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ABSTRACT 

Diffusion-weighted magnetic resonance imaging (DWI) provides a unique approach for 

probing the microstructure of biological tissues and is an important tool for both clinical 

and research applications, such as for the diagnosis of stroke and detection of cancer. 

However, conventional DWI measurements using pulsed gradient spin echo (PGSE) 

methods cannot in practice probe very short diffusion times because of hardware 

limitations, and this restriction prevents conventional DWI from being able to 

characterize changes in intra-cellular structure, which may be critical in many 

applications. The method of diffusion temporal spectroscopy using oscillating gradient 

spin echo (OGSE) methods has been proposed to probe short diffusion times and to 

provide additional contrast in diffusion imaging. A comprehensive study of diffusion 

temporal spectroscopy is presented in this thesis, including (1) a simulation of OGSE 

methods in cellular systems using an improved finite difference method for more accurate 

and efficient computation of results ; (2) studies of biological tissues and DWI signals 

with diffusion temporal spectroscopy in order to predict and interpret data and extract 

quantitative tissue microstructural information; and (3) demonstration of the increased 

sensitivity of DWI measurements to variations of intracellular structures, such as nuclear 

sizes, using the diffusion temporal spectroscopy method. The work presented here 

provides a framework to interpret DWI data to obtain biological tissue microstructural 

information and may enhance the ability of diffusion imaging to be used as a biomarker 

for, for example, assessing the state of tumors in pre-clinical research.  
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CHAPTER I 

1   INTRODUCTION  

Magnetic resonance imaging (MRI) has been one of the most exciting and active modalities in 

medical imaging in the past 30 years. Seven outstanding scientists have been awarded Nobel 

Prizes for their major contributions to the discovery and development of NMR and MRI. 

Compared to other medical imaging modalities, MRI has a magnificent ability to differentiate soft 

tissues and provides an abundance of anatomical, physiological and functional information. MRI 

has become a major diagnostic tool in clinical practice, such as for the detection of tumors and 

strokes, and it is also a powerful tool for many research studies, such as studies of brain structure 

and function in neuroscience. Section 1.1 briefly goes over the history of NMR and MRI.  

After the Brownian motion of particles was first described, it remained mysterious until Einstein 

explained it using statistical mechanics and kinetic theory. Since then, studies of diffusion have 

been of interest in many research areas and diffusion-weighted magnetic resonance imaging 

(DWI) has proven to be a powerful tool in clinical and research applications. Section 1.2  

introduces a brief history of diffusion and DWI.  

The basic concepts of NMR and MRI are discussed in Section 1.3 , including definitions of the 

Larmor frequency, T1 and T2 relaxation times, the Bloch equation and the formation of magnetic 

resonance images.  

Section 1.4  introduces the basic principles of diffusion and DWI, including Brownian motion, 

Einstein’s equation, the Bloch-Torrey equation, the pulsed gradient spin echo (PGSE) method and 

the q-space.  

 

1.1  A Brief History of NMR and MRI 

The concept of nuclear magnetic resonance originated from the work introduced by Rabi in 1938. 

He showed that electromagnetic waves with certain frequencies could flip magnetically aligned 

nuclei from one state to the other (given that for spin half nuclei there are two possible states: a 
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lower energy state and a higher energy state) (1). Hence, the magnetic properties of atomic nuclei 

can be obtained by a ‘resonance’ method, for which Rabi won the Nobel Prize in Physics in 1944. 

Eight years later, Bloch and Purcell refined the technique for use on liquids and solids. Purcell 

studied the precession of nuclear magnetization in a magnetic field with a fixed radiofrequency 

(RF) and observed a sharp absorption of radiation as nuclei flipped from the lower to the higher 

energy state, and he named this phenomenon ‘nuclear magnetic resonance’ (NMR) (2). Almost 

simultaneously, Bloch investigated the water in an adjustable magnetic field and, rather than 

measuring absorption, he detected re-emission of resonant radiation using a second coil placed 

perpendicular to the first (3). Although Rabi's work was crucial, both works by Purcell and Bloch 

were a very big leap forward, which laid the foundation for the development of modern NMR and 

MRI techniques, for which Bloch and Purcell shared the Nobel Prize in Physics in 1952. In 1950, 

Hahn discovered the spin echo (4), which is considered the beginning of the widespread use of 

pulsed NMR methods. Ernst developed the methodology of high resolution pulsed Fourier 

Transform nuclear magnetic resonance spectroscopy, for which he won the Nobel Prize in 

Chemistry in 1991. In 2002, Wüthrich won the Nobel Prize in Chemistry for his development of 

NMR spectroscopy for determining the three-dimensional structure of biological macromolecules 

in solution.  

In 1973, Lauterbur published a paper in Nature, which described the use of linear magnetic field 

gradients to spatially localize NMR signals (5). He obtained spectra that were actually the 

projections of the object’s spin density distribution onto the gradient axis. By rotating the object 

in the field, a series of angular projections could be obtained and two-dimensional MR images 

can be reconstructed by using the mathematics of filtered back projection developed for 

computed tomography. Because it can be considered as an interaction of polarizing and gradient 

fields, Lauterbur named this methodology as “zeugmatography” (derived from the Greek word 

ζενγµα--“that which is used for joining”). Soon after that, Sir. Peter Mansfield published an 

extensive paper showing projection images of a human finger, which perhaps was the first MRI 

of live human anatomy (6). In order to speed up the scan acquisition, he also developed an MRI 
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protocol called echo planar imaging (EPI) (7), which makes fast imaging possible. Lauterbur and 

Mansfield shared the Nobel Prize in Physiology or Medicine in 2003 for their major contributions 

to the development of MRI techniques.  

Nowadays, MRI is commonly used for cancer imaging, but the different NMR properties between 

normal tissues and tumors had been discovered even before MRI techniques were developed. In 

1971, two years before Lauterbur developed the MRI technique, Damadian reported that tumors 

and normal tissues have different NMR properties, which could be used to diagnose cancer (8). 

Damadian also developed whole body NMR scanning and described the T1 and T2 relaxation 

differences in tissues which make MRI contrast feasible. In the thirty years since then, MRI has 

continued to grow at an incredible speed and more and more research and clinical applications of 

MRI have been discovered, such as when Ogawa et al. developed functional MRI for detecting 

brain neuronal activation based on the blood oxygenation level dependent or BOLD effect in 

1990 (9), or when Moseley et al. reported that diffusion-weighted MRI (DWI) is highly sensitive 

to the changes occurring in the lesion of an ischemic stroke (10).  

 

1.2  A Brief History of Diffusion and DWI 

In 1828, Brown observed that pollen grains suspended in water under a microscope exhibited an 

erratic motion, which was subsequently named after him as Brownian motion (11). The Brownian 

motion remained unexplained until the kinetic theory was developed by Maxwell and Boltzmann. 

In one of his several world-famous papers published in 1905, Einstein combined kinetic theory 

and classical hydrodynamics to derive an equation that showed that the displacement of Brownian 

particles varies as the square root of time, which was confirmed experimentally by Perrin three 

years later, providing convincing evidence for the physical existence of atom-sized molecules, for 

which Perrin was awarded the Nobel Prize in physics in 1926.  

The merging of diffusion into NMR originated in Hahn’s classical spin echo paper, in which he 

noticed that the amplitude of the observed spin echo signal would be reduced by the random 

thermal motion of spins in the presence of a magnetic field inhomogeneity (4). Carr and Purcell 

 3



shortly after investigated diffusion effects on the free precession of protons and derived a set of 

equations to describe these diffusion effects (12). Torrey subsequently extended the Bloch 

equations by adding diffusion terms, and these were subsequently named the Bloch-Torrey 

equations (13). Nine years later, Stejskal and Tanner developed the methodology of the pulsed 

gradient spin echo (PGSE) experiment which made it possible to directly and quantitatively 

measure molecular diffusion coefficients (14). All of above works opened the window for 

measurements of water self-diffusion inside biological tissues. Cory used a diffusion propagator 

formalism and demonstrated that the size of a diffusion compartment can be obtained from 

diffusion NMR experiments (15). Callaghan discovered diffraction-like diffusion effects in NMR 

studies of materials (16). Basser et al. first introduced a diffusion tensor model to describe 

anisotropic diffusion in biological tissues (17,18). Mori et al. probed neuronal pathways in the rat 

brain by DTI (19) and introduce the concept of fiber tracking, which has proven very powerful in 

basic and clinical research.  

Diffusion-weighted MRI (DWI) has developed since the 1980’s. Taylor and Bushell first 

demonstrated diffusion imaging with a hen’s egg in 1985 (20). LeBihan obtained early images on 

a whole-body system (21,22). Moseley et al. reported that diffusion-weighted MRI (DWI) is 

highly sensitive to the changes occurring in the lesion of an ischemic stroke (10) and this 

discovery was of significant clinical importance, and since then, DWI has attracted a lot of 

attention and becomes an important diagnostic tool in radiology. In 1996, Zhao et al. reported that 

the apparent diffusion coefficient (ADC) of a tumor could be used as an indicator of tumor 

response to treatment (23). Chenevert et al. used ADC measurements to monitor the early 

response of brain tumors (24). Nowadays, ADC has been suggested as a biomarker in cancer 

imaging.  

 

1.3  Basic Principles of MRI Physics 

MRI is based on the interaction of nuclear spins with an external magnetic field, B0. The 

magnetic moment of a spin processes about the field direction with an angular frequency 
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determined by the Larmor equation 

 0 0Bω γ= , [1.1] 

where ω  is called the Larmor frequency and γ is the gyromagnetic ratio. (the hydrogen proton 

has a γ  value of 2.675×10

0

0

0 0

1

0

x y z 0

0 1

2

8 rad/s/T). A static magnetic field B  results a net longitudinal 

equilibrium magnetization M , which is aligned along the B  direction. If another perpendicular 

radiofrequency (RF) magnetic field (B ) (tuned to the Larmor frequency) is applied in a short 

time (an RF ‘pulse’), spin magnetic moments will be ‘tipped’ away from the alignment along the 

B  direction and towards the transverse plane, in which the magnetization will have x and y 

components M  and M , as well as M  along the B  direction.  

The time for magnetization to recover from the excited state (with components in transverse plane) 

to original longitudinal equilibrium state (along B  direction) is described by T , which is called 

longitudinal relaxation time or spin-lattice relaxation time. The spin-spin interaction causes the 

transverse magnetization decay and can be described by T , which is called transverse relaxation 

time or spin-spin relaxation time. The time evolution of magnetization in the presence of a 

magnetic field and with relaxation terms can be expressed by the Bloch equation (25) 

 0
1 2

1 ˆ( )eff z
d M z

T T
M

dt
γ 1

⊥= + −×
M M B M−

0

)i

 [1.2] 

The time-varying transverse magnetization induces electromotive force (emf) in a receive RF coil, 

in which the MR signals can be detected. However, the obtained signals are from the whole 

sample. In order to acquire MR images, it is necessary to implement Lauterbur’s technique, which 

applies spatially dependent field (linearly dependent with a constant gradient) to encode signals. 

For example, if the applied field gradient is along x direction, the Larmor frequency becomes 

spatially dependent as f(x)=γ(Gx+B ). The detected MR signal can be expressed as  

 ( )exp()( xts dxρ φ= ∫ , [1.3] 

where φ denotes the phase and ρ(x) is the signal density as a function of position x .  

 
0

( , ) ( )
t

x t x dt Gφ γ t′ ′= − ∫  [1.4] 
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Hence, the signal can be rewritten as  

 ( )exp()(s k d kx )2x i xρ= −∫ π  [1.5] 

where  

 
0

( )
t

k dt G tγ ′ ′= ∫  [1.6] 

Eq.[1.5] shows that signal is the Fourier transform of the spin density of the sample. By 

manipulating the gradient fields, a grid of points in k space can be covered and a series of 

corresponding signal points can be obtained. An inverse Fourier transform of those signals yields 

an image of sample spin density and this is the basic principle of MRI.  

 

1.4  Basic Principles of Diffusion and DWI Physics 

1.4.1  Diffusion 

Einstein described an equation which relates the microscopic random motion with a 

macroscopically measurable phenomenon known as diffusion in 1905, which is called the 

Einstein relationship (11). If we consider a spin at position ′r  at time 0 and it migrates to 

position r at time τ, then the diffusion coefficient is given by 

 
1 ( 0) ( )
6

D t t τ
τ

′= < = =r r >  [1.7] 

where <…> denotes the average over the spin population. For a given diffusion time ∆d, we can 

define a characteristic length scale  

 6 dl D= ∆  [1.8] 

l is also called the diffusion length. Notice that if we can obtain a short diffusion time ∆d, a 

corresponding diffusion length can be as short as comparable to or even shorter than the 

characteristic length of the tissues, such as the cell sizes, which implies diffusion has the potential 

to probe the microscopic structures of the tissues.  
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1.4.2  Bloch-Torrey Equation 

During the early days after the NMR phenomenon was discovered, Hahn reasoned that the 

random thermal motion of the spins would contribute to the attenuation of the observed spin echo 

signal (4). Torrey developed a continuum description based on the magnetization diffusion 

equation and Bloch equation, which was subsequently named as the Bloch-Torrey equation. For 

the transverse magnetization of interest, the Bloch-Torrey equation can written as 

 
2

( , ) ( ) ,i t
t T

γ⊥ ⊥
⊥ ⊥

∂
= − ⋅ ⋅ − + ∇ − ∇ ⋅

∂
M Mg r r M DM v M⊥

t

 [1.9] 

where  is the transverse magnetization, D is diffusion coefficient,  is the 

applied magnetic gradient, v is the velocity of the fluid flow.  

⊥M ( , ) ( , )t = ∇g r B r

 

1.4.3  Pulsed Gradient Spin Echo (PGSE) 

Stejskal and Tanner developed the pulsed gradient spin echo (PGSE) experiment (see Fig. 1-1) 

which made it possible to directly measure the diffusion coefficient of non-flowing fluids (14).  

90°

180° echo

TE

δ

g

∆  

Fig. 1-1 Schematic diagram of the PGSE pulse sequence. g is the diffusion gradient amplitude, δ 

is the duration of one diffusion gradient and ∆ is the spacing of two diffusion gradients.  

 

The signal at the echo time is proportional to the integrated transverse magnetization, namely,  

 ( , ) ( , ) .E g D t T⊥∝ =∫M r rE d . [1.10] 

If the duration of the gradient is very short and spins can be considered not diffusing during the 
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gradient, which is the so-called short gradient pulse approximation (SGP), Stejskal obtained an 

expression for free diffusion, namely,  

 ( ) exp( )
( 0)
E g b D

E g
= − ⋅

=
 [1.11] 

and 

 ) . [1.12]

 

 is 

always restricted and/or hindered. The equation [1.11] can then usefully be rewritten as  

 

2( ) ( / 3b gγ δ δ= ∆ −  

1.4.4  Restricted Diffusion and ADC 

In biological tissues, there are many diffusion barriers such as cell membranes, and diffusion

( ) exp( )
( 0)E g =

where ADC is the apparent diffusion coefficient and is a function of diffusion time ∆. For free 

diffusion, ADC is equal to the intrinsic diffusion coefficient. ADC actually describes an averaged 

diffusion behavior of a restricted diffusion system. Since ADC contains some structural 

information, it can be used

E g b ADC= − ⋅ , [1.13] 

 to probe microstructural features that may not be obtained by some 

ther approaches in vivo.  

