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CHAPTER I

Introduction

Decreasing costs in sequencing technologies, in combination with large repositories of

clinical information, has enabled many novel discoveries in biomedicine by means of ex-

amining the associations between genetic variants and disease. These achievements are

facilitated by increased collection and reuse of genomic data (Green et al., 2011), as well

as broad efforts to obtain larger sample sizes (by sharing and combing data) for increased

statistical power (Panagiotou et al., 2013). Meta-analysis is a common solution for ag-

gregating study results across large consortia to achieve this goal. In fact, meta-analysis is

responsible for approximately 37% of the 15,845 genotype-phenotype associations listed in

the National Human Genome Research Institute (NHGRI) Catalog of Published Genome-

Wide Association Studies (GWAS) Catalog (Welter et al., 2014).

At the same time, the sensitive nature of genomic data has led to numerous discussions

around the governance of genomic records (Fullerton et al., 2010; Kaye et al., 2009). Cur-

rently, policy and advisory groups recommend removing identifying information (such as

personal names) to uphold the privacy of study participants (Lowrance and Collins, 2007;

Presidential Commission for the Study of Bioethical Issues, 2012).

I.1 Privacy Concerns on Genomic Data

Yet, the efficacy of such existing protections is increasingly being questioned (Rodriguez

et al., 2013), due to various demonstrations the identity of study participants, as well as

other sensitive information (such as disease status) can still be inferred from the shared

(presumably “safe”) genomic data (Gymrek et al., 2013; Lin et al., 2004; Homer et al.,

2008; Jacobs et al., 2009; Sankararaman et al., 2009; Im et al., 2012; Humbert et al., 2013;

Erlich and Narayanan, 2014).

Most recently, it was shown that a person’s identity could be ascertained by profiling a
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person’s Y-chromosome short tandem repeats (Y-STRs) and searching against various pub-

lic genealogy databases on the internet – even if the individual’s identity was not initially

tied to a DNA sequence (Gymrek et al., 2013). Yet, this is only the latest indication of the

challenges related with protecting identities and sensitive information from being inferred.

In 2004, for instance, it was illustrated that only a handful of single nucleotide polymor-

phisms (SNPs) were necessary to uniquely distinguish an individual’s sequence (Lin et al.,

2004). Next, in 2008 and later, it was shown that the rates of SNP alleles in a pool (e.g.,

a group of diabetics) could reveal disease status (Homer et al., 2008; Jacobs et al., 2009;

Sankararaman et al., 2009). Later in 2012, it was indicated that sufficient summary statis-

tics (e.g., regression coefficients and allele dosage) of genetic associations could lead to

identifiability concerns (Im et al., 2012). And in 2013, it was also suggested the disclo-

sure of one individual’s genome sequence could even jeopardize his relatives’ privacy due

to the high correlation between familial genomes (Humbert et al., 2013). More extensive

reviews on the privacy issues related to managing genomic data can be found at (Erlich and

Narayanan, 2014; Naveed et al., 2014).

While certain privacy attacks may seem nontrivial in the knowledge necessary to be

executed (Erlich and Narayanan, 2014), they have already raised serious concerns from

scientists, policy makers, and the general public. They have also led to reduced shar-

ing of genome sequences and even site-level summary statistics of studies. For instance,

based on (Homer et al., 2008), the National Institutes of Health (NIH) and Wellcome Trust

stopped sharing aggregate genomic data directly to the public (Zerhouni and Nabel, 2008).

These demonstrations have also influenced proposed regulations such as (US Department

of Health and Human Services and the Food and Drug Administration, 2011; European

Commission, 2012, 2014), some of which would designate all biospecimens and their de-

rived data as identifiable (US Department of Health and Human Services and the Food and

Drug Administration, 2011).
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I.2 Our Proposal

To address the privacy concerns on person-level genomic information as well as site-level

summary statistics, this thesis introduces a practical protocol to securely perform genotype-

phenotype association studies via meta-analysis across multiple sites in large consortia

(Fig. III.2). The protocol leverages cryptographic technologies to provide provable secu-

rity guarantees. Unlike alternative proposals such as (Kamm et al., 2013), in the protocol

of this thesis, constituent study sites retain full control of their respective individual partici-

pants’ data and local site analyses. This allows each site to independently make appropriate

adjustments to their own data or analyses, and account for site-specific differences in study

design, which is pervasive in multi-site genetic association studies but not supported in

(Kamm et al., 2013). Our protocol also allows each sites to contribute to the joint meta-

analysis without exposing site-level summary statistics of studies. This could enable a wide

range of collaborative studies across institutions that would otherwise be impossible due

to concerns over privacy breaches on site-level summaries, or institutional confidential-

ity. The comprehensive protections aforementioned make our protocol impervious to most

popular privacy attacks over genomic data at both the person- and site-level (Section IV.7).

In this thesis, we demonstrate the design and implementation of our secure protocol

(which we call SecureMA) for supporting genotype-phenotype association studies via meta-

analysis. To show the efficacy of our proposal, we also provide extensive empirical evalu-

ations with three multi-site meta-analyses of genetic association studies from several large

consortia, including the Electronic Medical Records and Genomics (eMERGE) network

(McCarty et al., 2011) and the Population Architecture using Genomics and Epidemiology

(PAGE) group (Fesinmeyer et al., 2013).
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CHAPTER II

Background

Before delving into details of the proposed protocol, we first introduce the relevant back-

ground information such as genotype-phenotype association studies, meta-analysis, and

cryptographic systems.

II.1 Genotype-Phenotype Association Studies

This work focuses on (securely) supporting genotype-phenotype association studies, a

widely-used technique for detecting traits that are likely to have caused the disease un-

der investigation. This is achieved by testing for the statistical correlation between genetic

variants (i.e., genes or genome regions) and disease status (i.e., phenotypes) on the pop-

ulation (Lewis and Knight, 2012). Association studies have enjoyed continuing research

investigation in the past decade, and have led to numerous important discoveries, some of

which are listed in the NHGRI GWAS Catalog (Welter et al., 2014).

In a typical association study, the population under study is often categorized into

groups of cases (e.g., people exhibiting the disease) and controls (e.g., reference popu-

lation not infected with disease). And SNPs are the most commonly used genetic markers

to test upon in association studies. A high SNP allele frequency among the case group

implies that the tested SNP is likely to be a contributing factor to the disease. The level

of association correlation is determined via statistical tests and reported in terms of corre-

lation significance p-values and power sizes (e.g., β -coefficients). P-values under 0.05 are

deemed as significant.

To ensure the reliability of association findings and eliminate false positives in corre-

lation, large sample sizes are often desirable for increased statistical power. A growing

number of collaboration consortia are founded to enable large-scale genotype-phenotype

association studies which can span many data-contributing sites from different geographic
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locations. For instance, our work uses data from the eMERGE network (McCarty et al.,

2011) and the PAGE group (Fesinmeyer et al., 2013).

II.2 Cryptosystems and Relevant Secure Computations

In this section, we present a general description of the cryptography and secure computation

techniques involved in the SecureMA protocol.

