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CHAPTER 1

INTRODUCTION TO NUCLEAR MAGNETIC RESONANCE AND
PARAHYDROGEN SINGLET-STATES

Nuclear magnetic resonance (NMR) has been proven to be a diverse
spectroscopic tool for probing molecular structure and their interactions with a broad
array of surroundings. NMR was first reported in 1946 by Bloch and Purcell [1, 2],
and new applications in biomedicine are still emerging. In fact, the emergence of
hyperpolarization technologies that form the focus of this dissertation, are now
opening windows into in vivo metabolism and providing a unique perspective that is
difficult to obtain with traditional MR or alternative, non-MR technologies [3-8].
Although basic science applications in chemistry, molecular biology, and materials
science are still growing, hyperpolarization methods have positioned NMR for rapid
new growth in the field of biomedicine.

Nuclear magnetic moments resonate with applied fields in proximity to the
Larmor precession frequency [9]. The chemical environment perturbs this
characteristic Larmor precession of nuclei, as in conjunction with the correlated
modulation in these offsets as reflected in scalar coupling networks, provide detailed
information about the molecular structure in which the nucleus resides [10-12]. Given
sufficient sensitivity, this enables observation of chemical reaction in general, and
now allows a direct method of interrogating metabolism non-invasively in vivo.

The coherent modes of nuclear magnetism can be considered independent of



interaction with surrounding tissues, and the long lifetimes of these coherences enable
comprehensive control over the quantum evolution of the systems. The applied fields
necessary to perturb nuclear spins can also be applied safely so as to not physically
alter or damage biological tissues. This is important for medical applications, and the
lack of exposure to ionizing radiation or invasive surgery is often touted as an
advantage of NMR for biomedicine [13-17].

In spite of these advantages, the application of NMR to metabolism has been
traditionally limited by low equilibrium polarizations and poor sensitivity. For basic
science applications, this inherent limitation can be partially overcome by extending
scan time or improving the filling factor of the antennas to better match the biological
tissue of interest. However, in biomedical applications, scan times are limited and
Boltzmann polarization levels limit detection of protons to approximately 1 mM/mL.
This detection threshold scales with gyromagnetic ratio and abundance. For example,
the gyromagnetic ratio of **C (the observable carbon isotope) is 25% that of protons,
and the abundance of this isotope is only 1.1% of all carbon in nature. For this reason,
naturally abundant carbon-13 does not contribute significantly to background signal;
hence carbon-13 NMR has the promise for high contrast in vivo. This has driven
interest in polarization enhancement techniques, which aim to transiently increase the
sensitivity of NMR on the time-scale of longitudinal relaxation. This dissertation will
focus in particular, on the application of parahydrogen for polarizing nuclear magnetic
moments.

This chapter starts by introducing NMR principles including the Zeeman effect,



chemical shift, and spin-spin coupling. Then tools to more efficiently manipulate spin
operators are described, in the context of the spin density operator, spin Hamiltonians,
and the evolution of spin coherences. NMR experiments are traditionally limited by
low polarization level at thermal equilibrium, and in section 1.3 these principles are
described guantitatively with respect to the NMR signal to noise ratio. Low sensitivity
has driven interest in polarization level enhancement techniques - the most established
of these techniques, called dynamic nuclear polarization (DNP), is presented in 1.4.
Although DNP has proven useful and is becoming widespread, the technique requires
bulky and expensive devices that are outside the reach of most laboratories. A
complementary or alternative technique, referred to as parahydrogen induced
polarization (PHIP), is the focus of this dissertation. With PHIP, high polarization can
be generated at low fields using compact devices. Parahydrogen is the singlet-state of
diatomic hydrogen gas, and this state is described quantitatively in section 1.5. In
order to make use of parahydrogen state, highly enriched parahydrogen gas is
necessary, and the method used to obtain parahydrogen gas with high purity at room
temperature is discussed in section 1.6. In section 1.7, the spin operator basis
representation of parahydrogen is described. Although obtaining high purity
parahydrogen gas is possible, the state itself is invisible in NMR experiments; two
major experiments to detect signal from the parahydrogen states, PASADENA and
ALTADENA, are described in 1.8. Finally, some applications are discussed in section

1.9.



1.1. NMR Foundation

Upon being placed in a magnetic field, a nuclear ensemble generates a net
magnetization along the direction of an external magnetic field. In a typical NMR
experiment, this state is perturbed by rotating the net magnetization to an orthogonal
plane. As it evolves to re-establish equilibrium, this net magnetization induces a
current in an adjacent antenna, which can then be recorded and processed to reveal
nuclear spin spectra. The underpinnings of this process were described over 100 years
ago, when Pieter Zeeman first observed fine structure of nuclear spectra in the

presence of a magnetic field [18].

1.1.1. Zeeman effect
The foundation of NMR rests on the intrinsic angular momentum referred to as
spin. A spin s nucleus has 2s+1 energy levels, with spin angular momentum taking the
values , h/s(s + 1), where s is restricted to half-integers:
s=0,1/2,1,3/2,... (1.1)
The azimuthal quantum number mg, is used to label these 2s+1 states from mg = -s,
-s+1,...,s-1, to s. The magnetic moment of the nucleus can be written as:
u=hym,, (1.2)
where vy refers to the gyromagnetic ratio of the nucleus.
The nuclei most commonly used in NMR have s=%; this includes'H, **C, **N,
¢ and®!P. The states of these so-called spin -1/2 nuclei can be labeled as |o> and |p>

[18]. In accord with the Zeeman effect, these two states have exactly the same energy



in the absence of an external magnetic field, and are equally populated at thermal
equilibrium. However, in the presence of a magnetic field, +1/2 (|a>) state aligns with
an external magnetic field and is lower in energy than -1/2 state, |>, which is
opposed to the magnetic field. At ambient conditions, the |a> state will be slightly
more populated than the higher energy |p> state. The energy gap between these two
states is proportional to the magnetic field.

hyB
AE=hv=E,,-E,, = 27to

(1.3)
with

v= & (1.4)

2n

where vy is the gyromagnetic ratio of the nucleus. The resonance frequency, v, occurs
in the radio frequency range at modern field strengths, and is known as the Larmor
precession frequency [19]. Traditional NMR uses relatively weak electromagnetic
radiation (radiofrequencies) delivered on resonance to perturb the equilibrium formed
from a stronger static magnetic field. When the applied field is turned off, precession

of the nuclear spins in the presence of the static field generates a time-dependent

oscillation that can be Fourier transformed to the frequency.
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Figure 1.1. Schematic of the energy levels present due to the Zeeman effect. The
degeneracy of the two states, |o> and |>, is lifted in the presence of external magnetic
fields, with the field-dependent splitting AE=hyB/2x.

1.1.2. Chemical shift

The diversity in application of NMR results in part from the sensitivity of
nuclear precession and the availability of highly homogeneous static fields where
small differences in precession can be measured. Larmor precession frequencies
depend on the specific nucleus, and additionally on the electronic environment or
molecular structure surrounding the nucleus. Each spin is surrounded by an electron
distribution, which shields the external magnetic field and shifts the effective
magnetic field experienced by the nucleus to Bo(1-c). Therefore the Larmor frequency

of each spin is shifted to:

= YBu@-0) (1.5)
2

The distribution of chemical environments results in a range of chemical shifts. The
chemical shift is normally measured in parts per million (ppm) and is designated by

delta (8). In this representation, the resonance frequency for a particular nucleus in a



certain chemical position of a given molecule could be expressed as the fundamental
frequency of the isotope times a factor that is very close to 1 due to the chemical shift,
as follows:

V=0, (1+810°) (1.6)
where vy=yB,/2m. A typical NMR spectrum contains several peaks over a narrow
range of frequencies centered on the fundamental resonance frequency of the nucleus
of interest, each peak representing a unique chemical environment where the nucleus

resides.

1.1.3. Spin-spin coupling

Apart from chemical shift, for systems with more than one spin there will be spin
angular momentum couplings among the spins, referred to as spin-spin coupling [20,
21]. For two adjacent spins in liquids with different chemical shifts, whether the first
spin is aligned (Jo>) with the magnetic field or opposed (|>) to the magnetic field
influences the external magnetic field experienced by the other spins. Since the
resonance frequency is proportional to the magnetic field experienced by the nucleus,
the frequency of the second spin changes and now it resonates at one of the two
frequencies quite close to each other. Since the two states of the first spin are almost
evenly populated, the resonance of the second spin is split into two peaks of equal
intensity. This effect works mutually, so the first spin is split into two identical peaks
as well. The separation of the peaks is J Hz, which is called the J coupling constant.

At fields greater than Earth’s field or lower, J coupling normally occurs when the two



nuclei are in close proximity (three bonds or less). Spin-systems can be further
characterized by the strength of the scalar coupling relative to chemical shielding.
This is referred to as weak or strong coupling - strong coupling occurs mostly in
homonuclear systems when &~J, and these systems are normally labeled as AB
systems. Weak coupling occurs when >>J, mostly in heteronuclear spin systems or in
homonuclear systems at high magnetic fields, and are normally referred to as AX

systems.

1.1.4. Relaxation

When placed in a magnetic field, the nucleus in the sample creates a net
magnetization aligned with the external magnetic field due to Zeeman Effect. In
typical NMR experiments the net magnetization is rotated to the transverse plane by a
radio frequency pulse, and starts to rotate in the transverse plane at Larmor frequency,
which is recorded as NMR signal. However, it does not stay in the transverse plane
indefinitely. During evolution, the individual spins experience distinct magnetic fields
(due to field inhomogeneity), and gradually lose phase coherence. Transverse
components are also simultaneously spiraling around the axis of the magnetic field to
re-establish equilibrium [22-27]. These relaxation rates are normally considered
separately, as longitudinal relaxation [28-31] and transverse relaxation [32-36].
Longitudinal relaxation (T1)

When the net magnetization is rotated to transverse plane, if the rotation is

precisely 909 at that moment there is zero magnetization in longitudinal direction.



The longitudinal magnetization starts to reform with time afterwards according to this
expression:
M, (t) = M,[1-exp(-t/ T,)]. .7

Initially at t=0, M,=0, and recovering with time according to Equation 1.7. The
longitudinal relaxation constant, Ty, represents the rate of longitudinal recovery along
the static field. T, values for protons are mostly in the range from 0.1 seconds to a few
seconds, and much larger for other nuclei and depending on the environment. For
example, *C Ts in carboxyl groups are on the order of minutes in solution.
Transverse relaxation (T,)

Once the magnetization is rotated to transverse plane, apart from the rotation in
the transverse plane, the magnetization in transverse plane starts to decay as a

function of time too, normally referred to as T, relaxation:

M., (t) = M cos(2rwt)exp(-t/ T,) L8
M, (t) = Msin(2rot)exp(-t/ T,) (18)
NMR signals must be recorded within a few time periods of T,, otherwise the signal

will vanish.

1.2. Product Operator Basis
A useful tool for analyzing the dynamics of spin-systems with spin-spin
interactions and applied fields (pulse sequences) is the density matrix [37]. A
convenient basis to expand the density matrix for applications to NMR is the product

operator basis first described by Sorenson and coworkers [38].



1.2.1. Spin states

In the product operator basis, the density operators are represented as NxN
matrices and spanned by the Pauli operators [39]. The spin operators are formed by
the external product of a ket and a bra, e.g. I.=|lx><Iy|. For a single spin, the

corresponding operators could be represented as:

1
2 1
|0: 1 :EGO (19)
0 =
2
o 1
2 1
Ix: 1 :EGX (110)
= 0
2
0o 1
_ 2|_1
L= 2|=3s, (1.11)
- 0
2
1o
2 1
|Z: 1 :EGZ (112)
0 -=
2

The letters I, S, R are traditionally used to represent the spins of the system. The
density matrix of the single spin could always be represented by the combination of

these the four states [39]:
p='°+ > ¢l (1.13)

For a two spin system, the product operators expand to sixteen 4 X4 matrices as

follows [38, 40]:

10



L (1.14)

2
l,i=xyz (1.15)
S; =%y, (1.16)
21;S;,1,j=x%,Y,2 (1.17)

Any two spin state could be represented by a combination of these 16 operators, as

follows:

p=ZO+_Z cli+ 2 dSi+ > ;218 (1.18)
Each of the 16 operators has its own NMR symbol, as listed in Table 1.1.

Table 1.1. The 16 product operators for a two spin system.

Scalar Element 1o/2
Populations 12, Sz, 21,S,
Single Quantum Coherence Ix, ly, Sxi Sy, 2S5, 21yS;, 25415, 25y,
Multiple Quantum Coherence 21kSy, 21ySy, 214Sy, 21,Sy

1.2.2. Coherences

In most NMR experiments, the population operators represent the population in
difference between the two spin states of a given spin. The single quantum coherences
are transverse components which could be observed and recorded as signal. It could
also be represented in the density matrix view. The populations are those operators

with only diagonal components, as:

11




b
¢
¢
¢

The zero and double quantum coherences are those operators with back diagonal

(1.19)

components only, as:

¢
¢
¢
¢

The single quantum coherences, on the other hand, are the operators with off-diagonal

(1.20)

components only, as:

4 O
¢ ¢
¢ ¢
4 O

A more common way to represent the multiple quantum coherence (zero and double

(1.21)

coherence for two spin) is the expression of their linear combination:

zQ, :%(2|sz +21.8,) (1.22)
zQ, :%(mysx -21S,) (1.23)
DQ, = %(mxsx -21,S,) (1.24)
DQ, = %(mysx +21.S,) (1.25)

This are the more commonly used expressions for multiple quantum coherence with
populations, single quantum coherences and [ZQy, ZQy, DQx, DQy] representing
multiple coherences.

Among all those operators, only single quantum coherences are directly

observable:

12



{I..1,.5,.5,,21.S,,21.S,,25 1

X<z y ral X Z'ZSyIZ}- (1'26)
Among the single quantum coherence terms, {ly, ly, Sy, Sy} represent in-phase while

{21,S;, 21yS;, 2541, 2Sy1,} represents anti-phase magnetization [41].

1.2.3. Hamiltonian
For a weakly coupled two spin system, the Hamiltonian can be written as:
H=vl,+vS, +27JL,S, (1.27)
where the value of h was set equal to 1. The Hamiltonian for a strongly coupled two
spin system can be written as:
H=vl,+vS, +2mJl:S =y, +vS, +2rJ(1.S, +1,S +1.S,). (1.28)
In these equations, v represents the Larmor precession frequency of the two spins,
while J refers to the magnitude of the coupling between spins. The density matrix of
the system will evolve under the corresponding Hamiltonian. However, in NMR
experiments, a series of pulses (pulse sequences) are typically used to tailor the
response of the spin system for a particular application. In the presence of pulses, the
Hamiltonian can be written as:
Hee =-yB,(1,cos0 +1 sing) . (1.29)
Here B; is the applied resonant control field, and ¢ is the phase of the pulse. While
pulses are being applied, the total magnetization would be rotated under this
Hamiltonian. The angle of rotation and phase is determined by the amplitude and
duration of the applied pulse.

In summary, the density matrix of a two spin system evolves under following
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Hamiltonians, depending on the type of the system:

H, =2 vl, (1.30)
H,, =Y 2nl,1, (1.31)
ij
HJ :ZZE‘]ij(Iixljx+Iiy|jy+|iz|jz) (132)
ij
H, = yBlZ(I xCOSQ + 1, sing) , (1.33)

where H, refers to the Zeeman Hamiltonian, Hj, to the truncated J-coupling
Hamiltonian (weak coupling), H; to the untruncated J-coupling Hamiltonian (strong

coupling), and Hys to the Hamiltonian for a hard pulse with phase angle ¢ [13].

1.2.4. Evolution
The evolution of a spin density matrix can be written as a similarity
transformation:
¢'=U"U (1.34)
where the operator U is given by:
U =exp(-iHt) . (1.35)
When pulses are applied, the evolution operator can be written as:
U =exp(-iHg) (1.36)
The rotation angle is varied by adjusting the power and duration of the applied pulse.
In the product operator basis, ideal pulses could be directly represented in the
rotating frame. A 180%pulse for spins with phase 09(x axis) represents a rotation of
180<around x axis for all spin components, which implies that I,—1y, ly—-ly, and

I,—-1,. A90%ulse with phase 0<also rotates all the vectors of the spin by 909which

14



implies that I,— Iy, ly—1;, and I,—-ly. The same principle applies to the pulses with

different phases [42, 43].

1.3. NMR Sensitivity
Although a widely used tool in molecular and biomedical sciences, the
application of NMR has traditionally been limited by low sensitivity. This low
sensitivity is due to the fact that the population difference between the two spin states

is low at thermal equilibrium.

1.3.1. Signal to noise ratio (SNR)
Signal to Noise Ratio (SNR) provides one metric to evaluate NMR sensitivity. In

NMR, the SNR is typically given by [38, 44, 45]:

5 3
2R2

snro MBS N (1.37)
T2 T

In Equation 1.37, N represents numbers of spins, y is the corresponding gyromagnetic

ratio, By the magnetic field strength, T the temperature, Ns is the number of transients

acquired, Treaq IS the acquisition time, Tr the repetition time, and oy, is the spectral

resolution. This equation suggests several approaches to increasing SNR.

1) SNR«N; SNROCyS’Z. Therefore, isotopes with higher natural abundance and larger
gyromagnetic ratios will have higher sensitivities.

2) SNRxB*? Increasing the external magnetic field directly increases SNR, and

comprises a major research field for NMR [46-49].
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3) SNRo(1/T¥). SNR is inversely proportional to temperature. Unfortunately, it is
not widely applicable since in many cases (especially in clinical application) the
temperature of a biological sample is limited to a narrow range suitable to
maintain life.

4) SNR«cNsY2. SNR increases with the square root of transients because noise adds
incoherently while signals add coherently. Unfortunately, experimental durations
are limited, and even in cases where periods of hours may be available, the time
scale of metabolic events are on the order of seconds.

5) SNRoxdy,. Better spectral resolution will lead to an increased SNR because the

signal amplitude will be increased relative to noise.

1.3.2. Thermal equilibrium

As stated in 1.3.1, the sensitivity of NMR experiments is limited by the low
population difference between the two spin states, which leads to a low net
magnetization. In this section the net magnetization and the approaches to improve it
will be described guantitatively.

The net magnetization, My, could be defined from statistical mechanics:
| |
M, =hy> mN, =Nhy> mP, =Nhy<m, >= Nhylp. (1.38)
m=-1 m=-1

In Eq 1.38, My refers to the net magnetization, m, to the azimuthal quantum number,
Ny, is the number of nuclei in the m, state, Py, to the probability of the nucleus in m,

state. Nuclear spin polarization can be written as normalized population difference:
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p:|P(|a>)-P(IB>)|
P(la>)+P(p>) .

(1.39)
where P(Jo>) and P(|p>) refer to the population of the two spin states. The maximum
net magnetization is obtained when the nuclei are fully polarized in one of the spin
states, and alternatively net magnetization vanishes when the states are evenly
populated.

It follows from statistical mechanics that the polarization level of the system at

thermal equilibrium is [50]:

exp( +1/2) ( E 1/2)

p= kT
ex +1/2 +ex 1/2
p(—22) +exp(— 22 kT )
sinh(i)
= —23- (1.40)
cosh(——=
(p)
0
= tanh(—
Gp)
0
»>—
2T
In this expression, 0 is given by:
- AE _ B, . (1.41)
k 2nk
Therefore:
= hvBy : (1.42)
4nkT
and the net magnetization could be represented as:
2.2
_ Nh'y'B, (1.43)

0" 16m?%KT
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Considering protons at room temperature and a magnetic field of 7.0 Tesla, the
polarization level p is on the level of 10 Therefore the polarization level at thermal
equilibrium is low, mostly due to the fact that the energy splitting due to the Zeeman
Effect is similarly small.

Equation 1.43 shows that the net magnetization is proportional to the external
magnetic field and inversely proportional to the temperature. Therefore a
straightforward approach to increase SNR is to increase the magnetic field and
decrease temperature. However, even at a high field (around 7T), the polarization
approaches unity only when the temperature is in the mK range. Therefore, other
methods are necessary to enhance polarization.

Methods for producing polarized magnetic moments are collectively referred to
as hyperpolarization, and are aimed at generating higher polarizations at room
temperature. The most commonly used techniques for potential application to
metabolism are: 1) dynamic nuclear polarization (DNP) [51] which produces
polarization by transferring magnetization from electrons at ~2K to nuclei, and 2)
parahydrogen induced polarization (PHIP) [52], which makes use of the symmetry of
H, singlet-states to generate large polarizations at room temperature and low magnetic

field. A brief review of DNP is given in the next section.
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1.4. Dynamic Nuclear Polarization

The DNP method (dynamic nuclear polarization) transfers spin polarization from
electrons at low temperature to coupled nuclei by microwave irradiation, thereby

aligning the nuclear spins to the extent that electron spins are aligned.

1.4.1. DNP method

At 100K, the polarization level of electrons is 10.541%, while the polarization
level of protons is only 0.016%. Therefore, DNP transfers polarization from electrons
to protons with a maximum theoretical enhancement achievable given by ye/yn,
being ~660 for protons [53]. Nowadays with advanced devices that enables low
temperature and high-frequency microwave sources, in DNP experiments electrons
are polarized at low temperature (around 2K) and high magnetic field (>5T range)
[53]. The polarization is then transferred to the coupled nucleus by microwave

irradiation, including protons and other heteronuclei such as *C.

1.4.2. DNP applications
Modulation of cancer cell metabolism with drugs

Hyperpolarized fumarate has been reported to be useful at detecting cell necrosis.
Hyperpolarized fumarate was initially polarized to between 26% and 35% (by DNP),
and then injected to mice with implanted lymphoma tumors both before and after
treatment with etoposide. The result shows a 2.4 fold increase in hyperpolarized 1,4 -

labeled malate production in mice that are etoposide treated comparing to those
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untreated, which suggests that the production of malate from fumarate could be a
marker of tumor cell death [54].
Imaging of intracellular pH

Since the ionization level of a labeled weak acid could be reflected as the change
in chemical shift and J-coupling, and it is very sensitive to pH around the range close
to its own Pk,. Because of this, the recorded NMR signal may be sensitive to pH in
vivo, and used as a surrogate to detect cancer or other diseases which are pH related.
CO, and NaHCO3 (**C - labeled) have indeed been used successfully as a source of
signal for this purpose. The pH can be calculated from the Henderson-Hasselbalch
equation [55]:

[HCO;]

PH = PKa +log,,
[CO,]

(L.44)

This ratio has been extracted from hyperpolarized chemical shift images, and the in
vitro experimental results were similar to measured pH (less than 0.1%) [56].
General DNP applications

Apart from the applications mentioned above, there are a wide range of potential
applications for hyperpolarized DNP [57, 58]. Hyperpolarized pyruvate has been
found useful to assess tumor grade [59], and to detect response to therapy [60].
Applications of imaging in cancer by direct and indirect assays of pyruvate
metabolism have also been reported [61], due to the fact that compared to normal
cells, a disproportionate conversion of pyruvate to lactate is commonly observed in
tumors. These examples represent a small cross section of DNP applications for

diagnostic purposes.
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1.4.3. Pitfalls of DNP hyperpolarization

DNP is an advanced hyperpolarization technique and has a broad area of
application. The primary downside of DNP is that it requires 1) bulky, expensive
equipment. High-frequency microwave sources are required, 2) low temperatures near
2K to enable efficient transfer, 3) high fields to polarize electrons, and 4) the output

solutions need to be rapidly warmed up to biological temperature for detection.

In conclusion, the DNP experiments require a set of advanced and expensive
devices, which are not widely available commercially. This dissertation focuses on a
less mature, but potentially less expensive and less bulky alternative, referred to as
parahydrogen induced polarization (PHIP). PHIP achieves hyperpolarization at room

temperature and low magnetic field.

1.5. Parahydrogen Singlet-States
It was recently reported that parahydrogen singlet-states could be used to
generate hyperpolarized NMR samples through chemical interaction [52]. Compared
to the much smaller Zeeman splitting, parahydrogen states have two essential
advantages: 1) higher populations and  2) longer lifetimes.
According to statistical mechanics, nuclei with whole integer spins(l = 0, 1,
2, ...,), are called bosons and obey Bose-Einstein statistics; while nuclei with half
integer spins(l = 1/2, 3/2, 5/2, ... ), are called fermions and obey Fermi-Dirac
statistics. *H nuclei, with spin 1/2, as well as most other nuclei used in NMR

experiments, are fermions with Pauli principle applied [62-64], which imposes the
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criterion that the total wave function must be anti-symmetric under the exchange of
particles.
Y, (AB)=-¥,(B,A) (1.45)

We study the anti-symmetry of the system by expanding it to the whole
expression [65]. For the H, molecule, which is composed of two fermions, the total
wave function is a combination of electronic, translational, vibrational, rotational, and
nuclear spin wave functions.

Yoot = VeV W W Wi (1.46)
The ground state electronic and translation wave functions, ye and y;, are both
symmetric under particle interchange [66, 67].The vibrational wave function, wy,
should not change either when the two nuclei are exchanged, in direct analogy to
exchanging opposed masses connected by a spring. Therefore we are left with the
rotational wave function, vy, , and the spin wave function, ynps.

The rotational wave function transforms under rotations like a spherical
harmonic function Y;n,, which is symmetric with even J (J=0, 2, 4, ... ) or
anti-symmetrical with odd J (J=1, 3, 5, ... ).

Since the spin wave function yys should be either symmetric or anti-symmetric,
the simple product basis |ao>, [ap>, |Ba>, |BB> is insufficient to represent the basis set
of H,, because |af>#HBa>. However, a suitable basis could be represented by the

linear combination of these states.
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|T1 >=| oo >
T, >=pp>
1T, >= = (|ap > +| P >) (147)

NA

|so>=i2(|aﬁ>-|sa>>

N

The first three states, |T1>, [T.1>, and |[To>, correspond to odd angular momentum J,
and are symmetric under exchange of the two nuclei — they form a triplet state and the
corresponding hydrogen gas molecules in this spin state are called ortho-hydrogen
(0o-Hy). The last state, |[So>, corresponds to even angular momentum J, and is
anti-symmetric under exchange of the two nuclei. It forms a singlet-state [65] and the
corresponding hydrogen gas is called parahydrogen (p - Hy).

The symmetry of the four states could be summarized as:

|T1 >=| oo > exchanging | 0oL >=| Tl S
| T, >=|pp > <0 | BB >=| T, >

1To5= (0B > +[Bo>) =2, (> +[pa>) 4T, > (149)

N7

1 i 1
1Sy >= —= (| 0B > -|Bo>) 25— (|Ba > -|of >) = -| S, >
2 2
Below is a table that summarizes the relation between rotational and spin wave

functions.

Table 1.2. Correlations between rotational wave function and spin wave function, and
the forms of H; gas.

J Parity of vy, Spin State Parity of yps Forms of H,
Odd Odd [T> even ortho
Odd Odd |T.> even ortho
Odd Odd [To> even ortho
Even Even |Se> odd para
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Table 1.2 shows that due to the symmetry requirement, the freedom of rotation
and spin are coupled. This relation can be used to induce spin states through

manipulation of the rotational states.
1.6. Singlet-State Population

1.6.1. Dependence of singlet-state polarization on temperature

According to Table 1.2, to obtain parahydrogen state, an even J of the rotational
function is necessary. It is common to consider the rotational ground state, J = 0. If the
molecules are cooled to be locked in the rotational ground states, then they are
constrained in the parahydrogen state at the same time. Since the energy spacing for
rotational states is much larger than Zeeman effect, manipulating the rotational states
by adjusting temperature is much easier. According to quantum mechanics, the energy

of the angular momentum P;, is given by [62, 68]:

2
E, :%J (J+1) (1.49)
Therefore the rotational temperature could be defined as:

0, = — (1.50)

This temperature, 6g, for Hy, is roughly 86K [69].

