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CHAPTER |

INTRODUCTION

Software Product-Lines (SPLs) are a technique for creatifigvare applications com-
posed from reusable parts that can be re-targeted for eliffeequirement sets. For ex-
ample, in the automotive domain, an SPL can be created tloatsah car’s software to
provide Anti-lock Braking System (ABS) capabilities or gly standard braking. Each
unique configuration of an SPL is called/ariant

SPL variants cannot be constructed arbitrayy, a car cannot have both ABS and
standard braking software controllers. A key step in baddan SPL is therefore creating
a model of the SPL’s variability and the constraints on varigonfiguration. An effec-
tive technique for capturing these configuration constsasfeature modeling82], which
documents SPL variability and configuration rulesfaatures Each feature represents an
increment in product functionality. A feature model cantcag different types of vari-
ability, ranging fromSPL variability(e.g, variations in customer requirementsstaftware

variability (e.g, variations in software implementation) [98].

Brake Control Software

Figure 1.1: Simple Feature Model for an Automobile

SPL variants can be specified as a selection or configuratieamres. Feature models
of SPLs are arranged in a tree-like structure where eachessively deeper level in the
tree corresponds to a more fine-grained configuration oftiothe product-line variant,

as shown by the feature model in Figure I.1. The parent-crildl cross-tree relationships



T 2]\
Modeling Guidane Automated Configuration
Suggests Best Features Integrator Produces Valid

Composite Configuration

Automated Configuration
Solver Adds Optimal Features
to Complete Configuration

AN wlw

Automated Debugging
Provides Feedback on
Features to Select/Deselect

Figure 1.2: Overview of Research Approach

capture the constraints that must be adhered to when sgjextgroup of features for a

variant.

Overview of Research Challenges

Although SPLs help to facilitate software reuse and lowerettigpment costs across
a number of software development projects, there is a stgmifiamount of complexity
associated with the configuration of an SPL variant. The teypdhallenges that pervade

most SPL configuration activities are that:

» SPLs commonly have 1,000s of variable parts or featuresaanelqual number of
associated constraints. Fully configuring a valid SPL vdrtan take several days or
months. Moreover, the complexity of configuring a variankesavariant derivation

a significant cost and burden for SPL developers.

 Variants need to be optimized for a specific set of requiregmeBefore SPLs were



used, tightly-coupled and brittle software solutions waeeeloped for each require-
ment set. The key advantage of this approach was that theaseftvas highly opti-

mized for the requirement set. In order to provide comparabst and performance,
developers need to carefully configure SPL variants to apérkey properties, such

as cost.

In order to help improve the speed at which variants can bégimed, decrease the
complexity of the manual variant derivation steps, and muprthe optimality of variants,
methods are needed for automating and optimizing variarfiguration. Automated vari-

ant construction mechanisms have a number of challenge®toane, such as:

1. The optimization and automation mechanisms must supgoone level of human
interaction. There are certain steps in configuration, sisctranslating verbal cus-
tomer specifications into feature selections, that caneatibomated. A key problem
is determining how to help optimize the manual modeling staghe configuration

process.

2. Because some portion of most configurations will be edtaranually, automation
mechanisms must be able to operate on and complete paftiibss. The automa-
tion mechanism cannot simply throw away the decisions madmgl the manual

modeling process.

3. Frequently, two partial configurations need to be intesgtanto a single and complete
solution. For example, two developers may make configuratexisions in parallel
and an automation mechanism needs to be able to take thepattiia specifications
and produce a complete configuration that incorporatestbeeéts of decisions and

resolves conflicts.

4. Because configuration is an extremely complex procegsaa@tomation mechanism

must support some form of automated debugging or diagnésisual configuration



steps may produce incompatible partial configurationsalidvfull configurations,
or partial configurations for which there is no valid compet If a configuration
cannot be completed, it will be extremely difficult for deweérs to figure out why
and how best to remedy the error. Thus, any automated coafigarmechanism

must be able to provide automated diagnostics.

Overview of Research Approach

To help address the challenges of configuring good SPL uariese propose a research
approach that uses constraint-based programming teastquhelp model engineers cre-
ate optimal or good SPL variant configurations. The appraeelpropose, as shown in

Figure 1.2, uses constraint solving algorithmic techngjas follows:

1. Model Intelligence integrates a constraint solver with a modeling tool and wses
sual queues to show developers the optimal ways of comgletiodeling actions.
For example, when a modeler initiates a connection betweembodeling elements,
the constraint solver can solve a Constraint SatisfactrolEm (CSP) [77] repre-
senting the semantics of the connection and show the matthel@ptimal endpoint

by highlighting ideal connection endpoints.

2. Automated Configuration Integration techniques that take one or more configu-
rations specified in parallel by a group of developers and/eéehe values for the
intermediate configuration choices that need to be madeofmeply integrate the set
of partial configurations. For example, one developer mécséhe data access ob-
jects to manipulate persistent data in the applicationtreraleveloper selects the
database type that will be used to store persistent datathensolver derives the
appropriate database driver and supporting librariesltevahe data access objects

to interact with the database.

3. Automated Configuration techniques to take a partially specified configuration and



derive a valid and complete configuration from it. For examp@l developer may
specify some number of configuration choices that are ngtatess by customer re-
quirements and the solver will deduce values for the remginbnfiguration deci-
sions based on the configuration constraints of the SPL andieveloper’s optimiza-

tion goals.

4. Automated Debuggingtechniques which provide developers with recommendations
on the optimal set of modifications that can be made to a flawefiguration to make
the configuration valid. For example, an automated debgggiachanism could
suggest the minimal number of configuration changes to makeder to bring an

invalid configuration to a valid state.

Overview of Research Contributions

Summary of Research Accomplishments:

1. 22 Accepted papers, 5 first author journal papers, 10 cemdée papers, 1 book chap-
ter, and 6 workshop publications, including one "best pageard

2. Best Paper Award SPLC 2008 "Automated Diagnosis of Prslitue Configuration
Errors in Feature Models" was selected as the best of 30 pap&PLC 2008

My research on product-line configuration spans a numbere#dsain Software En-
gineering and Distributed Systems, including Model-dnia@d Aspect-oriented Software
Engineering, Software Product-lines for Distributed amdbiedded Systems, Autonomic
Distributed Systems, and Component-based Distributede8ys In each area, | have
combined new constraint and heuristic based configuratimhogtimization techniques
to produce novel systems. In each research endeavor, | eavekdeenly aware of the risk
of solving a complex problem at the expense of introducingtlaer system development
complexity. Although | have separated modeling into its aesearch area, | have com-

bined modeling with many of the other research areas to estheaccomplexity of applying



my contributions to the analysis, configuration, and oation of distributed and embed-
ded systems. Table |.1 describes my key research contitsutibtained from applying
SPL configuration techniques to a number of areas of softeageneering and distributed
systems:

The remainder of this section describes my contributionsdah research area in more

detail.

Constraint-based Modeling Guidance

Many current software systems are so large and complex thatially producing a
correct model of the system is extremely hard. For exampi&lihg a model of how soft-
ware components in an automobile are deployed to hardwanpaoents requires adhering
to a large number of complex non-functional constraintshsas resource limitations and
safety properties. Building an automotive software deplest model that satisfies these
complex constraint sets is extremely difficult. My reseanchmodel-driven engineering
focuses on how constraint-solvers and inference engimeeased to help guide develop-
ers towards correct modeling solutions and automate thstieartion of complex models.
My primary contributions in this research area are:

Constraint-based modeling guidancg70, 150, 162]: We have developed and proto-
typed two different techniques that transform model inségninto equivalent constraint
programming problems and use constraint-solvers to dealid ways of completing in-
dividual modeling actions. For both techniques, we haveelbped the constraint pro-
gramming paradigms and the modeling technologies to makg@dhadigms usable. The
translation techniques are performed on-the-fly as deeetomcrementally build mod-
els. developers are shown visual cues indicating the donags of completing individual
modeling actions, such as highlighting the valid endpdiotsa connection that a user is

creating. The modeling guidance techniques also allowsusegpartially construct models



Research Area

Primary Contributions

Publications

Model-driven and Aspect
Oriented Software Enginee

ing

* 1. Modeling guidance us

ing constraint solvers

Constraint-based
model weaving

[146], [162], [107],
[150], [70], [160][20],
[106]

Software Product-lines fo
Distributed and Embedde
Systems

=

Automated constrainf
based configuratiof
of product-line vari-
ants  with

mization

line configuration er-
rors

resource
constraints and optit

Diagnosis of productt

[161], [157], [149],
[156], [145], [153]

N

D

Autonomic Systems

Configuration healing
using constraint;
solvers

Modeling and simu;
lation of autonomic
component-based
systems

[163], [152], [155],
[159], [151]

Component-based
tributed Systems

Dig

Deployment and con
figuration modeling
and automation

[144], [154], [147],
[106]

Table I.1: Summary of Research Accomplishments

and then use a constraint solver to autonomously completga humber of modeling ac-
tions, such as creating a series of connections betweenl mledgents, to bring the model

to a valid state.



Constraint-based model weavind107, 146]: Our research approach created a tech-
nique, called constraint-based weaving, that maps modaliwe to a constraint satisfac-
tion problem (CSP) and uses a constraint-solver to dedecapropriate weaving strategy.
By mapping model weaving to a CSP and leveraging a conssalnér, our technique (1)
generates solutions that are correct with respect to theimgaonstraints, (2) can incor-
porate complex global weaving constraints, (3) can prowieaving solutions that are opti-
mal with respect to a weaving cost function, and (4) can elaté manual effort that would

normally be required to specify pointcuts and maintain tlesnarget models change.

Resource-constrained Software-product Line Variant Confguration for Distributed

and Embedded Systems

Research focus: Software Product-Lines (SPLs) are sadtamrhitectures built on a
set of reusable components that can be reconfigured forafiffeequirement sets. A key
requirement of an SPL is a specification of the variabilityhia architecture and how the
points of variability affect each other. The most commonhodtof documenting this vari-
ability is with a Feature Model. A feature model uses a tike-$tructure to describe the
points of variability in an SPL and the possible values fa Hariability points. Feature
models can contain thousands of features and complex aartstmaking finding a good
or valid configuration hard. We have devised techniques Ipragtomatically deriving
configurations that maximize a goal function with a constrablver and (2) diagnosing
errors in feature model configurations. These techniquess @PL developers to signif-
icantly reduce the complexity of both finding a good configimraand pinpointing errors
in manual configuration decisions. My primary contribugan this research area are:

Constraint-based automated configuration subject to resowwe constraints [145,
149,153,156, 161]: SPLs designed for systems with resagustraints, such as mobile

devices, create a unique challenge for automated produeintaelection engines since



deriving valid configurations subject to resource constsais NP-Hard. Previously, au-

tomation techniques did not incorporate configuration wes® consumption constraints
into variant selection and did not address how a SPL couldelsegded to improve auto-

mated variant selection speed. Through our research wakave developed CSP and
knapsack-based configuration techniques whose input ihélequirements of SPL con-
struction and (2) the resources available to the configuraand whose output is the op-
timal SPL configuration that will fit into the resource limit§hese techniques provide
automatic configuration selection based on configuratid@srand resource constraints.
These techniques also ensure that the configuration is alpiiith regard to a configurable

cost function.

CSP-based feature configuration error diagnosi$157]: Configuration of large fea-
ture models can involve multiple stages and participantichvmakes it hard to avoid
conflicts and errors. Our research provided three contabstto debugging feature model
configurations: (1) we created a technique for transforraifigwed feature model configu-
ration into a CSP and showed how a constraint solver canelgrezminimal set of feature
selection changes to fix an invalid configuration, (2) we @@anethods for using this
technique to automatically resolve conflicts between conditjon participant decisions,
and (3) we conducted experiments that show that our techrscales to models with over

5,000 features, which is well beyond the size used to vaidtter automated techniques.

Model-based Healing in Distributed Autonomic Systems

Research focus: Developing and maintaining enterpriséicapipns is hard, due in
part to their complexity and the impact of human operatoorenvhich have shown to
be a significant contributor to distributed system repad down time. The aim of auto-
nomic computing is to create distributed applications tiaate the ability to self-manage,
self-heal, self-optimize, self-configure, and self-pobtehereby reducing human interac-

tion with the system to minimize down-time from operatoroerrAlthough the benefits



of autonomic computing are significant, the pressures atdiendevelopment timeframes
and inherent/accidental complexities of large-scalensof development have discouraged
the integration of sophisticated autonomic computing fiemality into distributed appli-
cations. My primary contributions in this research area are

Fine-grained component healing[163]: For each potential error state that an appli-
cation could enter, most existing MDE adaptation techrsgqeguire explicitly modeling
both the error state and the numerous actions to transition the error state to a correct
state. For large enterprise applications, there are ysaaignificant number of poten-
tial error states and complex nuanced considerations @ugilability of other services,
database locks held, transaction states, etc.) that makeyitdifficult to create a model
for application healing. Rather than explicitly modelingoe states and recovery actions,
we developed a technique, called Refresh, thta uses faatutels to capture the rules for
determining what is or is not a correct configuration/ertates Feature models provide
a mechanism for validating and deriving valid configurasionthout explicitly specifying
every recovery path. Our research has shown how 1) featudelsioan be used to identify
errors, 2) a constraint solver can be used to derive a new a@idlapplication configura-
tion, and 3) the applicationSs component container can &g tassafely abort transactions,
release locks, and reboot the failed subsystem with the a#id onfiguration.

Domain-specific modeling techniques for autonomic systenj$51,152,159]: To re-
duce the complexity of developing autonomic componenetiaystems, we developed a
modeling language and toolsuite, called J2EEML. J2EEMLvidies a high-level model-
ing notation that helps simplify the development of autorogystems by providing no-
tations and abstractions that are aligned with autonommspeaing, QoS, and EJB ter-
minology, rather than low-level features of operating sy, middleware platforms, and
third-generation programming languages. Our toolsu#e aicludes a customized imple-
mentation of the QSim algorithm that allows developers téquen model validation of key

autonomic design decisions related to continuous systepepties.
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Automating the Deployment and Configuration of Component-lased Distributed and

Embedded Systems

Research focus: Distributed real-time and embedded (DR&Ee®1s are increasingly
being built using component-based technologies. Compdeehnologies facilitate soft-
ware reuse across applications by allowing the dynamiaatsiyeof applications at deploy-
ment time via configuration scripts. The late-binding pmipe of component technolo-
gies allow application developers to reuse existing saftvead reduce costs by leveraging
commercial-off-the-shelf (COTS) components. Applicatatevelopers have traditionally
used tightly-coupled proprietary solutions to handle lgattrequirements and resource
restrictions of DRE systems. Composing a component-bggadtation from components
that are not specifically designed for the individual apgimn poses a number of chal-
lenges. For example, highly specialized components care msgumptions, such as what
type of underlying operating system will be used, that rblesaomponents cannot make.
These assumptions can help improve performance (e.gg spetialized APIs) at the cost
of reusability. Because DRE systems often operate in emvients with little resource
slack, being unable to make these key assumptions makefatldito find a configura-
tion that meets the required timeliness, safety, and otbarfanctional properties. My
research has focused on automated techniques for dynandoafiguring and optimizing
component-based applications that are subject to rescarraints. My primary contri-
bution in this research area is:

Dynamic constraint-based component configuration and opinization at applica-
tion launch [144, 154, 155]: At the heart of our research approach toestile problems
associated with deploying and configuration componengdbapplications is a MDE tool
called Fresh. Fresh is designed to reduce the complexitgmfidg a correct application
configuration and implementing the configuration in confegion scripts. Fresh simplifies

and improves the correctness of configuring DRE componasédh applications by: (1)
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Capturing configuration rules through feature models, Wwiiescribe application variabil-
ity in terms of differences in functionality; (2) Translagj an application’s feature models
into a CSP and using a constraint solver to automaticallyeearcorrect application config-
uration for a requirements set; (3) Facilitating configurabptimization for a requirements
set by providing a configurable cost function to the constrsolver to select optimal con-
figurations; and (4) Providing an XML configuration file anatbdn language that allows it

to directly inject configuration decisions into configuaatiscripts at application launch.

Dissertation Organization

Each chapter describes a single focus area, the unresdiedldnges in the area, and
our solution or proposed solution to the challenges. Theaneder of this dissertation is
organized as follows: Chapter Il presents a taxonomy otiegisesearch related to opti-
mizing the configuration of SPL variants; Chapter Ill exp®the automated configuration
of SPL variants; Chapter IV delves into the integration ob twartial EJB configurations;
Chapter V investigates the automated configuration of CGdyaponent Model (CCM) ap-
plications; Chapter VI presents a technique for optimizang automating aspect weaving.
Chapter VIl evaluates the optimization of manual modeliteps; Chapter VIII presents
an approach for automating and optimizing the healing ofiserconfigurations using fea-
ture models; Chapter IX presents a heuristic techniquedleirgy large scale configuration
problems with resource constraints; Chapter X presentgpproach to optimizing hard-
ware and software configuration in tandem; and Chapter Xdgres our proposed solution

to debugging invalid configurations.
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CHAPTER I

RELATED WORK ON CONFIGURATION OPTIMIZATION

This chapter categorizes and examines existing resedi@tsefelated to optimizing
the configuration of SPL variants. The research is dividéo @ategories based on: cus-
tomizing SPL variants based on hardware and other nonituradtconcerns; automated
configuration integration; automating the weaving of aspeghich are often used to help
implement SPLs; healing configurations when SPL comporfailisand debugging SPL

configuration errors.

Customizing SPL Variants for Non-functional Concerns

A key challenge in SPL variants is determining how to custena variant based on a
set of non-functional requirements. One area where vadastomization is particularly
difficult is the customization of software for mobile devicesuch as a cell phone. This
section examines existing research in the area of softwatemization for mobile devices.

In [93], Mannion et al present a method for specifying SPL positional requirements
using first-order logic. Each feature is modeled as a booleaiable and the selection
of a feature is tied to a number of logical implications. Thgital implications define
the constraints imposed on the SPL when a particular feasuselected. The validity
of a variant can be checked by transforming its feature 8eleto a set of values for
these boolean variables and ensuring there are no corttoadic In [94], Mannion et al.
enhance this approach to allow valid product variants to dxéveld using SAT solvers.
The key limitation of this approach is that it is geared ta¥gachecking the correctness
of the SPL composition with respect to the feature model astdthre correctness of the
composition with respect to other non-functional requieats. Although non-functional

requirements can be used to inform the construction of tatife model or augment the
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predicate logic as further boolean variables, the approanhot handle integer properties,
such as cost. This limitation makes it difficult to performtiopzation, such as cost or
memory minimization. Further discussion on these limiasi versus a constraint-based
approach is available in [22].

A mapping from feature selection to a CSP is provided by Belesvet al. [22]. Many
of the research approaches in this dissertation use thie satuction but also extend it
with the capability to handle references and resource aingt. Resource constraints are
a key requirement type in mobile devices with limited capaés. Constraint-based con-
figuration approaches, such as Benavides’, have expohemtiat case time complexity.
Benavides et al. do not address how an SPL can be designeaitbthis worst case
behavior and ensure that automatic variant configuratipossible.

In [88], Lemlouma et. al, present a framework for adaptind enstomizing content
before delivering it to a mobile device. Their strategy &keo account device preferences
and capabilities. The approach of customizing softwaremewhat comparable in that
each attempts to deliver customized data to a device bastet aevice’s capabilities and
preferences. A key limitation of Lemlouma’s approach ig thdoes not handle resource
constraints. Resource constraints are a critical fact@mndelecting software features for
a device with extremely limited hardware resources.

Many complex modeling tools are available for describind aalving combinatorial
constraint problems, such as those presented in [33, 4895729]. These modeling tools
provide mechanisms for describing domain-constraintst afknowledge, and finding so-
lutions to the constraints. These tools, however, do notigeoca high-level mechanism to
capture non-functional requirements and SPL compositiasrgeared towards mobile de-
vices. These tools also do not dictate exactly how an SPL gehed using constraint-based
programming. Benavides et al. [22] have laid out one appraéaduilding a constraint-

based model of SPL configuration, but as we pointed out earéisource constraints and
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SPL design decisions to improve solving performance havebaen investigated suffi-

ciently.

Integrating Partial SPL Configurations

Pure::variants[23] is a commercial tool that provides feature modelingatalities.
Pure::variants allows developers to specify features aatlife constraints, validate fea-
ture selections, and to derive required completions of tufeaselection. Pure::variants
requires developers to manually specify how features from feature model affect fea-
tures in another feature model. Pure::variants does notraite the synchronization of
feature models, which is an important capability for disited development. The lack of
model synchronization and integration capabilities pnévelevelopers from working in a
distributed fashion.

BigLever’'s Software Gear§31] is another commercial feature modeling and software
variant management tool. Software Gears supports feagumdar to Pure::variants includ-
ing: feature modeling, automated feature selection cotpleand configuration injection.
Software Gears requires manually developed mappings batfeatures. BigLever suffers
from the same drawbacks of Pure::variants in that it doepraside mechanisms for syn-
chronizing and integration feature selections perfornnegakirallel.

Various approaches [101, 120] have been devised to harglleotnplexity of config-
uring applications. Other techniques have also been peapfus variant configuration in
SPLs based on configuration rules for application compengr&3]. This related work
focuses on how a configuration problem can be formalized aSR ®ly work in this
dissertation extends many of these ideas, particularlyetibat describe a generic model
of configuration as a CSP [101]. With my work, however, mauglhas been used to
make these techniques practical for industrial SPLs. Thppeoaches provide key build-
ing blocks of automated product configuration, but do notesslthe specific challenges

related to decentralized SPL configuration.
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Modeling Guidance Related Work

There are a plethora of technologies and standards awail@bbuilding MDD tools.
This section explores some of the main frameworks, tools specifications that are avail-
able to develop model-driven processes for software system

Domain-independent modeling languag&s one end of the MDD tool spectrum are
Unified Modeling Language (UML) [58] based tools, such as IBRational Rose [115],
that focus on building UML and UML-profile [58] based modeihen using UML, all
models and languages must be specializations of the UMLukgegy UML provides a
single generic language to describe all domains. The adgardf the domain-independent
approach of UML-based tools is the increased interopetabigtween modeling platforms
that can be obtained by describing models using a single imgdanguage and the wide
acceptance of the language. New languages can be condtanctep of UML by defining
profiles, which are language extensions. UML is based on t@& Mhetamodel specified
by the OMG.

Domain-specific modeling languag&3n the other end of the MDD tool spectrum are
domain-specific modeling language (DSML) [87] tools. Intrast to UML, DSML tools
do not necessarily share a common metamodel or languagatfofirhis freedom allows
DSMLs to have greater expressivity and handle domains (@setarehouse management,
automotive design, and product line configuration), thaitaim concepts (such as spatial
attributes) that are not easily expressed and visualized WiVIL-based tools. The draw-
back of DSMLs, however, is that choosing a language gelydradi a development process
not only to a specific way of representing the model but alseeg@ly to a specific tool.
Although the loss of interoperability can be problematiansformations can be written to
convert between model formats and still achieve tool ingerability. In many cases, the
greater expressivity gained by using a DSML can greatly onvpthe usability of the MDD
tool.

Tools for building DSMLsTo build a DSML, a metamodeling language must be used to
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define the syntax of the language. A metamodel describesikbethat determine the cor-
rectness of a model instance and specifies the types thaecaedited in the language. The
OMG's current standard is the Meta-Object Facility (MOF)J&nguage. MOF provides
a metamodel language, similar to UML, that can be used toritesather new languages.
MOF itself is recursively defined using MOF. MOF is a specitima and therefore is not
wedded to a particular tool infrastructure or languagenetigy. Many DSMLs can be
described using MOF.

Another popular metamodeling language is the Eclipse Modgéiramework’s (EMF)
[30] Ecore language. Ecore has nearly identical languagstaacts to MOF but is a con-
crete implementation rather than a standard specificalenelopers can describe DSMLs
using Ecore [30] and then leverage EMF to automatically gerelava data structures
to implement the DSML. EMF also possesses the capabilityeterate basic tree-based
graphical editing facilities for Eclipse that operate oa ffava data structures produced by
EMF.

Complex diagram-like visualizations of EMF-based modglanguages can be devel-
oped using the Graphical Editor Framework (GEF) for Eclifg®8. GEF provides the
fundamental patterns and abstractions for visualizingiatedacting with a model. Editors
can be developed using GEF that allow modelers to draw coionsdo create associations,
nest elements to develop containment relationships, aneledent attributes. GEF edi-
tors are based on the Model, View, Controller (MVC) patté&t][ GEF, however, requires
complex graphical coding.

The Graphical Modeling Framework (GMF) [6], is higher leframework, built on top
of GEF, that simplifies the development of graphical edit@®F automates the construc-

tion of the controller portion of GEF editors and providesea &f reusable view classes.
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MVC controllers are developed using GMF by creating comp{&4L files that map el-
ements and their attributes to views in the model. GMF takes<tML mappings of ele-
ments to views and generates controllers that developargszto synchronize the model
and view of the MDD tool automatically.

Even with the powerful development frameworks presentesd thr, developing a visual
MDD tool requires significant effort. Meta-programmable dabng environments [87]
help alleviate this effort by allowing developers to spgtife metamodel for a DSML vi-
sually. After the visual specification for the language imptete, the meta-programmable
modeling environment can automatically generate the gpj@aie code and configure itself
to provide graphical editing capabilities for the modeliagguage.

Meta-programmable modeling environments also provideptexremoting, model
traversal, library, and other capabilities that are hatktcelop from scratch. Two examples
of these environments are the Generic Modeling Environn(@ME) [87], which is a
Windows-based meta-programmable MDD tool, and the Geietipse Modeling System
(GEMS) [160], a part of the Eclipse Generative Modeling Tealbgies (GMT) project.
The main tradeoff in using meta-programmable modelingrenments is that they tend to
provide less flexibility in the visualization of the model.

Many modeling techniques rely on a constraint specificamiguage to provide cor-
rectness checking rules that are hard to concisely desgsibg a graphical language. Cer-
tain types of constraints that specify conditions over ipldttypes of modeling elements,
not necessarily related through an interface or inhergaace more naturally expressed
using a textual constraint specification language. Thetcains language rules are run
against instances of the UML, EMF, or other models to enswatdomain constraints are
met. Constraint failures are returned to the modeler thidbg use of popup windows or

other visual mechanisms.

18



The OMG Object Constraint Language (OCL) [140] is a standamastraint speci-
fication for modeling technologies. OCL allows developersspecify invariants, pre-
conditions, and post-conditions on types in the modelinglege. For example, the OCL

constraint;

cont ext ECU
inv: self.hostedConponents->coll ect(x

| x.requiredRAM ->sum() < sel f.RAM

can be used to check that the sum of the RAM demands of the azenfmhosted by an
electronic control unit (ECU) do not exceed the availableMR@n the ECU. The first line
of the OCL rule defines the context or the type to which the O@eg should be applied.
The second part of the rule, beginning with "inv," defines ithariant condition for the
rule. When there is a change to a property of a modeling eleonfahe context type, the
invariant conditions for the rules applicable to the elehmeuast be checked. Invariants that
do not hold after the modification are flagged as errors in tB¥Mool.

OCL works well for localized constraints that check the eotness of the properties
of a single modeling element. As described earlier, howekerrule can only be used to
check the correctness of the state of a modeling element @intd werive valid states for
a modeling element, which is a process called backward gigaitn a modeling context,
backward chaining is a process whereby the MDD tool dedusesa modeling actions
based on the domain constraints. For example, if it wereilples® use the above OCL
rule to backward chain, a MDD tool could not only determinestiiter or not an ECU was
in a correct state but also, given the current state of an Ep@adluce a list of components
that could be hosted by the ECU without violating the rule.

For software systems with global constraints and large msptlee inability of tradi-
tional modeling and constraint checking approaches, sscGL, to not only flag errors

but deduce solutions limits the utility of model-based depment approaches. Backward
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chaining (providing modeling guidance) becomes more ingmiias domains become more
complex, and where it is thus harder to handcraft solutions.

Deriving Solutions that meet a global constraifithe increasing proliferation of DRE
systems is leading to the discovery of further hard modgdimdplems. These domains all
tend to exhibit problems, such as scheduling with resourosteaints, that are exponential
in complexity since they are different types of NP probleAgey challenge in developing
effective and scalable DSMLs and models for these domaiueriging the overall organi-
zation and architecture of MDD tools and software platfotha can simultaneously meet
stringent resource, timing, or cost constraints.

Mobile devices are a domain that have become widely populdrtygpically exhibit
tight resource constraints that must be considered wheagrdeg software. Software de-
sign decisions, such as the CPU demand of the applicatitan bive physical impacts on
the device as well. For example, the scheduling of and warkldaced on the CPU can
affect the power consumed by the device. Poor schedulingsaurce allocation decisions
can therefore limit battery life.

Determining the appropriate scheduling policies and appbn design decisions to
handle the resource constraints of mobile devices is alitWithout the proper decisions,
devices can have limited battery life and usability. Schiedguwith resource constraints,
however, is an NP problem and thus cannot be solved manwaaliyoh-trivial problems.

Adhering to non-functional requirements. Another chajlemf DRE systems is that
they often exhibit numerous types of non-functional QoSunegnents that are hard to
handle manually. For example, in automotive developmenapplication may have com-
munication timing constraints on the real-time componéats.,, anti-lock braking control),
resource constraints on components (e.g., infotainmestes)s), and feature requirements
(e.g., parking assistance) [141]. In environments witl thinge of QoS requirements, a
correct design must solve numerous complex problems amd #¢m in a layered manner

so the solutions are compatible.
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For example, the placement of two components on particlTdEmay satisfy a tim-
ing constraint but cause a resource constraint failure riotreer component, such as the
infotainment system. Not only must modelers be able to salvaerous types of individ-
ually challenging problems, therefore, but they must be &bfind solutions that meet all
of the requirements.

Another area where complex constraints are common is ingumafiion management,
which is key in emerging software development paradigmsh s1$ product-lines [98] and
feature modeling [81]. In these domains, applications aiefioom reusable software com-
ponents that interact through a common set of interfacesaandwork. Applications are
assembled using existing software assets for specificnegent sets. For example, in mis-
sion critical avionics product lines, such as Boeing Bola & [123], the correct software
component to update the heads-up display (HUD) is seleasedbon the timing, memory,
and other requirements of the particular airframe that dievare is being deployed to.
Configuration-driven domains exhibit the same charadtesisf computationally complex

constraints that drive overall system organization asratbmplex domains.

Debugging Related Work

In prior work [131], Trinidad et al. have shown how featuredals can be trans-
formed into diagnosis CSPs and used to ideritifymandatory featuressoid featuresand
dead feature modeld.31]. Developers can use this diagnostic capability taniide fea-
ture models that do not accurately describe their produtd@understand why not. The
techniques described in this dissertation build on thisiioeusing a CSP for automated
diagnosis. Whereas Trinidad focuses on diagnosing featadels that do not describe
their products, we build an alternate diagnosis model totifleconflicts in feature config-
urations. Moreover, we provide specific recommendatiorie s minimal set of features

that can be selected or deselected to eliminate the error.
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Batory et al. [17] also investigated debugging techniqoessfature models. Their tech-
niques focus on translating feature models into propasditogic and using SAT solvers
to automate configuration and verify correctness of configoms. In general, their work
touches on debugging feature models rather than indivichuafigurations. The approach
in this dissertation focuses on another dimension of deibnggthe ability to pinpoint errors
in individual configurations and to specify the minimal seteature selections and dese-
lections to remove the error. Furthermore, propositioogid-based approaches do not typ-
ically provide maximization or minimization as primitivarictions provided by the solver.
Since, the work in this dissertation uses a CSP-based agpnménimization/maximization
diagnosis functionality is built-in.

Mannion et al. [93] present a method for encoding featureetsoals propositional for-
mulas using first-order logic. These propositional forrsudan then be used to check the
correctness of a configuration. Mannion, however, doesaatht on how incorrect con-
figurations are debugged. In contrast, our work in this diatien provides this capability
and can therefore recommend the minimal feature modificatio rectify the problem.

Pure::variants [23], Feature Modeling Plugin (FMP) [46gAfure Model Analyser
(FAMA) [21], and Big Lever Software Gears [31] are tools deyped to help developers
create correct configurations of SPL feature models. Thesls £nforce constraints on
modelers as the features are selected. None of these towlsyér, addresses cases where

feature models with incorrect configurations are createbraquire debugging.
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CHAPTER IlI

AUTOMATED CONFIGURATION

Challenge Overview

This chapter motivates the need for automated configuratiechanisms that choose
application configurations on a user’s behalf. To illugtrdte need for automated configu-
ration mechanisms, the dynamic provisioning of softwarariobile phones is used as an
example. We show how our automated constraint-based coafign techniques address

the gaps in existing automated variant configuration resear

Introduction

The increasing popularity and abundance of mobile and eddzkdevices is bringing
the promise of pervasive computing closer to reality. A nédeend in mobile devices
that makes pervasive computing more realistic is the m@tfon of services that allow
mobile devices to download software on-demand. Mobile pspfor example, can now
access web-based applications, such as google mail, odaadveustom applications from
services, such as Verizon’s “Get It Now.” Google delivershba web-based interface to
google mail and an application that can be downloaded to alenphone.

In a pervasive computing environment, the ability to dovadsoftware on-demand
will play a critical role in delivering custom services toeus where and when they are
needed. For example, when a mobile device enters a retad, stoftware for browsing
back room inventory, displaying store circulars, and pasthg items can be downloaded
by the mobile device. When exiting the store, the device magdrried onto a train, in
which case applications for placing food orders, checkmgtschedules, and reserving

further tickets could be downloaded by the mobile device.
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Software product-lines (SPLs) [38] are a promising appndadelp developers man-
age the complexity of the variability between mobile desi¢®4, 105, 165]. SPLs [38]
enable the development of a group of software packages déndbe retargeted for differ-
ent requirement sets by leveraging common capabilitigsenpes, and architectural styles.
The design of a SPL is typically guided by scope, commonaditd variability (SCV)
analysis [41]. SCV captures key characteristics of sogwapnduct-lines, including their
(1) scope which defines the domains and context of the SPL c(#hmonalitieswhich
describe the attributes that recur across all members ddithidy of products, and (3yari-
abilities, which describe the attributes unique to the different memmof the family of
products.

Using a SPL, developers can create software architectusésadn be rapidly retargeted
to the capabilities of different mobile devices. In a peivagnvironment, however, the
retargeting of a software application to produce a validardrfor a device must happen
online. When a device enters a particular context, such asad store, the application
provider service must very quickly deduce and create a naf@a the device. With the
large array of device types and rapid development speedwofleeices and capabilities, the
system will not be able to know about all device typgsriori. As devices enter a context,
their unique capabilities must be discovered and dealt gfftbiently and correctly.

Current techniques for automating variant constructiomfcomponent-based models
or feature models, such as those presented in [22, 93, 101133], do not sufficiently
address various challenges of designing and implementireugomated approach to se-
lecting a product variant for a mobile device. One commorabdjy lacking in each of
these approaches is the ability to consider resource cgrtgumrconstraints, such as the
total available memory consumed by the features selectatidosariant must be less than
256 kilobytes. Resource constraints are important for tealgvices since resources are
typically limited. Some resources, such as cellular netiiandwidth, also have a mea-

surable cost associated with them and must be conserved.
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Another missing detail of these approaches is the architedor how a device discov-
ery service would be used to characterize a device’s noctifural properties (such as OS,
total RAM, etc.) so that a variant can be selected for them.afawnt selection engine
for mobile devices must have a way to interface with a disgpwgechanism. Finally, to
provide fast feature selection engines (which aids dynawofievare delivery for mobile de-
vices) more research is needed on how SPL design decisigaithe speed of different
automation techniques.

To address these gaps in online mobile software variantts@heengines, we have de-
veloped a tool calle&catterthat first captures the requirements of a SPL and the resource
of a mobile device and then quickly constructs a custom mafram a SPL for the device.
this chapter presents the architecture and functiondi®catter and provides the following

contributions to research on custom application deploynmgpervasive environments:

» We describe Scatter’s graphical requirement and res@reeification mechanisms

and show how they facilitate the capture and analysis of @ wadliety of requirement

types.

» We discuss how Scatter transforms requirement specditatnto a format that can
be operated on by a constraint solver and how we extend mxistinstraint-based

automation approaches [22] to include resource cons$raint

* We describe the automated variant selection engine, basexd Constraint Logic
Programming Finite Domain (CLP(FD)) solver [77,134] andwlnow it can rapidly

produce both correct and optimal variants based on thenegents.

» We present data from experiments that show how SPL contranpact variant

selection time for a constraint-based variant selectiairen

* We describe SPL design rules that we have gleaned from qariexents that help

to improve variant selection time when using a constraagea approach.
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Challenges of Automated Variant Selection for Mobile Devies

The following are three key challenges associated withticrgan automated variant
selector in a pervasive environment:

e Unknown device signatures Although devices may share common communication
protocols and resource description schemas, a variarttegleservice will not know all
device signatures at design time. To provide on-demandmnasilection when a new de-
vice is encountered, the selection mechanism must be fasedver, devices may possess
different signatures. On the one extreme, a laptop may bedawnto a train with a rel-
atively powerful Intel Core Duo processor and a gigabyte orarof RAM. On the other
extreme, a Treo mobile phone may be discovered with a 312n8talé processor and
64mb of RAM. A variant selector must be able to handle thegerde device descriptions.

e Variant cost optimization. Each variant may have a cost associated with it. There
may be many valid variants that can be deployed and the ‘as&dactor must possess
the ability to choose the best variant based on a cost fornidaexample, if the variant
selected is deployed to a device across a general packetgadiice (GPRS) connection
that is billed for the total data transferred, it is cruciaat this cost/benefit tradeoff be
analyzed when determining which variant to deploy. If oneara minimizes the amount
of data transferred over thousands or hundreds of thousdrteyice deployments, it can
provide significant cost savings.

¢ Limited selection time. A variant selection may need to occur rapidly. On a train,
for instance, a variant selection engine may have tens aftesor hours before the device
exits (although the traveler may become irritated if varselection takes this long). In
a retail store, conversely, if customers cannot get a vaaha sales application quickly,
they may become frustrated and leave. To provide a truly ksasnpervasive environment,
automated variant selection must happen rapidly. When cwedlwith the challenge of not
knowing device signaturespriori and the need for optimization, achieving quick selection

times is even harder.
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Capturing PLA and Mobile Device Requirements

Traditional processes of identifying valid PLA variantyvoive software developers
manually determining the software components that must bevariant, the components to
configure, and how to compose and deploy the componentsditiadto being infeasible
in a pervasive environment (where the target device sigeat@re not known ahead of time
and variant selection must be done on demand), such manoaammes are tedious and
error-prone and are a significant source of system downtifie Manual approaches also
do not scale well and become impractical with the large smitgpaces typical of PLAS.

One way to overcome the speed and correctness deficiencremofal variant selection
is to capture a formal model of the PLA's commonality and ahbility so that automation
can take place. In addition to capturing the compositioaegtibr building variants, a model
is needed to analyze the non-functional requirements ofiantao avoid selecting variants
that are compositionally correct, but whose functionaumsgments fail due to being de-
ployed on incompatible or insufficient infrastructure. g I11.1 shows the cycle of device

discovery, variant selection based on requirements, anantaleployment on a train.

Device Discovery and
Characterization

Device
Requests
Variant

Lt

f/ S
QL
Variant Delivery

Variant Selection
and Assembly

Product Line Components

Figure 111.1: Selecting a Train Ticket Reservation Service for a Device
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For example, a ticket reservation service for a train mayireql megabyte of mem-
ory and 256 kilobits of data transfer over a GPRS connectidhe reservation service is
deployed to a device with insufficient free memory, it willtrionction properly even if it
adheres to the PLA compositional rules. To properly conégurd select a variant dynam-
ically, therefore, both compositional and non-functiorequirements must be considered
and matched against the target device.

Capturing and relating composition and non-functionalinegments to a mobile device
is hard. The remainder of this section describes key chgdieonf building a compositional
and non-functional requirements model of a PLA and outlines our Scatter tool ad-

dresses them.

Solution Approach

The Scatter tool helps automate variant selection for reatslvices by providing:

1. Agraphical modeling tool that defines a domain-specifidatiog language (DSML)
for specifying variant composition rules via a Visio-liketérface, as shown in Fig-
ure lll.2. Scatter allows developers to visually model (i@ tomponents of their
PLA, (2) the dependencies and composition rules of comgsnand (3) the non-

functional requirements of each component.

2. A compiler that converts the graphical models from thett8canodeling tool into
both a Prolog knowledge base and a Constraint Satisfactmvid (CSP) [77,134]
that can be operated on using a Prolog constraint solvertteBsaformulation of
the CSP is an extension of the model presented in [22], whicludes resource

constraints between components or features.
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3. A remoting mechanism that allows a device discovery serto communicate dis-
covered devices to Scatter’s variant selection engine. réim®ting mechanism al-
lows the discovery service to report back key device nortional properties, such

as OS, memory, and CPU speed.

4. Avariant selection engine, based on a Prolog constraives that can automatically
select a correct and optimal variant for a device. The Scadlection engine feeds
the device specification, provided by a discovery serviod,Rrolog knowledge base
created by the Scatter compiler, to the constraint solvee Selection engine then
translates the results from the constraint solving baakéohfiguration decisions for

the variant.

Scatter is implemented using the open-source Genericdedifodeling System (GEMS) [151,
153], which is part of the Eclipse Generative Modeling Teslbgies (GMT) project. GEMS
provides a convenient way to define the metamade],the visual syntax of the modeling
language. Based on the metamodel, GEMS automatically gessea graphical editor that
enforces the grammar specified in the metamodel. Scaten@xbur previous work using
Role-based Object Constraints (ROCs) and Model Intelbgd®06, 148]. Models created
in Scatter are transformed via the ROCs infrastructurefortmats that can be operated on

by a constraint solver.

Scatter Graphical PLA Models

To facilitate the analysis of the variant solution spaceunexy a formal grammar to
describe the structure, commonality, and variability (3@Nalysis of the PLA and its valid
configurations. This customization grammar can then betassatomatically generate and
explore the variant solution space. Scatter provides al/imodeling tool for capturing the
SCV of a PLA, as seen in Figure 11.2. This view allows devepto formalize which
components are available in the PLA, what applications @odnstructed, and how each

application is composed. The components can be used as aacsbs to describe a
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PLA both on system structure [95] or using feature model2®, 81]. In our approach,
configurations of components or features can be modeledreabNidies using Scatter’s
SCV model.

To capture a formal definition of the PLA, the components ofctviit is based must
be modeled. Th€omponenelement is the basic building block in the Scatter DSML that
represents an indivisible unit of functionality, such asealclass or specific feature. For

instance, the various food ordering applications@oenponentg our train example.

PLA Composition Rule

< 3

) Probleins | Javadac | Declaration | (] Properties &
Non-functional Property valus
Req uirement Deployable False

External Link Targat
Har

Figure I11.2: Scatter PLA Composition and Non-functional R equirements

Dependencies between components can be created by spgafgiomposition pred-
icate (Required, Exclusive OR, Cardinality, or Exclusiamd theComponentso which
the predicate should be applied. For our train examplef-tloelServiceomponent is con-
nected to the Exclusive OR predicate, which can be connegtdgkfirst classandcoach
class menwomponents. This composition indicates that bedServiceeomponent can
be deployed with exactly one of these menus. The same cotigposile could also be
specified using th€ardinalty predicate by specifying that.1 of thefirst classandcoach
class menwomponents can be deployed with freodServiceomponent.

Componentdependencies can be constructed hierarchically from atberponents

with dependencies to capture the compositional varigbifita PLA. Components can
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also have composition rules with predicates that refer botrary other components in
the model. This mechanism is identical to the concept ofifeateferences [49]. To spec-
ify the compositional variability in the PLA, developersilbuComponentand Predicate
graphs that show the dependencies and composition rulbs applications and their con-
stituent pieces.

By capturing PLA compositional variability, developersidarmally specify how valid
variants are composed. With a formal specification of thewmaconstruction rules, Scatter
can then automatically explore the variant solution spacksicover all valid compositional

variants of the PLA for a given device.

Non-functional Requirements Capture

One challenge when building a tool to model a PLA's non-fior@l requirements is
providing a mechanism that not only allows modelers to esgeewide variety of constraint
types, but also captures them in a form that can be operatég arconstraint solver. At
one end of the spectrum are textual specifications, suchhéscdmponent should only
be deployed to devices located in the first-class cabin ngnRalm OS.” Although these
specifications are intuitive to produce and understang, éine imprecise in meaning and
require manual translation to the format expected by a cainsisolver.

At the other end of the spectrum are the native formats, ssichairices representing
systems of linear equations or constraint networks, usembbgtraint solvers to specify re-
guirements, such as required OS. These native constranetr $ormats are easy to operate
on with a constraint solver. It is hard, however, to map tHesmats back to the variant
selection for mobile devices, which makes it hard for agilan developers and quality
engineers to use.

Scatter provides a graphical modeling tool to address tedlenge and allow devel-
opers to express requirements. To specify non-functiceglirements, users drag-and-

drop requirements from the palette onto components. THd cdguirement elements of
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a component specify the non-functional requirements thadtrbe satisfied by a device’s

resources. Each requirement hadamne Type andValueattribute associated with it:
» TheNamespecifies the name of the resource on the device that it isatas].
» TheTypespecifies the type of requirement, either,” <’,’ =", =<", " >=", or ' —".

» The Value indicates the target amount of the resource totwthie constraint is being

applied.

For example, if a JVM with a version greater than 1.2 is negtlesl requirement would
have the Name 'JVMVersion’, Type>", and Value '1.2’. For a Resource constraint, such
as the amount of memory consumed by a software componerit-tigpe is usedge.g,

if a component consumed 200kb of memory, the constraintavbalName 'RAM’, Type
'—’, and Value '200'.

Scatter’s approach strikes a careful balance between &sipity and formalness out-
lined above by blending both the flexibility and intuitivesseof a textual approach with
the concrete meaning of a constraint solver format. The Neanebe any string and thus
modelers can create meaning by providing very descriptaraes. The Type provides a
clear definition of how the constraint is compared to theueses available on a candidate
device. The Type also indicates exactly which constraitvesanust be used to analyze
the constraint.

All types, except the ’-’ type, are local constraints govegithe placement of one
component and are solved by an inferencing engine. Thes&reaorts are considered
local because their satisfaction is independent of thefaation of constraints for other
components. For example, if a component requires a specHjdi@t constraint does not
restrict which other components it can be deployed with cliimponent consumes a certain
amount of memory, however, its placement on a device wittictghe other components
that can be placed with it.

A key challenge in a pervasive environment is that variafecs®n must take into
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account requirements based on business and context dagx&fople, on a train, the first-
class and coach-class cabins may offer different meal sviln coach, travelers may
be able to pre-order food via a mobile phone application shilitmust physically go and
pickup the food. In first-class, however, train staff may éguired to deliver food orders
to a traveler’s seat.

For first class, therefore, a variant that provides a compidioe notifying the ordering
system of where the traveler is sitting may be required wiheould not be required in
coach. Cabins may also offer different meal selections alpeces, in which case the
variant selection must account for the location-basedsmieen selecting which menu to
deliver with the ordering service. This train variant sélat scenario is shown in Fig-

ure I11.3.

Coach Class

Coac?CIass Menu

Variant Selection Server"

Figure 111.3: Cabin Class Constraints for Train Menu Varian  t Selection

At one extreme, a tool can limit the types of constraints tizet be solved to a small
subset that is considered most important. At the other exdra tool can allow developers
to capture any type of constraint, but provide no guarantdeweing a way of deducing
a variant that satisfies them. Capturing a wide variety o$e¢htypes of non-functional

business and location-based constraints is hard.
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Scatter employs a strategy that focuses on allowing thesdatees to change while the
types of constraints remain constant. This strategy alibws capture and solve a wide

variety of constraint types. For example, a modeler couétiyp the constraints:

JVMWersion > 1.2

Wfi Capable = true

Cabi nCl ass = first

CPU - 100

RAM - 200

Di spl ayHResol ution > 128
Di spl ayVResol uti on > 64

This specification mixes multiple different types of domamnstraints. A segment
of a Scatter requirements model showing these constrargedn in Figure 1ll.4. The
JVMVersionconstraint relates to the software stack on the dewi¢d) andRAMare re-
source consumption constrain®ifiCapableandDisplayXResolutiomre hardware capa-

bility constraints, andCabinClasss a business/location based constraint.

s teor GRS,

Requirement

Resource E
Requirements "%
Hardware |
Capability !
Requirements

Software Stack Requirement

Figure Ill.4: Capturing Mixed Non-functional Requirement Types in Scatter
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The restrictions imposed by the specification format arg onlthe types of compar-
isons that can be done and not on the data that the compasibaseéd upon. This freedom
in constraint specification allows Scatter’s variant sidecto incorporate a large array of
datatypes that a device discovery service could provides Jétup allows other services
to pre-process the data used by the variant selector ancatlousg it to operate on very
complex data sets.

For example, context processors based on GPS or RFID canatel@a device’s posi-
tion or type and correlate cabin class. Business-rule esgian calculate customer prior-
ities and provide business analysis. Scatter’s archite¢tws holds constant the complex
portions of variant selection—the constraint solvers—aviill allowing the incorporation
of new datatypes from a discovery service. For scenariosewbitber types of constraints

are needed, Scatter provides mechanisms for plugging ity and solvers.

Discovery and Device Signatures

The non-functional properties of a device, sucli@dVersiorandCabinClasscan be
used by the variant selection engine to select a variantibmjues are provided for them.
The values for these variables can be obtained from a mobuee discovery service, as
shown in Figure III.5.