II.2.1 (Threshold) Paillier Cryptosystem

In this work, we leverage a “semantically secure” homomorphic public-key encryption

(HPE) framework to protect certain genomic information. Generally speaking, in a public-

key encryption system, a person, say Alice, generates two keys: 1) a public key, which is

made available to another entity, say Bob, who wishes to communicate messages to Alice

in an encrypted manner (i.e., the ciphertext) and 2) a private key, which is known only to

Alice and is applied to decrypt the ciphertext sent by Bob.

An encryption scheme is said to be semantically secure when it is infeasible for an

adversary (with finite computational capability), say Mallory, to gain knowledge about a

message when it observes a ciphertext and the corresponding public encryption key. This

property implies that even when the same message is encrypted multiple times, the cipher-

texts will be indistinguishable to Mallory. In other words, if Bob and Charlie encrypt the

same genotype-phenotype association statistics, say a regression coefficient with a value

of 10 using the same public key, then the resulting ciphertexts will appear to be different.

This mechanism further enhances the security of the encryption scheme (e.g., by protect-

ing against attacks which leverage a pre-computed lookup table with raw data and their

corresponding encryptions).

In addition, we require the encryption framework to possess an “additive homomor-

phic” property. This enables the computation of the encrypted sum of two messages to be

completed using only the corresponding ciphertexts (e.g., without decryption).

Paillier Cryptosystem. The Paillier cryptosystem (Paillier, 1999) is a probabilistic
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public key encryption protocol with a high confidentiality guarantee. Its additive homomor-

phic property enables direct support for several arithmetic operations, including addition

and multiplication by a constant value, over encrypted data.

The following provides a basic introduction to Paillier encryption:

• Keys: Let n = pq, where p and q are large prime numbers, and λ = lcm(p−1,q−1),

where lcm(.) denotes the function for least common multiple. We define function

L(x) = (x−1)/n and let g be an integer, such that gcd(L(gλ mod n2),n) = 1, where

gcd(.) is the function for greatest common divisor. The public and private crypto-

graphic keys then consist of (n,g) and (p,q,λ ), respectively. Note that there is only

one private key.

• Encryption: The encryption of a message m (e.g., the value of a regression coeffi-

cient) into a ciphertext c is accomplished by E(m,r) = gmrn mod n2, where g and n

correspond to the public key, and r is a random value. For future reference, we will

simply refer to this value as E(m).

• Decryption: The decryption of a ciphertext c is computed as:

D(c) =
L(cλ mod n2)

L(gλ mod n2)
mod n

Threshold Paillier Cryptosystem. Public key cryptosystems are vulnerable in that

the system can be compromised if a private key is disclosed (either unintentionally or ma-

liciously). To enhance the security of the system and ensure that the participants cannot

easily violate the protocol, a private key can be split into l distinct “shares”, where each

share is provided to a different participant (e.g., a data manager in our protocol). This vari-

ation on cryptography is called a “threshold” system because it requires at least w out of

the l participants to correctly decrypt information for Alice. When fewer than w partici-

pants attempt to decrypt, the system will be unable to reveal the corresponding message.

6



A threshold version of the Paillier cryptosystem was introduced in (Cramer et al., 2001)

and was utilized in our protocol. In practice, we assume that the majority of participants in

cryptographic systems are honest and thus, it is unlikely collusion will lead to illegitimate

decryption. To achieve good security in practice, we set w > 2
3 l according to the Byzantine

fault tolerance principle (Lamport et al., 1982).

For the purposes of the SecureMA protocol, these participants correspond to the data

managers who help maintain the encrypted summary statistics of genotype-phenotype as-

sociations (as introduced later in Section III.2). To perform decryption, the participants

independently decrypt the result of the meta-analysis to obtain partial decryptions. The

scientist who issued the original study inquiry will complete the decryption process by

aggregating these partial decryptions.

II.2.2 Yao’s Garbled Circuits

Yao’s garbled circuits is a cryptographic technique which enables two untrusting parties to

jointly evaluate a function without revealing their respective private input data (Yao, 1982).

It guarantees that nothing is revealed but the final output of the function. In SecureMA,

Yao’s garbled circuits is leveraged to support a portion of the secure division operation (see

Sections IV.5 and IV.6).

The basic idea of garbled circuits is as follows. First, one party called the garbler,

prepares a “garbled” version of a binary circuit representing the function to be computed.

Then the following are transmitted to a second party called the evaluator: the garbled cir-

cuit, the garbled inputs from the garbler, and the mapping between garbled-circuit outputs

and raw bit values. Later on, the evaluator will initiate an oblivious transfer protocol (Naor

and Pinkas, 1999) with the garbler and obliviously computes the circuit output without

disclosing any intermediate values.

Our garbled circuit implementation, CircuitService, is built on top of FastGC (Huang

et al., 2011), a Java-based framework which incorporates several optimizations to achieve
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state-of-the-art performance. Our extensions to FastGC include speed-up optimizations

through reusing the “offline” preparation of circuits, and the design of customized circuits.
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CHAPTER III

SecureMA for Secure Meta-analysis

In this chapter, we introduce our novel protocol, SecureMA, for securely performing genotype-

phenotype association studies in large consortia via meta-analysis. This chapter is orga-

nized as follows: first, we introduce meta-analysis and the computations involved; then

we describe our SecureMA proposal in detail, showing how it can be applied to support

meta-analysis securely. We postpone the description of specific sub-protocols underlying

SecureMA to the next chapter (see Chapter IV).

Our protocol assumes a semi-honest threat model (i.e., honest-but-curious), a common

assumption in many cryptographic systems. This means that each participants in the system

are expected to always follow the protocol specification, but may try to infer additional

information from what they see in the process.

III.1 Meta-analysis of Genotype-Phenotype Association Studies

To perform genetic association studies across multiple study sites, a commonly used method

is meta-analysis. It is a statistical technique for contrasting and aggregating different studies

to reach consistent conclusions, and has seen wide adoption in many scientific disciplines

(Olkin, 1985).

Genotype-phenotype association studies can take advantage of meta-analysis to obtain

larger sample sizes, leading to more robust inference of associations. In this work, we

focus on the inverse-variance (or fixed-effect) approach to perform meta-analysis (Willer

et al., 2010), which computes the average of the effect size weighted by the inverse of its

variance:

Z = β/se =
∑i βiwi

∑i wi

/√
1

∑i wi
= ∑

i
βiwi

/√
∑

i
wi , (III.1)

where β is the aggregate effect size, se is the aggregate standard error, βi is the effect

9



size of association for the ith constituent study (i.e., one site contributing to meta-analysis),

wi = 1/se2
i is the weighting term, and sei corresponds to the standard error of the effect for

the ith constituent study.

In our secure protocol, we square Equation III.1 to simplify the calculations because

there is no straightforward and efficient way to compute the square root in a cryptographic

setting. Following the transformation, our goal is represented as:

Z2 = (∑
i

βiwi)
2
/

∑
i

wi (III.2)

We point out that once Z2 is obtained, the final square root and conversion from Z-score

to p-value can be easily performed by the software.

In later sections, we will describe how Equation III.2 can be supported in secure.

