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CHAPTER 1 

 

INTRODUCTION TO NUCLEAR MAGNETIC RESONANCE AND 

PARAHYDROGEN SINGLET-STATES 

 

Nuclear magnetic resonance (NMR) has been proven to be a diverse 

spectroscopic tool for probing molecular structure and their interactions with a broad 

array of surroundings. NMR was first reported in 1946 by Bloch and Purcell [1, 2], 

and new applications in biomedicine are still emerging. In fact, the emergence of 

hyperpolarization technologies that form the focus of this dissertation, are now 

opening windows into in vivo metabolism and providing a unique perspective that is 

difficult to obtain with traditional MR or alternative, non-MR technologies [3-8]. 

Although basic science applications in chemistry, molecular biology, and materials 

science are still growing, hyperpolarization methods have positioned NMR for rapid 

new growth in the field of biomedicine. 

Nuclear magnetic moments resonate with applied fields in proximity to the 

Larmor precession frequency [9]. The chemical environment perturbs this 

characteristic Larmor precession of nuclei, as in conjunction with the correlated 

modulation in these offsets as reflected in scalar coupling networks, provide detailed 

information about the molecular structure in which the nucleus resides [10-12]. Given 

sufficient sensitivity, this enables observation of chemical reaction in general, and 

now allows a direct method of interrogating metabolism non-invasively in vivo. 

The coherent modes of nuclear magnetism can be considered independent of 
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interaction with surrounding tissues, and the long lifetimes of these coherences enable 

comprehensive control over the quantum evolution of the systems. The applied fields 

necessary to perturb nuclear spins can also be applied safely so as to not physically 

alter or damage biological tissues. This is important for medical applications, and the 

lack of exposure to ionizing radiation or invasive surgery is often touted as an 

advantage of NMR for biomedicine [13-17].  

In spite of these advantages, the application of NMR to metabolism has been 

traditionally limited by low equilibrium polarizations and poor sensitivity. For basic 

science applications, this inherent limitation can be partially overcome by extending 

scan time or improving the filling factor of the antennas to better match the biological 

tissue of interest. However, in biomedical applications, scan times are limited and 

Boltzmann polarization levels limit detection of protons to approximately 1 mM/mL. 

This detection threshold scales with gyromagnetic ratio and abundance. For example, 

the gyromagnetic ratio of 
13

C (the observable carbon isotope) is 25% that of protons, 

and the abundance of this isotope is only 1.1% of all carbon in nature. For this reason, 

naturally abundant carbon-13 does not contribute significantly to background signal; 

hence carbon-13 NMR has the promise for high contrast in vivo. This has driven 

interest in polarization enhancement techniques, which aim to transiently increase the 

sensitivity of NMR on the time-scale of longitudinal relaxation. This dissertation will 

focus in particular, on the application of parahydrogen for polarizing nuclear magnetic 

moments. 

This chapter starts by introducing NMR principles including the Zeeman effect, 
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chemical shift, and spin-spin coupling. Then tools to more efficiently manipulate spin 

operators are described, in the context of the spin density operator, spin Hamiltonians, 

and the evolution of spin coherences. NMR experiments are traditionally limited by 

low polarization level at thermal equilibrium, and in section 1.3 these principles are 

described quantitatively with respect to the NMR signal to noise ratio. Low sensitivity 

has driven interest in polarization level enhancement techniques - the most established 

of these techniques, called dynamic nuclear polarization (DNP), is presented in 1.4. 

Although DNP has proven useful and is becoming widespread, the technique requires 

bulky and expensive devices that are outside the reach of most laboratories. A 

complementary or alternative technique, referred to as parahydrogen induced 

polarization (PHIP), is the focus of this dissertation. With PHIP, high polarization can 

be generated at low fields using compact devices. Parahydrogen is the singlet-state of 

diatomic hydrogen gas, and this state is described quantitatively in section 1.5. In 

order to make use of parahydrogen state, highly enriched parahydrogen gas is 

necessary, and the method used to obtain parahydrogen gas with high purity at room 

temperature is discussed in section 1.6. In section 1.7, the spin operator basis 

representation of parahydrogen is described. Although obtaining high purity 

parahydrogen gas is possible, the state itself is invisible in NMR experiments; two 

major experiments to detect signal from the parahydrogen states, PASADENA and 

ALTADENA, are described in 1.8. Finally, some applications are discussed in section 

1.9. 
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1.1. NMR Foundation 

Upon being placed in a magnetic field, a nuclear ensemble generates a net 

magnetization along the direction of an external magnetic field. In a typical NMR 

experiment, this state is perturbed by rotating the net magnetization to an orthogonal 

plane. As it evolves to re-establish equilibrium, this net magnetization induces a 

current in an adjacent antenna, which can then be recorded and processed to reveal 

nuclear spin spectra. The underpinnings of this process were described over 100 years 

ago, when Pieter Zeeman first observed fine structure of nuclear spectra in the 

presence of a magnetic field [18]. 

 

1.1.1. Zeeman effect 

The foundation of NMR rests on the intrinsic angular momentum referred to as 

spin. A spin s nucleus has 2s+1 energy levels, with spin angular momentum taking the 

values , h√s(s + 1), where s is restricted to half-integers: 

  (1.1) 

The azimuthal quantum number ms, is used to label these 2s+1 states from ms = -s, 

-s+1,…,s-1, to s. The magnetic moment of the nucleus can be written as:  

 , (1.2) 

where γ refers to the gyromagnetic ratio of the nucleus.  

The nuclei most commonly used in NMR have s=½; this includes
1
H, 

13
C, 

15
N, 

19
F, and

31
P. The states of these so-called spin -1/2 nuclei can be labeled as |α> and |β> 

[18]. In accord with the Zeeman effect, these two states have exactly the same energy 

s = 0,1/ 2, 1,3 / 2, ...

sμ = hγm
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in the absence of an external magnetic field, and are equally populated at thermal 

equilibrium. However, in the presence of a magnetic field, +1/2 (|α>) state aligns with 

an external magnetic field and is lower in energy than -1/2 state, |β>, which is 

opposed to the magnetic field. At ambient conditions, the |α> state will be slightly 

more populated than the higher energy |β> state. The energy gap between these two 

states is proportional to the magnetic field.                   

  (1.3) 

with                   

  (1.4) 

where γ is the gyromagnetic ratio of the nucleus. The resonance frequency, ν, occurs 

in the radio frequency range at modern field strengths, and is known as the Larmor 

precession frequency [19]. Traditional NMR uses relatively weak electromagnetic 

radiation (radiofrequencies) delivered on resonance to perturb the equilibrium formed 

from a stronger static magnetic field. When the applied field is turned off, precession 

of the nuclear spins in the presence of the static field generates a time-dependent 

oscillation that can be Fourier transformed to the frequency.  

 

0
-1/2 +1/2

hγB
ΔE = hυ = E - E =

2π

0γB
υ =

2π
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Figure 1.1. Schematic of the energy levels present due to the Zeeman effect. The 

degeneracy of the two states, |α> and |β>, is lifted in the presence of external magnetic 

fields, with the field-dependent splitting ∆E=hγB0/2π. 

 

1.1.2. Chemical shift 

The diversity in application of NMR results in part from the sensitivity of 

nuclear precession and the availability of highly homogeneous static fields where 

small differences in precession can be measured. Larmor precession frequencies 

depend on the specific nucleus, and additionally on the electronic environment or 

molecular structure surrounding the nucleus. Each spin is surrounded by an electron 

distribution, which shields the external magnetic field and shifts the effective 

magnetic field experienced by the nucleus to B0(1-σ). Therefore the Larmor frequency 

of each spin is shifted to:                    

  (1.5) 

The distribution of chemical environments results in a range of chemical shifts. The 

chemical shift is normally measured in parts per million (ppm) and is designated by 

delta (δ). In this representation, the resonance frequency for a particular nucleus in a 

0γB (1-σ)
υ =

2π

E 

B0 

|β> 

|α> 

∆E=hγB0/2π 
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certain chemical position of a given molecule could be expressed as the fundamental 

frequency of the isotope times a factor that is very close to 1 due to the chemical shift, 

as follows: 

 , (1.6) 

where υ0=γB0/2π. A typical NMR spectrum contains several peaks over a narrow 

range of frequencies centered on the fundamental resonance frequency of the nucleus 

of interest, each peak representing a unique chemical environment where the nucleus 

resides. 

 

1.1.3. Spin-spin coupling 

Apart from chemical shift, for systems with more than one spin there will be spin 

angular momentum couplings among the spins, referred to as spin-spin coupling [20, 

21]. For two adjacent spins in liquids with different chemical shifts, whether the first 

spin is aligned (|α>) with the magnetic field or opposed (|β>) to the magnetic field 

influences the external magnetic field experienced by the other spins. Since the 

resonance frequency is proportional to the magnetic field experienced by the nucleus, 

the frequency of the second spin changes and now it resonates at one of the two 

frequencies quite close to each other. Since the two states of the first spin are almost 

evenly populated, the resonance of the second spin is split into two peaks of equal 

intensity. This effect works mutually, so the first spin is split into two identical peaks 

as well. The separation of the peaks is J Hz, which is called the J coupling constant. 

At fields greater than Earth’s field or lower, J coupling normally occurs when the two 

-6

0υ = υ (1+δ×10 )
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nuclei are in close proximity (three bonds or less). Spin-systems can be further 

characterized by the strength of the scalar coupling relative to chemical shielding. 

This is referred to as weak or strong coupling - strong coupling occurs mostly in 

homonuclear systems when δ≈J, and these systems are normally labeled as AB 

systems. Weak coupling occurs when δ>>J, mostly in heteronuclear spin systems or in 

homonuclear systems at high magnetic fields, and are normally referred to as AX 

systems. 

 

1.1.4. Relaxation 

When placed in a magnetic field, the nucleus in the sample creates a net 

magnetization aligned with the external magnetic field due to Zeeman Effect. In 

typical NMR experiments the net magnetization is rotated to the transverse plane by a 

radio frequency pulse, and starts to rotate in the transverse plane at Larmor frequency, 

which is recorded as NMR signal. However, it does not stay in the transverse plane 

indefinitely. During evolution, the individual spins experience distinct magnetic fields 

(due to field inhomogeneity), and gradually lose phase coherence. Transverse 

components are also simultaneously spiraling around the axis of the magnetic field to 

re-establish equilibrium [22-27]. These relaxation rates are normally considered 

separately, as longitudinal relaxation [28-31] and transverse relaxation [32-36]. 

Longitudinal relaxation (T1) 

When the net magnetization is rotated to transverse plane, if the rotation is 

precisely 90º, at that moment there is zero magnetization in longitudinal direction. 
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The longitudinal magnetization starts to reform with time afterwards according to this 

expression: 

 . (1.7) 

Initially at t=0, Mz=0, and recovering with time according to Equation 1.7. The 

longitudinal relaxation constant, T1, represents the rate of longitudinal recovery along 

the static field. T1 values for protons are mostly in the range from 0.1 seconds to a few 

seconds, and much larger for other nuclei and depending on the environment. For 

example, 
13

C T1s in carboxyl groups are on the order of minutes in solution.  

Transverse relaxation (T2) 

Once the magnetization is rotated to transverse plane, apart from the rotation in 

the transverse plane, the magnetization in transverse plane starts to decay as a 

function of time too, normally referred to as T2 relaxation: 

  (1.8) 

NMR signals must be recorded within a few time periods of T2, otherwise the signal 

will vanish.  

 

1.2. Product Operator Basis 

A useful tool for analyzing the dynamics of spin-systems with spin-spin 

interactions and applied fields (pulse sequences) is the density matrix [37]. A 

convenient basis to expand the density matrix for applications to NMR is the product 

operator basis first described by Sorenson and coworkers [38].  

 

z 0 1M (t) = M [1-exp(-t / T )]

x 0 2

y 0 2

M (t) = M cos(2πωt)exp(-t / T )

M (t) = M sin(2πωt)exp(-t / T )
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1.2.1. Spin states 

In the product operator basis, the density operators are represented as N×N 

matrices and spanned by the Pauli operators [39]. The spin operators are formed by 

the external product of a ket and a bra, e.g. Ix=|Ix><Ix|. For a single spin, the 

corresponding operators could be represented as: 

  (1.9) 

  (1.10) 

  (1.11) 

  (1.12) 

 

The letters I, S, R are traditionally used to represent the spins of the system. The 

density matrix of the single spin could always be represented by the combination of 

these the four states [39]: 

  (1.13) 

For a two spin system, the product operators expand to sixteen 4×4 matrices as 

follows [38, 40]: 

0

1
0

12
= = σ

1 2
0

2

 
 
 
 
 
 

0I

x

1
0

12
= = σ

1 2
0

2

 
 
 
 
 
 

x
I

y

i
0 -

12
= = σ

i 2
0

2

 
 
 
 
 
 

y
I

z

1
0

12
= = σ

1 2
0 -

2

 
 
 
 
 
 

z
I

i

i=x,y,z

= + c
2

0
i

I
ρ I
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  (1.14) 

  (1.15) 

  (1.16) 

  (1.17) 

Any two spin state could be represented by a combination of these 16 operators, as 

follows: 

  (1.18) 

 

Each of the 16 operators has its own NMR symbol, as listed in Table 1.1. 

 

Table 1.1. The 16 product operators for a two spin system. 

Scalar Element I0/2 

Populations Iz, Sz, 2IzSz 

Single Quantum Coherence Ix, Iy, Sx, Sy, 2IxSz, 2IySz, 2SxIz, 2SyIz 

Multiple Quantum Coherence 2IxSx, 2IySx, 2IxSy, 2IySy 

 

1.2.2. Coherences 

In most NMR experiments, the population operators represent the population in 

difference between the two spin states of a given spin. The single quantum coherences 

are transverse components which could be observed and recorded as signal. It could 

also be represented in the density matrix view. The populations are those operators 

with only diagonal components, as: 

2

0I

, i = x, y,ziI

, j = x, y,z
j

S

2 ,i, j = x, y,z
i j

I S

i j i, j

i=x,y,z j=x,y,z i, j=x,y,z

= + c + d + e 2
4

  0
i j i j

I
ρ I S I S
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{}

{}

{}

{}

 
 
 
 
 
 

 (1.19) 

The zero and double quantum coherences are those operators with back diagonal 

components only, as: 

 

{}

{}

{}

{}

 
 
 
 
 
 

 (1.20) 

The single quantum coherences, on the other hand, are the operators with off-diagonal 

components only, as: 

 

{} {}

{} {}

{} {}

{} {}

 
 
 
 
 
 

 (1.21) 

A more common way to represent the multiple quantum coherence (zero and double 

coherence for two spin) is the expression of their linear combination: 

  (1.22) 

  (1.23) 

  (1.24) 

  (1.25) 

This are the more commonly used expressions for multiple quantum coherence with 

populations, single quantum coherences and [ZQx, ZQy, DQx, DQy] representing 

multiple coherences. 

Among all those operators, only single quantum coherences are directly 

observable: 

x

1
ZQ = (2 + 2 )

2
x x y yI S I S

y

1
ZQ = (2 - 2 )

2
y x x yI S I S

x

1
DQ = (2 - 2 )

2
x x y yI S I S

y

1
DQ = (2 + 2 )

2
y x x yI S I S
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 . (1.26) 

Among the single quantum coherence terms, {Ix, Iy, Sx, Sy} represent in-phase while 

{2IxSz, 2IySz, 2SxIz, 2SyIz} represents anti-phase magnetization [41]. 

 

1.2.3. Hamiltonian 

For a weakly coupled two spin system, the Hamiltonian can be written as: 

 , (1.27) 

where the value of h was set equal to 1. The Hamiltonian for a strongly coupled two 

spin system can be written as: 

 . (1.28) 

In these equations, υ represents the Larmor precession frequency of the two spins, 

while J refers to the magnitude of the coupling between spins. The density matrix of 

the system will evolve under the corresponding Hamiltonian. However, in NMR 

experiments, a series of pulses (pulse sequences) are typically used to tailor the 

response of the spin system for a particular application. In the presence of pulses, the 

Hamiltonian can be written as: 

 . (1.29) 

Here B1 is the applied resonant control field, and υ is the phase of the pulse. While 

pulses are being applied, the total magnetization would be rotated under this 

Hamiltonian. The angle of rotation and phase is determined by the amplitude and 

duration of the applied pulse.  

In summary, the density matrix of a two spin system evolves under following 

{ , , , ,2 ,2 ,2 ,2 }
x y x y x z y z x z y z

I I S S I S I S S I S I

I s= υ +υ + 2πJz z z zH I S I S

I s I s= υ +υ + 2πJ = υ +υ + 2πJ( + + )
z z z z x x y y z z

H I S I S I S I S I S I S

1= -γB ( cosφ+ sinφ)
RF x y

H I I
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Hamiltonians, depending on the type of the system: 

  (1.30) 

  (1.31) 

  (1.32) 

 , (1.33) 

where Hz refers to the Zeeman Hamiltonian, HJz to the truncated J-coupling 

Hamiltonian (weak coupling), HJ to the untruncated J-coupling Hamiltonian (strong 

coupling), and Hrf to the Hamiltonian for a hard pulse with phase angle υ [13]. 

 

1.2.4. Evolution 

The evolution of a spin density matrix can be written as a similarity 

transformation: 

 , (1.34) 

where the operator U is given by: 

 . (1.35) 

When pulses are applied, the evolution operator can be written as: 

  (1.36) 

The rotation angle is varied by adjusting the power and duration of the applied pulse.  

In the product operator basis, ideal pulses could be directly represented in the 

rotating frame. A 180º pulse for spins with phase 0º (x axis) represents a rotation of 

180º around x axis for all spin components, which implies that Ix→Ix, Iy→-Iy, and 

Iz→-Iz. A 90º pulse with phase 0º also rotates all the vectors of the spin by 90º, which 

i

i

= υz izH I

ij

i, j

= 2πJJz iz jzH I I

ij

i, j

= 2πJ ( + + )J ix jx iy jy iz jzH I I I I I I

1

i

= γB ( cosφ+ sinφ)rf ix iyH I I

= -1
σ' U σU

= exp(-i t)U H

= exp(-i )RFU H
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implies that Ix→Ix, Iy→Iz, and Iz→-Iy. The same principle applies to the pulses with 

different phases [42, 43]. 

 

1.3. NMR Sensitivity 

Although a widely used tool in molecular and biomedical sciences, the 

application of NMR has traditionally been limited by low sensitivity. This low 

sensitivity is due to the fact that the population difference between the two spin states 

is low at thermal equilibrium.  

 

1.3.1. Signal to noise ratio (SNR) 

Signal to Noise Ratio (SNR) provides one metric to evaluate NMR sensitivity. In 

NMR, the SNR is typically given by [38, 44, 45]: 

 

.

 (1.37) 

In Equation 1.37, N represents numbers of spins, γ is the corresponding gyromagnetic 

ratio, B0 the magnetic field strength, T the temperature, Ns is the number of transients 

acquired, Tread is the acquisition time, TR the repetition time, and δHz is the spectral 

resolution. This equation suggests several approaches to increasing SNR. 

1) SNR∝N; SNR∝γ
5/2

. Therefore, isotopes with higher natural abundance and larger 

gyromagnetic ratios will have higher sensitivities.  

2) SNR∝B
3/2

. Increasing the external magnetic field directly increases SNR, and 

comprises a major research field for NMR [46-49]. 

5 3

2 2
0 s read

Hz3

R2

Nγ B N T
SNR?

δ

T
T
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3) SNR∝(1/T
3/2

). SNR is inversely proportional to temperature. Unfortunately, it is 

not widely applicable since in many cases (especially in clinical application) the 

temperature of a biological sample is limited to a narrow range suitable to 

maintain life. 

4) SNR∝Ns
1/2

. SNR increases with the square root of transients because noise adds 

incoherently while signals add coherently. Unfortunately, experimental durations 

are limited, and even in cases where periods of hours may be available, the time 

scale of metabolic events are on the order of seconds.  

5) SNR∝δHz. Better spectral resolution will lead to an increased SNR because the 

signal amplitude will be increased relative to noise.  

 

1.3.2. Thermal equilibrium 

As stated in 1.3.1, the sensitivity of NMR experiments is limited by the low 

population difference between the two spin states, which leads to a low net 

magnetization. In this section the net magnetization and the approaches to improve it 

will be described quantitatively. 

The net magnetization, M0, could be defined from statistical mechanics: 

 . (1.38) 

In Eq 1.38, M0 refers to the net magnetization, mI to the azimuthal quantum number, 

Nm is the number of nuclei in the mI state, Pm to the probability of the nucleus in mI 

state. Nuclear spin polarization can be written as normalized population difference: 

I I

0 I m I m I

m=-I m=-I

M = hγ m N = Nhγ m P = Nhγ < m >= NhγIp 
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,
 (1.39) 

where P(|α>) and P(|β>) refer to the population of the two spin states. The maximum 

net magnetization is obtained when the nuclei are fully polarized in one of the spin 

states, and alternatively net magnetization vanishes when the states are evenly 

populated. 

It follows from statistical mechanics that the polarization level of the system at 

thermal equilibrium is [50]: 

  (1.40) 

In this expression, θ is given by: 

 . (1.41) 

Therefore: 

 , (1.42) 

and the net magnetization could be represented as: 

 . (1.43) 

| P(| α >) - P(| β >) |
p =

P(| α >) + P(| β >)

+1/2 -1/2

+1/2 -1/2

-E -E
exp( ) - exp( )

kT kTp =
-E -E

exp( ) + exp( )
kT kT

θ θ
exp( ) - exp(- )

2T 2T=
θ θ

exp( ) + exp(- )
2T 2T

θ
sinh( )

2T=
θ

cosh( )
2T

θ
= tanh( )

2T

θ
»

2T

0hγBΔE
θ = =

k 2πk

0hγB
p =

4πkT

2 2

0
0 2

Nh γ B
M =

16π kT
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Considering protons at room temperature and a magnetic field of 7.0 Tesla, the 

polarization level p is on the level of 10
-4

. Therefore the polarization level at thermal 

equilibrium is low, mostly due to the fact that the energy splitting due to the Zeeman 

Effect is similarly small.  

Equation 1.43 shows that the net magnetization is proportional to the external 

magnetic field and inversely proportional to the temperature. Therefore a 

straightforward approach to increase SNR is to increase the magnetic field and 

decrease temperature. However, even at a high field (around 7T), the polarization 

approaches unity only when the temperature is in the mK range. Therefore, other 

methods are necessary to enhance polarization. 

Methods for producing polarized magnetic moments are collectively referred to 

as hyperpolarization, and are aimed at generating higher polarizations at room 

temperature. The most commonly used techniques for potential application to 

metabolism are: 1) dynamic nuclear polarization (DNP) [51] which produces 

polarization by transferring magnetization from electrons at ~2K to nuclei, and 2) 

parahydrogen induced polarization (PHIP) [52], which makes use of the symmetry of 

H2 singlet-states to generate large polarizations at room temperature and low magnetic 

field. A brief review of DNP is given in the next section. 
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1.4. Dynamic Nuclear Polarization 

The DNP method (dynamic nuclear polarization) transfers spin polarization from 

electrons at low temperature to coupled nuclei by microwave irradiation, thereby 

aligning the nuclear spins to the extent that electron spins are aligned.  

 

1.4.1. DNP method 

At 100K, the polarization level of electrons is 10.541%, while the polarization 

level of protons is only 0.016%. Therefore, DNP transfers polarization from electrons 

to protons with a maximum theoretical enhancement achievable given by γ
e
/γ

n
,  

being ~660 for protons [53]. Nowadays with advanced devices that enables low 

temperature and high-frequency microwave sources, in DNP experiments electrons 

are polarized at low temperature (around 2K) and high magnetic field (>5T range) 

[53]. The polarization is then transferred to the coupled nucleus by microwave 

irradiation, including protons and other heteronuclei such as 
13

C. 

 

1.4.2. DNP applications 

Modulation of cancer cell metabolism with drugs 

Hyperpolarized fumarate has been reported to be useful at detecting cell necrosis. 

Hyperpolarized fumarate was initially polarized to between 26% and 35% (by DNP), 

and then injected to mice with implanted lymphoma tumors both before and after 

treatment with etoposide. The result shows a 2.4 fold increase in hyperpolarized 1,4 - 

labeled malate production in mice that are etoposide treated comparing to those 
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untreated, which suggests that the production of malate from fumarate could be a 

marker of tumor cell death [54].  

Imaging of intracellular pH 

Since the ionization level of a labeled weak acid could be reflected as the change 

in chemical shift and J-coupling, and it is very sensitive to pH around the range close 

to its own Pka. Because of this, the recorded NMR signal may be sensitive to pH in 

vivo, and used as a surrogate to detect cancer or other diseases which are pH related. 

CO2 and NaHCO3 (
13

C - labeled) have indeed been used successfully as a source of 

signal for this purpose. The pH can be calculated from the Henderson-Hasselbalch 

equation [55]:            

  (1.44) 

This ratio has been extracted from hyperpolarized chemical shift images, and the in 

vitro experimental results were similar to measured pH (less than 0.1%) [56]. 

General DNP applications  

Apart from the applications mentioned above, there are a wide range of potential 

applications for hyperpolarized DNP [57, 58]. Hyperpolarized pyruvate has been 

found useful to assess tumor grade [59], and to detect response to therapy [60]. 

Applications of imaging in cancer by direct and indirect assays of pyruvate 

metabolism have also been reported [61], due to the fact that compared to normal 

cells, a disproportionate conversion of pyruvate to lactate is commonly observed in 

tumors. These examples represent a small cross section of DNP applications for 

diagnostic purposes. 

-

3
10

2

[HCO ]
PH = PKa + log

[CO ]
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1.4.3. Pitfalls of DNP hyperpolarization 

DNP is an advanced hyperpolarization technique and has a broad area of 

application. The primary downside of DNP is that it requires 1) bulky, expensive 

equipment. High-frequency microwave sources are required, 2) low temperatures near  

2K to enable efficient transfer, 3) high fields to polarize electrons, and 4) the output 

solutions need to be rapidly warmed up to biological temperature for detection. 

In conclusion, the DNP experiments require a set of advanced and expensive 

devices, which are not widely available commercially. This dissertation focuses on a 

less mature, but potentially less expensive and less bulky alternative, referred to as 

parahydrogen induced polarization (PHIP). PHIP achieves hyperpolarization at room 

temperature and low magnetic field. 

 

1.5. Parahydrogen Singlet-States 

It was recently reported that parahydrogen singlet-states could be used to 

generate hyperpolarized NMR samples through chemical interaction [52]. Compared 

to the much smaller Zeeman splitting, parahydrogen states have two essential 

advantages: 1) higher populations and  2) longer lifetimes. 

According to statistical mechanics, nuclei with whole integer spins(I = 0, 1, 

2, … ,), are called bosons and obey Bose-Einstein statistics; while nuclei with half 

integer spins(I = 1/2, 3/2, 5/2, … ,), are called fermions and obey Fermi-Dirac 

statistics. 
1
H nuclei, with spin 1/2, as well as most other nuclei used in NMR 

experiments, are fermions with Pauli principle applied [62-64], which imposes the 
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criterion that the total wave function must be anti-symmetric under the exchange of 

particles.   