Scatter exposes a SOAP-based web service and a CORBA rgmmo&ichanism for
remotely communicating device characterizations as theydescovered. The properties
of a device are reported back to Scatter as key/value pairs.k&ys match the names of
the non-functional properties constrained by the non#onal requirements in the Scatter
graphical model. These constraints and key/value pairsised by the variant selection

engine to filter the list of variants that can be deployed te\dak.
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Figure Il.5: Scatter Integration with a Discovery Service

Scatter Automated Variant Selector

Scatter provides an automated variant selector that IgesrBrolog’s inferencing en-
gine and the Java Choco CLP(FD) constraint solver [2]. Tret8csolver uses a layered
solving approach to help reduce the combinatorial compjexi satisfying the resource
constraints. Scatter prunes the solution space using thec8mposition rules and the
local non-functional requirements so that only variant ttan run on the target infras-
tructure are considered. The resource constraints arexadbbin-packing an NP-Hard
problem [39]. This layered pruning helps improve selecspeed and enables more effi-

cient solving.

Layered Solution Space Pruning

Initially, the variant solution space contains many mitsoor more possible component
compositions. Solving the resource constraints is thue tonsuming. To optimize this
search, Scatter first prunes the solution space by elimgatbmponents that cannot be
deployed to the device because their non-functional requents, such a JVMVersion or

CabinClass, are not met. After pruning away these compen8ohttter evaluates the SPL
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composition rules to see if any components can no longer pylsd because one of
their dependencies has been pruned in the previous stegx. gkfining the solution space
using the SPL composition rules, the resource requirensrtsonsidered. After solving
the resource constraints, Scatter is left with a drasyicatiuced number of deployment
solutions to select from. At this point, if there is more th@are valid variant remaining,

Scatter uses a branch and bound algorithm to iterativelyaty optimize a developer-
supplied cost function by searching the remaining validiohs.

The first two phases of the solution space pruning use a eomissolver based on stan-
dard Prolog inferencing. A rule is specified that only allavsomponent to be deployed
to a device, if for every local non-functional requirementtbe component, a resource is
present that satisfies the requirement. For exampleCdraponentequires a JVMVersion
greater than 1.2, the targeevicemust contain &esourceamed JVMVersion with a value

greater that 1.2 or the component is pruned from the solspaice and not considered.

Using CLP(FD) to Solve Resource Constraints

After performing this initial pruning of the solution spadke resource and SPL com-
position constraints are turned into an input for a CLP(F@yer. The transformation is an
extension of the model proposed in [22] to include resouacesomption constraints. The
model is also extended to allow for feature references.

A Constraint Satisfaction Problem (CSP) is a problem thatlires finding a labeling
(a set of values) for a set of variables that adheres to a dabeling rules (constraints).
For example, with the constraink"< Y", X = 3,Y =4 is a correct labeling of the values
for X andY. Typically, the more variables and constraints that arelired in a CSP, the
more complex it is to find a correct labeling of the variables.

Selecting a a product variant can be reduced to a CSP. Scattstructs a set of vari-
ablesDCy...DCy, with domain[0,1], to indicate whether or not the ith component is

present in a variant. A variant therefore becomes a binaiygstvhere theh position
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represents if th&" component (or feature) is present. Satisfying the CSP foanase-
lection is devising a labeling dCy. .. DC,, such that the composition rules of the feature
model are adhered to.

Resource consumption constraints are created by enshanthe sum of the resource
demands of a binary string representing a variant do notezke@y resource bound on
the device (e.gy variant_componentresourcedemands< device resourcey For each
Component Cthat is deployable in the SPL, a presence varid@ile with domain [0,1]
is created to indicate whether or not tBemponents present in the chosen variant. For
every resource type in the model, such as CPU, the individaaiponentiemands on that
resourceCi(R), when multiplied by their prescence variables and summadateexceed
the available amount of that resour&sc(R), on theDevice

If the presence variable is assigned 0, indicating the comapbis not in the variant,
the resource demand contributed by that component to théalsnto zero. The constraint
3 Gi(R) *DC; < Dvc(R) is created to enforce this rule. Components that are notteele
by the solver, therefore, will hau@C; = 0 and will not add to the resource demands of the
variant.

The solver supports multiple types of composition relalips betweeomponents
For eachComponent ¢thatC; depends on, Scatter creates the constr@int: 0 — Cj =
1. Scatter also supports a cardinality composition coimgtthat allows at leasMin and
at mostMax components from the dependencies to be present. The digdo@erator
creates the constrair@; > 0— 5 Cj > Min, 5 Cj < Max The standard XOR dependencies
from the metamodel are modeled as a special case of catgimdiere Min/Max = 1.
Finally, the solver supports component exclusion. For €acmponent ¢ that cannot
be present witlC;, the constrainC; > 0 — C, = 0 is created. The variables that can be
referred to by the constraints need not be direct childrenaaimponent or feature and thus

are references.
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To support optimization, a variab@ostV) is defined using the user supplied cost func-
tion. For exampleCostV) = DC; x GPRSG + DC; «* GPRSG + DC3 * GPRSG. .. DCy *
GPRSG@ could be used to specify the cost of a variant as the sum ofdasis of transfer-
ring each component to the target device using a GPRS aeflata connection. This cost
function would attempt to minimize the size of the varianpldged within the resource
and SPL composition limits. Once the requirements have baaslated into CLP(FD)
constraints, Scatter asks the CLP solver for a labeling ®@ivdriables that maximizes or
minimizes the variabl€ostV), which allows the variant selector to choose components
that not only adhere to the compositional and resource @n& but that maximize the
value of the variant. The user therefore supplies a fithnassrier for selecting the best

variant from the population of valid solutions.

Results

A key question is how fast Scatter performs and whether oonline variant selection
is possible. To test Scatter’'s performance, we developeatiassof progressively larger
SPL models to evaluate solution time. The tests focusedlysmiethe time taken by Scatter
to derive a solution and did not involve deploying compose¥ife also tested how various
properties of SPL composition and local non-functionalstoaints affected the solution
speed. Our tests were performed on an IBM T43 laptop, with.8éghz Pentium M CPU
and 1 gigabyte of memory.

Note that optimization and satisfaction of resource camsts is an NP-Hard problem,
where it is always possible to play the role of an adversag/@aft a problem instance
that provides exponential performance [39]. Constraitisfection and optimization al-
gorithms often perform well in practice, however, desgiteitt theoretical worst-case per-
formance. One challenge when developing a SPL that needspfmod online variant

selection is ensuring that the SPL does not induce worgtqgsadormance of the selector.
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We therefore attempted to model realistic SPLs and to tedt&ts performance and better

understand the effects of SPL design decisions.

Pure Resource Constraints

We first tested the brute force speed of Scatter when comfigp®PLs with no local
non-functional or SPL composition requirements that cqulche the solution space. We
created models with 18, 21, 26, 30, 40, and@G@mponents Our models were built in-
crementally, so each successively larger model contaihed the components from the
previous model. In each model, we ensured that not all of tingponents could be simul-
taneously supported by the device’s resources. Our dewasanitially allocated 100 units
of CPU and 16 megabytes of memory. Scatter’s performancétsem this model can be

seen in Figure 111.6.
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Figure I11.6: Scatter Performance on Pure Resource Constra  ints
As can be seen from the large jump in time from the time to se@eariant from 40 to

50 Componentssolving for a variant does not scale well if resource caists alone are

considered.
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Testing the Effect of Limited Resources
We next investigated how the tightness of the resource m@in& affected solution
time. We incrementally increased the available CPU on thdateal device from 100 to

2,500 units for the 50 Component model. The results can beisdagure II1.7.
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Figure I11.7: Scatter Performance as CPU Resources Expand o n Device

As shown in Figure I11.7, expanding the CPU units from 100 @@ binits dramatically
dropped the time required to solve for a variant. Moreoviéer ancreasing the CPU units
to 2,500, there was no increase in performance indicatiagttie tightness of the CPU
resource constraints were no longer the limiting bottl&nec

We then proceeded to increase the memory on the device wdelgirkg 2,500 units of
CPU. The results are shown in Figure 111.8.

Doubling the memory immediately halved the solution timeoubling the memory
again to 128 megabytes provided little benefit since thealniioubling to 64 megabytes
made deployment of all of the components possible. As we lgpdthesized initially, the
solution speed when pure resource constraints are coaditehighly dependent on how

tight the resource constraints are.
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Figure 111.8: Scatter Performance as Memory Resources Expa  nd on Device

Testing the Effect of SPL Composition Constraints

Our next set of experiments evaluated how well the deperydemastraints within a
SPL could filter the solution space and reduce solution tifie.modified our models so
that theComponentsomposed sets of applications that should be deployedhegedtor
example, ouifrainTicketReservationServieas paired with th@rainScheduleServiand
other complementary components.

As with the first experiment I1l, we used our 50 component nhadehe initial baseline.
We first constructed a tree of dependencies that tied 10 coemts into an application set
that led the root of the tree, the reservation service, ty bel deployed if all children
were deployed. Each level in the tree depended on the depluyofi the layer beneath it.
The max depth of the tree was 5. We continued to create newndepeies between the
components to produce trees and see the effect. The resulb@wvn in Figure I11.9.

As can be seen from the results in Figure 111.9, by adding ddpacies between com-

ponents and creating a dependency tree, there was an inteddug in selection time.
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Figure 111.9: Scatter Performance as SPL Dependency Treesa re Introduced

This is presumably because it reduces the number of possibibinations of the compo-
nents that must be considered for a variant. Adding morertipeies to the model to add

other trees provided only a very small gain over the origia@e performance increase.

Results Analysis: Mobile SPL Design Strategies

Based on the results we collected from the experiments, wisatka set of mobile SPL
design rules to help improve variant selection performafte remainder of this section
presents the lessons we learned from our results.

Exploit non-functional requirements Non-functional requirements can be used to fur-
ther increase the performance of Scatter. Each componémtawiunmet non-functional
requirement is completely eliminated from consideratMinen SPL dependency trees are
present, this pruning can have a cascading effect that @tetypleliminates large num-
bers of components. One SPL construction rule based onurartibnal requirements that
was particularly powerful and natural to implement in Seagixploited the relative lack of

variation in packaging of a SPL variant.
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Prune using low-granularity requirements The requirements with the lowest granularity
filter the largest numbers of variants. For example, wherloyapg variants, especially
from a SPL with high configuration-based variability, sushvarying input parameters, the
disk footprint of various classes of variants can be useddatty prune the solution space.
If a SPL with 50 components is composed of 5 Java Archive ResqUAR) files, although
there are a large number of ways that the SPL can be compdsed,dre relatively few
valid combinations of the JAR files.

Many variants may also require common sets of these JAR filds warious foot-
prints. These variants can be grouped based on their JARyooafions. For each group, a
non-functional requirement can be added to the componemrissure that a target Device
provide sufficient disk space or communication bandwidtreteive the JARs. For small
devices that usually have little availabe disk space, wheseurce constraints are tighter
and solving takes more time, large numbers of Componentseanuned solely due to the
lack of packaging variability and need for disk space. Thi®print-based strategy works
even if there are few functional SPL dependencies betwepooents.

Limit resource tightness Due to the increased cost of finding a variant for small device
where resources are more limited, we developed anothegrdesie. To decrease the
difficulty of finding a deployment on small devices, SPL deywars should provide lo-
cal non-functional constraints to immediately filter outssential resource consumptive
Componentsvhen the resource requirements of the deploy@llemponentgreatly exceed
the available resources on the device. Although the costifumcan be used to perform
this tradeoff analysis and filter the€mmponentsluring optimization, this method is time
consuming. Filtering some components out ahead of time ey o less optimal solu-
tions but it can greatly improve solution speed. Even bydilg only the least valued

components to exclude from consideration, performancdeancreased significantly.
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Create service classe#&nother effective mechanism for pruning the solution spaith
non-functional requirements is to provide various clagsgeservice that divide the com-
ponents into broad categories. In our train example, fdaimse, by annotating numerous
Componentsvith the CabinClassand other similar context-based requirements, the solu-
tion space can be quickly pruned to only search the corrassabf service for the target
device. In general, the more non-functional requiremdrdsdan be specified, the quicker
Scatter can prune away invalid solutions and hone in on thectoconfiguration. More-
over, each non-functional requirement gives the solveremmight into how Components
are meant to be used and thus reduces the likelihood of ei@ated variants that fail.
From our experiments, we have seen that when a SPL for a nadwiee is properly
specified with good constraints, Scatter can solve modetdviimg 50 or fewer components
in seconds. This performance should be more than adequateafoy pervasive environ-
ments, particularly when device signature and variantached to eliminate repetitive
solving for known solutions. In future work, we intend tott&satter with larger models

and evaluate more characteristics of SPLs that can be useduoe variant selection time.
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CHAPTER IV

AUTOMATED CONFIGURATION INTEGRATION IN JAVA

Challenge Overview

This chapter illustrates the need for automated configumatitegration mechanisms,
which are techniques for taking two manually specified pacdnfigurations and deriving
any intermediate configuration choices that need to be ndestd the two together. To
illustrate the challenges of configuration integratior, thapter utilizes examples from the

configuration of enterprise applications, such as entsgglava applications.

Introduction

Enterprise applications are large-scale software progyéypically hosted on multiple
application servers, that perform complex business pease€nterprise applications com-
monly support thousands or more simultaneous users andtarevaritten using compo-
nent middleware, such as Enterprise Java Beans. Due tddtggrnumber of components,
complicated XML-based configuration files, and complexrspendencies between com-
ponents, enterprise applications are often hard to comfigur

Enterprise application configuration is typically a decalited process. Multiple de-
velopment roles edit configuration files, install applioas, and perform other configura-
tion steps to deploy an enterprise application. Each ralallysoperates semi-independently
from other roles and focuses on aspects of application aanatigpn pertinent to require-
ments the role is responsible for. For example, databaselamsrs identify the best
database vendor, database schema, and database cormfigpatimeters to use; com-
ponent developers determine what software componentsaed to meet the functional
requirements for the application; and IT administratostail and configure application

servers on the appropriate nodes in data centers.
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The diverse configuration decisions made by each role @atlatoove constrain the
possible configuration decisions of other roles. For examwhen database developers
choose a database, component developers must use therggadprdptabase driver for that
database. These configuration decisions are distributedsamles and configuration files
and must ultimately be integrated to create a complete alidl a@nfiguration. When in-
tegration takes place, each role often performs other aaafign steps (such as installing
the correct database driver) necessitated by decisions byadther roles. This integration
process may require adding new components to adapt thecappfi to its target envi-
ronment, loading extra libraries into the application serer other types of configuration
steps.

Itis hard to keep track of and analyze an enterprise apmitatconfiguration decisions
(configuration state) since these decisions are enacteduliipha roles, involve hundreds
or more components, and are spread throughout numerougwation files. Even after
the configuration state is collected, the complex interddpacies and implications of the
configuration decisions must be understood to check thditsabf the configuration state
and derive further configuration steps to perform. Finafyger a complete configuration
for the application is derived, the configuration must becezd by the multiple roles in
numerous configuration files.

Configuration errors related to functional requiremenigeHzeen shown to be a major
contributor to enterprise application downtime and cassdme studies, for example, mis-
configuration from manual processes has been shown to caes&@ of all application
failures [50]. One approach to alleviating the complexityconfiguring enterprise appli-
cations is to use model-driven development [125]. With a eiddised approach, a model
of the application’s configuration rules and configuratitatesis first built. Configuration
artifacts, such as XML configuration files, are generatethftbe model. By creating a

model of application components and configuration requar@s, algorithmic techniques
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(such as constraint solvers) can be used to check confignmatirectness and derive valid
configurations.

Feature modeling49, 81] is a promising modeling technique for representirggcon-
figuration state of enterprise applications. This techaiqan capture the configuration
dependencies between roles and non-functional requitsnf@nenterprise applications.
Feature modeling provides a set of modeling formalisms degbmpose an application
based on functional and non-functional variations and &dize the rules by which these
variabilities may be composed into an application variéimthe context of enterprise ap-
plications, feature modeling can be used to capture (1) wdwafiguration decisions must
be made to install an enterprise application, (2) what ratesesponsible for what configu-
ration steps (by having a separate feature model per r8)ehofv each role’s configuration
steps affect other roles, and (4) how the target infragtrecand requirements limit the
valid configuration possibilities.

To configure an application with a feature model, developrtesam members (such as
component developers, database developers, etc.) firdifida feature selectionwhich
is a group of desired functional capabilities that constitu complete configuration of an
application and adhere to the constraints specified in thtife model. These partici-
pants must then determine what configuration actions, ssi@dding component IDs to
application XML descriptors or installing a specific datsdaare required to enable and/or
implement the functionality specified in the feature set.ai\lie termfeature selectiois
also often callegroduct configuratiorf89]. To avoid confusion, we use the teiappli-
cation configuratiorto denote editing XML files, installing application serveasd other
configuration related actions. Likewise, we defieature selectioms the process of deter-
mining a valid set of configuration parameters (filling in variabilities) with respect to a
feature model’s constraints.

The challenge with using existing model-based approachelsiding feature models,

for enterprise application configuration is that they oftequire a single large monolithic
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model of the system [22,44,52,62,101, 120]. Enterprisdigoration decisions are often
spread across multiple files, developers, and hosts, howswet is time consuming to

build and maintain accurate feature models. Moreover, doeiwkralization of enterprise
application configuration decisions makes it easy for miéimolmodels to drift out of sync

with the actual configuration state.

Some approaches advocate the use of multiple models [28&t1¢ontain references
to each other. This multi-model organization better msrtire decentralized structure of
enterprise application configuration and improves dewelopncurrency. The multi-model
approach, however, requires that each role manually gpkoif changes to other roles’
models affect elements in its own model. Manually specdytimese effects is thus tedious
and error-prone.

This chapter describes how we created and applied an awgdrapplication configu-
ration tool calledrreshto configure enterprise Java applications. Our Fresh appnoses
a novel probe-based synchronization technique to allowa eale to use its own feature
model, while also not requiring manual cross-model effeetcsfication and synchroniza-
tion. Each probe is executable Java code that tests a pyapfettie target environment
(such as what libraries have been installed) and updatde’s f@ature model according to
the results of the test (such as disabling or enabling a sporeding feature). As each role
changes its feature selection and enacts changes on theaippl or target environment,
Fresh probes translate the changes into feature modifisatiany affected models. Roles
synchronize models by describing how they affect and aextdtl by code and configura-
tion changes to the application and target environment.

Fresh combines its multi-model approach with a constraitves to reduce the com-
plexity of enterprise application configuration. The kenttbution of this chapter is show-

ing how Fresh simplifies enterprise application configoraby:

1. Automatically collecting the application’s distribdteonfiguration state with probes,

e.g.determine the database installed, etc.
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2. Phrasing the completion of the application’s featureden as a constraint satisfac-

tion problem.

3. Deriving any remaining required features by solving thestraint satisfaction prob-
lem with a constraint solvee,g, if a database driver is not installed determine which

one is needed.

4. Rewriting the application’s configuration files to incudny new required features

e.g, add the database driver to the application configuration.

Example Enterprise Java Application: Pet Store

As a reference architecture of an enterprise Java applicatve use the J2EE Pet
Store application [9], which provides an example e-commaite that allows customers
to search for and purchase pets over the Internet. Pet Stesealeveloped originally to
showcase the benefits of J2EE technologies. Since its atiggtease, nearly every major
J2EE application server has included a refactored verdiBetStore as an example appli-
cation. Microsoft has also reimplemented Pet Store (c&lietdShop) in .NET to highlight
the differences between J2EE and .NET.

Since Pet Store is widely known and demonstrates the featdrenterprise Java, we
use itin this chapter to show the configuration challengesntdrprise Java applications. To
show the application’s numerous points of variability wdttaifeature model of Pet Store
bundled with the Java Spring framework [79], which allowselepers to create highly-
modular and configurable enterprise Java applicationsarticoilar, Spring uses (1) factory
patterns [61] to instantiate and interconnect enterprds@ gomponents (beans) and (2)
Java reflection to shield application components from tetdithe configuration process.
At launch, a factory is created and initialized using one orenXML configuration files,
which determine what components it constructs and how thewaed together. In the

process of constructing objects, the factory may assocratescutting aspect advice with
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them, generate dynamic proxies to perform remote invoeatimad objects into a naming
service, or perform numerous other complex applicatioriigaration tasks.

We bounded the scope of the feature model presented in thjgehto a group of
features related to the data tier of Pet Store. For exampléhe feature model shown
in Figure V.1, the Pet Store can use eithe€@mbinedDatabasgetup, where both order
and product data is stored in the same database DoratDatabasesetup where product
and order data are stored in separate databases. Dependitgah setup is chosen, the
Pet Store’s application configuration files must be changeddude the appropriate Data
Access Objects (DAOs). If a DualDatabase setup is used|ajes alter the Pet Store
configuration files to instruct Spring to instantiate and theg)taDAOsand wire them into

the application.

PetStor%
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Figure IV.1: Feature Model of the Features Related to the J2E  E Pet Store’s Data Tier

The Complexity of Enterprise Java Feature Selection

In this section, we explore: (1) the varied participant salevolved in configuring a
Spring application and where their decisions are reflegtatie application, (2) the com-
plex conflicting requirements and dependencies exposeadnptes, and (3) the difficulty
of deriving a feature set that adheres to all of the funclieguirements and non-functional

requirements created by the roles.
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Dimensions of Configuration

By identifying the key roles involved in feature selectiarg can illuminate the types of
requirements and preferences that will be involved and thetp where they are likely to
conflict. Furthermore, we can determine where each roleeamphts its decisions so that
they can be collected. For the majority of enterprise Japiaions, the parties involved
in feature selection can be divided into roughly six roleategorise bean (component)
developer, web developer, client application developsialohse developer, application as-
sembler, and IT administrator (application deployer angiadstrator) [96].

To implement feature selections from a model, these vanioles must rely on each
other to perform configuration steps to select values fdeiht points of variability in
the application. These various configuration steps musbhsistent with each other with
respect to the feature model constraints. Enterprise davfayaration can be viewed along

several broad dimensions:

1. Feature ConfigurationA feature, component, or user requires a specific featuse to
enabled, disabled, etc. The end user may require the compdeegeloper to enable

email notification of completed customer orders.

2. Attribute Configuration A component or feature requires that the value of an at-
tribute on another component or feature adhere to a speociigti@int. For example,
the component developer may require that the IT admingstrastall a Java Virtual

Machine with a version number greater than or equal to 1.5.

3. Local Addressing ConfiguratiomA component used by one role needs to know the
address or unique identifier of another component in theiegtn. For exam-
ple, the component developer needs to know the bean namigs€udentifiers in a
Spring XML configuration file) of the DAOs created by anothemponent devel-

oper.

4. Remote Addressing Configuratioh component used by one role needs to know the
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address or unique identifier of a remotely accessible coemiqrovided by another
role. For example, the Data Access Objects (DAOSs) used bgdhgonent devel-

oper need to know the table names created in the database Ogtdbase developer.

5. Application Configuration A component used by one role needs another compo-
nent in the application instantiated. For example, the DAGsd an instance of the

database driver instantiated.

6. Infrastructure ConfigurationA component used by one role needs another process
outside the application installed, configured, and lauddrea specific type of hard-
ware setup. A MessageDriven bean (a bean that receives Jassalying Service
(JMS) messages) created by the component developer wilireethat a specific
messaging queue be installed, configured, and started Qy th@ministrator. The
DAOs used by the component developer require that the dsgateveloper install
certain tables into the database. The component devetofgra Transaction API

(JTA) DAOs need the JTA libraries loaded into memory by thédimin.

Challenges Produced by Competing Roles and Forces

Enterprise Java applications are prone to a number of conmoaiguration problems.
In ideal situations, these errors are easily identified bgplication that fails to load into
its container. In more serious situations, these errorsateflubtle inconsistencies, such
as incorrect file permissions, that may be overlooked andtldead to failures, such as
security breaches.

There are four major types of configuration errors produgethb complexity of con-
figuring an enterprise Java product:
Problem 1 - Feature Selection ComplexityFunctional composition rules are not adhered
to when a feature set is selected because the large numbdesfand features involved

makes it too combinatorially complex to manage manually. uAhfer challenge of the
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feature selection process is that the decisions made byaeaemay spill over into the
decisions that need to be made by a second role and it is diffciooth foresee these

ripple effects and to enforce them.
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Figure IV.2: Data Tier Feature Selection Forces and Their Ef  fect on Various Roles

The Spring Pet Store, for example, offers the ability to usengle or dual database
setup and either plain DAOs or JTA-enabled DAOs. As can be BeEigure V.2, if the
database developer chooses to use the dual database setgmibonent developer must
support transactions across multiple databases. Thisideaiequires the use of JTA en-
abled DAOs. A side-effect of enabling the JTA DAOs is thatR®e¢ Store can no longer run
in a standard J2EE web container, such as Tomcat [28]. Thisresnent means that the
IT administrator must either use a full-blown J2EE ApplioatServer, such as JBoss [55],
or configure the web-container with additional componeatsupport JTA. In this case,
a decision made by the database developer ripples throedhnictional composition de-
cisions that must be made by multiple other roles. The nuosedependencies between
roles and features makes the feature selection procesdeamp

If the constraints are not adhered to across roles, thepkergfects can lead to the
selection of an invalid feature set. The more componentsatigain the application and the
more dependencies exist between developers, the hardeoiccount for the side effects
of a feature selection.

Problem 2 - Incorrect Feature Selection ImplementationFeature selections may not be
implemented properly. After a feature set is selected, iplaltonfiguration files must be

edited and various actionse(g, starting processes, etc.) taken by the roles to enable the
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features. If the IT administrator, for example, does not #w application server XML
configuration files properly to load the correct librariesloes not completely understand
the requirements or implications of the feature selectixrigions, a non-functional variant
can be produced. The non-functional variant may fail to lpaxperly into its container or
load correctly but function incorrectly.

As can be seen in Figure V.3, to enable transaction supporsa databases with JTA,
the component developer must edit the application XML dgplent descriptor to link in
an XML configuration file containing the JTA enabled DAOs. $@8eéDAOs must have
a reference to the DB Drivers provided by the database deeeld-urthermore, the DB
Drivers need the correct port and URIs of the database iostsanThe IT administrator
must not only edit the web.xml descriptor of the applicatoioad the DB Driver libraries
into the classpath but must also ensure that the descrigfEnences the appropriate XML
configuration files for the Pet Store. Finally, the IT admiragor must install the extra JTA
Libraries into Tomcat. If any of these steps are performearaperly or are not consistent
with each other, the Pet Store will not function.

This example shows how feature selection involves the ¢oatidn of multiple roles
in the configuration process. Mistakes due to human errornaisecommunication be-
tween roles are common in a configuration process. In sonmestumisconfiguration
from manual processes has been shown to cause over 50% pphdladion failures [50].
For complex enterprise Java configuration tasks, manuakpses are extremely tedious
and error-prone.

Problem 3 - Incorrect Information Flows Across Roles Often, roles misunderstand de-
cisions made by another role. The most costly and generdflgult to identify misun-
derstandings involve environmental propertiesy, application server vendor, file permis-
sions, etc.). For example, the Pet Store provides both geDAOs that use only standard
SQL mechanisms and DAOs for Oracle and MSSQL that use vesphmiic interfaces.

The standard SQL DAOs will load properly into the Pet Storéhaiit errors regardless
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of the database vendor. The Oracle SequenceDAO uses are@padific thread-safe se-
guence. Failing to use the Oracle SequenceDAO with an Odatédase would not prevent
the application from launching but could potentially catls®ad-safety problems, which
are notoriously difficult to diagnose [111]. A componenteleyer can incorrectly believe
that the application is going to use a MySQL database instéad Oracle database and
cause a configuration problem that is both dangerous anddatdntify.

If the SQL SequenceDAO is selected by the component develspen an Oracle
database is present, which is a violation of the feature humaeposition rules, the mistake
will not be clearly visible until a runtime error occurs. Buwgrmore, the runtime error that
it will produce, a synchronization error, could be extreyrdifficult to diagnose and trace
back to the feature selection mistake. Finally, the mistailebe identified only after any
damage, such as data corruption, is done.

Security is another type of decision where a misunderstanalill produce a flawed but
functional variant. Moreover, unlike misunderstandingat taffect the visible functional
properties of an application, a missing security requingnmeay be detected only after it
has been exploited by an attacker and costly damage dones, ithsi critical that these
types of misunderstandings that do not lead to discernilalydtl variant selections be

prevented.
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Problem 4 - Important Information Fails to Flow Across Roles The involvement of
multiple participants leads to situations where the densimade by one or more par-
ticipants are not synchronized. In most development psasseach role operates inde-
pendently of other roles for significant periods of time. &ymnization of the decisions
between roles is performed during weekly project meetitggding, or application installa-
tion. Thus, a significant amount of time exists between sgorakation points of the roles.
If the decisions of the multiple parties are not in sync, tadipipants can select incompat-
ible feature sets. If the incompatibility is discoveredear more roles may need to roll
back one or more potentially complex or costly decisionghéf synchronization mistake
is not discovered, the application will not function prdger

Information may also fail to flow across roles because padits do not understand
what decisions impact other roles. In Figure IV.3, each rieds to understand where
its Venn Diagram’s realm of responsibility overlaps anottude’s realm of responsibility.
In the Pet Store example, the IT administrator enacts aetEn the target infrastructure,
such as selecting the component container that will be udeelcomponent developer may
not have access to the target infrastructure and thus mayenaiwvare that the IT adminis-
trator has selected a specific container. If the IT admuistrselects and installs Tomcat
without JTA support as the application container for the $tete and the component de-
veloper selects the JTA DAOs by adding them to the XML confgjon file, a mismatch

can occur that leads to a non-functional variant.

Open Problems in Applying Existing Configuration Approaches

Although various approaches have been presented for dgaflynconfiguring com-
ponent applications using feature models and other mesmanithese approaches do not
address the configuration challenges inherent in the amgerpava applications for some

combination of the following four reasons:
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Tightly-coupled Top-down Approaches Many existing approaches advocate the use
of a tightly-coupled monolithic modeling approach wherecahfiguration decisions are
made in a single large model at design-time. Enterprisede@s@opment involves multiple
participants and thus makes synchronizing a single larggehttard. The tight-coupling
between roles also limits developer concurrency and doesitegrate well with common
development practices, such as extreme programming tbas fan source code.

A further complication of tightly-coupled top-down modwdi approaches are that they
require all of the relevant information for each role’s vint be captured in a single
model. Capturing all of the information required for eacbwpoint in both an intuitive
and usable manner is difficult. Additionally, a monolithiodel potentially exposes partic-
ipants from each role to irrelevant details from other rolegen though different types of
filtering mechanisms can be applied to limit what each viempsees, these mechanisms
are complex to develop since the complexity of the model makenit very difficult to
predict which details are relevant and which are not.

Explicit Communication between Roles is Required Current approaches require
that all decisions that a role makes that affect anothemoist explicitly be communicated
to the other role. Most approaches do not detail how this comaoation is accomplished.
First, explicity communicating decisions across rolepiisblematic because it is very
difficult for each role to anticipate which of its decisionglaffect another role and what
role it will affect. These dependencies between the detssod different roles can only be
enforced if they are explicitly stated, which is challergyifcven if each role can identify
which decisions affect other roles, the effect of thesesderss must be evaluated from each
other roles’ viewpoint. Relating the affects of a role’s ideans to the features of another
role means that roles must relate features and decisioossagiewpoints that they are not
familiar with, which is tedious and error-prone.

Not all Variabilities/Decisions are Captured in a Model Existing approaches assume

that all decisions that are relevant to the configuratiomefapplication are captured in the
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model. Approaches do not detail how this is accomplisheatubDenting all decisions and
variabilities is not straight-forward. In some cases, a rohy not deem that a variability is
important enough to its viewpoint to be included in the mo#kwever, another viewpoint

may be affected by this undocumented variability. The caxip} of the model and the

distinct separation of the roles’ viewpoints makes it handdach role to understand if a
variability needs to be documented for another role’s sake.

Many development approaches, such as extreme programarsfpcused on source
code. Documentation, such as a model, is updated to refeestdke of the source artifacts.
If a developer fails to document every source-level denigothe model, either because
they forget or do not understand how the changes map to thelpsodangerous disconnect
can occur that is not addressed by current approaches.iéwmlly, a development process
may need to interact with legacy or third-party softwarevidnich there is no clear model
nor way to produce a model. In this case, important decisrangbilities are left out of
the model.

No Runtime Feedback In enterprise Java applications, it is not desirable temdet
mine all application related decisions at design-time. é&s@mple, the concept afoning
(determining the number of instances of a feature), is agdetine decision in most ap-
proaches. In enterprise Java applications, the applicabotainer normally manages an
object pool and dynamically changes the number of instafmeses) of the objects at
runtime. Many other types of decisions, such as load-balgnmolicies, are also better
determined dynamically at runtime.

Existing approaches do not account for how dynamic chamgetapplication that af-
fect the feature model can be identified and understoodel€timtainer changes a runtime
policy, it is changing feature selections. If there is no wayelate runtime changes back
to the feature model, the model becomes a design-time otifigcarand none of the feature
decisions made by the application container or other rumtigcisions can be constrained

or understood.
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No Configuration Injection: Existing tools do not provide a mechanism to inject their
configuration decisions from the model directly into the laggtion. Instead, the tool de-
rives a correct configuration and a manual process must lsetoseutally implement the

configuration (which is tedious and error-prone).

Solution Approach

The key to correctly configuring a Spring application’s caments is to (1) construct a
coherent model of the feature decisions that have been ri@ddetermine what variabil-
ities have been constrained, and (3) set values for the nemgacomponent variabilities
that are consistent with the constrained variabilities.pAdgose that by executing a series
of Java probes at application launch to identify frozenalatities, formalizing and solv-
ing a CSP of the configuration problem, and dynamically remgithe application’s XML
configuration files, we can eliminate the problems we havinmat.

The following list sketches our proposed solution to eactne$e problems:

» Use Probes to Identify Constrained Variabilities: Probes can be used to auto-
mate the discovery of the decisions made by each role. We #aivprobes can be
constructed to cover the wide dimensions of configurati@vipusly listed. Auto-
matically identifying configuration decisions allows treafure selection process to
ensure that the selected feature set conforms to any pdimariability that have
already been fixed. Probing of the environment also elirematanual characteriza-
tion errors. Just as unit tests can be written to test funatity, probes can be created

for each feature to validate dependent features and prepert

» Formalize Configuration as a CSP and Use a Constraint Solverot Derive Val-
ues for the Final Un-constrained Variabilities: A constraint solver can handle the
combinatorial complexity and interdependencies of feagelection that a manual

process cannot address Problem 1. Furthermore, a constaiar is guaranteed to
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produce a correct selection with regard to the constraihésqorrect configuration
exists). Although we do not provide a formal proof, we asg#t for any configura-

tion that could be deduced manually, a constraint solvedeaive faster.

» Generate Configuration Files from a Feature SelectionA generative software de-
velopment process can be used to automatically generatectopnfiguration files
from the solution produced by the constraint solver. Ountsoh allows developers
to annotate their configuration files to show how feature®atmd to actual configu-
ration decisions. This allows the configuration engine geresrate the configuration

files for the selected feature set.

The Fresh Prototype

To demonstrate our approach for automating the collectfdeaiure modeling deci-
sions, phrasing a feature selection problem as a CSP, and astonstraint solver, we
developed a prototype automated feature selection engirenterprise Java applications.
Our prototype is calledrreshand is based on the Spring framework [79]. Fresh allows
the application configuration participants to describe fingctional requirements, non-
functional requirements, and a fitness function for chapsionfiguration when multiple
solutions exist. Fresh leverages this information and thecG CLP solver [2] to derive a
complete feature selection for a partially configured aggtion. Finally, Fresh provides an
XML annotation language that can inject the feature sedadtiecisions into XML config-

uration files.

\
' (3) Solve CSP to get valid 4 (4) Regenerate \
feature selection sconfiguration files \\

v \

1 (1) Identify Locked (2) Build CSP
. Decisions '

\ A
Fresh . .| Feature || ' \
Characterization | Model iy X et Foat
Classes | Ronders onstraint Solver H nject Features J
D —SE L /
Due) Tomeat Fresh JTA y

Tomcat

Al Spring 4
Support DAOs in web.xml 14

Database Installed Feature DAOs Classpath Al

Support Model Files

All features injected (5) Application

Features Chosen by Roles Features Chosen by Fresh K e & g
into confiauration files  Lauched

Figure 1V.4: Fresh Application Configuration Process
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Spring uses the factory [61] pattern to instantiate and amterprise Java components.
Spring makes extensive use of Java reflection and allowspiblecation components to be
oblivious to the configuration process. At launch, a faciergreated and initialized using
one or more XML configuration files. The factory then uses tiLXconfiguration files
to determine what objects it constructs and how they arediogether. In the process of
constructing objects, the factory may associate crosaguaspect advice with them, gen-
erate dynamic proxies to perform remote invocations, ldgédais into a naming service,
or perform numerous other complex application configuratasks.

The Fresh prototype is implemented as an extension to thdate factories provided
by Spring. When a Spring application factory attempts talltiee application configura-
tion files, Fresh probes the environment, runs the constsainer, and rewrites the con-
figuration files before they are returned to the Spring fact@pring and the application
components are not aware of the process. Furthermore,dékh Extension can be swapped
in and out of the application without affecting componentSpring.

As can be seen in Figure 1V.4, in the first step of the Fresh gardiion process, au-
tomated probes are run to aggregate the feature selectaisiates of the roles into the
feature model. Second, the decisions and feature modal aoéetransformed into a CSP.
In the third step, Fresh uses the Java Choco solver to sotv€8P for a valid feature
set. In step four, the configuration files for the applicatoa regenerated and in step five
control is passed to the Spring factory to initialize thelegapion.

Fresh’s configuration file annotation language is based oh ¥dnments and does not
interfere with the configuration directives. The annotasiean be added to existing files
or removed from the application entirely without affectibgBoth the container extension
and the XML annotations allow Spring and the application pornents to be oblivious to

Fresh.
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Using the Target Environment as a Common Language

As we outlined earlier, there are multiple limitations ofsging techniques that pre-
vent them from being applied to enterprise Java applicatioriguration. A key limitation
is that a configuration process must provide a way of reldtiony the actions of differ-
ent roles affect each other. Current approaches eithengtt® use a single manually-
produced large model to formally capture these interastmmrely on manually creating
complex mappings across different models. The first apprsatfers from the problems
of a complex top-down approach, while the second approadesahe roles to explicitly
specify complex cause and effect relationships acrossnilida viewpoints.

Probing uses the target environment adiagua franca Each role expresses how
changes in the target environment affect its model of theegysA probe checks a property
of the environment and maps the property to a change in asroledel. For example, a
probe can be used to automatically detect if JTA is instadled update the JTA feature in
the component developer’s model accordingly.

The first benefit of this approach is that it avoids a mondditbp-down modeling ap-
proach (Problem 1). Each role can use a model that is inéuitithe role’s viewpoint. The
models of each role are synchronized when the probes areThenprobes determine the
changes that the roles have made to the target environmenipaliate each role’s model to
reflect the configuration state. With this approach, each mintains a model reflecting
its viewpoint and is not tightly-coupled to the models ofatholes.

The second advantage is that the roles do not have to elptieitail how changes in
their models map to changes in the models of another viewgBmoblem 2). Instead,
each role specifies how changes to the target environmett &ff Since the mappings are
based on actual executable code, they provide much moremadirstood semantics. The
mappings also do not require a participant in a role to unidedsanother role’s viewpoint.

Each viewpoint maps its feature selections to changes itatiget environment and each
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role’s probes translate the environment modificationseéhiznges in the role’s model. The

environment serves as the common language, as seen in Fithure

/‘ De-coupled ModelsNiewpoints\

Database
Developer

\ IT ' /Component
Admin

Developer

1. Install
Tomcat

2. Chan ge Propogation by Probes
Target Infrastructure

Figure IV.5: Synchronizing Role/Viewpoint Models through Probes

The third key attribute of the approach is that the probesatdifferentiate between
human induced environmental changes and dynamic chandgfes émvironment from the
container or other runtime actors. The container becomethan participant that may
enact changes to the application at runtime. Since the pralgautomated, they can be
reused at runtime to detect changes to each role’s featudelmooduced by the container.
Runtime processes can become roles that provide feedbdlok application eliminating
Problem 3.

Since the dissemination of information across roles israated by the probes, the
approach can eliminate Problems 3 & 4. Automated probes are mliable than human
inspection of the configuration and environment. Rathen {hashing information to the
roles that are affected by environment changes, the prablethp required information to
each role avoiding communication failures and misundedstey.

Probes are similar to Unit Tests, such as JUnit tests. Eatieprhecks a specific set of
conditions and notifies the framework of the results of tiststeln JUnit, the tests report

error messages indicating that the code failed to perforexpscted. In Fresh, the probes
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report the state of the application configuration and emvirent. Both Unit Testing and
probing rely on developers writing correct tests of the ¢oowls but can greatly improve
both the reliability of correctness testing (configuratmrrectness for probes) and the
efficiency of correctness testing. We assert that just as Téisting has been shown to be
an integral part of application correctness testing, prglshould be a part of application

configuration.

Probing the Target Environment

The probes run by Fresh identify which features or companarg present €.g, is
JTA installed), what the values of different properties loé target infrastructure €.9,
application server vendor, OS, RAM, etc.) are, and what gardition steps have been
performed (e.g, does a specific JMS queue exist). The probes produce a eériakies
for the variabilities in the model. For example, if JTA istialded, a probe may set the JTA
feature to enabled or the JTAVersion attribute.

Fresh uses a plug-in architecture to allow product devetojoecreateharacterization
classeghat can be packaged with an application and run by Freshéorete environment
characterization. Each characterization class is a piudiad used to determine the value
of one or more of the variabilities in the model used for thefiguration process. Before
Fresh performs its constraint-based feature selectiah, &@aracterization class is invoked.
A characterization class performs a test on the target @mvient and returns a list of
variable/value pairs representing characteristics ofalgget.

The values of the variables produced by characterizatiteraéne what points of prod-
uct variability have already been fixed by each role. Fresh tterives values for the other
variabilities to be correct with respect to these fixed moiand the feature model con-
straints. The following list gives examples how configuwatdecisions from four com-
mon dimensions of configuration listed earlier can be disoed through characterization

classes:
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* Local/Remote Addressing Configuratidvocal addressing configuration within Spring
XML configuration files is handled by Spring. For external eedsing, such as JNDI
names or service URIs characterization classes can bedratt attempt to resolve

the object and if it cannot be resolved, set the correspgeiature to disabled.

* Library Configuration A characterization classes can attempt to resolve Classes
which features depend using the Java Reflection API. For plano test for JTA, a
characterization class can perforr@laass. f or Name("j avax. t ransacti on.
Transacti on") , which will throw an exception if JTA is not present. If theazh
acterization class catcheg ava. | ang. Cl assNot FoundExcept i on excep-

tion, it indicates that JTA is not enabled.

* Attribute Configuration A characterization class can obtain values for various at-
tributes from environmental context classes, such aslgam@Runtime, ServletCon-
text, or ApplicationContext. These context classes canigeocritical infrastrural
attributes such as JVM version, OS, RAM, etc. for the CSPatdes. A charac-
terization class may also determine attribute values ammting one or more ap-
plication components and using getter methods or the Jafladien API to obtain

member variable values.

* Infrastructure Configuration Characterization classes can be used to test that spe-
cific infrastructural features are running. For exampleas€lcan be created that
attempts to connect and post a message to a required JMS queue a query
against a database table. If the queue does not exist or aptexcis thrown the
feature variable for the queue can be set to disabled. Slgithe database config-
uration can be checked by creating a class that obtains tangesof the DB driver

and attempts to perform queries to check that the tablesomfegared properly.

The above list is by no means exhaustive. Numerous othes tgpeharacterization

classes, such as running a CPU benchmark, can be used ta obtaplex properties.
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In most cases, if the application is affected by a configaratecision, it can probe its
environment to determine the value of that point of configaravariability.

Class characterization allows the Fresh feature seleetigme to determine what vari-
abilities have been fixed in the product. After correctlyadigtining what variable parts are
fixed, the constraint solver can select features to enseragplication functions properly

with respect to these fixed parts and the application reongres.

Feature Selection as Constraint Satisfaction

The first problem is that the configuration process is comglexto the large number
of constraints and role viewpoints involved. Significantrkvbas been done in applying
different algorithmic techniques to handling this comjigxThe probing techniques that
we have described could potentially be used with any of ta&g@ithmic approaches. For
Fresh, we chose to apply the extensive research and too®ofwstraint Logic Program-
ming (CLP) [77] to manage this complexity.

Fresh transforms a feature model and set of non-functi@talirements into a CSP.
The feature model and the non-functional requirements peeifed through Fresh con-
figuration files which reside in the classpath of the Springliaption. We extend the re-
duction of feature selection presented by Benavides e22] .t include cardinality-based
constraints, feature references, and resource consumguitstraints. By building a for-
mal model of feature selection as a CSP [134], Fresh can useséraint solver to 1) check
the correctness of a configuration and 2) derive valid valoesnconstrained variabilities
in a partially configured application. Using a constrairiteoto perform both configura-
tion validation and completion eliminates problem 1. Irsthéection, we show how Fresh
reduces feature selection to a constraint satisfactioll@no.

A CSP is a problem that involves finding a labeling (a set ofigg) for a set of variables
that adheres to a set of labeling rules (constraints). Famgke, with the constrainiX' <

Y", X =3,Y =4 is a correct labeling of the values f&r andY. Typically, the more
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variables and constraints that are involved in a CSP, theeroomplex finding a correct
labeling of the variables is.

Selecting a feature set for a product can be reduced to a @& Eonstructs a set of
variablesh . .. P,, with domain[0, 1], to indicate whether or not the ith feature is presentin
a feature set. Thus, a feature set becomes a binary string wheith position represents
if the ith feature is present. Satisfying the CSP for featelection is devising a labeling
of Py... P, such that the composition rules of the feature model areradte.

The functional requirement rules for a feature model ensluaie only a coherent set
of features is selected. For example, in the Pet Store, ifitaAOsfeature is chosen,
the JTAfeature must also be selected. To phrase this rule using 8Brr@odel of feature
selection, we can say that if the JtaDAOSs feature is repteddyy the variablé; and the
JTA feature is represented by the variaBlethenP, =1 — P, = 1.

CSPs may incorporate constraints based on the conjuctialspmction of several
constraints on other features. One example of this is thensidn to cardinality con-
straints on features proposed by Czarnecki et al. [49]. rTapproach extends cardi-
nality constraints to include a sequence of intervals. B@mgle, assume that the Pet
Store can use [1..2], or [4..4] different remoting mecharsisrom the remoting feature
group. If the variablePy represents the Pet Store, and the varialfigs..Pig repre-
sent the remoting features, we can transform this interequience into the constraint:
Po=1— (3 Pli5...Pig>0) A (3 Ptis...Pig < 2) V(3 Plys...Pig=4).

The CSP model of feature selection can be extended with nguwrreanent types by
translating these constraints into a CSP model. We definsauree consumption con-
straint that prevents a resource from being overconsumeal ¢tyosen feature set. For
example, assume that the ith feature consumes an amountMfdRAoted by the variable
Pram. If the total amount of RAM available in the system is dendigdhe variableRam
we can create the constraifyt{Pramy « Py) + (Pramy = Pp) + ... (Pramy = Py) <Ram This

constraint limits the total memory consumed by the selefgatiire set to be less than or
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equal to the RAM available in the system. Thus, the CSP madekiensible and can
incorporate new requirement types between features agtheyge.

One of the benefits of reducing feature selection to a CSPaiswie can unify the
non-functional and functional requirements into a singgdal model based on constraint
logic. Let’'s assume that the DualDatabaseSupport featulettze JTADAOS are repre-
sented by the variabld? o and Py, respectively. We can encode the rule that the Dual-
DatabaseFeature requires JTADAOsRags= 1 — P13 = 1. Assume that the developer
requires at least JTA version 1.01 for functional reasorse M Administrator, however,
requires a version number less than 1.03 because only mergto that point have been
through the organization’s security and stability cerdifion process for production envi-
ronments (a non-functional requirement). This non-fuorai constraint can be encoded
asP;; =1— (JTAVersion> 1.01) A (JTAVersiork 1.03).

TheJTAVersiorvariable is a new variable introduced to store the versionber of the
JTA version installed on the target host. The value of thisalde can be populated from a
configuration file. For each infrastructural property thawoa-functional requirement de-
pends on, a developer can introduce a corresponding vaiigblthe CSP. If a requirement
depends on the response time of a component EomponentX ResponseT ivegiable
can be created. Any number of variables can be introducesptesent the target host and
component properties. By formalizing the feature selegtimblem as a CSP, there is now
a clear relationship between the selection of the Duales@Bupport featur®,,= 1, and

its implications.

