RADIATION-INDUCED ENERGY
DEPOSITION AND SINGLE EVENT UPSET
ERROR RATES IN SCALED
MICROELECTRONIC STRUCTURES

By

Christina L. Howe

Thesis
Submitted to the Faculty of the
Graduate School of Vanderbilt University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE
in

Electrical Engineering

December, 2005

Nashville, Tennessee

Approved:
Professor Robert A. Weller

Professor Robert A. Reed

ACKNOWLEDGEMENTS

Many people have played a significant role in my success as a graduate student at
Vanderbilt University. [would like to first thank my advisor, Dr. Robert Weller, for
his support and advice both professionally and personally while completing my mas-
ters work. Also, thank you to Dr. Robert Reed, Dr. Ronald Schrimpf, Dr. Marcus
Mendenhall, Kevin Warren, and Scooter Ball for their direct support and contribu-
tions to this work. Thank you to Dr. Dan Fleetwood and Dr. Lloyd Massengill for
technical discussions and support during this work. Thank you to all my professors
at Vanderbilt University for their guidance in my academic career. I would also like
to thank my friends in the Radiation Effects and Reliability Group for their help
and support throughout my graduate school career. I would also like to thank my
undergraduate advisor, Dr. Dick Blandford at the University of Evansville, Indiana,
for giving me the encouragement and drive to attend graduate school.

Finally, thank you to my husband, Josh Howe, for his never ending support,
patience, and encouragement through all of my schooling. I also want to thank my
parents Wayne and Sue Tincher, Tim, Cheryl, Lance, Angie, Madeline, Grandma
Long, Grandpa Wayne, Grandma Jackie, Jeft, Sandy, Jake, and Daniel for their love
and support in whatever I do. None of this work would have been possible without

each one of them.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS e il

LIST OF TABLES e v

LIST OF FIGURES e vi

Chapter

I. INTRODUCTION et 1

II. SIMULATION TOOL 6

MRED - A Geant4 Application 6

Using the MRED Application 7

IIT. BACKGROUND e 9

Natural Space Environment 9

Particles and Energies of Interest in this Work 10

Radiation Effects 0000 12

Energy Deposition oL 12

IV. MODELING SCALED CMOS 14

V. SINGLE-EVENT UPSET ERROR RATE CALCULATION 18

VI. CHARGE GENERATION FROM IONS 25

Charge Generation from Heavy Ions (Z >1) 26

Charge Generation from Protons 29

Ion Species Comparison 31

VII. CHARGE DEPOSITION IN OTHER STRUCTURES 34

SOI Structure with Overlayers 34

Simple SOI Device 36

VIII. CONCLUSION e e e e e 39
Appendix

A. EXAMPLE MRED INPUT FILES 41

il

Initialization File - init.ed.in 41

Physics File - Std.Physics.ino oL 43
Target File - Std. Target.CMOSB.in 44
Visualization File - Std.Visin 46

B. PYTHON SCRIPTS FOR PARRELLEL MRED APPLICATIONS .. 48

splitrun.pyo 48
runed_batch.py 95
BatchIn.ino oo 56
Interactive.in Lo L 58
REFERENCES o e 29

v

LIST OF TABLES

Table Page

1. Monte Carlo codes used for radiation transport through materials. . . . 3

Figure

10.

11.

12.

LIST OF FIGURES

Galactic cosmic ray particle flux as a function of atomic mass for ions
up to 60 atomic mass units [34]. Lo

Particle flux as a function of kinetic energy at GEO for protons, alphas,
oxygen, neon, and iron [35]. L. L

Cross section representative of scaled CMOS structures (a) with a tung-
sten layer and (b) without a tungsten layer. Lateral dimensions for
normally incident unidirectional simulations are 14 x 14 ym? and 50 x
50 pm? for omnidirectional simulations.

High resolution image of CMOS device cross section with multilevel in-
terconnects and tungsten vias [39].

Omnidirectional simulations with the ion fluence randomized over 27
steradians.

Integral cross section as a function of incident particle energy for oxygen
ions incident on the structure with W layer.

Integral cross section as a function of incident particle energy for oxygen
ions incident on the structure without W layer.

SEU error rate for the structure with W layer computed using MRED and
a traditional RPP method. The inclusion of indirect ionization processes
in MRED increases the rate by nearly two orders of magnitude for critical
charge > 0.65 pC. Lo

SEU error rate for the structure without W layer computed using MRED
and a traditional RPP method. The traditional RPP rate method suffi-
ciently predicts the expected rate and direct ionization dominates. . . .

Total SEU error rate for both structures calculated by MRED. When
the tungsten layer is present, the calculated rate is orders of magnitude
higher for critical charges > 0.65pC.

Unidirectional simulations with the ion fluence randomized over the top
surface of the structures.

Integral cross section for 15, 25, and 500 MeV/u oxygen ions on the
structure with W layer. High energy testing is required to fully capture
the response of the circuit.

vi

Page

22

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Integral cross section for 15, 25, and 500 MeV /u neon ions on the struc-
ture with W layer. High energy testing is required to fully capture the
response of the circuit. L oL

Integral cross section for 15, 25, and 500 MeV/u oxygen ions on the
structure without W layer. When the W layer is not present, typical

ground test energies sufficiently estimate the expected on-orbit response.

Integral cross section for 15, 25, and 500 MeV /u neon ions on structure
without W layer. When the W layer is not present, typical ground test
energies sufficiently estimate the on-orbit response.

Integral cross section for protons at 15, 500, and 5000 MeV /u for struc-
ture with W layer. There is little variation in the cross section between
the more energetic particles. oL

Integral cross section for protons at 15 and 500 MeV /u for both struc-
tures. There is little variation in the cross section when the tungsten
layer is present.o

Integral cross section for oxygen, neon, and iron at 500 MeV /u for the
structure with W layer. The heavier ions have a large cross section for
greater amounts of generated charge.

Integral cross section for oxygen, neon, and iron at 500 MeV /u for the
structure without W layer. The incident ion type makes an insignificant
difference on the cross section. o000

Modeled SOI device with overlayers.

Integral cross section for 15 and 500 MeV /u oxygen ions on SOI struc-
ture with W layer. High energy testing is required to fully capture the
response of the circuit.

Integral cross section for 500 MeV /u oxygen ions on SOI with and with-
out W layer. The W layer plays a small role in determining the cross
section below 0.5 pC of generated charge.

Simple SOI device cross section and angle of incident references.

Integral cross section for 63 MeV protons on the RPP target. A com-
parison between CUPID and two MRED models: binary cascade and
Bertini.o

Integral cross section for 200 MeV protons on the RPP target. A com-
parison between CUPID and two MRED models: binary cascade and
Bertini.o

vii

27

28

29

30

31

32

33
35

35

36
37

38

CHAPTER I

INTRODUCTION

Advances in microelectronic technologies and economic pressure to use commer-
cial electronic parts for space flight applications have created a new situation in which
time-tested methodologies for radiation-hard electronic design, validation, and verifi-
cation can no longer assure the safety of electronic parts and systems used for space
exploration. In particular, there is a specific need to revisit the test methods and mod-
els used in predicting on-orbit radiation response of modern electronics. Recent single
event upset (SEU) radiation effects experiments on modern technologies show trends
inconsistent with current models (e.g., advanced CMOS [1] and SOI/SOS CMOS [2]).

In general, the existing on-orbit SEU models have the following shortcomings:

e They exclude combined effects from direct and indirect ionization by incident

particles,

e They do not account for the angular dependence of the reaction products re-

sulting from interactions other than electronic stopping,

e They exclude charge collection by diffusion,

e They have limited capability to analyze detailed geometrical effects, i.e., edge

effects, isolation trenches, and buried oxides,

e They have no method for modeling effects associated with the complex spatial

variation of charge generated by individual ion strikes.

The existing techniques, developed circa 1980, fail to provide accurate survivability
estimates for some modern technologies [3]. Mature technologies have been scaled to
dimensions where new phenomena challenge some of the basic simplifying assumptions
of radiation effects models, which were developed for technologies fabricated in the
late 70s to early 80s.

The underlying mechanisms for SEU response are 1) ionizing radiation-induced
energy deposition within the device, 2) initial electron-hole pair generation and re-
combination and 3) the response of the device and circuit to the electron-hole pair
distribution. Each occurs on its own timescale and they are often assumed to be se-
quential, i.e., energy deposition determines initial electron-hole pair generation, which
in turn impacts device and circuit response [4], [5]. While not a topic of this thesis,
this assumption may fail for modern technologies [6]; these events are assumed to
happen sequentially.

A better understanding of how radiation-induced energy deposition (and there-
fore charge generation) is distributed in and around the sensitive collection volumes of
scaled microelectronic devices will lead to a more accurate understanding of complex
ground-measurement responses and help to develop more accurate methods of using
ground test results to predict the on-orbit response. One method of studying en-
ergy deposition is the use of simulation software to determine the expected radiation
transport through materials and devices.

Monte Carlo techniques to predict radiation transport have been implemented for
several decades (see [7], [8], and [9] for examples). Monte Carlo methods are com-

putational algorithms based on the use of random numbers and probablity statistics

Table 1: Monte Carlo codes used for radiation transport through materials.

| Monte Carlo Code | Incident Particles Available |

BRIC [12] protons
CUPID [13] protons
EGS4/EGSnrc [14] electrons, photons
MCBEND [15] neutrons, gamma rays, electrons
MCNP [16] neutrons, photons, electrons
MORSE [17] neutrons, gamma rays
SEUSIM [18] protons

for solutions to real systems. In general, Monte Carlo methods consist of proba-
bility density functions (pdfs), random number generators, sampling rules, tallying,
error estimation, variance reduction techniques, and parallelization and vectorization
[10]. Monte Carlo methods are used in a variety of fields and are useful for solving
equations with large numbers of possibilities [11]. It is often compared to a game of
chance, such as gambling, which results in the solution to a problem. Because of the
method’s ability to solve large problems, it is ideal for charge transport [11]. Many
incident particles and secondary particles can be accurately accounted for easily.
Over the last couple of decades, Monte Carlo methods have been applied to predict
energy deposition from complex nuclear reaction events. In general, however, these
tools have been limited to a small number of incident particle types, typically ions
with Z < 1. Table 1 presents several codes and the particles of interest within them.
Some other Monte Carlo codes have the capability to predict radiation transport
from heavy ions (Z > 1), but are limited in other ways. For example, NASA Langley
Research Center’s High Charge Energy Transport (HZETRN) [19] code is designed
as a black box for engineers looking for a quick answer to the expected amount of

radiation that will pass through spacecraft shielding. For those wanting more specific

answers to problems regarding physics and the mechanisms of transport, this code
lacks the output of information [19]. A more recently developed code, the multi-
purpose Particle and Heavy Ion Transport code System (PHITS) [20], has a restricted
energy range for heavy ions of up to 3 GeV/nucleon max. A third code, Monte
Carlo N-Particle eXtended (MCNPX) [16], is based off MCNP and will simulate
34 different particles types. The limitation of MCNPX is usability and flexability.
Complex structures can be created, but the input files are difficult to master and use
effectively.