  (1.45) 

We study the anti-symmetry of the system by expanding it to the whole 

expression [65]. For the H2 molecule, which is composed of two fermions, the total 

wave function is a combination of electronic, translational, vibrational, rotational, and 

nuclear spin wave functions.                 

  (1.46) 

The ground state electronic and translation wave functions, ψe and ψt, are both 

symmetric under particle interchange [66, 67].The vibrational wave function, ψv, 

should not change either when the two nuclei are exchanged, in direct analogy to 

exchanging opposed masses connected by a spring. Therefore we are left with the 

rotational wave function, ψr , and the spin wave function, ψns.  

The rotational wave function transforms under rotations like a spherical 

harmonic function YJ,m, which is symmetric with even J (J=0, 2, 4, … ,) or 

anti-symmetrical with odd J (J=1, 3, 5, … ,).  

Since the spin wave function ψns should be either symmetric or anti-symmetric, 

the simple product basis |αα>, |αβ>, |βα>, |ββ> is insufficient to represent the basis set 

of H2, because |αβ>≠±|βα>. However, a suitable basis could be represented by the 

linear combination of these states. 

tot totΨ (A,B) = -Ψ (B,A)

tot e t v r nsΨ = ψ ψ ψ ψ ψ
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  (1.47) 

   

The first three states, |T1>, |T-1>, and |T0>, correspond to odd angular momentum J, 

and are symmetric under exchange of the two nuclei – they form a triplet state and the 

corresponding hydrogen gas molecules in this spin state are called ortho-hydrogen 

(o-H2). The last state, |S0>, corresponds to even angular momentum J, and is 

anti-symmetric under exchange of the two nuclei. It forms a singlet-state [65] and the 

corresponding hydrogen gas is called parahydrogen (p - H2).  

The symmetry of the four states could be summarized as:   

  (1.48) 

Below is a table that summarizes the relation between rotational and spin wave 

functions. 

 

Table 1.2. Correlations between rotational wave function and spin wave function, and 

the forms of H2 gas. 

J Parity of ψr Spin State Parity of ψns Forms of H2 

Odd Odd |T1> even ortho 

Odd Odd |T-1> even ortho 

Odd Odd |T0> even ortho 

Even Even |S0> odd para 

 

1

-1

0

0

|T >=| αα >

| T >= ββ >

1
| T >= (| αβ > + | βα >)

2

1
| S >= (| αβ > - | βα >)

2

exchanging

1 1

exchanging

-1 -1

exchanging

0 0

exchanging

0 0

| T >=| αα > | αα >=| T >

| T >=| ββ > | ββ >=| T >

1 1
| T >= (| αβ > + | βα >) (| αβ > + | βα >) =| T >

2 2

1 1
| S >= (| αβ > - | βα >) (| βα > - | αβ >) = - | S >

2 2








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Table 1.2 shows that due to the symmetry requirement, the freedom of rotation 

and spin are coupled. This relation can be used to induce spin states through 

manipulation of the rotational states. 

 

1.6. Singlet-State Population 

 

1.6.1. Dependence of singlet-state polarization on temperature 

According to Table 1.2, to obtain parahydrogen state, an even J of the rotational 

function is necessary. It is common to consider the rotational ground state, J = 0. If the 

molecules are cooled to be locked in the rotational ground states, then they are 

constrained in the parahydrogen state at the same time. Since the energy spacing for 

rotational states is much larger than Zeeman effect, manipulating the rotational states 

by adjusting temperature is much easier. According to quantum mechanics, the energy 

of the angular momentum PJ, is given by [62, 68]:                    

  (1.49) 

Therefore the rotational temperature could be defined as:                   

  (1.50) 

This temperature, θR, for H2, is roughly 86K [69].  

The energy gap between the two levels, J and J+1, is: 

  (1.51) 

The energy splitting between the ground state, J = 0, and the state with J = 1, is then 

2

J

h
E  = J (J +1)

2I

2

R

h
θ =

2Ik

R

R

ΔE = kθ ((J +1)(J + 2) - J(J +1))

= 2kθ (J +1)
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2kθR. Since θR is 86K, this is a more accessible temperature. Figure 1.2 depicts the 

energy level of J = 0 and J = 1. 

 

 

Figure 1.2. Schematic of the rotational energy levels. The molecules at ground state 

with J = 0 are parahydrogen. The rotational level with J = 1 has 3-fold degeneracy 

(triplet states). The energy spacing between the two levels is 2kθR. 

 

It is then straightforward to get the partition function of the H2 molecule. The J
th

 

level rotational state is (2J+1)-fold degenerate (mJ = -J, -J+1,… J-1, J), and all the 

states with odd J are furthermore 3 - fold degenerate. 

  (1.52) 

And the fraction of parahydrogen, defined as the ratio of parahydrogen of all the 

molecules, could then be calculated as: 

  (1.53) 

R R

J even Jodd

Z = (2J +1)exp(-J(J +1)θ / T) +3 (2J +1)exp(-J(J +1)θ / T) 

R

J even

R R

J even Jodd

(2J +1)exp(-J(J +1)θ / T)

P =
(2J +1)exp(-J(J +1)θ / T) + 3 (2J +1)exp(-J(J +1)θ / T)



 

E 

J 
0 

1 

2θR≈171K 

energy levels 
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At high temperature, T >> θR, the discrete levels could be treated as continuous levels. 

And the sum could be replaced by continuous integrals. Therefore we obtain that at 

high temperature limit:    

 
.

 (1.54) 

In the low temperature limit, T << θR, only the ground state with J = 0 will be 

significantly populated, and the fraction of parahydrogen will approach100%.At the 

temperature T ≈ θR, it is easy to find that with the increase of J, the factor 

exp(-J(J+1)θR/T) vanishes quickly. So it is reasonable to consider only the first 

several terms and calculate the polarization level. The more detailed data is showed in 

Table 1.3 [70]. 

 

Table 1.3. Percentage of parahydrogen at various temperatures. 

Temperature (K) Parahydrogen fraction (%) 

300 25.06 

200 25.25 

150 28.58 

100 38.51 

80 46.4 

77( liquid N2) 50.33 

60 65.17 

40 88.5 

20 99.79 

18 99.9 

 

Note that at 300K, P = 25%; at T = 77K, P ≈ 50%; and at T = 20K, P > 99%.  

 

para

para ortho

N 1
P = =

N + N 4
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1.6.2. Angular momentum selection rules 

Table 1.3 shows that high parahydrogen enrichments can be created by cooling 

the molecules to 77K (50%) or even 20K (~ 100 %) to populate the ground state with 

J = 0 (singlet-state). However, until now only the thermodynamics of the rotational 

and spin states have been accounted for. According to quantum mechanics, the 

conversion from ortho to para hydrogen, which requires both angular momentum 

quantum number J changed by ± 1 and at the same time the nuclear spin reoriented 

from S = 1 triplet-state to S = 0 singlet-state, is forbidden by angular momentum 

selection rules [62, 71-73]. This conversion can only take place with the presence of 

dipolar coupling to the other molecules or electrons during a collision. To increase the 

rate of conversion, the nuclear symmetry of ortho molecules needs to be broken and 

several types of ortho/para catalysts that lead to fast equilibration of the nuclear spin 

states have been identified [74, 75].  

With the presence of catalysts, the ortho↔para conversion takes place on the 

surface of the catalysts rapidly. For example, if the temperature is cooled to near 20K, 

almost 100% pure parahydrogen is obtained rapidly [76]. The molecules persist in this 

parahydrogen state because of the angular momentum selection rule. By warming the 

molecules, they start to redistribute themselves in all the rotational states with even J 

according to Boltzmann distribution, but they remain in the singlet-state. Practically, 

this parahydrogen gas could be stored for several hours or even days. 
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1.6.3. Parahydrogen production devices 

The device our group developed to produce high purity parahydrogen gas 

operates with a closed-cycle cryostat which is maintained at a nominal set-point of 

15K (with operation between 15K and 20K) and enriches parahydrogen with high 

pressure, pulsed injections of ambient [76]. When operated to achieve a final fill 

pressure of 240 psi, this system generates highly enriched parahydrogen (> 98 %) at 

0.9 SLM (standard liters per minute). A schematic of the device is shown in Figure 

1.3. 

 

 

Figure 1.3. Schematic of parahydrogen production device. The valves are manually 

controlled to evacuate the cooler or the parahydrogen container. The helium 

cryo-cooler cools hydrogen gas to ~ 15-20K, and at this temperature parahydrogen is 

routinely generated with a purity of ~98% [76]. 

 

Parahydrogen singlet-states are completely evenly distributed between the two 

spin states, 50% |α> state and 50% |β>state. Therefore, pure singlet-states are not 

observable in NMR experiments since zero net magnetization is generated. Hence the 
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purity of parahydrogen gas can be calculated by comparing the NMR spectrum of the 

enriched gas to ambient hydrogen gas. Figure 1.4 shows the immediately recorded 

signal of parahydrogen gas produced using the device in shown in Figure 1.3, 

compared to the signal after four days [76]. 

 

 

Figure 1.4. Proton spectrum acquired from approximately 98% enriched 

parahydrogen gas, compared to the same (relaxed) sample acquired from the same 

tank several days later [76]. 

 

1.7. Operator Basis of Parahydrogen State 

To describe the ortho- and parahydrogen states, it is convenient to use density 

operators introduced in section 1.2. The four spin states for hydrogen gas are shown in 

Equation 1.55. 
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  (1.55) 

Refer to the matrix of the product operator basis, these states could also be written in 

product operator notation [18]:       

 

,

 (1.56) 

where I represents unit matrix. 

Using these equations, the pure parahydrogen state can be written as:         

  (1.57) 

A pure ortho-hydrogen state can be written as:     
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  (1.58) 

Therefore the mixed state with parahydrogen fraction P will have the form:         

  (1.59) 

In this mixed state,I1xI2x + I1yI2y is normally referred to as a zero quantum coherence. 

This term, together with the I1zI2z term, commutes with the Hamiltonian and is 

unobservable in NMR experiments as Equation 1.60. 

  (1.60) 

To make the state observable, the two hydrogen molecules need to be placed in a 

chemical environment capable of breaking the symmetry (Figure 1.5). The 

requirements are: 

1) The hydrogenation occurs via molecule addition so the two molecule spins remain 

correlated. 

2) The two hydrogen atoms are placed in different chemical environment after the 

reaction. 

 

 

Figure 1.5. Reaction schematic for adding parahydrogen across a double bond.  
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1.8. PASADENA and ALTADENA 

As discussed in the previous sections, although high purity parahydrogen gas 

could be preserved at room temperature, the state is invisible in NMR experiments. To 

make the state useful, the two protons must be placed in different chemical 

environments. 

 

1.8.1. PASADENA 

The PASADENA effect (Parahydrogen And Synthesis Allows Dramatic 

Enhancement of Nuclear Alignment) [52] uses hydrogenation in a strong magnetic 

field to cause a sudden change of Hamiltonian from anA2 system to an AX system. 

Thus the density matrix, ρ0, then evolves and is projected onto the eigenstates of AX 

system.  

  (1.61) 

A mixed state with an excess of parahydrogen will lead to polarization of the center 

states with mI = 0, |αβ> and |βα>, resulting in a spectrum consisting of anti-phase 

doublets, as shown in Figure1.6. 

 

(t > 0) = exp(-i t) exp(i t)0ρ H ρ H
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Figure 1.6. Schematic of the PASADENA experiment. The parahydrogen state is 

projected to the eigenstates of AX system, leading to a net excess of |αβ> and |βα> 

states that yields a spectrum of anti-phase doublets. 

 

However, unless the signal recording starts instantaneously after the hydrogenation, 

the hydrogenated states will start to evolve since the two protons are now not in the 

equivalent chemical environment. 

The initial singlet-state is: 

  (1.62) 

After hydrogenation, the first and second terms start to evolve: 

  (1.63) 

As each molecule finishes hydrogenation reaction at different time and the initial 

states start to evolve at different time, the initial phase will be a complete mixture. 

The result is cancellation of both terms. Therefore, after hydrogenation the first and 

second terms vanish, leaving the initial state to be: 
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  (1.64) 

Decoupling can be used while the hydrogenation reaction is occurring to synchronize 

density matrix evolution of individual molecules [77]. The effect of the waves is to 

flip the spin direction of the protons constantly and quickly, resulting in a changing of 

Hamiltonian which commutes with the density matrix. 

  (1.65) 

Therefore, the full expression of the initial state could be preserved and only after the 

reaction is finished and the applied field is removed that the states of each molecule 

starts to evolve in the same time [78]. 

 

1.8.2. ALTADENA 

PASADENA uses applied pulses to transform parahydrogen singlet-states to 

observable magnetization, whereas the alternative, ALTADENA (adiabatic 

longitudinal transport and dissociation engenders nuclear alignment), uses field 

cycling between zero and high field to create observable signal [84, 85]. In this case, 

the singlet-state is preserved during reaction, since there exists no difference between 

the chemical shifts of the two atoms, and the Hamiltonian commutes with the initial 

states. If the sample is then transported to a magnetic field, the result is a smooth 

transformation of the Hamiltonian. As the Hamiltonian changes smoothly, the state 

will be projected to each instantaneous eigenstate of the corresponding Hamiltonian. 

Therefore the quantum states conserve their respective projection onto the 

instantaneous eigenstates of the transforming Hamiltonian [86, 87]. |S0> and |T0> 

= -
4

0 1z 2z

I
ρ I I

[ , ] = 0

 1 2

0
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transform to |αβ> and |βα> (or |βα> and |αβ>, depending on the sign of (νi - νs)). 

Therefore the polarized parahydrogen leads to a occupation of either the |αβ> or |βα> 

state. This results in in-phase absorptive or emissive peaks, as shown in Figure 1.7. 

 

 
Figure 1.7. Schematic of the ALTADENA experiment. The parahydrogen state is 

projected to either eigenstate of the AX system, leading to a net excess of |αβ> or |βα> 

states. The resulting spectrum contains in-phase absorptive and emissive peaks. 

 

ALTADENA experiments require that the Hamiltonian be changed slowly to 

meet the adiabatic condition [13]: 

  (1.66) 

In Equation 2.22, T = (1/ω0) = (1/γB0). And v is the velocity of gas. G is the magnetic 

0
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field gradient. 

 

1.8.3. Parahydrogen hydrogenation device 

The devices for PASADENA experiments need to provide a low magnetic field, 

radiofrequency pulses, with injection of high purity parahydrogen and molecular 

precursors. A scheme of the device developed in our group to achieve this is shown in 

Figure 1.8. 

 

 

 

Figure 1.8. Schematic of the polarizer developed to generate observable signal from 

parahydrogen singlet-states. The long-lasting high purity parahydrogen gas is stored 

in a tank which is in turn connected to the polarizer. The molecular precursor gets 

hydrogenated by parahydrogen and RF pulses are applied to transfer polarization [89].  

 

The parahydrogen induced polarization experiments have the advantage of 

requiring only low fields in the mT regime and room temperature. Therefore, 

compared to DNP, parahydrogen induced polarization technique could be used in 

compact, inexpensive and portable devices. 
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1.9. Application of Parahydrogen Induced Polarization 

A wide range of applications of parahydrogen induced polarization (PHIP) have 

been reported [85, 90, 91]. Typical applications of PHIP includes homogeneous 

catalysis [92-94], magnetic resonance imaging [95, 96], and heteronuclear 

polarization [77].  

In conventional MRI, the ability to differentiate between soft tissues and to 

detect pathology depends on the differential relaxation times (T1, T2, T2
*
) and proton 

density between the target molecules and the background (mostly protons in water). 

Paramagnetic contrast agents are used to decrease the relaxation times of adjacent 

protons, which will result in an increase or decrease in signal depending on the pulse 

sequence, so as to enhance the contrast [97]. The imaging of hyperpolarized 

molecules is fundamentally different. The injected agents themselves act as the source 

of signal, rather than modulating proton relaxation only.  

 

1.9.1. Setup and pulse sequences 

One of the most apparent differences in 
13

C imaging from proton is the much 

lower gyromagnetic constant, γC ≈ (1/4)γH. Therefore, the MRI scanner frequency 

needs to be adjusted to 
13

C resonance frequency (15MHz at 1.5T) rather than proton 

resonance frequency (60MHz at 1.5T) [98]. 

A low gyromagnetic constant also leads to insensitivity to magnetic gradients of 

13
C spins. If the same magnetic gradient is applied as in proton imaging, echo times 

(TE) and repetition times (TR) need to be elongated to achieve a comparable 
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resolution with proton imaging. This is not an acceptable option in most cases since 

the longer delays correspond to more loss in polarization due to relaxation. Therefore 

a higher magnetic gradient would be a necessary. 

Hyperpolarized imaging also faces the problem of unrecoverable longitudinal 

magnetization since it is not a thermal equilibrium state. First, the loss of longitudinal 

magnetization due to T1 relaxation is inevitable. Second, the longitudinal 

magnetization that converts to transverse magnetization by RF pulses is not 

recoverable either. The sequences used to image hyperpolarized agents would then be 

required to complete the image in a single shot, compared to the conventional 

multi-shots sequences which reuse longitudinal magnetization. The much longer T2 

relaxation of 
13

C makes the single shot sequences feasible. The available pulse 

sequences include single-shot sequences based on true fast imaging with steady-state 

free-precession (true FISP), rapid acquisition with relaxation enhancement (RARE), 

or echo planar imaging (EPI), which convert almost 100% of the longitudinal 

magnetization to transverse [99]. 

An example of the available sequences, true FISP sequence, is shown below in 

Figure 1.6 [100]. A true FISP sequence is T2/T1-weighted, which makes it very useful 

in imaging of heart due to the excellent contrast between blood and myocardium. In a 

typical true FISP sequence, balanced gradient echo refocusing is applied in all 

directions to maintain steady-states of both longitudinal and transverse magnetization. 

If we apply a single-shot sequence based on true FISP, it is both impossible and 

unnecessary to maintain steady states of longitudinal magnetization. Therefore only 
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gradient echo refocusing in the transverse direction needs to be applied, which 

maintains the transverse magnetization at steady state each time before adjusting 

gradient and recording signal. The very long T2 of hyperpolarized 
13

C permits the use 

of the single-shot sequence (T2 >> TR). 

 

1.9.2. Signal to noise ratio (SNR) 

One of the advantages of 
13

C imaging is the absence of background signal. The 

low gyromagnetic ratio and low natural abundance (1.1%) of 
13

C make the 

background signal far below the detection limit. In this case, the only possible noise 

comes from patient or coils, and the signal to noise ratio (SNR) is proportional to the 

polarization (P) and concentration (c) of the molecule [98]:               

  (1.67) 

The polarization level P = γB0 for thermal equilibrium. For example, the polarization 

level at 1.5T and body temperature is approximately 5×10
-6

 for protons and 1×10
-6

 

for 
13

C. 

For a liquid hyperpolarized 
13

C imaging agent, the concentration is normally 

0.3-1.2M in the injection syringe, far below the 
1
H concentration of 80M. It will then 

take 3-4 seconds to reach the lungs, 6-10 seconds to the heart and 15-40 seconds to 

the other major organs. The concentration after dilution could be around 10mM [100]. 

Besides, the relaxation of magnetization during this period will decrease the 

polarization level too. But even after T1 of injection, the available signal in the 

vascular system should still be at least a factor of 2 larger than the one in proton 

SNR γPc
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imaging at 3T [101]. In addition, for hyperpolarization imaging, the polarization 

levels do not depend on thermal equilibrium. This opens the possibility of low field 

imaging. 

 

1.9.3. The optimal magnetic field for hyperpolarization imaging 

It is stated previously that for hyperpolarized 
13

C imaging, a higher field gradient 

would be a necessary, and the signal to noise ratio is independent of external magnetic 

field. This leads to the idea that the imaging could be undertaken in a low magnetic 

field but with high field gradient. However, when the low field is combined with high 

field gradients, the problem called concomitant gradient terms rises, which is the 

nonlinear component of magnetic field gradients [102]. 

According to this theory, there will be a phase shift by the concomitant gradient, 

due to the fact that the magnetic field must obey the rule that both div B=0 and curl B 

= 0. Assuming a cylindrical symmetry for z - coil, with x - coil and y - coil 90º to each 

other, if the slice plane is aligned along y - axis, z - axis is used as phase direction and 

readout is performed along x-axis, the phase evolution due to the concomitant 

gradient would be:               

  (1.68) 

Here tsamp is the sampling time, Gx represents readout gradient, and z is the distance in 

z-axis from the iso-center of the scanner. In the case that tsamp = 1ms, B0 = 0.2T and 

Gx = 40mT/m, then the phase shift will result in a pixel shift already from a distance 

of about only 12cm from the iso-center of magnet [98]. If the magnetic field is even 

2
2x

samp

0

G
= t γ z

2B

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lower, the effect would be more significant since field gradient cannot be simply 

reduced unless longer echo times and repetition time are applied.  

Besides, if there are several 
13

C peaks in the molecule that need to be 

differentiated, a high magnetic field might be necessary to make the difference in 

chemical shift observable. Until recently most hyperpolarization images were taken in 

a magnetic field around 1.5T. 

 

1.9.4. Examples of hyperpolarized 
13

C imaging 

Field cycling experiments to generate 
13

C imaging both in vitro and in vivo is 

reported by Haukur Jóhannesson [103]. In this experiment parahydrogen of 95% 

purity is obtained by catalyst at 14K, and then hydrogenated to hydroxyethyl acrylate 

at a pressure of 10 bar during 3s. The produced hydroxyethyl propionate is then 

transferred to low field chamber at 100μT. After 0.5s delay the field is reduced to 

30nT in 1ms. Then the field is ramped up to 100μT in 1.2s. The observed 
13

C 

polarization is 21%. For in vivo experiments, the FISP pulse sequence was used for 

data collection and a 
13

C angiogram showing head and neck parts of a guinea pig, 

acquired in 230 ms, were presented with high resolution [103]. 

13
C polarized by pulse sequence method to generate images was also published 

[96]. The pulse sequence was carried out in vivo as well. The production of 

parahydrogen and hydrogenated molecule is similar to the field-cycling method. In 

this experiment the DC field is set at 1.76 mT. The continuous RF irradiation is 

applied for 3-4 seconds at a proton Larmor frequency of 75kHz during hydrogenation. 
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After applying the pulse sequence (along with the echo pulses), 5 ml of 0.5 M 

solution of the sample (hyperpolarized hydroxyethyl propionate) was injected to the 

leg of a pig. Successive 
13

C imaging, still by the true FISP method, was taken at 1s 

intervals. The slice thickness is larger than the pig, with the scan time 470ms for each 

image. And the matrix used is 104×128, with the pixel size 2.5×2.5mm
2
. A series of 

angiographic images of the pig chest was presented with high resolution within 8 

seconds [96]. 
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CHAPTER 2 

 

SPIN ORDER TRANSFER FROM PARAHYDROGEN SINGLET-STATES TO 

HETERONUCLEAR NET MAGNETIZATION IN AA’X SPIN SYSTEMS 

 

Spin order in parahydrogen induced polarization (PHIP) is initially captured as 

an ensemble of nuclear singlet-states formed by addition of parahydrogen across an 

unsaturated bond. For applications to biomedicine, it is often an advantage to convert 

these initial singlet-states into longitudinal magnetization on a long-lived nucleus. A 

variety of traditional sequences such as INEPT or HMQC are available to interconvert 

heteronuclear single quantum coherences, but new approaches are required for 

converting singlet-states into heteronuclear single quantum coherences at low field in 

the strong coupling regime of protons. Introduced in this chapter is a consolidated 

pulse sequence that was designed to achieve this conversion of singlet-state spin order 

into heteronuclear magnetization across a wide range of scalar couplings in AA'X spin 

systems. Analytic solutions to the spin evolution are presented, and performance was 

validated experimentally in the parahydrogen addition product, 2-hydroxyethyl 1 - 
13

C 

– propionate - d3. Hyperpolarized carbon-13 signals were enhanced by a factor of 

approximately 5,000,000 relative to Boltzmann polarization in a static magnetic field 

of 47.5 mT. It is anticipated that this pulse sequence will enable efficient conversion 

of spin order over a broad range of emerging PHIP agents that feature I1I2S spin 

systems. 

The operators used to describe dynamic states in 3 spin I1I2S spin systems can be 
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represented by 8×8 matrices. After a brief introduction of related study and our 

approach in section 2.1, expressions of the spin operators are described in section 2.2, 

with the full expressions described in Appendix A. A pulse sequence designed to 

transfer polarization from an initial parahydrogen singlet-state to a heteronucleus is 

presented in 2.3. Experiment validation follows in section 2.4. Discussion about the 

sequence, including the efficiency across various spin systems, and comparison to 

previous approaches, is presented in section 2.5. 

 

2.1. Introduction to Hyper-SHIELDED Spin Order Transfer Sequence 

Hyperpolarization of nuclear spin ensembles has increased NMR sensitivity to a 

level that is now enabling detection of metabolism in biological tissue on a time-scale 

of seconds [104, 105]. The most developed of these technologies, DNP (dynamic 

nuclear polarization) [51, 106, 107], in particular has already been used to detect, grade, 

and monitor response to therapy in tumors [108-110]. These encouraging developments 

have demonstrated the overall viability of NMR based hyperpolarized methods for the 

study of in vivo metabolism, and have naturally spurred development in alternative 

methods of hyperpolarization, such as parahydrogen induced polarization (PHIP) 

[111-113]. Polarization yields from the less mature PHIP technology are similar to DNP 

in cases where precursors are available, and accessed at significantly reduced 

instrumental complexity and expense. An array of complementary advances is still 

required, however, for PHIP to reach its potential as a diagnostic imaging modality. 
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Efficient methods for transforming parahydrogen spin order into net 

magnetization at low magnetic fields using pulsed methods would be helpful for 

translating emerging PHIP contrast agents to biomedical applications. Parahydrogen 

spin order will generally evolve when added to a molecule by PASADENA [111, 112] if 

the singlet-state symmetry is broken, yielding a detectable antiphase NMR spectrum. 

For applications of PHIP biomedicine, it is advantageous to convert this parahydrogen 

spin order into net magnetization on a coupled heteronucleus. Aside from the standard 

benefits of heteronuclear detection arising from increased spectral dispersion and low 

background signals in vivo, producing carbonyl 
13

C magnetization for example 

eliminates the need to synchronize subsequent imaging procedures with the ongoing 

evolution of an initial parahydrogen singlet-state. While spin order transfer has been 

demonstrated by field cycling to create 
13

C angiograms in rats at 2.4T, pulsed methods 

offer a simple and equally efficient alternative when low field NMR consoles are 

available [114]. 

Determining the timing, frequency, and magnitude of these applied 

electromagnetic fields to efficiently transform parahydrogen spin order into 

heteronuclear magnetization in the strong coupling regime of protons is a challenging 

problem though, even for small AA'X spin systems. Two prior sequences have been 

reported for pulsed transformation of parahydrogen spin order into heteronuclear net 

magnetization in this field regime [114, 115]. Most recently, Kadlecek and coworkers 

reported a series of sequences that yield piecewise optimal polarization in three distinct 

coupling regimes [115]. The earlier and most frequently cited sequence developed by 
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Goldman and coworkers, offers unity efficiency for the targeted molecules and a 

recursive procedure for pumping polarization yields when outside of those coupling 

regimes [114]. We sought to build on those earlier works by developing a streamlined 

sequence that could achieve optimal polarization in a single implementation without 

the use of iterative pumping. 

