Published as Kristian Kaufmann, Nicole Shen, Laura Mizoue, Jens Meiler “A physical model of PDZ-

domain/peptide interactions” Journal of Molecular Modeling 2011 17 p.315 
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which lines the other side of the binding groove. The binding pocket contains a characteristic hydrophobic 

loop (β1:β2) which binds the peptide carboxy-terminus through the formation of three hydrogen bond 

interactions. Overall, the interface is characterized by strong backbone-backbone hydrogen bonding 

contacts within a hydrophobic environment(Nourry, Grant et al. 2003). 

 

Figure 1 Binding site of PSD-95 a class I domain. PDZ domains strongly bind peptides through 
backbone-backbone hydrogen bonds; dashed lines in (a) indicate these interactions while dotted lines indicate 
protein-peptide side chain-side chain hydrogen bonds, and the arrow points from the hydrogen donating 
nitrogen to the oxygen acceptor. Color in (b) illustrates each residue’s overall energetic involvement in 
binding the peptide, summing the weighted ROSETTA energy function of the individual attractive, solvation, 
repulsive, rotamer, pairwise, and hydrogen bonding energy contributions (∆∆G values). In ( b), the strong 
backbone-backbone hydrogen bonds (shown as blue dashed lines) between the PDZ3 protein and peptide 
residues V425 and T423 highlight the known PDZ3 protein preference for X-Thr/Ser-X-Val-COO(-)  
peptides [4]. This is further emphasized by E424 and K421’s lack of strong backbone-backbone hydrogen 
bonds and orange and dark yellowish residue colors, which have overall 0.1 and -0.3 ∆∆G values, 
respectively. This is in contrast to T423 and V425’s teal color and respective -3.0 and -3.1 ∆∆G values. 
Reprinted with permission from (Kaufmann, Shen et al. 2011) 

In addition to hydrogen bonding interactions, important salt bridge (shown as green dashed lines) 

and van der Waals interactions (protein side chains contributing to van der Waals interactions shown with 

spheres) are involved in tightly binding the peptide between a beta sheet and alpha helix. H72 of the alpha 

helix seems to be the most involved in binding the peptide, forming a salt bridge with E422, interacting 

with T423 through side chain-side chain hydrogen bonding, and engaging in van der Waals interactions 

with K421. L79 and K80 similarly interact with V425 through van der Waals interactions, experiencing 

the attractive part of the Leonard Jones potential energy curve. This probably creates a favorable, 

hydrophobic environment for the non-polar, valine side chain and amplifies the strength of the hydrogen 

bonds formed between the peptide carboxy terminus and P25, G24, and L23. 
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PDZ domain specificity is governed by side chain interactions 

Although the general binding mode of PDZ domains is the same, different proteins interact with 

different targets. While specificity has been studied extensively in the PDZ family, an unambiguous 

classification of the PDZ domain remains a challenge(Tonikian, Zhang et al.). Generally PDZ domains 

have been grouped into three classes (I, II, and III) depending on the characteristics of the β1:β2 

loop(Tonikian, Zhang et al.) and position -2 (P-2) of the ligand (see Figure 1). Class I domains have a G-

L/Y-G-F β1:β2 loop that binds C-terminal peptide residues of sequence X-S/T-X-V/I/L (P-3-P0)(Nourry, 

Grant et al.).  Additionally, the peptide hydroxyl group at P-2 makes an important hydrogen bonding 

contact with the histidine side chain of α21(Tonikian, Zhang et al.). Class II proteins have a similar β1:β2 

loop sequence of X-L/V-G-F/I/L that binds peptide sequences having a hydrophobic amino acid at 

position P-2 (X-ø-X-ø)(Hung and Sheng). Class III domains are less widespread and have a G-L-G-F 

β1:β2 loop sequence that binds peptides having an acidic amino acid at P-2 (X-D/E-X-ø)(Doyle, Lee et al. 

1996; Stricker, Christopherson et al. 1997).  

PDZ class I, II, and III proteins and their peptides have variable sequence similarities (between 

5% and 90%) but are structurally highly similar. Indeed, Stiffler et al. found only a weak correlation 

between sequence identity and PDZ domain specificity(Stiffler, Chen et al.). Instead, Stiffler developed a 

modified position specific scoring matrix based on the profiles of peptides which bind to a domain. Chen 

et al. later developed a method that incorporated structural information on protein/peptide residue pairs 

within close proximity of each other(Chen, Chang et al.). The model was capable of predicting PDZ 

domain specificity for multiple species from primary sequences and it was argued that including structural 

information via the protein/peptide residue position specific interaction matrix was sufficient to predict 

the specificity of PDZ domains. 

PDZ domains display a diverse and finely tuned specificity profile  

PDZ domain classification can be extended beyond the three naïve classes discussed here. 

Specificity within these classes depends upon other differences in the protein/peptide interface that result 
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in a diversified sequence profile. Tonikian et al. performed profiling of 91 point mutants of a model PDZ 

domain to create a specificity map. Using this map, 82 protein domains of the PDZ family were 

reclassified into 16 classes distinguished by specificity for peptide residues up to the P-6 

position(Tonikian, Zhang et al.). While sequence-based analysis alone reveals diverse specificity profiles, 

the inclusion of structure-based information should provide a more general model for predicting PDZ 

specificity. Such a physical model would be a useful tool for PDZ domain classification, specificity 

prediction, and design. 

The ROSETTA protein modeling software predicts specificity of protein/protein interfaces  

In a series of experiments, Kortemme et al. demonstrated the power of the knowledge-based 

energy function of the modeling software ROSETTA to characterize and design protein/protein 

interfaces(Kortemme and Baker). A model for protein/protein binding was created using a data set of 

alanine mutants at protein/protein interfaces. The model was able to successfully predict the results of 

alanine scanning experiments on globular proteins (743 mutations) and 19 protein/protein interfaces (233 

mutations) with low standard deviations of 0.8 kcal/mol and 1.1 kcal/mol, respectively(Kortemme and 

Baker). The model was applied to create new DNase-inhibitor protein pairs with altered specificities that 

functioned both in vitro and in vivo(Kortemme, Joachimiak et al. 2004). It was also used to fuse domains 

of two homing endonucleases creating a chimera that recognized a new DNA target and functioned as a 

highly specific artificial endonuclease(Chevalier, Kortemme et al. 2002).  

While this model proved successful in modeling protein/protein interfaces, the derived 

parameterization is not optimal for protein/peptide interfaces as these are characterized by distinct 

features that require a tailored parameterization, such as smaller hydrophobic surface area and a greater 

dependence of hydrogen bonding interactions. Sood and Baker explored the use of ROSETTA to design 

elongated p53 and dystroglycan-based peptides that bind with increased affinity to Mdm2 oncoprotein 

and dystrophin, respectively. These studies included backbone flexibility and allowed side chain 

flexibility through repacking of a rotamer library but used the standard ROSETTA energy function with a 
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packing score derived from the change in solvent accessible surface area(Sood and Baker). Sood and 

Baker found that sampling of the backbone conformation improved recovery of sequence diversity in 

designed peptides and in cases where the algorithm fails, insufficient sampling of backbone degrees of 

freedom explains the error. 

A ROSETTA parameterization tailored for PDZ domain/peptide interfaces  

It is the objective of the present work to develop a model for predicting the specificity of PDZ 

domains using the protein structure prediction program ROSETTA. Saro et al. conducted isothermal 

titration calorimetry (ITC) measurements on a series of peptides binding the third PDZ domain (PDZ3) of 

postsynaptic density 95 protein (PSD-95), a class I domain. They recorded the thermodynamic properties 

ΔΔG, ΔΔH, and TΔS for a series of six-residue peptides of sequence (X-X-X-T-X-V), with different X 

amino acids influencing binding(Saro, Li et al. 2007). We parameterize ROSETTA to accurately predict 

these thermodynamic parameters. 

 Methods 

Dataset for energy function parameterization 

The dataset contains free energy (ΔΔG), enthalpy (ΔΔH), and entropy (TΔS) measurements for 

binding of 28 peptides to the PDZ3 domain of PSD-95 (Table 1)(Saro, Li et al.). The crystal structure of 

the PDZ3 domain of PSD-95 with the highest resolution (1.54 Å) from the PDB was used for structural 

modeling (PDBID 1TP5). The crystal structure was determined in complex with the peptide KKETWV. 

Introduction of mutations and initial minimization of structural models 

ROSETTADESIGN(Liu and Kuhlman 2006) protocols allow in silico mutation of amino acids. 

Briefly, the side chain of the amino acid in question is removed and replaced with a side chain of the 
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Table 1. Experimentally determined thermodynamic parameters by Saro et al. Binding energy 
changes do to point mutations on the native peptide, KKETEV were determined using ITC and represent the 
average of at least two independent experiments. Reprinted with permission from (Kaufmann, Shen et al. 
2011) 

 
 Peptide Kd (μM) ΔG (kcal/mol) ΔH (kcal/mol) TΔS (kcal/mol) 

 KKETEV 1.9 ± 0.1 −7.8 ± 0.1 −6.2 ± 0.1 1.6 ± 0.1 

 KKETEA 91.0 ± 2.0 −5.5 ± 0.1 −4.6 ± 0.2 0.9 ± 0.2 

 KKETEL 7.9 ± 1.3 −7.0 ± 0.1 −4.1 ± 0.3 2.9 ± 0.2 

 KKETEI 7.7 ± 1.2 −7.0 ± 0.1 −4.3 ± 0.2 2.7 ± 0.1 

 KKETEM 21.0 ± 2.0 −6.4 ± 0.1 −6.8 ± 0.2 −0.4 ± 0.1 

 KKETEF 57.0 ± 2.0 −5.8 ± 0.1 −4.4 ± 0.4 1.4 ± 0.4 

 KKETET 105.0 ± 6.0 −5.4 ± 0.1 −5.9 ± 0.2 −0.5 ± 0.2 

 KKESEV 6.6 ± 0.9 −7.1 ± 0.1 −4.8 ± 0.1 2.3 ± 0.2 

 KKECEV 72.0 ± 7.0 −5.7 ± 0.1 −1.7 ± 0.1 4.0 ± 0.2 

0 
KKESEL 33.0 ± 2.0 −6.1 ± 0.1 −4.0 ± 0.1 2.1 ± 0.1 

1 
KKESEI 24.0 ± 6.0 −6.3 ± 0.2 −5.0 ± 0.2 1.3 ± 0.4 

2 
KKESEF 98.0 ± 16.0 −5.5 ± 0.1 −3.1 ± 0.1 2.4 ± 0.1 

3 
KKETGV 2.4 ± 0.0 −7.7 ± 0.1 −5.7 ± 0.2 2.0 ± 0.2 

4 
KKETAV 0.5 ± 0.1 −8.7± 0.1 −5.3 ± 0.4 3.4 ± 0.4 

5 
KKETVV 1.3 ± 0.2 −8.1 ± 0.1 −5.9 ± 0.1 2.2 ± 0.1 

6 
KKETLV 1.8 ± 0.3 −7.8 ± 0.1 −3.7 ± 0.4 4.1 ± 0.3 

7 
KKETPV 0.9 ± 0.2 −8.2 ± 0.1 −4.3 ± 0.1 3.9 ± 0.2 

8 
KKETWV 2.8 ± 0.4 −7.6 ± 0.1 −3.5 ± 0.2 4.1 ± 0.1 

9 
KKETDV 20.0 ± 2.0 −6.4 ± 0.1 −4.1 ± 0.3 2.3 ± 0.3 

0 
KKETKV 1.2 ± 0.0 −8.1 ± 0.1 −5.6 ± 0.6 2.5 ± 0.6 

1 
KKGTEV 80.0 ± 3.0 −5.6 ± 0.1 −2.7 ± 0.1 2.9 ± 0.1 

2 
KKATEV 21.0 ± 4.0 −6.4 ± 0.1 −2.4 ± 0.1 4.0 ± 0.2 

3 
KKQTEV 4.0 ± 0.0 −7.4 ± 0.1 −4.9 ± 0.3 2.5 ± 0.3 

4 
KKDTEV 85.0 ± 12.0 −5.6 ± 0.1 −3.9 ± 0.3 1.7 ± 0.2 

5 
KKKTEV 27.0 ± 4.0 −6.2 ± 0.1 −2.7 ± 0.3 3.5 ± 0.4 

6 
KKGTGV 273.0 ± 30.0 −4.9 ± 0.1 −2.6 ± 0.3 2.3 ± 0.2 

7 
KKATAV 8.3 ± 1.5 −6.9 ± 0.1 −3.0 ± 0.1 3.9 ± 0.2 

8 
YKETEV 1.2 ± 0.1 −8.1 ± 0.1 −6.9 ± 0.1 1.2 ± 0.2 
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 target amino acid. The conformation of the introduced amino acid is chosen from a backbone-dependent 

rotamer library(Dunbrack and Karplus 1993) to minimize the ROSETTA energy function.  First, the 

tryptophan at position P-1 of 1TP5 was reverted to a glutamate to match the base peptide KKETEV used 

Figure 2. Procedural flowchart. Protein and peptide mutants of the PSD-95 PDZ3 
domain, 1TP5, were each downloaded (a) and minimized (c) in Rosetta to remove initial clashes. 
Experimental mutants were reproduced in the computational analysis using design (b). Mutant 
proteins and peptides were combined with minimized peptides and proteins, respectively (d). 
These bound mutants were docked (e), yielding 100 decoys, of which the 5 structures with the 
lowest energy were selected and averaged over selected energy components (g), including 
attractive, solvation, repulsive, Dunbrack, residue pair electrostatics, hydrogen bonding, amino 
acid reference energies. The protein structure with the peptide far removed was repacked over 
selected residues determined from docking the structure (f). Because the 100 unbound structures 
had the same total Rosetta energy, a single structure’s energy values were used rather than the 
average of five structures (h). The unbound energy values for each structure were subtracted 
from the corresponding, averaged bound energy values of the structure (i), producing ΔΔE values 
for each energy term, which were weighted and summed to produce the overall change in energy 
due to the protein binding the peptide, which was correlated to the experimentally determined 
binding energy, yielding the best correlation with particular weights (j). For the specificity 
analysis, 17 PDB files were downloaded (a) and separated into their fundamental protein, peptide 
components. All possible protein–peptide complexes were combined and minimized (c). Steps 
(d) through (i) as previously discussed were followed. Energy terms from (i) were weighted 
using weights determined from the mutational investigations (j). Reprinted with permission from 
(Kaufmann, Shen et al. 2011) 
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in the study by Saro et al.(Saro, Li et al.). Following this modification, the 28 PDZ domain/peptide 

complexes were built (Table 1, Figure 2b). All models underwent gradient minimization using ROSETTA 

to remove initial clashes (Figure 2c)(Bradley, Misura et al. 2005). The protocol 

involves eight rounds of gradient-based minimization of all torsional degrees of freedom which is 

alternated with side chain repacking using a rotamer library. The all-atom RMSD of the structure changed 

by 0.40 Å on average with a maximum of 0.51 Å observed for complex 6 containing the KKETEF mutant 

peptide. 