The simulation tool used in this study is based on Geant4 [21] with extensions by
Vanderbilt researchers [22]. Geant4 is a library of ¢++ routines assembled by an inter-
national collaboration for describing radiation interaction with matter [21]. It is used
in many applications including high energy physics, medical, nuclear experiments,
and space physics. It allows developers to easily create tools that correspond to their
specific needs and applications. There are various phyics models that handle interac-
tions of particles with matter across a broad energy range, up to 200 MeV /nucleon
[23].

Chapter IT describes the Monte Carlo tool used for this work and how it was used
on a high performance computing cluster. This simulation tool has also been used in
other recent work, see [1], [24], [25].

Chapter III of this thesis is an overview of the natural space environment and
contains background necessary for a better understanding of the motivation for this
thesis. A structure representative of a modern technology is shown in chapter IV and
the data description is presented. In chapter V results of single-event upset (SEU)

error rate calculations for two structures are presented showing that the classical

method of SEU rate calculations underestimates the rate for certain structures. De-
tailed Monte Carlo simulations of energy depositions (charge generation) in a small
volume are shown in chapter VI. The depositions are a result of interactions between
the projectile ion (protons and heavy ions) and the structure. Simulations showing
that it is necessary to include ionization, elastic and inelastic nuclear reactions, and
screened Coulomb scattering when analyzing the impact that the heavy ion (Z >
1) space environment has on modern technologies is shown, a major departure from
the classical view that typically only considers a simplified version of the ionization
process. In chapter VII, charge generation in representative SOI volumes is shown,
and finally chapter VIII concludes this thesis by a summary of the key points and

results of this work.

CHAPTER II

SIMULATION TOOL

MRED - A Geant4 Application

The Monte Carlo code used to produce the results presented in this thesis is a
Geant4 [21] application called MRED (Monte Carlo Radiative Energy Deposition)
[1], [24], [25], [26]. Geant4 is a library of c++ routines assembled by an international
collaboration for describing radiation interaction with matter [21]. It is used in many
applications including high energy physics, medical, nuclear experiments, and space
physics. Version 7.0.p01 of Geant4 was used to build the version of MRED used in this
study. MRED is built on the Geant4 libraries with Vanderbilt additions, including a
model for screened Coulomb scattering of ions [22], tetrahedral geometric objects [24],
a biasing technique for cross section enhancement, and a number of additional fea-
tures relevant to semiconductor device applications. The Geant4 libraries frequently
contain alternative models for the same physical processes and these may differ in
level of detail and accuracy. Generally, MRED is structured so that all physics rel-
evant for radiation effects applications is available and selectable at run time. This
includes electromagnetic and hadronic processes for all relevant particles, including
elementary particles that live long enough to be tracked.

There are two models available for the description of the intra-nuclear cascade
of nucleons produced by neutron and proton irradiation: the Bertini model, and a
binary cascade alternative [23]. Generally, the Bertini model has been used in this

work except as noted in chapter VII.

Heavy ion nuclear reactions are generally of less interest to the dominance of the
Geant4 development and applications community and therefore ion-ion physics is less
complete than that available for neutrons and protons. Nevertheless, a binary cas-
cade model for light-ion reactions is available and recommended by its authors for
projectiles up through '?>C. Recent comparisons to experimental results by T. Koi [27]
have shown that the binary cascade model actually works fairly well for substantially
heavier projectiles, and so it has been used here for projectiles up through *Fe with
caution. Additional models for ion-ion collisions developed at Qinetiq [28] from orig-
inal work by Wilson, et al. at NASA [29] are also available, but were not used in this
work.

The model of electromagnetic interactions used for this work is the so-called stan-
dard model with the addition of screened Coulomb collisions. More detailed models
are available [24], but they require substantially greater computing time and have not

been observed to change these qualitative conclusions.

Using the MRED Application

The version of MRED used in this work, version 6, is structured such that an input
file is created by the user stating all necessary commands and passed into MRED.
This file contains information regarding the physics, structure, ion type and energy,
and the desired output. An example input file can be viewed in Appendix A. Each
line is documented so the reader may understand the commands. A typical input file
points to other files for additional information. The files necessary for this are also
documented in Appendix A. Note that future versions of MRED may not have the

same type of input files as used in this work. The files presented here are for reference

only.

Simulations for this work were conducted through Vanderbilt University’s Ad-
vanced Computing Center for Research and Education (ACCRE). Through ACCRE’s
computing cluster, simulations using the MRED application were done in parallel,
thereby allowing larger simulations to be performed in shorter amounts of time. A
python script, developed by Dr. Marcus Mendenhall at The Vanderbilt University
Free Electron Laser Lab, allows the MRED application to be duplicated to a specified
number of copies and then each individual copy runs to completion independently.
To run this script several files are necessary and can be found in Appendix B with a
short description of what function each file performs.

The output of the version of MRED used in this work is a Mathematica [30] file
containing the simulation data requested in the input file. In this work, Mathematica

was used extensively for file compilation and data analysis.

CHAPTER III

BACKGROUND

Natural Space Environment

The natural space environment consists of particles that can contribute to upset or
failure of electronic devices on satellites and other spacecraft. The number of particles
and their typical energies vary greatly with altitude and solar activity. Most satellites
operate in altitudes surrounding geosynchronous orbit (GEO) which is approximately
35,800 km above earth [31]. Particles trapped in the earths radiation belts include
primarily electrons and protons, and some heavy ions (Z > 1). Cosmic rays, both
solar and galactic, consist of protons and heavy ions. The galactic cosmic ray (GCR)
environment typically consists of 85% protons, 14% alpha particles (helium), and 1%
heavy ions [31]. While only 1% of the galactic cosmic rays are high energy heavy ions,
they are very important when considering radiation effects in electronics because one
hit by a heavy particle can do a great deal of damage within a device [31]. Spacecraft
shielding can help block out lower energy particles, but can also create secondary
particles which have the potential to be equally as damaging to electronics [32] or
cause higher energy particles to slow down and become more ionizing [33]. Figure 1
shows the ion flux as a function of atomic mass up to nickel for the GCR environment.
There are peaks at hydrogen (protons), helium (alphas), carbon, oxygen, nitrogen (the

last three are known as the CNO environment), neon, silicon, and iron.

FLUX (#/cm’—day)
a E:'.--
P
>, o
8
.
b L

1 A
AA
ya¥ Ni
- TS >4
107" +
10 g e I e e
0 10 20 30 40 S50 60 70 B0
ATOMIC MASS

Figure 1: Galactic cosmic ray particle flux as a function of atomic mass for ions up
to 60 atomic mass units [34].

Particles and Energies of Interest in this Work

In this thesis, simulated particles are consistent with the GCR environment with
energies ranging from 0.1 to 105> MeV /nucleon, see figure 2. The particles chosen for
this thesis were based on their frequency in the GCR spectrum as seen in figure 1.

Figure 2 was created using CREME96 [35] and assumes 100 mils of aluminum

! as a function of particle kinetic en-

shielding. It plots particle flux (cm?-s-MeV)~
ergy (MeV) for protons, alphas, oxygen, neon, and iron ions. The peak in the flux
occurs near 500 MeV /u for all species. Protons are the most abundant particles at

geosynchronous orbit (GEO), followed by alphas, oxygen, neon, and iron (for most

energies). The heavier ions are less abundant, but can still have a large, dominant

10

o

10 T T TTTTIT T T TTTTIT T T TTTTIT T T TTTTIT T T TTTTIT T |||||||| T |||||||I T T TTTT
10 e Proton
) == Alpha
1O — ++ Oxygen
< 10 o~ Neon
= 10°
o’ 107
£ 10°®
é 10°
=107
L
10
102

4
w

10" 10 10 10° 10° 10° 10° 10° 10
Kinetic Energy (MeV)

Figure 2: Particle flux as a function of kinetic energy at GEO for protons, alphas,
oxygen, neon, and iron [35].

effect on the behavior of devices during space flight.

Results in this thesis are compared over ranges of energies found in space and
consistent with ground test facilities. Particle energies found in space are not obtain-
able by test facilities so a lower range is used to predict the on-orbit response of a
microelectronic device. Energies consistent with ground test facilities cover the lower
range of figure 2, typically from 15-50 MeV /u, with a max of around 200 MeV /u ob-
tainable at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan

State University [3], for Z > 1 and 3-200 MeV for protons.

11

Radiation Effects

Ionizing radiation from particles found in the natural space environment can con-
tribute to total-dose damage, single-event effects, and displacement damage. Protons
are accountable for all types of damage while electrons cause total-dose and displace-
ment damage and heavy ions cause single-event effects (SEE). Total-dose damage
occurs over the lifetime of the device and is due to changes in the materials from
radiation [36]. Displacement damage also occurs over the lifetime of the device and
is a result of atoms being knocked out of their lattice sites, creating defects in the
materials that make up the device [31].

An SEE is a localized interaction of a single ionizing particle which occurs at
random and can have an immediate impact on the device response [37]. SEEs are
the result of energy deposition within the materials of a device which contribute to
a change in the device’s charge. One type of SEE is a single-event upset (SEU). An
SEU can be a transient, permanent, or static error [37]. The likelihood an SEU will
occur in a space environment is commonly given in a rate of errors/bit/day. The
focus of this thesis is on SEUs and energy deposition (charge generation) within a

stack of materials resulting from heavy ions and protons.

Energy Deposition

Energy deposition via ionization occurs by two manners: direct and indirect ion-
ization. Direct ionization occurs from reactions between the primary particle and the
material being penetrated until the particle comes to rest. When the particle hits
a material, some of its energy is transferred directly to the target material thereby

creating charged ions. In most devices, this type of ionization is the main mechanism

12

responsible for upsets from ions with Z > 1 [3].

Indirect ionization occurs by secondary particles and includes nuclear elastic and
inelastic reactions and screened Coulombic scattering. Secondary particles created
through indirect ionization can be much heavier than the original particle and there-
fore have the capability to deposit larger amounts of energy (or generate charge) [5].
In this thesis generated charge via ionization is tracked from all physical processes
from both direct and indirect ionization.

In the past, direct ionization from particles having a Z < 1 has been the focus
of simulation tools and models for on-orbit response. Previous tools (see table 1 for
examples) did not have the capability to track nuclear reactions in solids from heavy
ions (Z > 1), and the nuclear component (indirect ionization) was considered insignif-
icant. However, for newer technologies that are scaled to dimensions not previously
considered and contain materials that were not used in past semiconductor process-
ing, the indirect ionization plays a role that can not be ignored. This will be shown

in the subsequent chapters of this thesis.

13

CHAPTER IV

MODELING SCALED CMOS

Two stylized targets are used to investigate the device structure of a modern
complementary metal oxide semiconductor (CMOS) technology with a multilayer
metallization system, as seen in figures 3(a) and 3(b). They are multilayer stacks of
16 alternating oxides and metal layers of various thicknesses with lateral dimensions
for normally incident unidirectional simulations of 14 x 14 pym? and 50 x 50 pum? for
omnidirectional simulations. The sensitive volume (SV) for these structures is a 2 x
2 x 2 pm? silicon volume located beneath the metallization stack. Sensitive volume
refers to the region in which energy deposition (charge generation) must occur to
produce an upset. Use of the sensitive-volume concept allows rapid and convenient
estimation of the SEU sensitivity of circuits fabricated in a technology with multiple
overlayers; more accurate simulations that include detailed descriptions of device and
circuit response are possible [24].