Aggregating Feature Models and Feature Requirements

At startup, one or more directories are provided to Freshdbiatain the feature mod-
els for each role, non-functional requirements, and cordition mechanisms for the prod-
ucts. Fresh constructs its CSP by composing the feature Imofleach viewpoint and

the non-functional requirements it discovers. Adapteesused to load the feature model
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Steps for Initial Deployment

Lines of XML Changed

Roles Involved

Location of Change

1. Change Datasource Driver Class/URI

2. Remove Standard Sequence DAO

3. Add Oracle Sequence DAO

4. Add Mail Sender Bean to application.xml
5. Add Insert Order Pointcut

6. Add Email Advice

7. Add RMI Remoting Service Export

Total Steps: 7

Steps for Second Deployment

—_ oW — W W W —

otal Lines of XML: 20

Database Dev/IT Admin
Database Dev/IT Admin
Database Dev/IT Admin
IT Admin

Component Dev
Component Dev
Component Dev/IT Admin
Roles Involved: 3

dataAccessContext.xml
dataAccessContext.xml
dataAccessContext.xml
application.xml
application.xml
application.xml
application.xml

Files Involved: 2

1. Change Datasource Driver Class/URI
2. Remove Standard Order DAO

3. Add MSSQL Order DAO

4. Remove Oracle Sequence DAO

5. Add Standard Sequence DAO

6. Remove RMI Service Export

7. Remove Mail Sender Bean

8. Remove Insert Order Pointcut

Database Dev/IT Admin
Database Dev/IT Admin
Database Dev/IT Admin
Database Dev/IT Admin
Database Dev/IT Admin
Component Dev/IT Admin
IT Admin

Component Dev

dataAccessContext.xml
dataAccessContext.xml
dataAccessContext.xml
dataAccessContext.xml
dataAccessContext.xml
application.xml
application.xml
application.xml

L= L O L L) W L) —

9. Remove Email Advice
Total Steps: 9

Component Dev
Roles Involved: 3

application.xml

Total Lines of XML: 26 Files Involved: 2

Figure IV.6: Cost of a Manual Approach to Configuration for th e Scenario

and non-functional requirements. By default, Fresh presiddapters for reading feature
models and non-functional requirements that use a syntailasito cascading style-sheets.
Adapters can be plugged-in to read other formats, such asmtlels produced by the

Eclipse Modeling Framework (EMF) [30].

Since specifying feature dependencies and constraintg @3SP syntax is not ideal
for most development processes, we developed a Domairifisgdeenguage (DSL) for
specifying feature models and constraints. The featureshmagllanguage, calleBeature
Styles allows a product developer to specify the features in thdehdhe dependencies
between features, and the non-functional requirementceaded with each feature. The
language uses a simple textual notation and is not diffioudrasp.

Fresh supports the following dependency rule types:

» Requiredfeatures that must be present for a feature to function pkppErADAOS

requiresJTAEnabled.

» Excludedeatures that cannot be present at the same time as a fe@raeSupport

exludesSQLSequenceDAO.

 Cardinality constraints on required features. OrderRemoting reqaiteser taselect

[1..*] of the features HessianRemoting, RMIRemoting, anull8Remoting.
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Product developers use these dependency rule types tabuilplex feature models for
a product. Previously, we detailed how these rules areltrgatsinto a Constraint Satisfac-
tion Problem (CSP) [134] for a Java Constraint Logic Prograng (CLP(X)) solver [77].
The solver uses these rules to guarantee that only comgatilol coherent sets of features
are selected for a variant.

The non-functional requirement specification languageeatére Styles allows product
developers to leverage the characterization variableduysex from the automated environ-
ment characterization. Each feature can be annotated angti@ints based on the variable
names which must hold for the values assigned to the atdstitthe target environment.
Fresh provides constraints based on conjunctions or a@ispms of>, <, =, = =<, >=.

A feature can be annotated with any number of constraintsherattribute values.
Developers use these constraints to encode the non-faattequirements of the features.
As with the feature dependency rules, the constraints areded into the CSP provided to
the feature selection engine.

The full feature specification for the JtaDAOs is shown below

Jt aDAGCs {
Requi res: JTA, DatabaseDriver;
Excl udes: NonJt aDAGCs;
JTAVersion > 1.01;
JTAVersion < 1.083;

Results from Experiments with Fresh
To demonstrate the reduction in manual configuration coxigl@rovided by Fresh,
we devised a realistic configuration scenario for the PeteSé@ample. In this scenario,
Pet Store has a base deployment descriptor (the out-digkelescriptor included with the

Spring Pet Store) that must be modified to install the PeteStarTomcat with an Oracle
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Database, Email Notification, and RMI Remoting. Pet Storthén migrated to a new
target where it is hosted on JBoss with an MSSQL databaseMidR@moting (to avoid
conflicts with the application server), and no Email Notifica (email order notification is
handled by a new payment processing application when theroes’s credit card has been
charged). The results in this section show that Fresh'snaatted configuration approach
can reduce the total number of steps required to configuratanggise Java application by

72% and the total lines of XML code by 92%.

Testing Configuration Complexity

In the test scenario, we compute the configuration cost @slof XML code that must
be changed. We assume that optional components, such as Eotification’s Email
Advice, are not initially present in the deployment desitiipWhen a role selects a feature
requiring a component, the component is added to the coafigurfiles. Table V.6 shows
the steps involved in configuring the Pet Store for the firplalanent configuration.

As shown in Table IV.6 there are many steps, roles, and fildvad. To migrate to
the second target environment, the roles must remove sothe @iitially chosen compo-
nents €.g, Oracle Sequence DAO, Email Advice, Order Pointcut, eted add other new
componentsd.g, MSSQL Order DAO). The steps involved in the migration arevamin
Table IV.6.

Table IV.6 also shows that there are a significant numberepissaind changes required
to migrate to the new setup. Each change in the target emagahor desired feature set
will necessitate similar reconfiguration costs. Moreoifehe application is widely used,
the support team for each applicatimstancemust pay this configuration cost.

We then performed the same migration experiment using Fr&shsh required an
extra initial investment of building a basic feature modaelthe features from the migration

experiment. It also required the addition of comments tdPieStore’s XML configuration
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Steps to Enable Fresh

Lines of XML Changed

Roles Involved

files that mapped features to XML configuration directivestfgat the configuration files

could be regenerated). The initial Fresh configurationtoead is shown in Table IV.7.

Location of Change

1. Build Fresh Feature Model

2. Add Application Server Detection Probe
3. Add Database Detection Probe

4. Make Sequence DAO Switchable

5. Make Order DAO Switchable

6. Make Mail Sender Switchable

7. Make Insert Order Pointcut Switchable
8. Make Email Advice Switchable

9. Make RMI Remoting Service Switchable
Total Steps: 9

Steps for Initial Deployment

6
1
1
4
4
4
2
4
i/
To

tal Lines of XML: 33

Component Dev/IT Admin/Database Dev
Component Dev

Database Dev

Component Dev

Component Dev

Component Dev

Component Dev

Component Dev

Component Dev

Roles Involved: 3

petStoreFeatureModel.xml
probes.xml

probes.xml
dataAccessContext.xml
dataAccessContext.xml
application.xml
application.xml
application.xml
application.xml

Files Involved: 4

1. Change Datasource Driver Class/URI
2. Change Desired Features
Total Steps: 2

Steps for Second Deployment

1
1
Total Lines of XML: 2

Database Dev/IT Admin
IT Admin
Roles Involved: 2

dataAccessContext.xml
dataAccessContext.xml
Files Involved: 1

1. Change Datasource Driver Class/URI
2. Change Desired Features
Total Steps: 2

1
1
Total Lines of XML: 2

Database Dev/IT Admin
IT Admin
Roles Involved: 2

dataAccessContext.xml
dataAccessContext.xml
Files Involved: 1

Figure IV.7: Fresh Configuration Cost for the Scenario

Fresh requires an initial overhead of 33 lines of XML/FeatiModel configuration.
This extra configuration code allows Fresh to (1) detect ttalwhse type used (inferred
from the data source driver class), (2) detect if a web caetadr application server is the
container (by checking for EJB-specific classes), and (8jrathove XML configuration
directives for the components of enabled/disabled feajuespectively. Although the ini-
tial cost of enabling Fresh is higher than a traditional nam@pproach, this price is paid
only once, rather than each time the application is deployed

Table 1l shows the steps required for installing the PeteStor the initial target with
Oracle and Tomcat. Only two configuration steps are requiF@dt, the correct database
driver class is added to the configuration and then the de$e&ture set is specified as
Tomcat, Oracle, etc. Fresh performs all other XML configoratasks, including deriving
a valid feature selection with respect to the desired featur

Table Il also summarizes the steps required to perform thengsemigration to the
JBoss/MSSQL environment. Again, only two steps are requsetting the database driver
and updating the desired features. These two steps prosgigaificant improvement over

the manual approach, where 26 lines of XML were changed sséme migration.
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Table IV.8 compares the totals for the manual vs. Fresh coraigpn approaches. Fresh
initially incurs a marginal configuration cost for buildirgfeature model and annotating
the XML configuration files for the Pet Store. After the migoatto the second target
environment, however, Fresh reduced the complexity of ganfig the Pet Store by 9 lines
of XML configuration. Moreover, for each configuration, Hregerived a valid feature set
based on the desired features specified by the roles. Witmaahapproach, this derivation
is not automated and can produce numerous types of errocentrast, Fresh assures that
each configuration is correct by using a constraint solvdetove a configuration based on
the feature model constraints and constrained variadsliti

When the cost of configuring the Pet Store over 100 separateydeents is analyzed,
the benefits of the Fresh approach are amplified. At the mimrfassuming that each de-
ployment uses the default configuration), the manual agproaquires 200 configuration
steps and 600 lines of XML changes. The total cost of the nmaap@oach can be over
900 configuration steps and 2,600 lines of XML code, howef/dre default configuration
is not used on each deployment, which we assume is common.

With Fresh, conversely, the total configuration steps aemfet 209 and the total lines
of XML configuration at 233. At a minimum Fresh requires 62%sléines of XML con-
figuration changes and a maximum of 92% less. Step-wiseh kis=s at most 4.5% more
steps but can also use 72% less total steps. As the numbeplof/deents of the Pet Store
increases, Fresh’s development savings also increash.iMgieased numbers of deploy-
ments, the initial investment cost of Fresh becomes inBagmt compared to the savings.

The intial cost paid to enable Fresh is incurred by the oabapplication developers.
Applications are often developed by one group, yet have tadsbr thousands of instances
installed and maintained by other groupgy, testers and users. Moreover, the users often
perform the final configuration, such as choosing the dagb@s/middleware version,
network configuration, etc. These users rarely possessathe mtimate knowledge of

the application, so they are more likely to make errors odpoe poor configurations.
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With Fresh, conversely, the initial developers can packaegé intimate feature model,
non-functional requirement, and configuration knowledgé ¥he application.

Since this expert configuration information is packagedhwie application, users focus
on declaratively informing Fresh what they want, rather eéngpively programming new
configurations to provide what they want. Application usess therefore benefit from
the expert configuration knowledge of the original devetspehich is much harder with
conventional manual approaches. Moreover, Fresh greadiyces the configuration cost
for users since they do not pay the initial Fresh integratiost, which is borne by the

original application developers.

Total Steps | Linesof XML Changed | Total Roles Involved | Files Changed
Initial Overhead
Manual 0 0 0 0
Fresh 9 33 3 4
Configuring for Tomcat/Oracle
Manual 7 20 3 2
Fresh 2 2 2 1
Migrating to JBoss/MSSQL
Manual 9 26 3 2
Fresh 2 2 2 1
Scenario Totals
Manual 16 46 3 2
Fresh 13 37 3 4
Configuration Cost Per Deployment
Manual 2min to 9+max 6min to 26+max 3 2
Fresh (not counting initial overhead) 2 2 2 Imin to 2max
Total Configuration Cost Over 100 Deployments
Manual 200min to 900+max 600min to 2600+max 3 2
Fresh (including initial overhead) 3 4

Figure IV.8: Manual vs. Fresh Configuration Cost Totals

Fresh Performance Overhead

To determine the performance penalty for deriving a conéigan with a constraint
solver and rewriting an application’s configuration file®, lwuilt a set of experiments to test
the startup time of Pet Store. We first devised several netureanodels of increasingly
finer granularity to see how long application startup toothwarying feature model sizes.
Feature models of 60, 80, and 100 features were created. 0,h@06 and 100 feature

models were actual feature models of the Pet Store. The Gréamodel did not account
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for features related to the web-tier of the Pet Store. Thee@8fufe model added features
for the web-tier and Spring’s Web Flow front end. The 100deatmodel added features
for the alternate Apache Struts front-end of the Pet Stovels-tier.

Each test was built so that the feature set derived from Fxesiid lead to an identical
application configuration,e., produce the same set of XML configuration directives. We
also reproduced this configuration statically in XML to labrwithout Fresh and derive
the overhead incurred by using Fresh. We launched Pet Stdm@mcat 6.0.9 using JDK
1.5.0_11 on an IBM Think Pad T-43 with a 1.86GHZ Pentium M esxor, 1.5GB of
RAM, and Windows XP. We then tested the time needed to laurtB®®re within Tomcat
and configured it using Fresh with each feature model. Thdtsewere compared to the

static configuration launched in Tomcat without Fresh aedsaown in Figure IV.9.

W/O Fresh 60Features 80 Fealures 100
Features

Figure IV.9: Pet Store Initialization Time in Tomcat

Figure IV.9 shows that using Fresh with a 60 feature modalired an extra~800ms
to launch vs. a static configuration. For 100 features, tta penalty was-1,000ms. This
overhead should be acceptable for many enterprise Javieatppt deployment scenarios

because it is only incurred once at application startup.
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CHAPTER V

AUTOMATED CONFIGURATION INTEGRATION FOR CORBA COMPONENT
MODEL APPLICATIONS

Introduction

Distributed real-time and embedded (DRE) systems areasargly being built using
component-based technologies. Component technologiédgafee software reuse across
applications by allowing the dynamic assembly of applaagiat deployment time via con-
figuration scripts. The late-binding properties of compunechnologies allow application
developers to reuse existing software and reduce costs/bsalging commercial-off-the-
shelf (COTS) components.

Application developers have traditionally used tightlyapled proprietary solutions to
handle the tight requirements and resource restriction3RIE systems. Composing a
component-based application from components that arepeaifgcally designed for the
individual application poses a number of challenges. Fangde, highly specialized com-
ponents can make assumptions, such as the what type of yindesperation system will
be used, that reusable components cannot make. These assisnean help improve per-
formance €.g. using specialized APIs) at the cost of reusability. BecdDR& systems
often operate in environments with little resource slaain unable to make these key
assumptions makes it difficult to find a configuration that tedke required timeliness,
safety, and other non-functional properties.

A further challenge of configuring DRE systems is that thefigpmation process must
integrate the concerns of numerous participants dividerwultiple roles, such as com-
ponent developers and hardware developers. Each role haguewiewpoint on what it

considers the ideal solution. Thus, each role attempts ftahpusolution in the direction
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that best meets the requirements it is responsible for, asigdower consumption or secu-
rity functionality. These multiple opposing viewpoints kedt hard to find a configuration
that satisfies the requirements of each role simultaneously

For example, in applications developed using the Lightivel @ORBA Component
Model (CCM) [19, 138], component developers often prefehdst the applications on
the most powerful processing hardware available and beai#d as much network band-
width as possible to make their realtime scheduling deadleasier to meet. Hardware
developers, in contrast, will attempt to use the least plwprocessors that are adequate
for the job to minimize power consumption, weight, and casiiake the system more
efficient. Component assemblers (the role that createanoss of components and wires
them together) will want to have the widest array of compaorgpes and implementa-
tions available to compose a solution. Testers and cetidit&ngineers, conversely, will
want to limit the number of possible application parts toues testing and verification
complexity.

Even after a configuration is found that satisfies the nunscompeting concerns of
the roles, implementing the configuration can be tediousaanat-prone. In particular,
multiple roles must coordinate and correctly edit configiorascripts required to assemble
the application. Component developers instruct compoassemblers on the port func-
tions and requirements. Component assemblers wire theauenps together and dictate
the CPU and memory requirements to application deploykesr(tle responsible for plac-
ing components on nodes). Deployers obtain the correctibm&rom application pack-
agers and place them onto the appropriate nodes. Miscoroation between roles, subtle
mistakes in configuration scripts, and other hard-to-diagrerrors can allow configuration

errors to creep into applications and are thus a major dmrior to application failure [50].
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This chapter extends our previous work [144] on simplifythg configuration of en-
terprise Java applications. We include new contributibias show how our original Java-
based approach can be generalized to other types of compoased systems. In par-
ticular, the chapter shows the complexity of configuring D&nponent-based systems
through a Lightweight CCM avionics application. We demoatgt how the same chal-
lenges that plague enterprise Java configuration extea®RE component-based systems
(and are possibly even more challenging). Moreover, thetelhgresents results showing
that the same reductions in manual configuration effort vieaed applying Fresh to en-
terprise Java can be obtained by applying Fresh to Lightw&g M.

At the heart of our approach is a model-driven engineerin@Byitool calledFresh
that is designed to reduce the complexity of deriving a @rag@plication configuration
and implementing the configuration in configuration scriptesh simplifies and improves

the correctness of configuring DRE component-based apiplitsaby:

1. Capturing configuration rules through feature modelsicividescribe application

variability in terms of differences in functionality.

2. Translating an application’s feature models into a canst satisfaction problem
(CSP) and using a constraint solver to automatically dexizerrect application con-

figuration for a requirements set,

3. Facilitating configuration optimization for a requiremt& set by providing a config-

urable cost function to the constraint solver to selectrogticonfigurations, and

4. Providing an XML configuration file annotation languagattallows it to inject con-
figuration decisions into configuration scripts directlydaeduce configuration im-

plementation errors.

Fresh uses feature models [81] to describe the rules forguomig an application.

Feature modeling can be used to describe an applicationfggewation rules in terms of
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variations in functionality. For example, an avionics masscomputing application that
could be built using different satellite positioning systecould be described by feature

models in terms of its:

1. Variations in functional capabilitieg (g, GPS vs. Galileo satellite positioning sen-

sors),

2. Variations in non-functional properties.g, processor power consumption, weight,

etc.), and

3. Constraints between featuresg, ARM binaries for the Galileo positioning sensor

require an ARM processor)

Feature modeling provides an intuitive model for descglapplication variability and has
been applied to a number of domains ranging from automofiilé8] to applications for

mobile phones [149]. Deriving a valid configuration from atiee model involves:
1. Selecting required features.g, Galileo),

2. Selecting features corresponding to the capabilitiéiseotfarget platformg.g, ARM),

and

3. Deriving any remaining features needed to create a caengie valid configuration

(e.g, ARM Galileo binaries)

Avionics Application Example of a DRE System
As a representative example of a component-based DRE systemse the BasicSP
scenario, which is based on the Boeing Bold Stroke avionission computing plat-
form [126] shown in Figure V.1. The BasicSP application utgs several Lightweight
CCM components. One component is an avionics navigatiasplay that receives up-
dated airframe position coordinates from a positioningseen The rate generator com-

ponent sends out a periodic pulse that causes the posgiseimsor to update its current
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Figure V.1: Architecture of the BasicSP Avionics Example

coordinates. Once the coordinates are updated, the posgisensor sends a ready signal
to the display component to update its coordinates.

Lightweight CCM supports the deployment and configuratiboommponents based on
XML configuration files. An emerging trend in the developmehtvionics systems is
to use component-based middleware along with a produetaiohitecture (PLA) [38]. A
PLA consists of a group of core assets, such as reusableaeftomponents and test
cases, and a set of rules for composing the assets into aghnatiant. When an applica-
tion for a new set of requirements is needed, an applicatoiant is configured from the
reusable assets to meet the new requirement set. A PLA leglpse development costs by
reusing existing core assets and codifying the processroéaity configuring assets into
an application variant.

The BasicSP product-line.To demonstrate the complexity of declaratively configuring
a set of assets into a variant, we created a product-line thenBasicSP example. The
modified BasicSP example includes multiple satellite-dgsesitioning systems that can
be leveraged as the positioning sensor to provide the cuates of the airframe. Moreover,
the product-line includes different variations in the gs®ors that can be leveraged to run
the rate generator, positioning sensor, and display.

Configuring a variant from the BasicSP product-line invelgeveral participants di-
vided into different roles [139]. For example, componentalepers are responsible for

producing software components, application assemblergposes software components
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into applications, application deployers determine whunbcessing units host which com-
ponents, and infrastructure developers determine whaepsing units are available in the
airframe. Each role has its own viewpoint and concerns deg@rthe properties of the

configuration. For example, component developers are &taosa the functional aspects
of the components and their real-time scheduling, whenefaastructure developers are
geared towards the weight, power consumption, and cosed\hilable processing units.

A valid BasicSP variant must integrate the concerns of ealpoint into a function-
ing application. To codify the rules for configuring a propariant, we produced feature
models that relate how the different points of applicatianiability (such as the number
and types of processing units) affect each otkey,(the available processing power will re-
strict the components that can be used). Feature modelswgides an application’s points
of variability in terms of variations in functional and ndmactional capabilities. Moreover,
feature modeling provides a method of codifying the rules tlastrict how selecting one
feature affects how other features can be selected.

An overview of the BasicSP feature modeling notationFigure V.2 shows the feature
model for BasicSP. BasicSP requires BRate GenPosition SensqrandDisplayfeatures,
which is denoted by the filled oval above each of these festukéoreover, BasicSP re-
quires one to three processors, which is denoted by th&][tardinality label applied to

the Processor feature. Figure V.3 contains additionalifeahodeling notations. THeate

1.3
‘ Rate Ge+ ‘ Position Sensqr ‘ Display‘ r
l l

|Sate|lite Systerﬁ ‘5 CPU Units/Refresb

Figure V.2: Feature Model of BasicSP

feature requires exactly one (an XOR relationship) of tteuiees20hz 25hz and30hz
Finally, Figure V.6 contains the notation for optional ig&s. Thex86 feature can (but is

not required to) include th&PSfeature, which is denoted by the unfilled oval.
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Figure V.3: Feature Model of the RateGen
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Figure V.4: Feature Model of the Available Satellite System s

Processor

N

|25 CPU UnitsHWeight 50 gram{s ‘60 cPU UnitsﬂWeight 75 gram#

Figure V.5: Feature Model of the Processor Options for Basic SP

pacis

Cr Cr C O
Galileo| | Display| | RateGen| x86 Ref|

ARM Binaries|

Cr O O
Display|| Galileo| | RateGen| ARM Ref

Figure V.6: Feature Model of the Packaging Options for Basic SP

Challenges of Configuring Component-based Applications foDRE Systems
This section outlines the key challenges of configuring amament-based application
(such as BasicSP) for DRE systems (such as avionics missioputing). In general, it
is hard to configure component-based applications for DRiEesys due to the numerous
competing concerns, such as balancing processor powano@t®n against required pro-
cessing power. This problem is exacerbated by the multglsrand viewpoints in the

configuration process.
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Challenge 1: Configuration Complexity

Each configuration choice in a component-based applicatmnaffect numerous other
decisions that can be made by other roles. In many cases,rmalfdocumentation of
these cause/effect relationships exists. Even when semmial documentationg(g, fea-
ture models) exists, the large number of components, numsearause/effect relationships,
and complex global constraints.g, limitations on available memory), make it hard to
derive a valid configuration manually.

In the BasicSP application, for example, selecting the G&Sponent has numerous
side effects on further configuration decisions. The totahher of CPU Units consumed
per second cannot exceed the rated CPU Units per second pfdbessors. If the GPS
component is selected along with a RateGen at 25hz, the GRSarent will consume
27.5 CPU Units on its host. This combination of a GPS at 25kelpdes using the x86
based processor.

The problem with the feature combination outlined aboveyéer, is that there are
no binaries to run the GPS component on the ARM processdnoAgth the configuration
appears correct, a subtle combination of a resource camsarad a packaging limitation
(that may not be realized until deployment time) makes thalgpation invalid. These

long chains of cause/effect relationships are hard to pradid handle manually.

Challenge 2: Incorrect configuration implementation

Configuring a component-based application involves ctlgrecliting numerous con-
figuration files €.g, CCM XML deployment descriptors), preparing the targetasfruc-
ture (.9, installing required libraries and starting supportinggasses), and installing the
application’s own binaries on its target hosts. These cardigpn tasks are spread across
multiple roles participating in the application’s configtion. For example, the applica-

tion deployer will install the application’s binaries orethorrect hosts and the application
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assembler will create the XML configuration files specifylngv to connect components
together.

The BasicSP example uses multiple XML deployment desasptohich provide stan-
dardized Lightweight CCM mechanisms to specify configoratiirectives. Numerous
changes must be made to BasicSP’s XML deployment descriptarever, to change the
satellite system used as a position sensor. First, thefgaicn of the component used
to implement the position sensor must be changed (perfobpedmponent assemblers).
The new implementation specification of the position sensast also include the IDs of
its associated implementation artifacesg, dynamic link libraries). The IDs for these ar-
tifacts are produced by component packagers. If the newiposiensor uses a different
interface than the previous position sensor, the compassgmbler must also update the
wiring of the components by changing the ports and facetswed in the position sensor’s
refresh signal, the display’s coordinates input, and tepldy’s refresh signal.

The numerous configuration activities that must be cootdahacross the various par-
ticipating roles makes manual configuration of a compotased application tedious and
error-prone. Simple mistakes, such as packaging the apiplicwith binaries for the wrong
processor architecture, can cause the application to etdahnch. More subtle mistakes,
such as accidentally using the identifier for the 30hz Rate@&tead of the 20hz RateGen,
will produce an application that launches correctly buisfander load. Figure V.7 shows
the multiple dependencies between roles responsible fdigreing BasicSP. As shown in

this figure, coordinating multiple roles and executing a ptax configuration is tricky.

Solution Approach: An Automated Configuration Engine for Li ghtweight CCM

Applications

This section describes thH&esh configuration engine and how it addresses the chal-

lenges of configuring component-based applications for BfREems.
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Figure V.7: Configuration Dependencies between Roles for Ba sicSP

Capturing Configuration Rules in Feature Models

One of the key steps towards correctly configuring a compebased application is to
capture the rules for configuring the application. Fresls fis&ture models [81] to describe
the rules for configuring an application.

Fresh’s feature modeling language is implemented as batktaal Domain-Specific
Language (DSL) and a graphical modeling tool in Eclipse. gitahical modeling tool is
based on top of the Generic Eclipse Modeling System (GEM&J][Iwhich is an MDE

tool for rapidly creating diagram-based modeling toolsrfra metamodel.

Automating Configuration Derivation

In addition to providing an intuitive interface for docuntiery configuration rules, pre-
vious research [22] has demonstrated reductions fromreatwdels to constraint satis-
faction problems (CSPs). Once a CSP formulation of a feahodel has been obtained,
a constraint solver can be used to derive a correct apgitatnfiguration. Using a con-
straint solver to derive an application solver addressesl€lige 1 by eliminating manual
derivation. Moreover, using a constraint solver to derimeapplication configuration has

the following benefits over a manual configuration process:
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» The correctness of derived configurations is guarantedd nespect to application

constraints,
» The solver can identify if no valid solution exists that rsethe requirements,

A cost function can be used to select a configuration thatopes key properties of

the solution,

* No manual effort is required to reconcile the complex céefsect relationships de-

scribed, and

» The solver can find a solution that reconciles opposing pa@nts and concerns in-

volved in configuration (if such a solution exists).

A missing element of existing mechanisms for translatiregufiee models into CSPs
and satisfiability problems [93], is that these approaclwesal take into account resource
constraints, which are important in DRE systems. In previsork [144], we have ex-
tended the work in [22] to incorporate resource constrants show that it is feasible to
consider them for certain size problems. The exact uppenda@n a feasible resource
problem varies from problem instance to problem instan¢estiypically not a limitation

of automated configuration from CSPs.

Configuration Injection

Along with the difficulty of deriving a valid configuration, @vdescribed the complex
coordination needed to implement a valid configuration irapplication’s configuration
scripts. To help decrease the complexity of implementingreiguration, Fresh includes
an XML configuration file annotation language that can be weexject a derived config-
uration directly into an application’s configuration files.

Fresh’s configuration annotation language includes a nuoflanotations that can be

used to match an XML configuration file to a derived solutioic)uding mechanisms for:
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1. Inserting different attribute values based on the setefgature set,
2. Removing configuration sections,

3. Conditionally inserting configuration sections basedranselection of specific fea-

ture combination, and

4. Performing template-based duplication of configuradimectives for specific feature

types.

Fresh’s annotation language is based on XML comments argirdehange the struc-
ture or semantics of the original configuration languagesaasbe seen in Figure V.8. If
the application must be configured without Fresh in certaicumstances, therefore, the
Fresh annotations need not be removed to configure the apphcnormally. By auto-
matically injecting configuration decisions directly ifXdIL configuration scripts, Fresh

significantly reduces manual configuration effort, and aurftion errors.

<!--feature[SatSystem] (replace[@id=${id}]) {-->
<implementation id= BA28CFB-6384-4CB8-8802-FBE2265F621C">

GPS

name>BasicSP.ComponentImplementations.BMDevice.BMDevice</name>
<source/>

<!--feature[SatSystem] (template) { . .
<artifact>${artifacts}</artifact: G PS B I narles
}-->
</implementation>

Figure V.8: Fresh XML Annotations

A final benefit of directly injecting configuration decisiomgo application configu-
ration files is that the bindings for each configuration deaican be unit tested. For
example, a unit test can be built to ensure that when the GRPaoeent in BasicSP is se-
lected, the correct XML configuration directives in the campnt deployment descriptor
are produced. After validating the injection of each featimto the configuration files, ap-
plication developers can be certain that future configanatinvolving the tested features
will be implemented correctly.

With a manual configuration process, conversely, each timeaconfiguration is pro-

duced the configuration files must be checked to ensure thatistakes are made. In
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some cases, an application may be delivered to customer rehresponsible for properly
implementing a configuration, which they may not do corsedtlsing Fresh’s automated
approach, in contrast, enables customers that receivemdicatpon to ensure it is config-

ured correctly to meet its requirements.

Empirical Results

To demonstrate the reduction in manual configuration coxigl@rovided by Fresh,
this section evaluates a scenario in which the BasicSP drah@s the position sensor
changed from GPS to Galileo. In this scenario, BasicSP hasa teeployment descriptor
(the out-of-the-box descriptor included with the CIAO Ligleight CCM container imple-

mentation) that must be modified to:

1. Add the required implementation of Galileo,
2. Create an instance of the Galileo component,
3. Connect the Galileo component to the RateGen and Disgfaly,

4. Add Galileo to the deployment plan by specifying its satyaxecutor, and stub

along with their associated implementation artifacts.

The Galileo and GPS position sensors possess the same lastiohality but name
their ports/facets slightly differently. Thus, althoudtettwo can be swapped, their con-
nections and various deployment descriptor configuratiesimust also be swapped. We
evaluate the reduction in manual configuration complexityerms of the total lines of
configuration directives, total steps, possible points bére mistakes can be made, and
total roles that must be coordinated to acheive the swaghoAlih we assert that using a
constraint solver to derive configurations adds a mentalptexity reduction, this cannot
be quantified readily and is thus not included in our results.

A key characteristic that we evaluate is the number of ptssiteps at which a con-

figuration error can occur. With a manual approach, each anmew configuration is
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produced, it must be tested to ensure that the configurateopribducer has not made any
errors, which adds significant overhead. With the Freshagmtr, conversely, the injection
of each feature into the configuration file can be unit tes@uake it is certified that Fresh
correctly injects each feature into the configuration fitbsyefore, Fresh is guaranteed to
produce a correct configuration.

As seen in the inital implementation section of Figure i base configuration file

for BasicSP contains 650 lines of configuration directivedding Fresh XML annotation

Initial Implementation

~ Lines of Configuration Certifiable

BasicSP.cdp XML configuration script
Fresh XML Annotations

Fresh Feature Model Data

Fresh Binding Values

Total Added Fresh Configuration Lines
% Increase in Lines of Configuration

Manual Configuration Steps to Use Galileo
Remove GPS Implementation

Rerove GPS Alternate OS Implementation
Remove GPS Instance

Disconnect GPS from RateGen Pulse
Disconnect GPS from Display Refresh
Disconnect Display from GPS Coordinates
Remove GPS Executor

Rernove GPS Servant

Remove GPS Stub

Remaove GPS Executor - Alternate OS
Remove GPS Servant - Alternate OS
Remove GPS Stub - Altermate OS

Add Galileo Implementation

Add Galileo Alternate OS Implementation
Add Galileo Instance

Connect Galileo to RateGen Pulse
Connect Galileo to Display Refresh
Connect Display to Galileo Coordinates
Add Galileo Executor

Add Galileo Servant

Add Galileo Galileo Stub

Add Galileo Executor - Alternate OS

Add Galileo Servant - Alternate O3

Add Galileo Stub - Alternate OS

Total

Fresh Configuration Steps to Use Galileo
Change Required Features
Invoke Fresh

B50 Y

2

8lY

28Y
58
8.923076923

Lines of Configuration Role

7 Component Developer

7 Compaonent Developer
17 Component Assembler
13 Component Assembler
13 Component Assembler
13 Component Assembler
17 Deployment Planner
17 Deployment Planner

6 Deployment Planner
17 Deployment Planner
17 Deployment Planner

6 Deployment Planner

7 Component Developer
7 Component Developer
17 Component Assernbler
13| Corponent Assembler
13| Component Assembler
13 Component Assemnbler
17 Deployment Planner
17 Deployment Planner

6 Deployrent Planner
17 Deployment Planner
17 Deployment Planner

6 Deployment Planner
00

Lines of Configuration Role
1 Component Assembler
1 Component Assembler

Total 2
Reconfiguration Cost of Manual Approach

Lines of Configuration 300
Steps 24
Possible Points of Errors 24
Roles Involved 8
Reconfiguration Cost of Fresh Approach

Lines of Configuration 2
Steps 2
Possible Points of Errors 2
Roles Involved 1
Fresh Complexity Reduction S y

Fresh % Reduction in Configuration Lines 99.33333333
Fresh % Reduction in Configuration Lines w/ Overhead 80

Fresh % Reduction in Configuration Steps
Fresh % Reduction in Possible Error Points
Fresh % Reduction in Involved Roles

91.66666667
91.66666667
66.66666667

Figure V.9: Results of Configuring BasicSP with Fresh vs. a Ma nual Approach

directives, building a simple feature model of BasicSP, amting values to be injected
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into the configuration file by Fresh adds a total of 58 configanadirectives. Fresh thus
adds~8% to the total lines of configuration directives requiredBasicSP.

Modifying the BasicSP configuration file to use Galileo regairemoving the old GPS
implementation, connections, etc. As seen in the “Manuaifigaration Steps to Use
Galileo” section in Figure V.9, a significant number of steysl lines of configuration
directives are involved. At each step in the process, the maddifying the configuration
directives can make mistakes and introduce errors.

The “Fresh Configuration Steps to Use Galileo” section iruFegV.9 shows the total
lines of configuration directives to reconfigure the BasicBRfiguration file with Fresh.
Fresh requires the addition of one configuration directveeniable the Galileo feature
and the execution of Fresh from the command line to regenénatBasicSP deployment
descriptor.

The “Fresh Complexity Reduction Summary” section in Figu& compares the total
manual configuration effort of the manual approach verseigthsh approach. If the initial
overhead of setting up Fresh is included in the calculatibresh yields an 80% reduction
in the total lines of configuration directives. If the intalerhead is not considered (for
cases where the application is configured by a customeghkmeates a 99.3% reduction
in total lines of configuration directives.

In the manual approach, if component assemblers decidatwgetto the Galileo com-
ponent, the component developers and deployment plannesshba involved in updating
the deployment descriptor. With the Fresh approach, coemtotievelopers and deploy-
ment planners initially encode their expertise into thefigumation file as Fresh XML
annotations. Thus, each time application assemblers peskip a component, Fresh uses
the XML annotations produced by the other two roles and dog¢saguire their involve-
ment. As can be seen in the “Fresh Complexity Reduction Sugireaction in Figure V.9,

Fresh reduces the total roles involved in the change by hivdd. Limiting the number of
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roles required to implement a change reduces the cost oflic@ting the participants and
the chances of miscommunication.

Finally, as shown in the “Fresh Complexity Reduction Sunyhsection in Figure V.9,
Fresh reduces the total number of configuration steps that beuperformed by 91.67%.
Moreover, each eliminated manual configuration step wastengial source of errors in
the process, so the overall number of steps where errorsecaratle are also reduced by
91.67%. Although an intial cost is incurred by adding Freshfiguration directives, it
allows for the configuration process to be unit-tested amtifieel. After the Fresh con-
figuration process is certified correct, there is a largectdu in the potential sources of

configuration errors, which are a major contributor to systimwntime and failure [50].
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CHAPTER VI

AUTOMATED ASPECT CONFIGURATION

Introduction

Developers of complex enterprise applications are fac#utive daunting task of man-
aging not only numerous functional concerns, such as engstiiat the application prop-
erly executes key business logic, but also meeting chatgmpn-functional requirements,
such as end-to-end response time and security. Entergmmsaid solutions have tradition-
ally been developed using large monolithic models thateeifirovide a single view of
the system or a limited set of views [63]. The result of usinigrated set of views to
build the system is that certain concerns are not cleanlgraggd by the dominant lines of
decomposition and are scattered throughout the systentdglsio

Aspect-Oriented Modeling (AOM) [15,53,117] has emerged aewerful method of
untangling and managing scattered concerns in large ersegpplication models [59,65].
With AOM, any scattered concern can be extracted into itsaem. For example, caching
considerations of an application can be extracted into pacasOnce caching is separated
into its own aspect, the cache sizes and types can be adjndsgzEndently of the applica-
tion components where the caches are applied. When a fingdasita solution model for
the application is produced, the various aspects are wosehihto the solution model and
the numerous affected modeling elements are updated totréfeeindependently modeled
concerns.

Although concerns can often be separated easily into theiraspects or views, it is
hard to correctly or optimally merge these concerns backthn solution model. Merging
the models is hard because there are typically numerous etomgpnon-functional and
functional constraints, such as balancing encryptionl$efge security against end-to-end

performance, that must be balanced against each othenwitlodating domain constraints
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(such as maximum available bandwidth). Manual approadretefiving solutions to these
types of constraints do not scale well.

Most current model weavers [25,51, 65,117, 136] rely onnegles, such as specify-
ing queries or patterns to match against model elementsatbadeal for matching advice
against methods and constructors in application code rburta necessarily ideal for static
weaving problems. Many enterprise applications requikeldpers to incorporate global
constraints into the weaving process that can only be saivadstatic weaving problem.
The techniques used to match against dynamic joinpoints, &sipattern matching, cannot
capture global constraints, such as resource constraigtst¢tal RAM consumed < avail-
able RAM), that are common in enterprise applications. Beealobal constraints are not
honored by the model weaver, developers are forced to exgigndicant effort manually
deriving weaving solutions that honor them.

When weavers cannot handle global constraints, optinozatr dependency-based
constraints, traditional model weaving becomes a manualdtage process, as shown in

Figure VI.1. The left-hand column shows the steps involvechodel weaving problems

1. Derive the types of caches
available to the application and

Create Aspects the components they can be
and applied to.

3. Translate the caching

l solution into a weaving e
specification based upon optimize the
Implement the Solution for ﬁ regular expression matching solution.
the against model elements. I

Target Weaving Platform L

l 4. Use the model weaver to
‘ Weave Models }—' implement the solution

Figure VI.1: The Model Weaving Process

constraints and

Identify Joinpoints
Manually Derive r N ra— it I
a Weaving Solution for Global — - Lieauce Ihe;optimalaliocation
Constrai?lts / Requirements E of caches to components based .Manual SEps
on the requirements. incurred by the
l I inability of a

Optimize the Weaving mOde_l weaver to I

Solution | consider global
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with global constraints in general. The right-hand coluhaves how these steps manifest
themselves in the cache weaving example. First, the adwidgadnpoint elementse(g,
caches and components) available in the solution modetlargified in step 1. Second, as
shown in steps 2 and 3, because a weaver cannot handle gbotsadaints or optimization,
developers manually determine which advice elements dimumatched to which model
elements €.g, the cache types, cache sizes, and the components to apptaches to).
This second step requires substantial effort because afvies deriving a solution to a
complex set of global constraints.

In terms of deriving cache placements in an enterprise egipdn, the second step
involves determining cache architectures that fit withie taquired memory budget and
respect the numerous dependency and exclusion constoaintsen caches. After viable
cache architectures are identified, a developer must usexjexted request distribution
patterns and queueing theory to predict the optimal cacti@tacture. As the examples
show, even for a small set of caches and potential cacheidosatthe cache placement
process requires significant work.

In the third step, developers take this manually-derivddtem and translate it into
pointcut definitions that match against model elementsgusigular expressions or queries
(e.g, a specification of how to insert the caching model elememntsthe models to imple-
ment the caching architecture). In some cases, the mardeilyed solution needs to be
translated into the pointcut specification languages otiplalmodel weavers so that the
architecture can be implemented in a set of heterogeneodslsgpanning multiple mod-
eling tools. The model weavers then take these final speifiaand merge the models.
Each time the underlying solution models changg {the available memory for caching
changes), the global constraints can cause the entirdsoliat change €.g, the previ-
ously used caches no longer fit in the budgeted memory) arehtire three steps must be
repeated from scratch.

This chapter shows that the manual steps of deriving a wgaadtution that meets the
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global application requirements (steps 2 and 3) can be aittmhin many cases by creating
a weaver capable of handling global constraints and opditioa. Creating a weaver that
can honor these constraints and optimize weaving allowsldpers to translate the high-
level application requirements into pointcut specificasi@and optimization goals that can
be used by the weaver when producing a weaving solution.ll¥;ifeecause the weaver
is responsible for deducing a weaving solution that meattlerall application require-
ments, as the individual solution models change, the wezreautomatically update the
global weaving solution and re-implement it on behalf of degeloper for multiple model
weaving platforms.

This chapter shows how model weaving can be mapped to a aorssatisfaction
problem (CSP) [40, 99, 134]. With a CSP formulation of a modehving problem, a
constraint solver can be used to derive a correct—and in sases optimal—weaving so-
lution. Using a constraint solver to derive a correct wegwalution provides the following

key benefits to model weaving:

* It ensures that the solution is correct with respect to @r@ous modeled functional

and non-functional weaving constraints.

A constraint solver can honor global constraints when peaty a solution and not

just local regular expression or query-based constraints.

A constraint solver automates the deduction of the com&ztving and saves con-

siderable manual solution derivation effort.

» The weaving solution can automatically be updated by theesavhen the core so-

lution models (and hence joinpoints) change.

» The solver can produce a platform-independent weavingisol (a symbolic weav-
ing solution that is not coupled to any specific pointcut lzage) where model trans-
formations [24,47] are applied to create a weaving solutorach required weaving

platform and
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» The solver can derive an optimal weaving solution (witlpexg to a cost function)

in many cases.

Case Study: The Java Pet Store

This chapter uses a case study based on Sun’s Java Pet Si6fenfdlti-tiered e-
commerce application. The Pet Store is a canonical e-cooaragplication for selling
pets. Customers can create accounts, browse the Pet Staréisct categories, products,
and individual product items(g, male adult Bulldog vs. female adult Bulldog).

The Pet Store application was implemented by Sun to showhaseapabilities of the
various Java 2 Enterprise Edition frameworks [132]. The $tete has since been re-
implemented or modified by multiple parties, including Misoft (the .NET Pet Store) [8]
and the Java Spring Framework [10]. The Spring Framewori'sign of the Pet Store
includes support for aspects via Aspectd [1] and Springdetgors and is hence the im-

plementation that we base our study on.

Middle-tier Caching in the Pet Store

Our case study focuses on implementing caching in the mitelidi.e., the persistent
data access layer) of the Pet Store through caching asgdwsusiness logic and views
in the Pet Store are relatively simple and thus the retriaadl storage of persistent data
is the major performance bottleneck. In performance téstswe ran on the Pet Store
using Apache JMeter [56], the average response time acy@88 Rquests for viewing the
product categories was 3 times greater for a remotely hakitabase versus a remotely
hosted database with a local data cache (25% hit rate). The tsts also showed that
caching reduced the worst case response time for viewirdupta@ategories by a factor of
two.

Our experiments tested only a single middle-tier and bake®nfiguration of the Pet

Store. Many different configurations are possible. ThergpRet Store can use a single
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database for product and order data or separate databagesadeess objects (DAOS) are
provided for four different database vendors. Choosingtiteect way of weaving caches

into the middle-tier of the Pet Store requires considerrgfollowing factors:

» The workload characteristics or distributions of requgses, which determine what
data is most beneficial to cache [92]. For example, keepiagtbduct information

in the cache that is most frequently requested will be moseéfieal.

» The architecture of the back-end database servers pngvfhioduct, account, and
order data to the application determines the cost of a quayy [For example, in
a simple Pet Store deployment where the back-end databasdasated with the
Pet Store’s application server, queries will be less exgertean in an arrangement

where queries must be sent across a network to the datalvase se

» The hardware hosting the cache and the applications @ddavith it will determine
the amount of memory available for caching product datdndRet Store is deployed

on small commodity servers with limited memory, large cacimay be undesirable.

» The number of possible cache keys and sizes of the dataiaissbwith each cache
item will influence the expected cache hit rate and the pefaithaving to transfer
a data set across the network from the database to the applisarver [102]. For
example, product categories with large numbers of produittbe more expensive
to serialize and transfer from the database than the inftmman a single product

item.

» The frequency that the data associated with the varioudlstitier DAOS is updated
and the importance of up-to-date information will affectigbhitems can be cached
and any required cache coherence schemes [102]. For exgongdieict item avail-
ability is likely to change frequently, making product itetess suitable to cache than

product categories that are unlikely to change.
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Modeling and Integrating Caches into the Pet Store

Aspect modeling can be used effectively to weave cacheshet®et Store to adapt it
for changing request distribution patterns and back-emabdse configurations. We used
this scenario for our case study to show that although cacdre$®e woven into code and
models to adapt the Pet Store for a new environment, creatidgmaintaining a cache
weaving solution that satisfies the Pet Store’s global appbtin requirements takes signif-
icant manual effort due to the inability of model weavers nc@de and automate weav-
ing with the global application constraints. Each time thabgl application requirements
change, the manually deduced global cache weaving solotigst be updated. Updating
the global cache weaving solution involves a number of neded tools. Figure VI.2
shows the various models, code artifacts, and tools indoiremplementing caching in

the Pet Store.
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Merge models in GME and EMF
respectively
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Figure VI.2: Models and Tools Involved in the Pet Store

1. Modeling platforms. We have implemented models of different parts of the Pe&Sior
two different modeling tools: the Generic Eclipse ModelBystem (GEMS) [160] and the
Generic Modeling Environment (GME) [87]. GME was chosen tlués extensive sup-

port for different views, while GEMS was selected for itesigths inmodel intelligence

99



which was used for automating parts of the deployment moggrocess. Using different
tools simplifies the derivation of the deployment plan areluhderstanding of the system
architecture but also requires some level of integratidawéen the tools.

GEMS is a graphical modeling tool built on top of Eclipse [13d#d the Eclipse Mod-
eling Framework (EMF) [29]. GEMS allows developers to useisiodlike graphical in-
terface to specify metamodels and generate domain-speuiiieling language (DSML)
tools for Eclipse. In GEMS, a deployment modeling tool hasrbienplemented to capture
the various deployment artifacts, such as required Javaivedresources (JAR) files, and
their placement on application servers. Another Neat TANIT) [72] build, configuration,
and deployment scripts can be generated from the GEMS daglalymodel.

GME [87] is another graphical modeling tool similar to GEMfat allows developers
to graphically specify a metamodel and generate a DSML edifomodeling tool for
specifying the overall component architecture of the PeteShas been implemented in
GME. The GME architecture model is used to capture the compiotypes, the various
client types, back-end database architecture, and expdisiibution of client requests to
the Pet Store. The GME architecture model is shown in Figurg.VV
2. Model weaving tools.The caching aspect of the Pet Store is modeled separatety fro
the GEMS deployment model and GME architecture model. Bawodthe caching model
is updated, model weaving tools must be used to apply the aehimy architecture to the
GEMS and GME models. For the GME models, the C-SAW [130] medsdver is used
to merge the caching architecture into the architectureaho@-SAW relies on a series
of weaving definition files to perform the merger. Each malyuaérived global cache
weaving solution is implemented in C-SAW'’s weaving defunitfiles to apply to the GME
architecture models. Again, because we need two separatelimg tools to produce the
best possible deployment and architecture models, we negsutlize and integrate two
separate model weavers into the development process.

The deployment models in GEMS need to be updated via a moaelenesuch as the
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Figure VI.3: GME Pet Store Architecture Model

Atlas Model Weaver (AMW) [51], which can interoperate witlodels based on EMF. With
AMW, developers specify two EMF models and a series of medlgectives {.e., a weav-
ing specification). AMW produces a third merged EMF modeirfithe two source models.
Each global cache weaving solution must also be implemegedweaving specification
for AMW. Once the AMW specification is implemented, the cagfeaving solution can
be merged into the GEMS EMF-based deployment model to iechny required JAR files
and cache configuration steps.
3. Code weaving tools Finally, to apply the cache weaving solution to the legadyStere
code, the Java cache advice implementations must be wacethePet Store’s middle-tier
objects using AspectJ [1], which is a framework for weavidgiee into Java applications.
Although the Spring framework allows the application of AspJ advice definitions to the
Pet Store, it requires that the Spring bean definition filegtie Pet Store be updated to
include the new AspectJ pointcuts and advice specificatiarigral third implementation
of the global cache weaving solution must be created andfigzbm terms of Spring bean
definitions and AspectJ pointcuts.

Overall, there are three separate tool chains that the Be¢ 8ache weaving solution
must be implemented in. First, C-SAW weaving specificationst be created to update

the GME architectural models. Second, AMW weaving specitica must be produced to
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update the GEMS deployment models. Finally, the weavingtsm must be turned into

AspectJ advice/pointcut definitions for weaving the cadhtsthe Pet Store at runtime.

