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CHAPTER I 
 
 

INTRODUCTION AND OVERVIEW OF PHOSPHOLIPASE 

D SUPERFAMILY 
 
 
 
 

Phosphatidic acid (PA) is a critical phospholipid constituent in eukaryotic 

cell membranes, that accounts for 1-4 % of the total lipid [1]. This lipophilic 

glycerophospholipid has a phosphate head group, and as such serves not only a 

structural capacity in lipid bilayers, but also participates both as an intermediate 

in lipid metabolism and as a signaling molecule. Because of the small head 

group, PA facilitates changes in lipid bilayer curvature that are important for 

membrane fusion events, such as vesicular trafficking and endocytosis [2]. PA is 

also a precursor to other lipid signaling molecules including diacylglycerol (DAG) 

and lysophosphatidic acid (LPA). As a lipid second messenger, PA activates 

signaling proteins and acts as a node within the membrane to which signaling 

proteins translocate. Several signaling proteins, including Raf-1 [3], [4] and 

mTOR [5], directly bind PA to mediate translocation or activation, respectively. 

PA has been implicated in signaling cascades involving cell growth, proliferation, 

and survival. Aberrant PA signaling has been identified in multiple cancers [6], 

neurodegeneration [7], and platelet aggregation [8], which makes proteins that 

mediate cellular levels of PA attractive as potential therapeutic targets. 
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PA can be generated de novo [9], [10], [11] by sequential enzyme-

catalyzed acylations of glycerol-3-phosphate, or in response to cell signaling 

pathways (Figure 1). Every glycerophospholipid generated in eukaryotic 

membranes transitions through PA, a pathway characterized by Eugene 

Kennedy and his colleagues more than half a century ago [11], [12]. Signal 

generated PA is formed by enzymes that modify existing lipids. These enzymes 

include lysophosphatidic acid acyltransferase (LPAAT) which acylates LPA, DAG 

kinase which phosphorylates DAG at the sn-3 position, and phospholipase D 

(PLD) which hydrolyzes the headgroup of a phospholipid, generally 

phosphatidylcholine (PC), triggering the release of choline.   

PLD activity, enzyme catalyzed hydrolysis of a phosphodiester bond, was 

first described in plants [13], [14], [15], [16] and subsequently many enzymes 

from a range of viral, prokaryotic and eukaryotic organisms have been described 

as possessing PLD activity. To date, more than 4000 PLD enzymes have been 

entered in NCBI GenBank. The majority of these enzymes hydrolyze 

phosphodiester bonds within phospholipids such as PC (classified as EC 3.1.4.4 

[17]), but there are other enzymes ascribed to having PLD activity that hydrolyze 

neutral lipids and even polynucleotide backbone. A large subset of enzymes with 

PLD activity share a conserved HxKxxxxDx6GSxN motif (HKD motif) [18], or a 

variation thereof, that is responsible for catalytic activity. These enzymes are 

members of the PLD superfamily, and are proposed to follow a similar reaction 

mechanism in which a nucleophilic histidine residue initiates the reaction and 

generates a covalent intermediate, and a water or short alcohol completes the 
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Figure 1. A schematic of the various enzyme-catalyzed reactions that results in the 
formation of phosphatidic acid (PA) and some of the cellular functions mediated by PA  
(figure from [19]). 
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hydrolytic or transphosphatidylation reaction, respectively (pg. 18). Non-HKD 

enzymes exhibiting PLD activity are predicted to have divergent structures or 

have divergent sequences and catalytic mechanisms. Two non-HKD enzymes, 

scPLD and autotoxin, are discussed in this chapter as a means of comparison to 

enzymes in the PLD superfamily.  

This introduction serves as a brief survey of PLD enzymology with specific 

emphasis on the PLD superfamily and mammalian family members (a more in 

depth review was recently published ([19]).  This chapter concludes with a brief 

discussion of the history and recent advances in pharmacological intervention of 

mammalian PLD, and possible functional consequences of such an approach. 

This section provides the background necassary for interpretation of the 

dissertation research discussed herein in which a novel class of isoform-selective 

small molecules was identified (Chapter II) and mechanistically characterized 

(Chapter III). 

 

Enzymes with phospholipase D activity 

 Prior to sequencing technology or cloning of genes, enzymes were 

purified from the host organism and biochemically characterized. Enzymes with 

similar activities were described with similar nomenclature. Such is the case with 

PLD enzymes. Historically, many bacterial virulence factors that demonstrated 

the release of a choline headgroup were named PLDs for this function. 

Subsequent cloning and sequence analysis of these enzymes demonstrated that 

not all of these enzymes bear the conserved HxKxxxxD(x6GSxN) motif first 
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described by Ponting and Kerr [18] and Koonin [20]. Therefore these enzymes 

named as PLDs are not classified as members of the PLD superfamily. At the 

same time, superfamily classification based on a conserved HKD motif 

characterized some enzymes as PLDs that were not previously considered as 

such solely based on biochemical analysis (e.g. some endonucleases). The PLD 

superfamily classification based on the conserved HKD catalytic motif is useful 

since these enzymes are proposed to hydrolyze phosphodiester bonds via a 

similar reaction mechanism. 

 

Non-HKD enzymes 

 Enzymes lacking a conserved HKD motif are referred to here as non-HKD 

PLDs. These enzymes exhibit PLD-like activity and are no less physiologically 

relevant than members of the PLD superfamily. Detailed description of this class 

is not the focus of this chapter. However, brief mention of a couple of these 

enzymes is necessary to clarify their distinction in mechanism and enzymology 

from the PLD superfamily (Table 1). 

 

Streptomyces chromofuscus PLD 

 S. chromofuscus secretes a 57 kDa phospholipase D, scPLD. This 

enzyme, first purified in the 1970‟s [21] and cloned in the early 1990‟s [22], is the 

best characterized non-HKD PLD [23]. scPLD exhibits both phosphodiesterase 

as well as phosphatase activities [24], and is proposed to be secreted by bacteria  
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Table 1: NON-HKD PLDs (table from [19]) 

SPECIES ENZYME ACTIVITY FUNCTION LOCALIZATION 

Streptomyces 
chromofuscius 

scPLD PLD 
(transphosphatidyl-
ation w/ M alcohol) 

virulence factor secreted into 
extracellular milieu 
  

Corynebacterium PLD sphingomyelinase 
(releases C1P)  

membrane 
remodeling 

secreted   
  

Sphingo-
myelinase D 

LPC → LPA (in 
plasma) 

vascular 
permeabilization 

Arcanobacterium PLD sphingomyelinase 
(releases Ceramide-1-
phosphate)  

bacterial 
adhesion 

secreted 
  

Sphingo-
myelinase D 

LPC → LPA escape from 
vacuole 

host cell necrosis 

Loxosceles reclusa lysoPLD SM → C1P hemolysis venom 
  Sphingo-

myelinase D 
LPC → LPA (in 
plasma) 

platelet 
aggregation 

inflammatory 
responses 

Mammalian Autotaxin LPC → LPA, cyclic LPA production of 
lysolipids in blood 

secreted into blood 
  

Mammalian cyp1A2 monooxygenase → 
drug metabolism 

hepatic microsomal, 
membrane-bound 
  cyp2E1 PLD (PC → PA) → 

unknown 
microsomes/ER 

Mammalian GPI-PLD GPI → IPG + PA, GPI-
protein → protein + 
PA 

signaling and 
membrane-
associated 
protein release 

secreted into 
serum 
  

Mammalian NAPE-PLD NAPE → NAE + PA endocannabinoid 
signaling 

microsomal, 
membrane-
associated 
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to scavenge for phosphate in the microenvironment [23]. Biochemical and 

mutagenesis analyses of scPLD demonstrate that this enzymeutilizes a metal-

coordinated reaction mechanism similar to the purple-acid phosphatase family 

(PAP) [24]. A Fe3+ cation is essential for the one-step classic acid-base catalyzed 

reaction mechanism, whereas a Mn2+ cation is thought to be necessary for 

proper substrate binding.   

 scPLD is also able to perform transphosphatidylation, but less efficiently 

than HKD PLD enzymes (8-10 M primary alcohol is necessary for scPLD, 

compared to >95 % transphosphatidylation with 1-2 M alcohol for HKD PLD) [25]. 

scPLD also does not exhibit interfacial activation. Known as the surface dilution 

effect, HKD enzyme activity is affected (pg. 24), whereas scPLD activity is not 

dependent on the surface mole fraction of substrate within a lipid micelle or 

vesicle, hence substrate presentation does not impact scPLD activity [26]. This is 

also referred to as the “hopping” versus “scooting” mode of activity (Figure 2). 

scPLD activity is dependent on whether the substrate is readily accessible, and 

therefore exhibits greater activity towards monomer and mixed micelle than 

substrate present in a lipid vesicle [27].   

 scPLD is also the only PLD known to be activated by PA, most likely 

allosterically [26], [28]. Calcium can activate PLD by two mechanisms: calcium 

can directly bind the enzyme with biphasic affinity (Kd1 and Kd2), but is also able 

to bind to PA and make the lipid more rigid triggering product release from the 

active site to allow new substrate to bind [26]. The allosteric PA binding domain 

is predicted to be in the C-terminal domain, as proteolytically cleaved scPLD42/20 
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does not exhibit PA activation to the extent that uncleaved scPLD57 responds 

[29]. This activation is believed to be elicited via an allosteric site secondary to 

the catalytic site because soluble PA can increase Vmax towards substrate 

present at an interface. 

 Despite the fact that scPLD is not a member of the PLD superfamily, many 

studies have used, and some still use, exogenous application of recombinant 

scPLD to rescue the deleterious effects of deletion of a HKD PLD. This is a 

legitimate approach as long as the results are clearly understood with regards to 

substrate-product relationships. Supplemental application of scPLD will hydrolyze 

a range of phospholipids generating PA and possibly perform phosphatase 

activities. Observation that scPLD rescues a phenotype following deletion of a 

HKD PLD enzyme suggests that PA may in fact be the functional consequence 

of that particular HKD PLD. However, this result or the possible lack of a “rescue” 

effect should not be over-interpreted. Recent studies of viral, prokaryotic, and 

eukaryotic PLD superfamily members demonstrate that the function of these 

enzymes stretches beyond generation of PA or classic catalytic product. New 

descriptions of protein-protein interactions and alternate catalytic products are 

only recently gaining an appreciation in the literature. 

 

Autotaxin 

 Lysophospholipase D activity has been described in human blood. 

Autotaxin (ATX or NPP2) was determined to be responsible for this lysoPLD 

activity and is the main source of LPA in human blood [30], [31]. ATX, a member  
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scPLD

A. “Hopping” Mode – Activity does not depend on a lipid binding cofactor. 

B. “Scooting” Mode – Activity depends on substrate presentation. 

Km

Ca2+

Ca2+

PC

scPLD

kcat

scPLD

PA

headgroup/choline

scPLD

PA

Fe3+ for catalytic activity

Mn2+, Zn2+, or Fe2+ for substrate 
binding

HKD

PLD

Ks

HKD

PLD Km

HKD

PLD

PC

HKD

PLD

PA

kcat

HKD

PLD

headgroup/choline

HKD

PLD

Metal & Ca2+ Independent

Metal & Ca2+ Dependent

PIP2 mammalian lipid binding co-factor

(Bacteria have non-specific hydrophobic interaction)

 

Figure 2. Mechanisms of phospholipase D enzyme activities.  Many bacterial PLD 
enzyme activities proceed in a hopping mode and are dependent on the presence of 
metal ions, whereas mammalian PLD activity proceeds in a scooting mode and is largely 
dependent on the interfacial lipid environment (figure from [19]). 
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of the nucleotide pyrophosphatase/phosphodiesterase family, is expressed as a 

preproenzyme and secreted into the extracellular milieu and serum via an N-

terminal secretion signal. This enzyme does not include a conserved HKD motif 

and is not related to scPLD or the PLD superfamily. In vitro characterization of 

ATX demonstrates  it has a range of activities, including phospholipase (to 

produce LPA and S1P) [32], [33], [34], and nucleotide pyrophosphate hydrolysis. 

Lysophospholipids, including lysophosphatidylcholine (LPC), 

lysophosphatidylethanolamine  (LPE), and LPS are high affinity substrates and 

predicted to be the physiologically-relevant target [35]. ATX uses two Zn2+ ions in 

the active site for coordination and intermediate stabilization. However, unlike the 

scPLD described above, ATX can perform both hydrolysis and 

transphosphatidylation [36]. Depending on the divalent cation identity and salt 

concentration in the microenvironment, ATX will either hydrolyze LPC to form 

LPA, or transphosphatidylate LPC, similar to scPLD, and use the free hydroxyl 

group in the sn-2 position to generate cyclic LPA (cLPA) [31]. This difference in 

reactions is critical since the physiological function of LPA is distinct from cLPA. 

LPA is important in chemotactic cell migration and platelet aggregation, whereas 

cLPA inhibits cell proliferation, tumor cell invasion and metastasis. Three splice 

variants of ATX have been identified, ATXα, ATXβ, and ATXγ [37]. ATXα and 

ATXβ both perform transphosphatidylation and generate cLPA. The 

transphosphatidylation activity of ATXγ has yet to be characterized, but is 

expressed in the brain where it is proposed to be responsible for the high 

concentrations of cLPA [37].   
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 The crystal structures of rat [38] and mouse [39] ATX were recently 

determined. Careful analysis of the structures in tandem with further biochemical 

characterization will be necessary to understand hydrolytic versus 

transphosphatidylation mechanisms and the role of divalent cations in serving as 

a switch between the two divergent reactions. Because of the stark contrast in 

signaling function of LPA versus cLPA it will be necessary to identify 

pharmacological agents that can be used to elicit one reaction over the other.  

 ATX knockout mice exhibit severe phenotypic deficiencies and die around 

embryonic day 9.5-10.5 [40], [41]. Much of this phenotypic response is thought to 

be due to the absence of ATX catalytic activity, since knock-in of a catalytic 

mutant elicits similar phenotypic deficiencies. However, analysis of ATX crystal 

structures shows two predicted LPA binding sites, and suggests that ATX may 

also serve as a lipid-protein carrier and deliver LPA directly to LPA receptors at 

the membrane via a hydrophobic tunnel [39]. Recent studies also suggest that 

via a C-terminal MORFO (modulator of oligodendrocyte remodeling and focal 

adhesion organization) domain, ATX may be important for eliciting focal 

adhesions during oligodendrocyte maturation and myelination [42], [43]. Two 

groups have implicated ATX in regulating lymphocyte trafficking [44], [45]. 

Further structural and biochemical characterization of this enzyme is necessary, 

but due to its role in generating both LPA and cLPA, autotaxin appears to be a 

novel therapeutic target. A recent study has identified ATX as a potential 

therapeutic target for atherosclerosis [46]. 
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HKD enzymes 

 In contrast to the varied sequence, catalytic, and biochemical 

characteristics found in non-HKD PLDs, HKD enzymes share a conserved 

catalytic domain. While these enzymes do not share significant sequence identity 

outside of this catalytic domain, conservation of this domain means these 

enzymes do share a similar structural core that hydrolyzes phosphodiester bonds 

with a similar reaction mechanism for a range of substrates. Historically there has 

been some dispute as to the classification of some or all of these HKD enzymes 

as members of the PLD superfamily. Differences in substrate (DNA backbone 

versus lipid) and function (endonuclease versus lipase) amongst HKD PLD 

enzymes have lead to discrepancies in definition of requirements for 

classification in the PLD superfamily. Here it is proposed that all 

phosphodiesterases with a conserved HKD or HKD-like motif are members of 

this diverse superfamily. Conservation of the HKD motif permits inclusion in PLD 

superfamily because, regardless of substrate identity, these enzymes share an 

SN2 ping-pong reaction mechanism that proceeds through a covalent phospho-

protein intermediate in phosphodiester hydrolysis (pg. 18). Members of the 

superfamily also perform transphosphatidylation in parallel with hydrolysis in the 

presence of alcohol versus water, respectively. Further subclassifications in the 

superfamily delineate differences in sequence, substrate and function, but 

superfamily classification based on the conserved HKD motif is a useful 

descriptor in characterizing the enzymological and mechanistic identity of an 

HKD enzyme. With this definition of the PLD superfamily described, the following 
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sections briefly highlight members possessing a variety of functional and 

biochemical characteristics.[47]   

 

Sequence 

 PLD enzymes have been identified in viruses, bacteria, plants, fungi and 

mammals and were historically classified based on biochemical activity. 

However, following cloning and sequencing of several PLD genes a common set 

of conserved motifs (I-IV) were observed [18]. Conserved motifs II and IV 

comprise the duplicate catalytic sequence, HxKxxxxDx6G(G/S)xN (referred to 

here as HKD). In fact, there is significant homology between motifs I & II and III & 

IV. Based on this internal homology and the presence of 1-HKD motif enzymes in 

viruses and lower prokaryotic species, there is considerable evidence for a gene 

duplication event (Table 2), resulting in many PLD superfamily enzymes 

containing two putative HKD motifs [20] (Figure 3). As discussed in a following 

section (pg. 18), the histidine residue of the HKD motif has been demonstrated to 

be the nucleophilic residue responsible initiating phosphodiesterase activity. Motif 

III is comprised of the highly conserved sequence of unknown function 

„IYIENQFF.‟ In between the catalytic HKD motifs, and N-terminal to motif III, a 

putative polybasic phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) binding 

domain has been described in higher eukaryotes. The C-terminus of all PLD 

superfamily members, despite the fact that it is not homologous, must be integral 

for catalysis, since activity decreases upon mutation in or truncation of this 

region. 
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Table 2.  Alignment of Catalytic motifs for PLD superfamily (table from [19]) 

ENZYME SOURCE CATALYTIC MOTIF ACTIVITY 
 

p37 Vaccinia Virus QNNTKLLIVDDE lipase towards phospholipids, DAG, & 
Lysolipids 
  

K4 Vaccinia Virus VLHTKFWISDNT endonuclease 
  

BfiI E.coli / B.Firmus ILHAKLYGTSNN site-specific endonuclease 
  

Nuc E.coli / 
S.typhimurium 

IQHDKVVIVDNV endonuclease 
  

PLD S. antibioticus WMHSKLLVVDGK lipid phosphodiesterase towards PC, PE, PS, 
PG 
  

PLDα1 A. thaliana YVHTKMMIVDDE lipid phosphodiesterase towards PC & PE 
  

PLDζ A. thaliana YVHSKMMIVDDE lipid phosphodiesterase 
  

Spo14 S. cerevisciae AHHEKFVVIDET lipid phosphodiesterase towards PC 
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 Ponting and Kerr suggested that enzymes with these four conserved 

motifs were members of the PLD superfamily as described above [18]. Within 

this superfamily, further classification was proposed based on sequence 

homologies. Class I comprises HKD PLDs from fungi and higher eukaryotes. 

Many of these enzymes have divergent N-terminal sequences that include lipid- 

or calcium-binding regulatory domains to allow tailored control of PLD activity in 

response to signaling cascades. Class II enzymes include bacterial PLDs, such 

as Yersinia murine toxin (YMT) and Streptomyces sp. PMF PLD (pg. 35) with 

known lipase activities. Classes III and IV include enzymes involved in lipid 

biosynthesis, bacterial cardiolipin synthase and phosphatidylserine synthase, 

respectively. The remaining classifications describe enzymes with significantly 

divergent functions. Class V enzymes include viral p37 and K4. Class VII and VIII 

comprise endonucleases Nuc and BfiI, respectively. 

 

Structure  

 Protein crystals of PLD superfamily members have been reported, 

including endonucleases and several bacterial enzymes [Nuc, BfiI, tyrosyl-DNA 

phosphodiesterase (tdp-1), YMT [48], cowpea [49], Streptomyces sp. PMF PLD 

[50], and Streptomyces antibioticus PLD, entered  in PDB, (unpublished)], and 

tertiary crystal structures have been reported for Nuc [51], BfiI, tdp-1 [52], [53] 

Streptomyces sp. PMF PLD [54] and S. antibioticus PLD. Structures for YMT and 

cowpea PLD were never reported. It is apparent  
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K4/Nick Joining Enzyme (424 aa)

Nuc (177 aa)

Streptomyces PLD (528 – 556 aa)

Plant C2 (810 – 1087 aa)
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PLD1 (1074 aa)

PLD2 (933 aa)
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Figure 3. Comparison and domain alignment for different PLD superfamily enzymes.  
The HKD motif responsible for catalytic activity is conserved among all superfamily 
members.  Higher order PLD enzymes are composed of nonconserved regulatory 
domains (figure from [19]). 
 

 

 

 

 

 

 



 

17 
 

from the available structures that a conserved fold exists for the catalytic 

domains of PLD superfamily members. 

 Nuc endonuclease from Salmonella typhimurium, a 1-HKD PLD, 

crystallized as a homodimer with each monomer arranged around a 

crystallographic two-fold axis of symmetry [51]. Conserved HKD residues 

emanate from β-strands at the interface of the dimer and lie adjacent to one 

another to form the active site. Within each monomer, the eight β-strands form 

two β-sheets that are sandwiched by five α-helices.  

 Streptomyces sp. PMF PLD was the first reported crystal structure of a 2-

HKD PLD.[54] PMF PLD consists of 35 secondary structural elements situated in 

repeated α-β-α-β orientation (Figure 4). In the tertiary structure, similar to the Nuc 

endonuclease, a common β-sandwich fold is observed, with each of the two β-

sheets comprised of 8 β-strands sandwiched between 18 α-helices. This enzyme 

is bilobal with a pseudo two-fold axis of symmetry. Conserved HKD residues lie 

adjacent to one another along this axis, and at the interface exists the active site 

with a 30 Å aperture to allow substrate entrance. Biochemical studies with 

Streptomyces PLD point mutants have attributed function to specific structural 

elements (pg. 35, also reviewed [55]). Two flexible loops extend over the 

entrance to the active site and are thought to modulate interfacial lipid 

interactions and substrate specificity [56], [57]. The duplicate histidine and lysine 

residues exist on β-strands that line the active site and directly interact with 

substrate as it enters the active site. The aspartate residues do not directly 

interact with substrate, but do shuttle protons to the deprotonated histidine 



 

18 
 

residue during the reaction. The GG/GS residues line the base of the catalytic 

pocket and accommodate large substrate headgroups during 

transphosphatidylation headgroup exchange [58].   

 In contrast to bacterial PLDs, in vitro studies of eukaryotic PLD structure 

and mechanism are lacking due to difficulties in expression and purification of 

recombinant enzyme. In the absence of a crystal structure for a higher eukaryotic 

PLD, much of our enzymological understanding of the PLD mechanism is based 

on characterization of bacterial PLDs. 

 

Mechanism: hydrolysis versus transphosphatidylation  

 In nature, phosphodiester hydrolysis does not commonly occur in the 

absence of metals [59]. When it does, the mechanism must proceed through a 

nucleophilic attack of the substrate phosphate group, which facilitates breakage 

of the phosphodiester bond, and protonation via acid catalysis to enable release 

of the leaving group. Depending on the source of the initial nucleophile, 

phosphodiester hydrolysis can proceed in a single step, or in two steps, with a 

covalent phospho-protein intermediate. Decades of biochemical [48], structural 

[60], and biophysical [59] research support the latter mechanism for PLD 

superfamily enzymes, in which a nucleophilic protein residue forms a covalent 

linkage to the phosphate group of the substrate (Figure 5). This covalent 

intermediate is subsequently destroyed via nucleophilic attack of a water 

molecule or alcohol, releasing the hydrolytic or transphosphatidylation product, 

respectively. 
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PDB: 1FOI

PMF PLD 
side view

PMF PLD 
top view

90° rotation

Figure 4. Crystal structure of Streptomyces sp. PMF PLD (PDB ID: 1FOI), 2-HKD enzyme.  
The conserved HKD motifs are highlighted in blue (N-terminal motif) and red (C-terminal 
motif), and the loops characterized in mutagenic studies are shown in green (N-terminal 
loop) and yellow (C-terminal loop) (figure from [19]). 
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 More than four decades ago, Yang et al.[61] and Stanacev and Stuhne-

Sekalec et al.[62] proposed that PLD catalysis proceeds through a two-step ping-

pong reaction mechanism with a covalent phospho-protein intermediate. This 

postulation was based on analyses of cabbage PLD-induced product formation in 

the presence of primary alcohol. Subsequent hydrolysis and 

transphosphatidylation then proceed in parallel dependent on the presence of 

water or primary alcohol. Early studies suggested that the sulfhydryl group of a 

cysteine residue may serve as the nucleophilic residue.[61] This was proposed 

because p-chloromercuribenzoate (PCMB) treatment modified free sulfhydryl 

groups and disrupted catalysis, in the seven cysteine residue containing cabbage 

PLD enzyme.[61] 

 In the 1990‟s other studies to characterize the PLD superfamily reaction 

mechanism attempted to identify the nucleophilic protein residue that might 

catalyze phosphodiesterase activity. Following Ponting & Kerr[18] and 

Koonin‟s[20] observations of duplicate HxKxxxxDx6G(G/S)xN motifs in PLD 

superfamily members, it was suggested that the nucleophilic residue might exist 

in this sequence. Sung et al. proposed the conserved serine residue in the 

second HKD motif of yeast Spo14/PLD1 was the nucleophile.[63] This conclusion 

was based on studies with recombinant Ser911Ala mutant. Subsequent studies 

using a 1-HKD bacterial enzyme, Nuc endonuclease [64], and a 2-HKD bacterial 

PLD, YMT [48], demonstrated the serine mutation resulted in a significant drop in 

catalytic activity. However, it was ultimately determined  
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Figure 5. Proposed PLD superfamily reaction mechanism based on biochemical studies 
of bacterial PLD enzymes.  The histidine of the conserved HKD motif mediates a 
nucleophilic attack on the phosphate group of the lipid substrate, yielding a covalent 
intermediate.  A water molecule or a primary alcohol completes the hydrolysis or 
transphosphatidylation, respectively (figure from [19]). 
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that histidine residues, and not serine, are integral for catalysis. These studies 

used recombinant point mutants and varied pH or chemical treatments to isolate 

32P-phospho-histidine intermediates. These studies proposed the reaction 

mechanism that is currently favored within the field, where the N-terminal 

histidine residue within the HKD motif nucleophilically attacks the phosphate 

group of the substrate, (step 1, Figure 5) and forms a covalent phospho-histidine 

intermediate. The histidine residue of the C-terminal HKD motif serves as a 

general acid, and donates a proton to the leaving group (step 2, Figure 5). For 

PLD enzymes with lipase activity, this leaving group is generally choline, and the 

intermediate a covalent phosphatidyl-histidine. Formation of this phospho-

histidine intermediate has been proposed to be the rate limiting step, and 

subsequent nucleophilic attack of the hydroxyl group from either a water or a 

primary alcohol (steps 3 and 4, Figure 5) followed by PA or phosphatidylalcohol 

product release rapidly occurs in parallel.[25] For most HKD enzymes, including 

mammalian PLDs, short chain primary alcohols are the preferred nucleophile 

over water (in some cases more than 1000-fold preference), allowing 

transphosphatidylation to occur at very low concentrations of alcohol.[62] This is 

in contrast to the non-HKD PLD enzyme scPLD, which requires molar 

concentrations of alcohol to generate significant transphosphatidylation product. 