The energy gap between the two levels, J and J+1, is:

AE=Kk0,(J+1)J+2)-JJ+1))

= 2k0, (J +1) (1.51)

The energy splitting between the ground state, J = 0, and the state with J = 1, is then
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2k0g. Since 0 is 86K, this is a more accessible temperature. Figure 1.2 depicts the

energy level of J=0and J = 1.

E 4 energy levels
1
A
20r~171K
Y 0
J

Figure 1.2. Schematic of the rotational energy levels. The molecules at ground state
with J = 0 are parahydrogen. The rotational level with J = 1 has 3-fold degeneracy
(triplet states). The energy spacing between the two levels is 2k0g.

It is then straightforward to get the partition function of the H, molecule. The J"
level rotational state is (2J+1)-fold degenerate (m; = -J, -J+1,... J-1, J), and all the

states with odd J are furthermore 3 - fold degenerate.

Z= Y (2+1)exp(-J1+1)0, / T)+3> (2) +1)exp(-JI+1)0, / T)  (1.52)

Jeven Jodd

And the fraction of parahydrogen, defined as the ratio of parahydrogen of all the

molecules, could then be calculated as:

D (21 +1)exp(-d(J +1)6, / T)

p= s (2J+1)ex|0(-Jj*(V§n+1)9R IT)+35 (20 +L)exp(30 +1)0, /T) (1.53)

Jeven Jodd
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At high temperature, T >> 0, the discrete levels could be treated as continuous levels.
And the sum could be replaced by continuous integrals. Therefore we obtain that at

high temperature limit:

N

para

N..+tN

para ortho

(1.54)

- 1
4.
In the low temperature limit, T << 6g, only the ground state with J = 0 will be
significantly populated, and the fraction of parahydrogen will approach100%.At the
temperature T =~ 0Og, it is easy to find that with the increase of J, the factor
exp(-J(J+1)0r/T) vanishes quickly. So it is reasonable to consider only the first

several terms and calculate the polarization level. The more detailed data is showed in

Table 1.3 [70].

Table 1.3. Percentage of parahydrogen at various temperatures.

Temperature (K) Parahydrogen fraction (%)
300 25.06
200 25.25
150 28.58
100 38.51
80 46.4
77( liquid Np) 50.33
60 65.17
40 88.5
20 99.79
18 99.9

Note that at 300K, P = 25%; at T = 77K, P = 50%:; and at T = 20K, P > 99%.
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1.6.2. Angular momentum selection rules

Table 1.3 shows that high parahydrogen enrichments can be created by cooling
the molecules to 77K (50%) or even 20K (~ 100 %) to populate the ground state with
J = 0 (singlet-state). However, until now only the thermodynamics of the rotational
and spin states have been accounted for. According to quantum mechanics, the
conversion from ortho to para hydrogen, which requires both angular momentum
quantum number J changed by £1 and at the same time the nuclear spin reoriented
from S = 1 triplet-state to S = 0 singlet-state, is forbidden by angular momentum
selection rules [62, 71-73]. This conversion can only take place with the presence of
dipolar coupling to the other molecules or electrons during a collision. To increase the
rate of conversion, the nuclear symmetry of ortho molecules needs to be broken and
several types of ortho/para catalysts that lead to fast equilibration of the nuclear spin
states have been identified [74, 75].

With the presence of catalysts, the ortho«<>para conversion takes place on the
surface of the catalysts rapidly. For example, if the temperature is cooled to near 20K,
almost 100% pure parahydrogen is obtained rapidly [76]. The molecules persist in this
parahydrogen state because of the angular momentum selection rule. By warming the
molecules, they start to redistribute themselves in all the rotational states with even J
according to Boltzmann distribution, but they remain in the singlet-state. Practically,

this parahydrogen gas could be stored for several hours or even days.
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1.6.3. Parahydrogen production devices

The device our group developed to produce high purity parahydrogen gas
operates with a closed-cycle cryostat which is maintained at a nominal set-point of
15K (with operation between 15K and 20K) and enriches parahydrogen with high
pressure, pulsed injections of ambient [76]. When operated to achieve a final fill
pressure of 240 psi, this system generates highly enriched parahydrogen (> 98 %) at
0.9 SLM (standard liters per minute). A schematic of the device is shown in Figure

1.3.

pry SV4
Ortho-hydrogen —&—
mv, Vv
Programmable
e controller
: pr.
n
Compressor Cryo-cooler
P9,
out & sv
mv,
mv» mv,
Temp controller pg, mv,

Para-hydrogen

vacuum pump

sv = solenoid valve pr = pressure regulator mv = manual valve pg = pressure gauge
v = adjustable volume

Figure 1.3. Schematic of parahydrogen production device. The valves are manually
controlled to evacuate the cooler or the parahydrogen container. The helium
cryo-cooler cools hydrogen gas to ~ 15-20K, and at this temperature parahydrogen is
routinely generated with a purity of ~98% [76].

Parahydrogen singlet-states are completely evenly distributed between the two
spin states, 50% |o> state and 50% |pB>state. Therefore, pure singlet-states are not

observable in NMR experiments since zero net magnetization is generated. Hence the
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purity of parahydrogen gas can be calculated by comparing the NMR spectrum of the
enriched gas to ambient hydrogen gas. Figure 1.4 shows the immediately recorded
signal of parahydrogen gas produced using the device in shown in Figure 1.3,

compared to the signal after four days [76].

ortho-para 75:25

= para 98 %

Figure 1.4. Proton spectrum acquired from approximately 98% enriched
parahydrogen gas, compared to the same (relaxed) sample acquired from the same
tank several days later [76].

1.7. Operator Basis of Parahydrogen State
To describe the ortho- and parahydrogen states, it is convenient to use density
operators introduced in section 1.2. The four spin states for hydrogen gas are shown in

Equation 1.55.
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T, =laa>={1,0,0,0}

T,=Ipp>={0,0,0,1}
1

=%(Iaﬁ>+lﬁa>)=ﬁ{0,l,l,0}
:%(la[}>-|ﬁa>):%{0,l,-l,0}
1 0 0O
T =T, ><T|=- 0000
0 00O
0 00O
0 00O
Tl-T1><T1—{° 09 OJ
0 00O
0 0 01
0 00O
TAT><TEL OJ
210 1 1 0
0 0 0O
0 0 0O
S’o:|8()><80|:l 0140
210 -1 1 O
0 O 0

(1.55)

Refer to the matrix of the product operator basis, these states could also be written in

product operator notation [18]:

1 1
Tﬁ:Z+E(iI1 2z+2|1z 2z)

|
TO:Z+(I1XIZX+I L, -1,1,,)

ly "2y 127 2z

SOZ%_(IlXIZX-FI I +I1z|22) ’

ly 2y

where | represents unit matrix.

Using these equations, the pure parahydrogen state can be written as:

|
pparazz_(llx|2x+|1y 2y 1z 22)

A pure ortho-hydrogen state can be written as:
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1
Portho =§(T1 +T—l +T0)

- (1.58)
=Z+§(I1XI2X +hy, by +15,15,)
Therefore the mixed state with parahydrogen fraction P will have the form:
Prix = PPpara + (1= P)Poing
=%+%(|1X|2x+|1y|2y+|12|22) (159)

In this mixed state, l1x12x + l1yl2y is normally referred to as a zero quantum coherence.
This term, together with the 1,1, term, commutes with the Hamiltonian and is
unobservable in NMR experiments as Equation 1.60.

[p,H]=0 (1.60)
To make the state observable, the two hydrogen molecules need to be placed in a
chemical environment capable of breaking the symmetry (Figure 1.5). The
requirements are:
1) The hydrogenation occurs via molecule addition so the two molecule spins remain

correlated.

2) The two hydrogen atoms are placed in different chemical environment after the

reaction.

0 o
13" HO 13|<|: SD
RN NP CID S N N
| para-H, j:
_— oW

D D H b

2-hydroxyethyl 2-hydroxyethyl
11 3C-acrylate-d3 (HEA) 1- 13C-propionate-d 3 (HEP)

Figure 1.5. Reaction schematic for adding parahydrogen across a double bond.
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1.8. PASADENA and ALTADENA
As discussed in the previous sections, although high purity parahydrogen gas
could be preserved at room temperature, the state is invisible in NMR experiments. To
make the state useful, the two protons must be placed in different chemical

environments.

1.8.1. PASADENA
The PASADENA effect (Parahydrogen And Synthesis Allows Dramatic
Enhancement of Nuclear Alignment) [52] uses hydrogenation in a strong magnetic
field to cause a sudden change of Hamiltonian from anA, system to an AX system.
Thus the density matrix, po, then evolves and is projected onto the eigenstates of AX
system.
p(t > 0) = exp(-iHt) p,exp(iHt) (1.61)
A mixed state with an excess of parahydrogen will lead to polarization of the center
states with m; = 0, |ap> and |Bo>, resulting in a spectrum consisting of anti-phase

doublets, as shown in Figurel.6.
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Figure 1.6. Schematic of the PASADENA experiment. The parahydrogen state is
projected to the eigenstates of AX system, leading to a net excess of |ap> and |Bo>
states that yields a spectrum of anti-phase doublets.

However, unless the signal recording starts instantaneously after the hydrogenation,
the hydrogenated states will start to evolve since the two protons are now not in the
equivalent chemical environment.
The initial singlet-state is:
o= (Il + Iy, 1, 1) (1.62)
After hydrogenation, the first and second terms start to evolve:

I, 1, — [cos(w, D)1, +sin(w, )1, 1[cos(w, )1, +sin(w, ), ]
1,1, = [cos(@ )1, -sin(oH1, J[cos(@, )1, -sin(w,0)1,,] (1.63)

As each molecule finishes hydrogenation reaction at different time and the initial
states start to evolve at different time, the initial phase will be a complete mixture.
The result is cancellation of both terms. Therefore, after hydrogenation the first and

second terms vanish, leaving the initial state to be:
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|
p, = 1 1,1, (1.64)
Decoupling can be used while the hydrogenation reaction is occurring to synchronize
density matrix evolution of individual molecules [77]. The effect of the waves is to

flip the spin direction of the protons constantly and quickly, resulting in a changing of

Hamiltonian which commutes with the density matrix.

Hocl ol
(1.65)
[po,HI=0
Therefore, the full expression of the initial state could be preserved and only after the

reaction is finished and the applied field is removed that the states of each molecule

starts to evolve in the same time [78].

1.8.2. ALTADENA

PASADENA uses applied pulses to transform parahydrogen singlet-states to
observable magnetization, whereas the alternative, ALTADENA (adiabatic
longitudinal transport and dissociation engenders nuclear alignment), uses field
cycling between zero and high field to create observable signal [84, 85]. In this case,
the singlet-state is preserved during reaction, since there exists no difference between
the chemical shifts of the two atoms, and the Hamiltonian commutes with the initial
states. If the sample is then transported to a magnetic field, the result is a smooth
transformation of the Hamiltonian. As the Hamiltonian changes smoothly, the state
will be projected to each instantaneous eigenstate of the corresponding Hamiltonian.
Therefore the quantum states conserve their respective projection onto the

instantaneous eigenstates of the transforming Hamiltonian [86, 87]. |So> and |To>
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transform to |aff> and |Ba> (or |Ba> and |ap>, depending on the sign of (v; - vs)).
Therefore the polarized parahydrogen leads to a occupation of either the |ap> or |pa>

state. This results in in-phase absorptive or emissive peaks, as shown in Figure 1.7.

oo>
T To Ty

< s B>
0
Bo>

BB>

Figure 1.7. Schematic of the ALTADENA experiment. The parahydrogen state is
projected to either eigenstate of the AX system, leading to a net excess of |ap> or |Bo>
states. The resulting spectrum contains in-phase absorptive and emissive peaks.

ALTADENA experiments require that the Hamiltonian be changed slowly to

meet the adiabatic condition [13]:

(1.66)

<
In Equation 2.22, T = (1/wo) = (1/yBy). And v is the velocity of gas. G is the magnetic
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field gradient.

1.8.3. Parahydrogen hydrogenation device

The devices for PASADENA experiments need to provide a low magnetic field,
radiofrequency pulses, with injection of high purity parahydrogen and molecular
precursors. A scheme of the device developed in our group to achieve this is shown in

Figure 1.8.

L b, ' |
relay L, pH,(g) hyperpolarized
network Vss
; output
reaction
chamber Vse
Vea
By
Bo

T/R switch

[ 1

N(9) RF signals amplifier receiver
I

pulse programmer spectrometer

TTL
signals

"N by

Figure 1.8. Schematic of the polarizer developed to generate observable signal from
parahydrogen singlet-states. The long-lasting high purity parahydrogen gas is stored
in a tank which is in turn connected to the polarizer. The molecular precursor gets
hydrogenated by parahydrogen and RF pulses are applied to transfer polarization [89].

The parahydrogen induced polarization experiments have the advantage of
requiring only low fields in the mT regime and room temperature. Therefore,
compared to DNP, parahydrogen induced polarization technique could be used in

compact, inexpensive and portable devices.

36



1.9. Application of Parahydrogen Induced Polarization

A wide range of applications of parahydrogen induced polarization (PHIP) have
been reported [85, 90, 91]. Typical applications of PHIP includes homogeneous
catalysis [92-94], magnetic resonance imaging [95, 96], and heteronuclear
polarization [77].

In conventional MRI, the ability to differentiate between soft tissues and to
detect pathology depends on the differential relaxation times (Ty, T, T>') and proton
density between the target molecules and the background (mostly protons in water).
Paramagnetic contrast agents are used to decrease the relaxation times of adjacent
protons, which will result in an increase or decrease in signal depending on the pulse
sequence, so as to enhance the contrast [97]. The imaging of hyperpolarized
molecules is fundamentally different. The injected agents themselves act as the source

of signal, rather than modulating proton relaxation only.

1.9.1. Setup and pulse sequences

One of the most apparent differences in **C imaging from proton is the much
lower gyromagnetic constant, yc = (1/4)yn. Therefore, the MRI scanner frequency
needs to be adjusted to *3C resonance frequency (15MHz at 1.5T) rather than proton
resonance frequency (60MHz at 1.5T) [98].

A low gyromagnetic constant also leads to insensitivity to magnetic gradients of
3¢ spins. If the same magnetic gradient is applied as in proton imaging, echo times

(TE) and repetition times (TR) need to be elongated to achieve a comparable
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resolution with proton imaging. This is not an acceptable option in most cases since
the longer delays correspond to more loss in polarization due to relaxation. Therefore
a higher magnetic gradient would be a necessary.

Hyperpolarized imaging also faces the problem of unrecoverable longitudinal
magnetization since it is not a thermal equilibrium state. First, the loss of longitudinal
magnetization due to T; relaxation is inevitable. Second, the longitudinal
magnetization that converts to transverse magnetization by RF pulses is not
recoverable either. The sequences used to image hyperpolarized agents would then be
required to complete the image in a single shot, compared to the conventional
multi-shots sequences which reuse longitudinal magnetization. The much longer T,
relaxation of **C makes the single shot sequences feasible. The available pulse
sequences include single-shot sequences based on true fast imaging with steady-state
free-precession (true FISP), rapid acquisition with relaxation enhancement (RARE),
or echo planar imaging (EPI), which convert almost 100% of the longitudinal
magnetization to transverse [99].

An example of the available sequences, true FISP sequence, is shown below in
Figure 1.6 [100]. A true FISP sequence is To/T1-weighted, which makes it very useful
in imaging of heart due to the excellent contrast between blood and myocardium. In a
typical true FISP sequence, balanced gradient echo refocusing is applied in all
directions to maintain steady-states of both longitudinal and transverse magnetization.
If we apply a single-shot sequence based on true FISP, it is both impossible and

unnecessary to maintain steady states of longitudinal magnetization. Therefore only
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gradient echo refocusing in the transverse direction needs to be applied, which
maintains the transverse magnetization at steady state each time before adjusting
gradient and recording signal. The very long T, of hyperpolarized **C permits the use

of the single-shot sequence (T, >> TR).

1.9.2. Signal to noise ratio (SNR)

One of the advantages of *C imaging is the absence of background signal. The
low gyromagnetic ratio and low natural abundance (1.1%) of *C make the
background signal far below the detection limit. In this case, the only possible noise
comes from patient or coils, and the signal to noise ratio (SNR) is proportional to the
polarization (P) and concentration (c) of the molecule [98]:

SNR o yPc (1.67)
The polarization level P = yB, for thermal equilibrium. For example, the polarization
level at 1.5T and body temperature is approximately 5X 10 for protons and 1x10®
for °C.

For a liquid hyperpolarized *C imaging agent, the concentration is normally
0.3-1.2M in the injection syringe, far below the *H concentration of 80M. It will then
take 3-4 seconds to reach the lungs, 6-10 seconds to the heart and 15-40 seconds to
the other major organs. The concentration after dilution could be around 10mM [100].
Besides, the relaxation of magnetization during this period will decrease the
polarization level too. But even after T, of injection, the available signal in the

vascular system should still be at least a factor of 2 larger than the one in proton
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imaging at 3T [101]. In addition, for hyperpolarization imaging, the polarization
levels do not depend on thermal equilibrium. This opens the possibility of low field

imaging.

1.9.3. The optimal magnetic field for hyperpolarization imaging

It is stated previously that for hyperpolarized **C imaging, a higher field gradient
would be a necessary, and the signal to noise ratio is independent of external magnetic
field. This leads to the idea that the imaging could be undertaken in a low magnetic
field but with high field gradient. However, when the low field is combined with high
field gradients, the problem called concomitant gradient terms rises, which is the
nonlinear component of magnetic field gradients [102].

According to this theory, there will be a phase shift by the concomitant gradient,
due to the fact that the magnetic field must obey the rule that both div B=0 and curl B
= 0. Assuming a cylindrical symmetry for z - coil, with x - coil and y - coil 9020 each
other, if the slice plane is aligned along y - axis, z - axis is used as phase direction and
readout is performed along x-axis, the phase evolution due to the concomitant

gradient would be:

2

— Gx 2
¢ - tsampy z (168)
0

2B
Here tsamp IS the sampling time, Gy represents readout gradient, and z is the distance in
z-axis from the iso-center of the scanner. In the case that tsamp = 1ms, B = 0.2T and
Gx = 40mT/m, then the phase shift will result in a pixel shift already from a distance

of about only 12cm from the iso-center of magnet [98]. If the magnetic field is even
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lower, the effect would be more significant since field gradient cannot be simply
reduced unless longer echo times and repetition time are applied.

Besides, if there are several *C peaks in the molecule that need to be
differentiated, a high magnetic field might be necessary to make the difference in
chemical shift observable. Until recently most hyperpolarization images were taken in

a magnetic field around 1.5T.

1.9.4. Examples of hyperpolarized **C imaging

Field cycling experiments to generate **C imaging both in vitro and in vivo is
reported by Haukur J&annesson [103]. In this experiment parahydrogen of 95%
purity is obtained by catalyst at 14K, and then hydrogenated to hydroxyethyl acrylate
at a pressure of 10 bar during 3s. The produced hydroxyethyl propionate is then
transferred to low field chamber at 100uT. After 0.5s delay the field is reduced to
30nT in 1ms. Then the field is ramped up to 100uT in 1.2s. The observed **C
polarization is 21%. For in vivo experiments, the FISP pulse sequence was used for
data collection and a **C angiogram showing head and neck parts of a guinea pig,
acquired in 230 ms, were presented with high resolution [103].

3C polarized by pulse sequence method to generate images was also published
[96]. The pulse sequence was carried out in vivo as well. The production of
parahydrogen and hydrogenated molecule is similar to the field-cycling method. In
this experiment the DC field is set at 1.76 mT. The continuous RF irradiation is

applied for 3-4 seconds at a proton Larmor frequency of 75kHz during hydrogenation.
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After applying the pulse sequence (along with the echo pulses), 5 ml of 0.5 M
solution of the sample (hyperpolarized hydroxyethyl propionate) was injected to the
leg of a pig. Successive **C imaging, still by the true FISP method, was taken at 1s
intervals. The slice thickness is larger than the pig, with the scan time 470ms for each
image. And the matrix used is 104 X 128, with the pixel size 2.5X 2.5mm?. A series of
angiographic images of the pig chest was presented with high resolution within 8

seconds [96].
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CHAPTER 2

SPIN ORDER TRANSFER FROM PARAHYDROGEN SINGLET-STATES TO
HETERONUCLEAR NET MAGNETIZATION IN AA’X SPIN SYSTEMS

Spin order in parahydrogen induced polarization (PHIP) is initially captured as
an ensemble of nuclear singlet-states formed by addition of parahydrogen across an
unsaturated bond. For applications to biomedicine, it is often an advantage to convert
these initial singlet-states into longitudinal magnetization on a long-lived nucleus. A
variety of traditional sequences such as INEPT or HMQC are available to interconvert
heteronuclear single quantum coherences, but new approaches are required for
converting singlet-states into heteronuclear single quantum coherences at low field in
the strong coupling regime of protons. Introduced in this chapter is a consolidated
pulse sequence that was designed to achieve this conversion of singlet-state spin order
into heteronuclear magnetization across a wide range of scalar couplings in AA'X spin
systems. Analytic solutions to the spin evolution are presented, and performance was
validated experimentally in the parahydrogen addition product, 2-hydroxyethyl 1 - **C
— propionate - d3. Hyperpolarized carbon-13 signals were enhanced by a factor of
approximately 5,000,000 relative to Boltzmann polarization in a static magnetic field
of 47.5 mT. It is anticipated that this pulse sequence will enable efficient conversion
of spin order over a broad range of emerging PHIP agents that feature 111,S spin
systems.

The operators used to describe dynamic states in 3 spin 111,S spin systems can be
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represented by 8x8 matrices. After a brief introduction of related study and our
approach in section 2.1, expressions of the spin operators are described in section 2.2,
with the full expressions described in Appendix A. A pulse sequence designed to
transfer polarization from an initial parahydrogen singlet-state to a heteronucleus is
presented in 2.3. Experiment validation follows in section 2.4. Discussion about the
sequence, including the efficiency across various spin systems, and comparison to

previous approaches, is presented in section 2.5.

2.1. Introduction to Hyper-SHIELDED Spin Order Transfer Sequence

Hyperpolarization of nuclear spin ensembles has increased NMR sensitivity to a
level that is now enabling detection of metabolism in biological tissue on a time-scale
of seconds [104, 105]. The most developed of these technologies, DNP (dynamic
nuclear polarization) [51, 106, 107], in particular has already been used to detect, grade,
and monitor response to therapy in tumors [108-110]. These encouraging developments
have demonstrated the overall viability of NMR based hyperpolarized methods for the
study of in vivo metabolism, and have naturally spurred development in alternative
methods of hyperpolarization, such as parahydrogen induced polarization (PHIP)
[111-113]. Polarization yields from the less mature PHIP technology are similar to DNP
in cases where precursors are available, and accessed at significantly reduced
instrumental complexity and expense. An array of complementary advances is still

required, however, for PHIP to reach its potential as a diagnostic imaging modality.
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Efficient methods for transforming parahydrogen spin order into net
magnetization at low magnetic fields using pulsed methods would be helpful for
translating emerging PHIP contrast agents to biomedical applications. Parahydrogen
spin order will generally evolve when added to a molecule by PASADENA [111, 112] if
the singlet-state symmetry is broken, yielding a detectable antiphase NMR spectrum.
For applications of PHIP biomedicine, it is advantageous to convert this parahydrogen
spin order into net magnetization on a coupled heteronucleus. Aside from the standard
benefits of heteronuclear detection arising from increased spectral dispersion and low
background signals in vivo, producing carbonyl **C magnetization for example
eliminates the need to synchronize subsequent imaging procedures with the ongoing
evolution of an initial parahydrogen singlet-state. While spin order transfer has been
demonstrated by field cycling to create *3C angiograms in rats at 2.4T, pulsed methods
offer a simple and equally efficient alternative when low field NMR consoles are
available [114].

Determining the timing, frequency, and magnitude of these applied
electromagnetic fields to efficiently transform parahydrogen spin order into
heteronuclear magnetization in the strong coupling regime of protons is a challenging
problem though, even for small AA'X spin systems. Two prior sequences have been
reported for pulsed transformation of parahydrogen spin order into heteronuclear net
magnetization in this field regime [114, 115]. Most recently, Kadlecek and coworkers
reported a series of sequences that yield piecewise optimal polarization in three distinct

coupling regimes [115]. The earlier and most frequently cited sequence developed by
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Goldman and coworkers, offers unity efficiency for the targeted molecules and a
recursive procedure for pumping polarization yields when outside of those coupling
regimes [114]. We sought to build on those earlier works by developing a streamlined
sequence that could achieve optimal polarization in a single implementation without

the use of iterative pumping.

In this study, we describe a consolidated pulse sequence that transforms
parahydrogen spin order into heteronuclear magnetization in I11,S spin systems with a
yield near unity and independent of spin couplings. The sequence affords a unified
solution across scalar coupling topologies by flanking a heteronuclear excitation with
two asymmetric proton refocusing intervals to provide four unique evolution intervals.
These delay intervals are in turn optimized using prior knowledge of the spin
couplings to sequentially transform the initial parahydrogen spin order into pure
heteronuclear magnetization. We anticipate that the streamlined construction will be
well-suited to multidimensional experiments and for efficient preparation of existing

and emerging PHIP contrast agents.

2.2. Mathematical Basis Analysis Method for AA*X Spin Systems
For a three-spin system (I11,S system, two protons in singlet-state and one
heteronucleus), since each spin has two possible states (Jjo> and |B), 8x8 matrices are
necessary to express the states of the system. The eight possible states of three
spin-systems could be labeled as |aaoa>, Jaofy>, [apa>, |Bac>, |afp>, |Bap>, |Bpa> and

|BBPR>. States and pulses from the product operator basis could be expressed in
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matrices form. For example, the I, term, which is the x component magnetization for

one of the protons, could be expressed as:

O O O O O O O
O O r O O O O O

O r O O O O O O
O O O O O O O -

R O O O O O O o
O O O O o o+ o

O O O o o+ O o
O O O O O O O

(2.1)

Pulses with any phase and any rotation angle could be represented by 8x8 matrices as

well. For example, a pulse that rotates the **C magnetization around the x-axis by

angle 6 could be expressed as:
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(2.2)

L : . I
Therefore the initial density matrix of the parahydrogen state, 6o = i (haxlox + Tayloy

+ 11,15;), (assuming 100% polarization) can be expressed as:
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000 0 O O0OOTGO
000 0O O O0OOTO
001 -10 000
o, = 1 00-11 0 000 23)
200 0 0 0 1 -1 00
000 0 -11 00
000 0 O O0OOTGO
000 0 O O0OOTGO

The matrix representations for three spin systems (I11,S) used in the following
calculations are fully described in Appendix A.
In the strong coupling regime as obtained in fields used for this study, the

Hamiltonian can be written as:

H = 27]:[(Dlllz +(D2|22 +mssz

+‘]12(|1x|2>< + Ily|2y + Ilz|22)+‘Jlsllez +‘]25|2282]

(2.4)

In Equation 2.4, o1, o, and ws represent the Larmor frequencies of proton I;, proton
I, and S. Ji, is the homonuclear coupling constant between the protons, Jis is the
heteronuclear coupling constant between proton I, and S, and Jos is the heteronuclear
coupling constant between proton I, and S. Here we only consider only J coupling
terms of the Hamiltonian since offsets are cancelled by through the application of
refocusing pulses at % and % of each evolution delay [77]. The Hamiltonian
neglecting offset evolution can be written as:

H =21, (I, Dy + 13y 1y, +15,1,,) +3561,,S, +351,,S,1. (2.5)

By substituting the operators of luy, lox, liy, loy, 112, 12, and S; (See Appendix A), the

Hamiltonian could be described by the follow matrix:

48



1
Z(le +J5+J,) 0 0 0
1
0 Z(‘]lz -Jis - ‘]23) 0 0
1 1
- 0 0 Z('le +‘J15 "]25) E‘le
s en 1 1
0 0 Ele Z("]lz "]15 + ‘]zs)
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 1
Z("]lz "]13 + ‘]zs) E‘]lZ 0 0
1 3(-3 N 0 0 29
2 12 4 12 T Y1s "Y2s
1
0 0 Z(‘]lz -Jis "]25) 0
1
0 0 0 Z(‘]:lz +‘]15+‘]23)

At this point, all operators needed to study the three spin system have been
established. After hydrogenation, the initial state, po, does not generally commute
with the Hamiltonian and therefore begins to evolve. If the state is left evolving for
time t, the evolution becomes [116]:

p=U'p,U (2.7
In which

U = exp(iHt) (2.8)
If a pulse is applied, assuming the pulse operator is labeled as R, the state will evolve

to:

p=R’pR (2.9)
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By using this basis, the evolution of the states could be represented by density matrix,

while pulses and time evolutions could all be represented by matrix evolution.

