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CHAPTER I 

 

REVIEW OF NEUTRINO OSCILLATIONS 

 

In this chapter we review the current standard three-flavor neutrino oscillation 

paradigm and the experimental data used to extract phenomenological parameters as well 

as the remaining open phenomenological questions in three-neutrino oscillation physics. 

 

Modeling Neutrino Oscillations 

 

We begin with a review of the standard three active flavor neutrinos paradigm. 

 

Core Physics 

 

For now, we focus on the core physics concepts that define the standard neutrino 

oscillation picture, relegating the more mathematically intensive discussions to the two 

following chapters devoted to expanding this standard framework. 

 

Vacuum Oscillations 

 

It has been shown mathematically and verified experimentally that the weak 

neutrino flavor states are linear combinations of neutrino mass eigenstates (see [1], [2]).  

For the observed number of neutrino flavors να (α = e, μ, τ) comprised of three mass 

eigenstates mj (j = 1, 2, 3), this relationship can be expressed in the neutrino flavor basis 

by 
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| να(0) 〉  = ∑ Uαj
*  |mj〉 

3

j = 1

,    α = e, μ, τ  

(1) 

where U is a unitary matrix that mixes states [3] 

 

U =  (

c13c12 s12c13 s13e−iδ

−s12c23 − s23s13c12eiδ c23c12 − s23s13s12eiδ s23c13

s23s12 − s13c23c12eiδ −s23c12 − s13s12c23eiδ c23c13

)  

(2) 

where cjk ≡ cos θjk and sjk ≡ sin θjk with mixing angles θjk between mass eigenstates j and 

k, and δ is a possible CP-violating phase.  Neutrino oscillations result from the quantum 

mechanical mixing of mass eigenstates as neutrinos propagate [3].  If the neutrino 

propagates, then the initial neutrino flavor state given by Eq. (1) will evolve into the 

flavor state νβ (β = e, μ, τ) 

 | νβ (L⃗ , t) 〉  =  e −i ( p
0
t - p⃗⃗  ∙ L ⃗⃗  ⃗) | να(0) 〉  ,    α, β = e, μ, τ  (3) 

where L⃗   is the distance travelled by the neutrino, t is the time of propagation, and p  ⃗⃗⃗⃗ = 

(p
0
, p⃗ ) = (Ej , pj

 ⃗⃗⃗⃗ )  is the relativistic energy-momentum four vector. 

Two standard approximations are used to calculate the above expression: (1) treat 

the neutrinos as relativistic, assume the same momentum for all mass eigenstates, pj ≡ p ≈ 

E,  and the neutrino propagation time and distance are equivalent, t ≈ L; and (2) expand 

the energies in Eq. (3) using  

 
Ej  =  √p2 + mj

2  ≈  p (1 + 
mj

2

2p2
) 

(4) 

so that the exponential phase becomes 

 
Ej t - pj

 L  ≈  (Ej -  pj
)L  ≈ -

mj
2

2E
L 

(5) 



 

3 

Combining the above framework gives the exact vacuum oscillation probability 

Pαβ between any two flavor states α and β 

 Pαβ =  |⟨ νβ (L⃗ ) | να(0) ⟩| 
2
 (6) 

 
Pαβ =  δαβ + 2 ∑ Re [UβjUαj

* Uβk
* Uαk (e

-i
∆mjk

2

2E
L
- 1)]

j > k

. 

(7) 

Eq. (7) contains all the necessary information to calculate the oscillation probability 

between any two (anti)neutrino flavor states. 

Eq. (7) shows that the oscillation probability depends on five independent 

oscillation parameters known as the mixing parameters: three mixing angles θjk and two 

mass-squared differences ∆mjk
2  , where the third mass-squared difference is determined 

via the relation ∆mik
2  = ∆mij

2  + ∆mjk
2 .  A dependence on a sixth independent parameter, the 

CP-violating phase δCP, may also exist.  Eq. (7) also shows that the oscillation probability 

depends on two physical parameters: the baseline length L between the neutrino creation 

and detection points and the neutrino energy E.  The hallmark of the existence of neutrino 

oscillations is this baseline and neutrino energy dependence of the neutrino survival and 

oscillation probabilities. 

 Since the oscillation probability depends on the mass-squared differences, rather 

than the absolute masses of the neutrino mass eigenstates, determining the values of 

∆m21
2   (commonly known as the solar mass scale) and ∆m32

2  (commonly known as the 

atmospheric mass scale) does not indicate whether state m1 or m3 is the absolute largest or 

smallest.  However, only two possibilities exist, see Figure 1: (1) the case where m1 is the 

lightest mass state known as the normal hierarchy, or (2) the case where m3 is the lightest 

mass state known as the inverse hierarchy.  Since the mass-squared differences appear as 
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phases in the oscillation probability the fundamental hallmark of hierarchy effects is a 

change in the nature of the interference effects between the two mass scales on the 

oscillation probability.  In vacuum these differences are quite small. 

 

 

 

Figure 1.  Two possible neutrino mass hierarchies in the standard three-flavor picture.  

Adapted from: B. Kayser [4].  

 

 

CP-Violation 

 

 The most general N × N Dirac mixing matrix is a unitary matrix whose elements 

can be complex and that can be written as a product of three rotation matrices Uij [3].  In 

the case of CP-conservation the elements of U are all real.  Then, to be physical, U must 
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be an orthogonal matrix, which means it contains real independent parameters.  For three 

neutrino generations this translates into a 3 × 3 orthogonal matrix that depends on three 

real mixing angles, one mixing angle for each rotation plane.  In the case of CP-violation 

the elements of U can be complex.  This means U can also depend on complex phases, as 

well as the three real mixing angles.  Not all of these phases are physically meaningful, 

i.e., most of these phases can be written away by a re-phasing of the neutrino fields which 

leaves the standard model interactions unchanged and, hence, these phases are not 

observable.  However, the complex phase rewriting must satisfy certain mathematical 

constraints.  As a result, for three neutrino generations, after re-phasing, there remains 

one possible physically observable CP-phase, which in the standard parameterization is 

usually included in the mixing matrix by being attached to the 1-3 mixing sector.  Should 

it exist, the primary hallmark of neutrino CP-violation would be an asymmetry between 

the neutrino and antineutrino probabilities, which would no longer be equivalent due to 

the existence of a non-zero, complex CP-phase.  A secondary hallmark of CP-violation 

would be a modulation of the amplitude of the oscillation probability via CP terms 

appearing in the flavor survival and conversion probabilities. 

 

Matter Oscillations 

 

Neutrino oscillations can be enhanced or suppressed by coherent forward 

scattering as neutrinos pass through matter (see [5], [6]).  These matter effects can be 

included in the oscillation theory by adding a matter potential V to the diagonalized 

vacuum Hamiltonian Hvac to obtain the neutrino Hamiltonian in matter Hmatter.  For 

example, for electron neutrinos 
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 Hmatter =  UHvacU †  +  V  (8) 

where 

  V  =  √2GFne  (9) 

GF is the Fermi constant and ne is the electron density of the medium in which the 

neutrinos propagate.  Diagonalizing the matter Hamiltonian yields a new mixing matrix 

that contains the effective matter mixing angles and effective matter mass-squared 

differences.  For a constant matter density, the resulting matter oscillation probability 

retains the exact form expressed in Eq. (7), but with the mixing angles and mass-squared 

differences replaced by effective values in matter.  Again, all matter (anti)neutrino 

oscillation probabilities can be calculated from the general form in Eq. (7).  To obtain the 

antineutrino oscillation probabilities in matter, the additional change of V→ −V must also 

be made in Eqs. (8) and (9). 

Neutrinos can interact with matter via charged current (CC) interactions, neutral 

current (NC) interactions, and electron elastic scattering (ES) interactions [3].  Although 

the neutrino-matter cross-section is in general small, O(10-42 cm2 × Eν /GeV), for long 

propagation lengths and in dense enough matter interactions between neutrinos and the 

medium can lead to appreciable effects on the survival and oscillation probabilities.  

Neutrino flavor states interact via CC interactions with their like-flavor leptonic 

counterparts and via NC and ES interactions with all other leptons.  Earth (and solar) 

matter contains electrons, but few muons or taus.  Therefore, neutrino-matter interactions 

are mostly restricted to CC, NC, and ES interactions between electron neutrinos and 

electrons, NC interactions between electrons, protons, and neutrons and all active 

neutrino flavors, and ES interactions between electrons and all active neutrino flavors. 
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 Since NC and ES interactions affect all neutrino flavors equally these yield no 

cumulative effect on the oscillation probability.  However, the electron neutrino 

component undergoes additional scattering, relative to the muon neutrino and tau 

neutrino components, via CC interactions as a neutrino mass state propagates through 

matter.  This additional scattering effectively acts as additional electron neutrino mass.  

This matter-induced added electron neutrino mass leads to an effective change in the 

mass-squared differences in matter, which, in turn, impacts the oscillation probability.  In 

particular, it affects the Peβ channels (and their time-conjugate counterparts).  The 

asymmetries between the vacuum and matter oscillation probability that can result, 

usually due to the presence of electrons in a medium and, hence, mostly affecting 

electron neutrino channels, are collectively known as matter effects.  The most useful 

aspect of matter effects is that they enhance the difference between the oscillation 

probabilities resulting from each mass hierarchy because they predominantly affect m1, 

which is mostly composed of electron neutrino flavor, see Figure 1.  Therefore, the 

interaction of matter mass hierarchy effects has a more powerful signature than vacuum 

mass hierarchy effects, making matter effects instrumental for investigating the neutrino 

mass hierarchy. 

 Lastly, it should be noted that because matter effects only impact the electron 

neutrino flavor component, and not the electron antineutrino component, matter effects 

can confound an attempt to assess the existence of CP-violation by comparing a set of Peβ 

and Pe̅β̅ channels.  The ability to distinguish the two effects, CP versus matter, stems 

from the capacity to resolve the energy-dependent nature of the signature: CP effects are 

energy independent while matter effects are energy dependent. 
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Subtle Physics 

 

Next we examine additional subtle neutrino oscillation physics that is neutrino energy 

dependent and can impact the estimation of neutrino oscillation parameters when 

analyzing neutrino oscillation experiments. 

 

MSW Matter Resonances 

 

A well-known feature of neutrino-matter effects is the appearance of Mikheev-

Smirnov-Wolfenstein (MSW) matter resonances [1].  The appearance of these resonances 

depends on the neutrino energy, the mass hierarchy, and the baseline.  Given the right 

combination of those three elements there can be a significant enhancement of the 

oscillation probability as a result of coherent forward scattering of neutrinos in matter.  

This occurs only for electron neutrinos in earth’s matter, via charged current interactions, 

and leads to a bump in the oscillation probability over a small spectral window.  The 

energy dependence of this resonance depends on the specific density of matter.  To a first 

approximation the earth can be treated as two layers, a lower density outer mantle 

surrounding a higher density inner core, with the core being roughly twice the density of 

the mantle.  As a result, MSW resonances for electron neutrinos traversing the earth exist 

for both the mantle and core respectively.  For the mantle these resonances occur for ~ 3 

GeV neutrinos, for the core they occur for ~7 GeV neutrinos.  Observationally, the 

hallmark of these resonances is an increase of the electron neutrino conversion 

probability near the critical neutrino energy for a given matter density.  The signature of 
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MSW resonance effects have been observed in both solar neutrino data and terrestrial 

atmospheric data. 

 

Parametric Matter Resonances 

 

 There also exists a secondary type of matter resonance known as parametric 

resonance (see [7], [8]).  These resonances are the result of correlations between an 

oscillating parameter, in this case the density of matter, and fundamental neutrino 

parameters that are also distance-dependent, namely the matter mixing angles and 

masses.  In essence, as the neutrino traverses variable density layers the minimum 

possible oscillation probability gets boosted by the modulation of the matter density, such 

that while the overall probability within the layer reaches the same maximum, the 

baseline starting probability is varied with density.  Given a long enough traversal 

distance this leads to an accumulating enhancement of the electron neutrino flavor 

conversion probability.  In the earth, because the core density is twice the mantle density, 

parametric resonance can develop into a detectable size effect for neutrino traversing both 

the earth’s mantle and core. 

A key difference between MSW and parametric matter resonances is that MSW 

resonances occur in single-density layers while parametric resonances require at last two 

different density layers to develop.  As a result, where there are parametric resonances 

there are automatically MSW resonances, such as for atmospheric neutrinos traversing 

the entire earth’s radius; while there may be MSW resonances without the existence of 

parametric resonances, such as for beam neutrinos traversing a portion of the earth’s 

mantle.  Furthermore, the maximum possible probability is greater for parametric 
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resonance in multiple density layers than for MSW resonance in a single constant density 

layer.  Therefore, in cases where parametric resonance can develop, this can lead to 

significant changes in the conversion probability. 

 

Parameter Degeneracies 

 

Finally we mention the subtle physics of parameter degeneracies.  As already 

mentioned, one method for testing CP-violation in neutrino oscillations is to look for an 

asymmetry between the neutrino and antineutrino survival or oscillation probability in the 

same channel.  Any statistically significant deviation from zero difference then represents 

the appearance of CP-violation.  This was originally one of the preferred methods in 

discussions of modes for probing neutrino CP-violation as well as for assessing neutrino 

mixing parameters.  This involved generating measurements of the neutrino and 

antineutrino probabilities in the same channel at the same baseline and energy and then 

comparing the results.  However, it was noted early on [9] that a significant complication 

of this approach was the appearance of degeneracies between mixing solutions, i.e., there 

exist as many as eight degenerate sets of oscillation parameters for each set of Pαβ and 

Pα̅β̅ measurements. 

There are three possible degeneracies: a CP degeneracy, a mass hierarchy 

degeneracy, and a θ23 degeneracy.  These degeneracies exist for a monoenergetic 

measurement, taken in the same neutrino and antineutrino channel at a single baseline.  

The CP degeneracy exists between pairs of {δCP, θ13} solutions; the mass hierarchy 

degeneracy exists between sgn(∆m31
2 ) solutions, approximating the normal hierarchy by 

+∆m31
2  and the inverse hierarchy by -∆m31

2 , for each pair of {δCP, θ13} solutions; and the 
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octant of θ23 degeneracy, for θ23 less than or greater than π/4 where π/4 gives maximal 2-

3 mixing,  exists for {θ23, π-θ23}, {δCP, θ13} pairs, and {+∆m31
2 , -∆m31

2 } pairs.  Therefore, 

in total, up to an eightfold degeneracy can exist for a pair of {δCP, θ13} solutions that is 

also doubly degenerate in the neutrino mass hierarchy and doubly degenerate in the 

octant of θ23.  The ironic feature of these degeneracies is that they can obscure precisely 

what a pair of monoenergetic {Pαβ, Pα̅β̅} measurements are designed to measure, CP 

violation.  This is because all three degeneracies mix CP-conserving and CP-violating 

solutions: for particular values of Pαβ (E, L) it is possible to have a set of degenerate 

solutions, one of which is CP-conserving and one of which is CP-violating.  This mixing 

of CP-conserving and CP-violating solutions is the hallmark of what is traditionally 

meant by mixing parameter degeneracies. 