The only difference between the two targets in figure 3 is a 600 nm thick layer
located 1.5 pm above the sensitive volume. In one structure, this layer is composed of
silicon dioxide, while in the other it is tungsten, which is commonly used in integrated
circuits to provide electrical connections between layers of metallization or in contacts
to the underlying silicon. Specific tungsten structures are commonly referred to by
function such as vias, plugs, studs, or interconnects. Tungsten is used because it
polishes nicely, deposits easily into high aspect ratio holes, and has low diffusivity.

Copper is also commonly used but has been shown to poison silicon if placed too

14

Si;N, 0.4 um
Si0; 1.0 ym
e
Al 0.84 ym
Si0, 0.60 um

. m
e

[0.25 um
Si3.2uym —uni
12.2 ym - omni. —— SV 2x2x2 uym?

14 ym - unidirecitonal simulations
50 um - omnidirectional simulations

EETINOA um %7777 Ti 0.1 uym

(a) with a tungsten layer

SizgN, 0.4 um
Si0; 1.0 ym
e

Al 0.84 ym

A

| - m
P

S8i0,08ym

i0.25 um
Sid.2uym -uni
12.2 ym - omni. SV 2x2x2 uym?

14 ym - unidirecitonal simulations
50 um - omnidirectional simulations

[TINOA um 7777 Ti 0.1 ym

(b) without a tungsten layer

Figure 3: Cross section representative of scaled CMOS structures (a) with a tungsten
layer and (b) without a tungsten layer. Lateral dimensions for normally incident
unidirectional simulations are 14 x 14 pm? and 50 x 50 um? for omnidirectional
simulations.

15

metal 5

Al alloy wire metal 4

Y metal 3

SiO,, interlevel dielectric (ILD)

¥ metal 2

;- B D, Diitass, I| € 18 metal 1
‘ I-Hl -

W contact transistor

W vial/plug I

Si substrate

Figure 4: High resolution image of CMOS device cross section with multilevel inter-
connects and tungsten vias [39].

near the sensitive region [38]. This becomes a larger issue as devices scale to smaller
dimensions and these high Z materials are pushed closer to sensitive regions. Figure
4 shows a high resolution image of a CMOS structure containing a tungsten plug.
The effects of the tungsten layer on the cross section for various energy depositions
will be shown throughout the next few chapters.

Using MRED, a series of simulations were performed using one of the two struc-
tures for a fixed ion with a defined energy, tracking the energy deposition via ioniza-
tion inside the sensitive volume from all physical processes. These energy deposition
events are histogrammed into logarithmically spaced bins. The output from MRED
is in energy deposited, which is then converted to charge generated by using 22.5
MeV for each 1.0 pC of charge (3.6 eV needed to generate an electron hole pair in

silicon [4] divided by the electron charge of 1.6 x 107! C equals 22.5 MeV/pC). The

16

integral cross section (o) for generating a charge (Q)) or greater can be determined

using the following summation:

Z'maac
%

U(Qa Z7 EZ) = i:ié (1)

where NN, is the number of events in the 4-th bin, i is the bin corresponding to charge
Q, %maz 18 the maximum bin, and ® is the fluence. It is important to note that o
depends on the ion (Z), ion energy (Ez), target geometry, and stoichiometry. The
fluence is computed by:

o= 2)

where Np is the total number of ions simulated and A is the irradiated area. The
method described above is analogous to the formulation developed for Monte Carlo
evaluation of proton-induced effects in [40] and references therein.

A better understanding of cross section can be obtained through a simple example.
Suppose a blind folded person throws darts at a dart board hung on a wall. The cross
section is then determined by the number of hits on the board divided by the total
number of darts thrown normalized by the area of the wall. The darts that hit the
dart board are analgous to the ions depositing energy into the sensitive volume and
the total number of darts thrown are analagous to the total number of ions simulated.
The area of the wall the darts are being thrown towards is analgous to the area of
the total structure on which particles are randomized over. Therefore cross section is
the probability of hitting a sensitive region (dart board or volume within a structure)

weighted by the area.

17

CHAPTER V

SINGLE-EVENT UPSET ERROR RATE CALCULATION

By calculating an SEU error rate, a prediction of a device’s on-orbit response can
be determined. In this chapter, an SEU error rate is calculated to determine how the
rate is effected when a tungsten layer is present. An SEU error rate for a specific ion

and device with critical charge @Q..;+ can be calculated using:

Ratespu(Z) =) 0(Qerits Z, Ez) * §(Z, Ez) ¥ AE; (3)

where ¢(Z, Ez) is the ion flux (from figure 2) and AF; is the energy bin width. The
total on-orbit rate is a summation of Ratesgpy over all ions of interest. For the rate
calculation, the integral cross section is computed using an omnidirectional ion fluence
randomized over 27 steradians of the exposed structure surface as depicted in figure
5. This type of fluence best represents a realistic space environment.

Figure 6 and figure 7 show the integral cross section as a function of energy of the
incident particle for four different amounts of generated charge. These simulations
were done using 60 ions incident on the structure with and without the tungsten
layer respectively.

The simulations in figure 6 follow, for the most part, the expected trend at fixed
incident particle energy (Fz): decreasing cross section for increased charge generation.
For all chosen values of generated charge (except 0.22 pC) the direct ionizing process
of the primary particle does not play an important role. For the 0.22 pC curve the

direct ionizing process dominates for low energy (< 100 MeV) oxygen ions. Also

18

R

\
e e e o e e e

. sv /

Figure 5: Omnidirectional simulations with the ion fluence randomized over 27 stera-
dians.

g 10-8§ BRRAY BRRAY BRRAY AARARE B
B 10°k pC Generated |
N of -00.22
510'1(); =80.67 E
~ i 44133]
c 101k *©1.78 E
o S : :
%10'12' E
w 10°F E
8 B G\E/E—-E—E/E'—E*"E'\a E
S P
@ 10-15§ :
(@)) C]
L 107"k E
[F 3
- -17[Ll Ll Ll Ll i

10 1 2 3 4 5
10 10 10 10 10
Energy of Incident Particle (MeV)

Figure 6: Integral cross section as a function of incident particle energy for oxygen
ions incident on the structure with W layer.

19

o

— 10 g T T TTTT T T T TTTT T T \\\\\' T T \\\H' g
5) 10 of e 0.22 pC Generated |
o~ =8 0.67 pC Generated
£ 10" .
o g E
1L N
ISR
% 10'1% E
w 10"°F E
8 14E :
5107 :
B 107°F E
(@)] C]
2 107% E
£ - ;

-17 1 \\\\\x Il \\\\\x Il \\\\\x Il \\\\\x

10
10’ 10° 10° 10" 10°

Energy of Incident Particle (MeV)

Figure 7: Integral cross section as a function of incident particle energy for oxygen
ions incident on the structure without W layer.

note the trend in low Ej cutoff for all charge generation (except 0.22 pC) is due
to the Coulomb barrier introduced between the incident oxygen ion and the target
materials. The Coulomb barrier is the energy barrier due to electrostatic repulsion
that two nuclei must overcome in order to get close enough to undergo reactions [41].
The Coulomb barrier cutoff is not evident in the 0.22 pC curve. For this case the
lowest energy events are due to screened Coulomb scattering and/or direct ionization.

Simulations in figure 7 also follow the expected trend. Notice only two charge
generations are plotted because all others were zero for all incident energies. The
integral cross section is also much lower for this structure for all incident particle
energies.

Figures 8 and 9 show the computed on-orbit SEU error rate as a function of critical

20

'
()}

-
o

'
»

S
-« MRED/Q_,/RPP
=aLET/Q_ /RPP

-
., O
4

crit

)

—
oI
(oo}

—
OI
©

—_

o
4
o

—

o
4
—_

-12

Rate (errors/day/SV
o

—_

o
4
w

—_
IS

—_

o
N '
(&)

05 1 1.5 2
Critical Charge (pC)

—
oI
o

Figure 8: SEU error rate for the structure with W layer computed using MRED and
a traditional RPP method. The inclusion of indirect ionization processes in MRED
increases the rate by nearly two orders of magnitude for critical charge > 0.65 pC.

charge for both structures compared with the rate computed using CREME96 [35].
Again, the critical charge, ()., is the minimum charge generation within the sensitive
volume required to produce an upset. The error rates are determined by Eq. 3, which
provides the rate of events that generate a charge greater than or equal to Q.-
The LET/Q..+/RPP rate (open symbols, Figs. 8 and 9) includes direct ionization
from all ions in space computed assuming a 2 x 2 x 2 um? rectangular parallelepiped
(RPP) and a single critical charge. This calculation was done with the traditional
method, i.e., single RPP and single critical charge, using CREME96 (the chord-length
model of SEU rate prediction implemented by Pickel and Blandford in 1978 [42]). The

chord-length model assumes a RPP and calculates the number of ions that generate

21

'
()}

-
o

'
»

S
-« MRED/Q_,/RPP
=aLET/Q_ /RPP

-
., ©
4

crit

)

—
oI
(oo}

—
OI
©

—_

o
4
o

—

o
4
—_

-12

Rate (errors/day/SV
o

—_

o
4
w

—
N

—_

o
iR '
(&)

05 1 1.5 2
Critical Charge (pC)

—
oI
o

Figure 9: SEU error rate for the structure without W layer computed using MRED
and a traditional RPP method. The traditional RPP rate method sufficiently predicts
the expected rate and direct ionization dominates.

sufficient charge to upset a sensitive region with an analytic chord-length distribution
and an integral LET distribution [6], [3].

The MRED rate (solid symbols, Figs. 8 and 9) is a sum of the individual values for
Ratespy in Eq. 3 for oxygen ions and alpha particles. This calculation includes direct
and indirect ionization computed using all physical processes defined in MRED and is
likewise computed assuming a 2 x 2 x 2 um® RPP and a single critical charge. Note
the LET/Q.rit/RPP computations include all ions in the space environment while
the MRED-based computations only include oxygen and alphas (the most frequently
occurring ions (Z > 1) in the space environment).

For the structure with the tungsten layer (Fig. 8), note that even though only

22

oxygen ions and alpha particles are considered, the SEU error rate is dominated by
indirect ionization for events that generate more than 0.65 pC; this is a lower limit
for the rate. Direct ionization dominates the SEU error rate below 0.65 pC. Since the
LET/Q:it/RPP method which includes direct ionization only is nearly two orders
of magnitude lower than the MRED/Q..;;/RPP rate which includes both direct and
indirect ionization, indirect ionization is the leading factor in the observable difference
between the two methods. Considering only the direct ionization component will
result in an underestimation of the SEU error rate by nearly two orders of magnitude.
This demonstrates that the classical SEU rate calculation techniques may not be
valid for technologies that have tungsten layers, or other high Z materials, near the
sensitive regions. Here we arbitrarily define high 7Z as materials with an atomic
number greater than silicon. This assumption to other high Z materials is valid
because the intranuclear binary collision model does not depend on nuclear structure
[23].

For the structure without the tungsten layer, direct ionization is the dominant
component. For this type of structure, the classical methods for computing the SEU
rate are valid. The difference seen between the two rate methods in Fig. 9, for charge
generations < 0.65 pC, is due to the inclusion of all ions in the LET/Q./RPP
calculation while MRED included only alphas and oxygen ions.