2.3. Methods: Evolution from Singlet-state to Net Magnetization
In this section a pulse sequence designed to achieve unitary polarization level

independent of coupling topology in 3-spin I11,S systems is described.

2.3.1. Evolution under 3 spin 111,S system Hamiltonians
At low field, the evolution of Iy, Iox and Iy, Iy terms are completely entangled,
and 1y, and I, terms will also evolve as they do not commute with the Hamiltonian.

Here the calculated evolutions of 11, and 1, are shown as examples:

2 JHSIN(EQOH

1S

1, — cos(nlet){cos[g (3¢ +J,5)tcos(nt) -

2

-sm(nlet){sm[ (Jys +J,5)t]cos(nQt) + cos[; (Jys + I, )tsin(mt) 341, 1
Y

1x 22 z

TE

+sin(nJ12t){cos[g (J5 + 3,6 )t]cos(nQt) -

25 Hsin(nQt) }21

1S ly 2z

+cos(nJ12t){sm[ (Jys +J,6)t]cos(ndt) +

ly~z

cos[ (Jys +I)tIsin(mt) 321, S
+y*

12 = Wis zs)t]Sin(th) I,

" $)HsIin(mQt)4l,, 1

1S 2x lz z

2 T _
-—1+VYZ cos(mlzt)cos[g (s + I tIsin(ra2l,, |,

12 15 TVos )tsin(mQ)l 2y z

(2.10)
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2

l,, — cos(nlet){cos[ (Jy5 +J,5)t]cos(nt) + sm[ (Jis + I, )sIn(@QE)H ,,
Y

-sin(nJth){sin[g (35 + 3, )tlcos(nQt) -

Lo Hsin(mQt)}4l,, 1

1S 2X 1z z

sm[7t (U5 + o )tsin@Qb)}2l,, |
+v? 2

2y 1z

+sin(nJ12t){cos[g (J5 +J,0)tlcos(nQt) +

2

cos[n (Jys +I)t]sin(n2t) 321, S
+v° 2

+cos(n312t){sin[g (J¢ + 3,0 )tlcos(nQt) - f

2y~z

12 S Wis zs)t]Sin(th) I

1x 22 z

1 Zy cos(nlet)sm[;t (Jis + I, )tsin(mQat)4l |
Y

2y
- 2

12 1S 2S )t]SIn(th)z I ly I 2z

ly~z

sm(nlet)sm[TZ[ (I +d,)tlsin(@QO)1, S

(2.11)

=-A+1+A%, Q=] 1+A2,A:M
Y 12 2

12

The evolution is approximately symmetric, except for the only difference in signs of
the term  (1-v%)/ (L+y?) sin[ (1t / 2) (J1s + Jos)t]sin(nQet). Therefore, unless this term is
significant, it will not be possible to break the symmetry and create pure C
polarization magnetization (S;). Taking HEP as an example, sin[(w/2) (Jis +
Jos)t]sin(mQt) = sin[(7.24 - 5.62)xt] = sin(0.81xat) evolves very slowly with time
(period T=2.47s). Therefore, unless a time delay that lasts for seconds is applied
(which is not feasible due to the relaxation), this term is very close to zero and
negligible. Then the 1 and I, terms evolve almost exactly symmetrically, which
makes the coupling immune to any pulse sequence and impossible to obtain a pure S
polarization state. However, the S (I - 4l.,1,;) state could be generated, which

represents S net magnetization too, as the 41,,1,, term commutes with the Hamiltonian
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and hence does not evolve with time.

2.3.2. Evolution of the initial singlet-states

The initial parahydrogen singlet-state evolves upon addition as:

6, (t) —[sin®0 + cos*0cos(2nQ)] (1,1, +1,,1,,) (2.12a)
+cos0sin(2rnQt)2(1, 1,, - 1,,1,,)S, (2.12b)
+sinBcosO[1- cos(2nat)](1,, - 1,,)S, , (2.12¢)

where the 14,12, term was neglected since it does not evolve.

In this expression, theta, delta, and omega are defined as:

CosezL,sinez Q=J, 1+A2,A:J15_‘]25 .

1

1+ A2 N 20,
The last two terms are coupled with S. However, due to the existence of the constant 6,
it is not possible to generate a pure state of either term by a single time interval. The
method employed here to solve this problem was to apply a 180“pulse on either | or S.
The first term is not affected by the pulse and keeps evolving, while the signs of the
other two terms will be reversed, which leads to cancellation and makes it possible to
generate pure states. Here after a t; interval, a 180% pulse on S is applied, followed by

another interval t,. The final evolution can be described as:

o, (t,,t,) —{-c0s20sin’0 + cos20cos*0cos(2nQt, )cos(2nt, ) + %sin2 20

(2.13a)
[cos(2nQt, ) + cos(2rQt, )]+ cos?Osin(2rQt, )sin(2rQt, ) }(1 1, + I,15)
+[sinBsin26sin(2nQt, ) + cosécos20cos(2nQt, )sin(2rQt,) 5 13h
-cos0sin(2nQt, )cos(2nQt, )]12(1, 1, - 1,1,,)S, (2.130)
-lsinze[cosze +2sin’0cos(2nQt, ) - 2c0s°0cos(2nt,)
2 (2.13c)

+€0s20c0s(2nQt, )cos(2nQt, ) +sin(2nQt, )sin(2rQt,)](1,, - 1,,)S,
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Therefore, to get a pure (11, - 12,)S; state, the set of equations need to be solved:

-c0s20sin’0 + cos20cos’0cos(2nt, )cos(2nQt, ) + %sin2 20

(2.14a)
[cos(2nQt,) + cos(2nQt, )] + cos?Osin(2nQdt, )sin(2nQt,) = 0
sinBsin26sin(2nQt, ) + cosbcos26cos(2nt, )sin(2nQt, ) (2.14b)
-cosBsin(2mQt, )cos(2nQt,) = 0 '
- 1sin2(9[c0326 +2sin*0cos(2nQt, ) - 2c0s°0c0s(2nQ, )
2 (2.14c)

+c0520c0s(2mQt, )cos(2nQt, ) +sin(2nQt, )sin(2nQt,) =1
This is a system of two unknowns and three equations. However, since the
coefficients must satisfy the unitary condition that the square of each equation sums
up to unity, choosing t; and t, satisfying any two equations guarantee that the third
will be satisfied automatically. Therefore, by appropriate choice of t; and t, intervals,
the initial state is successfully evolved to a pure (11, - 12,)S; state, which then

concludes the first phase of the sequence.

2.3.3. Evolution into net heteronuclear magnetization

After generating the pure (ly, - 12,)S; state, a 905 pulse on S channel is applied to

obtain (I, - 12,)S state (oint), followed by another interval, this term evolves to:

61 (1) = COS2RON)(1, -1,,)S, (2.152)
+cosesin(2th)%Sy(l A1) (2.15b)
-sinBsin(2reQt)2(1,, 1, - 1,,1,,)S, . (2.15c)

As before, it is not possible to obtain a pure Sy(lI - 414,1,,) state, due to the existence of

the constant 0. The same strategy is used to constrain the problem as in the first phase
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of the sequence; a 180% pulse is applied on the S channel after the interval ts,

followed by another interval t;. The evolution then becomes:

Gint (t3' t4) (2 168.)
= [cos(2nQt,)cos(2nQdt, ) + cos20sin(2nQdt,)sin(2nt,)]S, (1., - 1,,) '
+[cosBcos(2nQt,)sin(2rnQt, ) - SinBsin20sin(2nQt, )
: 1 (2.16b)
-€0s0c0s20sin(2nQt, )cos(2nQt, )] 2 S,(1-41,1,,)
+[sinBcos20in(2nt, )cos(2nt, ) - sinBcos(2nQt, )sin(2nt,) » 16
: . .16¢
-c0s0sin20sin(2nQt,)]2S, (1,1, - 1,,1,,) ( )

To generate a pure Sy(l - 411,15;) term, which represents a transverse S component, the
coefficients must satisfy the following equations:
cos(2mQt,)cos(2nt,) + cos20sin(2nQt,)sin(2rQt,) =0 (2.17a)

cosfcos(2mQt,)sin(2nQt, ) - sinBsin20sin(2nt, )

_ (2.17b)
-€0s0c0s20sin(2nQt,)cos(2nQt,) =1

sinBcos20in(2nQt, )cos(2nQt,) - sinbcos(2nQt, )sin(2nQt,)

. . (2.17¢)
-€0s0sin26sin(2nQt,) =0

The solution of the time delays could then be calculated as:

1

\/1+ 2c0s20

1

«/1+ 2c0s20

After the tyinterval, a 90 on S will lead to an S,(I - 414,1,,) state, which represents

tan(2nQt,) = -
(2.18)
tan(nQt,) =

the final desired polarization state on S. Application of this pulse sequence with
appropriately chosen evolution delays will generate 100% S polarization in most I;1,S
spin  systems independent of J (Figure 2.3). For HEP (2-hydroxy,
1-C-ethylpropionate-ds) the optimal intervals are (J1, = 7.57Hz, Jis = 7.24Hz, Jos =

-5.62Hz):
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t,=9.75ms, t,=58.47ms, t,=36.20ms, t,=28.28ms . (2.19)

2.3.4. Hyper-SHIELDED pulse sequence
The sequence described here provides a streamlined solution to the problem of

polarization transfer. A complete form of the sequence is given in Figure 2.1.

" 180, 180,

Dec.

Bc 90, 90,

& »d
<« Ll |

v
\4
A
v

T1 T2 T3 T4

Figure 2.1. Schematic of hyper-SHIELDED pulse sequence. The sequence consists of
4 effective pulses (white pulses, 180° (+x) on I, 90° (+y) on S, 180° (+x) on I, and
90° (+x) on S), while the black bars are echo pulses applied at 1/4 and 3/4 of each
time interval.

As shown in Figure 2.1, the effective pulses are the white pulses (180, 90y, 180,
90y). The decoupling sequences are applied during hydrogenation to prevent evolution
during reaction, which leads to a loss in initial states. Also, the refocusing pulses at
1/4 and 3/4 of each time interval are applied to cancel the effect of field
inhomogeneity [77].

The evolution pattern is summarized in Figure 2.2. The initial state 2 evolves to 3

states under Hamiltonian with time. Term 3a represents the (lixlox + l1yl2y) term (as
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Equation 2.12a); 3b is 2(l1ylox - l1xl2y)S; term (as Equation 2.12b); 3c is (11 - 12,)S;
term (as Equation 2.12c). After the first step the three terms are focused to a pure 3c
term. A 90y pulse on S channel is followed to convert 3c to (l1; - 12,)Sx term. Then in
the second step, 3c evolves to 3 new terms, 4a, 4b, and 4c. Here 4a represents (13, -
1,,)Sx term (as Equation 2.15a); 4b represents %Sy(l - 414,15, term (as Equation
2.15Db); 4c represents 2Sx(l1ylox - l1xl2y) term(as Equation 2.15c¢). The three terms are
focused to pure 4b term in the second term. Finally, a 90y pulse on S channel rotates
the state to %SZ(I - 414,1,;) term and hyperpolarized S net magnetization could be

stored along the direction of the static magnetic field.

~ "Hdec
" reaction storage

WD R ON®
>3 N sz

dos | 5
O A 180, | g 1 @7
: - 90° - 907
| TH dec ’ t4 t2 ta tq I )
— reaction = storage —
time (ms

Figure 2.2. Graphical depiction of evolution of density matrix components (upper
graph) and the hyper-SHIELDED sequence (lower graph) for focusing parahydrogen
singlet-states (I; - 12) into pure magnetization on an adjacent coupled (S) nucleus for
strongly coupled I;1,S spin-systems. Symbols (3., 4a.c) correspond to components of
the density operator.

The shorthand hyper-SHIELDED (Singlet to Heteronuclei by Iterative Evolution

Locks Dramatic Enhancement for Delivery) was adopted for quick referencing the
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sequence because it has the effect of protecting hyperpolarized spin order. The final

polarization level of the pulse sequence could be calculated from Equation 2.20:

Pol =[sinBsin20sin(2xQt, ) + cosbcos26cos(2nt, )sin(2nQt, )
-c0s0sin(2nQt, )cos(2nQt, )]

><[%sin4e + %sin4ecos(Zth3)cos(Zth 2)

+sin20(sin*0cos(2nQt, ) - cos’0cos(2nt,))
+c0s0sindsin(2nQt,)sin(2nQt, )] . (2.20)

-%sinZG[(cosze +2sin’0cos(2nQt, ) - 2c0s*0cos(2nQt, )

+€0s20c0s(2nQt, )cos(2nQat, ) +sin(2nQt, )sin(2rnt,)]
>{cosBcos(2nQt,)sin(2nQt,) - SinBsin26sin(2xt,)
cosBcos26sin(2nQt, )cos(2nt, )]

2.4. Experimental Section

2.4.1. Synthesis of parahydrogen gas

Approximately 98% parahydrogen gas was synthesized by pulsing ambient
hydrogen gas at 14 bar (200 psi) into a catalyst-filled (iron oxide) copper chamber
held at 14 K using a previously described semi-automated parahydrogen generator.
Fresh batches of parahydrogen were collected in 10 L aluminum storage tanks
(14745-SHF-GNOS, Holley, KY, USA), used without Teflon lining or additional

modification.

2.4.2. PASADENA precursor preparation
The preparation of PASADENA precursor molecules was similar to those

previously [117] with the exception that water was used in place of 99.8% D,0 as a
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solvent. Briefly, 1,4-bis- (phenyl-3-propane sulfonate) phosphine (0.180 g, 0.32 mmol,
Q36333, Isotec, OH, USA) was combined with 100 mL H,O in a 1 L flask. This
ambient solution was then degassed with a rotary evaporator (model R-215 equipped
with V-710 pump, Buchi, New Castle DE) by decrementing the onboard pressure
slowly to avoid boiling, from 70 to 25 mbar over approximately 10 minutes. The
rhodium catalyst, bis(norbornadiene)rhodium (1) tetrafluoroborate (0.10 g, 0.27 mmol,
45-0230, CAS 36620-11-8, Strem Chemicals, MA, USA) was dissolved in 7 mL
acetone and was added drop-wise to the phosphine ligand solution to limit undesirable
precipitation. After repeating the prior degassing procedure, this catalyst solution was
mixed with 2-hydroxyethyl acrylate-1-*C,2,3,3-d; (HEA, 97% chemical purity, 99
atom % *C, 98 atom % D (20 mg, 0.16 mmol, Sigma-Aldrich 676071) in a 150 mL

square bottle (431430, Corning Life Sciences, NY, USA).

2.4.3. Catalytic hydrogenation

The precursor solution held in this 150 mL square bottle was connected to a
previously described, automated parahydrogen polarizer [117], equipped with a
dual-tuned *H/*3C coil [118]. Briefly, the chemical reaction was pulse programmed
with a commercial NMR console, to synchronize chemical reaction parameters,
decoupling fields, polarization transfer sequences, and detection of NMR signals.
PASADENA precursors were sprayed from an external location into a plastic
(polysulfone) reactor located within a 48 mT static magnetic field. The external

solution was equilibrated at 65 “C prior to spraying, and 16.5 bar (240 psi) nitrogen
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gas was used to inject this heated PASADENA precursor solution into a pressurized
atmosphere of 7 bar (100 psi) parahydrogen, and proton continuous wave decoupling
was applied immediately at a frequency of 2.02 MHz (B, = 47.5 mT) with a
magnitude of 5 kHz. This decoupling field was maintained for 4 seconds to lock the

parahydrogen spin ensemble while the hydrogenation reaction went to completion.

2.4.4. Detection of hyperpolarized **C

The polarization transfer sequence was applied immediately after CW
decoupling was turned off. For the HEP molecule, the ty, t,, t3, and t; intervals were
9.75ms, 58.47ms, 36.20ms, and 28.28ms, respectively. These delays were calculated
from the density matrix expressions above assuming a proton-proton coupling of 7.57
Hz, and a carbon-proton scalar coupling asymmetry of 12.86 Hz [119]. The actual
couplings could vary somewhat from these values depending on pH and specific
attributes of the polarization process such as temperature and pressure. After
polarization transfer, the free induction decay (single shot) was sampled with 512

points at a receiver bandwidth of 5 kHz for a digital resolution of ~10 Hz per point.

2.5. Discussion
Described here is a new pulse sequence (hyper-SHIELDED) for transforming
parahydrogen spin order in the strong coupling regime of protons into net
heteronuclear magnetization. Hyper-SHIELDED operates at nearly unity efficiency

with yields that are approximately independent of scalar coupling topology in three
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spin systems (111,S). The I;1,S moiety is a widespread and important spin system in
PHIP experiments formed for example, by molecular addition of parahydrogen to
perdeuterated and unsaturated molecular backbones.

Hyper-SHIELDED flanks two asymmetric proton refocusing intervals about a
heteronuclear excitation pulse to generate four unique delays (t; — t4). Optimization of
these delays to spin couplings in the molecule of interest sequentially converts the
initial parahydrogen singlet-state into pure heteronuclear magnetization (Figure 2.2).
Density matrix evolution under the influence of hyper-SHIELDED is depicted
graphically in Figure 2.2 and linked directly to equations in section 2.3.

The analysis of spin dynamics under the influence of hyper-SHIELDED assumed
strongly coupled protons and weak heteronuclear scalar couplings (Equation 2.5). The
initial parahydrogen density operator was retained without truncation and proportional
to 1,4, (Equation 2.3). Chemical shifts were not considered because the effects are
small compared to homonuclear proton couplings at targeted fields in the vicinity of
47.5 mT or lower, and we note that offsets were refocused with 180<pulses on both
channels placed at 1/4 and 3/4 of each evolution interval [119]. Evolution of the
strongly coupled parahydrogen density operator of Equation 2.3 is relatively
complicated compared to (truncated) high field density operators proportional to 11,1,;.
While analytical solutions to the spin dynamics are more tedious, heteronuclear
magnetization yields from parahydrogen spin order are increased by a factor of 2 at
low field in the strong coupling regime of protons.

Hyper-SHIELDED was applied immediately following the hydrogenation
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reaction. During the fast catalytic hydrogenation [120], proton decoupling was used to
maintain equivalence of the parahydrogen protons and freeze evolution of the spin
density operator until reaction completion [77]. After this period of decoupling and
chemical addition, with hyper-SHIELDED the initial density matrix evolved from the
parahydrogen singlet-state (Equation 2.3) to three terms (Equations 3.12a—3.12c,
symbols 3a—c in Figure 2.2) in the Cartesian product basis during the first interval (ty).
A 180x) proton pulse then focused these three terms of the density matrix into term
4c during the interval t,. A 90<y) pulse on the S nucleus then allowed term 4c to
evolve into an additional three terms (Equation 3.15a-3.15c¢, symbols 4a—c, Figure 2)
during the interval t3. Following a proton 180 <pulse, these three terms (symbols 4a—c,
Figure 2) collapse into a single term during t; (symbol 4b, Figure 2).

Note that since Ii,12, commutes with the Hamiltonian, 11,15,(t = 0) = I1,12; (t).
Since 11,(t = 0) + I,,(t = 0) = 0 for the parahydrogen singlet-state, 414,1,, reduces to —1I.
Therefore, when the t intervals are chosen to satisfy Equations 2.17a and 2.17b,
Equation 2.16b reduces to a pure Sy term. Rotating this heteronuclear magnetization
then locks the original parahydrogen spin order along S,, where it will persist
according to relaxation Kkinetics specific to the storage nucleus. Alternatively, if left
unperturbed in the transverse plane this term could be detected directly at the field
where the PHIP preparation was performed [117]. Nonselective refocusing pulses
were interleaved at 1/4 and 3/4 on both channels in each evolution interval to refocus
offsets and mitigate the deleterious impact of static field inhomogeneities [119].

Two prior sequences have been reported to transform parahydrogen spin order
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into heteronuclear magnetization in the strong proton coupling regime where the
process is most efficient [119, 121]. Most recently, Kadlecek and co-workers reported
a set of sequences that can be selectively applied to yield optimal transfer efficiency
in three distinct scalar coupling regimes [121]. Goldman and co-workers reported the
first pulsed transfer method which yields near unity singlet-state transformation
efficiency in proximity to the scalar couplings of the design molecule. They also
described a recursion procedure to pump polarization yields with GPS toward unity
when outside of those targeted coupling regimes [119]. With hyper-SHIELDED, we
sought to build on these efficient earlier works by developing a streamlined sequence
that could achieve optimal conversion efficiency in a single streamlined sequence
without recursive application and with minimal sensitivity to scalar coupling.

To characterize sensitivity of hyper-SHIELDED to scalar couplings, transfer
efficiency was calculated with respect to proton—proton scalar couplings (Ji2) and
coupling asymmetry (|JJis—J2s|) over a range spanning known and conceivable PHIP
reaction products (Figures 2.3 and 2.4). For each unique set of couplings (Jiz,
[J1s—J2g|), the set of evolution intervals yielding maximum efficiency was determined
by inverting the density matrix equations subject to a 300 ms total sequence duration
constraint. As illustrated in Figure 2.3, a broad plateau of unity transformation
efficiency was obtained with as little as ~6 Hz heteronuclear coupling asymmetry
(N1s—J25]) and ~2 Hz homonuclear proton coupling (J1). If application warranted and
relaxation times were favorable, expanding the total pulse sequence duration

constraint beyond 300 ms would enable sharper transitions from valley to plateau.
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To validate the sequence, experimental heteronuclear *3C signals were compared
between hyper-SHIELDED and GPS [119] for a PHIP reaction product where both

sequences were predicted to perform with identical efficiency (Figures 2.4 and 2.5).
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Figure 2.3. Polarization yield as a function of homonuclear proton coupling (J;2) and
heteronuclear coupling asymmetry ([Jis - Jos|) for hyper-SHIELDED. Contours levels
are annotated at right and superposed onto a gradient map calculated at a resolution of
(0.1 Hz)® For each point, the density matrix equations were inverted to find tau
intervals corresponding to maximum polarization and normalized to the global
maximum. The total duration of the sequence is fixed to be within 300 ms. Coupling
coordinates are annotated for the test molecule (HEP) in addition to a series of
molecules with small asymmetries expected to differentially benefit from
hyper-SHIELDED.
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Figure 2.4. Dependence of theoretical polarization transfer efficiency on
heteronuclear coupling constant asymmetry [Jis - Jas| in 3 spin systems (l1, I, S)
starting from an initial singlet-state density operator (l;-l;)using the
hyper-SHIELDED sequence (solid) versus a non-recursive implementation of a
comparison sequence (dotted, GPS). For each point, the equations governing the
evolution of the density matrix were solved for the optimal pulse sequence delays to
produce maximum polarization. The tau parameter space was search over the range
from zero to 300 ms.
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Figure 2.5. Polarization yield of the hyper-SHIELDED sequence versus Goldman
measured at the respective optimal timing parameters in a PASADENA
parahydrogenation reaction. Experimentally determined yields were nearly identical
(c) and in accord with theory for the parahydrogenated reaction product, 2-hydroxy,
1-'3C-ethylpropionate-d; (b). A Boltzmann polarized carbon-13 spectrum was
acquired from an aqueous solution containing 170 millimoles of the reaction product
for comparison (a).
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As shown in Figure 2.5 and in accord with theoretical expectations, **C
magnetization yield in a 7 umol sample of the PHIP reaction product, 2-hydroxyethyl
1-3C-propionate-ds, was enhanced by a large and equivalent factor of several million
with both sequences. Hyper-SHIELDED builds on earlier advances [119, 121] by
creating a single streamlined sequence that could achieve high transfer efficiencies
independent of scalar couplings. Implementation of hyper-SHIELDED is
experimentally compact and because the sequence does not rely on condition or
recursive application for broadband efficiency, and it can be readily extended to
multidimensional experiments on mixtures containing molecules with a range of
couplings.

Theoretical conversion efficiency was also analyzed at a specific Ji, (7.5 Hz) and
compared to the nonrecursive application of GPS [77]. As illustrated in Figure 2.3, the
dependence of polarization yield in the small asymmetry regime is relatively
insensitive to Jip. Polarization yields reach uniform efficiency more rapidly as a
function of asymmetry in hyper-SHIELDED versus the nonrecursive application of
GPS, and high levels of polarization are sustained across a broad range of
asymmetries (Figure 2.4). Although the calculated data points in Figure 2.4 were not
parsed by sequence duration, hyper-SHIELDED was slightly longer (17.88 ms) at the
HEP optimum. For the heteronuclear relaxation constants of HEP, the increased
duration of the hyper-SHIELDED sequence did not reduce polarization yield (Figure
2.5). Hyper-SHIELDED should perform particularly well in molecules with small

asymmetries such as ethylamine, diethyamine, and choline (Figure 2.4) [122, 123].
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CHAPTER 3

SPIN ORDER TRANSFER FROM PARAHYDROGEN SINGLET-STATES
INTO HETERONUCLEAR NET MAGNETIZATION IN AA'XY SPIN
SYSTEMS

Parahydrogen based methods of hyperpolarization have the potential to enhance
MR sensitivity to a level sufficient for observing metabolism in vivo at approximately
physiologic substrate concentrations. While these chemically synthesized, ordered
spin states can be long-lived and useful in many applications without additional
processing, when applied to biomedicine they require transformation into net
magnetization on long-lived heteronuclei to facilitate subsequent MR imaging by
standard techniques. Efficient methods for transforming singlet-state spin order into
net heteronuclear magnetization have been previously developed for
parahydrogenated three-spin systems [77, 121, 124], but these methods are expected
from theory to perform poorly when applied to four spin systems featuring strong
proton-proton and weak, heteronuclear scalar couplings (111,SR).

In this chapter, a sequence is described for efficiently transferring parahydrogen
spin order in four-spin systems. The method used to design the sequence is an
extension of that used to develop the 3-spin hyper-SHIELDED sequences. Global
analytic solutions to the spin evolution are found by embedding iterative refocusing
pulses. These pulses act to selectively invert terms in the density matrix and taken
together, a sufficient number allow global analytical solutions to be found.

Specifically, the initial parahydrogen density matrix was transformed across three
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independent time intervals to distill a six term product operator space into a single
term. This desired S magnetization component was then rotated to the transverse
plane and three additional tau intervals were used to distill the resulting eight term
product operator space into a pure heteronuclear (S) magnetization term. Each interval
provides a constraint, and together an approximately global solution could be found.
This term could then either be directly observed in situ or more commonly for
biomedical applications, stored along z for subsequent delivery and imaging.
Although precursor molecules are not yet available to test experimentally, we
anticipate that this sequence will provide an efficient method to transform
parahydrogen singlet-states in four spin (1;1,SR) systems into net heteronuclear
magnetization.