 

Determining Mixing Parameters 

 

We now turn to examining the body of work that has contributed to our current 

knowledge of neutrino oscillation parameters.  Of the five fundamental mixing 

parameters, all five have been estimated and four are known to good precision.  By 

devising experiments at a given L/E and using various neutrino sources and detection 

methods neutrino oscillation parameters can be extracted by comparing measurements of 

observed neutrino oscillation events of a particular flavor to the expected value given no 

oscillations.  Any deviations from the expected value both confirm the neutrino 

oscillation picture and provide a way to determine, by statistical analysis, the 

phenomenological parameters that best fit the oscillation model to the observed neutrino 

event rate.  This experimental and analytical method has been applied to four types of 



 

12 

data: nuclear reactor data, accelerator beam data, solar neutrino data, and atmospheric 

neutrino data.  We will discuss the nature and contribution of each data set in turn to the 

current phenomenological oscillation picture.  For brevity, we restrict our discussion to 

those data sets which contributed to the completion of this work, rather than a 

comprehensive review of all data sets. 

 

Basics of Oscillation Experiments 

 

 The present knowledge of oscillation parameters comes from neutrino oscillation 

experiments.  Regardless of the particular neutrino source or detection method, 

oscillations are detected by comparing the observed number of neutrinos of one flavor-

type to the number of neutrinos expected if oscillation between flavors occurs from 

source to detector, i.e., by comparing the observed number to the predicted number of 

signal events.  If neutrinos of a flavor-type different from the flavor of the source 

neutrino flux are observed the results are identified as neutrino appearance and measure 

an oscillation probability.  Whereas, if fewer neutrinos of the same flavor are seen than 

expected the results are known as neutrino disappearance and measure a survival 

probability.  In general, the predicted number of signal events, s(θjk, ∆mjk
2 ), depends on 

the oscillation probability: 

 
  s(θjk, ∆mjk

2 ) = ∫ ϵ(E)ϕ
να
(E)Pαβ(E, θjk, ∆mjk

2 ) dE
E max

E min

 
(10) 

where Emin/max are the lower and upper neutrino energy bounds, ϵ(E) is the detection 

efficiency as a function of neutrino energy, ϕ
να
(E) is the source neutrino flavor flux as a 

function of energy, and Pαβ is the oscillation probability as a function of the neutrino 
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energy and mixing parameters.  Eq. (10) illustrates that the sensitivity of an experiment to 

neutrino oscillation parameters will be determined by its baseline, average neutrino 

energy (via Pαβ), and detection efficiency.  Furthermore, systematic errors of any type 

will decrease an experiment’s sensitivity to oscillation physics, especially to subtle 

effects such as mass hierarchy, CP-violation, or matter effects. 

 Next we review the key experiments that currently define the world values of the 

neutrino mixing parameters, summarized in Table 1, and whose analyses were 

numerically reproduced as preparation for the present work. 

 

Reactor and Accelerator Measurements: θ13 

 

 Measurements of electron antineutrino survival probabilities can be used to 

determine the value of θ13.  Conventional reactors generate electron antineutrinos via the 

decay of uranium and plutonium fuel rod parent nuclei as fission takes place.  Liquid 

scintillator detectors then detect this antineutrino flux via the inverse beta decay reaction 

ν̅e + p → e+ + n.  This is a good probe of electron antineutrino fluxes in the energy range 

3 to 12 MeV.  Reactor-detector baselines on the order of 1 km are well-suited to measure 

θ13.  To reduce systematic errors due to theoretical predictions of the reactor flux a two 

detector method is preferred.  By comparing fluxes at functionally identical near and far 

detectors, errors can be greatly reduced, improving the measurement of the mixing 

parameter of interest.  The design of reactor experiments is such that matter effects plays 

a negligible role: the baselines are too short for matter effects to develop and the 

detectors are rarely built very deeply underground such that the neutrino flux traverses 

very little matter. 
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The set of reactor experiments Daya Bay [10], RENO [11], and Double Chooz [12] 

were all designed specifically to measure θ13.  Daya Bay has three near and three far 

detectors measuring the flux from a complex of six reactors cores.  The detectors are 

immersed in an ultrapure water vessel lined with photomultiplier tubes that is used to 

reduce backgrounds.  Gadolinium doped and undoped liquid scintillator regions make up 

the fiducial detector volume, collecting light from inverse beta decay reactions via 

photomultiplier tubes lining the acrylic housing vessel.  Daya Bay’s extensive complex of 

reactors and detectors gives it the highest statistics and greatest precision of all the reactor 

experiments and it therefore sets the current world value for θ13. 

 RENO also measures the flux from six reactors, with one near and one far 

detector.  This reduces error by allowing the flux to be normalized, but also reduces its 

statistics relative to Daya Bay due to the presence of fewer detectors.  Like Daya Bay, the 

detection technology is gadolinium doped and undoped liquid scintillator.  Unlike Daya 

Bay, RENO’s detectors are immersed in mineral oil and its outer region is lined with 

photomultipliers tubes, which serve as a veto shield for background events.  Finally, the 

Double Chooz experiment has also estimated θ13.  Double Chooz is currently measuring 

the antineutrino flux from two reactors using a single near detector (a second far detector 

is under construction).  Double Chooz’s smaller reactor complex reduces its overall 

statistics, making it the least stringent constraint on a measurement of θ13.  Furthermore, 

because it is currently using only one near detector the antineutrino flux cannot be 

normalized, which introduces additional percent level errors not seen in the Daya Bay 

and RENO experiments.  Despite the larger error bars and reduced statistics for the 

RENO and Double Chooz experiments relative to Daya Bay, all three reactor 
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determinations of θ13 are in good agreement.  Furthermore, all three experiments continue 

to run and reduce their errors while improving their statistics. 

 Reactor experiments are restricted by having low energy MeV neutrinos and 

restricted baselines, as the reactor flux drops off like 1/r2.  To obtain higher GeV neutrino 

energies and longer baselines, accelerator neutrino beam experiments were built.  

Measurements of neutrino survival and oscillation probabilities using a near and far 

detector set-up and a neutrino beam constitute the accelerator data set and can be used to 

help constrain or measure all known mixing parameters, including θ13.  Conventional 

beam experiments create a secondary neutrino beam as a result of the decay of kaons and 

pions created by shining a primary proton beam on a graphite target.  The resulting 

stream of charged pions are steered in the desired beam direction by magnetic focusing 

horns.  This effectively steers the neutrino beam along a path between the near and far 

detector.  The detectors, surrounded by a veto shield, are functionally equivalent and 

measurements taken in both can be used to normalize the flux and reduce errors. 

 The conventional neutrino beam is not monochromatic but a combination of 

mostly muon neutrino flavor with some electron neutrino flavor as well as muon and 

electron antineutrinos.  This permits beam measurements to contribute to the 

determination of a wide variety of parameters as well as allowing comparisons between 

neutrino and antineutrino oscillation probabilities.  The primary challenge of beam 

experiments is that while they have well constrained systematic errors the flux is quite 

low, averaging 1-10 neutrinos per year in a far detector.  This significantly reduces their 

statistics and requires a much longer running time than reactor experiments before being 

able to publish significant findings, ~3-5 years on average for beam set-ups as compared 
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to ~1 year for reactor set-ups.  The main advantage to beam experiments over reactor 

experiments is that they have long baselines and their beam and detectors are buried far 

below ground leading to the appearance of matter effects.  Both the just completed 

MINOS experiment and the still running T2K experiment have contributed to the current 

knowledge of θ13. 

MINOS is a long baseline, L = 735 km, accelerator experiment designed to measure 

muon neutrino disappearance at the peak neutrino energy of 3 GeV with a 0 to 100 GeV 

range [13].  It produces a clean on-axis beam of 98.7% νμ + ν̅μ  and 1.3% νe + ν̅e  that is 

incident on a 0.98 kton iron calorimeter near detector.  The neutrino beam then travels an 

additional 735 km, where it is incident on the far detector located 700 m below ground.  

Like the near detector, the far detector is an iron calorimeter.  However, the far detector 

has a fiducial mass of 5.4 ktons and a two-layer thick scintillator veto shield located over 

the top and sides.  Despite structural differences, the near and far detectors are 

functionally identical, which reduces systematic error and allows the neutrino flux to be 

normalized. 

MINOS is able to distinguish neutrino flavors by distinguishing among CC, NC, 

and ES interactions between beam neutrinos and the target detector material.  Each flavor 

interaction has a unique topological signature: long multi-detector plane tracks for muon 

(anti)neutrino interactions; short diffuse showers for electron (anti)neutrino interactions.  

The event topology combined with energy information from calorimetry allow neutrino 

events to be identified and sorted and provides the means to veto non-beam and inherent-

beam backgrounds to various MINOS data sets.  MINOS measured the first confirmed 

signal in the muon to electron neutrino oscillation channel which allowed it to constrain 
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θ13 [13].  It also published a joint analysis with electron antineutrino appearance from its 

brief run in antineutrino mode [14].  It should be noted that its beam antineutrino mode is 

severely constrained by inherent beam background: in antineutrino mode MINOS 

produces an “antineutrino beam” of 58.1% νμ, 39.9% ν̅μ, and 2.0% νe + ν̅e. 

The long baseline accelerator electron neutrino appearance data from T2K also 

puts bounds on θ13 [15].  This experiment has a two detector, 2.5° off-axis beam design.  

The off-axis set-up reduces inherent beam backgrounds and reduces the energy spread of 

the beam, improving T2K’s sensitivity to θ13.  T2K has a baseline of L = 295 km with a 

peak energy of 0.6 GeV and a 0.1-2.5 GeV spectrum.  The near detector complex 

primarily uses calorimetry to characterize the beam, while the far detector uses existing 

technology from the Super-Kamiokande (Super-K) atmospheric neutrino oscillation 

experiment to measure the final flux. 

Super-Kamiokande is a 50 kt water Cherenkov detector located 1000 m 

underground.  It contains ultrapure water surrounded by photomultiplier tubes.  ES 

interactions between the charged lepton partners of passing neutrinos of all flavors and 

electrons in the water produce Cherenkov rings, rings of delayed light created by the de-

excitation of electrons displaced by the passage of charged particles through the water.  

Neutrino flavors can again be identified by the event topology: the passage of muon 

(anti)neutrinos produces sharp rings while the passage of electron (anti)neutrinos through 

the detector produces diffuse rings. 
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Atmospheric and Accelerator Constraints: θ23 and the Large Mass Splitting 

 

 Measurements of the flux of atmospheric neutrinos incident on the earth’s surface 

and/or traversing the earth’s mantle/core can be used to constrain the value of θ23 as well 

as the large, or atmospheric, mass splitting.  Atmospheric neutrinos are created by the 

interaction of cosmic rays with particles in the earth’s atmosphere.  These interactions 

produce a shower of pions and kaons that, as in accelerator experiments, decay to 

produce neutrinos of all flavors with a broad array of energies. 

 The already mentioned Super-K experiment was originally built to confirm the 

existence of neutrino oscillations [16] and is the longest running neutrino oscillation 

experiment: it continues to run after having taken data for more than two decades.  

Because Super-K uses ES interactions, which do not have a low energy threshold, it is 

sensitive to a wide neutrino energy range.  Furthermore, atmospherically produced 

neutrinos are free to enter the Super-K detector from all incident angles, overhead, along 

glancing paths through the earth’s mantle, across deep core-crossing trajectories through 

the earth’s radius, and so on.  This gives Super-K sensitivity to the widest L/E range of all 

neutrino oscillation experiments, including to the L/E that maximizes the signal from θ23 

and the large mass splitting driven muon neutrino oscillations. 

 Furthermore, as indicated in the earlier discussion on θ13, both MINOS and T2K 

can measure muon neutrinos and, hence, muon neutrino survival probabilities, which can 

be used to estimate θ23 and the atmospheric mass splitting.  Unlike in the case of θ13, for 

the atmospheric mass splitting MINOS is currently the stronger experiment, having a 

larger set of data after 5 years of running.  However, T2K has recently produced 

disappearance data that is beginning to surpass MINOS’ precision and T2K is well poised 
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to supersede both the long-standing Super-K and the recently contributed MINOS’ 

constraints on the 2-3 mixing parameters. 

 

Solar and Accelerator Data: θ12 and the Small Mass Splitting 

 

 Solar neutrinos are produced as a by-product of fusion reactions in the interior of 

the sun and come in all active flavors.  These neutrinos oscillate extensively along the 

journey between the earth and the sun.  Radiochemcial detectors are sensitive to the full 

spectrum of neutrino flavors through CC, NC, and ES reactions between these low-

energy, ~ 1 – 15 MeV, solar neutrinos and target nuclei in large liquid chemical detectors 

containing argon, chlorine, heavy water or other target atoms.  Early radiochemical 

measurements of the flux of solar neutrinos, including those done by Homestake [17], 

GALLEX [18], GNO [19], and SNO [20], combined with short baseline, L ~ 1 km, 

accelerator data from the KamLAND [21] experiment were able to help definitively 

estimate the value of the mixing angle θ12 as well the ∆m21
2  small, or solar, mass splitting.  

The good precision on the 1-2 mixing parameters stems from the combination of 

experiment types, which reduces the influence of systematic errors on the final results, 

and the high solar flux and lengthy run time of the solar neutrino experiments, ~ 10+ 

years, despite the inherent uncertainties in estimating the precise flux of solar neutrinos. 
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Global Analyses: Estimates of All Oscillation Properties 

 

 Global analyses, which combine data sets from multiple sectors to simultaneously 

extract various mixing parameters as well as attempt to assess other neutrino oscillation 

properties such as the mass ordering and CP-phase, have also contributed to our current 

understanding of the standard three neutrino paradigm.  We review here three well-cited 

published global analyses by leading collaborations in the field of neutrino oscillation 

phenomenology.  While global analyses are not generally capable of determining mixing 

parameter values, they are instrumental in helping determine the source of dominant 

mixing parameter constraints as well as for seeking signatures of subtle physics in 

neutrino oscillation data, which can often be obscured by systematic errors in individual 

data sets, but may be hinted at by a combination of data sets. 

 

Forero et al. Global Analysis 2012 

 

 Forero et al. [22] analyzed the following set of experiments: Daya Bay, Double 

Chooz, RENO, Homestake, GALLEX/GNO, SAGE [23], Borexino [24], Super-

Kamiokande 1-3, SNO 1-3, KamLAND, MINOS (appearance, disappearance, neutrino, 

and antineutrino), and T2K (appearance and disappearance).  Furthermore, they modeled 

the reactor and solar data using various published reactor flux models and published solar 

flux models.  Moreover, rather than model Super-K (atmospheric data) they included the 

published Super-K analysis in their results. 

 Forero et al. found that reactor data establishes nonzero θ13 and that Daya Bay 

dominates the determination of θ13.  θ13 = 0 is excluded by their analysis at 10.2σ.  Their 



 

21 

analysis also indicated that MINOS and T2K show a preference for non-maximal θ23, i.e., 

θ23 < π/4.  Lastly for individual experiments, they found ∆m31
2  is set by MINOS 

disappearance data.  Other parameters are well determined by the combination of solar 

and KamLAND data.  When examining combinations of data sets their analysis showed 

little preference for either hierarchy or to the CP-phase.  Sensitivity to δCP in their 

analysis was only due to long baseline data, and none from atmospheric data, as might be 

expected, because of the approximations used in modeling the atmospheric data. 