 (26). The PGSE with the short gradient approximation then gives rise to the spin echo 

decay as  

o

 

1.4.5  Q-Space  

In 1965, Stejskal suggested a conditional probability function to describe restricted diffusion 

analytically

 ( , ) ( ) ( | , )exp[ ( )]E P i d dρ γδ∆ = ∆ − ⋅ −∫∫ 0 0 0 0g r r r g r r r r  [1.14] 

where ρ(r0) is the spin density at the position r0, and P(r0|r,∆) is the conditional probability, 

which is defined as the probability that a spin initially at position r0 (at the time of the first 

gradient pulse) will migrate to position r at t = ∆ (at the second gradient pulse). With the 
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substitution r = r0 + R and q = γgδ, Eq.[1.14] can be rewritten as 

, ) ( , )exp(( 2 )dE π∆ = −∫q R qR R , [P i∆ 1.15]

where R is the dynamic displacement and ( , )P ∆R  is the averaged propagator (27) 

 0)( , ( ) ( , )P P dρ∆ = + ∆∫ 0 0R r r R r . [1.16] 

Eq.[1.15] shows a simple Fourier relationship between the diffusion-weighted signal attenuation 

and the averaged propagator, which contains the microstructural information. Hence, it is possible 

to image the averaged propagator by signal acquisition in q-space. Cory used this diffusion 

propagator formalism and demonstrated that the size of a diffusion compartment can be obtained 

t only on qR and such diffusion 

behavior provides a means to probe diffusion compartment size.  

from diffusion NMR experiments (15).  

In order to fit experimental data, it is plausible to derive analytical expressions to describe MR 

signals and, hence, the structure conditional probability function becomes the key. Usually it is 

very difficult to get analytical expressions of conditional probability for complex biological 

structures, but researchers have already derived some analytical expressions for some simple 

geometries. Brownstein et al. (28) and Balinov et al. (29) showed the conditional probability 

functions and signal attenuation dependence of some diffusion system with simple geometries, 

such as diffusion between two infinitely large impermeable planes or inside an infinitely-long 

impermeable cylinder and an impermeable sphere. Soderman et al. obtained solutions to diffusion 

inside an finitely-long impermeable cylinder (30) and Callaghan (31) extended solutions to 

simple geometries with particle absorption by the walls. The analytical solutions for signal 

attenuation enabled Callaghan to discover the diffraction-like diffusion signal attenuation in 

q-space (16). For example, Fig. 1-2 shows the signal attenuation caused by diffusion inside an 

impermeable cylinder with a radius of R and length of L, which behaves a diffraction pattern in 

q-space. The node positions of the diffraction pattern are dependen
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Fig. 1-2 The signal attenuation of water diffusion inside an infinitely-long impermeable cylinder 

behaves a diffractive-like pattern in q-space.  
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CHAPTER II 

   TEMPORAL DIFFUSION SPECTROSCOPY 

The pulsed gradient 

studies such as meas

(DTI). The signal att

specific time interva

approximation is sat

diffusion is negligib

gradients have finite 

hardware limitations

practical diffusion gr

fall times) and usual

method is usually dif

An entirely different 

shapes has been pro

attenuation is relate

propagator for displ

frequency domain an

the velocity auto-corr

spectrum (33). This 

of this chapter introdu

According to Eq.[1.8
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d to the particle velocity auto-correlation function, rather than via the 

acement, which is dependent on diffusion time. Furthermore, with the 

alysis, it can be shown that the diffusion spectrum is the Fourier transform of 
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coefficients or the intracellular diffusion that reflects the intracellular microstructures. Such 

studies require the diffusion lengths be shorter than the cell sizes, typically less than several 

microns, and the corresponding very short diffusion times usually cannot be obtained by the 

PGSE in practice. One approach to obtain very short diffusion times in the ADC measurements is 

the oscillating gradient spin echo (OGSE) method (34,35), which employs two identical 

successions of diffusion-weighting gradient periods, such as sine- or cosine-modulated gradients, 

to replace the two rectangular (trapezoidal in practice) gradients in the PGSE method. Based on 

the theory of temporal diffusion spectroscopy, the analytical expression of the diffusion-weighted 

signal attenuation with OGSE has been derived for some simple geometries, such as planes, 

cylinders and spheres. Such developments provide a framework to interpret the experimental data 

with OGSE and a means to probe tissue microstructural information. The section 2.2  of this 

chapter covers the principles of OGSE.  

 

2.1  Principles of Temporal Diffusion Spectroscopy 

Torrey derived the expression for diffusion-weighted signal attenuation with an arbitrary shaped 

gradient as (13) 

 
0 0

2
2

0

( )ln( )  ( )( )
t uE t Dt G t dt

E
β γ ′ ′== ∫ ∫ du . [2.1] 

However, Eq.[2.1] is only valid for the Fick’s diffusion when the duration of measurement is long 

compared to the correlation time of water molecules migration (36). A general echo attenuation 

expression which relates the velocity auto-correlation functions was introduced by Stepisnik (32). 

 

2.1.1  Diffusion-Weighted Signal and Velocity Auto-Correlation Function 

The MR signal is the sum of the spin contributions 

 0( ) exp( ( ))j
i

jE t E iφ= ∑ r , [2.2] 
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where ⋅  means the average which includes molecular motion and φj(t) is the spin phase, which 

is dependent on the effective diffusion gradient Geff(t) and the location rj of the jth spin by  

 0
0

( ) ( )[ ( ) ]
t

j eff jt t tφ γ dt′ ′= ∫ r rg ′−

dt

 [2.3] 

If we define the time integral of diffusion gradient as 

 
0

( ) ( )
t

t tγ ′ ′= ∫F g , [2.4] 

and the signal attenuation can be rewritten as  

 
2

0
0

(2 ) exp[ ( ) ( ) ]j j
j

E E i t t d
τ

τ = −∑ ∫ F v t , [2.5] 

where vj is the velocity of the jth spin and τ is half of the echo time.  

Using cumulant expansion method, Eq.[2.5] gives 

 (2 ) (2 )  
0(2 ) j ji

j
j

E E e α τ β ττ − ⋅⋅⋅= ∑ , [2.6] 

where  

 
2

0

(2 ) ( ) ( )j t t
τ

α τ = −∫ F v j dt  [2.7] 

and 

 
2 2

1 1 2 2 1
0 0

1(2 ) ( ) ( ) ( ) ( )
2j t t t t dt dt

τ τ

β τ = ∫ ∫ F v v F 2 . [2.8] 

If we assume the averaged velocity of the jth spin ( )j tv  is zero (Note that the averaged 

velocity of the whole stationary fluid is zero but the averaged velocity of individual spins is not 

necessarily zero. The influence of this approximation will be discussed in section 2.2.3 ) and, 

hence, Eq.[2.7] becomes zero and the diffusion-weighted signal attenuation can be expressed as 

 
2 2

1 1 2 2 1 2
0 0

1(2 ) exp ( ) ( ) ( ) ( )
2

E t t t t dt dt
τ τ

τ
⎧ ⎫

= −⎨ ⎬
⎩ ⎭

∫ ∫ F v v F  [2.9] 

Eq.[2.9] shows that the diffusion-weighted signal attenuation signal relies on the velocity 
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auto-correlation function so that we can not only measure the diffusion coefficient but also the 

intermolecular interaction.  

 

2.1.2  Frequency Domain Analysis 

The spectral density of the ensemble-averaged velocity auto-correlation function is simply the 

diffusion spectrum 

 
0

1( ) ( ) (0) exp( )
2

t iω
∞

= ∫D v v t dtω− . [2.10] 

Hence, Eq.[2.9] becomes 

 
0

1( ) ( ) ( ) ( )tβ
π

dω ω ω
∞

= ∫F D F ω− , [2.11] 

which simplifies, in the case of isotropic diffusion, to (33) 

 2

0

1( ) ( ) ( )t dωβ
π

ω ω
∞

= ∫ D F  [2.12] 

where the spectrum of time integral of gradient modulation is given by 

 
0

( ) ( ) exp( )
t

t i tω dtω′ ′= −∫F F ′  [2.13] 

Eq.[2.11] and [2.12] show that the diffusion-weighted signal attenuation is dependent on the 

diffusion spectrum and gradient modulation spectrum. By choosing appropriate diffusion gradient 

waveforms in the pulse sequence, the diffusion spectrum can be selectively probed at 

well-defined frequency ranges. Since a higher frequency corresponds to a smaller effective 

diffusion time, temporal diffusion spectroscopy provides a powerful and flexible analysis method 

to study diffusion-weighted MR.  

Fig. 2-1 shows three typical diffusion gradient waveforms and their corresponding gradient 

modulation spectra. It is clear that most frequency components of PGSE are close to 

zero-frequency (DC component (33)), which corresponds to a long effective diffusion time. 

Sine-modulated OGSE (OGSE-sin) shows a higher spectral density at higher frequency ±ω0, 
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which is the frequency of applied sine-modulated gradient waveform and, hence, OGSE-sin can 

probe a shorter diffusion time. The cosine-modulated OGSE (OGSE-cos) has spectral density 

peaks at ±ω0 (AC component) and without DC component. Therefore, OGSE-cos has the ability 

to probe much shorter effective diffusion time compared with PGSE and OGSE-sin.  

90°
180° echo

PGSE

0
frequency (ω)

90°
180° echo

Sine−modulated OGSE

0
frequency (ω)

90°
180° echo

Cosine−modulated OGSE

0
frequency (ω)

−ω
0

ω
0

−ω
0

ω
0

 

Fig. 2-1 Three typical diffusion gradient waveforms and their corresponding gradient modulation 

spectra.  

 

2.1.3  Temporal Diffusion Spectroscopy with Restricted Diffusion 

All diffusion temporal spectroscopy theory and equations described above are based on free 

diffusion. However, the importance of DWI is its ability to measure the restricted/hindered 

diffusion caused by diffusion barriers in biological tissues and such diffusion measurements can 

provide tissue microstructural information. Therefore, it is important to study temporal diffusion 

spectroscopy with restricted diffusion.  
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Eq.[2.9] can be rewritten as 

 
2 2

1 2 1 1 2 2
0 0

1(2 ) ( ) ( ) ( ) ( )
2

dt dt t t t t
τ τ

β τ = ∫ ∫ g r r g  [2.14] 

If the conditional probability is known, Eq.[2.14] becomes 

 
2 2

1 2 1 1 2 1 0 2
0 0

1(2 ) ( , ) ( , | , ) ( ) ( )
2 V V

dt dt d d t P t t g t g t
τ τ

β τ ρ= ∫ ∫ ∫ ∫ 0 0 0r r r r r r r  [2.15] 

The conditional probability P(r0|r,∆) can be expressed in a general solution form via the standard 

eigenmode expansion  

 2 1
1 2( , | , ) ( ) ( ) ka t t

k k
k

P t t u u e− −= ∑0 0r r r r , [2.16] 

where uk(r) are orthogonal solutions to the Helmholtz equation parameterized by the eignvalue ak 

(31). If the gradient points in the direction defined by the unit vector n, then Geff(t) = g(t) n. With 

the substitution of Eq.[2.16] into Eq.[2.15], the signal attenuation becomes 

 2 1

2 2

1 2 1 2
0 0

1(2 ) ( ) ( )
2

ka t t
k

k

B dt dt g t g t e
τ τ

β τ − −= ∑ ∫ ∫ , [2.17] 

where  

 . [2.18] 0( ) ( )k k
V V

B d d u u= ∫ ∫ 0 0r r nr nr r rk

Bk and ak are structure dependent coefficients. If the conditional probability is known, the 

coefficients Bk and ak can be determined. Stepisnik obtained expressions for three simple 

geometries. For diffusion between two impermeable infinitely-large planes separated by a 

distance d,  

 
2

4 4

8
(2 1)k

dB
k π

=
−

 and 
2 2

2

(2 1)
k

ka
d

π −
= . [2.19] 

For transverse diffusion inside an impermeable cylindrical geometry with a radius R,  

 
2

2

2( / )
1
k

k
k

RB µ
µ

=
−

 and 
2

k
ka

R
µ⎛ ⎞= ⎜ ⎟

⎝ ⎠
, [2.20] 

where µk is the kth root of 1 ( ) 0J µ′ =  (i.e. µk = 1.84, 5.33, 8.53, …)and J is the first kind Bessel 
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function.  

For diffusion inside an impermeable spherical geometry with a radius R, the expressions for Bk 

and ak are the same as a cylindrical geometry except µk becomes the kth root of equation 

3/2 3/2
1( ) ( ) 0
2

J Jµµ ′ − µ =  (i.e. µk = 2.08, 5.94, 9.21, …) (36).  

 

2.2  Oscillating Gradient Spin Echo (OGSE) 

2.2.1  OGSE and b Values 

The signal attenuations obtained by PGSE are usually relatively long (especially on human 

scanners) due to hardware limitations and, hence, it is difficult to obtain short diffusion time 

behavior. One approach to obtain very short diffusion time is the oscillating gradient spin echo 

(OGSE) method (34,35), which employs two identical successions of diffusion-weighting 

gradient periods, such as the sine- or cosine-modulated gradients, to replace the two rectangular 

gradients in the PGSE method. Fig. 2-2 shows a cosine-modulated OGSE pulse. G is the 

amplitude of diffusion gradient, σ is the duration of each diffusion gradient pulse and 

corresponding b value is given by  

 
2 2

2 24
Gb

f
γ σ

π
= , [2.21] 

where f is the frequency of applied diffusion gradient.  

90°

180° echo

TE

G

σ
 

Fig. 2-2 A cosine-modulated OGSE (OGSE-cos) pulse.  
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In practice, in order to remove the sharp pulse edges at the start and the end of a 

cosine-modulated gradient, an apodised cosine-modulated gradient waveform is used, which 

replaces the first and the last one quarter of the cosine- by a half sine-pulse at twice the base 

frequency (34,37). The corresponding b values can be expressed as 

 
2 2

2 2 (1 )1
84

Gb
Nf

γ σ
π

−= , [2.22] 

where N is the number of cycles in each gradient series.  

As discussed in section 2.1.2 , OGSE-cos has no zero-frequency component and probes a well 

defined diffusion regime. Therefore, OGSE-cos has been more popularly used to obtain a short 

diffusion time. 

