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CHAPTER 1

INTRODUCTION

1.1 Distributing Points on a Sphere and in Space

Point generation on a manifold is a far reaching subject throughout the mathematical and

physical sciences. In representing a manifold as a discrete configuration for data storage,

network and sensor development, modeling functions with finite element or radial basis

function methods, approximating integrals using quasi-Monte Carlo methods, statistical

sampling, graphic design, molecular modeling, or determining ground states of matter,

good node sets need to be constructed with certain properties and constraints. Of particular

interest is point generation on the unit sphere,

Sd :=
{

x ∈ Rd+1|‖x‖= 1
}

where ‖ · ‖ denotes the standard Euclidean norm. Modeling of the Earth, night sky, or the

cosmic microwave background radiation often requires large and computationally efficient

data sets on S2. Sampling on higher dimensional spheres is intimately related to error

correcting codes and communication theory.

In distributing points (nodes), we must consider the question, ”What makes a good

node set?” One criterion is that they model a given distribution on the manifold. On a

d-dimensional, compact Riemannian manifold A⊂ Rn, a sequence {ωN}∞

N=1 ⊂ A of point

sets with ωN having cardinality N is called equidistributed if the sequence of normalized

counting measures,

νN(B) :=
1
N
|B∩ωN |, B a Borel set, (1.1)

associated with the ωN’s converges in the weak-star sense to σA :=Hd(·∩A)/Hd(A), the

normalized d-dimensional Hausdorff measure on A, as N→ ∞. That is, for all continuous
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functions f : A→ R,

lim
N→∞

∫
A

f dνN =
∫

A
f dσA.

An equivalent definition is that the discrepancy

D(ωN) := sup
x∈A, r>0

∣∣∣∣ |B(x,r)∩ωN |
N

−σA(B(x,r))
∣∣∣∣→ 0, N→ ∞,

where B(x,r) denotes the ball of radius r around x. Finding low discrepancy sequences

is of particular importance in quasi-Monte Carlo methods. Further challenges arise when

we wish to place nodes according to a certain non-uniform density, as a method of local

refinement, for example, or along the boundary of A or when we deal with non-smooth

manifolds. When using meshless methods for solving PDE’s, the desired distribution is

often non-uniform, in which case we can replace σA with a general probability measure µ

on A and measure equidistribution and discrepancy with respect to µ .

For the study of local statistics, separation and covering properties play an important

role. The separation of a configuration ωN ⊂ A is

δ (ωN) := min
x,y∈ωN

x 6=y

‖x− y‖,

and a sequence of N-point configurations is said to be well-separated if for some c > 0 and

all N ≥ 2,

δ (ωN)≥ cN−1/d. (1.2)

The covering radius of ωN with respect to A is defined to be

η(ωN) := max
y∈A

min
x∈ωN
‖x− y‖,

and a sequence of N-point configurations is a good-covering if for some C > 0 and all N ≥ 2,

η(ωN)≤CN−1/d. (1.3)
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A sequence of configurations {ωN}∞

N=2 is said to be quasi-uniform if the sequence

{
γ(ωN) :=

η(ωN)

δ (ωN)

}
N≥2

is bounded as N→ ∞. The quantity γ(ωN) is called the mesh ratio of ωN . Note that some

authors define the mesh ratio as 2γ(ωN). A sequence of N-point configurations is quasi-

uniform if it is well-separated and a good-covering. We remark that equidistribution does

not imply quasi-uniformity or vice versa. In applications involving radial basis functions,

“1-bit” sensing, and finite element methods ([50], [72], [85], and [95]), there is interest in

precise bounds on D(ωN), δ (ωN),η(ωN), and γ(ωN). A trivial lower bound is γ(ωN)≥ 1/2

for any configuration. Asymptotically, as proved in [12], for any sequence of configurations

{ωN}∞

N=2 ⊂ S2

γ(ωN)≥
1

2cosπ/5
+o(1) =

√
5−1
2

+o(1), N→ ∞,

Part of our emphasis in discussing equidistributed configurations on S2 in Chapter 2 will be

on generating sequences with low mesh ratio.

Yet another property advantageous to certain sequences is that they are approximately

optimal configurations with regards to some quantity. The best packing problem, known as

the Tammes problem when A = S2, asks for the largest separation distance possible for a

given N-point configuration on A, i.e. determine

δ (N,A) := sup
ωN⊂A

δ (ωN). (1.4)

In information theory [88], error correcting codes on the sphere are engineered by finding

nodes which are near optimal packing configurations. On the other hand, the best covering

problem asks for the minimal covering radius achieved by an N-point configuration, that is

η(N,A) := inf
ωN⊂A

η(ωN). (1.5)
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The Voronoi cell of a point x ∈ ωN ⊂ A is the polytope

Vx(ωN) := {y ∈ A : ‖y− x‖ ≤ ‖y− z‖,∀ z ∈ ωN \{x}} . (1.6)

The Voronoi decomposition of a configuration is

V (ωN) := {Vx(ωN)}x∈ωN

which partitions A. In this context, the best packing problem asks for the Voronoi decompo-

sition with the largest possible minimal inradius of a cell while the best covering problem

asks for the smallest possible maximal circumradius of a cell. However, solutions to the

best packing problem are only known for a handful of manifolds A and points N. On the

sphere S2, the only optimal packings known are for N = 2,3, . . .14, and 24. We can instead

generalize the packing problem by asking for a suitable pairwise potential whose minimal

configurations are close to best packing points. This is of particular interest for this thesis.

1.2 Minimizing Energy as a Method of Point Distribution

The problem of minimizing point energies on the sphere dates to at least the beginning

of the 20th century when Thomson put forth a model of the ground state configurations of

electrons in [100]. Given a lower-semicontinuous, symmetric kernel K : A×A→ (−∞,∞],

and a configuration ωN ⊂ A, the K-energy of ωN is defined to be

EK(ωN) := ∑
x,y∈ωN

x 6=y

K(x,y). (1.7)

If A is compact, the infimum of EK(ωN) over all N-point configurations is attained and is

denoted by EK(N,A). We will restrict our attention to the class of Riesz kernels defined by

4



Ks(x,y) =
1

‖x− y‖s , s > 0

Klog(x,y) = log
1

‖x− y‖
,

Ks(x,y) =−‖x− y‖−s, s < 0.

(1.8)

For brevity, the energy and minimal energy quantities for the Riesz s-kernel and log kernel

will be denoted by Es(ωN), Elog(ωN), Es(N,A), and Elog(N,A) respectively. The latter two

quantities are related by

d
ds
Es(N,A)

∣∣∣∣∣
s→0+

= Elog(N,A),

On the other hand, as s→ ∞, the energy in (1.7) is dominated by the terms which represent

the smallest pairwise distances, and in this sense the minimal energy problem becomes the

best-packing problem. More precisely [13]:

Proposition 1.2.1. For a fixed N ≥ 2 and any A⊂ Rd ,

lim
s→∞
Es(N,A)1/s =

1
δ (N,A)

. (1.9)

Proof. Denote by ωs
N = {xs

1, . . .x
s
N} an N-point s-energy minimizing configuration on A and

ω∞
N = {x∞

1 , . . .x
∞
N} an N-point best packing. Then

Es(N,A)1/s = Es(ω
s
N)

1/s ≥ 1
δ (ωs

N)
≥ 1

δ (N,A)

by discarding all but the largest term in (1.7). On the other hand,

Es(A,N)1/s ≤ Es(ω
∞
N )

1/s =
1

δ (N,A)

(
∑
i 6= j

(
δ (N,A)
‖x∞

i − x∞
j ‖

)s)1/s

≤ 1
δ (N,A)

(N(N−1))1/s,
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and thus

limsup
s→∞

Es(A,N)1/s ≤ 1
δ (N,A)

.

Determining an exact minimal configuration for a fixed N and s is a highly nonlinear

optimization problem complicated by the fact that the number of local minima appears to

grow exponentially with N. In practice, gradient descent and Newton methods are used to

arrive at approximate global minima [27]; however, there is substantial interest in generating

nearly optimal points more quickly. Smale’s 7th problem for the 21st century asks for an

algorithm in polynomial time to generate N-point configurations ωN ⊂ S2 such that

Elog(ωN)≤ Elog(N,S2)+ c logN.

for some constant c independent of N [90]. While a long way from a solution to Smale’s

problem, several fast algorithms for generating equidistributed points on S2 have been put

forth and are analyzed in Chapter 2.

A solution to Smale’s problem requires an asymptotic expansion of Elog(N,S2) to order

logN. As N→ ∞, minimal energy configurations will approximate some distribution on A.

We define the continuous Riesz energy for a probability measure µ on A by

Is[µ] :=
∫ ∫ 1

|x−y|s
dµ(x)dµ(y), s 6= 0

Ilog[µ] :=
∫ ∫

log
1

|x−y|
dµ(x)dµ(y).

For a d-dimensional set A, when s < d and s = log, Is[µ] is minimized by a unique

probability measure, denoted µA,s, called the equilibrium measure which is in general non

uniform. As N → ∞, the counting measures of the s-energy minimizing configurations
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converge in the weak-star sense to µA,s, and moreover, classical potential theory gives

lim
N→∞

Es(N,A)
N2 = Is[µA,s]. (1.10)

Furthermore, the following expansion is known [7] for log energy on S2:

Theorem 1.2.2. There exists a constant C 6= 0, independent of N, such that

Elog(N,S2) = Ilog[σS2 ]N2− N logN
2

+CN +o(N), N→ ∞,

−0.22553754≤C ≤ Ĉ := 2log2+
1
2

log
2
3
+3log

√
π

Γ(1/3)
=−0.05560530...

The following extension of Theorem 1.2.2 is conjectured in [21]:

Conjecture 1.2.3.

Elog(N,S2) = Ilog[σS2]N2− N logN
2

+ĈN +D logN +O(1), N→ ∞.

When s is larger than the dimension of the set, which we call the hypersingular case,

Is[µ] = ∞ for any probability measure µ . Thus the continuous energy problem on A is

ill-posed, and the standard methods of potential theory do not apply. In this case local

interactions dominate the energy sum, and the authors in [57] proved that the resulting

distribution is not dependent on the underlying set A for a large class of sets.

Theorem 1.2.4 (“Poppy Seed Bagel Theorem”). Let A ⊂ Rp be the Lipschitz image of a

bounded set in Rd . For all s > d, there exists a constant Cs,d , independent of A such that

lim
N→∞

Es(A,N)

N1+s/d
=

Cs,d

Hd(A)s/d
. (1.11)

Moreover, any sequence of minimal s-energy configurations is equidistributed.

In dimension d = 1, it is known that Cs,1 = 2ζ (s), twice the Riemann zeta function [71],
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Figure 1.1: Approximately minimal energy nodes on S2 for N = 1000 and s = 2.

but for all other dimensions the exact value of Cs,d remains an open question. Heuristically,

minimal energy configurations in this regime appear to locally resemble best packing

configurations. For example, on S2, it has been observed that the Voronoi cell decomposition

of approximately optimal energy points appears to consist primarily of nearly regular

spherical hexagons mixed with “scars” of spherical heptagons and pentagons as shown in

Figure 1.1. Cells with black points are hexagonal, but not necessarily regular. Cells with red

points are pentagonal and cells with cyan points are heptagonal. We discuss this formally in

the next section.

1.3 Lattice Packings and Cs,d

The density of a collection B of non overlapping equal sized balls in Rd is defined to be:

ρ(B) := lim
r→∞

Hd(B∩ [−r,r]d)
(2r)d (1.12)

provided the limit exists. The packing density of Rd is then

∆d := sup
B

ρ(B). (1.13)
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Like the packing problem for a finite number of points on a compact set A, determining the

packing density is a notoroiusly difficult problem. The only dimensions for which ∆d is

known are d = 1,2,3 and more recently d = 8 and d = 24 (see [101] and [33]). In these

dimensions, ∆d is obtained by packings where the centers of the balls in B are given by a

lattice which is a set of the form

Λ = {A · x | x ∈ Zd} (1.14)

for some d×d generator matrix A. The covolume of the lattice |Λ| is defined to be Det(A).

For d = 1, the integer lattice shows that ∆1 = 1. For d = 2 the triangular lattice which

is given by the basis vectors e1 = (1,0) and e2 = (1/2,
√

3/2) was shown to be optimal

by Fejes-Toth [45]. In dimension 3, there are uncountably many non isometric packings

which produce a density of π/3
√

2 which are constructed by taking alternating layers of the

triangular lattice. The face centered cubic lattice given by the generator matrix

A =


−1 −1 0

1 −1 0

0 1 −1


is one such construction. Proving that this is the optimal packing density is known as

Kepler’s conjecture and was an open problem for nearly 400 years until a massive computer

aided proof was given by Hales [54].

The E8 lattice is the unique even unimodular lattice in dimension 8. That is, its generator

matrix has determinant 1 and the squared norm of every vector is an even integer. It consists

of all vectors v = {x1, . . . ,x8} such that

all xi ∈ Z or all xi ∈ Z+1/2, and

∑xi ≡ 0 (mod 2).

9



The Leech lattice is the unique even unimodular lattice in dimension 24 with mini-

mal norm 2. Multiple constructions are given in [36]. Both the E8 and Leech lattices

have a number of remarkable properties that make them solutions to other optimization

problems [36].

In d = 4, the D4 lattice, also known as the “checkerboard” lattice is conjectured to have

optimal packing density. It is defined by

D4 := {{x1, . . . ,x4} ∈ Z4 | ∑xi ≡ 0 (mod 2)} (1.15)

In general it is not true that ∆d can be obtained by a lattice packing, and in large dimensions

disordered packings appear to beat lattice packings [32].

The proofs of ∆8 and ∆24 utilize the linear programming techniques developed in [32]

for bounding sphere packings. These methods have been successfully used in a number

of optimization problems to bound spherical designs [41] and error-correcting codes [40].

In chapter 4, we will adapt this technique to obtain lower bounds on Cs,d . The following

relation between Cs,d and the packing density is shown in [14]:

lim
s→∞

[Cs,d]
1/s =

1
C∞,d

C∞,d := 2
[

∆d

Hd(Bd)

]1/d

(1.16)

where Bd ⊂ Rd is the unit ball.

Any sequence of configurations on a set A provides an upper bound for Cs,d , as does any

lattice Λ⊂ Rd . The Epstein zeta function for a lattice is defined to be

ζΛ(s) := ∑
06=x∈Λ

‖x‖−s (1.17)

Then we have the following bound [21].

Proposition 1.3.1.

Cs,d ≤ min
Λ⊂Rd

|Λ|s/d
ζΛ(s), (1.18)

10



where the minimum is taken over all lattices Λ⊂ Rd with covolume |Λ|>0.

Proof. Fix Λ ⊂ Rd with |Λ| >0, and let Ω be the fundamental cell of Λ, that is, if ei,

i = 1, . . . ,d are the columns of the generator matrix A,

Ω := {∑ tiei | 0≤ ti ≤ 1}.

For an n ∈ N, consider the configuration ωN which is the scaled lattice (1/n)Λ intersected

with Ω. Then N = nd , and

Es(ωN) = ∑
x∈ωN

∑
x 6=y

y∈ωN

1
‖x− y‖s ≤ ∑

x∈ωN

∑
x 6=y

y∈(1/n)Λ

1
‖x− y‖s

= ∑
x∈ωN

ns
ζΛ(s) = nd+s

ζΛ(s) = N1+s/d
ζΛ(s).

Substituting into (1.11) with A = Ω yields (1.18).

Furthermore, the following conjecture is well known [21]:

Conjecture 1.3.2. For d = 2,4,8, and 24,

Cs,d = C̃s,d := |Λd|s/d
ζΛd(s)

where Λ2 is the hexagonal lattice, Λ4 the D4 lattice, Λ8 the E8 lattice, and Λ24 the Leech

lattice.

1.4 Organization and Results

This thesis has two principal foci. In Chapters 2 and 3 we present and analyze a variety of

algorithms for generating point configurations on Sd and the torus T⊂R3, as well introduce

a generic strategy for generating locally quasi-uniform points of variable density on any full

dimensional subset of Rd . The methods and algorithms are concentrated on construction
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and computation, though we also prove some of the theoretical properties above. With the

notable exception of the variable density points, we do not discuss particular applications.

We define and prove any necessary theorems as needed. Updated Matlab code for the

algorithms presented is available at the author’s Github: https://github.com/michaetj

In chapter 4, we prove a lower bound on Cs,d based off of the linear programming method.

This general framework for obtaining lower bounds for minimal energy configurations on

the sphere Sd was developed by Yudin [106] based on the Delsart-Goethals-Seidel bounds

on spherical designs [41]. The technique involves maximizing a function f (t)≤ h(t) over

certain constraints. Combining these methods with Levenshtein’s work on maximal spherical

codes, the authors in [20] establish explicit universal lower bounds depending only on the

potential function h for absolutely monotone potentials, and we extend this to the asymptotic

case as N→ ∞. The prerequisite theory is developed at the beginning of the chapter.

12



CHAPTER 2

POINT GENERATION ON S2

This chapter is based on the papers [56] and [73]. We survey some of the popular point

configurations on the sphere S2, and prove results about their equidistribution, separation

and mesh ratios. In Section 2.4.1, we introduce a new series of equidistributed icosahedral

configurations, which improves on the best known mesh ratios and energies for some

potentials. The proofs are collected at the end of the chapter.

2.1 Spiral Points

Generalized Spiral Points

A spherical spiral on S2 is a path in spherical coordinates of the form

r = 1, θ = Lφ , 0≤ φ ≤ π,

where φ denotes the polar angle and θ the azimuth. Modifying a construction by Rakhmanov,

Saff, and Zhou [81], Bauer [4] defines a sequence of N points lying on a generating spherical

spiral, SN :

L =
√

Nπ, hk = 1− 2k−1
N

, φk = cos−1(hk), θk = Lφk, k = 1, ...,N. (2.1)

The slope L is chosen such that for large N, the distance between adjacent points on the

same level of the curve is similar to the distance between adjacent levels which differ by 2π

in θ . Indeed, the geodesic spacing between turns of the spiral is given by 2π/L =
√

4π/N.

Meanwhile, the total arc length is

13



Figure 2.1: Plot of N = 700 generalized spiral points and their Voronoi decomposition.

T =
∫

SN

√
dφ 2 +dθ 2 sin2

φ =
∫

π

0

√
1+L2 sin2

φ dφ = 2
√

1+L2E
(
L/
√

1+L2
)
,

where E(·) is the complete elliptic integral of the second kind. For large N, T ≈ 2L, and

the spiral is divided into nearly equal length segments of approximately 2L/N =
√

4π/N.

We refer to these points as the generalized spiral points.

Theorem 2.1.1. The sequence {ωN}∞

N=1 of generalized spiral point configurations is equidis-

tributed on S2, quasi-uniform, and has the following asymptotic separation property:

lim
N→∞

√
Nδ (ωN) =

√
8−4

√
3cos(

√
2π(1−

√
3)) = 3.131948.... (2.2)

As shown in the proof of Theorem 2.1.1, the Voronoi cells of ωn are asymptotically

equal area (defined in (2.15) below), but do not approach regular hexagons. Indeed, a typical

decomposition is shown in Figure 2.1. A comparison of the mesh ratios for several values of

N is shown in Table 2.1. Numerically, the mesh ratio appears to converge to 0.8099....

Fibonacci Nodes

Another set of spiral points is modeled after nodes appearing in nature such as the seed

14



Table 2.1: Mesh Ratios for Generalized Spiral Nodes

N γ(ωN) N γ(ωN) N γ(ωN)

10 0.897131 400 0.816007 20000 0.809510
20 0.827821 500 0.810128 30000 0.809629
30 0.814383 1000 0.805465 40000 0.809689
40 0.826281 2000 0.806411 50000 0.809725
50 0.834799 3000 0.807510 100000 0.809797
100 0.803901 4000 0.808077 200000 0.809832
200 0.806020 5000 0.808435 300000 0.809844
300 0.809226 10000 0.809151 500000 0.809854

distribution on the head of a sunflower or a pine cone, a phenomenon known as spiral

phyllotaxis [42]. Coxeter [37] demonstrated these arrangements are fundamentally related to

the Fibonacci sequence, {Fk}= {1,1,2,3,5,8,13, ...} and the golden ratio ϕ = (1+
√

5)/2.