The aim of the sequence is presented in section 3.1. Four spin systems with two
protons and two heteronuclei are likely to become significant because they include
molecules in the TCA cycle, including 1,4-labeled succinic acid, which are introduced
in 3.2. The detailed properties of four spin system, including product basis
representation, are outlined in 3.3. The four spin analog of hyper-SHIELDED
designed to transfer spin order from parahydrogen singlet-states to heteronuclear net
magnetization is described in section 3.4. The discussions about the sequence,
including the efficiency of the pulse sequence across various spin systems are
described in section 3.5. Further studies for improving the efficiency of the spin order

transfer sequence, are discussed in section 3.6.
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3.1. Introduction

Hyperpolarization of nuclear spin ensembles has increased NMR sensitivity to a
level that is now enabling detection of metabolism in biological tissue on a time-scale
of seconds [51, 106]. The goal of this work was to address in particular, the absence
of pulse sequences for efficiently transforming singlet-states into net heteronuclear
magnetization in the important class of four spin systems formed by addition of
parahydrogen to an unsaturated molecular backbone. While raw singlet-states can be
long-lived and useful themselves for basic science applications and particularly at
Earth's field or below, when applied to biomedicine it is useful to convert these states
into net magnetization on a long-lived heteronucleus for both storage and to facilitate
subsequent imaging by standard methods. To our knowledge, the analogous sequences
for use in four spin systems have not yet been addressed in the literature.

Whether by covalent addition (PASADENA) or reversible interaction (SABRE),
parahydrogen methods of hyperpolarization operate by creating ordered ensembles of
singlet-states. In the strong proton coupling, these singlet-states evolve under special
symmetry conditions are met within the larger spin network formed by the interaction
of parahydrogen. For example, adding parahydrogen to a perdeuterated 1-*C
phosphoenolpyruvate molecule would create a four spin system (*Hi, ‘H,,3'P*C)
which in turn will evolve unless Jis - Jir - Jos + Jor = 0 and Jig + Jig - Jog - Jor = 0
(where S and R refer only to arbitrary, weakly coupled heteronuclei). In contrast to
three spin systems formed analogously, the expressions that describe the four spin

evolution are much more complicated. Therefore finding optimal spin trajectories
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between the initial parahydrogen singlet-state and terms with nearly pure net
heteronuclear magnetization, is more difficult.

In this study, we describe a consolidated pulse sequence that transforms
parahydrogen spin order into heteronuclear magnetization in 111,SR spin systems with
a yield near unity and independent of spin couplings. The sequence provides efficient
conversion across a broad range of coupling topologies by flanking a heteronuclear
excitation with two asymmetric proton refocusing intervals to provide four unique
evolution intervals. These delay intervals are in turn optimized using prior knowledge
of the spin couplings to efficiently transform the initial parahydrogen spin order into
pure heteronuclear magnetization. We anticipate that this hyper-SHIELDED-4
sequence will provide an efficient method to transform parahydrogen singlet-states in
four spin (1:1,SR) systems into net heteronuclear magnetization.

Transforming these states into net heteronuclear magnetization maximizes
spectral dispersion and reduces interference from the intense proton background
arising from water proton signals. It has recently been demonstrated that
parahydrogen singlet-states can themselves be long-lived at Earth's field [125], but
even in cases where the parahydrogen proton lifetimes are similar to or even more
favorable than carbonyl *C for example, locking the initial spin order also eliminates
the need to synchronize subsequent imaging acquisitions to accrued singlet-state

evolution.
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3.2. Examples of mOolecules featuring the 1;1,SR spin systems
As stated above, there are many important four spin systems in NMR. Many
molecules in TCA cycle are likely to be formed into 111,SR spin systems by PHIP. For
example, a precursor for PHIP lactate (phospholactate) has recently been developed,
and efficient utilization of PHIP spin order in this molecule will require a sequence

tailored to transforming spin order in four spin sequences.

3.2.1. TCAcycle

The TCA cycle (tricarboxylic acid cycle), also referred to as citric acid cycle,
stands for a series of chemical reactions by aerobic organisms to generate energy
through the oxidization of acetate derived from carbohydrates, fats and proteins into

carbon dioxide (Figure 3.1) [126-129].
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Figure 3.1. Schematic of the TCA cycle. A series of chemical reactions by aerobic
organisms to generate energy through the oxidization of acetate derived from
carbohydrates, fats and proteins into carbon dioxide.

TCA cycle molecules generate energy in the form of ATP through a series of
chemical conversions, therefore the NMR signal between pairs of molecules adjacent
in this cycle have the potential for tracking in vivo metabolism. From DNP, the
conversion rate of the molecules (like fumarate to malate) in tumors has been shown
to depend on treatment [54]. Fumarate and succinate are highly symmetric spin
systems, and one of the primary goals of developing a four spin hyper-SHIELDED
sequence was selectively modulate and observe these states in a manner dependent on

TCA cycle chemical triggers.
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3.2.2. Symmetrical spin system
Prior to hydrogenation, the 1,4-*C fumaric acid molecule is a completely
symmetrical molecule (Figure 3.2) and remains symmetric when converted to 1,4-**C

succinic acid after hydrogenation.

HO X Ol

O

Figure 3.2. Stick diagram of 1,4-*3C-labeled fumaric acid. After labeling both carbons
the molecule becomes a symmetric spin system.

The succinic acid is also a common molecule in TCA cycle. It possesses the
property of adjacent couplings, double bond, and long lifetimes, making it a
potentially ideal candidate for spin order transfer too. And the molecule is within a
symmetric spin system, which could allow the singlet-states to be stored after
hydrogenation.

The method used in Chapter Il to transfer spin order from parahydrogen
singlet-states to heteronuclear net magnetization requires the process (hydrogenation
— spin order transfer — signal recording) to be continuous without any significant
time lag. Otherwise, either the *C relaxation destroys the obtained hyperpolarized
state, or the singlet-state will be projected to the eigenstates of the new Hamiltonian
which relaxes quickly into thermal equilibrium. In this section we focus on the study

of hyperpolarized state lifetimes.
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Angular momentum selection rules prevent parahydrogen states from being
relaxed to ortho states, which preserves singlet-states for durations much longer than
would be expected from transverse or longitudinal relaxation. However, when the
parahydrogen H; gas is added to other molecules in order to transfer spin order and to
generate observable signals, it appears that the parahydrogen state will evolve to other
states under the new Hamiltonian since the symmetry is broken. This will lead to a
loss of polarization especially in vivo if the sample needs to be stored before recording
signals.

Examining the low field Hamiltonian of the two protons and S spins (again
neglecting chemical shifts):

H=2rnQ,l, -1, +J1.,S, +1,1,,S,) (3.2)

The eigenstates of this Hamiltonian are:

v, =|aao > v, =|aaf >
v, =|BPo > v, =|BBB >
Vs =a|apa > -b|poa > ¥, =blapa > +a|poa >
v; =b|apB >-a|Bof > vg =alapp>+b|Bof >
‘]15"]25 \/Jls"]zs 2 472
- J 3.2
R A S R (32)

1 Ya
«/1+y§ Jpp
Jls"]zs +\/(‘]13'st)2 +J2
b=_To _ 2 2 .

1’Y -
«,l+yt2, ’ I

The initial density matrix, projected to the eigenstates of this Hamiltonian can be

written as:

1 I..+1..1 A

ﬁ(llx T hy Zy)+m(llz-l22)sz]a

p=§[l-4lulh+ (33)
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where A = (\]15-\]23)/2le
It follows that if A = 0, the density matrix is stationary and remains in the

singlet-state. Here A = 0 implies that J;s = J,s. Examining the eigenstates, when Jis =

1 .
Jos, Aa=Ap,a=b = E , the last four eigenstates become:

Ve = [P > = | Bor > Ve == 0P > +-= | Boot >
NI A =7 o
w7=%laﬁﬁ>-%lﬁaﬁ> \vg=%laBB>+%|BaB>

This expression shows that ys and y; are represented as singlet-states of protons
coupled to either o> or |p> state of the heteronucleus. This implies that provided J;s =
Jos, the singlet-state will be projected to 50% ws and 50% w7, remaining in the
singlet-state and preserved for long time. If Jis # Jos, then the larger Jis - Jos is, the
difference between the projected density matrix and the initial singlet-state density
matrix becomes correspondingly larger. When Jis = Jos, the spin system is completely
symmetric. This suggests that the singlet-state lifetime is proportional to asymmetry
of the system, A=(Jis - J2s)/2J12, with commensurate effects on lifetimes. The smaller
Jis - Jas is, the longer the singlet-state could be preserved. This hypothesis can be

supported by the coherent evolution of singlet-states (See Section 2.3):

6, (t) = [sin*0 +cos*0cos(2nQ)|(1,, 1, +1,,1,,) (3.5a)
+cos0sin(2rnQt)2(1, 1,, - 1,,1,,)S, (3.5b)
+sinBcosO[1- cos(2nQt)](1,, - 1,,)S, (3.5¢)

If J1s = Jos, then A =0, sin6 = 1, cosd = 0, so the coefficients for the last two terms

vanish, and the singlet-state will not evolve with time. The larger the factor A is, the
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faster singlet-state decays. The lifetime is therefore proportional to the factor (1/A).

However, if the molecule is prepared by hydrogenation through double-bonds,
the two protons are always one bond away and Jis - Jos IS never zero, therefore it is
generally not feasible to obtain symmetric molecules in three spin systems (I11,S). But
if the molecule consists of two labeled carbons, like 1,4-3C succinic acid, it becomes
possible to create a symmetrical chemical environment for hydrogenation.

It is recently reported that the lifetime of the hyperpolarized state is related to
magnetic field as well (a low field preserves longer lifetime rather than zero-field, the
precise magnetic field needs to be selected from the spin system) [130].

As discussed above, singlet-states could be preserved for relatively long intervals
after hydrogenation. Succinate is not completely symmetric, since for this molecule
Jhacb=Jnbca, JHaca=JHbcp, instead of the perfectly symmetric case, Juaca=JHbca and
Jhacb=Jnbcp. In summary, it should be possible to generate signal in this molecule
(detailed calculation provided in 3.3).

Further calculation of the evolution shows that the lifetime of the singlet-states in
this molecule should be proportional to the factor of % (Aa *+ Ap), in which Az = (Jnaca
+ Jhach = JHbca = JHbeh)/2IHarb, Ab = (JHaca ~JHach = JHbca + JHbch)/2Haro. 1T Aa = Ap = 0,
the singlet-state will not evolve with time. For this molecule A,=0, therefore half of
the spin system would stay in singlet-states while the lifetime of the other half will be
proportional to (Jnaca + JHach - JHbca - JHbeb)/2Jmamp. This part will likely to decay to
thermal equilibrium on time scale of seconds.

In the view of eigenstates, after hydrogenation, the probability is 50% that the
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initial singlet-state (1/\5) (JoB>-|Ba>), would be projected to the states (1/\5)
(JaB,00>-|Ba,aa>) or (1/ ﬁ) (JoB,BB>-|Ba.,BB>) and remain in these states (the last
two symbols represent the two heteronuclei). The other 50% probability is that the
initial singlet-state will be projected to the states (1/ \E) (|aB, of>-|Ba,ap>) or
(1/5) (Jap, Ba>-|Ba, Bo>), and decay with time since it is longer in a singlet-state
(1a=V(1+A)- Aa).

Therefore, after hydrogenation and relaxation, 50% polarized singlet-states could
still be preserved in this spin system. This state could be made observable by breaking
the symmetry and the pulse sequence presented later in 3.4. One possible method of
breaking the symmetry would be to adjust pH, since the J coupling constants of

succinic acid depend on pH.

3.3. Mathematical Basis of 111,SR Systems

In product operator basis, since the I;1,SR spin system consists of four spin 1/2
nuclei, each spin state could be represented by a 16x16 matrix. In the rest of this
chapter, the two protons of parahydrogen will be labeled as 1; and I, while the two
heteronuclei will be labeled as S and R.

The 16 states formed by products of the individual spin ¥ states could be labeled
as: o>, |acaf>, laafo>, [afac>, |Baco>, [aafp>, |afap>, lafpa>, |Baaf>, |Bafo>,
IBBoc>, |apBp>, |Boafp>, |BPap>, |BPRa>, and |BPPR>. Full expressions of the
operators can be found in Appendix B.

The initial density matrix is the parahydrogen singlet-state:
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60=|1x|2x+|1y|2y"'|1z|2z (3.6)

The matrix representation of the initial singlet-state is then (neglecting 14,15, term,

which does not evolve with time):

000OO0OOOOOOOOOOOO
0 00O0OOOOOOOOOOOO
000O0O0OO0OO0OO0OOOOOOOOO
00001O0O0O0ODO0OOO0OOOOOOO
0001O0O0O0O0OO0OO0OO0OO0OO0OO0OO0OO
000O0O0OOO0OO0OOOOOOOOO
0 00OO0OOOO1I0O0OO0OO0OO0OO0OO
1/0 0 0 0 0O 0O0OO0OO0O1O0O0O0OO0OO0ODO

G__

® 200000001 00000000O0TO0
0 00OO0O0OO0OO0O1O0OO0OOOOOOO
0 00O0O0OO0OOOOOOOOOOO
0 00O0O0O0OO0OO0OO0OOOO11O0O00O
0 00OO0OOOOOOO11IO0O0OO0OO
000OO0O0OOOOOOOOOOOO
000O0O0OO0OO0OO0OOOOOOOOO 3.7
000OO0OOOOOOOOOOOO (3.7)

Any pulse applied to the spin system could be represented in this basis by a
rotational operator (also 8x8 density matrix), calculated from:
R, (0, 0) = cos(g)l " 2isin(g)[cos((p)lix +sin(@)l,]. (3.8)
For the 111,SR spin systems with two protons and two heteronuclei, in low field the
homonuclear coupling between the protons is considered strong coupling (6 = J),
while the other heteronuclear couplings are considered all weak couplings (6 >> J),
the coupling Hamiltonian is then (as in Chapter Il, only coupling Hamiltonian is
considered):

H = 27[[‘J12(|1x|2x +I I + Ilz|22)

ly 2y

: 3.9
+‘]lS|lez +‘]1R|lsz +‘]ZSIZZSZ +‘]2R|lsz +‘]SRSZRZ] ( )

Matrix expressions of this Hamiltonian are included in Appendix B. All the necessary
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operators to analyze the spin order of 111,RS spin systems have now been constructed.

The initial parahydrogen singlet-state will evolve under the Hamiltonian as:

p=U"p,U

U = exp(iHt) (3.10)

3.4 Methods: evolution of parahydrogen singlet-state to heteronuclear net
magnetization

Using a similar strategy as in Chapter Il, the evolution of states under the

Hamiltonian can be analyzed in two independent phases.

3.4.1. Evolution of initial singlet-states

The formation of the initial state is given in Sections 3.6 and 3.7. The evolution
of the initial parahydrogen singlet-state could be calculated after numerical
calculation in the mathematical basis constructed in Section 3.2 (detailed evolution of

the systems is given in Appendix C).

o, (t) =
Lrcine 2 2 2 (3.11q)
E[sm 0, +c0s"0,cos(2nt) +sin“0, +c0s"0,c08(2mC2, )] (1, 1, +1,,1,,)
1 H Y] 2 HJ 2
+—[sin“0, + cos“0,cos(2n,t) -sin“0, - cos 0,cos(2m 2, t
5 [5In°0; ,C0S(2m€2) 2 2008(21Q2, )] (3.11b)
4(le|2x * IlyIZy)Ssz
+%[coselsin(2n91t) +0080,8IN2R,H]2(1,, - 1,,1,,)S, (3.110)
+%[coselsin(2nﬂlt) -€080,sin(2nQ2,H]2(1, 1, - 1,,1,,)R, (3.11d)

+ % [sin26, (1- cos(2rQ,;t)) +5sin26, (1- cos(2rnQ,t)](1,, - 1,,)S, (3.11e)

+%[sin291(1- cos(2m, t)) -sin20, (1- cos(2z2,1))I(1,, - 1,,)R, (3.11f)
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There are six terms in the evolution. The first term represents the initial state, the
second is the initial state coupled to both heteronuclei. The third and fifth terms are
coupled with heteronucleus S, while the fourth and sixth are coupled with
heteronucleus R. Here S is chosen as the receptor of PHIP spin order. The fifth term
(3.11e), (l1-12,)S; is chosen as the node, or destination for the first phase in the spin
order transfer. In contrast to the 3-spin I11,S spin system, with this 4-spin problem
there are six terms, so a simple 180%pulse will not be sufficient to maximize the fifth
term. The expression of the evolved terms shows that if a 180X pulse is applied on
protons, the 3" (3.11c), 4™ (3.11d), 5™ (3.11e), 6™ (3.11f) terms all change signs. If a
1802 pulse on heteronucleus S channel is applied, the 2" (3.11b), 3 (3.11c), 5"
(3.11e) terms change signs. Also, a 180 pulse on heteronucleus R channel will
change signs of the 2™ (3.11b), 4™ (3.11d), 6™ (3.11f) terms. It could be proven by
calculation that applying a combination of 180X pulses on any two of the three
channels will be sufficient to transfer spin order, only changing the time intervals of
the sequence. Here proton and S channels are chosen, which are feasible in
two-channel NMR facilities. Therefore, the first step of evolution contains three time
intervals (t;-t3) and two 180 pulses on proton/heteronucleus S channels to evolve the
initial singlet-state closest to the state coupled with heteronucleus S ((I1; - 127)S;). The
density matrix after the evolution then becomes:

o, (t,t,,t.) =™ [R! (][R} (m)] e "o, R} (1) R! (m)e'"™ . (3.12)
The time intervals ty, t,, and t3 are modified simultaneously to evolve the state closest

to (11.-12,)S; state (Equation 3.11e), to minimize the following expression:
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min[e, (t,,t,,t,)-(3.11e)] (3.13)

3.4.2. Evolution to heteronuclear net magnetization
After the first step, a 909 pulse is applied on heteronucleus S channel to obtain a
transverse component of heteronucleus S:
s, (1, -1,,)—2¥9 55 (1, -1,). (3.14)
To generate net magnetization of heteronucleus S, the evolution of this state is then

calculated:

6, (t) = cos(mlg,t)

3.15a
[cos(m, t)cos(n2,t) - cos(; -6, )sin(r, t)sin(z,1)]S, (1, - 1,,) ( )
-sin(ml g, t)[cosO,sin(nQ, t)cos(nC2, t) (3.15b)
+c0s0,c0s(nQ, t)sin(mQ,1)IS, (1-41,1,,)R, '
+C0S(1dg t)[cosO,sin(nQ, t)cos(ne2, t)
. 1 (3.15¢)
+cosezcos(ant)S|n(ant)]Esy(l a1,1,,)
+sin(mdg, t)[cos(n, t)cos(nC2, t) 3154
-€0s(6, -0, )sin(nQ, t)sin(n,1)]2S, (1, - 1,,)R, (3.15d)
-cos(mJ, t)[sin(0, -6
_ (Msr ?[ (6,-6,) (3.15¢)
sin(mQ,t)sin(mQ2,1)]4S, (1,1, +1,,1,)R,
-sin(md g, t)[sin6 sin(nQ, t)cos(me2, t) 315
+sinB,cos(nQ, t)sin(m2,)14S, (1,1, - 1, 1,,)R, (3.150)
-C0S(mg t)[SINO,SiN(mQ, t)cos(n, t)
(3.159)
+sin0,cos(m€2, t)sin(m€2,1)]2S, (I, 1,, - 1,,1,,)
-sin(mJ . t)[sin(6, -6
(m)szt)[sin(6, -6,) (3.15h)

sin(mQ,t)sin(nQ2,1)]2S (1,1, +1,,1,,)

The state evolves into eight different terms. The term representing the heteronucleus S

transverse component is the 3" term (Equation 3.15c), %Sy(l - 414,15;) term. The same
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technique as the first step is applied to this evolution. Here if a 180<x pulse is applied
on protons, the terms that change signs are the 1% (Equation 3.15a), 4™ (Equation
3.15d), 6™ (Equation 3.15f), 7" (Equation 3.12g) terms. If a 180X pulse is applied on
heteronucleus S channel, the terms that change signs are the 3 (Equation 3.15c), 4™
(Equation 3.15d), 6™ (Equation 3.15e), 8" (Equation 3.15h) terms. Also, a 180©x
pulse on the heteronucleus R channel changes the signs of the 2" (Equation 3.15b),
4™ (Equation 3.15d), 5™ (Equation 3.15¢), 6" (Equation 3.15f) terms. It could also be
proven that applying a combination of 180 pulses on any two of the three channels
will transfer spin order with same efficiency by adjusting the time intervals in the
sequence. Again proton and heteronucleus S channels are chosen as the channels that
180 pulses are applied to. The density matrix after this step then becomes:

0 (L 1, o) = € [RL (T [RS M e ™o, RS (m)e: R) ()6 . (3.16)

int

The time intervals ty, ts, and tg are modified simultaneously to get the state closest to

%Sy(l - 414,1,5,) state (Equation 3.15c¢), to again minimize the difference between the
target and final state:

minfe. (t,,t5,t;) - (3.15¢)] (3.17)

After evolving to the state with the least difference to the 3™ term (Equation

3.15c), a 90K pulse is applied to S channel to obtain pure heteronucleus S net

magnetization.

S, (I -41,1,)) 6 535 (1-41,1,,) (3.18)
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3.4.3. Hyper-SHIELDED-4 pulse sequence
The complete form of the pulse sequence that transfers spin order from a
parahydrogen singlet-state to heteronuclear net magnetization for 1;1,SR spin systems

is described in this chapter (Figure 3.3).

» 180, 180,

Dec.

S 180y 90y 180y 90,

—r e —r r— r — P —rr—>
T1 T2 T3 T4 Ts5 Ts

Figure 3.3. The 4-spin hyper-SHIELDED sequence for transferring spin order from a
singlet-state to heteronuclear net magnetization in I11,SR spin systems. The sequence
consists of 6 effective pulses (white pulses, 180(+x) on S, 180° (+x) on I, 90° (+y)

on S, 180° (+x)on S, 180° (+x)on I, and 90° (+x) on S), while the black pulses are
refocusing pulses placed at 1/4 and 3/4 of each time interval.

In Figure 3.3, the white pulses are effective pulses. As in Chapter Il, initially a
decoupling field is applied during reaction to avoid the evolution and possible loss of
polarization level during reaction. And 180refocusing pulses are applied at 1/4 and
3/4 of each time interval to cancel the effect of filed inhomogeneity [77]. In analogy
to the 3-spin sequence, since a similar technique was used to design the sequence, and
since the overall impact is similar (to protect PHIP spin order), the shorthand

hyper-SHIELDED-4 was adopted for quick referencing.
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A detailed diagram in Figure 3.4 depicts the pulse sequence and evolution of

states.

reaction storage

90} 90%
dcplg I d I X

t-| t2 t3 t4 t% tG
Evolution intervals

Figure 3.4. Evolution of density matrix components (upper graph) and the associated
pulse sequence (lower graph) for focusing parahydrogen singlet-states (11-1,) into pure
magnetization on an adjacent coupled (S) nucleus for 111,SR spin-systems in the
strong coupling regime. Labels S and P refer generally to coupled S-nucleus (for
example, 3C or 3'P).  Symbols (3a-f, 4a-g) correspond to components of the density
operator.

As shown in Figure 3.4, state 2 is the initial state. 3a-f represents the six states
the initial term evolves into, including (lixlox + layloy), 4(Lixlax + liyloy)S:Rz, 2(11ylax -
lixlay)Sz, 2(lylox - lil2y)Rz, (112 - 122)S;, and (112 - 12,)R; terms (as Equation 3.11a-f).
After the initial state evolves for time t;, a 1804 pulse on heteronucleus S channel
coverts signs of the 3b, 3c, 3e terms. Then the state evolves again for interval t,, a
180y pulse is followed on proton channel that converts signs of 3c, 3d, 3e, 3f terms,

the state then evolves for another time period t;. After the pulses, the evolution pattern
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for each term is different, making it possible to obtain the state closest to the desired
term, 3e.

A 90° (+y) pulse on heteronucleus S channel is then followed to rotate S, to S
and generate S transverse component (3e to 4a). The 4, state is left evolving for a time
period of t; and evolves to eight new terms (4a-h). Those terms (4a-h) represents the 8
states of Sx(l1; - 122), Sx(I - 411212,)R;, %Sy(l - 4l3;12,), 2Sy(l1; - 12)Ry, 4Sx(lixlax +
l1iyloy)Rz, 4Sy(liylox - lixlay)Rz, 2Sx(laylox - laxlay), 2Sy(lixlox + layloy) (as Equation
3.15a-h). A 1804 pulse on heteronucleus S channel then reverses signs of 4c, 4d, 4f, 4h
terms. After another evolution of ts, a 1804 pulse on proton channel then converts
signs of 4a, 4d, 4f, 4g terms. Again by creating different evolution pattern for each
term, the state closest to the desired term, 4c, could be obtained. In the end a 90y pulse

is applied on heteronucleus S channel to rotate it to net S longitudinal magnetization.

3.5. Discussion

Described here is a pulse sequence (hyper-SHIELDED-4) designed to efficiently
transform parahydrogen singlet-state spin order into heteronuclear magnetization in
hyperpolarized four spin systems that feature strong proton-proton, and weak
heteronuclear scalar couplings. Although new molecules are emerging for applications
to biomedicine that will require efficient transfer sequences, to our knowledge none
have yet been described. We showed earlier that selective refocusing could be used to
generate constraints sufficient to enable streamlined, approximately global analytic

solutions to be identified in three spin systems. While applying the three spin
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sequence generated earlier to four spin systems yields suboptimal results, we found
that extending the earlier design process by introducing additional selective
refocusing pulses would allow efficient, nearly global analytic solutions to be found
in four spin systems.

The initial density matrix was transformed sequentially in two independent
intervals, separated by a heteronuclear 90° pulse. Within each of these intervals, 180°
pulses were applied on protons and a selected heteronucleus to generate sufficient
constraints so as to enable an approximately global analytic solution to be found for
transforming the initial singlet-state into net heteronuclear magnetization.
Hyper-SHIELDED flanks two asymmetric proton refocusing intervals about a
heteronuclear excitation pulse to generate six unique delays (t1-tg). Optimization of
these delays to spin couplings in the molecule of interest sequentially converts the
initial parahydrogen singlet-state into pure heteronuclear magnetization (Figure 3.4).

The analysis of spin dynamics under the influence of hyper-SHIELDED-4
assumed strongly coupled protons and weak heteronuclear scalar couplings. The initial
parahydrogen density operator was retained without truncation and proportional to I;-1».
Chemical shifts were not considered because the effects are small compared to
homonuclear proton couplings at targeted fields in the vicinity of 47.5 mT or lower, and
we note that offsets were refocused with 180° pulses on both channels placed at 1/4 and
3/4 of each evolution interval. Evolution of the strongly coupled parahydrogen density
operator is relatively complicated compared to (truncated) high field density operators

proportional to 11,1,,. While analytical solutions to the spin dynamics are more tedious,
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heteronuclear magnetization yields from parahydrogen spin order are increased by a
factor of two at low field in the strong coupling regime of protons.