Some HKD enzymes, including certain bacterial, plant, and fungal PLD, are able 

to utilize methanol or branched alcohols in addition to other primary 

alcohols.[25],[65],[66] 
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 These mechanistic conclusions were further validated when structural 

evidence was found to support the N-terminal histidine as the nucleophilic protein 

residue that forms a phospho-histidine intermediate. Histidine residues in the 

duplicate HKD motifs are adjacent to one another at the interface of the 

Salmonella typhimurium Nuc homodimer. This is also observed for the histidine 

residues on the duplicate HKD motifs in the crystal structure of PMF PLD. As a 

follow up to the first crystal structure of a 2-HKD PLD, Leiros et al. soaked PMF 

PLD crystals with short chain soluble PC substrate (dibutyrylphosphatidylcholine) 

to capture crystal structures of reaction intermediates [60]. PMF PLD complexed 

with this substrate demonstrates that the N-terminal histidine (H170) forms a 

phospho-histidine intermediate Another study describes the C-terminal HKD 

histidine as the initial nucleophile and this may differ amongst PLD species [67]. 

In this structure a water molecule is positioned near the C-terminal HKD histidine 

(H448) and 4.02 Å from the phosphate group, an easy distance to serve as a 

nucleophile for completion of the hydrolytic reaction.[60] Structural data lend 

credit to the proposed SN2 reaction mechanism, and as the catalytic cores of 

PLD superfamily enzymes are predicted to share a similar bilobal structure with 

the conserved HKD residues oriented adjacent to one another in the active site, 

this reaction mechanism is thought to extend to all PLD superfamily enzymes. 

 Finally, biophysical data also support the two-step reaction mechanism for 

PLD superfamily enzymes. Measurement of the changes in enthalpy and Gibbs 

free energy of a one-step versus a two-step mechanism demonstrates significant 

thermodynamic favorability for a two-step reaction proceeding through a 
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phospho-histidine intermediate.[59] In addition to the thermodynamic likelihood of 

the SN2 mechanism, Orth et al. used sensitive electrospray ionization mass 

spectrometry (ESI-MS) analysis to capture the highly unstable covalent phospho-

histidine intermediate, demonstrating that it does indeed form in solution.[59] 

Build up of covalent intermediate to levels detectable by ESI-MS was suggested 

to occur because the second nucleophilic reaction is the rate limiting step. This 

contradicts earlier studies with bacterial PLD that proposed the formation of the 

phospho-histidine intermediate is the rate limiting step, and hydrolysis or 

transphosphatidylation occur rapidly in parallel.[25] Discrepancies in reaction 

rates require further characterization, and it is important to observe that specific 

activities vary depending on the biochemical reaction conditions used, including 

concentrations of divalent cation and substrate presentation. Such differences for 

in vitro activity assays are further discussed in the following section. 

 

Interfacial kinetics 

 Phospholipases act on substrate present in an insoluble aggregate (i.e. 

the membrane). Many phospholipases therefore demonstrate interfacial kinetics, 

and do not follow classic Michaelis-Menten kinetic assumptions because the 

substrate is not freely diffusible in solution and is not randomly encountered 

dependent on soluble substrate concentration [68], [69]. Therefore, 

phospholipase activities can be described as one of two modes: “hopping” and 

“scooting” (figure 2) [70]. In “hopping” mode surface dilution of substrate does not 

impact specific activity, and the interfacial component is contained in the 
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equilibrium dissociation constant, Km. Enzymes that exhibit “hopping” mode 

dissociate from the interface in between hydrolytic events. In contrast, enzymes 

that exhibit “scooting” mode first interact with the lipid interface independent of 

substrate interaction, in an event described by the equilibrium dissociation 

constant, Ks. Following interfacial binding, the enzyme laterally diffuses along the 

interface (in two dimensions) to encounter substrate. This is described by the 

equilibrium dissociation constant, Km. “Scooting” enzymes exhibit processive 

activity, and do not dissociate from the interface between hydrolytic reactions. 

 The non-HKD enzyme, scPLD, does not demonstrate protein-lipid 

interfacial binding independent of substrate interaction [25]. This enzyme 

functions in “hopping” mode, and directly binds substrate headgroup present at 

the interface [23]. Following hydrolysis, scPLD falls off the substrate aggregate 

and the cycle recommences. scPLD activity is dependent on substrate 

presentation, accessibility, divalent cation concentration and cofactor binding, 

and positive feedback through allosteric binding of product to enhance activity 

[25] (pg. 5).   

 HKD enzymes demonstrate a scooting kinetic mechanism. A lipid cofactor 

binds to a hydrophobic patch on the surface of the protein, at regulatory domains 

or within the catalytic domain, to enhance protein recruitment to the lipid 

interface. For many eukaryotic PLD superfamily enzymes, PI(4,5)P2 is a lipid 

cofactor that binds at the putative polybasic binding domain present between the 

catalytic HKD motifs. PI(4,5)P2 significantly enhances protein-lipid binding and 

decreases Ks. Once at the membrane, catalysis is controlled by multiple factors 
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including lipid interface charge, membrane fluidity, substrate presentation or 

accessibility, and substrate molar fraction [69], [71] (i.e. concentration of 

substrate present at the interfacial surface). Because of the significant impact of 

interfacial environment on PLD catalysis, the format of in vitro activity 

measurement is essential to consider (pg. 26, and Figure 6).   

 In order to study kinetic parameters for “scooting” mode enzymes, 

interfacial binding, Ks, must be measured separately from substrate affinity and 

reaction velocity. Bulk lipid binding, Ks, can be measured as described by Buser 

and McLaughlin [72]. Following determination of Ks, Michaelis-Menten kinetic 

assumptions can be applied for “scooting" mode enzymes if bulk lipid 

concentration >>>Ks, and interfacial binding is saturated. Molar fraction of 

substrate can then be varied while holding bulk lipid concentration constant by 

compensating for substrate molar fraction with a neutral lipid, called a neutral 

diluent. This format for studying kinetic parameters of an interfacial enzyme is 

referred to as surface dilution kinetics [71]. Beyond bulk lipid composition and 

substrate presentation, other regulatory mechanisms control eukaryotic catalysis, 

including binding of calcium to the C2-domain in plant PLDs, or small GTPase 

and PKC protein-protein interaction for mammalian PLD.  Elegant kinetic 

analyses of plant [73] and mammalian PLD [74] have been reported. 

 

In vitro activity assays 

 Initial characterization of PLD activity monitored substrate depletion and 

product formation using thin layer chromatography (TLC), and co-migration of  
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Figure 6. Substrate presentation in the liposome is highly dependent on the interfacial 
lipid composition due to biophysical properties of the lipid and headgroup exposure for 
lipid binding cofactors and substrate (figure from [19]). 
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specific lipid species with purified lipid standards. Next, in vitro assays with 

increased precision and sensitivity have been developed that use head group 

release or product formation as readouts of enzyme activity. It is important to 

keep in mind the specific readout being measured when drawing conclusions 

from in vitro assays. Commercial kits are available for measuring in vitro PLD 

activity. However, these kits indirectly measure choline release via two 

subsequent enzyme-catalyzed reactions, and this method is not uniformly 

suitable for activity measurement. Other in vitro assays have been developed 

that directly measure PLD activity, and can be used to directly measure kinetic 

parameters. 

 Early studies of bacterial PLD enzymes utilized soluble small molecules 

with phosphodiesterase bonds to serve as substrate analogs. These small 

molecules have a detectable shift in light absorbance following hydrolysis, and 

some are capable of differentiating phosphodiester versus phosphatase 

activities. Soluble monomeric substrates with short acyl chains can also be used. 

Despite the fact that affinity for these soluble substrates is often poor, requiring 

higher concentrations to detect product formation, the benefit of these two 

options are that Michaelis-Menten kinetics can readily be performed since Ks 

component is omitted.   

 Mixed micelle and micelle assays can also be performed. Use of this 

format allows simple surface dilution experiments, since detergent readily 

compensates to adjust molar fraction of substrate (titration of increasing amounts 

of detergent, that will insert into mixed micelle to dilute substrate) [75]. In the 
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micelle format, phospholipids and lysophospholipids are of a conical shape.[76] 

However, many eukaryotic PLDs exhibit low activity in the absence of lipid 

cofactor(s) and in the presence of detergents, especially anionic detergents such 

as Triton-X100. Therefore use of pure substrate lipid micelles or mixed 

detergent-lipid micelles is not practical for biochemical study of eukaryotic PLD 

superfamily members. 

 Liposome assays are more complex, but liposomes more closely mimic 

natural, physiologically relevant membranes [77], [78]. Higher eukaryotes 

demonstrate increased specific activity in the presence of the lipid cofactor, 

PI(4,5)P2. HKD-PLD enzyme will perform processive activity if bulk lipid binding is 

held saturated. Separate lipid compositions can be made to vary substrate molar 

fraction by changing ratio of substrate to neutral diluents. Sonication is frequently 

used for simple liposome generation, but this makes multilamellar vesicles 

[(MLV), Figure 6]. These are adequate for both simple measurements of activity, 

and for comparisons of different reaction conditions within an assay. However, 

surface concentration of substrate is not controlled in MLV, making them 

imprecise for measurement of kinetic parameters. Extrusion is the preferred 

method for generating more uniform, unilamellar vesicles. The biophysical 

properties of the lipids in phospholipid liposomes have a significant impact on the 

PLD activity of scooting enzymes (Figure 6). 
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Cellular Activity Assays   

 It has long been appreciated that PLD enzymes perform 

transphosphatidylation [61], [65]. Stanacev and Stuhne-Sekalec demonstrated 

that transphosphatidylation preferentially occurs in very low concentrations of 

alcohol [62]. This characteristic of PLD has been exploited in cellular studies of 

the enzyme [78]. Phosphatidylalcohols are metabolically more stable than PA, 

which fluxes quickly. Historically, thin layer chromatography (TLC) has been used 

to visualize phosphatidylalcohols by monitoring co-migration of radioisotopically 

labeled lipids (on the fatty acids) with phosphatidylalcohol standards. Recently, a 

non-radioisotope-based cellular assay was developed [78]. This assay uses ESI-

MS to monitor formation of deuterated-phosphatidylbutanol following incubation 

of cells with low concentrations of deuterated-butanol. However, results from 

alcohol-treated cell preparations to identify and parse the signaling functions of 

PLD may have been incorrectly interpreted. Some recent characterizations of 

PLD functions using RNAi and small molecule PLD inhibitors have not been able 

to recapitulate some of the earlier findings obtained through the use of alcohols 

[79], [80]. Small molecule inhibitors in combination with alkyne-modified lipids are 

powerful tools, and are being used to measure flux of specific pools of metabolic 

and signaling lipid [81]. 
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Prokaryotic PLD 

Prokaryotes express PLD superfamily genes that range in function from 

hydrolysis of the DNA backbone, to protein-protein interactions with host 

signaling pathways, to the more classic lipase function. While PLD enzymes with 

lipase activity are not commonly expressed among bacteria compared to other 

phospholipases, bacterial PLDs with lipase activity have been identified in many 

pathogenic bacteria.[82] Even though most bacterial PLD enzymes have different 

activity, because of the ease of expressing and purifying these bacterial PLDs 

recombinantly, much of our structural and biochemical understanding of PLD 

enzymology stems from studies of bacterial PLD. 

 

Bacterial endonucleases 

Evidence that the PLD superfamily arose from a gene duplication event 

stems from studies of EDTA-resistant bacterial endonucleases with a single 

HxKxxxxD. In fact, initial characterization of the PLD superfamily was performed 

using Nuc, an ATP-independent, nonspecific endonuclease encoded on plasmid 

DNA found in Salmonella typhimurium and Escherichia coli. The crystal structure 

of Nuc was determined to 2.0 Å (PDB accession codes 1BYR and 1BYS, native 

and complexed with tungstate inhibitor, respectively), and found to contain a 

single HxKxxxxD motif that forms a homodimer with a crystallographic two-fold 

axis [51]. The HKD motif within each enzyme exists on two loops held at the 

interface of the dimeric subunits via hydrogen bonds to form a single active site. 

Structural and biochemical characterization of Nuc reveals a ping- pong-like 
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Table 3: BACTERIAL & VIRAL PLDs (table from [19]) 

SPECIES ENZYME ACTIVITY FUNCTION LOCALIZATION 

Orthopox virus p37 PLC, PLA, PLA2 IMV wrapping TGN & inner 
membrane wrapping 
of EEV 
  
  
  

(Vaccinia, 
variola) 

TAG lipase IEV fusion & release 

  transphosphatidylation   

Orthopox virus K4 endonuclease single strand 
(ss)/double strand 
(ds) DNA torsion 
release 

within IMV 
  
  

(Vaccinia, 
variola) 

Nick-joining 
enzyme 

Salmonella 
typhimurium, 
Escherichia coli 

Nuc nonspecific 
endonuclease 

ssRNA  periplasm 
  
  
  
  

breakage during 
DNA conjugation 

Escherichia coli Bfil site-specific 
endonuclease 

Degrades dsDNA 
during DNA 
conjugation 

periplasm 
  

Neisseria 
gonorrhoeae 

NgPLD PC hydrolysis combination of 
lipase & protein-
protein interaction 
elicits bacterial 
invasion 

host cell cytoplasm 
  

transphosphatidylation binds AKT to trigger 
membrane ruffling 

extracellular milieu 
  

Yersinia pestis  YMT PLD (PC/PE lipase) in vivo facilitates Y. 
pestis colonization 
of flea gut 

bacterial cytosol 
  
  

(formerly 
Pasteurella 
pestis) 

transphosphatidylation protects against 
murine plasma 
component 

Chlamydiae chromosoma
l pz PLDs 

PLD   unknown  reticulate bodies 
  
  
  

unknown lipase activity lipid acquisition 
from LD 

transphosphatidylation   

Acinetobacter 
baumanii 

Act bau PLD unknown   unknown function secreted 
  
  

enhances serum 
survival/host cell 
invasion 

Pseudomonas 
aeruginosa  

PLDa gene PLD (PC → PA)  increases long term 
infectivity/bacterial 
homeostasis 

periplasm 
  
  

transphosphatidylation 

Streptomyces 
sp 

PMF PLD PLD unknown periplasm 
  

transphosphatidylation   secreted 
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SN2 reaction mechanism that utilizes both HKD motifs within the active site. The 

imidazole group of one „HKD‟ histidine residues nucleophilically attacks the 

phosphate atom on the substrate, breaking the phosphodiester bond within the 

DNA backbone and generates a covalent phospho-histidine intermediate. The 

histidine of the second subunit‟s HKD donates a proton to the leaving group, 

which, in the case of an endonuclease, is the 3‟ end of the DNA backbone. 

Hydrolysis is complete upon a water molecule nucleophilically attacking the 

phosphate, breaking the phospho-histidine bond, and leaving a phosphorylated 

5‟ terminus [64]. This two-step, water-exchange reaction mechanism that 

proceeds through a covalent phospho-histidine intermediate is consistent with 

other HKD PLD enzymes, as previously described (pg. 18).   

Nuc endonuclease is encoded for on the 35.4 kilobase pKM101 plasmid, a 

member of the broad-host range IncN plasmid classification [83]. This plasmid is 

responsible for conjugal DNA transfer between bacterial cells via thin rigid sex 

pilli [84]. pKM101 plasmid renders bacterial drug resistance by encoding for 15 

genes that trigger spontaneous mutagenesis and error-prone DNA repair to 

facilitate survival [85]. Nuc is expressed as a 177 amino acid (19 kDa) protein in 

the bacterial cytosol, but is processed to 155 amino acids (17 kDa) when the 22 

amino acid signal sequence is cleaved upon secretion into the periplasmic space 

[86], where it is constitutively localized and never secreted into extracellular 

growth media. Nuc endonuclease nonspecifically hydrolyzes internal 

phosphodiester bonds within the backbone of single and double stranded duplex 

DNA and RNA (in vitro), but does not elicit exonuclease activity at terminal 
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phosphodiester bonds. Maximal activity is observed in the presence of divalent 

cations, but unlike other bacterial endonucleases, Nuc remains catalytically 

acitve in the presence of EDTA. This unique characteristic allowed 

characterization of Nuc endonuclease activity in the bacterial cell background 

[83]. Despite rigorous biochemical characterization of Nuc, its functional role 

remains unclear. Similar to the viral endonuclease, Nuc is nonessential for 

bacterial survival and does not degrade plasmid or phage DNA as it crosses the 

periplasmic membrane. Rather, Nuc is proposed to provide an ancillary role in 

DNA conjugation.   

 

Bacterial PLD as virulence factors 

Phospholipases are common toxins and virulence factors for pathogenic 

bacteria. These enzymes facilitate bacterial infection and replication through 

several functions, including penetration of basal cell membranes (e.g. mucus 

layer or blood vessel wall), triggering engulfment of the bacterium by the host 

cell, or cytolysis to release intracellular bacteria from host cells such as 

macrophages. Phospholipase C and Phospholipase A are the most common 

class of bacterial phospholipases that serve as virulence factors. These enzymes 

are capable of destabilizing or destroying host cell membranes directly, through 

lipid hydrolysis or indirectly, through upregulation of host cell signaling pathways 

via lipid product formation [87], [88], [89], [90]. Although less common, some 

bacterial PLDs have also been identified as virulence factors. The localization 

and functions of these enzymes in eliciting virulence are divergent, and the 
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unifying theme amongst these enzymes is the conserved HKD motif responsible 

for catalytic activity. 

Bacterial PLDs that function as virulence factors are generally expressed 

by Gram-negative pathogenic bacteria that are obligately intracellular, and 

require plant or mammalian host cell invasion in order to replicate (extensively 

reviewed [19]). These enzymes are often secreted by the bacteria into the 

extracellular milieu or directly injected into the host cell cytosol via one of several 

known secretion mechanisms. Several of these PLD genes have been proposed 

to be acquired by lateral gene transfer from other bacteria or host cells.[91] 

Acquisition of these bacterial PLDs can enable immune evasion, expand 

potential host colonization, and can provide pathogenic advantage. 

 

Streptomyces PLD  

Gram-positive Streptomyces encompass the largest genus within the 

Actinomycetes class of bacteria that includes Corynebacterium and 

Mycobacterium. Streptomyces bacteria flourish in soil and secrete secondary 

metabolites and enzymes, including phospholipases, able to scavenge the 

environment for nutrients. Streptomyces are rarely pathogenic to humans [92]. In 

fact, many Streptomyces species are of immense commercial and industrial 

value for several reasons. More than two thirds of all clinically relevant natural 

antibiotics are derived from these bacteria, including vancomycin, 

chloramphenicol, and rapamycin [92], [93]. Also, enzymes secreted by 
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Streptomyces species are used as biocatalysts in industrial manufacturing of 

foods, cosmetics, and pharmaceuticals [55], [94]. 

Enzymes belonging to the PLD superfamily have been isolated in 

secretions from Streptomyces species including S. antibioticus, S. cinnanoneus, 

S. halstedii, and S. septatus. These enzymes share significant sequence 

homology (>70 %) and are some of the most rigorously biochemically and 

structurally characterized members of the PLD superfamily [55]. In contrast to 

scPLD from Streptomyces chromofuscus, these Streptomyces enzymes maintain 

the conserved domains I-IV and are class II members of the PLD superfamily, 

similar to YMT, as characterized by Ponting and Kerr [18]. These enzymes are 

robustly expressed and secreted into the extracellular milieu, but their exact 

function is unknown.   

Robust expression and secretion of Streptomyces PLD, coupled with the 

observation that many of these enzymes display the highest 

transphosphatidylation activity of any bacterial PLD make these enzymes useful 

tools for industrial production of natural and synthetic phospholipids [94]. These 

enzymes exhibit broad substrate specificity that is exploited to facilitate 

headgroup exchange with natural and unnatural nucleophiles. In fact, use of 

these enzymes in industry has spurred rigorous enzymological characterization 

in order to engineer Streptomyces PLD with enhanced activities or altered 

substrate specificities for tailored use [95], [96].   

The crystal structures of Streptomyces  sp. PMF PLD [54], [60] and 

Streptomyces antibioticus (deposited in PDB, unpublished) have been 
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determined without substrate (PDB code: 1F0I, 1V0S, 2ZE4), in complex with 

short acyl chain substrate (1V0W, 2ZE9) or complexed with phosphate analog, 

tungstate (1V0R).  These structures are reviewed in detail (pg. 15). These 

structures, in addition to biochemical data, further validate the proposed two-step 

SN2 reaction mechanism. The Streptomyces PLD structures share a common 

fold to that of the Nuc endonuclease homodimer [51] and the endonuclease 

domain of BfiI [97]. The bilobal structure has an apparent crystallographic two-

fold axis of symmetry that cuts through the cone-shaped active site at the 

interface of the two lobes. The conserved HKD motifs exist on loops that lie 

adjacent to one another within the active site pocket. Crystal structures with 

complexed substrate or phosphate analogs demonstrate there is significant 

hydrophobic bonding between residues of the active site holding the substrate in 

place. The reaction mechanism proceeds via a covalent intermediate that is 

formed following N-terminal histidine, of the HKD motif, nucleophilic attack on the 

phosphate of the substrate headgroup. Biochemical analysis suggests formation 

of this covalent intermediate is the rate limiting step of catalysis, and that 

subsequent nucleophilic attack of the lone pair of electrons on the oxygen from 

either the water or primary alcohol molecule, for hydrolysis or 

transphosphatidylation reaction, respectively, can proceed in parallel with similar 

rates [25]. Crystal structures of PMF PLD suggest that Streptomyces PLD can 

also perform a second round of hydrolysis of PA, to release DAG and a 

covalently-bound phosphate to active site, referred to as the dead end reaction 

[55], [60]. although this reaction appears to be much slower (product reportedly 
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observed for crystals soaked with substrate for a week, this was reproduced 

using an in vitro biochemical assay, Selvy and Brown, unpublished observation). 

Because these enzymes are stably secreted into the extracellular growth 

medium, rigorous in vitro biochemical characterization of Streptomyces PLD has 

been possible. These enzymes possess a signal sequence that facilitates 

secretion from the bacterial cytosol into the non-reducing environment of the 

periplasmic domain. Some Streptomyces PLD have been reported to possess a 

critical disulfide bond that is thought to form in conjunction with proper folding 

only in the non-reducing environment of the periplasm [98]. Historically, much of 

the biochemical and structural studies have used secreted enzyme purified from 

the growth media of native Streptomyces cultures. Efforts to recombinantly 

express these enzymes in Gram-negative E. coli has proven difficult, and 

required use of secretion signal sequences [99] (to elicit periplasmic localization 

and secretion), or vectors with thioredoxin tags [100] (to enhance cytosolic 

disulfide bond formation). 

Following structural characterization, biochemical studies of Streptomyces 

PLD homologs with significant sequence identity have subsequently been 

performed to further probe the function of different components of the 

Strepotmyces PLD structure. S. septatus TH-2PLD has the highest specific 

activity and transphosphaditylation rates of any bacterial PLD identified to date 

[101], while pldp exhibits quite low activity. These differences in PLD activity 

between these two enzymes exist, despite the fact that these enzymes share 

significant sequence identity. This suggests that critical differences in a small 
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number of residues elicit major differences in PLD enzymatic activity. Uesugi et 

al. used these two PLD genes to generate a series of chimeric constructs [102]. 

Using a random repeat-length independent and broad spectrum, RIBS, in vivo 

DNA shuffle technique chimeric mutants were generated composed of stretches 

of TH-2PLD and pldp [102], [103]. Biochemical characterization of these 

constructs identified residues that were critical in modulating substrate specificity, 

interfacial activity, transphosphatidylation, and thermostability. The tertiary 

locations of these residues were then mapped in the Streptomyces PLD structure 

(models of TH-2PLD based on the PMF PLD structure) to further clarify their 

mechanistic function.   

The Streptomyces PLD structures show two flexible loops that gate the 30 

Å wide entrance to the active site cleft. The N-terminal loop is located between 

beta-strand 7 and alpha-helix 7. The C-terminal loop is between beta-strand 13 

and beta-strand 14. Chimeric analysis identified two residues in the N-terminal 

loop, (Gly188 and Asp191 for TH-2PLD) that dictate interfacial activity and 

sensitivity to substrate presentation [102]. Streptomyces PLD prefer substrate 

presented as monomer or mixed micelles, and demonstrate lower activity 

towards phospholipid vesicles [25]. Computer modeled docking of phospholipids 

into the Streptomyces PLD structure suggests these residues in the N-terminal 

loop might serve as a second phospholipid binding site for PA, PE, or PS [104]. 