 

2.2.2  OGSE with Restricted Diffusion  

When we study tissues short time diffusion behavior, OGSE-cos is suggested to be used, which 

has a modulated gradient waveform as  

 ( ) cos( )g t G tω= . [2.23] 

If we consider restricted diffusion, conditional probability should be used. Recall Eq.[2.17]  

 2 1

2 2

1 2 1 2
0 0

1(2 ) ( ) ( )
2

ka t t
k

k

B dt dt g t g t e
τ τ

β τ − −= ∑ ∫ ∫   

With substitution of Eq.[2.23] into Eq.[2.17], one can obtain 

 2 1

2 2

1 2 1 2
0 0

2

(2 ) cos( ) cos( )
2

ka t t
k

k

B dt dt t t e
τ τγ ωβ τ ω − −= ∑ ∫ ∫ , [2.24] 

which can be rewritten as 

  [2.25] 

1

1 2

1 2 1 2

1

( )
1 2 1 2

0 0

( ) ( )
1 2 1 2 1 2

0

2

1 2
0

(2 ) cos( )cos( )

cos( ) cos( ) cos( ) cos( )

k

k k

t
a t t

k
k

a t t a t t

t

B dt dt t t e

dt dt t t e dt dt t t e

σ

σ σ σ τ σ

τ

γ ω ω

ω ω ω ω

β τ − −

−
+

−

⎧⎪= +⎨
⎪⎩

⎫
+ − ⎬

⎭

∑ ∫ ∫

∫ ∫ ∫ ∫

After some tedious derivations with the partial integration method, Eq.[2.25] becomes 
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2
2

2 2

2

2 2

2

2 2

2

2 2 2

2

2 2 2 2 2

2

22 2 2

(2 ) (exp( ) 1)
2( ) ( )

                              + (1 exp( ))
2( ) ( )

                              exp( )(
( )

k
k

k k k

k

k
k

k
k

k

k

k

k

k

a D a DB a
a D a D

a D a D a D
a D a D

a D a D
a D

σγ σ
ω ω

σ σ
ω ω

τ

β τ

ω

⎧
= + −⎨ + +⎩

D − +

− − − +
+ +

+ −
+

∑

2 2cosh( ))ka Dσ
⎫

− ⎬
⎭

 [2.26] 

After some rearrangement of Eq.[2.26], one finally can obtain  

 ( )
2 2 2

2 2 2

2 2
2

2

( )(2 ) 2 1 exp( ) exp( )(1 cosh( ))
( ) 2

k k
k k k

k kk

kB a D a D a D a D a D
a D a D

g ω σγ σ
ω

β τ σ τ
⎧ ⎫+

= − + − + − −⎨ ⎬+ ⎩ ⎭
∑

 [2.27] 

Recall that ω is the gradient frequency, σ the gradient duration and τ half of echo time.  

Eq.[2.27] is the analytical expression for signal attenuation of OGSE-cos with restricted diffusion. 

If 0ω → , The OGSE pulse degenerates into conventional PGSE pulse and Eq.[2.27] becomes 

 { }
2

2(2 ) 2 1 (1 cosh( ))k ka D a Dk
k k

k k

Bg a D e e a D
D a

σ τγβ τ δ − −⎛ ⎞= − + + −⎜ ⎟
⎝ ⎠

∑ δ  [2.28] 

which has been reported previously (36).  

Hence, we have already obtained the analytical expressions of MR measurable signal attenuation 

with OGSE-cos in terms of pulse sequence temporal parameters (such as ω, σ and τ), structural 

dependent parameters (such as Bk and ak) and diffusion coefficient D. Once the conditional 

probability is known (such as for some simple structures), the explicit expression of signal 

attenuation can be obtained, which makes it possible to fit experimental data and extract 

quantitative structural parameters of the tissue, such as axon or cell size and axon proton fraction. 

This will be discussed in Chapter 4  .  

 

2.2.3  Influence of Stepisnik’s Approximation 

Eq.[2.9] assumes that the averaged velocity ( )j tv  of jth spin always equals to zero. However, 

this is not true because individual averaged velocity ( )j tv  of each spin is not necessarily zero 
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even for a stationary fluid as considered here. Although the averaged velocity of overall spins is 

zero, the individual averaged velocity is non-zero, which enables the contribution of aj(2τ) (see 

Eq.[2.7]) to the first exponential factor in Eq.[2.6]. Hence, Eq.[2.9] is only an approximation to 

the exact solution because it only uses the second exponential factor term to describe the echo 

attenuation. Fig. 2-3 shows the comparison of finite difference simulated data and analytical data 

(based on Eq.[2.27]) for water perpendicular diffusion inside an infinitely-long impermeable 

cylinder. It is clear than there is a discrepancy between these two curves especially at relatively 

high b values (b > 2 ms/µm2).  
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Fig. 2-3 Comparison of simulated data (circles) and analytical data (stars) for water perpendicular 

diffusion inside an infinitely-long impermeable cylinder.  

 

However, the discrepancy between this approximation and the exact results is very small and can 

even be negligible in the presence of noise in real experiments. Besides, this approximation works 

well especially when b value is not large, but this is not a problem because one technical problem 

for OGSE is that it is not easy to obtain high b values. Therefore, Eq.[2.27] still provides us a 

means to study the restricted diffusion analytically and a possible way to study the restricted 

diffusion on the frequency-domain and get the diffusion spectra.  

 

2.3  Conclusion 

PGSE has been widely used in diffusion-weighted MRI. However, it has some limitations, due to 
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technical constraints, such as relatively long diffusion time. The OGSE sequence has been 

developed to detect short diffusion time behavior. To better understand how general shaped 

diffusion gradients work, temporal diffusion spectroscopy has been developed to better explain 

pulse sequence and better interpret experimental data. Cosine-modulated OGSE (OGSE-cos) has 

shown the feasibility to probe much shorter diffusion time behavior compared to PGSE and 

OGSE-sin and has been widely used in diffusion studies. In this chapter, the analytical expression 

of signal attenuation of OGSE-cos with restricted diffusion was derived. This work makes it 

possible to interpret OGSE experimental data and has important application in tissue modeling 

and data fitting, which is discussed in Chapter 4    
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CHAPTER III 

3   NUMERICAL STUDY OF DIFFUSION-WEIGHTED MRI 

Chapters 1   and 2   have introduced analytical solutions describing the DWI signal 

attenuation for some simple geometries, such as planes, cylinders and spheres. However, it is not 

practically possible to obtain the conditional probabilities for biological tissues so that the 

analytical solutions for signal attenuation usually cannot be obtained. Therefore, to better 

understand the factors that affect water diffusion in biological tissues with more complex 

morphologies, it is necessary to study the restricted diffusion numerically. 

Numerical models have been previously used to study DWI, such as Monte Carlo (MC) (38) and 

image-based finite difference (FD) methods (39). The MC method tracks individual spins that 

undergo Brownian motion over a large number of time steps. On the other hand, the FD method 

discretizes the tissue sample into a spatial grid and updates the magnetization at each point in 

every time step. Sections 3.1  and 3.2  briefly introduce MC and FD methods, respectively.  

Due to the failure of conventional boundary conditions (BC) for the Bloch-Torrey equation, an 

edge effect artifact arises with the FD method, which is caused by the introduction of artificial 

boundaries into the computational domain (39,40). Section 3.3  introduces an improved finite 

difference method, which not only implements a matrix-based FD method (MFD) that converts 

the conventional FD approach into a matrix-based algebra for computing efficiency, but also 

employs a revised periodic boundary condition to eliminate the edge effect for any 

diffusion-weighted pulse sequences.  

Section 3.4  discusses an efficient tightly-coupled parallel computing approach, which enables 

large-scale FD computing for complex tissues. For comparison, different parallel computing 

strategies are also discussed.  

Section 3.5  presents the computational error analysis and some simulation results that compare 

the conventional FD method and the improved FD method are introduced in section 3.6 .   
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3.1  Monte Carlo Method 

Monte Carlo method, which is based on the first principles, uses computer-generated random 

numbers to simulate the random processes. When a large number of particles (usually over tens of 

thousands dependent on the structures) are studied this way, the results will predict the physical 

processes that may be experimentally determined. Szafer et al. numerically studied water 

diffusion in tissues using the Monte Carlo method in 1995 (38). The procedure of the Monte 

Carlo method for studying water diffusion in tissues with spin echo pulse sequence can be 

expressed as in the following way:  

At time t = 0 a random uniform distribution of N particles (spins) is placed inn a system.  

(1). All initial magnetizations are aligned as if just tipped by a 90 ° RF pulse and 

, where j denotes the j(0 ) ( )j jρ+ =m jr th particle, ρj the spin density at position rj. Note that 

only transverse magnetization is considered in the simulation for spin echo pulse sequences.  

(2). Both the spin positions and magnetizations are updated in every time step.  

i) The positions are updated by ( ) ( ) 6j j jt t t D t j′+ = + ⋅∆ ∆ ⋅r r r

t

 , where  is a unit 

vector in an arbitrary direction, D

′r

j the intrinsic diffusion coefficient where the jth particle 

locates and ∆t is the temporal step.  

ii) When the diffusion gradient is on, the magnetization is updated by 

( ) ( )exp[ i ( ) ( ) ]j j jt t t tγ= − ∆⋅m m g r , where g(t) is the diffusion gradient at time t.  

iii) In each time step, the transverse magnetization decays in the way of 

, where T2,( ) ( )exp[ /j jt t t t T+ = −∆ ∆m m ]j 2 is the transverse relaxation time of the 

compartment that the jth particle is in.  

iv) When a particle encounters a membrane, it has a probability to cross the membrane so 

that its position and magnetization must be revaluated. The membrane permeability, Pm, 

and the transmission probability  and  are related by the formula eip → iep →

1 1
4 4i i em eP v p v p→= = e i→ , where  and  are intra- and extracellular particle iv ev
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velocities, respectively.  

(3). The echo signal is finally calculated by 
1

( , ) (
N

j
j

)E q g TE TEγ δ
=

= = ∑m .  

Fig. 3-1 shows that Monte Carlo simulated results have some oscillating behaviors different from 

the analytical results. When more particles are simulated, from 104 to 105, the simulated results 

are closer to the analytical ones but still quite different. This behavior can be explained in the 

following way. In the Monte Carlo simulation, a population of particles distributes in the whole 

system and the particles that encounter the membranes actually are only a quite small portion of 

all the particles so that the echo signal does not contain enough information about the tissue 

features that restrict diffusion. Hence, to solve this problem, more particles should be considered 

in the simulation or, equivalently, the same simulation should be run many times to obtain an 

accurate average result. Hence, the MC method is usually time consuming and a more efficient 

numerical method is desirable. 
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Fig. 3-1 Monte Carlo simulation results of perpendicular diffusion inside an impermeable cylinder. 

N is the number of spins used in the simulations, L length of cylinder, R radius of cylinder and P is 

permeability of cylinder walls.  
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3.2  Conventional Finite Difference Method 

3.2.1  Finite difference Method 

The FD method solves partial differential equations (PDE) on a spatial grid over a series of time 

steps. In DWI, the main PDE is the Bloch-Torrey equation. Hwang et al. developed an 

image-based finite difference (FD) method to study the restricted diffusion (39). In a forward time 

centered space (FTCS) discretization scheme (41) in a 1D 3-point finite difference stencil (see Fig. 

3-2), the Bloch-Torrey equation can be rewritten as (For simplicity, only 1D formulae are 

considered below, but 2D and 3D cases can be easily derived in a similar way)  

 1
2,exp( / )exp( i )n

j j jm t T g x tγ 1n n
jm+ +′= −∆ − ∆ ⋅  [3.1] 

and 

 1
12 2 2(1 2 )n n nx x x

j j j
D t D t D tm m m 1

n
jm

x x x
+

+ −
∆ ∆ ∆′ = − + +

∆ ∆ ∆
 [3.2] 

where m = Mx + iMy, i is the imaginary unit, γ is the gyromagnetic ratio for hydrogen, superscript 

n indicates the temporal indices, subscript j the spatial index, Dx indicates the diffusion 

coefficients along the x direction and T2,j is the transverse relaxation time at point (j). Eq.[3.1] 

describes the transverse relaxation and the phase accumulation during the application of 

diffusion-sensitizing gradients and Eq.[3.2] describes the diffusion process itself. Since Eq.[3.1] 

is relatively easy to handle, the focus of this work is on Eq.[3.2] which deals only with the 

magnetization diffusion.  

j −1 j j+1
 

Fig. 3-2 A 1D 3-point finite difference stencil.  

 

Note that Eq.[3.2] assumes diffusion coefficients are homogeneous. However, the diffusion 

coefficients are not homogeneous for biological tissues and jump probabilities must be used to 

describe the movement of water molecules between grid points (39). The jump probability is 

defined as the probability that a spin starts at one grid point and migrates to another point after a 
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time interval ∆t. The jump probabilities in one diffusion compartment can be defined as  

 2
x

x
D ts

x
∆

∆
= , 2

y
y y

D t
s

∆

∆
=  and 2

z
z z

D ts ∆

∆
=  [3.3] 

If the two adjacent grid points, 1 and 2, are in different compartments, the jump probability 

between them can be expressed as  

 1 2 2
1 2 2

1 1 1 1 2 2 2 2

2
2

m f

f m f m

D D P c cts
D c c

x
P D c D xc c c Px x D→ =

+ +

∆∆
∆ ∆∆

, [3.4] 

where Pm is the permeability of the membrane, cf is the free concentration of water. Therefore, 

Eq.[3.2] may then be expressed in terms of the jump probabilities as 

  [3.5] 1
1 1 1 1 1(1 )n n n

j j j j j j j j j j jm s s m s m s+
→ − → + − → − + → +′ = − − + + 1

n
jm

where 1j js → − is the jump probability from point (j) to (j-1).  

The FD method was implemented to simulate water perpendicular diffusion inside an 

infinitely-long impermeable cylinder and results shown in Fig. 3-3.  
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Fig. 3-3 Simulated (triangles) and analytical (line) signal attenuation versus b values for diffusion 

inside a infinitely-long cylinder.  

 

3.2.2  Edge Effect 

Most applications of FD methods rely on three basic boundary conditions, Dirichlet, Neumann 

 26



and periodic. The first one assumes that the function values at the boundaries are predictable; the 

second one assumes the fluxes across the boundaries are predictable; and the third assumes the 

fluxes entering and leaving are equal. However, the applied magnetic gradients in the 

Bloch-Torrey equation break down the applicability of all these conventional boundary conditions 

because the magnetic gradients make the local magnetization increments dependent on location, 

so that after some time of undergoing Brownian motion, neither the magnetizations at the 

boundaries nor the magnetization fluxes across the boundaries are predictable and the 

magnetizations in the computational domain obviously do not conserve. If an assumption of 

impermeable boundaries is used, the apparent diffusion close to those artificial boundaries is 

highly restricted. Therefore, the simulated signals are enhanced significantly by error. This is the 

so called “edge effect”, noted by Hwang, et al (2003). To avoid the edge effect, they obtained 

results only from the unaffected central one third grid points for a specific diffusion time (37ms). 