III.2 Overview of the SecureMA Protocol

The proposed SecureMA protocol consists of two main steps: 1) a one-time Setup step

which helps prepare the system for subsequence computations, and 2) the Secure Compu-

tation step which involves the actual computations of meta-analysis. The Setup initializes

the system by: i) generating and distributing the cryptographic keys (for encryption and

decryption), ii) encrypting summary results of local genetic association studies at each

study site, and iii) submitting the site-specific encrypted summaries to their respective data

managers (e.g., coordination centers in practice). The Secure Computation step securely

performs meta-analysis over the encrypted submissions of site-level association statistics

without revealing their original content (Fig. III.2).

Protocol Participants. Before going into further details of each step, we first summa-

rize the various participants in SecureMA categorized by their roles:

• A Scientist (e.g., genomicist) issues meta-analysis study queries to the system and

receives the encrypted final results which only he can fully decrypt.
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• The Local Sites are the individual sites who collect genomic and phenotypic data,

conduct their local association studies at their respective institutions, and contribute

to the joint meta-analysis via data sharing.

• (Optional) The Data Managers (or simply referred to as Managers when without

confusion) manage the (encrypted) genomic information on behalf of local sites.

This optional optimization makes the protocol more practical by supporting meta-

analysis while reducing the number of participants required during the running of

the protocol (e.g., one manager can delegate multiple local sites). The data managers

only have limited decryption capabilities (as introduced later) and thus are not able

to learn the content of the hosted data. In practice, these can be coordinating centers

or other organizations entitled to manage encrypted data. The use of external data

managers is optional.

• The Mediator computes the meta-analysis equations securely, and responds to the

scientist’s queries with encrypted results. Note that the mediator is not capable of

learning the content of the data or computations, since they are all carefully protected

throughout the process.

III.3 Setup Step of SecureMA

To setup the SecureMA protocol, a one-time step for generating and disseminating the pub-

lic/private keys is coordinated by a trusted authority – the Key Manager – who is isolated

from the SecureMA system and is not involved in any data management or computations

(Fig. III.1).1 To make the cryptographic system more secure, we leverage a threshold Pail-

lier cryptosystem which protects the private key via secret share (Shamir, 1979) such that

no corrupt minority of key holders can compromise the system (details in Section II.2.1).

1Following standard practice in security for cryptographic systems, this authority generates keys and has
no further interaction with any of the participants involved in SecureMA. This role could be played by a
semi-trusted (outside) third-party organization with a good reputation, a trustworthy computing module, or
even a virtual party representing a distributed and secure mechanism for key generation.
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Figure III.1: The Setup step of the SecureMA protocol: cryptographic keys are generated
and disseminated. The public key (for encryption) is broadcast to the mediator and local
sites, while the private key (for decryption) is split into secret shares (SK1, ..., SKK) which
are securely transmitted to the respective data managers.

Specifically, the private key is split into multiple secret shares and distributed across the

participants in the system (i.e., the ith participant receives the ith share of the private key

SK. In SecureMA, these participants correspond to the various data managers). By do-

ing so, to successfully decrypt data, collaboration is required between the majority of key

holders. As detailed in Section II.2.1, the splitting of the key enforces an “honest-majority”

guarantee to mitigate collusion for illicit decryption. The public key PK is direclty broad-

cast to relevant participants (e.g., local sites, and the mediator).

Once the preparation on cryptographic keys is complete, the SecureMA protocol can

proceed as individual study sites encrypt their local study summaries (i.e., properly scaled

wi and wiβi) with the public key PK, and participate in the joint meta-analysis by contribut-

ing (encrypted) data.

Optionally, to make the protocol more practical and eliminate administrative complex-

ity, several intermediate parties – Data Managers – can be setup to host the (encrypted

aggregate) data on behalf of the local sites. In doing so, one manager can coordinate for

several local sites, such that only a limited number of online participants are required for

the protocol to proceed. Following this scheme, the local sites submit encryptions of their
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study summaries (e.g., effect size and the inverse of the variance) to their entrusted data

managers and can then go offline.2 We emphasize that, unless massive collusions occur,

the data managers are not capable of decrypting or inferring the content of the hosted data

encryptions, due to the “honest majority” rule enforced by the threshold Paillier cryptosys-

tem.

III.4 Secure Computation Step of SecureMA

The actual computation of meta-analysis is initiated when a scientist submits a study query

to SecureMA (Fig. III.2a). Upon receiving the query, the mediator requests the relevant

data encryptions of site-specific association summaries (i.e., E(wi), E(βiwi)) from data

managers. Upon receiving the data encryptions, the mediator securely aggregates them

using the ADD sub-protocol (Section IV.2). This process yields encryptions E(∑βiwi) and

E(∑wi) for Equation III.2.

Next, the mediator coordinates with one randomly selected data manager to securely

perform the division calculation in order to derive the weighted average of the effect size

(Fig. III.2b), which is the final operation of meta-analysis (as shown in Equation III.2).

This is achieved by following a two-party secure division sub-protocol DIV (Section IV.5).

Up to this point, the meta-analysis result is still in an encrypted state. The mediator is

then responsible for initiating a final round of collaborative decryption by distributing the

result encryption to a majority of the data managers for partial decryption (Fig. III.2c). By

collecting a sufficient number of the partially decrypted shares from the data managers, the

scientist combines them to reveal the final complete decryption (i.e., Z2). Thus, until the

scientist requests the final decryption, no individual or site-level aggregate information is

ever disclosed because all information remains encrypted throughout the protocol.

Once the squared Z-score, Z2, is obtained, the final result to the scientist’s study inquiry

could be derived automatically according to the instructions in Section III.1.

2In rare occasions when necessary, the local sites can come back online to provide additional data.
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(a) Secure summation

(b) Secure division (c) Result decryption

Figure III.2: The SecureMA protocol (secure computation step). (a) The process begins
when a scientist submits a meta-analysis study inquiry. Each data manager in the study
submits encrypted local statistics (e.g., effect size and the inverse of its variance) to the
Mediator for secure summation. (b) The Mediator then coordinates with one random data
manager to securely divide the numerator by the denominator of the meta-analysis function.
(c) The results of the meta-analysis are partially decrypted by the data managers, which
are composed into the final full decryption of the meta-analysis p-value at the scientist’s
computer.
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We provide a complete activity diagram in Fig. III.3 to better illustrate the series of

computation procedures and interactions in SecureMA.