The C-terminal loop, specifically residues Ala426 and Lys438 of TH-2PLD, are 

involved in enhancing the specific hydrolase and transphosphatidylation activity, 

regardless of substrate presentation. These residues also participate in 
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phospholipid head group specificity, and enhance thermostability of the enzyme 

[57]. Uesugi et al. used surface plasmon resonance and inactive mutants to 

measure substrate binding affinities [56]. The specificity for zwitterionic 

phospholipids over anionic phospholipids was narrowed down to the same 

residues, Ala426 and Lys438, in the C-terminal loop that are proposed to act as a 

gate at the entrance to the active site cleft [56]. Substrate specificity can be 

altered by point mutation of residues in this loop. Masayama et al. have exploited 

this characteristic by mutating residues in the C-terminal loop to facilitate 

production of phosphatidylinositols via head group exchange, an activity that is 

not observed with the wildtype enzyme [95]. 

Other studies have characterized the function of the conserved GG and 

GS residues that lie downstream of the HKD motifs, N-terminal and C-terminal 

motifs, respectively, in most PLD superfamily enzymes. Ogino et al. showed that 

the GG/GS residues, specifically the serine residue, downstream of the putative 

HKD motifs are critical for dictating the transphosphatidylation activity of the 

enzyme [58]. These residues line the base of the active site and are proposed to 

control active site conformation and stability, and subsequently modulate 

substrate specificity and ability to transphosphatidylate. Deletion of the serine 

residue decreases overall activity by a third compared to wildtype enzyme [58].  

 

Plant PLD 

Plant PLDs make up the largest family of HKD enzymes, with more than 

80 genes identified and several dozen cloned. These enzymes are more complex 
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than bacterial PLD, because they encode regulatory domains that facilitate 

differential activities under various signaling environments (reviewed [105], [106], 

[107], [108]). Plant PLD enzymes contribute to the rich history of the PLD 

superfamily, in that the first description of a PLD enzyme was made from 

carrot.[13] The PLD hydrolytic and transphosphatidylation activities were 

originally described in plants, in 1947 [14] and 1967 [61], [65], respectively.  Also, 

the first PLD enzyme was cloned from the castor bean in 1994 [109]. Cloning of 

the castor bean PLD by the Xuemin Wang lab subsequently facilitated 

identification and cloning of fungi [66], [110], and animal [111] homologs. The 

Arabidopsis thaliana genome has been sequenced, making identification of PLD 

superfamily members and genetic manipulation of this model organism feasible. 

The bulk of the plant PLD literature focuses on Arabidopsis, therefore this model 

organism will be the focus of this section. 

PA makes up less than 1 % total lipid in plants, but is an important second 

messenger [107], [112]. Several pathways have been characterized that 

generate PA, but in plants the two main signaling mechanisms for generating PA 

involve PLC-DAGK tandem activity, or PLD activity. Lipidomic analyses have 

been performed and characterized the major PA species in Arabidopsis as 

having long polyunsaturated fatty acids [34:2(16:0-18:2); 34:3(16:0-18:3); 

36:4(18:2-18:2); 36:5(18:2-18:3); 36:6(18:3-18:3)].[112] Different PA species 

change in response to different stimuli and environmental conditions. Drought 

and soil salinity are common environmental stresses, and are a major focus of 

plant research because these conditions affect crop production worldwide [112]. 
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Plant PLD enzymes have variant regulatory mechanisms to respond to 

extracellular stimuli such as these, and mediate intracellular responses via PA 

production and protein-protein interactions. 

 

Classes of plant PLD enzymes 

Plant PLD enzymes consist of two-conserved HxKxxxxD motifs separated 

by roughly 320 aa, which include the conserved region III (IYIENQFF). The 

function of this region is unknown, but is present in every PLD superfamily 

member with true phospholipase activity. Most plant PLD region III sequences 

encode „IYIENQYF‟, while two enzymes more closely related to the mammalian 

PLDs encode for „IYIENQFF‟ [113]. Plant PLD enzymes can be divided into two 

subdomains, C2-PLDs and PXPH-PLDs, based on the presence of amino-

terminal regulatory domains upstream of the catalytic domain [108], [114]. C2-

PLDs have an N-terminal C2 calcium binding domain that is distinct to plant PLD 

enzymes [112]. This domain is not found in other higher order PLDs. PXPH-

PLDs are more closely related to mammalian PLDs, and have amino-terminal 

phox homology (PX) and pleckstrin homology (PH) domains important for 

specific lipid interactions [112], [113]. At least 12 Arabidopsis genes have been 

identified, of which ten are classified as C2-PLD genes and two are classified as 

PXPH PLD genes [115]. Within these classes specific isoforms have been 

identified that exhibit differential genetic architecture, sequence identity, catalytic 

activities, and regulatory requirements [105], [113].  
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In contrast to the multiple crystal structures available for bacterial enzymes, a 

crystal structure for the more complex plant PLD does not exist, despite reported 

crystallization of cowpea PLD over a decade ago [49]. Therefore, the current 

model of proposed tertiary structure of the catalytic domain and reaction 

mechanism are based on the structure and characterization of the bacterial PLDs 

(pg. 15). The limited structural analysis of plant PLD that does exist has used 

non-crystallographic analytical tools. One such study used mass spectrometry 

analysis to characterize the sulfhydryl groups on cabbage PLD [116]. Increasing 

numbers of plant PLDs of both C2 and PXPH subfamilies have been cloned and 

recombinantly expressed in bacteria [73], [113], [117], [118], which has lead to a 

greater understanding of the individual biochemical characteristics of different 

plant PLD isoforms.  

 

C2-PLD 

In the mid to late 1990‟s following cloning of the castor bean PLD [109], a 

surge of plant PLD enzymes were identified, sequenced, and characterized by 

genetic and biochemical approaches [108]. Comparisons within this growing pool 

of plant PLDs led to observations of clusters of similar enzymes based on genetic 

architectures, sequences, and biochemical characteristics. Members of the C2-

PLD subdomain were subsequently categorized as PLDα, PLDβ, PLDγ, PLDδ, 

PLDε. It is important to note that as sequence and biochemical characterization 
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Table 4.  Plant PLD Enzymes (table from [19]) 

ENZYME REGULTORY 
DOMAIN 

CATALYTIC 
REQUIREMENTS 

SUBSTRATE SIGNALING 

PLDα C2-domain mM Ca2+ PC>PE hormone/stress 
response, 
senescence, nutrient 
sensing 
  

PLDβ C2-domain μM Ca2+, PI(4,5)P2 PC=PE=PS=NAPE actin polymerization 
  

PLDγ C2-domain μM Ca2+, PI(4,5)P2 PE=NAPE>PC hormone/stress 
response (?) 
  

PLDδ C2-domain μM Ca2+, oleate, 
PI(4,5)P2 

PE>PC cell viability, ROS 
response, binds 
microtubules  
  

PLDε C2-domain μM Ca2+, oleate, 
PI(4,5)P2 

PE>PC root growth, 
elongation 
  

PLDζ PX-PH PI(4,5)P2 PC root growth, 
elongation 
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improved, some initial cluster designations have changed (PLDα4 is no longer 

included as a PLDα isoform, and PLDδ1 was reclassified PLDβ2)[113].    

Regardless of cluster classification, all members of the C2-PLD subfamily 

encompass a conserved 130 aa C2 domain at the amino terminus that is 

important in calcium sensing and phospholipid binding [106], [108]. More than 

4000 consensus sequences have been reported for the C2 domain and are 

commonly present in proteins involved in lipid metabolism, signal transduction, 

and membrane trafficking [119]. The crystal structure for several C2 domains has 

been determined and a common antiparallel 8-β strand sandwich fold is 

conserved [120], [121], [122], [123]. Two or three calcium ions are known to bind 

at 4-5 acidic residues in the loops between the beta strands [119]. The β-strand 

sandwich fold is predicted to be conserved in plant PLD, but structural 

characterization of this domain from several C2-PLD isoforms demonstrates that 

a significant conformation change occurs upon calcium ion binding, which is not 

observed in C2 domains from other proteins or species [124]. This suggests plant 

C2 domains may be a variant of those previously characterized.   

In addition to the divergent protein conformations upon calcium binding, 

some plant PLD isoforms have substitutions in the C2 domain acidic residues 

[124]. This results in isoform-selective differences in calcium binding affinities 

and catalytic responses. C2 domains also bind lipids dependent on calcium 

concentration, therefore cytoplasmic calcium levels are thought to modulate C2-

domain conformation and lipid binding affinity [118]. C2-domains also 

demonstrate lipid binding specificity. Arabidopsis C2 domains bind PI(4,5)P2 and 
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PC in a calcium-dependent manner [124], [125]. C2 truncation mutants bind lipid 

vesicles but with lower affinity and these PLD enzymes display decreased activity 

[126]. Many C2 domains elicit constitutive binding to the lipid membrane (ie. no 

stimulus-induced translocation) therefore these enzymes are proposed to 

function in the scooting mode with processive catalytic activity. All C2-PLD 

enzymes characterized to date require some level of calcium for catalysis and 

can perform transphosphatidylation [126]. This plant PLD subfamily is 

responsible for the majority of the PA produced in response to environmental 

stress signaling.  

 

PXPH-PLD 

In contrast to C2-PLD enzymes, two plant PLDs have been identified that 

encode for phox homology (PX) and pleckstrin homology (PH) lipid binding 

domains at the amino-terminus, PLDδ1 and PLDδ2 [113], [127]. These genes are 

both located on chromosome III. PLDδ1 and PLDδ2 do not require calcium for 

catalysis, rather these enzymes selectively cleave PC in a PI(4,5)P2 dependent 

manner [113]. As such, these plant PLDs are more closely related to the 

mammalian PLD enzymes PLD1 and PLD2. In mammalian PLDs, the PX domain 

has been shown to bind PI(3,4,5)P3, and anionic lipids, while the PH domain 

binds PI and PIPn species. PLDδ1 and PLDδ2 also retain four of the five basic 

residues in the conserved PI(4,5)P2 binding motifs that flank the 2nd HKD [113]. 

These polybasic motifs may serve to regulate PLDδ catalysis in response to 

PI(4,5)P2, similar to mammalian PLDs. 
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Cellular characterization of this subfamily of plant PLD enzymes remains 

sparse, but some recent studies have shown PLDδ enzymes are involved in 

environmental stress responses. PLDδ2 is transcriptionally regulated in response 

to phosphate starvation and auxin levels [127], [128]. Exogenous auxin 

supplementation can stimulate PLDδ2 transcription. Plant PXPH PLDs have also 

been shown to mediate vesicular trafficking, phosphate recycling and root 

gravitropism [129]. 

 

Signaling 

Plant PLD enzymes are structurally more diverse and complex than 

bacterial homologs. As in other higher eukaryotes, PA is largely involved in 

stress-mediated signaling pathways in plants (detailed review recently published 

[130], including response to environmental conditions such as dehydration, high 

salinity, pathogenic defense and wound healing [107], As such, plant PLD 

enzymes have evolved diverse regulatory mechanisms to respond to specific 

extracellular stimuli. Plant PLD enzymes can be regulated at the level of 

transcription or translation, via post-translational modification (lipidation or 

phosphorylation), or via cytosolic and membrane cofactors and conditions 

(calcium, PI(4,5)P2, substrate presentation/membrane fluidity, and pH). PA 

signaling can also be regulated and attenuated post production by 

phosphorylation to generate DAG pyrophosphate (DGPP) [131]. It is currently 

unknown whether DGPP is itself also a signaling molecule.   
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Despite the historical precedent in plant studies of PLD, development of 

pharmacological tools to modulate the activities of these enzymes has lagged 

behind that of other eukaryotes. To this day, the use of knockout models and 

primary alcohols remain the only known tools with which plant PLD can be 

studied [132]. Using a primary alcohol, product formation can be diverted to the 

transphosphatidylation product phosphatidylalcohol (Figure 5). However, 

alcohols are imprecise tools because of their lack of specificity and potency. 

While only primary alcohols are able to serve as nucleophiles in the PLD reaction 

mechanism, both primary and secondary alcohols activate plant PLD activity 

[133]. Off target activation of heterotrimeric G proteins also occurs in response to 

alcohols, making it difficult to delineate the specific role of PLD in receptor-

mediated stress induced signaling pathways. A few plant stress response 

cascades are briefly described here to demonstrate a few of the numerous roles 

in which plant PLD enzymes have been implicated. 

 

Fungal PLD 

Fungal PLD, identified in yeast and slime mold, regulate critical 

developmental functions. Similar to plants, PLD activity was first described in 

yeast using biochemical methods. Nearly four decades ago glucose-stimulated 

PLD activity was measured for a species of budding yeast, Saccharomyces 

cerevisiae, grown in low (1 %) glucose content [134], [135]. These growth 

conditions induce glucose repression that triggers low oxygen uptake. Yeast 

harvested from these growth conditions demonstrated 14C-lecithin hydrolysis and 
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PA production in mitochondrial fractions [135]. This activity was increased in 

response to glucose repression during aerobic growth and decreased oxygen 

uptake. The increased activity was determined to be due to induction of an 

unknown cytosolic enzyme rather than a protein of mitochondrial origin since 

cyclohexamide blockage of cytosolic protein synthesis perturbed the PLD activity, 

and chloramphenicol inhibition of mitochondrial protein synthesis did not [135]. 

This observation was largely ignored until a series of parallel studies decades 

later identified specific PLD enzymes in different yeast species. Spo14, a PLD 

superfamily member also known as PLD1, was identified in the budding yeast 

Saccharomyces cerevisiae [66], [110], [136], [137], [138]. Other groups have 

identified similar Spo14-like enzymes in pathogenic budding yeast [139], Candida 

albicans [140], and in fission yeast, Schizosaccharomyces pombe [136]. In 

addition a biochemically distinct enzyme, PLD2 [139], has been described in 

Saccharomyces cerevisiae. Subsequent studies have demonstrated that the PLD 

activity initially observed in budding yeast (in the 1970‟s) is distinct from the PLD 

superfamily, and this activity has been attributed to PLD2 [141], [142]. Yeast 

PLD1 enzymes, including Spo14, share sequence and biochemical similarities to 

plant and other eukaryotic PLDs. These enzymes have been shown to function in 

yeast sporulation [110], [137], vesicular trafficking [143], mating [144], and 

virulence for the pathogenic species [145], [146]. 
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Budding yeast Spo14 

Spo14 was originally identified during phenotypic studies of fission and 

budding yeast deficient in meiosis and sporulation [136], [137]. The most 

extensive follow up studies of this gene and gene product have been performed 

using the budding yeast Saccharomyces cerevisiae. S. cerevisae have distinct 

regulatory pathways for mitosis separate from those observed for meiosis I and 

meiosis II during sporulation. Early studies observed sporulation defects in 

mutagenized yeast as a means of identifying genes that might be involved in 

meiotic signaling pathways [137]. In the first meiotic step, parental cells replicate 

genomic DNA and homologous chromosomes perform recombination as they 

align near the spindle pole bodies (SPB) in preparation for meiosis I. During 

meiosis I, similar chromosomes move to opposite poles of the nucleus and two 

diploid daughter nuclei are generated by separation of the chromosomes with the 

SPB. Reversal of meiosis is possible through meiosis I. In fact, cells with fully 

formed SPB are able to instead perform mitosis in response to changes in 

extracellular conditions and remain diploid. However, upon entry into meiosis II, 

the cell is committed to meiosis and unable to reverse to mitosis despite changes 

in extracellular growth conditions. During meiosis II, sister chromatids move to 

opposite poles of the nucleus to generate four haploid nuclei. These haploid 

nuclei are packaged into spores with prespore membrane (PSM), double layer 

membrane generated de novo, within the mother cell. This packaging is akin to 

acrosomes generated during spermatogenesis [141]. 
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Spo14 was identified as a gene involved in S. cerevisiae sporulation by 

Honigberg et al. [137]. In this study, mutagenized S. cerevisiae were subjected to 

various growth conditions, including changes in temperature, in order to observe 

phenotypic sporulation deficiencies. Cells with disrupted Spo14 genes showed 

1.5-fold less yeast transition through meiosis I, and 10-fold fewer cells complete 

meiosis II [110], [137]. The cells that did complete meiosis I and meiosis II had 

degraded nuclei and were not viable. It was also observed that cells with 

disrupted Spo14 did not commit to meiosis at meiosis II, a phenomenon in 

wildtype yeast referred to as “commitment to meiosis [147]. Rather, cells in later 

stages of sporulation with irregular nuclear composition were observed to reverse 

and mitotically divide [147]. 

In parallel, Ella et al. subjected S. cerevisiae to different growth medium 

and measured changes in PLD activity [66]. This group demonstrated that PLD 

activity is induced under nitrogen deprivation when yeast are grown in a medium 

containing a non-fermentable carbon source, ie. acetate [66]. Supplemental 

application of glucose to these growth conditions decreased PLD activity.  

Sporulation, more specifically meiosis I, is triggered under nutrient deprivation 

conditions but cells can be reversed and induced to mitotically divide if nutrients 

are supplemented prior to transition into meiosis II [137], [147]. These studies 

suggest PLD activity is increased during sporulation, and the activity measured 

by this group is the same as that characterized by Rose et al. [110]. Spo14, 

called PLD1 by this group [138] and others [148], is the enzyme responsible for 

the observed sporulation-induced activity. Spo14 is capable of PC hydrolysis and 
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can perform transphosphatidylation with primary alcohols [66]. These activities 

suggested that this newly-identified enzyme was indeed a PLD similar to PLDs 

identified in plants. 

 

Sequence, catalysis, and regulation 

Earlier cloning of castor bean PLD sequence facilitated cloning of Spo14 

[137], also known as PLD1 [138], [148], which later lead to cloning of the human 

PLD homolog [111]. Genomic sequencing of Saccharomyces cerevisiae 

identified Spo14 on chromosome XI. Spo14 is predicted to be the only HKD PLD 

in this organism, and is a member of the PLD superfamily. The gene for 

PEL1/PGS1, a phosphatidylglycerol phosphate synthase, is the only other gene 

encoding for an HKD enzyme in S. cerevisiae [141]. 

Spo14 protein sequence is 1683 amino acids, with a molecular weight of 

195.2 kDa. A stretch of 440 amino acids in the middle of the sequence are 21 % 

identical to castor bean PLD, demonstrating conservation of the catalytic domain 

observed for members of the PLD superfamily [110]. Separate groups cloned this 

enzyme, naming it either Spo14 [110], based on function in the initial sporulation 

defects study, or PLD1 [138], [148] to delineate this activity from an apparently 

separate PLD activity described in the 1970‟s. Spo14 sequence analysis shows 

this enzyme retains two conserved HKD catalytic motifs, present in the majority 

of eukaryotic PLD superfamily members. A putative polybasic PI(4,5)P2 binding 

domain, found in other PLD superfamily members and originally described in 

Spo14, exists between these HKD motifs [149].   
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Unique to yeast PLD, the amino-terminus contains a regulatory 

LOCO/phos domain encompassing residues 1-313 [150]. This region is 

hyperphosphorylated at serine and threonine residues upon meiotic initiation 

[150]. Hyperphosphorylation shifts the molecular weight of Spo14 from 195 kDa 

to roughly 220 kDa.  Hyperphosphorylation is a necessary regulatory mechanism 

for Spo14 function in meiosis, but not for other cellular functions of Spo14 or in 

vitro catalytic activity. Downstream of the LOCO/phos domain, the amino 

terminus also possesses PX and PH domains. The PH domain binds PI(4,5)P2 to 

facilitate basal protein-membrane localization as well as protein translocation 

within the cell [151], [152], [153]. As such, amino-terminal LOCO/phos and lipid 

binding domains are not integral to in vitro catalytic activity. 

In vitro biochemical characterization of Spo14 has been performed using 

recombinant protein heterologously expressed in either insect [110] or bacterial 

[138] systems. Similar to other eukaryotic PLD enzymes, PI(4,5)P2 binding at the 

putative polybasic motif, but not the PH domain, is requisite for catalytic activity 

[149]. Similar to some eukaryotic PLD enzymes, oleate (5mM) was shown to 

stimulate activity seven-fold [139]. However, Spo14 is unique from plant or 

mammalian PLD in that it is insensitive to calcium, and inhibited by magnesium.   

Spo14 catalytic activity is substrate-specific to PC, and little to no PI or PE 

is hydrolyzed [66]. Spo14 can catalyze transphosphatidylation reactions with a 

broader range of alcohols than other eukaryotic PLDs. Although preference is 

given for primary alcohols, such as n-butanol, branched-chain alcohols, such as 

3-methyl-1-butanol can also be used as nucleophilic substrates [66]. Spo14 
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appears to be less effective at transphosphatidylation than mammalian 

homologs. This is postulated to be due to Spo14 potentially hydrolyzing 

phosphatidylalcohols [141] shortly after production, but this remains to be 

demonstrated. Also, in vitro catalytic activity is stimulated in the presence of 

alcohol [66]. 

In vitro, Spo14 catalytic activity is regulated by access to lipid cofactor 

PI(4,5)P2 and substrate, PC. In contrast to other eukaryotic PLD enzymes, Spo14 

activity is not modulated by small GTPases, such as ADP-ribosylation factor (Arf) 

[154]. In contrast to in vitro regulation, cellular regulation of Spo14 is more 

complex and is dependent on the specific functional pathway, such as 

sporulation or mating. Cellular Spo14 is not directly regulated by Arf, but Arf 

GTP/GDP cycling via Arf GAP, Gcs1, does modulate Spo14 activity during 

sporulation [155]. Arf cycling is also is critical for sporulation [154]. In general, 

cellular Spo14 is transcriptionally and translationally regulated in most functional 

pathways in which it has been implicated. Induction of Spo14 RNA and protein is 

observed, 7-fold and 3-fold, respectively, in late meiosis. Post-translational 

modification such as phosphorylation has been shown to regulate Spo14 

localization. Finally, access to the lipid cofactor PI(4,5)P2 regulates both 

localization via the PH domain as well as activity via polybasic binding domain. 

Vegetative cells demonstrate PLD activity in both soluble and particulate 

fractions, likely localized to intracellular endosomal membranes, while Spo14 

translocation to specific membranes, such as the PSM, has been demonstrated 

for specific functional responses [139]. 
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In the 1970s, Dharmalingam et al. [134] and Grossman et al. [135] 

described glucose-stimulated PLD activity in S. cerevisiae. More recent 

characterization of yeast PLD activities suggests this observed PLD activity is 

due to a separate class of enzyme, likely that of PLD2 [141], [142], [156], [157]. 

PLD2 was described, but not cloned, as a calcium-dependent enzyme and does 

not require PI(4,5)P2 for activity. This activity was observed in Spo14 deletion 

mutants in the absence of EGTA or EDTA. This enzyme does not perform 

transphosphatidylation and preferentially hydrolyzes PE and PS rather than PC. 

This demonstrates PLD2 activity is distinct from that of Spo14. The fact that 

Spo14 is the only HKD PLD present in the S. cerevisiae genome, and that PLD2 

does not perform transphosphatidylation suggests this enzyme is likely a PLD-

like enzyme distinct from the PLD superfamily with a unique reaction mechanism. 

 

Function 

Spo14 deletion mutants do not demonstrate any phenotypic disruption in 

vegetative growth. Similar to the exocytic and vesicular function of HKD PLD 

enzymes in other higher eukaryotes, Spo14 appears to be integral for specific 

functional processes involving membrane formation, fusion, and secretion. In 

response to nitrogen deprivation and non-fermentable carbon sources, Spo14 

responds by translocating in preparation for sporulation [151]. Spo14 activity is 

integral for rescuing vesicular trafficking in a mechanism that responds to loss of 

PI-transfer protein Sec14 [152], [158]. Finally, Spo14 has recently been shown to 
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participate in mating and pheromone signaling pathways [144], and is a virulence 

factor integral for pathogenic yeast Candida albicans [145], [146].   

 

Dictyostelium PLD 

Another type of fungi that is extensively studied is the unique slime mold 

Dictyostelium discoidium. This model organism possesses PLD activity, and 

similar to budding yeast Spo14, this activity has proven integral for critical 

developmental processes. This slime mold is found in soil of Eastern North 

America and Eastern China, and is studied as a model organism because it 

exhibits several distinct life cycles dependent on environmental growth conditions 

[159]. Also, Dictyostelium bears many similar signaling pathways and 

mechanisms to eukaryotes in which PLD participates.   

Slime mold grows in monolayer or suspension cultures and feeds on 

bacteria. In the presence of ample nutrients, Dictyostelium exists as a haploid 

unicellular form that mitotically replicates. In response to low nutrients or high 

density, unicellular cells replicate in one of two cycles: sexual or assexual. These 

replication cycles are the reason that Dictyostelium are so intensely studied. 

Dictyostelium are referred to as social amoeba that exhibit social cooperation or 

altruism by sacrificing some individual cells for the benefit of the species [159]. 

Sexual replication occurs upon contact with a haploid cell of opposite mating 

type, and the cells and nuclei fuse to form a diploid zygote [160]. The zygote 

secretes cAMP and other chemoattractant molecules to coercively draw other 

cells near, whereupon the zygote cannibalizes them to harvest nutrients and form 



 

57 
 

the cellulose-bound macrocyst structure [159]. The macrocyst replicates via 

meiosis and then germinates. Signaling pathways and mechanisms in the sexual 

reproduction pathways have not been characterized, but this has been because 

the emphasis has been on the asexual cycle. 