Fig. 10 compares the total SEU rate calculated by MRED for the two structures
directly. When the tungsten layer is present, the SEU rate is greater by a factor of 100
for certain critical charges. If the overlayers are not considered when calculating the

SEU rate, the resulting rate will be underestimated for events that generate between

0.65 and 1.75 pC.

23

[
oo With Tungsten Layer
10 - Without Tungsten Layer

—
o
LILBULLLLY |

-10

o o
IIII|'|T|'| IIIII|T|'| IIII|'|T|'| IIII|'|T|'|_AIIIII|'|'|'| IIII|'|T|'| IIIII|T|'| TTTT

(errors/day/SV)

@ 10"

1071°
10

Ra

-14

ERETTTY AR ATTTY ERRARRTTITY MRRARRTTITY ANARRRTTIT MR ARATIT MARANRTITT RN RTITT MACERRTTT

-15 !

0.5 1 1.5
Critical Charge (pC)

10

(@)
\o}

Figure 10: Total SEU error rate for both structures calculated by MRED. When the
tungsten layer is present, the calculated rate is orders of magnitude higher for critical
charges > 0.65 pC.

24

CHAPTER VI

CHARGE GENERATION FROM IONS

In this chapter, the effects of the structure, particle type, and particle energy
on the integral cross section for charge generation from normally incident particles
in described. Throughout this chapter, simulations were done using unidirectional
particle fluence and the location of the particles was randomized over the top surface

of the structure as depicted in figure 11.

e S S

Figure 11: Unidirectional simulations with the ion fluence randomized over the top
surface of the structures.

Charge Generation from Heavy Ions (Z > 1)

Figure 12 shows the integral cross section computed using Eq. 1 when 15, 25,
and 500 MeV/u oxygen ions are incident on the structure with the tungsten layer.
Energies of 15 and 25 MeV /u are representative of typical ground test energies and
500 MeV /u is the value where the peak flux is found in the space environment.

The dramatic decrease in the integral cross section from 10~7 to 107!2 c¢m?/SV
near 0.05 pC is due to the limited amount of energy that can be deposited from direct
ionization by the primary particle. In [1] this dramatic decrease is shown to be the
point where direct ionization falls to zero and nuclear reactions take over. Most of
the observable results in this plot are due to indirect ionization processes since direct
ionization only results in smaller amounts of charge generation as seen in [1].

Note that the integral cross sections for all energies are of the same order of
magnitude up to approximately 0.55 pC of generated charge. At higher amounts of
generated charge, the 15 and 25 MeV /u ions result in similar trends in cross section as
charge generation increases, approaching zero around 0.8 pC. However, simulations of
500 MeV /u ions shows that the cross section is nonzero until nearly 2 pC of generated
charged, after which the cross section falls rapidly. High energy testing is required to
capture the response of the circuit fully. This could have dramatic implications for
space flight applications of modern technologies tested at typical ground test energies
since many potential errors from high energy particles would not be considered.

In Figure 13 the comparison between typical ground test energies and the value
near the peak in the flux at GEO is extended to neon for the structure with the
tungsten layer. As with the oxygen ions, the cross section falls rapidly for 15 and

25 MeV /u ions at a much lower amount of generated charge than for the 500 MeV /u

26

10 \ 3
& 10% . 15 MeV/u* -
210 o 25 MeV/u*
£ 10 x 500 MeV/u
E/ 10-10 * typical ground test energyé
2 jo .
3
» 107%F 2
7 JPPe Ll 4
s 10 = Y
- A
O 10"k % ‘., E
© -15(C |
5,10 F e 4 E
S, 1sf ‘o A ;
E 10 ? e O A A E
- 7L \ \ \ \]
107 0.5 1 15 2

Charge Generated (pC)

Figure 12: Integral cross section for 15, 25, and 500 MeV /u oxygen ions on
the structure with W layer. High energy testing is required to fully capture
the response of the circuit.

__ 107 \ —
5 10 . 15 MeV/u* -
O 10°% eviu
NS ok o 25 MeV/u*]
£ 107% s+ 500 MeV/u
T:’ 10-10 - * typical ground test energyé
2 10" 3
O L= E
O 12 i
wm 10 E
g -13[Aa 4
o 10 E AAAAAAA E
S 14 _

150 o) A o
= 10 "E * 0
8 16 e Do ‘ N
€ 10 : 3

-17(\ \ \ \]

107 0.5 1 15 2

Charge Generated'(pC)

Figure 13: Integral cross section for 15, 25, and 500 MeV /u neon ions on the
structure with W layer. High energy testing is required to fully capture the
response of the circuit.

27

10 | 3
0k - 15 MeV/u*

of o 25 MeV/u*]
1074 + 500 MeV/u 7

* typical ground test energy

|

—

ol

—
o:
TTTTTm
|
L

Integral Cross Section (cmz/SV)

107 :
10-14%’ .. é
107 3
_ - ADe]
101% @ 3
-17LC | | | | 1
10 g 0.5 1 15 2

Charge Generated (pC)
Figure 14: Integral cross section for 15, 25, and 500 MeV/u oxygen ions on the

structure without W layer. When the W layer is not present, typical ground test
energies sufficiently estimate the expected on-orbit response.

ions. Once again, considering only ground test energies will result in an underestima-
tion of the expected cross section in a real space environment. In [1], the implications
of this effect for understanding ground-based measurements on a CMOS SRAM are
discussed.

When the tungsten layer is not present, as seen in figure 14 and figure 15, the cross
section remains of the same order of magnitude for nearly all amounts of generated
charge for the 15, 25, and 500 MeV /u oxygen and neon ions with the 500 MeV /u cases
falling well below the other two. Thus, for a circuit lacking high Z materials (e.g.,
tungsten) in the overlayers, the typical ground test energies would be sufficient to
estimate the cross section. This result will be sensitive to the geometry of the target.

As described in [24], the location of the high Z material relative to the sensitive

28

10 w 3
o~ 9 o 25 MeV/u B
£ 10 + 500 MeV/u 7
T:’ 10-10 . * typical ground test energyé
._g 10™ -
O Y E
O 12 i
w10 E
0 43[4
2107
O 10™E ¥ E
—_ E o°* E
% 107"°F gt E
..q_.') 10'16; %;AA ;
c
- 10-17’ \ \ \ \]
0 0.5 1 1.5 2

Charge Generated (pC)

Figure 15: Integral cross section for 15, 25, and 500 MeV /u neon ions on structure
without W layer. When the W layer is not present, typical ground test energies
sufficiently estimate the on-orbit response.

volume will have a significant effect on the amount of charge generated.

Charge Generation from Protons

Figure 16 shows a comparison between incident protons at three space energies.
When comparing these curves we find there is little variation in cross section between
the more energetic particles. Also, the cross section approaches zero at a much lower
amount of generated charge than it does for the heavy ions. At 500 MeV/u, the
cross section from heavy ions falls rapidly around 2 pC of generated charge, while for
protons, this occurs at approximately 0.45 pC.

Figure 17 shows a comparison between the structure with and without the tung-

sten layer at 15 and 500 MeV /u protons. There is an insignificant effect on the cross

29

-
(=]

—
oI

S
2 2 500 MeV
= + 5GeV E
o)
12 i
510
g g i
n 10°F 3
8 -]
(@] 14| ﬁﬁAA |
5 10 ¢ ® S0Aa, 3
- % “oAa ;
(_U - O. DSA]
510'15? ° EIAA =
o : ° Opa]
E r [O N]
10—16 \ \ \ \ ‘ \
0 0.1 0.2 0.3 0.4 0.5

Charge Generated (pC)
Figure 16: Integral cross section for protons at 15, 500, and 5000 MeV /u for structure

with W layer. There is little variation in the cross section between the more energetic
particles.

section when the tungsten layer is added. This is much different than the results
observed above for the heavy ions where the tungsten layer made a significant differ-
ence in the cross section. The lack of strong dependence on the material is due to
the limited energy and momentum transfer possible by protons compared to heavier
ions. This result is structure dependent and may not hold true for other structures.
Schwank, et. al. [43], saw a difference in cross section when comparing 200, 350, and
500 MeV protons on a tungsten structure. As observed by Kobayashi, et. al. [24], the
location of the tungsten will determine if the events will generate charge the sensitive

volume.

30

. 10-10 T \ ‘ E
= | With W Layer 5
L g o 15 MeV -
g o 500 MeV 1
2 Without W Layer .
§ « 15MeV
Sl P O0OMeV
w10 ¢
3 i :
2 oL “te 3
S = % ﬂa_
C—E C 1’ E‘E‘li' :
>10"°F @ K :
g0 5 o |
= 10716 * | ‘ ‘ '
0 0.1 02 03 04 05

' Charge Generated (pC)

Figure 17: Integral cross section for protons at 15 and 500 MeV /u for both structures.
There is little variation in the cross section when the tungsten layer is present.

Ion Species Comparison

Figure 18 makes a comparison of the integral cross section for protons, alphas,
oxygen, neon, and iron ions at 500 MeV /u for the structure with the tungsten layer.
Oxygen and neon have roughly the same cross section at all amounts of generated
charge, while the iron ions have a cross section two to three orders of magnitude
larger at higher charge generations. Protons and alphas have a cross section several
orders of magnitude lower than the other ions at nearly all charge generations. When
referring back to figure 2, we see that while iron ions are the least abundant in space
of the particles presented here, it is only by a factor of 4 less than neon ions. Since
their cross section is much larger at certain charge generations, they could play a

significant role for devices with larger critical charges.

31

__ 10 T3
5 10° o Proton]
B 108 . Alpha 7}
-o%]

£ 1078 - Oxygen *

Z 10" ~ Neon 4
5. .4 s dron
48' 10 §

» 107° E
7)) 13 ******* i

g 10 ¢ '%%%AAI* T " :

= 44F « .2]

9 1014? ':;‘:} " ..?A * " . ‘%
© , 15[* A ’

=10 "F *e) * 3

8 —165 986 %esee .2]

c 10 ¢ © " E

- 10-17: \ \ \ \ .

0.5 1 1.5 2 2.5

Charge Generated (pC)
Figure 18: Integral cross section for oxygen, neon, and iron at 500 MeV /u for the

structure with W layer. The heavier ions have a large cross section for greater amounts
of generated charge.

Figure 19 makes a similar comparison as figure 18 but on the structure without
the tungsten layer. When the tungsten is not present, all heavier ion cross sections
are within an order of magnitude. Protons are approximately one order of magnitude
lower in cross section. The role the tungsten layer plays on charge generation becomes
very apparent through the comparison of figure 18 and figure 19. When no tungsten
layer is present, the ion type makes very little difference in the cross section at all

charge generations.

32

__ 10 T3
S o o Proton]
S + Apha 7
5 " - Oxygen 1
10 > Neon |
O * |ron ;
5 10 3§ E
q) _12 .
o 10 :
@B 13N §
10 ¢
@) 10-14? ‘%
© 10-15% é
(@) E 3
() 16 a’ o N
c 10 ¢
- 7L \ \ \ \ L

10 g 0.5 1 15 2 25

Charge Generated (pC)
Figure 19: Integral cross section for oxygen, neon, and iron at 500 MeV /u for the

structure without W layer. The incident ion type makes an insignificant difference
on the cross section.