Public key

Public key

Share m of private key

Share n of private key

E(wi), E(wiβi)

E(wj), E(wjβj)

Study inquiry
E(wi), E(wiβi)

E(wj), E(wjβj)

Secure summation

Secure division

Secure division

E(result)

E(result)

Partial decryption m of E(result)

Partial decryption n of E(result)

Full decryption: D(result)

Scientist:

Mediator Data Manager m Data Manager n Local Sites: Key Manager

Key distribution

Site statistic submission

Secure computations

Study inquiry

Decryption of result

Figure III.3: A complete activity diagram of the SecureMA protocol. Denoted in gray
boxes is the one-time Setup step covering key distribution and submission of encrypted site-
specific statistics. In a typical running, a scientist issues a study query to start the protocol,
and obtains the study result in the end. In the figure, E(data) and D(data) correspond to
the encryption and decryption of data, respectively. There may be multiple local sites and
data managers. The key manager is isolated from the rest of the SecureMA system and its
only involvement is key generation and distribution.
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CHAPTER IV

Secure Computation Sub-protocols

In this chapter, we delve into the technical details of specific cryptographic sub-protocols

underlying SecureMA, by introducing a series of secure transformations and arithmetic

primitives for supporting the meta-analysis computation. Specifically, we show how to

convert between data representations for our targeted cryptographic schemes (Section IV.1),

how to securely aggregate encrypted data (Section IV.2), how to multiply an encryption by

a constant value (Section IV.3), how to securely subtract (Section IV.4), and how to derive

the division between two encrypted values (Section IV.5). At the end of the section, we

briefly analyze the privacy guarantees of the proposed protocols.

IV.1 SHARE: Converting Paillier Encryptions to Secret Shares

The SHARE sub-protocol is designed to transform data encrypted via the Paillier cryp-

tosystem to randomized values based on a two-party secret-share scheme (Shamir, 1979).

It is necessary because the secure logarithm sub-protocol LOG (introduced later in Section

IV.6) requires input data to be in the form of secret shares, while all data in our protocol

are Paillier encryptions which are not compatible with the requirement.

First, we formally define the conversion sub-protocol: given the Paillier encryption

E(x) of a secret value x, the goal is to find two values x1 and x2, such that x1 + x2 = x. The

two values are randomized to ensure that it is not possible to predict the value of one from

the other (note that x is not revealed). This is accomplished as follows: first, one participant

(i.e., a data manager in our case) generates a random value rand to obfuscate the given value

E(x) by computing E(x+rand) via the secure addition sub-protocol ADD (introduced later

in Section IV.2). The resulting encryption E(x+ rand) is then securely transmitted to the

other participant (i.e., the mediator in our case). Later a decryption process helps obtain the

mediator’s data share x2 = x+ rand, while the data manager holds his share x1 = −rand.
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This means that the two participants are collaboratively holding a shared secret (i.e., the x

value, which is equal to x1 + x2).

IV.2 ADD: Secure Addition

The Paillier cryptosystem supports secure summation directly through an additive homo-

morphic property (Section II.2). Given two encrypted values E(m1),E(m2), the encryption

of the sum (m1 +m2) can be computed as:

E(m1 +m2) = gm1+m2 · rn mod n2

= (gm1 · rn
1) · (gm2 · rn

2) mod n2

= E(m1) ·E(m2) mod n2,

(IV.1)

where r1,r2 are random values, r = r1r2, and n is a parameter in the Paillier cryptosystem

(as introduced in Section II.2.1).

IV.3 MULC: Secure Multiplication-by-Constant

It is also straightforward to implement multiplication of an encrypted value by a known

constant value via the Paillier cryptosystem. The multiplication-by-constant sub-protocol

(denoted as MULC) proceeds as follows. Suppose we are provided with the encryption

E(m) of a value m and need to compute E(k ·m), where k is a known constant. This can be

accomplished by computing:

E(k ·m) = gk·m · rn mod n2 = (E(m))k mod n2 (IV.2)

IV.4 SUB: Secure Subtraction

Since the Paillier cryptosystem is only “additive” homormorphic, subtraction is not natively

supported. We observe that secure subtraction (SUB sub-protocol) can be achieved by first

negating the subtrahend and converting it into an addition problem, which can then take

advantage of the existing multiplication-by-constant (i.e., MULC) and addition (i.e., ADD)
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sub-protocols described above. In brief, given two encryptions E(m1) and E(m2), the

subtraction (m1 −m2) can proceed in secure as:

E(m1 −m2) = ADD(E(m1), MULC(E(m2),−1)) (IV.3)

IV.5 DIV : Secure Division

As shown in Equation III.2, meta-analysis requires a final division of a numerator by a

denominator. However, there is no existing protocol for directly computing the division of

two Paillier-encrypted numbers. We therefore choose to convert the division operation (i.e.,

the DIV sub-protocol) into a subtraction problem using a secure logarithmic transformation

(the LOG sub-protocol introduced later in Section IV.6).

For simplicity, we denote: a = ∑
i

βiwi and b = ∑
i

wi (see Equation III.2). Via the loga-

rithmic transformation, the goal of meta-analysis in Equation III.2 becomes:

lnZ2 = ln
a2

b
= 2lna− lnb (IV.4)

We leverage the secure logarithm sub-protocol LOG introduced later to compute lna

and lnb for the transformed division operation (where both a and b are secret values).

The final Z2 value can be easily derived by taking the exponential, exp(.), on the final

subtraction result.

IV.6 LOG: Secure Logarithmic Transformation

As described earlier, a secure logarithmic transformation (i.e., LOG sub-protocol) is uti-

lized in SecureMA to perform the secure division operation of meta-analysis. Our LOG

sub-protocol builds upon the secure lnx protocol in (Lindell and Pinkas, 2000). More for-

mally, given a private input x, which is composed of secret shares x1 and x2 from two

participants (following the SHARES sub-protocol), a two-phase process is applied to ap-

proximate the logarithm and output two secret shares of the result.
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More specifically, x is approximated by 2y, with a relative error of ε :

lnx = ln(2y(1+ ε)) = y ln2+ ln(1+ ε) (IV.5)

Based on this representation, approximating lnx requires securely computing the two

terms in Equation IV.5, which is facilitated by the two-phase process described below.

IV.6.1 Logarithm Phase 1: Rough Estimate via Garbled Circuit

In the first phase, the logarithm lnx is (roughly) approximated by 2y leveraging Yao’s gar-

bled circuits (see Section II.2.2) to protect sensitive data. The output of this phase contains

two portions, γ and α , each of which is composed of two secret shares obfuscated to pre-

vent disclosure and is scaled up (i.e., multiplied by a power of 2 and truncated) to avoid

numbers with decimals and use only integers:

γtrue + γrand = 2N · y ln2 (IV.6)

αtrue +αrand = 2N · ε (IV.7)

Equation IV.6 approximates the first term in Equation IV.5, which is a rough estimate of

lnx. The terms are scaled up to avoid decimal values because the computation is performed

over encrypted data, which requires the operands to be integers. Here, the term 2N is as a

scaling factor, where N is the upper bound for the exponent estimate y.

Equation IV.7 denotes the scaled relative error of the approximation, and will be applied

in the next phase to boost the accuracy of approximating Equation IV.5.

Since Yao’s garbled circuits involve two participants and no intermediate information

other than the function output should be disclosed to any single participant, we adopt ran-

dom values γrand and αrand contributed by one of the two participants in the computation

for proper protection.

At the end of this process, one participant will hold αrand and γrand , while a second
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participant will be in possession of αtrue and γtrue, as illustrated in Equations IV.6 and IV.7.