However, when the diffusion time increases the influence of the boundaries propagates further 

into the center of the computational domain, and then the central one third region no longer 

produces reliable data. In this case, fewer grid points can be chosen or, equivalently, an even larger 

computational domain is necessary. This is either computationally expensive or a source of 

significant errors. 
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Fig. 3-4 Error distributions of simulated magnetization as a function of spatial coordinates x and 

diffusion times using the conventional FD method.  
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Fig. 3-4 shows how the edge effect increases with increasing diffusion time when using the 

conventional FD method. The error is expressed as the ratio |ADCsimulated- ADCideal|/ADCideal×

100% and the simulated parameters are diffusion coefficient D = 1 µm2/ms, b = 1 ms/µm2, ∆x = 

0.2 µm, ∆t = 10-3 ms and a = 20 µm. Hence, edge effects cause more artifact with long diffusion 

times and they must either be reduced by additional computation over an extended domain or 

they become a source of significant errors. This shortcoming limits the practical usage of FD 

methods. 

 

3.3  Improved Finite Difference Method 

3.3.1  Matrix-Based Finite Difference Method 

Eq.[3.5] focuses on the individual grid points, but it can be rewritten in a more convenient way. If 

we label grid points with 1, 2, 3, …, N, (N is the total number of grid points, shown in Fig. 3-5) 

and suppose there are impermeable barriers at boundaries (this is how conventional FD deals with 

the boundaries, which causes edge effects), the FD equations with explicit FTCS are given by 

1
1 1 1 2 1 2 1

n n nm m s m s m+
→ →′ = − + 2

n

n

n

1

n

 

1
2 2 2 1 2 3 2 1 2 1 3 2 3( )n n n nm m s s m s m s m+

→ → → →′ = − + + +  

1
3 3 3 2 3 4 3 2 3 2 4 3 4( )n n n nm m s s m s m s m+

→ → → →′ = − + + +  

 

1
1 1

n n n n
N N N N N N N Nm m s m s m+

→ − − → −′ = − +  

Alternatively, the matrix form of Eq.[3.5] may be written as 

 1n n+′ = +M M AM  [3.6] 

where Mn denotes a vector containing magnetizations and the transition matrix A, which contains 

the biological tissue structural information, is given by  
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  [3.7] 

1 2 2 1

1 2 2 1 2 3 3 2

2 3 3 2 3 4

1

0 0
0

0
0

0 0 0 N N

s s
s s s s

s s s

s

→ →

→ → → →

→ → →

→ −

−⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟− −
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

0

n

Note that Eq.[3.7] gives the maximum possible number of non-zero elements. If any two grid 

points do not exchange water molecules in a time step, the corresponding matrix element should 

be zero.  

Finally, the discretized Bloch-Torrey equation for transverse magnetization using the MFD with 

explicit FTCS scheme can be written as  

 , [3.8] 1 ( )n n+ = ⊗ +M Φ I A M

where I is an identity matrix with the same size of A, ⊗  denotes the element-by-element vector 

multiplication and Φn is a vector describing the phase accumulation and the transverse relaxation 

in every time step, 

1 2,1 2 2,2 2,exp( i / ),exp( i / ), ,exp( i / )n n n n
N Ng x t t T g x t t T g x t t Tγ γ γ⎡ ⎤= − ∆ − ∆ − ∆ − ∆ − ∆ − ∆⎣ ⎦Φ [3.9] 

Eq.[3.8] converts the conventional FD formulism into matrix algebra which not only simplifies 

the notation, making it easier to implement into a simulation, but also increases the computing 

efficiency because most of the scientific languages such as MATLAB and C/C++, have optimized 

packages/subroutines for computing with large matrices. Moreover, different discretization 

schemes can be easily implemented using MFD. For example, MFD with the implicit FTCS is 

expressed as 

 , [3.10] 1 ( )n n+ = ⊗ −M Φ I A M1 n−

and with the Crank-Nicolson scheme (41) it is  

 1 1( ) ( )
2 2

n n+ −= ⊗ − +
A AM Φ I I nM  [3.11] 

Another benefit from MFD is that the boundary conditions can be included in the matrix A. Since 

most of the simulations deal with invariable structures, such as image-based FD simulations, the 

matrix A can be determined at the start of simulation and that increases the computing efficiency 
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significantly. Note that A has the dimensions of N×N which is usually extremely large and a 

sparse matrix should be used to avoid any possible memory allocation problems in the simulation.  

 

3.3.2  Revised Periodic Boundary Condition (RPBC) 

A possible solution to reduce the edge effect is the hybrid discretization scheme algorithm 

(HDSA) (42). However, HDSA still induces errors at the boundaries and, moreover, it becomes 

less stable when high b values (>100ms/µm2) are used. A revised periodic boundary condition 

(RPBC) for the Bloch-Torrey equation has been developed to eliminate the edge effect 

completely.  

0 1 2 3 N−2 N−1 N N+

computational domain

α

1

 
Fig. 3-5 Diagram scheme of the 1D revised periodic boundary condition. The region between two 

dashed lines is the computational domain. The whole structure is periodic so that point 0 and N, 

point 1 and N+1 have identical structures and spin densities, respectively.  

 

3.3.2.1  Periodic Structure and Magnetization Distribution 

On the assumption that the structure is periodic with the computational domain as the unit cell, a 

simple relationship can be derived between any two corresponding points in different unit cells 

with any gradient waveforms. For simplicity, only 1D case was discussed below. 2D and 3D cases 

can be derived in a similar way.  

Suppose xa and xb are two points related with  

 a bx x nα= + , [3.12] 

where n is any integer and α is the length of the unit cell. The water diffusion propagator of the 
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whole periodic structure can be defined as P(x| x’, ∆) which means the probability of a water 

molecule starts from position x and migrates to x’ after a diffusion time ∆. The explicit form of 

the propagator is usually unknown except for a few simple geometries. However, the periodic 

structure yields 

 ( | ', ) ( | ' , )P x x P x n x nα α∆ = + + ∆ , [3.13] 

transverse relaxation time 

 2 2( ) ( )T x T x nα= + , [3.14] 

and the spin density 

 ( ) ( )x x nρ ρ α= + . [3.15] 

Since any general gradient waveform can be considered as a series of short gradients (43,44), the 

magnetizations at x  and x  can be calculated by  a b

⋅ ⋅ ⋅

n n n n

N N

j j

  [3.16] 

1 2 1 1 1 2 1 1 2

2 2 2 2 2 3

1 1 2 1 1

( , ) ( )exp( i )exp( / ( )) ( | , )

                exp( i )exp( / ( )) ( | , )
                exp( i )exp( / ( )) ( | , )
          

a N

N N N N N

m x t dx dx dx x q x t T x P x x t

q x t T x P x x t
q x t T x P x x t

ρ

− − − −

= ⋅ ⋅ ⋅ − −∆ ∆

× − −∆ ∆ ⋅⋅ ⋅

× − −∆ ∆ ⋅⋅ ⋅

∫ ∫ ∫

2      exp( i )exp( / ( )) ( | , )N N N N aq x t T x P x x t× − −∆ ∆

and 

  [3.17] 

1 2 1 1 1 2 1 1 2

2 2 2 2 2 3

1 1 2 1 1

( , ) ( )exp( i )exp( / ( )) ( | , )

                exp( i )exp( / ( )) ( | , )
                exp( i )exp( / ( )) ( | , )
          

b N

N N N N N

m x t dx dx dx x q x t T x P x x t

q x t T x P x x t
q x t T x P x x t

ρ

− − − −

= ⋅ ⋅ ⋅ − −∆ ∆ ⋅⋅ ⋅

× − −∆ ∆ ⋅⋅ ⋅

× − −∆ ∆ ⋅⋅ ⋅

∫ ∫ ∫

2      exp( i )exp( / ( )) ( | , )N N N N bq x t T x P x x t× − −∆ ∆

where q =γ g ∆t, n=1 … N, g  is the gradient at time t  , ∆t is the time step and t = N∆t, N is the 

total number of time steps. Considering the periodic structure, a substitution of x  = x ’ + nα and 

[3.12] can be made and [3.16] becomes 

1 2 1 1 1 2 1 1 2

2 2 2 2 2 3

1 1 2 1 1

( , ) exp( i ) ( )exp( i )exp( / ( )) ( | , )

                exp( i )exp( / ( )) ( | , )
                exp( i )exp( / ( )) ( | ,

a N N

N N N N N

m x t n q dx dx dx x q x t T x P x x t

q x t T x P x x t
q x t T x P x x n

α ρ

α− − − −

′= − ⋅ ⋅ ⋅ − −∆ ∆ ⋅⋅ ⋅

× − −∆ ∆ ⋅⋅ ⋅
′× − −∆ +

∫ ∫ ∫

2

)
                exp( i )exp( / ( )) ( | , )N N N N b

t
q x t T x P x x t

∆ ⋅⋅ ⋅
′ ′ ′× − −∆ ∆

 [3.18] 

After a series of substitutions  x  = x ’ + nα (j = N-1, N-2, …, 1), Eq.[3.18] becomes 
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1

)) ( | , )
                exp( i )exp( / ( )) ( | , )

             exp( i ) ( , )

N N

N N N N b
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k b
k
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n q m x tα
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′ ′ ∆ ⋅ ⋅ ⋅
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[3.19] 

In general, one can obtain 

 . [3.20] 
0

( , ) exp[ i ( ') '] ( , )
t

am x t n g t dt m x tαγ= − ⋅∫ b

N
k

m g t mαγ
=

= ∆ ⋅∑ 1 1
1

exp[ i ]
n

n k n
N

k
m g t mαγ+

=

Recall that xa = xb + nα. Eq.[3.20] shows that the magnetizations at two corresponding points in 

different unit cells are simply related with a phase factor which depends only on the integral of 

the applied diffusion gradients and the distance between these two points. Note that it is assumed 

that the whole structure is periodic but the structure inside each unit cell (the computational 

domain) is usually heterogeneous.  

 

3.3.2.2  Revised Periodic Boundary Condition (RPBC) 

Fig. 3-5 shows the schematic diagram of the RPBC. The length of the computational domain is 

α which is the length of a unit cell. The conventional periodic boundary condition, m0 = mN and 

mN+1 = m1, is obviously not correct for our problem. However, using the relation of two 

corresponding points in a periodic structure discussed above (Eq.[3.20]), we obtain  

0
1

exp[i ]
n

n k n  and = − ∆ ⋅∑

n
N

. Hence, the updating rules for 

the edge points 1 and N become 

  [3.21] 1
1 1 1 2 1 1 2 1 2 1

0
( + ) exp(i )

n
n n n n k

N N
k

m m s s m s m s g t mαγ+
→ → → →

=
′ = − + + ∆∑

and  
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 , [3.22] 1
1 1 1 1 1

0
( + ) exp( i )

n
n n n n k

N N N N N N N N N N
k

m m s s m s m s g t mαγ+
→ − → − → − →

=
′ = − + + − ∆∑ 1

n

)

where  and  are defined as the jump probabilities between points 1 and N as if they 

were adjacent. Eqs. [3.21] and [3.22] are the RPBC for 1D Bloch-Torrey equation. Since the only 

assumption here is the periodic structure, this RPBC can be used for any gradient waveforms.  

1 Ns → 1Ns →

The transition matrix A with the RPBC becomes 

1 2 1 2 1 1
1

1 2 2 1 2 3 3 2

2 3 3 2 3 4

1 1 1
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0 exp(i

0
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exp( i ) 0 0
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s g t s s

αγ
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→ → − →
=
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− − ∆⎜ ⎟

⎜ ⎟
⎜ ⎟− −
⎜ ⎟
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⎜ ⎟
⎜ ⎟
⎜ ⎟

− ∆ − −⎜ ⎟
⎝ ⎠

∑

∑

g t

   [3.23] 

With the substitution of Eq.[3.23], the RPBC is easy to implement into Eq.[3.8] (explicit FTCS), 

Eq.[3.10] (implicit FTCS) and Eq.[3.11] (Crank-Nicolson) for solving the Bloch-Torrey equation.  

For the conventional FD method, the transition matrix A remains invariant for a certain tissue 

sample which significantly increases the computing efficiency. In contrast, for the improved FD 

with RPBC method, A depends on the applied gradients, which are usually time-dependent. 

Hence, extra computing time should be used to update A in every time step if a general 

diffusion-sensitizing gradient waveform is used for the RPBC method. This may decrease 

computing efficiency. Fortunately, only the matrix elements which describe the diffusion across 

the boundaries vary and they usually take only a small portion of the total matrix elements. 

Therefore, the extra time spent on updating A in the RPBC method increases only a small portion 

of the total computing time. Furthermore, the RPBC method significantly reduces the effective 

dimension of the tissue sample by removing the edge effects. Hence, the improved FD with 

RPBC method shows a better computing efficiency than the conventional FD method. In practice, 

the explicit FTCS discretization scheme is suggested for the improved FD with RPBC method to 

avoid the time-consuming calculations of matrix inversion in implicit FTCS or Crank-Nicolson 

schemes.  
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3.4  Parallel Computing 

The intrinsic diffusion coefficients inside cells may be different from those outside the cells and it 

has already been shown that membrane permeability plays an important (maybe dominant) role in 

water diffusion in biological tissues (45). Therefore, the computational model should have a space 

resolution at least of the cellular level. In order to probe what intracellular structures affect 

diffusion, the resolution must be even greater and cells cannot be considered uniform or isotropic. 

Considering the small cellular dimensions of brain tissue (e.g. 2µm for gray matter) and relatively 

large spatial resolution of DWI ( > 100µm, typically), the computing problem has very large scale; 

> 106 nodes even for one voxel of an MRI image. Hence, a high performance computing 

technique is necessary to extend numerical methods suitable to larger-scale samples. We have 

implemented a parallel processing approach to address this problem.  

The most time-consuming part in solving Eq.[3.8], [3.10] or [3.11] is the matrix-vector 

multiplication which therefore should be parallelized. There are several frequently used parallel 

models, and among them, the master-slave model is one of the most popularly used (46).  

 
Fig. 3-6 The virtual topology of the server/client (or master/slave) parallel model 

 

Fig. 3-6 shows the virtual topology of the server/client parallel model. The server (node 0) plays 

the most important role in this model. It loads jobs, decides how to assign jobs to the client nodes, 
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reaps results when the client nodes complete and finally output or save the results to the disk. 