This sequence is meant to be applied immediately following the hydrogenation
reaction. During the fast catalytic hydrogenation, Proton decoupling would be used to
maintain equivalence of the parahydrogen protons therefore freezing evolution of the
spin density operator until reaction completion. After this period of decoupling and
chemical addition, with hyper-SHIELDED-4 the initial density matrix evolved from
the parahydrogen singlet-state to six terms (Equation 3.11a-f, symbols 3a-f in Figure
3.4) in the Cartesian product basis during the first interval (t). Two 1804
proton/S-nucleus pulses then focused these six terms of the density matrix into term
3.11e during the intervals t, and t3. A 90y pulse on the S-nucleus then allowed term oy to
evolve into an additional eight terms (Equation 3.15a-h, symbols 7a-h, Figure 3.4)
during the interval t;. Following two proton/S-nucleus 180° pulse, these eight terms
(symbols 7a-h, Figure 3.4) collapse into a single term during ts and ts (symbol 7c,

Figure 3.4).

Note that since li,l,, commutes with the Hamiltonian, I,l5,(t = 0) = I1,12,(t).
Since 11,(t = 0) + I,(t = 0) = 0 for the parahydrogen singlet-state, 414,15, reduces to -1.
Therefore when the tau intervals are chosen to satisfy Equation 3.17, Equation 3.15c
reduces to a pure S, term. Rotating this heteronuclear magnetization then locks the
original parahydrogen spin order along S;, where it will persist according to relaxation
kinetics specific to the storage nucleus. Alternatively, if left unperturbed in the

transverse plane this term could be detected directly at the field where the PHIP
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preparation was performed. Nonselective refocusing pulses could be interleaved at 1/4
and 3/4 on both channels in each evolution interval to refocus offsets and mitigate the
deleterious impact of static field inhomogeneities.

To characterize sensitivity of hyper-SHIELDED-4 to scalar couplings, transfer
efficiency was calculated with respect to both coupling asymmetry ([J1s — J2s| and [J1r
— Jor|) over a range spanning known and conceivable PHIP reaction products for the
three major conformations - gauche, eclipse and anti (Figures 3.5). For each unique
set of couplings (Jis — Jas|, Jir — Jerl), the set of evolution intervals yielding
maximum efficiency was determined by inverting the density matrix equations subject
to a 500 ms total sequence duration constraint. As illustrated in Figure 3.5, a broad
plateau of unity transformation efficiency was obtained with heteronuclear coupling
asymmetry ([Jis—J2s|) as little as half of the proton-proton scalar couplings. If
application warranted and relaxation times were favorable, expanding the total pulse
sequence duration constraint beyond 500 ms would enable sharper transitions from

valley to plateau.
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2D Polarization Contour with Gauche Conformation (J;, =4 Hz) 09
T T 1 V.

1 0-0 T T T T T T T

9.0 1F408

|J15=J2s| (H2)

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 2.0 10.0
|J1r—J2g| (H2)

Figure 3.5. 2D contour of maximum polarization level from four spin system (1;1,SR)
pulse sequence as a function of both Jis-Jos and Jig-Jor for all three major
configurations (eclipsed with J;,=11Hz, anti with J1,=13Hz, and gauche with J;,=4Hz)
while the total duration of the pulse sequence limited within 500ms. Here Jsg is both

fixed at 6.52Hz.
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|J1s—Jas| (H2)

[J15—Jas| (H2)

2D Polarization Contour with Eclipse Conformation (J12=11Hz)
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0.2

0.1

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
|J1r—J2g| (H2)

2D Polarization Contour with Anti Conformation (J12=13Hz)
T T T T T T T T T — 0.9

03

0.2
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1.0 20 3.0 40 5.0 6.0 7.0 8.0 9.0
|J1r—J2r| (H2)

Figure 3.5, Continued
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Similar as the three spin case, as the maximum time duration increases, the
maximum polarization level increases too. As discussed in section 3.3, in the four
[11,SR systems, the more symmetric the spin system is, the longer lifetime
singlet-states could be preserved. Figure 3.5 shows that the maximum polarization
level is low when the symmetrical level of the spin system is high (both J;s - Jos and
Jir - Jor approaches 0). In those spin systems it is possible that the singlet-states could
be preserved longer and a longer sequence would be possible. So the maximum
polarization level of the sequence with longer time duration is calculated, as shown in
Figure 3.6, both J;, and Jsg are fixed at 5 Hz. Clearly the maximum polarization level
increases as the total duration increases. If the sequence duration is fixed at 2 or 4
seconds, the sequence yields nearly unitary polarization level for a wide range of

molecules, including those highly symmetric molecules.
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Polarization Dependence on System Asymmetry Levels (1 Second)

T T T T T T T T T [r=——1 0.9
9.0 1 F 108
8.0 lo7
7.0
10.6
~ 60r
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|m r 104
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m_——— e
2.0 ____,///N_’“_Q——\¥ i
e k
1.0 & -

10 20 30 40 50 60 70 80 90

|J1r—J2g| (H2)
Figure 3.6. 2D contour of maximum polarization level from four spin system (I11,SR)
pulse sequence as a function of both J;s-J2s and Jir-Jor While the proton-proton scalar
coupling is fixed to be 5 Hz and the total duration of the pulse sequence limited within
1 second (upper graph), 2 seconds (middle graph), and 4 seconds (lower graph). The
maximum polarization level increases as the total duration increases. If the sequence
duration is fixed at 2 or 4 seconds, the sequence would be expected to yield nearly
unitary polarization level for a wide range of molecules, including those highly
symmetric molecules.
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[d1s=J2s| (HZ)
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Polarization as a function of system asymmetry with 2 s polarization transfer
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Figure 3.6, Continued
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3.6. Further studies: a third channel

Although hyper-SHIELDED-4 sequence is expected to yield high polarization
level for most 111,SR spin systems, in cases where S and R have significantly different
chemical shifts, a third channel would be necessary to eliminate the influence of
chemical shift evolution completely. In hyper-SHIELDED-4 pulse sequence only
pulses on proton and heteronucleus S channel are provided, if pulses on all three
channels could be applied, the performance of the sequence will be improved. Those
3-channel devices are not quite common in MR labs nowadays yet, but the
PANAROMIC sequence our group developed [131] would be able to address this type
of problem to provide pulses on three channels using a two channel device (single
channel as well). The modified sequence is shown in Figure 3.7. There are no
refocusing pulses on the heteronucleus R channel since we are only using the

longitudinal components of heteronucleus R.
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1804

» 180,
) | | | | | | | | | |
R 180, 180,
S 180, 90, 180, 90,
P — P > > > < >
T1 T2 T3 T4 Ts T6 T7 T8

Figure 3.7. The 3-channel pulse sequence for 4 spin systems (I11,SR). The sequence
consists of 8 effective pulses (white pulses, 180, on R, 180, on S, 180, on *H, 90, on S,
180, on R, 180, on S, 180, on 'H, and 90, on S). The black pulses are refocusing
pulses applied at 1/4 and 3/4 of each time interval. There are no refocusing pulses on
R channel since we are only using the longitudinal components of R and on transverse
R component is generated.

There are eight time intervals in this sequence, which increases the level of
freedom to manipulate the spin states. Below is the comparison of maximum
polarization level of three channels versus two, Figure 3.8. The other J coupling
constants are fixed at [Jis = -3.8Hz, Jigr = 8.6Hz, J,s = 4.07Hz, J,r = OHz, Jsg =
6.52Hz] while varying Jis, [J12 = 6.9Hz, J1gr = 8.6Hz, Jos = 4.07Hz,J,r = OHz, Jsk =
6.52Hz] while varying Jis, [J12 = 6.9Hz, Jis = -3.8Hz, J,s = 4.07Hz,Jor = OHz, Jsg =

6.52Hz] while varying Jir.
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2 Channel

3 Channel

Polarization Level

1 | L | L 1 1 J
1.0 2.0 3.0 4.0 5.0 6.0 70 2.0 9.0 10.0
J12 (Hz)

Figure3.8. The maximum polarization level of 2 channel sequence (dotted line) and 3
channel sequence (solid line) as a function of proton-proton coupling Ji» (upper
graph), proton-S coupling Jis (middle graph), and proton-R coupling Jir (lower
graph). While varying one of the coupling constants, the other J coupling constants
are fixed at [Jls = -3.8Hz, Jigr = 8.6Hz, Jos = 4.07Hz, Jogr = OHz, Jsg = 652HZ] while
varying Jiz, [J12 = 6.9Hz, Jigr = 8.6Hz, J,s = 4.07Hz, Jor = OHz, Jsg = 6.52Hz] while
varying Jis, [J12 = 6.9Hz, Jis = -3.8Hz, J;s = 4.07Hz, Jo,r = OHz, Jsg = 6.52HZz] while
varying Jig. The duration of both sequences are fixed to be within 500 ms. The
dependence of polarization level on Jzs (J2r) is similar as Jis (Jir), and is not sensitive
to Jsg.
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Figure 3.8, Continued
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CHAPTER 4

RESOLVING SCALAR COUPLINGS IN LOW INHOMOGENEOUS FIELDS
BY INDIRECT DETECTION OF SINGLET-STATE EVOLUTION

The efficiency of spin order transfer in hyper-SHIELDED-3 and
hyper-SHIELDED-4 depends on accurate prior knowledge of accurate scalar coupling
constants. Apart from spin order transfer sequences, precisely measured scalar
coupling constants are also important in many NMR experiments. For example, APT
(attached proton test) provides a simple and elegant method to distinguish the number
of protons attached to a carbon atom by distinguishing the numbers of couplings of
the carbon [132-134]. INEPT (Insensitive Nuclei Enhanced by Polarization Transfer)
is an experiment that makes use of the high gyromagnetic ratio of protons to enhance
signals of other heteronuclei by coherence transfer through coupling [135-141]. DEPT
(Distortionless Enhancement by Polarization Transfer) is an NMR tool that
distinguishes the CH3, CH,, CH and other groups of the observed molecules by
making use of the different coupling of the groups [142-144]. It is also the basic
character used in the experiments of HECTOR [145], COSY [146-153], and TOCSY
[154-159].

Therefore, accurately measuring the scalar coupling constants is very important
for hyperpolarization sequences and other experiments. There are several approaches
to measure scalar coupling constants. However, although the spin order transfer

experiments could be conducted at low fields, in most cases precisely measuring
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scalar coupling constants requires a high magnetic field. Besides, precisely measuring
scalar coupling constants will make high resolution NMR experiments possible at low
inhomogeneous fields. Described in this chapter is a new method that measures scalar
coupling constants of spin systems at low inhomogeneous fields by indirect detection
of singlet-state evolution. The potential application of special cases for molecules that
contain more than one set of scalar coupling constants are studied in 4.1, while the
method developed to obtain high resolution coupling spectra is given in 4.2. The
experiment results of sample HEP is stated in 4.3, while the resolution of the method

is discussed in 4.4.

4.1. Introduction

Precisely measuring scalar coupling constants in low inhomogeneous fields
potentially enables NMR experiments including hyper-SHIELDED parameters, but
also plays a vital role in studying the behavior of many special and important
molecules. Examples are molecules like 1-labelled succinic acid. Although the
molecule is also a simple three spin system (lI11,S) after deuteration and labeling one
of the carbons, the behavior of the molecule in NMR is not similar to other three spin
systems since the molecule has two sets of conformations, hence two sets of J
coupling constants. Moreover, the scalar coupling constants of the molecule depend

on pH as well.
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4.1.1. Conformations

Succinic acid normally exists in a superposition of three different conformations
depending on pH [160-162]. Conformation | is called anti-periplanar conformation
and 1l & 11 are called syn - clinal conformations. Different types of conformations
lead to different chemical structures, in turn resulting in different sets of scalar
coupling constants. For succinic acid molecules conformation 1l & Il have the same
scalar coupling constants, while conformation | has another set of scalar coupling

constants.

4.1.2. pH dependence of scalar coupling constants

The scalar coupling constants of the molecule (also the chemical shift) appear to
depend on environment pH, due to the fact that the molecule itself is an acid. While
the environment pH increases, the molecule tends to lose protons on either side, or
both sides when the pH is significantly higher. When the molecule gets ionized, the
spin system changes since there is one less spin in the system and coupling constants
get affected too.

Succinic acid is dibasic weak acid with pky = 4.2, pka, = 5.6. When placed in

solvent like water, the molecule will start to ionize:

C,H,0, <>C,H.0, +H"

(4.1)
C,H.0;, &>C,H,0Z +H*

Since pky = 4.2 and pky, = 5.6, we get:
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a(H")xa(C,H,0;) _ 10*2 = 6.31x10°

a(C,H0,)

a(H')xa(C,H,0”

a(C,H0,)

Here a represents the concentration of corresponding molecule or ions.

) 210 = 2.51x10°

(4.2)

From these equations follows that, at pH = 1, only 0.063% of the molecules are

ionized, and most of them remain symmetric. At pH = 4.2, 50% of the molecules are

ionized. At PH =6, 98.5% of the molecules will be ionized, but 71.5% of them will be

further ionized to C4H,0,>, which is still symmetric. So at pH = 6.0 about 28.1% of

the molecule exists in the form of C4HsO4. And at pH = 7.0, only 3.8% of the

molecules exists in the form of C4HsO, (Table 4.1 and Figure 4.1).

Table 4.1. Percentage of theasymetric ion C4HsO4in all three types of ions (C4HeOy4,

C4Hs04, and C,H404?) at different PH.

pH 1

4.2

6.0

7.0

C4HsO4 (%) 0.063

50.0

28.1

3.8
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Fig 4.1. Percentage of the asymmetric ion C4HsO4in all three types of ions (C4HsOs4,
C4Hs04, and C4H404%) as a function of pH.

It is also recently reported that the lifetime of the hyperpolarized **C states in
succinic acid are strongly dependent on pH. This arises due to the different
concentrations of neutral, anion, and dianion forms with different environment pH

[163].

4.2. Method: high resolution scalar coupling spectra

4.2.1. Theoretical prediction of J-dependent polarization
Indirectly detecting scalar coupling constants from hyper-SHIELDED is feasible
since the polarization level depends only on two parameters (proton-proton coupling

Ji2, and difference in proton-carbon-13 couplings |Jis - Jas|).
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The polarization level dependence on each time interval has a period of (1/Q).
Therefore, if the experiment is conducted with one of the four time delays varying and
the rest three fixed, the obtained data is supposed to be a periodic function with period
%. By Fourier transformation of the obtained data there will be a peak at Q. The
expression of Q is:

Q=],V1+A?
_dstd 4.3
Apparently Q depends on both scalar coupling constants (J12 and |Jis - Jos|). After Q is
found, we can adjust the other parameter 0 to best fit the obtained data. 6 is also a

function of both parameters:

sind = ! =
1+A
A (44
cosH =
1+ A2

After both Q and 0 are obtained, both J coupling constants (J1» and |[J1s - Jos|) could be
calculated from the equations. The final polarization level of a given molecule with

the four time intervals from hyper-SHIELDED could be calculated as:

Pol = [sinBsin20sin(2xQt, ) + cosbcos26cos(2nt, )sin(2nQt, )
-c0s0sin(2nQt, )cos(2nQt, )]

><[%sin46 + %sin46cos(2th3)cos(2th 2)

+sin20(sin*0cos(2nQt,) - cos*cos(2nt,))
+c0s0sinBsin(2nQt,)sin(2n0t, )] (4.5)

-%sinZO[(cosZO +2sin’0cos(2nQt, ) - 2c0s°0cos(2nQ, )

+€0s20c0s(2mQt, )cos(2nQat, ) +sin(2nQt, )sin(2nt,)]
>{cosbcos(2nQt,)sin(2nQt, ) -sinBsin26sin(2nQt, )
-€0s0c0s26sin(2nQt, )cos(2ndt, )]
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Equation 4.7 shows how theoretical polarization varies with evolution delays in the
hyper-SHIELDED sequence. Once the multidimensional experiment data is obtained,
by fitting into this equation, both coupling constants (J1, and |[Jis - Jas|) can be
extracted. Since the evolution is independent of field homogeneities, the values of J
can be determined with a resolution much higher than the native field homogeneity.

This enables a version of high resolution NMR with even crude, inexpensive magnets.

4.2.2. Experimental section

The experiment for extracting J coupling constants of HEP uses a
multidimensional implementation of hyper-SHIELDED to generate a curve of
polarization level, which was then fit to theory to extract couplings.

The experiment steps of synthesis of parahydrogen gas, PASADENA precursor
preparation, and catalytic hydrogenation are exactly the same as section 2.4. The
difference is the pulse sequence applied.

The pulse sequence used to transfer polarization level was a sparsely sampled,
multidimensional implementation of the hyper-SHIELDED pulse sequence where all
four time intervals were varied (Figure 4.3). Briefly, the pulse sequence consisted of
four major pulses. First, after the initial density matrix evolves during interval t;, a 180y
pulse on proton is applied, and then let the density matrix evolve for another interval t,.
A 90y pulse on the heteronucleus S spin then converted the 3C signal of the test
molecule to transverse plane. The state then evolves for time interval ts, with a proton

180y pulse applied afterwards, and the state then evolves for the last interval t,. Finally,
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a 90, pulse converts the *3C signal back to longitudinal magnetization on the
heteronucleus for storage until subsequent detection. The pulse sequence diagram and
schematic of spin evolution is illustrated in Figure 4.2. By carefully choosing the four
time intervals the polarization level could reach unitary. Here, in order to effectively
extract J coupling constants, we repeat the experiment n times with different time

interval sets (ty, t,, ts,ts)* to obtain a series of polarization level data.

() Jis

Jzs

@)

acquisition

180" | 180, | =

905 908 W]
Idecoupling I l I l |
| R |

Evolution delays [K]

Figure 4.2. Schematic for the multidimensional NMR experiment used to measure
scalar coupling constants, with evolution of density matrix components (upper graph)
and the associated pulse sequence (lower graph) for focusing parahydrogen
singlet-states (I1-12) into magnetization on an adjacent coupled (S) nucleus for strongly
coupled 111,S spin systems. Symbols (3a¢, 4ac) correspond to components of the
density operator (Appendix A). A multidimensional set of free induction decay (FID)
is acquired with a set of evolution delays in hyper-SHIELDED sequence. The transfer
of polarization from singlet-state to **C depends on both J;, (proton-proton coupling)
and AJ (difference in proton-carbon-13 couplings, [Jis - Jag|).

The pulse sequences for transferring polarization were applied immediately after
continuous wave decoupling was turned off (Figure 4.2) with a set of different time

intervals. The polarization level depends on both time intervals and scalar coupling
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constants. After each experiment, a single free induction decay was acquired with 512
points at a receiver bandwidth of 5 kHz, for a digital resolution of ~10 Hz per point.

The process was repeated for 48 times with 48 different sets of intervals.

4.3. Experiment Results

With various time intervals from hyper-SHIELDED, a series of polarization
levels was obtained, from which both scalar coupling constants can be detected (Ji2
and |Jys - Jas|) of the sample HEP.

Described here is a new method that indirectly detects scalar coupling constants of
spin systems by the use of hyper-SHIELDED pulse sequence. Hyper-SHILEDED
transforms parahydrogen spin order in the strong coupling regime of protons into net
heteronuclear magnetization in three spin-systems (I11,S). The 1;1,S moiety is a
widespread and important spin system in PHIP experiments formed for example, by
molecular addition of parahydrogen to perdeuterated and unsaturated molecular
backbones. The sequence flanks two asymmetric proton refocusing intervals about a
heteronuclear excitation pulse to generate four unique intervals (ti,t,t3,t).
Optimization of these delays to spin couplings in the molecule of interest sequentially
converts the initial parahydrogen singlet-state into pure heteronuclear magnetization.

Therefore, the efficiency of hyper-SHIELDED depends on both scalar coupling
constants of the spin system, and the set of intervals (t3, to, t3, t4) (Equation 4.5). The

method is to apply multidimensional experiments by the use of hyper - SHIELDED
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with different sets of intervals, and acquire free induction decays (FID) for each set.

Polarization level is calculated from each FID, and fitted to theory (Equation 4.5).

To validate the method, a set of experimental heteronuclear polarization level
was compared to theory to extract scalar coupling constants (Figure 4.3). °C
magnetization was yielded in a 7 micromole sample of the PHIP reaction product, 2 -
hydroxyethyl 1-*C-propionate-ds. The fitting of experimental data to theory yields J

coupling constants as J;, = 7.45 Hz and AJ = 11.30 Hz for the sample.

6 Theory LA ) -
Experiment —s— e

Polarization
o
i

5 10 15 20 25 30 35 40 45
Evolution delays [K]

Figure 4.3. Fitting of experimental (solid squares) polarization data (48 sets) to theory
(dash circles) using the hyper-SHIELDED sequence. Here we chose average
polarization level as 0, and all results are shown with deviation from it. The fitting
yielded J coupling constants for our sample as J1,=7.45 Hz and |J;s-J,s|=11.30 Hz.

4.4. Discussion
The method described here is to obtain sets of experimental polarization level
data with different sets of time intervals from hyper-SHIELDED sequence, and fit to
theory to extract scalar coupling constants. The resolution of the method depends on

the precision of experiments. To characterize the resolution of our method to measure
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scalar coupling constants, a Monte Carlo model was applied to determine the
confidence interval of the obtained scalar coupling constants. The method makes use
of a multidimensional implementation of the hyper-SHIELDED polarization transfer
sequence and fits the resulting experimental polarization levels to theory in order to
extract scalar coupling constants of the sample. The resolution of the method depends
on the experimental error. Due to the differences in samples, devices, solvent, and
experiment environment, the experimental results could randomly differ from the
actual value. Here the Monte Carlo model is constructed to conduct 10* groups of
fictitious experiments and measure corresponding scalar coupling constants with
random experiment errors. In each group, there are 48 experiments. The experiment
polarization level of each experiment though, is set at 3=5% standard deviation error
from theoretical values. Therefore, by fitting all 10* groups of randomly scattered data,

the results are shown in Figure 4.4,
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Figure 4.4. 2D contour of frequency as a function of both J;, and |J1s-J2s|. The Monte
Carlo model for extracting J coupling constants of sample HEP shows dependence of
frequency on both J coupling constants (J12 and |[Jis - Jog|). The model conducts 10*
fictitious experiments and extracts both coupling constants with random experiment
error at standard experimental deviation of 5%. The calculated values and resolution
of both J coupling constants are J;,=7.45 +0.05Hz and (J;s - Jos) =11.30 £0.12 Hz
within 95% confidence interval.

As illustrated in Figure 4.4, it could be calculated that within 95% confidence
interval, the value of Ji, is 7.45 +0.05 Hz, while [J;s - Jog| is 11.30 £0.12 Hz. This is
the confidence interval for experiments within 5% standard deviation from theoretical
values, and the resolution is within 0.1 Hz for both coupling constants (the resolution
of |J1s - Jog| results from both Jis and Jus).

The resolution decreases as the experiment standard error increases. If the
experiment error increases to 10% or 15%, the corresponding error range increases as

well. The calculated corresponding resolution of scalar coupling constants to
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experiments with standard deviation 10% and 15% are J1,=7.45 *0.09Hz and (J;s -

Jos) = 11.30 +£0.26Hz (10% standard deviation), and J;,=7.45 +0.13Hz and (J1s - Jzs)

=11.30 £0.37Hz (15% standard deviation). The comparison graph for 5%, 10% and

15% standard deviation are provided in Figure 4.5.
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Figure 4.5. Monte Carlo model showing dependence of frequency on proton-proton
coupling Ji, (upper graph) and difference in proton-carbon-13 coupling |Jis-J2s| (lower
graph), with experiment standard deviation 5% (solid), 10% (dot), and 15% (dash).
The model conducts 10* trial experiments and extracts both coupling constants with
random experiment error. The calculated coupling constants are J;,=7.45 £0.05 Hz (5%
standard deviation), 7.45 +0.09 Hz (10% standard deviation), and 7.45 %0.13 Hz (15%
standard deviation); while |[J;s - J25|=11.30 £0.12 Hz (5% standard deviation), 11.30 +
0.26 Hz (10% standard deviation), and 11.30 +0.37 Hz (15% standard deviation).
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APPENDIX A

PRODUCT OPERATORS FOR AA'X SPIN SYSTEMS

Section 2.2 shows some examples of the product operators for I11,S spin systems.
To study the correct expression of evolution of each state and calculate the optimum
method of polarization level transfer, the form of the entire product operator and most

rotation operators are necessary.

A.l. Matrix Representation of Major Product Operators
The basic preparation before studying the 1;1,S spin system is the complete form
of all the major product operators. The list of major product operators is given in this
section, including the X, y, and z components of two protons in parahydrogen
singlet-state and a heteronucleus (**C, for example). In all product operators the 8 spin

states are ordered as |oaao>, |aaf3>, lafa>, [Bac>, [afB>, [Ba>, |BBa>, |BRR>.

A.1.1. Product operators for protons

The two protons from parahydrogen are labeled as I, and I,. Below is a list of

product operators for both protons.
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(A1)
(A2)

0 0010O0O00O
0 000O0O1O00O0
0 000O0O0OT11I0P0

0
-1

01 000O0O0O0CO
0 01 00O0O0O
0 0001O0O00
-1 0 0 0 O
000O0O-100
000 00O -1
100 0 0 O0 O O

0 00

01 000O0TC0CTO
0010O0O0TCO0CTO

000O01O0O0TUO

1/1 0 0 0 0 0 O O
20 0 00 00 O012

2l10 0 0 0 0 0O

le:_

i
l, =+
y

(A-3)

100 00O O O
010 0 O0O0 OO
0010 O0O0O0DO

-1 0 0 0 O
210 0 0 01 0 0 O

1/0 0 O

-1 0 0

0 00 0O

0

-1

0 00 0 0O

-1

0 00 0 0O O O

Ilz

(A4)

00100O0O0CDO

000O01O0O0TD0O

1 00 0O0O0O0OO

0000O0O0O0I1

00010O0O0TD0O

0000O0OT11O00O0

1/0 0 0 0 0 01O
2010 1. 0 000 0O

I2x
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(A5)

-1 00 0 0 O

0 0

-1 0 0 O

00 0O

1000 0O0O0OTO

000 O0OTG O

0

-1

-1

00 O0O0O0OO0OTP O

0001 O0O0O0O

00 0O0O0OT1O0TDO

2001 0 0 000 O

I,y

(A.6)

10 0 0 0 0 O0 O
01 0 0 O0O0O0O

0 0

-1 0 00 0 O

-1 0 0 O

000 O0OOT1TO0TGO

000 O0 OO

0

-1

-1

000 00O O0O

10 0 0 1 0 0 0 O

20 0 0 O

IZZ

A.1.2. Product operators for heteronuclei

The basic product operators for the heteronucleus (labeled as S) are:

(A7)

01 000O0O0O00O
1 000O0O0O00O

0 0001O0O00O0

0 001O0O0O00O

0 00 0O0OTO 01

0 000O0OOT10

1/0 0 0 0 01 0O

210 0 1 0 0 00O

SX
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01000 00O
10000000
0000-1000
il0 0000 -100

S, =~ (A.8)
210 0100 00 0
00010 00O
0000O0TUO0TO0-1
0000O0UO0T1SO
10000000
01000000
00100000

52:100010000 A9)
200 000 -1 00 0
00000 -100
0000O0UO0T10
0000O0TUO0O0 -1

A.2. Rotations
As described in section 3.1, all rotating pulses could be represented by a rotation
matrix in the product operator basis. In this section the commonly used pulses (90°

and 1809 for all AA'X spins are presented.