In this study, we describe a consolidated pulse sequence that transforms 

parahydrogen spin order into heteronuclear magnetization in I1I2S spin systems with a 

yield near unity and independent of spin couplings. The sequence affords a unified 

solution across scalar coupling topologies by flanking a heteronuclear excitation with 

two asymmetric proton refocusing intervals to provide four unique evolution intervals. 

These delay intervals are in turn optimized using prior knowledge of the spin 

couplings to sequentially transform the initial parahydrogen spin order into pure 

heteronuclear magnetization. We anticipate that the streamlined construction will be 

well-suited to multidimensional experiments and for efficient preparation of existing 

and emerging PHIP contrast agents. 

 

2.2. Mathematical Basis Analysis Method for AA'X Spin Systems 

For a three-spin system (I1I2S system, two protons in singlet-state and one 

heteronucleus), since each spin has two possible states (|α> and |β), 8×8 matrices are  

necessary to express the states of the system. The eight possible states of three 

spin-systems could be labeled as |ααα>, |ααβ>, |αβα>, |βαα>, |αββ>, |βαβ>, |ββα> and 

|βββ>. States and pulses from the product operator basis could be expressed in 
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matrices form. For example, the I1x term, which is the x component magnetization for 

one of the protons, could be expressed as: 

  (2.1) 

Pulses with any phase and any rotation angle could be represented by 8×8 matrices as 

well. For example, a pulse that rotates the 
13

C magnetization around the x-axis by 

angle θ could be expressed as: 

  (2.2) 

 

Therefore the initial density matrix of the parahydrogen state, σ0 = - (I1xI2x + I1yI2y 

+ I1zI2z), (assuming 100% polarization) can be expressed as: 
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 . (2.3) 

The matrix representations for three spin systems (I1I2S) used in the following 

calculations are fully described in Appendix A. 

In the strong coupling regime as obtained in fields used for this study, the 

Hamiltonian can be written as: 

  (2.4) 

In Equation 2.4, ω1, ω2, and ωS represent the Larmor frequencies of proton I1, proton 

I2, and S. J12 is the homonuclear coupling constant between the protons, J1S is the 

heteronuclear coupling constant between proton I1 and S, and J2S is the heteronuclear 

coupling constant between proton I2 and S. Here we only consider only J coupling 

terms of the Hamiltonian since offsets are cancelled by through the application of 

refocusing pulses at ¼ and ¾ of each evolution delay [77]. The Hamiltonian 

neglecting offset evolution can be written as: 

 . (2.5) 

By substituting the operators of I1x, I2x, I1y, I2y, I1z, I2z and Sz (See Appendix A), the 

Hamiltonian could be described by the follow matrix: 
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  (2.6) 

At this point, all operators needed to study the three spin system have been 

established. After hydrogenation, the initial state, ρ0, does not generally commute 

with the Hamiltonian and therefore begins to evolve. If the state is left evolving for 

time t, the evolution becomes [116]: 

  (2.7) 

In which 

  (2.8) 

If a pulse is applied, assuming the pulse operator is labeled as R, the state will evolve 

to: 
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By using this basis, the evolution of the states could be represented by density matrix, 

while pulses and time evolutions could all be represented by matrix evolution.  

 

2.3. Methods: Evolution from Singlet-state to Net Magnetization 

In this section a pulse sequence designed to achieve unitary polarization level 

independent of coupling topology in 3-spin I1I2S systems is described. 

 

2.3.1. Evolution under 3 spin I1I2S system Hamiltonians 

At low field, the evolution of I1x, I2x and I1y, I2y terms are completely entangled, 

and I1z and I2z terms will also evolve as they do not commute with the Hamiltonian. 

Here the calculated evolutions of I1x and I2x are shown as examples: 
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 (2.11) 

 

The evolution is approximately symmetric, except for the only difference in signs of 

the term sin[ (J1S + J2S)t]sin(πΩt). Therefore, unless this term is 

significant, it will not be possible to break the symmetry and create pure 
13

C 

polarization magnetization (Sz). Taking HEP as an example, sin[ (J1S + 

J2S)t]sin(πΩt) = sin[(7.24 - 5.62)πt] = sin(0.81πt) evolves very slowly with time 

(period T=2.47s). Therefore, unless a time delay that lasts for seconds is applied 

(which is not feasible due to the relaxation), this term is very close to zero and 

negligible. Then the I1x and I2x terms evolve almost exactly symmetrically, which 

makes the coupling immune to any pulse sequence and impossible to obtain a pure S 

polarization state. However, the Sz(I - 4I1zI2z) state could be generated, which 

represents S net magnetization too, as the 4I1zI2z term commutes with the Hamiltonian 

2

12 1S 2S 1S 2S2

2

12 1S 2S 1S 2S2

12 1S 2S

π 1- γ π
cos(πJ t){cos[ (J + J )t]cos(πΩt) + sin[ (J + J )t]sin(πΩt)}

2 1+ γ 2

π 1- γ π
-sin(πJ t){sin[ (J + J )t]cos(πΩt) - cos[ (J + J )t]sin(πΩt)}4

2 1+ γ 2

π 1- γ
+sin(πJ t){cos[ (J + J )t]cos(πΩt) +

2

2x 2x

2x 1z z

I I

I I S

2

1S 2S2

2

12 1S 2S 1S 2S2

12 1S 2S2

12 1S 2S2

π
sin[ (J + J )t]sin(πΩt)}2

1+ γ 2

π 1- γ π
+cos(πJ t){sin[ (J + J )t]cos(πΩt) - cos[ (J + J )t]sin(πΩt)}2

2 1+ γ 2

2γ π
+ sin(πJ t)cos[ (J + J )t]sin(πΩt)

1+ γ 2

2γ π
+ cos(πJ t)sin[ (J + J )t]sin(π

1+ γ 2

2y 1z

2y z

1x

I I

I S

I

12 1S 2S2

12 1S 2S2

Ωt)4

2γ π
- cos(πJ t)cos[ (J + J )t]sin(πΩt)2
1+ γ 2

2γ π
+ sin(πJ t)sin[ (J + J )t]sin(πΩt)

1+ γ 2

1x 2z z

1y 2z

1y z

I I S

I I

I S

2 2 1S 2S
12

12

J - J
(γ = -Δ + 1+Δ ,Ω = J 1+Δ ,Δ = )

2J

2 2(1- γ ) / (1+ γ ) ( /2)

( /2)



 52 

and hence does not evolve with time. 

 

2.3.2. Evolution of the initial singlet-states 

The initial parahydrogen singlet-state evolves upon addition as:  

  (2.12a) 

  (2.12b) 

 , (2.12c) 

where the I1zI2z term was neglected since it does not evolve. 

In this expression, theta, delta, and omega are defined as: 

 .  

The last two terms are coupled with S. However, due to the existence of the constant θ, 

it is not possible to generate a pure state of either term by a single time interval. The 

method employed here to solve this problem was to apply a 180º pulse on either I or S. 

The first term is not affected by the pulse and keeps evolving, while the signs of the 

other two terms will be reversed, which leads to cancellation and makes it possible to 

generate pure states. Here after a t1 interval, a 180ºx pulse on S is applied, followed by 

another interval t2. The final evolution can be described as: 

 (2.13a) 
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  (2.13c) 
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Therefore, to get a pure (I1z - I2z)Sz state, the set of equations need to be solved:  

  (2.14a) 

  (2.14b) 

  (2.14c) 

This is a system of two unknowns and three equations. However, since the 

coefficients must satisfy the unitary condition that the square of each equation sums 

up to unity, choosing t1 and t2 satisfying any two equations guarantee that the third 

will be satisfied automatically. Therefore, by appropriate choice of t1 and t2 intervals, 

the initial state is successfully evolved to a pure (I1z - I2z)Sz state, which then 

concludes the first phase of the sequence. 

 

2.3.3. Evolution into net heteronuclear magnetization 

After generating the pure (I1z - I2z)Sz state, a 90ºy pulse on S channel is applied to 

obtain (I1z - I2z)Sx state (σint), followed by another interval, this term evolves to: 

  (2.15a) 

  (2.15b) 

 . (2.15c) 

As before, it is not possible to obtain a pure Sy(I - 4I1zI2z) state, due to the existence of 

the constant θ. The same strategy is used to constrain the problem as in the first phase 
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of the sequence; a 180ºx pulse is applied on the S channel after the interval t3, 

followed by another interval t4. The evolution then becomes: 

  (2.16a) 

  (2.16b) 

  (2.16c) 

To generate a pure Sy(I - 4I1zI2z) term, which represents a transverse S component, the 

coefficients must satisfy the following equations: 

  (2.17a) 

  (2.17b) 

  (2.17c) 

The solution of the time delays could then be calculated as: 

 . (2.18) 

After the t4 interval, a 90ºx on S will lead to an Sz(I - 4I1zI2z) state, which represents 

the final desired polarization state on S. Application of this pulse sequence with 

appropriately chosen evolution delays will generate 100% S polarization in most I1I2S 

spin systems independent of J (Figure 2.3). For HEP (2-hydroxy, 
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 . (2.19) 

 

2.3.4. Hyper-SHIELDED pulse sequence 

The sequence described here provides a streamlined solution to the problem of 

polarization transfer. A complete form of the sequence is given in Figure 2.1. 

 

 

Figure 2.1. Schematic of hyper-SHIELDED pulse sequence. The sequence consists of 

4 effective pulses (white pulses, 180°(+x) on I, 90°(+y) on S, 180°(+x) on I, and 

90°(+x) on S), while the black bars are echo pulses applied at 1/4 and 3/4 of each 

time interval. 

 

As shown in Figure 2.1, the effective pulses are the white pulses (180x, 90y, 180x, 

90x). The decoupling sequences are applied during hydrogenation to prevent evolution 

during reaction, which leads to a loss in initial states. Also, the refocusing pulses at 

1/4 and 3/4 of each time interval are applied to cancel the effect of field 

inhomogeneity [77]. 

The evolution pattern is summarized in Figure 2.2. The initial state 2 evolves to 3 

states under Hamiltonian with time. Term 3a represents the (I1xI2x + I1yI2y) term (as 

1 2 3 4t =9.75ms, t =58.47ms, t =36.20ms, t =28.28ms

1
H 

13
C 90y 90x 

τ1 

Dec. 

τ2 τ3 τ4 
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Equation 2.12a); 3b is 2(I1yI2x - I1xI2y)Sz term (as Equation 2.12b); 3c is (I1z - I2z)Sz 

term (as Equation 2.12c). After the first step the three terms are focused to a pure 3c 

term. A 90y pulse on S channel is followed to convert 3c to (I1z - I2z)Sx term. Then in 

the second step, 3c evolves to 3 new terms, 4a, 4b, and 4c. Here 4a represents (I1z  - 

I2z)Sx term (as Equation 2.15a); 4b represents 
1

2
Sy(I - 4I1zI2z) term (as Equation 

2.15b); 4c represents 2Sx(I1yI2x - I1xI2y) term(as Equation 2.15c). The three terms are 

focused to pure 4b term in the second term. Finally, a 90y pulse on S channel rotates 

the state to 
1

2
Sz(I - 4I1zI2z) term and hyperpolarized S net magnetization could be 

stored along the direction of the static magnetic field. 

 

 

Figure 2.2. Graphical depiction of evolution of density matrix components (upper 

graph) and the hyper-SHIELDED sequence (lower graph) for focusing parahydrogen 

singlet-states (I1  I2) into pure magnetization on an adjacent coupled (S) nucleus for 

strongly coupled I1I2S spin-systems. Symbols (3a-c, 4a-c) correspond to components of 

the density operator. 

 

The shorthand hyper-SHIELDED (Singlet to Heteronuclei by Iterative Evolution 

Locks Dramatic Enhancement for Delivery) was adopted for quick referencing the 
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sequence because it has the effect of protecting hyperpolarized spin order. The final 

polarization level of the pulse sequence could be calculated from Equation 2.20: 

 . (2.20) 

 

2.4. Experimental Section 

 

2.4.1. Synthesis of parahydrogen gas 

Approximately 98% parahydrogen gas was synthesized by pulsing ambient 

hydrogen gas at 14 bar (200 psi) into a catalyst-filled (iron oxide) copper chamber 

held at 14 K using a previously described semi-automated parahydrogen generator. 

Fresh batches of parahydrogen were collected in 10 L aluminum storage tanks 

(14745-SHF-GNOS, Holley, KY, USA), used without Teflon lining or additional 

modification.   

 

2.4.2. PASADENA precursor preparation 

The preparation of PASADENA precursor molecules was similar to those 

previously [117] with the exception that water was used in place of 99.8% D2O as a 
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solvent. Briefly, 1,4-bis- (phenyl-3-propane sulfonate) phosphine (0.180 g, 0.32 mmol, 

Q36333, Isotec, OH, USA) was combined with 100 mL H2O in a 1 L flask. This 

ambient solution was then degassed with a rotary evaporator (model R-215 equipped 

with V-710 pump, Buchi, New Castle DE) by decrementing the onboard pressure 

slowly to avoid boiling, from 70 to 25 mbar over approximately 10 minutes. The 

rhodium catalyst, bis(norbornadiene)rhodium (I) tetrafluoroborate (0.10 g, 0.27 mmol, 

45-0230, CAS 36620-11-8, Strem Chemicals, MA, USA) was dissolved in 7 mL 

acetone and was added drop-wise to the phosphine ligand solution to limit undesirable 

precipitation. After repeating the prior degassing procedure, this catalyst solution was 

mixed with 2-hydroxyethyl acrylate-1-
13

C,2,3,3-d3 (HEA, 97% chemical purity, 99 

atom % 
13

C, 98 atom % D (20 mg, 0.16 mmol, Sigma-Aldrich 676071) in a 150 mL 

square bottle (431430, Corning Life Sciences, NY, USA).  

 

2.4.3. Catalytic hydrogenation 

The precursor solution held in this 150 mL square bottle was connected to a 

previously described, automated parahydrogen polarizer [117], equipped with a 

dual-tuned 
1
H/

13
C coil [118]. Briefly, the chemical reaction was pulse programmed 

with a commercial NMR console, to synchronize chemical reaction parameters, 

decoupling fields, polarization transfer sequences, and detection of NMR signals. 

PASADENA precursors were sprayed from an external location into a plastic 

(polysulfone) reactor located within a 48 mT static magnetic field. The external 

solution was equilibrated at 65 
◦
C prior to spraying, and 16.5 bar (240 psi) nitrogen 
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gas was used to inject this heated PASADENA precursor solution into a pressurized 

atmosphere of 7 bar (100 psi) parahydrogen, and proton continuous wave decoupling 

was applied immediately at a frequency of 2.02 MHz (B0 = 47.5 mT) with a 

magnitude of 5 kHz. This decoupling field was maintained for 4 seconds to lock the 

parahydrogen spin ensemble while the hydrogenation reaction went to completion. 

 

2.4.4. Detection of hyperpolarized 
13

C 

The polarization transfer sequence was applied immediately after CW 

decoupling was turned off. For the HEP molecule, the t1, t2, t3, and t4 intervals were 

9.75ms, 58.47ms, 36.20ms, and 28.28ms, respectively. These delays were calculated 

from the density matrix expressions above assuming a proton-proton coupling of 7.57 

Hz, and a carbon-proton scalar coupling asymmetry of 12.86 Hz [119]. The actual 

couplings could vary somewhat from these values depending on pH and specific 

attributes of the polarization process such as temperature and pressure. After 

polarization transfer, the free induction decay (single shot) was sampled with 512 

points at a receiver bandwidth of 5 kHz for a digital resolution of ~10 Hz per point. 

 

2.5. Discussion 

Described here is a new pulse sequence (hyper-SHIELDED) for transforming 

parahydrogen spin order in the strong coupling regime of protons into net 

heteronuclear magnetization. Hyper-SHIELDED operates at nearly unity efficiency 

with yields that are approximately independent of scalar coupling topology in three 
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spin systems (I1I2S). The I1I2S moiety is a widespread and important spin system in 

PHIP experiments formed for example, by molecular addition of parahydrogen to 

perdeuterated and unsaturated molecular backbones.  

Hyper-SHIELDED flanks two asymmetric proton refocusing intervals about a 

heteronuclear excitation pulse to generate four unique delays (t1 − t4). Optimization of 

these delays to spin couplings in the molecule of interest sequentially converts the 

initial parahydrogen singlet-state into pure heteronuclear magnetization (Figure 2.2). 

Density matrix evolution under the influence of hyper-SHIELDED is depicted 

graphically in Figure 2.2 and linked directly to equations in section 2.3. 

The analysis of spin dynamics under the influence of hyper-SHIELDED assumed 

strongly coupled protons and weak heteronuclear scalar couplings (Equation 2.5). The 

initial parahydrogen density operator was retained without truncation and proportional 

to I1·I2 (Equation 2.3). Chemical shifts were not considered because the effects are 

small compared to homonuclear proton couplings at targeted fields in the vicinity of 

47.5 mT or lower, and we note that offsets were refocused with 180° pulses on both 

channels placed at 1/4 and 3/4 of each evolution interval [119]. Evolution of the 

strongly coupled parahydrogen density operator of Equation 2.3 is relatively 

complicated compared to (truncated) high field density operators proportional to I1zI2z. 

While analytical solutions to the spin dynamics are more tedious, heteronuclear 

magnetization yields from parahydrogen spin order are increased by a factor of 2 at 

low field in the strong coupling regime of protons. 

Hyper-SHIELDED was applied immediately following the hydrogenation 
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reaction. During the fast catalytic hydrogenation [120], proton decoupling was used to 

maintain equivalence of the parahydrogen protons and freeze evolution of the spin 

density operator until reaction completion [77]. After this period of decoupling and 

chemical addition, with hyper-SHIELDED the initial density matrix evolved from the 

parahydrogen singlet-state (Equation 2.3) to three terms (Equations 3.12a−3.12c, 

symbols 3a−c in Figure 2.2) in the Cartesian product basis during the first interval (t1). 

A 180°(x) proton pulse then focused these three terms of the density matrix into term 

4c during the interval t2. A 90°(y) pulse on the S nucleus then allowed term 4c to 

evolve into an additional three terms (Equation 3.15a-3.15c, symbols 4a−c, Figure 2) 

during the interval t3. Following a proton 180° pulse, these three terms (symbols 4a−c, 

Figure 2) collapse into a single term during t4 (symbol 4b, Figure 2). 

Note that since I1zI2z commutes with the Hamiltonian, I1zI2z(t = 0) = I1zI2z (t). 

Since I1z(t = 0) + I2z(t = 0) = 0 for the parahydrogen singlet-state, 4I1zI2z reduces to −I. 

Therefore, when the τ intervals are chosen to satisfy Equations 2.17a and 2.17b, 

Equation 2.16b reduces to a pure Sy term. Rotating this heteronuclear magnetization 

then locks the original parahydrogen spin order along Sz, where it will persist 

according to relaxation kinetics specific to the storage nucleus. Alternatively, if left 

unperturbed in the transverse plane this term could be detected directly at the field 

where the PHIP preparation was performed [117]. Nonselective refocusing pulses 

were interleaved at 1/4 and 3/4 on both channels in each evolution interval to refocus 

offsets and mitigate the deleterious impact of static field inhomogeneities [119].  

Two prior sequences have been reported to transform parahydrogen spin order 
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into heteronuclear magnetization in the strong proton coupling regime where the 

process is most efficient [119, 121]. Most recently, Kadlecek and co-workers reported 

a set of sequences that can be selectively applied to yield optimal transfer efficiency 

in three distinct scalar coupling regimes [121]. Goldman and co-workers reported the 

first pulsed transfer method which yields near unity singlet-state transformation 

efficiency in proximity to the scalar couplings of the design molecule. They also 

described a recursion procedure to pump polarization yields with GPS toward unity 

when outside of those targeted coupling regimes [119]. With hyper-SHIELDED, we 

sought to build on these efficient earlier works by developing a streamlined sequence 

that could achieve optimal conversion efficiency in a single streamlined sequence 

without recursive application and with minimal sensitivity to scalar coupling. 

To characterize sensitivity of hyper-SHIELDED to scalar couplings, transfer 

efficiency was calculated with respect to proton−proton scalar couplings (J12) and 

coupling asymmetry (|J1S−J2S|) over a range spanning known and conceivable PHIP 

reaction products (Figures 2.3 and 2.4). For each unique set of couplings (J12, 

|J1S−J2S|), the set of evolution intervals yielding maximum efficiency was determined 

by inverting the density matrix equations subject to a 300 ms total sequence duration 

constraint. As illustrated in Figure 2.3, a broad plateau of unity transformation 

efficiency was obtained with as little as ∼6 Hz heteronuclear coupling asymmetry 

(|J1S−J2S|) and ∼2 Hz homonuclear proton coupling (J12). If application warranted and 

relaxation times were favorable, expanding the total pulse sequence duration 

constraint beyond 300 ms would enable sharper transitions from valley to plateau. 
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To validate the sequence, experimental heteronuclear 
13

C signals were compared 

between hyper-SHIELDED and GPS [119] for a PHIP reaction product where both 

sequences were predicted to perform with identical efficiency (Figures 2.4 and 2.5). 

 

 

Figure 2.3. Polarization yield as a function of homonuclear proton coupling (J12) and 

heteronuclear coupling asymmetry (|J1S - J2S|) for hyper-SHIELDED. Contours levels 

are annotated at right and superposed onto a gradient map calculated at a resolution of 

(0.1 Hz)
2
. For each point, the density matrix equations were inverted to find tau 

intervals corresponding to maximum polarization and normalized to the global 

maximum. The total duration of the sequence is fixed to be within 300 ms. Coupling 

coordinates are annotated for the test molecule (HEP) in addition to a series of 

molecules with small asymmetries expected to differentially benefit from 

hyper-SHIELDED. 
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Figure 2.4. Dependence of theoretical polarization transfer efficiency on 

heteronuclear coupling constant asymmetry |J1S - J2S| in 3 spin systems (I1, I2, S) 

starting from an initial singlet-state density operator (I1I2)using the 

hyper-SHIELDED sequence (solid) versus a non-recursive implementation of a 

comparison sequence (dotted, GPS). For each point, the equations governing the 

evolution of the density matrix were solved for the optimal pulse sequence delays to 

produce maximum polarization. The tau parameter space was search over the range 

from zero to 300 ms. 
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Figure 2.5. Polarization yield of the hyper-SHIELDED sequence versus Goldman 

measured at the respective optimal timing parameters in a PASADENA 

parahydrogenation reaction. Experimentally determined yields were nearly identical 

(c) and in accord with theory for the parahydrogenated reaction product, 2-hydroxy, 

1-
13

C-ethylpropionate-d3 (b). A Boltzmann polarized carbon-13 spectrum was 

acquired from an aqueous solution containing 170 millimoles of the reaction product 

for comparison (a). 
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As shown in Figure 2.5 and in accord with theoretical expectations, 
13

C 

magnetization yield in a 7 μmol sample of the PHIP reaction product, 2-hydroxyethyl 

1-
13

C-propionate-d3, was enhanced by a large and equivalent factor of several million 

with both sequences. Hyper-SHIELDED builds on earlier advances [119, 121] by 

creating a single streamlined sequence that could achieve high transfer efficiencies 

independent of scalar couplings. Implementation of hyper-SHIELDED is 

experimentally compact and because the sequence does not rely on condition or 

recursive application for broadband efficiency, and it can be readily extended to 

multidimensional experiments on mixtures containing molecules with a range of 

couplings.  

Theoretical conversion efficiency was also analyzed at a specific J12 (7.5 Hz) and 

compared to the nonrecursive application of GPS [77]. As illustrated in Figure 2.3, the 

dependence of polarization yield in the small asymmetry regime is relatively 

insensitive to J12. Polarization yields reach uniform efficiency more rapidly as a 

function of asymmetry in hyper-SHIELDED versus the nonrecursive application of 

GPS, and high levels of polarization are sustained across a broad range of 

asymmetries (Figure 2.4). Although the calculated data points in Figure 2.4 were not 

parsed by sequence duration, hyper-SHIELDED was slightly longer (17.88 ms) at the 

HEP optimum. For the heteronuclear relaxation constants of HEP, the increased 

duration of the hyper-SHIELDED sequence did not reduce polarization yield (Figure 

2.5). Hyper-SHIELDED should perform particularly well in molecules with small 

asymmetries such as ethylamine, diethyamine, and choline (Figure 2.4) [122, 123].  
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CHAPTER 3 

 

SPIN ORDER TRANSFER FROM PARAHYDROGEN SINGLET-STATES 

INTO HETERONUCLEAR NET MAGNETIZATION IN AA'XY SPIN 

SYSTEMS 

 

Parahydrogen based methods of hyperpolarization have the potential to enhance 

MR sensitivity to a level sufficient for observing metabolism in vivo at approximately 

physiologic substrate concentrations. While these chemically synthesized, ordered 

spin states can be long-lived and useful in many applications without additional 

processing, when applied to biomedicine they require transformation into net 

magnetization on long-lived heteronuclei to facilitate subsequent MR imaging by 

standard techniques. Efficient methods for transforming singlet-state spin order into 

net heteronuclear magnetization have been previously developed for 

parahydrogenated three-spin systems [77, 121, 124], but these methods are expected 

from theory to perform poorly when applied to four spin systems featuring strong 

proton-proton and weak, heteronuclear scalar couplings (I1I2SR).  

   In this chapter, a sequence is described for efficiently transferring parahydrogen 

spin order in four-spin systems. The method used to design the sequence is an 

extension of that used to develop the 3-spin hyper-SHIELDED sequences. Global 

analytic solutions to the spin evolution are found by embedding iterative refocusing 

pulses. These pulses act to selectively invert terms in the density matrix and taken 

together, a sufficient number allow global analytical solutions to be found. 

Specifically, the initial parahydrogen density matrix was transformed across three 
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independent time intervals to distill a six term product operator space into a single 

term. This desired S magnetization component was then rotated to the transverse 

plane and three additional tau intervals were used to distill the resulting eight term 

product operator space into a pure heteronuclear (S) magnetization term. Each interval 

provides a constraint, and together an approximately global solution could be found. 

This term could then either be directly observed in situ or more commonly for 

biomedical applications, stored along z for subsequent delivery and imaging. 

Although precursor molecules are not yet available to test experimentally, we 

anticipate that this sequence will provide an efficient method to transform 

parahydrogen singlet-states in four spin (I1I2SR) systems into net heteronuclear 

magnetization. 