Hence, this model is suitable for a bunch of small- or medium-scale computing jobs. For example, 

it is usually important to get the dispersion curve of ADC vs. diffusion gradient frequency ω. We 

can use this model to simulate ADCs using each client to simulate the echo attenuation only 

corresponding to one ω value and, then the server collects all results from clients and outputs the 

dispersion curve. However, this model might not be the efficient way for our problem due to the 

large dimension of our computing sample, we need to use some other parallel computing models.  

An alternate parallelization strategy for our problem can be expressed as (47) 

  [3.24] 
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1, 2, …, denote the indices of strips calculated by corresponding processors and np is the total 

number of processors. This method splits the large matrices and vectors into smaller strips and 

one processor computes one strip so that the effective dimension of the problem is decreased. 

However, this method requests all processors to broadcast all their results to the other processors 

in every time step which is usually a bottleneck for the computing. To decrease the 

communication among processors and increase the computing efficiency, a tightly-coupled 

parallel computing model was developed for our problem.  

In this model, the whole sample tissue is first partitioned into a number of small sub-blocks 

(cubes in Fig. 3-7) according to the number of processors so that each sub-block is simulated by a 

single processor. Obviously, the processors are organized into a 3-D Cartesian virtual topology 

which is the same as the topology of sub-blocks. Every processor simulates one sub-block using 

the MFD described in Section 3.3.1  as if it was a single processor problem. However, the 

sample partition induces new artificial boundaries between the sub-blocks which usually cause 

larger errors. To avoid this influence, all of the processors should work synchronously and 
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communicate with adjacent processors to swap boundary information in every time step. The 

effect of the new-formed artificial boundaries can be completely eliminated. For the boundaries 

of the whole computational domain, RPBC should be used to eliminate the edge effect. Hence, 

our tightly-coupled parallel computing model does not induce any more errors in the simulation. 

Note that the communication burden of the tightly-coupled model is of the order of 

, which is usually much less than the amount of [3.24] (
,

,  ( , , , )m n
m n

N N m n x y z=∑ x y zN N N ) and 

that is the reason why this model shows an increased efficiency.  

 

Fig. 3-7 Topology of tightly-coupled parallel computing model. Cubes represent the sub-blocks 

processed by different processors. The virtual topology of processors should be the same and 

dotted lines represent the communications between adjacent processors.  

 

The tightly-coupled parallel computing approach significantly reduces the communication 

overhead in the simulation and increases the parallel computing performance. In addition, since 

all simulations in this dissertation were performed with a Gigabit Ethernet network, an even 

better parallel computing performance may be obtained by using a Myrinet network (which has 

lower latency and higher band-width).  

 

3.5  Computational Error Analysis 

To employ revised periodic boundary condition (RPBC), the forward time centered space (FTCS) 
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discretization scheme is suggested to implement in order to reduce the computing time for 

updating the matrix A (see Eq.[3.23]). When the FD method with explicit FTCS scheme is used, 

the Courant-Friedrichs-Lewy (CFL) condition (41) should be satisfied to ensure the stability of 

the simulation, i.e., jump probability should be smaller or equal to 1/2, 1/4, 1/6 for 1D, 2D and 

3D, respectively. However, it has been found in simulation that the amplitudes of the applied 

magnetic gradients affect the results: larger amplitude gradients yield larger errors (48). Therefore, 

it is important to study the computational errors in order to obtain more accurate results in the 

simulations.  

 

3.5.1  Consistence Error 

The consistence error is defined as the difference of the simulated result and the exact solution. 

It's obvious that we'd better get as small consistence error as possible in the simulation. For a 

conventional diffusion equation, the consistence error can be expressed as (41) 
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Hence, s is usually chosen as 1/6 to minimize the consistence error in a conventional diffusion 

equation. However, in our work, the Bloch-Torrey equation (see Eq.[1.9]) is the governing 

equation and the consistence error should be re-analyzed. To simplify the analysis, only 1D 

situation is considered here. 2D and 3D analysis can be obtained in a similar way. The 1D 

Bloch-Torrey equation with FTCS discretization scheme can be expressed as 
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Considering the Taylor series expansions about the (j,n)-th node for each term of the 1D 

Bloch-Torrey equation produces, one can obtain 
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and 
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With the substitution of Eq.[3.27] and Eq.[3.28] into Eq.[3.26] and after some rearrangements, 

one can get 
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With the comparison of Eq.[3.29] and Eq.[3.26], the consistency error caused by the (j,n)-th node 

can be defined as  
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Notice that 
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Substituting Eq.[3.31] into Eq.[3.30], the consistence error can be expressed as 
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The overall consistence error caused by the simulation is the sum of Eq.[3.32]  
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Hence, the consistency error for the Bloch-Torrey equation not only depends on the jump 

probability, s, but also depends on the amplitude of the gradient, g, the spatial step size, ∆x, and 
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the size of the computational domain.  

 

3.5.2  Computational Error 

Section 3.5.1  shows errors are dependent on diffusion-sensitizing gradients. In practice, a 

dimensionless factor β is defined to evaluate the influence of this effect of gradients, namely,  

 /Q xβ π= ⋅ ∆  [3.34] 

where 

  [3.35] 
0

max{ ( )},  ( ) ( ') '
t

Q f t f t g t= = ∫ dt

0 0.1 0.2 0.3 0.4
0 

1

2

3

4

5

6

7

8

9

10

β=Q*∆x/π

er
ro

r 
(%

)

 

 PGSE−short conv.

PGSE−finite conv.

OGSE−sin conv.

OGSE−cos conv.

PGSE−short RPBC

PGSE−finite RPBC

OGSE−sin RPBC

OGSE−cos RPBC

 

Fig. 3-8 Simulation errors change with respect to a dimensionless factor β = Q*∆x/π. The results 

of conventional FD method were taken from the central region unaffected by the edge effect.  

 

Fig. 3-8 shows that both conventional FD and the improved FD method with RPBC have 

increasing simulation errors with the amplitude of gradient increasing. Furthermore, both FD 

methods show the same behavior with respect to β (noting that results of conventional FD method 

were only taken from the central region unaffected by the edge effect) which implies this might 

be an intrinsic property when the FD algorithm is used to solve the Bloch-Torrey equation. In 

practice, β < 0.1 is needed to obtain a simulation error smaller than 1%.  
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3.6  Simulations of Comparing Two FD Methods 

3.6.1  Isotropic diffusion 

To test the feasibility of our method, diffusion in a 1D sample of isotropic diffusion was 

simulated first. Four types of diffusion-weighted pulse sequences were used: the pulse gradient 

spin echo (PGSE) with short gradient approximation (PGSE-short) (31), PGSE with finite 

duration of gradients (PGSE-finite) (43), oscillating gradient spin echo (OGSE) with 

sine-modulated gradient waveforms (OGSE-sin) and OGSE with cosine-modulated waveforms 

(OGSE-cos) (34,49). The parameters used were: diffusion coefficient D = 1 µm2/ms, b = 1 

ms/µm2, ∆x = 0.2 µm, ∆t = 10-3 ms and total number of grid points N = 201 for all sequences; 

time between the onsets of two gradients ∆ = TE/2 for both PGSE sequences; duration of gradient 

δ  = 10-3 ms for PGSE-short, δ = ∆/2 for PGSE-finite and both OGSE sequences; frequency of the 

applied oscillating gradient f = 4/δ, i.e. 320Hz – 16kHz for TE = 1-50 ms.  
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Fig. 3-9 Comparison of conventional FD and improved FD with RPBC for 1D isotropic diffusion 

sample with four types of pulse sequences.  

 

Fig. 3-9 shows a comparison of the conventional FD and improved FD with RPBC methods for 

1D isotropic diffusion with four types of pulse sequences: PGSE-short, PGSE-finite, OGSE-sin 

and OGSE-cos (definitions see above). Note that results with the conventional FD method are 
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calculated from the whole computational domain and show large errors caused by the edge effect. 

The conventional FD gives larger errors when TE increases which shows the significant influence 

of the edge effect. In contrast, the errors of the improved FD with RPBC are all smaller than 1% 

for all pulse sequences and diffusion times which confirms that the edge effect has been removed 

by the use of RPBC. One interesting feature is that both OGSE sequences give much smaller 

errors than the PGSE for conventional FD method which shows the barrier-induced effect has 

been reduced. This may be explained in terms of the relatively smaller effective diffusion time 

obtained by the OGSE (37). The definition of error is the same as Fig. 3-4.  

 

3.6.2  Hexagonal Array of Permeable Cylinders 

Some neural tissues, such as white matter, are often modeled as a bunch of parallel cylinders for 

studying water diffusion. Exact expressions for the ADC have been published for a single 

cylinder with impermeable walls (30) and with wall relaxation (31). An analytical expression for 

the thermal conductivity has been obtained for hexagonal arrays of perfectly conducting cylinders 

(50). Thermal conductivity and diffusion are analogous transport properties, so an analytical 

expression for the transverse ADC of hexagonal arrays of cylinders with perfect diffusivities at 

the cylinder boundaries may be obtained as (39) 
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fADC D f f
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ξξ

ξξ

−2f⎡ ⎤⎛ ⎞⎢ ⎥∆ → ∞ = − + − −⎜ ⎟⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦
, [3.36] 

where  

 (1 ) /(1 ),    /i eD Dξ κ κ κ= + − =  [3.37] 

and D , D  are diffusion coefficients inside the cylinders (intra-cellular space) and outside the 

cylinders (extra-cellular space), respectively, and f is the volume fraction of cylinders.  

i e

Fig. 3-10 shows the cross-section of a hexagonal array of cylinders simulating white matter axons. 

Cylinders (grey in Fig. 3-10) are axons and the surrounding matrix (white) is extra-cellular space. 

To compare with the analytical results, the myelin was assumed to be non-space occupying and 

with infinite permeability, and the diffusion time is very long (TE = 50ms). The conventional FD 
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method should simulate a much larger image to avoid the edge effect, whereas the improved FD 

with RPBC only needs to simulate the smallest unit cell of the structure.  

 

Fig. 3-10 Cross-section of a hexagonal array of cylinders: cylinders are grey and the surrounding 

matrix is white. To avoid the edge effect, the conventional FD method simulates the whole image 

and takes signals from the central barely affected domain for long diffusion times; whereas the 

improved FD method with RPBC only needs to simulate a unit cell (in the black box).  

 

Simulated and analytical results for structures with different cylinder volume fractions are 

compared in Fig. 3-11. The sizes of cylinders were kept constant so that the change of 

interspacing of cylinders yields the various volume fractions. A PGSE-short pulse sequence was 

used in the simulations with parameters: Di = 1.12 µm2/ms, De = 1.65 µm2/ms, ∆x = ∆y = 0.5 µm, 

TE = 50 ms and number of points Nx = Ny = 96 for the whole image.  

Fig. 3-11 shows again the large errors caused by the edge effect (26% - 32%). It seems taking 

results only from the central unaffected computational domain (39) did remove the edge effect for 

the conventional FD method. However, it is much less efficient that 88% (2D) or 96% (3D) of the 

computational domain (and thus the computing time) was actually wasted. In contrast, the 

improved FD with RPBC gave relatively accurate results but was much more efficient (less than 

5% of the computing time of the conventional FD method in the simulations of Fig. 3-11).  
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Fig. 3-11 Comparison of simulated and analytical results for hexagonal array of cylinders. For 

conventional FD, the results were taken from both whole domain and central unaffected domain 

for comparison.  

 

3.6.3  Cubic Cells on a Cubic Grid 

It has been reported that ADC in brain tissue drops significantly soon after the onset of a stroke 

(10,51). It has also been shown that ADC changes with intra-cellular volume fraction (52). Hence, 

the relationship between ADC and intra-cellular volume fraction is of considerable interest. Two 

analytical expressions for the ADC for cubic cells on a cubic grid have been developed using two 

types of models: parallel-series (PS) and series-parallel (SP) (38). For a cubic cell with size of L 

and permeability Pm on a cubic grid, the ADC expressions are  

 
2 / 3

2 / 3
1/ 3 1/ 3( ) (1 )

1
PS

e

c e

fADC f D
f f
D D

∆ → ∞ = + −
−

+
 [3.38] 

 
11/ 3 1/ 3

2 / 3 2 / 3
(1 )( )

(1 )
SP

ec e

fADC
Df D f D

−
f⎡ ⎤−

∆ → ∞ = +⎢ ⎥
+ −⎢ ⎥⎣ ⎦

 [3.39] 

where Dc is the effective ADC for a cell 
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Simulated results for such an array using the improved FD method with RPBC are shown in Fig. 

3-12. The parameters used the measured values for red blood cells: Di = 0.63 µm2/ms, De = 2 

µm2/ms and Pm = 0.024 µm/ms (52) and the others are same in above sections.  

The simulated results match the PS model quite well, better than the SP model. This might imply 

that the PS model is more accurate for packed red blood cells which is consistent with previous 

experiments (52). The simulations using the conventional FD method were not performed here 

because it requires thousands of times more computing time, whereas the improved FD with 

RPBC method took only seconds to run. 
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Fig. 3-12 ADC changes with respect to the intra-cellular volume fraction for a diffusion system of 

cubic cells on a cubic grid. Simulated results show good agreement with the PS model which is 

consistent with the experimental data on packed red blood cells.  

 

3.6.4  Large-scale Sample of Pure Water 

Although the improved FD with RPBC algorithm significantly reduces the effective dimensions 

of a tissue sample and, hence, increases the computing efficiency, heterogeneous tissue samples 

are usually very complicated and have large dimensions, especially for a simulation with 

sub-cellular resolution. High performance computing may be used to address such a large-scale 

computing problem. To test the computing performance of our tightly-coupled parallel computing 
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model, a large sample of pure water with a 101×101×101 grid was simulated using different 

number of processors using PGSE-short pulse sequence. The parameters used were D = 2.5 

µm2/ms, b = 1 ms/µm2, temporal interval ∆t = 0.001 ms, spatial interval ∆x = 0.5 µm, TE = 100 

ms and the size of computational domain along one direction = 2a, a = 50 µm.  
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Fig. 3-13 Total computing time changing with respect to the number of processors. Total 

computing time includes the processor execution time, communication and synchronization time.  

 

Fig. 3-13 shows the total computing time decreases as more processors are used. The total 

computing time for 56 processors is only 2.5% of the time for a single processor. The advantage 

of using parallel computing is obvious. Note that the total computing time reaches its minimum 

when 56 processors were used in the simulation while the computing time increases when more 

(64 shown in Fig. 3-13) processors are used. The reason is that when more processors are used in 

the simulation, the communication and synchronization time spent among the processors 

increases. When the portion of the communication time is too large, the computing time begins to 

increase again and the efficiency of parallel computing decreases. This shows that, for a certain 

problem, the parallel computing technique can not decrease the total computing time indefinitely 

as more processors are used. There is a minimum computing time for a specific problem with 

specific computing facilities.  
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To better understand the parallel computing performance of our model, a speed chart is plotted in 

Fig. 3-14. Speedup is defined as S= t1/ tn, t1 is the computing time for a sequential program (one 

processor) and tn is the total computing time for n processors. Our result reaches the ideal 

(theoretical maximum) speedup for up to 16 processors and performance still increases when less 

than 56 processors are used, which verifies computing performance of the tightly-coupled parallel 

computing model. The speedup drops down as more time is spent on communication and 

synchronization which means the parallel computing performance decreases.  
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Fig. 3-14 Speedup chart of tightly-coupled parallel computing model.  