 Forero et al. found maximal θ23 to be slightly rejected, a trend that was weaker for 

the normal hierarchy than the inverse hierarchy.  Non-maximal θ23 appeared to be driven 

by MINOS.  Identifying the octant stemmed from the interplay of long baseline, 

atmospheric, and reactor data.  MINOS alone is insensitive to the octant because matter 

effects are too small to break the octant symmetry.  However, adding reactor antineutrino 

data breaks the octant degeneracy and gives a preference for θ23 < π/4.  Additionally, 

adding in atmospheric data also gives a preference for second octant, non-maximal 

mixing. 

 

Fogli et al. Global Analysis 2012 

 

 Fogli et al. [25] included in their global analysis the experiments T2K 

(appearance and disappearance), MINOS (appearance, disappearance, neutrino and 

antineutrino), SNO, Borexino, KamLAND, and Super-K 1-4 without the neutrino/anti 

neutrino separation data.  They also included Chooz, Double Chooz, Daya Bay, and 

RENO grouped as short baseline data using older fluxes [26] for single detector models.  
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They did not reproduce Daya Bay and RENO, but included the results of both 

experiments as Gaussian constraints on sin2 θ13. 

 Regarding θ23, Fogli et al. found that the long baseline muon neutrino 

disappearance and appearance, Pμe and Pμμ respectively, dominant Δm2 terms are octant 

symmetric.  However, these two data sets also have Δm2 matter terms that can help lift 

the octant degeneracy and are sensitive to the mass hierarchy and δCP.  Long baseline 

electron neutrino appearance data gives an anti-correlation between the mixing angles 

θ13-θ23 while reactor electron antineutrino survival data is sensitive to θ13 at the large 

mass splitting scale and subdominant Pee Δm2 terms are sensitive to the mass hierarchy 

and θ12.  Because of the anti-correlation that they found between θ13-θ23, reactor-driven 

knowledge of θ13 can help lift the octant degeneracy coming from degenerate (θ23, θ13) 

solutions in different octants.  Super-K alone is not good at solid hints for physics such as 

the mass hierarchy or CP-phase because subdominant three neutrino physics is spread out 

over a wide spectra and can be accounted for by systematics.  There is a hint from 

atmospheric data for δCP ~ π due to a “slight electron excess…at sub-GeV energies” (p. 

3). 

 Fogli et al., found that long baseline disappearance data disfavors maximal θ23 

mixing.  A combination of solar and KamLAND prefers a value of θ13 which picks out 

the first (second) octant for normal (inverse) hierarchy.  However, there is negligible 

statistical difference between θ23 solutions for the expanded combination of long 

baseline, solar, and KamLAND data.  Adding in short baseline data selects large θ13, 

leading to a first octant θ23 preference.  Adding in atmospheric data does not affect θ13, 

but contributes to a preference for first octant θ23.  Similarly, the combination of long 



 

23 

baseline, solar, KamLAND, and short baseline experiments leads to preferred δCP ranges.  

Adding in atmospheric then gives a preference for δCP = π, though the δCP preference is 

not statistically significant.  They found no strong mass hierarchy preference.  Long and 

short baseline data together prefer the inverse hierarchy while long baseline, short 

baseline, and atmospheric data combined prefer the normal hierarchy. 

 

Gonzalez-Garcia et al. Global Analysis 2012 

 

 Gonzalez-Garcia et al. [27] used an extensive data set: Super-K 1-4, K2K [28], 

MINOS (appearance, disappearance, neutrino, and antineutrino), T2K (appearance and 

disappeareance), Chooz [29], Palo Verde [30], Double Chooz, Daya Bay, RENO, 

KamLAND, Homestake Chlorine, GALLEX/GNO, SAGE, Super-K electron scattering 

data, SNO 1-3, Borexino, and lastly a set of older reactor experiments referred to as short 

baseline data including Bugey 4 [31], Bugey 3 [32], ROVNO4 [33], Krasnoyarsk [34], 

ILL [35], Goesgen [36], SRP [37], and ROVNO88 [38].  For single detector reactor 

experiments they modeled the data using both older [39] and newer [40] reactor fluxes. 

 In agreement with previous experimental and global findings, Gonzalez-Garcia et 

al. found θ13 = 0 is disfavored by Daya Bay, Double Chooz, and RENO and that the main 

uncertainty in θ13 remains due to uncertainty on reactor fluxes in single detector (L < 100 

m baseline) experiments.  Non-maximal θ23 mixing was disfavored for both mass 

hierarchies and independent of reactor flux used.  The preference for hierarchy changes 

with reactor flux used, but either way stays negligible at roughly ~ 0.7σ level.  CP-phase 

preferences were found at less than ~2σ level for either mass hierarchy.  Also, their 

analysis showed that L ~ 1 km experiments, i.e., reactor experiments, are sensitive to 
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∆m31
2 , but with high error until the data include spectral, not just rate-only, information.  

Though, in principle, long baseline combined with reactor data should be able to resolve 

the θ23 octant degeneracy, they found this does not yet play out.  Resolving the octant 

requires atmospheric data to be included.  The combination of long baseline and reactor 

data are somewhat sensitive to the CP-phase, more so if the mass hierarchy and octant are 

well constrained by other data.  Again, in their analysis this sensitivity grew when 

atmospheric data was included. 

 Gonzalez-Garcia et al. attribute the global first octant preference to a “zenith-

angle independent event excess in sub-GeV e-like data in” (p. 14) atmospheric data.  

Atmospheric data’s choice of θ13 limits the long baseline and reactor allowed parameter 

space, which gives a preference for δCP.  Hence, they attribute θ23 and δCP hints to 

subdominant effects in atmospheric data. They also conclude that non-maximal θ23 is 

driven by MINOS muon neutrino disappearance, in agreement with Fogli et al. and 

Forero et al., but does not play out in a global analysis, only atmospheric data reinforces 

this preference.  Overall, they conclude that long baseline and reactor data combined 

should be able to disentangle the octant and contribute to identifying the CP-phase, when 

these two data sets improve their statistics.  They attribute any global preference to θ23 or 

δCP as being due to the interplay of atmospheric data with parameter constraints from 

other data sets.  Lastly, they cite the preference for δCP as being driven by a complex 

interplay: MINOS muon neutrino disappearance drives θ13; atmospheric data disfavors 

θ23 maximal; and long baseline electron neutrino appearance and reactors set θ13; the 

combination of which restrict the allowed δCP parameter space. 
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Assessing Next Steps 

 

 Finally, we summarize the status of the current three-neutrino paradigm, including 

the values of the known mixing parameters, as well as review the open questions and 

challenges to completing the standard oscillation picture. 

 

Summary of Oscillation Properties 

 

 In Table 1 we summarize measurements of mixing parameters from experimental 

data and indications of mixing parameters and oscillation properties from global analyses.  

In brief, all of the independent mixing parameters have been estimated, but there is, as 

yet, no convergent estimate of the neutrino mass hierarchy or CP-phase. 

 

 

Table 1.  Summary table of extracted mixing properties by collaboration.  Parameters are 

cited as reported in the source publication.  NH: normal hierarchy; IH: inverse hierarchy. 

If no δCP value is listed then analysis was for δCP =0. 

Collaboration Angle / Phase 

[rads] 

Mass Splitting 

[eV2] 

Errors 

MINOS [41] 

P (νμ → νe) 

 

NH:  2 sin
2

θ23 sin
2

2θ13 = 0.041-0.031
+0.047

 

IH  :  2 sin
2

θ23 sin
2

2θ13 = 0.079-0.053
+0.071

 

--- 68% C. L. 

MINOS [42] 

P (νμ → νμ) 

 

sin
2

2θ > 0.90 |∆m
2| = 2.32-0.08

+0.12
×10

-3
 90% C.L. 

MINOS [43] 

P (νμ → νμ) + 

P (ν̅μ → ν̅μ) 

 

ν̅ :  sin
2

2θ̅ = 0.97-0.08
+0.03

 

ν :  sin
2

2θ = 0.950-0.036
+0.035

 

 

ν̅ :  |∆m̅
2| = 2.50-0.25

+0.23
×10

-3
 

ν : |∆m
2| = 2.41-0.10

+0.09
×10

-3
 

 

86% C.L. 
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Collaboration Angle / Phase 

[rads] 

Mass Splitting 

[eV2] 

Errors 

MINOS [14]  

P (νμ → νe) +  

P (ν̅μ → ν̅e)  

NH, 1st octant:   

2 sin
2

θ23 sin
2

2θ13 = 0.051-0.030
+0.038

 

IH, 1st octant:   

2 sin
2

θ23 sin
2

2θ13 = 0.093-0.049
+0.054

 

--- 68% C. L. 

T2K [15]  

P (νμ → νe) 

 

NH:  sin
2

2θ13 = 0.140-0.032
+0.038

 

IH  :  sin
2

2θ13 = 0.170-0.037
+0.045

 

 

--- 68% C.L. 

T2K [44] 

P (νμ → νμ) 

 

NH:  sin
2

θ23 = 0.514-0.056
+0.055

 

IH  :  sin
2

θ23 = 0.511-0.055
+0.055

 

 

NH:  ∆m32
2  = 2.51-0.10

+0.10
×10

-3
 

IH  :  ∆m31
2  = 2.48-0.10

+0.10
×10

-3
 

 

68% C.L. 

Daya Bay [10]  

 

sin
2

2θ13 = 0.090-0.009
+0.008

 

 

NH:  ∆m32
2  = 2.54-0.20

+0.19
×10

-3
 

IH  :  ∆m32
2  = 2.64-0.20

+0.19
×10

-3
 

 

68.3% C.L. 

RENO [11]  

 

sin
2

2θ13 = 0.113-0.019
+0.019

 --- 1σ  

Double Chooz 

[45] 

 

sin
2

2θ13 = 0.086-0.030
+0.030

 --- 68% C. L. 

Super-K [46] 

 

NH:  sin
2

θ23 = 0.425-0.619
+0.391

 

IH  :  sin
2

θ23 = 0.575-0.630
+0.393

 

 

NH:  ∆m32
2  = 2.66-0.40

+0.15
×10

-3
 

IH  :  ∆m32
2  = 2.66-0.23

+0.17
×10

-3
 

 

90% C.L. 

KamLAND + 

Solar [21]  

 

tan2 θ = 0.40-0.07
+0.10

 ∆m
2
 = 7.9-0.5

+0.6
×10

-5
 1σ 
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Collaboration Angle / Phase 

[rads] 

Mass Splitting 

[eV2] 

Errors 

Gonzalez-

Garcia et al. 1 

[27] 

 

Marginalized over mass orderings 

         sin
2
θ12 = 0.302-0.012

+0.013
 

         sin
2
θ13 = 0.0227-0.0024

+0.0023
 

                δCP = 300° -138°
+66°

 

1st octant min: 

sin
2

θ23 = 0.413-0.025
+0.037

 

2nd octant min: 

sin
2

θ23 = 0.594-0.022
+0.021

 

 

         ∆m21
2  = 7.50-0.19

+0.18
×10

-5
 

NH:  ∆m31
2  = +2.473-0.067

+0.070
×10

-3
 

IH  :  ∆m32 
2

= -2.427-0.065
+0.042

×10
-3

 

1σ 

Fogli et al. 

[25] 

 

            sin
2

θ12 = 0.3070.291
0.325

 

NH  :   sin
2
θ23 = 0.3860.365

0.410
 

            sin
2

θ13 = 0.02410.0216
0.0266

 

                  δCP = 1.08π0.77π
1.36π

 

IH  :  sin
2

θ23 = 0.3920.370
0.431

 

         sin
2
θ13 = 0.02440.0219

0.0267
 

                δCP = 1.09π0.83π
1.47π

 

         δm
2
 = 7.547.32

7.80
×10

-5
 

NH:  ∆m
2 = 2.432.33

2.49
×10

-3
 

IH  :  ∆m
2 = 2.422.31

2.49
×10

-3
 

∆m
2 = m3

2-
(m1

2+m2
2)

2
 

1σ range 

Forero et al. 

[22] 

             sin
2

θ12 = 0.3200.303
0.336

 

NH  :    sin
2
θ13 = 0.02460.0218

0.0275
 

                   δCP = 0.80π0
2π

 

NH local min: 

sin
2

θ23 = 0.4270.400
0.461

 

NH global min: 

sin
2

θ23 = 0.6130.573
0.635

 

IH  :  sin
2

θ13 = 0.02500.0223
0.0276

 

                δCP = -0.03π0
2π

 

         sin
2
θ23 = 0.6000.569

0.626
 

         ∆m21
2  = 7.627.43

7.81
×10

-5
 

NH:  ∆m31
2  = 2.552.46

2.61
×10

-3
 

IH  :  ∆m31
2  = 2.432.37

2.50
×10

-3
 

1σ range 

 

 

  

                                                   
1 Quoted “Free Fluxes” values that include reactor short baseline data, rather than “Huber 

Fluxes” values which neglect reactor short baseline data. 
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Open Questions and Challenges in the Field 

 

 A review of recent talks (see [47], [48], [49], [50]) on challenges facing the 

completion of the neutrino picture lead to a number of issues.  Many authors make 

interesting points regarding the paradigmatic approach to analyzing neutrino oscillation 

data.  H. Minakata [47] stresses the need to pursue “double coverage,” i.e., verifying 

elements of the three-neutrino mixing framework via convergent answers from different 

sources.  Aspects of the model that have already been successfully double covered 

include: Δm2 (large/atmospheric mass-squared difference) and θ23 from atmospheric and 

accelerator data; δm2 (small/solar mass-squared difference) and θ12 from solar and 

KamLAND data; and θ13 from reactor and accelerator data.  Fogli et al. [25] point out 

that, particularly, “accelerator experiments are urged to abandon any 2ν approximation in 

the interpretation of their…data, and focus on full-fledged 3ν combinations” (p. 3) in 

order to retain sensitivity to subtle physics, or “sub-leading effects,” in the data.  

Furthermore they stress that “the success story of the indications of θ13 > 0…shows that 

discussions of ~ 2σ effects may…have some interest” (p. 3).  In other words, more 

rigorous treatments and greater attention to detail, are in order.  In addition to these 

overarching points, most agree that three open questions remain, discussed below in order 

of expected resolution. 

 

Mass Hierarchy 

 

 The first question to be answered is, what is the correct neutrino mass ordering?  

The recently measured, large value of θ13 improves the possibility of determining the 
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mass hierarchy via matter effects in a single experiment.  The current challenge facing a 

hierarchy determination is that no relevant experimental data exists.  As a result, most 

knowledge of the mass hierarchy comes in the form of indications obtained by 

conducting side-by-side analyses fitted to global data, one analysis for each possible 

hierarchy.  However, the presence of low statistics and large experimental errors, 

especially on energy resolutions, has traditionally washed out even a medium-sized signal 

of a preference for either hierarchy.  On the positive front, the NOνA [51] experiment, 

which just began taking data, will have sensitivity to the mass hierarchy because of its 

extended baseline, which increases the influence of matter effects.  Furthermore, future 

Super-K data may yield insight into the hierarchy if statistics increase in the lower energy 

bins and energy resolutions improve. 

 In a recent talk, H. Minakata [47] gave a comprehensive overview of paths toward 

determining the mass hierarchy.  With high enough statistics NOνA or T2K could 

determine the mass hierarchy for specific values of the CP-phase.  However, as K. 

Nishikawa [48] points out, 50% of δCP values will cancel out mass hierarchy effects in 

NOνA likely making it impossible to determine the hierarchy with this experiment alone.  