The aim of the sequence is presented in section 3.1. Four spin systems with two 

protons and two heteronuclei are likely to become significant because they include 

molecules in the TCA cycle, including 1,4-labeled succinic acid, which are introduced 

in 3.2. The detailed properties of four spin system, including product basis 

representation, are outlined in 3.3. The four spin analog of hyper-SHIELDED 

designed to transfer spin order from parahydrogen singlet-states to heteronuclear net 

magnetization is described in section 3.4. The discussions about the sequence, 

including the efficiency of the pulse sequence across various spin systems are 

described in section 3.5. Further studies for improving the efficiency of the spin order 

transfer sequence, are discussed in section 3.6. 
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3.1. Introduction 

Hyperpolarization of nuclear spin ensembles has increased NMR sensitivity to a 

level that is now enabling detection of metabolism in biological tissue on a time-scale 

of seconds [51, 106]. The goal of this work was to address in particular, the absence 

of pulse sequences for efficiently transforming singlet-states into net heteronuclear 

magnetization in the important class of four spin systems formed by addition of 

parahydrogen to an unsaturated molecular backbone. While raw singlet-states can be 

long-lived and useful themselves for basic science applications and particularly at 

Earth's field or below, when applied to biomedicine it is useful to convert these states 

into net magnetization on a long-lived heteronucleus for both storage and to facilitate 

subsequent imaging by standard methods. To our knowledge, the analogous sequences 

for use in four spin systems have not yet been addressed in the literature. 

Whether by covalent addition (PASADENA) or reversible interaction (SABRE), 

parahydrogen methods of hyperpolarization operate by creating ordered ensembles of 

singlet-states. In the strong proton coupling, these singlet-states evolve under special 

symmetry conditions are met within the larger spin network formed by the interaction 

of parahydrogen. For example, adding parahydrogen to a perdeuterated 1-
13

C 

phosphoenolpyruvate molecule would create a four spin system (
1
H1, 

1
H2,

31
P,

13
C) 

which in turn will evolve unless J1S - J1R - J2S + J2R = 0 and J1S + J1R - J2S - J2R = 0 

(where S and R refer only to arbitrary, weakly coupled heteronuclei). In contrast to 

three spin systems formed analogously, the expressions that describe the four spin 

evolution are much more complicated. Therefore finding optimal spin trajectories 
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between the initial parahydrogen singlet-state and terms with nearly pure net 

heteronuclear magnetization, is more difficult.   

In this study, we describe a consolidated pulse sequence that transforms 

parahydrogen spin order into heteronuclear magnetization in I1I2SR spin systems with 

a yield near unity and independent of spin couplings. The sequence provides efficient 

conversion across a broad range of coupling topologies by flanking a heteronuclear 

excitation with two asymmetric proton refocusing intervals to provide four unique 

evolution intervals. These delay intervals are in turn optimized using prior knowledge 

of the spin couplings to efficiently transform the initial parahydrogen spin order into 

pure heteronuclear magnetization. We anticipate that this hyper-SHIELDED-4 

sequence will provide an efficient method to transform parahydrogen singlet-states in 

four spin (I1I2SR) systems into net heteronuclear magnetization. 

Transforming these states into net heteronuclear magnetization maximizes 

spectral dispersion and reduces interference from the intense proton background 

arising from water proton signals. It has recently been demonstrated that 

parahydrogen singlet-states can themselves be long-lived at Earth's field [125], but 

even in cases where the parahydrogen proton lifetimes are similar to or even more 

favorable than carbonyl 
13

C for example, locking the initial spin order also eliminates 

the need to synchronize subsequent imaging acquisitions to accrued singlet-state 

evolution. 
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3.2. Examples of m0olecules featuring the I1I2SR spin systems 

As stated above, there are many important four spin systems in NMR. Many 

molecules in TCA cycle are likely to be formed into I1I2SR spin systems by PHIP. For 

example, a precursor for PHIP lactate (phospholactate) has recently been developed, 

and efficient utilization of PHIP spin order in this molecule will require a sequence 

tailored to transforming spin order in four spin sequences. 

 

3.2.1. TCA cycle 

The TCA cycle (tricarboxylic acid cycle), also referred to as citric acid cycle, 

stands for a series of chemical reactions by aerobic organisms to generate energy 

through the oxidization of acetate derived from carbohydrates, fats and proteins into 

carbon dioxide (Figure 3.1) [126-129].  
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Figure 3.1. Schematic of the TCA cycle. A series of chemical reactions by aerobic 

organisms to generate energy through the oxidization of acetate derived from 

carbohydrates, fats and proteins into carbon dioxide.  

 

TCA cycle molecules generate energy in the form of ATP through a series of 

chemical conversions, therefore the NMR signal between pairs of molecules adjacent 

in this cycle have the potential for tracking in vivo metabolism. From DNP, the 

conversion rate of the molecules (like fumarate to malate) in tumors has been shown 

to depend on treatment [54]. Fumarate and succinate are highly symmetric spin 

systems, and one of the primary goals of developing a four spin hyper-SHIELDED 

sequence was selectively modulate and observe these states in a manner dependent on 

TCA cycle chemical triggers. 
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3.2.2. Symmetrical spin system 

Prior to hydrogenation, the 1,4-
13

C fumaric acid molecule is a completely 

symmetrical molecule (Figure 3.2) and remains symmetric when converted to 1,4-
13

C 

succinic acid after hydrogenation.  

 

 

Figure 3.2. Stick diagram of 1,4-
13

C-labeled fumaric acid. After labeling both carbons 

the molecule becomes a symmetric spin system. 

 

The succinic acid is also a common molecule in TCA cycle. It possesses the 

property of adjacent couplings, double bond, and long lifetimes, making it a 

potentially ideal candidate for spin order transfer too. And the molecule is within a 

symmetric spin system, which could allow the singlet-states to be stored after 

hydrogenation. 

The method used in Chapter II to transfer spin order from parahydrogen 

singlet-states to heteronuclear net magnetization requires the process (hydrogenation 

→ spin order transfer → signal recording) to be continuous without any significant 

time lag. Otherwise, either the 
13

C relaxation destroys the obtained hyperpolarized 

state, or the singlet-state will be projected to the eigenstates of the new Hamiltonian 

which relaxes quickly into thermal equilibrium. In this section we focus on the study 

of hyperpolarized state lifetimes.  
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Angular momentum selection rules prevent parahydrogen states from being 

relaxed to ortho states, which preserves singlet-states for durations much longer than 

would be expected from transverse or longitudinal relaxation. However, when the 

parahydrogen H2 gas is added to other molecules in order to transfer spin order and to 

generate observable signals, it appears that the parahydrogen state will evolve to other 

states under the new Hamiltonian since the symmetry is broken. This will lead to a 

loss of polarization especially in vivo if the sample needs to be stored before recording 

signals. 

Examining the low field Hamiltonian of the two protons and S spins (again 

neglecting chemical shifts):  

 12 1S 2S= 2π(J + J + J )1 2 1z z 2z zH I I I S I S  (3.1) 

The eigenstates of this Hamiltonian are: 

  (3.2) 

   

The initial density matrix, projected to the eigenstates of this Hamiltonian can be 

written as:  

 , (3.3) 

1 2

3 4

5 6

7 8

1S 2S 1S 2

a
a

2

a

ψ = | ααα >                 ψ = | ααβ >

ψ = | ββα >                ψ  = | βββ >

ψ = a | αβα > -b | βαα >                ψ = b | αβα > +a | βαα >

ψ = b | αββ > -a | βαβ >                 ψ = a | αββ > +b | βαβ >

J - J J - J
- (

γ 2a = , γ =
1+ γ

2 2S
12

12

2 21S 2S 1S 2S
12

b
b

2
12b

) + J
2

J

J - J J - J
+ ( ) + J

γ 2 2b = , γ =
J1+ γ

2 2

1 1 Δ
= [ - 4 + ( + ) + ( - ) ]

8 1+Δ 1+Δ
1z 2z 1x 2x 1y 2y 1z 2z zρ I I I I I I I I I S
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where ∆ = (J1S-J2S)/2J12  

It follows that if ∆ = 0, the density matrix is stationary and remains in the 

singlet-state. Here ∆ = 0 implies that J1S = J2S. Examining the eigenstates, when J1S = 

J2S, ∆a = ∆b, a = b = , the last four eigenstates become:  

 . (3.4) 

This expression shows that ψ5 and ψ7 are represented as singlet-states of protons 

coupled to either |α> or |β> state of the heteronucleus. This implies that provided J1S = 

J2S, the singlet-state will be projected to 50% ψ5 and 50% ψ7, remaining in the 

singlet-state and preserved for long time. If J1S ≠ J2S, then the larger J1S - J2S is, the 

difference between the projected density matrix and the initial singlet-state density 

matrix becomes correspondingly larger. When J1S = J2S, the spin system is completely 

symmetric. This suggests that the singlet-state lifetime is proportional to asymmetry 

of the system, ∆=(J1S - J2S)/2J12, with commensurate effects on lifetimes. The smaller 

J1S - J2S is, the longer the singlet-state could be preserved. This hypothesis can be 

supported by the coherent evolution of singlet-states (See Section 2.3):  

  (3.5a) 

  (3.5b) 

  (3.5c) 

If J1S = J2S, then ∆ = 0, sinθ = 1, cosθ = 0, so the coefficients for the last two terms 

vanish, and the singlet-state will not evolve with time. The larger the factor ∆ is, the 

1

2

5 6

7 8

1 1 1 1
ψ = | αβα > - | βαα >                ψ = | αβα > + | βαα >

2 2 2 2

1 1 1 1
ψ = | αββ > - | βαβ >                 ψ = | αββ > + | βαβ >

2 2 2 2

2 2(t) [sin θ+cos θcos(2πΩt)]( + )0 1x 2x 1y 2yσ I I I I

+cosθsin(2πΩt)2( - )
1y 2x 1x 2y z

I I I I S

+sinθcosθ[1-cos(2πΩt)]( - )1z 2z zI I S
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faster singlet-state decays. The lifetime is therefore proportional to the factor . 

However, if the molecule is prepared by hydrogenation through double-bonds, 

the two protons are always one bond away and J1S - J2S is never zero, therefore it is 

generally not feasible to obtain symmetric molecules in three spin systems (I1I2S). But 

if the molecule consists of two labeled carbons, like 1,4-
13

C succinic acid, it becomes 

possible to create a symmetrical chemical environment for hydrogenation. 

It is recently reported that the lifetime of the hyperpolarized state is related to 

magnetic field as well (a low field preserves longer lifetime rather than zero-field, the 

precise magnetic field needs to be selected from the spin system) [130]. 

As discussed above, singlet-states could be preserved for relatively long intervals 

after hydrogenation. Succinate is not completely symmetric, since for this molecule 

JHaCb=JHbCa, JHaCa=JHbCb, instead of the perfectly symmetric case, JHaCa=JHbCa and 

JHaCb=JHbCb. In summary, it should be possible to generate signal in this molecule 

(detailed calculation provided in 3.3). 

Further calculation of the evolution shows that the lifetime of the singlet-states in 

this molecule should be proportional to the factor of (∆a + ∆b), in which ∆a = (JHaCa 

+ JHaCb - JHbCa - JHbCb)/2JHaHb, ∆b = (JHaCa -JHaCb - JHbCa + JHbCb)/2JHaHb. If ∆a = ∆b = 0, 

the singlet-state will not evolve with time. For this molecule ∆b=0, therefore half of 

the spin system would stay in singlet-states while the lifetime of the other half will be 

proportional to (JHaCa + JHaCb - JHbCa - JHbCb)/2JHaHb. This part will likely to decay to 

thermal equilibrium on time scale of seconds.  

In the view of eigenstates, after hydrogenation, the probability is 50% that the 

(1/ )

1

2
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initial singlet-state (|αβ>-|βα>), would be projected to the states 

(|αβ,αα>-|βα,αα>) or (|αβ,ββ>-|βα,ββ>) and remain in these states (the last 

two symbols represent the two heteronuclei). The other 50% probability is that the 

initial singlet-state will be projected to the states (|αβ, αβ>-|βα,αβ>) or 

(|αβ, βα>-|βα, βα>), and decay with time since it is longer in a singlet-state 

(γa=√(1+∆a
2
)- ∆a).  

Therefore, after hydrogenation and relaxation, 50% polarized singlet-states could 

still be preserved in this spin system. This state could be made observable by breaking 

the symmetry and the pulse sequence presented later in 3.4. One possible method of 

breaking the symmetry would be to adjust pH, since the J coupling constants of 

succinic acid depend on pH. 

 

3.3. Mathematical Basis of I1I2SR Systems 

In product operator basis, since the I1I2SR spin system consists of four spin  

nuclei, each spin state could be represented by a 16×16 matrix. In the rest of this 

chapter, the two protons of parahydrogen will be labeled as I1 and I2, while the two 

heteronuclei will be labeled as S and R.   

The 16 states formed by products of the individual spin ½ states could be labeled 

as: |αααα>, |αααβ>, |ααβα>, |αβαα>, |βααα>, |ααββ>, |αβαβ>, |αββα>, |βααβ>, |βαβα>, 

|ββαα>, |αβββ>, |βαββ>, |ββαβ>, |βββα>, and |ββββ>. Full expressions of the 

operators can be found in Appendix B. 

The initial density matrix is the parahydrogen singlet-state: 

(1/ 2) (1/ 2)

(1/ 2)

(1/ 2)

(1/ 2)

1/ 2
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  (3.6) 

The matrix representation of the initial singlet-state is then (neglecting I1zI2z term, 

which does not evolve with time): 

  (3.7) 

Any pulse applied to the spin system could be represented in this basis by a 

rotational operator (also 8x8 density matrix), calculated from: 

 . (3.8) 

For the I1I2SR spin systems with two protons and two heteronuclei, in low field the 

homonuclear coupling between the protons is considered strong coupling (δ ≈ J), 

while the other heteronuclear couplings are considered all weak couplings (δ >> J), 

the coupling Hamiltonian is then (as in Chapter II, only coupling Hamiltonian is 

considered): 

 . (3.9) 

Matrix expressions of this Hamiltonian are included in Appendix B. All the necessary 

= + +
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operators to analyze the spin order of I1I2RS spin systems have now been constructed. 

The initial parahydrogen singlet-state will evolve under the Hamiltonian as: 

  (3.10) 

 

3.4 Methods: evolution of parahydrogen singlet-state to heteronuclear net 

magnetization 

Using a similar strategy as in Chapter II, the evolution of states under the 

Hamiltonian can be analyzed in two independent phases. 

 

3.4.1. Evolution of initial singlet-states 

The formation of the initial state is given in Sections 3.6 and 3.7. The evolution 

of the initial parahydrogen singlet-state could be calculated after numerical 

calculation in the mathematical basis constructed in Section 3.2 (detailed evolution of 

the systems is given in Appendix C). 

 (3.11a) 

  (3.11b) 

  (3.11c) 

  (3.11d) 

  (3.11e) 

  (3.11f) 
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There are six terms in the evolution. The first term represents the initial state, the 

second is the initial state coupled to both heteronuclei. The third and fifth terms are 

coupled with heteronucleus S, while the fourth and sixth are coupled with 

heteronucleus R. Here S is chosen as the receptor of PHIP spin order. The fifth term 

(3.11e), (I1z-I2z)Sz is chosen as the node, or destination for the first phase in the spin 

order transfer. In contrast to the 3-spin I1I2S spin system, with this 4-spin problem 

there are six terms, so a simple 180º pulse will not be sufficient to maximize the fifth 

term. The expression of the evolved terms shows that if a 180ºx pulse is applied on 

protons, the 3
rd

 (3.11c), 4
th

 (3.11d), 5
th

 (3.11e), 6
th

 (3.11f) terms all change signs. If a 

180ºx pulse on heteronucleus S channel is applied, the 2
nd

 (3.11b), 3
rd

 (3.11c), 5
th

 

(3.11e) terms change signs. Also, a 180ºx pulse on heteronucleus R channel will 

change signs of the 2
nd

 (3.11b), 4
th

 (3.11d), 6
th

 (3.11f) terms. It could be proven by 

calculation that applying a combination of 180ºx pulses on any two of the three 

channels will be sufficient to transfer spin order, only changing the time intervals of 

the sequence. Here proton and S channels are chosen, which are feasible in 

two-channel NMR facilities. Therefore, the first step of evolution contains three time 

intervals (t1-t3) and two 180ºx pulses on proton/heteronucleus S channels to evolve the 

initial singlet-state closest to the state coupled with heteronucleus S ((I1z - I2z)Sz). The 

density matrix after the evolution then becomes: 

 . (3.12) 

The time intervals t1, t2, and t3 are modified simultaneously to evolve the state closest 

to (I1z-I2z)Sz state (Equation 3.11e), to minimize the following expression:  

3 32 1 1 2-i t i t-i t -i t i t i t-1 -1

1 2 3 0(t , t , t ) = e [ (π)] e [ (π)] e σ e (π)e (π)e
H HH H H HI S S I

N x x x xσ R R R R
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  (3.13) 

 

3.4.2. Evolution to heteronuclear net magnetization 

After the first step, a 90ºy pulse is applied on heteronucleus S channel to obtain a 

transverse component of heteronucleus S: 

 . (3.14) 

To generate net magnetization of heteronucleus S, the evolution of this state is then 

calculated: 

  (3.15a) 

  (3.15b) 

  (3.15c) 

  (3.15d) 

  (3.15e) 

  (3.15f) 

  (3.15g) 

  (3.15h) 

The state evolves into eight different terms. The term representing the heteronucleus S 

transverse component is the 3
rd 

term (Equation 3.15c), 
1

2
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technique as the first step is applied to this evolution. Here if a 180º x pulse is applied 

on protons, the terms that change signs are the 1
st
 (Equation 3.15a), 4

th
 (Equation 

3.15d), 6
th

 (Equation 3.15f), 7
th

 (Equation 3.12g) terms. If a 180º x pulse is applied on 

heteronucleus S channel, the terms that change signs are the 3
rd

 (Equation 3.15c), 4
th

 

(Equation 3.15d), 6
th

 (Equation 3.15e), 8
th

 (Equation 3.15h) terms. Also, a 180º x 

pulse on the heteronucleus R channel changes the signs of the 2
nd

 (Equation 3.15b), 

4
th

 (Equation 3.15d), 5
th

 (Equation 3.15e), 6
th

 (Equation 3.15f) terms. It could also be 

proven that applying a combination of 180ºx pulses on any two of the three channels 

will transfer spin order with same efficiency by adjusting the time intervals in the 

sequence. Again proton and heteronucleus S channels are chosen as the channels that 

180ºx pulses are applied to. The density matrix after this step then becomes: 

 . (3.16) 

The time intervals t4, t5, and t6 are modified simultaneously to get the state closest to 

1

2
Sy(I - 4I1zI2z) state (Equation 3.15c), to again minimize the difference between the 

target and final state: 

  (3.17) 

After evolving to the state with the least difference to the 3
rd

 term (Equation 

3.15c), a 90ºx pulse is applied to S channel to obtain pure heteronucleus S net 

magnetization. 

  (3.18) 
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3.4.3. Hyper-SHIELDED-4 pulse sequence 

The complete form of the pulse sequence that transfers spin order from a 

parahydrogen singlet-state to heteronuclear net magnetization for I1I2SR spin systems 

is described in this chapter (Figure 3.3). 

 

 

Figure 3.3. The 4-spin hyper-SHIELDED sequence for transferring spin order from a 

singlet-state to heteronuclear net magnetization in I1I2SR spin systems. The sequence 

consists of 6 effective pulses (white pulses, 180(+x) on S, 180°(+x) on I, 90°(+y) 

on S, 180°(+x) on S, 180°(+x) on I, and 90°(+x) on S), while the black pulses are 

refocusing pulses placed at 1/4 and 3/4 of each time interval. 

 

In Figure 3.3, the white pulses are effective pulses. As in Chapter II, initially a 

decoupling field is applied during reaction to avoid the evolution and possible loss of 

polarization level during reaction. And 180º refocusing pulses are applied at 1/4 and 

3/4 of each time interval to cancel the effect of filed inhomogeneity [77]. In analogy 

to the 3-spin sequence, since a similar technique was used to design the sequence, and 

since the overall impact is similar (to protect PHIP spin order), the shorthand 

hyper-SHIELDED-4 was adopted for quick referencing. 

1
H 

S 90y 90x 

τ1 

Dec. 

180x 

180x 

τ2 τ4 τ5 τ3 

180x 

τ6 

180x 



 84 

A detailed diagram in Figure 3.4 depicts the pulse sequence and evolution of 

states. 

 

 

Figure 3.4. Evolution of density matrix components (upper graph) and the associated 

pulse sequence (lower graph) for focusing parahydrogen singlet-states (I1I2) into pure 

magnetization on an adjacent coupled (S) nucleus for I1I2SR spin-systems in the 

strong coupling regime. Labels S and P refer generally to coupled S-nucleus (for 

example, 
13

C or 
31

P).  Symbols (3a-f, 4a-g) correspond to components of the density 

operator. 

 

As shown in Figure 3.4, state 2 is the initial state. 3a-f represents the six states 

the initial term evolves into, including (I1xI2x + I1yI2y), 4(I1xI2x + I1yI2y)SzRz, 2(I1yI2x - 

I1xI2y)Sz, 2(I1yI2x - I1xI2y)Rz, (I1z - I2z)Sz, and (I1z - I2z)Rz terms (as Equation 3.11a-f). 

After the initial state evolves for time t1, a 180x pulse on heteronucleus S channel 

coverts signs of the 3b, 3c, 3e terms. Then the state evolves again for interval t2, a 

180x pulse is followed on proton channel that converts signs of 3c, 3d, 3e, 3f terms, 

the state then evolves for another time period t3. After the pulses, the evolution pattern 
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for each term is different, making it possible to obtain the state closest to the desired 

term, 3e.  

A 90°(+y) pulse on heteronucleus S channel is then followed to rotate Sz to Sx 

and generate S transverse component (3e to 4a). The 4a state is left evolving for a time 

period of t4 and evolves to eight new terms (4a-h). Those terms (4a-h) represents the 8 

states of Sx(I1z - I2z), Sx(I - 4I1zI2z)Rz, 
1

2
Sy(I - 4I1zI2z), 2Sy(I1z - I2z)Rz, 4Sx(I1xI2x + 

I1yI2y)Rz, 4Sy(I1yI2x - I1xI2y)Rz, 2Sx(I1yI2x - I1xI2y), 2Sy(I1xI2x + I1yI2y) (as Equation 

3.15a-h). A 180x pulse on heteronucleus S channel then reverses signs of 4c, 4d, 4f, 4h 

terms. After another evolution of t5, a 180x pulse on proton channel then converts 

signs of 4a, 4d, 4f, 4g terms. Again by creating different evolution pattern for each 

term, the state closest to the desired term, 4c, could be obtained. In the end a 90x pulse 

is applied on heteronucleus S channel to rotate it to net S longitudinal magnetization. 

 

3.5. Discussion 

Described here is a pulse sequence (hyper-SHIELDED-4) designed to efficiently 

transform parahydrogen singlet-state spin order into heteronuclear magnetization in 

hyperpolarized four spin systems that feature strong proton-proton, and weak 

heteronuclear scalar couplings. Although new molecules are emerging for applications 

to biomedicine that will require efficient transfer sequences, to our knowledge none 

have yet been described. We showed earlier that selective refocusing could be used to 

generate constraints sufficient to enable streamlined, approximately global analytic 

solutions to be identified in three spin systems. While applying the three spin 
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sequence generated earlier to four spin systems yields suboptimal results, we found 

that extending the earlier design process by introducing additional selective 

refocusing pulses would allow efficient, nearly global analytic solutions to be found 

in four spin systems.  

The initial density matrix was transformed sequentially in two independent 

intervals, separated by a heteronuclear 90°pulse. Within each of these intervals, 180° 

pulses were applied on protons and a selected heteronucleus to generate sufficient 

constraints so as to enable an approximately global analytic solution to be found for 

transforming the initial singlet-state into net heteronuclear magnetization.   

Hyper-SHIELDED flanks two asymmetric proton refocusing intervals about a 

heteronuclear excitation pulse to generate six unique delays (t1-t6). Optimization of 

these delays to spin couplings in the molecule of interest sequentially converts the 

initial parahydrogen singlet-state into pure heteronuclear magnetization (Figure 3.4). 

The analysis of spin dynamics under the influence of hyper-SHIELDED-4 

assumed strongly coupled protons and weak heteronuclear scalar couplings. The initial 

parahydrogen density operator was retained without truncation and proportional to I1I2. 

Chemical shifts were not considered because the effects are small compared to 

homonuclear proton couplings at targeted fields in the vicinity of 47.5 mT or lower, and 

we note that offsets were refocused with 180 pulses on both channels placed at 1/4 and 

3/4 of each evolution interval. Evolution of the strongly coupled parahydrogen density 

operator is relatively complicated compared to (truncated) high field density operators 

proportional to I1zI2z. While analytical solutions to the spin dynamics are more tedious, 
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heteronuclear magnetization yields from parahydrogen spin order are increased by a 

factor of two at low field in the strong coupling regime of protons.  

This sequence is meant to be applied immediately following the hydrogenation 

reaction. During the fast catalytic hydrogenation, Proton decoupling would be used to 

maintain equivalence of the parahydrogen protons therefore freezing evolution of the 

spin density operator until reaction completion. After this period of decoupling and 

chemical addition, with hyper-SHIELDED-4 the initial density matrix evolved from 

the parahydrogen singlet-state to six terms (Equation 3.11a-f, symbols 3a-f in Figure 

3.4) in the Cartesian product basis during the first interval (t1). Two 180x 

proton/S-nucleus pulses then focused these six terms of the density matrix into term 

3.11e during the intervals t2 and t3. A 90y pulse on the S-nucleus then allowed term σN to 

evolve into an additional eight terms (Equation 3.15a-h, symbols 7a-h, Figure 3.4) 

during the interval t4. Following two proton/S-nucleus 180 pulse, these eight terms 

(symbols 7a-h, Figure 3.4) collapse into a single term during t5 and t6 (symbol 7c, 

Figure 3.4).  

Note that since I1zI2z commutes with the Hamiltonian, I1zI2z(t = 0) = I1zI2z(t). 

Since I1z(t = 0) + I2z(t = 0) = 0 for the parahydrogen singlet-state, 4I1zI2z reduces to -I. 

Therefore when the tau intervals are chosen to satisfy Equation 3.17, Equation 3.15c 

reduces to a pure Sy term. Rotating this heteronuclear magnetization then locks the 

original parahydrogen spin order along Sz, where it will persist according to relaxation 

kinetics specific to the storage nucleus. Alternatively, if left unperturbed in the 

transverse plane this term could be detected directly at the field where the PHIP 
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preparation was performed. Nonselective refocusing pulses could be interleaved at 1/4 

and 3/4 on both channels in each evolution interval to refocus offsets and mitigate the 

deleterious impact of static field inhomogeneities.  