In the absence of fusion with opposite mating type cells, Dictyostelium 

respond to low nutrient and high cell density by secreting chemoattractant 

molecules. This facilitates quorum sensing and triggers cell signaling responses 

in neighboring cells. Unicellular forms constitutively express a glycoprotein, 

conditioned medium factor (CMF), which is only secreted in response to low 

nutrient starvation conditions. In response to quorum sensing molecule CMF, 

heterotrimeric G-protein signaling pathways ensue. Under low nutrient and high 

density conditions Dictyostelium secrete waves of cAMP [160]. The waves of 

cAMP bind cyclin AMP-receptors (cAR), GPCRs at the surface of neighboring 

cells. Binding elicits signaling pathways that trigger cell migration and 

aggregation towards one another. A mound of cells forms, and continued waves 

of cAMP and bioactive molecule secretion, such as differentiation inducing factor 

(DIF-1), generate a molecular gradient of small molecules. This gradient elicits 

polarization of the cooperative cells into anterior and posterior regions, and DIF-1 

induces non-uniform cell differentiation into one of two types of pre-cells that 

ultimately generate either a stalk or spore-harboring fruiting body. The polarized 

cell aggregate, called a slug, is able to migrate greater distances than unicellular 

forms and is protective from predatory consumption (e.g., C. elegans). Once a 

new location is selected, the pre-stalk and pre-spore forms further differentiate 
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into mature stalk and spore, destined for cell death, or dispersal and germination, 

respectively.   

PLD activity has been described in Dictyostelium for the different growth 

stages of the three distinct reproductive cycles. Three PLD transcripts were 

identified, plda, pldb, and pldc [161], [162]. The plda is constitutively expressed at 

unaltered levels in vegetative and reproductive cell types, whereas pldb mRNA 

message and protein levels fluctuate with changes in growth or reproductive 

cycle. As such, pldb is the most extensively studied isoform, and has been 

shown to participate in quorum sensing and facilitate polarized cell migration. 

This 867 aa enzyme is 32 % similar and 21 % identical to human PLD1, with 

conserved PH and CRI-IV domains, and loop and tail regions. The pldb is 

PI(4,5)P2-dependent and performs transphosphatidylation with primary alcohols. 

However, in contrast to human PLD, Dictyostelium pldb preferentially hydrolyzes 

ether-containing PE species [163]. 

The pldb negatively regulates quorum sensing in two ways. First, PLD-

generated PA counteracts cell responses to CMF by modulating heterotrimeric 

G-protein signaling responses and RGS (regulatory of G-protein signaling) 

regulation [161], [164]. Also, pldb-generated PA is suggested to facilitate cAR 

receptor internalization and recycling [161], [162], [164]. Unicellular Dictyostelium 

treated with primary alcohol, or pldb deletion mutants aggregate at lower 

densities independently of CMF. This is likely due to enhanced cAR levels at the 

plasma membrane (lack of receptor internalization or recycling) and increased G-

protein signaling in the absence of RGS modulation. The pldb overexpression 
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mutants increase the density and CMF signaling threshold necessary to trigger 

unicellular aggregation [161].   

The pldb is also necessary for actin localization and actin-based motility in 

two ways. Pldb localizes to the leading pseudopodia extensions of the slug, and 

PLD-generated PA levels are highest at the leading edge, with a decreasing 

gradient towards the posterior [165]. PA facilitates membrane curvature 

necessary for pseudopodia formation, but PA also activates PI4P5K, which 

generates PI(4,5)P2 in a positive feedback loop on pldb [163]. In addition to 

activating PLD, PI(4,5)P2 localizes actin nucleating factors (Arp2/3 complex) to 

the leading edge of pseudopodia for F-actin polymerization [163]. As a result of 

primary alcohol treatment, actin assembles in the nucleus and results in aberrant 

morphologies. In light of the importance of PA in specific signaling and structural 

capacities, pldb activity is integral to asexual reproduction in Dictyostelium. 

Further study will determine the role of PLD in vegetative or sexual reproduction 

cycles. 

 

Zebrafish PLD 

Seminal work in characterizing the function of PLD in the context of a 

whole vertebrate was recently performed using zebrafish, Danio rerio. In 2003, 

Ghosh et al. partially cloned a PLD enzyme (aa 380-916) from zebrafish embryos 

and determined it was expressed during gastrulation [166]. Zeng et al. followed 

up this study with cloning the complete zPld1 sequence [167]. This 1042 aa 

enzyme contains the two HKD motifs present in most eukaryotic PLDs, and is 64-
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68 % and 50 % homologous to mammalian PLD1 and PLD2, respectively. zPld1 

regulation is also similar to mammalian PLD, with conserved PKC (1-314 aa) and 

Rho (859-1010 aa) binding domains. In vitro characterization shows this enzyme 

is activated by Arf1 and PKC. A second zebrafish PLD isoform, 927 aa zPld2, 

has been partially cloned. 

Zebrafish are uniquely suited to whole organism studies of PLD activity 

and function because, as Zeng et al. demonstrated, PLD activity can be 

stimulated and measured with whole organism treatment of phorbol ester (PMA) 

and deuterated n-butanol. zPld1 activity was monitored using MS by monitoring 

deuterated phosphatidylbutanol formation [78]. Similar to other zebrafish 

phospholipases, in whole animal studies, zPld11 was determined to be involved 

in vascular development. This was determined using two parallel methods: (1) 

zPld11 was either knocked down using targeted morpholinos to disrupt zPld11 

translation and mRNA splicing, or (2) zebrafish were treated with n-butanol to 

divert zPld11 activity to transphosphatidylation. Unlike the development of other 

systems including motor neuron organization, there was a severe deficiency in 

intersegmental blood vessel formation. More recent studies have observed 

zPld11 mediates Golgi secretory vesicle formation [168]. Aberrant zPld11 activity 

due to unregulated Arf-stimulation results in decreased lipid absorption in the 

intestine. Utility of zebrafish in measuring PLD activity and monitoring substrate 

and product localization in a whole vertebrate animal will facilitate determination 

of the function of PLD with respect to the whole organism. 
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Mammalian PLD 

While PLD was first identified in plants in 1947 [14], PLD activity was not 

described in mammalian tissues until 1973 by Kanfer and colleagues [169]. 

Subsequently, multiple mammalian PLD enzymes and isoforms have been 

cloned, rigorous biochemical characterization performed, and extensive cell 

signaling studies undertaken. From this, mammalian PLD enzymes have been 

implicated in critical cell signaling pathways involved in development and cell 

death. These pathways modulate cell growth, proliferation, survival, and 

migration. As such, aberrant PLD activity has been detected in disease states, 

including cancer, inflammation, pathogenic infection, and neurodegeneration. 

 

Isoforms  

Cloning of plant and yeast PLD enzymes facilitated cloning of a full length 

PLD enzyme from HeLa cell cDNA [111] and rat [170] PLD1. Shortly thereafter, a 

second mammalian PLD enzyme, PLD2, was cloned [171], [172], [173]. These 

two isoforms share 50 % sequence homology, mostly at the catalytic domain that 

includes two conserved HxKxxxxDxxxxxxG(G/S)xN catalytic motifs separated by 

variable length of sequence predicted to form a thermolabile loop. N-terminal to a 

conserved polybasic PI(4,5)P2 binding domain [149], the loop region differs for 

these two PLD isoforms. PLD1 harbors an extended thermolabile loop prone to 

proteolytic cleavage [174]. The length of this loop region is variable dependent on 

the splice variant [175] (PLD1a = 116 aa versus PLD1b = 78 aa), while PLD2 

does not possess a significant loop region (4 aa predicted loop). Shortened 
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splice variants of both PLD1 and PLD2 have been identified that compose 

catalytically inactive enzyme [173]. Expression of these inactive enzymes is 

observed in different tissues, including the brain, but their function is unknown. 

At the amino-terminus, PLD1 and PLD2 share similar regulatory domains 

to PLDζ and Spo14, including PX and PH lipid binding domains. The PX domain 

binds polyphosphoinositides with high specificity, and anionic lipids with lower 

specificity [176], but this domain has also been implicated in protein interactions 

with regulatory proteins, including Dynamin and Grb2. Tyrosine residues in the 

PLD2 PX domain can be phosphorylated. The PH domain binds anionic 

phospholipids with low specificity. This domain is palmitoylated at two conserved 

cysteine residues that facilitate protein localization and do not impact catalytic 

activity (Figure 7). 

Despite similarities between the regulatory domain architecture of the 

classic PLD isoforms, the majority of the sequence divergence between these 

two mammalian PLD isoforms exists at the amino-terminus. Deletion of the PX 

domain enhances PLD1 activity. Truncation of the PLD1 PX domain and a 

portion of the PH domain further increases activity. However, conserved residues 

in a predicted α-helix at the C-terminal end of the PH domain are necessary for 

catalysis in the liposome activity assay [177] (unpublished data, Henage, Selvy 

and Brown). Cell-based studies demonstrate that N-terminally truncated PLD1 

enzymes maintain high activity levels upon cellular stimulation. This suggests, 

similar to the extended loop region of PLD1, the amino terminus of PLD1 is 

autoinhibitory, whereas deletion of the amino-terminus of PLD2 decreases 
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activity and suggests PLD2 amino-terminus might facilitate increased basal 

activity. 

PLD1 and PLD2 share homologous C-terminal sequences. The specific identity 

of the residues in this sequence must be maintained for mammalian PLD activity. 

Non-conserved point mutation or deletion impairs catalytic activity [178]. The C-

terminal residues are suggested to interact with the catalytic core [178]. Studies 

by Steed et al. support this with identification of naturally occurring PLD2 splice 

variants with truncated C-termini that result in significantly decreased activity 

[173].  

The bulk of mammalian PLD activity is attributed to these classical PLD 

isoforms. These two isoforms, and subsequent splice variants, hydrolyze 

phospholipids to generate phosphatidic acid, and readily perform 

transphosphatidylation in the presence of low concentrations of alcohol to 

perform headgroup exchange and phosphatidylalcohol formation. Both isoforms 

are capable of hydrolyzing PC, PE, PS, LPC, and LPS, but are not capable of 

hydrolyzing PI, PG or cardiolipin. Although PA is the major hydrolytic product, 

hydrolysis of a lyso-lipid generates LPA. Recently, mammalian PLD was 

proposed to generate cLPA from lyso-lipids [179]. cLPA could be formed similar 

to the transphosphatidylation of LPC observed with autotaxin, where the internal 

sn-2 hydroxyl group serves as the secondary nucleophile to cyclize the product 

(pg. 8). 
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Figure 7. Conserved domains in mammalian PLD include HKD motifs responsible for 
catalytic activity, and phox homology (PX) and pleckstrin homology (PH) lipid binding 
domains thought to be involved in regulation of the enzyme.  Other known sites of 
protein interaction are illustrated as well (figure from [19]). 
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In addition to PLD1 and PLD2, two mammalian enzymes have been 

identified with significant sequence homology to viral and prokaryotic PLD. PLD3, 

also called Hu-K4, bears significant sequence homology to viral PLD enzymes 

K4 (48 %) and p37 (25-30 %) [180]. This enzyme has two HxKxxxxD/E motifs (in 

one motif the aspartate is mutated to glutamate) and was recently shown to 

harbor a predicted N-terminal type II transmembrane domain [181]. This 

facilitates protein insertion into the ER, with 38 aa exposed to the cytosol, and 

the large C-terminus, including the HKD motifs and multiple glycosylation motifs, 

exposed to the ER lumen. Catalytic activity has not been detected for this PLD 

isoform, but it has been postulated that this enzyme might hydrolyze lipids at the 

lumenal phase of the ER, or may not bear lipase activity, similar to the 

endonuclease activity of viral K4 [181]. The murine homolog of this enzyme, 

Sam9, is expressed in the forebrain during late neural development [182]. 

Catalytic activity has yet to be defined for this enzyme as well. 

A single-HKD enzyme with homology to Nuc endonuclease, called 

mitoPLD, was described [183]. This enzyme bears an N-terminal mitochondrial 

localization sequence (MLS) in place of PX or PH lipid binding domains. 

However, this localization sequence is not processed, and instead may facilitate 

insertion or anchoring into the outer mitochondrial membrane. This enzyme is 

predicted to homodimerize, similar to Nuc. This is not the first description of PLD 

activity localized at the mitochondria [184], but previous reports suggested 

mitochondrial PLD hydrolyzed PE to generate PA. Instead, mitoPLD hydrolyzes 

cardiolipin, an abundant mitochondrial lipid, to generate PA.  This product 
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facilitates mitochondrial fusion events, since overexpression of mitoPLD results 

in formation of a single large perinuclear mitochondrion, whereas expression of a 

catalytically inactive mutant resulted in fragmented mitochondria [185]. 

 

Tissue expression and subcellular localization 

The classic PLD isoforms, PLD1 and PLD2 are expressed in nearly all 

mammalian tissues. Due to the lack of clean, specific antibodies northern blot 

analysis has routinely been used to characterize PLD expression patterns. PLD1 

and PLD2 are both robustly expressed in heart, brain, and spleen. PLD1 exhibits 

low expression in peripheral blood leukocytes and PLD2 is poorly expressed in 

liver and skeletal muscle.     

While classic PLD isoforms, PLD1 and PLD2, catalyze the same reaction, 

and utilize similar substrates to generate PA or transphosphatidylation species, 

these enzymes are differentially localized within the cell. There has been some 

discrepancies in reports of subcellular localization of each PLD isoform, but this 

could be due to differences in the cellular systems, growth conditions, or the 

methods of detection (ie. subcellular fractionation or immunofluroescence of 

native versus tagged proteins; note that tags can impact localization).   

 

PLD1 subcellular localization 

It is generally accepted that PLD1 is localized to perinuclear membranes, 

including early endosomes, and Golgi under basal conditions [171], [186], with no 

reported difference in localization for splice variants PLD1a and PLD1b [186]. 
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Different regions of the protein contribute to basal subcellular localization.  

Truncation and point mutations have been used to identify the contribution of 

these different regions. Sugars et al. determined PLD1 basal localization is 

dependent on the PH domain, specifically an acidic region (residues 252 and 

253) thought to be important for IP3 binding, and conserved tryptophan residues 

in a predicted α-helix that is critical for catalytic activity [187]. PLD1 is 

palmitoylated on two cysteine residues in the PH domain and this lipid 

modification supports basal protein localization at intracellular membranes [177]. 

Point mutation of these cysteine residues impairs palmitoylation and results in 

aberrant protein localization. In the presence of serum protein basally localizes to 

the plasma membrane [187], whereas in the absence of serum these 

palmitoylation mutants are dispersed in the cytosol and translocation is triggered 

to the plasma membrane only upon serum stimulation [188]. Hughes and Parker 

suggested the C-terminal residues of PLD1 might also be necessary for 

endosomal localization [186]. This region of the enzyme is certainly necessary for 

catalytic activity, and native splice variants of PLD1a and PLD1b that lack these 

C-terminal residues do not basally localize to endosomes. However, it has been 

suggested that the C-terminus is integral for catalysis because it supports the 

structure of the active site [178]. Therefore enzymes lacking this region may not 

in fact be folded properly, and this could result in aberrant localization rather than 

the C-terminus itself directly participating in protein localization. Catalytic activity 

is not requisite for protein localization. Catalytically inactive point mutants (PLD1b 

K466E and K860E) localize to perinuclear endosomes similar to wildtype enzyme 
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[186]. It should be noted that individual domains of PLD1 expressed in isolation 

do not localize similar to the full enzyme [187], [188], [189]. This suggests that 

multiple components and regions of the enzyme participate in basal localization. 

Upon cell stimulation, PLD1 translocates to the plasma membrane or late 

endosomes. However, the type of stimulation results in differences in 

translocation, for example serum stimulation in Cos7 cells results in translocation 

to late endosomes and plasma membrane, whereas PMA stimulation triggers 

translocation to the plasma membrane [188] (unpublished data Selvy and 

Brown). PLD1 translocation to the plasma membrane in response to cell 

stimulation is thought to be due to PI(4,5)P2 binding at the polybasic binding 

region between the HKD motifs [188]. Point mutations in this polybasic region, 

including mutation of highly conserved arginine residues 691 and 695, impair 

PLD1 translocation to the plasma membrane upon stimulation. These data are 

supported by evidence that production of PI(4,5)P2 positively increases PLD 

activity. Finally, N-terminal PX and PH domains facilitate recycling to specific 

intracellular membranes [188].  

Nuclear PLD activity that responds to GTPγS via Rho GTPase, but not Arf 

activation, has been described [190]. A recent report suggests this activity is due 

to nuclear import of PLD1 via direct protein interaction with importin-β [191]. A 

highly conserved putative nuclear localization sequence (NLS) was identified 

between residues 553 and 564 for PLDb (KxRKxxKxxxxK). Importin-β binds the 

NLS and facilitates active transport into the nucleus. The NLS sequence exists in 

the loop region between the catalytic HKD motifs, and is not present in PLD2. 
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Mutation of any or all of the conserved residues in this NLS sequence impairs 

nuclear localization. Similar to the plasma membrane, PC is the major 

phospholipid present in nuclear membrane. Nuclear PLD activity generates PA 

that is rapidly metabolized to DAG. Jang et al. report this PLD activity stimulates 

nuclear PKCα and ERK phosphorylation and activation [191]. Catalytically-

inactive PLD1 point mutants and PLD-selective small molecule inhibitors disrupt 

nuclear PKCα and ERK activation, supporting the lipase-dependent activation 

mechanism. Immunofluoresence microscopy and subcellular fractionation 

analysis have also identified a nuclear PLD2 population, however a putative NLS 

has not been identified in PLD2 sequence [191], and further study is necessary 

to determine the mechanism for PLD2 nuclear import. The intriguing report of a 

PLD1 nuclear import mechanism begs further investigation to determine the 

potential signaling pathways modulated by nuclear PA production. 

 

PLD2 subcellular localization 

In contrast to the intricate regulation of PLD1 via protein translocation, 

PLD2 is generally observed to be constitutively localized to the plasma 

membrane under basal conditions and translocates to recycled vesicles with 

agonist-stimulated and desensitized receptors [171]. PLD2 also binds to and 

localizes with β-actin [192], and in response to EGF-stimulation localizes at 

membrane ruffles [193]. Instead of translocation upon cell stimulation, as is the 

case for PLD1, PLD2 activity and protein interactions are modulated via 

phosphorylation at multiple residues. 
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PLD activity has also been described for crude preparations of 

mitochondria.  Biochemically, this PLD activity differs from that attributed to 

MitoPLD. In these mitochondrial fractions, calcium-stimulation of an unknown 

enzyme hydrolyzes PE to generate PA. This enzyme may not be a member of 

the PLD superfamily since it is unable to perform transphosphatidylation [194]. 

In some studies, PLD1 and PLD2 were observed to colocalize at 

perinuclear and plasma membrane under basal conditions. The finding that PLD 

isoforms may form intracellular complexes might explain why introducing catalytic 

point mutants results in dominant negative effects and reduces basal PLD activity 

[63], [195]. 

 

Regulation 

PA is a critical lipid second messenger for a range of signaling cascades, 

but makes up 1-4 % total lipid in the cell [196]. PLD contributes to signaling pools 

of PA, and therefore this enzyme is under tight regulation by elaborate 

mechanisms including cofactor availability, signal induced subcellular 

translocation, post-translational modifications, and protein-protein interactions.   

 

Divalent cations 

Similar to other PLD superfamily members, mammalian PLD catalysis 

responds to divalent cation concentrations. However, in contrast to other 

superfamily members, including many plant enzymes, mammalian PLD catalysis 

is largely unresponsive to calcium concentration in vitro [175]. In vivo, however, 
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PLD activity is mediated by cellular calcium fluctuations, which suggests calcium 

facilitates protein-activator activation, such as PKC, and indirectly modulates 

PLD activity. In contrast, optimal catalysis levels require the presence of 

magnesium. In vitro PLD activity responds to changes in magnesium 

concentration, with half maximal Arf-activated PLD activity at 100 μM 

magnesium. This concentration of magnesium may facilitate catalysis directly, 

because this divalent cation does not impact in vitro protein-lipid binding 

(unpublished data Selvy and Brown). 

 

Post-translational modification 

Shortly after cloning of the first mammalian PLD enzymes, reports 

emerged that these enzymes were post-translationally modified in response to 

specific signaling pathways. Further characterization highlights lipid modification, 

phosphorylation, ubiquitination, and proteolytic mechanisms of PLD regulation.  

 

Lipid modification 

PLD1 [177] and PLD2 [197] are post-translationally palmitoylated at two 

cysteine residues in the PH domain. In vitro, this modification does not 

significantly impact catalytic activity, suggesting palmitoylation serves to regulate 

protein localization [177], [187]. In the cell, however, this lipid modification 

facilitates protein sorting into specific intracellular and plasma membrane 

domains including lipid rafts. In PLD1, Cys240 and Cys241 are palmitoylated, 

with Cys241 the dominant modification site. As determined by modeling the 
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PLD1 PH domain onto the crystal structure of PLCδ PH domain, these residues 

exist in a region predicted to be an extended loop of the PH domain [177], [187]. 

Lipid modification requires expression of full length, catalytically-competent 

PLD1. Expression of the PH domain in isolation, or of severely truncated 

constructs of the enzyme do not result in modification [187]. ΔPX PLD1 

construct, lacking first 210 amino acids, is the shortest truncation that can be 

expressed that yields similar localization and catalytic activity to wildtype PLD1, 

and this truncation construct is lipid modified. 

 

Phosphorylation 

Mammalian PLD isoforms PLD1 and PLD2 are phosphorylated in 

response to signal transduction as a regulatory mechanism. PLD was originally 

determined to be phosphorylated when it was immunoprecipitated with polyclonal 

phospho-tyrosine antibodies [198]. Since this initial discovery, rigorous 

biochemical and molecular biology techniques have been employed to determine 

specific residues that are modified and the resulting impact on PLD activity and 

signal transduction. 

PLD1 regulatory mechanisms reported to date largely center on protein 

translocation, while multiple PLD2 phosphorylation sites have been described. 

Therefore, few reports of PLD1 phosphorylation exist. Early studies used 

sequence analysis to identify two putative tyrosine phosphorylation sites 

[RK](x)2/3[DE](x)2/3Y in PLD1 (aa 288-295 and aa 807-815). Evidence of 

phosphorylation at these residues does not exist. PLD1 phosphorylation occurs 
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in response to H2O2 stimulation, and increased phosphorylation has been shown 

to correlate to increased lipase activity [199]. c-Src has also been reported to 

phosphorylate PLD1, but this does not modulate lipase activity, rather modulates 

c-Src activity for downstream protein substrate [200]. PKC isoforms are also 

known to modulate PLD1 activity [201]. Despite the evidence that PKC activation 

of PLD1 is phosphorylation-independent, three residues are phosphorylated by 

PKC (Ser2, Thr147, Ser 561) [202]. In vitro catalytic analysis demonstrates that 

PKC phosphorylation of PLD1 likely serves as an inhibitory mechanism [203]. 

Maximal PKC-stimulated PLD activity is observed roughly one minute following 

PLD-PKC mixing. The timecourse of this activation suggests protein-protein 

interactions induce PLD activation.  Maximal PLD1 phosphorylation at threonine 

147, however, occurs nearly 60 minutes after PLD-PKC mixing [203]. Maximal 

PLD1 localization to the membrane also occurs at 60 minutes. 

Multiple PLD2 residues are reportedly capable of being phosphorylated by 

numerous kinases. Gomez-Cambronero and colleagues have characterized 

tyrosine residues in the PLD2 PX domain that mediate lipase activity and binding 

with SH2 domains. Tyr169 is highly conserved in all eukaryotic PLD and is 

proposed to be important for high PLD2 basal activity [204]. Tyr179 is present 

only in mammalian PLD and has been proposed to negatively regulate Ras 

signaling [204]. (Ras/MAPK signaling is increased nearly two-fold with Y179F 

mutation). Phosphorylation at these residues recruits the SH2 domain of Grb2, 

which binds the Ras GEF, Sos, via its SH3 domain, to activate MAPK pathway 

[204]. The kinase responsible for phosphorylation of these residues has not been 
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identified. However, kinases responsible for phosphorylation at other PLD2 

residues have been identified. Tyr175 exists in a consensus Akt phosphorylation 

site, and was identified using a polyclonal antibody for tyrosine phosphorylation 

at these consensus sequences [205]. Phosphorylation at Tyr175 reportedly 

increases DNA synthesis via MEK activation. 

Recently, a better understanding of the regulation of PLD2 activity via 

phosphorylation was reported [206]. Cycling of phosphorylation and 

dephosphorylation of PLD2 results in differences in lipase activity and 

downstream signaling consequences. PLD2 binding Grb2 via phosphorylated 

tyrosine residues in the PX domain results in increased lipase activity, while 

dephosphorylation of these residues by tyrosine phosphatase, CD45, increases 

cell proliferation [206]. Further studies have used MS-based proteomic analysis 

to identify other modified residues [207]. Epidermal growth factor receptor 

(EGFR) negatively regulates PLD2 lipase activity via phosphorylation at Tyr296. 

In contrast, JAK3 increases PLD2 lipase activity via Tyr415 phosphorylation. 