H. Minakata goes on to say that the combination of neutrino + antineutrino accelerator 

and atmospheric data could determine the correct hierarchy for any δCP with small 

enough systematics.  An alternative route would be to assess the sign difference between 

the vacuum Δm2 from electron and muon neutrino disappearance.  For the normal 

hierarchy the sign difference is positive, for the inverse hierarchy it is negative.  

However, this would require sub-percent level accuracy. 
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 It is also possible to look for phase differences in the oscillations between the 

solar- and atmospheric-driven mass scales and determine the hierarchy, given an energy 

resolution of a few percent.  For the normal hierarchy the phase of atmospheric 

oscillations is advanced, for the inverse the phase is retarded, relative to the solar mass 

scale oscillations.  Furthermore, core-crossing atmospheric data alone could measure the 

mass hierarchy, without accelerator data, given very high statistics.  This depends 

somewhat on θ23, since the primary atmospheric experiment, Super-K, uses a water 

Cerenkov detector whose sensitivity to the hierarchy is governed by θ23, i.e., it is better 

for larger θ23.  Overall, continued difficulties in gaining high enough statistics and 

reducing systematic errors do not yield a positive outlook for assessing the mass 

hierarchy in the immediate future.  As H. Minakata urges, the current state of affairs, 

“stimulates [us]…to invent new ideas and necessitates [a] quantitative reexamination of 

practical ways to explore [the mass hierarchy]” (p. 173). 

 

Octant of θ23 

 

 The second question to be answered is, what is the octant of θ23?  Individual 

experiments are subject to the octant degeneracy and hence cannot assess θ23.  

Additionally, there appears to be no near-term resolution of the octant by relying on 

global analyses either.  As Forero et al. [22] pointed out, there is consistently 

disagreement among global analyses about θ23 and the source of that “discrepancy” is 

unknown.  The results of their analysis imply, however, that the interplay of accelerator + 

reactor + atmospheric data can lead to a preference for θ23, albeit one highly sensitive to 

the details of the analysis.  This understanding is supported by the results of both Fogli et 
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al. [25] and Gonzalez-Garcia et al. [27].  Taken together, this suggests that the current 

source of the discrepancy may stem from a lack of consensus about how to treat one or 

more data sets used in global analyses.  Barger et al. [9] points out that, in principle, the 

only measurements that can definitively determine the octant of θ23 are a comparison of P 

(νμ → νe) and P (νe → ντ), which have leading terms in sin θ23 and cos θ23, respectively.  

Unfortunately, measurements of ντ require a neutrino factory, technology which is some 

years off. 

 

CP-Phase 

 

 The third and final question to be answered in order to complete the three-

neutrino picture is, what is the value of the neutrino Dirac CP-phase?  The recently 

measured, large value of θ13 permits, but does not improve, the possibility of measuring 

δCP.  So far, global and individual experimental analysis curves show there is no physics 

at play to constrain δCP, i.e., most of the CP-phase space is still allowed and very little of 

it is excluded.  H. Minakata suggests that the combination of reactor + accelerator data 

may be able to determine the sign of δCP to 1σ in ~5 years.  He also points out that to 

truly constrain δCP we will likely need to build a dedicated experiment to measure δCP in 

the future. 

 K. Nishikawa [48] supplements this picture with a subtle point: we need to 

distinguish a measurement of δCP from a measurement of CP-violation.  In principle, it is 

possible that there are other sources of CP-violation in neutrino oscillations, not just that 

amount due to the CP-phase.  So it is important to remember that in measuring the CP-

phase, a zero measurement would not automatically rule-out CP-violation in the three-
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neutrino picture.  A measurement of δCP = 0 could mean that CP-violation occurs through 

some non-standard mechanism, which would require additional theoretical and 

experimental work to assess. 

 Lastly, Barger et al.’s [9] work on parameter degeneracies, which occur for sets of 

mixing parameters in a measurement of the same neutrino/antineutrino channel at a single 

kinematical phase Δm2L/E, is important to recall.  A key challenge of these degeneracies 

is that CP-conserving and CP-violating solutions can be degenerate.   “[In] principle 

there can be as much as an eightfold ambiguity in determining δCP and θ13 from P (νμ → 

νe) and P(ν̅μ → ν̅e) at a single L and Eν …Measurements at multiple L and Eν can be used 

to help discriminate” (p. 8).  In other words, there is continued support for seeking out 

double coverage to ensure that degeneracies are resolved.  And again, K. Nishikawa 

reminds us of a subtle detail.  In any measurement of δCP based on earth matter effects 

there will exist the need to distinguish between a neutrino/antineutrino matter-induced 

asymmetry and a neutrino/antineutrino CP-violation-induced asymmetry.  The confusion 

between the source of the asymmetry exists only in the Pμe channel and stems from the 

fact that matter effects occur for electron neutrinos (with electrons in ordinary earth 

matter) but not for electron antineutrinos (since positrons do not exist to a significant 

fraction in ordinary earth matter).  Unfortunately, the Pμe channel is the only channel for 

which CP-phase terms survive in the oscillation probability.  Fortunately, matter and CP 

effects have different energy dependencies providing a way to distinguish between them, 

so long as an experiment has excellent energy resolution. 
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Moving Forward 

 

 In summary, the big picture status of neutrino oscillation phenomenology is as 

follows:  The immediate goal of the field is to determine the correct neutrino mass 

hierarchy, followed by determining the correct octant of θ23 and the value of the CP-

phase.  Current experimental challenges to extracting these properties, namely limited 

neutrino energy resolution, low statistics, and high backgrounds, continue to be reduced 

in current and future experimental designs.  Within the next five years more precise data 

sensitive to subtle physics—the mass hierarchy, octant, and CP-phase—will become 

available.  Although this data will be more precise, inherent limitations in experimental 

design will prevent these observations from definitively assessing the mass hierarchy, 

octant, or CP-phase.  In addition, existing discrepancies between current analyses of the 

data published by various groups are likely to propagate into the future.  There exists a 

need to improve the extraction of subtle physics from multiple types of experimental 

data, in order to maximize future observations.  Furthermore, there is a need to reach a 

field-consensus about how the standard three-flavor oscillation model should be treated 

when analyzing and interpreting the data.  Motivated by these existing challenges to the 

field, we followed-up on previous work we had done (see [52], [53]), which showed 

promise in providing a useful and timely contribution to addressing these two needs. 
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CHAPTER II 

 

RE-FRAMING THE ANALYSIS PARADIGM 

 

 In this chapter we review work previously done by our collaboration to extract 

neutrino mixing parameters using a novel set of bounds on the mixing angle θ13.  In the 

first few sections we discuss the existence and features of the oscillation parameters and 

oscillation probability under the re-framing of the bounds on θ13.  This is followed by a 

review of our previous findings regarding θ13 and the mass hierarchy using this new 

paradigm.  We also briefly review a few other relevant works such as our examination of 

correlations between the mixing angles θ13 and θ23 using the new paradigm, as these will 

be useful for later.  Lastly, we summarize this chapter with a discussion of the 

implications of using this novel paradigm to re-analyze the world’s data, which motivated 

the present work. 

 

Alternative Paradigm: Bounds on the Mixing Angle θ13 

 

 In this section we discuss the bounds used on the mass-squared differences and 

mixing angles in our analysis.  These are not the popularly used bounds (see, for 

example, [22], [25], [27]); in fact, to our knowledge, they have been referenced only by 

our group and one other group [54].  However, as succeeding sections will demonstrate, 

these bounds elicit an important connection between the mixing angle θ13 and the 

neutrino mass hierarchy making them useful.  Furthermore, they are a computationally 

convenient choice.  We begin by discussing the mass hierarchy and bounds on the mass-
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squared differences, followed by our bounds on the mixing angles and CP-phase.  We 

then go on to discuss physical features of the oscillation probability relevant to the 

extraction of mixing parameters that are the result of this particular choice of bounds. 

 

Bounds on Mass-Squared Differences and Mass Ordering 

 

The goal of the present section is to remind ourselves of the effects of changing 

the hierarchy on the mass-squared differences.  What we wish to do is understand how to 

correctly define the ∆mij
2  in the three-neutrino framework in order to understand how the 

hierarchy is correctly included and interchanged in a calculation of the oscillation 

probability.  We begin with the normal hierarchy as illustrated in Figure 2. 

 

 

 

Figure 2.  Mass ordering schemes for three neutrino flavors. 
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By convention, we define m1
2 as the lighter of the two mass states of ∆m21

2 .  More 

precisely, we define it as the lighter of the two states m1
2 and m2

2.  Even more precisely, 

we define m1
2 as the lighter of the two mass states driving solar oscillations (historically, 

the first measured neutrino oscillations).  The solar mass splitting, ∆m21
2  turned out to be 

the smaller of the two observed splittings.  Hence, we can ever more precisely define m1
2 

as the lighter of the two mass states that determine the small mass splitting, where the 

other mass states are increasingly heavy.  By convention, this puts the splitting ∆m32
2  on 

top of ∆m21
2  and m1

2 is the lightest mass state while m3
2 is the heaviest.  ∆m32

2  is determined 

from and drives atmospheric oscillations.  Since the index labels ij are all by convention, 

but the size of the mass splittings is fixed, we can alternatively refer to the small mass 

splitting δm2 as that which drives the solar oscillations and the large mass splitting Δm2 as 

that which drives atmospheric oscillations.  This makes δm2 and Δm2, since they refer to 

the magnitude of the splittings, convention-independent and, hence, hierarchy-

independent (or invariant under a change in the hierarchy). 

 Generally speaking, all parameters have a mathematical definition, an allowed 

range of values, and a sign, which in combination give the complete definition of a 

parameter.  Therefore our next goal is to clearly define the ∆mij
2  in each hierarchy, 

beginning with the normal hierarchy.  Based on the convention given above and using the 

figure it is simple enough to write down the full definition for the mass eigenstate 

splittings in the normal hierarchy: 
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Normal hierarchy mass parameter definitions 

 ∆mij 
2 ≡ mi

2 - mj
2 (11) 

 m1
2 ≪ m2

2 ≪ m3
2 (12) 

Normal hierarchy mass parameter signs 

 ∆m21
2  > 0 (13) 

 ∆m32
2  > 0 (14) 

 ∆m31
2  > 0 (15) 

Normal hierarchy mass parameter bounds 

 ∆m21
2  = [0, +∞) (16) 

 ∆m32
2  = (∆m21

2 , +∞) (17) 

 ∆m31
2  ≡ ∆m21

2  + ∆m32
2  (18) 

Note that, as a result of the above conventional definition, we can define, 

Small mass splitting 

 δm2 ≡ |∆m21
2 | (19) 

Large mass splitting 

 ∆m2 ≡ |∆m32
2 | (20) 

thus, 

 δm2 ≪ ∆m2 (21) 

 Now we can generate the same definition set for the inverse hierarchy.  We start 

by noting that m1
2 less than m2

2 is set by convention, and by convention is defined to be 

hierarchy invariant.  Also, to maintain an internally consistent physics framework 

requires that δm2 be less than Δm2 and for this relationship to also be hierarchy-invariant.  
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Since we cannot change δm2 the only remaining option is to re-order the mass splittings.  

This forces m3
2 to become the lightest mass state and m2

2 the heaviest.    Hence the full 

definition of the ∆mij
2’s in the inverse hierarchy is: 

Inverse hierarchy mass parameter definitions 

 ∆mij
2  ≡ mi

2 - mj
2 (22) 

 m3
2 ≪ m1

2 ≪ m2
2 (23) 

Inverse hierarchy mass parameter signs 

 ∆m23
2  > 0 (24) 

 ∆m21
2  > 0 (25) 

 ∆m13
2  > 0 (26) 

Inverse hierarchy mass parameter bounds 

 ∆m21
2  = (0, +∞) (27) 

 ∆m13 
2 = (∆m21

2 , +∞) (28) 

 ∆m23 
2 ≡ ∆m21

2  + ∆m13
2  (29) 

This indicates that the labelled splittings ∆mij
2  do not have the same meaning in each 

hierarchy.  In the normal hierarchy ∆m32
2  is the larger splitting and ∆m31

2  is the full 

splitting; in the inverse hierarchy ∆m32
2  is the full splitting and ∆m31

2  is the larger mass 

splitting.  Also, ∆m31
2  and ∆m32

2  undergo a sign change in going from the normal 

hierarchy to the inverse hierarchy: 

Normal → Inverse hierarchy mass parameter mapping 

 ∆m31
2  → ∆m23

2  = -∆m32
2  (30) 

 ∆m32
2  → ∆m13

2  = -∆m31
2  (31) 
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 ∆m21
2  → ∆m21

2  (32) 

This means that experimental measurements of the mass splittings measure the 

magnitude of |∆mij
2|, but the ∆mij

2  to which the measurement is assigned depends on the 

hierarchy used in the fit.  Therefore, a full interchange in hierarchies requires a 

simultaneous mapping of two parameters, the large and small mass-splittings, which 

changes both their value and sign.  Since the larger mass splitting is two orders of 

magnitude larger than the small one it dominates the full splitting.  For this reason it is 

common to approximate the hierarchy by freely interchanging ∆m31
2  and ∆m32

2  and using 

a positive sign for normal hierarchy and a negative sign for the inverse hierarchy. 

So long as the terms in the oscillation probability do not strongly depend on linear 

effects or interference terms this approximation is harmless.  However, it would not be 

valid for a case where linear, mixed ∆m31
2  and ∆m32

2  terms appear as you would induce an 

artificial sign change when there should be none.2  This approximation is also unwise 

when the magnitude of effects between ∆m31
2  and ∆m32

2  are important.  In summary, it is 

possible to think about the hierarchy conceptually as follows: the hierarchy keeps all the 

three-neutrino physics (magnitude of the mass splittings) the same it just (1) puts it in a 

different channel (ij relabeling) and (2) suppresses/enhances the associated linear effects 

(sign change on linear, pure mass scale terms). 

 

  

                                                   
2 This problem is avoided by rewriting oscillation equations in terms of just two 

independent mass-squared differences and eliminating the third.  In this case a hierarchy 

change is fully captured by changing the sign on the larger mass-squared difference. 
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Bounds on Mixing Angles and CP-Phase 

 

 The overall goal of this section is to determine the remaining allowed parameter 

space for the fundamental mixing parameters in the three neutrino framework: ∆mij
2 , θij, 

and δCP.  We have already identified the allowed bounds for the mass splittings in both 

hierarchies when we discussed the mass orderings.  This leaves the allowed bounds on 

the mixing angles and leptonic Dirac phase.  Identifying the allowed bounds and 

alternative conventions for defining the bounds is crucial to the analysis presented in this 

work: the bounds used here are not those implemented in similar analyses.  We stress that 

this discussion is somewhat general and relies only on assuming a neutrino oscillation 

model where flavor states are linear combinations of mass eigenstates, i.e., it is does not 

depend on a particular parameterization.  For simplicity we will present a general, logical 

argument for the bounds here using in particular the oscillation probability Pμe for 

illustration.  Previous work has demonstrated using either group theory [55] or tensor 

analysis [54] the validity of the bounds shown in this section are generally true for the 

parameterization presented here, for any oscillation probability, and in either vacuum or 

matter. 