There are two similar definitions of the spherical point set in the literature. Both are defined

as lattices on the square [0,1)2 and then mapped to the sphere by the Lambert cylindrical

equal area projection, denoted by Λ. In Cartesian coordinates, Λ is defined by

Λ(x,y) :=
(√

1− (2y−1)2 cos2πx,
√

1− (2y−1)2 sin2πx,2y−1
)

(2.3)

and, in spherical coordinates, by

Λ(x,y) := (cos−1(2y−1),2πx) = (φ ,θ). (2.4)

Define a rational lattice on [0,1)2, with total points Fk by

ω̃Fk :=
({

iFk−1

Fk

}
,

i
Fk

)
, 0≤ i≤ Fk, (2.5)

where {x}= x−bxc denotes the fractional part of x. On the other hand, an irrational lattice

can be formed similarly for all values of total points N by replacing Fk−1/Fk in (2.5) by

lim
k→∞

Fk−1/Fk = ϕ
−1:
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Figure 2.2: Fibonacci nodes for N = 1001 and corresponding Voronoi decomposition.

ω̃N :=
({

iϕ−1} , i
N

)
, 0≤ i≤ N.

Swinbank and Purser [96] define a spherical point set for all odd integers 2N + 1

symmetrically across the equator derived from the irrational lattice with points shifted a half

step away from the poles:

θi = 2πiϕ−1, sinφi =
2i

2N +1
, −N ≤ i≤ N, −π/2≤ φi ≤ π/2.

Denote ω2N+1 as the configuration generated above. Whereas for large N, the generalized

spiral points tend towards flattening out and partitioning the sphere into distinct regions of

latitude, the Fibonacci points maintain visible clockwise and counterclockwise spirals as N

grows. Labeling the points of ω2N+1 by increasing latitude, the dominant spirals emanating

from xi ∈ ω2N+1 are formed by the sequence
{

xi+ jFk

}
for some Fibonacci number Fk and

j = · · · ,−2,−1,0,1,2, · · · . A typical configuration is given in Figure 2.2.

The Fibonacci points derived from the rational lattice are studied by Aistleitner et al [1]

and Bilyk et al [10] for discrepancy estimates. In [1], the spherical cap discrepancy of the

configurations with total points Fk is bounded by
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xi

b2 b1

b5

b3

b4

b6

0 2π

2πϕ−1

xi+1

xi+2
xi+3

xi+5

xi+8

xi+13

Figure 2.3: Irrational lattice points on the square with labeled basis vectors.

D(Λ(ω̃Fk))≤

 44
√
(2/Fk) if k is odd,

44
√

(8/Fk) if k is even.

Numerical experiments in [1] suggest that in fact,

D(Λ(ω̃Fk)) = O
(
(logFk)

c

F3/4
k

)
, k→ ∞ for some 1/2≤ c≤ 1.

which is optimal up to a log power [5]. Both sequences of Fibonacci configurations are

equidistributed. However, since the Swinbank and Purser nodes are defined for more values

of total points, we will take these to be the Fibonacci sets moving forward. In [96], these

points are also numerically shown to be asymptotically equal area as defined in (2.15) below.

Analyzing ω2N+1 as a shifted irrational lattice mapped by the Lambert projection helps

to visualize the underlying spiral structure. Define a system of basis vectors

bk = Λ
−1(xi+Fk)−Λ

−1(xi), k = 1,2,3...,

which are independent of base point xi. This is illustrated in Figure 2.3. Emanating from
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Figure 2.4: Triangulation of N = 3001 Fibonacci nodes.

each point xi, the line of points {xi +mbk}m=··· ,−1,0,1,··· is mapped to a spiral on S2 under

the Lambert projection. Like the Fibonacci sequence, the basis vectors satisfy

bk+1 = bk +bk−1.

On the sphere, the basis vectors in terms of the local Cartesian coordinate system at a point

(φi,θi) ∈ ω2N+1 have the form

ck,i =

(
(−1)k2π cosφiϕ

−k,
2Fk

(2N +1)cosφi

)
. (2.6)

For a fixed latitude φ and total number of points 2N +1, the zone number z is defined by

ϕ
2z = (2N +1)π

√
5cos2

φ .

Letting d =
√

4π/(
√

5(2N +1)) and using the fact that for large k, Fk ≈ ϕk/
√

5 equation

(2.6) can be rewritten

ck,i ≈ d((−1)k
ϕ

z−k,ϕk−z). (2.7)

For latitudes where k−1/2≤ z≤ k+1/2, ck,i has the minimum length of the basis vectors
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around xi and forms the dominant spiral at those latitudes. As shown in [96], |ck,i| is also the

smallest distance between points near these latitudes. Thus, the Delaunay triangulation [78]

of ω2N+1 is composed of ck,i,ck−1,i, and ck+1,i when k−1/2≤ z≤ k+1/2. This is shown

in Figure 2.4. The enlarged box demonstrates where zone number z changes with changing

φ . The sudden shift occurs at z = k± 1/2. Along this latitude, ck,i and ck±1,i have equal

lengths. This allows us to prove quasi-uniformity.

Proposition 2.1.2. The sequence of Fibonacci configurations is quasi-uniform.

Numerically, the minimal separation appears to occur at the pole with value ‖x1− x4‖=

‖x2N+1− x2N−2‖ and the largest hole appears to occur in the triangles covering the poles,

4x2,x3,x5 and4x2N ,x2N−1,x2N−3. In a straightforward computation, it can be shown that

lim
N→∞

√
2N +1‖x1− x4‖=

√
16−

√
112cos(6πϕ−1) = 3.09207...

and the circumradius r of the polar triangles satisfies

lim
N→∞

√
2N +1r = 2.72812....

As shown in Table 2.2, the mesh ratios for Fibonacci nodes appear to converge quickly to

this ratio = 0.882298....

Table 2.2: Mesh Ratios for Fibonacci Nodes

N γ(ωN) N γ(ωN) N γ(ωN)

11 0.859197 401 0.881897 20001 0.882289
21 0.872632 501 0.881978 30001 0.882292
31 0.876251 1001 0.882139 40001 0.882293
41 0.877909 2001 0.882218 50001 0.882294
51 0.878857 3001 0.882244 100001 0.882296

101 0.880646 4001 0.882258 200001 0.882297
201 0.881489 5001 0.882266 300001 0.882297
301 0.881762 10001 0.882282 500001 0.882297
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Figure 2.5: Hammersley nodes for N = 1000 and corresponding Voronoi decomposition.

2.2 Low Discrepancy Nodes

Another approach for distributing points on the sphere is to minimize a suitable notion

of discrepancy, such as spherical cap, Lp, or generalized discrepancy (cf. [23] and [38]). A

low spherical cap discrepancy sequence {ωN}∞

N=2 satisfies [5]

a
N3/4 ≤ DC(ωN)≤ A

√
logN

N3/4 , N ≥ 2, (2.8)

for some a,A > 0. Low discrepancy point sets are used in Quasi-Monte Carlo methods for

numerical integration and also in graphics applications in [104]. One method for generating

spherical nodes is to first distribute points on the square [0,1)2 with low planar discrepancy

with respect to the L1 metric [77], i.e. for some A > 0

D(ωN) = sup
R

∣∣∣∣R∩ωN

N
−σ(R)

∣∣∣∣≤ A
logN

N
, ωN ⊂ [0,1)2, (2.9)

where the supremum R is taken over all rectangles with sides parallel to the axes. These

sequences are then mapped to the sphere via the Lambert projection. While the logN/N

term in (2.9) is optimal on the plane [86], it is an open problem whether the images of

these sequences have optimal order spherical cap discrepancy. There are several such node

distributions in the literature (cf. [1] and [38]), but as their properties are similar, we only
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consider the following one.

Hammersley Nodes

For an integer p≥ 2, the p-adic van der Corput sequence is defined by

x(p)
k =

a0

p
+ · · ·+ ar

pr+1 , where k = a0 + · · ·+ar pr, ai ∈ {0,1} .

The Hammerlsy node set on the square ([38], [77], and [104]) is given by xk := x(2)k and

yk := 2k−1
2N . The N point spherical Hammersley node set is given by {Λ(2πxk,1−2yk)}N

k=1.

The configuration for N = 1000 is given in Figure 2.5. The discrepancy of the planar

Hammersley nodes is known from Niederreiter [77] to satisfy (2.9) . The sequence of

Hammersley configurations is equidistributed; however it is not well-separated or quasi-

uniform. This makes the nodes poor candidates for energy, as shown in Section 2.8. Their

Voronoi decompositions also exhibit no discernible geometric patterns.

2.3 Equal Area Partitions

Another class of point sets are those derived from equal area partitions of the sphere. A

partition PN := {Wi}N
i=1 of S2 into N cells whose pairwise intersections have σ -measure 0 is

equal area if σ(Wi) = 1/N for all 1≤ i≤ N. A sequence of partitions {PN}∞

N=2 of S2 such

that each PN has N cells is diameter bounded if there are constants c,C > 0 such that for all

N ∈ N and for every cell W N
i ∈ PN ,

cN−1/2 ≤ diam W N
i ≤CN−1/2, (2.10)

where diam(A) := supx,y∈A ‖x− y‖.

Zonal Equal Area Nodes:
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Rakhmanov et al [81] construct a diameter bounded, equal area partition of S2 into

rectilinear cells of the form

R([τφ ,νφ ]× [τθ ,νθ ]) :=
{
(φ ,θ) ∈ S2 : τφ ≤ φ ≤ νφ ,τθ ≤ θ ≤ νθ

}
.

The cells are grouped by regions of equal latitude called collars that have the form R([τφ ,νφ ]×

[0,2π]). The cells are defined such that νφ − τφ and νθ − τθ approximate
√

4π/N as N

grows. This ensures the correct order of the diameter bound. The cells are defined in the

following way.

1. Determine the latitudes of the polar caps. The first two cells are taken to be the polar

caps of radius φc = cos−1(1−2/N).

2. Determine the ideal collar angle and ideal number of collars. The ideal angle between

two collars is

δI :=
√

4π/N.

The ideal number of collars between the polar caps, all of which have angle δI , is

nI :=
π−2φc

δI
.

3. Determine the actual number of collars, n. If N = 2, then n := 0. Otherwise,

n := max{1, round(nI)} .

4. Create a list of the ideal number of cells in each collar. The “fitting” collar angle is

δF :=
nI

n
δI =

π−2φc

n
.
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Figure 2.6: Zonal equal area partition of the sphere into 100 cells.

Label the collars
{

C j
}n+2

j=1 southward with the North polar cap as C1 and the South polar

cap as Cn+2. The area A j of collar C j can be written as the difference of polar cap areas:

A j = 2π(cos(φc +( j−2)δF)− cos(φc +( j−1)δF)).

Thus the ideal number of cells y j,I in each collar C j, j ∈ {2, . . . ,n+1}, is given by

y j,I =
4πA j

N
.

5. Create a list of the actual number of cells in each collar. We apply a cumulative

rounding procedure. Letting y j be the number of cells in C j, define the sequences y and a by

a1 := 0, y1 := 1, and for j ∈ {2, . . . ,n+1}:

y j := round(y j,I +a j−1), a j :=
j

∑
k=1

yk− yk,I.

6. Create a list of latitudes φ j of each collar and partition each collar into cells. We

define φ j as follows: φ0 = 0, φn+2 = π and for j ∈ {1, . . . ,n+1},

φ j = cos−1(1− 2
N

j

∑
k=1

yk).
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Figure 2.7: Zonal equal area points for N = 700 and corresponding Voronoi decomposition.

Thus the North polar cap of radius φ j has normalized area ∑
j
k=1 yk/N, and C j :=R([φ j−1,φ j]×

[0,2π]).

7. Partition each collar into cells. C j has y j equal cells

{
R([φ j−1,φ j]× [θ j + k

y j

2π
,θ j +(k+1)

y j

2π
])
}y j−1

k=0
,

where θ j ∈ [0,2π) can be chosen to be any starting angle. Note that because θ j are chosen

independently, the equal area partition determined by the algorithm is not unique. Indeed,

the collars can rotate past each other without affecting the diameter bound or equal area

property of the partition. Because the choice of the θ j’s does not strongly affect the other

properties with which we are concerned, we will take them to be random.

The point set ωN is defined to be the centers of the cells of the rectilinear partition. A

configuration and Voronoi decomposition is given in Figure 2.7. As proved by Zhou [107],

the cells are diameter bounded from above by 7/
√

N; however, numerical experiments

from Leopardi in [63] suggest the bound to be 6.5/
√

N. For large N, the zonal equal area

configurations look very similar to the generalized spiral configurations. Namely they

exhibit iso-latitudinal rings with separation between adjacent points equal to separation

between rings and a random longitudinal shift between points in adjacent rings. As shown
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Table 2.3: Mesh Ratios for Zonal Equal Area Nodes

N γ(ωN) N γ(ωN) N γ(ωN)

10 0.711934 400 0.769527 20000 0.758100
20 0.790937 500 0.766808 30000 0.758069
30 0.788546 1000 0.765356 40000 0.756793
40 0.843385 2000 0.764631 50000 0.756785
50 0.790252 3000 0.758645 100000 0.756770
100 0.761296 4000 0.756510 200000 0.756762
200 0.764846 5000 0.764217 300000 0.758015
300 0.763188 10000 0.758192 500000 0.756757

in Section 2.8, the energy computations for both point sets are nearly identical.

Proposition 2.3.1. The sequence of zonal equal area configurations is equidistributed and

quasi-uniform.

The above construction was modified by Bondarenko et al [11] to create a partition with

geodesic boundaries for the creation of well-separated spherical designs. More details can

be found in [11]. Table 2.3 gives a comparison of the mesh ratios of the zonal points.

HEALPix Nodes

Developed by NASA for fast data analysis of the cosmic microwave background (CMB),

the Hierarchical Equal Area iso-Latitude Pixelization (HEALPix) was designed to have

three properties essential for computational efficiency in discretizing functions on S2 and

processing large amounts of data [53]:

1. The sphere is hierarchically tessellated into curvilinear quadrilaterals.

2. The pixelization is an equal area partition of S2.

3. The point sets are distributed along fixed lines of latitude.

To create the partition of S2, the authors in [53] first divide the sphere into 12 equal area,

four sided pixels defined by the following boundaries:
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Figure 2.8: Base tessellation of the sphere into 12 equal area pixels.

Figure 2.9: HEALPix nodes and Voronoi decomposition for N = 1200, k = 10.

|cosφ |> 2
3
, θ = m

π

2
, m = 0,1,2,3

cosφ =
−2−4m

3
+

8θ

3π
,

mπ

2
≤ θ ≤ (m+1)π

2
, m = 0,1,2,3

cosφ =
2−4m

3
− 8θ

3π
,
−(m+1)π

2
≤ θ ≤ −mπ

2
, m = 0,1,2,3.

The base tessellation is shown in Figure 2.8. For a given k ∈ N, each pixel is partitioned

into a k× k grid of sub-pixels of the same shape and equal area. The HEALPix point sets

are taken to be the centers of these pixels.
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On the polar regions |cosφ | > 2/3, the points are distributed along k iso-latitudinal

rings, indexed by i, each with 4i equally spaced points, indexed by j:

|cosφi|= 1− i2

3k2 , θ j =
π

2i

(
j− 1

2

)
.

On the equatorial region, there are 2k− 1 iso-latitudinal rings, each with 4k points. The

rings are indexed by k ≤ |i| ≤ 2k and the points by 1≤ j ≤ 4k:

|cosφi|=
4
3
− 2i

3k
,

θ j =
π

2k

(
j− s

2

)
, s≡ (i− k+1) mod 2.

The index s describes the phase shift between rings. This gives a configuration of size

N = 12k2. The point sets are hierarchical along the subsequence k = 3m. Holhoş and Roşca

[59] have shown that the HEALPix points can be obtained as the image of points on a certain

convex polyherdon under an area preserving mapping to the sphere.

Proposition 2.3.2. The sequence of HEALPix configurations is equidistributed and quasi-

uniform.

Numerically, the mesh ratio appears to be bounded by 1, as shown in Table 2.4.

Table 2.4: Mesh Ratios for HEALPix nodes

k N γ(ωN) k N γ(ωN) k N γ(ωN)

1 12 0.864783 9 972 0.965950 45 24300 0.992956
2 48 0.862243 10 1200 0.969599 50 30000 0.993648
3 108 0.909698 15 2700 0.979371 60 43200 0.994701
4 192 0.929080 20 4800 0.984328 70 58800 0.995456
5 300 0.940016 25 7500 0.987365 80 76800 0.996020
6 432 0.951047 30 10800 0.989509 90 97200 0.996455
7 588 0.957584 35 14700 0.990959 100 120000 0.996807
8 768 0.961782 40 19200 0.992082 150 270000 0.997867
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Figure 2.10: Radial icosahedral nodes N = 642.

2.4 Polyhedral Nodes and Area Preserving Maps

Another class of point sets are those derived from subdividing regular polyhedra and

applying radial projection: Π(x) = x/‖x‖ or an equal area projection. These node sets are

used in finite element methods to give low error solutions to boundary value problems. See,

for instance, [51] and [76].

Radial Icosahedral Nodes

This point set, as described in [98] and [105] is formed by overlaying a regular triangular

lattice onto each face of a regular icosahedron of circumradius 1 and edge length a =

csc(2π/5). Given k ∈ N, for each vertex v, divide two adjacent edges emanating from v

into basis vectors of length a/k. For the face F determined by these edges and vertex, the

icosahedral point set ω̃Nk on F is taken to be the set of lattice points generated by these

basis vectors restricted to F . The spherical points are ωNk := Π(ω̃Nk). These node sets are

defined for total points N = 10k2 +2 and hierarchical along the subsequence k j = k02 j for

any k0 ∈ N.

The sequence of icosahedral configurations {ω̃Nk}
∞

k=1 is equidistributed. However,

because radial projection is not area preserving, the sequence of spherical configurations

is not equidistributed. Density is higher towards the vertices of the icosahedron and lower
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Figure 2.11: Plot of N = 1016 cubed sphere points and Voronoi decomposition.

towards the center of the faces where the areal distortion of Π is greatest. The Voronoi

decomposition of ωNk is composed of twelve regular pentagons with all other cells regular

hexagons of varying size as illustrated in Figure 2.10.

Proposition 2.4.1. The sequence of radial icosahedral configurations is quasi-uniform.

Numerically, the mesh ratio appears to be bounded by 0.86, as shown in Table 2.5.

Table 2.5: Mesh Ratios for Radial Icosahedral Nodes

k N γ(ωN) k N γ(ωN)

1 12 0.620429 20 4002 0.830750
2 42 0.667597 30 9002 0.838066
3 92 0.684698 40 16002 0.842358
4 162 0.745348 50 25002 0.844697
5 252 0.765157 60 36002 0.846156
6 362 0.769854 70 49002 0.847376
7 492 0.789179 100 100002 0.849390
10 1002 0.808024 150 225002 0.850941
15 2252 0.821504 200 400002 0.851745

Cubed Sphere Nodes

A similar method as above can be applied to the cube [76]. A square k× k grid is placed

on each face of the cube and radially projected to the sphere. A typical point set is shown

in Figure 2.11. The Voronoi cells tend towards regular hexagons near the vertices of the
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cube. Towards the middle of each face they resemble a square lattice. The configurations

are defined for N = 6k2−12k+8 and are hierarchical along the subsequence k = k02m. By

an argument similar to that in the proof of Proposition 2.4.1, the limiting distribution is not

uniform, but the sequence of configurations is quasi-uniform. Numerically, the mesh ratio

seems to quickly converge to 1, as shown in Table 2.6.