 

3.7  Conclusion 

The MC method is time consuming for complex tissues because it must track a large number of 

spins which encounter boundaries in the simulation in order to retrieve structural information. In 

contrast, the FD method determines the spin migration probabilities at the start of the simulation, 

which must therefore already contain tissue structural information. Thus, FD is usually 

computationally more efficient. This chapter introduces an improved finite difference method, 

which not only eliminates the edge effect induced by the conventional FD approach but also 

enables the efficient large-scale simulation of diffusion in biological tissues with the 

implementation of a tight-coupled parallel computing model. This method is applicable to studies 
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of water diffusion in MRI to aid the interpretation of diffusion-weighted imaging measures and 

their dependence of the morphology of biological tissues such as tumors. 
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CHAPTER IV 

4   DWI SIGNAL MODELING AND DATA INTERPRETATION  

Tissue structural information is important in both clinically and in research applications. For 

example, measurements of tumor cell nuclear size have been suggested as a biomarker for tumor 

detection and grading (53,54) while the size of axons reflects structure in while matter and affects 

axon conduction properties (55,56). Usually, histological information may only be obtained from 

invasive biopsies. Since diffusion-weighted magnetic resonance imaging (DWI) is dependent on 

the microstructural properties of biological tissues, it is possible to noninvasively obtain 

quantitative structural information from DWI measurements. However, to interpret the data an 

appropriate tissue model is needed.  

Among various tissue modeling approaches, treating diffusion curves with a bi-exponential 

function is a common model to interpret DWI data. However, attempts to correlate the fitted 

parameters from the bi-exponential model to real biological tissue parameters have failed and the 

discrepancy between fitted and real data remains unsolved. Section 4.1  studies the 

bi-exponential model and reveals the origin of bi-exponential diffusion behavior may not be the 

existence of two diffusion compartments (intra- and extra-cellular space) but shows that any 

diffusion restriction can cause a bi-exponential diffusion behavior.  

Oscillating gradient spin echo (OGSE) method may probe short diffusion times and, hence, have 

the potential to detect changes over much shorter length-scales which usually cannot be obtained 

with PGSE method. Section 4.2  investigates appropriate tissue models and data interpretation 

with OGSE based on the theory of temporal diffusion spectroscopy. The developed models fit 

both experimental and simulated data well and extract quantitative tissue microstructural 

information.  
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4.1  The Illusion of Bi-Exponentials: Apparent Compartmentalization in Diffusion MRI  

4.1.1  Introduction of Bi-Exponential Model 

Non-mono-exponential diffusion-induced MR signal decay has long been reported in cell 

aggregates (57) in tissues, in small animals (58) and human subjects (59). In addition, the 

non-mono-exponential decay usually can be well fitted to a bi-exponential function, i.e. 

 0( ) / exp( ) (1 )exp( )slow fastSS b f bD f bD= − + − − , [4.1] 

where S(b) and S0 are the MR signals with and without diffusion-sensitizing gradients, b is the 

conventional gradient factor, f the fraction of the magnetization associated with the slow diffusion 

rate Dslow, and Dfast the higher apparent diffusion rate for the remainder. Eq.[4.1] has been 

interpreted as evidence of two separate compartments with different intrinsic properties between 

which the water exchange is assumed to be intermediate or slow. Experimental data often fit this 

model well and bi-exponential parameters have been assessed and interpreted in several 

applications, such as the characterization of brain tumors (60), adult and newborn brains (61), 

early stages of ischemic stroke (62) and the response of tumors to treatment (63). However, the 

origin of this so-called bi-exponential diffusion behavior remains unclear. Attempts have 

commonly been made to correlate the bi-exponential diffusion to actual water compartments, and 

some appear to interpret the fitted slow and fast diffusion components as directly representing the 

intra- and extracellular water in tissues. However, the apparent slow and fast volume fractions 

obtained from bi-exponential diffusion data fits differ significantly from intra- and extracellular 

volume fractions estimated from histology, and, in addition, differ from those obtained by hybrid 

diffusion experiments which incorporate other MRI contrast mechanisms such as T2 (64-66).  

There are several possible reasons to explain these discrepancies, such as differences in 

relaxation times of intra- and extracellular compartments, or faster water exchange between those 

compartments, but some potential explanations have been shown to not be adequate. For example, 

it was observed by Niendorf et al. (67) that the obtained volume fractions from bi-exponential 

fitting were independent of TE, which implies that T2 differences cannot explain the discrepncy. 
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Mulkern et al. used inversion pulses with a range of inversion times of 40-500 milliseconds and 

found no statistically significant difference in the T1 values of the fast and slow diffusion 

compartments in both cortical gray matter and the internal capsule of the human brain (68). Clark 

and Le Bihan measured the anisotropy of the apparent volume fractions using high b-value 

diffusion measurements of human brain (69). Sehy et al. obtained both slow and fast diffusion 

components from the intracellular space alone (70) while Grant et al. observed bi-exponential 

diffusion behavior in sub-cellular compartments, including the nucleus and cytoplasm in a large 

neuronal cell (71). Schwarcz et al. found bi-exponential diffusion behavior in a cold injured tissue 

in which cell membranes have disintegrated (72). Sukstanskii et al. studied a single cell-like 

compartment by simulation and found the impermeable barrier made the magnetization 

inhomogeneous with a short diffusion time, leading to a non-mono-exponential signal decay 

which can be fitted well by a bi-exponential model (73). Kiselev and Il’yasov questioned whether 

the high accuracy of data fitting to the bi-exponential model necessarily implies the presence of 

two distinct compartments (74).  

 

4.1.2  Diffusion Restriction and Apparent Compartmentalization from Bi-Exponential 

Diffusion rates in tissues are substantially lower than in homogeneous protein solutions, and the 

presence of restricting membranes or surfaces is important to explain such differences. Diffusion 

in restricted geometries can by itself give rise to non-monoexponential signal decays, as has been 

known for many years (75) but this potential contribution to bi-exponential decays continues to 

be overlooked. Numerical simulations have been used before to predict bi-exponential diffusion, 

e.g. Chin et al. used computer simulations to predict bi-exponential diffusion based on 

histological images from a rat spinal cord region (40). To further emphasize the role of 

restrictions in shaping the decay curves of water in compartmental systems, and to help interpret 

the experimental data obtained from tissues, we have used an improved finite difference method 

to study the diffusion behavior of a simplified 3D model corresponding to packed cells separated 

from the bulk medium by membranes of finite permeability. By assuming all other parameters are 
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homogeneous, including the proton density, T1, T2 and intrinsic diffusion coefficient, a good fit to 

bi-exponential diffusion behavior is still observed when the permeability is low, and the 

parameters obtained from a bi-exponential fit are dependent on the diffusion times, cell diameter 

and permeability. Furthermore, bi-exponential behavior is still observed with long diffusion times 

when there is no significant barrier-induced magnetization inhomogeneity. Thus, the 

bi-exponential diffusion behavior originates purely from the restriction on diffusion in this 

homogeneous system, and it is greatly affected by the water exchange rate and membrane 

permeability.  

 

4.1.2.1  Methods 

A 3D tissue model with packed cells  

A simplified 3D two-compartment tissue model was used to simulate the behavior of water 

diffusion in tissues (see Fig. 4-1). The tissue is considered as a regularly packed system of filled 

spherical cells suspended in an extra-cellular fluid, and T1, T2, proton density and intrinsic 

diffusion coefficient are assumed homogeneous everywhere. Hence, there is only one intrinsic 

water pool in the model, although the whole tissue can be considered as two regions, the intra- 

and extra-cellular spaces, separated by cell membranes. The membranes are considered to be 

semi-permeable and results for three values of the permeability (= 0.001, 0.01 and 0.1 µm/ms) are 

provided below. Data are presented for two modeled tissues: tissue_I has cells of the size of 2 µm, 

which is more representative of cortical grey matter and the other one tissue_II has size of 10 µm 

cells which represents other tissues such as tumors. The intrinsic diffusion coefficient can be 

selected and results below are for the chosen values = 1 or 2 µm2/ms everywhere for tissue_I and 

tissue_II respectively. The diameter and spacing of the cells are variable, but when they are 

close-packed the intra-cellular and extra-cellular volume fractions are 61.8% and 38.2% (for 

tissue_I) and 67.1% and 32.9% (for tissue_II), respectively. Tissue_I is discretized to a 30×30×

30 matrix and tissue_II a 73×73×73 matrix.  
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Fig. 4-1 A 3D tissue model with packed spherical cells and semi-permeable cell membranes.  

 

In each simulation, the spatial steps for water molecules undergoing random diffusion were ∆x = 

∆y = ∆z = 0.2 µm and the temporal increment used was ∆t = 1 µs. Simulations were performed 

with 8 Opteron processors (2.0 GHz) on the computing cluster of the Vanderbilt University 

Advanced Computing Center for Research & Education. The programs were written in C (GCC 

4.1.2) with message passing interface (MPICH2) running on a 64-bit Linux operation system with 

a Gigabit Ethernet network. 

All signal decays were fitted to Eq.[4.1] using a non-linear least-squares Levenberg-Marquardt 

algorithm provided by the optimization toolbox of Matlab (Mathworks, Natick, MA). The quality 

of fitting was evaluated by χ2, the square 2-norm of the residuals. 

 

4.1.2.2  Apparent Compartmentalization Dependent on Diffusion Time 

Fig. 4-2(a) shows that when the cells are relatively small (2 microns) Dslow increases from 0.02 

µm2/ms at ∆ = 4 ms to 0.16 µm2/ms at ∆ = 100ms, whereas Dfast is 0.78 µm2/ms at ∆ = 4 ms and 

decreases gradually down to 0.59 µm2/ms at ∆ = 100 ms. Fig. 4-2(b) shows how f, the fitted 

volume fraction of the “slowly diffusing” compartment changes with the diffusion time. f is 
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56.2% at ∆ = 4ms and monotonically decreases to 28.5% at ∆ = 100 ms. All data fitting have 

reasonably small errors (χ2 < 10-5) which shows the bi-exponential fits the data very well. Note 

that the diffusion time only goes down to only 4 ms in the simulations because of the simulation 

error consideration. As the diffusion time decreases, in order to interrogate a large range of b 

values to explore the bi-exponential characteristics, larger amplitudes of gradient must be applied 

but at very short diffusion times this can cause larger simulation errors in the simulation (48).  
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Fig. 4-2 Fitted parameters obtained from a bi-exponential data fitting change with diffusion time 

for tissue_I (a) fitted slow and fast diffusion coefficients and (b) the fitted volume fraction of slow 

diffusion component. 

 

Fig. 4-3(a) shows that when the cells are large (10 microns) Dslow increases from 0.85 µm2/ms at 

∆ = 6 ms to 0.16 µm2/ms at ∆ = 100ms, whereas Dfast is 3.49 µm2/ms at ∆ = 6 ms and decreases 

gradually down to 1.41 µm2/ms at ∆ = 100 ms. Fig. 4-3(b) shows how f, the fitted volume 

fraction of the “slowly diffusing” compartment changes with the diffusion time. f is 89.1% at ∆ = 

6 ms and monotonically decreases to 43.7% at ∆ = 100 ms. All data fits have reasonably small 

errors (χ2 < 10-5). As for Fig. 4-2, the fitted Dslow, Dfast and f are all dependent on diffusion times.  
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Fig. 4-3 Fitted parameters obtained from a bi-exponential data fitting change with diffusion time 

for tissue_II (a) fitted slow and fast diffusion coefficients and (b) the fitted volume fraction of 

slow diffusion component.  
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fuFig. 4-4 The fitted volume fraction of slow diffusion component change with dif sion times and 

e fraction of the slow diffusion compartment changes with 

membrane permeabilities.  

 

Fig. 4-4 shows how the fitted volum
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different diffusion times and membrane permeability for tissue_I. When the permeability is low 

(= 0.001ms/µm) the water exchange between intra- and extra-cellular space is slow, and f 

monotonically decreases from 61.4% at ∆=4ms to 53.4% at ∆=100ms, whereas when the 

permeability is much higher (= 0.1ms/µm) and water exchange is fast, f decreases from 34.2% at 

∆=6ms to 31.4% at ∆=8ms and then increases to 41.7% at ∆=100ms. 

To further study the apparent “compartmentalization”, the standard deviation of the 

magnetization distribution of tissue_I at the echo time (STD shown in Fig. 4-5) was plotted 

versus diffusion time in Fig. 4-5. All curves were obtained with b = 4ms/µm2. The STD decreases 

with increasing diffusion time which means the magnetization becomes more homogeneous with 

a longer diffusion time. With an intermediate water exchange rate (P=0.01ms/µm), the 

magnetization approaches homogeneous when ∆>50ms. For a relatively large water exchange 

rate (P=0.1ms/µm), the magnetization becomes homogeneous when ∆>50ms. If the 

magnetization is homogeneous, apparently, the compartmentalization of intra- and extracellular 

spaces becomes invalid. However, the bi-exponential diffusion behavior is still observed with 

long diffusion times.  
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Fig. 4-5 Standard deviation of magnetization distribution at the echo time is dependent on 

diffusion time. Cell size is 2µm and b = 4 ms/µm2. 
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4.1.3  Discussion 

By making proton density, T1, T2 and the intrinsic diffusion coefficient everywhere uniform, and 

removing any intracellular structures, we exclude some possible causes of bi-exponential 

diffusion in our model. However, pronounced apparent bi-exponential diffusion behavior was still 

observed for the integrated water signal, and this can be entirely attributed to the effects of 

restricted diffusion due to the finite permeability of the membranes. Moreover, Dslow, Dfast and f 

change with diffusion time. A similar dependence has been reported by Thelwall et al. in their 

study of human erythrocytes, and they addressed this dependence on diffusion time due to the 

exchange between intra- and extracellular water (76). In our simulations, the water exchange 

between intra- and extracellular spaces was observed to influence the bi-exponential parameters. f, 

the fitted volume fraction of the slow compartment, decreases with diffusion time with a 

moderate permeability of 0.01 µm/ms. For a larger permeability 0.1 µm/ms, f decreases with 

diffusion time first and then increases because fast exchange of water contributes to homogenize 

the magnetization, making the whole signal decay mono-exponential.  