Model Weaving Challenges

One of the primary limitations of applying existing modelavers to the Pet Store
case study is that existing model weaver pointcut spedidicatcannot encode global ap-
plication constraints, such as memory consumption canssteand also cannot leverage
global constraints or dependency-based weaving rulesoupe an overall global weav-
ing solution. Developers must instead document and desodaion for the overall global
application constraints and implement the solution folhezahe numerous modeling and
weaving platforms for the Pet Store. Moreover, each timeutiderlying global applica-
tion constraints change.qg, the memory available for caches is adjusted) the overattia|
weaving solution must be recalculated and implementedamtimerous modeling tools

and platforms.

Differences Between Aspect Weavers and Model Weavers

To understand why model weavers do not currently suppobialconstraints and how
this can be rectified, we first must evaluate aspect weavéhne abding level, which have
influenced model weavers. Aspect weavers, such as AspettdygerJ [7], face an inde-
terminate number of potential joinpoints (also referreés$goinpoint shadowg71]) that
will be passed through during application execution. Famegle, late-binding can be used
in a Java application to dynamically load and link in mukifibraries for different parts of
the application.

Each library may have hundreds or thousands of classes andraus methods per
class (each a potential joinpoint). An aspect weaver cakmotv which classes and meth-
ods the execution path of the application will pass througfote the process exits. The

weaver can therefore never ascertain the exact set of padtgmnpoints that will be used
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ahead of time. Although the weaver may have knowledge ofygaarpoint shadow, it will
not have knowledge of which are actually used at runtime. éllaekaving, however, faces

a different situation than a runtime aspect weaver. The Késrences are:
* Model weaving merges two models of finite and known size.

» Because models have no thread of execution, the weaverscantan exactly what

joinpoints are used by each model.

* Model weaving speed is less critical than aspect weaviegdpt runtime and adding

additional seconds to the total weaving time is not unreaisien

Because a model weaver has knowledge of the entire set qigwits used by the
models at its disposal it can perform a number of activities &re not possible with runtime
weaving where the entire used set of target joinpoints i&knotwn. For example, a model
weaver can incorporate global constraints into the weapimgess. A runtime weaver
cannot honor global constraints because it cannot see tie ased joinpoint set at once.
To honor a global constraint, the weaver must be able to seerttire target joinpoint set
to avoid violating a global constraint.

Runtime aspect weaving involves a large number of potejadiapoints or joinpoint
shadows and is not well-suited for capturing and solvindpgl@pplication constraints as
part of the weaving process. When weaving must be performezha@xtremely large set
of target joinpoints, the weaver must use a high-efficiercphique for matching advice
to joinpoints (every millisecond counts). The most commechhique is to use a query
or regular expression that can be used to determine if aqdintatches a joinpoint. The
gueries and regular expressions are independent of eaeh wthich allows the weaver to
quickly compare each pointcut to the potential joinpoimd determine matches.

If dependencies were introduced between the queries oessipns €.g, only match
pointcut A if pointcut B or C do not match), the weaver wouldfbeced to perform far

less efficient matching algorithms. Moreover, since thewgeaould not know the entire
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joinpoint set passed through by the application’s exeautiwead ahead of time, it could
not honor a dependency, such as match pointcut A only if potatB and C areever

matched, because it cannot predict whether or not B and Gnaiith in the future. Finally,
when dependencies are introduced, there is no longer raitgsssingle correct solution.

Situations can arise where the weaver must either choogmtp A or to apply B and C.

Challenge 1: Existing Model Weaving Poinctut Specificatioa Cannot Encode Global
Application Constraints

Most model weavers, such as C-SAW, AMW, and the Motorola WRAM3], have
adopted the approach of runtime weavers and do not allowndigpeies between point-
cuts or global constraints. Because the model weaver daememrporate these types
of constraints, developers cannot encode the global ajic constraints into the weav-

ing specification. Figure V1.4 presents the manual refaagosteps (the first six steps) that
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Figure VI.4: Solution Model Changes Cause Weaving Solution Updates

must be performed when the modeled distribution of reqygsistto the Pet Store changes.
In the Pet Store case study, there are a number of depensemceglobal constraints
that must be honored to find a correct weaving. We createdrgqaaldvice implementations
that capture all product queries and implementations tleabesed towards specific data
items, such as theé shCache. The biased cache is used when the majority of requests are
for a particular product type. Thel shCache and the generic product cache should be

mutually exclusive. The use of thg shCache is excluded if the percentage of requests
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for fish drops below 50%. Moreover, the generic product caghi¢hen become applicable
and must be applied.

A small change in the solution model can cause numerousfisigmi ripple effects in
the global application constraints and hence weaving ieolutThis problem of changes
to the solution models of an applicaiton causing substargfactoring of the weaving
solution is well-known [66]. The problem becomes even maaglex, however, with the
global weaving solution where significant refactoring @umultiple implementations of
the weaving specification to change.

The problem with managing this ripple effect with existingael weavers is that both
the Fi shCache and the generic product cache have a pointcut that matckesatine
model element, th€r oduct DAO. With existing pointcut languages based on regular ex-
pressions or queries, there is no way to specify that onlyobtige two pointcut definitions
should be matched to ther oduct DAQ. The pointcut definitions only allow the devel-
oper to specify matching conditions based on joinpoint progs and not on the matching
success of other pointcuts.

Developers often need to restrict the overall cache seletti use less than a specified
amount of memory. For example, rather than havindiihehCache andGener i cCache
be mutually exclusive, the two caches could be allowed togmdied if there is sufficient
memory available to support both. Requiring that the wowehes fit within a memory
budget is a resource constraint on the total memory consbyéte weaving solution and
relies on specifying a property over the entire weavingtswhu Existing regular expression
and query-based pointcut languages usually do not captese types of rules.

Another challenge of producing this weaving constraintloe memory consumed by
the caches is that it relies on properties of both the advigects €.g, the memory con-
sumed by the cache) and the joinpoint objeetg(the memory available to the hosting
object’s application server). Most model weaving pointanguages allow specifying con-

ditions only against the properties of the target joinpoartd not over the advice elements
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associated with the pointcut. To circumvent this limitatidevelopers must manually add
up the memory consumed by the advice associated with thégpbend encode it into the
pointcut specification’s querye(g, find all elements hosted by an application server with

at least 30 MB of memory).

Challenge 2: Changes to the Solution Model Can Require Sigfitant Refactoring of

the Weaving Solution

As the solution models of the application that determinesiteof joinpoints change,
each manual step in Figure V1.4 may need to be repeated. Tmngasolution relies on
multiple solution models, such as the server request bigion model, the cache hit ratio
and service times model, and the PetStore software artlnigemodel. A change in any of
these models can trigger a recalculation of the global wepsolution. Each recalculation
of the global weaving solution involves multiple complexughkations to determine the new
targets for caches. After the new cache targets are idehtifie implementation of the
solution for each weaving platform, such as the C-SAW wegdefinition files, must be
updated to reflect the new caching architecture.

For example, the correct weaving of caches into the Pet S&apeires considering
the back-end organization of the product database. If thebdae is hosted on a separate
server from the Pet Store’s application server, cachindyrbinformation can significantly
improve performance. The cache weaving solution is no Ioogeect, however, if biased
caches are applied to various product types that are beingmexd from a remote database
and the database is co-hosted with the Pet Store’s applicsgrver. A developer must then
update the weaving solution to produce a new and correctigolfor the updated solution
model.

As seen in Figure VI.5, not only are numerous manual stepsinet)to update the
weaving solution when solution model changes occur, but esanual step can be com-

plex. For example, re-caculating the optimal placementohes using a queueing model
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is non-trivial. Moreover, each manual step in the proceagastential source of errors that
can produce incorrect solutions and require repeating theegs. The large numbers of
solution model changes that occur in enterprise developarehthe complexity of updat-
ing the weaving solution to respect global constraints, emalanually updating a global

weaving solution hard.
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Figure VI.5: Challenges of Updating a Weaving Solution

Challenge 3: Existing Model Weavers Cannot Leverage a Weawg Goal to Find an
Optimal Concern Merging Solution

Another challenge of encoding global application constgainto a weaving specifica-
tion is that global constraints create situations whereetlage multiple correct solutions.
Existing model weavers do not allow situations where theeenaultiple possible weaving
solutions. Because the weaver cannot choose between esolitions, developers must
manually deduce the correct and optimal solution to use.

Optimizing a solution bound by a set of global constraintséemputationally intensive
search process. Searching for an optimal solution invodwgdoring the solution space
(the set of solutions that adhere to the global constraiotd¢termine the optimal solution.
This type of optimization search can sometimes be performadually with numerical

methods, such as the Simplex [109] method, but is typicalghIn particular, each time
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the solution models change, developers must manuallyelamew optimal solution from
scratch.
For example, to optimize the allocation of caches to DAO$i@Ret Store, developers

must:

Evaluate the back-end database configuration to deterihpreduct, account, or

other data must be cached to reduce query latency.

» Derive from the cache deployment constraints what cachasbe applied to the

system and in what combinations.

» Determine how much memory is available to the caches andchienvory constraints

restrict potential cache configurations.

» Exhaustively compare feasible caching architecturesgugueuing analysis to de-
rive the optimal allocation of caches to DAOs based on DAQiserrates with and

without caching and with various cache hit rates.

It is hard to manually perform these complex calculatiorthdéane the solution models

change or caching constraints are modified.

CSP-based Model Weaving

To address the challenges described earlier, we have g@dspectScattewhich is

a static model weaver that can:

1. Transform a model weaving problem into a CSP and incotpa@i@bal constraints

and dependencies between pointcuts to address Challenge 1.

2. Using a constraint solver, automatically derive a weg\gplution that is correct
with respect to a set of global constraints, eliminatingribed to manually update

the weaving solution when solution models change, as destin Challenge 2.
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3. Select an optimal weaving solution (when multiple solns exist) with regard to a
function over the properties of the advice and joinpoiniteyang the weaver rather
than the developer to perform optimization, thereby adidngsChallenge 3 from

Section VI.

4. Produce a platform-independent weaving model and wamsf into multiple platform-
specific weaving solutions for AspectJ, C-SAW, and AMW tlgbunodel trans-
formations, thus addressing the problems associated wathtaaning the weaving

specification in multiple weaving platforms.

Figure V1.6 shows an overview of AspectScatter’'s weavingrapch. In Step 1, de-
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Figure VI.6: Constraint-based Weaving Overview

velopers describe the advice, joinpoints, and weavingtcaings to AspectScatter using
its domain-specific language (DSL) for specifying aspecawirey problems with global
constraints. In Step 2, AspectScatter transforms the DStante into a CSP and uses a
constraint solver to derive a guaranteed correct and, degeptimal weaving solution. In
Step 3, AspectScatter transforms the solution into a piafimdependent weaving model.
Finally, in Step 4, model transformations are used to t@nsfthe platform-independent
weaving model into specific implementations, such as C-SA¥dwing definition files, for

each target weaving platform.
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The remainder of this section presents a mapping from modaving to a CSP. By
producing a CSP for model weaving, a constraint solver cansee to deduce a correct

and in many cases optimal solution to a weaving problem.

CSP Background

A CSP is a set of variables and a set of constraints over thexs&les. For example,
A < B < 100 is a CSP over the integer variablesandB. A solution to a CSP is a set
of values for the variables (called a labeling) that adhéoethe set of constraints. For
example A =10,B =50 is a valid labeling (solution) of the example CSP.

Solutions to CSPs are obtained by usaumstraint solverswhich are automated tools
for finding CSP solutions. Constraint solvers build a grapthe variables and constraints
and apply techniques, such as arc-consistency, to find tigesathat variable values can
be set to. Search algorithms then traverse the constraiwbrieto hone in on a valid or
optimal solution.

A constraint solver can also be used to derive a labeling o8B @at maximizes or
minimizes a specific goal functiom.€., a function over the variables). For example, the
solver could be asked to maximize the goal func#onB in our example CSP. A maximal

labeling of the variables with respect to this goal functiayuld beA = 98 B = 99.

Mapping Cache Weaving to a CSP

Cache weaving can be used as a simple example of how a CSP aaed® solve a
weaving problem. In the following example, we make sevesalimptions, such as the hit
ratio for the caches being the same for both joinpoints,rtgBfy the problem for clarity.
Real weaving examples involving optimal caching or oth@etyof global constraints are
substantially more difficult to solve manually and hence ivadé our constraint solver
weaving solution.

Assume that there are two caches that can be woven into aicapp, denotedC1
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andC2. Furthermore, assume that there are two joinpoints tleatdlches can be applied
to, denoted]1 andJ2. Let there be a total of 200K of memory available to the cache
Furthermore, the two caches are mutually exclusive andataoa applied to the same
joinpoint. Let the time required to service a requesilabe 10ms and the time a2 be
12ms.

Each cache hit o€1 requires 2ms to service and each cache hic@mequires 3ms.
All requests pass through baili andJ2 and the goal is to optimally match the caches to
joinpoints and set their sizes to minimize the total sertiroe per request. The size of each
cacheC1lsj;eandC2si,¢ determines the cache’s hit ratio. ot the hit ratio iC1si,¢/500
and forC2 the hit ratio iSC2sj,¢/700. Let’'s assume that cacid is woven into joinpoint

J1 andCz2 is woven into joinpoinf2, the service time per request can be calculated as

SveTime= 2(Clgjze/500) + 10(1 — Clgize/500) + 3(Clsize/ 700) + 12(1 — Clgjze/ 700)

With this formulation, we can derive the optimal sizes foe taches subject to the

global weaving constraint:

Clsize+ CZsize < 200

The problem, however, is that we want to know not only theropticache size but also
where to weave the caches and the above formulation asshatesacheC1 is assigned
to J1 andC2 to J2. Thus, instead we need to introduce variables into thecgetime
calculation to represent the joinpoint that each cachetisalg applied to so that we do
not assume an architecture of how caches are applied toojoitsp That is, we want to
deduce not only the cache sizes but also the best allocatioaches to joinpoints (the

caching architecture). Let the variatNgy have value 1 if thg, cacheC; is matched to
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joinpoint Jx and O otherwise. We can update our service time formula ddttdaes not

include a fixed assignment of caches to joinpoints:

SveTime= 2(Myy * Clsize/500) + 3(Maq * C2gize/ 700)+
10(1— ((M11 % Clsize/500) + (M1 % C2si2¢/ 700))) +
2(M12 % Clsjze/500) + 3(Ma22 x C2siz¢/ 700)+
12(1 — ((M12Clsize/500) 4 (M22+ C2size/ 700)))

The new formulation of the response time takes into accdwntlifferent caches that
could be deployed at each joinpoint. For example, the setinee at joinpoint1 is defined

as:

J1SvcTime= 2(|\/|11 * Clsiza/SOO)
—l—3(|\/|21 * C25i29/700)+
+10(l — ((Mll* Clsiza/SOO) + (M21>l< C25i23/500)>)

In this formulation the variabldg;1 andM»1 are influencing the service time calcuation
by determining if a specific cache’s servicing informatisnricluded in the calculation. If
the cacheCl is applied tall, thenM11 = 1 and the cache’s service time is included in the
calculation. If the cache is not woven ini@, thenMy1 = 0, which zeros out the effect of

the cache ail since:

J1SvcTime= 2(0)...10(1 — (04 (M2 % C2si2¢/500)))

Thus, by calculating the optimal values of tht; variables, we are also calculating the

optimal way of assigning the caches (advice) to the joingoin
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To optimally weave the caches into the application, we neatktive a set of values
for the variables in the service time equation that minimmiis value. Furthermore, we
must derive a solution that not only minimizes the above #goa value but respects the
constraints:

Clsize+ CZsize < 200
(M]_l = 1) = (M21 = 0)
(M21=1) = (M22=0)

because the cache sizes must add up to less than the allotedryné€00K) and both
caches cannot be applied to the same joinpoint.

When the constraint solver is invoked on the CSP, the outplitoer the values for
the Mjj variables. That is, for each Advice, i, and joinpoint, j, gwver will output the
value of the variabld/;j, which specifies if AdviceA;, should be mapped to joinpoiri;.
The M;; variables can be viewed as a table where the rows represeatithice elements,
the columns represent the joinpoints, and the values (0 at éxch cell are the solver’s
solution as to whether or not a particular advice should lpdieghto a specific joinpoint.
Furthermore, any variables that do not have values set,astie cache size€1sizeand
C2sizo), Will have optimal values set by the constraint solver.

Even for this seemingly simple weaving problem, derivingatjoinpoints the caches
should be applied to and how big each cache should be is noteds manually. However,
by creating this formulation of the weaving problems as a,&8can use a constraint
solver to derive the optimal solution on our behalf. The 8oluthat the solver creates will
include not only the optimal cache sizes, but also whichgoints each cache should be

applied to, which would be very difficult to derive manually.
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A General Mapping of Weaving to a CSP

Previously, we showed how a CSP could be used to solve a wepkablem involving
optimization and global constraints. This section presengeneralized mapping from a
weaving problem to a CSP so that the technique can be applatitrary model weaving
problems with global constraints.

We define a solution to a model weaving problem as a mapping¢eofents from an
advice sefx to a joinpoint setB that adheres to a set of constraigtsTo represent this
mapping as a CSP, we create a table—calleduwbaving table-where for each advica;
in a and joinpointB; in 3, we define a cellife., a variable in the CSRYj;;. If the advice
A should be applied to the joinpoilj, thenM;; = 1 (meaning the table cell <i,j> has
value 1). IfA; should not be applied 1B;, thenM;; = 0. The rules for building a weaving
solution are described to the constraint solver as conssraver theM;; variables. An
example weaving table where tie oduct sCache is applied to thePr oduct DAOIs

shown in Table 1.

| ProductDAO ItemDAO |
ProductsCache Mgo=1 Mo1=0
FishCache Mio=0 M11=0

Table VI.1: An Example Weaving Table

Some weaving constraints are described purely in termseofvbaving table. For ex-
ample, Challenge 1 introduced the constraint thatRhehCache should only be used
if the Product sCache is not applied to any component. This constraint can be de-
fined in terms of a constraint over the weaving table. If BheshCache is Ag and the

Pr oduct sCache is A1, then we can encode this constraint as for all joinpoijts,

Z)MoJ >0) — Z}Ml] =
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Some examples of dependency constraints between advicerme that can be imple-
mented as CSP constraints on the weaving table are:

Advice requiresAdvice to always be applied to the same joinpoint:
VBj C B, (Mgj =1) — (Mgj = 1)

Advice excludesAdvice from being applied to the same joinpoint:
VBj C B, (Mgj = 1) — (M1 =0)

Advice requires betweeN IN ... MAX of Advice ...Advicg at the same joinpoint:

k

Advice and Joinpoint Properties Tables

Other weaving constraints must take into account the ptiggesf the advice and join-
point elements and cannot be defined purely in terms of theing#able. To incorporate
constraints involving the properties of the advice andpoints, we create two additional
tables: theadvice properties tablandjoinpoint properties tableEach rowR in the advice
properties table represents the properties of the advaraezitA;. The columns of the
advice table represent the different property types. Ttnescell <i,j>, represented by the
variablePAjj, containsA;’s value for the property associated with thgcolumn. The join-
point properties table is constructed in the same fashidim e rows being the joinpoints
(i.e., each cell is denoted by the variali¥dij). An example joinpoint properties table is
shown in Table 2.

Challenge 1 introduced the constraint that BieshCache should only be applied to
the Pr oduct DAOIf more than 50% (the majority) of the requests to Breoduct DAO

are for fish. We can use the advice and joinpoint propertiglesato encode this request
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| %Fish Requests %Bird Requests
ProductDAO  65% (PTog= 0.65)  [20% (PTos = 0.2)
ltemDAO 17% PTio=0.17)  47% PTiy = 0.47)

Table VI.2: An Example Joinpoint Properties Table

distribution constraint. Let the joinpoint propertiesl&@abolumn at index 0 be associated
with the property for the percentage of requests that ard-igh, as shown in the the
joinpoint properties table shown in Table 2. Moreover, Agtbe theFi shCache and
Bo be thePr oduct DAQ. The example request distribution constraint can be erttade

MlO — (PToo > 50).

Global Constraints

In enterprise systems, global constraints are often netdé@dit the amount of mem-
ory, bandwidth, or CPU consumed by a weaving solution. GQlobastraints can naturally
be incorporated into the CSP model as constraints involviagntire set of variables in the
weaving table. For example, the memory constraint on tta &ambount of RAM consumed
by the caches, described in Challenge 1, can be specified @ss&raint on the weaving

and properties tables.

RAM on Application

Server
ProductDAO ‘ .. ‘1024K PTos = 1024) ‘
Table VI.3: An Example Joinpoint Properties Table with Avai lable Memory

| .. IRAM Consumed
ProductCache |... 400K (PAgs = 400)
FishCache 700K (PA14 = 700)

Table VI.4: An Example Advice Properties Table with RAM Cons  umption
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Let the joinpoint property table column at index 5, as showTable 3, represent
the amount of free memory available on the hosting appboasierver of each joinpoint.
Moreover, let the advice property table column at index 4hemsvn in Table 4, contain the
amount of memory consumed by each cache. The memory consmaphstraint can be
specified as:

n
VB C B,(Z}F’Am* Mij) < PTjs
i=

If an advice element is matched against a joinpoint, theespondindVij variable is set to

1 and the advice element’s memory consumption vde, is added to the total consumed
memory on the target application server. The constraintttieaconsumed memory be less
than the available memory is captured by the stipulationttiia sum be< PTjs, which is

the total amount of free memory available on the joinpoiapglication server.

Joinpoint Feasibility Filtering with Regular Expressions and Queries

Some types of constraints, such as constraints that requatehing strings against
regular expressions, are more naturally represented @siisting query and regular ex-
pression techniques. The CSP approach to model weavingsmaimeorporate these types
of constraint expressions. Regular expressions, quamnelspther pointcut expressions that
do not have dependenices can be used as an initial filteepgasexplicitly set zero values
for someM;j variables. The filtering step reduces the set of feasiblgpmints that the
solver must consider when producing a weaving solution.

For example, th&i shCache should only be applied to DAOs with the naming con-
vention "Product*". This rule can be captured with an erigpointcut language and then
checked against all possible joinpoints, as shown in Fi§ilia For each joinpoint, j, that
the pointcut does not match, the CSP variablg, for each advice element, i, associated
with the pointcut is set to 0. Layering existing dependefreg-pointcut languages as fil-
ters on top of the CSP based weaver can help to increase theenwinlabeled variables

provided to the solver and thus reduce solving time.
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ProductDAO [temDAO
ProductsCache Moo =7 Moy =7
FishCache Mo =7 ! WMy =7
Apply “Product*” Filter
[ProductDAO ',‘f ItemDAO
\ProductsCache WMoy =? My, =72
\FishCache Mg =7 M =0

Potential Joinpoint Filtered Out
Before CSP Solving

Figure VI.7: Joinpoint Feasibility Filtering

CSP-Weaving Benefits

Challenge 3 showed the need for the ability to incorporateeawng goal to produce
an optimal weaving. Using a CSP model of a weaving problemeawvimg goal can be
specified as a function over ti\j, PA;j, andPTj; variables. Once the goal is defined in
terms of these variables, the solver can be used to derivaangesolution that maximizes
the weaving goal. Moreover, the solver can set optimal \&afaeattributes of the advice
elements, such as cache size.

Allowing developers to specify optimization goals for theaver enables different
weaving solutions to be obtained that prioritize applimatconcerns differently. For ex-
ample, the same Pet Store solution models can be used te adadhing solutions that
minimize response time at the expense of memory, balanpemes time and memory con-
sumption, or minimize the response time of particular uséipas, such as adding items
to the shopping cart. To explore these various solutionipisies, developers update the
optimization function provided to AspectScatter and net émtire weaving solution cal-
culation process. With the manual optimization approackgsired by existing model
weavers, it is typically too time-consuming to evaluate tiplé solution alternatives.

Mapping aspect weaving to a CSP and using a constraint dolderive a weaving so-
lution addresses Challenge 1. CSPs can naturally accombdtt dependency constraints

and complex global constraints, such as resource or sahgdwdnstraints. With existing
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model weaving approaches developers manually identifydowiment solutions to the
global weaving constraints. With a CSP formulation of wegyiconversely, a constraint
solver can perform this task automatically as part of thewnggprocess.

Manual approaches to create a weaving solution for a setr@fti@nts have numerous
points where errors can be introduced. When AspectScatiesed to derive a weaving
solution, the correctness of the resulting solution is eebwith respect to the weaving
constraints. Moreover, in cases where there is no viablgisal AspectScatter will indi-
cate that weaving is not possible.

A further benefit of mapping an aspect weaving problem to aiS 8t extensive prior
research on CSPs can be applied to deriving aspect weaviugpss. Existing research
includes different approaches to finding solutions [84dpmporating soft constraints [122],
selecting optimal solutions or approximations in polynahtime [27, 54, 118], and han-
dling conflicting constraints. Conflict resolution has besamgled out in model weaving
research as a major challenge [164]. Numerous existinghigebs for over-constrainted
systems [26,78,80,137]€., CSPs with conflicting constraints), such as using highdeio

constraints, can be applied by mapping model weaving to a CSP

The AspectScatter DSL

Manually translating an aspect weaving problem into a CSRguhie mapping pre-
sented earlier is not ideal. A CSP model can accomodate Igtohatraints and dependen-
cies but requires a complex mapping that must be performeéatty to produce a valid
solution. Working directly with the CSP variables to spg@fweaving problem is akin to
writing assembly code as opposed to Java or C++ code.

AspectScatter provides a textual DSL for specifying weg\ypnoblems and can auto-
matically transform instances of the DSL into the equivale8P model for a constraint
solver. AspectScatter's DSL allows developers to work at ddvice/joinpoint level of

abstraction and still leverage a CSP and constraint sabvetdriving a weaving solution.
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The CSP formulation of an aspect weaving problem is not fipéciany one particular
type of joinpoint or advice. The construction and solvinglué CSP is a mathematical
manipulation of symbols representing a set of joinpointsadvice. As such, the joinpoints
could potentially be Java method invocations or model etémelLater, we discuss how
these symbols are translated into platform-specific jaimgand advice. For this section,
however, it is important to remember that we are only deatpend stating the symbols
and constraints that are used to build the mathematical G&Ring problem.

For example, in the context of the cache weaving examples tre two different types
of platform-specific joinpoints. First, there are the jadingts used by C-SAW, which are
types of model elements in a GME model. Second, there arecAkpyge joinpoints, which
are the invocation of various methods on the Java implertientaof thePr oduct DAG,
O der DAQ etc. In the platform-independent model used by the CSRpthpoint defini-
tion Or der DAOis merely a symbolic definition of a joinpoint. When the ptaith-specific
solution is translated into a platform-specific weavingusoh, Or der DAOis mapped to
a model element in the GME model used by C-SAW and an invatati@ query method
on the Java implementation of tide der DAQ.

The basic format for an AspectScatter DSL instance is shaiowb

ADVI CE_1_| D

{
(DI RECTI VE; ) *

ADVI CE_N_I D
{
(DI RECTI VE; ) *

}
JONPONT_1 ID

{
( VARI ABLENAMVE=EXPRESSI ON; ) *

JO NPOINT_N_I D
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( VARl ABLENAMVE=EXPRESSI ON; ) *

The JO NPO NT declaration specifies a joinpoint, an elemBptC 3, thatADVI CE
elements can be matched against. Ik NPOl NT_I Dis the identifier, such as "Order-
DAOQ," that is given as a symbolic name for the joinpoint. EA¢h NPO NT element con-
tains one or more property declarations in the fornVARI ABLENANVE=EXPRESSI ON.
The columns for the joinpoint properties table are creajetidversing all of thd O NPOl NT
declarations and creating columns for the se¥ARlI ABLENANES. The
EXPRESSI ONthat aJO NPO NT specifies for &/ARI ABLENAME becomes the entry for
thatJO NPO NT’s row in the specified/ARI ABLENAME column,PTjj.

EachADVI CE declaration specifies an advice element that can be matgjagaisathe
set of JO NPO NT elements, an eleme# C a. The Dl RECTI VES within the advice
element specify the constraints that must be upheld by tlevivweg solution produced by
AspectScatter and the properties of tigVvl CE element (values for thBA; variables).
The directives available in AspectScatter are shown inelabl

As an example, the AspectScatter ADVICE definitions:

Generi cCache

{
Excl udes: Fi shCache;

Def i neVar: CacheSi ze;

}
Fi shCache

{
}

defines two advice elements calléener i cCache andFi shCAche. TheDl RECTI VES
within theGener i cCache declaration (between "{..}") specify the constraints thaist
be upheld by the joinpoint it is associated with and the priiggthe advice element de-

fines. TheGener i cCache excludes the advice elemdfitshCache from being applied
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DIRECTIVE

Applied To

Description

Requires ADV ICE+

Required: (true| false)

Excludes ADV ICE+

Select: [MIN..MAX],ADV ICE+

Target: CONSTRAINT

Evaluate:
(ocl|groovy),
FILTER EXPRESSION

DefineVar: VARIABLENAME
(= EXPRESSION

Define: VARIABLENAME
= EXPRESSION

Goal : (maximizéminimize,
VARIABLE EXPRESSION

one or more other ADVICE element:

an ADVICE element

one or more other ADVICE element:

a cardinality expression and
one or more other ADVICE

an ADVICE element

an ADVICE element

a weaving problem

a weaving problem

a weaving problem

Ensures that all of the

specified ADVICE elements are
applied to a JOINPOINT

if the enclosing ADVICE element is

The enclosing ADVICE element
must be applied to at least
one JOINPOINT (if true).

Ensures that none of the
specified ADVICE are

applied to the same JOINPOINT
as the enclosing ADVICE

Ensures that at least MIN

and at most MAX of the

specified ADVICE are

mapped to the same

JOINPOINT as the enclosing ADVICE

Requires that CONSTRAINT
hold true for the

ADVICE and JOINPOINT'’s
properties if the

ADVICE is mapped

to the JOINPOINT

Requires that FILTER_EXPRESSION
defined in OCL or Groovy

hold true for the

ADVICE and JOINPOINT's
properties if the

ADVICE is mapped

to the JOINPOINT

Defines a variable.

The final value for

the variable is bound

by the weaver and

must cause the optional
EXPRESSION to evaluate
to true

Defines a variable
and sets a constant
value for it

Defines an expression over the
properties of ADVICE and
JOINPOINTS that should be
maximized or minimized by
the weaving

Table VI.5: AspectScatter DSL Directives
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EXPRESSION (CONSTANTVARIABLE EXPRESSION An expression
(+]=1x)
(CONSTANTVARIABLE EXPRESSION

CONSTRAINT (VARIABLE EXPRESSIONCONSTANT Defines a constraint that must hold
(<|>|==|=<|>=) true in the final weaving solution.
(VARIABLE EXPRESSIONCONSTANT

VARIABLE_EXPRESSION (VARIABLEV_EXPRESSIONCONSTANT | An expression over a set of variables
(+1=1x)
(VARIABLEV_EXPRESSIONCONSTANT

VARIABLE_V_EXPRESSION | (Target|Source).VARIABLENAME The value of the specified defined
variable (VARIABLENAME)

on a ADVICE or JOINPOINT element.
Targetspecifies that the variable should
be resolved against the JOINPOINT
matched by the enclosing ADVICE.
Sourcespecifies that the variable
should be resolved

against the enclosing

ADVICE element.

Table VI.6: AspectScatter DSL Expressions

to the same joinpoint as th@eneri cCache. The Generi cCache declaration also
specifies a property variable, call€dcheSi ze, that the weaver must determine a value
for.

Assume thatth€ener i cCache is Ay and theFi shCache is A;. The AspectScatter
specification would be transformed into: the mapping vaesM,g... Mo, the advice
property variable®Ayq. . . PAg, an advice property table column fGacheSi ze, and the
CSP constraintBj C 3,(M2j =1) — (M1j =0).

The final part of an AspectScatter DSL instance is an optieaabf global variable
definitions and an optimization goal. The global variabléirdigons are defined in an
element named obal s. Within thed obal s element, properties can be defined that
are not specific to a singksDVI CE or JO NPO NT. Furthermore, th€oal directive key
word can be used within th@ obal s element to define the function that the constraint

solver should attempt to maximize or minimize.
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The values for variables provided by the weaver are detatnby labeling the CSP
for the weaving problem. For example, the global constsaiot the Pet Store weaving
problem define the goal as the minimization of the respomse 6f thel t enDAO and
Pr oduct DAQ, as can be seen below:

d obal s {
Define: Total Fi sh = 100;
Define: Total Birds = 75;
Def i ne: Tot al & her Ani nal s = 19;
Constrai nt: Sour ces. CacheSi ze. Sum < 1024,
Goal : mi ni mi ze, Product DAO. Request Percentage * Product DAO. ResponseTi ne +
I t enDAQ. Request Per cent age * |t enDAO. ResponseTi ne;

EachDef i ne creates a variable in the CSP and sets its value. The varaéle
ated by theDef i ne can then have a constraint bound to it. For example, the blaria
Tot al Bi rds isused inthe constrairﬁg?zo Mp; > 0) — (TotalBirds< 80). This simple
constraint states that the Oth advice element can only bieeddp a joinpoint if there are
less than 80 birds.

The Const r ai nt directive adds a constraint to the CSP. In the example altbee,
specification adds a constraint that the sum of the cachs smest be less than 1024.
The statementSour ces. CacheSi ze. Suni' is a special AspectScatter language ex-
pression for obtaining a value from a properties table (theica properties table), a column
(CacheSi ze), and an operation (summation). Assum@arheSi ze is the Oth column

in the advice properties table, the statement adds thenfilipconstraint to the CSP:

n

VB ©B. (3 (M Pho) < 1024

Since no explicit values for each advice eleme@ixheSi ze is set, these will be
variables that the solver will need to find values for as p&the CSP solving process.
Because the response times of the DAOs are dependent orzéhefseach cache, the

CacheSi ze variables will be set by the weaver to minimize response tibevelopers
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can use the AspectScatter DSL to produce complex aspectmgeproblems with both
global constraints and goals.

AspectScatter’'s DSL also includes support for the filterpgrations described pre-
viously. Filters to restrict the potential joinpoints theat advice element can be mapped
to can be defined using an Object Constraint Language (OGL0] [ar Groovy [83] lan-
guage expression that must hold true for the advice/joimtpoapping {.e., the choice of
expression language is up to the user). Filters are defirzettheEval uat e directive. For
example, a Groovy constraint can be used to restrict theaishe from being applied to

any order related DAOs via a regular expression constraint:

Fi shCache {

Eval uat e: groovy, {!target. nane. contai ns("Order")};

}

An OCL constraint could be used to further restrict the Fasti@ to only be applied to

DAOs that receive requests from a category listing page:

Fi shCache {

Eval uat e: ocl , {target.requestsFrom >col l ect (x | x.nane = 'Vi ewCategories.jsp')->size() > 0};

}

The filter expressions defined vi&val uat e are used to preprocess the weaving CSP

and eliminate unwanted advice/joinpoint combinations.

AspectScatter Model Transformation Language

The result of solving the CSP is a platform-independent wegsolution that symbol-
ically defines which advice elements should be mapped tolwhinpoints. This symbolic
weaving solution still needs to be translated into a platf@pecific weaving model, such
as an AspectJ weaving specification. The platform-speciiawwng specification can then

be executed to perform the actual code or model weaving.
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Each platform-independent weaving representation of #amg solution can be trans-
formed into multiple platform-specific weaving solutiorsjch as AspectJ, C-SAW, or
AMW specific weaving specifications. Producing a platfomdapendent weaving model
of the solution and transforming it into implementations &pecific tools allows As-
pectScatter to eliminate much of the significant manuakeféguired to synchronize mul-
tiple weaving specifications across a diverse set of modeldeling languages, and mod-
eling tools. For example, when the modeled request distabwehanges for the Pet Store,
the C-SAW, AspectJ, and GEMS weaving specifications camaatioally be re-generated

by AspectScatter, as shown in Step 4 of Figure VI.6.

AspectScatter’s platform-independent weaving model eastnamsformed into a platform
specific model with a number of Java-based model transfaomedols, such as ATL [85].
AspectScatter also includes a simple model transformatiohbased on pointcut gener-
ation templates that can be used to create the platformtspeeaving model. In this
section, we show the use of the built-in transformation leagge in the context of the C-
SAW weaving definition files needed for the GME model.

C-SAW weaves the caching specification into the GME architecaccording to a set
of weaving directives specified in a weaving definition fillnelimplementation of the C-
SAW weaving definition file that is used to merge caches inéatichitecture model is pro-
duced from the platform-independent weaving solution rhobetransform the platform-
independent solution into a C-SAW weaving definition file AespectScatter model trans-
formation is applied to the solution to create C-SAitvategiedo update model elements
with caches and C-SAVdspectdo deduce the elements to which the strategies should be
applied. For each cache inserted into the GME architectu@eimtwo components must
be added to the C-SAW weaving definition file. First, Bteategyfor updating the GME
model to include the cache and connect it to the correct commtomust be created, as
shown below:

strategy Product DAOAddGenericCache( ) {

decl are parent Model : nodel;
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decl are conponent, cache : atom

parent Mbdel := parent();

conponent : = self;

cache : = parent Model . addAt om( " Cache", "Generi cCacheFor Product DAQ');

par ent Mbdel . addConnecti on(" Cachel nstal | ati on", cache, conponent);

Aroot Aspect andSt r at egy must also be created that matches the root element of
the GME model and invokes the weaving of the individual DA@le=s. The root defini-

tions are shown below:

aspect Root Aspect ()

{
r oot Fol der (). nodel s() - >AddCaches();

}
strategy AddCaches()

{

decl are parent Model : nodel;
par ent Model : = self;
par ent Mbdel . at ons( " Conponent ") - >sel ect (n{ m nane() == "Product DAO") - >Pr oduct DACAddGeneri cCache ( );

For each advice/joinpoint combination, tBer at egy to weave in the cache must be
created. Moreover, for each advice/joinpoint combingteweaving instruction must be
added to the rooAddCaches strategy to invoke the advice/joinpoint specific weaving
strategy.

To create the advice/joinpoint specific cache weavingesgsatan AspectScatter tem-

plate can be created, as follows:

#advi ce[ *] (for-each[list=targets]){#
strategy ${val ue} Add${advi ce} Cache( ) {
decl are parent Model : nodel;
decl are conponent, cache : atom
parent Mbdel := parent();
conponent : = self;
cache : = parent Mobdel . addAt on{" Cache", "${advi ce}CacheFor ${val ue}");

par ent Mbdel . addConnecti on(" Cachel nstal | ati on", cache, conponent);
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#} #

The template defines that for all advice elements matchedstgainpoints
"advicéx|", iterate over the joinpoints that each advice element jgieg to
"for-each[list=targets]", and create a copy of the template code between "{#"
and "#}" for each target joinpoint. Moreover, each copy of template has the name
of the advice element and target element inserted into theepblders "${advice}" and
"${value}", respectively. The "${advice}" placeholder fdled with the symbolic name of
the advice element from it&DVI CE declaration in the AspectScatter DSL instance.

The "${value}" placeholder is the symbolic name of the jadimt, also obtained from
its definition in the AspectScatter DSL instance, that thé@element has been mapped
to. The properties of an advice element can also be refeorading the placeholder
"${ PROPERTYNAME} ." For example, the propert@acheSi ze of the advice element
could be referred to and inserted into the template by udiegptaceholder "${Cache-
Size}".

After deriving a weaving solution, AspectScatter useséngiates defined for C-SAW
to produce the final weaving solution for the GME model. Inmgkthe generated C-SAW
file inserts the caches into the appropriate points in theit@cture diagram. A final woven
Pet Store architecture diagram in GME can be seen in Figug VI

With existing weaving approaches, each time the globalgnggs, such as request dis-
tributions change, developers must manually derive a neaving solution. When the
properties of the solution models change, however, Aspattts can automatically solve
for new weaving solutions, and then use model transformatogenerate the platform-
specific weaving implementations, thereby addressingl@inge 2. The CSP formulation
of a weaving problem is based on the weaving constraints andpecific solution model
properties. As long as the constraint relationships do hahge, AspectScatter can auto-

matically re-calculate the weaving solution and regemetia¢ weaving implementations.
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woven caches

GenericCacheForCategoryDAO

GenericCacheR orProductDAO

+

Il E FishCacheFotitemDAO
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Figure VI.8: The GME Architecture Model with Caches Woven in by C-SAW

For example, if new request distributions are obtained,e8tpcatter can re-calculate the
weaving solution to accomodate the new information. Autibcadly updating the weaving
solution as the solution model properties change can sdyaastial development effort

across multiple solution model refactorings.

Applying Constraint-based Weaving to the Java Pet Store

This section demonstrates the reduction in manual effaitc@mplexity achieved by
applying AspectScatter to the Spring Java Pet Store to bBagidbal constraints and gen-
erate platform-specific weaving implementations. For cangon, we also applied the
existing weaving platforms C-SAW and AspectJ to the same dmabe using a manual
weaving solution derivation process. The results docurttentanual effort required to

derive and implement a caching solution for the Pet StaresnmDAOandPr oduct DAQ.
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Manual Complexity Overview

It is difficult to directly compare the manual effort requdréo execute two different
aspect weaving processes. The problem is that there is n@fr@yrrelating the relative
difficulty of the individual tasks of each process. Furthere) the relative difficulty of
tasks may change depending on the developer.

Although it is difficult to quantify the relative difficulty fothe individual steps, we
can define function(WP) andM’(WP) to calculate the total number of manual steps
required for each process as a function of the size of the wgawoblem YW P) input.
That is, as more advice elements, joinpoints, and constraire added to the weaving
problem, how is the number of manual steps of each procesxcteqt? What we can show
is that one process exhibits a better algorithmic O bounth®number of manual steps as
a function of the input size.

Let's assume that each step in one procegstimes harder than the steps in the second

process. This gives the formula:
E k Mstep: Métep

Even if there is some unknown coefficielaf representing the extra effort of each step in
the process yieldinyl’ (W P), if M’(W P) posseses a better O bound, then there must exist

an inputwp C WP (WP is sorted in ascending order based on size), for which:

E+M (wp) < M(wp)
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and for allwp, C (Wpi+1...Wph):

E+M'(wpx) < M(wp)

Once the size of the weaving problem reacheswsige 1, even though the stepsi areE
times more complicated than the step$4(W P), the faster rate of growth of the function
M(WP) makes it less efficient. If we can calculate O bounds for thalmer of manual
steps required by each process as a function of the size efgheing problem, then we
can definitively show that for large enough problems, thegss with the better O bound
will be better.

In order to compare the AspectScatter based approach taigurad C-SAW and As-
pectJ approach, we provide an example weaving problemvimgpglobal constraints and
optimization. We apply each process to the problem to sheanthnual steps involved
in the two processes. Next, we calculate functibhdV P) and M’(WP), for the tradi-
tional and AspectScatter processes respectively, and gtaaM’ (W P) exhibits a superior

O bound.

Experimental Setup

We evaluated both the manual effort required to use theiegisteaving solutions to
implement a potentially non-optimal caching solution amel ¢ffort required to derive and
implement a guaranteed optimal caching solution. By compahe two different pro-
cesses using existing weavers, we determined how much ofidneal effort results from
supporting multiple weaving platforms and how much restritsn the solution deriva-
tion process. Both processes with existing tools were tlenpared to a process using
AspectScatter to evaluate the reduction in solution deamacomplexity and solution im-

plementation effort provided by AspectScatter.
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Deriving and Implementing a Non-Optimal Caching Solution with Existing Weaving
Techniques
The results for applying existing weavers to derive and enpnt a non-optimal caching

solution are shown in Figure VI.9. Each individual manualafesteps is associated with

Existing Model Weaving Approach w/o Optimization
Initial Implementation

Min Lines Max Lines Min Max

Activity Step of Code of Code Steps Steps
Create Aspects 1 1
Identify/Define Joinpoints 1 1
Derive Caching Strategy 1 1
Implement Weaving Specification for C-SAW  Create AddCache Strategies 8 48 1 6
Implement Weaving Specification for C-SAW  Create Root AddCaches Strategy 1 6 1 1
Implement Weaving Specification for Aspectd Add ProductDAO / ltemDAO Proxy 11 22 1 2
Implement Weaving Specification for Aspect) Add Cache Beans 3 18 1 6
Apply Cache Beans to
Implement Weaving Specification for Aspect ProductDAO/ItemDAO Methods 1 6 1 6
Totals 24 100 8 24
Ref ing for Req Distr ion Change

Derive New Caching Strategy

Implement Weaving Specification for C-SAW  Remove Unused AddCache Strategies 0 48
Implement Weaving Specification for C-SAW  Remove Unused AddCaches Strategy 0 6
Implement Weaving Specification for C-SAW  Create AddCache Strategies 8 48
Implement Weaving Specification for C-SAW  Create Root AddCaches Strategy 1 6
Implement Weaving Specification for AspectJ Remove Previous Proxies 0 22
Implement Weaving Specification for Aspect) Remove Previous Cache Beans 0 18

Remove Unused Cache Beans from

DN ===

Implement Weaving Specification for Aspectd ProductDAO/ItemDAO Methods 0 6 1 6

Implement Weaving Specification for Aspectd Add ProductDAO / ltemDAO Proxy o) 22 1 2

Implement Weaving Specification for Aspect Add Cache Beans 3 18 1 6
Apply Cache Beans to

Implement Weaving Specification for Aspectd ProductDAO/ItemDAO Methods 1 6 1 6

Totals 24 200 11 43

Figure VI.9: Manual Effort Required for Using Existing Mode | Weaving Techniques
Without Caching Optimization

an activity that corresponds to the process diagram showigure VI.4. The results ta-

bles contain minimum and maximum values for the number gisstnd lines of code.

The implementation of each step is dependent on the solctiosen. The minimum value
assumes that only a single cache is woven into the Pet Stbereas the maximum value
assumes every possible cache is used.

The top table in Figure V1.9 shows the effort required to el the initial caching
solution and implementation for the Pet Store. In the firsi steps, developers identify
and catalog the advice and joinpoint elements. Developerspick a caching architecture
(which may or may not be good or optimal) that will be used todoice a weaving solu-

tion. In the next three steps, developers must implemenvdaing solution as a C-SAW
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weaving definition file. Finally, developers must update3ipeing bean definition file with
various directives to use AspectJ to weave the caches iatiegiacy Pet Store code base.
The bottom table in Figure V1.9 documents the steps requwegpdate the caching
architecture and weaving implementation to incorporatéange in the distribution of
request types to the Pet Store. In the first step, the devetigpizes a new caching archi-
tecture. In the next 12 steps, developers remove any caajregtie original C-SAW and
AspectJ implementations that are no longer used by the nkdic@oand implement the

new caching solution using C-SAW and AspectJ.

Deriving and Implementing an Optimal Caching Solution with Existing Weaving Tech-
niques
Figure VI.10 presents the manual effort to derive and imgletran optimal caching

solution for the Pet Store using existing weavers. The chamghis experiment is that it

Existing Model Weaving Approach w/ Optimization

Initial Implementation

Min Lines Max Lines Min Max
Activity Step of Code  of Code Steps Steps
Create Aspects 1 1
Identify/Define Joinpoints 1 1
Derive Optimal Caching Strategy Arch 19 115
Implement Weaving Specification for C-SAW  Create AddCache Strategies 8 48 1 6
Implement Weaving Specification for C-SAW  Create Root AddCaches Strategy 1 6 1 1
Implement Weaving Specification for Aspect Add ProductDAO / ltemDAO Proxy 11 22 1 2
Implement Weaving Specification for Aspect Add Cache Beans 3 18 1 6

Apply Cache Beans to

Implement Weaving Specification for Aspect) ProductDAO/ItemDAO Methods 1 6 1 6
Totals 24 100 26 138

Figure VI.10: Manual Effort Required for Using Existing Mod
With Caching Optimization

el Weaving Techniques

measures the manual effort required to derive an optimatisol for the Pet Store by calcu-
lating the Pet Store’s response time using each potentiaimg architecture and choosing
the optimal one. The steps for implementing the weavingtgoiware identical to those
from the results presented in Figure VI.9.

The steps labele@erive Optimal Caching Strategy Figure V1.10 presents the manual

optimal solution derivation effort incorporated into thmesult set. First, developers must
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enumerate and check the correctness according to the deoratraints, or each potential
caching architecture for both tfe oduct DAOandl t enDAQ. Developers must then enu-
merate and check the correctness of the overall cachingectires produced from each
unique combination oPr oduct DAOand| t enDAQO caching architectures. After deter-
mining the set of valid caching architectures, developearstruse the Pet Store’s modeled
request distribution, memory constraints, and respomse goals to derive the optimal
cache sizes and best possible response time of each cactivitgeture. Finally, develop-
ers select the optimal overall architecture and implentarging C-SAW and AspectJ.

As shown in Figure VI.11, refactoring the weaving solutiomtcomodate the solution
model change in request type distributions forces devedojzerepeat the entire process.
First, they must go back and perform the optimal solutiovdépon process again. After a
new result is obtained, the existing solution implementatiin C-SAW and AspectJ must

be refactored to mirror the new caching structure.