Table 2.6: Mesh Ratios for Cubed Sphere Points

k N γ(ωN) k N γ(ωN) k N γ(ωN)

2 8 0.827329 10 488 0.996846 50 14408 0.999893
3 26 0.794265 15 1178 0.994025 60 20888 0.999926
4 56 0.972885 20 2168 0.999289 70 28568 0.999946
5 98 0.933655 25 3458 0.997954 80 37448 0.999959
6 152 0.989913 30 5048 0.999695 90 47528 0.999968
7 218 0.968757 35 6938 0.998979 100 58808 0.999974
8 296 0.994805 40 9128 0.999831 150 133208 0.999988
9 386 0.982046 45 11618 0.999390 200 237608 0.999994

Octahedral Points

Unlike in the previous examples, the octahedral points, described by Holhoş and Roşca

[58], are derived from an area preserving map U from the regular octahedron K of edge

length L =
√

2π/ 4
√

3 and surface area 4π to S2. Let Ux,Uy, and Uz denote the x,y, and z

components of U respectively. For (X ,Y,Z) ∈K,

Uz =
2Z
L2 (
√

2L−|Z|),

Ux = sgn(X)
√

1−U2
z cos

π|Y |
2(|X |+ |Y |)

,

Uy = sgn(Y )
√

1−U2
z sin

π|Y |
2(|X |+ |Y |)

.

To produce a spherical point set, the authors form a partition Pk of k2 triangles on each

face of the octahedron in the same manner as the radial icosahedral points and obtain an
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Figure 2.12: Equal area octahedral points for k = 15 and N = 902.

equal area spherical partition Pk = U(Pk). The point sets ωNk are taken to be the vertices of

the triangles of Pk. For a given k, there are 8k2 triangles and N = 4k2 +2 points.

The octahedral configurations have similar properties to the HEALPix node sets. They

are iso-latitudinal and hierarchical along the subsequence k = k02m. As shown in Figure

2.12, the Voronoi decomposition of the octahedral points is composed of hexagons and

eight squares at the vertices of the octahedron. The hexagons approach regularity towards

the center of the faces and deform along the edges. The sequence of configurations is

equidistributed, and in addition, the authors in [58] compute a diameter bound for any

triangular region T of Pk to be

diam T ≤ 2
√

4+π2
√

8k2
≈ 7.448√

8k2
.

Following their proof of this bound, we can calculate a lower bound on the separation and

an upper bound on the mesh norm.

Theorem 2.4.2. The sequence of equal area octahedral configurations is quasi-uniform

with

γ(ω4k2+2)≤
1
4

√
4+π2

2− (k+1)2/k2 →
√

4+π2

4
≈ 0.931048..., k→ ∞. (2.11)
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Table 2.7: Mesh Ratios for Octahedral Nodes

k N γ(ωN) k N γ(ωN) k N γ(ωN)

1 6 0.675511 9 326 0.873510 60 14402 0.905758
2 18 0.872884 10 402 0.875606 70 19602 0.908047
3 38 0.854610 15 902 0.882510 80 25602 0.909875
4 66 0.856329 20 1602 0.886310 90 32402 0.911382
5 102 0.860536 25 2502 0.888702 100 40002 0.912644
6 146 0.864599 30 3602 0.892884 200 160002 0.919218
7 198 0.868095 40 6402 0.898762 300 360002 0.921947
8 258 0.871036 50 10002 0.902784 400 640002 0.923503

This bound seems to be near optimal. As shown in Table 2.7, the mesh ratio grows to at

least 0.9235.

2.4.1 Equidistributed mesh icosahedral nodes

Improvements to the radially projected icosahedral points have been put forth by Song

et al [93] and Tegmark [99]. Here, we introduce two other improvements to these points

to create new configurations. First, we generalize the icosahedral lattice structure to create

configurations of more possible numbers of total points. Due to a method of Caspar and

Klug [28] derived during their investigation of the construction of viruses, we define a

triangular lattice on a regular icosahedron with total points

N = 10(m2 +mn+n2)+2, (m,n) ∈ N×N\ (0,0).

Consider the triangular lattice Λ2 ⊂ R2 generated by e1 = (1,0) and e2 = (1/2,
√

3/2).

For a given (m,n), let em,n = me1 + ne2 and it’s rotation by π/3 be basis vectors for an

unfolded icosahedron superimposed on the lattice. This is illustrated in Figure 2.13. Folding

the icosahedron results in a triangular lattice ω̃m,n on each face. Due to rotational symmetry

of the lattice, the resulting configuration is independent of how the icosahedron is unfolded.
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Figure 2.13: Planar icosahedral mesh for (m,n) = (5,4).

The subsequence (m,0) produces the lattice for the radial icosahedral nodes. The following

number theoretic result makes precise the improvement given by the (m,n) subsequences in

terms of the possible number of total points N in the resulting configuration.

Proposition 2.4.3. Let T :=
{

x = 10(m2 +mn+n2)+2 | m,n ∈ N
}

and let

S(N) := |{x ∈ T | x≤ N}|.

Then,

S(N) = O
(

N√
logN

)
. (2.12)

By comparison, for points generated along the subsequence (m,0) as realized by the

radial icosahedral nodes as well as the configurations in [93] and [99], the analogous quantity
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Figure 2.14: Illustration of area preserving map Φ defined piecewise on each triangle
bounded by two altitudes of an icosahedral face.

S(N) = O(
√

N).

Secondly, we derive an area preserving map Φ from the regular icosahedron I of edge

length L =
√

4π/ 4
√

75, circumradius r = Lsin2π/5, and surface area 4π using the technique

presented by Snyder [91] for the truncated icosahedron. We define Φ piecewise by dividing

each face F ⊂ I into the six trianglesRi partitioned by the altitudes of F :

1. Parametrize each point p ∈ Ri by h and w as labeled in Figure 2.14. If A is the

side of Ri of length L/2
√

3, then w is the distance from p to A and h is the distance of

pA :=proj(p,A) to O, the center of F .

2. Let B be the side of Ri of length L/
√

3 and pB be the intersection of the line pA p

with B. For the triangle S =4pA pBO, find ψ as in Figure 2.14 and spherical right triangle

Φ(S) such that σI(S) = σS2(Φ(S)) = ψ−π/6. Thus,

ψ =
h2
√

3
2

+
π

6
.

3. The point Φ(p) will lie on the great circle Φ(pA pB). Letting T =4pA pO, find λ as
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Figure 2.15: Equidistributed mesh icosahedral nodes for (m,n) = (7,2).

in Figure 2.14 such that σI(T ) = σS2(Φ(T )). By the spherical law of cosines,

σS2(Φ(T )) = λ + cos−1
(

2sinλ cosψ√
3

)
− π

2
.

Thus

tanλ =
sin(hw

2 )

cos(hw
2 )− 2cosψ√

3

.

4. Transform (ψ,λ ) into spherical coordinates.

The map Φ is extended to I by rotations and reflections. This defines the unique azimuthal

equal area projection from I onto S2 [92]. The spherical configurations are ωm,n := Φ(ω̃m,n).

A typical point set is shown in Figure 2.15. The Voronoi cells are almost regular hexagons

with 12 pentagonal cells at the vertices of I, and the Voronoi decomposition forms a

spherical Goldberg polyhedron [52]. To implement the points in Matlab, we derive explicit

formulas on a triangular face.

Unlike the radial icosahedral points, the sequence of equal area configurations is equidis-

tributed on S2 because Φ is an area preserving map and the icosahedral configurations ω̃m,n

are equidistributed on I. We have the following regarding quasi-uniformity.
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Figure 2.16: Plot of mesh ratios for radial and equidistributed icosahedral nodes sampled
along the subsequences (m,0) and (m,m).

Theorem 2.4.4. The sequence of equal area icosahedral configurations is quasi-uniform

with

γ(ωN)≤ 0.798.... (2.13)

Figure 2.16 compares the mesh ratios of the icosahedral configurations under radial

projection versus projection by Φ along the subsequences (m,0) and (m,m) for total points

N < 100,000. Both equidistributed subsequences have lower mesh ratios than the radially

projected subsequences and perform better than the bound in Theorem 2.4.4. These are the

lowest mesh ratios of all point sets discussed.

Conjecture 2.4.5. For the special subsequence (m,0),

liminf
m→∞

γ(ωm,0)≤ 0.697....
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Figure 2.17: Coulomb points (top) and log energy points (bottom) and their Voronoi
decomposition for N = 1024.

2.5 Nodes via Optimization

Coulomb Points and Log Energy Points

For s = 1, Riesz s-energy minimization on S2 is the classic Thomson problem for the

Coulomb potential [100]. The sequence of minimal Coulomb energy configurations is

known to be equidistributed, well-separated, and quasi-uniform [39]. However, no explicit

bound is known for the mesh ratio. The Voronoi decomposition of these cells, as shown in

Figure 2.17, primarily consists of close to regular hexagons with heptagons and pentagons

forming scars along the sphere. For relatively small N, the scars grow out from the 12

vertices of the icosahedron like dislocations in a crystal due to displacement deformities.

For N > 5,000, the scars become less fixed, spreading across the sphere. For an in-depth

discussion of the scarring behavior, see Bowick et al [18] and [19].

The log energy points, also called elliptic Fekete points, are minimizers of the Riesz log-
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Figure 2.18: Maximal determinant nodes for N = 961.

arithmic potential. The sequence of log energy configurations is known to be equidistributed

and well-separated, but covering and quasi-uniformity is an open problem. As shown in

Table 2.8 below, numerically the log energy points appear to be quasi-uniform. The best

known lower bound on separation is due to Dragnev [43]:

δ (ω
log
N )≥ 2√

N
, N ≥ 2.

Their geometric structure is very similar to the Coulomb points as shown in Figure 2.17.

The energies of log and Coulomb points have the same asymptotic behavior in the dominant

and second order term for many Riesz potentials (see [56]).

Generating these points is a highly nonlinear optimization problem. Unlike the configu-

rations we have described up to now, they are not so quickly obtained. Table 2.8 displays

the mesh ratios of near minimal Coulomb and log energy configurations. We remark that

the sequence appears to have outliers at several values of N, such as N = 20, 300, and 4096.

Points for N < 500 and N = k2, k ≤ 150, were provided by Rob Womersley.

Maximal Determinant Nodes

Other node sets used in polynomial interpolation and numerical integration on the sphere

are the maximal determinant nodes (Fekete nodes). Let φ1, ...,φ(n+1)2 be a basis for the

space Pn(S2) of spherical polynomials of degree ≤ n. The maximal determinant node set is
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Table 2.8: Mesh Ratios for Coulomb and Log Energy Points

N γ(ω
log
N ) γ(ωCoul

N ) N γ(ω
log
N ) γ(ωCoul

N )

10 0.687401 0.689279 500 0.757354 0.755834
20 0.731613 0.733265 1024 0.752122 0.755770
30 0.695481 0.692966 2025 0.761261 0.766218
40 0.669531 0.670842 3025 0.765075 0.761661
50 0.661301 0.656591 4096 0.770240 0.765712

100 0.695371 0.694604 5041 0.753573 0.758457
200 0.662102 0.658561 10000 0.762672 0.761964
300 0.740635 0.730182 15129 0.762385 0.763398
400 0.650106 0.647351 22500 0.773483 0.767096

the configuration ωN := ω(n+1)2 ⊂ S2 which maximizes

det(φi(x j))
(n+1)2

i, j=1

These points are independent of the choice of basis. The interpolatory cubature rule

associated with the configuration ωN ,

Qn( f ) :=
N

∑
j=1

w j f (x j),

is conjectured in [89] to have all weights positive which is of interest in numerical integration.

For more information about these points and their applications, see [83], [84], and [89]. A

typical node set is shown in Figure 2.18. The Voronoi decomposition is primarily composed

of regular hexagons with scarring features similar to the minimal energy points.

Also like the minimal energy points, computing the maximal determinant nodes is a

nonlinear optimization problem. The maximum is approximated by conjugate gradient and

Newton-like methods on S2 [89]. Nodes for 1≤ n≤ 165 are available from

http://web.maths.unsw.edu.au/˜rsw/Sphere/Extremal/New/index.html.

Berman et al [6] proved the sequence of maximal determinant configurations is equidis-
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Figure 2.19: Random points for N = 700 and their Voronoi decomposition.

tributed, while in [89], Sloan and Womersley proved it is quasi-uniform with

limsup
N→∞

γ(ωN)<
4z1

π
= 3.06195...,

where z1 is the smallest positive zero of the Bessel function of the first kind, J0(z). As shown

in Table 2.9, the mesh ratio bound appears to be much lower though it is unclear whether or

not lim
N→∞

γ(ωN) exists.

Table 2.9: Mesh Ratios for Maximal Determinant Nodes

N γ(ωN) N γ(ωN)

9 0.718884 625 0.805608
16 0.685587 1024 0.840506
25 0.768510 2025 0.858874
36 0.806140 3025 0.847347
49 0.777490 4096 0.859887

100 0.708579 4900 0.877990
225 0.860728 10201 0.859625
324 0.799227 15129 0.865695
400 0.809172 22500 0.881492

2.6 Random Points

The final configurations we consider are random configurations ωrand
N consisting of N

independent samples chosen with respect to surface area measure. Not surprisingly, these
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configurations do not have optimal order separation or covering and the sequence is not

quasi-uniform. As proved in [24] and [85] respectively,

lim
N→∞

E(δ (ω rand
N ))N =

√
2π, lim

N→∞
E(η(ω rand

N ))

(
N

logN

)1/2

= 2.

Note that while the order of the separation of random points is off by factor of N1/2, the

covering is only off by a factor of
√

logN. Figure 2.19 shows a realization of i.i.d. uniformly

chosen random points on S2.

2.7 Summary of Properties

The following tables compare some of the properties of the point sets described above.

Table 2.10 compares which sequences are proven to be equidistributed and well-separated,

for which values of N the configurations are defined, and whether a subsequence is hier-

archical. Table 2.11 compares which sequences are quasi-uniform and the numerically

determined bounds for separation and mesh ratio constants.

Table 2.10: Summary of Point Set Properties

Name Defined for Hier. Equidist. Separated
Gen. Spiral N ≥ 2 No Yes Yes
Fibonacci Odd N No Yes Yes

Hammersley N ≥ 2 No Yes No
Zonal Eq. Area N ≥ 2 No Yes Yes

HEALPix 12k2, Subseq. Yes Yes
Octahedral 4k2 +2 Subseq. Yes Yes
Radial Icos. 10k2 +2, Subseq. No Yes

Cubed Sphere 6k2−12k+8 Subseq. No Yes
Equidist. Icos. 10(m2 +mn+n2)+2 Subseq. Yes Yes

Coulomb N ≥ 2 No Yes Yes
Log Energy N ≥ 2 No Yes Yes
Max Det. (1+ k)2 No Yes Yes
Random N ≥ 2 No Yes No
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Table 2.11: Comparison of Separation and Mesh Ratio Constants

Name Quasi- Numeric lower bound Numeric upper bound
Uniform on liminfδ (ωN)

√
N on limsupγ(ωN)

√
N

Gen. Spiral Yes 3.1319 0.8099
Fibonacci Yes 3.0921 0.8823

Hammersley No N/A N/A
Zonal Eq. Area Yes 3.3222 0.7568

HEALPix Yes 2.8345 1.0000
Radial Icos. Yes 2.8363 0.8517

Cubed Sphere Yes 2.7027 1.0000
Octahedral Yes 2.8284 0.9235

Equidist. Icos. Yes 3.1604 0.7360
Coulomb Yes 3.3794 0.7671

Log Energy Conj. 3.3733 0.7735
Max Det. Yes 3.1957 0.8900
Random No N/A N/A

2.8 A Riesz Energy Comparison

We next examine the Riesz energy of the above spherical configurations. For 0 < s < 2,

a characterization of asymptotically optimal point sets is due to Leopardi [65].

Theorem 2.8.1. If a well-separated sequence of configurations {ωN}∞

N=2 is equidistributed,

then it is asymptotically optimal for 0 < s < 2, that is from (1.10),

lim
N→∞

Es(ωN)

N2 = Is[σS2 ] =
21−s

2− s
.

Thus the generalized spiral, Fibonacci, zonal equal area, HEALPix, octahedral, equidis-

tributed icosahedral, maximal determinant, and Coulomb and log energy points are all

minimal to the leading order term of Es(N), for 0 < s < 2. An analogous statement is

conjectured for the logarithmic energy [56].

For s > 2, from Theorem 1.2.4, Es(N,S2) has leading order N1+s/d . Figure 2.20 plots

E3(ωN)/N5/2 for the point sets. Some configurations are sampled along subsequences to

avoid overcrowding the picture. Due to the computational cost of generating approximate
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Figure 2.20: Comparison of Riesz energies in the hypersingular case

log energy and Coulomb points, these points are only available for N < 22,500. We do not

include the maximal determinant nodes because there is no known algorithm to generate

them in polynomial time.

The dashed line is the conjuectured value of C3,2 ≈ 0.199522 given by Conjecture 1.3.2.

The energies of most configurations seem to be going to the correct order but incorrect

coefficient. The equidistributed icosahedral points outperform the other algorithmically

generated configurations. Heuristically, this is expected because their Voronoi decomposition

is closest to a regular hexagonal lattice. The log energy and Coulomb points seem to be

close to minimal and may converge to the conjectured value. The Hammersley points are

not seen on the plot because their asymptotic energy does not appear to have leading order

N5/2. For random points, the expected value of the Riesz s-energy is computed to be:

E[Es(ω
rand
N )] = Is[σS2](N(N−1)). (2.14)

Thus, for s ≥ 2, E[Es(ω
rand
N )] = ∞. More energy comparisons of the point sets for other

values of s and lower order terms can be found in [56].
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2.9 Proofs of Equidistribution and Mesh Ratios

In this section we collect the proofs of the results presented in the previous sections of

this chapter. Throughout this section, let σ := σS2 be the normalized surface area measure

on S2. We will call a sequence of partitions PN := {Wi}N
i=1 of S2 asymptotically equal area

if

lim
N→∞

N max
1≤i≤N

σ(Wi) = lim
N→∞

N min
1≤i≤N

σ(Wi) = 1, (2.15)

and a sequence of spherical configurations {ωN}∞

N=1 will be said to be asymptotically equal

area if its sequence of Voronoi decompositions is asymptotically equal area. We begin with

an auxiliary result.

Proposition 2.9.1. Let {PN}∞

N=1 be a diameter bounded sequence of asymptotically equal

area partitions of S2 such that each PN has N cells. For each PN , let ωN be a configuration

of points on S2 such that the interior of each cell of PN contains exactly one point of ωN .

Then {ωN}∞

N=1 is equidistributed and provides a covering of S2 with η(ωN)≤CN−1/2 for

all N ∈ N, where C is as in equation (2.10).

Proof. The bound on the covering radius is trivial. Let A⊂ S2 be a spherical cap and let

Aδ :=
{

x ∈ S2 : dist(x,A)≤ δ
}
,

where dist(x,A) := miny∈A ‖x− y‖ is the standard distance function. For x ∈ ωN , denote by

W N
x the cell of PN containing x. Let ε,δ > 0 and choose N large enough such that

N min
x∈ωN

σ(W N
x )≥ 1− ε

and x ∈ A∩ωN implies W N
x ⊂ Aδ . Then

|ωN ∩A|
N

≤
|
{

x : W N
x ⊂ Aδ

}
|

N
≤ σ(Aδ )

N minx∈ωN σ(W N
x )
≤ σ(Aδ )

1− ε
.
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Since ε is arbitrary, we have

limsup
N→∞

|ωN ∩A|
N

≤ σ(Aδ ).