 Our simulation is based on a simple but realistic tissue model, which contains both intra- 

and extracellular spaces and semi-permeable membranes. The simulated results show that all 

diffusion MR signal decays have a bi-exponential behavior, and the fitted parameters depend on 

the diffusion time. With semi-permeable membranes and long diffusion times, the magnetization 

becomes homogeneous and the intra- and extracellular compartmentalization becomes invalid. 

The bi-exponential diffusion behavior with the conditions considered shows that the slow and fast 

diffusion components are illusory, and do not correspond to identifiable intra- and extra-cellular 

compartments. This may explain some previous discrepancies between fitted volume fractions 

and those obtained by histological analysis.  

 

4.2  DWI Signal Modeling and Data Interpretation with Temporal Diffusion Spectroscopy 

The oscillating gradient spin echo (OGSE) method has many advantages compared with the 

pulsed gradient spin echo (PGSE) approach, such as the ability to probe short diffusion time 
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behavior. However, due to the relatively complicated gradient waveforms, it is difficult to model 

MR signals with OGSE. In section 2.2.2 , the analytical expressions of MR signals with OGSE 

have been introduced and this makes it possible to model MR signals of complicated biological 

tissues and, hence, makes it possible to extract novel tissue structural information from biological 

tissues with the OGSE method. For example, it has been reported that cell division is closely 

related to cell size. For some cells, there is a mechanism by which cell division is not initiated 

until a cell has reached a certain size (77). Hence, cell size is important in tumor grading and has 

important application in cancer diagnosis. Usually, cell sizes can only be obtained from an 

invasive biopsy. With the analytical expressions of MR signals with OGSE method introduced in 

section 2.2.2 , we are able to model the DWI signals obtained from biological tissues and obtain 

cell sizes non-invasively.  

 

4.2.1  One Diffusion Compartment Model: Packed HeLa Cells 

In this section, only a one compartment model is considered. More complicated multiple diffusion 

compartment models will be discussed in the next section.  

Recall Eq.[2.27], which is the analytical expression for signal attenuation of OGSE-cos with 

restricted diffusion 
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If cells are modeled as spherical structures, then Bk and ak can be determined by Eq.[2.20], 

namely, 
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J Jµµ ′ − µ =  (i.e. µk = 2.08, 5.94, 9.21, …) (36). Hence, a system with packed 

spherical cells, in which MR signals arise only from the intra-cellular space, can be modeled 

analytically with the equations shown above. In practice, the dispersion curve of ADC vs. 

gradient frequency is usually needed to tissue characterization. By substituting Eq.[2.21] and 

Eq.[2.27] into Eq.[1.13], one can obtain  
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 [4.2] 

Eq.[4.2] shows the relationship of ADC obtained with OGSE method and the applied gradient 

frequency. Hence, if a dispersion curve (ADC vs. ω) is measured by the OGSE-cos method with 

known sequence parameters, it can then be fitted to Eq.[4.2] to obtained structural information 

such as cell size, from the structural dependent parameters Bk and ak.  

Two packed HeLa cell pullets were studied to illustrate this model experimentally. One was 

normal/healthy cells that grew to 90% cell density and the other one was prepared from cells 

without serum (plain DMEM media) for 24 hours. Then the cells were tripsinized, washed twice 

with PBS and then pelleted into 5mm NMR sample tubes.  

Experiments were done on a Varian 4.7T scanner with a 10mm RF coil using a simple OGSE 

pulse sequence (collecting NMR signals from the whole sample without taking images). Duration 

of each gradient was fixed at 40ms and echo time was 100ms. 12 acquisitions were averaged to 

enhance the SNR.  
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Fig. 4-6 Circles are experimental data for starving HeLa cells and squares for healthy HeLa cells. 

The solid and dashed lines are corresponding fitted curves, respectively.  
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For this packed cell sample, all MR signals can be considered from the intracellular space and, 

hence, it acts as a single diffusion compartment system. By fitting the experimental data to the 

analytical equations Eq.[4.2], we obtained the fitted results shown in Table 4-1.  

 

Table 4-1 Fitted HeLa cell sizes and intra-cellular diffusion coefficients for packed HeLa cells, 

corresponding 95% confidence intervals included.  

 mean HeLa cell diameter (µm) intra-cellular D (µm2/ms) 

healthy HeLa cell 
starving HeLa cell 

15.1±2.00 
16.8±2.25 

1.5±0.07 
1.6±0.08 

 

The fitted mean HeLa cell diameter is close to the reported mean HeLa cell diameter, which is 

14.6±1.7 µm (78). Hence, our model fits packed HeLa cells very well and are able to obtain 

structural information such as cell sizes, from the diffusion-weighted MR results with the OGSE 

method.  

 

4.2.2  Two Diffusion Compartment Model with Slow Water Exchange 

For many samples, the water exchange between two compartments i.e. intra- and extracellular 

spaces is slow (55). One example is the diffusion in axons. Diffusion inside the axon is called 

‘restricted’ and the diffusion in the extra-cellular space is ‘hindered’. We can model the total 

signal from such a tissue simply as a sum of the two components  

 (2 )) eexp xp(( exbE )Dβ τ −= − + , [4.3] 

where 2τ is the echo time, β the signal attenuation of water inside cells/axons and D  the 

diffusion coefficient of extra-cellular space.  

ex

 

For the cylindrical array shown as below, we run the finite difference simulation using the method 

introduced in section 3.3  and then fit the simulated data into Eq.[4.3]. All used parameters are 

experimentally practical values, such as gradient amplitudes (11 values, ranging evenly from 0 to 
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100 G/cm) and three gradient frequencies (50 Hz, 100 Hz and 200 Hz) with TE = 40 ms.  

 

Fig. 4-7 Cross section of a cylindrical array used in the simulation. White region represents axons 

nd black region extra-cellular space.  

ton fraction of axons. Note that the fitted Din gives accurate values 

ith the absence of noise.  

mulated structural parameters and fitted parameters with 95% 

confidence intervals.  

R  D  ( s) D  ( s) fr ) 

a

 

The fitted results and real values used in simulations are shown in Table 4-2, in which R is the 

radius of axon, Din and Dex are diffusion coefficients of axons and extra-cellular space, 

respectively. frac is the pro

w

 

Table 4-2 Comparison of si

  (µm) in µm2/m ex µm2/m ac (%

real value 
fitted value 2.42±0.02 0.97±0.04 1.37±0.03 44.1±1.00 

2.34 1.0 2.0 40.8 

 

ig. 4-8 shows the simulated data of signal aF
c

ttenuation and the corresponding fitted curves. One 
an see that the data are fitted very well.  
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Fig. 4-8 Simulated data are shown as dots (f = 50 Hz), squares (100 Hz) and diamonds (200 Hz). 
Solid, dashed and dotted lines are corresponding fitted curves.  
 

4.3  Conclusions 

An improved finite difference simulation method has been used to study the so-called 

bi-exponential diffusion in a simple array of spherical compartments. Even without the influence 

of variations in other parameters, such as proton density, T1, T2 and intrinsic diffusion coefficient, 

bi-exponential diffusion decays are still observed. Results show that water exchange contributes 

significantly to the bi-exponential diffusion, but the main cause of the bi-exponential diffusion is 

restriction. In addition, the fitted parameters, such as the volume fraction of the slow diffusion 

compartment, are dependent on diffusion time. We confirm that the slow and fast diffusion 

components obtained from a bi-exponential data fitting may merely be apparent compartments 

due to the diffusion restriction and may not then correspond to identifiable intra- and extracellular 

compartments. 

Besides the bi-exponential model, some other tissue models have been suggested to interpret 

DWI data and obtain tissue structural information. We introduced a new model method with the 

OGSE method, which employs relatively complicated diffusion-weighted gradient waveforms. 

The results show that this method can fit both the simulated and experimental data very well and 

 61



can provide tissue micro-structural information such as cell or axon sizes. This method provides a 

new insight into the biological tissue microstructures with diffusion temporal spectroscopy.  

 62



CHAPTER V 

5   SENSITIVITY OF DIFFUSION MEASUREMENT TO VARIATIONS IN 

INTRACELLULAR STRUCTURES: EFFECTS OF NUCLEAR SIZE.  

 

DWI can provide diagnostic insights into various pathologies such as stroke (10), and 

consequently has become an established clinical technique. In both animal and clinical studies, 

measurements of the apparent diffusion coefficient (ADC) of water have also been shown to 

provide information on the state of tumors and their response to treatments by revealing tissue 

characteristics such as tumor cellularity (23,24,79,80). Tumor cellularity is usually interpreted to 

mean cell density, though it may be measured histologically in terms of the integrated area of 

nuclei of cells divided by the total area of the histologic section. Regions with high cell density 

tend to have a lower ADC than regions with a low cellularity (79). This correlation makes ADC a 

potentially powerful biomarker for characterizing tumors and their early response to treatment. 

However, malignant tumors do not always have higher cellularities than normal tissues or benign 

tumors. For example, Guo et al. (81) found that a malignant scirrhous breast adenocarcinoma had 

a lower cellularity and elevated ADC compared to normal tissues, whereas a benign papilloma 

showed a higher cellularity and a lower ADC. Nonetheless, in these examples the inverse 

relationship of cellularity and ADC was conserved. This correlation in practice is actually a 

relationship between ADC and cell density. Conventional ADC measurements on MRI systems 

use the pulsed gradient spin echo (PGSE) method, in which gradients are applied in pairs, 

separated by a diffusion interval. Because of hardware limitations, and in order to impart 

sufficient diffusion weighting to be able to see significant signal reductions, the diffusion 

intervals used in practice are relatively long, typically several 10’s of milliseconds (37). From the 

Einstein relationship, in a time of e.g. 40 ms, free water molecules with an intrinsic diffusion 

coefficient of 2.5×10-5 cm2sec will move a distance on average ≈ 24 microns, which is larger 

than the dimension of most cells. The measured values of water ADC in many tissues are ≈ 5 

times lower, suggesting that water diffusion in tissues is restricted. Such restrictions are caused, 
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for example, by structures such as cell membranes, which have limited permeability. 

Conventional measurements of ADC made using long diffusion intervals represent the integrated 

effects of obstructions to free diffusion at all scales up to the limiting value determined (as above) 

by the experimentally-selected diffusion interval. As such they may be dominated by obstructions 

at large scales, such as cell membranes, which reflect overall cell density, and they cannot 

distinguish these from restrictions that occur at smaller scales, such as those associated with 

intracellular structures. The observed relation between ADC and cellularity in conventional DWI 

measurements is likely a reflection of the effects of water molecules encountering different 

numbers of cell membranes in a specific time, and no separate information can be obtained about 

structural variations on sub-cellular scales. Although cell density may still be clinically useful as 

an indicator of tumor aggressiveness or metastatic capacity (82), it is plausible that more specific 

insights into tumor status may be provided by developing methods that are sensitive to 

intracellular properties.  

Several authors have suggested that assessments of the sizes of tumor cell nuclei may be useful 

for diagnostic purposes (53,54). Indeed, nuclear anaplasia is a diagnostic feature of many 

malignancies and often represents the consequence of major changes in biochemical composition. 

A larger cell nuclear size usually means a more aggressive (high grade) tumor (83). In order to 

make diffusion measurements sensitive specifically to features such as nuclear size, they must be 

performed with diffusion times that are much shorter than those in common use. One approach to 

reduce diffusion times is the oscillating gradient spin echo (OGSE) method. The gradients 

commonly available on MRI systems can readily oscillate at frequencies of the order of a 

kilohertz, so that diffusion times can be achieved that are at least an order of magnitude shorter 

than with typical PGSE measurements. These in turn imply that OGSE measurements can be 

made much less sensitive to large scale restriction effects and thereby be more selectively 

sensitive to intracellular changes. 

In the present work, the feasibility of using OGSE diffusion measurements to obtain information 

on cell nuclear sizes was evaluated numerically using an improved finite difference method to 
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simulate water diffusion within a 3D multi-compartment tissue model. The results show that 

conventional PGSE methods with typical choices of parameters can barely distinguish tissues 

with different nuclear sizes if the cell densities are the same, consistent with the view that 

conventional ADC measurements are dominated by cell density and are insensitive to intracellular 

structures. By contrast, the OGSE method can differentiate tissues with the same cell density but 

which differ over only very short length scales, which means the OGSE method can be much 

more sensitive to variations in intracellular structure such as nuclear sizes. Moreover, the 

simulations show that the degree of contrast produced by variations in ADC at high gradient 

frequencies (short diffusion times) that arise from variations in cell nuclear size are significantly 

greater than obtainable with PGSE methods. Thus OGSE measurements should prove more 

sensitive and specific for many purposes in their applications to tumor characterization. The 

effect of the choice of gradient amplitude in the OGSE method has also been studied, which can 

be helpful for selecting parameters in experimental applications. 

 

5.1  A 3D Multi-Compartment Tissue Model 

A simplified 3D multi-compartment model was used to simulate the behavior of water diffusing 

in tissues (see Fig. 5-1). The tissue is considered as a close-packed system of spherical cells. Each 

cell contains a central spherical nucleus. As a result, there are three distinct compartments 

containing water in this model, corresponding to intra-nuclear, cytoplasmic and extra-cellular 

spaces. Each component is ascribed its own intrinsic parameters, including a water self-diffusion 

coefficient and T2. The interfaces between the compartments are assumed to be only 

semi-permeable and are each ascribed a value of permeability to water exchange. Mitochondria 

and other organelles are not explicitly modeled due to their small sizes. To include the averaged 

effect on diffusion due to restrictions and/or hindrance of organelles, the intrinsic diffusion 

coefficient of cytoplasm is given a value smaller than those of nucleus and extra-cellular space. 

This assumption has been confirmed by experimental observations (71).  
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Fig. 5-1 Schematic diagram of a simplified 3D tissue model. Black regions represent cell nuclei, 

gray regions represent cytoplasm and the space outside the spherical cells are extracellular space. 

Each compartment has its own intrinsic parameters, such as diffusion coefficient. Interfaces 

between different compartments have permeabilities to mimic cell membranes and nuclear 

envelopes. Note that the whole tissue is periodic but only a unit cell (shown above) was needed in 

the simulation, which implemented a revised periodic boundary condition in an improved finite 

difference method. 

 

The simulation can calculate the behavior of the ADC for a range of values of model parameters, 

but we here highlight only the results for realistic values relevant for MRI of tumors. We chose to 

simulate cells with diameters of 10 µm (typical of many human cells). For the results reported 

here, the cell size and spacing were kept constant but the nuclear size was varied so that the ratio 

of nuclear volume to cell volume (N/C) also varied.  

All other simulation parameters were chosen from published experimental results: the cell 

membrane permeability was taken to be 0.024 µm/ms (52), the intrinsic diffusion coefficients for 

nucleus = 1.31 µm2/ms, for cytoplasm = 0.48 µm2/ms and for the extra-cellular space = 1.82 

µm2/ms (71). For all simulations, b = 1 ms/µm2 and TE = 40 ms. T2 was assumed homogeneous 
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everywhere.  