IV.6.2 Logarithm Phase 2: Refined Estimate via Taylor Series

In the second phase, we further refine our lnx approximation by estimating the second

term in Equation IV.5. This is accomplished via an oblivious polynomial evaluation (Naor

and Pinkas, 1999), such that a secure polynomial from one participant is computed on the

data contributed by the other participant without disclosing private information (such as

the polynomial coefficients or private inputs of the participants). To perform the approxi-

mation, ε is substituted with αtrue+αrand
2N (derived from Equation IV.7). Next, we apply the

following Taylor series (with proper scaling up to avoid fractional values):

ln(1+ ε) ·2Nklcm(2, ...,k)≈
k

∑
i=1

(−1)i−12N(k−i) · lcm(2, ...,k)
i

· (αtrue +αrand)
i (IV.8)

The polynomial on the right side (denoted as Q(αtrue)) will be expanded and evalu-

ated leveraging our MULC and ADD sub-protocols. The result at this point is still in an

encrypted state.

IV.6.3 Result Assembly for Logarithm

Based on the results from the previous two phases, the final result of lnx is obtained through

an assembly process. First, the γ’s in Equation IV.7 are further scaled up by a factor

2N(k−1)lcm(2, ..,k):

(γrand + γtrue) ·2N(k−1)lcm(2, . . . ,k) = y ln2×2Nklcm(2, . . . ,k) (IV.9)

Next, the scaled γ’s are encrypted and securely summed via Equations IV.9 and IV.8:

E((ln(1+ ε)+ y ln2) ·2Nklcm(2, . . . ,k))

≈ E(lnx ·2Nklcm(2, . . . ,k))
(IV.10)

20



After obtaining the encryptions of scaled-up lna and lnb, we can compute the scaled-

up E(lnZ2) via Equation IV.4. The final Z-score (in decimal) can easily be derived after

decryption and scaling the result back down. And the desired p-value can be obtained

following the instruction in Section III.1.

IV.7 Security Analysis

Here we provide a brief analysis on the privacy guarantees of the SecureMA protocol. In

this thesis, we regard the privacy of genomic data to be breached if the original identities

associated with the shared data, or other sensitive information such as medical conditions,

are directly revealed or could be inferred by the protocol participants.

We prove the security of the protocol by using Goldreich’s Composition Theorem (Gol-

dreich, 2001). Briefly, it aims at showing that the view of the messages received (typically

measured by its distribution) from each participant during the execution of the protocol can

be effectively simulated given the input of that participant and the global output. In other

words, we want to prove that all participants learn nothing except for the final output. In

below, we show how each of the SecureMA sub-protocols preserves privacy.

Theorem IV.7.1. ADD and MULC sub-protocols are privacy-preserving.

Proof. Since both secure addition and multiplication-by-constant are supported by default

as part of the additive homomorphic property of the Paillier cryptosystem, the security

proof in the original publication applies (Paillier, 1999).

Theorem IV.7.2. SUB sub-protocol is privacy-preserving.

Proof. Since SUB is a direct composition of ADD and MULC (both of which prove to be

privacy-preserving), SUB preserves privacy.

Theorem IV.7.3. SHARE sub-protocol is privacy-preserving.
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Proof. We observe that the only message exchanged during the process is E(x+ rand).

Since rand is uniformly distributed, its decryption (x+ rand) is computationally indistin-

guishable from a uniform distribution, according to the variation distance analysis in (Hall

et al., 2011). As a result, SHARE is also privacy-preserving.

Theorem IV.7.4. LOG sub-protocol is privacy-preserving.

Proof. Since our enhancement to the original lnx protocol in (Lin et al., 2004) does not

affect its cryptographic properties, the security analysis on lnx in (Lindell and Pinkas,

2000) applies.

Theorem IV.7.5. DIV sub-protocol is privacy-preserving.

Proof. Since DIV is a direct composition of the LOG and SUB sub-protocols (both of

which prove to be privacy-preserving), we conclude that DIV preserves privacy.

Since all underlying sub-protocols preserve privacy, we conclude that the SecureMA

protocol is privacy-preserving.

Here we provide some intuition with respect to the biomedical implications of the pri-

vacy guarantees of SecureMA. Throughout the protocol, the privacy of the genomic records

of the individual participants is ensured. This is because the records are maintained solely

at their respective local sites and are never disclosed. This resolves privacy concerns over

person-level genome sequences (e.g., no risk of unique identifiability based on the unique-

ness of SNPs as posed by (Lin et al., 2004)).

Moreover, site-level summaries (e.g., genetic association study statistics of each lo-

cal site) are protected via strong encryption throughout the protocol. And the final meta-

analysis results (limited to aggregate p-values only) are only made known to the original

issuer of the study inquiry. Such protections make it impossible to perform inference at-

tacks based on study statistics or allele frequencies or regression coefficients, which are

features relied upon in various attacks, such as in (Homer et al., 2008; Jacobs et al., 2009;

Sankararaman et al., 2009; Im et al., 2012).
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CHAPTER V

Experimental Results

To demonstrate the efficacy of our proposal, we implemented the SecureMA protocol, and

carried out a series of empirical evaluations on its computation accuracy, running time

efficiency, and sensitivity to certain protocol parameters. In this chapter, we describe our

software implementations, study data, our evaluation on three real-world meta-analysis

studies, and additional proof of scalability of the protocol.

V.1 Software Implementations & Experiment Settings

We implemented the SecureMA protocol in the Scala and Java programming languages

and provide programmable interfaces (API) for Java. The entire software package can be

deployed as a single Java Archive (JAR) package and run on any computing platform where

the Java Virtual Machine (JVM) is available.

Our SecureMA software is released open-source:

http://github.com/XieConnect/SecureMA

Our customized Yao’s garbled circuits framework, CircuitService, is also released open-

source:

http://github.com/XieConnect/CircuitService

All the experiments were performed on a quad-core Xeon computer (2.4 GHz, 4 GB

memory), running 64-bit Ubuntu system and Java 1.7. We simulated the different partic-

ipants of the protocol using separate system processes communicating via local network

connections. All experiments were performed without parallelization to avoid potential

interference of running time between different system processes.

V.2 Study Data

In this work, we used three sets of study data for evaluation, which are summarized below.
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The eMERGE hypothyroidism study. The first collection of datasets is from a GWAS

on hypothyroidism (Denny et al., 2011) provided by the eMERGE network (McCarty et al.,

2011). It consists of 6,370 study participants across five study sites who contributed data:

i) the Group Health Cooperative, ii) the Marshfield Clinic, iii) the Mayo Clinic, iv) North-

western University Medical Center, and v) Vanderbilt University Medical Center. For eval-

uation we analyzed 100 single nucleotide polymorphisms (SNPs) – these include the 16

statistically significant SNPs (p < 10−6) reported in their original study and an additional

84 random SNPs for running time efficiency analysis. Local-site studies were adjusted for

birth decade and sex following the approach described in (Denny et al., 2011).