A.2.1. 90 degree rotations for protons

Propagators listed below are the operators that rotate the protons (1; and I,) by

90<around either x or y axis.
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(A.10)

i 0000
01000

1 00

0
0

0

0 01 0O0O

0 01 0O0O0OTO

0 00100

0

0 0010

0 00O

0 01

1]i
J2/000 0100 i

h(Zy =
x(2)

R

(A.11)

i 00 00O
0100

0

0 0O

01 00O0O0OPO

0

001 000

0 000O0T10

0 0O

0 010

1

0

0 00O0O

110 00100

:ﬁo

I
5)

R (

(A.12)

0

-1

0 0
i

-1 0 0

1

0
0 1 0 O

0

0 1

-11 0 0 i
0O 01 10
0 0 -1 10

0
i

0

-1 0

0

-1 0 0
0

-1 0 0

0

(A.13)

1 0 01 0 0O0OO

01 00O0T1O0O0

0 01 00 01O
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-1 0 00100
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-1 0 0 010

0 0
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J2l0 0001001

)=+

T
2

IL
R, (

115



(A.14)

1 01 00 O0O0DO

01001000

-1 01 0 0O0O0O

-1 0 01 0 0O

0 0000101

0 0 O

-1 0 0 10

-1 01

0 0 00O

1/0 0 01 0 0 10

:ﬁo
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I2
Ry (

(A.15)

1 01 1 0 010
0 1 0 0 1 1 01

-1 0 1
-1 0

-1 0 010

-11 0 010
-1 01

-1 0 0 1
-1 0 0

-1 1 01
-1 0 010

0

-1

1 0

-1 -1 01

0 1 0 O

E)—l
2 210

y(

R

A.2.2. 180 degree rotations for protons

Propagators listed below are the operators that rotate the protons by 180<around

either x or y axis.

(A.16)

i 00 0O
0 00 0O

0 0O

0

0 00O0OTO

0 00 0O0OGO

0

0 00 0O

0 00O

0 0O
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(A.17)

i 00 O0O0O

0
0 00O

0 0O

0 00 0O0ODO

|
0 00O

0 00 0O0OO0OTO O

i
0 00 0O

0 0O

0

0

(A.18)

0
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0 0 00 0O
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0 0 00 0 0 O

0 0 O

-1 0 0 0 O

-1 0 O
-1 0 0O
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0 0 0 0 O
0 0 0 O
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-1 0 0 0 0 0O
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(A.19)
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(A.21)

000 0 O0OT10P0

000 0 0 O0O01

-1 0 00O
-1 0 0 0 0O

0 00
0 0

000 O0O-100
000 O0-1000
100 0 0 0 0O
010 0 0 O0O0O

y(m) =

R

A.2.3. 90 degree rotations for a heteronucleus

Propagators listed below are the operators that rotate the heteronucleus S by 90

(A.22)

0 00 O0OOTP O
0 0O
i 00
i 01 00O

1 0000O00O0
i

0 010

1
I

i 0100
0 00O0O0OO?1
0 000O0TO

0 00

110 0010

sy _

R

around either x or y axis.

(A.23)

110 0 0O0O0TO
-11 0 0 00 0 O

0 01 010 0O

-1 01 0O
0 00 00O0T101

0 0 O

1

-1

0 00 00O

1/0 0 0 1 01 0O

S(E):_
20 210 0 -1 01 0 0 O

R
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A.2.4. 180 degree rotations for heteronuclei

Propagators listed below are the operators that rotate the heteronucleus S by 180°

around either x or y axis.

0Oi 00O0OOTGO
i 00 0O0OODO
0000 T1T O0O0TO
RS () = 0 0 O 0 0i 00O
001 00O0OTGO
0 001 0O0O0OTGO
0 00OO0OOO OO0 i
0 000OOT IFI O
01 0 0O0O0O0OTDO
-1 00 00O OO
0O 00 010 O0DO
Ri(n)= 0O 00001 00O
0 0-1 000O0DO
0O 00 10000
0O 00 00O O0°1
0O 00 00O -10

A.3. Hamiltonian and Related State

A.3.1 Hamiltonian

The Hamiltonian of the three spin system, as stated in section 3.1, is:

119

(A.24)

(A.25)



1
20243+ ) 0 0 0
1
0 Z(le -Jis "]23) 0 0
1 1
- 0 0 Z(“]n +‘]15 'st) E‘JIZ
- en 1 1
0 0 E‘le ( ‘]12 "]15 + st)
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 1
Z('le 'Jls + st) E‘]12 0 0
1 1
E‘]lz Z('le + JlS "]25) 0 0
1
0 0 Z(le “Jis = J2s) 0
1
0 0 0 Z(le +‘]1$+st)
(A.26)

The eigenvalues and eigenfunctions of the Hamiltonian, which is used to study
the evolution of states, could be calculated. The eigenvalues of the J coupling

Hamiltonian are:
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1
= Z(le +Jp5+J5)
1

7L2 = Z(le "]15 "]25)
(A.27)
— 1 1 2 2
Xa - 'Z‘le +_\/4‘]12 + (‘]18 'st)

1
- _Z‘]lZ \/4‘] +(~]1s"]zs)2

The corresponding eigenfunctions are:

{J'l =l aaa >
MY

i, =IBPB >
J; =l aop >

Iy =|PBa>

{ j; =l aPo> +(1+ A - A) | Baa >
3 (A.28)
iy = (W1+ A7 -A) [ 0B > +| o >

A

2

>

7 =l aBa > +(-V1+A° -A)|Boa >
Jo = (-V1+A% -A)|opp > +[Bap >

)

By using the eigenvalues and eigenstates of the Hamiltonian, the evolution of

Ay

states for 111,S spin systems could be studied.
A.3.2. Related states

The initial state, oo=l1xlox + lyyloy, is (neglecting 1,12, term which does not

evolve under the Hamiltonian):

121



(A.29)

0 00 0O0O0OOO0ODO
0 00 O0O0OOO0ODO
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0 000O1O0O0TO0
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Other states in the first step include:

(A.30)
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0 00O

2(|1y|2x - I1x|2y)Sz

(A31)

0000 O0O0OO0OTDO
0000 O0OO0ODP
0010 0O0O00O

-1 000

-1 0 00O

0000 O0T1O00

0000 O0O0OO0OTDP
0000 O0OO0ODP

1/0 0 O
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The state in Equation A.31 is the state we chose to evolve in step 2. After
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evolving to this state, a 90“pulse on S channel is applied to convert the state to:
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The final state we got from the sequence, representing carbon polarization, Sy(1 -

4'12'22), iS

o O o O

(A.34)

Cinal
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O O O 0O O o o o
O O O O o
1
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O O O 0O O o o o

o O o -
o O O o o
o O O O

In the end a 90X pulse is applied on S channel to convert the state to S

polarization S;(I - 411,1,).
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APPENDIX B

PRODUCT OPERATORS FOR 111,SR SPIN SYSTEMS

Section 3.2 describes how the lifetime could be determined from evolution.
Section 3.3 shows some examples of the product operators for AA'XY spin systems.
To study the correct expression of evolution of each state and calculate the optimum
method of polarization level transfer, the form of the entire product operator and most
rotation operators are necessary. As Appendix A, here we show a list of the basic

operators that are essential to evolution analysis.

B.1. Matrix representation of major product operators

As in Appendix A, first the basic product operators are given in this section,
including the X, y, and z components of both protons from parahydrogen and both
heteronuclei (**C, for example). For I11,SR spin systems all matrix representation
become 16x16 matrix instead of 8x8 in three spin cases. In all product operators the
16 spin states are ordered as |aaaa>, |aaaf>, |aafa>, |afac>, |Baoo>, |aaf>,
lapaB>, lopBo>, [BaaB>, |BaBa>, [BBac>, [aBpp>, |Bafp>, |BPap>, [BBPo>, and
IBRBR>.

B.1.1. Product operators for protons

The two protons from parahydrogen are labeled as 1; and I,. Below is a list of
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product operators for both protons.
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B.1.2. Product operators for heteronuclei
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The basic product operators for the heteronuclei (labeled as S an R) are:
SY
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B.2. Rotations

In this section the commonly used pulses (90<and 180< for all four spins are

presented.

B.2.1. 90 degree rotations for protons

Propagators listed below are the operators that rotate the protons by 90“around

either x or y axis.
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B.2.2. 90 degree rotations for heteronuclei

Propagators listed below are the operators that rotate the heteronuclei (S or R) by

90<around either x or y axis.
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B.2.3. 180 degree rotations for protons

Propagators listed below are the operators that rotate the protons by 180<around

R, (m) =

either x or y axis.
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y(m) =

R
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B.2.4. 180 degree rotations for heteronuclei

Propagators listed below are the operators that rotate the heteronuclei (S or R) by

180<around either x or y axis.
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B.3.1. Hamiltonian

1
4

2n

B.3 Hamiltonian and related states

The Hamiltonian of the 111,SR spin system, as stated in section 3.3, is:

1

Z(‘]H +‘]1$ +‘]1R +‘]ZS +‘]2R +‘]SR)

2

1
7‘]12

0

o O O O O o o

0

O O O O O O o o o o o o

*("]12 'Jls 'Jm +‘]zs +‘]2R +JSR)

1
4
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0 0 0
1
Z(‘J12+J15_‘]1R+JZS_J2R_JSR) 0 0
1
0 Z(‘]u 'Jls + JlR 'st +‘]ZR "]SR) 0
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(B.25)

The eigenvalues and eigenfunctions of the Hamiltonian could then be calculated.

The eigenvalues of the J coupling Hamiltonian for the AA'XY spin systems are:
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1
= Z(le g+ dir T os H g tgr)

1
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1
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1
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(B.26)

The corresponding eigenfunctions are:
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By using the eigenvalues and eigenfunctions the evolution of states for the 1;1,SR

spin systems can then be studied.

B.3.2. Related states

The initial singlet-state, oy, is:
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The other states showing up in the first step are:

4(|1x|2x + IlyIZy)Ssz

(B.29)
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(Ilz - IZZ)SZ =

(B.32)
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Equation B.32 is the state chosen in the first step. After a 90, pulse on S the state

becomes:

Sx(llz - IZz) =

(B.34)
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The other states showing up in step two are:
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Sx(l _4llz|22)Rz =
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The final state after step two, Sy(l - 411,12,), representing net magnetization on
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heteronucleus S, is:

1

S, (I-41,15)
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APPENDIX C

EVOLUTION OF ALL STATES IN AA'XY SPIN SYSTEMS

To find the optimum method to control the evolution of states by pulse sequence,
it is necessary to study the precise evolution pattern for each state, which could be
calculated by using the matrix and Hamiltonian mentioned in Appendix B. In this
chapter the evolutions of each state from the initial singlet-state to the final

heteronuclear polarization state are presented below.

C.1. Evolution of the initial singlet-state
Upon hydrogenation, the singlet-state starts to evolve from its initial form (11«12«
+ lyyloy). The evolution pattern for this state and all other related states are listed

below (344).
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( I 1x 2x ly 2y )(t)

= —[sm20 +€05°0,c08(2mQt) +5in”0,, +€05°0,08(2m2, )] (1, 1, +1,,1,)

)S,R,

+%[sin291 +€05°0,c08(2m QY t) - sin 0, - 0s°0,c08(2nQ, ) 14(1 , 1, +1,, 1,

1,,)S,

ly 2x- Ix " 2y

+ ;[cose sin(2nQ,t) + cosh,sin(2nQ,t)12(1, 1

1, )R,

1ylox ” lx 2y

+ ;[cose sin(2nQ,t) - cos0,sin(2nQ2,t)]12(1,, I
+%[sin261(1-cos(2ant)) +5sin20, (1-cos(2nQ2,1))1(1,, - 1,,)S,

+%[sin201(1-cos(2n91t)) -sin20, (1-cos(2nQ,t)](1,, - 1,,)R,

Ql = ‘]12 1+ Af QZ = ‘]12 1+ Ag
sin@, = L sinB, = L
' JL+A? i J1+A2
cos0 =4 coso =4 _
T TN (C.1)
:‘]15+J1R'J25'J2R A :J15'J1R'J23+‘]2R
' 21, ? 21,

4(le|2x 1y 2y)S R (t)

= %[sinzel +0s°0,c08(2mQ, t) +5sin°0, +cos°0,cos(2nQ,H)]4(1, 1, + )S,R,

1y 2y

+%[sin261 +€0s%0,c0s(21Q, t) - sin°0,, - cos*0,cos(2nQ, )] (1,,1,, +1,,1,,)

ly 2y

+ ;[cose sin(2nQ,t) + cos0,sin(2rQ,t)]2(1,, 1 R, (C.2)

ly 2x- lx 2y

+ ;[cose sin(2nQ,t) - cos6,sin(2nQ,t)]2(1,, 1 )S,

1y 2x - 1>< 2y
+%[sin261(1- cos(2nQ,t)) +sin20,(1-cos(2nQ2,1))](1,, - 1,,)R,

+%[sin261(1-cos(2n£21t)) -sin26, (1-cos(2nQ,t))](1,, - 1,,)S,

2z
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2(|1y|2x - |1x|2y)sz (t)

= %[cos(ZnQ t) + cos(2nQ,1)]2(1,, 1 )S,

ly 2x- 1x 2y

+;[cos(2nQ t) - cos(2nQ,1)]12(1,, | I,,)R,

ly 2x 1x 2y

ly 2y

-%[cose sin(2rQ,t) +cos0,sin(2rQ, )] (1, 1,, +1,,1,,)

)S,R,

1y 2y

- % [cos6,sin(2rnQ2,t) - cosh,sin(2rQ2,t)]4(1,, 1, +
+ % [sin@,sin(2nQ, t) +sinB,sin(2nQ2, )](1,, - 1,,)S,

+%[sin615in(2ant) -sin6,sin(2n, (1, - 1,,)R,

2(|1y|2x - le'Zy)Rz(t)

= %[cos(ZnQ t) +cos(2m€2,1)12(1,, 1, - )R,

1x 2y

Ix "2y

+;[cos(2n£2 t) - cos(2rnQ, 1)]2(1,, 1,, - 1,,1,,)S,

)S,R,

1y 2y

-%[cose sin(2nC,t) + cos0,sin(2nQ,t)]14(1,, 1, +
-%[coselsin(Zant) -€080,5in(2nQ, )] (1, 1, +15,15,)
+%[sinelsin(2n£21t) +5sin6,sin(2nQ,H)](1,, -1,,)R,

+%[sin613in(2n£21t) -sing,sin(2x,H](1, - 1,,)S,
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( 1z ZZ)S (t)

= =[cos?0, +sin*0,cos(2nQ,t) + cos’0, +sin’0,cos(2nQ,1)](1,, - 1,,)S,

|_\|\)I—‘

+E[cosze1 +sin’0,cos(2nQ, t) - cos?0, -sin’0,cos(2nQ,1)](1,, - 1,,)R,
+%[sin291(1-cos(2n£21t)) +sin20, (1- cos(2rnC2, )] (1, 1, +1,,15,) (C.5)
+i[SIn29 (1-cos(2mCyt)) -sin20, (1- cos(2n€2,1))]4(1,, 1, + 1, 1,,)S,R,
-%[sme sin(2mQ,t) +sin6,sin(2nQ,)]2(1, 1, - 1,,1,,)S,

-%[Slnﬁ sin(2nQ,t) -sind,sin(2reQ, )21, 1,, - 1,,1,)R,

( 1z ZZ)R (t)

= =[cos?0, +sin°0,cos(2nQ, t) + cos’0, +sin’0,cos(2nQ,H)](1,, - 1,,)R,

|_\|\)|—‘

+5[C08291 +sin’0,cos(2mQ, t) - cos’0, -sin’0,cos(2n2, t)](1,, - 1,,)S,
+%[sin291(1-cos(2ant)) +sin20, (1- cos(2nQ,1))J4(1, 1, +1,,1,,)S,R, (C.6)
+%[Sin261(1- cos(2n,t)) - sin20, (1- cos(2rQ, 1)) 1(1,, 1, + 1, 1,,)

-%[sme sin(2mQ,t) +5sin0,sin(2nQ,H12(1,, 1,, - 1,,1,,)R,

-%[Slne sin(2nQ,t) -sin,sin(2nQ, )2(1, 1, - 1,,1,,)S,

Equation C.5, the state of (1, - I2,)S;, is the state we chose to start step two.

C.2. Evolution to heteronuclear net magnetization
After extracting the maximum of the state we chose above, (11, - 12,)S;, a 90
pulse on S channel is applied to rotate the state to (11, - 12;)Sx. In this section we study

the evolution pattern of this state and other related states in step 2.
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Sx (Ilz - I Zz)(t)
= cos(mg, t)[cos(me2, t)cos(n2,t) - cos(8, - 0, )sin(nQ, t)sin(n,1)]S, (1., - 1,,)
-sin(ndg, t)[cosO,sin(mC2, t)cos(nC2, t) + cosezcos(ant)sin(ant)]SX (1-41,1,,)R,

+c0s(1mJ g, t)[cosO,Sin(nQ, t)cos(nQ2,t) + cosh,cos(nQ2, t)sin(n2,t)] > Sy (1-41,1,,)

+sin(mlgg ) [cos(n2, t)cos(mQ2,t) - cos(0, - 0, )sin(n, t)sin(n2,H)]2S (1, - 1,,)R,
-coS(ngx )[Sin(0, - 6,)sin(m2, t)sin(nC2,1)]4S, (1., 1,, +1,,1,)R,
-Sin(md g 1) [Sin6,sin(nQ, t)cos(nQ2,t) +sin,cos(n2, t)sin(nQ2,)]4S (1,1
-C0S(md i, t)[SinB,sin(nC2, t)cos(nC2, t) + sind,cos(nQ, t)sin(n 2, 1)]2S, (1, |
-Sin(m g, )[Sin(0, -0, )sin(n2, )sin(mQ,1)]2S, (1,1, +1,1,,)

(C.7)

1,)R

ly 2x - 1x 2y

ly 2x- 1x 2y)

z

S, (1-41,1,,)R, (1)

= cos(mdg, t)[cos(me, t)cos(n2,t) + cos(0; +0,)sin(nC, t)sin(zQ,t)]S, (1-41,1,,)R,
-sin(mdg, t)[cosO,sin(nQ2, t)cos(n 2, t) + cos6,cos(ne2, t)sin(n2,t)]IS, (1, - 1,,)
+c0S(m s, t)[cosO,sin(mC2, t)cos(nC2, t) + cosh,cos(n, t)sin(nC2, t)]ZS (1, -1,,)R,

+sin(md g, t)[cos(n2, t)cos(n,t) - cos(B, + 6, )sin(nQ,t)sin(nC2, t)] S y(1-41,15,)
-cos(n g )[sin(0, +0,)sin(nQ2, t)sin(nQ,1)14S (1,1, -1,,1,)R,
-Sin(rd g 1) [Sin6,sin(n €, t)cos(nQ,t) - sind,cos (€2, t)sin(n€2, 1)]14S, (1,,1,, +1,,1,)R,
+C0S(m g 1)[SiNG,sin(nC2, t)cos(nC2, t) - sind,cos(nQ, t)sin(nQ2, 1)]2S, (1,,1,, +1,,1,,)
+sin(mdge Y)[Sin(0, +0,)sin(nQ, t)sin(n2,1)]2S, (1,1, - 1,,1,,)

(C.8)
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1
58, (1-41,,1,.)()

= cos(mJg, t)[cos(nQ2, t)cos(mC2,t) - cos(6, + ez)sin(nﬁlt)sin(nQZt)]%Sy(l 41,1,,)
-sin(md g t) [cosO,sin(m€2, t)cos(nC2, t) + cosh,cos(n€2, t)sin(nQ2,1)]2S (1, - 1,,)R,
-C0S(m ¢, t)[cOsO,sin(me2, t)cos(n,t) + cosh,cos(nQ, t)sin(n2,t)1S, (1,, - 1,,)
-sin(ml g, t)[cos(nQ2, t)cos(ne2,t) - cos(8; + 6, )sin(me, t)sin(m€2,1)]S, (1 -4|lZ 2Z)R
-€0S(md g, t)[SinB,sin(mC2, t)cos(n 2, t) - Sin,cos(mC2, t)sm(nQ )14S, (1,1, +
+sin(mdge 1)[Sin(0, + 0, )sin(n, t)sin(mQ,1)]4S, (1,1 R,
+CoS(mIge t)[SIN(D, +6,)sin(m, t)sin(n2,1)]2S, (1, 1,, - 1,,1,,)

-Sin(ndge t)[Sin0,sin(nQ, t)cos(n€2,t) - sinG,cos(n2, t)sin(nQ,1)]2S (1,1, +1,,1,,)

1y 2y
(C.9)

)R,

1y 2y

1y 2x - 1x 2y

2Sy(llz - IZZ)Rz(t)
= c0s(Jge t)[cOs(m€2; t)cos(mQ, t) - cos(6, -0, )sin(n, t)sin(nQ,H)]2S (1, - 1,,)R,
-sin(ml g, t)[cosO,sin(nQ, t)cos(n 2, t) + costcos(ant)sin(ant)]%Sy (1-41,1,)
-c0s(mJ g, t)[cosO,sin(mQ2, t)cos(n2, t) + cosO,cos(n, t)sin(n,1)]S, (1 -41,,1,,)R,
-sin(md g, t)[cos(nQ2, t)cos(ne2,t) - cos(, -0, )sin(nQ, t)sin(n2,1)]S, (1., - 1,,)
-coS(nd g t)[SiNO,sin(m€, t)cos(ne2, t) +sinb,cos(n2, t)sin(n€2,1)]4S (1, |
+sin(ndg 1)[sin(0, - 0,)sin(mQ, t)sin(n2,1)]4S, (1,,1,, +1,,1,,)R,
-coS(n g t)[Sin(6, - 0,)sin(m, t)sin(nQ,1)]2S, (1,,1,, +1,1,)
+sin(md g, t)[sinB,sin(m€2, t)cos(n 2, t) + sind,cos(nC2, t)sin(n,t)]12S, (1., |
(C.10)

)R,

ly 2x- lx 2y

1y " 2x - 1x|2y)
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43, (1,1, +15,1,)R, (1)

= €08(mJgg t)[cOS(mC2, t)cos(mQ2,t) + cos(0, -0, )sin(nQ2, t)sin(nQ,1)]4S, (I,,1,, +1,,1,)R,
+sin(md g, t)[cosO,sin(m€2, t)cos(n€2, ) - cosh,cos(m€2, t)sin(n2,1)]4S, (1, 1,, - 1., 1,)R,
+C0S(J g t) [COSO,SiN(me, t)cos(nQ, t) - cos0,cos(n t)sin(m2,1)]2S, (1,1, - 1,,1,,)
+sin(mlgg ) [cos(m€2, t)cos(mQ, t) +cos(0, -0, )sin(ne, t)sin(m2,)]2S, (1,1, +1,,1,,)
-cos(mJgx )[sin(6, - 0, )sin(nQ, t)sin(n2,1)]S, (1, - 1,,)

-sin(md ¢, t)[sin6,Sin(nQ, t)cos(nQ2, t) - sinf,cos(n, t)sin(nQ,t)]S, (1-41,1,,)R,

+cos(nJSRt)[sinOlsin(nﬁlt)cos(nQZt)-sinGzcos(nglt)sin(nQZt)]%Sy(I 41.,1,,)

+sin(mdg )[sin(, -0, )sin(n, t)sin(xQ,1)]2S (1, - 1,,)R,
(C.11)

4S, (1,15, -1, 1,,)R, (1)

= €0S(mJgg t)[COS(mQ2, t)cos(mQ2,t) + cos(0, +0,)sin(n2, t)sin(n2,1)]4S (1, 1,, - 1,1, )R
+sin(md g, t)[cosO,sin(m€2, t)cos(n€2, t) - cosh,cos(m€2, t)sin(n2, 1)]4S, (1,,1,, +1,,1,)R,
-c0S(md g t)[c0s0,sin(nQ, t)cos(nC2, t) - cosh,cos(n, t)sin(nQ,1)12S, (1,1, +1,,1,,)
-Sin(rd g t)[cos(mQ, t)cos(n€2,t) + cos(6, +0,)sin(ne, )sin(m,)]2S, (1,1, - 1,,1,,)
-cos(mJgx )[sin(0, +6,)sin(m, t)sin(n,1)]S, (1-41,1,,)R,

-sin(md g, t)[sinG,sin(nQ, t)cos(nQ2,t) +sind,cos(xQ, t)sin(n,1)1S, (1., - 1,,)

+C0S(mJge t)[SiNO,sin(m€2, t)cos(n€2, ) + sind,cos(mC2, t)sin(n2, 1)]2S (1, - 1,,)R,

z

-sin(mdg, t)[sin(6, + 92)sin(ant)sin(nQZt)]%Sy (1-41,1,,)
(C.12)
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28 (Ily 2x lxIZy)(t)

= €08(mJ g t)[cOS(m Q2 t)cos(n€2, ) + cos(0, + 0, )sin(nQ, t)sin(nQ,1)]2S, (1,1, -1,,1,,)
-Sin(mdgg t) [0S0, SIN(m€2, t)cos(n€2, t) - cosh,cos(n€2, t)sin(mQ,1)]2S, (1,1, +1,,1 2y)
-c0s(mJ g, t)[cosO,Sin(mQ2, t)cos(nQ2, t) - cosh,cos(n2, t)sin(n2, 1)]4S, (1, 1,, +1 R,
+sin(mdgg 1) [cOS(nQ2, t)cos(mQ2,t) +cos(0, + 0, )sin(ne, t)sin(m,1)]4S (1,1 R,

ly 2y

ly 2x 1x 2y
+c0os(md, t)[Sin(0, + ez)sin(nﬂlt)sin(ngzt)]ESY(I -41,1,,)

+sin(md g, t)[Sin0,sin(m€2; t)cos(m€2,t) +sin6,cos(mC2, t)sin(mQ,1)]2S, (1, - 1,,)R,
+C0S(md ¢ 1) [SINO,SIN(nQ, t)cos(n2, t) +sinb,cos(n, t)sin(n,t)IS, (1, - 1,,)
-sin(md g, t)[sin(0, +6,)sin(a, t)sin(zQ,1)]S, (1-41,1,,)R,

(C.13)

2S, (1,15, +1,,1,)()

= Co8(mJgg t)[COS(mQ2; t)cos(n€2,t) + cos(0, - 0,)sin(n2, t)sin(n2,1)]2S (I,,1,, +1,,1,,)
-Sin(mdgg t)[0s0,SIN(m€2, t)cos(n€2, t) - cosh,cos(n€2, t)sin(mQ2,1)]2S, (1, 1,, - lx|2y)
+C08 (g 1) [0SO,SiN(C2, t)cos(m€2, t) - cos,cos(mC2, t)sin(nQ2,1)]4S, (1,1, - 1,,1,)R,
-Sin(rd g t)[cos(mQ2, t)cos(n2, t) +cos(0, -0, )sin(ne2, )sin(nQ,1)]4S, (1,1, +1,,1,)R,
-cos(nd g )[Sin(0, - 6,)sin(n2, t)sin(n2,1)]2S (1, - 1,,)R,

-sin(nJSRt)[sinelsin(nglt)cos(nﬂzt)-sinezcos(nﬂlt)sin(ngzt)]%Sy(I -41,.1,)

1272z
-C0S(m g, t) [SiNO,Sin(m€, t)cos(nQ2, t) - sind,cos(ne, t)sin(n€2,1)]S, (1 - 41,,1,,)R,
+sin(rdg, t)[sin(6, +6,)sin(nQ, t)sin(nQ,1)IS, (1., -1,,)
(C.14)
The final state, Equation C.9, is the state representing heteronuclear polarization.

In the end of the pulse sequence, a 90« pulse rotate the state to the polarized

heteronucleus, S,(1 - 411,15,).
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APPENDIX D

SOURCE CODE

As shown in Chapter 11, 111, and Appendix A and B, the product operator basis
used to simulate the quantum spin states and their evolution under Hamiltonian are
mostly represented by density operators. Matlab was used to simulate the spin

evolutions and these codes are shown below.