Letting δ → 0 gives

limsup
N→∞

|ωN ∩A|
N

≤ σ(A). (2.16)

Applying inequality (2.16) to S2 \A, we obtain

liminf
N→∞

|ωN ∩A|
N

= 1− limsup
N→∞

|ωN ∩ (S2 \A)|
N

≥ 1−σ(S2 \A) = σ(A),

and thus, we have

lim
N→∞

|ωN ∩A|
N

= σ(A).

Proof of Theorem 2.1.1. For a fixed N denote in spherical coordinates xi := (φi,θi) ∈ ωN .

We first prove the separation bound. Let εN = 2
√

4π/N. We can restrict our attention to

εN-balls B(xk,εN) and a hemisphere, i.e, k ≤ N/2. For large N, if k < 8π +1/2, then

cosφk = 1− 2k−1
N
≥ 1− 16π

N
≈ cos(2

√
4π

N
),

and xk is within the first two full longitudinal turns of SN starting from a pole. Otherwise,

B(xk,εN) contains disjoint levels of SN . In this case, the minimal distance between levels in

B(xk,εN) is
√

4π/N. We compute the nearest neighbor distance between points in the same

level as follows. Let

fN(k) :=
√

N‖xk− xk+1‖, xk ∈ ωN , k < N/2.
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Using the distance formula for spherical coordinates

‖x j− xk‖2 = 2−2(cosφ j cosφk + sinφ j sinφk cos(θ j−θk)) (2.17)

and expanding cos−1 x around x = 1 we have

lim
N→∞

fN(k) =
√

8k−4
√

4k2−1cos(
√

2π(
√

2k−1−
√

2k+1)), (2.18)

and fN(k)< fN+1(k) for all k < N/2−1 and large N. Thus we have the correct order for

the minimal separation between adjacent points in ωN . Furthermore, (2.18) is increasing as

a function of k and thus

lim
N→∞

min
k

fN(k) =
√

8−4
√

3cos(
√

2π(1−
√

3)). (2.19)

Lastly, around the north pole, k1,k2 < 8π +1/2, we can again use (2.17) to show that

lim
N→∞

√
N‖xk1− xk2‖

exists and can be computed case by case for pairs (k1,k2). The southern hemisphere can be

similarly computed. Comparing to (2.19) gives the separation constant (2.2).

For covering, given y ∈ S2,

dist(SN)≤
√

π

N
.

From (2.18), the maximal distance from any point on SN to a point of ωN is O(1/
√

N) and

thus the covering radius of ωN is also O(1/
√

N).

We have two additional observations. First, the Voronoi decompositions of the spiral

points are diameter bounded. Secondly, the Voronoi cells are asymptotically equal area on

Kh :=
{
(x,y,z) ∈ S2 :−h≤ z≤ h

}
for any fixed 0 < h < 1. By this we mean
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Figure 2.21: Limiting form of Voronoi cell for each xi ∈ Kh∩ωN .

lim
N→∞

N max
Vx(ωN)⊂Kh

σ(Vx(ωN)) = lim
N→∞

N min
Vx(ωN)⊂Kh

σ(Vx(ωN)) = 1.

Indeed, fixing h, for any ε > 0, we can take N large enough such that given xi = (φi,θi)∈

Kh∩ωN , xi−1, and xi+1 are almost iso-latitudinal with xi with separation
√

4π/N. I.e.,

|xi±1− (φi,θi± cscφi
√

4π/N)|< ε.

There exists shifts 0 ≤ λi+,λi− ≤
√

4π/N such that the nearest points in the adjacent

spiral levels are within ε of the points (φi±
√

4π/N,θi + cscφiλi±) and (φi±
√

4π/N,θi +

cscφi(λi±−
√

4π/N)). Thus as N→ ∞, the Voronoi cell Vi(ωN) approaches the form of V

in Figure 2.21 and

σ(Vi(ωN)) = σ(V )+O(ε2).
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Furthermore, we can treat V as a planar polygon in Figure 2.21, and

σ(V ) =
1
N

independent of the shifts λi±. This we show by direct computation.

Letting a =
√

4π/N and centering xi at (0,0), the points y1 = (λi+/2,a/2) and y2 =

((λi+−a)/2,a/2) are the midpoints of the lines connecting xi to its nearest neighbors in

the adjacent level which are shifted by λi+. The corresponding lines

L1 : y =−λi+

a
(x− λi+

2
)+

a
2

L2 : y =
a−λi+

a
(x− λi+−a

2
)+

a
2

form the top boundary of V and have intersection point

w := (λi+−a/2,(λi+a+a2−λ
2
i+)/2a).

From this we calculate the area of the top half of V to be

σ(Vtop) =
1

4π

[
a
(−aλi++λ 2

i++a2

2a

)
+

a
2

(
aλi+−λ 2

i+

a

)]
=

1
2N

.

The same calculation holds for the bottom half of V and thus (2.15) holds.

We now consider equidistribution. Because the height steps between points in ωN are

uniform, for a spherical cap A centered at a pole,

lim
N→∞

|ωN ∩A|
N

= σ(A). (2.20)

If A does not contain one of the poles, then A⊂Kh for some h and (2.20) holds by Proposition

2.9.1. Finally if A is a cap containing but not centered at one of the poles, A can be partitioned

into an open cap of height h centered at the pole and A∩Kh. Because (2.20) holds on each

disjoint subset, it also holds on A.
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Proof of Proposition 2.1.2.

When z = k, the basis vector ck,i has minimum length of
√

2d. At this latitude, ck+1,i

and ck−1,i form the next most dominant spirals and have length
√

3d. For z = k+1/2, ck,i

and ck+1,i are equally dominant and have grid length 4
√

5d. For a fixed latitude φ 6=±π/2, z

increases with N. Points around φ will form a locally rectangular grid. Thus the separation

approaches
√

2d which occurs when z = k and the largest hole in the triangulation around xi

will be at most 4
√

5d/
√

2 which occurs when z = k±1/2. Thus off the poles, δ (ω2N+1)≥√
8π
√

5/
√

N and η(ω2N+1)≤
√

2π/N.

Indeed, these inequalities hold for large zone numbers z where Fk ≈ ϕk/
√

5 holds.

However, on the polar points, x1 and xN , the zone number

z =
log((2N +1)π

√
5(1−4N2/(2N +1)2))

logϕ2 → log(2π
√

5)
logϕ2 = 2.75..., N→ ∞

and writing ck,i in the form of equation (2.7) for small k overestimates the length of the

vector. Using equation (2.6) and noticing that k−1/2≤ z≤ k+1/2 implies

ϕ2k−1

(2N +1)π
√

5
≤ cos2

φ ≤ ϕ2k+1

(2N +1)π
√

5
,

we have

|ck,i|2 ≥
4π2ϕ +20πF2

k ϕ−2k+1

(2N +1)π
√

5
= O

(
1

2N +1

)
, k−1/2≤ z≤ k+1/2.

Since |ck,i| is the minimal separation distance for k−1/2≤ z≤ k+1/2, we have the correct

order of separation on S2. By a similar computation, we have the upper bound

|ck,i| ≤ O
(

1√
2N +1

)
, k−3/2≤ z≤ k+3/2.
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Since the triangulation of ω2N+1 in each zone consists of ck,i, ck−1,i, and ck+1,i, the covering

of ω2N+1 is of the correct order on all of S2.

Proof of Proposition 2.3.1.

The diameter boundedness of the partition and Proposition 2.9.1 gives equidistribution

and covering,

η(ωN)≤
3.5√

N
.

In [64] and [107], it is established that there exists c1,c2 > 0 such that for all partitions PN ,

with φ j, n as defined above,

c1√
N
≤ φ j+1−φ j ≤

c2√
N
, 0≤ j ≤ n. (2.21)

This gives the correct order of separation between collars. For neighbors x1,x2 ∈ ωN within

collar j, wlog suppose φ j < π/2. Using the fact that the normalized area of each cell can be

expressed as

(cosφ j− cosφ j+1)

2yi
=

1
N
,

we have

‖x1− x2‖ ≥
2π sinφ j

yi
=

4π sinφ j

N(cosφ j− cosφ j+1)
.

So it suffices to show there exists c3 > 0 such that

sinφ j

cosφ j− cosφ j+1
≥ c3
√

N ∀N,0≤ j ≤ n. (2.22)

For a fixed h > 0 and φ j ≥ h, this follows from (2.21) and the fact that cosine is Lipschitz.

On the other hand, for sufficiently small φ j, there exists c4 > 0 such that
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sinφ j

cosφ j− cosφ j+1
≥ c4

φ j

φ 2
j −φ 2

j+1
.

Again applying (2.21) twice,

RHS (2.22)≥ c4

c1

φ j

φ j +φ j+1

√
N ≥ c4

c1

φ j

2φ j +
c2√
N

√
N ≥ c3

√
N.

In the last step we used the fact that for some c5 > 0 and all j

φ j ≥ cos−1(1− 2
N
)≥ c5√

N
.

Proof of Proposition 2.3.2.

The pixels are diameter bounded and thus by Proposition 2.9.1 the nodes are equidis-

tributed.

To establish separation, we examine the five cases of nearest neighbor points: The points

lie in 1) the polar region or 2) the equatorial region, and the points lie in a) the same ring or

b) adjacent rings, and 3) the points lie in adjacent rings at the boundary of the polar region

and the equatorial region.

Case 1a: If nearest neighbor points lie in the polar region along the same ring 1≤ i≤ k

that has radius

ri = sinφi =

√
2i2

3k2 −
i4

9k4

and 4i equally spaced points, then the separation δ satisfies

δ = 2ri sin
π

4i
= 2

√
2i2

3k2 −
i4

9k4 sin
π

4i
≥
√

2
i

√
2i2

3k2 −
i4

9k4 = O
(

1
k

)
= O

(
1√
N

)
.
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In the middle inequality we use the fact that

sinx≥
√

2/2
π/4

x 0≤ x≤ π/4. (2.23)

Case 2a: Suppose the nearest neighbor points lie in the equatorial region along the same

ring. Since each ring has 4k points, the smallest separation occurs at the ring farthest from

the equator and closest to z = 2/3. Using (2.23) again, we have

δ = 2ri sin
π

4k
≥ 2
√

5
3

sin
π

4k
≥
√

10
3k

= O
(

1√
N

)
.

Case 1b: We split up the rings in the polar region into the outer half, 1≤ i≤ k/2 and the

inner half, k/2≤ i≤ k. On the outer half, the separation between rings is

δ ≥ ri+1− ri =
(i+1)

√
6k2− (i+1)2− i

√
6k2− i2

3k2

≥(k/2+1)
√

6k2− (k/2+1)2− (k/2)
√

6k2− (k/2)2

3k2 = O
(

1√
N

)
.

On the inner polar rings, the separation between rings is

δ ≥ |cosφi+1− cosφi|=
2i+1
3k2 ≥

k+1
3k2 = O

(
1√
N

)
.

Case 2b: In the equatorial region, the ring height z increases linearly with respect to the

index i giving

δ ≥ 2
3k

= O
(

1√
N

)
.

Case 3 follows from Case 1b and 2b.

The covering of the points follows by similar geometric arguments.
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Proof of Proposition 2.4.1.

It suffices to show Π is locally bi-Lipschitz on each face F of the icosahedron. If for

some δ , L1, L2 > 0

L1|x− y| ≤ |Π(x)−Π(y)| ≤ L2|x− y|, x,y ∈ F , |x− y|< δ ,

then

γ(ωN)≤
L2

L1
γ(ω̃Nk) =

L2

L1
√

3
.

Let c := minx∈Icos |x|=
√

(1/3+2
√

5/15). For x,y ∈ F with angle θ , we have

|x− y| ≥ 2csin
θ

2
.

Using the fact that sin−1 x≤ π

2 x for x≤ 1 and |x− y|< 2c,

|Π(x)−Π(y)| ≤ θ ≤ 2sin−1
(
|x− y|

2c

)
≤ πc|x− y|.

For the other inequality, wlog suppose c ≤ |x| ≤ |y| ≤ 1, and consider the line P ⊂ F

connecting x and y. Denote z as the projection of 0 onto P. Defining φ := cos−1(|z|/|x|),

we have

|y|− |x|= |z|sec(θ +φ)−|z|secφ ≤ sec(θ +φ)− secφ .

Since φ ≤ cos−1 c−θ and secant is convex on (0,π/2),

|y|− |x| ≤ 1
c
− sec(cos−1 c−θ) =: g(θ).
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Thus,

|x− y|2 = |x|2 + |y|2−2|x||y|cosθ ≤ max
c≤|y|≤1

(|y|+g)2 + |y|2−2|y|(|y|+g)cosθ

= (1+g)2 +1−2(1+g)cosθ .

Since

f (θ) :=
(1+g)2 +1−2(1+g)cosθ

2−2cosθ

is continuous for θ ∈ (0,π/2+cos−1 c) and limθ→0 f (θ) exists, there exists L > 0 such that

|x− y| ≤ L|Π(x)−Π(y)|, θ ∈ (0,π/2+ cos−1 c).

Proof of Theorem 2.4.2. Restricting ourselves to the face of K with all positive coordinates,

label the vertices of the partition
{

Ai, j
}

0≤i+ j≤k by

Ai, j =

(
iL

k
√

2
,

jL
k
√

2
,

L√
2

(
1− i+ j

k

))
.

Let Ai, j = U(Ai, j). Then

Ai, j =

(
i+ j

k

√
2− (i+ j)2

k2 cos
π j

2(i+ j)
,
i+ j

k

√
2− (i+ j)2

k2 sin
π j

2(i+ j)
,1− (i+ j)2

k2

)
.

Then

δ (ωN) = min
i, j
{‖Ai+1, j−Ai, j‖,‖Ai, j+1−Ai, j‖,‖Ai+1, j−Ai, j+1‖}. (2.24)
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Adapting [58], we have

‖Ai+1, j−Ai, j‖2 = 2
(i+ j+1)2

k2 +2
(i+ j)2

k2 −2
(i+ j+1)2(i+ j)2

k4

−2
(i+ j)(i+ j+1)

k2

√
2− (i+ j+1)2

k2

√
2− (i+ j)2

k2 cos
π j

2(i+ j)(i+ j+1)
.

Along the line i+ j = c, the minimum is obtained when the cosine term is maximized, i.e.

at j = 0. Thus

min
i, j
‖Ai+1, j−Ai, j‖2 = min

0≤i≤k
‖Ai+1,0−Ai,0‖2

=
2
k2 min

0≤i≤k

(
(i+1)2 + i2 +

(i+1)2i2

k2 − i(i+1)

√
2− (i+1)2

k2

√
2− i2

k2

)
=

2
k2 .

By symmetry of the above expressions in i and j,

min
i, j
‖Ai, j+1−Ai, j‖2 = min

0≤ j≤k
‖A0, j+1−A0, j‖2 =

2
k2 .

Lastly,

‖Ai+1, j−Ai, j+1‖2 = 4
(i+ j+1)2

k2

(
2− (i+ j+1)2

k2

)
sin2 π

4(i+ j+1)
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which again depends on only i+ j. Using (2.23) we have

min
i, j
‖Ai+1, j−Ai, j+1‖2 = min

0≤i≤k
‖Ai+1,0−Ai,1‖2

= 4 min
0≤i≤k

(i+1)2

k2

(
2− (i+1)2

k2

)
sin2 π

4(i+1)

≥ 4 min
0≤i≤k

(i+1)2

k2

(
2− (i+1)2

k2

)
1

2(i+1)2

= 4 min
0≤i≤k

1
2k2

(
2− (i+1)2

k2

)
=

2
k2

(
2− (k+1)2

k2

)
.

Thus from (2.24)

δ (ω4k2+2)
2 ≥ 2

k2

(
2− (k+1)2

k2

)
.

Taking the square root and substituting N = 4k2 +2 gives

liminf
N→∞

δ (ωN)
√

N ≥
√

8.

Finally, the diameter bound in [58] gives an immediate upper bound for the covering radius

from which (2.11) follows:

η(ω4k2+2,S
2)≤

√
4+π2

8k2 .

Proof of Proposition 2.4.3.

If x = m2 + mn + n2, we call x representable by (m,n). Let U ⊂ N be the set of

representable numbers. We adapt an argument of Leveque for the density of numbers which

are the sum of two squares. See for example [69], Section 7.5. First we establish that U is
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closed under multiplication and division: We have the identity

(m2 +mn+n2)(l2 + lk+ k2) = (nk−ml)2 +(nk−ml)(mk+nl +ml)+(mk+nl +ml)2.

(2.25)

If x = m2 +mn+n2 and y = l2 + lk+ k2 is prime with y|x, the identity

k2(m2 +mn+n2)−m2(l2 + lk+ k2) = (nk−ml)(mk+nl +ml) (2.26)

implies y must divide either nk−ml or mk+nl+ml. By equation (2.25), y must also divide

the other term. Thus,

m2 +mn+n2

l2 + lk+ k2 =

(
nk−ml

l2 + lk+ k2

)2

+
(nk−ml)(mk+nl +ml)

(l2 + lk+ k2)2 +

(
mk+nl +ml
l2 + lk+ k2

)2

and x/y ∈U . Now, if x ∈U,z /∈U and z|x, then x/z must contain a prime factor which is

also not in U . Otherwise, writing

x = zp1 · · · pk

with pi ∈ U prime, repeated application of the prior step yields z ∈ U . Finally, if x is

representable by (m,n) coprime, then every factor of x is representable. We prove this by

infinite descent. Let q|x, write

m = aq± c n = bq±d

where c,d ≤ q/2. Then

x = m2 +mn+n2 = Aq+ c2± cd +d2

for some integer A and thus q divides c2± cd + d2. Say qr = c2± cd + d2. If c,d are
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coprime, then

qr = c2± cd +d2 ≤
(

q
2

)2

+

(
q
2

)2

+

(
q
2

)2

=
3q2

4
.

If q is not representable, then by the previous step r has a factor s that is not representable,

and s < q. Repeating the same procedure leads to an infinite descent, and thus q ∈U by

contradiction. If gcd(c,d) = g 6= 1, then g and x must be coprime because gcd(g,x) must

divide m and n. Thus g2|r and we can write qs = e2±e f + f 2 with e, f coprime and proceed

as before.

It is easy to check on a case by case basis that for any (m,n), x = m2 +mn+n2 ≡ 1,3,4

(mod 6). From the previous step, if p≡ 2,5 (mod 6), and p|x, then p2|x. Combining the

above we have shown if x ∈U , the prime factorization of x has the form

x = 22p3q
α

2a1
1 · · ·α2ak

k β
b1
1 · · ·β

bl
l , p,q,ai,b j ∈ N, (2.27)

αi ≡ 5 (mod 6), β j ≡ 1 (mod 6).

By the Prime Number Theorem for arithmetic progressions [94], the density of numbers

whose prime factorization is of the form in (2.27) is the same as those of the form

x = 2p
α

2a1
1 · · ·α2ak

k β
b1
1 · · ·β

bl
l , p,ai,b j ∈ N, (2.28)

αi ≡ 3 (mod 4), β j ≡ 1 (mod 4).

This is precisely the characterization of numbers that are the sum of two squares whose

density is known from [69] Theorem 7.28 to be O(N/
√

logN). Thus (2.12) holds.

Proof of Theorem 2.4.4.