Finally, Src, also shown to modify PLD1, phosphorylates Tyr511 on PLD2. The 

latter modification does not directly modulate lipase activity, instead likely 

impacts protein interaction with Src and facilitates downstream events, similar to 

Src interaction with PLD1. Multiple phosphorylation modifications can be 

integrated to finely tune the activity level of PLD2 dependent on signaling 

requirements. 
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Ubiquitination 

A recent report demonstrated a previously uncharacterized post-

translational modification of PLD1, but not PLD2, important for modulating both 

protein localization and curbing lipase activity [208]. PLD1 is multi-

monoubiquitinated at the PH domain in a catalytic and palmitoylation-dependent 

manner. Catalytically-inactive point mutants are not ubiquitinated, and treatment 

with PLD-selective pharmacological inhibitors (chapter II) but not primary alcohol, 

disrupts PLD1 ubiquitination. Also, disruption of PLD1 palmitoylation impairs 

ubiquitination. Taken together, this suggests that properly localized and 

catalytically-competent PLD1 allows ubiquitination, and this modification is not a 

substrate-product feedback mechanism. The precise E3 ubiquitin ligase 

responsible for this modification is unknown, but following ubiquitination PLD1 is 

shuttled to the proteasome for degradation rather than the lysosome. Also, this 

modification translocates protein from endosomal membranes to an enlarged 

vesicle structure present in all cells transfected with stably ubiquitinated PLD. 

These stably-ubiquitinated constructs are not processed by de-ubiquitinating 

enzymes. As this modification results in changes in PLD1 localization and marks 

PLD1 for proteosomal degradation, ubiquitination of PLD1 is likely an important 

regulatory mechanism to change or curb lipase activity [208].  

 

Proteolysis 

Classic mammalian PLD isoforms PLD1 and PLD2 have been implicated 

in pro- and anti-apoptotic signaling mechanisms, and were recently reported to 
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be substrates for proteolytic caspase cleavage. Caspase cleavage of the PLD 

isoforms appears to divergently regulate these enzymes during apoptotic 

signaling. In vitro [209] and in vivo [174], [210] studies demonstrate PLD1 is 

cleaved in multiple locations by activated caspase 3, 7, and 8, while PLD2 is 

cleaved at several sites by caspase 3, and 8. During apoptosis initiation, caspase 

8 cleaves pro-caspase 3 to generate active caspase 3. Caspase 3 cleaves 

amyloid β4a precursor protein, making this enzyme the dominant caspase in 

neuronal cell death mechanisms in Alzheimer‟s disease. Caspase-3 cleavage of 

PLD2 occurs at two or three sites near the N-terminus (aa13-28, a region N-

terminal to the PX domain) and does not result in significant changes to 

molecular weight, catalytic activity, localization, or apoptotic signaling.[174],[209] 

PLD2 renders an anti-apoptotic response, likely via induction of anti-apoptotic 

protein expression (Bcl-2 and Bcl-XI) and down-regulation of pro-apoptotic 

proteins (Egr-1 and PTEN). Inhibition or RNAi knockdown of PLD2 increases 

apoptotic signaling. 

In contrast, caspase proteolysis appears to be a significant regulatory 

mechanism for PLD1. In vitro, PLD1 is cleaved by caspase 3 in three positions 

(Asp41, Asp545, Asp581) [209]. In vivo, position 545 is the dominant cleavage 

site [174]. This residue lies in the PLD1 loop region that separates the two 

catalytic HKD motifs. Cleavage at this position produces a 56 kDa C-terminal 

fragment (CF-PLD1) which localizes to the nucleus via an exposed nuclear 

localization sequence, and a 60 kDa N-terminal fragment (NF-PLD1) that 

remains in the cytosol [174]. Full length PLD1 activity is protective against 
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apoptosis by suppressing p53 signaling. NF-PLD1 acts as a dominant negative 

for full length PLD1 (via hydrophobic interactions), inhibiting PLD1 activity, and 

resulting in de-repression of p53 [210]. Therefore, caspase cleavage of PLD1 

decreases in vivo activity, and induces p53-dependent apoptotic signaling. Steed 

et al. identified a PLD1 splice variant, PLD1c, that expresses a PLD1 enzyme 

with an early stop codon at residue 513 [173]. This protein is expressed in human 

brain, and may function in a pro-apoptotic mechanism, similar to NF-PLD1. 

Further study of this truncated splice-variant and NF-PLD1 induced signaling is 

necessary. Jang et al. demonstrated PLD1 proteolytic processing is 

pathologically relevant [174]. Analysis of post-mortem brain tissue from 

Alzheimers patients demonstrated increased active caspase 3 and evidence for 

caspase-proteolyzed PLD1 fragments, compared to age-matched brain tissue.   

 

Lipid cofactors 

PLD localization and subsequent post-translational modification have a 

significant impact on lipase activity. In cells, lipid cofactors are thought to mediate 

subcellular localization through directly interacting with lipid binding domains of 

the enzyme as deletion or mutation of these domains changes subcellular 

localization. In some cases the mutant constructs change the ability of the 

enzyme to interact with membranes basally or change translocation of the 

enzyme to membranes upon cell stimulation. Recruitment of PLD upon PIP2, or 

PIP3 production allows upstream lipid kinases or phosphatases to mediate PLD 

lipase activity. It has been observed that when PLD fails to localize properly or be 
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recruited to the proper membrane substrate upon stimulation total lipase activity 

is impaired. 

In vitro, phospholipids directly and indirectly modulate lipase activity. Many 

of the observed in vitro effects of specific lipid species must be rigorously 

confirmed, because the properties of the lipid substrate presentation can 

modulate PLD activity in ways that may or may not be physiologically relevant. 

For example, inclusion of high concentrations of negatively charged phospholipid 

may impair the ability of the enzyme to interact with the lipid interface or with 

substrate head group. Also, lipase activity on lysolipid substrates is significantly 

enhanced when presented in a lyso-lipid micelle when compared to more 

complex presentations, such as lyso-lipids in a diacyl phospholipid liposome 

(unpublished observations Scott and Brown). As previously discussed, this is 

likely due to headgroup access, rather than a direct allosteric modulatory affect 

on the enzyme. 

The presence of some lipid species can directly affect protein-interface 

binding (Ks) by directly binding the enzyme. Separate from the active site, three 

other allosteric lipid binding sites have been described for PLD1 and PLD2, 

including the PX, PH, and polybasic PI(4,5)P2 lipid binding motif. The PX domain 

binds polyphosphoinositides [PI(3,4,5)P3>>PI(3)P>PI(5)P>other PIs] with high 

specificity at the putative primary binding pocket composed of conserved lysine 

and arginine residues [176]. At a secondary site, likely in the form of an exposed 

protein surface rather than a binding pocket including a conserved arginine 

(present in PLD1 and not PLD2), anionic lipids including PA and PS also bind. 
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However, in comparison to the other two lipid binding domains, the PLD PX 

domain binds lipids with poor affinity. This suggests the PX domain likely acts as 

a tertiary regulatory domain, to fine tune protein-lipid interactions initiated by 

another lipid binding site. 

The PH lipid binding domain binds PI(3,4)P2 and PI(4,5)P2 with specificity 

over other phosphoinositides [153], [211]. However, as discussed, this domain is 

lipid modified, and many of the observed effects of deletion of this domain may 

be due to the absence of this palmitoylation. In vitro, the entire PH domain is not 

requisite for PLD activity, although deletion of a conserved alpha-helix at the C-

terminus of the PH domain does impair lipase activity towards substrate present 

at an interface. 

Finally, the polybasic PI(4,5)P2 binding motif binds PI(4,5)P2 with high 

specificity and affinity [149]. Lipid binding at this motif facilitates interfacial lipid 

interaction and enhances catalytic activity. Human PLD1 bulk lipid binding 

constant (Ks = 10 μM) for PE:PC:PI(4,5)P2 lipid vesicles (87:8:5 mol %) is more 

than 7-fold higher than bulk lipid binding constant for PE:PC vesicles 

(unpublished data Selvy and Brown). Optimal PI(4,5)P2 mol %, 5-8 %, in a 

phospholipid vesicle enhances stimulation by regulatory proteins including Arf 

GTPase [74] (pg.). Some reports of in vitro lipase activity can be measured for 

full length PLD in the absence of PI(4,5)P2 with the addition of molar 

concentrations of ammonium sulfate (optimal activity at 1-1.6 M) [212], [213].   

Other reports of modulatory phospholipids are scattered in early PLD 

literature, but have not been followed up on. An intriguing observation by 
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Nakayama et al. suggested that PE, including dioleoyl and plasmalogen-rich 

species but not dipalmitoyl-containing species, enhances PC hydrolytic activity of 

PLD isolated from bovine kidney [212]. Another report suggested that that PI, 

LPI, and LPS, but not PS, negatively impact PLD activity [214]. It is unknown 

whether these effects are direct or indirect and whether they were specific to the 

in vitro assay format.   

 

Regulatory proteins  

With increased ease of recombinant PLD expression and measurement of 

in vitro PLD activity, a growing number of proteins have been reported to 

modulate PLD activity. Some of these proteins have been shown to directly 

modulate mammalian PLD activity through a protein-protein interaction; those are 

described here, whereas others may indirectly regulate PLD and participate in 

PLD signaling pathways, these proteins are mentioned in Table 5. 

 

Small GTPases 

Small GTPases were the first proteins demonstrated to directly modulate 

PLD activity through allosterically binding PLD. These enzymes are 

conformationally-activated upon binding GTP in place of constitutively-bound 

GDP, sometimes with the aid of guanine exchange factors (GEF) proteins, in 

response to signal transduction. GTPase activating proteins (GAPs) functionally 

inactivate the GTPases through facilitating intrinsic GTP hydrolysis.  Subfamily 
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members of the Ras GTPase superfamily, including Arf [77], [215], and Rho 

family of GTPases [201], [216], [217] stimulate PLD activity in vitro. 

Arf GTPases, including Arf1 and Arf6, stimulate PLD activity [77]. These 

were the first proteins demonstrated to activate mammalian PLD in an in vitro 

reconstitution system. Early in vitro characterization of PLD1 and PLD2 

suggested that PLD1 alone was stimulated by Arf [171]. Subsequent studies 

have shown that PLD2, while not activated to the same extent, can be stimulated 

2-fold over the already high basal activity with GTPγS-activated Arf [172], [218]. 

Henage et al. demonstrated that Arf1 increases total maximal activity (kcat) in a 

concentration dependent manner. At 150 nM Arf1, PLD1 activity increased 4 to 

6-fold over basal levels [74]. Arf stimulation is strongly dependent on the 

PI(4,5)P2 mol %. This has lead some to speculate that Arf may indirectly activate 

PLD by rearranging the phospholipid head groups at the interface in a PI(4,5)P2 

dependent fashion [219]. This may be true, but we have recently demonstrated 

that Arf activates PLD in the absence of PI(4,5)P2 [220], [221] (unpublished data 

Selvy and Brown), suggesting possibly a second mechanism of activation for Arf. 

Intriguingly, synergistic stimulation of PLD1 activity is observed when Arf is 

combined with PKCα or Rho family GTPases [74]. This demonstrates that Arf 

acts in concert with other modulatory enzymes to titrate the PLD response, and 

this finding could be of immense consequence in vivo. Some groups have 

attempted to identify the precise PLD binding site for Arf, [222], but to this date 

the site has not been unambiguously determined. In vitro, Arf activates N-  
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Table 5.  Mammalian PLD regulatory proteins (table from [19]) 

CLASS ACTIVATOR PLD ISOFORM CONSEQUENCE 

small GTPase Arf PLD1, PLD2 activate (kcat) 
  

  RhoA PLD1 activate (Km) 
  

  Rac1 PLD1 activate (Km) 
  

  Rac2 PLD2 activate 
  

  Cdc42 PLD1 activate (Km) 
  

Kinase PKC PLD1 (PLD2) activate (kcat & Km) 
  

  Src PLD2 phosphorylate 
  

Other Gβγ   inhibit 
  

  Grb2 PLD2 activate 
  

  F-actin   activate 
  

  G-actin   inhibit 
  

  Amphyphysin II   inhibit 
  

  AP3/AP180   inhibit 
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terminally truncated PLD1 [74] and PLD2 [218], therefore the site likely exists 

somewhere in the catalytic domain. Arf is myristoylated at its amino-terminus. 

Arf-activation of PLD does not require this lipid modification, but stimulation is 

enhanced with N-myristolated Arf. In fact, the N-terminus Arf is the specific 

region implicated in PLD interactions [223]. 

The Rho family of GTPases, including RhoA, Cdc42, Rac1 and Rac2 

directly activate mammalian PLD. Rho, Cdc42, and Rac1 are binding activators 

of PLD1, and stimulate substrate binding affinity (1/Km) [74]. Arf and Rho family 

GTPases synergize to significantly increase PLD1 activity beyond an additive 

response. PLD1 does not have a putative CRIB (Cdc42 and Rac-interactive 

binding) motif, but using truncation deletions, the Rho family-PLD1 binding site 

was mapped to a region in conserved domain IV in the carboxy-terminus of PLD1 

[224]. In a GTP-dependent mechanism, the Rho family GTPases bind PLD 

through the switch I region [225]. However, binding occurs independently from 

activation. Geranylgeranylation of Cdc42 is not required for PLD binding, but is 

required for PLD activation [225]. Cdc42 activation of PLD1 is mediated through 

the Rho-insert region, an alpha helix conserved in all Rho GTPases. However, 

this insert is not necessary for RhoA or Rac activation of PLD1 [226]. Rho, 

Cdc42, and Rac1 selectively activate PLD1. However, a recent report suggests 

that Rac2 may activate PLD2 via previously uncharacterized mechanism [227]. 

This report identifies two poorly conserved CRIB motifs (CRIB1 aa 255-270, and 

CRIB2 aa 306-326) in or near the PH domain of PLD2. Rac2 co-
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immunoprecipitates with PLD2, and mutation within these regions disrupts this 

interaction [227]. 

Two other Ras GTPases have been proposed to directly modulate PLD. 

RalA, a Ras-like GTPase implicated in cancer cell transformation, co-

immunoprecipitated with PLD1 but not PLD2 [228]. In another study, 

identification of the RalA binding site on PLD1 was attempted [222]. This study 

suggested that RalA binds at a site independent of Arf, allowing Arf and RalA to 

synergistically activate PLD1 [222]. In vitro, RalA enhanced PLD1 activity in a 

GTP-dependent mechanism [222], [228]. Rheb, a member of the Ras GTPase 

family, has also been reported to directly activate PLD1 in vitro [229].   

 

Kinases  

As mentioned above, PLD is phosphorylated post-translationally as a 

regulatory mechanism.  Therefore, it is not surprising that kinases directly interact 

with PLD to regulate activity. Protein kinase C (PKC) isoforms are the most well 

studied kinases that directly interact with PLD. Classic PKC isoforms α, β, and γ 

are stimulated by calcium and DAG, and are therefore responsive to PMA-

stimulation. In cells, these classic isoforms stimulate PLD1 and PLD2 activity 

downstream of PLC activation. PKCα phosphorylates PLD1 [202] and PLD2 

[230] at serine and threonine residues, but activation is not phosphorylation-

dependent. In timecourse studies, PMA-induced PLD activity occurs immediately, 

and phosphorylation only occurs later with a concomitant decrease in lipase 

activity, suggesting phosphorylation decreases PLD activity [203], [230]. The 
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PKC binding domain was mapped to the amino-terminus of PLD1 [231], 

however, PKC is able to activate N-terminally truncated PLD1 in a 

phosphorylation-independent mechanism [74]. PKC modulates PLD activity in a 

bimodal fashion. PKC enhances kcat as well as substrate binding (Km), and 

therefore synergistically activates PLD1 in combination with catalytic activator Arf 

GTPase [74]. However, amino-terminally truncated PLD1 constructs only show 

enhanced Km in response to PKC. 

 

Other regulatory proteins 

Numerous proteins have been reported to modulate PLD activity in 

response to signaling pathway activation, and a number of them have been 

demonstrated to do so directly. PED/PEA-15 (phosphoprotein enriched in 

diabetes/phosphoprotein enriched in astrocytes) is overexpressed in many 

tissues in type II diabetes patients. This protein directly binds CR IV of PLD and 

enhances PKC-activation of PLD [232]. This interaction impairs insulin regulation 

of the glucose transporter and insulin secretion, whereas competing for the 

PED/PEA-15 protein interaction with expression of the PLD1 CRIV domain 

restores insulin secretion [232]. This interaction is suggested by the authors to be 

a novel therapeutic target for type II diabetes. Grb2 is another protein that 

positively regulates PLD activity. Grb2 serves as a scaffolding protein to recruit 

signaling proteins including Sos, the Ras GEF, to the plasma membrane. The 

Grb2 SH2 domain binds PLD2 through phospho-tyrosine residues [204]. The 
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SH3 domains that flank the SH2 domain have been suggested to stimulate PLD 

activity. 

Direct protein interactions that curb lipase activity have also been 

described. The heterotrimeric Gβγ subunits, dissociated from the Gα subunit 

upon GPCR stimulation, directly interact with the catalytic domain of PLD1 and 

PLD2 to inhibit activity [233]. PLD has been implicated in synaptic vesicle 

trafficking. Two synaptic vesicle-associated proteins, amphiphysin I and AP3 

(also called AP180) directly bind PLD and inhibit lipase activity. Amphiphysin I 

heterodimerizes with Amphiphysin II in order to associate with clathrin coated 

vesicles. The N-terminus of Amphiphysin I directly binds PLD1 and PLD2 with 

affinities of roughly 15 nM, inhibiting catalytic activity. Assembly protein 3 (AP3, 

also called AP180) binds clathrin-coated vesicles and the C-terminus of PLD1 to 

inhibit lipase activity. 

Cytoskeletal components directly modulate PLD activity. Monomeric G 

actin inhibits PLD activity. Conversely, PLD activity triggers actin polymerization, 

and polymerized F-actin stimulates PLD activity. This divergent signaling 

mechanism may enhance cytoskeletal reorganization in localized subdomains of 

the cell. PLD2 has also been shown to directly bind microtubules, again 

suggesting that these interactions sequester the protein as a means of ensuring 

phospholipase activity is limited to the correct locations within the cell. Other 

proteins originally thought to directly interact with PLD and inhibit activity include 

α-synuclein, which has subsequently been shown to not inhibit PLD activity in 

vitro or in cells overexpressing this protein [234].  
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Recombinant protein expression and purification  

A limiting factor in studying the biochemical and structural character of 

mammalian PLD enzymes is that, to date, the enzymes have proven 

tremendously difficult to express and purify recombinantly. In contrast to plant 

and fungal enzymes, which are readily expressed and isolated from bacterial 

expression systems, mammalian PLD enzymes have not, to date, been 

expressed as catalytically active proteins in prokaryotic expression systems. 

Even plant and yeast enzymes with highly conserved regulatory and catalytic 

domains, such as PLDζ and Spo14, are catalytically active when expressed and 

purified from bacteria, whereas catalytically competent mammalian PLD 

enzymes have not been expressed or isolated from bacteria [235]. In Escherichia 

coli, mammalian PLD protein is highly proteolyzed and localizes to inclusion 

bodies, where insoluble, unfolded, aggregate protein is collected. Attempts to 

purify and refold mammalian PLD from inclusion bodies have not been reported.  

However, there are multiple instances of recombinant mammalian PLD 

expression in eukaryotic systems, including insect cells, Spodoptera frugiperda  

[78], [111], yeast, and Schizosaccharomyces pombe [236]. Catalytically active 

mammalian PLD1 and PLD2 can be expressed and partially purified from these 

eukaryotic recombinant systems. Since post-translational modifications, including 

lipid modification and phosphorylation, are not necessary for catalysis and 

refolding from inclusion bodies has never been successful, this suggests 

eukaryotic protein chaperones may be integral for proper folding of mammalian 

PLD enzymes. Intriguing studies from John Exton‟s group support this by 
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demonstrating that the amino and carboxy terminal domains can be expressed 

on separate plasmids and co-purified as catalytically active complex [189]. 

However, mixing of amino and carboxy termini that were expressed and purified 

in isolation does not yield catalytically active protein. 

When expressed in insect cells (monolayer cultures of Sf21 or Sf9 cells), 

the bulk of mammalian PLD1 protein is soluble or loosely membrane-associate 

and is easily extracted with mid ionic strength buffers and can be purified in the 

absence of detergent. Mammalian PLD2, however, is mostly membrane-

associated, and efficient protein extraction requires high salt and detergent. 

Throughout purification, this enzyme is not stable without detergent, which can 

be used at concentrations below the critical micelle concentration (cmc). 

Purification of mammalian PLD1 and PLD2 using classic chromatographic 

methods, such as ion exchange, heparin, and size-exclusion, yields partially pure 

fractions. Purity is further enhanced when mammalian PLD is expressed with 

affinity-tags, the best results are obtained through the use of multiple tandem 

affinity purification steps coupled with classic chromatographic methods. 

However, placement of the affinity tag at the amino-terminus is critical.  

Modification to the carboxy terminus significantly decreases catalytic activity, as 

would be expected based on PLD2 splice variants with truncated carboxy termini 

that yield proteins with 8-12 % of the activity of full length PLD2 enzyme [173]. 

Despite the increased purity afforded by tandem affinity tags, mammalian 

PLD, particularly PLD1, is poorly expressed in insect cells. Low expression levels 

may be due to the fact that expression of catalytically active PLD enzymes is 
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deleterious to insect cell viability. Supporting this is evidence that expression is 

significantly increased for catalytically-inactive mutants or amino-terminally 

truncated constructs that do not exhibit proper localization or catalytic activity in 

cells. Recent studies demonstrate that truncation of the amino terminus of PLD1 

coupled with use of a large affinity tag (bacterial maltose binding protein, 

commonly used to enhance solubility of recombinant proteins) significantly 

increase expression and enable one-step affinity purification of homogenous PLD 

[74], [78].   

 

Signaling pathways 

More than 15 years after the cloning of the first mammalian PLD, this 

enzyme, its activity, and products continue to be implicated in a wide range of 

signaling pathways and cellular functions. These pathways include receptor-

mediated responses, growth and survival pathways, and vesicular trafficking. 

PLD-mediated cytoskeletal reorganization in response to chemoattractants, and 

pathogenic infection are critical immunologic functions. Only recently have potent 

and isoenzyme selective small molecule inhibitors of mammalian PLD isoforms 

become available. Many studies continue to utilize primary alcohols to implicate 

PLD in different signaling pathways. In the presence of low concentrations (<3 %) 

of primary alcohol, mammalian PLD will perform transphosphatidylation and 

generate a metabolically-stable phosphatidylalcohol instead of phosphatidic acid. 

Discrepancies are now emerging between functions of PLD previously reported 

using alcohols, and those demonstrated using RNAi knockdown, small molecule 
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inhibitors, or those observed in knockout animals [237]. Signaling roles for PLD 

mentioned here include those determined using primary alcohols as well as 

knockdown or pharmacological inhibition. However, further characterization of 

PLD activity using these newer methods is necessary to clarify and validate 

previously-defined roles of mammalian PLD. 

 

Receptor-mediated signaling 

Extracellular stimuli trigger intracellular responses via cell receptors 

present at the plasma membrane. These include GPCRs, receptor tyrosine 

kinases (RTKs), and integrins, all of which mediate signaling through PLD 

activation. The specific mechanisms for receptor-mediated PLD activation differ 

between cell types, but the canonical pathways are described here. 

 

GPCR signaling 

G protein-coupled receptors (GPCR) trigger dissociation of Gα and Gβγ 

heterotrimeric G proteins upon agonist stimulation. Uncoupled heterotrimer 

subunits elicit signaling cascades through downstream effector proteins. Many of 

these pathways elicit functional responses through signaling to PLD in multiple 

ways (figure 8). In the canonical pathway, upon agonist stimulation, GTP-Gαq 

stimulates PLCβ hydrolysis of PI(4,5)P2, producing DAG and IP3 (see excellent 

reviews on PLC subtype activation [238], for review on Gq family [239], and [240]. 

IP3 triggers calcium release from the ER, and this coupled with DAG 

synergistically activates PKCα, which in turn bimodally activates PLD. Litosch 
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and colleagues recently showed that this PLCβ signaling is potentiated by PLD-

produced PA [241], [242]. Dissociated Gβγ also activates PLCβ, to indirectly 

activate PLD in a PKC-dependent manner. Additionally, Preninger et al. 

demonstrated that the Gβγ subunit of the heterotrimer can directly inhibit PLD 

activity via interactions through the PLD catalytic domain [233]. Gβγ interaction 

disrupts both basal and Arf-stimulated activity [233], [243]. As illustrated in Figure 

8, levels of PLD activation are intricately titrated in response to specific agonist-

mediated or intracellular circumstances.   

The G12/13 class of heterotrimers activates PLD in a small GTPase 

dependent manner. Gα12 activates RhoA via Pyk2, a focal adhesion tyrosine 

kinase, which directly stimulates PLD1 activity. As shown in Figure 8C, Gα13 

activates the γ subtype of PI3K to generate PIP3. Upon PIP3 binding, ARNO and 

Rho GEF trigger GDP for GTP exchange on Arf and RhoA, respectively [244]. 

These activated small GTPases then directly activate PLD. Gq and G12 also 

stimulate Src, which tyrosine-phosphorylates both PLD at the PH domain, and 

the receptor tyrosine kinase, EGFR (Figure 9). PLD phosphorylation does not 

affect cellular phospholipase activity, but the direct interaction does enhance Src 

kinase activity [200]. EGFR phosphorylation results in homodimerization, 

autophosphorylation, and GPCR-EGFR transactivation in the absence of EGFR 

agonist [245], [246]. 

Roles for PLD in pathogenic response have been reported, many of which 

are GPCR-mediated and result in changes in reactive oxygen species formation, 

vesicular trafficking or transcription. In leukocytes, PLD1 expression is induced in 



 

92 
 

response to pathogenic and pro-inflammatory stimuli through activation of 

membrane receptors including the Gi-coupled f-Met-Leu-Phe receptor (fMLPR). 

PLD activity in macrophages and neutrophils is implicated in respiratory burst 

[247], engulfment of bacteria, and reorganization of cytoskeletal elements. 