ROSETTADOCK generation of structural models for protein/peptide complexes 

To generate minimized models for energy evaluation, all bound structures underwent a small 

perturbation protocol applied to the transformational degrees of freedom in the protein/peptide complex 

using ROSETTADOCK (Figure 2e)(Gray, Moughon et al. 2003). This rigid body motion is complemented 

by a simultaneous optimization of side chain coordinates through a fast repacking protocol. The backbone 

coordinates of protein and peptide are held fixed in the process.  

The protocol is setup in an iterative fashion. First a random small perturbation of up to 0.1 Å 

translation and up to 2° rotation is made to the rigid body degrees of freedom. Then the side chain 

conformations are allowed to change by substituting discrete rotamers from a library of conformations 

commonly seen in the PDB. If the substitution results in a lower total energy, ROSETTA keeps the new 

conformation of the protein. If the energy is higher, ROSETTA may still accept the substitution with a 

probability inversely proportional to the energy increase (Metropolis criterion). On average, around 50 of 

these iterations are completed in order to find the best combination of amino acid side chain 

conformations. The output model is the lowest energy complex observed throughout the entire trajectory.  

Lastly, a gradient-based minimization on the rigid body degrees of freedom moves the final model into 

the nearest local minimum in the ROSETTA energy landscape. A total of 100 bound models were 

generated for each complex. The 5 models with the lowest overall energy were selected for further 

analysis (Figure 2g). 
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Modeling apo structures in ROSETTA  

The unbound (apo) structures were created by removing the peptide from the binding pocket and 

away from the protein by a distance sufficiently large to prevent any interaction (> 100 Å). The side 

chains, which were allowed to move during the docking protocol, were allowed to rearrange using 

repacking algorithms(LIU AND KUHLMAN 2006). One hundred models were generated for each of the 

mutants, and the total ROSETTA energy was used to select a single most favorable unbound conformation 

for each of the 28 complexes (Figure 2h). 

Calculation and evaluation of binding free energy 

The ROSETTA energy function contains six energy terms.  Van der Waals energies are modeled 

using a Lennard-Jones 12-6 potential. The potential is split into an attractive (atr) and a repulsive (rep) 

component. ROSETTA introduces a solvation energy (sol) that imposes a penalty for polar atoms buried in 

the core of a protein accounting for the exposure preferences of polar and non-polar atoms(Lazaridis and 

Karplus 1999). Side chain conformational probabilities are reflected by an energy (dun) derived from 

rotamer probabilities(Dunbrack and Karplus 1993). Electrostatic interactions are mimicked by a 

knowledge-based pair-wise potential (pair) derived from statistics over the PDB. Hydrogen bonds (hbnd) 

are captured by an orientation dependent potential(Kortemme, Morozov et al. 2003). Note that in the past 

hydrogen bonds have been classified into three classes: long range-backbone-backbone (lr-bb), backbone-

side chain (bb-sc), and side chain-side chain (sc-sc) hydrogen bonds(Kortemme and Baker 2002). 

Within each structure, all residues were individually evaluated. To obtain the total energy of the 

model, the sum over all amino acids was computed and averaged over the top five bound structures 

(Figure 2g). For the unbound models energies from the single structure with lowest ROSETTA energy were 

directly used (Figure 2h). The binding free energy was computed for each of the above-mentioned terms 

term
bindingE∆∆  using: 
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ROSETTA energy of the single unbound model.  

Multiple linear regression is used to parameterize an overall free energy function  

To obtain an energy function optimized for the analysis of protein/peptide interactions (Figure2i), 

a multiple linear regression (MLR) analysis was used. Each of the term
bindingE∆ terms is affiliated with a 

weight wterm:  
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The bias is introduced to account for contributions to the binding free energy not represented in 

the ROSETTA energy function, such as the loss in entropy. The bias assumes that these contributions are 

constant, an obvious limitation of the present model. 

The weights were determined by performing a Leave-One-Out (LOO) cross validation analysis. 

In a round-robin setup, 27 of the 28 mutants with known experimental binding affinities were used to 

determine an optimal weight set given these 27 data points. Afterwards, the binding free energy of the 

28th mutant was predicted and compared with the experiment to enter a correlation analysis. This 

experiment was repeated for all 28 mutants. 

To determine whether an energy term contributes significantly to an optimal energy function for 

protein/peptide interfaces, energy terms were systematically removed. The subset of energy terms that 

resulted in the optimal correlation coefficient within the cross-validation experiment was used. The final 
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weight set reported consists of the average weights and standard deviations over of all 28 experiments. 

The protocol was implemented using the MATHEMATICA software package (Figure 2j). 

Results 

The physical model for protein/peptide interactions depends on van der Waals, solvation, and hydrogen 

bonding 

The optimal weight set was determined by a Leave-One-Out (LOO) cross validation analysis as 

described in the Methods section. Of the six ROSETTA energy terms considered, only van der Waals 

attraction (atr), solvation (sol), and hydrogen bonding energies (hbnd), contributed to an energy function 

that optimally reproduced experimentally determined binding free energies: 

90.334.140.047.0 +∆∆×+∆∆×+∆∆×=∆∆ hbnd
binding

sol
binding

atr
bindingbinding EEEE  (3) 

The correlation coefficient for the independent dataset is 0.66 (Figure 3). 

Known characteristics of the PDZ binding domain are mirrored within the model 

Figure 1 displays the per amino acid changes in free energy upon peptide binding for the PSD-95 

PDZ3 in complex with the peptide KKETEV as determined by our model. Strong backbone-backbone 

hydrogen bonds between the class I domain and the peptide residues V(P0) and T(P-2) agree with the anti-

parallel β-strand binding motif of the PDZ domain which forms two backbone hydrogen bonds for every 

other amino acid. In this particular case, the C-terminal amino acid V(P0) engages in three hydrogen 

bonds. This alternative pattern is further highlighted by E(P-1) and E(P-3) which contribute only 0.1 and -

0.3 kcal/mol to the binding free energy, respectively. In contrast, V(P0) and T(P-2) contribute -3.1 and -3.0 

kcal/mol, respectively.  
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In addition to hydrogen bonding interactions, important salt bridges and van der Waals 

interactions are involved in tightly binding the peptide. H(α21) is the most important residue within α2 for 

binding the peptide as it forms a hydrogen bond with T(P-2) through side chain hydrogen bonding, and 

engages in van der Waals interactions with K(P-4). L(α28) and K(α29) interact with V(P-0) through van der 

Waals attractive interactions. This creates a favorable, hydrophobic environment for the non-polar valine 

side chain and amplifies the strength of the hydrogen bonds formed between the peptide carboxyl 

terminus and F(β21), G(β1:β28), and L(β1:β27). 

Figure 3. Correlation of experimentally and computationally measured 
ΔΔG values over peptide mutants of the PDZ3 domain. Experimentally calculated 
binding energies were determined using isothermal titration calorimetry (ITC). 
Computational binding energies were determined after a leave-one-out (LOO) cross 
validation analysis of the summed calculation of the various combinations of the 
weighted changes in the attractive (atr), solvation (sol), repulsive (rep), residue pair 
electrostatics (pair), dunbrack (dun), and hydrogen bonding (hb and hb_bb) energy terms 
over all the residues due to the protein binding the peptide. The individual binding term 
energy changes were calculated using Eq. 1. Different combinations of these terms were 
weighted and totaled according to Eq. 3. By calculating these weights when each mutant 
was left out and then applying the determined function, the LOO cross validation 
analysis measures the weighted energy function’s predicting power. The predicted 
binding energies (y-axis) for the various peptide mutants correlated nicely with the 
experimentally observed binding energies (x-axis), having an r value equal to 0.66. The 
overall computational function  indicates the importance 
of the attractive, solvation, and side chain hydrogen bonding energy terms. Reprinted 
with permission from (Kaufmann, Shen et al. 2011) 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3029681/#Equ1�
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3029681/#Equ1�
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3029681/#Equ3�
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3029681/#Equ3�
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Enthalpic and entropic contributions to the binding free energy map to different components of the 

ROSETTA energy function 

The investigation was extended to other thermodynamic characteristics of protein/peptide binding 

including enthalpy and entropy (Table 2). The independent correlation observed for the binding enthalpy 

ΔΔHbinding  is with 0.60 only slightly reduced from the value observed for the Gibbs binding free energy 

(0.66, Figure 3). In contrast, when correlating with respect to experimentally measured entropy changes 

the independent correlation drops to 0.17.  

Specificity prediction for twelve PDZ domains with available crystal structures 

For a specificity analysis, a set of twelve PDZ protein/peptide complexes with available crystal 

structures was used (Table 3). All experimentally determined structures with resolutions of 2.30 Å or 

better were considered (PDBID 1BE9(Doyle, Lee et al.), 1N7F(Im, Park et al. 2003), 1OBY(Kang, 

Cooper et al. ; Kang, Cooper et al.), 1RZX(Peterson, Penkert et al. 2004), 1TP3, 1TP5, 1V1T(Grembecka, 

Cierpicki et al.), 1W9E(Grembecka, Cierpicki et al.), 1W9O(Grembecka, Cierpicki et al.), 1W9Q(von 

Ossowski, Oksanen et al. ; von Ossowski, Tossavainen et al.), 2I04(Zhang, Dasgupta et al. 2007), 

2QT5(Long, Wei et al. 2008)). Structures used in the specificity analysis were initially separated into their 

protein and peptide components. Peptides were truncated to include five carboxy-terminal residues. All 

possible combinations between PDZ domains and peptides were created yielding a total of 144 

complexes. Each complex was refined using the protocol described above (Figure 2). 

The binding energies for each complex were then computed using the PDZ optimized weight set. 

The heat map in Figure 4a shows that the PDZ optimized weight set captures specificity within each PDZ 

Table 2. Weighted energy terms over thermodynamic binding properties. Reprinted with permission from 
(Kaufmann, Shen et al. 2011) 

  correlation atr rep sol hbnd rotamer pair 
ΔG 0.66 0.47+0.04 0.00+0.00 0.40+0.06 1.34+0.07 - - 

ΔH 0.60 - - - 2.25+0.12 - 1.28+0.16 

ΔS 0.17 - - - 0.74+0.10 0.36+0.03 - 
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class. The complexes group into two blocks reflecting the two classes of PDZ domains. Figure 4b shows 

the receiver operating characteristics (ROC) curve  

where a complex is regarded as a true complex if both peptide and protein come from the same 

PDZ class. The area under the curve is 78%, 28% better than a random predictor. 

Discussion 

Energy Function Weights from LOO Analysis are Stable 

The deviations from a perfect correlation are attributed to imperfection in the ROSETTA energy 

function which is simplified to only contain pair-wise decomposable energetic terms(Kuhlman and Baker 

2000). The small standard deviations observed for the individual weights (Table 4) demonstrate internal 

consistency as the analysis of all 28 complexes yielded very similar weight sets. 

 

Table 3. Specificity data set. Bold letters indicate amino acids that were used for specificity 
prediction (P0-P-4).  Reprinted with permission from (Kaufmann, Shen et al. 2011) Reprinted with 
permission from (Kaufmann, Shen et al. 2011) 

PDB ID PDZ Class Peptide Sequence Resolution (Å) Domain 
1TP5 1 KKETWV 1.54 PSD95-3 
1BE9 1 KQTSV 1.82 PSD95-3 
1TP3 1 KKETPV 1.99 PSD95-3 
1RZX 1 VKESLV 2.10 Par-6B 
2I04 1 RRRETQV 2.15 MAGI1-1 
2QT5 1 NNLQDGTEV 2.30 GRIP1-12 
1N7F 2 ATVRTYSC 1.80 GRIP1-6 
1W9E 2 TNEFYF 1.56 Syntenin-2 
1W9Q 2 TNEFAF 1.70 Syntenin-2 
1V1T 2 TNEYKV 1.80 Syntenin-2 
1W9O 2 TNEYYV 2.25 Syntenin-2 
1OBY 2 TNEFYA 1.85 Syntenin-2 

computational model for protein/peptide binding. The weight set is optimized to predict the 

binding free energies PDZ domains. In particular, the hydrogen bonding weight is substantially increased 

relative to other weights. This result can be explained in part by the backbone hydrogen bonds between 

peptide and PDZ domain. These hydrogen bonds contribute significantly to the stability of the PDZ-

domain/peptide interface. However, as these hydrogen bonds are present in all PDZ domain/peptide 
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complexes, they do not govern specificity but contribute an approximately equal amount to all interfaces 

studied.  

Our results indicate that a high weight on side chain hydrogen bonds is particularly important for 

accurate specificity prediction. Interestingly, a holistic weighting with a single hydrogen bonding weight 

gave the best results. This is in contrast to the earlier reported optimal weight set for protein/protein 

interfaces where hydrogen bonds contributed differently depending on the level of  solvent 

exposure(Kortemme, Kim et al. 2004). Beyond this aspect, changes in the weight set are small. 

Figure 4 Specificity based on computed binding energy. Each column shows the computed 
binding energies of the peptide from a structure to each of the PDZ domains. Each row displays the computed 
binding energies of each peptide to a given PDZ structure. a Heat map with colors scaled according to the 
raw computed binding energy. b Receiver operating characteristics (ROC) curve for PDZ 
classification. c Heat map of the binding energies colored by the z-score computed to the peptide group (i.e., 
within column). dColoring scaled according to the z-score computed by the PDZ structure group (within 
row). Reprinted with permission from (Kaufmann, Shen et al. 2011) 
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Energy Function Components Capture Enthalpic but not Entropic Contributions  

The weighted energy terms vary significantly when correlated to the different thermodynamic 

binding properties. Enthalpy is best predicted from hydrogen bonding (hbnd) and electrostatic (pair) 

interactions; entropy correlates best with a combination of hydrogen bonding (hbnd) and rotamer 

probability. Overall we expected that ROSETTA derived energy terms correlate best with binding free 

energies. Their knowledge-based character can be well aligned with the definition of free energy in 

statistical thermodynamics. Hence, every one of the ROSETTA energy terms contains both entropic 

contributions and enthalpic contributions. However, the term can be dominated by one of the two if it is 

better represented by the simplified two-body equations used within ROSETTA. Our results demonstrate 

that entropic contributions are least accurately reflected and prevent ROSETTA from predicting to higher 

degrees of accuracy. 

Computed Binding Energies Correctly Classify PDZ Domains 

The correlation of the binding energies within each class is apparent, but the computed binding 

energies across all PDZ complexes do not accurately rank the complexes. However when holding either 

the protein or the peptide constant, the binding energies display a better correlation with specificity as 

seen in Figures 4c and 4d. This may reflect the need to sample a greater conformational space. In fact, 

Sood and Baker found a better recovery of peptides sequence profiles upon introducing backbone 

flexibility into their design protocol(Sood and Baker).  