 We begin our illustration with a simplified model of two flavor oscillations.  In 

this framework we have the following mixing matrix, U, and oscillation probabilities, 

Pαβ, 

 

U = (

c12c13 s12c13 s13e-iδCP

-s12c23-c12s13s23eiδCP c12c23-s12s13s23eiδCP c13s23

s12s23-c12s13c23eiδCP -c12s23-s12s13c23eiδCP c13c23

) 

(33) 
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Pαβ = δαβ - 4 ∑ Re[Uαk

* UβkUαjUβj
* ] sin

2 (
∆mkj

2 L

4E
)

k > j

  

+ 2 ∑ Im[Uαk
* UβkUαjUβj

* ] sin (
∆mkj

2 L

2E
)

k > j

 
(34) 

where sij ≡ sin θij and cij ≡ cos θij, and we know that physicality requires that 0 < Pαβ < 1.  

Since the model is written in terms of sines and cosines it is impossible for any lone 

contribution to exceed one, so we need only worry about sums of terms exceeding one, 

which is ensured by the unitarity of the mixing matrix.  Hence, in principle, arguments 

containing either θij or ∆mij
2  can range between 0 and 2π.  However, since the mixing 

parameters appear in periodic functions and our observable is linked to the total 

oscillation probability a simple way to reduce the range to that of physical interest is to 

neglect repeating solutions, i.e., to restrict the bounds to one period of the relevant 

functions.  For the two neutrino case we have a sin2 θij term with a period of π/2, see 

Figure 3, 

 
Pαα = 1 - Pαβ = 1 - sin

2
2θ sin

2
∆m2L

4E
 

(35) 
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Figure 3.  Plot of sin2 2x as a function of x/π with region from -π/2 to +π/2 highlighted. 

 

 

 However, we note that we only need half of the period since the numeric values of 

the argument are the same (there is a numeric symmetry about π/4).  Therefore the range 

of physical interest is 0 ≤ θij < 
π

4
, where we neglect the upper endpoint since the solutions 

repeat and keep the lower as more physically intuitive, i.e., that the physics does not exist 

for a zero parameter value while the physics does exist for a nonzero parameter value.  

The mass splitting argument goes like 
∆m

2
L

4E
 so its period is larger giving a range of 

physical interest of 0 ≤ 
∆m

2
L

4E
 < 4π.  Given this and the conventions set on the mass 

orderings gives the hierarchy-independent, allowed mass-squared difference bounds in 

Table 2 (where, when possible, we have neglected repeating zero solutions). 
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Table 2.  Conventions on bounds on mass-squared differences. 

Convention δm2 Bounds Δm2 Bounds 

1 [0, +4π
E

L
) [δm

2
, +4π

E

L
) 

 

 

 The usual way to go from two to three neutrinos is to parameterize the three 

neutrino mixing matrix as a product of three different two-neutrino mixings.  As a result 

it is tempting to simply “add up” the bounds as a set of six parameters characterized by 

parameters in the two-neutrino case.  However, this is not valid because of the 

appearance of linear terms.  For linear sine functions the period is 2π, see Figure 4.   

 

 

 

Figure 4.  Sin x as a function of x/π with unique region from -π/2 to +π/2 highlighted. 

 

 

However, this repeats numeric solutions.  We also have the addition of sign 

information which is now relevant as sine is an odd function.  The easiest way to capture 
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all of the possible parameter space is to run the bounds from –π/2 to π/2 (with the 

endpoints included as they represent maximal mixings but with opposite signs) where, 

while the numerical value of the sine terms remains the same, the appearance of linear 

terms in the oscillation probability means that these represent different solutions, i.e., 

they affect the quantity (Pαβ) relevant to the final observable (Nα for disappearance 

experiments or Nβ for appearance experiments).  We could run the parameter space over 

only positive values from 0 to 3π/2 but that doubles up on some of the parameter space 

and contains two zero points3, which unnecessarily clutter the analysis results.  It is 

cleaner to include only one zero and the full sign/value allowed angular space. 

 We note that the appearance of negative solutions is a direct result of moving to a 

three neutrino framework where linear angular terms appear (true for any θij and for δCP), 

independent of whether or not a CP-phase is included.  We can apply simple logic to see 

this:  The oscillation probability depends on quartic products of the mixing matrix 

elements.  Looking at the mixing matrix shows that angular functions appear in pairs or 

fours (if we include the CP-phase in the angles counted), such as in Ue2 and Uμ2.  

Furthermore, looking at the full Pμe probability will verify that terms linear in the mixing 

angles survive, hence, negative solutions are not trivial.  Therefore, to affect a sign 

change in a quartic product requires at most a sign change in one angle: changing that of 

two or four angles cancels the effect, changing the sign of one angle has the same effect 

as changing that of three, and taking products of elements at most cancels the effect.  This 

means that to capture the full allowed space we need only run one angle over a negative 

                                                   
3 One could also use two disconnected parameter spaces from 0 to π/2 and π to 3π/2.  

This requires running two analyses with disjointed graphs to capture the whole space.  
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parameter space.  The convention has been to keep θ12 and θ23 positive valued, as well as 

θ13, and leave negative values for the CP-phase.  However, since we cannot guarantee the 

existence of CP-violation in neutrino oscillations, but we have confirmed three-neutrino 

mixing, and since, even without a nonzero CP-phase, negative valued solutions exist, this 

convention is potentially dangerous.  If the CP-phase proves to be zero there is still a 

residual negative parameter space that must be explored. 

As a result, there are six conventions which offer full coverage of the mixing 

angle-CP phase space, see Table 3.  Only one mixing angle needs the cited bounds, the 

other two may run from 0 to π/2, and we are free to choose which mixing angle contains 

the negative-parameter space (again, when possible, we have neglected repeating zero 

solutions). 

 

 

Table 3.  Alternative conventions on θ13-δCP space. 

Convention θij Bounds δCP Bounds 

1 [-
π

2
, +

π

2
] [-

π

2
, +

π

2
] 

2 [-
π

2
, +

π

2
] [0, π) 

3 [0, +
3π

2
] [0, +2π) 

4 [0, +
3π

2
] (-π, +π) 

5 [0, +
π

2
] and (+π, +

3π

2
] [0, +2π) 

6 [0, +
π

2
] and (+π, +

3π

2
] (-π, +π) 

 

 



 

46 

 We note that most references cite the allowed θij space as 0 to π/2, which neglects 

the negative-valued solutions.  These negative solutions are, however, usually retained 

for δCP where the convention is to run δCP over 0 to 2π or –π to π.  This, however, 

introduces a degeneracy between (−δCP, +θ13) and (+δCP, −θ13) solutions and neglects 

(−θ13, −δCP) solutions all together, i.e., it drops a third of the allowed parameter space.  It 

is also possible to accidentally neglect half the parameter space using this option (the −θ13 

solutions for the case of no CP-violation), though this is avoided if a purely quadratic 

oscillation approximation is used or if linear effects are negligible in the region of 

interest.  For the vacuum case we also note that there is a resulting degeneracy between 

{(−θ13, NH), (+θ13, IH)} and likewise {(−θ13, IH), (+θ13, NH)} pairs because of the sign 

change when switching between hierarchies.  We will discuss this much more later.4  We 

also point out that there is no successful transformation between the conventions for θij ϵ 

⟨–π/2, π /2⟩ and δCP ϵ ⟨0, π⟩ and θij ϵ ⟨0, π /2⟩  and either δCP ϵ ⟨0, 2π⟩  or δCP ϵ ⟨–π, 2π⟩ as 

these do not represent the same allowed space (the second is physically reduced) and 

there is a degeneracy between joint regions of interchanging sign of θ13 and sign of δCP 

that cannot be lifted without additional physics being included (namely matter effects, as 

we shall show later). 

 

  

                                                   
4 We note that both Gluza and Zralek [54] and Latimer and Ernst [55] make statements 

when discussing the bounds on the mixing angles that hint at the existence of this 

additional symmetry between the mixing angle and mass-squared difference, but neither 

set of authors follows up on the implications in their publication.  This was additional 

motivation for the present work. 



 

47 

Summary of Bounds and Mappings 

 

 For the present work we choose to use the following convention for our bounds 

and mappings: 

 

Table 4.  New bounds and mapping conventions used in this work. 

Mixing Property New Convention Used in This Work 

θ13 ⟨- π/2 , π/2⟩ 

θ12, θ23 ⟨0 , π/2⟩ 

δCP ⟨0 , π⟩ 

|∆mij
2| ⟨0 , ∞⟩ 

Normal Hierarchy ∆m31
2  = ∆m31

2
 

Inverse Hierarchy ∆m31
2  = -∆m31

2  + ∆m21
2

 

 

 

In comparison, the bounds traditionally seen in the neutrino oscillation phenomenology 

literature are: 

 

Table 5.  Traditional bounds and mapping found in the literature. 

Mixing Property Traditional Convention Used in Literature 

θ13 ⟨0 , π/2⟩ 

θ12, θ23 ⟨0 , π/2⟩ 

δCP ⟨0 , 2π⟩ 

|∆mij
2| ⟨0 , ∞⟩ 

Normal Hierarchy ∆m31
2  = ∆m31

2
 

Inverse Hierarchy ∆m31
2  = -∆m31

2
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However, as Harari et al. [56] pointed out when they first established what may be called 

the traditional bounds in the analogous quark mixing case: “A clever selection of a 

specific set of angles and phases has no fundamental theoretical importance.  All choices 

are mathematically equivalent.  A ‘good choice’ is mostly a matter of convenience, but it 

may also shed some light on important qualitative issues” (p. 123).  

 Since the convention presented in Table 4 is the simplest way to include the full 

physics and produces a single, continuous parameter space to search and a single, 

continuous allowed region when plotting δCP versus θ13 we find it to be the most 

convenient choice.5  Therefore, we take bounds on θ13 such that the negative solution 

space is included independent of whether or not the CP-phase is nonzero (or included in 

the analysis).  This is particularly useful since linear in θ13 terms are well-known and 

since the value of θ13 has been shown to be larger than expected so the effect of sign 

information in θ13 is discernible in the oscillation probability.  In other words, our 

knowledge of the existence of helpful qualitative features further inspired us to use the 

conventions in Table 4 rather than those traditionally found in the literature.  On that 

note, we now turn to reviewing some of the interesting qualitative features that our use of 

novel bounds in an analysis brought to light in our earlier work on neutrino mixing 

parameters. 

 

  

                                                   
5 We also note, again, that the conventions presented in both tables are equally valid in 

both vacuum and matter [55]. 
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Review: Previous Work Using New Paradigm 

 

 In our earlier work (see [57], [58], [59], [60], [61], [62], [63]), based on these new 

bounds, we noticed a number of novel features of the oscillation probability, which in 

turn impacts the extraction of parameters during analysis.  These included linear in θ13 

effects, the resulting presence of four solutions in the case of CP-conservation, and the 

presence of a hidden symmetry within the four solutions.  We go on to discuss each of 

these features in turn as the interplay between them is what makes this choice of bounds 

simultaneously sensitive to both the sign of θ13 and the neutrino mass hierarchy. 

 

Linear Effects in the Oscillation Probability 

 

 Linear terms exist in the neutrino oscillation probability and will play a significant 

role in the paradigm used to interpret the data later on.  Therefore, this section is devoted 

to a discussion of linear terms that exist and a brief overview of their importance.  It also 

serves as a chronology of our group’s work in this area and, by its natural progression, 

motivates the research undertaken in the present work, which is a natural continuation of 

our initial exploration of linear effects. 

 

Latimer et al. 2004 

 

 Latimer and Ernst conducted the first global analysis using the novel bounds on 

θ13 in 2004 [57].  They analyzed the data in the three-neutrino framework, including the 

negative θ13 space.  They included data from: Homestake chlorine, GALLEX/GNO, 

SAGE, SNO, SNO-salt, Chooz, KamLAND, and K2K in their analysis.  Their final 
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results were not symmetric about θ13 = 0, indicating the existence of linear effects in θ13 

that impacted the extraction of this mixing angle from the data.  Their χ2 analysis found 

two minima: a global minimum in positive θ13 and a local minimum in negative θ13.  This 

was a qualitative finding as they stressed that “…we built the model [of our data]…not to 

extract precise values of the oscillation parameters, but to examine features of the 

neutrino oscillation phenomenology in a semi-quantitative way…Here we use the model 

to investigate the role of the negative θ13 region” (p. 3).  They concluded that “…the 

region θ13 < 0 plays an important role in understanding the oscillation parameters for 

three-neutrino oscillations” (p. 4).   Although their conclusion regarding the existence of 

a negative θ13 region, to which the data was sensitive, was demonstrated by this early 

work, their conclusion suggesting the negative θ13 space was important was not yet 

supported by concrete evidence. 

 

Latimer et al. 2005 

 

 Therefore, the next logical step was to examine in more depth the existence and 

relevance of the negative θ13 region in the neutrino data available at that time.  The 

results of this work were published by Latimer and Ernst [58] shortly after their initial 

pre-print noting the existence of a negative θ13 region for the CP-conserving case.  This 

time they demonstrated that Peμ and Pμμ exhibit significant linear dependence on θ13 in 

the limit of vacuum oscillations.  For this work they conducted an analytical study of Pαβ 

terms that are linear (first order) in θ13.  These terms are also proportional to sin δCP or 

cos δCP.  Their study of the oscillation probability showed that at certain values of L/E δCP 

effects are suppressed for δCP = 0 or π while θ13 linear effects are maximized. 
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 They went on demonstrate that sign of θ13 effects are maximal when sin ϕ21 [ϕ21 = 

1.267∆m21
2 L/E] is maximal for cos δCP ~ 1, i.e., CP is conserved.  Hence, the maximal 

linear dependence of Peμ and Pμμ on θ13 occurs at ϕ21 = π/2, 3π/2.  More importantly, Peμ 

and Pμμ are linear in θ13 at this maximal ϕ21: the linear terms dominate the quadratic terms 

at these ϕij.  As a result, they concluded that Peμ and Pμμ have linear in θ13 effects.  It 

should be noted that they focused much of their discussion on the region where these 

effects are maximal (L = 80km, E = 5-50 MeV), not at a baseline and energy matching 

experiments at that time.6  Still, this work demonstrated where one could best measure θ13 

including its sign, again supporting the conclusion that this region of negative θ13 space 

existed.  More interestingly, the authors found that the inclusion of linear terms indicated 

θ13-θ23 correlations that needed exploring, first evidence of the possible importance of 

this negative θ13 region.  Also, they again stressed the advantages of using ±θ13 bounds: 

(1) measurements of θ13 put it in a small asymmetric region around θ13 = 0, and (2) doing 

so keeps δCP in the first two quadrants such that cos δCP terms can uniquely determine θ13. 

 

Roa et al. 2009 

 

 In Roa et al. [60] our group extended our study of linear effects by publishing the 

results of a full global analysis intended for quantitative extraction of oscillation 

parameters using our novel bounds on θ13.  Although the primary goal of this work was to 

showcase a new computational tool developed to analyze the atmospheric Super-K data, 

secondary goals included studying the impact of small effects, especially linear terms, on 

                                                   
6 Though they did include one plot of the results of a χ2 analysis of the world’s data, 

again showing the two minima: one in each sign region of the θ13 parameter space. 
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extracting θ13 from data.  Roa et al. pointed out that one needs to know θ13 for setting the 

size of effects to determine CP and the neutrino mass hierarchy.  Therefore, they 

analyzed Super-K, K2K, MINOS, and Chooz in the CP-conserving case. 