Recently, PLD was shown to be involved in HIV replication via CCR5, an MIP-1 

chemokine receptor that interacts with an HIV glycoprotein [248], In response to 

CCR5 agonist stimulation, PLD is activated in an ERK1/2-dependent manner to 

activate transcription factors, including NFĸB, that facilitate replication of the 

latent HIV genome integrated into the host genome.    

PLD is a major source of PA generated by cell surface receptor-mediated 

signaling pathways. Its primary substrate in mammalian cells is PC, but 

consistent with its catalytic mechanism it can also utilize other amine containing 

glycerophospholipids as substrates (e.g., PE and PS). The molecular species of 

PA generated by PLD are predominantly mono- and di-unsaturated species, 

particularly 16:0/18:1 containing fatty acyl species. Work from Michael 

Wakelam‟s laboratory provided an insightful comparison of DAG and PA species 

generated from PLC and PLD sources, respectively [249], [250]. The authors 

reported differences in cellular targets modulated by these distinct signaling 

pathways, such as the lack of PKC activation by molecular species of DAGs 

generated downstream of PLD. Activated in parallel by many of the same cell 

surface receptors, PLC isoenzymes generate two second messengers from the 

hydrolysis of PI(4,5)P2 , namely DAG and IP3. The DAG generated via the PLC  
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Figure 8. G protein coupled receptor activation of PLD through Gαq, and protein kinase C 
(panel A), Gα12 and RhoA (panel B), and Gα13 and Arf (figure from [19]). 
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pathway is typically polyunsaturated (e.g., 38:4 DAG) reflecting the major species 

of the PIP2 substrate available in mammalian cells [251]. The polyunsaturated 

DAG generated from PLC provides a second and distinct signaling source of 

cellular PA via the transfer of a phosphate from ATP to DAG through the action 

of a DAG kinase. An excellent review of DAG kinase isoenyzmes types and 

regulation was recently published [252].  Different isoenzymes of DAG kinases 

have distinct substrate specificities. Recent advances in electrospray ionization 

mass spectrometry have identified a surprising diversity of DAG molecular 

species that can now be resolved and quantitated using a linear regression 

algorithm [253]. This type of analysis has revealed that DAK kinase isoenzymes 

have extremely diverse functionalities and substrate preferences leading to 

differences in the array and relative concentrations of acyl species of DAGs in 

cells following perturbations, such as overexpression or genetic knockouts [254], 

[255]. For example, the DAG kinase epsilon shows the ability to select acyl 

chains on both the sn-1 and sn-2 positions of the glycerol backbone of the DAG 

substrate as well as on its product, PA, which modulates a feedback inhibition of 

this isoenzyme [256]. This PLC-DAG kinase pathway provides a distinct phase of 

PA that appears later in the temporal sequence of receptor-mediated PA 

generation. By contrast the PA molecular species generated by PLD appear 

rapidly after receptor activation, but are also rapidly metabolized into DAG via the 

actions of lipid phosphatases. The ultimate metabolic fates and functional 

distinctions of these two sources of signaling PA species are not as yet fully 

defined, but recent development of new types of lipid probes that utilize alkyne-
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cobalt chemistry [81] provides opportunities to track and identify lipid metabolites 

even after multiple biotransformations. This will facilitate identification of distant 

metabolites and allow the functional consequences of different sources of PA 

production to be unambiguously determined.  

 

Canonical RTK signaling via EGFR 

The EGFR, is highly conserved in eukaryotic organisms, and is a 

representative member of the ERBb family of growth factor receptors with 

intrinsic tyrosine kinase activity. EGFR activates downstream signaling pathways 

including those responsible for growth, survival, and cytoskeletal reorganization. 

Aberrant EGFR signaling has been implicated in tumorigenesis. 

Upon GPCR transactivation or binding epidermal growth factor (EGF), 

EGFR homodimerizes and tyrosine phosphorylates the adjacent receptor in the 

cytosolic region to generate an active receptor complex (activation mechanism 

reviewed [257]). These phosphotyrosine residues serve as docking sites for 

downstream effector proteins, including PLCγ1, Grb2, and PI3K. Even prior to 

cloning the mammalian PLD isoforms, PLD activity was shown to be activated by 

EGFR stimulation. Critical characterization of the multiple, and sometimes 

overlapping, mechanisms in which EGFR signaling activates PLD activity has 

been performed. For simplification, these are illustrated and described in 

separate schematics. 

PLD2 can be localized to EGFR via its PX domain. In Figure 9A, the PX 

domain of PLD2 binds the SH3 domain of PLCγ1, which directly localizes to the 
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EGFR. PLCγ1 hydrolyzes PI(4,5)P2 to generate DAG ad IP3. Similar to GPCR-

activation of PLCβ, PLC-derived products induce PKCα activation of PLD.   

Changes in actin polymerization can occur in response to GPCR or RTK 

signaling. PLD has been shown to directly bind actin, resulting in mutual 

regulatory interactions.  

In a separate mechanism of PLD activation PLD2 directly interacts with 

the EGFR. At the receptor, phosphotyrosine residues in the PLD2 PH domain 

bind the Grb2 SH2 domain [258]. This interaction enhances phospholipase 

activity, via Grb2 SH3 interaction, to generate PA. Recently Zhao et al., 

demonstrated that the Ras GEF, Sos localizes the PLD2-produced PA, where it 

is activated by Grb2 [259]. Subsequent Ras activation elicits a host of signaling 

cascades. Ras activates PI3K, which generates PIP3 and induces Akt 

translocation and activation. Ral GEF is also a Ras effector protein, which results 

in GTP-Ral activation of PLD [228], [260]. Finally, Ras activates Raf, which 

localizes to the plasma membrane via PLD-produced PA interactions. Ras 

signaling through Raf triggers activation of the MAPK pathway and via NFĸB, 

subsequently upregulates transcription of genes involved in survival, proliferation, 

and differentiation.  

Somewhat more controversial is the role of PLD in EGFR-stimulated 

mTOR signaling (reviewed [261], [262]) illustrated in Figure 9C. Several reports 

suggest PLD generated PA competes for rapamycin and FKBP binding in the 

FRB domain of mTOR [5], [263]. These studies were performed using primary 

alcohols to show mTORC1 kinase activity was significantly decreased upon  
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Figure 9. Activation of PLD through epidermal growth factor receptor (EGFR), a 
canonical receptor tyrosine kinase.  Activated EGFR and PLCγ regulate PLD (panel A); 
EGFR activation of Grb2 and Sos induces PLD activation (panel B); and EGFR activation of 
PI3K regulates PLD and mTOR signaling (panel C) (figure from [19]). 
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diverting PLD activity to generation of transphosphatidylation product. A follow up 

study used NMR to map the PA binding site within the FRB domain [264]. The 

small GTPase Rheb was recently suggested to stimulate PLD1 as a feed forward 

mechanism of mTORC1 activation [229]. Again these studies relied heavily on 

the use of primary alcohols, RNAi knockdowns, and a somewhat incomplete 

biochemical analysis. Subsequent use of PLD-selective small molecule inhibitors 

(chapter II) and genetic knockouts may illuminate that the role of PLD in mTOR 

regulation is considerably more complex with both feedforward and feedback 

modulation. 

 

Integrin signaling 

Integrins support cell adhesion as well as growth and survival by 

functioning as both an anchor to the extracellular matrix (ECM) as well as a 

signaling receptor. Although integrins do not possess intrinsic enzymatic activity, 

upon ligand binding, these receptors elicit similar signaling pathways to those of 

growth factor receptors by heterodimerizing and binding various effector proteins 

at their cytosolic face. Integrins heterodimers can signal independently or 

complexed with growth factor receptors to trigger chemotaxis, cell differentiation, 

proliferation, and survival (reviewed [265]). As in EGFR signaling pathways, PLD 

is activated downstream of integrin receptors via multiple mechanisms. 

Focal adhesion kinase (FAK) directly binds the integrin receptor to induce 

Ras-mediated signaling and MAPK activation. Ras activates PI3K to generate 
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PIP3.  In response, the Rho GTPase, Rac, undergoes guanine nucleotide 

exchange thereby triggering PLD activation.[266] Canonically, PLD1 is directly 

stimulated by C-terminal interaction with Rac1. However, Pang et al. have shown 

that Rac2 directly interacts with PLD2 via CRIB domains in the PLD N-terminal 

regulatory domain [227]. In vitro the C-terminus of Rac selectively binds PA. In 

cells, PLD-produced PA triggers Rac translocation to membrane ruffles and 

lamellipodia [266]. Treatment with n-butanol results in cytosolic localization of 

GTP-bound Rac, supporting the role of PLD in Rac translocation. At regions of 

membrane protrusion and lamellipodiae formation, Rac facilitates cytoskeletal 

reorganization. PLD colocalizes at these membrane microdomains and induces 

actin polymerization. 

Integrin signaling also mediates Arf activation of PLD. Integrin effector 

proteins  elicit Arf GAP, ASAP, localization to the leading edge of migrating cells 

to attenuate Arf signaling (reviewed [267]) and perturb Arf-activation of PLD 

(reviewed [268]). This bimodal mechanism of small GTPase regulation titrates 

levels of phospholipase activity during integrin-mediated membrane ruffling, cell 

migration, and invasion.  

Similar to the role of PLD in Dictyostelium migration, mammalian PLD 

isoforms have been implicated in chemotaxis. These enzymes, stimulated by 

Rho GTPases downstream of integrin, chemokine, and growth factor receptors, 

trigger cytoskeletal rearrangement and membrane ruffling. Primary butanol and 

PLD-selective inhibitors disrupt these pathways, suggesting PA formation as well 

as protein-protein interactions participate in these signaling responses.   
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As discussed above, PLD-produced PA has been suggested to directly 

activate mTOR and facilitate mTOR complex formation and signaling, including 

mTORC2 and subsequent Akt phosphorylation. Akt and mTORC2 signaling not 

only support pro-survival signaling via MDM2 stabilization, and BAD and Bcl-XI 

activation, but also induce cytoskeletal reorganization. mTORC2 induces actin 

polymerization and triggers myosin II assembly and cell migration via PAK and 

myosin phosphorylation. PLD activity also induces secretion of proteolytic matrix 

metalloproteases that degrade surrounding ECM to facilitate cellular movement. 

 

 Vesicular trafficking 

Mammalian PLD enzymes differentially localize to cellular membranes to 

directly and indirectly induce changes in membrane curvature and fusion that 

facilitate endocytosis/exocytosis and vesicular trafficking. PLD1 primarily 

localizes to intracellular membranes including TGN and endosomal membranes 

and has constitutively low basal activity. Upon cell stimulation, PLD1 translocates 

to plasma membrane and is activate. PLD2 is generally constitutively localized to 

the plasma membrane and has high basal activity.  

Arf GTPases activate the otherwise low basal activity of PLD1. Arf1 

stimulates Golgi-localized PLD [269], while Arf6 stimulates PLD1 at the plasma 

membrane [270]. In an independent mechanism, Arf present at either membrane 

cooperates with Arf-stimulated PA to facilitate vesicles formation [271], [272]. In 

contrast to the Sec14 bypass mechanism in yeast, PA accumulation, rather than 

DAG, facilitates vesicle budding. This may be due to several PA-related 
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mechanisms. PA is a cone shaped lipid, and induces changes in membrane 

curvature. Arf and PA also trigger recruitment of coatomer proteins, including 

COPI [273], [274]. PA activates PI4P5K, which generates PI(4,5)P2 and induces 

translocation of coatomer proteins and proteins involved in vesicle 

budding,including dynamin (a GTPase involved in endocytosis and membrane 

scission) and AP180 (a clathrin assembly protein) (Figure 10). Following 

recruitment, AP180 directly inhibits PLD activity [275], [276]. Recently, PLD was 

also reported to directly interact with dynamin. This interaction occurred in a 

GTP-dependent manner, and it was suggested that the PX domain of PLD2 

might serve as a GAP for dynamin [277]. 

PLD and PA-dependent mechanisms function in vesicle formation to 

facilitate receptor internalization and recycling (Figure 10), SNARE-mediated 

synaptic vesicle fusion (similar to that observed in Spo14-mediated prospore 

membrane formation), and exocytic mechanisms including respiratory burst [278] 

and degranulation [279]. 

 

PLD inhibitors 

A large body of knowledge of the role of PLD in signaling pathways has 

been determined using small molecules as tools.  A wide range of chemically 

diverse small molecules have been reported to be PLD inhibitors. In the 1960‟s 

short-chain primary alcohols (e.g. n-butanol) were identified as compounds that 

could modulate PLD product formation [61], whereas secondary and tertiary 

alcohols do not. Primary alcohols function as a preferred nucleophile to water in  
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Figure 10. The role of PLD in endocytosis and receptor internalization  (figure from [19]). 
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the second phase of the reaction mechanism (figure 5), resulting in formation of 

the transphosphatidylation product phosphatidylalcohol.  Therefore these 

compounds do not inhibit PLD activity, a common misnomer in the literature.  

Instead, PA product formation is simply diverted to a more metabolically stable 

transphosphatidylation product.  These characteristics make primary alcohols an 

attractive tool in cell signaling studies.  As such it has historically been the most 

commonly utilized small molecule for studying PLD signaling.  However, recent 

studies have suggested that primary alcohols may not effectively divert all 

phosphatidic acid formation, and that phosphatdidylalcohols such as 

phosphatidylbutanol may not be as physiologically inert as once predicted [269].  

Also, some of the signaling capacities attributed to PLD through studies using 

alcohols do not hold true when RNAi and small molecule inhibitors are employed 

[237].  This suggests primary alcohols may have an off target effect on certain 

signaling pathways, as has been demonstrated in plants.   The need to validate 

the role of PLD in signaling pathways and evidence that PLD may serve as a 

novel therapeutic target has been the impetus for the recent development of 

small molecule inhibitors for mammalian PLD (Chapter II).  

 

Indirect PLD inhibitors 

Historically, two classes of PLD inhibitors have been described- those that 

act indirectly or directly on the enzyme. Some groups have identified compounds 

that indirectly inhibit PLD activity.  These compounds, highlighted in Figure 11  
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Figure 11. Reported indirect PLD inhibitors 1-10. 

 

 

 

 

 

 

 



 

105 
 

include natural compounds such as resveratrol(1), honokiol (2), and triptolide. 

Members of this class of compounds inhibit PLD activity in cells, but have not 

been demonstrated to inhibit PLD activity in the biochemical liposome 

reconstitution assay. Resveratrol, isolated from the skin of red grapes, yields an 

anti-inflammatory effect by indirectly inhibiting sphingosine kinase and PLD 

translocation and activity [280].  Honokiol, the natural anti-microbial compound 

derived from seeds of magnolia, inhibits Ras activation and thereby blocks Ras-

dependent PLD acivity [281].  The natural anti-inflammatory compound, triptolide 

suppresses PLD1 and PLD2 protein expression by blocking NFĸB activation 

[282]. 

 

Direct PLD inhibitors 

Compounds that directly inhibit PLD activity, as demonstrated using 

purified recombinant protein in the biochemical liposome reconstitution assay, 

have also been identified (Figure 12) but many are not selective to mammalian 

PLD and hence are poor tools for studying cellular and in vivo functions of the 

enzyme.  Such compounds include presqualene diphosphate (17) which was 

demonstrated to inhibit both mammalian PLD1b and scPLD (a non-HKD enzyme) 

in the biochemical reconstitution assay, but the mechanism was not determined 

[283].  Certain compounds in the selective estrogen receptor modulator (SERM) 

class (e.g. raloxifene (19) and 4-OH tamoxifen (20), further detailed in chapter IV) 

directly inhibit mammalian PLD isoforms [284].  Catalytic site inhibitors were 

identified from crystal structure characterization of bacterial PLD enzymes, and 
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were later validated for mammalian PLD (Henage, Selvy, and Brown, 

unpublished data). These compounds include the phosphate mimetics tungstate 

(12) and vanadate (13), which are thought to compete for phospholipid 

headgroup binding at the orthosteric site, but there is some evidence that these 

compounds may bind at a second allosteric site as these compounds bind with a 

two-site binding model, disrupt interfacial binding, and displace a select class of 

phospholipids that co-purify with recombinant PLD (Chapter IV). 

More recent reports of direct PLD inhibitors have centered around a class 

of compounds based on the chemical structure of the anti-psychotic halopemide. 

From this class, novel isoform-selective inhibitors have been identified (referred 

to here as VU-series compounds) and structure-activity relationship (SAR) 

rigoursly characterized (Chapter II). Subsequent studies have characterized the 

molecular mechanism of action for this class of compounds and demonstrate 

their specificity towards mammalian PLD (Chapter III). The VU-series 

compounds are significantly more potent than previously reported PLD inhibitors, 

have desireable pharmacokinetics, are brain penetrant, and do not present 

toxicity issues when tested in humans, which was performed in the early 1980‟s 

as a function of screening this class of compounds as an experimental 

antipsychotic.  These factors suggest the VU series compounds might be a good 

starting point for developing inhibitors to screen for systemic implications of PLD 

inhibition in concordance with disease studies such as those for cancer, 

Alzheimer‟s, and thrombosis. 
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Figure 12. Reported direct PLD inhibitors 11-20. 
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PLD as a potential therapeutic target 

Several groups have used a combination of RNAi and the newly available 

PLD1-/- or PLD2-/- knockout mice (for which no phenotype is observed in healthy 

mice) to validate a role for PLD in several disease states. Aberrant PLD activity 

has been implicated in several types of cancer, such as colon, breast, and 

glioma. Its role in oncogenesis is likely due to its ability to increase growth and 

proliferation, and to facilitate cancer cell invasion and metastases.  Studies by 

Buchanan et al. demonstrated that overexpression of dominant negative PLD 

can impede the ability of rat fibroblasts transfected with H-RasV12 to form tumors 

in soft agar or nude mice [285]. Exogenous supplementation of PLD product PA 

rescues the tumor-forming phenotype. 

Dysregulated PLD activity has recently been validated as key player in 

Alzheimer‟s disease [7]. Oligomeric amyloid β increases PLD2 activity in cultures 

of neuronal cells. In the whole organism, increased PLD activity is observed in 

mice with a rodent model disease for Alzheimer‟s with a severe memory deficit 

phenotype. However, PLD2-/- mice with the same rodent model disease and the 

same amyloid β plaque load as a wildtype animals with the disease, do not 

present a memory deficit phenotype [286]. This suggests PLD2 might be a 

worthy therapeutic target for limiting the decreased memory phenotype in 

Alzheimer‟s patients. 

PLD was also recently implicated in integrin-mediated thrombosis.  Elvers, 

et al. demonstrated that PLD1-/- mice are protected from thrombotic formation 
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and ischemic brain injury without increasing bleeding time [237].  Chemically or 

mechanically induced arterial occlusion was significantly decreased in PLD1-/- 

mice.  This provocative data suggests targeting PLD1 may protect against 

thrombotic disease without the compensatory increased risk of bleeding common 

for current therapies (e.g. aspirin and warfarin). 
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Chapter II 

 

IDENTIFICATION AND DEVELOPMENT OF NOVEL 

ISOFORM-SELECTIVE PLD INHIBITORS 

 
 
 

 
Recent studies using RNAi and PLD1-/- or PLD2-/- animals suggest both 

mammalian PLD isoforms are of potential value as therapeutic targets for a 

number of diseases.  In conjunction with these whole animal studies, further 

interrogation of the role for PLD in critical stress-mediated signaling pathways is 

necessary.  However, until recently the only small molecule that was both readily 

available and widely used as a validated tool for studying PLD signaling was 

primary alcohol.  As mentioned in chapter I, although primary alcohols do divert 

product formation to a more slowly metabolized transphosphatidylation product 

that can also be monitored as a readout for PLD activity, recent studies have 

shown discrepancies between signaling roles of PLD elucidated using alcohol 

and other methods of blocking PLD-mediated PA formation (e.g. RNAi).  Thus, it 

was necessary to identify and develop small molecule inhibitors of PLD that 

could readily be used in place of primary alcohol.  The aim of these studies was 

to develop a class of compound that would not only be significantly more potent 

than previously-described inhibitors, but also lend isoform-selectivity for studying 

the roles of each isoform in isolation. 
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Halopemide 

In 2007 a group from Novartis reported on a class of benzimidazolone-

containing compounds that were identified in a highthroughput screen as novel 

PLD inhibitors [287].  This class, which includes halopemide an antipsychotic 

agent, was reported to inhibit PLD2 without mention of PLD1 or the type of 

screening assay used to determine this. In the late 1970‟s halopemide, a known 

antiemetic, was identified as a dopamine antagonist that also limits GABA 

uptake, but had micromolar potency and derivatives were ineffective in vitro, 

suggesting a metabolite was the active compound [288].  Human trials in the 

early 1980‟s identified halopemide as a non toxic effective anti-psychotic agent 

with psychic energizer properties that significantly benefitted withdrawn patients 

with schizophrenia and autism [289].  In the Novartis report, halopemide was 

identified as a low micromolar inhibitor of PLD2 (IC50=1.5μM) [287], while in our 

own experience potency towards PLD1 was slightly greater (PLD1 IC50=220nM 

versus PLD2 IC50=310nM in biochemical assay).  Follow up studies described 

nanomolar potencies for both isoforms for a halopemide derivative, coined FIPI 

(5-Fluoro-2-indolyl des-chlorohalopemide; PLD1 IC50=25nM, PLD2 

IC50=25nM)[79].  Due to excellent potency and potential druggability of this class 

of compounds, halopemide was selected as the lead compound for our diversity-

oriented medicinal chemistry project. 
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Development of novel isoform-selective compounds 

In collaboration with Craig Lindsley‟s lab, an initial library of 263 compounds was 

generated to explore the chemical space and identify components that elicit 

isoform selectivity.  Halopemide was divided into three structural elements 

(scaffold, linker, and eastern portion/ amide cap) that were synthetically varied in 

order to generate a diverse library of small molecules from which we could 

screen to identify isoform-selective PLD inhibitors.   

This library of compounds was initially screened at a single micromolar 

concentration in the biochemical liposome assay to measure efficacy towards 

partially purified recombinant PLD1 and PLD2. A significant portion of the 

compounds were triaged in this first screen, and only compounds that 

demonstrated significant inhibition at the single concentration were then further 

characterized for isoform selectivity by generating concentration response curves 

for both PLD1 and PLD2.  30 compounds were secondarily screened in this 

manner, from which classes of compounds began to emerge (examples from 

each class shown in figure 13).  Some small molecules inhibited both isoforms 

equivalently, which are referred to as dual isoform inhibitors. Other compounds 

elicited selectivity towards a single isoform and are referred to as PLD1- or 

PLD2-selective [290]. Striking chemical differences are apparent when 

comparing compounds from these three classes.  Dual isoform and PLD1-

selective compounds maintain the benzimidazolone scaffold present in 

halopemide (figure 14). Substitution of this scaffold to a triazaspirone engenders  
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Dual Isoform PLD1-Selective PLD2-Selective

 

Figure 13.  In vitro inhibition of recombinant PLD with select compounds.  Graphs 
demonstrate CRCs for three classes of inhibitors on recombinant human PLD1 and PLD2 
normalized to myr-Arf-1-stimulated activity +/-s.e.m. (representative data from a single 
30-min experiment done in triplicate) (figure from [290]). 
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PLD2 selectivity.  However, regardless of scaffold identity (either 

benzimidazolone or triazospirone)PLD1-selectivity can be dialed in with the 

addition of a S-chiral methyl to the linker region.  An increase in overall potency 

of the benzimidazolone-containing compounds was observed by addition of a 

halogen, such as a chloro group, to the 5-position of the benzimidazolone. 

In parallel to the biochemical screens, this library of compounds was also 

screened in a cell based assay previously described in detail elsewhere [78]. 

Sarah Scott, a postdoctoral fellow in our lab, performed the cell based screen, 

which uses two cell lines that owe the majority of their PLD activity to a single 

isoform (as determined by siRNA knockdown) [290].  ESI-MS was used to 

measure PtdBuOH formation as a readout for PLD activity in these cell lines 

following addition of small molecule and cell stimulation.  Following concentration 

response curve generation for the same 30 compounds as characterized 

biochemically, similar classes of dual and isoform-selective inhibitors emerged 

(figure 15).  Thus initial SAR held true for this new class of PLD inhibitors, 

referred to as the VU-series PLD inhibitors.  However, every compound 

demonstrates increased potency in the cell based assay compared to the 

biochemical assay.  This as of yet is unexplained, but there is evidence that 

these lipophilic compounds partition into PC-containing membranes possibly 

decreasing compound concentration accessible to recombinant protein in the 

biochemical assay (Selvy, Milne, Brown, unpublished data).  Another possibility 

is, despite the fact that there is as of yet no evidence for off target effects in cells  
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Figure 14. Focused lead optimization strategy to improve PLD1 potency and selectivity 
within scaffold 25, and strategy to improve PLD2 potency and selectivity within scaffold 
26  (figure from [19]). 
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A

B Dual Isoform PLD1-Selective PLD2-Selective

 

Figure 15. Cell-based activity assay utilizes deuterated n-butanol as a readout for PLD 
activity measured with ESI-MS (A). Small molecules potently inhibit cellular PLD activity.  
CRCs were obtained for multiple small-molecule PLD inhibitors for both PMA-stimulated 
Calu-1 cells (featuring predominantly PLD1 activity) and basal HEK293-gfpPLD2 stable 
cell line (featuring predominantly PLD2 activity) (figure modified from [291], [290]). 
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(off target screens have included other unrelated phospholipases, kinases, and 

receptors), the binding affinity of the compound may improve when then PLD 

protein is in a protein complex (as is possible in cells) rather that recombinantly 

expressed and purified (as in the biochemical assay).  Regardless, rigorous 

characterization of the VU-series compounds to demonstrate both biochemical 

and cell-based efficacy suggests their potential power as a tool in studying PLD 

enzymology and signaling. 