Summary 

This study presents a physical model for PDZ domain/peptide interactions. Parameterization of 

the ROSETTA energy function was achieved by fitting a linear model to experimentally determined 

binding free energies for 28 PDZ domain/peptide complexes. The energy function is dominated by van 
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der Waals attractive, solvation, and hydrogen bonding interactions. It reproduces well-known 

determinants of PDZ domain/peptide interactions such as an alternating pattern of backbone hydrogen 

bonding to the second strand of the PDZ domain (β2) and side chain interactions with the second helix 

(α2). While the Gibbs free energy correlates well with experimental values (R=0.66), correlation of 

enthalpy (R=0.60) and particularly entropy (R=0.17) is reduced. This reduction is attributed to the 

knowledge-based nature of ROSETTA energy functions which aligns well with the definition of free 

energy in statistical mechanics. The resulting weight set was able to classify a given PDZ/peptide 

complex 28% better than a random predictor. 

Table 4. Weight set optimized for protein/peptide interfaces compared to a weight set 
optimized for protein/protein interfaces (Kortemme and Baker 2002) and to the default weight set. 
sc=side chain bb=backbone. atr=attractive component of van der Waals energy, rep=repulsive 
componen component of van der Waals energy, sol=implicit solvation energy, hbnd=hydrogen bonding, 
rotamer=knowledge based energy for conformation for a side chain.  Reprinted with permission from 
(Kaufmann, Shen et al. 2011) 

  atr rep sol hbnd rotamer 

Protein/Peptide 0.47±0.04 0.00 0.40±0.06   1.34±0.07 0.00 
Protein/Protein 0.44 0.07 0.32 sc-bb  0.49 0.28 
    sc-sc exposed 0.16  
    sc-sc intermediate 0.44  
    sc-sc buried 0.94  

ROSETTA default 0.42 0.10 0.37   0.24 0.06 
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CHAPTER IV 

 

ROSETTALIGAND: SMALL MOLECULE DOCKING INTO COMPARATIVE 

MODELS. 

Introduction  

Structure based comparative models of proteins in complex with small molecules advance science 

by creating hypotheses that can be tested experimentally. The process of modeling a protein in complex 

with a small molecule, often termed small molecule docking, has a long history stretching back more than 

25 years(Kuntz, Blaney et al. 1982). There are two basic problems in small molecule docking, searching 

the space of possible arrangements of the atoms at the small molecule protein interface (sampling) and 

evaluating free energy for that configuration (scoring). Sampling requires accounting for both the position 

of the small molecule relative to the protein as well as the internal flexibility of the small molecule and 

the protein. This easily leads to thousands of degrees of freedom. In order to detect the correct 

configuration the method must accurately rank the free energy of the correct arrangement relative to 

alternative arrangements. Other authors have provided guides to small molecule docking and evaluation 

of the current best practices and software for this purpose(Taylor, Jewsbury et al. 2002; Rester 2006; 

Sousa, Fernandes et al. 2006; Warren, Andrews et al. 2006; Davis, Raha et al. 2009). 

Until recently, small molecule docking programs have been validated mostly on experimental 

structures available for the protein rather than models of the protein(Verdonk, Mortenson et al. 2008). 

However, for the vast majority of protein sequences no experimental structure is available. For this 

reason, we and others turn our attention to evaluating small molecule docking into models of 

proteins(McGovern and Shoichet 2003; Kairys, Fernandes et al. 2006; Brylinski and Skolnick 2008; Fan, 

Irwin et al. 2009). Naively, one would expect comparative models to perform better than their templates 

in small molecule docking as sequence deviations between template and target protein have been 



56 

rectified. In particular, recent results from the Critical Assessment of Structure Prediction Techniques 

(CASP) indicate that comparative modeling methods can add information to models that is not present in 

templates. However, Kairys et al. found that docking into the experimental templates performed as well as 

docking into the homology models based on templates with sequence identities ranging from 30% to 90% 

and heavy atom RMSDs in the binding site ranging from 1-4 Å(Kairys, Fernandes et al. 2006). On the 

other hand, McGovern and Shoichet found that docking into a set of comparative models covering ten 

enzymes from ModBase is more successful than docking in just the experimental structure of the protein 

with no ligand bound (apo) in a virtual screening scenario(McGovern and Shoichet 2003). Ferrara and 

Jacoby found that in a virtual screen for insulin-like growth factor 1 receptor kinase ligands, homology 

models varied in enrichment capacity from random to as good as the experimental structure of the protein 

determined by X-ray crystallography(Ferrara and Jacoby 2007). 

Although, stunning progress has been made in de novo protein structure prediction over the past 

years(Das, Qian et al. 2007), comparative models at atomic detail accuracy have been reported regularly 

at recent CASP experiments(Bradley, Misura et al. 2005; Das, Qian et al. 2007; Zhang 2009). Hence, 

comparative modeling remains the method of choice if a template with a structure similar to the target 

protein can be identified in the protein data bank (PDB)(Saxena, Wong et al. 2009). Template-based 

modeling focuses on modifying the known structure to reflect the sequence of the protein of interest. 

Generally, good quality models result if the sequence identity between the target and template protein is 

better than 30%(Chothia and Lesk 1986). However, results from the latest CASP experiment indicate that 

template detection methods are able to identify suitable templates with even lower sequence 

homology(Raman, Vernon et al. 2009; Tress, Ezkurdia et al. 2009). Only recently has high accuracy 

refinement of comparative models led to improvements upon the starting models(MacCallum, Hua et al. 

2009). Comparative models accurate at atomic detail also open the possibility of obtaining highly 

accurate models of protein-small molecule complexes from comparative models of proteins. 

In the following experiments, we establish a baseline for the performance of ROSETTALIGAND on 

small molecule docking into comparative models. We show that ROSETTALIGAND can correctly identify 
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binding modes in two sets of models. The first test composed of nine models submitted during the CASP 

experiment allows us to verify the method on comparative models built in a blind experiment by the best 

comparative modeling techniques available. We also construct a test set of 21 complexes from seven 

proteins with models from at least two different templates. This test set expands the test to more diverse 

chemotypes, examines the effect of template choice, and explores the limits of sampling and scoring 

methods used in ROSETTALIGAND. 

Results and Discussion 

Using two sets of comparative models we show ROSETTALIGAND is capable of sampling and 

identifying native-like complexes. In the first set, models for nine targets from the 8th CASP experiment 

which contained organic ligands were used to assess the ability of ROSETTALIGAND to dock small 

molecules into comparative models constructed blindly by a variety of best-practices comparative 

modeling protocols. The second set of seven proteins with in complex with three different ligands each 

expands the chemotype diversity of ligands and assesses the impact of the choice of the template as 

comparative models were constructed from two to five templates each. 

Two factors are critical to the success of a small molecule docking study. First the energy 

function must guide the modeling method towards native-like complexes. Second, the sampling methods 

must allow the method to produce native-like models. 

Native complexes occupy minima in the ROSETTALIGAND Energy Function 

To assess the energy function we compare native-like complexes found by minimizing the ligand 

complex while constraining the complex in a native-like binding mode. We ran minimization on 

complexes from using both the comparative models and the crystal structures. Native-like complexes 

from the crystal structure score as good as or better than non-native complexes in 23 of the 30 cases 
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tested. In five of the seven failures a non-native conformation scored better by less than 2 ROSETTA 

Energy Units (REUs). In seven cases native-like conformations score at least 5 REUs better than any non-

native conformation. In an additional 8 cases the native conformation scored better than 2 REUs over the 

best scoring non-native model. 

Native-like complexes from comparative models score better than non-native binding modes in 

18 of 23 cases. Three cases show the native-like binding having a REU score more than 5 less than the 

best scoring non-native binding mode, while a further seven score more than 2 REU less the best scoring 

non-native binding mode. 

These trends indicate that the energy function is able to discriminate native-like complexes. 

Although the errors structure of the protein structure inherent in comparative models does decrease the 

apparent depth of the native binding mode energy well. 

ROSETTALIGAND Samples Native-like Conformations 

Having looked at the energy functions ability to discriminate native-like complexes we now turn 

our attention to the sampling problem. The first concern is whether Rosetta samples native-like 

conformations in a standard docking run. Indeed ROSETTALIGAND samples native-like conformations 

(ligand root mean squared deviation L-RMSD < 2 Å) in all cases (see Table 1). In the worst case (3D8B) 

conformations with L-RMSD < 2 Å were sampled but included in the cluster with a L-RMSD of 2.04 Å. 

Energy Function Discriminates Native-like Complexes in Models Built Using Comparative Models. 

Furthermore sampling in ROSETTALIGAND is dense enough that the sampled native-like 

complexes fall into native energy well. For 11 of 30 cases the best energy model had a native-like binding 

mode with binding energy funnels like those seen in Figure 1A. A further 10 cases saw one of the top 10 

best energy models contain a native-like binding-mode and binding energy funnels like that in Figure 1B. 

A similar though slightly lower success rate is seen if one does not pool the models from all templates 

(Tables 2-8). On a by template basis 16 of 69 or 23% of the cases the best energy model was in a native- 
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like binding mode, while 36 of 69 or 52% had native-like binding modes among the ten best energy 

clusters. 

  

Table 1. Minimum I-RMSD of models and L-RMSD of native-like binding modes. I-RMSD is calculated over all heavy atoms within 5 Å 
of the small molecule in X-ray crystal structure. L-RMSD are calculated over heavy atoms in the small molecule. Cluster Rank is the rank 
order of the cluster from lowest binding energy to highest binding energy. Error describes the spatial orientation to the native binding mode 
if the rank 1 cluster is non-native. I=inverted binding mode, W=wrong conformation of ligand, T=Translation, R=rotation, C=cofactors 
present in native which may influence binding mode. 

 Native Energy I-RMSD Best Non Native Model 

 
Cry. 
Str. Model Min. Ave. Energy Rank RMSD    Error Energy Rank L-RMSD I-RMSD 

3D8B -17.31 -14.94 0.74 1.28 -15.00 1 8.06 TR 5A -11.38 27 2.14 2.09 

3DLZ -17.46 -17.62 2.96 7.78 -13.78 4 6.21  -17.62 1 1.46 26.38 

3DA0 -14.16 -15.00 0.34 1.56 -17.88 1 2.84 TR 
1.5A -13.51 35 1.84 2.66 

3DA1 -28.65 -33.72 0.69 1.43 -24.59 2 14.52  -31.37 1 0.52 1.63 

3DKP -12.3 -13.73 0.76 1.49 -16.09 1 8.59 TR 6A -10.73 56 1.30 1.63 

3DLS -12.13 -12.80 1.32 2.18 -13.92 2 4.95  -14.22 1 1.95 2.02 

3DLC -30.06 -24.83 0.90 4.05 -22.33 1 3.27 W -20.58 3 1.40 2.71 

3DME -40.93 -29.51 2.43 3.20 -23.81 1 2.61 W -21.54 4 1.04 3.4 

3DOU -27.92 -24.27 0.43 1.86 -17.87 3 2.66  -19.88 1 0.79 2.64 

1Y1M -13.72 -13.66 1.43 2.53 -9.68 14 2.87  -13.66 1 0.67 1.49 

1PB9 -11.86 -9.93 1.09 2.20 -8.51 1 2.88 TR 3A -7.91 3 0.86 2.65 

1PBQ -15.07 -15.78 1.82 2.50 -17.57 1 4.17 TR 2A -15.78 8 1.83 3.48 

2QWB -10.04 -14.77 1.33 2.36 -11.78 1 4.22 I -11.58 3 1.51 2.52 

2QWD -14.95 -14.32 1.31 2.30 -13.56 1 3.44 TR 1A -12.99 2 1.46 1.72 

2QWE -15.17 -17.80 1.24 2.22 -13.41 1 6.19 TR 
0.5A -9.93 38 1.41 1.47 

1FD0 -29.62 -17.97 2.54 3.41 -21.27 1 4.45 TR 3A -17.52 16 1.38 3.21 

1FCX -26.15 -18.13 2.56 3.39 -20.57 1 5.98 T 5A -18.13 10 1.28 3.27 

1FCZ -26.14 -17.73 2.54 3.38 -20.86 1 3.19 W -16.62 26 1.60 3.04 

1VFN -11.53 -11.87 2.39 3.01 -11.87 1 6.95 T 5A -11.87 1 1.10 2.39 

1B8O -16.18 -14.73 2.39 3.26 -15.58 1 4.6 T 3A C -14.56 3 1.20 2.07 

1V48 -19.30 -19.20 1.64 2.38 -15.21 3 3.43  -16.67 1 1.76 1.78 

2FAI -15.38 -14.21 2.12 3.68 -14.08 1 4.08 TR 3A -12.83 19 1.37 2.12 

2AYR -23.20 -19.12 2.68 4.33 -21.07 1 8.29 IW -17.26 58 1.81 2.74 

2B1V -14.83 -13.43 1.97 3.58 -14.88 1 3.31 TR 2A -13.27 4 1.90 2.35 

1NJA -14.48 -14.5 1.75 3.08 -13.33 2 6.94  -14.5 1 0.66 3.52 

1NJE -14.90 -16.25 1.82 3.03 -12.32 3 6.01  -16.25 1 1.66 2.35 

1TSY -16.62 -13.81 1.67 3.26 -11.81 1 6.35 TR 5A -7.89 77 1.91 2.11 

1O3P -15.88 -19.24 1.70 2.45 -17.93 2 4.84  -19.24 1 0.88 1.97 

1F5K -10.74 -11.11 1.62 2.23 -10.18 2 5.59  -11.11 1 0.54 1.62 

1SQA -19.01 -19.50 2.51 3.09 -19.69 1 2.68 WC -17.16 5 1.66 2.84 
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Examining the Top Ranked Binding Mode indicate needed improvements in interface refinement, ligand 

conformations, and modeling of cofactors 

Encouragingly, in 11 of 30 cases the lowest energy binding mode from a docking run is the 

correct solution as is seen in Figure 2a for the target 1O3P.  However, for 12 cases the top ranked binding 

mode shows translation/rotation errors similar to those seen for 2FAI and 1B8O (Figures 2b and 2c), this 

along with the noted decrease native energy well depth in comparative models indicates improvements 

are needed in the interface refinement process. In five cases the rank 1 binding mode maintains many of 

the correct interactions, but adopts a non-native conformation for the ligand as is seen in Figure 2d for 

1FCZ. Further improvements in ligand conformational sampling or the energetics of ligand conformations 

may decrease these errors (Kaufmann, Glab et al. 2008; Davis and Baker 2009). However, improvements 

in the accuracy of the protein side chain and backbone will also be necessary as can be seen from the 

degradation of the energy well depth when comparing for crystal structures to comparative models (see 

Table 1). In two cases (1SQA and 1B8O) the crystallized structure contained cofactors in the binding site 

 
Figure 1 L-RMSD v. Binding Energy Plots. 3DOU shows comparative models can fall into the energy 
well of the native binding mode. However this is not the case for all proteins as is shown in the plot for 
1SQA. Plots for all 30 targets can be found in the Appendix. With the exception of 1SQA, 1FD0, 1FCX, 
1FCZ, and 3DLS each of the other 25 targets show overlap between the native binding mode minimized 
in the native PDB structure and the native binding mode minimized in the comparative models while 
remaining under the 2 Å radius. This indicates that the scoring function recognizes native-like binding 
modes as at least local minima, and 11 cases aas global minima. 
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which overlap with rank 1 binding mode (see Figure 2c of 1B8O). Modeling the structures with these 

cofactors present might change the ranking of the binding modes. 