The PAGE obesity study. The second collection of datasets is from a genetic associa-

tion study on obesity and body mass index (Fesinmeyer et al., 2013) provided by the PAGE

consortia (Matise et al., 2011). It consists of 53,238 participants (37,823 European Amer-

icans and 15,415 African Americans in specific), and spans across six study sites: i) the

Atherosclerosis Risk in Communities Study (ARIC), ii) the Coronary Artery Risk in Young

Adults (CARDIA), iii) the Cardiovascular Health Study (CHS), iv) the Epidemiologic Ar-

chitecture for Genes Linked to Environment (EAGLE) accessing the National Health and

Nutrition Examination Surveys (NHANES), v) the Multiethnic Cohort (MEC), and vi) the

Women’s Health Initiative (WHI). For evaluation we analyzed 40 SNPs – these include the

25 statistically significant SNPs (p < 0.05) as identified by their original study, and an ad-

ditional 15 SNPs. Local-site studies were completed following the processing procedures

described in (Fesinmeyer et al., 2013).

The EAGLE diabetes study. The third collection of datasets is from a genetic asso-

ciation study on Type II Diabetes provided by the EAGLE group (Haiman et al., 2012),

which is a sub-site of PAGE, and itself can be divided into two sub-studies associated with

the National Health and Nutrition Examination Surveys (NHANES): i) NHANES III and

ii) NHANES 1999-2002. It contains 14,998 participants and spans several ethnicities (e.g.,

non-Hispanic white, non-Hispanic black, Mexican-American, and others). We analyzed

24



216 SNPs. The published study (Haiman et al., 2012) did not report p-values for all SNPs

and, thus, for comparison, we only focus on a controlled benchmark of the result accuracy

using the standard non-secure meta-analysis as the baseline.

V.3 Accuracy of Genetic Association Results

We compared the accuracy of our secure computations with those reported by the original

studies associated with these datasets (Denny et al., 2011; Fesinmeyer et al., 2013) (EA-

GLE is excluded from comparison due to lack of published p-values as baseline). These

comparisons are summarized as QQ-plots of the SNP association p-values on a negative

logarithmic scale (Fig. V.1). The plots for the eMERGE and PAGE studies correspond

to the 16 and 25 SNPs, respectively, that were reported as significant in the publications.

To compare the secure and non-secure estimates of the p-values, we applied a linear re-

gression with the y-intercept forced to zero. The Pearson correlation coefficient was found

to be ∼0.998 and ∼1.000 for eMERGE and PAGE, respectively, implying that the secure

meta-analysis yielded results directly in line with those in the original publications. The

regression slopes for the PAGE and eMERGE datasets are 1.001 and 0.952 respectively,

and in both cases the rank order of the significance of the SNPs was retained. These results

illustrate that the secure and non-secure approaches produce highly consistent results.

V.4 Result Accuracy in a Controlled Setting

In the main text, we pointed out that the secure computation results were close to the

“true” association values (from the original publications), but not perfect. We note that in

replication studies, it is not uncommon for there to be minor variability in the statistical

routines performed. Thus, to present a more controlled evaluation on the computational

accuracy, we performed additional comparisons with a non-secure meta-analysis as the

baseline (i.e., results taken directly from the widely-used METAL software (Willer et al.,

2010) instead of using the reported results from their original studies).

The comparisons are reported as QQ-plots on a negative logarithmic scale (Fig. V.2).
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(a) eMERGE accuracy (b) PAGE accuracy

Figure V.1: Meta-analysis result accuracy from SecureMA. The correlation plots corre-
spond to: (a) the p-values (secure protocol vs. original publication) based on the 16 SNPs
from eMERGE; (b) the p-values (secure protocol vs. original publication) based on the
25 SNP-ethnicity pairs from PAGE (all SNPs annotated correspond to one ethnicity sub-
population, except for rs6548238’, which corresponds to another)

It can be seen that our secure results are extremely close to the non-secure results. Specif-

ically, a linear regression with the y-intercept forced to zero, yielded both a slope and

correlation coefficient of ∼1.000 for all three datasets. Overall, these results demonstrate

our secure protocol supports genetic association studies with high accuracy. Further details

on how to achieve even greater accuracy can be found in our extensive sensitivity analysis

(Section V.6).

V.5 Running Time Efficiency

To evaluate the running time of the protocol, we performed a series of experiments using

the aforementioned system settings. All times are reported based on the actual user time

(instead of the CPU time).

On average, the secure meta-analysis for most SNPs completed in 1.20 to 1.34 seconds

(with a standard deviation ≤ 0.024 seconds) and no SNP required more than 1.38 seconds

(Table V.1). In comparison to the eMERGE and PAGE datasets, the EAGLE study con-

sumed slightly more time, due to the fact that EAGLE consists of much larger numeric
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Figure V.2: A controlled comparison of the P-values derived from a non-secure and secure
meta-analysis protocol. These results are based on (a) 100 SNPs from eMERGE, (b) 40
SNPs from PAGE, and (c) 216 SNPs from EAGLE.
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values which leads to longer processing time.

Table V.1: Per-SNP running time for SecureMA and the proportion of the time dedicated
to the division process (mean and standard deviation in seconds).

Division Proportion of
Dataset Total Sub-step Division

eMERGE 1.2028 (0.0169) 1.2017 (0.0169) 0.9991 (0.0002)
PAGE 1.2148 (0.0239) 1.2136 (0.0240) 0.9990 (0.0005)

EAGLE 1.3427 (0.0164) 1.3423 (0.0165) 0.9997 (0.0003)

Sample size. It is important to recognize that the running time of our protocol is weakly

dependent on the number of study participants in the study (i.e., sample sizes), because the

secure computations only occur on site-level summaries1. This implies that our protocol

can be efficient even in studies with very large sample sizes, which is common for GWAS

in large consortia.

Number of sites. We also point out that the majority of the running time is dedicated

to the secure division of the meta-analysis (more than 99.9%), as opposed to other compu-

tations such as secure summation (Table V.1). This indicates the protocol is scalable to a

large number of data-contributing sites. Specifically, the division operation only involves

the mediator and one other participant, and thus its running time is not dependent on the

number of sites. While the running time of other computations (e.g., secure summation)

may increase linearly with the number of sites, its overall running time (and increase) is

negligible.

To demonstrate the scalability of our technology for large consortia, we randomly se-

lected sites from the eMERGE dataset to simulate environments consisting of up to 100

data-contributing sites (e.g., data managers participating in the protocol). For each setting,

we computed a meta-analysis for 100 SNPs (Fig. V.3). We illustrate that even when the

protocol is composed of 100 sites, the time to complete the computation is around 1.22

seconds, which is approximately the same as the initial case studies.

1Individual research participant records are used by sites only for their local analyses. These are computed
without encryption and, thus, the running time is negligible when compared to secure computations.
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V.6 Sensitivity Analysis

The SecureMA protocol incorporates several tunable parameters to allow users to tune the

computational accuracy and running time efficiency as necessary. These are introduced

because neither fractional values, nor division over encryptions, are directly supported in

cryptographic protocols. Here we demonstrate the impact of these parameters both theo-

retically and empirically.

V.6.1 Parameters Influencing Protocol Sensitivity.

There are three primary parameters that influence the accuracy and running time of the

SecureMA protocol. These parameters were introduced due to a series of transformations

and approximations to Equation III.2.

The first parameter corresponds to a scale-up factor 10s, where the scale s is defined

a priori by protocol participants. This is multiplied against every value submitted by the

local sites. In doing so, every value is converted from a decimal to an integer.