33

CHAPTER VII

CHARGE DEPOSITION IN OTHER STRUCTURES

In this chapter, the methods described above are used to investigate charge gener-
ation in a modeled SOI technology by ions abundant in space. Comparisons are made
over ion species and energy. For protons, results are compared from the Bertini and
binary cascade models in Geant4 with equivalent results from the Clemson University

Proton Interactions in Devices (CUPID) code.

SOI Structure with Overlayers

Simulation of a modeled SOI device was done using the identical overlayer de-
scription used for the scaled CMOS simulations discussed in the previous chapters;
however, the sensitive volume size was changed to 2.5 x 10 x 0.098 pum? to represent
the thinner sensitive volume found in SOI technologies, see figure 20. Figure 21 com-
pares oxygen ions at 15, 25, and 500 MeV /u for the SOI structure with the tungsten
layer. As with the scaled CMOS structure, the low energy ions (representative of
ground tests) have a much lower cross section than the more energetic, space-like
ions. So again, considering only the ground test energies is not sufficient to predict
on-orbit performance.

When comparing the SOI structure with and without the tungsten layer for oxygen
ions at the flux maximum as in figure 22, the results are consistent with the CMOS
structure in that the tungsten layer plays a much smaller role in determining the cross

section below 0.5 pC. Note that the cross section above the 0.5 pC level has very poor

34

Si;N, 0.4 um
Si0; 1.0 ym

)

Al 0.84 ym

Si0, 0.60 um

)

Si3.2um SV 2.5x10x0.098 pm?

14 ym
TiINO1um 777 Ti0.1pum

Figure 20: Modeled SOI device with overlayers.

__ 10”7 3
> 8 N
@ 10 - 15MeV/u 73
NE 109 o 25 MeV/U é
S 4+ 500 MeV/u 1
c 10 E
O L ;
g 10 :
n 10_12§ E
0 43 4
S0 ¢
O 10 E
g10_15%’ ‘L ,
O -16: - ALAAA A A A A a E
E 10 ? - A A E
= L A17L \ \ i
10 0.5 1

Charge Generated (pC)
Figure 21: Integral cross section for 15 and 500 MeV /u oxygen ions on SOI structure

with W layer. High energy testing is required to fully capture the response of the
circuit.

35

10 —
cz 107§ - With W Layer -
“e 10 o Without W Layer
(&) 3
N— _1 4
Qo i E
51
0 1072} -
0 430]
810 ¢
'S 10-14§ ;
© L 150]
€10 ¢ E

_17’ | .

1075 1

0.5
Charge Generated (pC)

Figure 22: Integral cross section for 500 MeV /u oxygen ions on SOI with and without
W layer. The W layer plays a small role in determining the cross section below 0.5
pC of generated charge.

statistics. This is due to the selected number of incident particles and the reduced

feature size of the SOI technology.

Simple SOI Device

In this section a comparison between MRED and output published in [2] from
the CUPID Monte Carlo code is presented. The target used for this comparison is
a rectangular parallelepiped (RPP) composed entirely of silicon with a high aspect
ratio sensitive volume (2.5 x 10 x 0.098 pm?) in the middle of a larger surrounding
volume (22 x 30 x 20 pum?®) representing a simple SOI device, see figure 23. This
structure was used to investigate charge collection volumes that have one dimension

much smaller than the others and is identical to that used in [2]. For this analysis,

36

gpe . 15
Sensitive Volume

25x10 xl0.0QB pm?
L7

Surround
22 x 30 x 20 ym?

Figure 23: Simple SOI device cross section and angle of incident references.

63 and 200 MeV protons were simulated on the silicon RPP target for a range of
incident angles on the large surrounding surface.

Figure 24 shows the integral cross section for incident projectile angles of 0 and 90°
computed with MRED (using binary and Bertini intranuclear cascade models) and
CUPID for 63 MeV protons. The binary cascade model is a theoretical model while
Bertini is based on empirical data. Zero degrees corresponds to the particles incident
normal to the 22 x 30 pum surface, and rotation to 90° was done consistent with that
in [2]. There is good agreement between all models at 90° but poorer agreement at
0°. The two MRED models compared show good agreement for both angles. The
CUPID cross sections are slightly lower than those calculated from MRED for energy
depositions > 0.4 MeV.

In figure 25 a comparison is made for 200 MeV protons for angles of 0 and 90°. As
with the 63 MeV protons, there is better agreement in the models at 90°. Comparing
the 63 and 200 MeV protons shows there is less of a difference in cross section between

the varying angles for the 200 MeV protons.

37

__ 1078 ‘
7 °]
o 107§ - Bertini -
£ ’ o Binary Cascade]
=107 + CUPID .
o 0 1
'-8 10-13: 90 o |
o) o B_ertlnl
cg el P R = Binary Cascade 1
¢ 10 . s CUPID E
o i s]
O o15L 4]
© 0 A% % E
S, 16| A“:E%mm L®ee]
'.q_') 10 ? AM. A @]]]]] |} ?
c E]
- 10-177 \ \ \ \ 1

0 10

2 4 6 8
Energy Deposited (MeV)

Figure 24: Integral cross section for 63 MeV protons on the RPP target. A comparison
between CUPID and two MRED models: binary cascade and Bertini.

—h
oI

* Bertini
o Binary Cascade

+ CUPID

(o]

—h
oI

10 o Bertini
= Binary Cascade

~ CUPID
10

Integral Cross Section (cmz/SV)

—_
o

2 4 6 8
Energy Deposited (MeV)

Figure 25: Integral cross section for 200 MeV protons on the RPP target. A compar-
ison between CUPID and two MRED models: binary cascade and Bertini.

38

CHAPTER VIII

CONCLUSION

Computations using MRED (a code based on a modified Geant4 toolkit) showed
that, for heavy ions incident on a structure including a tungsten layer, there is a
range of energies where failure to consider all physical processes results in a signif-
icant underestimation of events that have the potential to produce errors. If the
traditional RPP methods that consider only direction ionization are used for SEU
error rate prediction on structures containing tungsten, the on-orbit SEU rate will
be underestimated by orders of magnitude. When the tungsten layer is replaced by
5109, the traditional methods will sufficiently estimate the rate.

Computations performed for a selection of heavy ions abundant in the GCR spec-
trum were given, demonstrating that heavy ion atomic and nuclear scattering events
can dominate on-orbit performance. This result has significant implications for test
methods and rate prediction approaches. For certain structures in which a tungsten
layer is present, the cross section increases by several orders of magnitude for certain
charge generations from heavy ions. Typical ground test energies (< 25 MeV /u) were
shown to be insufficient to predict the space performance for structures with tungsten
layers.

The integral cross section was shown to depend on particle type, energy, and
the structure which it strikes. Proton-induced charge generation in the structures
considered in this work did not depend significantly on the presence of tungsten in

the overlayers. This is not necessarily a general result; other structures may show

39

sensitivity to tungsten if it is placed closer to the sensitive volume. Charge generation
from various ions were compared that showed a greater variance in the cross section
for the structure with tungsten. When the tungsten was not present, the cross section
had little variation between the varying ions.

A structure representative of an SOI technology had similar dependence on the
presence of a tungsten layer: large charge generations were not observed in these
structures. Also, results from the MRED application were shown to agree with earlier

Monte Carlo simulations on similar targets for two proton energies at various angles.

40

Appendix A

EXAMPLE MRED INPUT FILES

These examples include only those commands of interest to the work in this thesis
and should be used as a reference only. Note that many other commands are available
in MRED and input files for future versions of the application will appear differently.
Comments are denoted by a # at the beginning of the line. Some comments come

directly from the example initialization file provided by MRED’s creators.

Initialization File - init.ed.in

Example initialization file for MRED when running in the interactive mode.
Physics, target and visualization are defined in other files which follow within this

appendix and are pointed to by the initialization file.

Example init file for MRED

Sets some default verbose states
/control/verbose 2
/control/saveHistory

/run/verbose 2

Standard physics is Screened Scattering, NucleonInelasaticD, the binary cascade
and IonlInelastic
/control/execute Std.Physics.in

These statements define the target geometry.
Three alternatives are illustrated.
/control/execute Std.Target.CMOSB.in

The following command can be executed to escape to a command line
and modify any of the Prelnit commands above before proceeding.

Type "exit" to continue the script.

/control/tcsh

41

Initializing freezes the physics and geometry for the rest of the run
/run/initialize

Include OpenGL visualization or not.
/control/execute Std.Vis.in

These control the particle, energy and type of irradiation
/gun/default
/gun/direction 0 0 1

/gun/particle ion
/gun/ion 8 16
/gun/energy 100 MeV
/gun/randomFlux true

Set the follow two commands to true for hemispherical runs
/gun/randomIsotropic false
/gun/randomHemisphere false

These commands control biasing of hadronic interactions

The default bias factor is 1 and the argument must be positive.
Values larger than 1 increase the rate of hadronic events.
Values between 0 and 1 suppress them. Another command, controls
the "primary only" flag. However /physics/setBiasPrimaryOnly

should always be true under normal conditioms.
/physics/setBiasFactor 200.0

/physics/setUseWeighting true

/physics/printBiasFactor

/physics/snr/setMFPScale 500.

H B H HH

These control the output filters
/output/filterEvents false
/output/showFilter

These set file outputs on or off
/output/writeHistogramFile true

These control the number of events

/output/progressInterval 100000

A batch file can either exectute a series of runs or drop into a terminal.
A terminal is always invoked after the default initialization file.

/run/beamOn 1000000

-Or open a command line.
/control/tcsh

42

Physics File - Std.Physics.in

This is the "standard” phsyics file used for the work in this thesis.

29/Jan/2005

This file contains the commands that set up the physics for a simulation.

It includes both the commands that have to be issued at Prelnit time and
those that are needed to establish a default condition.

The following commands set up the Vanderbilt custom physics list.
These statements set optional physics processes. Transportation and
decay are mandatory and not exposed to user interface commands.

H# H H#

HH+

Select one EM process from the following list. "Standard" is Geant4 standard
EM physics. "StandardScreened" is the same except that the VU screened
Coulomb scattering is added for ions. "LowEnergy" is a simple Geant4

low energy EM physics implementation without screened scattering.
"EmLowEnergyQED" and "EmPenelopeQED" include screened scattering for ions
and were intended to be the most comprehensive, using Geant4 low energy
and Penelope physics respectively. As of this writing, StandardScreened
appears to have a more compelling treatment of ion stopping and is faster.
Therefore, it is selected as the default for most semiconductor device
applications pending improvements in the Geant4 low energy and Pendelope
code.

H o H o H HH H R HR

#/physics/addPhysics Standard
/physics/addPhysics StandardScreened
#/physics/addPhysics LowEnergy
#/physics/addPhysics EmLowEnergyQED
#/physics/addPhysics EmPenelopeQED

These are for elementary particles. Normally use them all.

/physics/addPhysics HadronElastic
/physics/addPhysics HadronInelastic
/physics/addPhysics PiKInelastic

The following are alternative physics lists for nucleons. The main ones are
"NucleonInelastic" and the "B" and "C" variants. "Nucleonlnelastic" uses
the binary cascade and high precision neutron code. The "B" variation also
uses the high precision neutron code but uses the Bertini cascade. Finally,
the "C" variant uses the Bertini cascade and standard neutron physics.