D.1. Pulse programs for hyper-SHIELDED
In a 3 spin system (111,S), each quantum spin state could be represented by a 8x8
density matrix. The spin evolutions could therefore be represented by the evolution of
density matrix. The hyper-SHIELDED sequence, as we described in Chapter Il, is

illustrated in Figure D.1.
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Figure D.1. Graphical depiction of evolution of density matrix components (upper
graph) and the hyper - SHIELDED sequence (lower graph) for focusing parahydrogen
singlet-states (I;-12) into pure magnetization on an adjacent coupled (S) nucleus for
strongly coupled I;1,S spin systems. Symbols (3., 4a-c) correspond to components of
the density operator.

The effective pulses in hyper - SHIELDED are two 180° (+x) pulses on proton
channel, with two 90° (+x and +y) pulses on **C channel. The Hamiltonian, initial
density matrix, along with the evolution of states during the process are described in
Chapter Il. Below is the Matlab code to calculate the final density matrix after
applying hyper-SHIELDED sequence to a given molecule with known scalar coupling

constants.

Function [rou] = HyperSHIELDED (J,t)
% function to calculate the final density matrix after HyperSHIELDED

% Sequenceapplied to a spin system with given J coupling constants

o)

s I1 represents one of the singlet protons

Ilx=zeros (8); % Ilx refers to the transverse x
I1x(1,4)=0.5; % component of the proton Il
I1x(2,6)=0.5;

I1x(3,7)=0.5;
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I1x(4,1)=0.5;

I1x(5,8)=0.5;

I1x(6,2)=0.5;

I1x(7,3)=0.5;

I1x(8,5)=0.5;

Ily=zeros(8); % Ily refers to the transverse y
Ily(1,4)=-0.5*11i; % component of the proton Il
Ily(2,6)=-0.5*11i;

I1ly(3,7)=-0.5*11i;

Ily(4,1)=0.5*11;

I1ly(5,8)=-0.5*11i;

Ily(6,2)=0.5*11;

I1y(7,3)=0.5%11i;

I1y(8,5)=0.5%11i;

Ilz=eye(8); % Ilz refers to the longitudinal z
I1z(4,4)=-1; % component of the proton Il
I1z(6,6)=-1;

I1z(7,7)=-1;

I1z(8,8)=-1;

I1z=0.5*I1z;

o)

% I2 represents the other singlet protons

I2x=zeros (8); % I2x refers to the transverse x
I2x(1,3)=0.5; % component of the proton I2
I2x(2,5)=0.5;

I2x(3,1)=0.5;

I2x(4,7)=0.5;

I2x(5,2)=0.5;

I2x(6,8)=0.5;

I2x(7,4)=0.5;

I2x(8,6)=0.5;

I2y=zeros(8); % I2y refers to the transverse y
I2y(1,3)=-0.5*11i; % component of the proton I2
I2y(2,5)=-0.5*11;

I2y(3,1)=0.5*11;

I2y(4,7)=-0.5*11i;

I2y(5,2)=0.5*11;

I2y(6,8)=-0.5*11i;

I2y(7,4)=0.5*11;

I2y(8,6)=0.5*11i;
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I2z=eye (8); %

12z(3,3)=-1; %
I2z(5,5)=-1;
I12z(7,7)=-1;
I2z(8,8)=-1;

I12z=0.5*12z;

% S represents the heteronucleus

Sx=zeros (8); %
Sx(1,2)=0.5; %
Sx(2,1)=0.5;

Sx(3,5)=0.5;

Sx(4,6)=0.5;

Sx(5,3)=0.5;

Sx(6,4)=0.5;

Sx(7,8)=0.5;

Sx(8,7)=0.5;

Sy=zeros (8); %
Sy(1,2)=-0.5*11; %
Sy(2,1)=0.5%11;

Sy (3,5)=-0.5*11;

Sy (4,6)=-0.5*11;

Sy(5,3)=0.5*11i;

Sy(6,4)=0.5*11i;

Sy(7,8)=-0.5*%11;

Sy (8,7)=0.5*11i;

Sz=eye (8); %
Sz (2,2)=-1; %
Sz (5,5)=-1;

Sz (6,6)=-1;

Sz (8,8)=-1;

Sz=0.5*Sz;

% Used operators defined below

H=2*pi* (J(1) * (I1x*I2x+I1y*I2y+...
I1z*I2z)+J(2)*I1z*Sz+J(3)*I2z*Sz);

I2z refers to the longitudinal z

component of the proton I2

Sx refers to the transverse x

component ofthe heteronucleus

Sy refers to the transverse y

component of the heteronucleus

Sz refers to the longitudinal z

component of the heteronucleus

)

% Calculate Hamiltonian,
$low field

assuming

(strong homonuclear

)

% coupling and weak heteronuclear

)

% coupling regime)
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roul0=I1lx*I2x+I1y*I2y+I1z*I2z;% initial singlet-state operator

RIlpi=cos (pi/2) *eye(8) ...
+2*1i*sin(pi/2)*I1x; % The 180x pulse for proton I1

RI2pi=cos(pi/2)*eye(8)...% The 180x pulse for proton I2
+2*1i*sin(pi/2) *I2x;

RSx=cos (pi/4) *eye(8) ... % The 90x pulse for 13C
+2*1i*sin(pi/4) *Sx;

RSy=cos (pi/4) *eye(8)...% The 90y pulse for 13C
+2*1i*sin(pi/4) *Sy;

RIpi=RI1lpi*RI2pi; % The 180x pulse for both protons

Utl=expm (-11i*H* (t(1))); % Calculate the evolving operator
Ut2=expm (-11*H* (£t (2))); % Calculate the evolving operator
Ut3=expm (-11*H* (£t (3))) % Calculate the evolving operator
Utd=expm (-11*H* (t (4))); % Calculate the evolving operator

rou=Utl*roul0*conj (Utl);% Calculate the spin state after
rou=inv (RIpi) *rou* (RIpi) ;% applying hyper-SHIELDED sequence
rou=Ut2*rou*conj (Ut2) ;

rou=inv (RSy) *rou* (RSy) ;

rou=Ut3*rou*conj (Ut3) ;

rou=inv (RIpi) *rou* (RIpi) ;

rou=Ut4*rou*conj (Ut4) ;

rou=inv (RSx) *rou* (RSx) ;

end

In a more general case, while a short a pulse is applied to any I;1,S spin system
states in either proton or **C channel (or both) with specific pulse amplitude and

phase, the evolved density matrix could be calculated from the codes below.
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o\

o\

o d° d° d°  o°

o

oo d°  oe

o

o

Function [rou] = ApplyPulse(rou0,J,phiH,AmpH, phiS, AmpS, t)

Program used to calculate the effect of a tiny pulse on 3-spin density

matrix

Variables: Output: rou: Calculated new density matrix
Input: rouO: The former density matrix before applied pulse

J: The J coupling constants of the spin system;
J(l) refers to 1H-1H coupling, J(2) and J(3)
refers to 1H-13C couplings

phiH: Phase of the pulse on 1H channel (radians),
measured from +x axis, within [0,pi)

AmpH: Amplitude of the pulse on 1H channel (T)

phiS: Phase of the pulse on 13C channel (radians),
measured from +x axis, within [0,pi)

AmpS: Amplitude of the pulse on 13C channel (T)

t: length of the short pulse delta (s)

Construct Product Basis Below. All basis constructed on the order of
[ laaa>, |aab>, |aba>, |baa>, |abb>, |bab>, |bba>, |bbb>]. Here |a> and |b>
represents spin-up and spin-down states, as |alpha> and |beta>. The

order corresponds to proton Il, proton I2, carbon S |I1,I2,S>

I1 represents one of the singlet protons

Ilx=zeros(8); % Ilx refers to the transverse x
I1x(1,4)=0.5; % component of the proton Il
I1x(2,6)=0.5;

I1x(3,7)=0.5;

I1x(4,1)=0.5;

I1x(5,8)=0.5;

I1x(6,2)=0.5;

I1x(7,3)=0.5;

I1x(8,5)=0.5;

Ily=zeros(8); % Ily refers to the transverse y
Ily(1,4)=-0.5*11i; % component of the proton I1
Ily(2,6)=-0.5*11i;

I1y(3,7)=-0.5*11i;

I1y(4,1)=0.5*11;

I1y(5,8)=-0.5*11i;

I1y(6,2)=0.5*11;
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I1y(7,3)=0.5%1i;
I1y(8,5)=0.5%1i;

Ilz=eye (8);
Ilz
Ilz
Ilz
Ilz 8)=-1;
I1z=0.5*I1z;

o

Ilz refers to the longitudinal z

o°

4)=-1; component of the proton Il
6)=-1;
)_

I

(4
(6
(7
(8

o)

% I2 represents the other singlet protons

8

o

I2x=zeros I2x refers to the transverse x
I2x
I2x
I2x
I2x
I2x
I2x
I2x

I2x

o

component of the proton I2

(
0.
0.
0.
=0.
0.
0.
0.
0.

I2y=zeros(8); % I2y refers to the transverse y

I2y(1,3)=-0.5*11i; % component of the proton I2

(
(
(
(
(
(
(
(

122=eye(8); % I2z refers to the longitudinal z

; % component of the proton I2

=—1;
I12z=0.5*12z;

% S represents the heteronucleus

Sx refers to the transverse x

o\°

Sx=zeros (8) ;
x(1,2)=0.5
0

x(2,1)=0.5;

o)

% component ofthe heteronucleus
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Sy(1,2)=-0.5*11;
Sy(2,1)=0.5*11i;
Sy (3,5)=-0.5*11;
Sy(4,6)=-0.5*11;
Sy(5,3)=0.5*11i;
Sy(6,4)=0.5*11i;
Sy (7,8)=-0.5*11;
Sy (8,7)=0.5*11i;
Sz=eye (8) ;

Sz (2,2)=-1;

Sz (5,5)=-1;

Sz (6,6)=-1;

Sz (8,8)=-1;
Sz=0.5*Sz;

o)

gammaH=4.257*10"7;
gammaS=1.070*10"7;

Q

Q

% Sz

Q

% Used Constants are defined below

% Sy refers to the transverse y

% component of the heteronucleus

refers to the longitudinal z

% component of the heteronucleus

% The gyromagnetic ratio for 1H (Hz/T)

% The gyromagnetic ratio for 13C (Hz/T)

% Calculate the angle of rotation below

thetaH=2*pi*gammaH*AmpH*t;
thetaS=2*pi*gammaS*AmpS*t;

o)

H=2%pi* (J(1)* (I1x*I2x+I1ly*I2y+... 2

low

I1z*I2z)+J(2)*11z*Sz+J(3)*I2z*Sz);

o)

o)

% regime)

RI1=cos (thetaH/2)*eye (8)+2*1i*...

% Used operators defined below

o\°

o\°

o

o\°

% and weak heteronuclear coupling

sin(thetaH/2) * (cos (phiH) *I1x...
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The angle of rotation for 1H;

The angle of rotation for 13C;

Calculate Hamiltonian, assuming

field (strong homonuclear coupling

% Calculate the rotation for proton Il



+sin (phiH) *I1ly) ;

o°

RI2=cos (thetaH/2) *eye (8)+2*1i*...
12

Calculate the rotation for proton

sin(thetaH/2) * (cos (phiH) *I2x. ..
+sin (phiH) *I2y) ;

RS=cos (thetaS/2) *eye (8)+2*1i*...
sin(thetaS/2) * (cos (phiS) *Sx. ..
+sin (phiS) *Sy) ;

o°

Calculate the rotation for

heteronucleus 13C

e

RI=RI1*RI2;

o°

Calculate the rotation for both 1H

R=RI*RS;

o)

% rotation

o

Calculate the full expression of

U=expm (-11i*H* (t/2)); % Calculate the evolving operator

% Calculate the evolved density matrix below

routemp=U*roul*conj (U) ; % Calculate the evolved density matrix

o)

% for the first half time period

routemp= (R\routemp) * (R) ; % Calculate the effect of the

o)

% applied pulse

routemp=U*routemp*coni (U) ; % Calculate the evolved density matrix

o)

% after the next half time period

rou=routemp; % The final calculated density matrix

end

D.2. Pulse programs for 1;1,SR spin system pulse sequence
As described in Chapter 11, for an 1;1,SR spin system, the Hamiltonian, each
pulse and spin state could be represented by a 16x16 density matrix. The pulse to

transfer polarization level, as in Chapter 111, is illustrated in Figure D.2.
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Figure D.2. Evolution of density matrix components (upper graph) and the associated
pulse sequence (lower graph) for focusing parahydrogen singlet-states (l;-1,) into pure
magnetization on an adjacent coupled (S) nucleus for 111,SR spin systems in the
strong coupling regime. Labels S and P refer generally to coupled S nucleus (for
example, *C and *'P). Symbols (3., 4.¢) correspond to components of the density
operator.

In Figure D.2, the effective pulses are two 180 (+x) pulses on **C channel, two
180 (+x) pulses on proton channel, and two 90 (+x and +y) pulses on **C channel.
The evolution of states, along with Hamiltonian and initial states are shown in
Chapter 111 and Appendix B & C. Below is the Matlab code used to calculate the final
density matrix after applying the pulse sequence to a given 111,SR spin system with

coupling constants.

Function [rou]= FourSpinHyperSHIELDED (J, t)

%Calculating final density matrix for 4 spin system with 2 protons and
$two heteronuclei

5 J(1):I1-I2; J(2):I1-S;J(3):I1-R; J(4):12-S; J(5):I2-R; J(6) :S-R;

% Spin order transferred to S

% Output: rou: final density matrix

s Input: J: J coupling constants of the spin system, in the form of

% [(J12,J1S,J1R,J2S,J2R,JSR] (Hz)
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oe

t: The time intervals

o

o

I1 and I2 represent the two protons,

o

heteronuclei

o

Ilx=zeros
Ilx
Ilx
Ilx
Ilx
Ilx

16) ;%

;% component of proton Il

5)=
1=
9)=
2)=
10 ;
3 .

’

3,
10,
4,11
Ilx (11,4

(1

(5

(2

(9

( )=0.

T1lx( )=0.
( )=0.
( )=0.

I1x(6,13)=0.
( )=0.
( )=0.
( )=0.
( )=0.
(
(
(

’

Ilx

5
5
5
5;
5;
5.
5
5
5
.5

’

I1x (13,6
7,14
14,7
8,15
15,8)=
12,16)

16,12)

’

Ilx

’

Ilx

’

Ilx

’

Ilx
Ilx =0.5;
Ilx =0.5;

Tly=-1i*I1x;% Ily

(t(l)-t(6))

of the pulse sequence

General Product Operators Defined Below

while S and R represent the two

The operators for one of the singlet protons Il

Ilx refers to the transverse x

refers to the transverse y

Ily(5,1)=0.5*1i;% component of proton Il
I1ly(9,2)=0.5*11;
I1y(10,3)=0.5*1i;
Ily(11,4)=0.5*11i;
Ily(13,6)=0.5*1i;
Ily(14,7)=0.5*11i;
I1y(15,8)=0.5%1i;
(

Ily(16,12)=0.5*1i;
Ilz=eye(16);%
Ilz y=-1;%
I1lz y==-1;
I1z(10,10)=
Ilz(11,11)=
I1z(13,13)=-1;
I1z(14,14)=-1;

)=

)=

’

’

I1z (15,15
Ilz (16,16

’

(5
(9
(
(
(
(
(
( ;
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z component of proton Il

Ilz refers to the longitudinal



I1z=0.5*I1z;
% The operators for one of the singlet protons I2
I2x=zeros(16);% I2x refers to the transverse x
I2x (1
I2x(
I2x(
I2x(
I2x(
I2x(
I2x(
I2x(11,5
I2x(6,12

(

(

(

(

(

(

(

;% component of proton I2

4 4

14 4

14

4,1
2,7
7,2
3,8
8,3
5,1

(1
0.5
0.5
0.5
0.5
0.5
0.5

14

4)
)
)
)
)
)
1

I2x (12,6
I2x(9,14
I2x(14,9
I2x(10,15
I2x(15,10
I2x(13,16
I2x(16,13

)=0.
)=0.
)=0.
)=0.
)=0.
)=0.

)=0.
)=0.
)=0.
)=0.

12y=—1i*12x;% I2y refers to the transverse y
I2y
I2y

(4 =0.5*1i;% component of proton I2
(7 =0.5*11i;

I2y (8 =0.5*11i;

IZy(ll 5)=0.5*%11;

I2y(12,6)=0.5*11;

I2y(14,9)=0.5*11;

I2y(15,10)=0.5%11;

I2y(16,13)=0.5%11;

122=eye(16);% I2z refers to the longitudinal
12z
12z
12z
12z
12z
12z

)==-1;% z component of proton I2

y=-1;

y=-1;
11,11)=-1;
12,12)=-1;
14,14)=-1;
I2z(15,15)=
I2z(16,16)=-1;

I12z=0.5*12z;

’

(4
(7
(8
(
(
(
(
(

o)

% S represents the first heteronuclei S

Sx=zeros (16);% Sx refers to the transverse x
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;% component of heteronucleus S

11,15
15,11
14,16
16,14

=0
=0.
Sx =0
=0

—_— = = —

Sy=—1i*Sx;% Sy refers to the transverse y

=0.5*1i;% component of heteronucleus S

y (3

v (6 =0.5*11i;

y (8 =0.5*11i;
y(10,5)=0.5*11;
v(12,7)=0.5%11;
y(13,9)=0.5*11i;
y(15,11)=0.5*11;
vy(16,14)=0.5*11;

Sz=eye(16);% Sz refers to the longitudinal
)=-1;% z component of heteronucleus S
y=-1;
y=-1;

10,10)=-1;

12,12)=-1;
13,13)=-1;
15,15)=
16,16)=

Sz=0.5*Sz;

’

z (3
z (6
z (8
z (
z (
z (
z (
z ;

o)

% R represents the other heteronucleus R

Rx2=zeros (16);% Rx refers to the transverse x
Rx(1,2)=0.5;% component of heteronucleus R
Rx(2,1)=0.5;

Rx(3,6)=0.5;

Rx(6,3)=0.5;
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Ry=-1i*Rx;% Ry refers to the transverse y

.5*%11;% component of heteronucleus R
.5*11i;

.5*11i;

9,5)=0.5*11;

12,8)=0.5*11;

13,10)=0.5*11i;

14,11)=0.5*11i;

16,15)=0.5*11i;

4

2,1)
6,3)
7,4)

R
R
R

4

0
0
0
0

v (
v (
Y(
Y (
Y (
Y (
RY(
Y (

Rz=eye (16) ;% Rz refers to the longitudinal

Rz (2,2)=-1;% z component of heteronucleus R
Rz (6,6)=-1;

Rz (7,7)=-1;

Rz (9,9)=-1;

Rz (12,12)=-1;

Rz (13,13)=-1;

Rz (14,14)=-1;

Rz (16,16)=-1;

Rz=0.5*Rz;

% The 90 and 180 degree pulse operators for each spin calculated below
Rx90I1=(1/(sqrt(2))) *eye (16).. % 90degree Il pulse around x axis
+sqgrt (2) *1i*Ilx;

Rx180I1=2*11i*I1x;% 180degree Il pulse around x axis
Ry90I1=(1/(sqrt(2))) *eye(16).. % 90degree I1 pulse around y axis
+sqgrt (2)*1i*Ily;

Ryl180I1=2*11i*I1ly;% 180degree I1 pulse around y axis

Rx90I2=(1/(sqrt(2))) *eye (16).. % 90degree I2 pulse around x axis
+sqrt(2)*11*I2x;
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Rx180I2=2*11*I2x;% 180degree I2Z pulse around x axis

Ry90I2=(1/(sqgrt(2))) *eye(16).. % 90degree I2 pulse around y axis

+sqrt (2) *1i*I2y;

Ryl80I2=2*11*I2y;% 180degree I2 pulse around y axis

Rx90S=(1/ (sqgrt (2))) *eye (16).. % 90degree
+sqgrt (2) *1i*Sx;
Rx180S=2*11*Sx;% 180degree S pulse around x axis
Ry90S=(1/ (sqgrt (2))) *eye (16).. % 90degree
+sqgrt (2) *1i*Sy;
Ryl1l80S=2*1i*Sy;% 180degree S pulse around y axis

Rx90R=(1/ (sqgrt (2))) *eye (16).. % 90degree
+sqrt(2)*11*Rx;
Rx180R=2*11i*Rx;% 180degree R pulse around x axis

S pulse around x axis

S pulse around y axis

R pulse around x axis

Ry90R=(1/ (sgrt (2))) *eye (16)..% 90degree R pulse around y axis

+sgrt (2) *1i*Ry;
Ry180R=2*11*Ry;% 180degree S pulse around y axis

Rx90H=Rx90I1*Rx90I2;% 90degree H pulse (Il and I2)

o)

% around x axis

Rx180H=Rx180I1*Rx180I2;% 180degree H pulse (Il and I2)

o)

% around x axis

Ry90H=Ry90I1*Ry90I2;% 90degree H pulse (I1 and I2)

o)

% around y axis

Ry180H=Ry180I1*Ry180I2;% 180degree H pulse (Il and I2)

o)

o)

Sigmal=I1x*I2x+I1ly*I2y;

% around y axis

% The initial density matrix and Hamiltonian calculated below

H=2%*pi* (J(1)* (I1x*I2x+I1y*I2y+I1z*I2z)+J(2) *I1z*Sz+J(3) *I1z*Rz. ..

+J(4)*122*Sz+J (5)*I2z*Rz+J(6) *Sz*Rz) ;

% The evolution propagators defined below

Utl=expm (-1i*H*t1l) ;
Ut2=expm (-11i*H*t2) ;
Ut3=expm (-11i*H*t3) ;
Utd=expm (-11i*H*t4) ;
UtS=expm (-11i*H*t5) ;
Ut6=expm (-11i*H*t6) ;

% The evolution of density matrix with hyer-SHIELDED pulse sequence

sigma=Utl*sigmaO*conj (Utl) ;
sigma= (Rx180S\sigma) *Rx180S;
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sigma=Ut2*sigma*conj (Ut2) ;
sigma=(Rx180H\sigma) *Rx180H;
sigma=Ut3*sigma*conj (Ut3) ;
sigma= (Ry90S\sigma) *Ry90S;
sigma=Ut4*sigma*conj (Ut4) ;
sigma= (Rx180S\sigma) *Rx180S;
sigma=Ut5*sigma*conj (UtD) ;
sigma=(Rx180H\sigma) *Rx180H;
sigma=Ut6*sigma*conj (Ut6) ;
sigma= (Rx90S\sigma) *Rx90S;

rou=sigma;

end

In the 1;1,SR spin systems, the evolution of product operators becomes much
more complicated than I11,S spin systems. Therefore it is straightforward to calculate
the polarization level from the density matrix directly. Below is the matlab code that
is used to calculate the optimum time intervals of the pulse sequence to transfer
polarization for an I11,SR spin system with given scalar coupling constants. To
minimize calculation, the time intervals are calculated in two independent steps as

described in Chapter I11.

function [tau,t] = fourspinHyperSHIELDED (J,dur)
%Calculating time intervals for 4 spin system with 2 H and 2 heteronucleai
J(1):I1-I2; J(2):I1-S;J(3):I1-R; J(4):I2-S; J(5):I2-R; J(6) :S-R;

o°

o°

Spin order transferred to S

o°

Output: tau: The time interval parameters when choosing (I1z-I2z)Sz in

o°

the first step, with tau(7) indicating final polarization

o°

(seconds)

o°

t: The time interval parameters when choosing (IlyI2x-I1xI2y) Sz

o°

in the first step, with t(7) indicating final polarization

o°

(seconds)

o°

Input: J: J coupling constants of the spin system, in the form of

[J12,J1S,J1R,J2S,J2R,JSR] (Hz)

o°

5 dur: Total duration of the pulse sequence (seconds)
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% Product Operators Defined Below, with I1 and I2 represent the two protons,

o)

o)

Ilx=zeros
Ilx
Ilx
Ilx
Ilx
Ilx
Ilx

(16) ;
5)=0.5;
1)=0.5;
9)=0.5;

2)=0.5;

3,10 ;

10,3

4,11

I1x (11,4

(1

(5

(2

(9

( )=0.

( )=0.

( )=0.

( )=0.
Ilx(6,13)=0.

( )=0.

( )=0.

( )=0.

( )=0.

(

(

(

Ilx ;
I1x (13,6
7,14
14,7
8,15
15,8)=
12,16)=0.5;

16,12)=0.5;

’

Ilx

’

Ilx

’

Ilx

’

5
5
5
5
5;
5
5
5
5
.5

Ilx ;

Ilx
Ilx

Ily=-1i*I1x;
Ily(5,1)=0.5*11i;
Ily(9,2)=0.5*11i;

(

(
I1y(10,3)=0.5%11;
I1y(11,4)=0.5%11;
I1y(13,6)=0.5%11;
I1y(14,7)=0.5%11;
I1y(15,8)=0.5%1i;

(

I1y(16,12)=0.5%11i;

Ilz=eye(16);
I1lz y==-1;
I1lz y==-1;
I1z(10,10)=-1;
I1z(11,11)=-1;
I1z(13,13)=-1;
I1z(14,14)=

I1z(15,15)=

Ilz(16,16)=-1;

I1z=0.5*I1z;

’

’

(5
(9
(
(
(
(
(
(

% The operators for one of the singlet
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% and S and R represent the two heteronuclei

protons Il

o)

% I1lx refers to the transverse x

o)

% component of proton Il

o)

% Ily refers to the transverse y

o)

% component of proton Il

o)

% Ilz refers to the longitudinal

o)

% z component of proton Il



o)

% The operators for one of the singlet protons I2
I2x=zeros (16); % I2x refers to the transverse x
I2x
I2x
I2x
I2x
I2x
I2x
I2x
I2x (11,5

(1
(
(
(
(
(
(
(
I2x(6,12
(
(
(
(
(
(
(

o)

; % component of proton I2

14 4

4

14

4,1
2,7
7,2
3,8
8,3
5,1

(1
0.
0.
0.
0.
0.
0.

U'IU'IU'IU'IU'IU'I

4

4)
)
)
)
)
)
1

I2x(12,6
I2x(9,14
I2x (14,9
I2x(10,15
I2x(15,10
I2x(13,16
I2x(16,13

)=0.
)=0.
)=0.
)=0.
)=0.
)=0.

)=0.
)=0.
)=0.
)=0.