Existing Model Weaving Approach w/ Optimization
Refactoring for Request Distribution Change

Min Lines Max Lines Min Max

Activity Step . of Code of Code Steps Steps
Derive Optimal Caching Strategy 19 115
Implement Weaving Specification for C-SAW  Remove Unused AddCache Strategies 0 48 1 6
Implement Weaving Specification for C-SAW  Remove Unused AddCaches Strategy 0 6 1 1
Implement Weaving Specification for C-SAW  Create AddCache Strategies 8 48 1 6
Implement Weaving Specification for C-SAW  Create Root AddCaches Strategy 1 6 1 1
Implement Weaving Specification for AspectJ Remove Previous Proxies 0 22 1 2
Implement Weaving Specification for Aspectd Remove Previous Cache Beans 0 18 1 6
Remove Unused Cache Beans from
Implement Weaving Specification for Aspect) ProductDAO/ItemDAO Methods 0 6 1 6
Implement Weaving Specification for Aspect Add ProductDAO / ItemDAO Proxy 11 22 1 2
Implement Weaving Specification for Aspect Add Cache Beans 3 18 1 6
Apply Cache Beans to
Implement Weaving Specification for Aspectd ProductDAO/ltemDAO Methods 1 6 1 6
Totals 24 200 29 157

Figure VI.11: Manual Effort Required for Using Existing Mod el Weaving Techniques to
Refactor Optimal Caching Architecture

Deriving and Implementing an Optimal Caching Solution using AspectScatter

Figure VI.12 contains the steps required to accomplish tahnitial implementation
of the Pet Store caching solution and the refactoring cogtmnthe request distribution

changes. In steps 1 and 2, developers use AspectScatter'sd$pecify the caches,
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Aspect Scatter

Initial Implementation

Min Lines Max Lines Min Max

Activity Step of Code of Code Steps Steps

Create Aspects 12 12 6 6

Identify/Define Joinpoints 12 12 2 2

Derive Optimal Caching Strategy Define Weaving Goal L 1 q 1

Implement Weaving Specification for C-SAW  Create AddCache Model Transformation 8 8 1 1
Create Root AddCaches Model

Implement Weaving Specification for C-SAW  Transformation 6 6 1 1
Create ProductDAO / ItemDAO Proxy

Implement Weaving Specification for Aspect) Model Transformation 22 22 2 2
Create Cache Beans Model

Implement Weaving Specification for Aspect Transformation 18 18 6 6

Create Cache Beans to
ProductDAO/ItemDAO Methods Model
Implement Weaving Specification for Aspect Transformation 1 1 1 1

Implement Weaving Specification Invoke AspectScatter 1 1 1 1
Totals 81 81 21 2f
Refactoring for Request Distribution Change
Identify/Define Joinpoints Update Request Distribution Properties 1 2 1 2
Implement Weaving Specification Invoke AspectScatter 1 1 1 1
Totals 2 3 2 3
Figure VI.12: Manual Effort Required for Using AspectScatt er With Caching Optimiza-
tion

joinpoints, and constraints for the weaving problem. Depels then define the weaving
goal, the response time of the application in terms of the@gmes of the joinpoints and
advice elements woven into a solution. The goal is later lyedlspectScatter to ensure
that the derived weaving solution is optimal.

The next two steps (3 and 4) require the developer to createdeinransformation,
using AspectScatter’s transformation templates to spdwiv to transform the platform-
independent weaving solution into a C-SAW implementatidre approach thus represents
a higher-order transformation where C-SAW transformatiare generated from more ab-
stract transformation rules. The subsequent three stdppedemodel transformation to
produce the AspectJ implementation. Finally, Aspect8cagtinvoked to deduce the opti-
mal solution and generate the C-SAW and AspectJ implenmentat

The bottom of Table VI.12 presents the steps required tat@fahe solution to acco-
modate the change in request distributions. Once the agmasting problem is defined
using AspectScatter's DSL, the change in request distabstrequires updating one or

both of the request distribution properties of the two jaimps (.e., the Pr oduct DAO

135



andl t enDAQO) in the AspectScatter DSL instance. After the propertiesugrdated, As-
pectScatter is invoked to recalculate the optimal cachieitecture and regenerate the

C-SAW and AspectJ implementations using the previouslhynddfimodel transformations.

Results Analysis and Comparison of Techniques

By comparing the initial number of lines of code (shown inWgs VI.9-VI.12) re-
quired to implement the caching solution using each of theettechniques, the initial cost
of defining an AspectScatter problem and solution modekfaamations can be derived.
AspectScatter initially requires 81 lines of code versusveen 24 and 100 for the ap-
proach based on existing techniques. The number of linesdd cequired to implement
the initial weaving specification grows at a rateQ@(fn), wheren is the number of advice
and joinpoint specifications, for both AspectScatter andterg approaches. The more
advice and joinpoint specifications, the larger each wepspecification needs to be.

The benefit of AspectScatter’s use of model transformatimtomes most apparent
by comparing the refactoring results. AspectScatter aedyires the developer to change
between 1-2 lines of code before invoking AspectScatteegemerate the C-SAW and As-
pectdJ implementations. Using the existing weaving appgresiche developer must change
between 24-200 lines of code. Moreover, this manual effgired by the existing ap-
proaches is incurrepler solution model chang&hus, AspectScatter requires a constant or
O(1) number of changes per refactoring while existing apprasicbguireO(n) changes
per refactoring.

For a single aspect weaving problem without optimizatioat ils implemented and
solved exactly once, both AspectScatter and the manualimgapproach exhibit roughly
O(n) growth in lines of code with respect to the size of the weayimgplem. The more
caches that need to be woven, the larger the weaving spéoifisehave to be for both
processes. For a single weaving in this scenario, we caimeatlg show that AspectScatter

provides an improvement since it has an equivalent big O @oun
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If we calculate the weaving cost ov€refactorings, however, we see that AspectScatter
exhibits a bound 0O(2K +n) = O(K +n) lines of code. ApsectScatter requires an initial
setup cost ofO(n) lines of code and then each of tKerefactorings requires manually
changing 1-2 lines of code. The manual approach req@(es lines of code changes for
each of theK refactorings because the developer may have to completeiyte all of the
joinpoint specifications. OveK refactorings, the manual process requi¥&n+n) =
O(Kn) lines of code changes. Thus, AspectScatter provides ar lettend, O(K + n) <
O(Kn) on the rate of growth of the lines of code changed over mealtipfactorings.

When optimization is added to the scenarios, AspectS&ateztuction in manual com-
plexity becomes much more pronounced. With existing appres, each time the weaving
solution is implemented, the developer must calculate gtienal cache weaving architec-
ture. Lety be the number of manual steps required to calculate the aptiache weaving
architecture, then the cost of implementing the initial weg solution with an existing ap-
proach iSO(n+ y). The developer must implement ti¥n) lines of code for the weaving
specification and derive the optimal architecture.

Since we are doing a big O analysis, we will ignore any coeffits or differences in
difficulty between a step to implement a line of code and a sidpe derivation of the
optimal caching architecture. We will say thatines of code require manual steps to
implement. The next question is how the number of stegsow as a function of the size
of the weaving problem. The caching optimization problerthwbnstraints is an instance
of a mixed integer optimization problem, which is in NP, ahdg has roughly exponential
complexity. Thusy = 68", where®f is a constant

The overall complexity of the existing approach for the oyptiation scenario i©(n+
6"). Note, this complexity bound is for solving a single instaraf the weaving prob-
lem. OverK refactorings, the complexity bound is even wors®at + K(n+ 6")). With
AspectScatter, the solver performs the optimization stefhe developer’s behalf and the

6" manual steps are eliminated. When optimization is inclugledlK refactorings are
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performed, AspectScatter shows a significantly better dammmanual complexity than
existing approaches:

O(n+K) < O(n+K(n+8")

One might argue that a developer wouldn’t manually derivedptimal caching ar-
chitecture by hand but would instead use some automated Welnote, however, that
this is essentially arguing for our approach, since we anegusn external tool to derive
the caching architecture and then using code generationttonatically implement the
solution. Thus, even using an external tool would still iegja developer to rewrite the
weaving specification after each refactoring and would al$t setup cost for specifying
the weaving problem for the external tool and translatirggréssults back into a weaving
solution. Our approach automates all of these steps onfastthe developer.

A final analysis worth looking at is the effect of the numbemafaving platforms on
the complexity of the weaving process. For both procesBegerhead of the initial setup
of the weaving solution is linearly dependent on the numibgreaving platforms used. In
the experiments, AspectJ and C-SAW are used as the weawatigrpts. GiverP weaving
platforms, both processes exhibit an initial setup coniplet O(Pn).

With existing processes, whed refactorings are performed, the number of weaving
platforms impacts the complexity of each refactoring. Rathan simply incurring(n)
complexity for each refactoring, developers in€Pn) per refactoring. This leads to
an overall complexity bound oD(Pn-+ KPn) for existing processes versus a bound of
O(Pn+K) for AspectScatter. As we showed in the previous analyses) &wr a single
weaving platform, such as just AspectJ, AspectScatteicesicomplexity. However, when
numerous weaving platforms are used AspectScatter showsenfurther reduction in

complexity.
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Weaving Performance

There is no definitive rule to predict the time required tovean arbitrary CSP. The
solution time is dependent on the types of constraints, timber of variables, the degree
of optimality required, and the initial variable values yided to the solver. Furthermore,
internally, the algorithms used by the solver and solveniglementation language can also
significantly affect performance.

Our experience with AspectScatter indicated that the weaprocess usually takes
10ms to a few seconds. For example, to solve a weaving proioiesiving the optimal
weaving of 6 caches that can be woven into any of 10 differentponents with fairly
tight memory constraints requires approximately 120msromgel Core 2 Duo processor
with 2 gigabytes of memory. If a correct—but not necessaniiimal solution is needed—
the solving time is roughly 22ms. Doubling the availablelmamemory budget essentially
halves the optimal solution derivation time to 64ms. The esgamoblem expanded to 12
caches and 10 components requires a range from 94ms to Z3¥panding on the tight-
ness (1.e., amount of slack memory) of the resource consdrai

In practice, we found that AspectScatter quickly solvestmasaving problems. It is
easy to produce synthetic modeling problems with poor perémce, but realistic model
weaving examples usually have relatively limited varidpiin the weaving process. For
example, although a caching aspect could theoreticallyppdiead to any component in
an application, this behavior is rarely desired. Insteagetbpers normally have numerous
functional and other constraints that bound the soluti@esignificantly. In the Pet Store,
for example, we restrict caching to the four key DAOSs thatrfdhe core of the middle-tier.

In cases where developers do encounter a poorly perfornatem instance, there are
a number of potential courses of action to remedy the sdnatOne approach is to relax
the constraintsg.g, allow the caches to use more memory. Developers can alsowap

solving speed by accepting less optimal solutiang, solving for a cache architecture
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that produces an average response time below a certaihthtaeather than an optimal re-
sponse time. Finally, developers can try algorithmic clesnguch as using different solu-
tion space search algorithmesg, simulated annealing [118], greedy randomized adaptive

search [118], and genetic algorithms [118].
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CHAPTER VII

MANUAL CONFIGURATION OPTIMIZATION

Challenge Overview

This chapter illuminates the challenges of modeling théigarmation of software inten-
sive systems, motivates why manual approaches are notisnfffor these domains, and
shows how automated modeling guidance mechanisms arechezdéielp guide manual
modeling. The chapter evaluates the limitations of relatedk in the area of modeling
guidance and demonstrates the current limitations. Thpteh¢éhen presents an approach
to providing modelers with modeling guidance from a constrsolver. Specific emphasis
is placed on how modeling guidance can be used to reduce thplexity of modeling
software intensive systems. Finally, the chapter illusgdow a constraint solver can be

integrated into a graphical modeling tool.

Introduction

The complexity of modeling an arbitrary domain can be measatong the following

three axes:

1. Typical Model Size in Elements: Large Models are hardewtok with using a
manual approach. Clearly, modeler are more apt to make ke'rs;imanagin@and
much more likely to have trouble visualizing - a domain witlndreds of model

elements than one with dozens of model elements.

2. Degree of Global Constraint: Global constraints, sucheasurce constraints, that
are dependent on multiple modeling steps or the order of fimapdeteps make a do-
main much harder to work with. For example, a constraintirgggithe deployment

of an ABS component to a single ECU at a certain distance flmrperimeter of
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the car is relatively easy to solve. It is much harder to sotwestraints of an ABS
component requiring its deployment to two ECUs, both a miummdistance from
the outside of the car and a minimum distance from each otbefgult tolerance

guarantees).

3. Degree of Optimality Required: Optimality is hard to asta with a manual mod-
eling approach. In many domains, such as manufacturing,adl smrease in the
cost of a solution can lead to a dramatic increase in the bwast of manufacturing
when the millions of units affected by the change are coms@tleMany solutions
must therefore be tried to find the best one. Domains thatinegptimal or good

answers are much more challenging to model.

The key reasons that manual modeling approaches do notaxai®deling domains

become more complex are:

* When there are thousands, millions, billions, or more gidssvays that a model can

be constructed and few correct ones, finding a valid solusidvard.

A valid solution may not be a good solution in these domabften, a modeler may
find a solution that is valid but is far from the optimal sotuti Automation and nu-
merical methods, such as the Simplex method [109], are deedsfficiently search
the solution space and find good candidates. A human modaherot effectively

search a solution space manually once it grows past a centgnitude.

» For large models, manual construction methods, such atipgiand clicking to

intricately connect hundreds or more components, are tsdiad error prone.

» Often, global constraints rely on so much information tiattall of the relevant bits
of information can be seen at once. When not all of the infdimnacan be seen,

modelers cannot make an informed decision.
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Another difficulty of highly combinatorial domains is thdtteough modelers may cre-
ate a model that satisfies the domain constraints, the modglb® considered poor in
guality. For example, a modeler creating a deployment ofpmmments to ECUs could eas-
ily select a scheme that utilized far more ECUs than the truernum number required to
host the set of components. For domains, such as automogimafacturing, each model-
ing decision can have significant cost consequences forrtakesiolution. For example, if
a model can be constructed that uses three fewer contrgltartitost the car's components
and consequently saves $100 in manufacturing costs, msllid dollars in overall cost re-
duction for all cars of this make that are manufactured caachéeved. In these cases, it is
crucial to not only find a correct solution but to find a costefive one.

The difficulty of finding a good solution is that with large nedsl and complex global
constraints, modelers are lucky to find any valid solutianc8& finding a single solution is
incredibly challenging, it becomes infeasible or cost fdrdive to produce scores of valid
solutions and search for an optimal one. Even if the set ad gallutions is large, there are
numerous numerical methods to search for a solution withengbercentage of optimality.
These methods, however, all rely on the ability to geneeatgelnumbers of valid solutions
and are not possible without automation.

In domains with large models and intricate constraints, eerd must be able to see
hundreds of modeling moves into the future to satisfy a dlobastraint or optimize a cost.
The more localized a modelers decisions are and the lessttbey peer into the future,
the less chance there is that a correct or good solution wilbond. Good local decisions,
also known as "greedy decisions," do not necessarily pmdugiobally good decision.

For example, consider a simple model that determines tharmam number of ECUs
needed to host a set of components. Assume that there argesdf ECUs, one that costs
$10 and can host 2 components and another that costs $10@mbst 42 components.
If modelers are deploying using a myopic view and not peeinng the future, they will

select many $10 ECUs and create a solution that costs $2h@r taan looking ahead and
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choosing two $100 controllers for a final cost of $200. Makingeries of locally good

decisions may not produce the overall best decision.

Solution Approach

An MDD tool provides a visual language for a developer todbailsolution specifica-
tion. An instance of a visual model contains modeling ezgitr elements, similar to OO
classes, and different visual queues (e.g. connectiomgaiconent) specifying relation-
ships between the elements. For example, a connection &e@eomponent and an ECU
specifies deployment in the automotive modeling example.

The key objective of a modeler is to add the right model ezgitind relationships be-
tween the entities so that they create a solution that mhetajplication requirements.
Modelers express relationships between entities by d@wonnections between them,
placing entities within each other for containment, or otvisual means. For each rela-
tionship that a modeler creates between entities, such @seyieent, the modeler must
find the right source and target for the relationship so thatrelationship satisfies any
constraints placed on it. In the example of deploying conepdsto ECUs, the modeler
must only draw a connection from a component to an ECU thath@®S and resource
capabilities to support the component.

As has been shown, the large size of DRE models and their exngpinstraints can
make manually finding the right endpoints for these relagps, such as deployment,
infeasible. To address the scalability challenges of mieamodeling approaches presented,
this section outlines how a constraint solver can be intedravith an MDD tool to help
automate the selection of endpoints for relationships eetwnodel entities.

In the context of modeling, a constraint solver is a tool ta&es as input one or more
model elements, a goal that the user is attempting to achaemka set of constraints that
must be adhered to while modifying the elements to reach dla¢é gAs output, the con-

straint solver produces a new set of states for the modeleglesthat achieves the desired
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goal while adhering to the specified constraints. For examgplset of components can
be provided to a constraint solver along with the deploymeqtirements (constraints) of
the components. The goal can then be set to "all componentsected to an ECU." The
constraint solver will in turn produce a mapping of compdedn ECUs that satisfies the
deployment constraints.

The remainder of this section first outlines the differengetyof modeling assistance
that an MDD tool and integrated constraint solver can prevala user. Next, the section
discusses how a user’s actions in an MDD tool can be tramsiatie constraint satisfaction
problems (CSPs) so that a constraint solver can be useddmatitally derive the correct
endpoints for the relationships the user wishes to creatally; the section illustrates an

architecture for integrating Prolog as a constraint satvieran MDD tool.

Modeling Assistance

There are two types of constraint solver guidance that carseeé to help modelers pro-
duce solutions in challenging domains: local guidance atchyprocesses. Local guidance
is a mechanism whereby the constraint solver is given aioakttip and one endpoint of
the relationship and provides a list of valid model entitilest could serve as the other
endpoint for the relationship. One example is that a comstsalver could be provided a
deployment relationship and a component and return thd Z&iUs that could be attached
to the other end of the connection. This type of local guiédioc deploying components
is shown in Figure VII.1.

The second type of modeling guidance is for deriving endgdior a group of rela-
tionships so that the group as a whole satisfies a global r@amistAn example of a batch
process would be to connect each component to an ECU in a msunctethat the no ECU
hosts more components than its resources can support. A paicess takes an overall

goal that the modeler is trying to achieve, such as all coraptsnconnected to an ECU,
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Modeling assistance
provided by the
modeling tool to

show valid endpoints
for a connection. e

Figure VII.1: Local Modeling Guidance

and creates a series of relationships on behalf of the usercmmplish that goal. By of-
fering both local guidance and batch processes, a MDD taohe#p users to accomplish
both small incremental refinements to a model and large goalksring multiple modeling

steps.

Local Guidance

Local guidance helps modelers correctly complete a singldating step. A single
modeling step is defined as the creation of one relationsipden two modeling ele-
ments. Local guidance can be implemented as a visual quatisitbws the modeler the
valid endpoints for a relationship that he or she is creatiigr example, when a mod-
eler creates a connection from a component to an ECU to gpebiére a component is
deployed, the modeler must first click on the component mogalement to initiate the
connection. When the connection is initiated, the constisolver can be used to solve for
the valid deployment locations for the component and theehelgments corresponding
to these deployment locations can be highlighted in the tnode

Challenges 3 & 4 can be addressed with local guidance. Bytifgeny the model
elements that are valid target endpoints of the modelingrmaetuser is performing, a mod-

eling tool can use visual queues (e.g. highlighting, filtgrietc.) to show the user only
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the information relevant to the action. Furthermore, theleliog tool can use the list of
valid targets to both help the modeler identify valid saus (helping address challenge
1 of Key Challenges of Complex Domains) and to prevent the fusen applying an ac-
tion to an invalid target endpoint (addressing challengé Ray Challenges of Complex
Domains). With a traditional MDD approach, the correctn&fss user’s action is checked
after completion and thus the user may have to do and unddian atultiple times before
the correct target endpoint is found. By finding valid saus before a modeler completes
a modeling action, the tool can preemptively constrain. (gejo modeling actions) what
modeling elements the action can be applied to and prev@ioutgand error-prone manual
solution searching.

Local guidance can not only provide suggestions of cornedpeints of a relationship
but can provide rankings of the local optimality of each o #ndpoints. For example,
deployment locations could be ranked by the resource slatlable on them so that mod-
elers are led to choose deployment targets with sufficierst fesources. This manner of
local guidance provides a greedy strategy to modeling guiela At each step, modelers
are led towards a solution that provides the greatest imaetienefit to the model’s cor-
rectness.

Correct solutions to modeling transactions of a single Miondetep can be found using
local guidance. In some cases, only considering singletsaapactions will not produce a
solution that satisfies global constraints. For examplagélelers can add ECUs as needed
to deploy components to, local guidance can produce a ealthat is correct with respect
to the constraints, although not necessarily optimal.dfyéver, ECUs cannot be added to
the model and the local strategy guides the modeler to aisoluthere no ECU has free
resources and several components are undeployed, the gimiséraints cannot be met.

Although a greedy strategy may not produce optimal resattsdrtain types of CSPs,
such as bin-packing, in many cases these localized steategn provide a lower bound on

the optimality of the final solution. With bin-packing, a §tiFit Decreasing (FFD) [39]
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packing strategy that sorts items to be placed into binséiy $ize and non-deterministically
selects the first bin that can hold the item will guaranteé th& solution never uses more
than 1.87 times as many bins as the optimal solution. Pnogidilower bound on the qual-
ity of the solution that a modeler can produce can be extngimgdortant in some domains,
such as automotive manufacturing, where you want to mirgmgk or cost. Although not
guaranteed, a localized strategy may in fact arrive at amapor nearly optimal solution.
Moreover, local guidance is substantially less computatiy complex than providing a
global maximum and can be implemented easily with a numbirecdpproaches discussed

later in this section.

Batch Processes

Global constraints require the correct completion of niouemodeling steps and are
typically not amenable to user intervention. For globat&gies, therefore, batch processes
guided by constraint solvers can be used to create mulgfdéonships to bring the model
into a correct state. The key differentiator between locadlgnce and a batch process is
that local guidance deals with modeling transactions wingl a single relationship while
batch processes operate on modeling transactions cargawb or more relationships.
The larger the number of relationships in the transactienggally the more complicated
it is to complete.

One possible batch process for the component-to-ECU deyaoitool could take each
component in the model and create a connection to an ECU imthgel to specify a
deployment location. Local guidance would produce a sidgigloyment connection for
a single component. By increasing the size of the modeliagstiction to consider the
deployment locations of multiple components, the batclcgse can use the constraint
solver to guarantee that if a possible solution is foundilizes only the ECUs currently

in the model. By expanding the transaction size that theesabperates on, the batch
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process allows it to make model modifications that are nallpoptimal, but lead to a
globally optimal or globally correct solution.

Batch processes help address challenges 1, 2, & 3. Firstcl peocess can correctly
complete large numbers of modeling actions on behalf of g, eliminating tedious
and error-prone manual modeling (addressing challengesa8gond, a constraint solver
can create both a correct and an optimal solution that camaeted by a batch process
on behalf of the modeler (addressing challenge 1). By tuthiegparameters used by the
constraint solver, the modeler can guarantee both optyratid correctness (addressing

challenge 2).

Transforming Non-functional Requirements into Constraint Satisfaction Problems

To integrate local and batch process guidance from a camissalver, a model and
the actions that modelers can perform on the model must heftnaned into a series of
Constraint Satisfaction Problems (CSPs). This transfoomallows the MDD tool to
translate the actions of users into queries for a constemiiver. Valid satisfactions of
the CSPs correspond to correct ways of completing a modelitign, such as creating a
connection.

A CSP is a set of variables and constraints over the valuagassto the variables. For
example, X <Y <6 is a CSP with integer variables X and Y. SajhanCSP is finding a set
of values (a labeling) for the variables such that the ca#is hold true. The labeling X
=3, Y=4, is a correct labeling of X <Y < 6. A constraint solvakés a CSP as input and
produces a labeling (if one exists) of the variables. Salweay also produce labelings that
attempt to maximize or minimize variables. For example, X, % 45, is a labeling that
maximizes the value of X.

For the deployment example, a deployment of a set of compstea set of ECUs can
be viewed as a binary matrix where the cell at row i and columsrijif and only if the ith

component is deployed to the jth ECU (and O otherwise). Ealtlcan be represented as an

149



independent variable in a CSP. Thus, each variable Dij ohetes if the ith component is
deployed to the jth ECU. Finding a correct labeling of tharealfor the D variables creates
a deployment matrix that can be used to determine where coemp®should be placed.

Assume that the ABS (anti-lock braking system) componedthe WheelRPMs com-
ponents must be deployed to the same ECU. Also assume thEBBieomponent must be
placed on an ECU at least 3 feet from the perimeter of the dais Series of deployment
constraints can be translated in a CSP model. Let the ABS opem be the Oth compo-
nent and the WheelRPMs component be the 1st component, thiestonstraint that the
ABS component be deployed to the same ECU as the WheelRPMgorant is encoded
as (D0j =1)— (D1j=1). Next, for each ECU, a constant Distj can be creabestdre the
distance of the jth ECU from the perimeter of the car. Usirggthconstants, the constraint
on the placement of the ABS component relative to the pedanwdtthe car can be encoded
as (DOj = 1)— (Distj > 3). If this CSP is input into a constraint solver, the solvél habel
the variables and produce a deployment matrix that is gteedrio be correct with respect
to the deployment constraints.

A constraint solver can also be used to derive a solution avitertain degree of opti-
mality. Assume that N components need to be deployed to omeooe of M ECUs using
as few ECUs as possible. A new variable UsedECUs can be inteatto store the total
number of ECUs used by a solution. The constraint UsedECyB#for all i from 0..N
and all j from 0..M. The solver can then be asked to produceelitag of the variables Dij
that minimizes the variable UsedECUs. The solver will imtproduce a valid deployment
of the components to ECUs that also minimizes the total nurmbECUs used.

Constraint solvers typically offer a number of solutionioptation options. The op-
tions range from maximizing or minimizing a function to ugia fast approximation al-
gorithm that guarantees a specific worst-case percentagetiofality. Depending on the

constraint solver settings used, a modeler can guarargesgptimality of a model or trade
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a certain percentage of model optimality for significan#gluced solving time. In con-
trast, a manual modeling approach provides no way to gusgatrrectness, optimality, a
percentage of optimality, or a tradeoff between optimaditg solution time. For software
intensive systems where optimality is important, allommgdelers to tune these parame-
ters is a key advantage of using a constraint solver-intedgmraodeling approach.

One goal of using a constraint solver is to produce bettertieols than a human mod-
eler can create manually and to produce good solutions retedly. When a solver uses
either optimal or approximation algorithms, the solvedfision has a known and guaran-
teed worst case solution quality. In contrast, there is rergniee on the solution quality

with a manual approach.

a ABS and WheelRPMs deployed together
(functional-constraint)
ABS deployed more than 3 feet from the perimeter of the car
(non-functional safety constraint)

e (Dgj=1) = (Dj;=1) A (D= 1) — (Dist; > 3)

ABS WheelRPMs
Doo =1, D10 =1

(DOj=1)— (D1j=1)
A (DOj = 1) — (Distj > 3)
h N Disty=4 e SIS
oo

. CLP(FD) Solver

distance

Figure VII.2: Transforming a Model into a Constraint Satisf action Problem

As shown in Figure VII.2, the non-functional requiremerts fhe software system
must first be collected and documented (step 1). Each nartifumal requirement must
then be translated into a CSP, such as a system of lineari@ouéstep 2). At this point,
the data from the model, such as ECU distances to the car gterinare collected and
bound to variables in the CSP produced in the previous step &. Next, the CSP with
some bound variables (such as resource demands) and somedniariables (such as the

Dij variables in Figure VII.2) are input into the constrastlver (step 4). The constraint

151



solver then produces bindings for the unbound variablesvaaqus them back to changes in
the model (step 5).

A crucial element for creating the right translation froomAflanctional requirements to
a set of CSPs is the abstraction used to decompose the mtmdlérvariables and facts (i.e.
bound variables) that the CSPs operate on. For exampleldsB@U and component be
present in the formulation of the CSP to represent the bakipg of the model’s resources?
The metamodel of a language provides the terminology anthsija rules for a modeling
language. Since the metamodel contains a precise defirafiohe relevant types in a
modeling language it is ideal for identifying the key contsefhat the CSPs should use.
The metamodel of a modeling language can be viewed as a setd#lrantities and the
role-based relationships between them. By using this attgdn based on entities and
role-based relationships, a model can be convenientlyndposed for processing by a
constraint solver. The idea of relationships between ehlsnis the same as the widely
used Resource Description Framework’s predicate / argufoanat.

The role-based relationships of an entity represent bstbrdperties (such as available
CPU) and its associations (such as hosted components). eaéithcan be decomposed
into a unique ID and a set of role-based relationships aatamtwith the ID. A requirement,
such as "a component is only deployed to an ECU with the co®&¢ can be translated
into a CSP involving the Deployment, and OS relationshipgs @omponent and ECU.
The variables of the CSP for this requirement would be thepmrant and ECU that are
being associated through the Deployment relationship. comstraint would be that the

OS relationship of the component and the ECU had the same {iadu the same OS).

Associating Modeling Actions with the Constraint Solver

An important integration question is how/when to invokedbastraint solver and what
CSPs and variable bindings should be passed to it. The gtmlse the constraint solver

to provide local guidance and batch processes to bind thpoamd of relationships in
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the model. A constraint solver requires a CSP, a set of unbeanables (e.g. unbound
endpoints), and a set of bound variables to produce a lishdp@ints for relationships.
Thus, users’ actions and model state must be interpretedddHe correct CSPs, model
entities, and unbound endpoints to pass to the solver. Byidgfthe right formal model
of the process by which users’ actions are interpreted amglated into input data for the
constraint solver, the integration process can be moralgle@fined. This section presents
a formal abstraction for a user’s interaction with a modgtwol and shows the point in the
formal specification at which the constraint solver can hegrated and used to automate
relationship endpoint binding decisions.

Modeling actions are transactions that take one or moreazief the model and mod-
ify the endpoints of the selected elements’ role-basedioalships. Creating a deployment
connection takes a component (the source of the conneciahyets the endpoint of its
TargetECU relationship. A modeling action was defined asuastiction by the user that
takes a relationship and sets its source and target entMi@® formally, a modeling action
is a function, action(X, R, E), that takes a model element delationship of the element,
R, and produces an endpoint for that relationship E.

The goal of a traditional MDD tool is to take the input prodddey the user, such
as mouse clicks, and translate them into the values for XpR,Eato update the model.
With a traditional MDD tool, the values for E are explicitlpbnd by modelers. A MDD
tool integrated with a constraint solver not only providess traditional explicit binding
capability but also provides a constraint solver bindinggess, in which the constraint
solver deduces the proper endpoints for relationships balbef the modeler.

The GEF and EMF frameworks can be used to illustrate how X ,Eaare actually
implemented in a modeling framework. GEF provides an MVQnieavork for display-
ing and editing EMF models. In GEF, each possible user actioch as connecting two
elements with a line in the graphical model, is representid avCommand object. The

command object is a part of the Command Pattern (Gamma, 1@®&h encapsulates
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actions that can affect a model in an object. When the usgkschn an element and then
presses the delete key, GEF constructs a DeleteCommastheebmmand’s argument to
be the element that was click on, and then calls the commandsute() method, which

deletes the element from the EMF model. When the user wishagate a connection, the
user selects the connection tool from a tool palette. Salgthe connection tool causes
GEF to construct a ConnectionCommand. When the user clitkiseofirst element for the

connection, GEF passes the element to the ConnectionCothasatme source argument.
When the user clicks on the endpoint for the connection, G&sgs the command the
endpoint as the target argument and calls the command’si&{gmethod, which creates
the connection between the two elements. Tool implementeete Command objects to
specify how each possible user action is translated intogds of the underlying EMF

model.

With GEF's command pattern, R is determined by the type of @anmd object that
GEF instantiates. In the deployment example, when the @ects the DeploymentCon-
nection tool, GEF creates a corresponding DeploymentGiiom&€ommand object. The
Command knows (because it is coded into the command obg@tute method) that it is
modifying the TargetECU relationship of its source argumédie command also knows
that its source argument is the X variable in the action(K)Runction. Finally, the com-
mand knows that its target endpoint represents the E varidbhch Command object is
used to translate a graphical user action (e.g. adding action) into values for X, R, and
E. The Command is also responsible for modifying the R rehestihip between X and E in
its execute method. The execute() method of a Deploymemi€ionCommand is shown
in the Java code below:

publ i c ¢l ass Depl oyrent Connect i onCommand ext ends Commandy

/1 apply action( R B

public void execute() {

Component source = (Component)thi s. get Source(); //the X
ECU target = (ECUthis. getTarget(); //the E

//the Rrelationship (target ECU) between X and E is set here
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source. set Target ECU(t arget) ;
}
}

In the modified binding process for E, each relationship Rssoaiated with a CSP
specifying what is considered a correct value for E. For godapa component could spec-
ify that a correct value for its TargetECU’s E value requitest the chosen E value and the
component both have the same OS type. When a user input saieah into values for X
and R, a constraint solver integrated MDD tool uses the CSécested with R to automat-
ically derive values for E on behalf of the user. In Figure.2]Jithe CSP was found in step
2, the values for X and R were produced in step 4 and the bisdorg= were delivered by

the constraint solver in step 5. The modified modeling tretisa process can be seen in

Figure VII.3.

=R (1) The user selects the tool that will be

g g g = applied to the model and determine the

o .. B relationship or R value that will be the basis
e of the ing action

(2) The user selects the source of the
>\ connection, or X value, by clicking on
a modeling element.

¥ == === | [(3) The user selects the endpoint of
A O, 3] g]_ —  |the connection or E value, by clicking
L 9 -, on a second modeling element.

(4) The modeling tool
creates the
connection and sets
the relationship R of X

to point to E.

T
—_— Transaction ends

with Selection of
E value.

Transaction Time
begins with
Selection of R
value.

Figure VII.3: A Diagram of a Modeling Transaction with a Cons traint Solver

In the first step, the user selects a tool or action that withpelied to the model. The
tool determines the R value or relationship that will be nfiedi by the user’s actions.
In the second step, the user clicks on a modeling elementitiatena connection and
hence modify a relationship in the underlying model. Thenget that the user clicks on
becomes the X value that will be passed to the constrainesoln the third step, the

modeling environment looks up the correct CSP that must tigfied by the endpoints of
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the relationship specified by the R value. The modeling envirent then passes this CSP,
the X, and R values to the solver. The solver finds the endpthit satisfy the CSP and

returns these endpoints as possible E values. Finally, ttadUes are presented graphically
to the user.

The GEF DeploymentConnectionCommand can be modified tapocate this new
process by which the constraint solver chooses the valle.fohe Command creation and
initial argument setting remains unchanged. Howevery dlfte source of the connection
has been set, the constraint solver can be invoked to soheValue for E. If a value is
returned, the execute() method can be called immediatédg. iew DeploymentConnec-

tionCommand is:

public class Depl oyment Connecti onCormand ext ends Command{

public void setSource(Object obj) {

this.source = obj;

/1the X

Conponent source = (Conponent)obj ;

/lcall the solver to find valid values for E
Li st endpoints = this.solver.findEndpoi nts(source.getld(),

"target ECU");

/1if there is only one possible value, go ahead and execute
i f(endpoints.size() == 1){
set Tar get (endpoi nts. get (0));
execute();
}
el se if(endpoints.size() > 0) {
/'l otherw se, show the user valid E val ues by
/1 modi fying their background col or
for(Cbject obj : endpoints)
((ECU) obj ) . set Backgr oundCol or ( Col or. yel | ow) ;
}
el se {
/Inotify the user that there are no
/1 possi bl e depl oynent |ocations for the Conponent

sour ce. set Backgr oundCol or ( Col or. red);

/lapply action(X R E)

public void execute() {

Conponent source = (Conponent)this.getSource(); //the X
ECU target = (ECU)this.getTarget(); //the E
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//the R relationship (targetEC) between X and E is set here
sour ce. set Tar get ECU(t ar get ) ;

}

}

In the modified DeploymentConnectionCommand, immediatibr GEF sets the source
of the connection, the command invokes the constraint sadvénd valid endpoints. If
exactly one endpoint is found, the setTarget method is dali¢h that endpoint and the
Command is executed. If more than one valid endpoint is fpeadh valid target has its
background color changed to yellow (a visual queue). Ifdhemo possible deployment
location for the Component, its background color is chartigedd.

In a traditional process, the user would be required to dlisk on the source element,
decide on a valid deployment location for the source, and thiek on the deployment
location. With the modified Command object, the object ftatlempts to determine the
valid targets (E) using the constraint solver. The Commadthen either automatically
complete the action on the user’s behalf, if there is examtlypossible endpoint. If there is
more than one possible endpoint, the Command can highhgkttendpoints for the user.
If no endpoints are found, the Command can notify the usehlaypging the Component’s
background color to red.

In many situations, the user will wish to find a valid endpdarta specified R relation-
ship for every member of a set of modeling elements. For el@ntie user may wish to
select some or all of the Components and have the solver fiaticatarget ECU for every
Component such that no global deployment constraint, saalesource consumption, is
violated. Using the GEF framework, a new BatchDeploymem@@and can be created.

Just as with other GEF commands, the BatchDeploymentCowhroam have a tool
palette entry associated with it that the user can selecterWhe user selects the corre-

sponding tool entry, the BatchDeploymentCommand is cdedibe batch command takes
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a group of modeling elements, which the user specifies thrawgyoup selection, and cre-
ates a connection for each member of the group to a valid EQld.Java code for the

BatchDeploymentCommand is:

public class BatchDepl oynent Conmand ext ends Command{

public void execute() {
/lthe set of Xs
Conponent[] sources = (Conponent[])this.getSources();

/lthe sol ver deduces an E for each X
Object[] targets = this.solver.findValidTargets(sources,

"target ECU");
if(targets !'= null){

for(int i =0; i < targets.length; i++) {

sources[i].set Target ECU((ECU)targets[i]);
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CHAPTER VIII

AUTOMATED CONFIGURATION HEALING

Introduction

Service-oriented architectures (SOAs) are emerging asvanba mechanism to pro-
vide loose coupling and software reuse in enterprise agdics. SOAs expose individual
reusable software applications or components as rematesaible services that commu-
nicate using standardized message-oriented protocalk, asithe Simple Object Access
Protocol (SOAP). The loose coupling provided by messagatad communication and
standardized protocols allows applications to be rapidipposed from both newly devel-
oped custom components and from existing services.

Often, within a single organization or group of collabongtiorganizations, multiple
services are available that can accomplish a particul&r tAee redundancy in services
provides the potential to create applications that can theahselves by failing over to
leverage similar services when a service in their servicepmsition (.e. the services used
by the application) fails. Failing over to another equivellbut not necessarily identical
service can create robust applications that can adapt vecedailures and remain func-
tional.

Designing and implementing a mechanism to build self-ngedervice compositions is
a complex endeavor. Since software development projecad have low success rates
and high costs, building a service capable of healing islji not feasible. Furthermore,
building adaptive mechanisms greatly increases the coditylef an application and can
be difficult to divorce from application code if the developmt of the adaptive mechanism
is not successful.

Model-driven engineering (MDE) provides a potential swntto managing the com-

plexity of developing adaptive services. In an MDE approdogh-level adaptive models
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are used to generate the complex adaptive code requireckoheeapplication when ser-
vices fail. This approach allows much of the complex heatinde to be generated by
the MDE tool and in many cases, removed in needed. Numerqueaghes have been
presented for building MDE models and platforms for entegapplications but these

approaches tend to suffer from one or more of the followirapfams:

1. they require tight-coupling between application code ataptation logic or frame-

works

2. theyrequire significant development effort to explicitiodel the numerous potential

error states and recovery paths from an error state to actciede

3. they require extensive effort to develop the adaptatatima implementations for a

realistic application

In this paper we present an MDE approach and toolset, cR&ftesh for designing
and implementing self-healing service compositions. &sfris specifically designed for

healing a service composition when:

1. the application is implemented with a component-basgthtglogy
2. catastrophic failure is imminent

3. the application and any redundant instances in an apipliceluster cannot continue

functioning correctly in their current configuration

4. the application has alternate composable services;thiéd potentially be exploited

to avoid failure

For each potential error state that an application’s serenposition could enter, most
existing MDE adaptation techniques require explicitly ralag both the error state and the

numerous actions to transition from the error state to aecvstate. For large enterprise
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applications, there are usually a significant number of qi@kerror states and complex
nuanced considerations.§. availability of other services, database locks held, &atien
states, etc.) that make it very difficult to create a modelstvice composition healing.
Rather than explicitly modeling error states and recovetjons, Refresh useSeature
Modelsto capture the rules for determining what is or is not a carceafiguration/error

State.

| PetStoreServiceCompositiPn

AccountDAO| |OrderDAQ| |ProductDA] | itemDAO| [ Single] Muliple] |JTAPreser}t [JTANotPresent

JTAPresentRef

Figure VIII.1: Pet Store Service Composition Feature Model

Feature models describe an application in terms of pointsuability and their affect
on each other. For example, in an e-commerce applicatioeataire might be a service
for accessing an order database. The order feature can lsarerd sub-features, such
as different potential services that can serve as the omtebdse access service. If one
particular order database access service is chosen, iideglthe other potential order
services from being used (it constrains the other featutethle chosen service fails, a new
feature selection can be derived that does not include tleel feervice’s feature.

To avoid the challenges and accidental complexities of batteling all possible error
states and paths to correct states, Refresh uses an appassthommicro-rebooting32].
When a failure, such as the inability to communicate with pestelent service, occurs, Re-
fresh 1) uses the application’s feature models to deriveneamel valid service composition
from the currently available services and components; &3 tise application’s component
container to shutdown the failing application subsysterg.(remote reference to a failed

service); 3) and restarts the application subsystem in¢ladynderived configuration (that
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points to a different service and includes any local comptsyeeeded to communicate

with it).

Case Study: The Java Pet Store

To illustrate the complexity of applying existing MDE tedtues to creating healing
applications, we present a case study based on Sun’s Ja&tdPete-commerce appli-
cation [100]. The Pet Store provides a web-based storefaorgelling pets. The store
includes multiple catetories of pets, produasy( Bulldog, Iguana), and individual prod-
uct items €.g. Female Bulldog Puppy). Customers browse for pets and psecthi&erent
items.

Sun and other parties use the Pet Store as a reference &ippliiwashowcase various
frameworks, such as the Java 2 Enterprise Edition framew&82]. Because the Pet Store
is very widely known and can serve as a reference for comgadifferent technologies, the
Pet Store has been re-implemented in different programiaimguages and with different
frameworks. For example, Microsoft has created the .NETSR®E [8] and the Java Spring
Framework [10, 79] has created the Spring Pet Store. The@pramework’s version of
the Pet Store includes support for integrating web senacekis the implementation we
have chosen for the case study.

Figure VIII.1, presents a high-level feature model of thatfiees related to the Pet
Store’s data tier. Features are denoted by the various hoxbe diagram. The levels
of hierarchy represent subfeatures. For example, all Bet8tstances hayeAOs Data-
sources, andTA as subfeatures (the filled circles at the top of the childufiest denote
required features). The Pet Store Java Transaction API)({&BAure can either be present,
denoted when the childTAPresenfeature is selected, or not present. A Feature can also
specify rules restricting the selection of other featufebe feature is selected. For ex-

ample, the selection of thBatasourceBVultiple features requires thakTAPresentalso
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be selected. This requirement is denoted byJh&PresentRekequired feature reference

underMultiple.

T
| HessianOrderServinHaSOAPOrderServicH LocaIOrderDAq | BurlapOrderServicF

Figure VIII.2: Feature Model of the J2EE Pet Store’s OrderDA O

The SpringFramework allows individual components in the $tere to be swapped
with proxies to remote services. Figure VIII.1 lists theigas DAOs that are available
in the PetStore. Each of these DAOs can potentially be swhfgrea remote service.
Figure V1.2 shows the various options for the OrderDAOther the OrderDAO can be
implemented by a local component or it can be implemented @gnamically created
Java proxy to a SOAP, Burlap, Hessian, or RMI order serviche @ase study focuses
on failing over from the middle-tier DAOs to different renecgervices to demonstrate the

complexities of applying existing MDE techniques.

Challenges of Creating Self-healing Service Compositions

A very common approach to modeling application healing ismtmlel the individual
error states that the application can enter and a recovehy (pasequence of recovery
actions) to return the application to a correct state. Fanmgde multiple MDE approaches
useState Chartgo capture the various error states of an application andeheences of
recovery actions to return to a correct state. Enumeratinof potential error state and each
recovery path can require significant modeling complexitg.we will show through the
rest of this section, even when an MDE tool can generate therityaof the self-healing
code for a service composition, the requirement to modelimpiement recovery actions

places a heavy burden on developers.
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Challenge 1: Significant Modeling Complexity to Specify a Reovery Path from an

Arbitrary Error State to a Correct State

A healing model must use different error states for each imgmentation of a service
type or component type. The failure of the OrderDAO appears to be a fairly simpleerro
condition to model and specify a recovery path for, but itds The problem with modeling
each potential error state and recovery path is that thessefirecovery actions that need
to be invoked is different for the local OrderDAO and remagev&ce implementation. If
the local OrderDAO fails, it may simply need to be swappedfwther implementation. If
a remote service fails, it may be necessary to free resothraéwere used by a connection
to it, such as memory used by caches or network ports.

The type of remote service that is being communicated with alao be important
to the recovery action. For example, different recovernhgatill be needed to release
resources that were used by a connection to a SOAP-basedemgbesas opposed to a
Hessian-based web service proxy. Thus, for each type oiicgeov implementation of the
OrderDAO, separate error states and recovery paths arese8equiring separate error
states for each service implementation can cause the nwhéeor states to explode when
a real enterprise application is modeled.

If the Pet Store’s service composition is modeled usingeStdtarts, as shown in Fig-
ure VIII.3, there are 4 different states for each DAO. Futhere, there are 20 different
states needed to represent the potential services and cemgdhat can serve as the Pet
Store’s DAOs. Another property of this model worth notinghat it does not yet include
any recovery logic. Instead, the model just includes soraegbiolder transitions from one
potential service to the next.

For every error state that the system needs to recover from hte model must explicitly
specify a recovery path.For each of the numerous error states that can be produced, as
described above, an individual recovery path must be defméédal the service composi-

tion. For example not only do the failure of a Hessian and S®@Ag&ed order service need
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Figure VIII.3: Pet Store Service Composition State Chart

to be modeled separately, but the series of recovery actittashed to each also needs to
be modeled separately. As with error states, the numbercolvegy path specifications
produced for healing each component of an enterprise aigliccan be large.

The Pet Store requires a number of recovery actions to taee ph order to swap the
service used for a DAO. The various actions for swapping treeAQO to one of the re-
mote services is modeled in Figure VIII.4. First, to swap &)A SpringHot Swappabl eTar get Sour
(an object capable of swapping an active component in thicagipn) must be obtained.
Next, any resources held by the old DAO implementation or O#GXy to a remote ser-
vice must be released. After releasing resources, a new pooanother remote service
can be created. Finally, the newly created proxy can be seehjoypo the application using
theHot Swappabl eTar get Sour ce. Including the recovery paths in the model ups the
total number of states per DAO from 4 to 25.

Healing a local error may require evaluating the global appication state. In the models
thus far, if the OrderDAOQ fails, it can be replaced with anytlod potential viable order
services. If the Java Transaction APl (JTA) is being used anage transactions, the Pet
Store can fail over to any remote service and still provideppr transaction behavior.
If, however, JTA is not being used to manage transactiossyistem can only provide

transactions across a single datasource, meaning thdtthkk ®AOs must be accessing
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the same database instance. Requiring the use of a singleadatinstance prevents an
arbitrary service from being chosen. In the non-JTA situgtihe service may only fail
over to a remote service if the service is accessing the satabake instance as all other
referenced remote services.

An extension of the OrderDAO recovery State Chart to inclimdeJTA consideration
is show in Figure VIII.5. Each transition to the swap state mcludes a guard to ensure
that swapping is allowed. A newlobalSwapControllehas been added to the model to
only allow swapping when either JTA is present or a singlagatrce is being referenced

by the application’s service composition.

Challenge 2: Significant Complexity to Write Re-configuraton Code that Can Bring
the System from an Arbitrary Error State to a Correct State.

Regardless of the MDE approach used for building the appdicdealing mechanism,
developers must always implement the application-spaeifiovery actions. This require-
ment parallels the development of enterprise applicatamsservices, where despite the

frameworks used, developers are always required to implethe core business logic.
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Some specialized MDE tools may provide pre-built recoveayoas for very specific do-
mains, but in general, nearly every MDE approach requiresldpers to write the recovery
actions.

For each path from an error state to a recovery state, complexecovery logic must
be written. The more error states that are possible in the applicati@ntore recovery
actions must be written by developers. These numerous eegcaetions can be both ex-
pensive to develop and difficult to test - a potential problemen projects are already prone
to failure and cost overruns.

In the Pet Store application, there are four separate DA@isddin each be swapped
to one of four remote services to avoid failures. To implet@esimple swapping mech-
anism in the Pet Store, the Spring framework provides nuosecomplex utility classes
for hotswapping components and connecting to remote ssvatich as Apache Axis web
services. Despite these numerous utility classes, toewanction to swap just the Or-
derDAO to one of the four remote services requires 77 linekaea code to implement the

swapping logic and 11 lines of XML code to enable and configheeswapping action in
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the Pet Store. Although some level of refactoring and okpeieinted design can be used
to share common logic across actions, implementing eadbnastill requires significant

effort.

Challenge 3: Executing Arbitrary Recovery Actions in Arbitrary Error States can

have Numerous Unforeseen Side-effects.