We use the fact that
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min
z∈I
v∈S1

||DΦ(z) ·v|| · ||x− y|| ≤ ||Φ(x)−Φ(y)|| ≤max
z∈I
v∈S1

||DΦ(z) ·v|| · ||x− y||

where DΦ(z = (h,w)) is the Jacobian of Φ. Thus

γ(ωm,n)≤
max(z,v∈I×S1) ||DΦ(z) ·v||
min(z,v∈I×S1) ||DΦ(z) ·v||

γ̃m,n (2.29)

where γ̃m,n = 1/
√

3 is the mesh ratio of the CK configurations on I. Due to symmetry it

suffices to restrict Φ to the fixed triangleRi on which Φ is derived in Section 2. Orienting

I such that Φ(O) = (0,0,1) and Φ(h,0) lies in the xz-plane, the point Φ(h,w) will be at

the intersection of the meridian λ and the great circle in the yz-plane rotated around the

y-axis by an angle of g where cosg = 2cosψ/
√

3 (see Figure 2.14). Solving for Euclidean

coordinates,

Φ(h,w) =


sinξ cosλ

sinξ sinλ

cosξ

 ,
where tanξ = tang/cosλ . Thus for (h,w) 6= (0,0),

DΦ(h,w) =



cosλ cosξ
∂ξ

∂h − sinξ sinλ
∂λ

∂h cosλ cosξ
∂ξ

∂w − sinξ sinλ
∂λ

∂w

sinλ cosξ
∂ξ

∂h + sinξ cosλ
∂λ

∂h sinλ cosξ
∂ξ

∂w + sinξ cosλ
∂λ

∂w

−sinξ
∂ξ

∂h −sinξ
∂ξ

∂w


,

lim
(h,w)→(0,0)

DΦ(h,w) =


1 0

0 1

0 0

 .
The quantities in (2.29) were optimized algebraically using Mathematica. The minimum

59



of ||DΦ(h,w) ·v|| occurs at (h,w) = (a/(2
√

3),a/2), the vertex shared by Ri and F , and

equals 0.828499.... The maximum of ||DΦ(h,w)|| equals 1.14563... and occurs at (h,w) =

(a/(2
√

3),0). Combining the above, we have

γ(ωm,n)≤
1.14563

0.828499
√

3
≈ 0.798...
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CHAPTER 3

NODE GENERATION ON OTHER MANIFOLDS

In this chapter we describe and numerically analyze algorithms for quasi-uniform point

generation on the torus T and the sphere S3 ⊂ R4 as well as develop a general program

for generating quasi-uniform points on a domain Ω⊂ R3 with variable density given by a

prescribed local node separation function ρ : Ω→ R+. The latter is particularly useful to

radial basis function methods in atmospheric modeling. Section 3.3 is based on the paper

[79]

3.1 Torus Configurations

A torus T= T(R,r) is defined parametrically by

x(θ ,φ) = (R+ r cosφ)cosθ , (3.1)

y(θ ,φ) = (R+ r cosφ)sinθ , (3.2)

z(θ ,φ) = r sinφ , (3.3)

where R is the distance from the center of the torus to the center of the tube, r is the radius

of the tube, and R/r is the aspect ratio. To create equidistributed nodes we define an area

preserving map ΛT : [0,1)2→ T analogous to the Lambert cylindrical equal area projection

onto S2 defined in (2.4). The map ΛT will identify both pairs of opposing edges of the

square, so the initial point configuration on [0,1)2 must be 1-periodic in both the x and y

coordinates. Thus we take the Fibonacci nodes on [0,1)2 defined on the rational lattice given

in (2.5) with total points Fk. Define ΛT(x,y) := (φ ,θ) where θ = 2πx as in the Lambert

projection. Letting h = (πR−2r)/4πR, then −π ≤ φ ≤ π is defined implicitly
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Figure 3.1: 6765 equidistributed Fibonacci torus nodes

R(π−φ)− r sin(φ) = 2πRy, 0≤ y < h

Rφ + r sinφ = 2πR(1/2− y), h≤ y < 1−h

R(π +φ)− r sin(φ) = 2πR(1− y), 1−h≤ y≤ 1

which is well defined because f (t) := Rt± r sin t maps [0,π/2] onto [0,(Rπ±2r)/2] bijec-

tively when R > r and is continuous and monotonic with respect to y. The regions 0≤ y < h

and 1−h < y ≤ 1 are mapped to the regions of T of negative curvature while the region

h < y < 1− h is mapped to the positive curvature part. The lines y = h and y = 1− h

are mapped to the boundary circles between the positive and negative curvature areas of

T. The map ΛT is an area preserving projection because the area of a rectangular patch

A = [φ1,φ2]× [θ1,θ2], 0≤ |φ1| ≤ |φ2| ≤ π is

σT(A) = 2πr(θ2−θ1) ·



R|φ1−φ2|− r|sinφ1− sinφ2|, |φ1|, |φ2| ≥ π/2

R(φ1−φ2)+ r(sinφ1− sinφ2), |φ1|< π/2,φ2 <−π/2

R(φ2−φ1)+ r(sinφ2− sinφ1), |φ1|< π/2,φ2 ≥ π/2

R|φ1−φ2|+ r|sinφ1− sinφ2|, |φ1|, |φ2|< π/2
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Thus if ΛT(x1,yi) = (φi,θi), i = 1,2, as can be verified in each case

|x1− x2| · |y1− y2|=
σT(A)
4π2Rr

.

Unlike the Lambert projection onto the sphere, ΛT is bi-Lipschitz. Indeed, it is enough to

bound the Jacobian

DΛT(x,y) = 2π ·


−sinθ(R+ r cosφ) −Rr sinφ

R+r cosφ

cosθ(R+ r cosφ) −Rr sinφ

R+r cosφ

0 −Rr cosφ

R+r cosφ

 ,
Minimizing along the columns of DΛT , and using the fact that for a matrix B = [bi j],

‖B‖2 ≤ (∑
i, j
|bi j|2)1/2

it follows that

4π
2 min

{
(R− r)2,

(
Rr

R− r

)2
}
≤ min

(x,y)∈[0,1)2
‖DΛT(x,y)‖

2
2

≤ max
(x,y)∈[0,1)2

‖DΛT(x,y)‖
2
2 ≤ 4π

2
[
(R+ r)2 +

(
2Rr

R+ r

)2]
.

Thus the Fibonacci nodes on the torus are quasi-uniform. For certain aspect ratios, the

map ΛT is almost a local isometry. For R = 3, r = 2, we computed the mesh ratios for

Fk ≤ F25 = 75025 and numerically determined

γ(ωFk)≤ 1.0554
√

2/2≈ 0.7463...

where
√

2/2 is the mesh ratio for the Fibonacci lattice on [0,1).
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3.2 Configurations on S3

The 600−cell is a 4 dimensional regular convex polytope consisting of 120 vertices, 600

regular tetrahedra and each edge is common to five tetrahedra. The vertices are given by the

Cartesian axes ±ei, vectors of the form

(±1/2,±1/2,±1/2,±1/2),

and lastly by taking even permutations of

1/2(±ϕ,±1,±1/ϕ,0).

where ϕ =(1+
√

5)/2 is the golden ratio. The 600-cell is a universally optimal configuration

in the sense of Cohn and Kumar [35], that is, it minimizes the K energy for 120 points on S3

for any continuous and completely monotonic potential K.

We generate a sequence of configurations ωNk in each cell of the 600-cell and then

radially project to the sphere, In each tetrahedron, we place an FCC lattice parallel to the

faces. Let T be a tetrahedral cell with a vertex at the origin and remaining vertices given by

the columns of

A =


1 1

2
1
2

0
√

3
2

√
3

6

0 0
√

2
3


Then the configurations are given by

xm,n,p =
1
k

A · [m,n, p]T , m,n, p = 1, . . . ,k.

followed by scaling and translating to each cell of the 600-cell. By an inclusion-exclusion

argument, we have that Nk = 100k3−300k2 +320k−120.
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The shortest length vector in a face of the 600-cell has length L =
√

2/8(3+
√

5) =

0.9256..., and like the radial projection from the icosahedron S2, the map is bi-Lipschitz

and thus the resulting sequence of spherical configurations is quasi-uniform. However it is

not equidistributed.

Remark 3.2.1. It is possible to generalize the equal area map from the icosahedron to S2

given in Section 2.4 to produce an equidistributed sequence of spherical configurations from

the 600-cell. Given a regular tetrahedron T of edge length L, we can create an volume

preserving map Φ to a regular spherical tetrahedron Φ(T ) in the following way:

1. Label the vertices of T by xi. Prescribe the vertices Φ(xi) such that they form a regular

spherical tetrahedron of equal volume to T .

2. The edges of T will be mapped to the corresponding geodesics between Φ(xi).

3. For a fixed h≤ L, denote by vi ∈ T , i = 1,2,3 the points along the edges between x4

and xi of Euclidean distance h to x4. Let A(h) be the volume of the tetrahedron formed

by {v1,v2,v3,x4}. Similarly on the sphere, let ṽi be the points along the geodesics

connecting Φ(x4) to Φ(xi) with geodesic distance h to Φ(x4), and let B(h) denote the

volume of the spherical tetrahedron formed by {ṽ1, ṽ2, ṽ3,Φ(x4)}. Formulae for the

volume of spherical tetrahedra in terms of edge lengths are given in [60].

4. Both A(·) and B(·) are continuous and strictly monotonic with A(0) = B(0) = 0 and

A(L) = B(L̃) =H3(T ) where L̃ is the geodesic edge length of Φ(T ). Thus for each

0≤ h≤ L, there exists a unique 0≤ h̃≤ L̃ such that A(h) = B(h̃).

5. For 0 ≤ h ≤ L and vi ∈ T , i = 1,2,3 as described in Step 3, define Φ(vi) to be the

points along the geodesics between Φ(xi) and Φ(x4) corresponding to the h̃ in Step 4.

6. Apply the equal area map described in Section 2.4 between the cross sectional equilat-

eral triangle {v1,v2,v3} to the cross sectional equilateral spherical triangle

{Φ(v1),Φ(v2),Φ(v3)}.

65



Determining the formulas for this map and proving they result in a sequence of equidis-

tributed and quasi-uniform configurations on S3 is an open problem.

3.3 Variable Density Node Generation in Rd

3.3.1 Radial basis functions

We now turn our attention to generating nodes specifically for Radial Basis Function

(RBF) modeling whose usefulness is well-known in a number of applications. They have

found their way into high-dimensional interpolation, machine learning, spectral methods,

vector-valued approximation and interpolation, just to name a few [103], [29], [46], [25],

[87]. RBFs have a number of advantages, most importantly extreme flexibility in forming

stencils (in the case of RBF-FD) and high local adaptivity; allowing spectral accuracy on

irregular domains; the fact that the corresponding interpolation matrix (denoted by A below)

is positive-definite for several types of radial functions and does not suffer from instability

phenomena characteristic of some of the alternative interpolation methods.

Applying RBF-FD stencils to building solvers requires an efficient way of distributing

the centers of basis elements in the domain, which can be either a solid or a surface. The

tasks of modeling and simulation often call for distribution of massive numbers of RBF

centers, so it is important to ensure that the distribution process is easily scalable. One

further has to be able to place nodes according to a certain non-uniform density.

An RBF [47] is a linear combination of the form

s(x) =
N

∑
k=1

λkφ(‖x− xk‖), (3.4)

where φ(·) is a radial function, and {xk}N
k=1 is a collection of pairwise distinct points in

Rd . A common choice of φ is the Gaussian e−(εr)2
, although one may also use 1/(1+

(εr)2), r2m log(r),m ∈ N, or any kernel approximating the delta-function [74]. In this

discussion, we are not concerned with the distinctions between the different radial kernels.
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It is well-known that the matrix

A =



φ(‖x1− x1‖) φ(‖x1− x2‖) . . . φ(‖x1− xN‖)

φ(‖x2− x1‖) φ(‖x2− x2‖) . . . φ(‖x2− xN‖)
...

...
...

φ(‖xN− x1‖) φ(‖xN− x2‖) . . . φ(‖xn− xN‖)


is positive-definite if the nodes x1 . . .xN are all distinct, and therefore under this assumption

there exists an N-point RBF interpolant for any function data which we denote by ωN . A

different question, however, is whether the matrix A will be well-conditioned. This is not

the case, for example, when the kernel is Gaussian, the nodes are placed on a lattice and

ε → 0, [49]. It is due to this phenomenon that planar lattice nodes perform much worse

than Halton nodes [49], or quasi-uniform nodes. Furthermore, node clumping can lead to

instability of PDE solvers, [46]. To avoid this, one must guarantee that the RBF centers are

well-separated.

In many applications, one has to ensure that the distance from a node xi to its nearest

neighbor behaves approximately as a function of the position of the node [48]. Prescribing

this function, ρ(x), which we call the radial density, is a natural way to treat the cases

when a local refinement is required in order to capture special features of the domain. We

will describe a method of node placement for which the distance to the nearest neighbor,

denoted by δi(ωN) = mini 6= j ‖xi−x j‖, satisfies the above description. To summarize, we are

interested in a procedure of distributing discrete configurations inside a domain that would:

• guarantee that δi(ωN)' ρ(xi) for a given function ρ(N) (that is, they differ only up

to a constant factor) for a reasonably wide choice of ρ;

• be suitable for mesh-free PDE discretizations using RBFs, i.e., produce well-separated

configurations without significant node alignment;

• result in regular node distribution on the surface boundaries of the domain;
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• be computationally efficient, easily scalable, and suitable for parallelization.

3.3.2 Choice of method

To generate nodes both devoid of lattice alignment and having near-optimal local separa-

tion, we apply Riesz energy minimization. Furthermore, we consider the weighted s-energy

which is defined in [15] as

Es(x1, . . . ,xN) = ∑
i6= j

w(xi,x j)

‖xi− x j‖s . (3.5)

It will be useful to assume that the weight function in (3.5) is chosen so that all the terms

are zero except when x j is among the K nearest nodes to xi, a condition equivalent to the

truncated weights in [16]. As described in detail in [16], when s > d, the truncated kernel

has the same asymptotics and limiting distribution, and the minimal energy configurations

are well-separated. Yet it can be computed in an amount of time of order O(NK), unlike the

O(N2) order computation time for the complete kernel.

We choose s > d to ensure that the energy functional is sufficiently repulsive and

the local structure does not depend on the domain Ω. While any symmetric kernel that

grows fast enough towards the diagonal of Ω×Ω and smooth away from it would produce

similar results, we chose the Riesz kernel because the properties of its minimizers are well

understood.

To facilitate convergence of whichever optimization algorithm is used to find minimizers

of (3.5), we initialize it with a configuration that approximates the limiting measure. Due

to the separation requirement, one has to rule out uses of Monte Carlo method, as random

points exhibit clustering [22], and turn instead to the quasi-Monte Carlo (Q-MC) approach.

The key element of our construction lies in distributing the node set in a deterministic

way in order to guarantee low discrepancy between the desired and the obtained radial

densities. This is achieved by a Q-MC analog of the stratification of Monte Carlo method

68



[26]: nodes are distributed with piecewise constant (radial) density that approximates the

desired density. We consider two different Q-MC sequences to draw from with constant

radial density: irrational lattices and periodic Riesz minimizers. After dividing the set Ω

into cube-shaped voxels, each voxel is filled with nodes obtained in one of the two ways,

appropriately scaled, then the weighted s-energy of the whole node set is minimized. It is

important to observe that, although we discuss the radial density case here, an argument for

the volumetric density can be produced along the same lines.

An irrational lattice (IL) is defined as a discrete subset of the d-dimensional unit cube

[0,1]d

LN =

{
({Ξ+ i/N},{iα1} ,{iα2}, . . . ,{iαd−1})

}N

i=1
, (3.6)

where {x}= x−bxc denotes the fractional part of x, 0 < Ξ < 1 is fixed, and α1,α2, . . . ,αd−1

are irrational numbers, linearly independent over the rationals. This terminology seems to

be accepted in the low-discrepancy community [8], while closely related objects, when used

for Q-MC purposes, are known as Korobov/lattice point sets [62].

The motivation for using an IL in this context comes in part from the desire to avoid

recursive data structures, which can be detrimental to the overall performance, and in part is

motivated by the existing results on the discrepancy of such lattices. It is known for example,

that the two-dimensional ILs have optimal order L2 discrepancy, [8], [9]. Furthermore, in

all dimensions ILs are equidistributed [61, Chapter 1.6]. The simple linear structure of ILs

makes them especially attractive for SIMD-parallelization.

Another Q-MC sequence that has proven to suit our purposes consists of periodic Riesz

minimizers on the unit flat torus, that is, energy minimizers on [0,1]d with the Euclidean

distance replaced with the coordinate-wise periodic metric

‖[x1,x2,x3]− [y1,y2,y3]‖2
∼ = Π(x1− y1)+Π(x2− y2)+Π(x3− y3),

where Π(t) = min(t2,(1− t)2), 0 ≤ t ≤ 1. It follows from [55] that such configurations
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are well-separated and equidistributed. From the numerics, the nearest neighbor distances

appear to vary little from node to node. This reason and also that minimizing configurations

do not suffer from the lattice-like alignment, makes their rescaled copies good candidates

for the stratification.

The number of nodes in individual voxels is defined by the function ρ , and the resulting

collection has piecewise constant density; refining the voxel partition leads to an improved

piecewise approximation of the desired (e.g., smooth) density. In practice, the dependence

between the number of nodes contained in the unit cube, and average/minimal nearest

neighbor distance is tabulated in advance, and then inverted during the construction of the

node set.

3.3.3 The algorithm

If the nodes must be restricted to a certain compact set, for example, support of a given

indicator function, we will refer to the set as density support. We may assume that the

desired node distribution is contained in the d-dimensional unit cube; the case of an arbitrary

compact support then follows by choosing a suitable enclosing cube and applying scaling

and translation. Suppose the radial density is prescribed by a bounded Lipschitz function

ρ : C = [0,1]d → [0,D], so that the distance δi(ωN) to the nearest neighbor from a node xi

has to be close to ρ(xi). We summarize the discussion in Section 3.3.2 into the following

algorithm for generating nodes with radial density ρ:

1. Choose one of the two Q-MC sequences described in Section 3.3.2. For a fixed

1≤ n≤ nmax, place a configuration of n nodes into [0,1]d , and determine the average

periodic nearest neighbor distance, denoted by δn of the configuration. Let L : (0,∞)→

{0,1,2, . . . ,nmax} be the interpolated inverse to δn : {1,2, . . . ,nmax}→ (0,1].1

1Note that both ILs and the minimizers can have nearest neighbor distance of at most 1, due to periodicity.
We therefore take L(t) = 0 whenever t > 1.
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2. Partition C into Nd
v equal cube-shaped voxels of side length 1/Nv, with faces parallel to

the coordinate planes. The choice of Nv corresponds to the resolution of the piecewise

constant density of the resulting distribution.

3. Let {V j}
Nd

v
j=1 denote the voxels, and let ρ̄ j be the average value of ρ at the 2d vertices

of the voxel V j. Place inside V j a scaled and translated version of (3.6), or of the

n-point periodic Riesz minimizer, using n = n j defined by

n j = L(ρ̄ jNv).

4. Iterate over all the voxels {V j} j∈J for which at least one of the adjacent (i.e., sharing

a face) voxels has a vertex inside the density support. Apply Step 3 to every such

voxel.

5. Consider the voxels in {V j} j∈J , for which ρ̄ jNv > 1; at this stage they do not contain

any nodes. Sort such voxels by increasing values of ρ̄ j; iterate over the resulting list,

which will be denoted by {V j} j∈K, and place nodes in the center Z j of every voxel,

for which distance to all the previously placed nodes is greater than ρ̄ j. Finally, for all

nonempty voxels, remove nodes outside the density support.

6. Perform T iterations of gradient descent on the truncated s-energy functional with

w(xi,x j) = ρ(xi)
s, s > d, using the K nearest neighbors of each node. Let the initial

configuration be the 0-th iteration, ω
(0)
N . On the tth iteration, given a node x(t)i with K

nearest neighbors {x(t)i,k}
K
k=1, form the weighted vector sum

G(t)
i =

K

∑
k=1

x(t)i − x(t)i,k

‖x(t)i − x(t)i,k‖s+2
,
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the new node position can now be expressed as

x(t+1)
i =


x(t)i + s

δi(ω
(t)
N )

t +Θ
ρ

(
x(t)i

)s G(t)
i

‖G(t)
i ‖

if this sum in inside suppρ;

x(t)i , otherwise,

1≤ i≤N.