H H H H

#/physics/addPhysics NucleonInelastic
#/physics/addPhysics NucleonInelasticB
#/physics/addPhysics NucleonInelasticC
/physics/addPhysics NucleonInelasticD
#/physics/addPhysics Binary
#/physics/addPhysics BinaryLE

43

#/physics/addPhysics HPBinaryLE
#/physics/addPhysics Bertini
#/physics/addPhysics BertinilE
#/physics/addPhysics HPBertinilE

These are the ion-ion nuclear reaction modules. IonAbrasion is the code

from Qinetiq. For most of our applications our older IonInelastic is

identical. IonAbrasionEMD is the code from Qinetiq that includes

electromagnetic dissociation. This was broken as of Geant4.6.2.p02 and

should not be used, since it’s only valid significantly above our usual

energy range anyway.

/physics/addPhysics IonInelastic
#/physics/addPhysics IonAbrasion
#/physics/addPhysics IonAbrasionEMD

Cuts may be modified after run initialization. A value here overrides the
hard-wired default of 100 nm.

/physics/setCuts 8. micrometer

Target File - Std.Target. CMOSB.in

This file defines the target geometry for MRED input. The example provided here

sets up the representative CMOS stack containing a tungsten layer.

HH+

16/Jan/2005

H#*

These statements define the geometry of the target designated CMOSB. It
has an tungsten layer, where CMOSA has Si02.

The first layer is a full definition. Setting the number of layers after
defining the first layer propagates the lateral dimensions downward
with the default material and sensitivity turned off. Each layer below
should minimally define the thickness, material and sensitivity for
calorimeter layers.

H o H O B HH

#

/sample/setDeviceType rpp
/sample/setLayerPointer 1
/sample/setLayerX 14 micrometer
/sample/setLayerY 14 micrometer
/sample/setlLayerZ 0.4 micrometer
/sample/setLayerMaterial Si3N4
/sample/setLayerSensitive false
/sample/setNumberOfLayers 16

#

/sample/setLayerPointer 2
/sample/setlayerZ 1.0 micrometer
/sample/setLayerMaterial Si02

44

#

/sample/setLayerPointer 3
/sample/setlayerZ 0.1 micrometer
/sample/setLayerMaterial TiN

#

/sample/setLayerPointer 4
/sample/setlayerZ 0.84 micrometer
/sample/setLayerMaterial aluminum
#

/sample/setLayerPointer 5
/sample/setLayerZ 0.1 micrometer
/sample/setLayerMaterial titanium
#

/sample/setLayerPointer 6
/sample/setlLayerZ 0.6 micrometer
/sample/setLayerMaterial Si02

#

/sample/setLayerPointer 7
/sample/setlayerZ 0.1 micrometer
/sample/setLayerMaterial TilN

#

/sample/setLayerPointer 8
/sample/setLayerZ 0.45 micrometer
/sample/setLayerMaterial aluminum
#

/sample/setLayerPointer 9
/sample/setlLayerZ 0.1 micrometer
/sample/setLayerMaterial titanium
#

/sample/setLayerPointer 10
/sample/setLayerZ 0.6 micrometer
/sample/setLayerMaterial tungsten
#

/sample/setLayerPointer 11
/sample/setlayerZ 0.1 micrometer
/sample/setLayerMaterial TilN

#

/sample/setLayerPointer 12
/sample/setLayerZ 0.45 micrometer
/sample/setLayerMaterial aluminum
#

/sample/setLayerPointer 13
/sample/setlLayerZ 0.1 micrometer
/sample/setLayerMaterial titanium
#

/sample/setLayerPointer 14
/sample/setLayerZ 0.6 micrometer
/sample/setLayerMaterial Si02

#

/sample/setLayerPointer 15
/sample/setLayerZ 0.25 micrometer
/sample/setLayerMaterial silicon
#

/sample/setLayerPointer 16

45

/sample/setLayerX 2.0 micrometer
/sample/setLayerY 2.0 micrometer
/sample/setlayerZ 2.0 micrometer
/sample/setLayerMaterial silicon
/sample/setLayerSensitive true

#

/sample/setSensitiveDepth O micrometer
#

/sample/setWaferX 14 micrometer
/sample/setWaferY 14 micrometer
/sample/setWaferZ 9 micrometer
/sample/setWaferMaterial silicon
/sample/setWaferOffset 0 micrometer
#

/sample/setWorldRadiusFactor 1.1

#

Visualization File - Std.Vis.in

This file provides visualization for the MRED appliation so the user can see the
target and the reactions created by incident particles. Visualization was used for

debugging purposes.

6/Jan/2005

__
These statements set up standard visualization.

They are not needed for batch runs on Vampire and should be

commented out when running there.

Never use the built-in commands vis/scene/add/volume and

vis/scene/add/trajectories. The latter bypasses the code

in EndOfEventAction and writes trajectories for events that

have been rejected as invalid.

create empty scene
#/vis/verbose 0
/vis/scene/create

Create a scene handler for a specific graphics system
(Edit the next line(s) to choose another graphic system)

Dawn file creation
#/vis/open DAWNFILE

/vis/open OGLIX 500

#/vis/viewer/flush

46

for drawing the tracks

(if too many tracks cause core dump => storeTrajectory 0)
/tracking/storeTrajectory 0

/vis/scene/end0fEventAction accumulate

/vis/viewer/zoom 1
/vis/viewer/set/viewpointVector -1 0 0
#/vis/viewer/set/style surface

/vis/viewer/set/style wireframe

47

Appendix B

PYTHON SCRIPTS FOR PARRELLEL MRED APPLICATIONS

The following are a series of files used to duplicate MRED runs and distribute the
jobs in parallel on a high performance computing cluster. All files were developed by
Dr. Marcus Mendenhall at Vanderbilt University Free Electron Laser Lab for support
of this and future work. Following the section titles will be a brief description of each

file then the python code contained within the file.

splitrun.py
This file is the low-level workhorse that handles the division and submission of
jobs onto the computing cluster. It handles all the necessary bookkeeping and creates

the commands that will do the actual submission. Script was written by Marcus

Mendenhall.

#!/usr/bin/env python

"MngTd: splitrun.py,v 1.53 2005/07/01 17:24:27 marcus Exp $

splitrun handles division of jobs on vampire.

It runs itself as a script with various functions depending on the first argument
(see code at the bottom). The main user functions used when it is imported are
splitrun_binary(), splitrun_batch(), summarize_histograms() and
summarize_batch_histograms()."""

_CVSVers="$Id: splitrun.py,v 1.53 2005/07/01 17:24:27 marcus Exp $"

import sys
import os
import time
import cPickle
import base64
import types

def splitrun_binary_tree(runvars):

"splitrun_binary_tree is the working kernel of splitrun_binary, and only for
internal use"

48

import base64

import cPickle

import os
nodelist=runvars[’nodelist’]

pids=[]

#pick off processes assigned to run locally and to launch via rsh from here
thisnode=nodelist [0] [1]
localruns=[x for x in nodelist if x[1] == thisnode]
for x in localruns: #take them out of the main list
nodelist.remove (x)

and we will start first 10 from here, too
localruns += nodelist[:min(10, len(nodelist))]
del nodelist[:min(10, len(nodelist))]

#split any remaining process launches recursively onto some other processors
half=len(nodelist)//2
for nodes in (nodelist[:half], nodelist[half:]):
if nodes:
node=nodes [0] [1]
runvars[’nodelist’]=nodes
runstring=
> ?.join(baseb4.encodestring(cPickle.dumps (runvars,-1)).split())
#convert all white space to spaces
command=’python ’+__file__+" split_binary "+runstring
result=
os.spawnl(os.P_NOWAIT,"/usr/bin/rsh","/usr/bin/rsh" ,node, command)
pids.append(result)

#now, execute local and direct rsh launches
for index, node in localruns:
runvars[’index’]=index
runvars[’node’]=node
command="%s &> %s"%(runvars[’baseCommand’] % runvars,
runvars[’base0Qutfile’] % runvars)
if node == thisnode:
result=
os.spawnl (os.P_NOWAIT, ’/bin/bash’, ’/bin/bash’, ’-c’, command)
print "locally running ", command
else:
result=
os.spawnl (os.P_NOWAIT,"/usr/bin/rsh","/usr/bin/rsh" ,node, command)
print "running on node ", node, command

pids.append(result)
while pids:
done, stat=os.waitpid(-1, 0)

pids.remove(done)

def splitrun_binary(baseCommand=None,
baseQutfile=None, sleepTime=1, extra_keys={},**kwargs):

49

"""ryninfo=splitrun_binary() splits a run over multiple processors.
%(isotime)s is replaced with yyyymmdd.hhmmss
%(index)d is replaced with a sub-process index.
%(node)s is replaced with the vampire node name on which this process ran
any keys in extra_keys or anywhere else are also available for subst. in command
and outfile strings. It returns a list with information about the subprocesses."""

isotime=time.strftime ("%Y%m%d.%H%MY%S")

#merge old-style extra_keys dict into generic keywords
kwargs.update(extra_keys)
del extra_keys

runvars=locals().copy()
runvars.update (kwargs)
del runvars[’kwargs’] #and delete redundant nested copy

nodelistname=os.environ[’PBS_NODEFILE’]
f=open(nodelistname, ’r’)

runinfo=[]

nodelist=[]

for index, nodes in enumerate(f):
node=nodes.strip()
rundict={’index’: index, ’isotime’: isotime, ’node’:node }
rundict.update(kwargs) #pick up all keys from parent, too
command="%s &> %s"% (baseCommand % rundict, baseOutfile % rundict)
runinfo.append((rundict,0,baseCommand % rundict,basefutfile % rundict))
nodelist.append((index,node))

f.close()
runvars[’nodelist’]=nodelist

splitrun_binary_tree (runvars)
return runinfo

def splitrun_batch(template=None, nCopies=5, finalTask=None,
jobName="RUN.%(isotime)s.%(index)03d", parameterDictList=[],
cleanupName="RUN.%(isotime)s.END", sanitize_extra_keys=1,
make_killer_script=1, **extra_keys):
splitrun_batch() splits a run over multiple processors in separate batch
jobs, and queues a dependent batch job (if desired) to run at the end,
which gets info about the runs.
%(isotime)s is replaced with yyyymmdd.hhmmss
%(index)d is replaced with a sub-process index.
%(runVarsString)s is replaced with a pickled &
encoded copy of most of the run information, for use by finalTask,
typically any extra keys are also available for substitution in the
command and outfile strings.

Also, if parameterDictList is not empty, each run will receive
parameters from corresponding dict.

The main template can also contain a %(dictString)s declaration

20

which will be formatted with a base64 encoded pickle of the complete set
of variables to be passed to the run.