The next two parameters are associated with the approximation of secure division,

which relies on the secure logarithmic transformation (Equation IV.4). Briefly, lnx can

be approximated as follows:

ln x ≈y ln 2×2Nk · lcm(2, . . . ,k)
2Nk · lcm(2, . . . ,k)

+

k
∑

i=1
(−1)i−12N(k−i) · lcm(2,...,k)

i · (αtrue +αrand)
i

2Nk · lcm(2, . . . ,k)
,

(V.1)

where integer y is a rough estimate of the exponent such that 2y ≈ x, and additional terms

such as 2Nk and lcm(2, . . . ,k) are for scaling purposes. The first term on the right side of

Equation V.1 obtains a rough estimate of lnx while the second term refines the previous

approximation using a Taylor series.

Based on the above function, the second tunable parameter corresponds to the max-

imum exponent (i.e., N, or the upper bound of exponent estimate y) required to roughly
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estimate lnx. And, the third tunable parameter corresponds to the number of expansions

(i.e., k) to perform in a Taylor series when refining the accuracy of approximating lnx.

For evaluation purposes, we randomly selected five significant and five non-significant

SNPs from the eMERGE dataset to execute a series of secure meta-analyses.

V.6.2 Evaluation of the Scale-up Factor.

As mentioned, the scale-up factor 10s is used to convert decimal values into integers. Larger

factors result in the truncation of a fewer number of trailing digits and, thus, a smaller

amount of information loss during computation.

Fig. V.4 depicts how the computational error and the overall running time, respectively,

of the secure meta-analysis are influenced as the factor is varied from 104 to 1016. For

context, SecureMA uses a default value of 108.

In Fig. V.4a), it can be seen that, in general, the computational error of the p-value de-

creases (approaching 0) as the scale-up factor increases. Overall, the absolute and relative

errors are always bounded within the range [−3.0×10−5, 8.2×10−6] and [−0.03%, 0.01%]

respectively. However, we note there are several outlying points in the graph, such as at

106 and 109. We note that these occur because, at times, the error of the two logarithms in

Equation IV.4 diverge in opposite directions, which results in a magnification of the total

error.

Nonetheless, in Fig. V.4b) it can be seen that the variance of the overall running time

is relatively small as the scale-up factor increases. This is an expected result because the

change of the scale-up factor has limited influence on the secure division operation, which

is the most time-consuming process in the protocol.

V.6.3 Evaluation of the Maximum Exponent of the Logarithm Approximation.

The secure logarithmic transformation (i.e., lnx where x is encrypted) involves two phases

to the approximation. The first phase aims to find an optimal integer exponent to roughly

estimate the number x. The maximum exponent we analyze in this section corresponds to

30



0
.0

0
.4

0
.8

1
.2

# of sites

R
u
n
n
in

g
 t
im

e
 (

d
iv

is
io

n
)

R
u
n
n
in

g
 t
im

e
 (

s
u
m

m
a
ti
o
n
)

0
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

secure division

secure summation

2 5 10 20 100

Figure V.3: Average running time of SecureMA, per SNP, as a function of the number of
sites providing data (all times reported in seconds).

−
3
e
−

0
5

0
e
+

0
0

3
e
−

0
5

Scaling Factor

E
rr

o
r 

o
f 
P

−
va

lu
e

10
4

10
6

10
8

10
10

10
12

10
16

(a) Accuracy

1
.2

0
1
.3

0
1
.4

0

Scaling Factor

R
u
n
n
in

g
 t
im

e

10
4

10
6

10
8

10
10

10
12

10
16

(b) Running time (in seconds)

Figure V.4: Impact of the scale-up factor on (a) computational accuracy; (b) running time
efficiency. Results are based on the 10 SNPs from the eMERGE dataset (mean +/- one
standard deviation).

31



−
6
e
−

0
6

0
e
+

0
0

Maximum Exponent

E
rr

o
r 

o
f 
P

−
va

lu
e

64 70 76 82 88 94

(a) Accuracy

1
.1

1
.3

1
.5

Maximum Exponent

R
u
n
n
in

g
 t
im

e

64 70 76 82 88 94

(b) Running time (in seconds)

Figure V.5: The impact of the maximum exponent on (a) computational accuracy and (b)
running time efficiency. The results are based on 10 SNPs from the eMERGE dataset (mean
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the upper bound for the exponent estimate. The second step corresponds to the application

of a Taylor series, which we discuss in further depth below.

Fig. V.5 shows how the computational error and the overall running time, respectively

of the secure meta-analysis (per SNP) are affected as the exponent varies from 64 to 96.

For context, SecureMA uses a default value of 80.

It was expected that a larger exponent would yield better approximation accuracy, with

a trade-off in a longer running time. It is confirmed that the overall running time changes

almost linearly with the increase of the maximum exponent (Fig. V.5b). However, it can

be seen that the computational accuracy is almost identical across all test cases (Fig. V.5a).

This is because, in this particular scenario, the other two protocol parameters are the dom-

inating factors regarding computational accuracy.

V.6.4 Evaluation of the Number of Steps in the Taylor Series.

A Taylor series is applied in the second phase of the secure logarithm sub-protocol to boost

the approximation accuracy. Fig. V.6 shows how the computational error and the overall

running time, respectively, of the secure meta-analysis is affected as the number of steps in
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Figure V.6: The impact of the number of steps in the Taylor series (i.e., k in Equation V.1)
on (a) computational accuracy and (b) running time efficiency. The results are based on 10
SNPs from the eMERGE dataset (mean +/- one standard deviation).

the series varies from 6 to 12. For context, SecureMA uses a default value of 10.

Fig. V.6a illustrates that the more steps in the Taylor series, the better the computational

accuracy is on average. Fig. V.6b further demonstrates that there is a slight linear increase

in the running time as the number of steps in the Taylor series grows. This result stems from

the fact that the number of terms required to compute in secure computation is increasing,

which causes a longer running time.
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CHAPTER VI

Discussion

VI.1 Analysis on GWAS Scale

As discussed earlier, one of the benefits of the SecureMA protocol is that its running time

has only a weak dependence on the sample size. As a result, it can be efficient for studies

run over very large consortia. This is a notable improvement over alternative cryptographic

proposals (e.g., (Kantarcioglu et al., 2008; Kamm et al., 2013)) whose running time is

positively correlated, in a linear and sometimes exponential manner, with the number of

study participants and/or sites.

At the same time, the SecureMA protocol can be made more computationally efficient

to support analysis on a genome-wide scale. First, the SecureMA protocol can easily be run

in parallel on large computer clusters or cloud computing servers because each SNP can be

analyzed independently. Thus the total running time for a large-scale GWAS via SecureMA

would be inversely proportional to the computing resources allocated. As a rough estimate,

a GWAS on 2,000,000 SNPs would require around 10 hours on sixteen 8-core computers

without further optimization.

Second, from a scientific perspective, it might be permissible to disclose the aggregate

effect size of meta-analysis (i.e., the numerator in Equation III.1). In such a scenario, the

time-consuming secure division calculation could be avoided entirely, reducing the overall

running time per SNP to milliseconds (10−3 seconds).