Error states are often specified in such a way that the sysseanvehole can be in
numerous different states that all fall under the definitidrthe same error state. For
example, when the OrderDAO fails, the Pet Store can have®iderogress, category
listings in progress, and numerous other nuanced conditBuilding a robust and correct
recovery action requires taking into account the side effetthe recovery action on the
complex overall state of the application.

For example, what will happen if the local OrderDAO is swappiéth a remote service
during the submission of one or more customer orders? Casrdees potentially be left in
an inconsistent state in the database? Does the safety @ftpedepend on whether or not
alocal or JTA-based transaction mechanism is used? Thegg@e@onuanced questions are
not easy to answer and must be considered for each recovany soplementation. These

intricacies make developing a recovery action that willleatl to unforseen problems hard.

Modeling and Building Healing Adaptations with Refresh
By evaluating the challenges in Sections VIII-VIII, it is@grent that they stem from
two causes: 1) the requirement that every error state armveec path must be explic-
itly modeled and 2) that developers must implement everyptexrecovery action. This
section describes our MDE toolset, callRefresh that eliminates these two sources of
substantial complexity.
Refresh uses feature models to capture the rules for whabigsect system state, which

eliminates the need to explicitly model every error staiecgs each state can be checked
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for correctness on-demand). Second, rather than requidngplex recovery actions to be
implemented, Refresh uses the application’s componenaicear to shutdown the applica-
tion, reconfigure its service composition, and restart g@ieation in the new and correct
state. This reuse of standard container mechanisms fortataapsignificantly reduces

healing development effort without sacrificing performanc

Overview of Refresh

Refresh is built around the concept of micro-rebooting. Whe error is observed in
the application, Refresh uses the application’s compar@rtainer to shutdown and reboot
the application’s components. Using the application doetato shutdown the failed sub-
system takes milliseconds as opposed to the seconds redoira full application server
reboot. Since it is very likely that rebooting in the samefguration €.g. referencing
the same failed remote service) will not fix the error, Reirdsrives a new application
configuration and service composition from the applicasié@ature models that does not
contain the failed featureg.(g.remote services).

The service composition dictates the remote services ugedtidbapplication. The
application configuration determines any local compon@miémentations, such a SOAP
messaging classes, needed to communicate and interaetlyrafith the remote services.
After deriving the new application configuration and seevdomposition, Refresh uses the
application container to reboot the application into theiael configuration. The overall
structure of Refresh is shown in Figure VIII.6.

Refresh interacts directly with the application contajasrcan be seen in Figure VIII.6.
During the initial and subsequent container booting preegsRefresh transparently inserts
application probesnto the application to observe the application compone@tisserva-
tions from the application components are sent back t@amnt stream processohat
runs queries against the application event data, such apic events, to identify errors.

Whenever an application’s service composition needs todaded, Environment probes
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Figure VIII.6: Refresh Structure

are used to determine available remote services and glpphatation constraints, such as
whether or not JTA is present. Finally, Refresh includésature modebf the application
that dictates the rules for deriving a new application carrigion and service composition
when the application needs to be healed and rebooted.

Refresh uses event stream processing [91], to run querg@ssaghe application’s event
data and identify feature failures. The initial implemeimta of Refresh, based on the
Spring Frameworks IoC container, uses the Esper eventispezcessor [4] for Java. Esper
is a high-performance event stream processor that is capablandling 100,000 events a
second with 2,000 queries on a single dual-core CPU [3].

Each feature in the feature model that could potentiallyisaassociated with a group
of event stream queries. At runtime, when a query assooutad feature returns a result,
Refresh is notified that the associated feature has fadesh@wn in Figure VIII.7. The data
and objects observed and analyzed by Refresh are deterivyrtad query specifications.

Once Refresh is notified of a feature failure, it has threenmasks: 1) to use the
container to shutdown the application’s components; 2)s® the application’s feature

model to derive a new application configuration and servizaosition; and 3) to use the
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container to reboot the application in the new configuratibime sequence of events from

a feature failure notification to the rebooting of the comésiiare shown in Figure VIII.8.
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Figure VIII.8: Refresh Reconfiguration, Shutdown, and Laun ch Recovery Sequence

To derive a new configuration of the application does notidelthe failed feature, Re-
fresh transforms the feature selection problem into a camtsatisfaction problem (CSP)
using techniques that have been developed by us an otherimwork [22, 144, 149].
Once the feature selection problem is transformed into g &8Rh-performance general
purpose constraint solver, such as ILog’s JSolver [35],d8de [124], or Choco [20], is

used to derive a new set of features/configuration for thécgijon.
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Once the new application configuration and service comiposs derived, Refresh in-
vokes the container’s shutdown sequence to properly eleg®urces, abort transactions,
and perform other critical activities. The new configuratis injected into the container
through programmatic calls or by regenerating the apptio& configuration files [144].
After the configuration is injected into the container, tpelecation is launched in the new

configuration without the failed service, as shown in Figulié.9.
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Figure VIII.9: Refresh Launches the Application in the New C  onfiguration

Solution 1: Use Feature Modeling to Capture the Rules for Darving what is Consid-
ered a Correct State

Modeling each individual error state and recovery path imgex. Refresh uses feature
modeling to avoid requiring developers to model each imlligl error state and recovery
path. Feature modeling captures the rules—rather thawidhil error states and recovery
paths—for deriving what constitutes a correct applicationfiguration and service compo-

sition. In terms of healing, feature modeling describes:

» the component or service types that are needed to compas@tication
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Figure VIII.10: Deriving a new Service Composition from the Pet Store Feature Model

* the sets of components or services that can serve as thenmptation of a service

type in the application’s composition

* the rules dictating the requirements, such as dependmariks, required by each

component or service implementation

* the rules constraining how the choice of one service implaation restricts the

choices of other component or service implementationsdrséfme application com-

When the failure of a feature is observed, Refresh uses #tarfemodel of the ap-

plication to derive an alternate set of features for theigppbn that does not include the

failed feature. For example, in the Pet Store, whenlLibealOrderDAOfeature fails, Re-

fresh uses the feature model to derive an alternate featleet®on for the Pet Store. In

the example shown in Figure VII1.10, Refresh chooses a natufe selection that uses the

HessianOrderDAQ@ather than the failedocalOrderDAQ

Automated Feature Selection Using a Constraint SolverThe key to Refresh’s healing

capabilities is its ability to use a constraint solver tocawiatically derive a new feature

selection for the application. Prior work provides extgagletails on the process for trans-

forming a feature selection problem into a constraint &attgon problem (CSP), which is

173



the input format of a constraint solver, and deriving a feagelection. In this section, we
briefly cover this mapping.

A constraint satisfaction problem is a series of variabfebaset of constraints over the
variables. For exampleA4 B < C" is a constraint satisfaction problem over the integer
variablesA, B, andC. A constraint solver automatically derives a correct ladge(values
for the variables). The labeling?'=1,B = 2,C = 4" is a correct labeling of the example
CSP.

A selection of features from a feature model can be repredelny a set of integer
variables with domain O or 1. Each variable represents augnigature from the feature
model. If the variable representing thkessianOrderServics represented by the variable
V1, thenVy, = 1in a labeling of a feature selection CSP means that thereeatigelected in
the solution. If the labeling containg = 0, it implies that the feature is not selected in the
solution. The configuration of an application and its ses\domposition is represented as
a set of these variables that denote which services anccapph components are enabled
in a configuration.

Rules dictating the proper composition of the services peeified as constraints over
theV; variables. For example, since only oneH#ssianOrderServicandSOAPOrderSer-
vicecan be used at a time by the Pet Store, a constraint can becussaottire this rule. Let,
V, be the variable representing tB©APOrderServiceThis rule is specified as the con-
straintV,; =1 —V, = 0. As described in [144], complex rules, such as memory caims,
can be described using a CSP.

When a feature is flagged as failed, Refresh adds a new congtrahe feature se-
lection process preventing the failed feature from beirlgcsed €.g, Vi = 0). Refresh
then uses a the constraint solver to derive a new featuretgglghat can be used by the
application based on the environmental constraiatg.(JTA vs. No JTA) and feature
model composition constraints., only one of the order services may be selected at a

time). When only standard feature modeling rules, like edek, requires, cardinality, and
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attribute values are used to describe constraints, therscén very quickly produce a cor-
rect solution [149]. More complex constraints, such as mgmesource constraints, can
be added to augment standard feature modeling rules but@egore care in the feature
model specification process to allow the solver to quickigvaea solution [149].

Eliminating Error State and Recovery Path Modeling Complexty: Because the new
feature selection is introduced into the application bytshg down the old references to
remote services and launching the new component configaratid service composition,
separate recovery actions are not needed. Furthermooe, f@ature models specify the
rules for deriving a correct/incorrect configuration andndd enumerate all possible error
configurations, they require significantly fewer modelihgneents. The equivalent healing
behavior to the 111 state State Chart described earlier egrdnuced in Refresh using
a feature model with 33 features —a roughly 70% reductiomtial imodel elements. The

feature models also have 33 connections versus the 102 caymsefor the State Chart.

Reusing the Component Container's Shutdown/ConfiguratiofLaunch Mechanisms

for State Transitions

Sections VIII-VlI illustrated the complexity and large\ddopment burden of writing
recovery actions to heal an application by failing over termlate services. Refresh at-
tacks the problem with a combination of code reuse and automaRefresh reuses an
application container’s ability to shutdown an applicatsocomponents, reconfigure the
componentsi(e. create the newly desired service composition), and laumelpplication
in the new statei fe. transition the application into the new service composistate). By
reusing existing mechanisms that are well-tested andetlusy developers, the need to
write custom recovery actions is eliminated.

Second, since rebooting in the same application configuratith the same service
composition is unlikely to fix a failed reference to a seryiRefresh automatically derives a

new and valid application configuration and service contposi This automated approach
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to deriving a new service composition from an applicatidaature model allows micro-
rebooting to be applied to service composition healing.nhadly, with a manual recovery
action implementation process, developers would dedwecedirect states to transition the
application into and implement the transition logic. Refrs automated derivation process
eliminates the need for a developer to: 1) determine wheteatsition to, 2) decide how
to accomplish the transition, and 3) implement the tramsiti

Container Rebooting-based Healing Reduces Potential Uniended Side-effects:A
key benefit of using the container’s built in component mamagnt mechanisms for state
transitions is that they are guaranteed to bring the nosigtent application state to the de-
sired correct state. This guarantee helps to resolve tH#gms outlined earler of having
to deal with the potential of unintended side-effects fremovery actions.

With Refresh, the application container shuts down comptsmenvhich releases re-
sources and resets in-memory state, and then re-launehapyhication with a clean mem-
ory state. With recovery actions, there is the potential tme or more of the affects on
the application will have unforeseen consequences to thepeesistent in-memory ap-
plication state. These unforseen side-effects are notlgessith a container rebooting
approach that resets non-persistent state.

A container rebooting approach does not eliminate the piisgithat persistent ap-
plication state, such as database rows, will not be placedan inconsistent state. The
approach does, however, have a number of properties that thizkscenario far less likely
than a recovery action approach. First, all components&flgimustimplement lifecycle
methods that are called by the container to manage the canpoli a component does
not properly handle persistent state on shutdown, it is aiftative implementation of the
component that could emerge—even if the application neses bhealing mechanisms.

Second, most enterprise applications maintain the camsigtof persistent applica-
tion state through transactions. Furthermore, most emserppplications use container-

managed persistence APIs, such as JTA. Even the Non-JTAxaesmprovided for the Pet
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Store still use an alternate container-managed persestaRt that works across only a
single datasource. When the container is used to as theageednsition mechanism, any
transactions that are in process will be properly rollecklmocommitted by the container

during the healing of the application’s service compositio

Modeling

Modeled States or Features 0 111 33
Modeled Connections/Transitions 0 104 29
Model Error Identification 0 0 23
Modeling Totals 0 215 85
Implementation

Imp Recovery Actions 77 77 0
Implement Recovery Path Chooser | 31 0 0
Configuration Modifications 96 44 67
Impl tation Totals 204 121 67

Figure VIII.11: Comparing Implementation Effort for the He  aling Pet Store

Applying Refresh to the Java Pet Store

To compare the development effort of including recoveryomst into the Pet Store,
we implemented three versions of the Spring Pet Store tlmatigerd the ability to swap
failed DAOs with remote services and to swap from failed rens@rvices to other remote
services (the modifications for the three implementatiorsa®ailable from [143]). One
implementation was produced using a purely manual appribetiused Spring’s proxying
and aspect infrastructure to implement the monitoring efAOs and SprindgdotSwap-
pableTargetSource® swap remote services on-the-fly. The second implementatas
produced assuming an MDE tool was provided that could mduektror states and re-
covery actions for the Pet Store and generate the requirettoniog code and recovery
path logic but not the implementations of the recovery agtioNe refer to this MDE ap-
proach as th&IDE error state/recovery pathpproach. Finally, a third implementation was

produced using Refresh.

177



Manual Implementation: The top table in Figure VIII.11 shows the results of the ini-
tial implementation efforts. The manual approach requingolementing two key classes
a ServiceSwappetcapable of 1) looking up the Spring HotSwappableTargetSotor a
DAQ; 2) connecting to a Hessian, Burlap, SOAP, or RMI remetwise; and 3) swapping
in the new service for the failed component/service. As @ashin the results figure, the
class required 77 lines of code. The second class implechergs a Spring MethodInter-
ceptor that was used to monitor each invocation on a DAO ooteiservice for Exceptions
and call the appropriate ServiceSwapper when an Excepticureed. This class required
20 lines of code. Finally, the components were included @Rkt Store by adding them
to the XML configuration files for the Pet Store, which reqdieedding 96 lines of XML
code.

MDE Error State / Recovery Path Implementation: The analysis for the MDE error
state/recovery path approach was based on a generic motie ofinimum effort that
would be required for any MDE adaptation modeling tool arehfework that did not
provide Spring-specific recovery action implementatioifie models were built using
State Charts, since it is arguably the most widely used andmnatate modeling language.
State Charts also have a number of powerful concepts, symdraktel states, which reduce
the total modeling complexity.

For the MDE implementation effort analysis, we measureq ¢tm¢ lines of code re-
quired to implement the ServiceSwapper and to integrate¢bded ServiceSwappers into
the configuration files of the Pet Store. We assumed that aleofogic for choosing the
correct ServiceSwapper to execute, the implementatioheoMethodInterceptor, and all
configuration code required to integrate the method infgare and their dependent prox-
ies into the configuration file would be generated by the tdbls, our experiments were
measuring only the cost of modeling error states and regaeions and implementing
them.

The MDE error state/recovery action approach used the Stadets presented earlier.
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The full State Chart healing specification requires 11lestand 102 transitions between
states. As can be seenin Figure VIII.11, the MDE approadheuires 77 lines of code to
implement the ServiceSwapper recovery action but elirem#ie 31 lines of code needed
to implement the recovery path execution logic and the 26sliof code required for the
monitoring implementation. Furthermore, an MDE approaatuces the lines of XML
configuration code that must be added from 96 to 44.

Refresh Implementation: Finally, we implemented the swapping capabilties in the Pet
Store using Refresh. Refresh’s use of Feature models ezhaitotal of 33 model elements
(features) and 29 connections versus the MDE approach’snibtiel elements (states) and
102 connections (transitions). Refresh also requiredridslof code to specify the Esper
gueries over the event stream of the Pet Store to map quertés ffailure of one of the
Pet Store features. Refresh’s use of the container’s iudhutdown/configuration/launch
mechanisms for healing, eliminated the need to implementtile for the ServiceSwap-
per.

Refresh automatically generates the required monitoag ¢or the Pet Store (this was
assumed for the other MDE approach as well). Refresh didne88 more lines of code to
be modified in the configuration file of the Pet Store versusther MDE approach. These
extra lines of configuration code are a result of adding thigdRk annotations dictating
how to dynamically modify the application’s configuratioased on a feature selection.
Overall, the Refresh approach required 55% less implertientaffort than the other MDE
approach and 60% less modeling effort.

Refresh Performance: We used Apache JMeter to simulate the concurrent access of 40
different customers to the Pet Store and the time requiresbtoplete 4,000 orders. We
simulated the failure of different DAOSs to force Refresh &ahthe Pet Store by swapping
remote services for the failed DAOs. After the DAOs were sp&pto remote services,

we iteratively shutdown the services used by the Pet Stdi@¢e the failover to alternate
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remote services. Over the tests, Refresh averaged 151mslietime an exception in-
dicating a failure was observed until the Pet Store was rfeguared and rebooted with a
new service composition. These times were obtained by ngrthie Pet Store on a 2.0ghz
Intel Core DUO on Windows XP with 2 gigabytes of RAM. The aw@dime required by
the constraint solver to derive a new feature selection \assl These times indicate that
Refresh can provide high-performance application healhde reducing modeling and

implementation effort.
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CHAPTER IX

SCALING CONFIGURATION AUTOMATION TO LARGE MODELS

This chapter focuses on the challenges associated witttiegiéeature sets subject to
resource constraints. For these types of configurationi@mud current exact techniques,
such as CSP solvers, do not work. This chapter presents anambpfor using heuristic

knapsack algorithms to automate feature model configuratio

Introduction

Choosing the correct set of architectural features for grliegtion is hard because
even small numbers of design variables.(small feature sets) can produce an exponential
number of design permutations. For example, the relatisiehple feature model shown in
Figure 1X.2, contains 30 features that can be combined iG€@dfferent distinct architec-
tures. Requirement specifications often try to meet cegaals, such as maximizing face
recognition accuracy, that further complicates architedtfeature choices.

Resource constraints, such as the maximum available memntotal budget for a sys-
tem, also add significant complexity to the architecturaigie process. Finding an optimal
architectural variant that adheres to both the feature hmaestraints and a system’s re-
source constraints is an NP-hard problem [42]. The manwagsses commonly used to
select architectural feature sets scale poorly for NP-pestilems.

For large-scale systems—or in domains where optimizasocritical—algorithmic
techniques are needed to help product-line engineers mékened architectural feature
selections. For example, developers can choose the featmtare deemed critical for
the system or driven by physical concerns that are hard totiydsuch as camera types
and their arrangement). An algorithmic technique can theended to make the remaining

architectural feature selections that maximize accurdajewnot exceeding the remaining
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budgetary allocation. Moreover, developers may want tduexa tradeoffs in architec-
tures,e.g, use a specific camera setup that minimizes memory consomgiopposed to
maximizing accuracy.

Existing algorithmic techniques for aiding developershia selection of architectural
variants rely on exact methods, such as integer programittiagexhibit exponential time
complexity and poor scalability. Since industrial-sizetarectural feature models can con-
tain thousands of features, these exact techniques aradtigal for providing algorithmic
architectural design guidance, such as automated arthidéfeature selection optimiza-
tion. With existing techniques, automated feature sedaatan take hours, days, or longer
depending on the problem size. For large problem sizesstbvg solving time makes it
hard for developers to evaluate highly optimized desigratians rapidly.

This chapter presents a polynomial time approximationrétym, calledriltered Carte-
sian Flattening that can be used to derive an optimal architectural vasabject to re-
source constraints. Using Filtered Cartesian Flatterdegelopers can quickly derive and
evaluate different architectural variants that both op@varying system capabilities and
honor resource limitations. Moreover, each architectumabint can be derived in seconds
as opposed to the days, hours, or longer that would be rehuiith an exact technique,
thereby allowing the evaluation of more architectural aars in a shorter time frame.

This chapter provides the following contributions to thedst of applying the Filtered

Cartesian Flattening algorithm to assist developers iecsielg SPL architectural variants:

1. We prove that optimally selecting architectural featseés that adhere to resource

constraints is an NP-hard problem.

2. We present a polynomial time approximation algorithmdptimizing the selection

of architectural variants subject to resource constraints

3. We show how any arbitrary Multi-dimensional Multipleaibe Knapsack (MMKP)

algorithm [103,114,128] can be used as the final step inrEdt€artesian Flattening,
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which allows for fine-grained control of tradeoffs betwe@tution optimality and

solving speed.

4. We present empirical results from experiments perfororedver 500,000 feature
model instances that show how Filtered Cartesian Flatteaverages 92.56%+ op-

timality on feature models with 1,000 to 10,000 features.

5. We provide metrics that can be used to examine an arahigddeature selection

problem instance and determine if Filtered Cartesian éiatty should be applied.

Overview of Feature Modeling

Feature modeling [82] is a modeling technique that desstibe variability in an SPL
architecture with a set of architectural features arrangedtree structure. Each architec-
tural feature represents an increment in functionalityamation in the product architec-
ture. For example, Figure 1X.1 shows a feature model desgriihe algorithmic variability
in a system for identifying faces [113] in images. Each bqtesents a feature. For ex-
ample, Linear Discriminant Analysis (LDA) is an algorithiil2] for recognizing faces in

images that is captured in théA feature.

‘ Face Recognition Syst%m

[1.11]_/,\.
‘ Face Recognition Alg. (Alg{)

O
Image Compressign PCA
> > >

‘ Euclidead ‘ MahCosin# ‘ Euclidearﬂ IdaSoft‘ ‘ MAP ‘

Figure IX.1: Example Feature Model

A feature can (1) capture high-level variability, such asateons in end-user function-
ality, or (2) document low-level variabilities, such saftware variability(e.g, variations
in software implementation) [98]. Each complete archueadt variant of the SPL is de-

scribed as a set of selected features. For example, thedeatdel in Figure IX.1 shows
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how the feature seHace Recognition System Canera, Face Recognition
Al g, PCA, MahCosi ne] would constitute a complete and correct feature selection

The constraints on what constitutes a valid feature selecre specified by the par-
ent child relationships in the tree. Every correct featwelecion must include the root
feature of the tree. Moreover, if a feature is selected, #atuire’s parent must also be
selected. A feature can have required sub-features imggcegfinements to the feature.
For exampleJFace Recogniti on Systemhas a required sub-feature callEdce
Recogni ti on Al g. that must also be selectedifice Recogni ti on Syst emis
selected. The required relationship is denoted by the fil@dlabovd-ace Recogni ti on
Al g..

The parent child relationships can indicate variation f®in the SPL architecture.
For exampleL DA requires the selection of either of i&icl i dean or | daSoft sub-
features, but not both. ThEucl i dean and| daSoft features form an exclusive-or
subgroup, called aXOR group of the Linear Discriminant Analysid.DA) feature that
allows the selection of only one of the two children. The asgole-or is denoted with
the arc crossing over the connections betweal i dean, | daSof t , and their parent
feature. Child features may also participate iCardinality group where any correct
selection of the child features must satisfy a cardinakjyression.

Feature models can also specify a cardinality on the selecd a sub-feature. For
example, at least 1 and at most 4 instances ofCHeer a feature must be selected. An
unfilled oval above a feature indicates a completely optisnb-feature. For example, a
camera can optionally empldyrage Conpr essi on. Finally, a feature can refer to an-
other feature that it requires or excludes that is not a tip@ent or child. These constraints

are calleccr oss-tree constraints.
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Motivating Example
A key need with SPL architectures is determining how to sedegood set of archi-
tectural features for a requirement set. For example, givixte recognition system that
includes a variety of potential camera types, face recamgndlgorithms, image formats,
and camera zoom capabilities, what is the most accuratebpmsystem that can be con-
structed with a given budget? The challenge is that with hesh&lor thousands of archi-
tectural features—and a vastly larger number of architatpermutations—it is hard to
analyze the resource consumption and accuracy traded¥f®ée different feature selec-

tions to find an optimal architectural variant.

Motivating Example

As a motivating example of the complexity of determining b@st set of architectural
features for a requirement set, we provide a more detailathple of the face recognition
system for identifying known cheaters in a casino. A smadlregle feature model of the

face recognition system’s architectural features is shiowigure 1X.2. The system can

Face Recognition System

o
Face Recognition Alg. (Alg)) Wide Angle Camera (WAC) Zoom Camera (ZC)

L O
PCA m Bayesiaﬂ Image Format (IF] ‘Max Zoom‘ ‘Image Format (IFP
O Pacay /N T P~ T
‘Euclidean MahCosine ‘Euclidead IdaSoft El ’ﬁ}‘ ﬁ 1000X| ’ﬁ RAW
P Py o~
Medium| Uncompresse -

Figure IX.2: Face Recognition System Arch. Feature Model

leverage a variety of algorithms ranging from versions afdar Discriminant Analysis
(LDA) to Bayesian networks. The system requires a wide acaheera, but can be supple-
mented with a zoom camera to provide closer images of spéadiés in the environment.
Each camera can produce images in a variety of image forraatgng from lossy low
quality JPEG images to lossless RAW images from the cam€rRI3 sensor.

Each variability point in the architecture, such as the yfface recognition algorithm,
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affects the overall accuracy and resource consumptioneo$ystem. For example, when
higher resolution images are obtained by a camera, the lbaecairacy of the system can
improve. Higher resolution images, however, consume mamany and require more
CPU time to process. Depending on the overall system rageinés, therefore, choosing
higher resolution images to improve accuracy may or may eqidssible, depending on
the available memory and the memory consumed by other fsatur
Table 1 captures example information on the accuracy peawidand resources consumed—

by some of the architectural features. Each feature is iiieshiy the path through the
feature model to reach the feature. For example, the highutesn JPEGs feature is iden-
tified by WAC/ | F/ JPEG Hi gh. The choice of architectural features is governed by the
overall goal of the system. In this example, we want to maz@face recognition accuracy
without exceeding the available memory, CPU, developmedgbt, or development staff.

Our architectural goal and resource limits are shown indabl

Arch. Feature Accuracy |CPU |Memory [Cost [Devel. Staff
WAC/IF/JPEG/High [0.10 te] 1024 2 0
WAC/IF/JJPEG/Low |0.03 2 128 2 0
ZC/IFITIFF/Zip 0.13 16 256 30 1
Alg/LDA/Euclidean |0.85 112 2048 300 (1
Alg/LDA/IdaSoft 0.84 97 1024 120 0

Table 1X.1: Software Feature Resource Consumption, Cost, a  nd Accuracy

Table 2 lists the architectural resource constraints aadlifgothe design of the system.
The first column lists the goal, which is to maximize the aacyrof the system. Each
subsequent column lists a resource, such as total systenompesnd the amount of that

resource that is available for an architectural variamtgdires to consume.
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Accuracy CPU Memory  [Cost Devel. Staff
Maximize <114 < 4096 < 330 <1

Table IX.2: Example Architectural Requirements: Maximize Accuracy Subject to Re-
source Constraints

Challenges of Feature Selection Problems with Resource Csinaints

To make well-informed architectural decisions, develspered the ability to easily cre-
ate and evaluate different architecture variations tuneshdximize or minimize specific
system capabilities, such as minimizing total cost or megimemory. Generating and
evaluating a range of architectures allows developers ito igaights into not only what
architectural variants optimize a particular system comcleut also other design aspects,
such as patterns that tend to lead to more or less optimantariThe chief barrier to cre-
ating and evaluating a large set of optimized architecfigatiire models is that generating
highly optimized variants is computationally complex aimle consuming.

Optimally selecting a set of architectural features sulifiea set of resource constraints
is challenging because it is an NP-hard problem. To help nstaled why optimal feature
selection problems with resource constraints is NP-hasdfitst need to formally define
these problems. An architectural feature selection probiéth resource constraints is a
five-tuple composed of a set of features (F), a set of depeydamstraints on the features
(C) defined by the arcs in the feature model graph, a functa(,jj)that computes the
amount of thg, resource consumed by thgfeature, a set of values or benefits associated

with each feature (Fv), and a list of the resource limits far $ystem (R):

P=<F,CFr(i,j),Fy,R>

The features (F) correspond to the the feature nodes in gtereemodel graph shown
in Figure 1X.2, such aBayesi an andLDA. The dependency constraints (C) correspond
to the arcs connecting the feature nodes, suétaae Recogni ti on Al gisarequired

sub-feature ofaci al Recogniti on System The resource consumption function
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(Fr) corresponds to the values in columns 3-6 of Table 1, sscthe amount of memory
consumed by each feature. The feature values set (Fv) ponds to the accuracy column
in Table 1. Finally, the resource limits set (R) correspotadthe resource limits captured
in columns 2-4 of Table 2.

We define the solution space to a feature selection probleémrasource constraints
as a set of binary strings (S) where for any binary strsng §) theii, position is 1 if the
ith feature inF is selected and 0 otherwise. The subset of these solutiahsité valid
(Vsc 9 is the set of solutions that satisfy all of the feature mamteglstraints (1) and ad-

here to the resource limits (2):

Vs={scC §
s— C, (1)

ViCR (Zios*Fr(i,j)) <R} (2)
To prove that optimally selecting a set of architecturatdess subject to resource con-

straints is NP-hard, we show below how any instance of an diRptete problem, the
Multi-dimensional Multiple-choice Knapsack Problem (MNRIK can be reduced to an in-
stance of this definition of the optimal feature selectioobem with resource constraints.
A traditional knapsack problem is defined as a set of itemis véitying sizes and values
that we would like to put into a knapsack of limited size. Tloalgs to choose the optimal
set of items that fits into the knapsack while maximizing the ©f the items’ values. An
MMKP problem is a variation on the traditional knapsack peal where the items are
divided into sets and at most one item from each set must lsegiato the knapsack. The
goal remains the sameeg., to maximize the sum of the items’ values in the knapsack.
We provide a simple example of transforming an MMKP probleto i feature selec-
tion problem with resource constraints. Figure X.2 showsrpke MMKP problem with
six items divided into two sets. At most one one of the item®8Aand C can be in the
knapsack at a given time. Moreover, at most one of the items,nd F can be in the

sack.
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Values: 5 9 6 2 11 8
Sizes: 2X2X5  1.5X1.5X10  1X3X7 1.5X1.5X5  1.5X1.5X5  1.5X4X7

iﬁ

Knapsack

Available Space: 5X20X5

Figure 1X.3: A Multi-dimensional Multiple-choice Knapsac k Problem

To transform the MMKP problem into a feature selection peoflwith resource con-
straints, we create a feature model to represent the pesshitions to the MMKP prob-

lem, as shown in Figure IX.4. The generalized algorithm famerting an instance of an

MMKP Solution

‘Setl‘ ‘SetZ‘
NN
PJlEllF

Figure IX.4: A Feature Model of an MMKP Problem Instance

MMKP problem into an equivalent feature selection probleithwesource constraints is

as follows:

1. Create a root feature denoting the MMKP solution,
2. For each set, create a mandatory sub-feature of the ratotré
3. For each set, add an XOR group of sub-features correspgtalthe items in the set,

4. For each item, initialize its feature’s resource constimnpalue entries in the feature

properties table to the length, width, and height of the jtem
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5. For each item, initialize its feature’s value entry in tbature properties table, shown

in Table 3, to the item’s value, and

6. Set the total available resources to be the length, wadtth height of the knapsack.

Feature \Value  |Resource 1 (lengthResource 2 (width)Resource 3 (height
A 5 2 2 )

B 9 15 1.5 10

C 6 1 3 7

D 2 15 1.5 5

E 11 15 1.5 )

F 8 15 4 7

Table IX.3: MMKP Feature Properties Table

Steps 1&2 define the set8) and C) for our feature selection problem. Step 3 creates
a table, shown in Table 3, that can be used to define the fun@idi, j)) to calculate the
amount of each resource consumed by a feature. Step 4irgahe set of values$-{)
defining the value associated with selecting a feature. lligjratep 5 creates the set of
available resource®y.

With this generalized algorithm, we can translate any mstaof an MMKP problem
into an equivalent feature selection problem with resogarestraints. Since any instance
of an MMKP problem can be reduced to an equivalent featureceh problem with
resource constraints, then feature selection problents mggource constraints must be
NP-hard. Any exact algorithm for solving feature selectiath resource constraints will

thus have exponential time complexity.
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Filtered Cartesian Flattening

This section presents the Filtered Cartesian Flatteniiite(&d Cartesian Flattening)
approximation technique for optimal feature selectionecitto resource constraints. Fil-
tered Cartesian Flattening transforms an optimal featelecgon problem with resource
constraints into an approximately equivalent MMKP problevhich is then solved using
an MMKP approximation algorithm. The MMKP problem is desdrsuch that any cor-
rect answer to the MMKP problem is also a correct solutiohé&féature selection problem
(but not necessarily vice-versa). Filtered Cartesiartéitatg allows developers to generate
highly optimal architectural variants algorithmicallypolynomial-time (roughly~10s for
10,000 features), rather than in the exponential time ofteadgorithmic techniques, such
as integer programming.

As shown below, Filtered Cartesian Flattening addressesniin challenge,e., the
difficulty of selecting a highly optimal feature selectiama short amount of time. The
key to Filtered Cartesian Flattening’s short solving tineshat it is a polynomial time
approximation algorithm that trades off some solution mjality for solving speed and
scalability.

The Filtered Cartesian Flattening algorithm, which we w#scribe in the following

subsections, is listed in the APPENDIX.

Step 1: Cutting the Feature Model Graph

The first step in Filtered Cartesian Flattening, detailedade listing (2) of the AP-
PENDIX, is to begin the process of producing a number of iedelent MMKP sets. We
define a choice point as a place in an architectural featurdemehere a configuration
decision must be made.¢., XOR Group, Optional Feature, etc.). A choice pohtjs
independent of another choice poii, if the value chosen for choice poiAtdoes not
affect the value chosen for choice poBit An MMKP problem must be stated so that the

choice of an item from one set does not affect the choice of iteanother set.
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For example, the choice point containihngage Conpr essi on in Figure 1X.1 is
independent of the choice point containikgP andM_, i.e., whether or not image com-
pression is enabled does not affect the typ8ayesi an algorithm chosen. The choice
point of the type of face recognition algorithm, which cansathe featureBayesi an,
is not independent of the choice point for the type of Bayesigorithm €.g, the XOR
group withMAP andM.).

Filtered Cartesian Flattening groups choice points inte #eat must be independent.
Each group will eventually produce one MMKP set. Startirmgirthe root, a depth-first
search is performed to find each optional feature that haseces#ors that are choice points.
A cut is performed at each of these optional features with mmioe point ancestors to
produce a new independent sub-tree, as shown in Figure Bftér these cuts are made,
if the sub-trees have cross-tree constraints, they may etdbey completely independent.

These cross-tree constraints are eliminated in Step 4.

A 11

0
[B.1.1][C,1
D,1,1] [E 1,1

Feature Resource
Consumption
Feature Value

Figure IX.5: Cutting to Create Independent Sub-trees

Step 2: Converting to XOR

Each MMKP set forms an XOR group of elements. Since MMKP da¢suapport any
other relationship operators, such as cardinality, we mastert the configuration solution
space captured in each feature model sub-tree into an éeptivapresentation as a series
of partial configurations related through XOR. Since a featnodel allows hierarchical

modeling and cardinality constraints, the conversion toRX€n require an exponential
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number of partial configurations for the XOR representatiofihe filtering process of
Filtered Cartesian Flattening is an approximation step plids a polynomial bound on
the number of configuration permutations that are encodedie XOR representation to
avoid this state explosion.

The first step in converting to XOR is to convert all Cardityafjroups and optional
features into XOR groups. Cardinality groups are conveidedOR by replacing the car-
dinality group with an XOR group containing all possible danations of the cardinality
group’s elements that satisfy the cardinality express8ince this conversion could create
an exponential number of elements, we bound the maximum auoflelements that are
generated to a constant numiier Rather than requiring exponential time, therefore, the
conversion can be performed in constant time.

The conversion of cardinality groups is one of the first stgpsre approximation oc-
curs. We define a filtering operation that chooses whichlements from the possible
combinations of the cardinality group’s elements to adcheoXOR group. All other ele-
ments are thrown away.

Any number of potential filtering options can be used. Oureexpents evaluated a
number of filtering strategies, such as choosingtteghest valued items, a random group
of K items, and a group df items evenly distributed across the items’s range of resour
consumptions. The best results occurred when selecting tibems with the best ratio
of \\;%Lcelz whererc; is the amount of th&y, resource consumed by the partial configura-
tion. This sorting criteria has been used successfully bgrdIMKP algorithms [11]. An
example conversion witK = 3 and random selection of items is shown in Figure IX.6.

Individual features with cardinality expressions attattieem are converted to XOR
using the same method. The feature is considered as a d#ydgraup containingM
copies of the feature, wheh is the upper bound on the cardinality expressimg.(L..M]

or [M]). The conversion then proceeds identically to cardigaibups.

1This state explosion is similar to what happens when a SthsetQvith hierarchy is converted to its
equivalent Finite State Machine representation [67].
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K= 3, Random Selection

A1 1
AN (A 1, 1]
1..3] ISS

BATICLTIIELT]  Be22BCE3 3B 1 1]

Figure IX.6: Converting a Cardinality Group to an XOR Group w ith K=3 and Random
Selection

Optional features are converted to XOR groups by repladiegaptional featured
with a new required featur®. O in turn, has two child feature€) and 0 forming an

XOR group. O’ and 0 have zero weight and value. An example conversionashn

A 1,1 I > A1
A

B, 1,1 E 1.1 B’,0,0 E. 1.1

Figure 1X.7.

[B,1,1]192,0,0]

Figure IX.7: Converting an Optional Feature into an XOR Grou p

Step 3: Flattening with Filtered Cartesian Products

For each independent sub-tree of features that now only K&R and required re-
lationships, an MMKP set needs to be produced. Each MMKP setlsito consist of
a number of partial configurations that could be producethfeach sub-tree. To create
the partial configurations that constitute each MMKP set,p@dorm a series of recur-
sive flattening steps using filtered Cartesian productshawis in code listing (4) in the
APPENDIX.

The procedurd | at t en takes a feature and recursively flattens its children into a
MMKRP set that is returned as a list. The list is constructethghat each item represents

a complete and correct configuration of the feature and gsatedants. The first step in
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the algorithm (5) simply takes a feature with no children agtdrns a list containing that
feature,i.e,, if the feature’s subtree contains only a single feature,ahly valid config-

uration of that subtree is the single feature. The secorgl(§jemerges the valid partial
configurations of two nested XOR groups into a single paduadfiguration by merging
their respective partial configuration sets into a singte gevisualization of this step is

shown in Figure IX.8.

G, 1.1

KT1][C1.1] [K.1,1][LN, 2 2|

[ N,1,1]]10,1,1]|

Figure 1X.8: Flattening an XOR Group

The third step (7) takes all required children of a feature produces a partial config-
uration containing a filtered Cartesian product of the fesgsichildren,.e., the step selects
a finite number of the valid configurations from the set of alégible permutations of the

child features’ configurations. A visualization of thisgie shown in Figure IX.9. In code

M1, 11N, 1, 1] [0, 1][P.1, 1]
Figure IX.9: A Cartesian Product of Required Children

listing (8) in the APPENDIX, the Cartesian product is filteéieentically to the way filters
were used previously. The filter choos€glements from the Cartesian product of the two
sets using a selection strategy. The experiments in Oultseshow that a value of K=400
produced a good blend of speed and optimality.

Once each independent sub-tree has been converted intofgosetial configurations,
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we must mark those sets that represent optional configaratioices. For each set that
does not include the root feature, we add an item 0 with zexight and zero value in-
dicating that no features in the set are chosen. Either @éapeaadnfiguration from the set
is selected or 0 (representing no selection) is chosens Miethod is a standard MMKP
technique for handling situations where choosing an itenmfsome sets is optional. Since
the root feature must always be chosen, a partial configur&tbm its sub-tree’s set must

also be chosen, so the 0 item is not added to its set.

Step 4: Handling Cross-tree Constraints

If any of the partial configurations in the MMKP sets contaioss-tree constraints,
these constraints must eliminated before the MMKP solvesésl. There are two cases for

the cross-tree constraints that must be handled:

1. A partial configuration has a cross-tree constraint #fatrs to a feature in a sub-tree

other than the sub-tree that produced its containing MMHKP se

2. A partial configuration has a cross-tree constraint tefers to a feature within the

same sub-tree that produced its containing MMKP set.

The first case is handled by applying a series of filtered G@rieproducts to each
series of two sets that is connected through one or more-ti@sgonstraints. During the
process of calculating the Cartesian product, when twdgbanfigurations are chosen
from each of the two sets, the combination of the configunatis validated to ensure
that it does not violate any cross-tree exclusionary cairgs. If the combination violates
a cross-tree excludes constraint, the combined configuradi not added to the filtered
Cartesian product of the two sets. In the case that a violatazurs, a constant number
of retries,w, can be performed to find an alternate pair of compatible gardtions. If no
compatible pair is found withinv tries, K is decremented for that set, and the Cartesian

product continues.
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The second case is handled by checking the validity of eadiapeonfiguration that
contains one or more cross-tree constraints. Each of treialgonfigurations is checked
to ensure that it adheres to its cross-tree constraintse Bonfiguration is valid, no changes
are made. Invalid configurations are removed from theiraaiig MMKP set. Cross-tree
constraints within the same sub-tree are always handledaftiss-tree constraints between

sub-trees have been eliminated.

Step 5: MMKP Approximation

The first four steps produce an MMKP problem where each sabomnitems rep-
resenting potential partial configurations of differenttpaf the feature model. One set
contains partial configurations for the mandatory portiohthe feature model connected
to the root. The remaining sets contain partial configuratiof the optional sub-trees of
the feature model.

The final steps in deriving an optimal architectural feagekection involve running an
existing MMKP approximation algorithm to select a group aftal configurations to form
the architectural feature selection and then to combingetipartial configurations into a
complete architectural variant. For our implementatioRkitiEred Cartesian Flattening, we
used a simple modification of the Modified Heuristic (M-HEUya@ithm [11] that puts
an upper limit on the number of upgrades and downgrades #mabe performed. Since
Filtered Cartesian Flattening produces an MMKP problemgcarme use any other MMKP
approximation algorithm, such as the Convex Hull Heurisdigorithm (C-HEU) [104],
which uses convex hulls to search the solution space. Dépgod the algorithm chosen,
the solution optimality and solving time will vary.

The items in the MMKP sets are built by concatenating theigdacbnfigurations of
feature sub-trees during Cartesian products. With thisngement, architectural feature

configuration solutions can readily be extracted from the ’KiMsolution since they consist
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of a partial configurations represented as a series of stdogtaining the labels of features

that should be selected.

Algorithmic Complexity

The algorithmic complexity of Filtered Cartesian Flattegis constituent steps can be

decomposed as follows (whenas the number of features):

» The first step in the Filtered Cartesian Flattening algonit—cutting the tree—requires
O(n) time to traverse the tree and find the top-level optiondifies where cuts can

be made.

» The second step of the algorithm requireXK@¢ S steps, wher&is the time re-
quired to perform the filtering operation. Simple filteringesations, such as random
selection, add no additional algorithmic complexity. lesk cases, at mostsets
of K items must be created to convert the tree to XOR groups,iggld(Kn). Our
experiments selected tieitems with the best value to resource consumption ratio.

With this strategy, the sets must be sorted, yielding®{nlogn).

» The third step in the algorithm requires flattening at mosfroups using filtered

Cartesian products, which yields a total time oK@ S).

* The fourth step in the algorithm requires producing filte@artesian products from
at mostn sets withw retries. Each configuration can be checked inl@gn), where
c is the maximum number of cross-tree constraints in the featwodel. The total
time to eliminate any cross-tree constraints between s&$nvKnx Sk clogn). The
final elimination of invalid configurations within individli sets requires @tlogn),

yielding a total time of OKnx* S« clogn—+ cnlogn)

* The solving step incurs the algorithmic complexity of th&IKIP approximation al-

gorithm chosen. With M-HEU, the algorithmic complexity i¢rf@?(l — 1)?), where
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m is the number of resource typesis the number of sets, ands maximum items

per set.

* The final step, extracting the feature selection, can bipeed in Of) time.

This analysis yields a total general algorithmic complexit O(n+ (Knx S) + (Kn
S) + (WKnx S) + MMKP + n) = O(wKnx* Sx clogn+ cnlogn+ MMKP). If there are no
cross-tree constraints, the complexity is reduced &S+ MMKP). Both algorithmic
complexities are polynomial, which means that Filteredt€aan Flattening scales signif-
icantly better than exponential exact algorithms. Theltesiow that this translates into a

significant decrease in running time compared to an exaotithg.

Technique Benefits

Beyond the benefit of providing polynomial-time approximoatfor optimal feature
selection problems with resource constraints, FilteredeSaan Flattening exhibits the fol-
lowing other desirable properties:

One-time Conversion to MMKP: The Filtered Cartesian Flattening flattening process
to create an MMKP problem need only be performed once peufeanhodel. As long as
the structure and resource consumption characteristitsedieatures do not change, the
same MMKP problem representation can be used even whendberoe allocations (we
merely update the knapsack size) or desired system prapergximize change.

Flexible Filtering and Solving Strategies: Due to the speed of the Filtered Cartesian
Flattening process, a number of different filtering stregegan be used and each resultant
MMKP problem stored and used for optimization. In fact, toguce the most optimal
results, a number of MMKP problems can be produced from ea&tufe model and then
each MMKP problem solved with several different MMKP tedjues, and the most opti-

mal solution produced can be used. Since there are multipldgm representations and
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multiple algorithms used to solve the problem, there is ahmower probability that all of
the representation/algorithm combinations will produsekation with low optimality.

Flattening Parallelization: Another desirable property of Filtered Cartesian Flatten-
ing is that it is amenable to parallelization during the ghtleat populates the MMKP sets
with partial configurations. After each subtree is identifithe Filtered Cartesian Flatten-
ing flattening process for each subtree can be run in pail@ number of independent
processors or processor cores.

Exact MMKP Algorithms Compatiblity: Finally, although we have focused on ap-
proximation algorithms for the MMKP phase of Filtered Caréa Flattening, exact meth-
ods, such as integer programming, can be used to solve the ®pigblem. In this hybrid
scenario, Filtered Cartesian Flattening would produceppnaximate representation of the
architectural feature model solution space using an MMKdblem and the exact optimal
MMKP answer would be obtained. Filtered Cartesian Flatigrmillows the use of a wide
variety of both Cartesian flattening strategies and MMKRatgms to tailor solving time

and optimality.

Results

This section presents empirical results from experimertparformed to evaluate the
types of architectural feature selection problem instammeewhich Filtered Cartesian Flat-
tening performs well and those for which it does not. Whemgisin approximation algo-
rithm, such as Filtered Cartesian Flattening, that doegynatantee an optimal answer a
key question is how close the algorithm can get to the optanailver. Another important
consideration is what problem instance characteristiad te more/less optimal answers
from the algorithm. For example, if the algorithm attemptdérive an architectural variant
for the face recognition system, will a more optimal varisa@tfound when there is a larger

or smaller budget constraint?
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We performed the following two sets of experiments to testaapabilities of Filtered

Cartesian Flattening:

» Effects of MMKP problem characteristics. Since Filtered Cartesian Flattening
uses an MMKP approximation algorithm as its final solvingstee first performed
experiments to determine which MMKP problem charactesdtiad the most signif-

icant impact on the MMKP approximation algorithm’s solutioptimality.

 Effects of feature selection problem characteristicsOur next set of experiments
were designed to test which problem characteristics mdisieimced the entire Fil-
tered Cartesian Flattening technique’s solution optitpalihese experiments also
included a large experiment that derived Filtered CarnteBlattening’s average and

worst optimality on a set of 500,000 feature models.

All experiments used 8 dual processor 2.4ghz Intel Xenoresamith 2 GB RAM
on Vanderbilt University’s ISISLab clustew§wv. i si sl ab. vander bi | t. edu). Each
node was loaded with Fedora Core 4. A total of two processes [f@r processor) were
launched on each machine enabling us to generate and solyatifréal feature selection

with resource constraints problems in parallel.

Testing MMKP Problem Characteristics

To determine the extent to which the various attributes ofki\problems would affect
the ability of the solver to generate a highly optimal sauatiwe generated several MMKP
problems with a single parameter adjusted. These probleans then solved using the

MMKP approximation algorithm. Solutions were rated by thggrcentage of optimality

PApproximationAnsw
OptimalAnswer

vs. the optimal solution¥MK 9 (we used the problem generation tech-
nique devised by [11] to generate random MMKP problem instarfor which we knew
the optimum answer). Our test problems included a mix of j@mbk with a correlation

between value and total resource consumption and thoseuwviéimy correlation.
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MMKP problem instances can vary across a number of major. &eblem instances
can have larger and smaller numbers of sets and items pefmBetrange of values and
resource consumption characteristics across the itemsotlaw different distributions.
We examined each of these MMKP problem attributes to deternmvhich ones lead to the
generation of solutions with a higher degree of optimaliigch experiment was executed
thirty times and averaged to normalize the data.

First, we manipulated the total number of sets in an MMKP faab The Filtered
Cartesian Flattening algorithm produces one set for eatgpiendent subtree in the feature
model. This experiment allowed us to test how feature moalighsa large number of inde-
pendent subtrees and hence a large number of MMKP sets witedttl olution optimality.
Figure 1X.10 shows that as the total number of sets was isecttom 10 to 100, the solu-

tion optimality only varied a small amount, staying well ab®5% optimal. These results
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Figure 1X.10: Total Number of Sets

are nearly identical to [11], where the M-HEU MMKP approxima algorithm, which
was the basis of our MMKP solver, produced solutions wellvatf8% optimal regardless
of the number of sets or items per set.

We next varied the number of items in each MMKP set. FigurdXshows that an
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increase from 500 to 10,000 items per set has almost no affecptimality of the solu-

tion. Regardless of the number of items per set, the genksatation was well over 90%
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Figure IX.11: Items per Set

optimal. Based on this data, we conclude that the numbertetsel total items per set do
not significantly impact the optimality of the solution praxed by the MMKP solver. This
result implies that architectural feature models for vargé industrial systems will not be
problematic for the MMKP phase of Filtered Cartesian Flatig.