For easier use, the template J(variablesDict)s will be replaced
with the entire python command to decode the dictString i.e.
’cPickle.loads(base64.decodestring(<dictionary string data>))’.
Make sure that you have done import cPickle; import base64; before using this.
Using this, then, in a template running a python script (python -c "script..."),
the sequence vars=)(variablesDict)s;
will generate the code to assign all the variables to the dictionary ’vars’

if parameterDictList:
nCopies=len(parameterDictList)

isotime=time.strftime ("% Y%m%d.%H%M%S")

if sanitize_extra_keys:
#remove modules, functions, and private
names (beginning with _) from extra_keys
for k in extra_keys.keys():
if (
k [O] ==n_|| or
type(extra_keys[k]) in (
types.ModuleType, types.FunctionType, types.ClassType,
types.BuiltinFunctionType)
):
del extra_keys[k]

runvars=locals () .copy()
runvars.update (extra_keys) #merge this into runvars
del runvars[’extra_keys’] #and delete redundant nested copy
runstring=
> 7. join(baseb4.encodestring(cPickle.dumps(runvars,-1)).split())
#convert all white space to spaces
runvars[’runVarsString’]=runstring
runvars[’runVarsDict’]="cPickle.loads(base64.decodestring(’"+runstring+"’))"

joblist=[]
for index in range(nCopies):
rundict={’index’: index, ’isotime’: isotime }
rundict.update(extra_keys) #pick up all keys from parent, too
if parameterDictList:
rundict.update (parameterDictList[index])

rundict[’dictString’]=
7 join(base64.encodestring(cPickle.dumps (rundict,-1)) .split())
rundict[’variablesDict’]=("cPickle.loads(base64.decodestring(’"+
rundict[’dictString’]+"’))")

jobtries=3

while jobtries:
#the following line is slightly pathological, but probably useful

o1

#on vampire, tcsh is generally set up with more complete path
#support, so to find where the current copy of gsub lives,
#ask for its path via tcsh, and embed the result in the sh command
#line
send, recv, err=os.popen3(
"‘tcsh -c ’which gsub’‘ -V -N %s -" 7% (jobName % rundict),’b’,0)
send.write(template % rundict)
#send keyword-substituted string to gsub as batch file to run
send.close() #force EOF to trigger gqsub action
jobid=recv.read() .strip()
recv.close()
errmsg=err.read() .strip()
err.close()
if (not jobid) and errmsg: #only fail if got a message & no job id
print jobtries, errmsg
jobtries-=1 #count retries
time.sleep(5) #let scheduler logjam clear before trying again
else:
if errmsg: print "gsub warning issued: ", jobid, errmsg
joblist.append(jobid)
break #end retries on success

if finalTask:
jobtries=3
while jobtries:

send, recv, err=os.popen3(

"‘tesh -c ’which gsub’‘ -V -N
%s -W depend=afterany:%s - " % (cleanupName % runvars,
’:?.join(joblist)),’b?,0)

send.write(finalTask) runvars)

send.close() #force EOF to trigger qsub action

jobid=recv.read() .strip()

recv.close()

errmsg=err.read() .strip()

err.close()

if (not jobid) and errmsg: #only fail if got a message & no job id
print "CLEANUP", errmsg
jobtries-=
time.sleep(5) #let scheduler logjam clear before trying again

else:
if errmsg: print "gqsub warning issued on cleanup task: "

jobid, errmsg

joblist.append(jobid)
break

3

if make_killer_script: make_batch_killer(runvars, joblist)
return runvars, joblist #In case someone wants to use this

def make_batch_killer(runvars=None, joblist=None,
killerName="killbatch.%(runName)s.’ (isotime)s"):
"make_batch_killer(...) makes a script file with the appropriate command
to kill all jobs in a batch"
f=file(killerName % runvars, "w")

02

print >> f, '"qdel "," ".join(joblist)
f.close()

def splitrun(baseCommand=None, baseQutfile=None, sleepTime=1, extra_keys={}):
""gplitrun() splits a run over multiple processors.
It is superseded by splitrun_binary().
%(isotime)s is replaced with yyyymmdd.hhmmss
%(index)d is replaced with a sub-process index
%(node)s is replaced with the vampire node name on which this process ran.
nodelistname=os.environ[’PBS_NODEFILE’]
f=open(nodelistname, ’r’)
pids=[]
runinfo=[]
isotime=time.strftime ("%Y%mJd.%HAM/S")
for index, nodes in enumerate(f):
node=nodes.strip()
rundict={’index’: index, ’isotime’: isotime, ’node’:node }
rundict.update(extra_keys) #pick up all keys from parent, too
command="%s &> %s"%(baseCommand % rundict, baseOutfile % rundict)
result=
os.spawnl (os.P_NOWAIT,"/usr/bin/rsh", "/usr/bin/rsh", node,command)
#the ’-n’ option to rsh redirects stdin from /dev/null
pids.append(result)
print "starting run on node", node, result, command
time.sleep(sleepTime)
runinfo.append((rundict, result, baseCommand % rundict,
baseQutfile J rundict))

f.close()

while pids:
done, stat=os.waitpid(-1, 0)
print done, stat
pids.remove (done)

return runinfo

def summarize_histograms(runinfo=None, summary_path=’.’,
summary_template="summary.%(isotime)s.aida", filenameKey=’outFile’,
normalize=0, **args):
"""summarize_histograms() takes a runinfo list of the type produced by
splitrun_binary() and cycles through files in the outFile keyword of the
commands to find AIDA histograms. It sums all histograms with the same name
into a master copy, and writes a summary histogram file containing these

results"""

import AIDASupport

import AIDA

rundict=runinfo[0] [0]

dataTree=AIDASupport.AIDATree(os.path. join(summary_path, summary_template
% rundict), createNew=1, options="compress=yes")

histdict={}

for dict, pid, cmd, logfile in runinfo:

23

cmdlist=cmd.split()
#data file name follow outFile key
data=cmdlist[cmdlist.index(filenameKey)+1]
if not os.path.exists(data): continue#fprocess bailed & didn’t leave file
inputTree=AIDASupport.AIDATree(data, createNew=0, readOnly=1,
options="compress=yes")
objects=inputTree.list0bjectNames(".",0)
for obj in objects:
hist=inputTree.findTyped (obj)
if not hist or not isinstance(hist, AIDA.IBaseHistogram): continue
#apparently not any recognized histogram
if not histdict.has_key(obj):
histdict[objl=
dataTree.GetHistogramFactory() .createCopyTyped(obj, hist)
else:
histdict[obj].add (hist)

#scale the area of the histograms to all the counts that went into it,
including overflow and underflow bins
if normalize:
for hist in histdict.values():
sum=hist.sumAl11BinHeights()
if sum: hist.scale(1.0/sum) #don’t normalize empty hists!

inputTree.close()
dataTree.commit ()
return histdict #in case anyone wants to use it still

def summarize_batch_histograms (runvars) :
"""reformat the packed information in the encoded dictionary on command line
into runinfo-like structure and feed it to summarize_histograms()"""
runinfo=[]
for i in xrange(runvars[’nCopies’]):
runvars[’index’]=i
runinfo.append((runvars, 0, runvars[’template’]%runvars, None))

return summarize_histograms(runinfo=runinfo, **runvars)

if __name__==’__main__’:
import cPickle
import base64
#this is a creative way to dispatch an incoming command to various code in
#this module when it is run as a script
commands={
’split_binary’: splitrun_binary_tree,
’summarize_batch’: summarize_batch_histograms
}
if len(sys.argv) > 2 and sys.argv[l] in commands.keys():
runvars=cPickle.loads(base64.decodestring(’’.join(sys.argv[2:1)))
#this should be an encoded dictionary of everything
commands [sys.argv[1]] (runvars)
else:

54

print "don’t know what to do with command", sys.argv

runed_batch.py

This is the high-level file that tells splitrun.py (above) what to do. It handles the

command line arguments. Script was written by Marcus Mendenhall.
#!/usr/bin/env python
print "$Id: runed_batch.py,v 1.7 2005/04/06 14:26:45 marcus Exp $"

def getFlag(tag=None, default=None, datatype=int):
"""oetFlag() extracts a keyword/value pair from sys.argv (w/o equals sign)
and returns it, handling type conversion and defaulting. \n
Datatpe=None returns a boolean which requires no
value for the keyword, just its presence."""

try:
countpos=sys.argv.index(tag)
gotit=1

except:
gotit=0

if datatype is None:
if gotit: del sys.argv[countpos]
result=gotit
elif gotit:
result=datatype(sys.argv[countpos+1]) #return converted token
del sys.argv[countpos:countpos+2]
else:
result=default
print "flag ", tag, "=", result
return result

import sys
import os

import splitrun

#variable naming here is important... parameters which are used directly as

keyword arguments by splitrun_batch must have the correct names assigned here,
#since these variables are passed through as a **kwargs dictionary to
#splitrun_batch

runName=getFlag(’runName’, ’default_output’, str)

runTime=getFlag(’runTime’, 120, int)

nCopies=getFlag(’nCopies’, 5, int)

#these variables are particular to actual running program, and handled opaquely
by splitrun_batch

targetFile=getFlag(’targetFile’, ’Std.Target.BAEA.in’, str)

physicsFile=getFlag(’physicsFile’, ’Std.Physics.in’, str)
inputTemplate=getFlag(’inputTemplate’, ’BatchIn.in’, str)

95

beamZ=getFlag(’beamZ’, 1, int)

beamA=getFlag(’beamA’, 1, int)
biasFactor=getFlag(’biasFactor’, 200, float)
nIons=getFlag(’nIons’, 10000, int)
beamEnergy=getFlag(’beamEnergy’, 100, float)
angle=getFlag(’angle’, ’0’, str)
filterEvents=getFlag(’filterEvents’, ’Std.Filter.in’, str)

os.environ["MRED_MMAFILE_DEST_DIR"]=runName

if os.path.exists(runName):
if not os.path.isdir(runName) :
raise RuntimeError, "Cannot create directory for run data...name exists
and is a file"
else:
os.mkdir (runName, 0750) #create directory group readable, world invisible

template="""

#PBS -1 nodes=1

#PBS -1 walltime=%(wallTime)d
#PBS -1 cput=Y,(wallTime)d

All output goes to the same file
#PBS -j oe

cd $PBS_DO_WORKDIR
cat %(inputTemplate)s | \
python -c "import sys; import cPickle; import base64;
print sys.stdin.read() %% %(variablesDict)s" | \
./mr.ed -s output.’(isotime)s.’ (index)03d Interactive.in &>
%(runName)s/output.’(isotime)s.% (index)03d.txt

#passed_variables is a dictionary of most of our local variables, which will be
#passed as anonymous keyword arguments to splitrun_batch

#if there are local variables you do not want to pass on, delete them from this
dictionary

passed_variables=locals() .copy()

#for example, del passed_variables[’foo’] if local variable foo is not useful
to running program

splitrun.splitrun_batch(
summary_path= runName , wallTime=runTime+60,
**passed_variables

BatchlIn.in
This file is a modified MRED input file that accepts arguments given to it by

runed_batch.py (see above). This script was modified for use with the above python

o6

scripts by Marcus Mendenhall.

Sets some default verbose states
/control/verbose 2
/control/saveHistory

/run/verbose 2

Initializing freezes the physics and geometry for the rest of the run
/run/initialize

/gun/default

/gun/particle ion

/gun/ion %(beamZ)d % (beamA)d
/gun/energy 7%(beamEnergy)f MeV
/gun/randomFlux true

Set both to false for unidirectional runs
Set both to true for omnidirectional runs.
/gun/randomIsotropic false
/gun/randomHemisphere false

/physics/setBiasFactor J(biasFactor)f
/physics/setUseWeighting true
/physics/printBiasFactor
/physics/snr/setMFPScale 500.