Third, recent advances in the optimization of cryptographic protocols (e.g., (Asharov

et al., 2013; Henecka and Schneider, 2013)) may be ready to transition into practice in

the near future. This could allow for certain sub-protocols in SecureMA, such as secure

division, to have significant gains in efficiency.
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VI.2 Limitations & Future Work

We recognize that there are several limitations to the SecureMA protocol as currently de-

signed. First, SecureMA assumes that study data has already been carefully cleaned and

subject to rigorous quality control (QC) (real-world scenarios include deposited data in db-

GaP (Mailman et al., 2007)). To support more “dirty” data in the wild, it will be necessary

to embed QC processes for meta-analysis in the protocol (Winkler et al., 2014). Certain

QC procedures may be vulnerable to attacks on privacy, but those which are based on stan-

dard algebraic computations should be translatable into secure computations by leveraging

existing sub-protocols. At the same time, it should be noted that many procedures can be

directly applied in the clear in a distributed fashion at each site because they do not vio-

late privacy (e.g., file-level QC and SE-N plots in (Winkler et al., 2014)). Since QC is a

relatively independent and large pipeline, we leave it for future work.

Second, the current SecureMA implementation relies on a trusted authority to gener-

ate cryptographic keys, which sometimes may not be desirable (alternative solutions are

discussed in Section III.3).

Third, in situations when person-level genomic records need to be processed, it will

be necessary to pair secure data management technologies with effective societal controls

(e.g., use agreements and mandated limits on investigator behavior) that deter misuse and

limit the extent to which genomic information can be abused and cause harm to people

(e.g., expansion of laws to prevent utilization of genomic data in life insurance eligibility

and support for long term care (Altman et al., 2013)).
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CHAPTER VII

Related Work

To provide context for the contributions of our SecureMA protocol, we briefly review other

recent developments with respect to privacy protection. There are generally two categories

of data protection mechanisms that have been proposed to maintain participant privacy

while supporting scientific investigations on genomic data: i) societal and regulatory pro-

tections, and ii) technological protections. In addition to examining the recent develop-

ments in these categories, we also briefly describe the latest trends in cryptographic solu-

tions in general.

VII.1 Societal & Regulatory Protections

From a societal and regulatory perspective, it has been suggested that research participants

consent to the risk of being re-identified (Lunshof et al., 2008) (which could bias participant

recruitment), while users of such data (such as scientists) contractually agree not to attempt

to re-identify the participants (Taylor, 2008). We believe such mechanisms can lower risk.

However, while data use agreements assign liability, they do not provide any technological

deterrent and can only be enforced when violations could be detected.

VII.2 Technological Protections

At the same time, various technological solutions have been proposed to promise privacy on

genomic data. Methods (Lin et al., 2002; Malin, 2005) based on the classical k-anonymity

model (Sweeney, 2002) have not seen wide adoption in the field because genomic data

themselves contain both identifying information and scientific utility which makes it very

challenging, if not impossible, to balance the two conflicting goals. Alternative propos-

als (Fienberg et al., 2011; Johnson and Shmatikov, 2013) based on differential privacy

(Dwork, 2006) or noise addition in general (Lin et al., 2004) also turn out to be prob-
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lematic, because their underlying concept of adding noisy data to manipulate and pro-

tect GWAS seems against the strong emphasis on computational accuracy by genomicists

(Naveed et al., 2014). Thus in this work, we primarily review cryptographic solutions for

protecting genomic data.

There are various cryptography-based proposals for securely managing genomic data.

Some of these methods focus on protecting genome sequences: for instance, encrypting

genome sequences and supporting simple queries of statistics (Kantarcioglu et al., 2008),

encrypting identities of genes and variants to prevent unique identification of their carriers

from rare variants (Singh et al., 2013), and obfuscating raw (short) genome sequences and

allowing for retrieval (Ayday et al., 2014). Other proposals aim at supporting common

genetic tests, such as enabling popular genetic tests (e.g., paternity tests, ancestry and ge-

nealogical tests, and tests for personalized medicine) without disclosing personal sequences

(De Cristofaro et al., 2012), and protecting the test of genetic relatives via cryptographic

solutions without revealing raw genotypes (He et al., 2014; Hormozdiari et al., 2014). More

recently, several solutions have been proposed to securely conduct GWAS. These include

splitting the regression analysis into local-site computations and center-level aggregation

to shield person-level records from attacks (Wolfson et al., 2010), hosting person-level ge-

nomic data securely using secret share and facilitating GWAS (Kamm et al., 2013), and

protecting genomic data with an efficient homomorphic encryption and customized imple-

mentation for various analytics on the genome (Lauter et al., 2014).

We point out that the two alternatives (Wolfson et al., 2010; Kamm et al., 2013) most

relevant to our proposal, as discussed briefly in Section I.2, are hampered by practical

limitations. First, it has been suggested that (Wolfson et al., 2010) may leak sensitive infor-

mation because local sites inappropriately disclose intermediate summary statistics during

the computation (El Emam et al., 2013; Sparks et al., 2008); The other recent proposal

based on secret share (Kamm et al., 2013) fails to account for site-specific control variables

and other data preprocessing steps within sites, which is a common practice for multi-site
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genetic association studies. Their solution may also suffer from computational scalability

and network bottleneck issues in studies with large sample sizes and strict security require-

ment, because higher-level security requires more servers to secret-share the data and all

individual genomic data have to pass through, and be analyzed by, every server.

VII.3 Cryptographic Solutions in General

Cryptographic protocols, or secure multi-party computation (SMC), have seen increasing

adoption in many areas where data privacy is gaining awareness. For instance, they are used

for secure auction (Bogetoft et al., 2009), for safe-guarding machine learning tasks such as

decision tree (Lindell and Pinkas, 2000), matrix factorization (Nikolaenko et al., 2013),

Hidden Markov Models (Aliasgari and Blanton, 2013) and other algorithms (Graepel et al.,

2013), for novel biomedical applications such as (El Emam et al., 2013).

At the same time, there is also encouraging progress in making cryptographic protocols

more practical. Yao’s garbled circuits have been significantly accelerated due to (Huang

et al., 2011; Asharov et al., 2013; Henecka and Schneider, 2013); fully homomorphic en-

cryption is also gaining computational efficiency due to recent progress (Brakerski and

Vaikuntanathan, 2014); tools are being designed to make it more accessible for general

users to adopt cryptographic protocols (Bogdanov et al., 2008; Zhang et al., 2013).
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CHAPTER VIII

Conclusion

This work illustrates that the privacy of individual participants, and site-level summary

statistics, in genetic association meta-analysis can be guaranteed without sacrificing the

ability to perform analysis that use shared data. Our proposal, SecureMA, is useful for

running joint studies over disparate data sites in large consortia, where participant privacy

and/or institutional confidentiality over genomic data is of concern. If appropriately imple-

mented, our protocol can prevent privacy intrusions on genomic data posed by the attacks

published to date. While there are opportunities to make this protocol computationally

more efficient and to incorporate quality control procedures, we believe it is possible to

enable much broader analytic access to genomic data for the purposes of effect estimation

and statistical association via meta-analysis.
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