Careful Template Selection Improves Docking 

If the template contains a ligand and especially if that ligand is an analog of the ligand to be 

docked, ROSETTALIGAND has a higher success rate compared to the unliganded templates (see Figure 3: 

~70 % for templates with ligand that has a similar chemotype to the target ligand, ~50 % for templates 

with a non-similar ligand bound, ~20% for templates without ligands). Tables 2-8 lists the occupancy 

state of the binding site for each template-target combination for the second set of comparative models. 

Twenty of the 23 templates contained small molecules in the binding site. In 43 of the resulting 60 

template-target combinations, the ligand in the template was an analog of the small molecule in the target.  

Table 2 N-methyl-D-Asparatate Receptor 1 ligand docking broken down by template. I-RMSD is calculated over all 
heavy atoms within 5 Å of the small molecule in X-ray crystal structure. L-RMSD are calculated over heavy atoms in the small 
molecule. Cluster Rank is the rank order of the cluster from lowest binding energy to highest binding energy. I=Template 
contains identical ligand, A=Template contains analogous ligand, PA=Template contains partial analog, L=Template contains , “-
“= Template does not contain a ligand 

Targets Templates Seq.ID./ 
I-Seq.ID. 

Crystal Structure I-RMSD Rank 1  Model Native Binding Mode 

  Energy Ligand Min Avg. Energy L-RMSD Energy Rank L-RMSD I-RMSD 

1Y1M 2RCA 33%/33%  A 1.57 2.35   -11.51 1 1.93 1.68 

 2A5S 37%/58%  A 1.59 2.06   -9.91 1 1.88 1.67 

 2I0B 36%/25%  A 1.58 2.46   -11.33 1 1.91 1.75 

 2RC7 36%/33%  A 1.43 2.31   -13.66 1 0.67 1.49 

 1P1N 34%/42%  A 1.57 2.83   -12.36 1 1.87 1.67 

 Combined  -13.72  1.43 2.53   -13.66 1 0.67 1.49 

1PB9 2RCA 33%/33%  A 1.09 1.87 -8.51 2.88 -7.20 3 0.64 2.2 

 2A5S 37%/58%  A 1.10 1.88   -7.18 1 0.28 1.14 

 2I0B 36%/25%  A 1.09 1.89 -7.3 6.64 -6.67 2 1.91 1.16 

 2RC7 36%/33%  A 1.21 2.15   -7.91 1 0.86 2.65 

 1P1N 34%/42%  A 1.24 2.55 -7.61 4.81 -7.38 2 0.46 1.35 

 Combined  -11.86  1.09 2.20 -8.51 2.88 -7.91 3 0.86 2.65 

1PBQ 2RCA 33%/33%  A 1.94 2.47 -14.92 4.46 -9.68 22 1.88 2.04 

 2A5S 37%/58%  A 1.69 2.31 -14.46 4.65     

 2I0B 36%/25%  A 1.90 2.49 -14.93 3.59 -13.33 2 0.88 2.69 

 2RC7 36%/33%  A 1.82 2.49 -15.24 3.65 -12.37 7 1.73 2.71 

 1P1N 34%/42%  A 1.94 2.51 -17.57 4.17 -13.21 16 1.53 2.84 

 Combined  -15.07  1.82 2.50 -17.57 4.17 -15.78 8 1.83 3.48 
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Table 3 Neuramidase. ligand docking broken down by template. I-RMSD is calculated over all heavy atoms within 5 Å 
of the small molecule in X-ray crystal structure. L-RMSD are calculated over heavy atoms in the small molecule. Cluster Rank is 
the rank order of the cluster from lowest binding energy to highest binding energy. I=Template contains identical ligand, 
A=Template contains analogous ligand, PA=Template contains partial analog, L=Template contains , “-“= Template does not 
contain a ligand 

Targets Templates Seq.ID./ 
I-Seq.ID. 

Crystal Structure I-RMSD Rank 1  Model Native Binding Mode 

  Energy Ligand Min Avg. Energy L-RMSD Energy Rank L-RMSD I-RMSD 

2QWB 2HTY 50%/89%   2.06 2.75 -11.78 4.22 -7.65 31 1.76 2.93 

 1V0Z 69%/95%   1.33 2.03 -10.76 5.11 -8.65 17 1.26 1.54 

 1INF 36%/95%  A 1.67 2.30   -11.58 1 1.51 2.52 

 Combined  -10.04  1.33 2.36 -11.78 4.22 -11.58 3 1.51 2.52 

2QWD 2HTY 50%/89%   1.89 2.66 -12.96 5.34     

 1V0Z 69%/95%   1.31 2.01 -13.56 3.44 -12.99 2 1.46 1.72 

 1INF 36%/95%  A 1.67 2.24 -12.22 5.59 -11.88 2 1.62 1.81 

 Combined  -14.95  1.31 2.30 -13.56 3.44 -12.99 2 1.46 1.72 

2QWE 2HTY 50%/89%   1.82 2.58 -12.98 2.42     

 1V0Z 69%/95%   1.24 1.88 -13.41 6.19 -9.93 19 1.41 1.47 

 1INF 36%/95%  A 1.52 2.19 -11.21 5.57     

 Combined  -15.17  1.24 2.22 -13.41 6.19 -9.93 38 1.41 1.47 

 

Table 4 Retanoic acid Receptor Gamma ligand docking broken down by template. I-RMSD is calculated over all heavy 
atoms within 5 Å of the small molecule in X-ray crystal structure. L-RMSD are calculated over heavy atoms in the small 
molecule. Cluster Rank is the rank order of the cluster from lowest binding energy to highest binding energy. I=Template 
contains identical ligand, A=Template contains analogous ligand, PA=Template contains partial analog, L=Template contains , 
“-“= Template does not contain a ligand 

Targets Templates Seq.ID./ 
I-Seq.ID. 

Crystal Structure I-RMSD Rank 1  Model Native Binding Mode 

  Energy Ligand Min Avg. Energy L-
RMSD Energy Rank L-RMSD I-RMSD 

1FD0 2ACL 36%/28%  L 2.59 3.49 -18.46 2.32     

 1NQ0 37%/20%  L 2.54 3.28 -19.97 2.90 -17.52 5 1.38 3.21 

 1PQ6 38%/28%  L 2.71 3.34 -21.27 4.45     

 2H77 39%/24%  L 3.22 3.60 -17.40 7.75     

 Combined  -29.62  2.54 3.41 -21.27 4.45 -17.52 16 1.38 3.21 

1FCX 2ACL 36%/28%  L 2.49 3.46 -20.57 5.98 -18.07 3 1.21 2.89 

 1NQ0 37%/20%  L 2.56 3.3 -20.48 3.21 -18.13 7 1.28 3.27 

 1PQ6 38%/28%  L 2.88 3.35 -20.43 4.17     

 2H77 39%/24%  L 3.12 3.51 -14.01 6.42     

 Combined  -26.15  2.56 3.39 -20.57 5.98 -18.13 10 1.28 3.27 

1FCZ 2ACL 36%/28%  L 2.59 3.49 -19.09 3.68 -16.62 7 1.60 3.04 

 1NQ0 37%/20%  L 2.54 3.31 -20.86 3.19 -15.92 14 1.97 3.00 

 1PQ6 38%/28%  L 2.71 3.31 -20.08 5.60     

 2H77 39%/24%  L 3.22 3.52 -14.18 7.11     

 Combined  -26.14  2.54 3.38 -20.86 3.19 -16.62 26 1.60 3.04 
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Table 5 Purine Nucleoside Phosphorylase ligand docking broken down by template. I-RMSD is calculated over all 
heavy atoms within 5 Å of the small molecule in X-ray crystal structure. L-RMSD are calculated over heavy atoms in the small 
molecule. Cluster Rank is the rank order of the cluster from lowest binding energy to highest binding energy. I=Template 
contains identical ligand, A=Template contains analogous ligand, PA=Template contains partial analog, L=Template contains , “-
“= Template does not contain a ligand 

Targets Templates Seq.ID./ 
I-Seq.ID. 

Crystal Structure I-RMSD Rank 1  Model Native Binding Mode 

  Energy Ligand Min Avg. Energy L-RMSD Energy Rank L-RMSD I-RMSD 

1VFN 2P4S 56%/91%  A 2.42 3.11 -11.84 3.99 -9.40 63 0.94  

 1G2O 38%/91%  A 2.39 2.71   -11.87 1 1.10  

 1TCU 49%/82%  L 2.77 3.20   -11.34 1 0.78  

 Combined  -11.53  2.39 3.01 -11.87 6.95 -11.87 1 1.10  
1B8O 2P4S 56%/91%  I 1.78 2.73 -15.58 4.60 -11.12 16 1.30  

 1G2O 38%/91%  I 1.77 2.28   -14.56 1 1.20 2.07 

 1TCU 49%/82%  L 2.26 2.79 -13.27 6.89 -12.14 6 0.87  

 Combined  -16.18  1.77 2.60 -15.58 4.60 -14.56 3 1.20 2.07 

1V48 2P4S 56%/91%  PA 1.64 2.34 -14.84 2.59 -13.54 6 1.54  

 1G2O 38%/91%  PA 1.74 2.15   -16.67 1 1.76  

 1TCU 49%/82%  PA 2.12 2.65 -15.36 2.07     

 Combined  -19.30  1.64 2.38   -16.67 1 1.76  
 

Table 6 Estrogen Receptor ligand docking broken down by template. I-RMSD is calculated over all heavy atoms within 
5 Å of the small molecule in X-ray crystal structure. L-RMSD are calculated over heavy atoms in the small molecule. Cluster 
Rank is the rank order of the cluster from lowest binding energy to highest binding energy. I=Template contains identical ligand, 
A=Template contains analogous ligand, PA=Template contains partial analog, L=Template contains , “-“= Template does not 
contain a ligand 

Targets Templates Seq.ID./ 
I-Seq.ID. 

Crystal Structure I-RMSD Rank 1  Model Native Binding Mode 

  Energy Ligand Min Avg. Energy L-RMSD Energy Rank L-RMSD I-RMSD 

2FAI 1QKN 60%/89%  PA 2.70 3.26 -14.08 4.08 -11.96 19 1.66 2.9 

 1S9P 36%/42%  PA 2.12 3.94 -13.80 2.98 -12.83 7 1.37 2.12 

 3CS8 46%/11%  L 2.79 3.83 -13.50 5.16 -11.08 28 1.66 3.33 

 Combined  -15.38  2.12 3.68 -14.08 4.08 -12.83 19 1.37 2.12 

2AYR 1QKN 60%/89%  A 3.40 3.91 -21.07 8.29     

 1S9P 36%/42%  PA 2.68 4.17 -19.75 7.46 -17.26 22 1.81 2.74 

 3CS8 46%/11%  L 3.90 4.9 -20.55 5.48     

 Combined  -23.2  2.68 4.33 -21.07 8.29 -17.26 58 1.81 2.74 

2B1V 1QKN 60%/89%  PA 1.97 2.76 -14.18 4.02 -13.27 4 1.9 2.35 

 1S9P 36%/42%  PA 2.07 3.97 -14.88 3.31 -13.25 2 1.51 2.14 

 3CS8 46%/11%  L 2.97 4.02 -12.72 2.36     

 Combined  -14.83  1.97 3.58 -14.88 3.31 -13.27 4 1.9 2.35 
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Table 7 Thymidylate Synthase ligand docking broken down by template. I-RMSD is calculated over all heavy atoms 
within 5 Å of the small molecule in X-ray crystal structure. L-RMSD are calculated over heavy atoms in the small molecule. 
Cluster Rank is the rank order of the cluster from lowest binding energy to highest binding energy. I=Template contains identical 
ligand, A=Template contains analogous ligand, PA=Template contains partial analog, L=Template contains , “-“= Template does 
not contain a ligand 

Target
s Templates Seq.ID./ 

I-Seq.ID. 
Crystal Structure I-RMSD Rank 1  Model Native Binding Mode 

  Energy Ligand Min Avg. Energy L-RMSD Energy Rank L-RMSD I-RMSD 

1NJA 1QZF 43%/93%  A 2.24 3.28   -14.50 1 0.66 3.52 

 1J3I 42%/93%  A 2.04 2.92 -13.30 6.21     

 1KZJ 50%/86%  A 1.75 3.05 -13.33 6.94 -7.21 103 1.76 3.06 

 Combined  -14.48  1.75 3.08   -14.50 1 0.66 3.52 

1NJE 1QZF 43%/93%  A 2.77 3.43 -9.75 7.68 -7.03 27 1.06 3.74 

 1J3I 42%/93%  A 1.82 2.66 -11.08 7.15 -9.94 4 1.23 1.82 

 1KZJ 50%/86%  A 1.89 3.01   -16.25 1 1.66 2.35 

 Combined  -14.9  1.82 3.03   -16.25 1 1.66 2.35 

1TSY 1QZF 43%/93%  I 2.75 3.51 -10.94 8.09     

 1J3I 42%/93%  I 1.67 2.68 -11.81 6.35 -7.89 11 1.91 2.11 

 1KZJ 50%/86%  I 2.59 3.60 -10.81 6.32 -7.28 83 1.24 3.83 

 Combined  -16.62  1.67 3.26 -11.81 6.35 -7.89 77 1.91 2.11 

 

Table 8 Uridine Kinase Type Plasminogen Activator Ligand Docking broken down by template. I-RMSD is calculated 
over all heavy atoms within 5 Å of the small molecule in X-ray crystal structure. L-RMSD are calculated over heavy atoms in the 
small molecule. Cluster Rank is the rank order of the cluster from lowest binding energy to highest binding energy. I=Template 
contains identical ligand, A=Template contains analogous ligand, PA=Template contains partial analog, L=Template contains , “-
“= Template does not contain a ligand 

Targets Templates Seq.ID./ 
I-Seq.ID. 