In each simulation, the spatial steps for water molecules undergoing random diffusion were ∆x = 

∆y = ∆z = 0.5 µm and the temporal increment used was ∆t = 0.001 ms. These parameters may be 

automatically adjusted in case of very high gradient amplitudes in order to keep all computational 

errors less than 1% (42). All simulations were performed on the computing cluster of the 

Vanderbilt University Advanced Computing Center for Research & Education. The programs 

were written in C with MPI (message passing interface) running on 2.0 GHz Opteron processors 

and a 32-bit Linux operation system with a Gigabit Ethernet network. 

 

5.2  ADC Differences Obtained by PGSE and OGSE 

Two types of tissue (denoted _I and _II) were simulated. They have the same structures except that 

the ratio N/C was different (and equals to 6.2% and 22.0%, respectively). The ADCs and percent 

difference in ADC (∆ADC) between the two tissues are shown in Fig. 5-2. On the left (Fig. 5-2a 

and Fig. 5-2c) are the results for the PGSE sequence as a function of diffusion time, and on the right 

(Fig. 5-2b and Fig. 5-2d) are the corresponding OGSE results as a function of gradient oscillation 

frequency. The shaded regions of Fig. 5-2c and Fig. 5-2d represent the typically relevant domains 

of diffusion time (20 – 80 ms) and oscillation frequencies (< 1 kHz).  

Over these relevant domains, ADCs measured by PGSE are relatively constant, whereas, ADCs 

measured by OGSE change substantially. Similarly, ∆ADC from PGSE measurements is small (< 

3.6 %) and relatively insensitive to diffusion time, while ∆ADC from OGSE measurements 

changes rapidly with increasing frequency and approaches 15 % at 1 kHz. That is, OGSE 

measurements in this model system reveal approximately 4 times greater percent difference in 

ADC between tissues that vary only in sub-cellular characteristics.  
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Fig. 5-2 Simulated ADCs and ADC differences of two different tissues (N/C 6.2% and 22.0%, 

respectively). (a) Simulated ADCs with respect to diffusion times by the PGSE method. (b) 

Simulated ADCs with respect to frequencies of applied oscillating gradients in the OGSE method. 

(c) ADC differences of two tissues by the PGSE method. The shaded region shows the applicable 

diffusion time range in typical PGSE measurements. (d) ADC differences of two tissues by the 

OGSE method. The shaded region shows the applicable oscillating gradient frequency range in 

typical OGSE measurements.  

 

Fig. 5-2 also shows the interesting result that the ADC of tissue_II (with larger N/C) is larger than 

of tissue_I (smaller N/C) at short diffusion times, whereas it becomes smaller at longer diffusion 

times. At short diffusion times, the overall ADC approaches a weighted average of the intrinsic 

diffusion coefficients of each compartment. The intrinsic diffusion coefficient of water in the 

nucleus was assumed to be larger than the diffusion coefficient in the cytoplasm; hence, a larger 

N/C results in a larger ADC. At long diffusion times, water diffusion is heavily restricted/hindered 
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by membranes and the ADC will be lower when the average water molecules encounters more 

membranes. With the smaller nucleus, water in tissue_I is more likely to diffuse past the nucleus 

without encountering its membrane, thereby making the ADC in tissue_I higher than that in 

tissue_II. 

 

5.3  ADCs Change with N/C Variation 

The variation of tissue ADCs as a function of cell nuclear sizes is shown in Fig. 5-3. The solid 

line represents the ADCs obtained using the fast exchange approximation (all membranes are 

freely permeable), which can be considered as the tissue’s mean intrinsic diffusion coefficient 

without any restriction. The dashed lines represent ADCs obtained by the OGSE method (at 200 

Hz and 1 kHz). All ADCs obtained by the OGSE method are smaller than the corresponding 

intrinsic mean diffusion coefficients. The ADCs obtained by the PGSE method, shown as dotted 

lines in Fig. 5-3, show no notable changes over a broad range (from 2.9% to 73.7%) of variations 

of N/C, which is consistent with observation in Fig. 5-2 that typical PGSE methods are not 

sensitive to physical changes in tissue at the sub-cellular level. On the other hand, the 

OGSE-measured ADC changes smoothly and by ≈ 40 % over the same range of N/C, which 

means that the observations in Fig. 5-2 were not specific to a narrow range of N/C values. Also 

note the similarity between the OGSE curves in Fig. 5-3 and the solid line, which is simply a 

weighted average of the intrinsic compartment diffusion coefficients. This similarity points to the 

OGSE more closely measuring intrinsic diffusion coefficients rather than the effects of 

restrictions on the scale of 10s of µm apart.  

 69



0 10 20 30 40 50 60 70 80
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

N/C (%)

A
D

C
 (

µm
2 /m

s)

fast exchange

OGSE f = 1 kHz

OGSE f = 200 Hz

PGSE ∆ = 20 ms

PGSE ∆ = 40 ms

 

Fig. 5-3 Simulated ADCs change with the variation of N/C (the ratio of nuclear volume to cell 

volume). The solid line represents the ADCs with the fast exchange approximation. The dotted 

lines and dashed lines represent ADCs obtained by the PGSE method and OGSE methods, 

respectively.  

 

5.4  Gradient Amplitude Limitation on OGSE Method 

The data in Fig. 5-2 and Fig. 5-3 were derived using b = 1 ms/µm2 at all frequencies, which can 

produce reasonable reductions in MRI signals to detect diffusion effects and permit accurate 

calculation of ADC values. However, in OGSE, b is proportional to 1/f 2, and σ is limited by T2 

relaxation; hence, at high frequency it is difficult to achieve high b values with practical gradients. 

It is, therefore, of interest to assess limits on the OGSE method from constraints on gradient 

strength in order to help design practical experiments. Fig. 5-4 shows the maximum contrast 

between tissue_I and tissue_II in a diffusion weighted OGSE image (cosine gradients) for three 

different maximum gradient amplitudes. For comparison, the maximum contrast obtained by the 

PGSE method is also provided and shown as the solid line, assuming the conditions ∆ = 40 ms and 

b = 1 ms/µm2. The maximum contrast is defined as the absolute value of signal decay difference, 

namely,  

 tissue_I tissue_IIexp( ) exp( )max maxb ADC b ADCS − ⋅ − − ⋅∆ = , [5.1] 
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where bmax is the maximum applicable b value for the measurements, and both bmax and ADC are 

gradient frequency dependent in the OGSE method.  
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Fig. 5-4 Maximum contrast for the OGSE method between tissue_I and tissue_II as a function of 

gradient frequency in three typical cases. Gmax is the gradient amplitude. The dashed line denotes 

the conditions for studies on small animal scanners with Gmax = 100 G/cm and TE = 40 ms; the 

dotted line represents diffusion studies with Gmax = 40 G/cm and TE = 40 ms; the dash-dot line 

depicts the conditions for in vivo diffusion studies on human scanners with Gmax = 8 G/cm and TE 

= 80 ms. For comparison, signal contrast obtained by the PGSE method at ∆ = 40 ms and b = 1 

ms/µm2 is also showed as the solid line.  

 

The dotted line in Fig.4 denotes the conditions for Gmax = 100 G/cm and TE = 40 ms, as might be 

possible for imaging a mouse on a small animal MRI system. In the low gradient frequency range 

(< 300 Hz), sufficiently large b values can be obtained so that ∆S is primarily dependent on ADC 

differences. The ADC difference increases with gradient frequency (see Fig. 5-2), so ∆S also 

increases with gradient frequency. However, in the higher gradient frequency range (> 300 Hz), 

∆S decreases with frequency because bmax is proportional to 1/f 2. The peak of ∆S appears at around 

300 Hz when the maximum practical contrast is obtained in OGSE measurements with these 

conditions. Note that the peak contrast occurs well below the frequency where the ADC 

differences level out (Fig. 5-2), which means that with larger gradient amplitudes, even greater 
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contrast between tissue I and II would be attainable from OGSE.  

Likewise, with smaller gradient amplitudes, the advantages of the OGSE are reduced. The dashed 

curve demonstrates a lesser but still substantial gain in OGSE contrast as compared to PGSE 

when Gmax = 40 G/cm and TE = 40 ms, as might be possible for imaging a rat on a small animal 

MRI system. However, when Gmax is reduced to 8 G/cm, even with an increase in TE to 80 ms, 

the dot-dash curve shows that OGSE contrast is not as great as would be obtained by PGSE. Note 

that the lowest frequency in Fig. 5-4 is 50 Hz because of the echo time limitation (40 ms). If 

lower frequencies (< 50 Hz) can be achieved in measurements, it can be expected that the 

contrasts by OGSE method approach those by PGSE method. Notice that Fig.4 shows the contrast, 

but since noise is not changing with gradient frequency, this is proportional to the CNR, from 

which the uncertainty in estimated ADC can be calculated.  

 

5.5  Conclusion and Discussion 

Measurements of the sizes of cell nuclei have been suggested as useful biomarkers of malignant 

state and tumor grade. Imaging methods that can distinguish such sub-cellular properties are 

likely useful in the context of evaluating tumors non-invasively. However, due to hardware 

limitations, conventional measurements of ADC using the PGSE method are dominated by 

changes in tumor cell densities and are relatively insensitive to variations in diffusion at 

sub-cellular length scales. By contrast the OGSE method measures remarkable differences 

between tissues that differ only in terms of intracellular structure. Hence, ADC measurements 

with the OGSE method should be useful for probing nuclear size variations. This would enhance 

the ability of diffusion imaging to be used as a biomarker for assessing the state of tumors. Our 

simulations show that the OGSE method can provide more contrast and be sensitized to changes 

that are not detectable by conventional PGSE methods. A preliminary experimental study has 

been recently reported which investigated C6 gliosarcoma in a rat model with OGSE and PGSE, 

which confirmed that the OGSE method is more sensitive to structural variations within tumors 

than the PGSE measurements (84). It should be noted that the actual intracellular structural 
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changes that take place in cancerous cells are much more complex than the tissue model 

considered here. For example the nucleus changes dynamically and the diffusion and relaxation 

properties may vary during cell division and apoptosis. However, the simple model analyzed 

above was chosen to demonstrate the feasibility of using OGSE to probe intra-cellular structural 

changes, such as nuclear size variations. Moreover, the lack of available experimental data makes 

it difficult to more precisely model diffusion changes during cell proliferation and apoptosis. Here, 

all diffusion coefficients are assumed constant in the present work. These techniques can be 

readily implemented on current small animal scanners, though their use in humans will be limited 

using present gradient systems. These simulations provide a useful background for ongoing and 

future experimental studies. 

 73



CHAPTER VI 

6   CONCLUSION AND FUTURE DIRECTION 

Diffusion-weighted magnetic resonance imaging (DWI) provides unique insights for probing 

biological tissue microstructure and is an important tool in clinical practice and research. Usually, 

conventional DWI measurements employ a pulsed gradient spin echo (PGSE) method, which 

uses two identical diffusion-sensitizing gradients on each side of a refocusing RF pulse. The 

PGSE method has been widely used in conventional DWI measurements which have achieved 

great successes clinically and in research, such as for stroke diagnosis and detection of cancer. 

Conventional ADC measurements on MRI systems use the pulsed gradient spin echo (PGSE) 

method, in which gradients are applied in pairs, separated by a diffusion interval. Because of 

hardware limitations, and in order to impart sufficient diffusion weighting to be able to see 

significant signal reductions, the diffusion intervals used in practice are relatively long. Hence, 

conventional DWI measurements actually represent the integrated effects of obstructions to free 

diffusion at all scales up to the limiting value determined by the experimentally-selected diffusion 

interval and they cannot distinguish these from restrictions that occur at smaller scales, such as 

those associated with intracellular structures. However, it has been reported that intra-cellular 

structures may be useful in cancer detecting or tumor grading. The Oscillating gradient spin echo 

(OGSE) method, which replaces the diffusion-sensitizing gradients by a cosine-modulated (or 

sine-modulated) gradients, has the ability to reduce diffusion times in order to probe short length 

scales and has great potential in cancer MR imaging. In this dissertation, diffusion temporal 

spectroscopy has been comprehensively studied, including the background theory, computer 

simulation, tissue modeling, DWI experiments and applications. The original major contributions 

of this thesis include:  

(1). Improving the conventional finite difference method for computer simulations. By 

introducing a revised periodic boundary condition (RPBC) to remove the edge effect artifacts 

arise from the artificial boundaries and developing a tightly-coupled parallel computing 
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model, the improved finite difference method can be used to study any kind of diffusion 

methods, including both PGSE and OGSE, more accurately and efficiently.  

(2). Modeling of biological tissues and DWI signals with diffusion temporal spectroscopy. It is 

difficult to model the DWI signals with OGSE method because OGSE has relatively more 

complicated diffusion-sensitizing gradient waveforms compared with PGSE. Based on the 

frequency domain analysis method introduced by Stepisnik, analytical expressions for 

restricted diffusion inside some simple geometries with cosine-modulated OGSE method 

have been derived in this dissertation. Combined with modeling biological tissues into 

packed regular geometrical structures, DWI signals obtained with OGSE method can be 

fitted well and tissue microstructural parameters can be obtained. Such modeling provides a 

framework to interpret experimental DWI data with OGSE and a powerful tool for probing 

biological tissue microstructural parameters, such as cell or axon sizes.  

(3). Discovering the increase of sensitivity of DWI measurements to variations of intracellular 

structures, such as nuclear sizes, by OGSE method. PGSE method is insensitive to 

intracellular structures while OGSE method has been shown in this thesis that it has the 

ability to probe nuclear size changes. This feature of OGSE would enhance the ability of 

diffusion imaging to be used as a biomarker for assessing the state of tumors.  

The water exchange rate is not considered in the current work. However, it has been shown that 

water exchange rate might play an important role in DWI measurements (85,86). Karger et al. 

introduced a model to include water exchange rates in the DWI signals (87) and makes it possible 

to obtain cell membrane permeability and water molecule lifetime in intra- and extra-cellular 

space. Such a model has been implemented with PGSE method in several works (85,88-90). It 

would be a future direction to include water exchange into our model with diffusion temporal 

spectroscopy. Currently, the application of OGSE is limited by the gradient strength so that the 

applied gradient frequency usually cannot exceed several kilohertz, corresponding to a diffusion 

length scale less than several microns. With the application of diffusion gradient coils with much 

higher maximum amplitudes and much faster slew rate, it is possible to push the maximum 
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gradient frequency up to tens of kilohertz, which corresponds to diffusion length scales less than a 

micron, making it possible to probe inside the nuclear structure and provide addition contrast in 

DWI that cannot be detectable by conventional PGSE and OGSE with low frequencies.  
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