 

Structure-activity relationship characterization of novel PLD inhibitors 

Following the initial description of the VU-series inhibitors, a larger library 

of compounds was generated in attempts to improve the potency and fold 

selectivity of these VU-series inhibitors.  Extensive SAR characterization was 

undertaken for a library of more than 800 compounds generated in Dr. Craig 

Lindsley‟s lab.   These compounds were screened for potency and selectivity in 

both biochemical and cell based assays.  These studies lead to compounds with 

sub nanomolar potencies and in some cases more than 1700-fold selectivity.  

SAR from this larger library tested the identity and position of the halogen 

substitution on the benzimidazolone, chemical space available around the ethyl 

diamine linker, and experimented with modifications or substitutions to the amide 

cap in the eastern portion of the molecule.  Overall potency was almost always 

enhanced with halogen substitution of the scaffold, but the most significant 

increase in the potency of PLD1-selective compounds was afforded by bromo 

rather than chloro substitution of the 5-position on the benzimidazolone. There is 
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no flexibility in the length or size of constituents on the linker region.  The S-

methyl group continued to elicit PLD1 selectivity regardless of scaffold or amide 

cap identity. Finally, screening for optimal amide cap elements identified that the 

racemic transphenyl cyclopropane enhanced PLD1 selectivity over the diphenyl 

cap present in halopemide.  Taken together, these modifications enhance PLD1 

selectivity and potency (figure 16).  These modifications yield VU0359595, our 

best PLD1-selective compound to date that has sub nanomolar potency and 

1700-fold selectivity for PLD1 (in cells PLD1 IC50=3.7nM versus PLD2 

IC50=6.4μM). 

In contrast to PLD1-selective inhibitors, which were identified from direct 

modifications of the halopemide lead compound, potent PLD2-selective 

compounds were more elusive.  From the initial screen for isoform-selective 

compounds the triazaspirone appeared to be a suitable alternative to the 

benzimidazolone scaffold that elicits PLD2-selectivity.  However, the fold 

selectivity was not impressive, so in the subsequent SAR characterization, varied 

amide caps were screened.  Substitutuion of a 2-quinoline amide congener yields 

increased PLD2 potency and selectivity (IC50=90nM and 21-fold PLD2 selective). 

Further screening identified halogen substitution of a fluoro-group on the 

triazaspirone scaffold, which yields increased PLD2 potency and selectivity.  This 

compound (VU0364739) at 75-fold PLD2-selective is the most selective and 

potent PLD2-selective compound reported to date (figure 17). 
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Figure 16. The progression from halopemide, a 14-fold PLD1-selective inhibitor, to 
VU0359595, a 1700-fold PLD1-selective inhibitor.  Functional groups shown in red 
conferred significant PLD1 selectivity (figure from [19]). 
 

 

 

 
Figure 17. The progression from halopemide (21) to VU0364739 (36), a potent 75-fold 
PLD2-selective inhibitor.  Functional groups shown in blue conferred significant PLD2 
selectivity (figure from [19]). 
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Initial demonstration VU-series inhibitors act directly 

Extensive SAR characterization has been performed using the 

biochemical liposome assay as a means of demonstrating that the compounds 

act directly to inhibit enzyme activity.  Use of this assay in the initial screening is 

essential to confirm the compounds are not acting to inhibit activity through an 

upstream activator, as is possible when testing efficacy in the cell based assay 

alone.  Such is the case for other reported PLD inhibitors that act indirectly, such 

as honokiol and resveratrol.  However, the basal activity of full length PLD1 is 

very low, and to get the activity within the linear range of the biochemical assay 

the protein activator myristoylated Arf1 GTPase was included in every condition 

(including PLD2 screens for consistency).  Therefore, it was important to 

demonstrate that these compounds inhibit PLD activity through direct interaction 

with the protein and not through the activator. For these studies an amino 

terminally-truncated form of PLD1, called PLD1.d311 (illustrated in figure 18) was 

used.  PLD1.d311 can be purified to homogeneity and has significantly higher 

basal activity. Concentration response curves were generated using this 

truncation construct for two representative benzimidazolone-containing 

compounds in order to compare compound potency for basal versus Arf-

activated activity.  There is no shift in potency of the VU-series PLD inhibitors, 

demonstrating these compounds are acting directly to inhibit the enzyme. 
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Figure 18.  Direct small molecule inhibition of PLD.  Schematic representation of 
truncated PLD1.d311 cosntruct (A).  In vitro concentration response curves for two dual 
isoform compounds demonstrating direct inhibition of purified PLD1.d311 basal or myr-
Arf-1-stimulated activity (B).  The protein used for these studies was of high purity, as 
demonstrated with colloidal-stained SDS-PAGE gel (C) (figure from [290]). 
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A second possibility for how the inhibitors could be blocking PLD activity is 

through indirectly perturbing the liposome or lipid interface, such as partitioning 

into the lipid vesicle surface to impede access to substrate.  Although we have 

demonstrated that the compounds do in fact partition into the liposome 

dependent on mole% PC (Milne, Selvy, and Brown, unpublished data), we used 

both scPLD (non HKD) and PMF PLD (HKD) and showed that these enzymes 

are not inhibited by the VU-series compounds (inhibition does occur in some 

cases at very high concentrations of compound, >10uM).  Lack of inhibition 

towards these bacterial enzymes demonstrates that these compounds do not 

non-specifically inhibit non mammalian PLD enzymes, and do not disrupt 

substrate access or interface architecture.   

The specificity of these compounds taken together with their ability to 

directly inhibit a highly purified amino-terminally truncated mammalian PLD 

demonstrates that the compounds allosterically inhibit the enzyme at a site that 

does not require the presence of the amino terminus.  It is important to note that 

the potency of the compounds is shifted rightward for PLD1.d311, which may 

suggest a second compound binding site in the amino terminus, or that the 

amino terminus enhances potency through conformational change or provide 

support or stability to the small molecule binding site.  The small molecule 

binding site and mechanism of action for these inhibitors is further addressed in 

chapter III. 
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Cellular ramifications for use of VU-series PLD inhibitors 

Since the first report of the halopemide and VU-series PLD inhibitors, 

several groups have gone on to demonstrate their utility in studying the signaling 

roles for PLD.  Other members in our group have demonstrated this class of 

compounds is of potential therapeutic value in blocking invasive migration, 

decreasing  cancer cell viability, and inducing apoptosis.  In the initial report of 

the VU-series compounds, our lab demonstrated that invasive migration was 

significantly blocked for three highly metastatic cancer cell lines (MDA-MB-231, 

mouse metastatic breast cancer 4T1, and PMT mammary tumors).  Using the 

first generation of VU-series PLD inhibitors, both dual and isoform-selective 

compounds significantly decreased invasive migration at high concentrations (2-

20μM).  Recent studies using more potent and isoform-selective compounds 

demonstrate a time and dose-dependent decrease in proliferation and cell 

viability, particularly for the PLD2-selective inhibitors.  The decrease in viability is 

enhanced under conditions of cell stress (e.g. serum-starvation), and the results 

are more significant for transformed versus non transformed cells.  Increased 

apoptosis was also observed for cancer cells, as measured by caspase 3 and 7 

activation.  Taken together, these results suggest transformed cells rely heavily 

on PLD signaling for viability and proliferation, as other signaling pathways may 

not be intact.  Thus preliminary studies suggest the VU-series PLD inhibitors may 

be effective therapeutically as anti cancer compounds. 
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Chapter III 
 
 
 
 

MOLECULAR MECHANISM OF ISOFORM-SELECTIVE 

PHOSPHOLIPASE D INHIBITORS 

 
 
 
 

Phosphatidic acid (PA) is a critical lipid second messenger that not only 

facilitates lipid bilayer curvature for membrane fusion, but also serves as a node 

for the recruitment and activation of signaling proteins at the plasma membrane 

and is a precursor to diacylglycerol and lysophosphatidic acid.  These varied 

roles put PA at the intersection of cell signaling and metabolic pathways.  PA is 

generated in response to receptor stimulation by phospholipase D (PLD) 

hydrolysis of phosphatidylcholine (PC) at the terminal phosphodiester bond.  PLD 

activity is tightly regulated by a myriad of mechanisms that differ between the two 

canonical mammalian isoforms PLD1 and PLD2.  PLD1 is directly activated by 

PKC, Arf and Rho GTPases and is basally localized to perinuclear, endosomal, 

and Golgi vesicles via protein-protein interactions at its Phox homology (PX) 

domain and palmitoylation in the PH domain [188].  PLD2 maintains higher basal 

activity and is constitutively localized at the plasma membrane.  Upon activation 

PLD translocates to late golgi vesicles and the plasma membrane where it binds 

at the lipid interface to access phospholipid substrate.  Multiple protein domains 

define PLD-lipid binding interactions (Ks) and control translocation and 

subsequent internalization.  PX (aa 79-209) and pleckstrin homology (PH, aa 
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220-328) lipid binding domains at the amino-terminus promiscuously bind 

polyphosphatidylinositols and negatively-charged phospholipids.  These domains 

are also predicted to elicit regulatory functions that may dictate differences in 

isoform subcellular localization, activity, and protein-protein interactions.  There 

are also reports of a conserved PI(4,5)P2 binding motif that lies between the 

conserved catalytic H(x)K(φ)4D motifs and facilitates translocation to PI(4,5)P2-

containing membranes and catalytic activity.   

Until recently it has not been possible to acutely and pharmacologically 

inhibit PLD catalytic activity in order to study its enzymology and specific function 

in cell signaling pathways.  Historically, RNAi and primary alcohols have been the 

only tools available. RNAi knocks down PLD protein production over a short 

period of time allowing for compensation within signaling pathways, while 

treatment with primary alcohol merely diverts product formation to 

phosphatidylalcohol.  Primary alcohols exploit the transphosphatidylation reaction 

characteristic of PLD-family members, in which the primary alcohol is the 

preferred nucleophile to water during substrate hydrolysis.  Recently, in response 

to the void in the field, we reported identification and characterization of a class 

of small molecules that potently and isoform-selectively inhibit PLD activity, 

called VU-series compounds (chapter II) [290].  Structure-activity relationship 

characterization of this class lead to the development of compounds that are 

>1700-fold PLD1-selective[292], and >75-fold PLD2-selective [291] to use as 

tools in delineating the distinct signaling roles of each isoform.  Subsequent 

studies, in our own lab and in others, using these small molecule inhibitors have 
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yielded different results from those published using primary alcohols [79], [237].  

This suggests that either the roles of PLD as discerned using primary alcohols 

have been widely overstated, or the mechanism of action of these small molecule 

PLD inhibitors extends beyond inhibiting PA formation. To address this 

discrepancy, we used backscattering interferometry (BSI), a highly sensitive and 

novel method for measuring protein-small molecule and protein-lipid binding 

affinities, to characterize the mechanism of action of these small molecule PLD 

inhibitors. For these studies we focus our characterization on the mammalian 

PLD1 isoform, and propose that a similar molecular mechanism also applies to 

VU-series-compound mediated PLD2 inhibition.   

Here we demonstrate that these compounds directly target PLD1 and 

allosterically block lipid binding and catalytic activity.  These in vitro findings are 

confirmed with cellular studies demonstrating that these compounds do not 

perturb basal PLD1 localization, but block stimulated enzyme translocation.  This 

is a unique and underappreciated mechanism for inhibiting a lipid signaling 

enzyme, and is akin to the mechanism recently reported for an allosteric  

pharmacological inhibitor of Akt, Inhibitor VIII [293], [294]. 

 
 

Backscattering interferometry measures protein-ligand interactions 

PLD is an interfacial enzyme that must bind at the lipid surface (S, figure 

2) prior to binding and hydrolyzing substrate.  As such, the nature of the lipid 

interface has a great impact on the binding affinity for the lipid surface (1/Ks), 

accessibility and affinity for substrate (Km), and catalytic activity of the enzyme  
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Figure 19.  Backscattering interferometry (BSI) technique optimized for measuring 
protein-small molecule and protein-lipid binding affinities  (figure modified from[295]). 
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(kcat). Therefore, it was important to determine whether these small molecules 

were eliciting inhibition through direct interaction with soluble/non-lipid bound 

enzyme, or indirectly influencing the lipid interface, as is the case for neomycin 

[296] and tamoxifen [297] (unpublished data Selvy and Brown), or potentially 

selectively binding to interfacially-bound enzyme (Es), as is the case for some 

PLA2 inhibitors [298].  BSI has been validated as a method for measuring 

picomolar receptor-ligand binding affinities using nanomolar concentrations of 

protein [295], [299], [300], and was used here to measure protein-small molecule 

binding affinities for PLD1.  In contrast to isothermal titration calorimetry (ITC) 

and surface plasmon resonance (SPR), binding affinities can be measured using 

BSI in a microliter-scale format for untagged protein free in solution.  In this 

technique, a laser is reflected and refracted through a sample contained within 

the channel of a microfluidic chip and an interference pattern is created.  The 

interference pattern consists of a specific set of well defined fringe spots, and a 

shift in the fringe spots correlates to a change in refractive index due to a change 

in salvation of a protein upon ligand binding (i.e. change in protein conformation).  

A shift in fringe spots is quantified as a change in phase of a wave function using 

Fourier transform.  The phase is measured for any set of samples and then 

graphed as the absolute change in phase relative to a control sample upon 

increasing ligand concentration.  

 

 

 



 

129 
 

Development of novel human PLD1 construct facilitates in vitro studies 

To ensure phase changes, as recorded by BSI, are due to bimolecular 

interactions between PLD1 and small molecule, highly purified recombinant 

protein was necessary.  Recombinant expression of full length PLD1 is poor and 

because of the myriad of protein binding partners, full length protein remains a 

heterogeneous population following multiple chromatographic purification steps.  

Therefore several robustly expressed and homogenously-purified truncation 

constructs of PLD1 were used to demonstrate direct bimolecular interactions.  In 

our earlier report [290]  we demonstrated that the VU-series compounds could 

inhibit an amino-terminally-truncated rat PLD1 construct lacking the first 311 

amino acids.  This construct comprises a truncation of the PX and PH domains, 

leaving 16aa of an alpha-helix at the C-terminus of the PH domain that is 

necessary for lipid binding (Henage, Selvy, and Brown, unpublished data).   

For more rigorous mechanistic characterization of these VU-series 

compounds, however, we chose to study human PLD1.   Characterization of 

human PLD1 splice variants using cDNA libraries detected a poorly studied 

PLD1c form. This PLD1 splice variant was initially reported by Steed et al. [173] 

as a shortened protein whose transcript contains a single nucleotide deletion that 

results in a frame shift in protein translation.  In nature, the PLD1c frame shift 

results in an early stop codon and a protein that is truncated following the first 

HKD motif (figure 20).  Insertion of a single nucleotide corrects the frameshift and 

results in a catalytically active 2 HKD PLD enzyme with an 18 amino acid stretch 

of residues in the catalytic loop region.  The shorter catalytic loop region,  
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Figure 20.  Illustration of the domains of the human PLD1 splice variants. 
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as compared to the loop regions found in PLD1a and PLD1b splice variants, 

facilitates robust recombinant expression, enhanced protein stability, and 

straightforward chromatographic purification. Corrected PLD1c maintains all the 

same biochemical and cellular characteristics of the natural PLD1a and PLD1b, 

including protein-activator response and robust receptor-stimulation. 

 

VU-series PLD inhibitors directly interact with enzyme 

Using BSI and silver-stain pure preparations of the amino-terminally 

truncated PLD1c splice variant, referred to here simply as PLD1.d311, we 

demonstrate this construct directly binds the compounds in a one-site binding 

model in the absence of lipid (figure 21).  The Ki for benzimidalozone-containing 

small molecules (VU0155056 and VU0359595) was similar to IC50s measured for 

respective compounds in the biochemical liposome reconstitution assay.  

Because the affinities and potencies for the benzimidalozone-containing 

compounds are similar for their respective compounds, we conclude that these 

compounds are acting directly on the enzyme and not indirectly inhibiting activity 

by disrupting access to PI(4,5)P2 or substrate at the lipid interface. 

 

Small molecule PLD inhibitors block lipid binding 

PLD‟s phospholipid substrate is located at a lipid interface and is not freely 

soluble, therefore classic Michaelis-Menten assumptions do not apply.  In order 

to study PLD kinetics and the mechanism of action for these small molecule 
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Figure 1. PLD1c.d311 directly binds VU-series PLD inhibitors to inhibit catalytic activity.

 

Figure 21. PLD1c.d311 directly binds VU-series PLD inhibitors to inhibit catalytic activity.  
A, Structures of VU-series small molecule PLD inhibitors  B, Ki small molecule binding 
affinities were measured for two representative benzamidazolone-scaffold VU-series 
PLD inhibitors (VU0155056 and VU0359595) using BSI. These compounds directly bind 
to purified PLD1.d311 (aa 312-966) with similar binding affinities (Ki) to IC50 values 
measured from concentration response curves using a reconstituted liposome activity 
assay. 
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inhibitors, the interfacial binding affinity must first be measured (figure 2, Ks), and 

subsequent studies must saturate lipid binding in order to apply Michaelis-

Menten assumptions.  Historically, intricate and imperfect methods have been 

applied to measure Ks (FRET and lipid binding “strips” of immobilized lipid).  

Despite its resource and time-consuming nature, the sucrose-loaded vesicle 

(SLV) binding assay[72] has been the standard method for measuring 

cosedimentation of protein with increasing concentrations of bulk lipid.  Using a 

defined vesicle composition (87%mol PE, 8%mol PC, 5%mol PI(4,5)P2), 

PLD1.d311 cosedimentation was measured for increasing bulk lipid 

concentrations (figure 22a). The Ks value derived from the SLV assay was then 

compared to the Ks value obtained using BSI as a means of measuring protein-

lipid binding (figure 22b).  Using a similar vesicle compostion, phase change was 

measured for PLD1.d311 with increasing concentrations of extruded large 

unilamellar vesicles (LUV).  Similar Ks values were obtained for both methods, 

validating the use of BSI as a novel and highly efficient method for measuring 

protein-lipid binding.   

Regardless of assay method, the PLD1-selective small molecule inhibitor, 

VU0359595, noncompetitively blocked bulk lipid binding at absolute inhibitory 

concentrations (10μM).  Reports in the literature propose PI(4,5)P2-dependent 

binding at a polybasic region in the catalytic domain is solely responsible for PLD 

translocation to the plasma membrane.  Therefore, it was important to determine 

whether the in vitro lipid binding measured here was PI(4,5)P2 -dependent.  

Protein lipid binding was measured for vesicle compositions lacking PI(4,5)P2.  
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Despite the fact that Ks was significantly shifted to the right in its absence, bulk 

lipid binding (and catalytic activity, data not shown) was detectable and saturable 

without PI(4,5)P2 (figure 22c).  In fact, bulk lipid binding also occurs in the 

absence of PC or PE, the preferred and secondary substrate, respectively, as is 

found when measuring Ks for PG-only vesicles.  PG is not a substrate as 

confirmed by LC/MS (Milne, Selvy, and Brown, unpublished data).  For each 

vesicle composition VU0359595 noncompetitively blocked bulk lipid binding 

(figure 22c).  From these studies we conclude in vitro PLD binds and hydrolyzes 

lipid in the absence of PI(4,5)P2, and the small molecule PLD inhibitor non 

competitively blocks this interaction regardless of lipid vesicle composition. 

In order to demonstrate that these small molecules do not nonspecifically 

disrupt interfacial binding for other lipid binding proteins, we also measured VU-

series interactions with phospholipase C delta 1 (PLCδ1, provided by Ken 

Harden‟s lab), a well characterized phospholipase which binds PI(4,5)P2 with 

high affinity via its PH domain in order to hydrolyze PI(4,5)P2.  In the absence of 

lipid, VU0359595 does not interact with or bind PLCδ1, and protein-lipid binding 

is not perturbed due to the compound (figure 22d).  The absence of any 

interaction with an unrelated phospholipase demonstrates that the VU-series 

compounds do not nonspecifically perturb protein-lipid binding. The non 

competitive disruption of PLD-lipid binding, regardless of lipid identity, suggests 

these compounds are allosterically impacting a hydrophobic phospholipid binding 

site on the catalytic domain likely through inducing a significant conformational 

change. 
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Figure 22. VU-series PLD inhibitors block bulk lipid binding regardless of lipid interface 
composition.   Bulk lipid binding was measured for purified PLD1.d311 using the classic 
sucrose-loaded vesicle technique (A), and backscattering inerferometry (B). These 
techniques give similar Ks, validating the BSI technique, and demonstrating that the 
small molecule inhibitor blocks bulk lipid binding.  C, PLD1.d311 bulk lipid binding was 
measured for varied lipid vesicle compositions omitting PI(4,5)P2 and substrate (PC and 
PE).  Regardless of lipid vesicle composition, inhibitory concentrations of VU0359595 
continue to noncompetitively disrupt bulk lipid binding. Inhibition of bulk lipid binding is 
not mediated through indirect disruption of the interface as the VU-series compounds 
do not nonspecifically bind PLCδ1, another lipid binding protein (D), and do not perturb 
PLCδ1 bulk lipid binding (E). 
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VU-series compounds inhibit catalytic activity  

in the absence of a lipid interface 
 

Subsequent to demonstrating that the VU-series compounds allosterically 

disrupt lipid binding, it was important to interrogate whether the small molecules 

perturbed catalysis for substrate not present at an interface. PLD activity was 

monitored in the absence of the lipid binding component (Ks) by measuring 

hydrolysis of monomeric 14:0 PC (used below the critical micelle concentration) 

via direct and indirect techniques (i.e. LC/MS or amplex red reagent, 

respectively).  Concentration response curves of VU0359595 generated for 

different substrate presentations (e.g. lipid-bound (32:0 PC) or monomeric 14:0 

PC) were comparable for PLD1.d311 and full length PLD1 (figure 23a and b, 

respectively).  IC50‟s are similar for in vitro concentration response curves 

generated using these different assay formats, demonstrating VU0359595 

potency is unchanged regardless of substrate presentation.  This suggests that 

the VU-series compounds mediate inhibition not only by blocking lipid binding but 

also through inhibiting catalytic activity.  Soluble monomeric PC allows 

measurement of catalysis in the absence of the lipid binding component, which 

ultimately allows for Michaelis-Menten kinetic analysis.  Upon increasing 

substrate concentration, the activity of PLD1.d311 was measured in the presence 

of vehicle or constant concentrations of VU0359595 (near the IC50= 0.25μM, and 

well above= 10μM; figure 23c).  In both VU0359595-treated cases, catalysis was 

decreased from that of vehicle-treated, and increases in substrate could not 

compete for its inhibitory effect. This demonstrates that the compounds non  
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Figure 23. VU-series compounds inhibit PLD1.d311 activity regardless of substrate 
presentation.  VU035959 inhibits PLD1.d311 (A) and full length PLD1c (B) with the same 
potency regardless of substrate presentation, as determined from concentration 
response curves in liposome and monomeric substrate assays.  C, VU-series compounds 
do not compete for substrate binding, as determined using an Amplex Red assay with 
varied monomeric substrate (14:0 PC) concentrations for VU0359595 near Ki (0.25uM) 

and >>Ki (10uM). This demonstrates the VU-series compounds inhibit catalytic activity at 
a site allosteric to the substrate binding site. 
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competitively inhibit catalytic activity by directly interacting with the enzyme at a 

site allosteric to the substrate binding pocket. 

 

Protein truncation constructs illuminate the small molecule binding site 

Following demonstration that the compounds directly interact with 

PLD1.d311 to disrupt both protein-lipid binding and catalytic activity, we went on 

to determine the allosteric site of small molecule interaction.  Using several 

protein truncation constructs composed of lipid binding or catalytic domains, we 

measured small molecule binding affinities (illustrated in figure 24b).  These 

studies allowed us to narrow the small molecule binding site to a previously 

uncharacterized region of PLD1 that lies between the PH and catalytic domains.  

This stretch encompasses amino acids 329-352 and is predicted to be a loop 

region, which because of its proximity to the PH and catalytic domains is 

hereafter called the linker loop.   

A catalytic domain construct lacking the PXPH domains and the entire 

linker loop (PLD1.d352) is inactive towards liposomal substrate but can hydrolyze 

monomeric substrate.  As measured in the amplex red reagent assay using 

monomeric substrate, PLD1.d352 catalytic activity is not inhibited by VU0359595 

(figure 24c). Also, this construct does not directly interact with the small molecule 

as determined by BSI (figure 24a).  The inhibitor resistant nature of PLD1.d352 in 

conjunction with data from PLD1.d311 suggested that the region encompassing 

amino acids 311-352 were critical for small molecule efficacy.  
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In our first report on the VU-series compounds we described a 3 to 24-fold 

shift in potencies of the VU-series inhibitors between full length PLD1 versus 

PLD1.d311[290].  This suggested the PLD1.d311 truncation construct lacked a 

portion of the small molecule binding site or lacked a second small molecule 

binding site.  To better understand these discrepancies in IC50s we used purified 

amino-terminal constructs encompassing the PX and PH domains (aa1-375, aa1-

329) and used BSI to measure Kd for the benzimidalozone compound 

VU0359595 (figure 24).  Truncation construct PLD1.PXPH aa1-375 directly 

interacts with the small molecule, but does so in a two-site binding model 

(p=0.0003 for two-site over one-site model) with a high affinity and low affinity 

binding site.  The shortened construct PLD1.PXPH aa1-329, which lacks the 

linker loop region (residues 329-352), also directly interacts with the small 

molecule, but does so in a one-site binding model with a single low affinity 

binding site. Consistent with truncation data from the catalytic domain, 

differences in VU0359595 binding for the PXPH constructs suggest the high 

affinity binding site lies within the linker loop region. Based on the somewhat 

hydrophobic nature of the VU-series compounds it is not surprising that a low 

affinity binding site remains for the PXPH construct even in the absence of the 

linker loop.  This second site of small molecule interaction may be at one of  

several remaining lipid-binding hydrophobic patches on the protein surface, or 

may loosely contribute to the tertiary small molecule binding site in the full length 

enzyme.  However, as the affinity observed for the low affinity binding is well 

outside of the range that elicits potent isoform-selective inhibition of PLD1, we 
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Figure 24. Truncation constructs suggest VU-series PLD inhibitors directly bind PLD in a 
loop region C-terminal to the PH domain.  A, Using BSI, small molecule binding affinities 
were measured for several PLD1c truncation constructs. VU0359595 directly binds 
PLD1.PXPH aa 1-375 at two distinct sites, only one of which is high affinity. PLD1.PXPH 
aa 1-329 only encompases the lower affinity binding site. PLD1.311 binds VU0359595 
with high affinity, while PLD1.d352 does not bind the compound. B, Cartoon alignment 
of conserved domains within these truncation constructs illustrates that PLD1.PXPH aa 
1-375 and PLD1.d311 overlap at a region C-terminal to the PH domain, while PLD1.PXPH 
aa 1-329 and PLD1.d352 do not include this region.  This suggests this site encompasses 
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the VU0359595 high affinity binding site. C, To further demonstrate that this region 
encompasses the binding site we examined the activity of PLD1.d352 +/- VU0359595. 
This construct retains catalytic activity towards monomeric substrate, but VU0359595 
does not inhibit activity. 
 

propose that this second site does not contribute to the mechanism of small 

molecule inhibition and is not relevant for further analysis in these studies.  