To characterize sensitivity of hyper-SHIELDED-4 to scalar couplings, transfer 

efficiency was calculated with respect to both coupling asymmetry (|J1S − J2S| and |J1R 

− J2R|) over a range spanning known and conceivable PHIP reaction products for the 

three major conformations - gauche, eclipse and anti (Figures 3.5). For each unique 

set of couplings (|J1S − J2S|, |J1R − J2R|), the set of evolution intervals yielding 

maximum efficiency was determined by inverting the density matrix equations subject 

to a 500 ms total sequence duration constraint. As illustrated in Figure 3.5, a broad 

plateau of unity transformation efficiency was obtained with heteronuclear coupling 

asymmetry (|J1S−J2S|) as little as half of the proton-proton scalar couplings. If 

application warranted and relaxation times were favorable, expanding the total pulse 

sequence duration constraint beyond 500 ms would enable sharper transitions from 

valley to plateau. 
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Figure 3.5. 2D contour of maximum polarization level from four spin system (I1I2SR) 

pulse sequence as a function of both J1S-J2S and J1R-J2R for all three major 

configurations (eclipsed with J12=11Hz, anti with J12=13Hz, and gauche with J12=4Hz) 

while the total duration of the pulse sequence limited within 500ms. Here JSR is both 

fixed at 6.52Hz. 
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Figure 3.5, Continued 
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Similar as the three spin case, as the maximum time duration increases, the 

maximum polarization level increases too. As discussed in section 3.3, in the four 

I1I2SR systems, the more symmetric the spin system is, the longer lifetime 

singlet-states could be preserved. Figure 3.5 shows that the maximum polarization 

level is low when the symmetrical level of the spin system is high (both J1S - J2S and 

J1R - J2R approaches 0). In those spin systems it is possible that the singlet-states could 

be preserved longer and a longer sequence would be possible. So the maximum 

polarization level of the sequence with longer time duration is calculated, as shown in 

Figure 3.6, both J12 and JSR are fixed at 5 Hz. Clearly the maximum polarization level 

increases as the total duration increases. If the sequence duration is fixed at 2 or 4 

seconds, the sequence yields nearly unitary polarization level for a wide range of 

molecules, including those highly symmetric molecules.  
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Figure 3.6. 2D contour of maximum polarization level from four spin system (I1I2SR) 

pulse sequence as a function of both J1S-J2S and J1R-J2R while the proton-proton scalar 

coupling is fixed to be 5 Hz and the total duration of the pulse sequence limited within 

1 second (upper graph), 2 seconds (middle graph), and 4 seconds (lower graph). The 

maximum polarization level increases as the total duration increases. If the sequence 

duration is fixed at 2 or 4 seconds, the sequence would be expected to yield nearly 

unitary polarization level for a wide range of molecules, including those highly 

symmetric molecules.  
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Figure 3.6, Continued 
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3.6. Further studies: a third channel 

Although hyper-SHIELDED-4 sequence is expected to yield high polarization 

level for most I1I2SR spin systems, in cases where S and R have significantly different 

chemical shifts, a third channel would be necessary to eliminate the influence of 

chemical shift evolution completely. In hyper-SHIELDED-4 pulse sequence only 

pulses on proton and heteronucleus S channel are provided, if pulses on all three 

channels could be applied, the performance of the sequence will be improved. Those 

3-channel devices are not quite common in MR labs nowadays yet, but the 

PANAROMIC sequence our group developed [131] would be able to address this type 

of problem to provide pulses on three channels using a two channel device (single 

channel as well). The modified sequence is shown in Figure 3.7. There are no 

refocusing pulses on the heteronucleus R channel since we are only using the 

longitudinal components of heteronucleus R.  
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Figure 3.7. The 3-channel pulse sequence for 4 spin systems (I1I2SR). The sequence 

consists of 8 effective pulses (white pulses, 180x on R, 180x on S, 180x on 
1
H, 90y on S, 

180x on R, 180x on S, 180x on 
1
H, and 90x on S). The black pulses are refocusing 

pulses applied at 1/4 and 3/4 of each time interval. There are no refocusing pulses on 

R channel since we are only using the longitudinal components of R and on transverse 

R component is generated.  

 

There are eight time intervals in this sequence, which increases the level of 

freedom to manipulate the spin states. Below is the comparison of maximum 

polarization level of three channels versus two, Figure 3.8. The other J coupling 

constants are fixed at [J1S = -3.8Hz, J1R = 8.6Hz, J2S = 4.07Hz, J2R = 0Hz, JSR = 

6.52Hz] while varying J12, [J12 = 6.9Hz, J1R = 8.6Hz, J2S = 4.07Hz,J2R = 0Hz, JSR = 

6.52Hz] while varying J1S, [J12 = 6.9Hz, J1S = -3.8Hz, J2S = 4.07Hz,J2R = 0Hz, JSR = 

6.52Hz] while varying J1R. 

1
H 

Dec. 

180x 180x 

180x S 90y 90x 

τ1 

180x 

τ2 τ4 τ5 τ3 τ6 

R 180x 180x 

τ7 τ8 
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Figure3.8. The maximum polarization level of 2 channel sequence (dotted line) and 3 

channel sequence (solid line) as a function of proton-proton coupling J12 (upper 

graph), proton-S coupling J1S (middle graph), and proton-R coupling J1R (lower 

graph). While varying one of the coupling constants, the other J coupling constants 

are fixed at [J1S = -3.8Hz, J1R = 8.6Hz, J2S = 4.07Hz, J2R = 0Hz, JSR = 6.52Hz] while 

varying J12, [J12 = 6.9Hz, J1R = 8.6Hz, J2S = 4.07Hz, J2R = 0Hz, JSR = 6.52Hz] while 

varying J1S, [J12 = 6.9Hz, J1S = -3.8Hz, J2S = 4.07Hz, J2R = 0Hz, JSR = 6.52Hz] while 

varying J1R. The duration of both sequences are fixed to be within 500 ms. The 

dependence of polarization level on J2S (J2R) is similar as J1S (J1R), and is not sensitive 

to JSR.  
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Figure 3.8, Continued 
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CHAPTER 4 

 

RESOLVING SCALAR COUPLINGS IN LOW INHOMOGENEOUS FIELDS 

BY INDIRECT DETECTION OF SINGLET-STATE EVOLUTION 

 

The efficiency of spin order transfer in hyper-SHIELDED-3 and 

hyper-SHIELDED-4 depends on accurate prior knowledge of accurate scalar coupling 

constants. Apart from spin order transfer sequences, precisely measured scalar 

coupling constants are also important in many NMR experiments. For example, APT 

(attached proton test) provides a simple and elegant method to distinguish the number 

of protons attached to a carbon atom by distinguishing the numbers of couplings of 

the carbon [132-134]. INEPT (Insensitive Nuclei Enhanced by Polarization Transfer) 

is an experiment that makes use of the high gyromagnetic ratio of protons to enhance 

signals of other heteronuclei by coherence transfer through coupling [135-141]. DEPT 

(Distortionless Enhancement by Polarization Transfer) is an NMR tool that 

distinguishes the CH3, CH2, CH and other groups of the observed molecules by 

making use of the different coupling of the groups [142-144]. It is also the basic 

character used in the experiments of HECTOR [145], COSY [146-153], and TOCSY 

[154-159]. 

Therefore, accurately measuring the scalar coupling constants is very important 

for hyperpolarization sequences and other experiments. There are several approaches 

to measure scalar coupling constants. However, although the spin order transfer 

experiments could be conducted at low fields, in most cases precisely measuring 
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scalar coupling constants requires a high magnetic field. Besides, precisely measuring 

scalar coupling constants will make high resolution NMR experiments possible at low 

inhomogeneous fields. Described in this chapter is a new method that measures scalar 

coupling constants of spin systems at low inhomogeneous fields by indirect detection 

of singlet-state evolution. The potential application of special cases for molecules that 

contain more than one set of scalar coupling constants are studied in 4.1, while the 

method developed to obtain high resolution coupling spectra is given in 4.2. The 

experiment results of sample HEP is stated in 4.3, while the resolution of the method 

is discussed in 4.4. 

 

4.1. Introduction 

Precisely measuring scalar coupling constants in low inhomogeneous fields 

potentially enables NMR experiments including hyper-SHIELDED parameters, but 

also plays a vital role in studying the behavior of many special and important 

molecules. Examples are molecules like 1-labelled succinic acid. Although the 

molecule is also a simple three spin system (I1I2S) after deuteration and labeling one 

of the carbons, the behavior of the molecule in NMR is not similar to other three spin 

systems since the molecule has two sets of conformations, hence two sets of J 

coupling constants. Moreover, the scalar coupling constants of the molecule depend 

on pH as well. 
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4.1.1. Conformations 

Succinic acid normally exists in a superposition of three different conformations 

depending on pH [160-162]. Conformation I is called anti-periplanar conformation 

and II & III are called syn - clinal conformations. Different types of conformations 

lead to different chemical structures, in turn resulting in different sets of scalar 

coupling constants. For succinic acid molecules conformation II & III have the same 

scalar coupling constants, while conformation I has another set of scalar coupling 

constants. 

 

4.1.2. pH dependence of scalar coupling constants 

The scalar coupling constants of the molecule (also the chemical shift) appear to 

depend on environment pH, due to the fact that the molecule itself is an acid. While 

the environment pH increases, the molecule tends to lose protons on either side, or 

both sides when the pH is significantly higher. When the molecule gets ionized, the 

spin system changes since there is one less spin in the system and coupling constants 

get affected too. 

Succinic acid is dibasic weak acid with pka1 = 4.2, pka2 = 5.6. When placed in 

solvent like water, the molecule will start to ionize: 

  (4.1) 

Since pka1 = 4.2 and pka2 = 5.6, we get: 

- +

4 6 4 4 5 4

- 2- +

4 5 4 4 4 4

C H O   C H O + H   

C H O   C H O + H




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  (4.2) 

Here a represents the concentration of corresponding molecule or ions. 

From these equations follows that, at pH = 1, only 0.063% of the molecules are 

ionized, and most of them remain symmetric. At pH = 4.2, 50% of the molecules are 

ionized. At PH = 6, 98.5% of the molecules will be ionized, but 71.5% of them will be 

further ionized to C4H4O4
2-

, which is still symmetric. So at pH = 6.0 about 28.1% of 

the molecule exists in the form of C4H5O4
-
. And at pH = 7.0, only 3.8% of the 

molecules exists in the form of C4H5O4
-
 (Table 4.1 and Figure 4.1).  

 

Table 4.1. Percentage of theasymetric ion C4H5O4
-
in all three types of ions (C4H6O4, 

C4H5O4
-
, and C4H4O4

2-
) at different PH. 

pH 1 4.2 6.0 7.0 

C4H5O4
-
 (%) 0.063 50.0 28.1 3.8 

 

+ -
-4.2 -54 5 4

4 6 4

+ 2-
-5.6 -64 4 4

-

4 5 4

a(H ) a(C H O )
= 10 = 6.31 10

a(C H O )

a(H ) a(C H O )
= 10 = 2.51 10

a(C H O )






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Fig 4.1. Percentage of the asymmetric ion C4H5O4
-
in all three types of ions (C4H6O4, 

C4H5O4
-
, and C4H4O4

2-
) as a function of pH. 

 

It is also recently reported that the lifetime of the hyperpolarized 
13

C states in 

succinic acid are strongly dependent on pH. This arises due to the different 

concentrations of neutral, anion, and dianion forms with different environment pH 

[163]. 

 

4.2. Method: high resolution scalar coupling spectra 

 

4.2.1. Theoretical prediction of J-dependent polarization 

Indirectly detecting scalar coupling constants from hyper-SHIELDED is feasible 

since the polarization level depends only on two parameters (proton-proton coupling 

J12, and difference in proton-carbon-13 couplings |J1S - J2S|).  
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The polarization level dependence on each time interval has a period of (1/Ω). 

Therefore, if the experiment is conducted with one of the four time delays varying and 

the rest three fixed, the obtained data is supposed to be a periodic function with period 

1

Ω
. By Fourier transformation of the obtained data there will be a peak at Ω. The 

expression of Ω is: 

  (4.3) 

Apparently Ω depends on both scalar coupling constants (J12 and |J1S - J2S|). After Ω is 

found, we can adjust the other parameter θ to best fit the obtained data. θ is also a 

function of both parameters: 

  (4.4) 

After both Ω and θ are obtained, both J coupling constants (J12 and |J1S - J2S|) could be 

calculated from the equations. The final polarization level of a given molecule with 

the four time intervals from hyper-SHIELDED could be calculated as: 

  (4.5) 

2

12

1S 2S

12

Ω = J 1+Δ

J - J
Δ =

2J

2

2

1
sinθ =

1+Δ

Δ
cosθ =

1+Δ

2 1 2

1 2

3 4

2 2

3 4

3 4

Pol = [sinθsin2θsin(2πΩt ) + cosθcos2θcos(2πΩt )sin(2πΩt )

-cosθsin(2πΩt )cos(2πΩt )]

1 1
×[ sin4θ + sin4θcos(2πΩt )cos(2πΩt )

4 4

+sin2θ(sin θcos(2πΩt ) - cos θcos(2πΩt ))

+cosθsinθsin(2πΩt )sin(2πΩt )]

1
- sin2θ[(cos2

2

2 2

2 1

1 2 1 2

3 4 3

3 4

θ + 2sin θcos(2πΩt ) - 2cos θcos(2πΩt )

+cos2θcos(2πΩt )cos(2πΩt ) + sin(2πΩt )sin(2πΩt )]

×[cosθcos(2πΩt )sin(2πΩt ) - sinθsin2θsin(2πΩt )

-cosθcos2θsin(2πΩt )cos(2πΩt )]



 104 

Equation 4.7 shows how theoretical polarization varies with evolution delays in the 

hyper-SHIELDED sequence. Once the multidimensional experiment data is obtained, 

by fitting into this equation, both coupling constants (J12 and |J1S - J2S|) can be 

extracted. Since the evolution is independent of field homogeneities, the values of J 

can be determined with a resolution much higher than the native field homogeneity. 

This enables a version of high resolution NMR with even crude, inexpensive magnets. 

 

4.2.2. Experimental section 

The experiment for extracting J coupling constants of HEP uses a 

multidimensional implementation of hyper-SHIELDED to generate a curve of 

polarization level, which was then fit to theory to extract couplings. 

The experiment steps of synthesis of parahydrogen gas, PASADENA precursor 

preparation, and catalytic hydrogenation are exactly the same as section 2.4. The 

difference is the pulse sequence applied.  

The pulse sequence used to transfer polarization level was a sparsely sampled, 

multidimensional implementation of the hyper-SHIELDED pulse sequence where all 

four time intervals were varied (Figure 4.3). Briefly, the pulse sequence consisted of 

four major pulses. First, after the initial density matrix evolves during interval t1, a 180x 

pulse on proton is applied, and then let the density matrix evolve for another interval t2. 

A 90y pulse on the heteronucleus S spin then converted the 
13

C signal of the test 

molecule to transverse plane. The state then evolves for time interval t3, with a proton 

180x pulse applied afterwards, and the state then evolves for the last interval t4. Finally, 
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a 90x pulse converts the 
13

C signal back to longitudinal magnetization on the 

heteronucleus for storage until subsequent detection. The pulse sequence diagram and 

schematic of spin evolution is illustrated in Figure 4.2. By carefully choosing the four 

time intervals the polarization level could reach unitary. Here, in order to effectively 

extract J coupling constants, we repeat the experiment n times with different time 

interval sets (t1, t2, t3,t4)
k
 to obtain a series of polarization level data. 

 

 

Figure 4.2. Schematic for the multidimensional NMR experiment used to measure 

scalar coupling constants, with evolution of density matrix components (upper graph) 

and the associated pulse sequence (lower graph) for focusing parahydrogen 

singlet-states (I1I2) into magnetization on an adjacent coupled (S) nucleus for strongly 

coupled I1I2S spin systems. Symbols (3a-c, 4a-c) correspond to components of the 

density operator (Appendix A). A multidimensional set of free induction decay (FID) 

is acquired with a set of evolution delays in hyper-SHIELDED sequence. The transfer 

of polarization from singlet-state to 
13

C depends on both J12 (proton-proton coupling) 

and ΔJ (difference in proton-carbon-13 couplings, |J1S - J2S|). 

 

The pulse sequences for transferring polarization were applied immediately after 

continuous wave decoupling was turned off (Figure 4.2) with a set of different time 

intervals. The polarization level depends on both time intervals and scalar coupling 
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constants. After each experiment, a single free induction decay was acquired with 512 

points at a receiver bandwidth of 5 kHz, for a digital resolution of ~10 Hz per point. 

The process was repeated for 48 times with 48 different sets of intervals. 

 

4.3. Experiment Results 

With various time intervals from hyper-SHIELDED, a series of polarization 

levels was obtained, from which both scalar coupling constants can be detected (J12 

and |J1S - J2S|) of the sample HEP.  

Described here is a new method that indirectly detects scalar coupling constants of 

spin systems by the use of hyper-SHIELDED pulse sequence. Hyper-SHILEDED 

transforms parahydrogen spin order in the strong coupling regime of protons into net 

heteronuclear magnetization in three spin-systems (I1I2S). The I1I2S moiety is a 

widespread and important spin system in PHIP experiments formed for example, by 

molecular addition of parahydrogen to perdeuterated and unsaturated molecular 

backbones. The sequence flanks two asymmetric proton refocusing intervals about a 

heteronuclear excitation pulse to generate four unique intervals (t1,t2,t3,t4). 

Optimization of these delays to spin couplings in the molecule of interest sequentially 

converts the initial parahydrogen singlet-state into pure heteronuclear magnetization. 

Therefore, the efficiency of hyper-SHIELDED depends on both scalar coupling 

constants of the spin system, and the set of intervals (t1, t2, t3, t4) (Equation 4.5). The 

method is to apply multidimensional experiments by the use of hyper - SHIELDED 
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with different sets of intervals, and acquire free induction decays (FID) for each set. 

Polarization level is calculated from each FID, and fitted to theory (Equation 4.5).  

To validate the method, a set of experimental heteronuclear polarization level 

was compared to theory to extract scalar coupling constants (Figure 4.3). 
13

C 

magnetization was yielded in a 7 micromole sample of the PHIP reaction product, 2 - 

hydroxyethyl 1-
13

C-propionate-d3. The fitting of experimental data to theory yields J 

coupling constants as J12 = 7.45 Hz and ΔJ = 11.30 Hz for the sample. 

 

 

Figure 4.3. Fitting of experimental (solid squares) polarization data (48 sets) to theory 

(dash circles) using the hyper-SHIELDED sequence. Here we chose average 

polarization level as 0, and all results are shown with deviation from it. The fitting 

yielded J coupling constants for our sample as J12=7.45 Hz and |J1S-J2S|=11.30 Hz. 

 

4.4. Discussion 

The method described here is to obtain sets of experimental polarization level 

data with different sets of time intervals from hyper-SHIELDED sequence, and fit to 

theory to extract scalar coupling constants. The resolution of the method depends on 

the precision of experiments. To characterize the resolution of our method to measure 
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scalar coupling constants, a Monte Carlo model was applied to determine the 

confidence interval of the obtained scalar coupling constants. The method makes use 

of a multidimensional implementation of the hyper-SHIELDED polarization transfer 

sequence and fits the resulting experimental polarization levels to theory in order to 

extract scalar coupling constants of the sample. The resolution of the method depends 

on the experimental error. Due to the differences in samples, devices, solvent, and 

experiment environment, the experimental results could randomly differ from the 

actual value. Here the Monte Carlo model is constructed to conduct 10
4
 groups of 

fictitious experiments and measure corresponding scalar coupling constants with 

random experiment errors. In each group, there are 48 experiments. The experiment 

polarization level of each experiment though, is set at ±5% standard deviation error 

from theoretical values. Therefore, by fitting all 10
4
 groups of randomly scattered data, 

the results are shown in Figure 4.4. 
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Figure 4.4. 2D contour of frequency as a function of both J12 and |J1S-J2S|. The Monte 

Carlo model for extracting J coupling constants of sample HEP shows dependence of 

frequency on both J coupling constants (J12 and |J1S - J2S|). The model conducts 10
4
 

fictitious experiments and extracts both coupling constants with random experiment 

error at standard experimental deviation of 5%. The calculated values and resolution 

of both J coupling constants are J12=7.45 ± 0.05Hz and (J1S - J2S) =11.30 ± 0.12 Hz 

within 95% confidence interval. 

 

As illustrated in Figure 4.4, it could be calculated that within 95% confidence 

interval, the value of J12 is 7.45 ± 0.05 Hz, while |J1S - J2S| is 11.30 ± 0.12 Hz. This is 

the confidence interval for experiments within 5% standard deviation from theoretical 

values, and the resolution is within 0.1 Hz for both coupling constants (the resolution 

of |J1S - J2S| results from both J1S and J2S). 

The resolution decreases as the experiment standard error increases. If the 

experiment error increases to 10% or 15%, the corresponding error range increases as 

well. The calculated corresponding resolution of scalar coupling constants to 
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experiments with standard deviation 10% and 15% are J12=7.45 ± 0.09Hz and (J1S - 

J2S) = 11.30 ± 0.26Hz (10% standard deviation), and J12=7.45 ± 0.13Hz and (J1S - J2S) 

=11.30 ± 0.37Hz (15% standard deviation). The comparison graph for 5%, 10% and 

15% standard deviation are provided in Figure 4.5. 

 

 

Figure 4.5. Monte Carlo model showing dependence of frequency on proton-proton 

coupling J12 (upper graph) and difference in proton-carbon-13 coupling |J1S-J2S| (lower 

graph), with experiment standard deviation 5% (solid), 10% (dot), and 15% (dash). 

The model conducts 10
4
 trial experiments and extracts both coupling constants with 

random experiment error. The calculated coupling constants are J12=7.45 ± 0.05 Hz (5% 

standard deviation), 7.45 ± 0.09 Hz (10% standard deviation), and 7.45 ± 0.13 Hz (15% 

standard deviation); while |J1S - J2S|=11.30 ± 0.12 Hz (5% standard deviation), 11.30 ± 

0.26 Hz (10% standard deviation), and 11.30 ± 0.37 Hz (15% standard deviation). 
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APPENDIX A 

 

PRODUCT OPERATORS FOR AA'X SPIN SYSTEMS 

 

Section 2.2 shows some examples of the product operators for I1I2S spin systems. 

To study the correct expression of evolution of each state and calculate the optimum 

method of polarization level transfer, the form of the entire product operator and most 

rotation operators are necessary. 

 

A.1. Matrix Representation of Major Product Operators 

The basic preparation before studying the I1I2S spin system is the complete form 

of all the major product operators. The list of major product operators is given in this 

section, including the x, y, and z components of two protons in parahydrogen 

singlet-state and a heteronucleus (
13

C, for example). In all product operators the 8 spin 

states are ordered as |ααα>, |ααβ>, |αβα>, |βαα>, |αββ>, |βαβ>, |ββα>, |βββ>. 

 

A.1.1. Product operators for protons 

The two protons from parahydrogen are labeled as I1 and I2. Below is a list of 

product operators for both protons. 
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  (A.1) 

 

  (A.2) 

 

  (A.3) 

 

  (A.4) 

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 01
=

0 0 0 0 0 0 0 12

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 

1xI

0 0 0 -1 0 0 0 0

0 0 0 0 0 -1 0 0

0 0 0 0 0 0 -1 0

1 0 0 0 0 0 0 0i
=

0 0 0 0 0 0 0 -12

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 

1yI

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 -1 0 0 0 01
=

0 0 0 0 1 0 0 02

0 0 0 0 0 -1 0 0

0 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 -1

 
 
 
 
 
 
 
 
 
 
 
 
 

1zI

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 01
=

0 1 0 0 0 0 0 02

0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 

2xI
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  (A.5) 

 

  (A.6) 

 

A.1.2. Product operators for heteronuclei 

The basic product operators for the heteronucleus (labeled as S) are: 

 

  (A.7) 

 

0 0 -1 0 0 0 0 0

0 0 0 0 -1 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 -1 0i
=

0 1 0 0 0 0 0 02

0 0 0 0 0 0 0 -1

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 

2yI

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 -1 0 0 0 0 0

0 0 0 1 0 0 0 01
=

0 0 0 0 -1 0 0 02

0 0 0 0 0 1 0 0

0 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 -1

 
 
 
 
 
 
 
 
 
 
 
 
 

2zI

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 01
=

0 0 1 0 0 0 0 02

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
 
 

xS
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  (A.8) 

 

  (A.9) 

 

A.2. Rotations 

As described in section 3.1, all rotating pulses could be represented by a rotation 

matrix in the product operator basis. In this section the commonly used pulses (90º 

and 180º) for all AA'X spins are presented. 

 

A.2.1. 90 degree rotations for protons 

Propagators listed below are the operators that rotate the protons (I1 and I2) by 

90º around either x or y axis. 

 

0 -1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 -1 0 0 0

0 0 0 0 0 -1 0 0i
=

0 0 1 0 0 0 0 02

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 -1

0 0 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
 
 

yS

1 0 0 0 0 0 0 0

0 -1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 01
=

0 0 0 0 -1 0 0 02

0 0 0 0 0 -1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 -1

 
 
 
 
 
 
 
 
 
 
 
 
 

zS
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  (A.10) 

 

  (A.11) 

 

  (A.12) 

 

  (A.13) 

1 0 0 i 0 0 0 0

0 1 0 0 0 i 0 0

0 0 1 0 0 0 i 0

i 0 0 1 0 0 0 0π 1
( ) =

0 0 0 0 1 0 0 i2 2

0 i 0 0 0 1 0 0

0 0 i 0 0 0 1 0

0 0 0 0 i 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 

1I

xR

1 0 i 0 0 0 0 0

0 1 0 0 i 0 0 0

i 0 1 0 0 0 0 0

0 0 0 1 0 0 i 0π 1
( ) =

0 i 0 0 1 0 0 02 2

0 0 0 0 0 1 0 i

0 0 0 i 0 0 1 0

0 0 0 0 0 i 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 

2I

xR

1 0 1 i 0 0 -1 0

0 1 0 0 i i 0 -1

i 0 1 -1 0 0 i 0

i 0 -1 1 0 0 i 0π 1
( ) =

0 i 0 0 1 -1 0 i2 2

0 i 0 0 -1 1 0 i

-1 0 i -1 0 0 i 0

0 -1 0 0 i i 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 

I

xR

1 0 0 1 0 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

-1 0 0 1 0 0 0 0π 1
( ) =

0 0 0 0 1 0 0 12 2

0 -1 0 0 0 1 0 0

0 0 -1 0 0 0 1 0

0 0 0 0 -1 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 

1I

yR
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  (A.14) 

 

  (A.15) 

 

A.2.2. 180 degree rotations for protons 

Propagators listed below are the operators that rotate the protons by 180º around 

either x or y axis. 