Crystal Structure I-RMSD Rank 1  Model Native Binding Mode 

  Energy Ligand Min Avg. Energy L-RMSD Energy Rank L-RMSD I-RMSD 

1O3P 1RTF 45%/70%  A 1.70 2.05   -19.24 1 0.88 1.97 

 1YBW 40%/65%   2.48 2.84 -17.93 4.84     

 Combined  -15.88  1.70 2.45   -19.24 1 0.88 1.97 

1F5K 1RTF 45%/70%  I 1.62 1.82   -11.11 1 0.54 1.62 

 1YBW 40%/65%   2.36 2.64 -10.01 3.93     

 Combined  -10.74  1.62 2.23   -11.11 1 0.54 1.62 

1SQA 1RTF 45%/70%  A 2.51 2.77 -19.69 2.68 -17.16 4 1.66 2.84 

 1YBW 40%/65%   2.76 3.40 -17.40 10.59     

 Combined  -19.01  2.51 3.09 -19.69 2.68 -17.16 5 1.66 2.84 

 

Five templates contained the same small molecule as the target complex. Figure 4 shows the 

target structures overlaid on template structures. Ligands in template binding sites decrease the 

probability of backbone deviations occluding the native binding mode as is seen for 1SQA on 1YBW in 

Figure 4a. Templates with analogs in the binding site help pre-form the binding pocket, thus increasing 
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the probability of finding native-like binding modes. Figure 4b shows almost perfect agreement between 

the binding mode in the target 1PB9 and for the ligand found in template 2RC7. However, target 2B1V 

on template 1QKN (Figure 4c) and target 2QWE on template 1INF (Figure 4d) show that not all 

functional groups transfer directly between complexes. 

Heuristics for template selection 

Sequence identity of templates does not correlate with docking success. For the 21 small 

molecules docked into ROSETTA generated models, neither the overall sequence identities nor the 

sequence identities in the binding site serve as a good predictor of success. Figure 5 shows no discernible 

trend in success over the range of sequence identities from less than 30% to over 90%. 

Docking into multiple templates can improve results. In the case of 4 of the 7 proteins, docking 

into a comparative model of a single template is sufficient for success (see Table 2-8). However a second 

 

 
Figure 2. Characteristic rank 1 binding modes. For 11 of the 30 ligand the 

rank1 ligand is a native-like binding mode as for a) target1O3P. For 12 of the 
remaining case the rank 1 binding mode is rotated and/or translated compared to the 
native binding mode as is seen for b) target 2FAI and c) target 1B8O. Two targets 
(1SQA and 1B8O) contain cofactors in the target crystal structure which overlap with 
the rank 1 binding mode as seen for 1B8O in c). These targets might improve should 
cofactors be included. For the 6 remaining targets the rank 1 binding mode maintains 
many of the correct contacts but adopts a non-native conformation as seen in d) for 
target 1FCZ 
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template is needed to identify the binding mode of all three small molecules for the three Neuramidase 

complexes (2QWE, 2QWD, 2QWB). Fan et al. also noted that multiple models improved results in the 

context of virtual screening(Fan, Irwin et al. 2009). 

Given that templates perform differently and that it is not always possible to use all available 

templates, template selection heuristics would be useful. The first naïve approach would be to take the 

template with the highest sequence similarity. However the results in this benchmark indicate that 

templates with sequence identities as low as 30 % perform as well as or better than templates of 60%. 

Additionally, sequence identity in the binding site does not correlate with success. One noticeable trend is 

that holo structures performed better than apo structures, particularly holo structures containing ligands 

similar to the target ligands. Templates containing ligands with function groups similar to the target 

ligand should be given preference. For the greatest gain, any chemical analogs found in the templates 

should be used to guide the modeling process as shown by Brylinski and Skolnick(Brylinski and Skolnick 

2009).  

 

Figure 3 Docking success rate increases 
with occupancy of template binding site. N indicates 
no ligand present in binding site. L indicates small 
molecule with no chemical similiarity present in 
binding site. A indicates presence of an chemical 
analog in binding site. The number at top of column 
indicates total number of cases for each bin 
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Conclusion 

Modeling of small molecule protein binding sites is difficult. Davis et al. recently found that 

ROSETTALIGAND and other prominent docking software failed to generate a native-like binding mode on 

at least one protein 70% of the time. Thus docking to comparative models may seem like a fool’s errand 

due the lack of accuracy in comparative models. However, the recent advances in comparative modeling 

techniques has improved the quality of comparative models(Misura, Chivian et al. 2006; Raman, Vernon 

et al. 2009; Zhang 2009). Indeed in some cases the comparative models have sub-angstrom accuracy at 

the protein small molecule interface. The fact that the native binding mode is sampled in all 30 cases is 

 

Figure 4 Careful template selection can improve docking results. a) Backbone differences in 
templates can preclude success by a docking program. Superimposition of 1SQA (green) on 1YBW (grey). 
Success in this case would require active remodeling of the binding site by the docking program. Selection 
of template with ligands similar to the target ligand pre-forms the binding site providing conserved binding 
motifs as seen for b) 1PB9 (green) on 2RC7 (grey), c) 2B1V (green) on 1QKN (grey), and d) 2QWE 
(green) on 1INF (grey). However a one to one correspondence is not guaranteed as in seen in both c) in 
which the phenyl group points to a different part of the pocket in the template as opposed to the target and 
d) in which the guanidinium head group occupies a different pocket in the binding site. 
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encouraging. Further more, ROSETTALIGAND ranks the native-like binding modes from docking runs in 

the top 10 binding modes for 21 of 30 cases. The progressive degradation of the apparent native well 

energy well depth form crystal structures to comparative models indicate that docking to comparative 

models in ROSETTA would benefit greatly from improvements in sampling. Although some improves my 

require better gross protein modeling improvements the difference between energy well depth of 

minimized native binding modes in comparative models to docking runs into comparative models indicate 

that significant gains can be found in docking refinement improvements. 

The experiments described here-in point to three improvements that could be made in sampling. 

First, ligands in templates could be used to guide placement of functional groups. This could be 

accomplished by either using the ligand placements in templates as starting positions in a small 

perturbation Monte Carlo minimization protocol or by implementing constraints during the docking 

simulation. Second, cofactors could be included in the docking process. At present, due to limitations in 

the code, cofactors would remain fixed in place while docking occurs, although an iterative cycle could be 

employed to serial dock both ligands and cofactors. Upcoming changes to ROSETTALIGAND will allow 

simultaneous docking of multiple ligands. Third, the homology modeling process could be altered to 

 
Figure 5 Docking success rate over a range of sequence 

identities. The number of targets in each sequence identity bin is 
found at the top of each bar.. Success rate does not correlate with 
sequence identity. Neither binding site sequence identity (residues 
with in 5 Å of the ligand) nor overall sequence identity show trends 
in docking success over the range of sequence identities covered. 
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include ligands. Specifically, ligands found in templates could be retained in the structures during loop 

modeling and structure refinement. This may result in more accurate comparative models and thus allow 

ROSETTALIGAND to sample closer to the native binding mode. 

Improvement of the scoring function is more complex. One glaring deficiency is the lack of a 

ligand internal energy. The internal energy of the ligand may prove particularly important for refinement 

of small molecule protein complexes. Examination of solvation and charge effects have also been 

observed to present problems for small molecule complexes(Nannemann, Kaufmann et al. 2010). Finally, 

using a dataset like similar to this one could be used to train an artificial neural network or support vector 

machine classifer to pick native-like binding modes in a manner similar to that employed by London and 

Schuler-Furman(London and Schueler-Furman 2007). 

Docking to comparative models with ROSETTALIGAND can sample and identify native-like 

binding modes. Careful selection of templates and integration of biochemical data will increase the 

accuracy of the predicted interface. However, the native-like binding mode will be one of as many as 20 

binding modes. Biochemical information will be required to prioritize the binding modes found by 

ROSETTALIGAND. Once a candidate binding mode is selected it should be carefully characterized using a 

series of mutations. The results of mutagenesis experiments and other biochemical experiments should 

then be integrated in the models. 

Methods  

The focus of this work was to assess the ability of ROSETTALIGAND to identify the binding mode 

of small molecules using comparative models. Two sources were chosen for the comparative models. The 

first set of comparative models was taken from the CASP experiment. The second source of models was 

prepared for a subset of systems in the PDBBind, a database of small molecule-protein structures with 

associated binding energies.  
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Preparation of CASP models 

The models for the nine CASP targets containing organic ligands were downloaded from the 

CASP website (http://www.predictioncenter.org along with the corresponding crystal structures from the 

Protein Databank(Bernstein, Koetzle et al. 1977; Berman, Henrick et al. 2003) (www.rcsb.org ). The top 

model submitted by each group was selected. Each model was structurally aligned to the crystal structure. 

First, a global alignment was performed using the PyMOL align command. This was followed by aligning 

all residues within 8 Å of the ligand. The ligand in the crystal structures was then transferred to the 

models. The procedure results in an optimally placed ligand and represents a theoretical limit for the 

quality models.  

Building of Comparative Models 

Building of comparative models requires the selection of a structural template, alignment of the 

sequence onto the structural template, followed by any refinement necessary to account for changes in the 

structure from the new sequence. In this study, potential structural templates were identified using a blast 

search of sequences in the PDB. At least one template was chosen for each 10% sequence identity bin 

ranging from 30% - 80%, if available. A multiple sequence alignment for the selected templates was 

constructed using the MUSTANG structural alignment program(Konagurthu, Whisstock et al. 2006). The 

sequence alignment used to construct the comparative model was then created using ClustalW’s sequence 

to profile alignment options(Larkin, Blackshields et al. 2007). The sequence alignment was then mapped 

onto the template structures. 

Any gaps or insertions were remodeled using the kinematic loop closure protocol in ROSETTA. 

The kinematic loop closure protocol has been previously described(Mandell, Coutsias et al. 2009). 

Briefly, each loop is chosen in a random order in a Metropolis Monte Carlo protocol. Six dihedral angle 

torsions are chosen from the residues in the loop. The remaining torsions are randomly sampled from 

Ramachandran probabilities of each amino-acid. The six torsions are solved analytically. The kinematic 

loop closure protocol is run several hundred times over varying sections of the loop with the new 

http://www.rcsb.org/�
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conformation of the loop being accepted when it fulfills the Metropolis criteria. Once each of the loops 

has been built, a minimization of the protein structure is performed by iteratively performing Metropolis 

Monte Carlo repacking of the side chain conformations of the protein, followed by gradient minimization. 

The loop_model application is called with the following options 

-in 

  -path 

    #location of rosetta_database 

    -database rosetta_database_dir/ 

-loops 

  #allow ramachandran biased sampling of backbone torsions 

  #under kinematic loop closer protocol 

  -nonpivot_torsion_sampling 

  #Allow expansion of loop definitions if necessary 

  -random_grow_loops_by 4 

  #build loops in random order 

  -random_order 

  #perform full atom kinematic loop closure 

  -refine refine_kic 

  #use reduced number of cycles for faster modeling 

  -fast 

  #perform iterative side chain repacking and gradient minimization 

  #to refine models 

  -relax seqrelax 

  #start with input pdb 

  -input_pdb target.pdb 

  #input file defining residues in loops 

  -loop_file target.loops 

-in 

  -file 

    #Starting pdb file has side chains defined 

    -fullatom 

-out 

  -file 

    #output models should have side chains 
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    -fullatom 

-out 

  #output models should be placed in models/ 

  -path modelsI/ 

  #prefix for output model pdb file names 

  -prefix model_name_prefix 

  #Number of models to create 

  -nstruct 100 

#Starting pdb file has side chains defined 

-fa_input 

#Use expanded chi1 and chi2 expanded rotamer sets 

-ex1 -ex2 

After building approximately 4000 models using the above protocol, all models within 50 REU of 

the lowest energy models were selected for clustering. The Bio3D R package was used to align and 

calculate the RMSD matrix between the structures(Grant, Rodrigues et al. 2006) . The k-means clustering 

algorithm in R was used to find clusters of approximately 25 members. This clustering approach is meant 

to pick a maximally diverse subset of the structures for docking. 

Docking to Models 

The docking protocol has been described in detail previously(Davis and Baker 2009). The 

protocol begins by randomly placing the ligand center of mass in a 10 Å box. The protocol selects 1 from 

up to 1000 different orientations and conformations based on shape complementarities in a low resolution 

van der Waals grid. The side chains and ligand in the binding site then undergo six rounds of Metropolis 

Monte Carlo optimization of side chain and ligand conformations. Finally, a gradient minimization yields 

the structure of the complex. This protocol is repeated to generate 1000 models. The models were then 

ordered by the interface delta score. The interface delta score is the total energy of the complex with the 

ligand bound minus the total energy of the complex with the ligand separated from the binding site (i.e. 

500 Å from the protein). 

The ligand_dock application is called with the following options 
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-in 

  -path 

    #location of rosetta_database 

    -database rosetta_database/ 

  -file 

    #model pdb of protein with ligand placed in the binding site 

    -s protein_ligand.pdb 

    #Parameter file defining topology of ligand 

    -extra_res_fa ligand.params 

    #Native PDB of complex used as reference in RMSD calculations  

    -native native_complex.pdb 

-out 

    #Number of models to be built 

    -nstruct 1000 

    -file 

      #output file for models in atom tree difference format 

      -silent models_compressed.out 

-docking 

  -ligand 

    #allow ligand torsion angles to change during minimization 

    -minimize_ligand 

    #place a harmonic constraint with force constant of 10 on ligand torsions 

    #during minimization 

    -harmonic_torsions 10 

    #allow backbone phi, psi to change during minimization 

    -minimize_backbone 

    #place harmonic constraint Cα to start position during minimization 

    #with harmonic constraint of 0.3 

    -harmonic_Calphas 0.3 

    #During docking process use soften van der Waals potential 

    -soft_rep 

    #Use electrostatics potential between ligand and protein as in ROSETTA 2.3 

    -old_estat 

    #Use 6 cycles of monte carlo minimization with side chain repacking  

    -protocol abbrev2 
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    #attempt up to 1000 different rotations in initial placement 

    -improve_orientation 1000 

    #Use a uniform distribution to translate ligand up to five angstroms 

    #from starting position 

    -uniform_trans 5 

The models are extracted from the atom tree difference silent using the extract_atomtree_diffs 

application with the following options 

-in 

  -file 

    #Input file in atom tree difference format 

    -s models_compressed.out 

    #tags for models to extract from input file 

    -tags  model_0222 

    # Parameter file defining topology of ligand 

    -extra_res_fa ligand.params 

  -path 

    #location of rosetta_database 

    -database rosetta_database_dir/ 

-out 

  #directory in which to place models 

  -path models_dir/ 

Identifying Binding Modes 

In docking studies with non-native models, the discriminatory power of the ROSETTA docking 

energy function is decreased (London and Schueler-Furman 2007; Kaufmann, Dawson et al. 2009). The 

global minimum of the native energy funnel may be inaccessible because of limited sampling in either the 

protein or the ligand. As a result, local minima cannot be distinguished from the global minimum based 

on the ROSETTALIGAND energy function alone. Here, we use a clustering approach to identify the binding 

modes and then rank the binding modes by interface delta score. Clustering allows one to avoid 

considering models that contain the same binding mode. 
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To cluster models in best 5% by energy, the RMSD between the ligand heavy atoms for all pairs 

of models is computed. This matrix of RMSDs is then clustered in R(R Development Core Team) using 

complete linkage with a height of 3.00 RMSD. All clusters at this height are used regardless of the 

number of models in each cluster. The docking energy landscape is very rough. Consequently, the native 

binding mode may rarely be sampled. Thus, penalizing small clusters is counter-productive. Following 

hierarchical clustering in R the clusters are ranked by the energy of the best energy model in the cluster. 
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Figure A1 L-RMSD energy plots of complexes docked into multiple comparative models. Blue stars display 
docking clusters, green crosses show top models from docking into the target structure. Red crosses show models produce 
by Monte Carlo minimization of native-like binding modes in the comparative models. 
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CHAPTER V 

 

STRUCTURAL DETERMINANTS OF SPECIES SELECTIVE SUBSTRATE 
RECOGNITION IN HUMAN AND DROSOPHILA SEROTONIN TRANSPORTERS 

REVEALED THROUGH COMPUTATIONAL DOCKING STUDIES1

Introduction 

 

As members of the sodium and chloride dependent neurotransmitter transporter (SLC6) gene 

family, SERTs carry out the uptake of 5-HT across plasma membranes in the central nervous system, 

peripheral nervous system, placenta, platelets, and pulmonary system (Ramamoorthy, Bauman et al. 