(3.7)

where Θ is an offset chosen to control the step size between x(t)i and x(t+1)
i . The

condition of x(t+1)
i being inside the support is replaced with applying a “pullback”

function if one is provided. Update the nearest neighbor structure after every few

iterations.

7. If no boundary node set/pullback function is prescribed, define the boundary nodes

as follows. Evaluate the point inclusion function for xi± δi(ωN)e j for each i =

1, . . . ,N, j = 1, . . . ,d, where e j is the j-th basis vector. If at least one such point lies

outside the density support, the node xi is considered to be part of the boundary set.

Remark 3.3.1. It doesn’t matter which minimization method was applied to the Riesz s-

energy in Step 6, rather the gradient descent is chosen due to its simplicity. Note, the

second case in (3.7), leading to shrinking of the line stepping distance, can be thought of

as a simplistic backtracking line search, and it turns out to be sufficient for our purposes.

Furthermore, applying a more involved line search may significantly deplete performance

for complicated or nonsmooth domains.

Remark 3.3.2. If the irrational lattice method is chosen in Step 1, than the node set in voxel

V j is constructed as follows. Let C j be the vertex of V j closest to the origin. Before scaling

and translating, randomly permute the coordinates of the lattice by a permutation σ so that

the resulting IL in V j will be oriented randomly with respect to its neighboring voxels. Then

the IL from (3.6) in voxel V j becomes

L j =C j +
γ

Nv
σ(i/n j,{iα1} ,{iα2}, . . . ,{iαd−1})+

ξ

Nv
, i = 1 . . .n j, (3.8)
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Figure 3.2: The vertices which the algorithm tests to be in the density support.

where

γ = 1− cd

(
1

nmax

)1/d

ξ =
1− γ

2
· [1,1, . . . ,1]t ,

with cd a constant depending only on the dimension. The quantities γ and ξ ensure that the

lattice points in L j are inset into the voxel by at least half a minimum separation distance,

avoiding poorly separated points along the boundaries between voxels.

Remark 3.3.3. The values of K and T can be adjusted to achieve a trade-off between

execution speed/memory consumption and local separation. In practice2, even relatively

small values of K and T produce good results: we used K ≈ T ≈ 30 for 1.3 million nodes in

Section 3.3.4.2, and K ≈ T ≈ 20 for about 250 thousand nodes in Section 3.3.4.3.

Remark 3.3.4. Observe that in Step 4 the nodes are only placed in voxels for which neighbors

(sharing a face) have corners inside the density support – in other words, for which the radial

density function is smaller than a certain threshold value. This means, removing the nodes

outside the support in Step 4 does not lead to much overhead, provided the function ρ is

varying slow enough. Furthermore, since the density is first evaluated at the corners only,

the total number of evaluations may be significantly reduced, which is especially useful

when ρ is computationally expensive.

One could equally use a different arrangement of nearby corners to detect whether to

count a particular voxel as being inside/outside the support. Figure 3.2 illustrates the one we

2The Matlab code we provide performs naive autotuning of K and T , using the total number of nodes to be
placed. Although sufficient for demonstration purposes, there is room for improvement.
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used in our implementation, for the d = 2 case.

Remark 3.3.5. To introduce adaptive refinement of the voxel structure, it suffices to modify

Step 3 in the following way.

After computing {ρ̄ j}
Nd

v
j=1, detect voxels V j for which the node distribution needs to be

refined, either because of large density variation, or by some meaningful criterion (coastline,

vortex creation, boundary conditions, etc.). Mark the corresponding corners C j as refined;

for each refined corner, add 2d−1 new corners, obtained by taking the middles of segments

connecting C j with the other vertices of V j. Mark the new corners as refined. Proceed as

before in Step 3, except for L js in (3.8) for the refined corners being scaled with γ ′ = γ/2.

3.3.4 Sample applications

3.3.4.1 Spherical shell

The motivation for this example comes from atmospheric modeling. Approximating

the surface of the Earth by a sphere, we consider first a thin 3-D shell of inner radius a

and outer radius a+ ztop with separation h between points in the radial (vertical) direction

and separation in the tangential (horizontal) direction at radius r to be k(r) =C · r for some

constant C. With typical choices of parameters, k will be much larger than h, reflecting the

much higher resolution needed in the vertical direction. We make a variable change in the

radial direction R = R(r) in order to compute with equal resolution in all spatial directions,

the easiest case to implement with RBF-FD. Following this change of variables, the node

separations become

H(r) = h ·R′(r)

K(r) = R(r) ·C

Setting these two quantities to be equal, we obtain the ODE

R′(r) = R(r) ·C
h
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Figure 3.3: Left: Distribution of radii of the spherical shell node set. Right: Ratios of
expected separation to nearest neighbor distances.

with initial condition R(a) = a, and its solution becomes

R(r) = aexp
(

C · r−a
h

)
.

We thus generate a node set whose separation is proportional to R(r) and has equal resolution

in all dimensions. Letting a = 6,371,220 be the mean radius of the Earth in meters and

ztop = 12,000 we generate 325,003 nodes corresponding to a 2 degree separation on the

surface of the Earth and a 400 meter resolution in the vertical direction. On the inner and

outer boundary we fix 12,100 approximate Riesz energy minimizers on the sphere. We

rescale the configuration so that the inner shell has radius 1.

The left plot of Figure 3.3 plots the number of nodes at each radius. As expected, the

distribution follows a roughly exponential decay while the inner and outer nodes are repelled

from the fixed boundary nodes. The right plot of Figure 3.3 shows ρ(xi)/δi(ωN) with

respect to radius for node xi. The minimum and maximum values are 0.7468 and 1.1500

respectively with mean 1.0486 and variance 0.0030 which reflects the quality of the density

recovery.
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3.3.4.2 Atmospheric node distribution using surface data

We use the geodata [2] from the collection3 of global relief datasets from NOAA (Na-

tional Oceanic and Atmospheric Administration), which contains a 1 arc-minute resolution

model. The sample configuration consists of 1,356,985 nodes distributed uniformly inside

an atmospheric-type shell: the outer boundary of the domain is spherical, the inner one is an

interpolation of the relief from ETOPO1 data, exaggerated by a factor of 100. The scale is

chosen so that the average Earth radius, assumed to be 6,371,220 meters, has unit length;

the radius of the outer boundary is 1.1.

The ETOPO1 dataset stores relief as a 21 600-by-10 800 array of heights from the sea

level – equivalently, of radial coordinates that correspond to the spherical angles defined by

the array’s indices. The data points are equispaced on lines of constant azimuth/inclination

with angular distance δ = π/10800. To determine whether a given node xi belongs to the

domain, its radial coordinate ri was compared with a linear interpolation of the values of radii

of three ETOPO points with the nearest spherical coordinates. For example, assume that for

xi = (ri,φi,θi) the three nearest data points have spherical coordinates (r j,φ j,θ j), j = 1,2,3,

where 0≤ φ ≤ 2π and 0≤ θ ≤ π are the azimuth and inclination, respectively, and

φ1 = δ l, φ2 = φ1 +δ , φ3 = φ1, 0≤ l ≤ 21599;

θ1 = δm, θ2 = θ1, θ3 = θ1 +δ , 0≤ m≤ 10799.

The other possible arrangements for φ j,θ j can be treated similarly. The node xi was deemed

to belong to the atmospheric shell if

r1 +
φi−φ1

δ
(r2− r1)+

θi−θ1

δ
(r3− r1)< ri < router,

with router being the radius of the outer sphere as above. In effect, the point inclusion

function described here coincides with using the star-shaped point location algorithm from

3https://doi.org/10.7289/V5C8276M
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Figure 3.4: Left: a general view of a uniform node distribution in an atmospheric-like shell.
Right: zoomed in Americas.

[80, Section 2.2] to verify that xi lies outside the interpolated Earth surface, and inside the

outer sphere.

The time required to select the node configuration inside the domain from a piecewise

irrational lattice was 11.78 seconds on an Intel i5 CPU. Performing 30 iterations in Step 6

with the whole 1.3M-node set additionally took 136.07 seconds.

Figure 3.5 illustrates the distribution of nodes close to the surface of the domain. Al-

though there has been no special treatment of the near-surface nodes, they appear to be quite

regular. Note that the node spacing is about the same on the continental part (green), as on

the slope of Andes going down to the ocean bed (from yellow to blue). This shows that the

introduction of a boundary into the algorithm by simply recomputing the point inclusion

function in (3.7) did not lead to distribution artifacts.

The left subplot in the Figure 3.6 illustrates the effect of Step 6 on the distribution of

distances to the nearest neighbor. On the right, we have collected distances to the nearest

neighbors for the whole configuration, and separately for the surface subset. The histogram

also contains the distribution of hole radii, that is, distances from the Voronoi centers of the

present node configuration to their respective nearest nodes. It is a well-known fact that the

Voronoi centers are local maxima of the distance from the node set [36], considered as a

77



0

-0.2

x

-0.4

0.4

0.5

-0.2
-0.6

y

0.6

-0.4

0.7

-0.6

z

0.8

-0.8-0.8

0.9

1

0

-0.2

x

-0.4

0.4

0.5

-0.2
-0.6

y

0.6

-0.4

0.7

-0.6

z

0.8

-0.8-0.8

0.9

1

Figure 3.5: A fragment of the Western coast of South America. The nodes on the right are
color-coded using heights.
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Figure 3.6: The effects of the repel procedure and hole radii.
Left: distribution of the nearest-neighbor distances in the atmospheric node set, before (blue)
and after (red) executing the repel subroutine. Right: distribution of distances to the 12
nearest neighbors for the whole configuration (color only), for the surface subset (contours),
the hole radii (black dashed contour).
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Figure 3.7: Distribution of distances to the 12 nearest neighbors for the atmospheric node
configuration. Left: the surface subset. Right: the whole set. Scales are the same in both
subplots.

function on the whole space R3. Note that all the histograms on the right are normalized by

probability, not by the node count.

The pair of plots in Figure 3.7 shows in detail the distribution of distances to the nearest

neighbors in the sample node set. It has been produced using the standard Matlab routine

boxplot. Each of the blue boxes corresponding to a specific nearest neighbor, the central

mark is the median, the edges of the box denote the 25th and 75th percentiles. The red

crosses are what Matlab considers as outliers.

3.3.4.3 A pair of Gaussians

To demonstrate a nonuniform node distribution using our algorithm, we consider the

following density function:

ρ(x) = 0.04 ·min
(
exp(0.2 · ‖x+[1,1,1]t‖2), exp(0.1 · ‖x− [1,1,1]t‖2)

)
.

The goal is therefore to produce a nodeset for which the distance to a nearest neighbor

for the node xi is close to the value ρ(xi). We proceed as in the algorithm above, and

the resulting distribution recovers the density function quite well, see Figure 3.9. Picking
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Figure 3.8: Left: the node set from Section 3.3.4.3. Right: distribution of the nearest
neighbor distances, before (blue) and after (red) executing the repel subroutine.

318,662 nodes from the piecewise irrational lattice with variable density took 12.4 seconds,

and 23 repelling iterations from Step 6 of the algorithm took additionally 18.86 seconds.

Figure 3.9 contains the plot of the ratio ρ(xi)/δi(ωN). The minimal and maximal values

of the ratio are about 0.650 and 1.112 respectively; its mean value is 0.847, and the variance

is 0.004. The latter shows the quality of recovery of the radial density. A straightforward

way to improve the recovery of a specific density is to increase the number of voxels per

side of the enclosing cube, Nv. For the distribution discussed in this example, changing Nv

from 100 to 200 caused only a four-fold increase in the total execution time.

3.4 Concluding remarks

• The nodes produced by the IL approach may still be too close to a lattice structure for some

applications. In the light of connections to quasi-Monte Carlo methods, it is interesting to

note that this issue is akin to the property of congruential number generator described in

[70].

• One could, without much difficulty, modify the algorithm so that to use different sets of
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Figure 3.9: Ratios of the values of radial density function ρ to nearest neighbor distance,
evaluated for the node set from Section 3.3.4.3.

irrational parameters α1, . . . ,αd−1 for different numbers of nodes in a voxel. This appears

to be useful in mitigating the non-isotropic behavior of ILs as shown in Section 3.4.1

• Although it is largely obvious how to scale the algorithm to parallel architectures, our

proof-of-concept implementation currently does not include it.

• Similar purpose meshing methods are widely used for dimensions 2 and 3, see, e.g.,

AMRClaw [30]; our approach is applicable to even higher dimensions. A shortcoming

that is common to all quasi-Monte Carlo methods (and their derivatives) is, however,

a much worse performance (measured by L2 discrepancy), compared to Monte-Carlo

distribution, in dimensions starting at about 15 [26].

3.4.1 Separation distances of tiled irrational lattices

The function L(r) used in Step 3 is the number of nodes in the unit cube, placed according

to (3.6), or obtained by minimizing the Riesz s-energy, such that the mean separation distance

is the closest to r. To compute it in the case d = 3, we tabulate (mean) separation distances

in a sample configuration comprised of n nodes in each of 27 = 33 adjacent unit cubes. The

nodes are obtained by shrinking and translating the lattice (3.6) by factor γ and vector ξ
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Figure 3.10: Dependence of the separation distance of the 3-dimensional lattice on the
number of nodes in a single cube.

defined in (3.8). The tabulated dependence is then inverted and interpolated. The reason to

consider separation distance between lattices in 3d cubes in dimension d (and not a single

cube) is to account for the boundary effects.

In general, putting too many nodes in individual voxels is justified only if the radial

density function ρ varies slowly. For our applications, 1≤ n≤ 100 was sufficient.

The second plot in Figure 3.10 illustrates the delicate dependence of the separation

distances of irrational lattices on the ratio used in each coordinate. While any set of

irrational quantities α1, . . . ,αd−1 in (3.6), that are linearly independent over rationals, will

give a uniformly distributed lattice as n grows, certain values may perform better than the

others. In particular, adjustments can be made to improve the distribution for small values

of n. Numerical experiments have shown, for example, that parameters α1 =
√

2, α2 =

(
√

5−1)/
√

2 perform well in R3, which should be expected due to [8], where, in particular,

it is pointed out that a 2-dimensional lattice generated by the golden ratio has optimal L2

discrepancy.

We have carried out a numerical search for ratios maximizing the separation distance

for the lattice in (3.6), and the results are shown in Figure 3.10. We found (necessarily
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rational) pairs of ratios that perform at least as well, as the irrational pairs mentioned

above. It follows that the function L(r) will have very uneven structure for a fixed set of

irrational parameters, which makes promising implementing a lookup function that would

pick different parameters for different values of the number of nodes n. Unfortunately, we

haven’t been able to make much improvement in this way, over using the same pair of

parameters for all numbers of nodes in a voxel. On the other hand, the minimal separation

distances produced in this way are much smaller which is probably due to coincidental small

separation between nodes in neighboring voxels with different parameters αi.
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CHAPTER 4

ASYMPTOTIC LINEAR PROGRAMMING BOUNDS FOR MINIMAL ENERGY

NODES

4.1 Introduction

In this Chapter we prove lower bounds on the quantity Cs,d from Theorem 1.2.4. For

the discrete energy problem in a fixed dimension, the use of the Delsarte-Yudin linear

programming bounds and Levenshtein 1/N-quadrature rules are known to provide bounds

on the minimal energy and prove universal optimality of some configurations on the sphere

Sd (see for example [35]). We use this framework to bound Es(N,Sd) in the limit as N grows.

Due to the localized nature of the Riesz potential when s > d, these bounds are independent

of the underlying set Sd .

A simple lower bound for Cs,d comes from the following convexity argument. Let

ω∗N = {x1, . . .xN} be an optimal packing configuration on Sd , and for each i = 1 . . .N, let

δi := min
j 6=i
‖xi− x j‖. Then ∑

N
i=1(δi/2)d ≤Hd(Sd) and by convexity we have

∑
i 6= j

1
|xi− x j|s

≥
N

∑
i=1

1
δ s

i
=

N

∑
i=1

(δ d
i )
−s/d ≥ N

(
1
N

N

∑
i=1

δ
d
i

)−s/d

≥ N1+ s
d 2−s(Hd(Sd))−s/d,

thus establishing

Proposition 4.1.1.

Cs,d ≥Θs,d :=
Hd(Sd)−s/d

2s

Another lower bound is the following, established in [21]:
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Proposition 4.1.2. Let d ≥ 2, s > d, then for (s−d)/2 not an integer,

Cs,d ≥ ξs,d :=
[

πd/2Γ(1+ s−d
2 )

Γ(1+ s
2)

]s/d d
s−d

The main result of this chapter is to improve these lower bounds.

Theorem 4.1.3. For a fixed dimension d, let zi be the ith smallest positive zero of the Bessel

function Jd/2(z), i = 1,2, . . .. Then

Cs,d ≥ As,d (4.1)

where

As,d :=
[

π
d+1

2 Γ(d +1)
Γ(d+1

2 )

]s/d 4
λdΓ(d +1)

∞

∑
i=1

(zi)
d−s−2(Jd/2+1(zi)

)−2
, (4.2)

and

λd =

1∫
−1

(1− t2)
d−2

2 dt =
√

πΓ(d
2 )

Γ(d+1
2 )

. (4.3)

For d = 1, As,d = 2ζ (s) which is optimal. Furthermore, when d = 2, our bound is tight

as s→ d+.

Theorem 4.1.4.

lim
s→2+

(
√

3/2)s/2ζΛ2(s)
Cs,2

= 1. (4.4)

As shown in Corollary 4.2.10, the Levenshtein 1/N-quadrature rules give bounds on the

minimal separation distance for optimal packings on Sd , and As,d recovers these bounds as

s→∞. For d = 2,4,8, and 24, letting C̃s,d be the conjectured values of Cs,d from Conjecture

1.3.2, then lims→∞(C̃s,d/As,d)
1/s exists. Theorem 4.1.3 is analogous to Theorem 1.4 of [31]
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which is given in terms of Gaussian energy of configurations on the plane. We define this

case in the following way.

Definition 4.1.5. Denote by B(r) the ball in Rd of radius r centered at 0. For an infinite

configuration C ⊂ Rd and f : (0,∞)→ R, the lower f-energy of C is

E f (C) := liminf
r→∞

1
#C ∩B(r) ∑

x,y∈C∩B(r)
x 6=y

f (‖x− y‖)

If the limit exists, we call it the f-energy of C.

Recall the definition of the density of an infinite configuration from (1.12). The proof of

Theorem 4.1.3 yields an alternate proof of the main theorem in [31].

Theorem 4.1.6. Let f (‖x− y‖) = e−α‖x−y‖2
be a Gaussian potential and choose R so that

vol(B(R/2)) = ρ . Then the minimal f-energy for point configurations of density ρ in Rd is

bounded below by

4
λdΓ(d +1)

∞

∑
i=1

zd−2
i
(
Jd/2+1(zi)

)−2 f
(

zi

πR

)
. (4.5)

In Section 4.2 we introduce the Delsarte-Yudin linear programming lower bounds and

the Levenshtein 1/N-quadrature rules. More thorough treatments can be found in [13],

[17], and [68]. In Section 4.3, we present the proof of Theorems 4.1.3, 4.1.4, and 4.1.6

using an asymptotic result on Jacobi polynomials from Szegő, and in Section 4.4 we discuss

numerically the quality of the bound As,d and formulate a natural conjecture.
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4.2 Linear Programming Bounds

For α,β ≥−1, let
{

P(α,β )
k

}∞

k=1
be the family of Jacobi polynomials which are orthogo-

nal with respect to the weight ω(α,β )(t) := (1− t)α(1+ t)β . That is,

〈P(α,β )
k ,P(α,β )

j 〉 :=
∫ 1

−1
P(α,β )

k (t)P(α,β )
j (t)ω(α,β )(t)dt = r(α,β )

k δ jk (4.6)

for some constants r(α,β )
k where δ jk is the Kroenecker delta. We choose the normalization

P(α,β )
k (1) = 1. (4.7)

While this normalization is crucial for the linear programming methods presented here, we

note that many authors in the orthogonal polynomial literature choose P(α,β )
k (1) =

(k+α

k

)
.