 

  (A.16) 

 

1 0 1 0 0 0 0 0

0 1 0 0 1 0 0 0

-1 0 1 0 0 0 0 0

0 0 0 1 0 0 1 0π 1
( ) =

0 -1 0 0 1 0 0 02 2

0 0 0 0 0 1 0 1

0 0 0 -1 0 0 1 0

0 0 0 0 0 -1 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 

2I

yR

1 0 1 1 0 0 1 0

0 1 0 0 1 1 0 1

-1 0 1 -1 0 0 1 0

-1 0 -1 1 0 0 1 0π 1
( ) =

0 -1 0 0 1 -1 0 12 2

0 -1 0 0 -1 1 0 1

1 0 -1 -1 0 0 1 0

0 1 0 0 -1 -1 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 

I

yR

0 0 0 i 0 0 0 0

0 0 0 0 0 i 0 0

0 0 0 0 0 0 i 0

i 0 0 0 0 0 0 0
(π) =

0 0 0 0 0 0 0 i

0 i 0 0 0 0 0 0

0 0 i 0 0 0 0 0

0 0 0 0 i 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 

1I

xR



 117 

  (A.17) 

 

  (A.18) 

 

  (A.19) 

 

  (A.20) 

0 0 i 0 0 0 0 0

0 0 0 0 i 0 0 0

i 0 0 0 0 0 0 0

0 0 0 0 0 0 i 0
(π) =

0 i 0 0 0 0 0 0

0 0 0 0 0 0 0 i

0 0 0 i 0 0 0 0

0 0 0 0 0 i 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 

2I

xR

0 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 -1

0 0 0 -1 0 0 0 0

0 0 -1 0 0 0 0 0
(π) =

0 0 0 0 0 -1 0 0

0 0 0 0 -1 0 0 0

-1 0 0 0 0 0 0 0

0 -1 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 

I

xR

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

-1 0 0 0 0 0 0 0
(π) =

0 0 0 0 0 0 0 1

0 -1 0 0 0 0 0 0

0 0 -1 0 0 0 0 0

0 0 0 0 -1 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 

1I

yR

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

-1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0
(π) =

0 -1 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 -1 0 0 0 0

0 0 0 0 0 -1 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 

2I

yR
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  (A.21) 

 

A.2.3. 90 degree rotations for a heteronucleus 

Propagators listed below are the operators that rotate the heteronucleus S by 90º 

around either x or y axis. 

 

  (A.22) 

 

  (A.23) 

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 -1 0 0 0 0

0 0 -1 0 0 0 0 0
(π) =

0 0 0 0 0 -1 0 0

0 0 0 0 -1 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 

I

yR

1 i 0 0 0 0 0 0

i 1 0 0 0 0 0 0

0 0 1 0 i 0 0 0

0 0 0 1 0 i 0 0π 1
( ) =

0 0 i 0 1 0 0 02 2

0 0 0 i 0 1 0 0

0 0 0 0 0 0 1 i

0 0 0 0 0 0 i 1

 
 
 
 
 
 
 
 
 
 
 
 
 

s

xR

1 1 0 0 0 0 0 0

-1 1 0 0 0 0 0 0

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0π 1
( ) =

0 0 -1 0 1 0 0 02 2

0 0 0 -1 0 1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 -1 1

 
 
 
 
 
 
 
 
 
 
 
 
 

S

yR
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A.2.4. 180 degree rotations for heteronuclei 

Propagators listed below are the operators that rotate the heteronucleus S by 180º 

around either x or y axis. 

 

  (A.24) 

 

  (A.25) 

 

A.3. Hamiltonian and Related State 

 

A.3.1 Hamiltonian 

The Hamiltonian of the three spin system, as stated in section 3.1, is: 

0 i 0 0 0 0 0 0

i 0 0 0 0 0 0 0

0 0 0 0 i 0 0 0

0 0 0 0 0 i 0 0
(π) =

0 0 i 0 0 0 0 0

0 0 0 i 0 0 0 0

0 0 0 0 0 0 0 i

0 0 0 0 0 0 i 0

 
 
 
 
 
 
 
 
 
 
 
 
 

S

xR

0 1 0 0 0 0 0 0

-1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0
(π) =

0 0 -1 0 0 0 0 0

0 0 0 -1 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 -1 0

 
 
 
 
 
 
 
 
 
 
 
 
 

S

yR
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 (A.26) 

The eigenvalues and eigenfunctions of the Hamiltonian, which is used to study 

the evolution of states, could be calculated. The eigenvalues of the J coupling 

Hamiltonian are: 

 

12 1S 2S

12 1S 2S

12 1S 2S 12

12 12 1S 2S

12 1S 2S 12

12 12 1S 2S

12 1S 2S

1
(J + J + J ) 0 0 0

4

1
0 (J - J - J ) 0 0

4

1 1
0 0 (-J + J - J ) J

4 2
= 2π 1 1

0 0 J (-J - J + J )
2 4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1
(-J - J + J ) J 0 0

4 2

1 1
J (-J + J - J ) 0 0

2 4

1
0 0 (J - J - J ) 0

4



















H

12 1S 2S

1
0 0 0 (J + J + J )

4


















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  (A.27) 

The corresponding eigenfunctions are: 

  (A.28) 

By using the eigenvalues and eigenstates of the Hamiltonian, the evolution of 

states for I1I2S spin systems could be studied. 

 

A.3.2. Related states 

The initial state, σ0=I1xI2x + I1yI2y, is (neglecting I1zI2z term which does not 

evolve under the Hamiltonian):  

 

1 12 1S 2S

2 12 1S 2S

2 2

3 12 12 1S 2S

2 2

4 12 12 1S 2S

1
λ = (J + J + J )

4

1
λ = (J - J - J )

4

1 1
λ = - J + 4J + (J - J )

4 4

1 1
λ = - J - 4J + (J - J )

4 4

1

1

2

3

2

4

2

5

3
2

6

2

7

4
2

8

1S 2S

12

j =| ααα >
λ

j =| βββ >

j =| ααβ >
λ

j =| ββα >

j =| αβα > +( 1+Δ -Δ) | βαα >
λ

j = ( 1+Δ -Δ) | αββ > + | βαβ >

j =| αβα > +(- 1+Δ -Δ) | βαα >
λ

j = (- 1+Δ -Δ) | αββ > + | βαβ >

J - J
Δ =

2J

















 
 
 
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  (A.29) 

Other states in the first step include: 

  (A.30) 

 

  (A.31) 

The state in Equation A.31 is the state we chose to evolve in step 2. After 

evolving to this state, a 90º pulse on S channel is applied to convert the state to: 

 

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 01
=

0 0 0 0 0 1 0 02

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 

0σ

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 -i 0 0 0 0

0 0 i 0 0 0 0 01
2( - ) =

0 0 0 0 0 i 0 02

0 0 0 0 -i 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 

1y 2x 1x 2y zI I I I S

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 -1 0 0 0 01
( - ) =

0 0 0 0 -1 0 0 02

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 

1z 2z zI I S
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  (A.32) 

The other states used in step 2 include: 

  (A.33) 

The final state we got from the sequence, representing carbon polarization, Sy(I - 

4I1zI2z), is: 

  (A.34) 

In the end a 90ºx pulse is applied on S channel to convert the state to S 

polarization Sz(I - 4I1zI2z). 

 

 

 

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 -1 0 01
( - ) =

0 0 1 0 0 0 0 02

0 0 0 -1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 
 
 
 
 
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 
 

x 1z 2zS I I
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2 ( - ) =

0 0 0 -i 0 0 0 02

0 0 i 0 0 0 0 0
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0 0 0 0 0 0 0 0

 
 
 
 
 
 
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 
 
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0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 

finalσ
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APPENDIX B 

 

PRODUCT OPERATORS FOR I1I2SR SPIN SYSTEMS 

 

Section 3.2 describes how the lifetime could be determined from evolution. 

Section 3.3 shows some examples of the product operators for AA'XY spin systems. 

To study the correct expression of evolution of each state and calculate the optimum 

method of polarization level transfer, the form of the entire product operator and most 

rotation operators are necessary. As Appendix A, here we show a list of the basic 

operators that are essential to evolution analysis. 

 

B.1. Matrix representation of major product operators 

As in Appendix A, first the basic product operators are given in this section, 

including the x, y, and z components of both protons from parahydrogen and both 

heteronuclei (
13

C, for example). For I1I2SR spin systems all matrix representation 

become 16×16 matrix instead of 8×8 in three spin cases. In all product operators the 

16 spin states are ordered as |αααα>, |αααβ>, |ααβα>, |αβαα>, |βααα>, |ααββ>, 

|αβαβ>, |αββα>, |βααβ>, |βαβα>, |ββαα>, |αβββ>, |βαββ>, |ββαβ>, |βββα>, and 

|ββββ>. 

 

B.1.1. Product operators for protons 

The two protons from parahydrogen are labeled as I1 and I2. Below is a list of 
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product operators for both protons. 

  (B.1) 

 

  (B.2) 

 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 01
=

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 02

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0

1x
I

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0i
=

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 02

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

1y
I

0 0 0 0 -1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
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  (B.3) 

 

  (B.4) 

 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 01
=

0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 02

0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

1z
I

0 0

0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 01
=

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 02

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0

2x
I

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
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  (B.5) 

 

  (B.6) 

 

0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0i
=

0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 02

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

2y
I

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
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 
 
 
 
 
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 
 
 
 
 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 01
=

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 02

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 -1 0

2z
I

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

 
 
 
 
 
 
 
 
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B.1.2. Product operators for heteronuclei 

The basic product operators for the heteronuclei (labeled as S an R) are: 

  (B.7) 

 

  (B.8) 

 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 01
=

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 02

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0

x
S

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

 
 
 
 
 
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 
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0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0i
=

0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 02

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0

0 0 0 0 0 0 1 0 0 0 0 0

y
S

0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

 
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  (B.9) 

 

  (B.10) 

 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 01
=

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 02

0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 -1 0 0

z
S

0 0

0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

 
 
 
 
 
 
 
 
 
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 
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 
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 
 
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0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 01
=

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 02

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0

x
R

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

 
 
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  (B.11) 

 

  (B.12) 

 

0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0i
=

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 02

0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0

0 0 0 0 0 0 0 1 0 0 0 0

y
R

0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

 
 
 
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 
 
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 
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 
 
 
 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 01
=

0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 02

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 -1 0 0

z
R

0 0

0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

 
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B.2. Rotations  

In this section the commonly used pulses (90º and 180º) for all four spins are 

presented. 

 

B.2.1. 90 degree rotations for protons 

Propagators listed below are the operators that rotate the protons by 90º around 

either x or y axis. 

 

  (B.13) 

 

π
( ) =
2

1 0 0 i i 0 0 0 0 0 -1 0 0 0 0 0

0 1 0 0 0 0 i 0 i 0 0 0 0 -1 0 0

0 0 1 0 0 0 0 i 0 i 0 0 0 0 -1 0

i 0 0 1 -1 0 0 0 0 0 i 0 0 0 0 0

i 0 0 -1 1 0 0 0 0 0 i 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 i i 0 0 -1

0 i 0 0 0 0 1 0 -1 0 0 0 0 i 0 0

0 0 i 0 0 0 0 1 0 -1 0 0 0 0 i 01

0 i 0 0 0 0 -1 0 1 0 0 0 0 i 0 02

0 0 i 0 0 0 0 -1 0 1 0 0 0 0 i 0

-1 0 0 i i 0 0 0 0 0 1 0 0 0 0 0

0 0 0

I

x
R

0 0 i 0 0 0 0 0 1 -1 0 0 i

0 0 0 0 0 i 0 0 0 0 0 -1 1 0 0 i

0 -1 0 0 0 0 i 0 i 0 0 0 0 1 0 0

0 0 -1 0 0 0 0 i 0 i 0 0 0 0 1 0

0 0 0 0 0 -1 0 0 0 0 0 i i 0 0 1

 
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  (B.14) 

 

B.2.2. 90 degree rotations for heteronuclei 

Propagators listed below are the operators that rotate the heteronuclei (S or R) by 

90º around either x or y axis. 

π
( ) =
2

1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0

-1 0 0 1 -1 0 0 0 0 0 1 0 0 0 0 0

-1 0 0 -1 1 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1

0 -1 0 0 0 0 1 0 -1 0 0 0 0 1 0 0

0 0 -1 0 0 0 0 1 0 -1 0 0 0 0 1 01

0 -1 0 0 0 0 -1 0 1 0 0 0 0 1 0 02

0 0 -1 0 0 0 0 -1 0 1 0 0 0 0 1 0

1 0 0 -1 -1 0 0 0 0 0 1 0 0 0 0 0

I

y
R

0 0 0 0 0 -1 0 0 0 0 0 1 -1 0 0 1

0 0 0 0 0 -1 0 0 0 0 0 -1 1 0 0 1

0 1 0 0 0 0 -1 0 -1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 -1 0 -1 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 -1 -1 0 0 1
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  (B.15) 

 

  (B.16) 

 

π
( ) =
2

1 0 i 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 i 0 0 0 0 0 0 0 0 0 0

i 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 i 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 i 0 0 0 0 0 0

0 i 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 i 0 0 0 0

0 0 0 i 0 0 0 1 0 0 0 0 0 0 0 01

0 0 0 0 0 0 0 0 1 0 0 0 i 0 0 02

0 0 0 0 i 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 i 0

0 0 0 0 0 0 i 0 0 0 0 1 0 0

S

x
R

0 0

0 0 0 0 0 0 0 0 i 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 i

0 0 0 0 0 0 0 0 0 0 i 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 i 0 1
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  (B.17) 

 

  (B.18) 
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B.2.3. 180 degree rotations for protons 

Propagators listed below are the operators that rotate the protons by 180º around 

either x or y axis. 

  (B.19) 
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  (B.20) 

 

B.2.4. 180 degree rotations for heteronuclei 

Propagators listed below are the operators that rotate the heteronuclei (S or R) by 

180º around either x or y axis. 
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  (B.21) 

 

  (B.22) 
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  (B.23) 

 

  (B.24) 
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B.3 Hamiltonian and related states 

 

B.3.1. Hamiltonian 

The Hamiltonian of the I1I2SR spin system, as stated in section 3.3, is: 

 

  

 

12 1S 1R 2S 2R SR

12 1S 1R 2S 2R SR

12 1S 1R 2S 2R SR

12 1S 1R 2S 2R SR
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(B.25) 

 

The eigenvalues and eigenfunctions of the Hamiltonian could then be calculated. 

The eigenvalues of the J coupling Hamiltonian for the AA'XY spin systems are: 
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 (B.26) 

 

The corresponding eigenfunctions are: 

 

1 12 1S 1R 2S 2R SR

2 12 1S 1R 2S 2R SR

3 12 1S 1R 2S 2R SR

4 12 1S 1R 2S 2R SR

2 2 2

5 12 12 1S 1R 1S 2S 1R 2S 2S 2R 1S 2R 1R 2R SR

6

1
λ = (J + J + J + J + J + J )

4

1
λ = (J + J - J + J - J - J )

4
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λ = (J - J + J - J + J - J )
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λ = [-J - 4J + (J - J ) - 2J J + 2J J + (J - J ) + 2J J - 2J J - J ]
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λ =
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2 2 2

12 12 1S 1R 1S 2S 1R 2S 2S 2R 1S 2R 1R 2R SR

2 2 2

7 12 12 1S 1R 1S 2S 1R 2S 2S 2R 1S 2R 1R 2R SR

2 2 2

8 12 12 1S 1R 1S 2S 1R 2S 2S 2R

[-J + 4J + (J - J ) - 2J J + 2J J + (J - J ) + 2J J - 2J J - J ]

1
λ = [-J - 4J + (J + J ) - 2J J - 2J J + (J + J ) - 2J J - 2J J - J ]

4

1
λ = [-J + 4J + (J + J ) - 2J J - 2J J + (J + J ) -

4
1S 2R 1R 2R SR2J J - 2J J - J ]
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  (B.27) 

By using the eigenvalues and eigenfunctions the evolution of states for the I1I2SR 

spin systems can then be studied.  

 

B.3.2. Related states 

The initial singlet-state, σ0, is: 
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  (B.28) 

The other states showing up in the first step are: 
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  (B.30) 
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  (B.32) 

 

  (B.33) 
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Equation B.32 is the state chosen in the first step. After a 90y pulse on S the state 

becomes: 

 

  (B.34) 

The other states showing up in step two are: 
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  (B.35) 

  (B.36) 
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  (B.37) 

 

  (B.38) 
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  (B.39) 

 

 

  (B.40) 

The final state after step two, Sy(I - 4I1zI2z), representing net magnetization on 
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heteronucleus S, is: 

  (B.41) 
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APPENDIX C 

 

EVOLUTION OF ALL STATES IN AA'XY SPIN SYSTEMS 

 

To find the optimum method to control the evolution of states by pulse sequence, 

it is necessary to study the precise evolution pattern for each state, which could be 

calculated by using the matrix and Hamiltonian mentioned in Appendix B. In this 

chapter the evolutions of each state from the initial singlet-state to the final 

heteronuclear polarization state are presented below. 

 

C.1. Evolution of the initial singlet-state 

Upon hydrogenation, the singlet-state starts to evolve from its initial form (I1xI2x 

+ I1yI2y). The evolution pattern for this state and all other related states are listed 

below (3a-f). 
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  (C.3) 
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  (C.5) 

 

 

  (C.6) 

 

Equation C.5, the state of (I1z - I2z)Sz, is the state we chose to start step two. 

 

C.2. Evolution to heteronuclear net magnetization 

After extracting the maximum of the state we chose above, (I1z - I2z)Sz, a 90y 

pulse on S channel is applied to rotate the state to (I1z - I2z)Sx. In this section we study 

the evolution pattern of this state and other related states in step 2. 

2 2 2 2
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2

1
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 (C.7) 

 

 

 

 (C.8) 
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( - )(t)
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 (C.9) 

 

 

 

 (C.10) 
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2

-sin(πJ t)[cosθ sin(πΩ t)cos(πΩ t) + cosθ cos(πΩ t)sin(πΩ t)]2 ( - )

-cos(πJ t)[cosθ sin(πΩ t)cos(πΩ

y 1z 2z

y 1z 2z

y 1z 2z z

S I I I

S I I I

S I I R

2 1 2

SR 1 2 1 2 1 2

SR 1 1 2 2 1 2

t) + cosθ cos(πΩ t)sin(πΩ t)] ( - )

-sin(πJ t)[cos(πΩ t)cos(πΩ t) - cos(θ +θ )sin(πΩ t)sin(πΩ t)] ( - 4 )

-cos(πJ t)[sinθ sin(πΩ t)cos(πΩ t) - sinθ cos(πΩ t)sin(πΩ t)]4 ( + )

+sin(πJ

x 1z 2z

x 1z 2z z

x 1x 2x 1y 2y z

S I I

S I I I R

S I I I I R

SR 1 2 1 2

SR 1 2 1 2

SR 1 1 2 2 1 2

t)[sin(θ +θ )sin(πΩ t)sin(πΩ t)]4 ( - )

+cos(πJ t)[sin(θ +θ )sin(πΩ t)sin(πΩ t)]2 ( - )

-sin(πJ t)[sinθ sin(πΩ t)cos(πΩ t) - sinθ cos(πΩ t)sin(πΩ t)]2 ( + )

y 1y 2x 1x 2y z

x 1y 2x 1x 2y

y 1x 2x 1y 2y

S I I I I R

S I I I I

S I I I I

SR 1 2 1 2 1 2

SR 1 1 2 2 1 2

SR 1 1 2

2 ( - ) (t)

= cos(πJ t)[cos(πΩ t)cos(πΩ t) - cos(θ -θ )sin(πΩ t)sin(πΩ t)]2 ( - )

1
-sin(πJ t)[cosθ sin(πΩ t)cos(πΩ t) + cosθ cos(πΩ t)sin(πΩ t)] ( - 4 )

2

-cos(πJ t)[cosθ sin(πΩ t)cos(πΩ t

y 1z 2z z

y 1z 2z z

y 1z 2z

S I I R

S I I R

S I I I

2 1 2

SR 1 2 1 2 1 2

SR 1 1 2 2 1 2

S

) + cosθ cos(πΩ t)sin(πΩ t)] ( - 4 )

-sin(πJ t)[cos(πΩ t)cos(πΩ t) - cos(θ -θ )sin(πΩ t)sin(πΩ t)] ( - )

-cos(πJ t)[sinθ sin(πΩ t)cos(πΩ t) + sinθ cos(πΩ t)sin(πΩ t)]4 ( - )

+sin(πJ

x 1z 2z z

x 1z 2z

y 1y 2x 1x 2y z

S I I I R

S I I

S I I I I R

R 1 2 1 2

SR 1 2 1 2

SR 1 1 2 2 1 2

t)[sin(θ -θ )sin(πΩ t)sin(πΩ t)]4 ( + )

-cos(πJ t)[sin(θ -θ )sin(πΩ t)sin(πΩ t)]2 ( + )

+sin(πJ t)[sinθ sin(πΩ t)cos(πΩ t) + sinθ cos(πΩ t)sin(πΩ t)]2 ( - )

x 1x 2x 1y 2y z

y 1x 2x 1y 2y

x 1y 2x 1x 2y

S I I I I R

S I I I I

S I I I I



 157 

 (C.11) 

 

 

 

 (C.12) 
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 (C.13) 

 

 

 

 (C.14) 

 

The final state, Equation C.9, is the state representing heteronuclear polarization. 

In the end of the pulse sequence, a 90x pulse rotate the state to the polarized 

heteronucleus, Sz(I - 4I1zI2z).  
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APPENDIX D 

 

SOURCE CODE 

 

As shown in Chapter II, III, and Appendix A and B, the product operator basis 

used to simulate the quantum spin states and their evolution under Hamiltonian are 

mostly represented by density operators. Matlab was used to simulate the spin 

evolutions and these codes are shown below. 

 

D.1. Pulse programs for hyper-SHIELDED 

In a 3 spin system (I1I2S), each quantum spin state could be represented by a 8x8 

density matrix. The spin evolutions could therefore be represented by the evolution of 

density matrix. The hyper-SHIELDED sequence, as we described in Chapter II, is 

illustrated in Figure D.1. 
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Figure D.1. Graphical depiction of evolution of density matrix components (upper 

graph) and the hyper - SHIELDED sequence (lower graph) for focusing parahydrogen 

singlet-states (I1I2) into pure magnetization on an adjacent coupled (S) nucleus for 

strongly coupled I1I2S spin systems. Symbols (3a-c, 4a-c) correspond to components of 

the density operator. 

 

The effective pulses in hyper - SHIELDED are two 180°(+x) pulses on proton 

channel, with two 90°(+x and +y) pulses on 
13

C channel. The Hamiltonian, initial 

density matrix, along with the evolution of states during the process are described in 

Chapter II. Below is the Matlab code to calculate the final density matrix after 

applying hyper-SHIELDED sequence to a given molecule with known scalar coupling 

constants. 

 

Function [rou] = HyperSHIELDED(J,t) 

% function to calculate the final density matrix after HyperSHIELDED 

% Sequenceapplied to a spin system with given J coupling constants 

 

% I1 represents one of the singlet protons 

I1x=zeros(8);                       % I1x refers to the transverse x  

I1x(1,4)=0.5;                       % component of the proton I1  

I1x(2,6)=0.5; 

I1x(3,7)=0.5; 
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I1x(4,1)=0.5; 

I1x(5,8)=0.5; 

I1x(6,2)=0.5; 

I1x(7,3)=0.5; 

I1x(8,5)=0.5; 

 

I1y=zeros(8);                       % I1y refers to the transverse y  

I1y(1,4)=-0.5*1i;                   % component of the proton I1  

I1y(2,6)=-0.5*1i; 

I1y(3,7)=-0.5*1i; 

I1y(4,1)=0.5*1i; 

I1y(5,8)=-0.5*1i; 

I1y(6,2)=0.5*1i; 

I1y(7,3)=0.5*1i; 

I1y(8,5)=0.5*1i; 

 

I1z=eye(8);                         % I1z refers to the longitudinal z  

I1z(4,4)=-1;                        % component of the proton I1 

I1z(6,6)=-1; 

I1z(7,7)=-1; 

I1z(8,8)=-1; 

I1z=0.5*I1z; 

 

% I2 represents the other singlet protons 

 

I2x=zeros(8);                       % I2x refers to the transverse x  

I2x(1,3)=0.5;                       % component of the proton I2  

I2x(2,5)=0.5; 

I2x(3,1)=0.5; 

I2x(4,7)=0.5; 

I2x(5,2)=0.5; 

I2x(6,8)=0.5; 

I2x(7,4)=0.5; 

I2x(8,6)=0.5; 

 

I2y=zeros(8);                       % I2y refers to the transverse y  

I2y(1,3)=-0.5*1i;                   % component of the proton I2  

I2y(2,5)=-0.5*1i; 

I2y(3,1)=0.5*1i; 

I2y(4,7)=-0.5*1i; 

I2y(5,2)=0.5*1i; 

I2y(6,8)=-0.5*1i; 

I2y(7,4)=0.5*1i; 

I2y(8,6)=0.5*1i; 
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I2z=eye(8);                         % I2z refers to the longitudinal z  

I2z(3,3)=-1;                        % component of the proton I2 

I2z(5,5)=-1; 

I2z(7,7)=-1; 

I2z(8,8)=-1; 

I2z=0.5*I2z; 

 

% S represents the heteronucleus 

 

Sx=zeros(8);                        % Sx refers to the transverse x  

Sx(1,2)=0.5;                        % component ofthe heteronucleus 

Sx(2,1)=0.5; 

Sx(3,5)=0.5; 

Sx(4,6)=0.5; 

Sx(5,3)=0.5; 

Sx(6,4)=0.5; 

Sx(7,8)=0.5; 

Sx(8,7)=0.5; 

 

Sy=zeros(8);                        % Sy refers to the transverse y  

Sy(1,2)=-0.5*1i;                    % component of the heteronucleus 

Sy(2,1)=0.5*1i; 

Sy(3,5)=-0.5*1i; 

Sy(4,6)=-0.5*1i; 

Sy(5,3)=0.5*1i; 

Sy(6,4)=0.5*1i; 

Sy(7,8)=-0.5*1i; 

Sy(8,7)=0.5*1i; 

 

Sz=eye(8);                          % Sz refers to the longitudinal z  

Sz(2,2)=-1;                         % component of the heteronucleus 

Sz(5,5)=-1; 

Sz(6,6)=-1; 

Sz(8,8)=-1; 

Sz=0.5*Sz; 

 

% Used operators defined below 

 

H=2*pi*(J(1)*(I1x*I2x+I1y*I2y+...   % Calculate Hamiltonian, assuming  

I1z*I2z)+J(2)*I1z*Sz+J(3)*I2z*Sz);  %low field (strong homonuclear 

  % coupling and weak heteronuclear  

% coupling regime) 
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rou0=I1x*I2x+I1y*I2y+I1z*I2z;% initial singlet-state operator 

 

RI1pi=cos(pi/2)*eye(8)... 