An important observation from the binding curves for these two PXPH 

constructs is the significant difference in Bmax (phase change).  As mentioned 

above, the phase measurement in BSI is essentially the refractive index of the 

protein-ligand solution.  Changes in refractive index are a measurement of 

change in protein solvation (i.e. protein conformation) upon protein-ligand 

binding.  Therefore, the larger the change in phase, the larger the predicted 

change in protein conformation upon ligand binding.  From PXPH binding curves 

it is evident that PLD1.PXPH 1-375 undergoes a significantly larger change in 

protein conformation upon small molecule binding than PLD1.PXPH 1-329.  

From these protein-small molecule binding studies, we conclude that these small 

molecule inhibitors directly interact with high affinity at the linker loop, a region of 

the protein encompassing amino acids 329-352 that has a predicted loop-like 

secondary structure, and subsequently undergo a significant change in 

conformation. 

 

Confirmation of small molecule binding site with point mutant constructs 

Upon further analysis of the linker loop (the region of predicted high affinity 

VU-series compound interaction) we observe a predicted loop region flanked by 
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more rigid structural elements (e.g. alpha-helices and a short beta sheet, figure 

25a).  Linker loop sequence comparison between PLD1 and PLD2 demonstrates 

some amino acid variability, while the predicted secondary structural elements 

are conserved.  SAR studies (chapter II) suggest these compounds bind at a 

similar site on the two isoforms, but certain chemical modifications of the 

compounds are able to dial in selectivity by taking advantage of some unknown 

differences in the specific isoform binding site.  Comparison of the linker loop 

sequence for PLD1 and PLD2 highlights a few conserved residues that may be 

integral for VU-series compound binding.  To secondarily confirm the linker loop 

is the site of VU-series compound binding, these conserved residues (shown in 

purple in figure 25) were systematically point mutated to alanines in the full 

length PLD1c enzyme.  The potency of VU0359595 was subsequently measured 

for each mutant in vitro. From these studies, His338Ala and Trp354Ala mutations 

significantly decreased the potency of VU0359595, but did not ablate inhibitory 

action.  Therefore, a dual mutant in which both His338 and Trp354 were mutated 

to alanines was generated and assessed for inhibitor resistance using several 

methods.  The small molecule binding affinity of PLD1.PXPH 1-375 H338A, 

W354A was compared to PLD1.PXPH 1-375 S342A (a mutation which yields no 

shift in VU0359595 potency) and wildtype PLD1.PXPH 1-375.  Consitent with 

S342A mutation not impacting VU0359595 potency in the full length enzyme, 

PLD1.PXPH 1-375 S342A demonstrated a two-site binding model (p<0.0001) 

with large change in phase similar to wildtype PLD1.PXPH 1-375.  However, 

mutation of both H338A and W354A significantly alters the binding curve profile 
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(figure 25b).   This double mutant construct yields a single low affinity binding site 

with a small change in phase, comparable to the PLD1.PXPH 1-329 construct 

that entirely lacks the linker loop.  This binding data is consistent with the 

suggestion that His338 and Trp354 contribute to the small molecule binding site 

in the linker loop.    

In order to demonstrate that the double mutation of both His338 and 

Trp354 does not significantly alter the folding of the enzyme and non specifically 

alter VU0359595 affinity, we measured PLD activity for this construct transfected 

into an HEK293 cell.  Following serum-starved conditions, cellular PLD activity 

was measured for vector, wildtype PLD1c, and PLD1c H338A, W354A.   

Although double mutant activity is ~30% of the wildtype activity (consistent with 

preliminary in vitro studies of the double mutant) this activity is measureable 

above vector control, suggesting that the protein is correctly folded and a viable 

construct to test for inhibitor resistance.  An inhibitory concentration of 

VU0359595 does not affect double mutant activity (figure 25c).  This cell based 

activity data is consistent with the PXPH binding experiments demonstrating that 

His338 and Trp354 are integral for high affinity small molecule binding, as 

mutation of these residues generates inhibitor resistant PLD activity.  In vitro 

studies will further demonstrate that these conserved residues in the linker loop 

are integral components of the high affinity binding site for the VU-series 

compounds. 
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Figure 25. Point mutations confirm VU-series PLD inhibitors directly bind PLD in a loop 
region C-terminal to the PH domain. A, Closer analysis of the protein sequence in the 
linker loop for both human PLD1 and PLD2 isoforms demonstrates a conserved pattern 
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of predicted secondary structure (PredictProtein) and conserved residues (shown in 
purple, numbered residues correspond to PLD1 sequence) in a region predicted to be a 
loop (shown in green). B, An  H338A, W354A double mutant was generated to ablate 
the high affinity binding site. This double mutant was generated in PLD1.PXPH aa 1-375, 
and VU0359595 binding was measured using BSI to demonstrate that the high affinity 
binding site was ablated, similar to the PLD1.PXPH aa 1-329 construct that lacks the 
linker loop region entirely.  An inert mutation (S342A) that does not shift the potency of 
VU0359595 also does not perturb high affinity binding. C, The H338A, W354A double 
mutant was generated in the full length PLD1c.  While the overall activity of the double 
mutant is decreased as compared to wildtype, resistance to VU0359595 is observed for 
double mutant activity as measured in the cell.  This data taken as a whole confirms the 
linker loop contributes to the high affinity small molecule binding site. Western blot 
analysis was used to demonstrate similar transcription efficiency and protein expression 
of the strep-tagged PLD1c constructs, anti-actin demonstrates equal loading between 
lanes. 
 

 

Small molecule PLD inhibitors block cell signal-mediated translocation 

Subcellular protein localization studies were performed to test conclusions 

from the in vitro studies in a cellular context.  EGFP-tagged PLD1 was 

transfected into Cos7 cells, 24 hours later cells were serum-starved, and the 

following day visualized with live-cell fluorescent-microscopy.  Basal localization 

was observed following 5 minute pre-treatment with vehicle or 10μM VU0359595, 

while stimulus-induced translocation was demonstrated following 1 hour 

treatment with phorbol ester.  In the presence of vehicle, EGFP-tagged PLD1 is 

basally localized to perinuclear membranes and early endosomes (not nucleus 

as determined by DAPI-stain, figure 26).  This is consistent with basal localization 

of PLD1 previously reported in Cos7 cells.[188]  Upon stimulation with 1μM PMA 

(figure 26) or 10-20%serum (not shown), the protein is observed to translocate to 

plasma membrane or late endosomes, respectively, for stimulation types.[188] 
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Basal localization of EGFP-tagged PLD1 is unchanged in the presence of 

VU0359595.  This observation is consistent with other reports in the literature 

that claim protein-protein interactions and palmitoylation-modifications mediated 

by the PXPH domain control basal localization of PLD1 in Cos7 cells rather than 

protein-lipid interface interactions[188].  However in the presence of VU0359595, 

upon cellular stimulation EGFP- tagged PLD1 translocation to late endosomes or 

the plasma membrane is blocked.  This observation is consistent with in vitro 

data presented herein, where interaction between PLD and lipid interface is 

blocked in the presence of the inhibitor.  Truncation studies suggest the high 

affinity small molecule binding site lies in the linker loop (a loop region C-terminal 

to the PH domain and N-terminal to the start of the catalytic domain).  Cellular 

data suggests that small molecule binding does not perturb protein-protein and 

palmitoylation-mediated interactions known to maintain basal PLD1 localization, 

but likely results in a conformational change that inhibits general bulk lipid 

binding (both PI(4,5)P2- and non PI(4,5)P2-mediated interactions). Therefore VU-

series compounds inhibit PLD in a bimodal format through binding with high 

affinity at the linker loop.  These compounds disrupt both cell stimulation-induced 

translocation to the plasma membrane and catalytic activity. 

 

Model of VU-series compound mechanism of inhibition 

These studies define the binding site and mechanism of action for the 

potent and isoform-selective VU-series PLD inhibitors.  Using BSI, a novel and 

highly sensitive method for measuring bimolecular interactions, we demonstrate  
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Figure 26. PLD1 basal localization is unperturbed, but stimiulus-induced  translocation is 
blocked by treatment with 10μM VU0359595. 
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that the VU-series compounds directly interact with purified PLD1 enzyme at a 

defined loop region resulting in non competitive inhibition of protein-lipid interface 

interaction, regardless of the interface composition.  Through binding at this 

single high affinity binding site these compounds also allosterically inhibit 

catalytic activity towards monomeric substrate.  Cellular protein localization data 

supports this mechanism, demonstrating that while basal localization of PLD1 is 

undisturbed by inhibitory concentrations of VU0359595, stimulation-induced 

translocation of the protein is inhibited.  These results are consistent with reports 

that protein-protein or palmitoylation mediated interactions maintain basal protein 

localization, while lipid interactions are important for stimulation-induced 

translocation to the plasma membrane and late endosomes.    

The biochemical data herein demonstrates VU-series compounds directly 

interact with the enzyme at a high affinity binding site within a loop region at the 

junction between the PH domain and the start of the catalytic domain.  This 

previously uncharacterized region of the enzyme, herein called the linker loop, 

shares little homology with a loop region at the N-terminus of the Streptomyces 

PMF PLD and Streptomyces antibioticus PLD catalytic domains. Through binding 

at this allosteric site, this class of compounds has tapped into a previously 

unappreciated regulatory region of the protein that is both specific for mammalian 

PLD (as bacterial enzymes are unaffected by these compounds) and can be 

exploited to elicit isoform selectivity.  With the composite biochemical and cellular  
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Figure 27. Model of the molecular mechanism of action for the VU-series PLD 
inhibitors. The VU-series compounds directly bind PLD at a loop region C-terminal to the 
PH domain to allosterically block both bulk lipid interface interaction and catalytic 
activity. This is similar to the mechanism of action recently described for the Akt I/II 
inhibitor, in which small molecule binds at the interface of the PH lipid binding and 
catalytic domain.  This induces a closed protein conformation that prevents 
translocation to the lipid interface as well as catalytic activity.  
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data we propose a mechanism of action for the VU-series compounds (figure 27) 

in which the small molecule directly binds the enzyme at this linker loop resulting  

in a significant conformational change that inhibits both interfacial interactions 

(e.g. translocation to plasma membrane) and catalytic activity.   

This proposed mechanism is similar to that recently described for a small 

molecule inhibitor of Akt, a serine/threonine kinase that is activated downstream 

of the PI3K pathways.  Similar to the domain structure for mammalian PLD, Akt 

consists of an N-terminal PH domain, bilobal kinase domain, and C-terminal 

hydrophobic motif (HM).  This enzyme is basally localized in the cytosol but upon 

PI3K activation Akt translocates to the plasma membrane where it binds PIP3 via 

its PH domain.  At the plasma membrane Akt is subsequently activated by two 

sequential phosphorylation events: PDK1 phosphorylates Akt at threonine 308 (in 

the activation loop), and mTORC2 subsequently phosphorylates Akt at serine 

473.   Orthosteric and allosteric inhibitors of Akt have been described that block 

kinase activity through divergent mechanisms.  Orthosteric inhibitors include pan- 

kinase inhibitors that bind at the active site in an ATP-competitive manner.  

These compounds do not affect PH-mediated translocation to the plasma 

membrane, and therefore leave the compound in what is termed the PH-out 

conformation (figure 28a).  Allosteric inhibitors of Akt, including the dual Akt 1/2 

inhibitor, inhibitor VIII, block catalytic activity by binding at the interface of the PH 

and kinase domain, inducing a PH-in conformation (figure 28b).  As visualized in 

a recent crystal structure of this protein-compound complex[294], the 

benzimidazolone scaffold of inhibitor VIII binds in a cavity within the PH domain  
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Figure 28. Crystal structures demonstrating the mechanism of orthosteric or allosteric 
Akt inhibition.  A, ATP-competitive inhibitors (orange) bind in the orthosteric site 
alongside the catalytic loop (red).  These inhibitors merely compete for ATP, and do not 
change the overall conformation of the enzyme. In this PH-out conformation, the PH 
domain (green) is still accessible for PIPn binding (shown bound to IP4 in this crystal 
structure) and the activation loop harboring Thr308 in the kinase domain is accessible 
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for phosphorylation.  B, Allosteric inhibitors of Akt, such as inhibitor VIII, bind at the 
interface of the PH and kinase domains.  This locks the enzyme in a PH-in conformation 
in which the PH domain is inaccessible from binding PIPn and the activation loop (not 
shown in this structure) is shielded by the PH domain. The significant difference in 
position of Trp80, integral for inhibitor VIII binding, is shown in both structures. 
 
 
and the eastern portion of the molecule locks the enzyme in a PH-in 

comformation that is mediated by hydrogen bonding, for which Trp80 is a notable 

contributor (as deletion of Trp80 generates an inhibitor resistant enzyme).[293]  

In vitro studies with recombinant full length Akt demonstrate that inhibitor VIII non 

competitively blocks PIP3 binding to the PH domain.[293] In cells inhibitor VIII 

does not change basal localization of Akt, but stimulus-induced translocation to 

the plasma membrane is blocked.   

Allosteric Akt inhibitors, including derivatives of inhibitor VIII such as 

MK2206, are proving highly beneficial as therapeutics.  Since these compounds 

specifically target Akt (unlike the pan-kinase ATP-competitive compounds) and 

allosterically prevent translocation to the plasma membrane by inducing a 

conformation in which the PH domain is inaccessible, these compounds are 

useful against many cancers in which Akt is found constitutively localized to the 

plasma membrane.  In these cancers a somatic mutation of glutamate 17 to 

lysine allows for PIP2 rather than PIP3 mediated translocation, bypassing PI3K 

signaling.   

The inhibitor VIII mechanism of inhibition is strikingly similar to the 

mechanism of action proposed here for VU-series PLD inhibitors. The VU-series 

compounds enable isoform-selectivity because they non competitively bind in an 

allosteric and previously-unappreciated regulatory region of mammalian PLD, 
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and as such render a novel means of inhibiting a lipid-modifying enzyme. We 

propose that, similar to the PH-in conformation observed following Akt-inhibitor 

VIII interaction, the VU-series compounds induce a significant conformational 

change in the enzyme that prevents both protein-lipid and protein-substrate 

interaction.  Preliminary evidence obtained by a postdoc in the lab (Sarah Scott) 

also supports this proposed conformational change.  A decrease in potency is 

observed for VU0359595 when a lyso-lipid substrate is used versus a diacyl 

substrate in the amplex red reagent assay.  This suggests that the 

conformational change in the active site sterically blocks access to bulky diacyl 

substrates, but less effectively prevents lyso lipid binding.  

We go on to propose that the molecular mechanism outlined here for 

PLD1 may also extend to the PLD2 isoform.  Rigorous SAR characterization 

supports the existence of a single high affinity small molecule binding site for 

both isoforms.  Preliminary in vitro data from several PLD2 constructs suggests 

the VU-series PLD inhibitors bind the enzyme in the linker loop.  BSI studies 

show that the compounds directly interact with PLD2.PXPH domains in a two-site 

binding model (one high affinity, and one low affinity site) and a catalytic domain 

construct similar the PLD1.d311 (called PLD2.d308, which maintains the lnker 

loop) is also inhibited by the VU-series compounds.  In contrast to the PLD1 

isoform, PLD2 is constitutively localized to the plasma membrane and maintains 

high basal activity.  Therefore it is possible that if a similar mechanism of 

inhibition applies to PLD2, different patterns of cellular localization might emerge 

(i.e. basal cellular localization to the plasma membrane may be perturbed). 
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Further studies are necessary to thoroughly interrogate the mechanism of 

inhibition for PLD2 and possible differences in functional outcomes of VU-series 

compound use for each isoform. 

This report represents the first detailed mechanistic characterization of the 

VU-series PLD inhibitors.  Using the unique and highly sensitive BSI method for 

measuring binding affinities, these studies provide insight into the regulation and 

enzymology of mammalian PLD1.  These studies offer a unique model for 

targeting and inhibiting other lipid signaling enzymes. 
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Chapter IV 

 
 
 
 

CONCLUSIONS AND FUTURE DIRECTIONS 

 
 
 

 
The PLD superfamily is a diverse collection of enzymes from multiple 

species that serve a varied range of functional roles and hydrolyze a range of 

substrates.  The common denominator to superfamily members is thought to be 

a conserved core structure of the catalytic domain that likely means these 

enzymes share a similar SN2 reaction mechanism for hydrolyzing phosphodiester 

bonds. Mammalian PLD serves multiple functional roles in cell signaling 

pathways highlighted in chapter I.  Aberrant mammalian PLD activity has been 

implicated in disease states including several cancers, neurodegenerative 

diseases, and thrombosis.  Recent studies with RNAi and knockout animals 

suggest PLD might be a good therapeutic target because healthy animals are 

unaffected with a single isoform knockout, but disease-related stress-mediated 

pathways that signal through PLD are perturbed, thereby ablating aberrant PLD-

mediated signaling, and preventing the disease-related phenotype.     

Efforts described in chapter II detail the identification and characterization 

of the VU-series PLD inhibitors, the first class of druggable PLD inhibitors 

specific to mammalian PLD that can selectively inhibit each isoform.  Rigorous 

SAR characterization describes the chemical space and components that elicit 

isoform selectivity.  The studies described in chapter III go on to characterize the 
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mechanism of action for the VU-series compounds. Assays using BSI were 

optimized and used to efficiently measure binding to demonstrate these 

compounds directly inhibit PLD in a noncompetitively bimodal manner. In cells 

this translates to PLD1 basal localization being unchanged, but stimulated 

translocation being blocked.  This cell-based data supports the biochemical 

studies detailed in chapter III and suggests some possible ramifications to using 

these compounds as tools to study PLD signaling.  In addition to blocking product 

formation, as is expected for an enzyme inhibitor, these compounds likely 

change protein-protein interactions that occur at the plama membrane thereby 

disrupting the role of PLD1 as a scaffolding protein.  It is important to be aware of 

the mechanistic effects of applying a small molecule to a whole-cell, and care is 

necessary when interpreting signaling results.  Others in the lab are following up 

on the effects of the VU-series inhibitors on known protein-protein interactions. 

Still to be characterized are protein structural changes that occur in 

response to small molecule binding.  NMR studies of small molecule binding in 

the linker loop, both alone and in the context of the PH domain, have been 

initiated in collaboration with Chuck Sanders.  Specific residues that are found to 

be critical for small molecule interactions may explain some of the isoform-

selective SAR that has been observed and point to other possible compound 

modifications that may icrease potency, selectivity, or broaden the chemical 

diversity of this class of compounds that may prove necessary as whole animal 

pharmacokinetic studies commence.  Ultimately a mammalian PLD protein 

crystal structure, both with and without inhibitor, will be necessary to truly 
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understand the conformational changes that occur upon small molecule binding.  

These structures may further elucidate the molecular mechanism described 

herein.  However, given the position of the small molecule binding site and the 

noncompetitive bimodal mechanism of inhibition, it is proposed that the small 

molecule-induced conformational change results in a closed enzyme.  This is 

predicted to be similar to the Akt-inhibitor-induced conformational change where 

the N-terminal PH domain folds over the catalytic kinase domain preventing 

access to both lipid binding sites and the orthersteric site.  

In collaboration with Eric Dawson, homology modeling efforts are currently 

underway to model the mammalian PLD1 catalytic domain onto the 

Streptomyces bacterial PLD structures.  The linker loop has preliminarily been 

modeled into position in reference to the 1st HKD motif of the catalytic domain 

(figure 29), however this loop shares little homology with any sequence in the 

bacterial enzyme, and therefore de novo modeling and more structural restraints 

are necessary in order to model the accurate orientation of this loop region in 

relation to the catalytic domain as well as the possible conformational changes 

that occur upon small molecule binding. Biochemical data suggests His338 and 

Trp354 are integral for small molecule binding in the linker loop, but these 

residues are quite a distance apart according to both linear sequence and 

preliminary homology modeling of the linker loop (roughly 19 , figure 29).  Based 

on the significant conformational changes that occur in Akt upon inhibitor VIII 

binding (figure 28), it is proposed that in the tertiary PLD1 small molecule binding  
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Figure 29.  Homology model of human PLD1 (green, amino acid 312 through first HKD 
modeled) onto the C-alpha backbone of the bacterial Streptomyces PLD crystal structure 
that is complexed with tungstate (orange, observed in the orthosteric site). Highlighted 
in blue, the small molecule binding loop is loosely modeled onto an amino-terminal 
region of the protein.  (Model provided by E. Dawson). 
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site His338 and Trp354 are brought within close proximity of the compound and 

stabilize the interaction through as yet uncharacterized means.  

The biochemical studies herein have enhanced our understanding of 

mammalian enzymology.  Future related studies may consider biochemically 

characterizing the mechanism of action for other classes of direct PLD inhibitors, 

regardless of their specificity for PLD in the cellular setting.  Such studies might 

follow up on some preliminary observations made for the SERM class in which 

raloxifene and 4-OH tamoxifen were determined to be direct inhibitors of 

PLD1.d311, while tamoxifen indirectly inhibited (figure 30a).  This is likely through 

a known mechanism of tamoxifen partitioning into PI(4,5)P2 membranes and 

sequestering the lipid binding cofactor/enhancer.  CRC studies with tamoxifen 

and 4-OH tamoxifen also demonstrate that the PLD1 and PLD2 isoforms respond 

differentially to these small molecules, while PLD1.d311 behaves more similarly 

to Streptomyces PMF PLD, an enzyme that also lacks the PXPH domain (figure 

30b).  These differential responses suggest the N-terminal lipid binding domains, 

which are not highly conserved between mammalian PLD isoforms, may play a 

role in SERM mechanism of inhibition.  Early SLV binding studies with raoxifene 

further support differences in the small molecule effects on the catalytic versus 

the PXPH domains (figure 30c).  Using the SERMs as tools, differences in the 

mammalian isoforms and the multifaceted functional contributions of both the 

PXPH and catalytic domains could be explored. 
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Figure 30.  Preliminary mechanistic studies performed with the SERM class of PLD 
inhibitors. BSI was used to determine whether three representative small molecules 
from this class of compounds directly inhibited PLD1.d311.  BSI-derived Kd were 
compared to IC50 values from biochemical concentration response curves (A).  
Biochemical concentration response curves were performed for tamoxifen and  4-OH 
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tamoxifen with purified recombinant enzyme (B). Preliminary SLV experiments were 
performed with raloxifene to compare the impact of the compound on protein-lipid 
binding for the PXPH and catalytic domains of the protein (C). 
 

Other interesting small molecule mechanistic findings include differences 

in the composition of lipids that co-purify with PLD, or differences in gel filtration 

elution profiles dependent on small molecule present.  These findings might 

contribute to further enzymological and mechanistic understanding of the protein-

small molecule interaction (i.e. dodecyl maltoside detergents trigger monomeric 

and dimeric protein states, tungstate displaces phosphatidylinositolphosphate, 

VU-series compounds result in protein bleeding off the size exclusion column).  

This knowledge might also be used in conjunction with self-interaction 

chromatography (SIC) to identify protein buffer components that facilitate protein 

self-interactions ideal for protein cyrstalization.  SIC measures the second virial 

coefficient (B22) which describes all possible interactions between two protein 

molecules in a dilute solution. Proteins aggregate to form crystals in a narrow 

range of B22 values, which can be determined using SIC.  Preliminary SIC 

results, obtained in collaboration with Larry DeLucas, identified reagents that 

shifted the B22 from an initial value of -100 (severely aggregated) to zero (just 

outside the crystallization slot).  Overall yield and separation off gel filtration 

chromatography was significantly improved in the presence of these additives.  

Small molecule inhibitors might be ideal components to improve the B22 and 

facilitate protein crystallization.   

Overall, the dissertation studies described herein have added to the tools 

with which we have to biochemically study mammalian PLD and has enhanced 
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our understanding of its enzymology.  Completion of these studies leaves us with 

a novel class of potent and isoform-selective small molecules that specifically 

target mammalian PLD, for which we have determined the mechanism of action 

and region of the protein that encompasses the high affinity small molecule 

binding site.  In characterizing these novel compounds we have optimized and 

validated the use of BSI for measuring both protein-small molecule and protein-

lipid binding affinities.  This technique in combination with the VU-series PLD 

inhibitors significantly expands our biochemical capabilities and provides 

excellent opportunities for further characterizing mammalian PLD enzymology.  
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