1993; Rothman and Baumann 2002). SERTs are targets of antidepressants and substances of abuse like 

cocaine and 3,4-methyldioxy-methamphetamine (MDMA, commonly known as “Ecstasy”) (Roman, 

Saldana et al. 2004). Hydropathy analyses initially suggested that SERTs are integral membrane proteins 

with twelve α-helices (Blakely, Berson et al. 1991; Hoffman, Mezey et al. 1991; Ramamoorthy, Bauman 

et al. 1993). Site-directed mutagenesis and SCAM experiments on putative TMs and loops have 

supported this proposal (Chen, Liu-Chen et al. 1997; Chen, Liu-Chen et al. 1998; Henry, Adkins et al. 

2003; Keller, Stephan et al. 2004; Zhang and Rudnick 2006).  

Mutagenesis of key residues has provided insight into the structure and function of SERT. 

Shortening the ethylamine tail of tryptamine by one methylene group (dimethyl-tryptamine to gramine) 

causes a decrease in substrate uptake in rat SERT (rSERT). The addition of a methylene group, via a 

D98E mutation, restores uptake of gramine to levels expected for dimethyl-tryptamine, suggesting that 

residue D98 forms a direct (ion pair) interaction with the substrate(Barker, Moore et al. 1999). Chen et 

al.(1997) implicated I172 and I176 in substrate and inhibitor binding through protection of transporter 

function from inactivation by MTS in cysteine mutants of these residues. Several studies have identified 

amino acid sequence differences among SERT species that confer alternate specificities for substrates and 

                                                      
1 Reprinted with permission from Kaufmann, K.W.  Dawson E.S.  Henry L.K., Field J.R.  Blakely R.D.  

Meiler J.  Proteins 2009 74 630-642 
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inhibitors(Adkins, Barker et al. 2001; Rodriguez, Roman et al. 2003; Roman, Saldana et al. 2004; Henry, 

Field et al. 2006). Barker et al.(1998) used human SERT (hSERT) and Drosophila SERT (dSERT) 

chimeras to implicate Y95 in forming part of the recognition site for citalopram and mazindol, two 

biogenic amine reuptake inhibitors. Adkins et al.(2001) used the same approach to show the Y95F hSERT 

mutant exhibits dSERT-like recognition of N-isopropyl tryptamine. Henry et al.(2006) found the I172 

residue in hSERT displays a marked functional divergence with respect to inhibitor but not substrate 

potencies when the residue is mutated to its dSERT identity (I172M). Although these advances have 

identified residues involved in 5-HT and antagonist recognition, interpretation of these data would benefit 

from a three-dimensional (3D) context provided by high-resolution transporter structures. 

Comparative models of SERT have been reported that interpret the structure function 

implications of site directed mutagenesis data and substituted cysteine accessibility data using Na+/H+ 

antiporter cyro-EM densities and crystal structure as well as the Lac permease crystal structure (Ravna 

and Edvardsen 2001; Ravna, Sylte et al. 2003; Ravna, Jaronczyk et al. 2006). However, the low sequence 

homology and low functional correlation of these templates to SERTs limits predictive power of these 

models. The recently reported crystal structure for a bacterial Na+-dependent leucine transporter 

(LeuTAa), a bonafide member of the neurotransmitter sodium symporter (NSS) protein family, represents 

a critical break-through for the field (Yamashita, Singh et al. 2005; Henry, Defelice et al. 2006). The 

LeuTAa structure confirms a predicted topology for NSS members consisting of twelve TM spanning α-

helices. Unexpectedly, it features two five-helix bundles arranged in an inverted mirror symmetry. The 

final two helices, TMs 11 and 12, reside peripheral to the core transporter and may participate in homo-

oligomerization (Just, Sitte et al. 2004). In the crystal structure of LeuTAa, the substrate leucine is located 

in a pocket formed by TMs 1, 3, 6, and 8. Notably, unwound regions in the centers of TMs 1 and 6 serve 

as contact points for the carboxyl and amine groups of leucine. Beuming et al. (2006) refined the primary 

sequence alignment of LeuTAa using a large multisequence alignment of eukaryotic and prokaryotic NSS 

family members sequences, resulting in an alignment featuring an improved agreement with available 

biochemical data that underscores the utility of the LeuTAa structure. 
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ROSETTA comparative modeling (Rohl, Strauss et al. 2004; Misura and Baker 2005) and docking 

(Meiler and Baker 2006) approaches are invoked for their power in building accurate models of 

membrane proteins from distant sequence homologs as recently demonstrated with voltage-gated K+ 

channels (Yarov-Yarovoy, Baker et al. 2006). Our approach involves comprehensive high-resolution 

docking of 5-HT into SERT comparative models based on the LeuTAa structure. We refrain from using 

experimental data during model construction to permit rigorous testing of the predictive power of our 

models using data derived from site-directed mutagenesis, SCAM, and binding affinity experiments. 

Methods 

SERT Sequence Alignment 

The alignment used in the comparative models of dSERT and hSERT on LeuTAa was synthesized 

from the alignments of Beuming and colleagues (Beuming, Shi et al. 2006). The adjusted alignment 

published between LeuTAa and rSERT was combined with the alignment of the eukaryotic NSS family 

provided by Beuming (Beuming, Shi et al. 2006). 

The SERT sequences were divided into TM and binding site regions based on the LeuTAa crystal 

structure and 5-HT docking results discussed below. TMs 1, 3, 6, and 8 form the core TMs that surround 

the leucine binding site. First shell residues are defined as any residues with a Cα atom within 7 Å of the 

leucine ligand in the LeuTAa structure. We define the second shell binding site residues to be all residues 

with a Cα atom within 12 Å of the leucine ligand in the LeuTAa. 

Docking leucine into the LeuTAa (PDB ID 2A65) crystal structure. 

 The crystal structure 2A65 was obtained from the Research Collaboration for Structural 

Bioinformatics Protein Data Bank(Bernstein, Koetzle et al. 1977) website. All non-protein atoms were 

removed. Docking of leucine was performed using ROSETTALIGAND as described by Meiler and 
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Baker(Meiler and Baker 2006). In brief, twenty conformations, including the crystallized conformation, 

were generated for leucine. These rigid conformations of the ligand were placed in a random orientation 

and position inside a user-defined 8 Å cube around the native binding site. ROSETTALIGAND then 

simultaneously placed sidechain rotamers around the ligand and optimized the ligand pose in a Metropolis 

Monte Carlo simulated annealing algorithm to optimize the binding site structure and minimize the 

binding energy. The energy function used during the search contains terms for van der Waals attractive 

and repulsive forces, statistical energy derived from the Dunbrack probability of observing a sidechain 

conformation in the PDB, hydrogen bonding, electrostatic interactions between pairs of aminoacids, and 

solvation assessing the effects of both sidechain interactions and sidechain ligand interactions. Five 

hundred structures for each conformation of leucine were produced for a total of 10,000 structures for the 

LeuTAa-leucine complex. This experiment mimics the docking procedure applied for modeling of 5-HT 

interactions with SERT and provides a test of our computational methods on a closely related system. 

SERT Comparative Model Construction 

The backbone coordinates of the TM helices from the LeuTAa crystal structure (PDBID 2A65) 

were retained in the comparative models of dSERT and hSERT. The loop regions were built in ROSETTA 

using Metropolis Monte Carlo fragment replacement(Rohl, Strauss et al. 2004) combined with Dunbrack 

cyclic descent loop closure (Canutescu and Dunbrack 2003). In short, φ-ψ angles of backbone segments 

of homologous sequence amino acid fragments from the PDB are introduced for the residues in the loops. 

After the fragment substitution slight changes in the φ-ψ angles are made to close breaks in the protein 

chain. Sidechains for all residues in the protein were built using ROSETTA’s Metropolis Monte Carlo 

rotamer search algorithm(Kuhlman, Dantas et al. 2003). Subsequently the ten models generated for both 

dSERT and hSERT were iteratively subjected to 8 cycles of sidechain repacking and gradient 

minimization of φ, ψ, and χ angles in ROSETTA. 
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SERT Serotonin Docking 

A conformational ensemble containing 100 conformations of 5-HT was generated using the 

mmff94 small molecule force field in MOE (Molecular Operating Environment, Chemical Computing 

Group, Montreal, Quebec, Canada). The ensemble contained representatives from the (±) gauche and the 

trans conformations of the ethylamine tail. Each conformation from the ensemble was placed into both 

hSERT and dSERT models for docking calculations using ROSETTALIGAND. ROSETTALIGAND placed 5-

HT in a random orientation inside a 10Å cube centered at the same depth as leucine in the LeuTAa. 

ROSETTALIGAND then simultaneously placed sidechain rotamers around the ligand and optimized the 

ligand pose in a Metropolis Monte Carlo simulated annealing algorithm. The energy function used during 

the search contains terms for van der Waals attractive and repulsive forces, statistical energy derived from 

the probability of observing a sidechain conformation in the PDB, hydrogen bonding, electrostatic 

interactions between pairs of aminoacids, and solvation assessing the effects of both sidechain 

interactions and sidechain ligand interactions (Meiler and Baker 2006). Approximately 13,000 docked 

complexes each for hSERT and dSERT were generated. 

Inaccuracies inherent in comparative models preclude identification of the native binding mode 

based solely on the score. When docking small molecules into crystal structures, the ROSETTALIGAND 

energy function reliably identifies the correct binding model (Meiler and Baker 2006). However when 

dealing with comparative models the energy funnel of the correct binding mode is shallower and local 

minima can have increased depth (see Fig. 1). Nonetheless, the correct binding mode can occupy a 

minimum in the energy landscape. As discussed by recent studies, docking to comparative models 

remains a difficult task; however they can prove useful in the design of experiments (DeWeese-Scott and 

Moult 2004; Kairys, Fernandes et al. 2006). Docked complexes occupying a physiologically relevant 

minimum in the energy landscape might then be identified through testing the predictive power of the 

models using available biochemical data as a filter. 

The structures with the best protein ligand interaction energies were selected in a first filter. A 

second filter imposed a 3.6Å distance between the 5-HT amine tail and one of the D98 sidechain carboxyl 
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oxygens. In a third-round filter binding modes were chosen that were present in both dSERT and hSERT 

based on the assumption that the 5-HT binding mode is conserved across the two species. 

Serotonin Analog Docking 

After identifying a common binding mode for 5-HT in the both hSERT and dSERT models, 5-HT 

analogs were placed into the ligand binding site while maintaining the putative binding mode of 5-HT. 

Each of the analogs then underwent Monte Carlo refinement and gradient energy minimization allowing 

small adjustments in ligand position and sidechain conformations. For each binding mode, the nine lowest 

total ROSETTA energy structures for each analog were selected. Out of the nine structures, the structure 

with the lowest total ROSETTA energy and with an indole ring less than 1 Å RMSD from the starting 

position was retained for binding energy calculations. The one exception to the RMSD constraint was the 

Figure 1. The docking energy landscape is 
shown as a function of backbone RMSD. The energy is 
indicated by color from low (red) to high (blue). As the 
error or RMSD in the backbone increases the native 
minimum in the energy landscape Enative is obscured. 
Alternate binding modes associated with higher energy 
can no longer be clearly distinguished from the native 
binding mode Emodel. Comparative models by their 
nature have some error in their atom coordinates. In turn 
frequently multiple minima are observed when docking 
small molecules into comparative models. Additional 
experimental data are required to distinguish between 
these models. Reprinted with permission from 
(Kaufmann, Dawson et al. 2009) 
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7-benzyloxy-tryptamine analog, which was allowed to deviate further due to the large bulk of the 

substitution. The resulting lowest energy structures were visually inspected to verify that they retained the 

original binding mode. 

The binding energy was calculated using,  

stateunboundproteinstateboundproteinbindingligand EEE _____ ∆−∆=∆   (Eq. 1) 

where ∆Eprotein_unbound_state is the energy of the protein in the unbound state, and 

∆Eprotein_bound_state is the energy of the protein in the bound state plus ligand protein interaction 

energy. The change in energy, ∆E, is given by  

solpairhbdunatr EEEEEE ∆+∆+∆+∆+∆=∆  (Eq. 2) 

as was reported previously(Kortemme and Baker 2002; Meiler and Baker 2006). ∆Eatr is the attractive 

portion of a van der Waals Lennard-Jones 12-6 potential energy term. ∆Edun is the energy derived from 

the Dunbrack rotamer probability. ∆Ehb is the energy of hydrogen bonds involving sidechains. ∆Epair 

encodes for the energy due to electrostatic interaction between residues. ∆Esol is a Lazaridius-Karplus 

approximation of the solvation energy. The repulsive portion of the van der Waals energy was removed to 

decrease noise inherent in the sensitivity of this term. ∆E for each residue were summed to obtain the total 

∆E for the protein binding energy. Amino acid residues with a ∆E < -1 were considered to be major 

contributors to the binding energy. 

Model Refinement of Binding Mode with Bound Na+ Ion 

Molecular models for the sodium (Na+) ion bound form of both hSERT and dSERT were 

generated and refined using the following protocol. The ROSETTALIGAND binding mode was taken as the 

starting point for model refinement using the AMBER forcefield (Wang, Cieplak et al. 2000). Briefly, the 

binding mode models for the hSERT and dSERT were aligned with the published structure of LeuTAa 

(PDB ID: 2A65) and a single Na+ ion was added to both models by copying the coordinates of atom NA 
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572 (Na1 binding site). Models of the hSERT and dSERT sodium ion binding site were then refined with 

50 steps of steepest descents and 450 steps of conjugate gradient energy minimization in AMBER9 

(Bayly, Cieplak et al. 1993) followed by brief (1ns), low temperature (50K) molecular dynamics 

simulations in-vacuo using a distance-dependent dielectric constant and 12Å cutoff for non-bonded 

interactions. Partial charges for 5-HT were developed using the atom-centered point charge method of 

Bayley et al. (Bayly, Cieplak et al. 1993). All other molecular mechanics parameters for 5-HT and ions 

were taken from the standard AMBER force field. Two-dimensional schematics of the refined hSERT 

and dSERT ion binding sites were generated with ChemDraw 10.0 (Cambridge Soft) while 3D 

representations were rendered with PyMol (DeLano). 