    +2*1i*sin(pi/2)*I1x; % The 180x pulse for proton I1 

 

RI2pi=cos(pi/2)*eye(8)...% The 180x pulse for proton I2 

    +2*1i*sin(pi/2)*I2x; 

 

RSx=cos(pi/4)*eye(8)... % The 90x pulse for 13C 

    +2*1i*sin(pi/4)*Sx;   

 

RSy=cos(pi/4)*eye(8)...% The 90y pulse for 13C 

    +2*1i*sin(pi/4)*Sy;   

 

RIpi=RI1pi*RI2pi;                % The 180x pulse for both protons 

 

Ut1=expm(-1i*H*(t(1)));           % Calculate the evolving operator 

Ut2=expm(-1i*H*(t(2)));           % Calculate the evolving operator 

Ut3=expm(-1i*H*(t(3)));          % Calculate the evolving operator 

Ut4=expm(-1i*H*(t(4)));          % Calculate the evolving operator 

 

rou=Ut1*rou0*conj(Ut1);% Calculate the spin state after 

rou=inv(RIpi)*rou*(RIpi);% applying hyper-SHIELDED sequence 

rou=Ut2*rou*conj(Ut2); 

rou=inv(RSy)*rou*(RSy); 

rou=Ut3*rou*conj(Ut3); 

rou=inv(RIpi)*rou*(RIpi); 

rou=Ut4*rou*conj(Ut4); 

rou=inv(RSx)*rou*(RSx); 

 

end 

 

In a more general case, while a short a pulse is applied to any I1I2S spin system 

states in either proton or 
13

C channel (or both) with specific pulse amplitude and 

phase, the evolved density matrix could be calculated from the codes below. 
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Function [rou] = ApplyPulse(rou0,J,phiH,AmpH,phiS,AmpS,t) 

 

% Program used to calculate the effect of a tiny pulse on 3-spin density 

% matrix 

 

% Variables: Output: rou:  Calculated new density matrix 

%            Input:  rou0: The former density matrix before applied pulse 

%                    J:    The J coupling constants of the spin system;  

%                          J(1) refers to 1H-1H coupling, J(2) and J(3)  

%                          refers to 1H-13C couplings                          

%                    phiH: Phase of the pulse on 1H channel (radians),  

%                          measured from +x axis, within [0,pi) 

%                    AmpH: Amplitude of the pulse on 1H channel (T) 

%                    phiS: Phase of the pulse on 13C channel (radians), 

%                          measured from +x axis, within [0,pi) 

%                    AmpS: Amplitude of the pulse on 13C channel (T) 

%                    t:    length of the short pulse delta (s) 

 

 

% Construct Product Basis Below. All basis constructed on the order of  

% [|aaa>,|aab>,|aba>,|baa>,|abb>,|bab>,|bba>,|bbb>]. Here |a> and |b> 

% represents spin-up and spin-down states, as |alpha> and |beta>. The 

% order corresponds to proton I1, proton I2, carbon S |I1,I2,S> 

 

% I1 represents one of the singlet protons 

 

I1x=zeros(8);                       % I1x refers to the transverse x  

I1x(1,4)=0.5;                       % component of the proton I1  

I1x(2,6)=0.5; 

I1x(3,7)=0.5; 

I1x(4,1)=0.5; 

I1x(5,8)=0.5; 

I1x(6,2)=0.5; 

I1x(7,3)=0.5; 

I1x(8,5)=0.5; 

 

I1y=zeros(8);                       % I1y refers to the transverse y  

I1y(1,4)=-0.5*1i;                   % component of the proton I1  

I1y(2,6)=-0.5*1i; 

I1y(3,7)=-0.5*1i; 

I1y(4,1)=0.5*1i; 

I1y(5,8)=-0.5*1i; 

I1y(6,2)=0.5*1i; 
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I1y(7,3)=0.5*1i; 

I1y(8,5)=0.5*1i; 

 

I1z=eye(8);                         % I1z refers to the longitudinal z  

I1z(4,4)=-1;                        % component of the proton I1 

I1z(6,6)=-1; 

I1z(7,7)=-1; 

I1z(8,8)=-1; 

I1z=0.5*I1z; 

 

% I2 represents the other singlet protons 

 

I2x=zeros(8);                       % I2x refers to the transverse x  

I2x(1,3)=0.5;                       % component of the proton I2  

I2x(2,5)=0.5; 

I2x(3,1)=0.5; 

I2x(4,7)=0.5; 

I2x(5,2)=0.5; 

I2x(6,8)=0.5; 

I2x(7,4)=0.5; 

I2x(8,6)=0.5; 

 

I2y=zeros(8);                       % I2y refers to the transverse y  

I2y(1,3)=-0.5*1i;                   % component of the proton I2  

I2y(2,5)=-0.5*1i; 

I2y(3,1)=0.5*1i; 

I2y(4,7)=-0.5*1i; 

I2y(5,2)=0.5*1i; 

I2y(6,8)=-0.5*1i; 

I2y(7,4)=0.5*1i; 

I2y(8,6)=0.5*1i; 

 

I2z=eye(8);                         % I2z refers to the longitudinal z  

I2z(3,3)=-1;                        % component of the proton I2 

I2z(5,5)=-1; 

I2z(7,7)=-1; 

I2z(8,8)=-1; 

I2z=0.5*I2z; 

 

% S represents the heteronucleus 

 

Sx=zeros(8);                        % Sx refers to the transverse x  

Sx(1,2)=0.5;                        % component ofthe heteronucleus 

Sx(2,1)=0.5; 
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Sx(3,5)=0.5; 

Sx(4,6)=0.5; 

Sx(5,3)=0.5; 

Sx(6,4)=0.5; 

Sx(7,8)=0.5; 

Sx(8,7)=0.5; 

 

Sy=zeros(8);                        % Sy refers to the transverse y  

Sy(1,2)=-0.5*1i;                    % component of the heteronucleus 

Sy(2,1)=0.5*1i; 

Sy(3,5)=-0.5*1i; 

Sy(4,6)=-0.5*1i; 

Sy(5,3)=0.5*1i; 

Sy(6,4)=0.5*1i; 

Sy(7,8)=-0.5*1i; 

Sy(8,7)=0.5*1i; 

 

Sz=eye(8);                          % Sz refers to the longitudinal z  

Sz(2,2)=-1;                         % component of the heteronucleus 

Sz(5,5)=-1; 

Sz(6,6)=-1; 

Sz(8,8)=-1; 

Sz=0.5*Sz; 

 

% Used Constants are defined below 

 

gammaH=4.257*10^7;                  % The gyromagnetic ratio for 1H  (Hz/T) 

gammaS=1.070*10^7;                  % The gyromagnetic ratio for 13C (Hz/T) 

 

% Calculate the angle of rotation below 

 

thetaH=2*pi*gammaH*AmpH*t;          % The angle of rotation for 1H; 

thetaS=2*pi*gammaS*AmpS*t;          % The angle of rotation for 13C; 

 

% Used operators defined below 

 

H=2*pi*(J(1)*(I1x*I2x+I1y*I2y+...  % Calculate Hamiltonian, assuming 

low 

I1z*I2z)+J(2)*I1z*Sz+J(3)*I2z*Sz); % field (strong homonuclear coupling 

% and weak heteronuclear coupling  

% regime) 

 

RI1=cos(thetaH/2)*eye(8)+2*1i*... % Calculate the rotation for proton I1 

    sin(thetaH/2)*(cos(phiH)*I1x... 
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    +sin(phiH)*I1y); 

 

RI2=cos(thetaH/2)*eye(8)+2*1i*...   % Calculate the rotation for proton 

I2 

    sin(thetaH/2)*(cos(phiH)*I2x... 

    +sin(phiH)*I2y); 

 

RS=cos(thetaS/2)*eye(8)+2*1i*...    % Calculate the rotation for  

    sin(thetaS/2)*(cos(phiS)*Sx...  % heteronucleus 13C 

    +sin(phiS)*Sy); 

 

RI=RI1*RI2;                             % Calculate the rotation for both 1H 

 

R=RI*RS;                                 % Calculate the full expression of 

% rotation 

 

U=expm(-1i*H*(t/2));                   % Calculate the evolving operator 

 

% Calculate the evolved density matrix below 

 

routemp=U*rou0*conj(U);             % Calculate the evolved density matrix 

% for the first half time period 

 

routemp=(R\routemp)*(R);            % Calculate the effect of the 

% applied pulse 

 

routemp=U*routemp*conj(U);         % Calculate the evolved density matrix 

% after the next half time period 

 

rou=routemp;                        % The final calculated density matrix 

 

end 

 

D.2. Pulse programs for I1I2SR spin system pulse sequence 

As described in Chapter III, for an I1I2SR spin system, the Hamiltonian, each 

pulse and spin state could be represented by a 16x16 density matrix. The pulse to 

transfer polarization level, as in Chapter III, is illustrated in Figure D.2. 
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Figure D.2. Evolution of density matrix components (upper graph) and the associated 

pulse sequence (lower graph) for focusing parahydrogen singlet-states (I1I2) into pure 

magnetization on an adjacent coupled (S) nucleus for I1I2SR spin systems in the 

strong coupling regime. Labels S and P refer generally to coupled S nucleus (for 

example, 
13

C and 
31

P). Symbols (3a-f, 4a-g) correspond to components of the density 

operator. 

 

In Figure D.2, the effective pulses are two 180 (+x) pulses on 
13

C channel, two 

180 (+x) pulses on proton channel, and two 90 (+x and +y) pulses on 
13

C channel. 

The evolution of states, along with Hamiltonian and initial states are shown in 

Chapter III and Appendix B & C. Below is the Matlab code used to calculate the final 

density matrix after applying the pulse sequence to a given I1I2SR spin system with 

coupling constants. 

 

Function [rou]= FourSpinHyperSHIELDED(J,t) 

%Calculating final density matrix for 4 spin system with 2 protons and  

%two heteronuclei 

% J(1):I1-I2; J(2):I1-S;J(3):I1-R; J(4):I2-S; J(5):I2-R; J(6):S-R; 

% Spin order transferred to S 

% Output: rou: final density matrix 

% Input:  J:   J coupling constants of the spin system, in the form of 

%               [J12,J1S,J1R,J2S,J2R,JSR] (Hz) 
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%           t:  The time intervals (t(1)-t(6)) of the pulse sequence   

 

% General Product Operators Defined Below  

% I1 and I2 represent the two protons, while S and R represent the two  

% heteronuclei 

 

% The operators for one of the singlet protons I1 

I1x=zeros(16);% I1x refers to the transverse x  

I1x(1,5)=0.5;% component of proton I1 

I1x(5,1)=0.5; 

I1x(2,9)=0.5; 

I1x(9,2)=0.5; 

I1x(3,10)=0.5; 

I1x(10,3)=0.5; 

I1x(4,11)=0.5; 

I1x(11,4)=0.5; 

I1x(6,13)=0.5; 

I1x(13,6)=0.5; 

I1x(7,14)=0.5; 

I1x(14,7)=0.5; 

I1x(8,15)=0.5; 

I1x(15,8)=0.5; 

I1x(12,16)=0.5; 

I1x(16,12)=0.5; 

 

I1y=-1i*I1x;% I1y refers to the transverse y 

I1y(5,1)=0.5*1i;% component of proton I1 

I1y(9,2)=0.5*1i; 

I1y(10,3)=0.5*1i; 

I1y(11,4)=0.5*1i; 

I1y(13,6)=0.5*1i; 

I1y(14,7)=0.5*1i; 

I1y(15,8)=0.5*1i; 

I1y(16,12)=0.5*1i; 

 

I1z=eye(16);% I1z refers to the longitudinal 

I1z(5,5)=-1;% z component of proton I1 

I1z(9,9)=-1; 

I1z(10,10)=-1; 

I1z(11,11)=-1; 

I1z(13,13)=-1; 

I1z(14,14)=-1; 

I1z(15,15)=-1; 

I1z(16,16)=-1; 
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I1z=0.5*I1z; 

 

% The operators for one of the singlet protons I2 

I2x=zeros(16);% I2x refers to the transverse x  

I2x(1,4)=0.5;% component of proton I2 

I2x(4,1)=0.5; 

I2x(2,7)=0.5; 

I2x(7,2)=0.5; 

I2x(3,8)=0.5; 

I2x(8,3)=0.5; 

I2x(5,11)=0.5; 

I2x(11,5)=0.5; 

I2x(6,12)=0.5; 

I2x(12,6)=0.5; 

I2x(9,14)=0.5; 

I2x(14,9)=0.5; 

I2x(10,15)=0.5; 

I2x(15,10)=0.5; 

I2x(13,16)=0.5; 

I2x(16,13)=0.5; 

 

I2y=-1i*I2x;% I2y refers to the transverse y 

I2y(4,1)=0.5*1i;% component of proton I2 

I2y(7,2)=0.5*1i; 

I2y(8,3)=0.5*1i; 

I2y(11,5)=0.5*1i; 

I2y(12,6)=0.5*1i; 

I2y(14,9)=0.5*1i; 

I2y(15,10)=0.5*1i; 

I2y(16,13)=0.5*1i; 

 

I2z=eye(16);% I2z refers to the longitudinal 

I2z(4,4)=-1;% z component of proton I2 

I2z(7,7)=-1; 

I2z(8,8)=-1; 

I2z(11,11)=-1; 

I2z(12,12)=-1; 

I2z(14,14)=-1; 

I2z(15,15)=-1; 

I2z(16,16)=-1; 

I2z=0.5*I2z; 

 

% S represents the first heteronuclei S 

Sx=zeros(16);% Sx refers to the transverse x 
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Sx(1,3)=0.5;% component of heteronucleus S 

Sx(3,1)=0.5; 

Sx(2,6)=0.5; 

Sx(6,2)=0.5; 

Sx(4,8)=0.5; 

Sx(8,4)=0.5; 

Sx(5,10)=0.5; 

Sx(10,5)=0.5; 

Sx(7,12)=0.5; 

Sx(12,7)=0.5; 

Sx(9,13)=0.5; 

Sx(13,9)=0.5; 

Sx(11,15)=0.5; 

Sx(15,11)=0.5; 

Sx(14,16)=0.5; 

Sx(16,14)=0.5; 

 

Sy=-1i*Sx;% Sy refers to the transverse y 

Sy(3,1)=0.5*1i;% component of heteronucleus S 

Sy(6,2)=0.5*1i; 

Sy(8,4)=0.5*1i; 

Sy(10,5)=0.5*1i; 

Sy(12,7)=0.5*1i; 

Sy(13,9)=0.5*1i; 

Sy(15,11)=0.5*1i; 

Sy(16,14)=0.5*1i; 

 

Sz=eye(16);% Sz refers to the longitudinal 

Sz(3,3)=-1;% z component of heteronucleus S 

Sz(6,6)=-1; 

Sz(8,8)=-1; 

Sz(10,10)=-1; 

Sz(12,12)=-1; 

Sz(13,13)=-1; 

Sz(15,15)=-1; 

Sz(16,16)=-1; 

Sz=0.5*Sz; 

 

% R represents the other heteronucleus R 

Rx2=zeros(16);% Rx refers to the transverse x 

Rx(1,2)=0.5;% component of heteronucleus R 

Rx(2,1)=0.5; 

Rx(3,6)=0.5; 

Rx(6,3)=0.5; 
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Rx(4,7)=0.5; 

Rx(7,4)=0.5; 

Rx(5,9)=0.5; 

Rx(9,5)=0.5; 

Rx(8,12)=0.5; 

Rx(12,8)=0.5; 

Rx(10,13)=0.5; 

Rx(13,10)=0.5; 

Rx(11,14)=0.5; 

Rx(14,11)=0.5; 

Rx(15,16)=0.5; 

Rx(16,15)=0.5; 

 

Ry=-1i*Rx;% Ry refers to the transverse y 

Ry(2,1)=0.5*1i;% component of heteronucleus R 

Ry(6,3)=0.5*1i; 

Ry(7,4)=0.5*1i; 

Ry(9,5)=0.5*1i; 

Ry(12,8)=0.5*1i; 

Ry(13,10)=0.5*1i; 

Ry(14,11)=0.5*1i; 

Ry(16,15)=0.5*1i; 

 

Rz=eye(16);% Rz refers to the longitudinal 

Rz(2,2)=-1;% z component of heteronucleus R 

Rz(6,6)=-1; 

Rz(7,7)=-1; 

Rz(9,9)=-1; 

Rz(12,12)=-1; 

Rz(13,13)=-1; 

Rz(14,14)=-1; 

Rz(16,16)=-1; 

Rz=0.5*Rz; 

 

% The 90 and 180 degree pulse operators for each spin calculated below 

Rx90I1=(1/(sqrt(2)))*eye(16)…            % 90degree I1 pulse around x axis  

+sqrt(2)*1i*I1x; 

Rx180I1=2*1i*I1x;% 180degree I1 pulse around x axis 

Ry90I1=(1/(sqrt(2)))*eye(16)…            % 90degree I1 pulse around y axis 

+sqrt(2)*1i*I1y; 

Ry180I1=2*1i*I1y;% 180degree I1 pulse around y axis 

 

Rx90I2=(1/(sqrt(2)))*eye(16)…           % 90degree I2 pulse around x axis 

+sqrt(2)*1i*I2x; 
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Rx180I2=2*1i*I2x;% 180degree I2 pulse around x axis 

Ry90I2=(1/(sqrt(2)))*eye(16)…           % 90degree I2 pulse around y axis 

+sqrt(2)*1i*I2y; 

Ry180I2=2*1i*I2y;% 180degree I2 pulse around y axis 

 

Rx90S=(1/(sqrt(2)))*eye(16)…            % 90degree S pulse around x axis 

+sqrt(2)*1i*Sx; 

Rx180S=2*1i*Sx;% 180degree S pulse around x axis 

Ry90S=(1/(sqrt(2)))*eye(16)…            % 90degree S pulse around y axis 

+sqrt(2)*1i*Sy; 

Ry180S=2*1i*Sy;% 180degree S pulse around y axis 

 

Rx90R=(1/(sqrt(2)))*eye(16)…            % 90degree R pulse around x axis 

+sqrt(2)*1i*Rx; 

Rx180R=2*1i*Rx;% 180degree R pulse around x axis 

Ry90R=(1/(sqrt(2)))*eye(16)…% 90degree R pulse around y axis 

+sqrt(2)*1i*Ry; 

Ry180R=2*1i*Ry;% 180degree S pulse around y axis 

 

Rx90H=Rx90I1*Rx90I2;% 90degree H pulse (I1 and I2) 

% around x axis 

Rx180H=Rx180I1*Rx180I2;% 180degree H pulse (I1 and I2) 

% around x axis 

Ry90H=Ry90I1*Ry90I2;% 90degree H pulse (I1 and I2) 

% around y axis 

Ry180H=Ry180I1*Ry180I2;% 180degree H pulse (I1 and I2) 

% around y axis 

 

% The initial density matrix and Hamiltonian calculated below 

Sigma0=I1x*I2x+I1y*I2y; 

H=2*pi*(J(1)*(I1x*I2x+I1y*I2y+I1z*I2z)+J(2)*I1z*Sz+J(3)*I1z*Rz... 

    +J(4)*I2z*Sz+J(5)*I2z*Rz+J(6)*Sz*Rz); 

 

% The evolution propagators defined below 

Ut1=expm(-1i*H*t1); 

Ut2=expm(-1i*H*t2); 

Ut3=expm(-1i*H*t3); 

Ut4=expm(-1i*H*t4); 

Ut5=expm(-1i*H*t5); 

Ut6=expm(-1i*H*t6); 

 

% The evolution of density matrix with hyer-SHIELDED pulse sequence 

sigma=Ut1*sigma0*conj(Ut1); 

sigma=(Rx180S\sigma)*Rx180S; 
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sigma=Ut2*sigma*conj(Ut2); 

sigma=(Rx180H\sigma)*Rx180H; 

sigma=Ut3*sigma*conj(Ut3); 

sigma=(Ry90S\sigma)*Ry90S; 

sigma=Ut4*sigma*conj(Ut4); 

sigma=(Rx180S\sigma)*Rx180S; 

sigma=Ut5*sigma*conj(Ut5); 

sigma=(Rx180H\sigma)*Rx180H; 

sigma=Ut6*sigma*conj(Ut6); 

sigma=(Rx90S\sigma)*Rx90S; 

rou=sigma; 

 

end 

 

In the I1I2SR spin systems, the evolution of product operators becomes much 

more complicated than I1I2S spin systems. Therefore it is straightforward to calculate 

the polarization level from the density matrix directly. Below is the matlab code that 

is used to calculate the optimum time intervals of the pulse sequence to transfer 

polarization for an I1I2SR spin system with given scalar coupling constants. To 

minimize calculation, the time intervals are calculated in two independent steps as 

described in Chapter III. 

 

function [tau,t] = fourspinHyperSHIELDED(J,dur) 

%Calculating time intervals for 4 spin system with 2 H and 2 heteronucleai 

% J(1):I1-I2; J(2):I1-S;J(3):I1-R; J(4):I2-S; J(5):I2-R; J(6):S-R; 

% Spin order transferred to S 

% Output: tau: The time interval parameters when choosing (I1z-I2z)Sz in  

%              the first step, with tau(7) indicating final polarization  

%              (seconds) 

%         t:  The time interval parameters when choosing (I1yI2x-I1xI2y)Sz 

%              in the first step, with t(7) indicating final polarization 

%              (seconds) 

% Input:  J:   J coupling constants of the spin system, in the form of 

%              [J12,J1S,J1R,J2S,J2R,JSR] (Hz) 

%         dur: Total duration of the pulse sequence (seconds) 
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% Product Operators Defined Below, with I1 and I2 represent the two protons,  

% and S and R represent the two heteronuclei 

 

% The operators for one of the singlet protons I1 

I1x=zeros(16);                              % I1x refers to the transverse x  

I1x(1,5)=0.5;                               % component of proton I1 

I1x(5,1)=0.5; 

I1x(2,9)=0.5; 

I1x(9,2)=0.5; 

I1x(3,10)=0.5; 

I1x(10,3)=0.5; 

I1x(4,11)=0.5; 

I1x(11,4)=0.5; 

I1x(6,13)=0.5; 

I1x(13,6)=0.5; 

I1x(7,14)=0.5; 

I1x(14,7)=0.5; 

I1x(8,15)=0.5; 

I1x(15,8)=0.5; 

I1x(12,16)=0.5; 

I1x(16,12)=0.5; 

 

I1y=-1i*I1x;                                % I1y refers to the transverse y 

I1y(5,1)=0.5*1i;                           % component of proton I1 

I1y(9,2)=0.5*1i; 

I1y(10,3)=0.5*1i; 

I1y(11,4)=0.5*1i; 

I1y(13,6)=0.5*1i; 

I1y(14,7)=0.5*1i; 

I1y(15,8)=0.5*1i; 

I1y(16,12)=0.5*1i; 

 

I1z=eye(16);                                % I1z refers to the longitudinal 

I1z(5,5)=-1;                                % z component of proton I1 

I1z(9,9)=-1; 

I1z(10,10)=-1; 

I1z(11,11)=-1; 

I1z(13,13)=-1; 

I1z(14,14)=-1; 

I1z(15,15)=-1; 

I1z(16,16)=-1; 

I1z=0.5*I1z; 
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% The operators for one of the singlet protons I2 

I2x=zeros(16);                              % I2x refers to the transverse x  

I2x(1,4)=0.5;                               % component of proton I2 

I2x(4,1)=0.5; 

I2x(2,7)=0.5; 

I2x(7,2)=0.5; 

I2x(3,8)=0.5; 

I2x(8,3)=0.5; 

I2x(5,11)=0.5; 

I2x(11,5)=0.5; 

I2x(6,12)=0.5; 

I2x(12,6)=0.5; 

I2x(9,14)=0.5; 

I2x(14,9)=0.5; 

I2x(10,15)=0.5; 

I2x(15,10)=0.5; 

I2x(13,16)=0.5; 

I2x(16,13)=0.5; 

 

I2y=-1i*I2x;                                % I2y refers to the transverse y 

I2y(4,1)=0.5*1i;                           % component of proton I2 

I2y(7,2)=0.5*1i; 

I2y(8,3)=0.5*1i; 

I2y(11,5)=0.5*1i; 

I2y(12,6)=0.5*1i; 

I2y(14,9)=0.5*1i; 

I2y(15,10)=0.5*1i; 

I2y(16,13)=0.5*1i; 

 

I2z=eye(16);                                % I2z refers to the longitudinal 

I2z(4,4)=-1;                                % z component of proton I2 

I2z(7,7)=-1; 

I2z(8,8)=-1; 

I2z(11,11)=-1; 

I2z(12,12)=-1; 

I2z(14,14)=-1; 

I2z(15,15)=-1; 

I2z(16,16)=-1; 

I2z=0.5*I2z; 

 

% S represents the first heteronucleus S 

Sx=zeros(16);                               % Sx refers to the transverse x 

Sx(1,3)=0.5;                                % component of heteronucleus S 
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Sx(3,1)=0.5; 

Sx(2,6)=0.5; 

Sx(6,2)=0.5; 

Sx(4,8)=0.5; 

Sx(8,4)=0.5; 

Sx(5,10)=0.5; 

Sx(10,5)=0.5; 

Sx(7,12)=0.5; 

Sx(12,7)=0.5; 

Sx(9,13)=0.5; 

Sx(13,9)=0.5; 

Sx(11,15)=0.5; 

Sx(15,11)=0.5; 

Sx(14,16)=0.5; 

Sx(16,14)=0.5; 

 

Sy=-1i*Sx;                                  % Sy refers to the transverse y 

Sy(3,1)=0.5*1i;                            % component of heteronucleus S 

Sy(6,2)=0.5*1i; 

Sy(8,4)=0.5*1i; 

Sy(10,5)=0.5*1i; 

Sy(12,7)=0.5*1i; 

Sy(13,9)=0.5*1i; 

Sy(15,11)=0.5*1i; 

Sy(16,14)=0.5*1i; 

 

Sz=eye(16);                                 % Sz refers to the longitudinal 

Sz(3,3)=-1;                                 % z component of heteronucleus S 

Sz(6,6)=-1; 

Sz(8,8)=-1; 

Sz(10,10)=-1; 

Sz(12,12)=-1; 

Sz(13,13)=-1; 

Sz(15,15)=-1; 

Sz(16,16)=-1; 

Sz=0.5*Sz; 

 

% R represents the other heteronuclei R 

Rx2=zeros(16);                               % Rx refers to the transverse x 

Rx(1,2)=0.5;                                 % component of heteronucleus R 

Rx(2,1)=0.5; 

Rx(3,6)=0.5; 

Rx(6,3)=0.5; 

Rx(4,7)=0.5; 
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Rx(7,4)=0.5; 

Rx(5,9)=0.5; 

Rx(9,5)=0.5; 

Rx(8,12)=0.5; 

Rx(12,8)=0.5; 

Rx(10,13)=0.5; 

Rx(13,10)=0.5; 

Rx(11,14)=0.5; 

Rx(14,11)=0.5; 

Rx(15,16)=0.5; 

Rx(16,15)=0.5; 

 

Ry=-1i*Rx;                                    % Ry refers to the transverse y 

Ry(2,1)=0.5*1i;                              % component of heteronucleus R 

Ry(6,3)=0.5*1i; 

Ry(7,4)=0.5*1i; 

Ry(9,5)=0.5*1i; 

Ry(12,8)=0.5*1i; 

Ry(13,10)=0.5*1i; 

Ry(14,11)=0.5*1i; 

Ry(16,15)=0.5*1i; 

 

Rz=eye(16);                                 % Rz refers to the longitudinal 

Rz(2,2)=-1;                                 % z component of heteronucleus R 

Rz(6,6)=-1; 

Rz(7,7)=-1; 

Rz(9,9)=-1; 

Rz(12,12)=-1; 

Rz(13,13)=-1; 

Rz(14,14)=-1; 

Rz(16,16)=-1; 

Rz=0.5*Rz; 

 

% The 90 and 180 degree pulse operators for each spin calculated below 

Rx90I1=(1/(sqrt(2)))*eye(16)…            % 90degree I1 pulse around x axis  

+sqrt(2)*1i*I1x;                             

Rx180I1=2*1i*I1x;                          % 180degree I1 pulse around x axis 

Ry90I1=(1/(sqrt(2)))*eye(16)…            % 90degree I1 pulse around y axis 

+sqrt(2)*1i*I1y; 

Ry180I1=2*1i*I1y;                         % 180degree I1 pulse around y axis 

 

Rx90I2=(1/(sqrt(2)))*eye(16)…           % 90degree I2 pulse around x axis 

+sqrt(2)*1i*I2x; 

Rx180I2=2*1i*I2x;                         % 180degree I2 pulse around x axis 
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Ry90I2=(1/(sqrt(2)))*eye(16)…           % 90degree I2 pulse around y axis 

+sqrt(2)*1i*I2y; 

Ry180I2=2*1i*I2y;                         % 180degree I2 pulse around y axis 

 

Rx90S=(1/(sqrt(2)))*eye(16)…            % 90degree S pulse around x axis 

+sqrt(2)*1i*Sx; 

Rx180S=2*1i*Sx;                            % 180degree S pulse around x axis 

Ry90S=(1/(sqrt(2)))*eye(16)…            % 90degree S pulse around y axis 

+sqrt(2)*1i*Sy; 

Ry180S=2*1i*Sy;                            % 180degree S pulse around y axis 

 

Rx90R=(1/(sqrt(2)))*eye(16)…            % 90degree R pulse around x axis 

+sqrt(2)*1i*Rx; 

Rx180R=2*1i*Rx;                            % 180degree R pulse around x axis 

Ry90R=(1/(sqrt(2)))*eye(16)…% 90degree R pulse around y axis 

+sqrt(2)*1i*Ry; 

Ry180R=2*1i*Ry;                            % 180degree S pulse around y axis 

 

Rx90H=Rx90I1*Rx90I2;                      % 90degree H pulse (I1 and I2) 

% around x axis 

Rx180H=Rx180I1*Rx180I2;                  % 180degree H pulse (I1 and I2) 

% around x axis 

Ry90H=Ry90I1*Ry90I2;                      % 90degree H pulse (I1 and I2) 

% around y axis 

Ry180H=Ry180I1*Ry180I2;                  % 180degree H pulse (I1 and I2) 

% around y axis 

 

 

% Initial Density Matrix for Each Step and Hamiltonian Defined Below 

sigma0=I1x*I2x+I1y*I2y;% initial singlet-state 

sigma1=Sx*(I1z-I2z);% the state after the 1st step 

sigma2=2*Sx*(I2x*I1y-I1x*I2y);% another state after the 1st step 

H=2*pi*(J(1)*(I1x*I2x+I1y*I2y+I1z*I2z)+J(2)*I1z*Sz+J(3)*I1z*Rz... 