While the items per set and number of sets have little affecthe optimality of a
solution, the number of resources, and the amount of ressw@nsumed by items were
found to negatively impact the ability of the solver to findadugion with high optimality.
Figure IX.12 shows the affect of raising the minimum amourtesources consumed by
an item. The optimality drops drastically as the minimum antmf resources consumed
by an item becomes a larger percentage of the total avaitabtirces. For a solution to
maintain a forecasted optimality of over 80% percent, theimiim amount of resources
consumed by an item must be less than 10% percent of the tatalra of available re-
sources. Increasing the minimum amount of resources cagtsloy an item causes more

items to consume a relatively large share of the total avisleesources.
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The results from the experiment that gradually increasedhtmimum item resource
consumption led us to hypothesize that the MMKP solver witiduce less optimal solu-
tions when the average item consumes a very large perceotalge available resources.
We performed another experiment where we (1) calculatedauree tightness metric that
measured the average resource consumption of the item2)pestimated how many items
with the average resource consumption could fit into thel@via resource allocationg.,
how many of the average sized items could be expected toditletknapsack. Our tight-

ness metric was calculated as:

R+ R

VELor(i,002+...r(i,m?2)/n

wheremis the total number of resource typ&%,is the maximum available amount of the
ith resource, and(i, j) is the amount of thgy, resource consumed by thg item.

The results from the resource tightness experiment are rshowigure IX.13. The
x-axis shows the estimated number of average sized iterhath@&xpected to fit into the
knapsack for a feature model with 50 sets. As shown in thedigilnere is a dramatic
dropoff in optimality when less than 1.65 average sized stean fit in the knapsack. The
exact value for the tightness metric at which the dropofioswaries based on the number

of MMKP sets. With 100 sets, the value wa4.83.
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Figure 1X.13: Effect of Resource Constraint Tightness on MM KP Optimality

The fewer average items that can fit into the knapsack, the ilaly the solver is
to make a mistake that will fill up the knapsack and widely ntiesoptimal value. This
result implies that the Filtered Cartesian Flattening atgmic approach works well when
making are a relatively large number of finer-grained feaglection decisions. For ar-
chitectures with a few very coarse-grained decisions, aldper or exact technique [21] is
more likely to pick a more appropriate architectural vatrian

Resource tightness also played a role in how the total nuoflsesource types affected
solution optimality. Figure IX.14 shows how the optimaldf/ solving problems with 50
sets was affected as the total number of resource typesairfiom 2 to 95. For this
experiment, the tightness metric was kept above the 1.G%offrthreshold. As can be seen,
the total number of resources had a relatively slightimpaapproximately 5% on solution
optimality. The results in Figure IX.15, however, are qulierent. In the experiment that
produced Figure 1X.15, the tightness metric was kept at atively constant 1.55..e.,
below the dropoff value. As shown by the results, the totahber of resource types had a

significant impact on solution optimality.
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Comparing Filtered Cartesian Flattening to CSP-based Featre Selection

Our initial tests with Filtered Cartesian Flattening comgghits performance and op-
timality on small-scale feature selection problems to tlengraint Satisfaction Prob-
lem (CSP) based feature selection technique described2in [Zhis technique uses a
general-purpose constraint solver to derive a featurectsete For these small scale-
problems, we tracked the time required for Filtered Caatestlattening to find a so-
lution vs. the CSP-based technique based on open-souraeCheco constraint solver
(choco- sol ver. net). For each solution, we compared Filtered Cartesian Fletgs
answer to the guaranteed optimal answer generated by thd&¥d technique.

Figure 1X.16 shows the time required for Filtered Cartedtéattening and the CSP-
based technique to find architectural variants in featurdetsowith varying numbers of

XOR groups. The x-axis shows the number of XOR groups in thdetsoand the y-axis

‘\
Solving 12000 |
Time
(I'T'IS) 100000 |

6
8

s
Total XOR Groups

10

13

Figure IX.16: Comparison of Filtered Cartesian Flattening and CSP-based Feature Se-
lection Solving Times

displays the time required to find an architectural varidime total features in each model
was~3-10 times the number of XOR groups (the maximum size wa40 features). Each
feature-model had a maximum of 10% of the features involveal cross-tree constraint,

¢ < 0.1n. As shown in the figure, the CSP-based technique initiatiyires approximately
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30ms to find a solution. The CSP technique’s time, howeveackfugrows at an expo-
nential rate to over 198,000ms. In contrast, Filtered GateFlattening required less than
1ms for every feature model.

Even though Filtered Cartesian Flattening ran substiyntedter than the CSP-based
technique, it still provided a high level of optimality. O, the solutions generated by
Filtered Cartesian Flattening were 92% optimal comparetD@o optimal for the CSP-
based technique. The Filtered Cartesian Flattening solutiith the lowest optimality
was 80% optimal. Although Filtered Cartesian Flatteningdoot provide 100% optimal
results, it can be used to derive good architectural vagifort architectures that are too

large to solve with an exact technique.

Filtered Cartesian Flattening Test Problem Generation

Due to the exponential time curve required to solve a feagalection problem using
an exact technique, it was not possible to solve large-gmalelems using both Filtered
Cartesian Flattening and an exact technique. This sectesepts the problem generation
technique we used to create large-scale feature selectalems for which we knew
the optimal answer. This problem generation approach alliows to generate extremely
large problems with a known optimal solution that were nasfble to solve with an exact
technique.

Filtered Cartesian Flattening problem instances varydasehe structural properties
of the feature model tree, such as the percentage of XOR grougx depth, and maximum
number of children per feature. The MMKP properties testadh as the resource tightness
of the problem, can also vary based on how features consusnerees. We tested the
effect of these problem characteristics by both genergtinglem instances that exhibited
a specific characteristic and by performing post-mortentyaisaon the results of solving

over 500,000 random Filtered Cartesian Flattening probfestances. The post-mortem
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analysis determined the problem characteristics assalcveth the problem instances that
were solved with the worst optimality.

To create test data for the Filtered Cartesian Flatteniolgnigue, we generated ran-
dom feature models and then created random feature selqmtidblems with resource
constraints from the feature models. For example, we firsegged a feature model and
then assign each feature an amount of RAM, CPU, etc. thahgwoed. Each feature was
also associated with a value. We then randomly generatedes s available resource
values and ask Filtered Cartesian Flattening to deriveghtife selection that maximized
the sum of the value attributes while not exceeding the rantglgenerated available re-
sources. Finally, we compared the Filtered Cartesiandfiatty answer to the optimum
answer. No models included any cross-tree constraintsisedaiere are no known meth-
ods for generating large feature selection problems tl@dtidie cross-tree constraints and
have a known optimal solution.

In an effort to make the feature models as representativeadfarchitectural feature
models as possible, we created models with a number of spele#racteristics. For exam-
ple, developers with significant object-oriented develephexperience often create mod-
els where commonality is factored into parent featuresptidal to how an inheritance
hierarchy is built. Figure 1X.2 shows a hierarchy used teegatize the various facial
recognition algorithms. SPL architectural analysis teghes, such aScope, Commonal-
ity, Variability Analysig41] are used to derive these hierarchies.

Developers desires to provide a well structured hieraras/ttvo important ramifica-
tions for the feature model. First, feature models typjchlive a relatively limited number
of child features for each feature. Hierarchies are usedddema large number of child
features as subtrees rather than simply a long list of atemes. Second, the actual fea-
tures that consume resources and provide value are moasttbiteleaves of the feature
model. In the categorization of facial recognition algamis shown in Figure 1X.2, the

actual resource consumption and accuracy of the algorshmoti specifically known until
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reaching one of the leaves, such as Euclidean or MahCosinmirfor these properties of
developer-created feature models, we limited the numbehitd features of a feature to
10 and heavily favored the association of resource consampnd value with the leaves
of the feature model.

We used a feature model generation infrastructure that weloj@ed previously [158].
A key challenge was determining a way to randomly assignuregoconsumption values
and values to features such that we knew the exact optimuue Vat the ideal feature
selection. Moreover, we needed to ensure that the randognigrgted problems would not
exhibit characteristics that would make them easily solwedpecific MMKP algorithms.
For example, if every feature in the optimum feature sedecailso had the highest value in
its selection set, the problem could be solved easily witready algorithm.

To assign resource consumption values to features andajerrandom available re-
source allocations, we used a modified version of the algorin [11] to ensure that the
highest valued features were no more likely part of the ogltgnlution than any other fea-
ture. The steps to generate a feature selection problenkwiitifierent resource types and

n features were as follows:

1. Generate &-dimensional vector,,, containing random available allocations for the

k resource types,
2. Randomly generate a slack valge
3. Randomly generate an optimum valug;,

4. For each top-level XOR group, in each independent sub-tree, randomly choose a

feature,fyj, to represent the optimal configuration and assign it valplgj = Vopt,

5. For each optimal feature, assign Kk dimensional resource consumption vectgy,
such that the sum of the components of the optimal resouncguoaption vectors

exactly equal the available resource allocation veglog; = ra,
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6. For each top-level XOR group membgrthat is not the optimal featur§,j in its

group either:

+ assign the feature valug, wherey; < (opfy; —Vvs) and randomly assign it a

resource consumption vector

* assign the feature valug whereoply; < Vi < oplyj + Vs, and randomly assign
fi a resource consumption vector such that each componergategthan the
corresponding component myj. After each XOR group’s features are com-
pletely initialized, setvs = maxV;) — oplyj, wheremaxv;) is the the highest

value of any item in the XOR group.

7. For each feature in a top-level XOR group, reset the availeesources vector to
the feature’s resource consumption vector, reset the aptimalue to the feature’s
value, and recursively apply the algorithm, treating tregdee as the root of a new

sub-tree

Filtered Cartesian Flattening Optimality

After determining the key MMKP problem characteristicsttimluence the optimal-
ity of the MMKP phase of Filtered Cartesian Flattening, we gaseries of experiments
to evaluate the parameters that affect the feature mode&drfiag phase. Figure 1X.17
presents results illustrating how the percentage of featunvolved in XOR groups within
the feature model affects solution optimality. As shownhis figure, as the percentage of
features in XOR groups increases from 10% to 90% of featthiess is a negligible impact
on optimality of the solutions produced by Filtered Cadedflattening.

We tested a wide range of other Filtered Cartesian Flattepioperties, such as the

maximum depth and the maximum branching factor of the featnodel tree, and saw
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no impact on solution optimality. Other experiments inéddests that assigned and dis-
tributed value and resource consumption to sub-trees meledion to the size of the sub-

tree. We also experimented with feature models that evestyilalited value and resource
consumption across all features as opposed to clustersagiree consumption and value
towards the leaves. The effect of different value rangesalsstested.

In each case, we observed no affect on solution optimalitye fesult graphs from
these experiments have been omitted for brevity. Our resotightness metric had the
most significant impact on Filtered Cartesian Flatteningtsmn optimality, just as it did
with MMKP approximation optimality.

Our largest experiment checked the range of solution opitie&produced by using
Filtered Cartesian Flattening to solve 450,000 optimaiuieaselection problems with re-
source constraints. The total number of features was se0@1the XOR Group per-
centage to 50%K = 2500, and the resource tightness metric was greater thaor2loe
majority of the problem instances (well above the dropofhpo As shown in Figure 1X.18,
the results are presented with a histogram showing the nuafloblem instances that
were solved with a given optimality. The overall averagerptity across all instances

was 95.54%. The lowest solution optimality observed was.72%
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Figure 1X.19 presents data from solving approximately 8,88ature selection prob-

lems with 10,000 features. Again, we used a filtering scheitfeKv= 2500 that chose the
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Figure IX.19: A Histogram Showing the Number of Problems Sol ved with a Given Op-
timality from 8,000 Feature Models with 10,000 features
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K items with the best ratio of value to weight. The averagenoglity across all problem
instances was approximately 92.56%.

Across all feature model sizes (both 1,000 and 10,000 fes}u®0% of the problem
instances were solved with an optimality greater th&@1%. Moreover, 99% were solved
with an optimality greater than80%. These result cutoffs only hold when the tightness
metric is above the drop-off value.

An interesting result can be seen by comparing Figures I4ri®1X.18. As the num-
ber of features increases, the range of solution optirealiiecomes much more tightly
clustered around the average solution optimality. Akbag&ults [11] showed an increase
in M-HEU solution optimality as the number of sets and iteras et increased. Our re-
sults showed a slight decrease of 3% in average solutiomapty for Filtered Cartesian
Flattening as the total features increased from 1,000 t@0D0, We expect that the slight
decrease is a result of more potentially good partial corditjons being filtered out during

the Filtered Cartesian Flattening Cartesian flatteninggha

Summary and Analysis of Experiment Results

From the data we obtained from our Filtered Cartesian Flatteexperiments, we con-
firmed that the key predictor of MMKP solution optimality—si@urce tightness—was also
applicable to Filtered Cartesian Flattening problems. &bexperiments we ran, those
problems that were solved with less than 70% optimality hae\weerage resource tightness
metric of 0.94, which is well below the dropoff point of rougi.65 that we observed for
50 sets. Moreover, the max tightness value for these prableas 1.67, which is right at
the edge of the dropoff.

Although a low value for the resource tightness metric iaths that a low optimality is
possible, it does not guarantee it. Some problems withriggd metrics below the drop-off
were solved with 100 or 90%-+ optimality. Once the MMKP prableepresentation is pro-

duced, calculating the tightness metric is am)@peration. Due to the ease of calculating
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the resource tightness metric, developers should alwagyi tesrule out problem instances

were Filtered Cartesian Flattening is unlikely to produeé&@-90%-+ optimal solution.
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CHAPTER X

CONFIGURING HARDWARE AND SOFTWARE IN TANDEM

Introduction

Current trends and challenges. Increasing levels of programming abstraction, mid-
dleware, and other software advancements have expandestake and complexity of
software systems that we can develop. At the same time, tl@hang scale and com-
plexity have created a problem where systems are becomilaggmthat their design and
development can no longer be optimized manually. Currggetacale systems can con-
tain an exponential number of potential design configunstiand vast numbers of con-
straints ranging from security to performance requiremerystems of this scale and
complexity—coupled with the increasing importance of fionetional characteristics [36]
(such as end-to-end response time)—are making softwargndpsocesses increasingly
expensive [110].

Search-based software engineering [68, 69] is an emergsegptine that aims to de-
crease the cost of optimizing system design by using alguord search techniques, such as
genetic algorithms or simulated annealing, to automatdéiseyn search. In this paradigm,
rather than performing the search manually, designeisivety produce a design by using
a search technique to find designs that optimize a speciftersyguality while adhering
to design constraints. Each time a new design is produceiyrters can use the knowl-
edge they have gleaned from the new design solution to crafé qprecise constraints to
guide the next design search. Search-based software ernigméas been applied to the
design of a number of software engineering aspects, rariginggenerating test data [97]
to project management and staffing [13, 16] to software sgd3i7].

A common theme in domains where search-based softwareemgig is applied is

that the design solution space is so large and tightly caim&td that the time required to
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find an optimal solution grows at an exponential rate withgrablem size. These vast and
constrained solutions spaces make it hard for designermsrigedyood solutions manually.
This chapter examines a common problem from the domain tfilalited real-time and
embedded (DRE) systems that exhibits these complexityactexistics. The problem we
focus on is the need to derive a design that maximizes a speggtem capability subject
to constraints on cost and the production and consumptioesoiurces, such as RAM, by
the hardware and software, respectively.

For example, when designing a satellite to earth’s magpbtae [45], the goal may be
to maximize the accuracy of the sensor data processingithig@ on the satellite without
exceeding the development budget and hardware resoudessly] to maximize the capa-
bilities of the system for a given cost, system software aardware should be designed in
tandem to produce a design with a precise fit between hardvegabilities and software
resource demands. The more precise the fit, the less budggtaaded on excess hardware
resource capacity.

A key problem in these design scenarios is that they creabenplex cost-constrained
producer/consumer problem involving the software andward design. The hardware
design determines the resources, such as processing pagvereanory, that are available
to the software. Likewise, the hardware consumes a porfitimegoroject budget and thus
reduces resources remaining for the software (assumingaliixdget). The software also
consumes a portion of the budget and the resources prodydibe hardware configura-
tion. The perceived value of system comes from the attrébatehe software desige, g,
image processing accuracy in the satellite example. Thieat¢ dependencies between the
hardware and software’s production and consumption ofuregs, cost, and value makes
the design solution space so large and complex that findingpémal and valid design
configuration is hard.

Solution approach— Automated Solution Space Exploration.This chapter presents

217



a heuristic search-based software engineering techrealled theAllocation-baSed Con-
figuration Exploration Techniqu@ASCENT), for solving cost-constrained hardware/sofevar
producer/consumer co-design problems. ASCENT model®tbheslesign problems as
two separate knapsack problems [75]. Since knapsack pnsbéee NP-Hard [42], AS-
CENT uses heuristics to reduce the solution space size eradively search for near op-
timal designs by adjusting the budget allocations to sa#veand hardware. In addition to
outputting the best design found, ASCENT also generatetasséarepresenting the trends
it discovered in the solution space.

A key attribute of the ASCENT technique is that, in the praoefssolving, it generates
a large number of optimal design configurations that presevitle view of the trends and
patterns in a system’s design solution space. This chaptsvshow this wide view of
trends in the solution space can be used to iteratively Befarcnear optimal co-design
solutions. Moreover, our empirical results show that ASTHi¥oduces co-design config-
urations that average 95%-+ optimal for problems with moaa th points of variability in

each of the hardware and software design spaces.

Motivating Example

This section presents a satellite design example to metthatneed to expand search-
based software engineering techniques to encompassaustained hardware/software
producer/consumer co-design problems. Designing datelBuch as the satellite for NASA's
Magnetospheric Multiscale (MMS) mission [45], requiresegally balancing hardware/-
software design subject to tight budgets. Figure X.1 showatallite with a number of
possible variations in software and hardware design. Famgie, the software design
has a point of variability where a designer can select theluéen of the images that are
processed. Processing higher resolution images imprbeeadcuracy but requires more
RAM and CPU cycles.

Another point of variability in the software design is theage processing algorithms
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Image Processing Algorithm Options Image Resolution Options

Algorithm 1, Consumes Ram 80, CPU 400 High, Consumes Ram 20, CPU 40
Algorithm 2, Consumes Ram 10, CPU 700 Medium, Consumes Ram 10, CPU 4
Algorithm 3, Consumes Ram 50, CPU 450 Low, Consumes Ram 5, CPU 1
Algorithm 4, Consumes Ram 120, CPU 50
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Figure X.1: Software/Hardware Design Variability in a Sate  llite

that can be used to identify characteristics of the imagetcad by the satellite’s cameras.
The algorithms each provide a distinct level of accuracyilevilso consuming different
guantities of RAM and CPU cycles. The underlying hardware aaumber of points of
variability that can be used to increase or decrease the RAMC®U power to support the
resource demands of different image processing configunatEach configuration option,
such as the chosen algorithm or RAM value, has a cost assdaidth it that subtracts
from the overall budget. A key question design question ler gatellite is:what set of
hardware and software choices will fit a given budget and mé&e the image processing
accuracy

Many similar design problems involving the allocation ofoerces subject to a series
of design constraints have been modeled/agtidimensional Multiple-Choice Knapsack
Problems(MMKPSs) [12, 74, 76]. A standard knapsack problem [75] is wkedi by a set of
items with varying sizes and values. The goal is to find th@sikems that fits into a fixed
sized knapsack and that simultaneously maximizes the wdltie items in the knapsack.
An MMKP problem is a variation on a standard knapsack probildmre the items are
divided into sets and at most one item from each set may begliato the knapsack.

Figure X.2 shows an example MMKP problem where two sets aoittans of different

sizes and values. At most one of the items A,B, and C can benpattihe knapsack.
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Values: 5 9 6 2 11 8
Sizes: 2X2X5  1.5X1.5X10  1X3X7 1.5X1.5X5  1.5X1.5X5  1.5X4X7

Set 1

Knapsack

Available Space: 5X20X5

Figure X.2: An Example MMKP Problem

Likewies, only one of the items D, E, and F can be put into theplsack. The goal is to
find the combination of two items, where one item is chosemfeach set, that fits into the
knapsack and maximizes the overall value. A number of resorglated problems have
been modeled as MMKP problems where the sets are the poivasiability in the design,
the items are the options for each point of variability, aimel knapsack/item sizes are the
resources consumed by different design options [11, 386/642].

The software and hardware design problems are hard to salxedually. Each design
problem consists of a number of design variability pointg tan be implemented by ex-
actly one design option, such as a specific image proceskjogtam. Each design option
has an associated resource consumption, such as cost,laa@ssociated with it. More-
over, the design options cannot be arbitrarily chosen lscthere is a limited amount of
each resource available to consume.

It is apparent that the description of the software desigiblem directly parallels the
definition of an MMKP problem. An MMKP set can be created forclepoint of variability
(e.g., Image Resolution and Algorithm). Each set can then Ipeilated with the options
for its corresponding point of variabilitye(g., High, Medium, Low for Image Resolution).
The items each have a size (cost) associated with them arelitha limited size knap-
sack (budget) that the items can fit into. Clearly, just delgahe optimal set of software

features subject to a maximum budget is an instance of thel&B{42] MMKP problem.

220



For the overall satellite design problem, we must contertd maot one but two individ-
ual knapsack problems. One problem models the softwargmlesid the second problem
models the hardware design. We can model the satellite sigrdg@roblem using two
MMKP problems. The first of the two MMKP problems for the shteldesign is its soft-
ware MMKP problem. The hardware design options are modelea separate MMKP
problem with each set containing the potential hardwareopt An example mapping of

the software and hardware design problems to MMKP problembawn in Figure X.3.

Software Knapsack

Software MMKP Set 1 Software MMKP Set 2
Image Processing Algorithm Options Image Resolution Options

Algorithm 1, Consumes Ram 80, CPU 400 High, Consumes Ram 20, CPU 40
Algorithm 2, Consumes Ram 10, CPU 700 Medium, Consumes Ram 10, CPU 4
Algorithm 3, Consumes Ram 50, CPU 450 Low, Consumes Ram 5, CPU 1
Algorithm 4, Consumes Ram 120, CPU 50, °

S
‘ 4
CPU Options Memory Options
CPU 1800 Ram 1024

Ram 2048
CPU 2000
CPU 2200 parice

Hardware MMKP Set 1 Hardware MMKP Set 2

Provide Sufficient Resources

‘ for Software Solution\l/

Hardware Solution Must

Hardware Knapsack

Figure X.3: Modeling the Satellite Design as Two MMKP Proble  ms

We call this combined two problem MMKP modeMIMKP co-design problemWith
this MMKP co-design model of the satellite, a design is reachy choosing one item
from each setgg., an Image Resolution, Algorithm, RAM value, and CPU)dach prob-
lem. The correctness of the design can be validated by ewnstirat exactly one item is
chosen from each set and that the items fit into their resmesbftware and hardware
knapsacks. This definition, however, is still not sufficiemtmodel the cost-constrained

hardware/software producer/consumer co-design prohiere sve have not accounted for
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the constraint on the total size of the two knapsacks or thdymtion and consumption of
resources by hardware and software.

A correct solution must also uphold the constraint thattdas chosen for the solution
to the software MMKP problem do not consume more resourcet) as RAM, than are
produced by the items selected for the solution to the hael&KP problem. Moreover,
the cost of the entire selection of items must be less thatotakedevelopment budget. We
know that solving the individual MMKP problems for the opahhardware and software
design is NP-Hard but we must also determine how hard solieagombined co-design
problem is.

In this simple satellite example, there are 192 possibklgatconfigurations to con-
sider. For real industrial scale examples, there are afgigntly larger number of possibil-
ities. For example, a system with design choices that candukeled using 64 MMKP sets,
each with 2 items, will have® possible configurations. For systems of this scale, man-
ual solving methods are clearly not feasible, which motiesneed for a search-based

software engineering technique.

MMKP Co-design Complexity

Below, we show that MMKP co-design problems are NP-Hard anmeed of a search-
based software engineering technigque. We are not awarey@&moroximation techniques
for solving MMKP co-design problems in polynomial time. $Hack of approximation
algorithms—coupled with the poor scalability of exact sodytechniqgues—hinders DRE
system designers’s abilities to optimize software and\ward in tandem.

To show that MMKP co-design problems are NP-Hard, we mustllzuformal defini-

tion of them. We can define an MMKP co-design probl€oP, as an 8-tuple:

CoP=< Pr,C0,S,S,S R Uc(xk),Up(x,k) >

where:
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* Pris the producer MMKP problene(g., the hardware choices).
* Cois the consumer MMKP problene.q., the software choices).

» S is the size of the producd?y, knapsack.

S is the size of the consuméEp, knapsack.

* Ris the set of resource types.§., RAM, CPU, etc.) that can be produced and

consumed byr andCo, respectively.

Sis the total allowed combined size of the two knapsack$ioandCo (e.g., total

budget).

» Uc(x,k) is a function which calculates the amount of the resolrceR consumed

by an itemx C Co (e.g., RAM consumed).

» Up(x, j) is a function which calculates the amount of the the resdkicc®& produced

by an itemx C Pr (e.g., RAM provided).

Let a solution to the MMKP co-design problem be defined asupki< p,c >, where
p C Pr is the set of items chosen from the producer MMKP problemaadCo s the set
of items chosen from the consumer MMKP problem. A visuaiorabf a solution tuple is
shown in Figure X.4. We define the value of the solution as thme ef the values of the

elements in the consumer solution:

i
V= %valueof(cj)

wherej is the total number of items iy ¢; is the ji, item inc, andvalueof() is a function
that returns the value of an item in the consumer soution.
We require thap andc are valid solutions t&r andCo, respectively. Fop andc to be

valid, exactly one item from each setiit andCo must have been chosen. Moreover, the
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Figure X.4: Structure of an MMKP Co-design Problem

items must fit into the knapsacks fBr andCo. 1This constraint corresponds to Rule (2)
in Figure X.4 that each solution must fit into the budget fer@spective knapsack.

The MMKP co-design problem adds two additional constrantthe solutiong andc.
First, we require that the items axdo not consume more of any resource than is produced
by the items inp: .

(vk R),iUc(cj,k) < '%u (P,

where | is the total number of items iq, ¢; is the ji, iteminc, | is the total number of
items inp, andp;j is the jiy item in p. Visually, this means that the consumer solution can
fit into the producer solution’s resources as shown in Rulé(Eigure X.4.

The second constraint @andp is an interesting twist on traditional MMKP problems.
For a MMKP co-design problem, we do not know the exact si@g$p, of each knapsack.
Part of the problem is determining the sizes as well as timesiier each knapsack. Since
we are bound by a total overall budget, we must ensure thatizlee of the knapsacks do
not exceed this budget:

S+$<S

This constraint on the overall budget corresponds to Rylen(Bigure X.4.

To show that solving for an exact answer to the MMKP problemifsHard, we will

LA more formal definition of MMKP solution correctness is dahle from [12].
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show that we can reduce any instance of the NP-comgtetpsack decision probleto an
instance of the MMKP co-design problem. The knapsack datigioblem asks if there is
a combination of items with value at ledsthat can fit into the knapsack without exceeding
a cost constraint.

A knapsack problem can easily be converted to a MMKP problendescribed by
Akbar et al. [12]. For each item, a set is created contairtiegtem and the 0 item. The 0
item has no value and does not take up any space. Using thisaagbp a knapsack decision
problem,Kqp,, can be converted to a MMKP decision problévh,,, where we ask if there
is a selection of items from the sets that has value at \éast

To reduce the decision problem to an MMKP co-design problem,can use the
MMKP decision problem as the consumer knaps&ot £ Mqy), set the producer knap-
sack to an MMKP problem with a single item with zero weight asatle (0), and let our
set of produced and consumed resouréede emptyR = 0. Next, we can let the total
knapsack size budget be the size of the decision problenajsdatkS= sizeo {Mqy).

The co-design solution, which is the maximization of thestoner knapsack solution
value, will also be the optimal answer for the decision peablMq,. We have thus setup
the co-design problem so that it is solving for a maximal st My, without any addi-
tional producer/consumer constraints or knapsack sizsiderations. Since any instance
of the NP-complete knapsack decision problem can be redieccad MMKP co-design

problem, the MMKP co-design problem must be NP-Hard.

Challenges of MMKP Co-design Problems
This section describes two key challenges to building amagdmation algorithm to
solve MMKP co-design problems. The first challenge is thaemheining how to set the
budget allocations of the software and hardware is notgdtteirward since it involves
figuring out the precise size of the software and hardwar@daeks where the hardware

knapsack produces sufficient resources to support the apsioftware knapsack solution
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(which itself is unknown). The second challenge is that thkttcoupling between pro-
ducer and consumer MMKP problems makes them hard to sol&duodlly, thus moti-

vating the need for a heuristic to de-couple them.

Challenge 1: Undefined Producer/Consumer Knapsack Sizes

One challenge of the MMKP co-design problem is that the iidial knapsack size
budget for each of the MMKP problems is not predetermingd, we do not know how
much of the budget should be allocated to software versudwaae, as shown in Fig-

ure X.5. The only constraint is that the sum of the budgetstiibedess than or equal to

Consumer
Budget
(Software)

Producer
Budget
(Hardware)

Figure X.5: Undefined Knapsack Sizes

the an overall total budget. Every pair of budget values frdivare and software results
in two new unique MMKP problems. Even minor transfers of taldrom one problem
budget to the other can therefore completely alter the isolutf the problem, resulting in
a new maximum value. Existing MMKP techniques assume tleeiact desired size of
the knapsack is known.

There is currently no information to aid designers in detamg the allocation of the
budgets. As aresult, many designers may choose the ablacatitrarily without realizing

the profound impact it may have. For example, a budget dilmcaf 75% software and
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25% software may result in a solution that, while valid, pdes far less value and costs
considerably more than a solution with a budget allocatiord8o and 26% percent.

There are, however, trends in the solution optimality tteat be determined by solv-
ing instances of the problem with unique sequential divisiof the total budget. These
trends can give the designer an idea of what budget divisidlhsesult in favorable sys-
tem designs. This data can also show which budget allocatmavoid. A key challenge
is figuring out how to shed light on these nuances in the soligpace and present them to

designers.

Challenge 2: Tight-coupling Between the Producer/Consunrte

Another key issue to contend with is how to rank the solutiorthe producer MMKP
problem. Per the definition of an MMKP co-design problem, pheducer solution does
not directly impart any value to the overall solution. Thegicer's benefit to a solution
is its ability to make a good consumer solution viable. MMKf/srs must have a way of
ranking solutions and items. The problem, however, is ti@atalue of a producer solution
or item cannot be calculated in isolation.

A consumer solution must already exist to calculate theevalua particular producer
solution. For example, whether or not 1,024 kilobytes of ragmare beneficial to the
overall solution can only be ascertained by seeing if 1,0@blttes of memory are needed
by the consumer solution. If the consumer solution does eetiithis much memory, then
the memory produced by the item is not helpful. If the consuso&ution is RAM starved,
the item is desperately needed. A visualization of the ok shown in Figure X.6.

The inability to rank producer solutions in isolation of somer solutions is problem-
atic because it creates a chicken and the egg problem. Aa@tisumer solution cannot be
chosen if we do not know what resources are available fordbtesume. At the same time,
we cannot rank the value of producer solutions without a @omes solution as a context.

This tight-coupling between the producer/consumer is daging problem.
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Figure X.6: Producer/Consumer MMKP Tight-coupling

The ASCENT Algorithm

This section presents our polynomial-time approximatigo@thm, called thellocation-
baSed Configuration ExploratioN Techniq(®SCENT), for solving MMKP co-design
problems. The pseudo-code for the ASCENT algorithm is shiowfigure X.7 and ex-

plained throughout this section.

Producer/Consumer Knapsack Sizing

The first issue to contend with when solving an MMKP co-degigrblem is Challenge
2, which involves determining how to allocate sizes to thivildual knapsacks. ASCENT
addresses this problem by dividing the overall knapsaeklsiziget into increments of size
D. The size increment is a parameter provided by the user. ABGEen iteratively in-
creases the consumer’s budget allocation (knapsack sa®)3% of the total budget to
100% of the total budget in steps of si@e The incremental expansion of the producer’s
budget can be seen in tiMi | e loop in code listing (1) of Figure X.7 and the incremen-
tation of Consumner Budget in code listing (8).

For example, if there is a total size budget of 100 and incrésnef size 10, ASCENT
firsts assign 0 to the consumer and 100 to the producer, 10@&r&80%nd 20, and so forth
until 100% of the budget is assigned to the consumer. Theatln process is shown

in Figure X.8. ASCENT includes both the 0%,100% and 100%,@fgket allocations to
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MVKPPr obl em Consumer MVKP
MVKPPr obl em Pr oducer MVKP
int StepSize

int Consuner Budget
int ProducerBudget
int Total Budget
Sol uti on Best Sol ution
Sol utions All Sol utions

0
100

whi | e( Consuner Budget <= Tot al Budget) (1)

I deal i zedSol uti on = sol veMWKPCost Onl y( Consuner MVKP, (2)
Consuner Budget )

doubl e[] Ratios = cal cul at eResour ceRati os(|deal i zedSol ution) (3)

for each Itemin Producer MKP (4)
for i =0, i < Ratios.size, i++
Item Value += Ratios[i] * |tem ProducedResourceVal ue[i]

Producer Budget = Tot al Budget - Consuner Budget
Har dwar eSol uti on = (5)
sol veMWKPCost Onl y( Producer MVKP,
Producer Budget )

int[] Avail abl eResources = (6)
Har dwar eSol ut i on. ProducedResour ceVal ues. Sum
Sof t war eSol ution = (7)

sol veMWKP( Pr oducer MVKP,
Avai | abl eResour ces,
Consuner Budget )
Consuner Budget += StepSi ze (8)

Sol ution = Tupl e<Sof t war eSol uti on,
Har dwar eSol uti on>
Sol uti ons. add( Sol uti on) (9)
i f(Solution.Value > Best Sol ution. Val ue)
Best Sol uti on = Sol ution

Ret urn Best Sol uti on and Sol utions (10)

Figure X.7: The ASCENT Algorithm

Consumer
Budget Producer
(Software) Budget

(Hardware)

//// Overall' .
Budget

Figure X.8: Iteratively Allocating Budget to the Consumer K napsack
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handle cases where the optimal configuration includes erdor consumer items with

Zero cost.

Ranking Producer Solutions

At each allocation iteration, ASCENT has a fixed set of sizgdlie two knapsacks.
In each iteration, ASCENT must solve the coupling problerhicl is: how do we rank
producer solutions without a consumer solution. After theping is loosened, ASCENT
can solve for a highly valued solution that fits the given gk size restrictions.

To break the tight-coupling between producer and consumtarimg, ASCENT em-
ploys a special heuristic. Once the knapsack size allatatece fixed, ASCENT solves for
a maximal consumer solution that only considers the cusigrtconstraint of its knapsack
and not produced/consumed resources. This step is showdénlisting (2) of Figure X.7.

The methodsol veMVKPCost Onl y uses an arbitrary MMKP approximation algo-
rithm to find a solution that only considers the consumerddat. This approach is sim-
ilar to asking “what would the best possible solution lodkeliif there were unlimited
produced/consumed resources.” Once ASCENT has this zéelationsumer solution, it
calculates a metric for assigning a value to producer swisti

The metric that ASCENT uses to assign value to producer iterhew valuable are the
resources of a producer item to the idealized consumerisoluThis metric is calculated
by thecal cul at eResour ceRat i os method call in code listing (3) of Figure X.7. We
calculate the value of a resource as the amount of the res@orcsumed by the ideal-
ized consumer solution divided by the sum of the total resegiconsumed by the overall

solution: .
yoUc(cj k)
r = T
S65oUe(ciK)

In code listing (4) of Figure X.7, the resource rati¥s\alues) are known and each item

in the producer MMKP problem is assigned a value by multipjyeach of its provided
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resource values by the corresponding ratio and summing treses:

k
valueof(p) = %(U P(pr,K) * Vi)

The overall solving workflow at each budget allocation ratishown in Figure X.9.

o N N
N

/ ) B Input: \
sl | e |
\ B y \Knapsack Size/
\ \ /
\y\y

Solve for the Best Identify the ‘ Rank the Hardware

Possible Software Resources the Options to Favor Solve for the Final
Solution within the Solution Needs Solutions that Provide Hardware Solution
Software Budget and in What Ratio ‘\ the Needed Resources | ~—_|

Constrain the Software to
Consume Less Resources
than What is Provided by
the Final Hardware
Solution

Solve for the Final
7l Software Solution

Figure X.9: ASCENT Solving Workflow at Each Budget Allocatio n Step

Solving the Individual MMKP Problems

Once sizes have been set for each knapsack and the valuetiostit has been applied
to the producer MMKP problem, existing MMKP solving apprbas can be applied. First,
the producer MMKP problem, with its new item values, is sdl¥@er an optimal solution,
as shown in code listing (5) of Figure X.7. We use #wd veMVKPCost Onl y method
to solve the producer problem since it does not consume aoyrees other than budget.
In code listing (6), the consumer MMKP problem is then updat&h constraints reflect-
ing the maximum available amount of each resource produgetié solution from the
producer MMKP problem. The consumer MMKP problem is thervadlfor an optimal
solution in code listing (7). The producer and consumertgwig are then combined into
the 2-tuple< p,c > and saved in code listing (9).

In each iteration, ASCENT assigns sizes to the producer ansumer knapsacks and
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the solving process is repeated. A collection of the 2-tgplations is compiled during the
process. The output of ASCENT, returned in code listing @Qfigure X.7, is both the
2-tuple with the greatest value and the collection of 2¢8pIThe overall solving approach

is shown in Figure X.10.

MMKP Solver Runs at Each Budget Allocation Increment

All Data Points and
Best Data Point
Returned

~
S

100% Software

Solution Value

100% Hardware X-Axis: Percentage

of Budget Allocated
to Software

Figure X.10: ASCENT Solving Approach

The reason that the 2-tuples are saved and returned as phg ofitput is that they
provide valuable information on the trends in the solutipace of the co-design problem.
Each 2-tuple contains a high-valued solution to the cogegroblem at a particular ratio
of knapsack sizes. This data can be used to graph and visumlz the overall solution
value changes as a function of the ratio of knapsack sizas.ifffloermation can be used to
ascertain a number of useful solution space charactesjstich as determining how much
it costs to increase the value of a specific system properéygven level or finding the

design with the highest value per unit of cost.

Algorithmic Complexity

The overall algorithmic complexity of ASCENT can be brokemwah as follows:
1. there ard iterations of ASCENT
2. in each iteration there are 3 invocations to an MMKP apipnaxion algorithm

3. in each iteration, values of at masproducer items must be updated.

232



This breakdown yields an algorithmic complexity of @0+ MMKP)), where MMKP
is the algorithmic complexity of the chosen MMKP algorithnwith M-HEU (one of
the most accurate MMKP approximation algorithms [12]) thgoathmic complexity is
O(mr?(l — 1)), wheremis the number of resource typesis the number of sets, arids
maximum items per set. Our experiments uSed 100 and found that it provided excellent
results. With our experimental setup that used M-HEU, thexalvalgorithmic complexity
was therefore O(1Q@nr?(I — 1)? 4+ n)). This algorithmic complexity is polynomial and
thus ASCENT should be able to scale up to very large problsaodd) as the co-design of

production satellite hardware and software.

Analysis of Empirical Results

This section presents empirical data we obtained from éxgerts using ASCENT
to solve MMKP co-design problems. The empirical results destrate that ASCENT
provides near optimal results. The results also show th&E$T can not only provide
near optimal designs for the co-design problems, such asatedlite example, but also
scale to the large problem sizes of a production satellisggtle Moreover, we show that
the data sets generated by ASCENT—which contain high vado&dions at each budget
allocation—can be used to perform a number of importantéebased software engineer-
ing studies on the co-design solution space.

Each experiment used a total of 100 budget iteratidns-(100). We also used the
M-HEU MMKP approximation algorithm as our MMKP solver. Alkperiments were
conducted on an Apple Powerbook with a 2.4 GHz Intel Core 2 progessor, 2 gigabyes
of RAM, running OS X version 10.4.11, and a 1.5 Java Virtuathae (JVM) runin client

mode. The JVM was launched with a maximum heap size of 64mim¥=>64m).
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MMKP Co-design Problem Generation

A key capability needed for the experiments was the abilityandomly generate

MMKP co-design problems for test data. For each problem, la@ @eeded to calculate

valueo f(ASCENT Solution
valueo f(OptimalSolution *

how good ASCENT's solution was as a percentage of the optioiation:
For small problems with less than 7 sets per MMKP problem, wevable to use a branch-
and-bound linear programming (LP) [135] technique builtop of the Java Choco con-
straint solver¢hoco- sol ver . net ) to derive the optimal solution.

For larger scale problems the LP technique was simply natilfég e.g., solutions
might take years to find. For larger problems, we developesthnique that randomly
generated MMKP co-design problems with a few carefullytectonstraints so we knew
the exact optimal answer. Others [12] have used this geapm@mioach, though with a
different problem generation technique.

Ideally, we would prefer to generate completely random jamis to test ASCENT. We
our confident in the validity of this technique, however, fiwo reasons: (1) the trends we
observed from smaller problems with truly random data wdemiical to those we saw
in the data obtained from solving the generated problemg2)nthe generated problems
randomly placed the optimal items and randomly assignddvhkie and size so that the
problems did not have a structure clearly amenable to thedties used by our MMKP
approximation algorithm. We did not use Akbar’s techniql2][because the problems it
generated were susceptible to a greedy strategy.

Our problem generation technique worked by creating two MMifoblems for which
we knew the exact optimal answer. First, we will discuss hagenerated the individual
MMKP problems. LetSbe the set of MMKP sets for the problef be aK-dimensional
vector describing the size of the knapsagkbe thej, item of theiy, set,siz€lij, k) be the
kin cOmponent ofj;’s size vectorS}j, andsiz€ S k) be thek;, component of the knapsack

size vector, the problem generation technique for each MMiBlem worked as follows:
1. Randomly populate each sst; S, with a number of items
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2. Generate a random siz®, for the knapsack

3. Randomly choose one itetgpt; C Optlitemsfrom each set to be the optimal item.

lopt; is the optimal item in th&, set.

4. Set the sizes of the items Dptitems so that when added together they exactly
consume all of the space in the knapsack:

(VK CR), (%size{lopti,k)) = sizdS k)

5. Randomly generate a valu&pt, for the optimal item]opt;, in each set

6. Randomly generate a value delta variakle< min(Vopt), wheremin(Vopt) is the

optimal item with the smallest value

7. Randomly set the size and values of the remaining nomaapitems in the sets so

that either:

* The item has a greater value than the optimal item in itsleethis case, each
component of the item’s size vector, is greater than theesponding compo-

nent in the optimal item’s size vectaivk C R),sizglopt;, k) < siz€l;j, k)

 Theitem has a smaller value than the optimal item’s valueis\y, valueof(ljj) <
Vopt —Vy. This constraint will be important in the next step. In thése, each

component of the item’s size vector is randomly generated.

At this point, we have a very random MMKP problem. What we hivdo is further
constrain the problem so that we can guarantee the ite@gpiftemsare truly the optimal
selection of items. LeMax\V{ be the item with the highest value in thg set. We further
constrain the problem as follows:

For each itenMax\{, we reset the values of the items (if needed) to ensure taaitim

of the differences between the max valued items in each sketh@noptimal item are less
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thanVy:
i

Z(Max\,{ —Vopt) < V4
A visualization of this constraint is shown in Figure X.11.

Highest
Valued
Item

Optimal Item ]-Vd

Value

| A |-
Next Highest

Value After
Optimal Item

Figure X.11: A Visualization of Vjy

Va

This new valuation of the items guarantees that the iten@ptitemsare the optimal
items. We can prove this property by showing that if it doeshwdd, there is a contradic-
tion. Assume that there is some set of itehgtter, that fit into the knapsack and have a
higher value. LeV by be the value of the better item to choose than the optimaliretime
ith set. The sum of the values of the better items from each setimaus a higher value
than the optimal items.

The itemslb; C Ibetter must fit into the knapsack. We designed the problem so that
the optimal items exactly fit into the knapsack and that aemitvith a higher value than
an optimal item is also bigger. This design implies that ast@ne of the items itbetter
is smaller and thus also has a smaller valMismall than the optimal item in its set (or
Ibetterwouldn’t fit). If there areQ sets in the MMKP problem, this implies that at most

Q—1 items inlbetterhave a larger value than the optimal item in their set, and:thu

Q-1 Q-1
Vopih + %Vopt < Vsmall+ %Vbi
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We explicitly revalued the items so that:

%(Max\A—Vopt) < V4

By subtracting thqg’1Vo pt from both sides, we get:

o-1
Voply < Vsmall+ % (Vb —Vopt)

the inequality will still hold if we substitut&/y in for on—l(vh —Vopt), becausd/y is
larger:

Vopig < Vsmall4-Vy
Voplh — Vg <Vsmall

which is a contradicton of the rule that we enforced for serallems: valueof(ljj) <
Vopt —Vy

This problem generation technique creates MMKP problerntssame important prop-
erties. First, the optimal item in each set will have a ranadwmber of larger and smaller
valued items (or none) in its set. This property guaranteasd greedy strategy will not
necessarily do well on the problems.

Moreover, the optimal item may not have the best ratio of e@ize. For example, an
item valued slightly smaller than the optimal item may caneusignificantly less space
because its size was randomly generated. Many MMKP appadiomalgorithms use the
value/size heuristic to choose items. Since there is ncagi@e on how good the value/size
of the optimal item is, MMKP approximation algorithms wilbhautomatically do well on
these problems.

To create an MMKP co-design problem where we know the optanalver, we gen-
erate a single MMKP problem with a known optimal answer ard gpnto two MMKP

problems to create the producer and consumer MMKP probl&msplit the problem, two
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new MMKP problems are created. One MMKP problem recelzed the sets from the
original problem and the other problem receives the remgisets. The total knapsack
size for each problem is set to exactly the size required bytitimal items from its sets
to fit. The sum of the two knapsack sizes will equal the origkmapsack size. Since the
overall knapsack size budget does not change, the origitiahal items remain the overall
optimal solution.

Next, we generate a set of produced/consumed resourcesvia@uehe two MMKP
problems. For the consumer problem, we randomly assign igathan amount of each
produced resourck C R that the item consumes. L&btalC(k) be the total amount of
the resourc& needed by the optimal consumer solution &fugt(p) be the optimal value
for the producer MMKP problem. We take the consumer problechcalculate a resource

production ratioR p(k), where

TotalC(Kk)

R = opi(p)

For each iteml;j, in the producer problem, we assign it a production valu¢tferesource
k of: Producedk) = Rp(k) * valueof(ljj).

The optimal items have the highest feasible total valuedasehe given budget and
the sum of their values times the resource production raiastly equals the needed value
of each resourck:

i
TotalC(k) = T\;)t?)ItC(k %Vo pt

Any other set of items must have a smaller total value andesprently not provide suffi-
cient resources for the optimal set of consumer items. Topbete the co-design problem,
we set the total knapsack size budget to the sum of the siziée a@fvo individual knap-

sacks.
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ASCENT Scalability and Optimality

Experiment 1. Comparing ASCENT scalability to an exact tecmique. When de-
signing a satellite it is critical that designers can gaugedccuracy of their design tech-
niques. Moreover, designers of a complicated satelliteesysieed to know how different
design techniques scale and which technique to use for & ginablem size. This first
set of experiments evalutes these questions for ASCENT dmwdrech-and-bound linear
programming (LP) co-design technique.

Although LP solvers can find optimal solutions to MMKP co-4desproblems they
have exponential time complexity. For large-scale cogteproblems (such as designing
a complicated climate monitoring satellite) LP solversstlouickly become incapable of
finding a solution in a reasonable time frame. We setup anrewrpat to compare the
scalability of ASCENT to an LP technique. We randomly getesta series of problems
ranging in size from 1 to 7 sets per hardware and software MiBlem. Each set had
10 items. We tracked and compared the solving time for ASCBNIthe LP technique as

the number of sets grew. Figure X.12 presents the results tihe experiment. As shown

6000000
5000000 |
4000000 -
3000000
2000000
1000000

Solving Time (ms)

Total Sets 5

Figure X.12: Solving Time for ASCENT vs. LP

by the results, ASCENT scales significantly better than aibbased approach.
Experiment 2: Testing ASCENT's solution optimality. Clearly, scalability alone

is not the only characteristic of a good approximation atgar. A good approximation

algorithm must also provides very optimal results. We @é@atn experiment to test the

accuracy of ASCENT's solutions. We compared the value of BERT's answer to the
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optimal answer,
valueo {ASCENT Solution

valueo f(OptimalSolution

for 50 different MMKP co-design problem sizes with 3 itemg pet. For each size co-
design problem, we solved 50 different problem instancelsaaeraged the results.

It is often suggested, due to the Central Limit Theorem [#Bljse a sample size of 30
or larger to produce an approximately normal data distidiouf64]. We chose a sample
size of 50 to remain well above this recommended minimum $arsige. The largest
problems, with 50 sets per MMKP problem, would be the eqeivbbf a satellite with 50
points of software variability and an additional 50 pointsiardware variability.