SVM Analysis for Tryptamine Analog Pharmacology 

Support vector machines (SVM) (Vapnik 1998), a form of machine learning previously used by 

this group to study anti-cancer activity of epothilones (Bleckmann and Meiler 2003), were applied to 

derive a substitution sensitivity model for SERT substrates using uptake inhibition data from a previously 

published study of tryptamine analogs (Adkins, Barker et al. 2001). The freely available software, 

LIBSVM (Chang and Lin 2001), was applied to 26 tryptamine analogs to derive models for hSERT and 

dSERT sensitivity to substitution at positions around the indole ring and ethyl amine tail. The binary 

encoding scheme for each compound was configured to indicate the type of substituent at each of the 

following positions: R1/2, α2, X, R3, 4, 5, 6, 7 (see Fig. 2 and Appendix A Table AX). A total of 24 

binary inputs are required to uniquely describe the configuration of each of the 26 tryptamine analogs in 

these nine positions. The resulting input vector of length 24 for each compound is associated with a 

normalized floating point representation of the experimentally measured binding constant for [3H]-5-HT 

uptake inhibition (Ki) for training of the SVM. 

Epsilon support vector regression was applied with a cost of 0.2 and a polynomial kernel function 

with gamma of 0.1. Optimal cost (c) and gamma (γ) parameters were empirically determined via a 

systematic search for best RMSD for predict log Ki from leave one out cross validation. Description of 
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the theory and application of SVM can be found in the following references (Vapnik ; Chang and Lin). 

The sensitivity to each input was computed as the absolute partial derivative of the output (i.e SVM 

predicted binding constant) with respect to that input. The average sensitivity to substitution was 

computed by taking the mean of the sensitivities for all inputs coding for substitution at a position on the 

tryptamine core. The rationale of this approach is that large derivatives identify sensitive inputs that point 

to more critical regions for binding and vice versa. The average sensitivity to substitution at each position 

was displayed as a colored molecular surface using PyMOL (DeLano). 

Results 

Our strategy employs comparative modeling, ligand docking, and SAR methodology to address 

species selectivity for substrate recognition in hSERT and dSERT. Comparative modeling of a target 

sequence based on a known structural template requires identification of a related structural template, 

alignment of the target sequence to the structure, model construction, and assessment of the resulting 

structure (Baker and Sali 2001). Ligand docking programs seek to identify the lowest free energy 

Figure 2. Tryptamine core used in fragment 
based substitution encoding for SVM sensitivity 
maps. Reprinted with permission from (Kaufmann, 
Dawson et al. 2009) 
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structure of the ligand protein complex (Ferrara, Gohlke et al. 2004). It is beneficial to categorize the 

available structural degrees of freedom into ligand internal degrees of freedom (ligand conformation), 

ligand translation and rotational degrees of freedom (pose), protein sidechain degrees of freedom 

(rotamer), and protein backbone degrees of freedom. Our approach optimizes all of these degrees of 

freedom during the course of the model development. In addition we use support vector machines (SVM) 

to condense data into substitution sensitivity maps (Vapnik 1998; Bleckmann and Meiler 2003). SVMs 

allow analysis of data sets containing noise and uneven distribution in the chemical space tested by 

offering an overview of the available data. The overview can then be interrogated in more depth. 

Sequence Alignment Demonstrates High Similarity Between the LeuT and the SERT substrate binding 

sites 

Sequence alignments offer insight into the structural similarity of two proteins. The sequence 

identities in Table 1, based on the alignment of hSERT and dSERT to the rSERT-LeuTAa alignment in 

Fig. 3, reflect regions expected to have different degrees of involvement in the binding of substrates as  

Table 1. Relationship Between Sequence Identity and Expected Model Accruacy. Relationship between sequence 
identity of hSERT and dSERT to LeuTAa in specific regions of the protein and the expected model accuracy. Core TMs are TMs 
1,3,6, and 8. Second shell and 1st shell residues include all residues with Cα atoms within 12 and 7 Å respectively of an atom 
from the leucine ligand in the PDB structure 2A65. Reprinted with permission from (Kaufmann, Dawson et al. 2009) 

 Overall Loop 
regions 

TMs Core TMs 2nd Shell 1st Shell 

Protein Sequence 
Identity 

hSERT 17% 
108/630 

11% 
40/362 

25% 
68/268 

35% 
38/108 

40% 
31/77 

58% 
11/19 

dSERT 18% 
113/622 

14% 
51/354 

23% 
62/268 

33% 
36/108 

36% 
28/77 

52% 
10/19 

Expected Backbone RMSD to true 
structure39 

>5Å >5Å >=2.5Å ≈2Å   

Backbone RMSD 
to LeuTAa 

hSERT   1.6-2.1 1.1-1.6 1.0-1.3 0.9-1.2 
dSERT   1.4-2.3 1.1-1.8 1.0-1.3 0.9-1.2 

defined in the Methods. The sequence identity increases from ~15% to greater than 50% as the 

focus narrows on the first shell of residues in the binding site. As the sequence identity increases, the 

confidence in the alignment and the resulting quality of the comparative models increases(Forrest, Tang 

et al. 2006). 
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Figure 3. Sequence alignment between LeuTAa, hSERT, dSERT, and rSERT. Blue 
background denotes complete conservation of amino acid identity. Light gray background denotes 
similarity of amino acid identity across sequences. Rectangles above amino acids mark the 
transmembrane helices. Core transmembrane helices are shaded gray. Red stars denote amino acids in 
the first shell of the binding site. Blue squares highlight residue in the second shell of the binding site. 
Reprinted with permission from (Kaufmann, Dawson et al. 2009) 
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RosettaLigand Correctly Docks Leucine into the LeuTAa Structure 

The self-docking of leucine back into the LeuTAa crystal structure serves to evaluate 

ROSETTALIGAND performance in docking to a NSS protein. The lowest energy structure recaptured the 

native binding mode (RMSD 0.81 Å). Plotting the predicted ligand binding energy versus the RMSD of 

the ligand to the native ligand coordinates yields the “energy funnel” seen in Fig. 4a. At the neck of the 

“energy funnel”, the sidechain position of leucine is recovered along with the amine positioning with only 

one difference, a 90° deviation in the ψ angle (Fig. 4b). The absence of ions (e.g Na+) in the docking 

process produced only a minor perturbation of the physiological leucine binding mode. Only R30 and 

I359 are in different rotamer states. RosettaLigand successfully docks leucine back into the LeuTAa 

structure. 

SERT Comparative Models Extensively Sample Backbone and Sidechain Conformational Space 

Side by side comparison of hSERT, dSERT, and LeuTAa models highlight differences that may be 

responsible for differences in ligand recognition and transport. As can be seen in Fig. 5, many sidechains 

of the transporters retain not only their amino acid identity but also the χ angles, supporting the conserved 

functionality of these residues. Most of the diversity observed in the binding site is conserved across both 

Figure 4. ROSETTALIGAND binding energies decrease (a) as the model approaches the native 
crystal structure. The lowest energy ROSETTA model has a deviation from the crystal structure of 0.81Å (b) 
Overlay of computational docked leucine in ball and sticks with green sidechains on the crystal structure 
with grey sidechains and leucine. This figure was prepared using PyMOL. (DeLano 2002). Reprinted with 
permission from (Kaufmann, Dawson et al. 2009) 
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dSERT and hSERT and also occurs at the intracellular end of the binding site. The backbone RMSDs in 

the twenty SERT models range from as little as 0.9Å in the binding site up to 2.3Å in trans-membrane 

spans (see Table I). SCAM accessibility patterns in the regions comprising the binding site show a 

periodicity that agrees with available experimental data (Fig. 6). 

Serotonin Docking Comprehensively Samples Translational and Rotational Degrees of Freedom in 

Protein-Ligand Complex and identifies 5 potential binding modes 

Ligand docking searches for the most energetically favorable position of 5-HT in the binding 

pocket; thus identifying likely structural determinants for 5-HT recognition. Out of the top 100 lowest 

energy docked 5-HT complexes for each protein, 22 dSERT models and 24 hSERT models contained a 

D98 contact. Of those models six binding modes were present in both proteins. Five of the six binding 

modes place the amine in approximately the same location as seen as for leucine in the LeuTAa structure. 

These five modes were carried forward for further analysis and are shown in Fig. 7. The first three 

Figure 5. Overlay of hSERT comparative model in green and 
the dSERT model in cyan on LeuTAa crystal structure in gray. The 
conformational space sampled in this study remains close to that of the 
backbone captured in the LeuTAa structure. Gradient minimization 
retains most of the same side-chain interactions, due to the high sequence 
identity evident in the binding site. This figure was prepared using 
PyMOL. (DeLano). Reprinted with permission from (Kaufmann, Dawson 
et al. 2009) 
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binding modes Up_a, Up_b, and Up_c have the 5-hydroxyl group oriented in the general direction of the 

extracellular surface (Fig. 7a, b, c). In the first binding mode Up_a (Fig. 7a), the 5-hydroxy points 

towards F335, pushing the phenyl ring of F335 up against the TM 6 helix. The indole nitrogen neighbors 

T439 in TM 8 at the interface between TMs 3 and 8. For the second binding mode Up_b (Fig. 7b), the 

indole ring is rotated 180° relative to the orientation in Up_a. The indole nitrogen now faces F341. The 5-

hydroxyl group is placed up against the ring of Y176 lining the upper side of the binding pocket. Up_c 

(Fig. 7c) has the indole ring rotated 90° relative to Up_a. It packs against the phenyl ring of Y176 in a π 

stacking interaction. The edge of the ring points towards the interface between TMs 8 and 3, with A173 

and G442 opposite the indole nitrogen in that interface. In Up_c, the 5-hydroxyl group forms a steric 

contact with L99. The fourth binding mode (Side) has the 5-hydroxyl bond horizontal in the binding 

pocket pointing towards T439 and G442 in TM 8 at its interface with TM 3 (Fig. 7d). The indole ring lies 

sideways in the binding pocket with the side of the indole ring packing against I172. Additionally, the.

Figure 6. hSERT Down binding mode with substituted cysteine 
accessibility mapped onto TM 1, 3, and 10. Red to blue scale indicates no 
sensitivity to large sensitivity to MTS attack of a cysteine substituted at that 
residue. All three helices show patterns consistent with the helix orientations in 
the models. This figure was prepared using PyMOL. (DeLano). Reprinted with 
permission from (Kaufmann, Dawson et al. 2009) 
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Figure 7. For each of the docked complexes (a) Up_a, (b) Up_b, (c) Up_c, (d) Side, (e) Down (I) shows a flattened representation of the binding site 
with residues contributing most to the computational binding energy outlined in rectangles with black borders. (II) shows agreement of each docking mode 
with biological data. Each mode contains a D98 contact. Up_a and Up_b display contacts with TM 10 that contradict the lack of protection from MTS 
inactivation. Up_c and Side binding modes do not match the SVM species difference maps. All the modes show interaction with I172 and Y176 explaining 
protection against MTS modification. The Side and Down modes pack closely to A441 in a manner which may explain protection of A441C by 5-HT from 
MTS modification. (III-V) Correlation plots for predicted log Ki (calculated on computational binding free energy of tryptamine analogs in these modes) and 
log Ki for uptake in Hela cells (III), for uptake in HEK293 cells (IV), and for binding in HEK293 cells (V). hSERT values are given in triangles and dSERT 
values in diamonds. All experimental transport and binding data taken from Adkins et al. (Adkins, Barker et al.). Reprinted with permission from (Kaufmann, 
Dawson et al. 2009) 
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indole nitrogen points toward F335 at top of the binding pocket. The Down binding mode (Fig. 7e) shows 

a 180° rotation of the indole ring relative to the position observed in Up_c. The indole nitrogen is in 

approximately the same position though pointed more towards T439 and N177. The 5-hydroxy is now 

pointed down towards A169 in TM 3 and G342 in TM 6. The residues contributing to the binding energy 

are boxed in a flattened representation of the binding pocket in each of the five binding modes as shown 

in Fig. 7I. The agreement of the biochemical data with each of the binding modes is shown in Fig. 7II. 

SVM Derived Sensitivity Maps Highlight Species Differences in the SERT Substrate Tryptamine 

Pharmacology 

Adkins et. al. (Adkins, Barker et al. 2001) reported the potencies of 27 tryptamine analogs to 

inhibit the uptake of [H]3-5-HT in the hSERT and the dSERT. Here we develop SVM sensitivity maps to 

visually display differences in the tryptamine pharmacology. The hSERT and dSERT show sensitivity to 

chemical identity at a variety of positions on the tryptamine core (Fig. 8a and 8b). The SVM maps trained 

Figure 8. Sensitivities of positions to substitution predicted from support vector machine 
trained on SERT transporter substrate uptake Kis. Blue to red gradient indicates low to high 
sensitivity. (a) hSERT, (b) dSERT, (c) difference map (hSERT-dSERT) of the raw sensitivities. Blue 
shows higher sensitivity for dSERT. Green to red indicates moderate to higher sensitivity in hSERT. 
This figure was prepared using PyMOL. (DeLano). Reprinted with permission from (Kaufmann, 
Dawson et al. 2009) 
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on tryptamines assayed on the hSERT display strong sensitivity to substitution at the 5 position, and 

weaker sensitivity at the R3 indole position and R1 and R2 ethyl amine positions (Fig. 8a). The dSERT 

SVM maps also show strong sensitivity at the 5 position with a weaker sensitivity at the R3 indole 

position, the 4 position, and the α position to the ethyl amine (Fig. 8b). Strong differences in sensitivity 

between the hSERT and the dSERT SVM maps occur at the R1, R2, R3, α, 4, 5, and 7 positions (Fig. 8c). 

The hSERT SVM maps show higher sensitivity at the R3, 7, R1, R2, and 5 positions in order of 

increasing difference in sensitivity. The dSERT SVM maps show higher sensitivity at the α, and 4 

position in increasing order of difference in sensitivity. Care is taken to avoid over-interpretation of the 

SVM maps by resorting to the original data when making use of the maps in the context of modeling 

Serotonin Analog Docking Probes ROSETTALIGAND Identified Binding Sites through Binding Energy 

Prediction 

It can be hypothesized that SERTs recognize tryptamine analogs in a conserved manner such that 

the indole ring occupies the same position in binding pocket. With this in mind, the native binding mode 

for 5-HT should explain the differences in the binding affinity seen for other tryptamine analogs. 

Representative deviations of the indole ring for a binding mode compared with 5-HT are shown in Fig. 9. 

In the Down mode, the substitution of the indole nitrogen causes Y176 to change rotamers. Substitutions 

at the 5-position interact with residues V343, G442, and A169 in this binding mode. Figure 7III-V show 

the correlations of the lowest predicted binding free energies of ligand binding and the log of the uptake 

and binding Ki values extracted from experimental competitive uptake and binding assays by 

Adkins(Adkins, Barker et al. 2001). The Down mode shows the highest correlation for all three datasets. 