    +J(4)*I2z*Sz+J(5)*I2z*Rz+J(6)*Sz*Rz); 

maxtime=dur/6; 

 

% Calculate the Optimum Time Intervals (tau) for the First Step, each time 

% interval (t1,t2,t3) are searched by the range from 0.1maxtime, 0.01  

% maxtime, to 0.001 maxtime, sigma(4,4)+sigma(7,7) represents the 

% coefficient of sigma1 

for k1=1:10; 

    t1=maxtime*0.1*k1; 

    Ut1=expm(-1i*H*t1); 

for k2=1:10; 
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        t2=maxtime*0.1*k2; 

        Ut2=expm(-1i*H*t2); 

for k3=1:10; 

            t3=maxtime*0.1*k3; 

            Ut3=expm(-1i*H*t3); 

            sigma=Ut1*sigma0*conj(Ut1); 

            sigma=(Rx180S\sigma)*Rx180S; 

            sigma=Ut2*sigma*conj(Ut2); 

           sigma=(Rx180H\sigma)*Rx180H; 

            sigma=Ut3*sigma*conj(Ut3); 

            F1(k1,k2,k3)=abs(sigma(4,4)+sigma(7,7)); 

end 

end 

end 

 

[maxF1,maxind1]=max(F1(:)); 

[K1,K2,K3]=ind2sub(size(F1),maxind1); 

 

for l1=1:20; 

    t1=maxtime*(0.1*(K1-1)+*0.01*l1); 

    Ut1=expm(-1i*H*t1); 

for l2=1:20; 

        t2=maxtime*(0.1*(K2-1)+*0.01*l2); 

        Ut2=expm(-1i*H*t2); 

for l3=1:20; 

            t3=maxtime*(0.1*(K3-1)+*0.01*l3); 

            Ut3=expm(-1i*H*t3); 

            sigma=Ut1*sigma0*conj(Ut1); 

            sigma=(Rx180S\sigma)*Rx180S; 

            sigma=Ut2*sigma*conj(Ut2); 

            sigma=(Rx180H\sigma)*Rx180H; 

            sigma=Ut3*sigma*conj(Ut3); 

            F2(l1,l2,l3)=abs(sigma(4,4)+sigma(7,7)); 

end 

end 

end 

 

[maxF2,maxind2]=max(F2(:)); 

[L1,L2,L3]=ind2sub(size(F2),maxind2); 

 

for m1=1:20; 

    t1=maxitme*(0.1*(K1-1)+0.01*(L1-1)+0.001*m1); 

    Ut1=expm(-1i*H*t1); 

for m2=1:20; 
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        t2=maxitme*(0.1*(K2-1)+0.01*(L2-1)+0.001*m2); 

        Ut2=expm(-1i*H*t2); 

for m3=1:20; 

            t3=maxitme*(0.1*(K3-1)+0.01*(L3-1)+0.001*m3); 

            Ut3=expm(-1i*H*t3); 

            sigma=Ut1*sigma0*conj(Ut1); 

            sigma=(Rx180S\sigma)*Rx180S; 

            sigma=Ut2*sigma*conj(Ut2); 

            sigma=(Rx180H\sigma)*Rx180H; 

            sigma=Ut3*sigma*conj(Ut3); 

            F3(m1,m2,m3)=abs(sigma(4,4)+sigma(7,7)); 

end 

end 

end 

 

[maxF3,maxind3]=max(F3(:)); 

[M1,M2,M3]=ind2sub(size(F3),maxind3); 

 

% The optimum time intervals tau1, tau2, tau3 

tau(1)=maxitme*(0.1*(K1-1)+0.01*(L1-1)+0.001*M1); 

tau(2)=maxitme*(0.1*(K2-1)+0.01*(L2-1)+0.001*M2); 

tau(3)=maxitme*(0.1*(K3-1)+0.01*(L3-1)+0.001*M3); 

 

% Calculate the Optimum Time Intervals (tau) for the Second Step, each 

% time interval (t4,t5,t6) are searched by the range from 0.1maxtime, 0.01  

% maxtime, to 0.001 maxtime, imag(sigma(4,8))+imag(sigma(7,12)) 

% represents the coefficient of final state 

for o1=1:10; 

    t1=maxtime*0.1*o1; 

    Ut1=expm(-1i*H*t1); 

for o2=1:10; 

        t2=maxtime*0.1*o2; 

        Ut2=expm(-1i*H*t2); 

for o3=1:10; 

            t3=maxtime*0.1*o3; 

            Ut3=expm(-1i*H*t3); 

            sigma=Ut1*sigma1*conj(Ut1); 

            sigma=(Rx180S\sigma)*Rx180S; 

            sigma=Ut2*sigma*conj(Ut2); 

            sigma=(Rx180H\sigma)*Rx180H; 

            sigma=Ut3*sigma*conj(Ut3); 

            F4(o1,o2,o3)=abs(imag(sigma(4,8))+imag(sigma(7,12))); 

end 

end 
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end 

 

[maxF4,maxind4]=max(F4(:)); 

[O1,O2,O3]=ind2sub(size(F4),maxind4); 

 

for p1=1:20; 

    t1=maxtime*(0.1*(O1-1)+0.01*p1); 

    Ut1=expm(-1i*H*t1); 

for p2=1:20; 

        t2=maxtime*(0.1*(O2-1)+0.01*p2); 

        Ut2=expm(-1i*H*t2); 

for p3=1:20; 

            t3=maxtime*(0.1*(O3-1)+0.01*p3); 

            Ut3=expm(-1i*H*t3); 

            sigma=Ut1*sigma1*conj(Ut1); 

            sigma=(Rx180S\sigma)*Rx180S; 

            sigma=Ut2*sigma*conj(Ut2); 

            sigma=(Rx180H\sigma)*Rx180H; 

            sigma=Ut3*sigma*conj(Ut3); 

         F5(p1,p2,p3)=abs(imag(sigma(4,8))+imag(sigma(7,12))); 

end 

end 

end 

 

[maxF5,maxind5]=max(F5(:)); 

[P1,P2,P3]=ind2sub(size(F5),maxind5); 

 

for q1=1:20; 

    t1=maxtime*(0.1*(O1-1)+0.01*(P1-1)+0.001*q1); 

    Ut1=expm(-1i*H*t1); 

for q2=1:20; 

        t2=maxtime*(0.1*(O2-1)+0.01*(P2-1)+0.001*q2); 

        Ut2=expm(-1i*H*t2); 

for q3=1:20; 

            t3=maxtime*(0.1*(O3-1)+0.01*(P3-1)+0.001*q3); 

            Ut3=expm(-1i*H*t3); 

            sigma=Ut1*sigma1*conj(Ut1); 

            sigma=(Rx180S\sigma)*Rx180S; 

            sigma=Ut2*sigma*conj(Ut2); 

            sigma=(Rx180H\sigma)*Rx180H; 

            sigma=Ut3*sigma*conj(Ut3); 

        F6(q1,q2,q3)=abs(imag(sigma(4,8))+imag(sigma(7,12))); 

end 

end 
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end 

 

[maxF6,maxind6]=max(F6(:)); 

[Q1,Q2,Q3]=ind2sub(size(F6),maxind6); 

 

% The optimum time intervals tau4, tau5, tau6, tau7 represents final 

% polarization level 

tau(4)=maxtime*(0.1*(O1-1)+0.01*(P1-1)+0.001*Q1); 

tau(5)=maxtime*(0.1*(O2-1)+0.01*(P2-1)+0.001*Q2); 

tau(6)=maxtime*(0.1*(O3-1)+0.01*(P3-1)+0.001*Q3); 

tau(7)=F3(M1,M2,M3)*F6(Q1,Q2,Q3); 

 

% Calculate the Optimum Time Intervals (tau) for the First Step, each time 

% interval (t1,t2,t3) are searched by the range from 0.1maxtime, 0.01  

% maxtime, to 0.001 maxtime, imag(sigma(4,5))+imag(sigma(7,9)) 

% represents the coefficient of sigma2 

for k1=1:10; 

    t1=maxtime*0.1*k1; 

    Ut1=expm(-1i*H*t1); 

for k2=1:10; 

        t2=maxtime*0.1*k2; 

        Ut2=expm(-1i*H*t2); 

for k3=1:10; 

            t3=maxtime*0.1*k3; 

            Ut3=expm(-1i*H*t3); 

simga=Ut1*sigma0*conj(Ut1); 

            sigma=(Rx180S\sigma)*Rx180S; 

            sigma=Ut2*sigma*conj(Ut2); 

            sigma=(Rx180H\sigma)*Rx180H; 

            sigma=Ut3*sigma*conj(Ut3); 

        F1(k1,k2,k3)=abs(imag(sigma(4,5)+imag(sigma(7,9)))); 

end 

end 

end 

 

[maxF1,maxind1]=max(F1(:)); 

[K1,K2,K3]=ind2sub(size(F1),maxind1); 

 

for l1=1:20; 

    t1=maxtime*(0.1*(K1-1)+0.01*l1); 

    Ut1=expm(-1i*H*t1); 

for l2=1:20; 

        t2=maxtime*(0.1*(K2-1)+0.01*l2); 

        Ut2=expm(-1i*H*t2); 
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for l3=1:20; 

            t3=maxtime*(0.1*(K3-1)+0.01*l3); 

            Ut3=expm(-1i*H*t3); 

            sigma=Ut1*sigma0*conj(Ut1); 

            sigma=(Rx180S1\sigma)*Rx180S1; 

            sigma=Ut2*sigma*conj(Ut2); 

            sigma=(Rx180H\sigma)*Rx180H; 

            sigma=Ut3*sigma*conj(Ut3); 

        F2(l1,l2,l3)=abs(imag(sigma(4,5)+imag(sigma(7,9)))); 

end 

end 

end 

 

[maxF2,maxind2]=max(F2(:)); 

[L1,L2,L3]=ind2sub(size(F2),maxind2); 

 

for m1=1:20; 

    t1=maxtime*(0.1*(K1-1)+0.01*(L1-1)+0.001*m1); 

    Ut1=expm(-1i*H*t1); 

for m2=1:20; 

        t2=maxtime*(0.1*(K2-1)+0.01*(L2-1)+0.001*m2); 

        Ut2=expm(-1i*H*t2); 

for m3=1:20; 

            t3=maxtime*(0.1*(K3-1)+0.01*(L3-1)+0.001*m3); 

            Ut3=expm(-1i*H*t3); 

            sigma=Ut1*sigma0*conj(Ut1); 

            sigma=(Rx180S\sigma)*Rx180S; 

            sigma=Ut2*sigma*conj(Ut2); 

            sigma=(Rx180H\sigma)*Rx180H; 

            sigma=Ut3*sigma*conj(Ut3); 

  F3(m1,m2,m3)=abs(imag(sigma(4,5)+imag(sigma(7,9)))); 

end 

end 

end 

 

[maxF3,maxind3]=max(F3(:)); 

[M1,M2,M3]=ind2sub(size(F3),maxind3); 

 

% The optimum time intervals t1, t2, t3 

t(1)=maxtime*(0.1*(K1-1)+0.01*(L1-1)+0.001*M1); 

t(2)=maxtime*(0.1*(K2-1)+0.01*(L2-1)+0.001*M2); 

t(3)=maxtime*(0.1*(K3-1)+0.01*(L3-1)+0.001*M3); 

 

% Calculate the Optimum Time Intervals (tau) for the Second Step, each 
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% time interval (t4,t5,t6) are searched by the range from 0.1maxtime, 0.01  

% maxtime, to 0.001 maxtime, imag(sigma(4,8))+imag(sigma(7,12))  

% represents the coefficient of final state 

for o1=1:10; 

    t1=maxtime*0.1*o1; 

    Ut1=expm(-1i*H*t1); 

for o2=1:10; 

        t2=maxtime*0.1*o2; 

        Ut2=expm(-1i*H*t2); 

for o3=1:10; 

            t3=maxtime*0.1*o3; 

            Ut3=expm(-1i*H*t3); 

            sigma=Ut1*sigma2*conj(Ut1); 

            sigma=(Rx180S\sigma)*Rx180S; 

            sigma=Ut2*sigma*conj(Ut2); 

            sigma=(Rx180H\sigma)*Rx180H; 

            sigma=Ut3*sigma*conj(Ut3); 

        F4(o1,o2,o3)=abs(imag(sigma(4,8))+imag(sigma(7,12))); 

end 

end 

end 

 

[maxF4,maxind4]=max(F4(:)); 

[O1,O2,O3]=ind2sub(size(F4),maxind4); 

 

for p1=1:20; 

    t1=maxtime*(0.1*(O1-1)+0.01*p1); 

    Ut1=expm(-1i*H*t1); 

for p2=1:20; 

        t2=maxtime*(0.1*(O2-1)+0.01*p2); 

        Ut2=expm(-1i*H*t2); 

for p3=1:20; 

            t3=maxtime*(0.1*(O3-1)+0.01*p3); 

            Ut3=expm(-1i*H*t3); 

            sigma=Ut1*sigma2*conj(Ut1); 

            sigma=(Rx180S\sigma)*Rx180S; 

            sigma=Ut2*sigma*conj(Ut2); 

            sigma=(Rx180H\sigma)*Rx180H; 

            sigma=Ut3*sigma*conj(Ut3); 

        F5(p1,p2,p3)=abs(imag(sigma(4,8))+imag(sigma(7,12))); 

end 

end 

end 
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[maxF5,maxind5]=max(F5(:)); 

[P1,P2,P3]=ind2sub(size(F5),maxind5); 

 

for q1=1:20; 

    t1=maxtime*(0.1*(O1-1)+0.01*(P1-1)+0.001*q1); 

    Ut1=expm(-1i*H*t1); 

for q2=1:20; 

        t2=maxtime*(0.1*(O2-1)+0.01*(P2-1)+0.001*q2); 

        Ut2=expm(-1i*H*t2); 

for q3=1:20; 

            t3=maxtime*(0.1*(O3-1)+0.01*(P3-1)+0.001*q3); 

            Ut3=expm(-1i*H*t3); 

            sigma=Ut1*sigma2*conj(Ut1); 

            sigma=(Rx180S\sigma)*Rx180S; 

sigma=Ut2*sigma*conj(Ut2); 

            sigma=(Rx180H\sigma)*Rx180H; 

            sigma=Ut3*sigma*conj(Ut3); 

        F6(q1,q2,q3)=abs(imag(sigma(4,8))+imag(sigma(7,12))); 

end 

end 

end 

 

[maxF6,maxind6]=max(F6(:)); 

[Q1,Q2,Q3]=ind2sub(size(F6),maxind6); 

 

% The optimum time intervals t4, t5, t6, t7 represents final 

% polarization level 

t(4)=maxtime*(0.1*(O1-1)+0.01*(P1-1)+0.001*Q1); 

t(5)=maxtime*(0.1*(O2-1)+0.01*(P2-1)+0.001*Q2); 

t(6)=maxtime*(0.1*(O3-1)+0.01*(P3-1)+0.001*Q3); 

t(7)=F3(M1,M2,M3)*F6(Q1,Q2,Q3); 

 

end 

 

D.3. Monte Carlo model for high resolution J spectroscopy and resolution 

As described in Chapter IV, we constructed a Monte Carlo statistical model to 

get high resolution scalar coupling spectroscopy in low inhomogeneous fields by 

fitting the experiment data to theory, also calculate the resolution with certain 

experimental error. Below are the Matlab codes for calculating both scalar coupling 
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constants and resolutions with certain experimental error. There are three major 

functions in the codes. The main function (Monte Carlo) calculates the final average 

scalar coupling constants range and resolution within 95% confidence interval by 

calling the FitMontecarlo function, which fits the experiment data with standard 

deviation to the theoretical equations, which is contained in function (FTMontecarlo). 

All three major functions are shown below. 

Monte Carlo: 

function [J12range,Jdeltarange,popJ1,popdelta,popsurf] = 

Montecarlo(pol, Error) 

 

% A function used to get the resolution of J-resolving spectroscopy 

% with certain experimental error 

% Output:  J12range: the calculated homonuclear coupling constant range 

%                     with 95% confidence range 

%            Jdeltarange: the calculated coupling asymmetry range Jdelta 

%                         with 95% confidence range 

%            popJ1:  the calculated frequency for each homonuclear 

%                      coupling constant 

%            popJdelta:  the calculated frequency for each coupling 

asymmetry Jdelta 

%            popsurf:    the calculated frequency for both couplings 

% Input:  pol: experimental results of a set of polarization level 

 

% set zero for outputs 

for m=1:1000; 

    popJ1(m)=0; 

popdelta(m)=0; 

end 

 

for o=1:1000; 

for p=1:1000; 

popsurf(o,p)=0; 

end 

end 

 

% Fit the results by calling the function FitMontecarlo and calculate the  

% corresponding frequency 
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for l=1:10000; 

    [y]=FitMontecarlo(pol, Error); 

    CoJ1=round(100*y(1)); 

Codelta=round(50*y(2)); 

    popJ1(CoJ1)=popJ1(CoJ1)+1; 

popdelta(Codelta)=popdelta(Codelta)+1; 

popsurf(CoJ1,Codelta)=popsurf(CoJ1,Codelta)+1; 

end 

 

% Calculate the lower and upper range of J1 with 95% confidence interval 

numdn=0; 

formdn=1:1000; 

numdn=numdn+popJ1(mdn); 

if (numdn>249) 

break; 

end 

end 

 

numup=0; 

 

formup=1000:-1:1; 

numup=numup+popJ1(mup); 

if (numup>249) 

break; 

end 

end 

 

J12range=[mdn/100,mup/100]; 

 

% Calculate the lower and upper range of Jdelta with 95% confidence interval 

numdn=0; 

 

formdn=1:1000; 

numdn=numdn+popdelta(mdn); 

if (numdn>249) 

break; 

end 

end 

 

numup=0; 

 

formup=1000:-1:1; 

numup=numup+popdelta(mup); 
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if (numup>249) 

break; 

end 

end 

 

Jdeltarange=[mdn/50,mup/50]; 

 

% Plot the J1 and Jdelta spectroscopy 

plot(popJ1); 

plot(popdelta); 

end 

 

FitMontecarlo: 

function [x]=FitMontecarlo(pol, Error) 

% A function used to fit experimental data with random deviation and get  

% high resolution J spectroscopy 

 

warning offall; 

hold on; 

 

% set starting fitting points 

x0=[7.5,12.5,100]; 

 

% Fit the experimental data with theory (by calling FTMontecarlo function) 

% and extract J1 and Jdelta 

 

for k=1:1:47; 

    R(k)=Error*(sqrt(3))*pol(k)*rand(); 

    P(k)=pol(k)-0.05*(sqrt(3))*pol(k)+R(k); 

end 

length (P) 

xdata=[1:1:length(P)]; 

size(xdata); 

x=lsqcurvefit(@FTMontecarlo, x0, xdata, P); 

 

end 

 

FTMontecarlo: 

function [p] = FTMontecarlo(x,xdata) 
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% A function of theoretical values for J-dependent polarization, used for  

% fitting experimental data and get J spectroscopy 

 

% Define the fitting components 

J12=x(1); 

Jdiff=x(2); 

scale=x(3); 

 

% The time intervals of each group of experiment 

t(1,:)=[0.0005, 0.05847, 0.0362, 0.02828]; 

t(2,:)=[0.00975, 0.05847, 0.0362, 0.02828]; 

t(3,:)=[0.02, 0.05847, 0.0362, 0.02828]; 

t(4,:)=[0.032, 0.05847, 0.0362, 0.02828]; 

t(5,:)=[0.04, 0.05847, 0.0362, 0.02828]; 

t(6,:)=[0.045, 0.05847, 0.0362, 0.02828]; 

t(7,:)=[0.05, 0.05847, 0.0362, 0.02828]; 

t(8,:)=[0.06, 0.05847, 0.0362, 0.02828]; 

t(9,:)=[0.07, 0.05847, 0.0362, 0.02828]; 

t(10,:)=[0.00975, 0.05847, 0.0362, 0.107]; 

t(11,:)=[0.09, 0.05847, 0.0362, 0.02828]; 

t(12,:)=[0.1, 0.05847, 0.0362, 0.02828]; 

t(13,:)=[0.1104, 0.05847, 0.0362, 0.02828]; 

t(14,:)=[0.12, 0.05847, 0.0362, 0.02828]; 

t(15,:)=[0.131, 0.05847, 0.0362, 0.02828]; 

t(16,:)=[0.00975, 0.008, 0.0362, 0.02828]; 

t(17,:)=[0.00975, 0.0204, 0.0362, 0.02828]; 

t(18,:)=[0.00975, 0.031, 0.0362, 0.02828]; 

t(19,:)=[0.00975, 0.041, 0.0362, 0.02828]; 

t(20,:)=[0.00975, 0.077, 0.0362, 0.02828]; 

t(21,:)=[0.00975, 0.086, 0.0362, 0.02828]; 

t(22,:)=[0.00975, 0.0965, 0.0362, 0.02828]; 

t(23,:)=[0.00975, 0.109, 0.0362, 0.02828]; 

t(24,:)=[0.00975, 0.121, 0.0362, 0.02828]; 

t(25,:)=[0.00975, 0.05847, 0.003, 0.02828]; 

t(26,:)=[0.00975, 0.05847, 0.011, 0.02828]; 

t(27,:)=[0.00975, 0.05847, 0.017, 0.02828]; 

t(28,:)=[0.00975, 0.05847, 0.023, 0.02828]; 

t(29,:)=[0.00975, 0.05847, 0.03, 0.02828]; 

t(30,:)=[0.00975, 0.05847, 0.04, 0.02828]; 

t(31,:)=[0.00975, 0.05847, 0.05, 0.02828]; 

t(32,:)=[0.00975, 0.05847, 0.056, 0.02828]; 

t(33,:)=[0.00975, 0.05847, 0.0614, 0.02828]; 

t(34,:)=[0.00975, 0.05847, 0.07, 0.02828]; 

t(35,:)=[0.00975, 0.05847, 0.08, 0.02828]; 
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t(36,:)=[0.00975, 0.05847, 0.0865, 0.02828]; 

t(37,:)=[0.00975, 0.05847, 0.09, 0.02828]; 

t(38,:)=[0.00975, 0.05847, 0.1, 0.02828]; 

t(39,:)=[0.00975, 0.05847, 0.11, 0.02828]; 

t(40,:)=[0.00975, 0.05847, 0.12, 0.02828]; 

t(41,:)=[0.00975, 0.05847, 0.13, 0.02828]; 

t(42,:)=[0.00975, 0.05847, 0.0362, 0.004]; 

t(43,:)=[0.00975, 0.05847, 0.0362, 0.012]; 

t(44,:)=[0.00975, 0.05847, 0.0362, 0.05]; 

t(45,:)=[0.00975, 0.05847, 0.0362, 0.063]; 

t(46,:)=[0.00975, 0.05847, 0.0362, 0.0786]; 

t(47,:)=[0.00975, 0.05847, 0.0362, 0.094]; 

 

% The parameters in the theoretical equations 

delta=Jdiff/(2*J12); 

omega=J12*(sqrt(1+delta^2)); 

theta=asin(1/(sqrt(1+delta^2))); 

 

% The calculated J-sensitive theoretical polarization level 

for n=1:1:length(xdata); 

    p(n)=((sin(theta)*sin(2*theta)*sin(2*pi*omega*t(n,2))... 

        +cos(theta)*cos(2*theta)*cos(2*pi*omega*t(n,1))... 

        *sin(2*pi*omega*t(n,2))... 

        -cos(theta)*sin(2*pi*omega*t(n,1))*cos(2*pi*omega*t(n,2)))... 

        

*(0.25*sin(4*theta)+0.25*sin(4*theta)*cos(2*pi*omega*t(n,3))... 

        *cos(2*pi*omega*t(n,4))+sin(2*theta)*(((sin(theta))^2)... 

        

*cos(2*pi*omega*t(n,3))-((cos(theta))^2)*cos(2*pi*omega*t(n,4)))... 

        +cos(theta)*sin(theta)*sin(2*pi*omega*t(n,3))... 

        *sin(2*pi*omega*t(n,4))))... 

        -(0.5*sin(2*theta)*(cos(2*theta)... 

        +2*((sin(theta))^2)*cos(2*pi*omega*t(n,2))... 

        -2*((cos(theta))^2)*cos(2*pi*omega*t(n,1))... 

        +cos(2*theta)*cos(2*pi*omega*t(n,1))*cos(2*pi*omega*t(n,2))... 

        +sin(2*pi*omega*t(n,1))*sin(2*pi*omega*t(n,2)))... 

        *(cos(theta)*cos(2*pi*omega*t(n,3))*sin(2*pi*omega*t(n,4))... 

        -sin(theta)*sin(2*theta)*sin(2*pi*omega*t(n,3))... 

        -cos(theta)*cos(2*theta)*sin(2*pi*omega*t(n,3))... 

        *cos(2*pi*omega*t(n,4))))*scale; 

end 

end 
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