 Their results showed that linear terms and matter effects lead to asymmetric 

bounds on the mixing angle θ13.   The analysis preferred a negative θ13 value for a three 

parameter fit (θ13, θ23, ∆m32
2 ).  The source of this result was traced mostly to one angular 

bin in Super-K, which is long baseline (earth-crossing), low energy data.  Linear effects 

combine constructively in this region for +θ13, but destructively for –θ13.  The presence of 

a slight electron excess (the leptonic interaction partner to passing electron neutrinos 

actually observed in the Super-K detector) in low energy bins restricts the allowance of 

+θ13 solutions as it suppresses the extracted neutrino ratio.  The linear term is negative in 

this energy region, hence, negative θ13 leads to an enhancement term, rather than a 

suppression term.  In other words, they verified that linear effects, driven by the sign of 

θ13, play a role in neutrino data.  Furthermore, they showed that θ13, at that time, was 

bounded by atmospheric (Super-K) data for the upper bound and by reactor (Chooz) data 

for the lower bound, contrary to the wide-spread belief that Chooz set both the lower and 

upper bound on θ13.  They also found that correlations between θ13 and θ23 were 

important: different octant solutions for θ23 could alternately compensate to enhance or 

suppress the e- excess, rather than θ13.  Therefore, this study offered true evidence for the 

importance of θ13 linear effects in the neutrino data.  The authors also pointed out in their 

conclusion that future long baseline (LBL) data would most certainly be sensitive to these 

linear effects. 
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Cogswell 2011 

 

This led Cogswell [62] to conduct a more in-depth study of the role played by the 

Chooz reactor experiment in setting the magnitude of θ13 and the long baseline MINOS 

experiment in setting the level of linear effects, in anticipation of more precise reactor 

and long baseline data regarding θ13 that was expected shortly.  This work analyzed 

MINOS Pμe, Chooz (with the original and a revised electron antineutrino flux under 

debate at that time), and KamLAND, solar data, and Super-K data constraints, to study 

the impact of ±θ13.  This was a qualitative, rather than quantitative, exploratory study, as 

the primary data sets, MINOS and Chooz, were statistically poor (low counts and high 

backgrounds).  However, at this time it was an open question as to whether or not θ13 was 

nonzero, as no data yet showed it to be so at a statistically significant level.  As a result, 

long baseline and reactor data were under intense scrutiny as the best source for hints 

about θ13 and in preparation for a set of LBL and reactor experiments (T2K, Daya Bay, 

and Double Chooz) designed to measure θ13 that were expected to release data the 

following year. 

Cogswell’s [62] work showed that all data sets and their combinations indicated 

nonzero θ13.  Again, as with Roa et al. [60], Super-K dominated the global result and 

restricted the upper bound value while the MINOS accelerator data and the Chooz reactor 

data jointly set the global lower bound value of θ13.  While all sub-combinations of data 

sets involving Super-K preferred negative values of θ13, combinations of the data that did 

not include Super-K also indicated negative values, suggesting that the global indication 

of a negative-valued θ13 was more than just a preference of the Super-K experiment.  

Furthermore, there were hints that data sets interacted in counterintuitive ways. 
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For example, the combination of the MINOS data, which is sensitive to terms 

linear in θ13, and the Chooz data, which is only sensitive to terms quadratic in θ13, still 

indicated a preference for negative θ13 despite the poor statistical quality of the MINOS 

data, indicating the power of linear θ13 effects (MINOS), provided θ13 turned out to be 

nonzero (Chooz).  A second example of a counterintuitive interplay between data sets 

derived from the interaction between MINOS, Chooz, and the KamLAND+Solar data.  

Although MINOS and KamLAND+Solar alone indicated a positive value for the mixing 

angle θ13 and Chooz (reactor data) cannot distinguish the sign of θ13, these sets in 

combination yielded a negative best fit value. 

 However, the qualitative nature of this study limited its utility as well as the 

more significant limitation that it only examined the extraction of θ13 for the normal 

hierarchy and not for the inverse hierarchy. Still, the nature of the findings led Cogswell 

to conclude that “…the inclusion of future, more significant long-baseline accelerator 

data will greatly enhance the findings from the world’s data” (p. 50).  It also reinforced 

the mounting evidence that the novel paradigm implemented within our collaboration of 

treating the CP-conserving case by setting δCP = 0 and letting θ13 run over both positive 

and negative values might offer a useful way to analyze the world’s upcoming, more 

precise data. 

 

Four Solutions Picture 

 

 Our collaboration continued this work by conducting a re-analysis of the world’s 

data when T2K published its first observation of electron neutrino appearance and shortly 

thereafter Daya Bay, RENO, and Double Chooz definitively measured nonzero θ13.  
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During routine early work on this analysis we realized that in the CP-conserving picture, 

there exist four solutions.7  This was a novel finding.  To our knowledge previous 

published work only presented two solutions in the CP-conserving picture. 

 In numerous talks we discussed our preliminary findings as summarized at the 

time by Ernst et al. [52].  While looking at the Pμe oscillation probability for the LBL data 

we were analyzing we recognized that T2K and MINOS have a two-fold degeneracy in 

the limit of θ13 → 0 in vacuum, see Figure 5 and Figure 6.  In each of these Figures, 

although there are four solutions plotted, we only see two nearly degenerate curves: a 

blue-green pair (solid, dash) and a red-orange pair (dot, dot-dash).  The curves are as 

follows: blue (solid) is NH and positive θ13; green (dash) is IH and negative θ13; orange 

(dot-dash) is NH and negative θ13; and red (dot) is IH and positive θ13. 

                                                   
7 With no evidence of CP-violation, we chose to set δCP to zero and fixed all the 

remaining oscillation parameters to their best estimated values to simplify calculations.   
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Figure 5.  Four solutions for T2K appearance oscillation probability in vacuum.  The 

curves are as follows: blue solid is NH and positive θ13; green dash is IH and negative 

θ13; orange dot-dash is NH and negative θ13; and red dot is IH and positive θ13. 

 

Figure 6.  Four solutions for MINOS appearance oscillation probability in vacuum.  The 

curves are as follows: blue solid is NH and positive θ13; green dash is IH and negative 

θ13; orange dot-dash is NH and negative θ13; and red dot is IH and positive θ13. 
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For θ13 = 0 we would see only one curve, representing a four-fold degeneracy (see Figure 

30 in Appendix A).  However, as the graphs show, that four-fold degeneracy is partially 

broken by nonzero θ13, though some degeneracy remains in vacuum.  Matter effects 

break the two, two-fold symmetries as seen in Figure 7 and Figure 8, clearly yielding four 

possible solutions in the case of CP-conservation. 

 

Figure 7.  Four solutions for T2K appearance oscillation probability in matter.  The 

curves are as follows: blue solid is NH and positive θ13; green dash is IH and negative 

θ13; orange dot-dash is NH and negative θ13; and red dot is IH and positive θ13. 
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Figure 8.  Four solutions for MINOS appearance oscillation probability in matter.  The 

curves are as follows: blue solid is NH and positive θ13; green dash is IH and negative 

θ13; orange dot-dash is NH and negative θ13; and red dot is IH and positive θ13. 

 

 

 For the LBL data the magnitude of the Pμe oscillation peaks is sensitive to the 

hierarchy, while the spectral position of peaks maintains the degeneracy.  Including 

matter effects alters the peak heights, leaving the spectral positions nearly the same.  This 

means that spectral-only information mostly leaves the two-fold vacuum degeneracy 

intact, identifying between sign of θ13 solutions.  In contrast, peak height-only 

information leaves the other two-fold degeneracy nearly intact, identifying between 

hierarchies.  Reactor experiments, measuring Pee, have no sensitivity to the sign of θ13 

(there are no linear effects because their oscillations are driven purely by the small mass 

scale) and no hierarchy effects (for the same reason).  Furthermore, there are no matter 

effects in reactor experiments because they measure antineutrinos, so there is no change 
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to peak heights.  This makes reactor data insensitive to the four solutions, as seen in 

Figure 9.  However, these experiments do set the magnitude of θ13 and so help to set the 

magnitude of effects that generate the four solutions picture so clearly in the long 

baseline data. 

 

 

 

Figure 9.  Four solutions for Daya Bay disappearance oscillation probability in matter.  

The curves are as follows: blue solid is NH and positive θ13; green dash is IH and 

negative θ13; orange dot-dash is NH and negative θ13; and red dot is IH and positive θ13. 

 

 

 Our findings at that time, as a result of the existence of four solutions and using a 

combination of T2K, MINOS, Super-K, Daya Bay, RENO, and Double Chooz can be 

summarized as follows:  The statistics for T2K were so low and errors due to background 

on MINOS were so high that our analysis was unable to distinguish a preferred LBL 



 

60 

solution.  Our global findings preferred IH over NH solutions, with the IH, negative θ13 

being most preferred.  This result was driven by the preference of atmospheric data for 

negative θ13 and inverse hierarchy.  T2K and MINOS are at the smallest L/E where 

hierarchy and linear effects occur, driven by interference between the two known mass 

scales.  T2K’s primary measurement is over the peaks (E ~ [0.39, 0.9] GeV) so it is 

sensitive to both hierarchy and sign of θ13.  MINOS’ primary measurement is just off the 

peak to the right toward higher energies (E ~ [2, 4.5] GeV), so it is sensitive only to 

hierarchy.  The quality of the fit, as captured by the value of the χ2 at the minimum, was 

driven by spectral information and the location of the minimum was driven by peak 

height information.  This led us to conclude that since T2K, MINOS, and NOνA are all 

sensitive to the four solutions, a combination of these data sets in future will make them 

better able to identify a preferred solution.  Also we expected future LBL data with more 

counts and smaller errors to offer more information, which was a main motivator to 

continue our study, leading to more extensive work on exploring the existence of the CP-

conserving four solutions picture. 

 

Symmetries of the Oscillation Probability 

 

 The existence of four solutions and the clear degeneracy between solutions that 

appears in looking at plots of the oscillation probabilities led us to hunt for the underlying 

symmetry that drove the four solutions picture and was clearly maintained in vacuum and 

broken in matter.  In this section we describe our findings.  We also note that for 

completeness we have generated plots of the oscillation probability to check for 

symmetries and observe the level of linear and hierarchy effects for all of the experiments 
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included in the global analysis conducted here.  However, to streamline the discussion we 

have included only the most interesting ones in the main text.  The remaining set of plots, 

as well as the details of the input parameters, are relegated to Appendix A. 

Although the existence of parameter degeneracies for neutrino oscillation parameters 

have been studied8 (see [9], [55], [64]), the existence of possible parameter symmetries 

involving the sign of trigonometric parameters in the oscillation probability have never 

been studied.  This is understandable in light of the fact that their likelihood of existence 

was obscured: the unknown mass hierarchy parameter Δm2 (large mass-splitting) not only 

changes sign but also magnitude when changing hierarchies, the unknown parameters θ13 

and δCP were expected to be exceptionally small or zero, and no work had yet been 

published pointing out that θ13 could be positive or negative valued. 

However, recently, θ13 was learned to be nonzero and larger than expected (see [10], 

[11], [12]).  While using a parameter analysis that studied positive and negative valued 

θ13 solutions to try and learn the sign of θ13 using the new LBL appearance data, we 

became aware of the existence of possible sign symmetries between ∆m31
2  and θ13.  The 

breaking of this symmetry showed a distinctive pattern and further study on our part 

showed that current LBL data was precise enough to distinguish between solutions based 

on the pattern of symmetry breaking and give insight into the mass hierarchy as well as 

θ13.  As a result of these findings, we undertook a never before done, systematic study of 

the existence of possible sign symmetries of the unknown remaining neutrino oscillation 

                                                   
8 For degeneracies between Pαβ and Pα̅β̅ see [9]; for symmetries between mass-squared 

differences in different conventions see [65] and [64]; for symmetries among mixing 

angles see [55]. 
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parameters (∆m31
2 , θ13, and δCP) in the Pμe oscillation probability9 and a study of how 

those symmetries are broken in vacuum and matter. 

 

Symmetry-Hunting Logic 

 

Based on our previous work, our primary goal was to look for three- (∆m31
2  and θ13 

and δCP) and two-parameter (all possible pairwise combinations of ∆m31
2 , θ13, and δCP) 

sign symmetries in the exact Pμe vacuum oscillation probability. 

The set of symmetries resulting solely from changing the sign of trigonometric terms 

in Pμe can be determined from the bounds on parameters and the known parameter 

values.  There are six oscillation parameters appearing in trigonometric arguments to 

consider: 

1. ∆m31
2 :  Changing the argument of the ∆m31

2  trigonometric terms is limited to just 

∆m31
2  → - ∆m31

2  by the fact that ∆m32
2  has been determined from the LBL 

disappearance data, which constrains the value of ∆m31
2 .  

2. ∆m21
2 :  The sign of ∆m21

2  is set by convention as positive and the value of ∆m21
2  

has been determined from the solar data. 

3. θ12 and θ23:  The allowed bounds are [0, π/2]. 

4. θ13 and δCP:  There are two different conventions on the bounds.  Either θ13 = [-

π/2, π/2] and δCP = [0, π), or, θ13 = [0, π/2] and δCP = [0, 2π].  

Based on this information only seven sign symmetries are possible.  These are: 

                                                   
9 The lack of previous evidence of large linear terms in either the reactor 𝑃𝑒̅𝑒̅ or the 

accelerator Pμμ led us to focus our analytical investigation solely on Pμe. 
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1. ∆m31
2  → - ∆m31

2  and θ13 → - θ13 and δCP → π - δCP   

2. ∆m31
2  → - ∆m31

2  and  θ13 → - θ13 and δCP → π/2 - δCP  

3. ∆m31
2  → - ∆m31

2  and  θ13 → - θ13 

4. ∆m31
2  → - ∆m31

2  and  δCP → π - δCP 

5. ∆m31
2  → - ∆m31

2  and δCP → π/2 - δCP 

6. θ13 → - θ13 and δCP → π - δCP 

7. θ13 → - θ13 and δCP → π/2 - δCP 

where ∆m31
2  → - ∆m31

2  is approximately the same as a hierarchy change, i.e., NH → 

IH.  There are two trivial symmetries for θ13 = ±π/2, but the measurement of θ13 = 0.15 

rads rules out those solutions. 

 

Examination of Symmetries 

 

 We start with the Pμe vacuum oscillation probability: 

 
Pμe

vac = sin
2

2θ12 c23
2 c13

2 sin
2 α∆  - 

1

2
sin 2θ12 sin 2θ13 sin 2θ23 c13 sin α∆ 

× {sin[(α-2)∆-δCP] + sin δCP cos α∆ - cos 2θ12 cos δCP sin α∆} 

+ 
1

4
sin

2
2θ13 s23

2 [2- sin
2

2θ12 sin
2

α∆ -2c12
2 cos 2∆ -2s12

2 cos 2(α-1)∆] 
(36) 

 

where, 

 
α ≡ 

∆m21
2

∆m31
2

 
(37) 

 
∆ ≡ 

∆m31
2 L

4E
 

(38) 



 

64 

 

The only way to change the sign of sin x or cos x is via the argument x, see Table 6. 

 

 

Table 6.  Effect of argument maps on sine and cosine. 