12y=—1i*12x; % I2y refers to the transverse y
I2y
I2y

(4 =0.5*11i; % component of proton I2
(7 =0.5*11i;

I2y (8 =0.5*11i;

I2y(11 5)=0.5%1i;

I2y(12,6)=0.5*11;

I2y(14,9)=0.5*11;

I2y(15,10)=0.5*1i;

I2y(16,13)=0.5*1i;

o)

122=eye(16); % I2z refers to the longitudinal
)y=-1; % z component of proton I2
y=-1;
y=-1;

11,11

12,12 ;

)=

)=
14,14)=-1;

)_

12z
12z
I2z (15,15
I2z(16,16)=-1;
I122z=0.5*I2z;

’

(4
(7
(8
(
(
(
(
(

o)

% S represents the first heteronucleus S

Sx=zeros (16) ; % Sx refers to the transverse x

x(1,3)=0.5; % component of heteronucleus S
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Sy=—li*Sx; % Sy refers to the transverse y
=0.5*11i; % component of heteronucleus S
=0.5*11;
=0.5*11;

10,5)=0.5*11;

12,7)=0.5*11;

13,9)=0.5*11;

15,11)=0.5*11i;

y (3
y (6
y (8
v (
VY (
VY (
VY (
y(16,14)=0.5*%11i;

o°

Sz:eye(16); Sz refers to the longitudinal
y=-1; % z component of heteronucleus S
y=-1;
y=-1;

10,10)=-1;

12,12)=-1;
13,13)=-1;
15,15)=
16,16)=

Sz=0.5*Sz;

’

z (3
z (6
z (8
z (
z (
z (
z (
z ;

% R represents the other heteronuclei R

Rx2=zeros (16) ; % Rx refers to the transverse x
Rx(1,2)=0.5; % component of heteronucleus R
Rx(2,1)=0.5;
Rx(3,6)=0.5;
Rx (6,3)=0.5;
Rx(4,7)=0.5;
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4)=0.5;

x (7
x(5,9)=0.5;
x(9,5)=0.5;
x(8,12)=0.5;
x(12,8)=0.5;
x(10,13)=0.5;
x(13,10)=0.5;
x(11,14)=0.5;
x(14,11)=0.5;
x(15,16)=0.5;
x(16,15)=0.5;
Ry=-11i*Rx; % Ry refers to the transverse y
Ry (2,1)=0.5*11i; % component of heteronucleus R
Ry (6,3)=0.5*11i;
Ry (7,4)=0.5*%11;
Ry(9,5)=0.5*1i;
y(12,8)=0.5*11;
y(13,10)=0.5*11i;
Ry(l4 11)=0.5*11;
y(16,15)=0.5*11i;
Rz=eye (16) ; % Rz refers to the longitudinal
Rz (2,2)=-1; % z component of heteronucleus R
Rz (6,6)=-1;
Rz (7,7)=-1;
Rz (9,9)=-1;
Rz (12,12)=-1;
Rz (13,13)=-1;
Rz (14,14)=-1;
Rz (16,16)=-1;
Rz=0.5*Rz;

% The 90 and 180 degree pulse operators for each spin calculated below

Rx90I1=(1/(sqrt(2))) *eye (16).. % 90degree Il pulse around x axis
+sqgrt (2) *1i*Ilx;
Rx180I1=2*11i*I1x; % 180degree I1 pulse around x axis
Ry90I1=(1/(sqrt(2))) *eye (16).. % 90degree Il pulse around y axis
+sqgrt (2)*1i*Ily;
Ryl1l80I1=2*1i*I1ly; % 180degree I1 pulse around y axis
Rx90I2=(1/(sqrt(2))) *eye (16).. % 90degree I2 pulse around x axis
+sqrt(2)*11*I2x;
Rx180I2=2*11*12x; % 180degree I2 pulse around x axis
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Ry90I2=(1/(sqgrt(2))) *eye(16).. % 90degree I2 pulse around y axis

+sqrt (2) *1i*I2y;

Ryl80I2=2*11i*I2y; % 180degree I2 pulse around y axis

Rx90S=(1/ (sqgrt (2))) *eye (16).. % 90degree S pulse around x axis

+sqgrt (2) *1i*3Sx;

Rx180S=2*11*Sx; % 180degree S pulse around x axis

Ry90S=(1/ (sqgrt (2))) *eye (16).. % 90degree S pulse around y axis

+sqgrt (2) *1i*Sy;

Ryl1l80S=2*1i*Sy; % 180degree S pulse around y axis

Rx90R=(1/ (sqgrt (2))) *eye (16).. % 90degree R pulse around x axis

+sqrt(2)*11*Rx;

Rx180R=2*11*Rx; % 180degree R pulse around x axis

Ry90R=(1/ (sqgrt (2))) *eye (16)..% 90degree R pulse around y axis

+sqgrt (2) *1i*Ry;

Ry180R=2*11*Ry; % 180degree S pulse around y axis

Rx90H=Rx90I1*Rx90I2; % 90degree H pulse (I1 and I2)
% around x axis

Rx180H=Rx180I1*Rx180I2; % 180degree H pulse (Il and I2)
% around x axis

Ry90H=Ry90I1*Ry90I2; % 90degree H pulse (Il and I2)
% around y axis

Ry180H=Ry1l80I1*Ry180I2; % 180degree H pulse (Il and I2)

o°

o)

around y axis

% Initial Density Matrix for Each Step and Hamiltonian Defined Below

sigmal0=I1x*I2x+I1ly*I2y;% initial singlet-state

sigmal=Sx* (I1z-12z);%
sigmal2=2*Sx* (I2x*I1y-I1x*I2y) ;%
H=2*pi* (J (1) *

+J (4

maxtime=dur/6;

o

o\°

interval (tl,t2,t3)

$ maxtime, to 0.001 maxtime,

o\°

coefficient of sigmal
for kl1=1:10;
tl=maxtime*0.1*kl;
Utl=expm (-11i*H*tl) ;
for k2=1:10;
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are searched by the range from 0.lmaxtime,

sigma (4,4)+sigma(7,7)

the state after the 1lst step

another state after the 1st step
(I1x*I2x+T1y*I2y+I11z*12z)+J(2) *I11z*Sz+J(3)*I1z*Rz...
) *12z*Sz+J(5)*I2z*Rz+J (6) *Sz*Rz) ;

$ Calculate the Optimum Time Intervals (tau) for the First Step, each time

0.01

represents the



t2=maxtime*0.1*k2;
Ut2=expm (-1i*H*t2) ;
for k3=1:10;
t3=maxtime*0.1*k3;
Ut3=expm (-11i*H*t3) ;
sigma=Utl*sigmaO*conj (Utl) ;
sigma= (Rx180S\sigma) *Rx180S;
sigma=Ut2*sigma*conj (Ut2) ;
sigma= (Rx180H\sigma) *Rx180H;
sigma=Ut3*sigma*conj (Ut3) ;
Fl(kl,k2,k3)=abs(sigma(4,4)+sigma(7,7));
end
end

end

[maxFl,maxindl]=max (F1(:));

[K1,K2,K3]=ind2sub (size (F1l) ,maxindl) ;

for 11=1:20;
tl=maxtime* (0.1* (K1-1)+*0.01*11);
Utl=expm (-11i*H*tl);
for 12=1:20;
t2=maxtime* (0.1* (K2-1)+*0.01*12);
Ut2=expm (-11i*H*t2) ;
for 13=1:20;
t3=maxtime* (0.1* (K3-1)+*0.01*13);
Ut3=expm (-11i*H*t3) ;
sigma=Utl*sigmaO*conj (Utl) ;
sigma=(Rx180S\sigma) *Rx180S;
sigma=Ut2*sigma*conj (Ut2) ;
sigma= (Rx180H\sigma) *Rx180H;
sigma=Ut3*sigma*conj (Ut3) ;
F2(11,12,13)=abs(sigma(4,4)+sigma(7,7));
end
end

end

[maxF2,maxind2]=max (F2(:));

[L1,L2,L3]=ind2sub(size (F2),maxind2) ;

for ml=1:20;
tl=maxitme* (0.1* (K1-1)+0.01*(L1-1)+0.001*ml) ;
Utl=expm (-11i*H*tl) ;

for m2=1:20;
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t2=maxitme* (0.1* (K2-1)+0.01*(L2-1)+0.001*m2) ;
Ut2=expm (-1i*H*t2) ;
for m3=1:20;
t3=maxitme* (0.1* (K3-1)+0.01*(L3-1)+0.001*m3) ;
Ut3=expm (-11i*H*t3) ;
sigma=Utl*sigmaO*conj (Utl) ;
sigma= (Rx180S\sigma) *Rx180S;
sigma=Ut2*sigma*conj (Ut2) ;
sigma= (Rx180H\sigma) *Rx180H;
sigma=Ut3*sigma*conj (Ut3) ;
F3(ml,m2,m3)=abs(sigma(4,4)+sigma(7,7));
end
end

end

[maxF3,maxind3]=max (F3(:));
[M1,M2,M3]=ind2sub (size (F3),maxind3) ;

% The optimum time intervals taul, tau2, tau3
tau(l)=maxitme* (0.1*(K1-1)+0.01*(L1-1)+0.001*M1);
tau(2)=maxitme* (0.1* (K2-1)+0.01* (L2-1)+0.001*M2) ;
tau(3)=maxitme* (0.1* (K3-1)+0.01* (L3-1)+0.001*M3) ;

o\°

Calculate the Optimum Time Intervals (tau) for the Second Step, each
% time interval (t4,t5,t6) are searched by the range from 0.1lmaxtime, 0.01
% maxtime, to 0.001 maxtime, imag(sigma (4,8))+imag(sigma(7,12))
% represents the coefficient of final state
for o0l=1:10;
tl=maxtime*0.1*0l;
Utl=expm (-11i*H*tl);
for 02=1:10;
t2=maxtime*0.1*02;
Ut2=expm (-11i*H*t2) ;
for 03=1:10;
t3=maxtime*0.1*03;
Ut3=expm (-11i*H*t3) ;
sigma=Utl*sigmal*conj (Utl);
sigma=(Rx180S\sigma) *Rx180S;
sigma=Ut2*sigma*conj (Ut2) ;
sigma= (Rx180H\sigma) *Rx180H;
sigma=Ut3*sigma*conj (Ut3) ;
F4 (ol,02,03)=abs (imag(sigma (4, 8))+imag(sigma(7,12)));
end

end
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end

[maxF4,maxind4]=max (F4(:));

[01,02,03]=ind2sub (size (F4) ,maxind4) ;

for pl=1:20;
tl=maxtime* (0.1* (01-1)+0.01*pl);
Utl=expm (-1i*H*tl) ;
for p2=1:20;
t2=maxtime* (0.1* (02-1)+0.01*p2);
Ut2=expm (-11i*H*t2) ;
for p3=1:20;
t3=maxtime* (0.1* (03-1)+0.01*p3);
Ut3=expm (-11i*H*t3) ;
sigma=Utl*sigmal*conj (Utl) ;
sigma=(Rx180S\sigma) *Rx180S;
sigma=Ut2*sigma*conj (Ut2) ;
sigma= (Rx180H\sigma) *Rx180H;
sigma=Ut3*sigma*conj (Ut3) ;
F5(pl,p2,p3)=abs(imag(sigma (4, 8))+imag(sigma(7,12)));
end
end

end

[maxF5,maxind5]=max (F5(:)) ;

[P1,P2,P3]=ind2sub (size (F5),maxind5) ;

for gl=1:20;
tl=maxtime* (0.1*(01-1)+0.01*(P1-1)+0.001*gl) ;
Utl=expm (-11i*H*tl);
for g2=1:20;
t2=maxtime* (0.1* (02-1)+0.01*(P2-1)+0.001*qg2) ;
Ut2=expm (-11i*H*t2) ;
for g3=1:20;
t3=maxtime* (0.1* (03-1)+0.01* (P3-1)+0.001*g3);
Ut3=expm (-11i*H*t3) ;
sigma=Utl*sigmal*conj (Utl);
sigma=(Rx180S\sigma) *Rx180S;
sigma=Ut2*sigma*conj (Ut2) ;
sigma= (Rx180H\sigma) *Rx180H;
sigma=Ut3*sigma*conj (Ut3) ;
F6(gl,g2,93)=abs (imag(sigma (4,8))+imag(sigma(7,12)));
end

end
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end

[maxF6,maxind6]=max (F6(:));

[Q1,02,03]=ind2sub (size (F6) ,maxindo6) ;

% The optimum time intervals

o)

% polarization level

tau (4)=maxtime* (0.1* (01-1)+0.
tau(5)=maxtime* (0.1* (02-1)+0.
tau (6)=maxtime* (0.1* (03-1)+0.
tau(7)=F3(M1,M2,M3) *F6(Q1,02,

o oo

o\°

maxtime, to 0.001 maxtime,
% represents the coefficient
for kl1=1:10;
tl=maxtime*0.1*kl;
Utl=expm (-11i*H*tl) ;
for k2=1:10;
t2=maxtime*0.1*k2;
Ut2=expm (-11i*H*t2) ;
for k3=1:10;
t3=maxtime*0.1*k3;
Ut3=expm (-11i*H*t3) ;
simga=Utl*sigmaO*conj (Utl) ;

tau4d, taub, tau6, tau7 represents final

01* (P1-1)+0.001*Q1) ;
01*(P2-1)+0.001%Q2) ;
01*(P3-1)+0.001*Q3);
03);

Calculate the Optimum Time Intervals (tau) for the First Step, each time

interval (tl,t2,t3) are searched by the range from 0.lmaxtime, 0.01

imag(sigma (4,5))+imag(sigma (7, 9))

of sigma?2

sigma=(Rx180S\sigma) *Rx180S;

sigma=Ut2*sigma*conj (Ut2) ;

sigma= (Rx180H\sigma) *Rx180H;

sigma=Ut3*sigma*conj (Ut3) ;

F1l(kl,k2,k3)=abs(imag(sigma (4,5)+imag(sigma(7,9))));
end
end
end
[maxFl,maxindl]=max (F1l(:));

[K1,K2,K3]=ind2sub (size (F1l) ,maxindl) ;

for 11=1:20;

tl=maxtime* (0.1* (K1-1)+0.01*11);

Utl=expm (-11i*H*tl) ;
for 12=1:20;

t2=maxtime* (0.1* (K2-1)+0.01*12);

Ut2=expm (-11i*H*t2) ;
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for 13=1:20;
t3=maxtime* (0.1* (K3-1)+0.01*13);
Ut3=expm (-11i*H*t3) ;
sigma=Utl*sigmaO*conj (Utl) ;
sigma=(Rx180S1\sigma) *Rx180S1;
sigma=Ut2*sigma*conj (Ut2) ;
sigma= (Rx180H\sigma) *Rx180H;
sigma=Ut3*sigma*conj (Ut3) ;

F2(11,12,13)=abs(imag(sigma (4,5)+imag(sigma(7,9))));
end
end

end

[maxF2,maxind2]=max (F2(:));

[L1,L2,L3]=ind2sub (size (F2),maxind?2) ;

for ml=1:20;
tl=maxtime* (0.1* (K1-1)+0.01*(L1-1)+0.001*ml) ;
Utl=expm (-11i*H*tl) ;
for m2=1:20;
t2=maxtime* (0.1* (K2-1)+0.01*(L2-1)+0.001*m2) ;
Ut2=expm (-11i*H*t2) ;
for m3=1:20;
t3=maxtime* (0.1* (K3-1)+0.01*(L3-1)+0.001*m3) ;
Ut3=expm (-11i*H*t3) ;
sigma=Utl*sigmaO*conj (Utl) ;
sigma=(Rx180S\sigma) *Rx180S;
sigma=Ut2*sigma*conj (Ut2) ;
sigma= (Rx180H\sigma) *Rx180H;
sigma=Ut3*sigma*conj (Ut3) ;
F3(ml,m2,m3)=abs (imag(sigma (4,5)+imag(sigma(7,9))));
end
end

end

[maxF3,maxind3]=max (F3(:));
[M1,M2,M3]=ind2sub (size (F3),maxind3) ;

% The optimum time intervals tl, t2, t3
t(1l)=maxtime* (0.1* (K1-1)+0.01*(L1-1)+0.001*M1) ;
t(2)=maxtime* (0.1* (K2-1)+0.01*(L2-1)+0.001*M2) ;
t(3)=maxtime* (0.1* (K3-1)+0.01*(L3-1)+0.001*M3) ;

o)

% Calculate the Optimum Time Intervals (tau) for the Second Step, each
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% time interval (t4,t5,t6) are searched by the range from 0.1lmaxtime, 0.01

o)

% maxtime, to 0.001 maxtime, imag(sigma(4,8))+imag(sigma(7,12))
% represents the coefficient of final state
for o0l1=1:10;
tl=maxtime*0.1*0l;
Utl=expm (-1i*H*tl) ;
for 02=1:10;
t2=maxtime*0.1%*02;
Ut2=expm (-11i*H*t2) ;
for 03=1:10;
t3=maxtime*0.1*03;
Ut3=expm (-11i*H*t3);
sigma=Utl*sigma2*conj (Utl) ;
sigma= (Rx180S\sigma) *Rx180S;
sigma=Ut2*sigma*conj (Ut2) ;
sigma= (Rx180H\sigma) *Rx180H;
sigma=Ut3*sigma*conj (Ut3) ;
F4 (o0l,02,03)=abs(imag(sigma (4, 8))+imag(sigma(7,12)));
end
end

end

[maxF4,maxind4]=max (F4(:));

[01,02,03]=ind2sub (size (F4) ,maxind4) ;

for pl=1:20;
tl=maxtime* (0.1* (01-1)+0.01*pl);
Utl=expm (-11i*H*tl) ;
for p2=1:20;
t2=maxtime* (0.1* (02-1)+0.01*p2);
Ut2=expm (-11i*H*t2) ;
for p3=1:20;
t3=maxtime* (0.1* (03-1)+0.01*p3);
Ut3=expm (-11i*H*t3) ;
sigma=Utl*sigma2*conj (Utl) ;
sigma=(Rx180S\sigma) *Rx180S;
sigma=Ut2*sigma*conj (Ut2) ;
sigma= (Rx180H\sigma) *Rx180H;
sigma=Ut3*sigma*conj (Ut3) ;
F5(pl,p2,p3)=abs (imag(sigma (4, 8))+imag(sigma(7,12)));
end
end

end
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[maxF5,maxind5]=max (F5(:)) ;
[P1,P2,P3]=ind2sub(size (F5),maxindb) ;

for gl=1:20;
tl=maxtime* (0.1* (01-1)+0.01*(P1-1)+0.001*gl) ;
Utl=expm (-1i*H*tl) ;
for g2=1:20;
t2=maxtime* (0.1* (02-1)+0.01* (P2-1)+0.001*qg2) ;
Ut2=expm (-11i*H*t2) ;
for g3=1:20;
t3=maxtime* (0.1* (03-1)+0.01* (P3-1)+0.001*g3);
Ut3=expm (-11i*H*t3);
sigma=Utl*sigma2*conj (Utl) ;
sigma= (Rx180S\sigma) *Rx180S;
sigma=Ut2*sigma*conj (Ut2) ;
sigma= (Rx180H\sigma) *Rx180H;
sigma=Ut3*sigma*conj (Ut3) ;
F6(gl,g2,93)=abs(imag(sigma (4,8))+imag(sigma(7,12)));
end
end

end

[maxF6,maxind6]=max (F6(:));

[Q1,02,03]=ind2sub (size (F6),maxindo6) ;

% The optimum time intervals t4, t5, t6, t7 represents final
% polarization level
t(4)=maxtime* (0.1* (01-1)+0.01*(P1-1)+0.001*Q1);
t(5)=maxtime* (0.1* (02-1)+0.01*(P2-1)+0.001*Q2) ;

t (6)=maxtime* (0.1* (03-1)+0.01* (P3-1)+0.001*Q3);
t(7)=F3(M1,M2,M3)*F6(Q1,Q2,Q03);

D.3. Monte Carlo model for high resolution J spectroscopy and resolution

As described in Chapter 1V, we constructed a Monte Carlo statistical model to
get high resolution scalar coupling spectroscopy in low inhomogeneous fields by
fitting the experiment data to theory, also calculate the resolution with certain

experimental error. Below are the Matlab codes for calculating both scalar coupling
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constants and resolutions with certain experimental error. There are three major
functions in the codes. The main function (Monte Carlo) calculates the final average
scalar coupling constants range and resolution within 95% confidence interval by
calling the FitMontecarlo function, which fits the experiment data with standard
deviation to the theoretical equations, which is contained in function (FTMontecarlo).
All three major functions are shown below.

Monte Carlo:

function [Jl2range,Jdeltarange,popdl,popdelta,popsurf] =

Montecarlo (pol, Error)

o

A function used to get the resolution of J-resolving spectroscopy

o

with certain experimental error

o

Output: Jl2range: the calculated homonuclear coupling constant range

% with 95% confidence range

% Jdeltarange: the calculated coupling asymmetry range Jdelta
% with 95% confidence range

% popJdl: the calculated frequency for each homonuclear

% coupling constant

o°

popJddelta: the calculated frequency for each coupling
asymmetry Jdelta

o°

popsurf: the calculated frequency for both couplings

o°

Input: pol: experimental results of a set of polarization level
% set zero for outputs
for m=1:1000;
popJl (m)=0;
popdelta (m)=0;

end

for 0=1:1000;
for p=1:1000;
popsurf (o,p)=0;
end

end

o)

% Fit the results by calling the function FitMontecarlo and calculate the

o)

% corresponding frequency
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for 1=1:10000;
[y]=FitMontecarlo(pol, Error);
CoJdl=round (100*y (1)) ;
Codelta=round (50*y (2));
popJdl (Codl)=popdl (Codl)+1;
popdelta (Codelta)=popdelta (Codelta)+1;
popsurf (CoJl,Codelta)=popsurf (CoJl,Codelta)+1;

end

% Calculate the lower and upper range of J1 with 95% confidence interval
numdn=0;

formdn=1:1000;

numdn=numdn+popJl (mdn) ;

if (numdn>249)

break;

end

end

numup=0;

formup=1000:-1:1;
numup=numup+popdl (mup) ;
if (numup>249)

break;

end

end

Jl12range=[mdn/100,mup/1007];

% Calculate the lower and upper range of Jdelta with 95% confidence interval

numdn=0;

formdn=1:1000;
numdn=numdn+popdelta (mdn) ;
if (numdn>249)

break;

end

end

numup=0;

formup=1000:-1:1;

numup=numup+popdelta (mup) ;
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if (numup>249)
break;
end

end

Jdeltarange=[mdn/50, mup/50];

% Plot the Jl and Jdelta spectroscopy
plot (popJdl) ;
plot (popdelta) ;

end

FitMontecarlo:

function [x]=FitMontecarlo (pol, Error)
% A function used to fit experimental data with random deviation and get

% high resolution J spectroscopy

warning offall;
hold on;

% set starting fitting points
x0=[7.5,12.5,100];

% Fit the experimental data with theory (by calling FTMontecarlo function)
% and extract Jl and Jdelta

for k=1:1:47;
R(k)=Error* (sqrt (3)) *pol (k) *rand () ;
P (k)=pol (k)-0.05* (sqrt (3)) *pol (k) +R (k) ;
end
length (P)
xdata=[1l:1:1length(P)];
size (xdata);

x=1sqcurvefit (dFTMontecarlo, x0, xdata, P);

end

FTMontecarlo:

function [p] = FTMontecarlo (x,xdata)
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% A function of theoretical values for J-dependent polarization, used for

o)

o)

% Define the fitting components
J12=x(1);
Jdiff=x(2);

scale=x(3);

o

s fitting experimental data and get J spectroscopy

¢ The time intervals of each group of experiment

t(l,:)=[0.0005, 0.05847, 0.0362, 0.02828];
t(2,:)=[0.00975, 0.05847, 0.0362, 0.02828];
£t(3,:)=[0.02, 0.05847, 0.0362, 0.02828];
t(4,:)=[0.032, 0.05847, 0.0362, 0.02828];
t(5,:)=[0.04, 0.05847, 0.0362, 0.02828];
t(6,:)=[0.045, 0.05847, 0.0362, 0.02828];
t(7,:)=[0.05, 0.05847, 0.0362, 0.02828];
t(8,:)=[0.06, 0.05847, 0.0362, 0.02828];
£t(9,:)=[0.07, 0.05847, 0.0362, 0.02828];
£(10,:)=[0.00975, 0.05847, 0.0362, 0.107];
£(11,:)=[0.09, 0.05847, 0.0362, 0.02828];
t(l2,:)=[0.1, 0.05847, 0.0362, 0.02828];
£(13,:)=[0.1104, 0.05847, 0.0362, 0.02828];
t(14,:)=[0.12, 0.05847, 0.0362, 0.02828];
t(15,:)=[0.131, 0.05847, 0.0362, 0.02828];
t(16,:)=[0.00975, 0.008, 0.0362, 0.02828];
t(17,:)=[0.00975, 0.0204, 0.0362, 0.02828];
£ (18,:)=[0.00975, 0.031, 0.0362, 0.02828];
£(19,:)=[0.00975, 0.041, 0.0362, 0.02828];
t(20,:)=[0.00975, 0.077, 0.0362, 0.02828];
t(21,:)=[0.00975, 0.086, 0.0362, 0.02828];
t(22,:)=[0.00975, 0.0965, 0.0362, 0.02828];
£t(23,:)=[0.00975, 0.1089, 0.0362, 0.02828];
t(24,:)=[0.00975, 0.121, 0.0362, 0.02828];
£t(25,:)=[0.00975, 0.05847, 0.003, 0.02828];
t(26,:)=[0.00975, 0.05847, 0.011, 0.02828];
t(27,:)=[0.00975, 0.05847, 0.017, 0.02828];
£(28,:)=[0.00975, 0.05847, 0.023, 0.02828];
£(29,:)=[0.00975, 0.05847, 0.03, 0.02828];
t(30,:)=[0.00975, 0.05847, 0.04, 0.02828];
t(31,:)=[0.00975, 0.05847, 0.05, 0.02828];
t(32,:)=[0.00975, 0.05847, 0.056, 0.02828];
£(33,:)=[0.00975, 0.05847, 0.0614, 0.028287];
t(34,:)=[0.00975, 0.05847, 0.07, 0.02828];
£t (35,:)=[0.00975, 0.05847, 0.08, 0.02828];
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£(36,:)=[0.00975, 0.05847, 0.0865, 0.02828];
t(37,:)=[0.00975, 0.05847, 0.09, 0.02828];
£(38,:)=[0.00975, 0.05847, 0.1, 0.02828];
£(39,:)=[0.00975, 0.05847, 0.11, 0.02828];
t(40,:)=[0.00975, 0.05847, 0.12, 0.02828];
t(41,:)=[0.00975, 0.05847, 0.13, 0.02828];
t(42,:)=[0.00975, 0.05847, 0.0362, 0.004];
t(43,:)=[0.00975, 0.05847, 0.0362, 0.012];
t(44,:)=[0.00975, 0.05847, 0.0362, 0.05];
t(45,:)=[0.00975, 0.05847, 0.0362, 0.063];
t(46,:)=[0.00975, 0.05847, 0.0362, 0.0786];
t(47,:)=[0.00975, 0.05847, 0.0362, 0.094];

% The parameters in the theoretical equations
delta=Jdiff/ (2*J12);
omega=J12* (sqrt (1+delta”2));
theta=asin(1/ (sqrt (1+delta”2)));

% The calculated J-sensitive theoretical polarization level
for n=1:1:1length(xdata):;
p(n)=((sin(theta) *sin (2*theta) *sin (2*pi*omega*t(n,2)) ...
+cos (theta) *cos (2*theta) *cos (2*pi*omega*t(n,1)) ...
*sin(2*pi*omega*t(n,2)) ...

-cos (theta) *sin (2*pi*omega*t(n,1l)) *cos (2*pi*omega*t(n,2))) ...

*(0.25*sin (4*theta) +0.25*sin (4*theta) *cos (2*pi*omega*t(n,3)) ...
*cos (2*pi*omega*t (n,4))+sin(2*theta) * (((sin(theta))"2)...

*cos (2*pi*omega*t (n,3))-((cos(theta))"2) *cos (2*pi*omega*t(n,4))) ...
+cos (theta) *sin(theta) *sin (2*pi*omega*t (n,3)) ...
*sin(2*pi*omega*t(n,4)))) ...
-(0.5*sin(2*theta) * (cos (2*theta) ...
+2% (
_2*(

(sin(theta)) "2) *cos (2*pi*omega*t(n,2)) ...
(cos(theta))"2) *cos (2*pi*omega*t(n,1)) ...
+cos (2*theta) *cos (2*pi*omega*t (n, 1)) *cos (2*pi*omega*t (n,2)) ...
+sin (2*pi*omega*t (n, 1)) *sin (2*pi*omega*t(n,2))) ...
* (cos (theta) *cos (2*pi*omega*t (n,3)) *sin(2*pi*omega*t(n,4)) ...
-sin(theta) *sin (2*theta) *sin (2*pi*omega*t (n,3)) ...
-cos (theta) *cos (2*theta) *sin (2*pi*omega*t (n,3)) ...
*cos (2*pi*omega*t(n,4)))) *scale;
end

end
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