For problems with less than 7 sets per MMKP problem, we coethagainst the op-
timal answer produced with an LP solver. We chose a low nurob&ems per set to
decrease the time required by the LP solver and make theimardrfeasible. For prob-
lems with more than 7 sets, which could not be solved in a ymehnner with the LP
technique, we used our co-design problem generation tgeaniThe problem generation
technique allowed us to create random MMKP co-design problihat we knew the exact
optimal answer for and could compare against ASCENT’s answe

Figure X.13 shows the results of the experiment to test ASC&MSolution value

verusus the optimal value over 50 MMKP co-design problerassi¥Vith 5 sets, ASCENT

Optimality
™~

Figure X.13: Solution Optimality vs Number of Sets
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produces answers that average 90% optimal. With 7 setsngweas average 95% op-
timal. Beyond 20 sets, the average optimalityi88% and continues to improve. These
results are similar to MMKP approximation algorithms, sastM-HEU, that also improve
with increasing numbers of sets [12]. We also found thatdasing the number of items
per set also increased the optimality, which parallelseiselts for our solver M-HEU [12].
Experiment 3: Measuring ASCENT’s solution space snapshota&uracy. As part
of the solving process, ASCENT not only returns the optineugd solution for a co-
design problem but it also produces a data set to graph thma@nswer at each budget
allocation. For the satellite example, the graph would sldesigners the design with
the highest image processing accuracy for each ratio ofdiwallpcation to software and
hardware. We created an experiment to test how optimal eatehpaint in this graph was.
For this experiment, we generated 100 co-design problertisless than 7 sets per
MMKP problem and compared ASCENT’s answer at each budgetatibn to the opti-
mal answer derived using an LP technique (more sets imp@®SE&ENT’s accuracy). For
problems with 7 sets divided into 98 different budget altaoas, ASCENT finds the same,
optimal solution as the LP solver more than 85% of the timgufé X.14 shows an exam-
ple that compares the solution space graph produced by AS@&alsolution space graph

produced with an LP technique. The X-axis shows the pergeraathe budget allocated to
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Figure X.14: Solution Value vs. Budget Allocation

the software (consumer) MMKP problem. The Y-axis shows tita@ tvalue of the MMKP
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co-design problem solution. The ASCENT solution spacelycpsely matches the actual

solution space graph produced with the LP technique.

Solution Space Snapshot Resolution

Experiment 4. Demonstrating the importance of solution spae snapshot resolu-
tion. A complicated challenge of applying search-based softeagieering to hardware/-
software co-design problems is that design decisions aetyras straightforward as iden-
tifying the design configuration that maximizes a specifioparty. For example, if one
satellite configuration provides 98% of the accuracy of tlesthoptimal configuration for
50% less cost, designers are likely to choose it. If desgjhare extensive experience
in hardware development, they may favor a solution that isgmally more expensive
but allocates more of the development to hardware, whicih khew well. Search-based
software engineering techniques should therefore allasigders to iteratively tease these
desired designs out of the solution space.

ASCENT has a number of capabilities beyond simply findingapgmal solution for
a problem to help designers find desirable solutions. Fisstye describe below, ASCENT
can be adjusted to produce different resolution imagesssddtution space by adjusting the
granularity of the budget allocation stegy., make smaller and more allocation changes).

The granularity of the step size greatly impacts the resmiubr detail that can be
seen in the solution space. To obtain the most accurate &oniative solution space
image, a small step size should be used. Figure X.15(a) shosadution space graph
generated through ASCENT using 10 allocation steps. The&iX4a the percentage of
budget allocated to software, the Y-axis is the total valite@solution. It appears that any
allocation of 30% or more of the budget to software will proda satellite with optimal
image processing accuracy.

Figure X.15(b), however, shows the graph that results frolvirsg the same problem

with a 20 allocation steps. It is important to note that wihillecating 30% or more of the
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Figure X.15: A Solution Space Graph at Varying Resolutions
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budget to software still results in an optimal solution réhis another point that was absent
from the previous graph. It can clearly be seen that an dltmtaf 15% of the budget for
software will also result in a near optimal solution, whislkan unanticipated good solution
that favors hardware.

The importance of a small step size is further demonstraiddgure X.15(c), which
was produced with 100 allocation steps. Both previous graéo suggest that any allo-
cation of greater than 30% for software would result in arirogt satellite design. Fig-
ure X.15(c) shows that there are many pitfalls in the 70% t& 938nge that must be
avoided. At these precise budget allocation points, themot a good combination of
hardware and software that will produce a good solution.

This result may seem counter-intuitive. At these points, filevious good hardware
solution is too expensive, but a different more expensifiwvsoe configuration with less
resource consumption to fit on the cheaper available hasda@nfigurations is also not
within budget. If any of these software allocation percgatawere chosen arbitrarily
without creating a high quality graph of the solution spabe, designer could unknow-

ingly create a system that has 25% of the value for the sante cos

Solution Space Analysis with ASCENT

Although ASCENT's ability to provide variable resolutioolgtion space images is
important, its greatest value stems from the variety of joes that can be answered from
its output data. In the following results, we present regnéstive solution space analyses
that can be performed with ASCENT’s output data.

Design analysis 1: ldentifying low-cost viable designsA common software engi-
neering scenario is that a design need not necessarily mals long as it provides
a minimum required value or capability. For example, sigellesigners want to find
the cheapest designs that provide the required level of enpgcessing accuracy. Fig-

ure X.16(a) shows a graph that can be produced by taking tipeiodata from ASCENT
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and graphing total actual solution cost as a function of etidtjocation, rather than graph-
ing value as a function of budget allocation. This graphvedlalesigners to ascertain key
low cost designs in the solution space and can be furtherefilte eliminate any solutions
that do not meet a minimum value threshold. The resultinglyedlows designers to find
the lowest cost satellite co-design solution with a giveage processing accuracy.

Design analysis 2: Determining budget allocation ratiosAn important question to
ask when designing a system is what budget allocations datists give the most value
per unit of cost. In terms of the satellite example, the qaastould be what design gives
the most accuracy for the money. Figure X.16(c) shows anathieof ASCENT output
data that has been regraphed to si¥§§§§ as a function of the percentage of the budget
allocated to software. It can clearly be seen that the desigth the best ratio of value to
cost assign more of the value to software. This graph carealsity be filtered to eliminate
designs that do not provide a minimum level of value.

Design analysis 3: Finding designs that produce budget sulpses. Designers may
wish to know how the resource slack values, such as how mudd RAunused, with
different satellite designs. Another related questiorois much of the budget will be left-
over for designs that provides a specified minimal level cdigen processing accuracy. We
can use the same ASCENT output data to graph the budget satpdurange of allocation
values.

Figure X.16(d) shows the budget surplus from choosing uaraesigns. The graph has
been filtered to adhere to a requirement that the solutiovigieca value of at least 1600.
Any data point with a value of less than 1600 has had its sarpdtito 0. Looking at the
graph, we can see that the cheapest design that provideseaofadt least 1,600 is found
with a budget allocation of 80% software and 20% hardwards @asign has a value of
1,600 and produces budget savings of 37%.

Design analysis 4: Evaluating design upgrade/downgrade sb In some situations,

designers may have a given solution and want to know how muefllicost or save to
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upgrade or downgrade the solution to a different image [m%ing accuracy. For example,
designers may be asked to provide a range of satellite gptovriheir superiors that show
what level of image processing accuracy they can providenatreber of price points. Fig-
ure X.17 depicts another view of the ASCENT data that shows dast varies in relation

to the minimum required solution value. This graph shows Bheost units can finance a

Cost
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Figure X.17: Cost of Increasing Solution Value

design with a value up to 900, but a design of a value of 1,003 wrill cost at least 124
cost units. This information graph demonstrates the irr@@d&inancial burden of requiring
a slightly higher valued design. Alternatively, if the nesary value of the system is near
the left edge of one of these plateaus, designers can makéamed decision on whether

the increased value justifies the significantly increasetl. co

Summary of Empirical Results

The following is a summary of the empirical results preseraieove.

e ASCENT Produces Answers that are 98% Optimal: As seen from the results in
Figure X.13, ASCENT generates answers that average 98%nalptor problems with
a large number of sets in each MMKP problem. This result iegpthat ASCENT will
perform well on large-scale MMKP co-design problems, sugtha design of a large and

complex satellite. Moreover, the larger the problem, theenawcurate ASCENT’s results.
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Systems of this scale would be nearly impossible to optimizbout the search-based
software engineering method provided by ASCENT.

¢ High Resolution Solution Space Snapshots Can Identify Neasptimal Alterna-
tive Solutions: Another important result is that we demonstrated that bywam a high
resolution solution space snapshot we can identify unigatied near optimal designs.
These unanticipated nearly optimal designs corresponeldksoin the solution space graph
at local maxima. In future work, we plan to develop algorithtimat automatically increase
the solution space snapshot resolution at and around theslenhaxima. Solving the large
numbers of problems to produce a highly detailed soluticacepsnapshot is too time-
consuming and error-prone to perform manually.

e ASCENT Output Data Can Answer Numerous Cost-based Design (astions to
Iteratively Improve Solution Design: Since many design criteria cannot be completely
formalized for a search solver, search-based softwareeagng should allow desigeners
to iteratively hone in on the solutions they desire. The ltssiemonstrated that each run
of ASCENT allowed designers to answer key questions relatéige allocation of budget
to hardware and software. For example, designers of aisatedluld answer questions
such aswvhat allocation of budget to hardware and software produteshighest valued
solution Designers can also answer other previously difficult qaestrelated to how

expensive it is to produce a solution with a given optimality
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CHAPTER XI

AUTOMATED CONFIGURATION DEBUGGING

Challenge Overview

This chapter investigates the problems that arise whetidw@nfigurations are created
by modelers. Existing research has focused on ensurindehtatres chosen from feature
models are correct and consistent with the SPL and varigptinements. For example,
work has been done on using boolean circuit satisfiabilithéues [93] or Constraint
Satisfaction Problems (CSPs) [22,144] to automate theatesn of a feature set that meets
a requirement set. Numerous tools have also been develspetas Big Lever Software
Gears [31], Pure::variants [23], FeAture Model AnalysekNRA) [21], and the Feature
Model Plug-in [46], to support the construction of featuredals and correct selection of

feature configurations.

Introduction

Regardless of what tools and processes are used to confiBlurgaBiants, however,
there is always the possibility that mistakes will occur.r Egample, large SPLs often
usestaged configuratiofd8, 49], where features are selected in multiple stagesrto &
complete configuration iteratively, rather than choosith§eatures at once. At a late stage
in the configuration process, developers may realize thetieatly needed feature cannot
be selected due to one or numerous decisions in some prestamyes. It is hard to debug a
configuration to figure out how to change decisions in prevgtages to make the critical
feature selectable [18].

Another challenging situation can arise when multipleipgrants are involved in the
feature selection process and their desired feature meieatonflict. For example, hard-

ware developers for an automobile may desire a lower costf &gdectronic Control Units
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(ECUs) that cannot support the features needed by the geftdeveloper's embedded
controller code. In these situations, methods are neededaioate and debug conflicts
between participants. Methods are also needed to recommedifications to the partici-
pants feature selections to make them compatible.

Although prior research has shown how to identify flawed gamitions [17, 93], con-
ventional debugging mechanisms cannot pinpoint configura&trrors and identifying cor-
rective actions. More specifically, techniques are lackivad can take an arbitrary flawed
configuration and produce the minimal set of feature se&astand deselections to bring
the configuration to a valid state. This challenge focuseaduiiessing these gaps in exist-

ing research.

Challenges of Debugging Feature Model Configurations

This section evaluates different challenges that ariseahstic configuration scenarios.

Challenge 1: Staged Configuration Errors

Staged configuration is a configuration process wherebylaleses iteratively select
features to reduce the variability in a feature model untibaant is constructed. Czar-
necki et al. [48, 49] use the context of software supply chdém embedded software in
automobiles to demonstrate the need for staged configaraiiiothe first stage, software
vendors provide software components that can be providelifferent configurations to
actuate brakes, control infotainment systems, etc. Inghersd stage, hardware vendors of
the Electronic Control Units (ECUs) that the software runsmust provide ECUs with the
correct features and configuration to support the softwaneponents selected in the first
stage.

The challenge with staged configuration is that featurecieledecisions made at some
point in time T have ramifications on the decisions made at all points in fithe T.

For example, it is possible for software vendors to choosetafsoftware component
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features for which there are no valid ECU configurations engbcond configuration stage.
Identifying the fewest number of configuration modificagdn remedy the error is hard
because there can be significant distance betWeamdT'.

This challenge also appears in larger models, such as tloossoftware to control
the automation of continuous casting in steel manufactiii€][ In large-scale models,
configuration mimics staged configuration since developamaot immediately understand
the ramifications of their current decisions. At some latgision point, critical features
that developers need may no longer be selectable due to semieys choice. Again, itis

hard to identify the minimal set of configuration decisionsaverse in this scenario.

Challenge 2: Mediating Conflicts

In many situations the desired features and needs of nalsialkeholders involved
in configuring an SPL variant may conflict. For example, whenfiguring automotive
systems, software developers may want a series of softwanpa@nent configurations that
cannot be supported by the ECU configurations proposed blyatdware developers. To
each party, their individual needs are critical and findimgrmiddle ground to integrate the
two is hard.

Another conflict scenario arises when configuration densimade for an SPL variant
must be reconciled with constraints of the legacy enviramni@ which it will run. For
example, when configuring automotive software for next gezar model, a variant may
initially be configured to provide the most desired custofieatures, such as digital in-
fotainment. New model cars are rarely complete redesignseter, so developers must
determine out how to run new software configurations on exjgCU configurations from
previous models. If the new software configuration is not patible with the legacy ECU
configuration, developers must derive the lowest cost setanfifications to either the new

software or the legacy ECU configuration.
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Challenge 3: Viewpoint-dependent Errors

The feature labeled as the source of an error in a featurelrnodgguration may vary
depending on the viewpoint used to debug it. In the featuréatghown in Figure XI.1, for
example, if a configuration is created that includes bddin-ABS Controlleand1 Mbit/s

CAN Bus either feature can be viewed as the feature that is the sofitbe error.

Brake Control Software

Figure XI.1: Simple Feature Model for an Automobile

If we debug the configuration from the viewpoint that softeverumps ECU hardware
decisions, then th& Mbit/s CAN Busgeature is the error. If we assume that ECU decisions
precede software, however, then tiien-ABS Controllefeature is the error.

A feature model may therefore require debugging from midtyewpoints since diag-
nosing the feature that causes an error in a feature modehdspn the viewpoint used
to debug it. For small feature models, debugging from déiferviewpoints is relatively
simple. When feature models contain hundreds or thousdridatares, the complexity of

diagnosing a configuration from multiple viewpoints ingesa greatly.

Solution Approach
Our solution approach, called Configuration Understandind REmedy (CURE), is
based on creating automated SPL variant diagnosis toolgel®@ers can use these tools
to identify the minimal set of features to select or deseted¢tansform an invalid config-
uration into a valid configuration. Moreover, depending loa input provided to CURE,
a flawed configuration can be debugged from different viemgoor conflicts between

multiple stakeholder decisions in a configuration processhe mediated.
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The key component of CURE is the application of a CSP-based diagnostic tech-
nique. In prior work, Benavides et al. [22] have shown howdeamodels can be trans-
formed into CSPs to automate feature selection with a cainstsolver [77]. Trinidad et
al. [131] subsequently described how to extend this CShhtguak to identifyfull manda-
tory features void features and dead feature modelssing Reiter’s theory of diagno-
sis [119]. This section presents an alternate diagnosteifor deriving the minimum
set of features that should be selected or deselected tinatena conflict in a feature

configuration.

Background: Feature Models and Configurations as CSPs

A CSP is a set of variables and a set of constraints over thexrs&les. For example,
A+ B < 3is a CSP involving the integer variablasndB. The goal of a constraint solver
is to find a validabeling(set of variable values) that simultaneously satisfiesmdstraints
inthe CSP.A =1, B = 2) is thus a valid labeling of the CSP.

To build the CSP for the error diagnosis technique, we caonsh set of variables;,
representing the features in the feature model. Each caafign of the feature model is
a set of values for these variables, where a value of 1 ineBdaie feature is present in the
configuration and a value of 0 indicates it is not present.eMormally, a configuration is
a labeling ofF, such that for each variablig C F, fi = 1 indicates that thgy, feature in
the feature model is selected in the configuration. Cormedipgly, fi = O implies that the
feature is not selected.

Given an arbitrary configuration of a feature model as a Iagedf the F variables,
developers need the ability to ensure the correctness afothigguration. To achieve this
constraint checking ability, each varialfies associated with one or more constraints cor-
responding to the configuration rules in the feature moded.eixample, iff; is a required
subfeature offj, then the CSP would contain the constraifit= 1 < f; = 1.

Configuration rules from the feature model are captured enctbnstraint se€. For
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any given feature model configuration described by a lagethF, the correctness of

the configuration can be determined by seeing if the labaatigfies all constraints i@.

A more detailed description of the steps for transformingaire model to a CSP are

described in [22].

Configuration Diagnostic CSP

When diagnosing configuration conflicts, developers neést aflfeatures that should

be selected or deselected to make an invalid configuratiaticaaonfiguration. The output

of CURE is this list of features to select and deselect, assho Figure XI.2.

1.Invalid Configuration:

02=1
Brake Control Software

O6=1 . 07=0

03=0 04=1
ABS Controllerl | Non-ABS Controllcr| | 1 Mbit/s CAN BUSI | 250kbit/s CAN Bus I
T 1 N
L e e o i ] T
o= i
2.Diagnostic CSP: [ fl=1->(f2=1)... ]

3.Recommendations: Deselect 1 Mbit/s CAN Bus, ds=1
Select 250kbit/s CAN Bus, S7-1

4.Valid Configuration: fi=1

Automobile

fa=1

Brake Control Software
3=0 — fr=1
|ABS Comroller| | Non-ABS Contmllcrl | 1 Mbit/s CAN BUS| 250kbit/s CAN Bus
A

Figure XI.2: Diagnostic Technique Architecture for CURE

In Step 1 of Figure XI.2, the rules of the feature model andctineent invalid config-

uration are transformed into a CSP. For examples= 1 because th@&utomobilefeature

is selected in the current invalid configuration. In Steph2, $olver derives a labeling of

the diagnostic CSP. Step 3 takes the output of the CSP lgpafid transforms it into a

series of recommendations of features to select or degeleéatn the invalid configura-

tion into a valid configuration. Finally, in Step 4, the reaoendations are applied to the
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invalid configuration to create a valid configuration wheaelevariablef; equals 1 if the
corresponding feature is selected in the new and valid cordigpn. For examplef; = 1,
meaning that th@50 Kbit/s CAN Buss selected in the new valid configuration.

To enable the constraint solver to recommend features ¢otsahd deselect, two new
sets of recommendation variabl&andD, are introduced to capture the features that need
to be selected and deselected, respectively, to reachdhogifiguration. For example, a
value of 1 for variables C Sindicates that the featurg should be added to the current
configuration. Similarlyd; = 1 implies that the featurd; should be removed from the
configuration.

Thus, for each featurg C F, there are variables C Sandd; C D. After the diagnosis
CSP is labeled, the values 8&ndD serve as the output recommendations to the user as to
what features to add or remove from the current configuraasrshown in Table 1. This
table shows the complete inputs and outputs to diagnosevhkd configuration scenario

shown in Figure XI1.2.

The next step is to allow developers to input their curremfigoration into the solver
for diagnosis. Rather than directly setting values for thdables inF, developers use
a special set of input variables called thieservationswhich are contained in the set of
variablesO. For each featurd, present in the current flawed configuration= 1; if f; is
not selected in the current invalid configuratian= 0. Table 1 shows how observations
capture the current invalid configuration provided as irtpuhe solver. Observations can
also be made for a correct configuration, in which case CUREstgite that no changes
are needed. The rest of this chapter assumes that the ofiwesveepresent an invalid
configuration.

To diagnose the CSP, we want to find an alternate but validgaraiion of the feature
model and suggest a series of changes to the current ingaldfayaration to reach the valid

configuration. A valid configuration is a labeling of the \adidies inF (a configuration)
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ariables

Variable Ex-|fi C F: feature variables for the

planations |valid configuration that will be
transitioned too; C O: the fea-
tures selectedd( = 1) in the cur-
rentinvalid configurations C S
features to select(= 1) toreach
the valid configurationg; C D:
features to deselecti(= 1) to
reach the valid configuration

Inputs

Current Con-o; = 1,00 = 1,03 = 0,04 =

fig. los=105=10;,=0

Feature fi=1s(f=1, =1«

ModelRules [(fs = 1), f,=1= (f3=1) @
(fa=1), 5=1=(fe=21)®
(=1, (fe=1)Vv(fr=1) =
(fs=1), (fa=1)V(fs=1) =
(fo=1), f3=1=(fg=1), fs=
1= (f7=1)

Diagnostic [(fiCcF |{(fi=1) = (oi=1&

Rules s =1 A(d =0),(ff=0 =
(6 =0@di=1)A(s=0)})

Outputs

Features 1051=0,5=0,53=0,54=0,55=

Select 0,55=0,57=1

Features tad; = 0,d» = 0,d3 = 0,ds =

Deselect 0,d5 =0,dg=1,d;,=0

New Valid fl =1 f2 =1 f3 = O, f4 =

Config. 1, fs=11=0f;=1

Table XI.1: Diagnostic CSP Construction

such that all of the feature model constraints are satisfed.each variabldj, the value
should be 1 if the feature is present in the new valid configumahat will be transitioned
to. If a feature is not in the new configuratioi should equal 0.

We always require; = 1 to ensure that the root feature is always selected. For void
feature models, there will be no valid solution and the solv# respond that no solu-
tion was found. CURE could be used to detect void feature msduié it would be more

appropriate to use a technique designed for this purposk,asi[131].
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One key input to CURE is the CSP describing the set of all fakldure selections from
the feature model (the Feature Model Rules in Table 1). Smese valid feature selections
are described as constraints over the variabl&s avalid labeling of F will always yield
a valid feature selection Once a valid labeling df is found, the goal is to determine how
to modify the labeling oD to match the valid feature selection denoted by the labalfng
F.

First, a constraint must be introduced to model when a featuthe current invalid
configuration needs to be deselected to reach the corretigomtion. If thei;nfeature
is included in the current configuration; (= 1), but is not in the new valid configuration
(fi = 0), we want the solver to recommend that it be deseledaed (). For every fea-
ture, we introduce the following constraint to determinthi i}, feature inO needs to be
deselectet

(fi=0)=(0j=08d =1)A(s=0)

If f; is not selected in the correct configuratioi € 0), then either the feature was
also not selected in the current invalid configuration=£ 0), or the feature needs to be
deselectedd; = 1). Furthermore, if a feature is not needed in the valid coméiion (f; =
0) then clearly it should not be a recommended selectos Q).

The solver must also recommend features to select. lgHfeature is selected in the
correct and valid configuratiofy = 1, and not selected in the current invalid configuration

(o =0), then it needs to be selectexl=€ 1). For each feature, we introduce the constraint:

(fi=1)=(o=1es=1)A(di=0)

If a feature is needed by the correct configuratin= 1), then either the feature was

present in the invalid configuratiomw;(= 1) or the feature was not present in the invalid

1The symbol %" denotesxclusive or
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configuration and needs to be selectgd«1). Clearly, a feature should not be deselected
if fi =1 and thuslj = 0.

The state of each feature;, in the current invalid configuration is compared against
the correct state of the featurk, in the valid feature configuration. The behavior of each

comparison can fall into four cases:

1. Afeature is selected and does not need to be deselectddhe iy, feature is in the
current invalid configurationo{ = 1), and also in the new valid configuratiofy £ 1),

no changes need be made tasjt=£ 0, dj = 0)

2. A feature is selected and needs to be deselectdtithe iy, feature is in the current
invalid configuration ¢; = 1) but not in the new valid configuratiorj (= 0), it must

be deselectedi(= 1)

3. A feature is not selected and does not need to be selecteld.the iy, feature is
not in the current invalid configuratiom;(= 0) and is also not needed in the new

configuration = 0) it should remain unchangesd & 0, d; = 0)

4. A feature is not selected and needs to be selectdflithe iy, feature is not selected
in the current invalid configuratioro{= 0) but is present in the new correct configu-

ration (fi = 1), it must be selectedi(= 1)

Optimal Diagnosis Method

The next step in the CURE diagnosis process is to use thergollebel the variables
and produce a series of recommendations. For any given coafign with a conflict, there
may be multiple possible ways to eliminate the problem. Kangple, in the automotive
example, the valid corrective actions were either (1) reanine 1 Mbit/s CAN Busand
select the250 Kbit/s CAN Bu®r (1) remove théNon-ABS Controlleand select thé&BS
Controller. We must therefore tell the solver how to select which of thearfy) possible

corrective solutions to suggest to developers.
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The most basic suggestion selection criteria developersisato guide the solver’s di-
agnosis is to tell it to minimize the number of changes to ntakbe current configuration,
i.e., prefer suggestions that require changing as few thingessige in the current invalid
configuration. To implement this approach, we solve for a @BEling that minimizes the
sum of variables ir8U D, which is the total number of changes that the solution regui
the developer to make. By minizing this sum we therefore mirné the total number of
required changes.

Each labeling of the diagnostic CSP will produce two set®afdres corresponding to
the features that should be select&§gnd deselected to reach the new valid configu-
ration. Developers can ask the solver to cycle through tfierdnt potential labelings of
the diagnostic CSP to evaluate potential remedies. Fumthier, each new labeling (new
diagnosis) also causes the solver to backtrack and createalaes forF, which allows
developers to evaluate not only the suggested modificabohthe configuration that the
remedy will produce. Another way to further refine the guickfor the diagnosis is to
constrain the new state captured in the labeling of

Table 1 shows a complete set of inputs and output suggestiodsagnosing the auto-
motive software example. If there are multiple labelingshef CSP, initially only one will
be returned. After the first solution has been found, howetersolver can much more

efficiently cycle through the other equally ranked sets ofexiive suggestions.

Solution Extensibility and Benefits

This section presents different benefits of CURE and passialys of extending it.

Bounding Diagnostic Method
Due to time constraints, it may not be possible to find thenogkinumber of changes
for extremely large feature models. In these cases, a matalde approach is to attempt

to find any suggestion that requires fewer tlkachanges or with a cost less thikn Rather
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than directly asking for an optimal answer, we add the foilgiconstraint to the CSP and

ask the solver for any solution:

i_i\Si +d <K

The sum of all variables C Sandd; C D represents the total number of feature selec-
tions and deselections that need to be made to reach the hidwaafiguration. Therefore,
the sum of both of these sets is the total number of modifinatibat must be made to the
original invalid configuration. The new constraint, ensutieat the solver only accepts
diagnosis solutions that require the developer to mala fewer changes to the invalid
solution.

The solver is asked foany answer that meets the new constraints. In return, the
solver will provide a solution that is not necessarily petfdut which fits our tolerance
for change. If no solution is found, we can incremkrity a factor and re-invoke the solver
or reassess our requirements. As earlier, searching fouadeal solution rather than an
optimal solution is significantly faster.

If the solver cannot find a diagnosis that makes fewer fthamodifications, it will state

that there is no valid solution that fitskachange budget.

Debugging from Different Viewpoints

As we discussed previously, we need the ability to debug dméiguration from dif-
ferent viewpoints. Each viewpoint represents a set of featthat the solver should avoid
suggesting to add or remove from the current configuratiam.ekample, using the auto-
mobile scenario, the solver can debug the problem from tlet job view that hardware
decisions trump software by telling the solver not to suggetecting or deselecting any
hardware features.

Debugging from a viewpoint works by pre-assigning valuesfsubset of the variables

in F andO. For example, to force the featufecurrently in the configuration to remain
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Figure XI.3: Debugging from a Viewpoint

unaltered by the diagnosis, the valuigs= 1 ando; = 1 are provided to the solver. Since
(fi=1)= (0j=1¢s =1) A(di = 0), pre-assigning these values will force the solver to

labels = 0 andd; = 0.

1.Software Developer: 2.Hardware Developer:

e —— 02=1 —

Brake Control Software Brake ECU Brake Control Software Brake ECU
- \Cost to Change =10 e T Cost to Change =40 — ~__
[4Bs Controlier]  [Non-ABS Controlter] [ 1 Mbivs CaN Bus| [250kbivs CAN Bus| [ABS Controller|  [Non-ABS Controller| [ 1 Mbits CAN Bus| [ 250kbi's CAN Bus]
T T ~ T T ~
! ! I T Lesosseosdons s ssen ] T
i i i S i i . |

e
3.Feature Selection Super Set: | Brake Control Software

-------------------- '
02=1 T ~
ake ECU

03=0 — 04=1 0s=1 7=0
|./\BS (\,,ﬂmuur| IN"“"\”S("“‘""”“’] |1 Mbit/s CAN Husl IZS()khit/s CAN Hus|
T 1
Lo smessades s ssosas | T
1 |

Figure Xl.4: Constructing the Feature Selection Supersetf  or Conflict Mediation

To debug from a given point of view, for each featuyein that viewpoint, we first add
the constraintsfy, = 1,0, =1,s, =0, andd, = 0, as shown in Figure XI.3. The solver then
derives a diagnosis that recommends alterations to oth&ures in the configuration and
maintains the state of each featue The CURE diagnostic model can therefore be used

to debug from different viewpoints and address Challenge 3.
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Pre-assigning values for variableskrandO can also be used to debug staged config-
uration errors from Challenge 1. With staged configurationrs, at some point in time
T’, developers need to select a feature that is in conflict withar more features selected
attimeT < T'. To debug this type of conflict, developers pre-assign ttsérele (but cur-
rently unselectable) feature at timiéthe value of 1 for ito; and f; variables. Developers
can also pre-assign values for one or more other featurési@esfrom previous stages of
the configuration that must not be altered. The solver is thevked to find a configura-
tion that includes the desired featureTatand minimizes the number of changes to feature

configuration decisions that were made at all points in fime T'.

Cost Optimal Conflict Resolution

Conflicts can occur when multiple stakeholders in a configamgorocess pull the so-
lution in different directions. Debugging tools are therefneeded to mediate the conflict
in a cost conscious manner. For example, when a car’s s@&tearfiguration is incom-
patible with the legacy ECU configuration, it is (probablieaper to change the software
configuration than to change the ECU configuration and thenalsly process of the car.
The solver should therefore try to minimize the overall adghe changes.

We can extend the CSP model to perform cost-based featwretisal and deselec-
tion optimization. First, we extend the CURE model to assteca cost variabldy C B,
with each feature in the feature model. Each cost varialgjeesents how expensive (or
conversely how beneficial) it is for the solver to recommemat the state of that feature
be changed. Before each invocation of the debugger, thelstéders provide these cost
variables to guide the solver in its recommendations ofifestto select or deselect.

Next, we construct the superset of the features that thewsstakeholders desire, as
shown in Figure XI.4. The superset represents the ide@lpadth incorrect, configuration

that the stakeholders would like to have. The goal is to findag vo reach a correct
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configuration from this superset of features that involveslowest total cost for changes.
The superset is input to the solver as values for the vasabi®.

Finally, we alter our original optimization goal so that g@ver will attempt to mini-
mize (or maximize) the cost of the features it suggests setpor deselecting. We define a
global cost variabl& and letG capture the sum of the costs of the changes that the solver
suggests:

G= -i<di *bi)+(si *bi)

G is thus equal to the sum of the costs of all features thatdiverseither recommends to
select or deselect. Rather than instructing the solver tomize the sum oBU D, we ask
it to minimize or maximizes.

The result of the labeling is a series of changes neededdh eeaalid configuration that
optimally integrates the desires and decisions of the uargstakeholders. Of course, one
particular stakeholder may have to incur more cost thanhemat the interest of reaching
a globally better solution. Further constraints, such mmtiing the maximum difference
between the cost incurred by any two stakeholders, couttll@sadded. The mediation
process can be tuned to provide numerous types of behaviprdwding different opti-

mization goals. This CSP diagnostic method enables CURHdmeas Challenge 2.

Empirical Results
Effective automated diagnostic methods should scale tdladeature models of pro-
duction systems. This section presents empirical resudta £xperiments we performed
to evaluate the scalability of CURE. We compare the scatgluf both CURE’s optimal

and bounding methods from Sections Xl and XI.
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Experimental Platform

To perform our experiments, we used the implementation dRElthat is provided by
the Model Intelligence libraries from the Eclipse Foundals Generic Eclipse Modeling
System (GEMS) project [160]. Internally, the GEMS Modeldlligence implementation
of CURE uses the Java Choco Constraint Solver [2] to derivelilags of the diagnostic
CSP. The experiments were performed on a computer with ah Gdre DUO 2.4GHZ
CPU, 2 gigabytes of memory, Windows XP, and a version 1.6 Vata@al Machine (JVM).
The JVM was run in client mode using a heap size of 40 megalfyXess40m) and a
maximum memory size of 256 megabytes (-Xmx256m).

A challenging aspect of the scalability analysis is that @&Bed techniques can vary in
solving time based on individual problem characteristicsheory, CSP’s have exponential
worst case time complexity, but are often much faster intmac To evaluate CURE,
therefore, it was necessary to apply it to as many models ssilge. The key challenge
with this approach is that hundreds or thousands of realifeanodels are not readily
available and manually constructing them is impractical.

To provide the large numbers of feature models needed foexperiments, therefore,
we built a feature model generator that randomly creatasifeanodels with the desired
branching and constraint characteristics. We also imboedénerator with the capability
to generate feature selections from a feature model andapiiadtically insert a bounded
number of errors/conflicts into the configuration. The featmodel generator and code for
these experiments is available in open-source form from [5]

From preliminary feasibility experiments we conducted,atserved that the branch-
ing factor of the tree had little effect on the algorithm’dvsiag time. We also compared
diagnosis time using models with 0%, 10%, and 50% crosseestraints and saw that
the each increment in the percentage of cross-tree camstriaiproved performance. For
example, with the optimal method and 1,000 feature modeésaverage diagnosis time

gradually decreased from 47 seconds with 0% cross-tredraoms to 36 seconds with
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50% cross-tree constraints. The key indicator of the sglemmplexity was the number of
XOR- or cardinality-based feature groups in a model. XOR eardlinality-based feature
groups are features that require the set of their selectiddreh to satisfy a cardinality
constraint (the constraint is 1..1 for XOR).

For our tests, we limited the branching factor to at most fik#features per feature. We
also set the probability of XOR- or cardinality-based featgroups being generated to 1/3
at each feature with children. We chose 1/3 since most feat@dels we have encountered
contain more required and optional relationships than X@t cardinality-based feature
groups. The total number of cross-tree constraints wastsH1%. We also eliminated
all diagnosis results from void feature models, since vemtidre models produced faster
diagnostic times and would have skewed the results towandiex solving times.

To generate feature selections with errors, we used a pitapalb 1/50 that any partic-
ular feature would be configured incorrectly. For each mogelbounded the total errors
at 5. In our initial experiments, the solving time was noeaféd by the number of errors in
a given feature model. Again, the prevalence of XOR- or ceality-based feature groups

was the key determiner of solving time.

Bounding Method Scalability

First, we tested the scalability of the less computatignadmplex bounding diagnosis
method. The speed of the bounding technique allowed us t@ @30 feature models at
each data point (2,000 different variations of each sizeufeanodel) and test the bound-
ing method’s scalability for feature models up to 500 feasur With models above 500
features, we had to reduce the number of samples at eaclto288€ tmodels due to time
constraints. Although these samples are small, they demad@she general performance
of our technique. Moreover, the results of our experiments feature models up to 500
features were nearly identical with sample sizes betwe&rah@ 2,000 models.

Figure X1.5 shows the time required to diagnose feature msa@eging in size from
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50 to 500 features using the bounded method. The figure eaptiie worst and average
solving time in the experiments. As seen from the results technique could diagnose
models with 500 features in an average~x300ms.

The upper bound used for this experiment was a maximum of ¥tfe selection
changes. When the feature bound was too tight for the diag(ias, more were needed to
reach a correct state) the solver quickly declared therenwaslid solution. We therefore
discarded all instances where the bound was too tight talak@wing the results towards
shorter solving times.

Figure XI.5 shows the results of testing the solving timehef bounding method on

feature models ranging in size from 500 to 5,000 features.

©w
(2]
o

w
2 300
]

250
a -«- Optimal Worst
E 200 / +gptim.ali\xg.
£ o B .
= 150 vy
.g 100 ""- --- Bounded Worst
c
2 50 /.:/,“
8, L

0 1000 2000 3000 4000 5000
Total Features

Figure XI1.5: Diagnosis Time for Both Methods for Large Featu re Models

Models of this size were sufficient to demonstrate scalglfitir common production
systems. The results show that for a 5,000 feature modefubiage diagnosis time was
~ 50 seconds.

Another key variable we tested was how the tightness of te@@n the maximum
number of feature changes affected the solving time of ttlenigue. We took a set of 200
feature models and applied varying bounds to see how theddaghriness affected solution
time. Figure XI.6 shows that tighter bounds produced faspéurtion times. These results
indicate that tighter bounds allow the solver to discar@asible solutions more quickly

and thus arrive at a solution faster.

266



800
700 S
600 /\/

500 /_/\/

E’ 400 /

E 200 /\-—‘_, /

200
100
0

3 8 13 18 23
Max Changes Bound

Figure XI1.6: 500 Feature Diagnosis Time with Bounding Metho  d and Varying Bounds

Optimal Method Scalability

Next, we tested the scalability of the optimal diagnosishuodtusing 2,000 samples
below 500 features and 200 samples for all larger modelsur€i¥l.5 shows the results
from feature models up to 500 features. At 500 features, hienal method required an
average of+1.5 seconds to produce a diagnosis. Figure XI.5 also shosvietis from
larger models ranging in size up to 5,000 features. For a meitde 5,000 features, the

solver required an average €88 minutes per diagnosis.

Comparative Analysis of Optimal and Bounding Methods

Finally, we compared the scalability and quality of resphsduced with the two meth-
ods. Figure XI.5 shows the bounding method performs aneésaadinificantly better than
the optimal method. For feature models of up to 1,000 feafurewever, both techniques
take less than 5 seconds and the optimal method is the bbetieec This result raises the
guestion of how much of a tradeoff in solution quality for sdés made when the bounding
method is used over the optimal method for larger models.

The bound that is chosen determines the quality of the swiuhat is produced by
the solver. The optimality of a diagnosis given by the boagdnethod is the number

of changes suggested by the bounding mettBmndedSuU D), divided by the optimal

BoundedSUD)

number of change)pt(SUD), which yields =555~

. Since the bounding method

uses the constraifSUD) < K to ensure that at mo#t changes are suggested, we can
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state the worst case optimality of the bounded methogtpﬁéfm. The closer our bound,
K, is to the true optimal number of changes to make, the béttediagnosis will be.

Since tighter bounds produce faster solving tiraed better results, debuggers should
start with very small bounds and iteratively increase themard as needed. One approach
is to layer an adaptive algorithm on top of the diagnosis rdligm to move the bound by
varying amounts each time the bound proves too tight. Amadbperoach is to employ

binary search to home in on the ideal bound. We will inveséidmth techniques in future

work.

Debugging Scenarios

Staged configuration and viewpoint debugging (Challeng&s3) are special cases
of the technique where the solver is not allowed to modify $bkection state of one or
more featuresie., the viewpoint or the feature at timE). Both of these special cases
of debugging actually reduce the search space by fixing sdlmeone or more of the
CSP variables. For example, performing staged configurateugging, which fixes the
value for one CSP variable, on a model with 1,000 featurelsiaed the optimal method’s
average solving time by 2.5 seconds and the bounding methodkbyl seconds.

Cost-based conflict mediation (Challenge 2) performs idahy to the standard diag-
nosis technique. Cost-based mediation merely introdusesies of coefficientd); C B
into the optimization goal. These coefficients do not inseesolving time. Furthermore,
initiating the diagnosis method with the superset of thefigonation participants’ desired

feature selections also did not impact performance.
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CHAPTER XII

CONCLUSION

There are a number of hard challenges related to the contiigniraf SPL variants
from feature models. Previously developers optimized anmsttucted software with an
emphasis on source code and a restricted set of requirenhettie SPL paradigm, config-
uration is the main mode of program construction and opation is done by performing
a discriminating selection of components. Source-codeded development is primarily a
manual activity whereas configuration can be highly autechat

This dissertation has shown that CSP-based configuratbnigues provide a number
of promising benefits for SPL construction. CSP configuratechniques can 1) perform
optimization, 2) perform automated debugging, 3) perfoast fand flexibly enough to
serve as a healing mechanism, and 4) can guide manual mgpdé&dps. In the future, as
SPLs become increasingly complex, CSP-based configuregatmiques will provide an
excellent option for reducing the complexity of SPL varidativation.

The following is a summary of lessons learned from the reteaork presented in this

dissertation:

1. PLA composition and non-functional requirements can $euo efficiently prune
the variant selection space and provide good performaruerelare many patterns of
requirements specification that can be used to optimize afBt.Automated variant

selection. In future work, we intend to further explore #npatterns.

2. Although Scatter can automate variant selection, it wodst when a PLA is crafted
with performance in mind. An arbitrary PLA may or may not alltor rapid variant
selection. PLAs that will be used in conjunction with an@ugted variant selector

should be carefully constructed to avoid poor performance.
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3. Akey challenge of automating product variant selectsoaiebugging mistakes in the
product-line’s specification. A simple mistake, such as sptaiced exclusion con-
straint between components, can cause variant selectfaih.tbloreover, the failure
may only appear intermittently for certain device types badhard to identify during
testing. Even once it is discerned that there is a probleentitying the source of

the problem can be extremely challenging (we have expeztetids phenomenon).

4. More work must be done to understand how to merge and ateetire various infor-
mation sources that will provide device characterizatidDevice characterizations
may come from customer databases, discovery servicespeatidn services. Find-
ing the right transformations to correlate and utilize théiserse information streams

is important to provide customized and correct variantctila.

5. Developers normally focus on the functional variabiiitya product. Looking at
other aspects of variability, such as packaging varigbiig important too. As we
have shown, although a product may have high functionabldity, it can be sig-
nificantly less variable with respect to packaging or menfoptprint. These non-
functional aspects can be exploited to reduce the comglexiautomated variant

selection.

6. Fresh alleviates the problems described earlier by ¢ixeca series of Java probes
at application launch to identify constrained variakelj formalizing and solving a
constraint satisfaction problem of the configuration peofpland dynamically rewrit-
ing the application’s XML configuration files. The informati on functional and
non-functional properties collected by automated prolwag be treated as a con-
straint satisfaction problem and a correct applicatiorfigonation derived by using
a constraint solver. Moreover, the constraint solver cadpce a solution that is

correct with respect to both the feature model and the degsnade by the roles.
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7.

10.

11.

12.

13.

Probes did not add significant complexity to Fresh’s aatexh configuration ap-
proach. An application typically requires a probe for eaoimpof variability. In

some cases, a probe may be needed for each individual fedtuher cases, a
single probe can identify what features are enabled in aineefigiature group. As
with unit test frameworks, such as JUnit, probes are redatixaightforward to write.
Although unit tests can often comprise a substantial amoiucdde compared to the

application itself, this was not the case for probes.

Even if a full constraint-solver based solution is notrded needed, using a configu-
ration probing infrastructure can be useful. Creating psdfo ensure that individual
points of configuration are properly fixed can help improve ¢juarantees that an
application is installed and configured properly. Sinceliappon misconfiguration

contributes to a significant portion of application failsirb0], developers should

consider the use of automated configuration checking.

Capturing and allowing the weaver to solve the global iappbn constraints re-

quired to produce a weaving solution

Informing the weaver of the overall solution goals sd tha weaver can derive the

best overall weaving solution with respect to a cost fumctod

Encoding using model transformations to automatigmlyerate implementations of

the global weaving solution for each required weaving platf.
CURE can scale to feature models with several thousatdrés.

The optimality of the diagnosis provided by the boundimgthod is determined by
how closeK is set to the true minimum number of features that need to heggd

to reach a valid state. Setting an accurate boun# fisrnot easy. In future work, we
plan to investigate different methods of honing the boupdesed in the bounding

method.
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14. The same CSP can often be stated in multiple ways. Difféoemulations can yield
different performance characteristics. In future work,imtend to see if it is possible

to vary the diagnosis CSP formulation and show that the igalercan scale to even

larger models while still providing reasonable runtimes.

The tools and techniques described in this dissertatiormpea source and available

fromhttp://ww. ecli pse.org/gnt/gens.
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LIST OF PUBLICATIONS

Research on Model Intelligence, Scatter, Refresh, and Chié&Hed to the following
referred journal, conference, and workshop publicatieansell as book chapters.
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1. Jules White, Douglas C. Schmidt, Egon Wuchner, Andreyhiegrenko, Automat-
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the Brazilian Computer Society Special Issue on SoftwanesReSciELO Brasil,

\Volume 14, Number 1, pgs. 25-44, March, 2008

2. Jules White, Harrison Strowd, Douglas C. Schmidt, Cnga8elf-healing Service
Compositions with Feature Models & Microrebooting, Intional Journal of Busi-

ness Process Integration & Management (to appear)

3. Jules White, Douglas Schmidt, Aniruddha Gokhale, Sityiplg Autonomic Enter-
prise Java Bean Applications via Model-driven Engineedn§imulation, Journal
of Software & Systems Modeling, Springer, Volume 7, Numbgpds. 3-23, May,
2007

Conference Publications

1. Jules White, David Benavides, Douglas C. Schmidt, Amtéhiiz-Cortez, and Pablo
Trindad, Automated Diagnosis of Product-line Configunatwrors in Feature Mod-

els, Software Product Lines Conference, September, 200&rick, Ireland

2. Jules White & Douglas C. Schmidt, Automated Configurabb@omponent-based
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Seoul, Korea, July 6-11, 2008.
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Software Product Line Conference (SPLC), Sept. 10-14, 2R9ato, Japan
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Seoul, Korea, July 6-11, 2008.

. Jules White, Krzysztof Czarnecki, Douglas C. Schmidtnt@ar Lenz, Christoph
Wienands, Egon Wuchner, & Ludger Fiege, Automated ModskdaConfiguration
of Enterprise Java Applications, EDOC 2007, October, 28@inhapolis, Maryland

. Jules White, Douglas C. Schmidt, Andrey NechypurenkamnEg/uchner, Model
Intelligence: an Approach to Modeling Guidance, UPGRADEraal (to appear)

. Andrey Nechypurenko, Egon Wuchner, Jules White, & Dosigla Schmidt, Ap-
plication of Aspect-based Modeling & Weaving for ComplgxReduction in the
Development of Automotive Distributed Realtime Embeddgst&ns, Proceedings
of the Sixth International Conference on Aspect-Orienteftveare Development,

Vancouver, British Columbia, March 12-16, 2007.

. Jules White & Douglas C. Schmidt, Reducing Enterprisel@tbLine Architecture
Deployment Costs via Model-Driven Deployment & ConfigunatiTesting, Poster
paper at the 13th Annual IEEE International Conference &Rk&bop on the Engi-
neering of Computer Based Systems (ECBS '06), March 27th;2006, University

of Potsdam, Potsdam, Germany.
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9.

10.

Jules White, Douglas Schmidt, & Aniruddha Gokhale, Sifyplg Autonomic En-
terprise Java Bean Applications via Model-driven Develeptna Case Study, Pro-
ceedings of MODELS 2005, ACM/IEEE 8th International Coefeze on Model
Driven Engineering Languages & Systems, Half Moon Resoxintdgo Bay, Ja-

maica, October 5-7, 2005. (Selected as a best paper)

Jules White, Douglas Schmidt, & Aniruddha Gokhale, TBi@tbcess for Building
Autonomic Enterprise Java Bean Systems, Proceedings dhtii@ational Confer-

ence on Autonomic Computing (ICAC 2005), Seattle, WA, Jud@52(short paper).

Book Chapters

1.

Jules White, Andrey Nechypurenko, Egon Wuchner, & Daosigdahmidt, Reduc-
ing the Complexity of Designing & Optimizing Large-scalesByms by Integrating
Constraint Solvers with Graphical Modeling Tools, DesigniSoftware-Intensive
Systems: Methods & Principles, edited by Dr. Pierre F. Tjdlangston University,
Oklahoma, USA, (to appear)

Workshop Publications

1.

2.

Jules White, Douglas C. Schmidt, Sean Mulligan, The Gerteelipse Modeling
System, Model-Driven Development Tool Implementer’s FoyTOOLS '07, June,
2007, Zurich Switzerland

Andrey Nechypurenko, Jules White, Egon Wuchner, & Dasi@aSchmidt, Apply-
ing Model Intelligence Frameworks for Deployment ProblenReal-time & Em-
bedded Systems, Proceedings of MARTES: Modeling & Analg§iReal-Time &
Embedded Systems to be held on October 2, 2006 in Genowajntabnjunction
with the 9th International Conference on Model Driven Emgiring Languages &

Systems, MoDELS/UML 2006.
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3. Jules White, Andrey Nechypurenko, Egon Wuchner, & Dosi@la Schmidt, Intel-
ligence Frameworks for Assisting Modelers in CombinathcChallenging Do-
mains, Proceedings of the Workshop on Generative ProgragiénComponent En-
gineering for QoS Provisioning in Distributed Systems,dbetr 23, 2006, Portland,

Oregon.

4. Jules White & Douglas Schmidt, Simplifying the Developrnef Product-line Cus-
tomization Tools via Model Driven Development, MODELS 20@%5rkshop on

MDD for Software Product-lines: Fact or Fiction?, Octobe2@05, Jamaica.
Submitted Papers

1. Jules White, Jeff Gray, Douglas C. Schmidt, Constraagelol Model Weaving, IEEE

Transactions on Aspect-Oriented Programming

2. Jules White, Douglas C. Schmidt, Automating Deploymeéanfing with an Aspect
Weaver, IET Software Special Issue on Domain-specific Maddlanguages for

Aspect-Oriented Programming
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