Mapping Effect on sin x Effect on cos x 

x → -x -sin x cos x 

x → π + x -sin x -cos x 

x → π - x sin x -cos x 

x → π/2 - x cos x sin x 

 

 

 Multiplying out Pμe terms and using trigonometric substitutions of the form 

sin(A±B) and cos(A±B) to further expand terms allows us to separate those terms that 

would be impacted by a sign change in ∆m31
2 , θ13, or δCP (contained in the sum term) from 

those that would not, 

 

Pμe
vac  = sin

2
2θ12 c23

2 c13
2 sin

2
α∆  + 

1

4
sin

2
2θ13 s23

2 [2- sin
2

2θ12 sin
2

α∆] + ∑ SiTi

9

i = 1

 
(39) 

Listing the important sub terms and prefactors for later use gives: 

Sign-Independent Prefactors (Si) 

 
S1 = 

1

2
sin 2θ12 sin 2θ23 sin

2
α∆ 

(40) 

 
S2 = 

1

2
sin 2θ12 sin 2θ23 sin α∆ cos α∆ 

(41) 

 S3 = S2 (42) 

 S4 = S1 (43) 
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 S5 = S2 (44) 

 
S6 = 

1

2
sin 2θ12 sin 2θ23 cos 2θ12 sin

2 α∆ 
(45) 

 
S7 = 

1

2
sin

2
2θ13 s23

2 c12
2  

(46) 

 
S8 = 

1

2
sin

2
2θ13 s23

2 s12
2 cos 2α∆ 

(47) 

 
S9 = 

1

2
sin

2
2θ13 s23

2 s12
2 sin 2α∆ 

(48) 

Sign-Dependent Sub Terms (Ti) 

 T1 = - sin 2θ13 cos θ13 cos 2∆ cos δCP (49) 

 T2 = + sin 2θ13 cos θ13 sin 2∆ cos δCP (50) 

 T3 = + sin 2θ13 cos θ13 cos 2∆ sin δCP (51) 

 T4 = + sin 2θ13 cos θ13 sin 2∆ sin δCP (52) 

 T5 = - sin 2θ13 cos θ13 sin δCP (53) 

 T6 = + sin 2θ13 cos θ13 cos δCP (54) 

 T7 = + cos 2∆ (55) 

 T8 = + cos 2∆ (56) 

 T9 = + sin 2∆ (57) 

In the following tables, we systematically check the effect of implementing each of the 

above mappings on the sub terms of the oscillation probability.  Since T7 and T8 are of the 

same form, we only check T7.  The set of possible symmetries are: 

1. ∆m31
2  → - ∆m31

2  and θ13 → - θ13 and δCP → π - δCP   

2. ∆m31
2  → - ∆m31

2  and  θ13 → - θ13 and δCP → π/2 - δCP  

3. ∆m31
2  → - ∆m31

2  and  θ13 → - θ13 
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4. ∆m31
2  → - ∆m31

2  and  δCP → π - δCP 

5. ∆m31
2  → - ∆m31

2  and δCP → π/2 - δCP 

6. θ13 → - θ13 and δCP → π - δCP 

7. θ13 → - θ13 and δCP → π/2 - δCP 

 We list the symmetry tables in order of minimum number of term sign changes 

and interchanges to maximum number. 

 

 

Table 7.  Symmetry properties of θ13 and δCP. 

For  θ13 → - θ13 and δCP → π - δCP 

T1 → T1 T5 → - T5 

T2 → T2 T6 → T6 

T3 → - T3 T7 → T7 

T4 → - T4 T9 → T9 

 

 

Table 8.  Symmetry properties of Δm2, θ13, and δCP. 

For  ∆m31
2

 → - ∆m31
2

 and θ13 → - θ13 and δCP → π - δCP 

T1 → T1 T5 → - T5 

T2 → - T2 T6 → T6 

T3 → - T3 T7 → T7 

T4 → T4 T9 → - T9 
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Table 9.  Symmetry properties of Δm2 and δCP. 

For ∆m31
2

 → - ∆m31
2

 and  δCP → π - δCP 

T1 → - T1 T5 → T5 

T2 → T2 T6 → - T6 

T3 → T3 T7 → T7 

T4 → - T4 T9 → - T9 

 

 

Table 10.  Symmetry properties of Δm2 and θ13. 

For ∆m31
2

 → - ∆m31
2

 and  θ13 → - θ13 

T1 → - T1 T5 → - T5 

T2 → T2 T6 → - T6 

T3 → - T3 T7 → T7 

T4 → T4 T9 → - T9 

 

 

Table 11.  Symmetry properties of Δm2, θ13, and δCP. 

For  ∆m31
2

 → - ∆m31
2

 and  θ13 → - θ13 and δCP → π/2 - δCP 

T1 → T3 T5 → T6 

T2 → T4 T6 → T5 

T3 → T1 T7 → T7 

T4 → T2 T9 → - T9 

 

 

Table 12.  Symmetry properties of θ13 and δCP. 

For  θ13 → - θ13 and δCP → π/2 - δCP 

T1 → T3 T5 → T6 

T2 → - T4 T6 → T5 

T3 → T1 T7 → T7 

T4 → - T2 T9 → T9 
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Table 13.  Symmetry properties of Δm2 and δCP. 

For  ∆m31
2

 → - ∆m31
2

 and δCP → π/2 - δCP 

T1 → - T3 T5 → - T6 

T2 → - T4 T6 → - T5 

T3 → - T1 T7 → T7 

T4 → - T2 T9 → - T9 

 

 

 It is easy to see from the above tables that none of the mappings produce exact 

symmetries.  However, many are capable of producing near-symmetries depending on the 

size of various terms as determined by the prefactors for each term, as well as by the size 

of the magnitude difference of ∆m31
2  in each hierarchy.  Also, the variety of effects of 

each symmetry on Pμe are different such that the symmetry-breaking pattern is specific to 

each mapping.  The above discussion identifies the possible existence of sign symmetries.  

These symmetries only survive to the extent that the prefactors of exchanged terms are 

the same and to the extent that other non-symmetric terms are small.  The degree and 

pattern of symmetry breaking is the information in which we are primarily interested, as 

it will have the most value when analyzing real data to try and estimate unknown 

parameters.  We discuss the most useful symmetries below. 

The most promising symmetries are those involving a combination of ∆m31
2  → -

∆m31
2  and  θ13 → -θ13 and δCP → π - δCP.  These involve sign changes of sub terms in the 

oscillation probability.  The degree of symmetry breaking is therefore determined by the 

relative size of terms.  This means that the breaking of the symmetries will have the 
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overall effect of increasing or decreasing the magnitude of the oscillation probability, i.e., 

the peak height of the first big oscillation peak.  The degree of symmetry breaking is also 

determined by the difference between NH(∆m31
2 ) and IH(∆m31

2 ), i.e., the spectral location 

of the first big oscillation peak. 

Readers may wonder why we consider sign symmetries involving δCP since we 

have, throughout this work, assumed a CP-conserving scenario.  We do so for 

completeness with the understanding that not all groups utilize the same bounds 

convention, such that although sign symmetries appear within our CP-conserving 

framework via θ13, for others they may appear via δCP.  We stress that these are, of 

course, equivalent and equally valid pictures.  For now, we continue to utilize the 

paradigm of setting δCP = 0 and letting sign information be contained in θ13 and turn to 

looking at the connection between the resulting symmetry under the simultaneous 

interchange of the mass hierarchy (∆m31
2  → -∆m31

2 ) and the sign of θ13 (θ13 → -θ13) and 

the four solutions picture. 

 

Significance of Sign Symmetry 

 

 Although at least two other previous works hint at the existence of this symmetry, 

neither followed up on it with published work.  Latimer et al. [55] comments, “Let us 

take as a typical set of parameters derived from oscillation data [parameters using +θ13].  

This set of mass-squared differences is an example of the regular [normal] hierarchy.  It 

is known that there is a set of parameters with an inverted mass hierarchy that yield 

oscillation probabilities which are nearly equivalent…we may calculate these nearly 

equivalent parameters [which include -θ13]” (p. 3).  Similarly Gluza et al. [54] comments 
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that “…we can find a practical reason for introducing ±δm2’s.  We have just shown that 

using various schemes is equivalent to using the (123) [normal hierarchy] scheme with 

different values of θij angles in the parameter space” (p. 165). 

 However, we were the first to point out in numerous talks summarized by Ernst et 

al. [53] that the symmetry exists and that it impacts the analysis of the data in a CP-

conserving framework.  We analyzed the data over θ13, θ23, ∆m32
2 , marginalizing the solar 

parameters.  We found that MINOS neutrino disappearance data dominated the ∆m32
2  

final result, Daya Bay dominated the θ13 final result, and Super-K solar dominated the θ23 

final result.  The inverse hierarchy was preferred by the value of θ13.  “We…[found] four 

distinct and isolated minima, one for each value of the hierarchy and the sign of θ13, as 

implied by the symmetry” (p. 8).  The global preference was for the inverse hierarchy and 

negative θ13. 

 Therefore, this work indicated the link between the neutrino mass hierarchy and 

the sign of θ13 via linear terms and as a result of the near-symmetry between sign 

interchanges of the large mass-squared difference and the mixing angle θ13.  It also 

continued our group’s ongoing program to seek out the impact of linear terms in the 

oscillation probability on the extraction of phenomenological parameters using a bounds 

paradigm not used by other groups.  Without the novel bounds paradigm, we might not 

have identified this sign-based symmetry, since so much of the field has focused on 

numeric-based symmetries.  Without the symmetry, we might not have discovered the 

link between the neutrino mass hierarchy and the sign of the surprisingly large mixing 

angle θ13.  Therefore, we concluded that the novel bounds paradigm merited continued 

use and that the pattern of matter symmetry breaking in accelerator data was a 
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meaningful feature that impacted the extraction of oscillation parameters from the global 

data. 

 

Other Relevant Previous Work 

 

 A few other studies previously done by our group merit mentioning here as they 

will help round out the picture of neutrino oscillations within the new paradigm including 

±θ13.  We briefly review these works below. 

 

Neutrino Mass Hierarchy 

 

 Roa et al. [61] performed a study using the novel paradigm to determine the effect 

of hierarchy on parameter extraction and hierarchy preference.  For large θ13 interference 

terms that can be used to determine the neutrino mass hierarchy become larger, though 

they are still negligible in vacuum.  The authors pointed out that, “If θ13 is sufficiently 

nonzero, then matter effects provide the most promising avenue by which one might 

determine neutrino hierarchy” (p. 1).  For earth-crossing neutrinos, resonances occur 

(MSW-type) due to the matter density in the core and mantle.  The resonances only exist 

for neutrinos in the normal hierarchy or for antineutrinos in the inverse hierarchy.  

Therefore, in principle, for large enough θ13, data at the L/E and matter density where 

resonances can occur could distinguish the absence/presence of resonances to determine 

the hierarchy.  This occurs in the Super-K data.  However, they also pointed out that the 

resonances give information about the hierarchy and magnitude of θ13, but not the sign of 

θ13 (linear terms are too small in the resonance region for atmospheric data).Therefore, 
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they conducted a three parameter fit (∆m32
2 , θ23, θ13) with both hierarchies including 

Super-K data (sensitive to resonances) and MINOS and Chooz data (sensitive to θ13).  

Many of the results mirror those already discussed, so we neglect repeating them here 

and focus only on those findings regarding the hierarchy.  They found negative nonzero 

θ13 was preferred for both hierarchies, i.e., this preference for negative θ13 was hierarchy 

independent and due to the Super-K sub-GeV e- excess.  They sourced the hierarchy 

differences between results for each parameter (such as the ∆m32
2  being higher for the IH 

than for the NH) as due to MSW matter effects.  They concluded that the data at that time 

“[had] statistically insignificant implications for…[the] neutrino hierarchy” (p. 3) and 

that to get statistically significant implications from atmospheric data would need large 

nonzero mixing angles and either a reduction of the error bars or an increase in the data. 

 

Mixing Angle Correlations 

 

 Latimer and Ernst [59] undertook an analytic study of the relationship between 

the mixing angles θ13 and θ23.  Two big questions in the field were: is θ13 nonzero and 

how close to π/4 is θ23?  They found that at the ideal L/E to maximize sign of θ13 effects 

there were correlations between θ13 and θ23 measurements.  They used the novel 

parameterization of treating θ23 using the parameter ϵ, where θ23 = π/4+ϵ, such that 

negative ϵ indicates θ23 lies in the first octant and positive ϵ indicates θ23 lies in the 

second octant.  At the time, this was seen as a way to quantify the deviation of θ23 from 

maximal mixing at π/4.  They used mock data and a Gaussian chi-squared to assess how a 

measurement of Pee and Pμμ at 270 MeV and 4000km (the ideal baseline to maximize 

linear θ13 effects) would affect the extraction of θ13 and θ23.  In particular, they were 
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seeking a possible link between the sub-GeV e- excess in Super-K and their model.  They 

found the following correlation: if the excess proved true, i.e., remained statistically 

significant in future data, then for θ13 = 0, θ23 lay in the first octant, while for θ23 

maximal, θ13 was found to be positive.  They also noted “…that these mock data indicate 

a preference for positive θ13 and first octant θ23” (p. 6).  Therefore, this work suggested a 

link between sign of θ13 as well as its magnitude and θ23.  The neutrino mass hierarchy 

was found to play a negligible role, as a 3% correction to θ13. 

 Escamilla-Roa et al. [63] then performed a quantitative study that, in part, 

examined the correlations between mixing angles.  This was a three-neutrino analysis 

with Super-K, Chooz, K2K, and MINOS and they found a θ13-ϵ correlation.  A preference 

for negative θ13 allowed θ23 to be in the second octant and changed the shape of the θ13-

θ23 allowed region.  They saw some sensitivity to the octant from Super-K, even though it 

is a small effect: because it is correlated with θ13, which is also a small effect, the 

sensitivity was not washed out.  Super-K dominated the θ23 measurement so much that 

adding in other experiments hardly changed the results.  Their analysis found a 

statistically insignificant indication of positive ϵ, i.e., θ23 greater than π/4, the error on θ23 

depended on the value of θ13, and a negative θ13 was preferred with asymmetric bounds.  

K2K, Chooz, and MINOS gave symmetric results (no linear term sensitivity), so the 

asymmetry was due to Super-K.  The allowed region for θ13 and θ23 favored negative θ13 

so long as linear terms were included in the calculation (reinforcing their importance).  

The authors concluded by saying, “No longer is the contour symmetric about a particular 

value of θ23; hence, the true value of this mixing angle will impact the allowed region for 

the θ23 mixing angle.  In particular, the allowed region for θ23 shrinks as θ13 approaches 
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positive values.  In the future, should a reactor neutrino experiment confirm a nonzero 

value for |θ13|, it will have interesting consequences for the allowed value of θ23” (p. 6). 

 

Implications: Synergy between Mass Hierarchy and Sign of θ13 

 

 We are now in a position to summarize the present picture of neutrino oscillations 

within the unique framework of setting the CP-phase to zero and letting the mixing angle 

θ13 run over the positive and negative valued parameter space from [-π/2, π/2].  In Table 

14 we summarize the set of small effects, discussed in this chapter, that are detectable 

using this unique paradigm.  Based on our previous work, we can now write down a 

“chain of effect” on the extraction of various neutrino phenomenological properties. 

 The Daya Bay reactor data (statistically strongest reactor data set) offers the 

strongest constraint on the magnitude of θ13.  Knowing the magnitude of θ13: (1) sets the 

peak spectrum for the long baseline data analysis, (2) sets the scale of linear terms in the 

long baseline and atmospheric data analysis, and (3) sets correlations between θ13 and θ23 

in joint reactor and long baseline analysis.  Having set the location of the peak spectrum 

leads to the T2K Pμe long accelerator data setting the hierarchy (as the statistically 

dominant long baseline data set), which in turn leads to setting the sign of θ13, which in 

turn leads to a preference for θ23 via correlations. 