The correlation coefficient of the Down binding mode to the log uptake Ki data from Hela cells is 0.72. 

The correlation coefficient to log uptake Ki data from HEK293 cells is 0.60. The coefficient falls to 0.29 

when compared to log binding Ki data extracted from HEK293 competition binding assays. The first two 

datasets of uptake Ki‘s in HEK293 and Hela cells assess the ability of tryptamine analogs to competitively 
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inhibit uptake of tritiated serotonin across membranes with the SERT transporter. The third dataset of 

binding Ki‘s assesses the ability of tryptamine analogs to compete with a high affinity inhibitor to bind to 

the SERTs. The third category measures competitive binding events, a more close approximation to the 

binding energy measured in the present study. However, binding is thought to be an important step during 

uptake by transport, and the uptake studies examine the ability of chemical similar compounds to 

compete. Thus, uptake potency provides a relevant assessment of binding. In any case, the down binding 

mode remains the best correlated in the five binding modes (see Fig. 7e).  

Model Minimization in Amber Force Field Confirms Hydrogen Bonding Contacts of 5-OH Group 

We refined our final models using the AMBER force field employing a short molecular dynamics 

simulation as a minimization tool (Summa and Levitt).We leverage the ability of the molecular mechanics 

force field in AMBER to model ligand flexibility to optimize the models for the hSERT and dSERT 5-HT 

Down binding mode (Fig. 10). As this calculation is a local refinement with minimal movements, the 

ROSETTALIGAND conformations are not altered significantly. However, the geometry of hydrogen bonds 

Figure 9. A superimposition of the indole ring of tryptamine 
derivatives in the Down binding mode is shown for hSERT and dSERT 
docking. It highlights the conserved manner in which tryptamine 
derivatives are recognized by SERTs. This figure was prepared using 
PyMOL. (DeLano). Reprinted with permission from (Kaufmann, Dawson 
et al. 2009) 
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and other local interactions are improved. The conformation identified by ROSETTALIGAND proves to be 

stable after 1ns of molecular dynamics. The overall RMSD of the binding site in both models is < 1.0 Å 

indicating that, even though the sodium ion is not explicitly included in our model building and ligand 

docking to identify the ‘down’ binding mode, the conservation of the site may implicitly encode this 

information. The 5-OH substituent of 5-HT maintains a hydrogen bond to the dSERT D164 sidechain 

carbonyl oxygen while in the hSERT the 5-OH of 5-HT forms transient hydrogen bonds to the backbone 

oxygens of residue A169 (dSERT D164) and A441 (dSERT G432).  

 

 

Figure 10. The Down binding mode in the hSERT and dSERT models. Dashed 
lines in (a) and (b) represent stable hydrogen bonding interactions observed during the 1 ns 
AMBER refinement of the best ROSETTALIGAND model [Fig.6(e)] of the substrate 
binding site. The dashed line from 5-HT to the aromatic ring of Y176 marks a T-type ring 
stacking interaction. The gray-shaded areas highlight major differences of the hSERT and 
dSERT models in the substrate binding site: (I) The A441/D164 hydrogen bonding 
interactions with the 5-OH position of 5-HT. (II) I172/M167 packing interactions with 5-
HT indole ring. Panels (c) and (d) show 3D representations of the Down binding mode in 
hSERT and dSERT models. Reprinted with permission from (Kaufmann, Dawson et al. 
2009) 

http://www3.interscience.wiley.com/cgi-bin/fulltext/121378793/main.html,ftx_abs#FIG6�
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Discussion 

The present study examines two primary questions; “Can docking of 5-HT into comparative 

models of SERTs identify a physiologically relevant binding mode consistent with known mutagenesis, 

SCAM, and SAR data?” and “If so, what are the implications for SERT substrate recognition?” 

Computational docking on its own is unlikely to present a single correct solution due to the errors 

inherent in comparative models (Kairys, Fernandes et al. 2006). However, docking to comparative models 

may yield a physiologically relevant binding mode (DeWeese-Scott and Moult 2004). Functional 

conservation, sequence identity, and biochemical structural data all indicate promising potential for 

comparative models based on LeuTAa structure. Chothia and Lesk found that functional conservation of 

proteins often implies a higher structural conservation than sequence identity would imply (Chothia and 

Lesk 1986).  In a study of comparative modeling for membrane proteins, Forrest et al. reported that 

sequence identities above 30% in the transmembrane domains yield models with Cα-RMSD of ~2 Å 

(Forrest, Tang et al.) to the true structure. Biochemical structural information such as the SCAM profiles 

of TMs 1, 3, and 10 in SERTs are consistent with the LeuTAa structure (Beuming, Shi et al.).  

No single model resulting from this process is guaranteed to satisfy all the biochemical data 

available. However, in our study unbiased sampling of possible binding modes produced a single binding 

mode in line with all biochemical data. The collective satisfaction of these constraints indicates the 

physiological relevance of the Down binding mode shown in Fig. 7e and Fig. 10. For example, in the 

Down mode residues I172 and Y176 are protected from MTS modification and subsequent inactivation of 

transport. Only bulky or charged mutations at I172 have a significant effect on 5-HT transport (Henry, 

Field et al. 2006), indicating a purely steric impact of this position on the binding site as is indicated by 

the packing against the side of the indole ring. The hSERT G100A mutant is transport deficient, but 

maintains an unperturbed binding affinity (Kristensen, Larsen et al. 2004). Since the Down binding mode 

lies below G100, G100A would not significantly perturb this binding mode. TM 10 residues cannot be 

protected from MTS attack and inactivation by 5-HT binding (Keller, Stephan et al. 2004). The Down 
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binding mode predicts this since it leaves TM 10 amino acids, that are sensitive to MTS modification, 

solvent accessible. Finally, the A441C mutant is protected from MTS access by 5-HT (Androutsellis-

Theotokis and Rudnick 2002) in line with the proximity of A441 to the 5-OH group. The sum of all these 

experimental data points support the Down binding mode as a physiologically relevant placement for 5-

HT in the binding site.  

SVM sensitivity maps reveal differences in the sensitivities of dSERT and hSERT to substitution 

at the R3, 4, 5, and α positions (see Fig. 8). The R3 indole nitrogen displays sensitivity to bulky 

substituents in hSERT (Adkins, Barker et al.). An isopropyl substitution causes a significant decrease in 

transport, whereas a methyl substituent in the same position causes little difference in uptake. These data 

indicate the indole nitrogen likely faces a sterically restricted area in hSERT. The Down binding mode 

places the indole nitrogen R3 substituents proximal to Y176/Y171. Y176 has been shown to be important 

for transport (Chen, Sachpatzidis et al. 1997), thus it is not surprising the substitutions perturbing this 

residue are detrimental to transport. Adkins identified a mutant hSERT, Y95F, which minimizes this 

effect (Adkins, Barker et al. 2001). Since no direct contact between R3 substituents and Y95 is seen in 

our models, we hypothesize an indirect effect: the tryptamine N-isopropyl substitution causes a shift in 

the indole ring towards the bottom of the pocket where Y95 is located in hSERT (F90 in dSERT). 

Mutation at position 95 allows for a structural rearrangement that accommodates additional bulk at the 

indole nitrogen position. If this is the case, then bulk reducing mutations at neighboring residues, such as 

V343, L344, and A441, could have a similar effect and serve to test our hypothesis. In contrast to hSERT, 

the intracellular base of the binding site in dSERT exhibits a more polarizable nature (e.g. hydrophobic to 

polarizable I172/M167, V343/T335 hydrophobic to polar, and A169/D164 hydrophobic to charged see 

Fig. 9). The hydrogen bond seen between the 5-OH of 5-HT and the sidechain of D164 reinforces this 

view. Furthermore, sensitivity to substitution at positions 4 and 5 as shown in the SVM sensitivity maps 

agree with the Down binding mode by placing hydroxyl groups near V343/T335 and A169/D164 in the 

hSERT/dSERT (Fig. 8c and Fig. 10). 
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The Down binding mode merits experimental investigation given agreement with the above 

biochemical data. The difference in polarity in this region in combination with the Down mode placing 

the 5-OH in this region implies that dSERT and hSERT should exhibit a differential preference for 

polarity surrounding the 4 and 5 position of the tryptamine ring. Further studies with species switching 

mutations of the above residues will ascertain the role of these residues in substrate specificity for 4 and 5 

position tryptamine derivatives. Since the sparseness in the dataset for substitutions at α, R3, and 4 limits 

the further analysis of determinants of sensitivities to substitution at these positions, uptake and binding 

assays experiments with additional substrates modified at these positions should be useful in the context 

of our models. 

The Down binding mode places the indole ring such that the 6 and 7 positions of the tryptamine 

core point towards the interface between TM 8 and TM 3. The amino acid identities of residues at this 

interface do not change significantly in hSERT and dSERT. However, future experiments with site 

directed mutants in this region may verify the orientation of indole ring of the Down binding mode. One 

prediction is that an hSERT T439A mutant would display differential recognition of polarity switching 

substitutions at the 7 position on the tryptamine core. Additional hSERT mutants, such as G442S, A173S, 

and A169S, would impact recognition of 6 position substituted tryptamines with varied hydrogen bonding 

capabilities. Assessing the function of these mutants in both hSERT and dSERT backgrounds could 

validate the assumption of a conserved mode for tryptamines in SERTs. Should the assumption prove 

incorrect, this constraint on the binding mode selection could be changed to find modes consistent with 

new experimental findings. 

Despite the advances made with the current models, much still remains unknown. The LeuTAa 

structure captures but one state in a multistep transport process. Structures of other states in the transport 

process are needed to fully understand species selectivity for substrates. Additionally, the LeuTAa 

structure lacks a chloride in the binding site known to be required for function of the SERT. Studies are 

forthcoming to elucidate mechanism of chloride coupling in transport. 
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Jorgensen et. Al (Jorgensen, Tagmose et al. 2007) independently performed a manual docking 

and molecular dynamics study with 5-HT in hSERT. Interestingly, the binding mode identified is similar 

to our Down mode. Celik et al. recently reported a study on hSERT using the paired mutant-ligand analog 

complementation approach (Celik, Sinning et al. 2008). They report an alternate binding mode using this 

approach. Our approach places a lower priority on their proposed binding mode as it seems less consistent 

with the cross species sensitivities reported in the SVM sensitivity maps. We expect hSERT and dSERT 

to show differences in the amino-acids in regions surrounding the 5 position and the N position. Of course 

hSERT and dSERT could bind in different modes, but this is unlikely. Our study applies a different 

approach of comparing multiple tryptamine derivatives in both hSERT and dSERT, thereby identifying 

structural determinants of substrate specificity in these transporters. 

Conclusion 

Docking of 5-HT into hSERT and dSERT identifies a single conserved binding mode, in which 

the predicted binding energy of tryptamine derivatives correlates with inhibition uptake constants 

(R=0.72). The Down binding mode curls the ethylamine tail under F335 and S336 and orients the 5-OH 

group towards A169 with the indole nitrogen facing the top of the binding site covered by Y176. This 

binding mode correctly predicts, qualitatively, the decreased modification by SCAM reagents of cysteines 

substituted at I172, Y176, A441, and the extracellular half of TM 10 due to binding of 5-HT. The mode 

posits that polarity differences caused by A169D and V343T changes could be responsible for species 

selectivity observed for hSERT and dSERT recognition of tryptamine derivatives. As additional 

mutations in SERTs are produced and characterized, particularly in the context of substituted tryptamines, 

our models should be capable of local refinement to even more precisely focus its utility.  
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Appendix A 

Support Vector Machine Sensitivity Map Encoding Scheme 

 The encoding scheme generates a 24 bit binary number indicating the substituents on the 

base tryptamine core (see Fig. 2 ) recognized by SERTs. Table A1 shows the encoding scheme for each 

tryptamine analog 

.
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Table A1 SVM Sensitivity Map Encoding Scheme                                         
      X R3 2 4 5 6 7 α amine 

  hSERT scaled 
logKi 

dSERT scaled 
logKi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

5-hydroxy-tryptamine 0.181 0.215 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
5-hydroxy-7-methoxy-tryptamine 0.43 0.582 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 
5,7-dihydroxytryptamine 0.492 0.495 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 
3-(beta-Aminoethyl)-5-
hydroxybenzothiophene 0.341 0.367 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

4-hydroxy-tryptamine 0.453 0.699 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
7-hydroxytryptamine 0.43 0.492 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 
tryptamine 0.192 0.355 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
5,6,7-trihydroxytryptamine 0.938 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 
1-methyltryptamine 0.302 0.351 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
5-Methoxytryptamine 0.572 0.529 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 
N,N-dimethyltryptamine 0.162 0.337 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
6-Methoxytryptamine 0.252 0.215 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 
5-Methoxy-N,N-dimethyl-tryptamine 0.439 0.457 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 
6-Fluorotryptamine 0.144 0.225 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 
5-Methyltryptamine 0.391 0.543 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Serotonin o-sulfate 0.939 0.816 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
1-Methylserotonin 0.325 0.415 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
7-Benzyloxytryptamine 0.235 0.066 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 
7-Methyltryptamine 0.041 0.266 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 
5-Hydroxytryptophol 0.774 0.868 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
2-Methyl-5hydroxy-tryptamine 0.405 0.606 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
alpha-Methyltryptamine 0.215 0.138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 
N-isopropyl-tryptamine 0.663 0.225 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
5-Methoxy-N-isopropyl-tryptamine 0.726 0.316 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 
5-Carboxamidotryptamine 0.628 0.57 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
5,6-Dihydroxytryptamine 0.595 0.603 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 

 
element 1 encode 0 if indole nitrogen is N else encode 1 element 13 encode 1 if 6 position is OH else encode 0 
element 2 encode 0 if substituent of R3 postion is H else encode 1 element 14 encode 1 if 6 position is methoxyl group else encode 0 
element 3 encode 1 in R3 substituent is methyl else encode 0 element 15 encode 1 if 6 position is F else encode 0 
element 4 encode 1 in R3 substituent is isopropyl else encode 0 element 16 encode 0 if 7 position is H else encode 1 
element 5 encode 0 if 2 position is H else encode 1 element 17 encode 1 if 7 position is OH else encode 0 
element 6 encode 0 if 4 position is H else encode 1 element 18 encode 1 if 7 position is methyl else encode 0 
element 7 encode 0 if 5 position is H else encode 1 element 19 encode 1 if 7 position is methoxyl group else encode 0 
element 8 encode 1 if 5 position is OH else encode 0  element 20 encode 1 if 7 position is benzoxyl else encode 0 
element 9 encode 1 if 5 position is amide else encode 0 element 21 encode 0 if alpha position is H else encode 1 
element 10 encode 1 if 5 position is sulphonate else encode 0 element 22 encode 1 if amine has diethyl substituents else encode 0 
element 11 encode 1 if 5 position is methoxyl group else encode 0 element 23 encode 1 if amine has been substituted to an OH else encode 0 
element 12 encode 0 if 6 position is H else encode 1 element 24 encode 1 if amine is a primary amine else encode 0 
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