For a fixed dimension d ≥ 1, the Gegenbauer or ultraspherical polynomials are given by

Pk(t) := P
( d−2

2 , d−2
2 )

k (t) and ωd(t) := ω( d−2
2 , d−2

2 )(t) and we define the adjacent polynomials

Pa,b
k (t) := P

( d−2
2 +a, d−2

2 +b)
k (t) (4.8)

with weights ω
a,b
d (t) defined similarly. The weights ωd(t) arise from itegration over Sd with

respect to the normalized surface area measure σSd . If f is a function integrable on [−1,1]

with respect to the weight ωd(t), then from a special case of the Funk-Hecke formula [75,

Theorem 6], for any fixed point y ∈ Sd ,

∫
Sd

f (〈x,y〉)dσSd(x) =
1

λd

∫ 1

−1
f (t)ωd(t)dt. (4.9)

where λd is defined in (4.3). Any f : [−1,1]→ R can be uniquely expanded in terms of the

Gegenbauer polynomials f (t) =
∞

∑
k=0

fkPk(t) where the fk are given by

fk :=
∫ 1
−1 f (t)Pk(t)ωd(t)dt∫ 1
−1[Pk(t)]2ωd(t)dt

. (4.10)
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Recall that a real valued homogeneous polynomial f (x) = f (x1, . . . ,xd+1) is called

harmonic if it satisfies Laplace’s equation:

∆( f ) =
∂ 2 f
∂x2

1
+ · · ·+ ∂ 2 f

∂x2
d+1

= 0. (4.11)

A function Y (x) is called a spherical harmonic on Sd if it is the restriction of a real valued

homogeneous polynomial that is harmonic on Rd+1. The set of all spherical harmonics of

total degree k, denoted by Hd
k , form a linear subspace of L2(Sd) and can be shown to have

dimension

Z(d,k) = dim(Hd
k ) = (2k+d−1)

Γ(k+d−1)
Γ(d)Γ(k+1)

.

Let {Ykl(x)}
Z(d,k)
l=1 be an orthonormal basis of Hd

k . The Gegenbauer polynomials are related

to spherical harmonics by the Addition Formula [3],

Z(d,k)

∑
l=1

Ykl(x)Ykl(y) = Z(d,k)Pk(〈x,y〉). (4.12)

An immediate consequence of (4.12) is that for any configuration ωN = {x1 . . .xN} ⊂ Sd ,

N

∑
i, j=1

Pk(〈xi,x j〉) =
1

Z(d,k)

Z(d,k)

∑
l=1

N

∑
i, j=1

Ykl(xi)Ykl(x j)

=
1

Z(d,k)

Z(d,k)

∑
l=1

( N

∑
i=1

Ykl(xi)

)2

≥ 0.

(4.13)

We call an N-point configuration ωN = {x1 . . .xN} ⊂ Sd a spherical τ design if

∫
Sd

f (x)dσSd(x) =
1
N

N

∑
i=1

f (x)

holds for all spherical polynomials f of degree at most τ . Equivalently, ωN is a spherical

design if and only if
N

∑
i=1

Ykl(xi) = 0 (4.14)
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for all 1≤ l ≤ Z(d,k), 1≤ k ≤ τ , which from (4.13) holds if and only if

N

∑
i, j=1

Pk(〈xi,x j〉) = 0 (4.15)

for all 1≤ k ≤ τ .

Then the following result forms the basis for the linear programming bounds for packing

and energy on the sphere:

Theorem 4.2.1. Suppose f : [−1,1]→ R is of the form

f (t) =
∞

∑
k=0

fkPk(t)

with fk ≥ 0 for all k ≥ 1 and
∞

∑
k=0

fk < ∞. Then for ωN = {x1, . . . ,xN} ⊂ Sd ,

∑
1≤i 6= j≤N

f (〈xi,x j〉)≥ f0N2− f (1)N. (4.16)

Moreover, if the energy kernel K(x,y) := h(〈x,y〉) for some h : [−1,1]→ [0,∞] such that

h(t)≥ f (t), then

EK(ωN)≥ EK(N,Sd)≥ f0N2− f (1)N (4.17)

Equality holds in (4.17) if and only if

1. h(t) = f(t) for all t ∈
{
〈xi,x j〉 : i 6= j

}
and

2. for all k ≥ 1, either fk = 0 or
N

∑
i, j=1

Pk(〈xi,x j〉) = 0.

In this case ωN is an optimal K-energy configuration
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Proof.

Eh(ωN)≥ E f (ωN) =
N

∑
i, j=1

f (〈xi,x j〉)− f (1)N

=
∞

∑
k=0

fk

N

∑
i, j=1

Pk(〈xi,x j〉)− f (1)N

≥ f0N2− f (1)N.

(4.18)

where we throw away all but the k = 0 term in the sum. This inequality holds since fk ≥ 0

and
N

∑
i, j=1

Pk(〈xi,x j〉)≥ 0 by (4.13). The first inequality is equality if and only if h(t) = f (t)

for all t ∈
{
〈xi,x j〉 : i 6= j

}
while the second is equality if and only if for all k ≥ 1, either

fk = 0 or
N

∑
i, j=1

Pk(〈xi,x j〉) = 0.

In the case when ωN is a spherical τ-design, we have following consequence of Theorem

4.2.1

Corollary 4.2.2. Suppose ωN is a spherical τ-design and f (t) is a polynomial of degree at

most τ such that f (t)≥ 0 on [−1,1] and f0 ≥ 0. Then

N ≥ f (1)
f0

(4.19)

Proof. With the above assumptions on f , equality holds throughout in (4.18) since
N

∑
i, j=1

Pk(〈xi,x j〉) = 0 for 1≤ k ≤ τ , and fk = 0 for k > τ . Thus

0≤ E f (ωN) = f0N2− f (1)N
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Using Corollary 4.2.2, Delsarte, Goethals, and Siedel [41] obtain a lower bound on

B(d,τ) := min
{

N : ∃ ωN ⊂ Sd a spherical τ design
}
.

Theorem 4.2.3.

B(d,τ)≥ D(d,τ) :=

{
2
(d+k−1

d

)
, if τ = 2k−1(d+k

d

)
+
(d+k−1

d

)
, if τ = 2k

Proof. Let P̃k(t) denote the degree k Gegenbauer polynomial normalized by

P̃k(1) =
(

d + k
d

)
−
(

d + k−2
d

)
.

This normalization gives the orthogonality property

∫ 1

−1
P̃l(t)P̃k(t)ωd(t)dt = λdP̃k(1)δkl.

Now let

Rk(t) :=
k

∑
i=0

P̃i(t).

At t = 1 this is a telescoping series and so

Rk(1) =
(

d + k
d

)
+

(
d + k−1

d

)
.

Suppose ωN is a spherical 2k-design. Take f (t) = (Rk(t))2. This function satisfies the
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hypotheses of Corollary 4.2.2 because by orthogonality,

f0 =
1

λd

∫ 1

−1
f (t)ωd(t)dt =

1
λd

∫ 1

−1

( k

∑
i=0

P̃i(t)
)2

ωd(t)dt

=
1

λd

k

∑
i=0

∫ 1

−1
(P̃i(t))2

ωd(t)dt

=
k

∑
i=0

P̃i(1) = Rk(1)> 0.

Thus N ≥ f (1)/ f0 = (Rk(1))2/Rk(1) = Rk(1). The bound for the case when ωN is a 2k−1

design can be established similarly by defining

Ck(t) :=
bk/2c

∑
i=0

P̃k−2i(t)

and considering the function

f (t) = (t +1)(Ck−1(t))2

4.2.1 Levenshtein 1/N quadrature rules

A sequence of ordered pairs {(αi,ρi)}k
i=1 is said to be a 1/N-quadrature rule exact on

a subspace Λ ⊂C([−1,1]) if −1 ≤ αk < · · · < α1 < 1, ρi > 0 for i = 1, . . . ,k, and for all

f ∈ Λ,

f0 =
1

λd

∫ 1

−1
f (t)ωd(t)dt =

f (1)
N

+
k

∑
i=1

ρi f (αi). (4.20)

Theorem 4.2.1 gives rise immediately to the following:

Theorem 4.2.4. Let {(αi,ρi)}k
i=1 be a 1/N-quadrature rule exact on Λ. For K(x,y) =

h(〈x,y〉), let Ah be the set of functions f (t) ≤ h(t) satisfying the hypotheses of Theorem

4.2.1. Then,
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EK(N,Sd)≥ N2
k

∑
i=1

ρi f (αi).

and

sup
f∈Λ∩Ah

N2
k

∑
i=1

ρi f (αi)≤ N2
k

∑
i=1

ρih(αi)

Levenshtein derives a 1/N-quadrature given in Theorem 4.2.5 to obtain the following

bound for the maximal cardinality of a configuration ωN ⊂ Sd with largest inner product s.

Letting γ
a,b
k denote the greatest zero of Pa,b

k (t), partition [−1,1] into the following disjoint

union of countable intervals. For τ = 1,2 . . .,

Iτ :=

{
[γ1,1

k−1,γ
1,0
k ], if τ = 2k−1

[γ1,0
k ,γ1,1

k ], if τ = 2k.

This partition is well defined by the interlacing properties γ
1,1
k−1 < γ

1,0
k < γ

1,1
k . Let

A(d,s) := max
{

N : ∃ ωN ⊂ Sd,〈xi,x j〉 ≤ s, i 6= j
}
.

Then,

A(d,s)≤ L(d,s),

where

L(d,s) =

{
L2k−1(d,s) =

(k+d−2
k−1

)
[2k+d−2

d − Pk−1(s)−Pk(s)
(1−s)Pk(s)

], if s ∈ I2k−1

L2k(d,s) =
(k+d−1

k

)
[2k+d−1

d − (1+s)(Pk(s)−Pk+1(s))
(1−s)(Pk(s)+Pk+1(s))

], if s ∈ I2k.

(4.21)

The function L(d,s) is called the Levenshtein function. It is continuous and increasing on

[−1,1]. The formula for the Levenshtein function is such that the quadrature nodes given

in Theorem 4.2.5 below will have weight 1/N at the node α0 = 1. At the endpoints of the
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intervals Iτ ,

L2k−2(d,γ
1,1
k−1) = L2k−1(d,γ

1,1
k−1) = D(d,2k−1)

L2k−1(d,γ
1,0
k−1) = L2k(d,γ

1,0
k−1) = D(d,2k).

(4.22)

Letting ra,b
i := (

∫ 1
−1(P

a,b
i (t))2dω

a,b
d (t))−1, la,b

i be the leading coefficient of Pa,b
i (t), and

ma,b
i := la,b

i /la,b
i+1, define

Qa,b
k (x,y) :=

k

∑
i=0

ra,b
i Pa,b

i (x)Pa,b
i (y). (4.23)

By the Cristoffel-Darboux formula (c.f. [97, Section 3.2]), an alternate formula for Qa,b
k (x,y)

is

Qa,b
k (x,y) = ra,b

k ma,b
k

(
Pa,b

k+1(x)P
a,b
k (y)−Pa,b

k (x)Pa,b
k+1(y)

x− y

)
, x 6= y (4.24)

Qa,b
k (x,x) = ra,b

k ma,b
k (Pa,b′

k+1(x)P
a,b
k (x)−Pa,b′

k (x)Pa,b
k+1(x)). (4.25)

The following 1/N-quadrature rule proven in [67] Theorems 4.1 and 4.2, forms the basis of

the proof of Theorem 4.1.3.

Theorem 4.2.5. For N ∈N, let τ be such that N ∈ (D(d,τ),D(d,τ+1)], and let α1 = β1 = s

be the unique solution to

N = L(d,s).

i) If τ = 2k−1, define nodes −1 < αk < · · ·< α1 < 1 by the solutions of

(t− s)Q1,0
k−1(t,s) = 0 (4.26)
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and weights

ρi =
1

λd(1−αi)Q
1,0
k−1(αi,αi)

. (4.27)

Then {(αi,ρi)}k
i=1 form a 1/N-quadrature rule which is exact on Π2k−1, the space of

polynomials of degree less than or equal to 2k−1.

ii) If τ = 2k, define nodes −1 = βk+1 < · · ·< β1 < 1 by the solutions of

(1+ t)(t− s)Q1,1
k−1(t,s) = 0 (4.28)

and weights

ηi =
1

λd(1−β 2
i )Q

1,1
k (βi,βi)

, i = 1, . . . ,k,

ηk+1 =
Q1,1

k (s,1)

Q1,1
k (−1,−1)Q1,1

k (s,1)−Q1,1
k (−1,1)Q1,1

k (s,−1)
.

(4.29)

Then {(βi,ηi)}k+1
i=1 form a 1/N-quadrature rule which is exact on Π2k.

Remark 4.2.6. If N is at the endpoints of this interval, we also have that for N = D(d,2k),

{(αi,ρi)}k
i=1 is exact on Π2k and for N = D(2k+1), {(βi,ηi)}k+1

i=1 is exact on Π2k+1.

Proof. We prove the case for τ = 2k−1, the second case being similar. Denote by α0 := 1

and ρ0 := 1/N. For simplicity, throughout this proof, denote Q1,0
k (t) by Qk(t), P1,0

k (t) by

Pk(t) and r1,0
k by rk. Note first that if αi and α j are two distinct zeros of (t− s)Qk(t,s) for a

fixed s, then Qk(αi,α j) = 0. Indeed we have,

Pk+1(αi)Pk(s)−Pk(αi)Pk+1(s) = 0,
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and a similar equation for α j, and thus

Pk+1(αi)Pk(α j)−Pk(αi)Pk+1(α j)

=
Pk(αi)Pk+1(s)

Pk(s)
Pk(α j)−Pk(αi)

Pk(α j)Pk+1(s)
Pk(s)

= 0.

Now let

gi(t) :=
(1− t)Qk−1(t,αi)

(1−αi)Qk−1(αi,αi)
, i = 1, . . .k, (4.30)

g0(t) :=
(t− s)Qk−1(t,s)
(1− s)Qk−1(1,s)

(4.31)

These are the annihilating polynomials because

gi(α j) = δi, j for i, j = 1, . . .k

Thus for a polynomial f ∈Π2k−1, the polynomial

f (t)−
k

∑
i=0

f (αi)gi(t)

has zeros α0, . . . ,αk and hence

f (t)−
k

∑
i=0

f (αi)gi(t) = (1− t)(t− s)Qk−1(t,s) f̃ (t)

for some f̃ ∈Πk−2. Thus, since Pk−1(t),Pk(t) ∈Π⊥k−2 with respect to (1− t)ωd(t),
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∫ 1

−1

(
f (t)−

k

∑
i=0

f (αi)gi(t)
)

ωd(t)dt

=
∫ 1

−1
(t− s)Qk−1(t,s) f̃ (t)(1− t)ωd(t)dt

=
∫ 1

−1
rkmk(Pk(t)Pk−1(s)−Pk−1(t)Pk(s)) f̃ (t)(1− t)ωd(t)dt

= 0,

and hence,

∫ 1

−1
f (t)ωd(t)dt =

k

∑
i=0

ρi f (αi) ρi =
∫ 1

−1
gi(t)ωd(t)dt

Equation (4.27) follows from formula (4.30) and noticing that by orthogonality,

∫ 1

−1
Qk−1(t,αi)(1− t)ωd(t)dt =

∫ 1

−1

k

∑
j=0

riPj(t)Pj(αi)(1− t)ωd(t)dt

=
∫ 1

−1
r0P0(t)P0(αi)(1− t)ωd(t)dt = 1.

Boyvalenkov et. al [20] use this quadrature rule to derive a universal lower bound for

spherical configurations.

Theorem 4.2.7. Let N be fixed and h(t) an absolutely monotone potential, i.e. h(k)(t)≥ 0

for all k. Suppose τ = τ(d,N) is such that N ∈ (D(d,τ),D(d,τ + 1)] and let k = d τ+1
2 e.

Letting αi, ρi, i = 1 . . .k be the quadrature nodes from Theorem 4.2.5, then

Eh(N,Sd)≥ N2
k

∑
i=1

ρih(αi). (4.32)

Taking into account Theorem 4.2.4, this is the optimal linear programming bound for
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Λ = Πk. As an application, we show that theorem 4.2.7 recovers the first order asymptotics

for a large class of potentials.

Corollary 4.2.8. Let h(t) be absolutely monotone and integrable with respect to ωd(t).

lim
N→∞

Eh(N,Sd)

N2 ≥ 1
λd

∫ 1

−1
h(t)ωd(t)dt (4.33)

Remark 4.2.9. It is a classical result of potential theory that the limit exists and equality

holds in (4.33). The Riesz case is given in (1.10).

Proof. First suppose h(t) is continuous on [−1,1]. For ε > 0, let f (t) be a polynomial of

degree ≤ 2k− 1 such that f (t)− h(t) ≤ ε uniformly on [−1,1]. Let (α0,ρ0) = (1,1/N),

and note that the weights ρi given in (4.27) are positive for i = 0, . . . ,k and
k

∑
i=0

ρi = 1. From

(4.20), we have

∣∣∣∣ 1
λd

∫ 1

−1
h(t)ωd(t)dt−

k

∑
i=0

ρih(αi)

∣∣∣∣
≤ 1

λd

∫ 1

−1
|h(t)− f (t)|ωd(t)dt +

k

∑
i=0

ρi| f (αi)−h(αi)|

≤ 2ε → 0 as N→ ∞

Since ρ0h(α0) = h(1)/N → 0, equation (4.33) follows. Next suppose h(t) is integrable

and gm ↗ h a sequence of continuous functions increasing to h (for existence, consider

gm(t) := h((1−1/m)(t +1)−1)). By the Monotone Convergence Theorem and a similar

string of inequalities as above, it is clear that

lim
k→∞

k

∑
i=i

ρih(αi) =
∫ 1

−1
h(t)ωd(t)

Corollary 4.2.10. Let ω∗N = {x1, . . .xN} be an optimal N-point packing configuration on Sd
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and yN := max
i6= j
〈xi,x j〉. Then

yN ≥ α1 (4.34)

Proof. Let

hα(t) =

{
∞ if t > α

0 if t ≤ α.

Then by Theorem 4.2.7, Ehα
(ω∗N) ≥ N2

k

∑
i=1

ρihα(αi). If yN < α1, then EhyN
(ω∗N) = 0, but

k

∑
i=1

ρihyN (αi) = ∞.

4.3 Proofs of Theorems 4.1.3, 4.1.4, and 4.1.6

Our approach will be to find the asymptotic expansion of (4.32) as N→∞. We will make

use of the following result from Szegő (c.f [97, Theorem 8.1.1]) adjusted by normalization

(4.7):

Theorem 4.3.1.

lim
k→∞

P(α,β )
k

(
cos

z
k

)
= lim

k→∞
P(α,β )

k

(
1− z2

2k2

)
= Γ(α +1)

(
z
2

)−α

Jα(z).

This gives the following immediate corollary:

Corollary 4.3.2. If −1 ≤ γk,k < · · · < γk,1 ≤ 1 are the zeros of P(α,β )
k , and zi is the ith

smallest positive zero of the Bessel function Jα(z), then

lim
k→∞

k cos−1(γk,i) = zi (4.35)
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We will also make use of well known properties of the derivatives, norms, and leading

coefficients of the Jacobi polynomials (see for example [97, Chapter 4], using α = d/2,

β = (d−2)/2 and adjusting for normalization (4.7)):

d
dt

P1,0
k (t) =

1
2
(k+d)

(k+ d+2
2

k

)
(k+ d

2
k

) P2,1
k−1(t)

=
1
2
(k+d)

(
2k+d +2

d +2

)
P2,1

k−1(t)

=

(
k2

d +2
+o(k2)

)
P2,1

k−1(t).