These set file outputs on or off
/output/writeSeedFile false
/output/writeEnergyFile false
/output/writeTrackFile false

/output/writeHistogramFile true

These control the number of events
/output/progressInterval 100000

/run/beamOn %(nIons)d
exit

o7

Interactive.in
This file starts MRED in the interactive mode so it can then accept commands

passed to it from BatchIn.in by runed_batch.py.

Command used to send MRED into interactive mode.
/control/tcsh

o8

REFERENCES

[1] K. M. Warren, R. A. Weller, M. H. Mendenhall, R. A. Reed, D. R. Ball, C. L.
Howe, B. D. Olson, M. L. Alles, L. W. Massengill, R. D. Schrimpf, N. F. Haddad,
S. E. Doyle, D. McMorrow, J. S. Melinger, and W. T. Lotshawand, “The con-
tribution of nuclear reactions to single event upset cross-section measurements
in a high-density SEU hardened SRAM technology,” IEEE Trans. Nucl. Sci.,
Manuscript in press for the December 2005 issue.

[2] R. A. Reed, P. W. Marshall, H. S. Kim, P. J. McNulty, B. Fodness, T. M. Jordan,
R. Reedy, C. Tabbert, M. S. T. Liu, W. Heikkila, S. Buchner, R. Ladbury, and
K. A. LaBel, “Evidence of angular effects in proton-induced single-event upsets,”
IEEE Trans. Nucl. Sci., vol. 49, pp. 3038-3044, Dec. 2002.

[3] R. A. Reed, J. Kinnison, J. C. Pickel, S. Buchner, P. W. Marshall, S. Kniffin,
and K. A. LaBel, “Single-event effects ground testing and on-orbit rate prediction
methods: the past, present, and future,” IFEFE Trans. Nucl. Sci., vol. 50, pp.
622-634, June 2003.

[4] O. Musseau, “Charge collection and SEU mechanisms,” Radiat. Phys. Chem.,
vol. 43, pp. 151-163, 1994.

[5] P. E. Dodd and L. W. Massengill, “Basic mechanisms and modeling of single-
event upset in digital microelectronics,” IEEE Trans. Nucl. Sci., vol. 50, pp.
583-602, June 2003.

[6] J. C. Pickel, “Single-event effects rate prediction,” IEEE Trans. Nucl. Sci.,
vol. 43, pp. 483-495, Apr. 1996.

[7] L. L. House and L. W. Avery, “The Monte Carlo technique applied to radiative
transfer,” J Quant Spectrosc Radiat Transf, vol. 9, pp. 1579-1591, Dec. 1969.

[8] L. W. Avery, L. L. House, and A. Skumanich, “Radiative transport in finite
homogeneous cylinders by the Monte Carlo technique,” J. Quant. Spectrosc.
Radiat. Transf., vol. 9, pp. 519-532, Apr. 1969.

[9] A. Razani, “A Monte Carlo method for radiation transport calculations,” J.
Nucl. Sci. Technol., vol. 9, pp. 551-554, Sept. 1972.

[10] R. C. Allen et al., Computational Science Education Project, 1993. [Online].
Available: http://www.phy.ornl.gov/csep/

[11] C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution of charge
transport in semiconductors with applications to covalent materials,” Rev. Mod.
Phys., vol. 55, pp. 645705, July 1983.

99

[12] H. Duarte, “Improvement of the Intranuclear Cascade code of Bruyéres-le-Chatel
(BRIC) at low intermediate energy,” in Proceedings of the 10th International
Cconference on Nuclear Reaction Mechanisms, E. Gadioli, Ed., vol. 122, Varenna,
June 2003, pp. 607-616.

[13] P. J. McNulty, W. G. Abdel-Kader, and J. M. Bisgrove, “Methods for calculating
SEU rates for bipolar and NMOS circuits,” IEEE Trans. Nucl. Sci., vol. 32, pp.
4180-4184, Dec. 1985.

[14] I. Kawrakow and D. W. O. Rogers, The EGSnrc Code System: Monte Carlo Sim-
ulation of Eletron and Photon Transport, lonizing Radiation Standards National
Research Council of Canada, 2003.

[15] G. A. Wright, E. Shuttleworth, M. J. Grimstone, and A. J. Bird, “The status of
the general radiation transport code MCBEND,” Nucl. Instrum. Methods Phys.
Res. B, vol. 213, pp. 162-166, 2004.

[16] J. S. Hendricks et al., MCNPX Extensions Version 2.5.0, Los Alamos National
Laboratory, 2005.

(17] M. B. Emmett, “MORSE: present capabilities and future directions,” Appl. Ra-
diat. Isot., vol. 53, pp. 863-866, July 2000.

[18] C. Inguimbert, S. Duzellier, R. Ecoffet, and J. Bourrieau, “Proton upset rate
simulation by a Monte Carlo method: Importance of the elastic scattering mech-
anism,” IEEE Trans. Nucl. Sci., vol. 44, pp. 2243-2249, Dec. 1997.

[19] J. L. Shinn, F. A. Cucinotta, L. C. Simonsen, J. W. Wilson, F. F. Badavi, G. D.
Badhwar, J. Miller, C. Zeitlin, L. Heilbronn, R. K. Tripathi, M. S. Clowdsley,
J. H. Heinbockel, and M. A. Xapsos, “Validation of a comprehensive space radi-
ation transport code,” IEEE Trans. Nucl. Sci., vol. 45, pp. 2711-2719, 1998.

[20] H. Iwase, K. Niita, and T. Nakamura, “Development of general-purpose particle
and heavy ion transport Monte Carlo code,” J. Nucl. Sci. Technol., vol. 39, pp.
1142-1151, Nov. 2002.

[21] S. Agostinelli et al., “Geant4-a simulation toolkit,” Nucl. Instrum. Methods Phys.
Res. A, vol. 506, pp. 250-303, 2003.

[22] M. H. Mendenhall and R. A. Weller, “An algorithm for computing screened
Coulomb scattering in Geant4,” Nucl. Instrum. Methods Phys. Res. A, vol. 227,
pp. 420-430, 2005.

[23] Physics Reference Manual, Geant4, 2005. [Online]. Available:
http://geant4d.web.cern.ch/geant4/

[24] A.S. Kobayashi, D. R. Ball, K. M. Warren, R. A. Reed, M. H. Mendenhall, R. D.
Schrimpf, and R. A. Weller, “The effect of metallization layers on single event
susceptibility,” IEEE Trans. Nucl. Sci., Manuscript in press for the December
2005 issue.

60

[25]

[26]

[27]

28]

[29]

[30]
[31]

32]

[33]

[34]

[35]

[36]

D. R. Ball, K. M. Warren, R. A. Weller, R. A. Reed, A. Kobayashi, J. A. Pellish,
M. H. Mendenhall, C. L. Howe, L. W. Massengill, R. D. Schrimpf, and N. F.
Haddad, “Simulating nuclear events in a TCAD model of a high-density SEU
hardened SRAM technology,” IEEE Trans. Nucl. Sci., Submitted for publication
in the June 2003 issue.

C. L. Howe, R. A. Weller, R. A. Reed, M. H. Mendenhall, R. D. Schrimpf,
K. M. Warren, D. R. Ball, L. W. Massengill, K. A. LaBel, J. W. Howard, Jr.,
and N. F. Haddad, “Role of heavy-ion nuclear reactions in determining on-orbit
single event error rates,” IEEE Trans. Nucl. Sci., Manuscript in press for the
December 2005 issue.

T. Koi, “Ion transport simulation using Geant4 hadronic physics,” presented at
Monte Carlo 2005 Topical Meeting, Chattanooga, TN, USA, April 17-21, 2005.

P. Truscott and F. Lei, “Ton-nuclear models for the analysis of radiation shield-
ing and effects (IONMARSE)-contract final report,” QinetiQ Ltd, Tech. Rep.
QINETIQ/KI/SPACE/CR041585, June 2004.

J. W. Wilson, R. K. Tripathi, F. A. Cucinotta, J. L. Shinn, F. F. Badavi, S. Y.
Chun, J. W. Norbury, C. J. Zeitlin, L. Heilbronn, and J. Miller, “NUCFRG2: An
evaluation of the semiempirical nuclear fragmentation database,” NASA, Tech.
Rep. 3533, Oct. 1995.

Wolfram Research, Inc., “Mathematica,” Version 5.1, Champaign, IL, 2004.

J. R. Schwank, “Basic mechanisms of radiation effects in the natural space en-
vironment,” 1994 IEEE Nuclear and Space Radiation Effects Conference Short
Course, Tucson, AZ, July 1994.

J. Barth, “Modeling space radiation environments,” 1997 IEEE Nuclear and
Space Radiation Effects Conference Short Course, Snowmass Village, CO, July
1997.

E. Petersen, “Single-event analysis and prediction,” 1997 IEEE Nuclear and
Space Radiation Effects Conference Short Course, Snowmass Village, CO, July
1997.

F. W. Sexton, “Measurements of single event phenomenon in devices and ICs,”
1992 IEEE Nuclear and Space Radiation Effects Conference Short Course, New
Orleans, LA, July 1992.

(1997) Cosmic ray effects on micro electronics website. [Online]. Available:
https://creme96.nrl.navy.mil/

P. S. Winokur, “Total-dose radiation effects,” 1992 IEEE Nuclear and Space
Radiation Effects Conference Short Course, New Orleans, LA, July 1992.

61

[37]

[38]

[39]

[40]

[41]

[42]

[43]

L. W. Massengill, “SEU modeling and prediction techniques,” 1993 IEEE Nu-
clear and Space Radiation Effects Conference Short Course, Snowbird, UT, July
1993.

A. A. Istratov and E. R. Weber, “Physics of copper in silicon,” J. Electrochem.
Soc., vol. 149, pp. G21-G30, 2005.

A. L. S. Loke, “Process integration issues of low-permittivity dielectrics with cop-
per for high-performance interconnects,” Ph.D. dissertation, Stanford University,
Stanford, Mar. 1999.

R. A. Reed, P. J. McNulty, W. J. Beauvais, W. G. Abdel-Mader, E. G.
Stassinopoulos, and J. Barth, “A simple algorithm for predicting proton SEU
rates in space compared to the rates measured on the CRRES satellite,” IFEE
Trans. Nucl. Sci., vol. 41, pp. 2389-2395, Dec. 1994.

C. P. Poole, Jr. and F. J. Owens, Introduction to Nanotechnology. Hoboken,
NJ: John Wiley and Sons Inc, 2003.

J. C. Pickel and J. T. Blandford, Jr., “Cosmic ray induced errors in MOS memory
cells,” IEEE Trans. Nucl. Sci., vol. NS-25, p. 1166, 1978.

J. R. Schwank, M. R. Shaneyfelt, J. Baggio, P. E. Dodd, J. A. Felix, V. Ferlet-
Cavrois, P. Paillet, D. Lambert, F. W. Sexton, G. L. Hash, and E. Blackmore,
“Effects of particle energy on proton-induced single-event latchup,” IEEE Trans.
Nucl. Sci., Manuscript in press for the December 2005 issue.

62