(4.36)

Secondly,

r1,0
k =

(∫ 1

−1
(P1,0

k (t))2dω
1,0(t)

)−1

=

(
2dΓ(k+ d+2

2 )Γ(k+ d
2 )(k+ d

2
k

)2
(2k+d)Γ(k+d)Γ(k+1)

)−1

=
(2k+d)2Γ(k+d)

2(d +1)Γ(d+2
2 )2Γ(k+1)

=
kd+1

2d−1Γ(d+2
2 )2

+o(kd+1).

(4.37)

Lastly, denoting l1,0
k as the leading coefficient of P1,0

k (t),

l1,0
k =

Γ(2k+d)(k+ d
2

k

)
2kΓ(k+1)Γ(k+d)

,

then the ratio

m1,0
k :=

l1,0
k

l1,0
k+1

=

(
2(k+1)(k+d)

(2k+d +1)(2k+d)

)(
2k+2+d

2k+2

)
=

1
2
+o(1).

(4.38)
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Remark 4.3.3. Generalizing equations (4.36) - (4.38) to P(α,β )
k (t) we obtain

d
dt

P(α,β )
k (t) =

(
k2

2(α +1)
+o(k2)

)
P(α+1,β+1)

k−1 (t), (4.39)

r(α,β )
k = O(k2α+1), and (4.40)

m(α,β )
k =

1
2
+o(1). (4.41)

We also need the following additional lemmas.

Lemma 4.3.4. If Pk(t) = P(α,β )
k (t) is a sequence of Jacobi Polynomials, z ∈ R is fixed such

that lim
k→∞

Pk(cos
z
k
) = c, and βk is a sequence satisfying

lim
k→∞

k cos−1(βk) = z, (4.42)

then

lim
k→∞

Pk+ j(βk) = c, (4.43)

for any fixed j ∈ Z.

Proof. First, since lim
k→∞

(k + j)cos−1(βk) = lim
k→∞

k cos−1(βk), by making the substitution

k = k+ j it suffices to show equation (4.43) for the case j = 0. From (4.42), we have that

εk := |βk− cos
z
k
|= o

(
1
k2

)
.

From the mean value theorem, equation (4.39), and using the fact that Pk is uniformly

bounded in k on [−1,1] (see for example [44])

|Pk(βk)−Pk(cos
z
k
)|= P′k(ξ )εk = k2c̃P1,1

k (ξ )εk = o(1),

for some ξ ∈ B(cos( z
k),εk) and c̃ > 0.
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We have a stronger version of Lemma 4.3.4 when c = 0.

Lemma 4.3.5. Let −1≤ γk,k < · · ·< γk,1 ≤ 1 be the zeros of Pk(t) = P(α,β )
k (t), and denote

zi as the ith smallest positive zero of the Bessel function Jα(z). Then for all i = 1,2, . . .,

lim
k→∞

kPk−1(γk,i) = 2Γ(α +1)
(

zi

2

)−α+1

Jα+1(zi)

Proof. By Corollary 4.3.2,

γk,i = 1− z2
i

2k2 +o
(

1
k2

)
which implies

δk := |γk,i− γk−1,i|=
z2

i
k3 +o

(
1
k3

)
By the interlacing properties of the zeros of Jacobi polynomials, we see that γk,i > γk−1,i and

we can drop the absolute value in δk. Expanding the Taylor series for Pk−1(t) around the

zero γk−1,i, we have

kPk−1(γk,i) = kδkP′k−1(γk−1,i)+
kδ 2

k P
′′
k−1(γk−1,i)

2
+ · · ·

Each successive derivative term beyond the first has order o(1) since by repeated ap-

plication of (4.39) and Lemma 4.3.4, P( j)
k (t) = O(k2 j)P j, j

k− j(t) = O(k2 j) while on the other

hand δ
j

k = O(1/k3 j). Thus,

kPk−1(γk,i) =
z2

i
2(α +1)

P1,1
k−2(γk−1,i)+o(1).

Now by Theorem 4.3.1 and Lemma 4.3.4, we obtain the result.

We are now ready to prove the main theorem.

Proof of Theorem 4.1.3. In the case of Riesz energy, we have

Ks(x,y) = hs(〈x,y〉) = (2−2〈x,y〉)−s/2
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We consider the subsequence

Nk := D(d,2k) =
(

d + k
d

)
+

(
d + k−1

d

)
=

2
Γ(d +1)

kd +o(kd). (4.44)

By Theorem 1.2.4 it suffices to prove

lim
k→∞

Es(Nk,Sd)

N1+s/d
k

≥
As,d

Hd(Sd)s/d
(4.45)

where

Hd(Sd) =
2π

d+1
2

Γ
(d+1

2

) .
Along the subsequence Nk, from (4.22), α1 = γ

1,0
k,1 , where γ

1,0
k,i is the ith largest zero of P1,0

k (t)

and

(t−α1)Q
1,0
k−1(t,α1) = rk−1mk−1(P

1,0
k (t)P1,0

k−1(α1)−P1,0
k−1(t)P

1,0
k (α1))

= rk−1mk−1(P
1,0
k (t)P1,0

k−1(α1))

and thus the quadrature nodes

αi = γ
1,0
k,i , i = 1,2, . . . ,k.

For a fixed m and all k ≥ m we have by Theorem 4.2.7

Es(Nk)

N1+s/d
k

≥ ∑
k
i=1 ρihs(αi)

N−1+s/d
k

≥ ∑
m
i=1 ρihs(αi)

N−1+s/d
k

.

For a fixed i≤ m, we have the following asymptotics for ρih(αi): By Corollary 4.3.2 we

have
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lim
k→∞

hs(αi)

ks = lim
k→∞

(2−2αi)
−s/2

ks = (zi)
−s (4.46)

By (4.36) and Lemma 4.3.4,

lim
k→∞

P1,0′
k (αi)

k2 =
Γ(d/2+2)

d +2

(
zi

2

)− d+2
2

Jd/2+1(zi) (4.47)

By Lemma 4.3.5,

lim
k→∞

kP1,0
k−1(αi) = 2Γ(d/2+1)

(
zi

2

)− d−2
2

Jd/2+1(zi) (4.48)

From the weight formula given in equation (4.27) the Cristoffel-Darboux formula (4.25)

we have,

lim
k→∞

kd
ρi = lim

k→∞
kd(λd(1−αi)r

1,0
k−1m1,0

k−1P1,0′
k (αi)P

1,0
k−1(αi))

−1 (4.49)

and combining equations, (4.35),(4.37),(4.38),(4.47), and (4.48), this yields

lim
k→∞

kd
ρi =[

λd

(
z2

i
2

)(
1

2d−1Γ(d/2+1)2

)
1
2

(
Γ(d/2+2)

d +2

(
zi

2

)−d/2−1

Jd/2+1(zi)

)
· 2Γ(d/2+1)

(
zi

2

)−d/2+1

Jd/2+1(zi)

]−1

(4.50)

Simplifying gives,

lim
k→∞

kd
ρi =

2

λdz2−d
i
(
Jd/2+1(zi)

)2 (4.51)

Finally, combining the asymptotics for Nk, hs(αi), and ρi, equations (4.44), (4.46), and

(4.51) respectively, we obtain
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lim
k→∞

ρih(αi)

Ns/d−1
k

=
2

λd
( 2

Γ(d+1)

)s/d−1z2−d+s
i

(
Jd/2+1(zi)

)2 (4.52)

Thus,

Cs,d

Hd(Sd)s/d
= lim

k→∞

Es(Nk,Sd)

N1+s/d
k

≥
m

∑
i=1

2

λd
( 2

Γ(d+1)

)s/d−1z2−d+s
i

(
Jd/2+1(zi)

)2

Multiplying byHd(Sd)s/d and letting m→ ∞ gives (4.45) and hence (4.1)

Proof of Theorem 4.1.4. It is known from number theory [34, Chapter X, Section 7] that

ζΛ2(s) admits the factorization

ζΛ2(s) = 6ζ (s/2)L−3(s/2), s > 2, (4.53)

where

L−3(s) := 1− 1
2s +

1
4s −

1
5s +

1
7s −·· · , s > 1,

is the Dirichlet L-series which is continuous at s = 1 with L−3(1) = π/3
√

3.

We also have asymptotically for the Bessel function [97], as z→ ∞,

J2(z) =−
√

2
πz

(
cos
(
z− π

4
)
+O

(
z−3/2)) (4.54)

and zn the nth zero of the J2(z) is given by [102]

zn = nπ +
π

4
+O(n−1). (4.55)

Thus for s sufficiently small,

∞

∑
n=1

1
zs

nJ2(zn)2 =
π

2

∞

∑
n=1

1
zs−1

n +an
=

1
2πs−2

∞

∑
n=1

1
(n+1/4+bn)s−1 +an

where an, bn = o(1). As s→ 2+, this sum approaches the Hurwitz-zeta function, ζ (s− 1,5/4)
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where

ζ (s,q) :=
∞

∑
n=0

1
(n+q)s (4.56)

That is,

lim
s→2+

∑
∞
n=1((n+1/4+bn)

s−1 +an)
−1

ζ (s−1,5/4)
= 1 (4.57)

Indeed, suppose a = sup |an| and b = sup |bn|. Then,

∞

∑
n=1

1
(n+1/4+bn)s−1 +an

≥
∞

∑
n=1

1
(n+1/4+b)s−1 +a

≥
∞

∑
n=1

1
(n+1/4+b+a)s−1 =

∞

∑
n=0

1
(n+5/4+bn)s−1 +an

= ζ (s−1,5/4+a+b),

and similarly
∞

∑
n=1

1
(n+1/4+bn)s−1 +an

≤ ζ (s−1,5/4−a−b).

Thus (4.57) follows since ζ (s,q) has a simple pole of residue 1 at s = 1 for all q. Finally,

As,2 = 2s
π

s/2
∞

∑
n=1

1
zs

nJ2(zn)2 ,

and thus we have

lim
s→1+

(
√

3/2)s/2ζΛ2(s)
As,2

= lim
s→1+

ζ (s/2)
2ζ (s−1,5/4)

= 1.

Since As,d ≤Cs,d ≤ (
√

3/2)s/2ζΛ2(s), the result follows.

Proof of Theorem 4.1.6. For a fixed ρ and a Gaussian potential f (‖x− y‖) = h(〈x,y〉) =

e−α(2−2〈x,y〉), let c := (ρβd)
1/d where

βd :=
(d +1)π

d+1
2

Γ(1+ d+1
2 )
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is the area of Sd , and let

fN(‖x− y‖) = hN(〈x,y〉) := e
−α

2−2〈x,y〉
(cN−1/d )2 .

For each N, hN is absolutely monotone, and so Theorem 4.2.7 holds. We apply the same

asymptotic argument as in the proof of Theorem 4.1.3 to hN(t). In particular we sample

along the subsequence

Nk := D(d,2k)

where the nodes αi are given by the zeros of P1,0
k (t). Using the asymptotic formulas for

Nk, the quadrature nodes αi, and the weights ρi given by (4.44), Corollary 4.3.2, and (4.51),

respectively, we obtain

liminf
N→∞

EhN (N,Sd)

N
≥ 4

λdΓ(d +1)

∞

∑
i=1

zd−2
i

(Jd/2+1(zi))2 e
−α

(
zi

c(2/Γ(d+1))1/d

)2

. (4.58)

Now fix r > 0 and consider a spherical cap D of radius r. Let ωN ⊂ Sd be an arbitrary

sequence of uniformly distributed configurations. That is, the counting measures of ωN

converge in the weak∗ sense to the normalized surface area measure on Sd . Let rN be an

increasing sequence such that lim
N→∞

rN = r and

r− rN = O(N−1/2d)

Let DrN be the cap of radius rN with the same center as D. For x ∈ Sd , denote the point

energy of x with respect to ωN by

EhN (x,ωN) := ∑
xi∈ωN ,

xi 6=x

hN(〈x,xi〉).

Note that since ωN is uniformly distributed and the potentials hN are continuous, EhN (x,ωN)
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converges uniformly to a constant as N→ ∞ and thus

∑
xi∈ωN∩D

EhN (xi,ωN) =
#ωN ∩D

N
EhN (ωN)+o(1).

Now,

EhN (ωN ∩D)
#ωN ∩D

=
1

#ωN ∩D

(
∑

xi∈DrN

EhN (xi,ωN ∩D)+ ∑
xi∈D\DrN

EhN (xi,ωN ∩D)
)

=
1

#ωN ∩D

(
∑

xi∈DrN

EhN (xi,ωN ∩D)
)
+o(1)

(4.59)

Furthermore, for a point xi ∈ωN , the total contribution to the point energy of charges outside

a ball of radius r− rN , denoted B(xi,r− rN) is negligible:

∑
x j /∈B(xi,r−rN)

hN(〈xi,x j〉)≤ ∑
x j /∈B(xi,r−rN)

fN(r− rN)≤ N fN(r− rN)

= Ne
−α(

r−rN
cN−1/d )

2

→ 0

(4.60)

as N→ ∞. Thus,

EhN (ωN ∩D)
#ωN ∩D

=
1

#ωN ∩D

(
∑

xi∈DrN

∑
x j∈B(xi,r−rN)

hN(〈xi,x j〉)
)
+o(1)

=
1

#ωN ∩D

(
∑

xi∈DrN

EhN (xi,ωN)

)
+o(1)

=
EhN (ωN)

N
+o(1)

(4.61)

and so the asymptotic bound in (4.58) holds for EhN (ωN ∩D)/#ωN ∩D as N → ∞. Now

project D to its tangent plane and denote by ω̃N the resulting planar configuration. Then

EhN (ω̃N)

#ωN ∩D
=

EhN (ωN ∩D)
#ωN ∩D

+ εr

for some εr which goes to 0 as r→ 0. Now scale ω̃N by N1/d/c to obtain a configuration
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CN such that

#CN ∩B(rN1/d/c)
Vol(B(rN1/d/c))

=
#ωN ∩D

Vol(B(rN1/d/c))
=

NVol(B(r))
βdVol(B(rN1/d/c))

=
cd

βd
= ρ

and
E f (CN)

#ωN ∩D
=

EhN (ωN ∩D)
#ωN ∩D

+ εr (4.62)

Now for any infinite configuration C ⊂Rd of density ρ whose energy is well defined, and for

a fixed N, we can find a configuration ωN ⊂ Sd such that under inverse scaling and mapping

from the tangent plane, C ∩B(rN1/d/c) is mapped to ωN ∩D. Thus,

E f (C)≥ liminf
N→∞

EhN (ωN)

N
+ εr

≥ 4
λdΓ(d +1)

∞

∑
i=1

zd−2
i

(Jd/2+1(zi))2 e
−α

(
zi

c(2/Γ(d+1))1/d

)2

+ εr.

(4.63)

We now note that r > 0 was arbitrary, and that if R is such that vol(B(R/2)) = ρ , then

πR = c
(

2
Γ(d +1)

)1/d

and (4.5) is obtained.

4.4 Numerics

Translated into packing density and using 4.3.2, Corollary 4.2.10 provides an alternate

proof of Levenshtein’s second best packing bound [66]:

Corollary 4.4.1.

∆d ≤
zd

1
Γ(d/2+1)4d =: Ld
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As s→ ∞, the series in As,d is dominated by the first term z−s
1 and using the asymptotics

of Cs,d in (1.16), we see that

lim
s→∞

[
Cs,d

As,d

]1/s

=

[
Ld

∆d

]1/d

=: Bd ≥ 1 (4.64)

The following table shows the values of Bd in dimensions d = 1,2,3,8, and 24 where ∆d is

known precisely. For d = 4,5,6,7 where ∆d is conjectured to be given by lattice packings,

the table provides an upper bound for Bd .

Table 4.1: Upper Bounds on Bd

d Bd
1 1
2 1.00589479
3 1.02703993
4 1.02440844
5 1.03861371
6 1.03461793
7 1.03156355
8 1.01742074
24 1.02403055

For d = 2,4,8, and 24, where C̃s,d is given in Conjecture 1.3.2 we plot

f (s) :=
[

C̃s,d

As,d

]1/s

.

The Epstein-Zeta functions for the D4, E8, and Leech lattices are calculated using known

formulas for the theta functions (see [36, Ch. 4])

ΘΛ(z) = ∑
x∈Λ

eiπz‖x‖2
Imz > 0.

Since these three lattices have vectors whose squared norms are even integers, we let q = eiπz
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Figure 4.1: Graphs of f (s) = (C̃s,d/As,d)
1/s for d = 2,4,8 and 24.

and write

ΘΛd(z) =
∞

∑
m=1

Nd(m)q2m

where Nd(m) counts the number of vectors in Λd , d = 4,8,24 of squared norm 2m. Thus

the Epstein-Zeta function

ζΛd(s) =
∞

∑
m=1

Nd(m)

(2m)s/2 .

For the D4 lattice, a classical result from number theory gives

N4(m) = 24 ∑
d|2m,
d odd

d.

For the E8 lattice, we have

N8(m) = 240σ3(m)

where

σk(m) = ∑
d|m

dk
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Figure 4.2: Graph of g(s) = (C̃s,d/max
{

Θs,d,ξs,d
}
)1/s for d = 2, 3≤ s≤ 50.

is the divisor function. Finally for the Leech lattice, it is known that

N24(m) =
65520
691

(σ11(m)− τ(m))

where τ(m) is the Ramanujan tau function defined in [82].

Figure 4.1 plots f (s) for d = 2,4,8 and 24. In these dimensions the graphs monotonically

increase to the limit Bd as s→∞ and decrease to 1 as s→ d+, demonstrating Theorem 4.1.4

for d = 2, and suggesting that As,d also gives a tight bound as s→ d+ for d = 4,8, and 24.

However, as s→ d+, both C̃s,d and As,d approach ∞, so precise numerical calculations are

sensitive to the number of terms taken in each sum. Ten thousand terms were used in the

sum for the plots, but more precise calculations are needed.

We also show a corresponding graph for the bounds Θs,d and ξs,d from Propositions

4.1.1 and 4.1.2. As s→ d+, Θs,d 9 ∞, so ξs,d is clearly a better bound for s near d. On the

other hand, as s→ ∞, it is straightforward to show that ξs,d → 0, so Θs,d > ξs,d for large s.

Figure 4.2 plots

g(s) :=
[

C̃s,d

max
{

Θs,d,ξs,d
}]1/s

for d = 2. As s→ ∞, g(s)↘ 1.0501..., as s→ d+, it is possible that g(s)→ 1, but it

converges slower than f (s). Again, in this range, the exact values are sensitive to the number

of terms taken in C̃s,d and more precision is needed. The cusp at s≈ 6.2789... is where Θs,d

and ξs,d switch.
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Given Theorem 4.1.4 and Figure 4.1, we have the following natural conjecture.

Conjecture 4.4.2. For d = 4,8, and 24,

lim
s→d+

|Λd|s/dζΛd(s)
Cs,d

= 1. (4.65)

where Λ4 = D4, Λ8 = E8, and Λ24 is the Leech lattice.

A proof of Conjecture 4.4.2 would follow from an appropriate factoring of ζΛd(s)

analogous to (4.53) for d = 2.

In high dimensions, lattice packings are no longer optimal and less is known or conjec-

tured about Cs,d . As d→ ∞, the Levenshtein packing bound from Corollary 4.4.1 becomes

∆d ≤ 2−0.5573d (4.66)

and thus

Bd = O
(

2−0.5573

∆
1/d
d

)
.
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