 Roa et al.’s [61] hierarchy work lacked information about the sign of θ13 because 

there was not enough LBL data and no set magnitude of θ13 because not enough reactor 

data had been gathered yet.  Hence, the hierarchy link was not strong in this early work.  

Also we were not aware of the symmetry.  Hence, Cogswell’s [62] work neglected two 

solutions out of four and so, unbeknownst to us at that time, missed out on a big part of 
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the full picture.  Similarly, at the time that work was carried out we still lacked LBL data 

for the sign of θ13 and reactor data for the magnitude of θ13.  However, our later discovery 

of the symmetry linked the hierarchy and linear in θ13 terms as dependent physics.  

Hence, this earlier work clearly needed updating, a main driver of the present research. 

 

 

Table 14.  Small effects detectable within new bounds paradigm. 

Mixing Angle Correlations 

 Sign of θ13 affects extracted octant of θ23 and its error bars 

 For negative θ13, first octant θ23 preferred  

 For positive θ13, second octant θ23 preferred 

Atmospheric Resonances 

 Fitting electron excess in earth-crossing, sub-Gev Super-K bins affects extraction of θ13 

 Normal hierarchy solutions require positive θ13 

 Inverse hierarchy solutions require negative θ13 

Neutrino Mass Hierarchy 

 Peak heights change for first big oscillation peak in long baseline appearance data 

 Resolved by determining absolute neutrino flux with small errors 

Sign of θ13 

 Peak spectrum shifts for first big oscillation peak in long baseline appearance data 

 Resolved by reducing errors on neutrino energy spectrum and smart choice of energy binning 

 Leads to existence of four CP-conserving solutions: one per hierarchy and sign θ13 combination 

Linear Terms in Oscillation Probability 

 Linear terms are interferences terms between two mass scales and are first order in θ13 

 Most visible at large baselines L and low energies E 

 Leads to enhanced MSW matter effects in long baseline appearance data 

 Leads to correlations between linear θ13 and θ23 effects 
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 Leads to sensitivity of earth-crossing (very long baseline), low energy data to mass hierarchy 

Symmetry of the Oscillation Probability 

 Sign-symmetry exists in electron neutrino appearance oscillation probability under 

simultaneous interchange of hierarchy and sign θ13 

 Long baseline appearance data is sensitive to pattern of symmetry breaking 

 

 

 More importantly this older body of work showed real evidence of the utility of 

this new bounds paradigm that we have previously implemented because it makes 

answering the hierarchy question and determining the sign of θ13 dependent questions in 

the CP-conserving three-neutrino framework.10  Therefore, we continue our project of 

examining the world’s data using these alternative bounds.  Having modeled some of the 

physics, explored the impact, and done an early analysis of older neutrino oscillation data 

we now re-analyze newer, more relevant data with reduced errors, increased neutrino 

counts, and at new baselines and energies designed to be more sensitive to θ13, θ23, ∆m32
2 , 

and matter effects. 

  

                                                   
10 Note, using the traditional bounds which do not include negative θ13 implies that this 

makes determining the hierarchy and the CP-phase (which now contains negative values) 

dependent questions. 
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CHAPTER III 

 

TECHNICAL ANALYSIS OF DATA 

 

 In this chapter we present the analysis method implemented to conduct this study: 

1. Generated code that reproduced published experimental results. 

2. Implemented desired physics in reproduction code. 

3. Extracted oscillation properties. 

4. Identified physics origins of extracted properties. 

For reference, additional technical details are presented in Appendices B and C.  We now 

discuss each of the above aspects of the research in turn. 

 

Generated Code 

 

 To conduct our analysis we extended existing FORTRAN legacy code developed 

by our collaboration.  The existing body of code consisted of a set of statistical 

subroutines, oscillation probability subroutines, and a method for determining 

experimental features by estimating them from published observations via calibration.  

The base recipe for generating a code that reproduced published experimental results was 

to compile all the inputs to the published analysis, select a set of benchmark published 

data points to match and build the code, adjusting the collection of implemented 

subroutines and parameter inputs until a desired level of agreement between the code’s 

outputs and the selected benchmark points was achieved.  When possible, the most recent 

published articles were used.  Where merited, data presented in pre-prints were 
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sometimes used.  Furthermore, when necessary, additional information from dissertations 

was also included, particularly lengthy oscillation equations and technical details such as 

errors on the energy per bin. 

 The selection of benchmark data points from each publication, i.e., the points 

which the outputs from our developed code had to match in order for a reproduction to be 

declared completed, was driven by the extent of the data presented in a given publication: 

the more data and figures provided the more benchmarks were used.  The minimum set of 

benchmarks matched included the best fit mixing parameter values extracted and their 

90% C.L. errors.  Additional benchmarks points were included for data such as 2-5 points 

from a chi-squared curve or allowed region (not including the best fit and error values), 

or sums of predicted number of events. 

 The base set of code consisted of a set of subroutines designed to apply a 

(Gaussian or Poisson) chi-squared analysis to extract a set of best fit mixing parameters 

by comparing the observed number of neutrino signal events to the predicted number of 

neutrino events under the hypothesis that neutrino oscillations exist and are characterized 

by an oscillation probability.  This part of the analysis is discussed in the next three 

sections. 

 

Base Code 

 

Predicted Signal 

 

The oscillation probability is calculated as a function of energy for a set of 

oscillation parameters, Pμe(E, θjk, Δmjk
2 ).  The predicted number of events can be found 
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by calculating the integral of the product of the detection efficiency, number of events for 

the case of no oscillations, and oscillation probability as functions of energy over the 

desired energy range [as previously stated, see Eq. (10)].  Our goal was to reproduce 

published analyses, not construct our own models of each experiment.  Therefore, for 

Poisson statistics, which compares event counts per energy bin, rather than inputting 

models for each of the terms in Eq. (10) we simply approximated the signal as a product 

of the oscillation probability and the predicted (theory) number of no oscillation events 

per energy bin, 

 Ssignal
theory

 ≅ Nno osc
MC  × Pνα→νβ

theory  (58) 

 

Using the Monte Carlo (MC) no oscillation prediction per energy bin in the far 

detector served as a calibration factor that could be multiplied by the oscillation 

probability per energy bin and then tuned using one or several constants designed to 

adjust overall norms for various elements of the calculation.  The use of the published no 

oscillation prediction given by the Monte Carlo, which takes into account aspects of the 

physics such as the interaction cross-sections, near-to-far detector systematic errors, and 

the near-to-far event spectrum ratios, allowed us to include this technical information 

without specifying its form.  The result of numerically calculating Eq. (11) is the total 

number of signal neutrino events resulting from oscillations for a given energy bin and 

given set of parameters.  For Gaussian (normal) statistics the scenario is significantly 

simplified as the oscillation probability itself can be directly compared to the data, so no 

calculation of signal events is needed, only the oscillation probability needs to be 

calculated. 
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Fitted Data 

 

The next step in the analysis was to determine the best fit values.  The standard 

statistical approach to finding a best fit value for neutrino oscillation mixing parameters 

is known as a contour-based unified analysis, or, the Feldman-Cousins approach [66].  

This method was designed to treat time-independent, discrete counting data with 

symmetric errors such as the observation of a small number of particle events with large 

background and systematic experimental errors.  In the Feldman-Cousins prescription, 

the best fit value of the mixing angle is obtained by minimizing a chi-squared test statistic 

that varies with the fit parameter(s) of interest, here χ2(y ).  The chi-squared value is a 

measure of the goodness-of-fit between the data and the theoretical prediction, which 

depends on a set of mixing parameters y . 

For Poisson statistics, the simplest chi-squared is calculated via [67] 

 
χ2(y ) = 2 [s(y ) + b - n + n ln (

n

s(𝒚⃗⃗ ) + b
)] 

(59) 

where s(y ) is the total number of predicted signal events found from Eq. (10), b is the 

total number of observed background events, and n is the total number of observed signal 

events.  The best fit value of y  occurs when chi-squared is a minimum.  Therefore, the 

best fit value of y  can be calculated by numerically sampling the chi-squared values over 

a range of y  to find the minimum, χ
min
2 (𝒚⃗⃗  best). 

Systematic errors are incorporated into the chi-squared calculation by including 

nuisance fit parameters and adding systematic error terms, 
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χ2(y ) = 2 [κs(y ) + βb – n + n ln (

n

κs(y ) + βb
)]  + (

β- 1

σb

)
2

+ (
κ - 1

σs

)
2

 
(60) 

where κ is a fitted normalization on the predicted number of signal events, β is a fitted 

increase or reduction in the observed background, σb is the error on the background, and 

σs is the error on the signal normalization.  The systematic errors are treated as nuisance 

parameters and first fitted at each sampling of y  using a numerical SIMPLEX11  algorithm 

in FORTRAN before minimizing χ2(y ).  SIMPLEX assigns values to the nuisance 

parameters by searching for the minimum chi-squared over a two-dimensional grid of the 

nuisance parameter space at a fixed value of the mixing parameters.  After each cycle of 

the SIMPLEX subroutine, the search grid is made smaller based on the results of the 

previous cycle until the variance in the chi-squared converges to the desired level of 

precision, i.e., until changing the nuisance values further has little effect on the chi-

squared.  For the present analysis, the convergence cut-off was a variance of 10-5 between 

successive values of χ2(y ).  The final fitted nuisance parameters at each value of y  are 

then included into the full minimization over y  by re-calculating the chi-squared at each 

sampling. 

 For Gaussian statistics the oscillation probability P(E) is equivalent to the ratio 

R(E) of the observed to predicted number of events as a function of neutrino energy.  

Therefore, the χ2 can be written in the form, 

 

χ2(y ) = ∑(
Ri(E) - Pi(E)

σ
)

2𝑁

i = 1

 
(61) 

where σ is an overall statistical and systematic error12 and i is the ith neutrino energy bin. 

                                                   
11 Based on Numerical Recipes [68]. 
12 Alternatively, the bin errors could be used, σi. 
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Determined Bounds 

 

To obtain an upper bound on a parameter a Δχ2contour is first constructed.  This 

contour plots the relative difference over the sampling range between the chi-squared at 

each value of the fit parameters and the minimum chi-squared at the best fit.  For the 

present case, the Δχ2 is given by 

 Δχ
i
2 =  χ

i
2(y ) - χ

min
2 (y 

 best
)  (62) 

where Δχ
i
2 is the chi-squared difference for the ith value of y  in the sampling range.  A 

plot of all of the Δχ
i
2 values as a function of the fit parameters forms the contour, whose 

absolute minimum Δχ
min
2  will always be at zero since the minimum is fitted to the data.  

For a one parameter fit the contour will be a curve, for a two-parameter fit an (open or 

closed) region. 

There are two uses for a Δχ2 contour plot.  The first use is to extract the upper 

bound and allowed values of the fit parameter at a given confidence level.  This can be 

achieved by simultaneously plotting the data-derived contour and the horizontal line 

∆χ
CL
2 .  Values of ∆χ

CL
2  for different confidence levels are obtained from statistical tables 

and are based on the number of parameters fitted in the chi-squared equation.  The upper 

bound is then given by the fit parameter value at the intersection of the Δχ2 curve and the 

∆χ
CL
2  line and the allowed values are all those for which Δχ

i
2 < ∆χ

CL
2 . 

The second use of the Δχ2 contour is to infer values preferred by the data.  In the 

case of neutrino oscillations, both one-parameter ranges and two-parameter regions are 

plotted.  One-parameter contours for y  are usually upward parabolic and centered around 
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the best fit y  obtained from analysis.  If the contour is skewed to the left, it indicates a 

preference for a smaller and/or negative value of y , depending on the values in the 

sampling range.  Conversely, skew to the right indicates that the data prefers larger and/or 

positive values of y .  Hence, the shape of the Δχ2 curve can reveal information about the 

range of fit parameter values preferred by a data set, e.g., small or large, positive or 

negative.  Additionally, the width of the chi-squared curve, especially at a confidence 

level line, indicates how strongly the preferred values are constrained by a particular data 

set: the narrower the width of the curve the more strongly constrained the values, the 

wider the width of the curve, the less constrained. 

For a two-parameter search the allowed region is most often roughly elliptical.  

The location of the minimum within the region is indicative of preferred values: an off-

center minimum indicates a preference or “tendency toward” a particular subset of the 

allowed region, while a central minimum indicates no particular preference.  The smaller 

the region’s area the more constrained the value, the larger the less constrained.  

Additionally, the tilt of the ellipse indicates the strength and nature of correlations 

between the two parameters: a strong tilt indicates a non-negligible correlation while no 

tilt indicates a negligible correlation. 

 

Code Tuning 

 

 The above gives the general recipe applied for conducting the research.  During 

the code generation phase significant effort went into developing the reproduction codes, 

which varied greatly between experiments, experiment types, and updated data releases 

of the same experiment.  In the next sections we detail the modifications, or “tuning,” to 
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the base code set to successfully generate reproduction codes that reproduce published 

results.  The majority of these code modifications were designed to address one of two 

needs: (1) matching the particular set of benchmarks for a given experiment, and/or (2) 

determining the best way to include the dominant systematic error in a given code. 

 In all cases the tuning amounted to adjusting one of three features of the results 

curve or region to match the publication: (1) fitting the location of the minimum, (2) 

fitting the width of the allowed curve or region, and/or (3) fitting the location of the 

allowed curve or region in the one- or two-dimensional parameter space. 

 

Signal Calibration 

 

 Signal calibration included various multiplicative constants added to aspects of 

the calculation and used to set the location of the minimum and/or the allowed region, 

i.e., to shift the minimum, curve, and/or region up or down and/or left or right by 

increasing or decreasing the multiplicative constant.  In cases where no Monte Carlo no 

oscillation prediction was supplied an alternative method for calibrating the reproduction 

code was used by extracting the energy- and bin-dependent factors that the 

experimentalist multiplied by the oscillation probability using the best fit curves provided 

in publications, 

 
rcalib

bin  ≅ 
Sbest fit

bin

Pνα→νβ

bin
   

(63) 

where rcalib
bin  is the derived calibration norm per energy bin, Sbest fit

bin
 is the published best fit 

number of signal events per energy bin, and Pνα→νβ

bin  is the oscillation probability used by 

the experimental collaboration .  This calibration factor could then be multiplied by a new 
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oscillation probability, Ptheory, to generate a predicted signal.  This method captured the 

order of magnitude bin dependence of experimental factors not clearly listed in 

publications or beyond the scope of the codes applied here, for example the particular 

details of the detection efficiencies per bin.  It should be noted that this method and 

subroutine were applicable because many experimental errors were largely energy-

dependent and mostly uncorrelated between energy bins. 

 In some cases an additional shift on the energy was needed in order to set the best 

fit minimum in the required location.  This was done through a simple multiplicative 

factor rflux, which was an overall multiplicative norm and not bin-dependent, 

 S̃renormed

theory
 ≅ rflux ×  Sunormed

theory
   (64) 

where the result of Eq. (64) could then simply be substituted into the relevant equations 

needing the theoretically predicted number of signal events.  In other cases a shift in the 

overall energy scale (again, bin-independent) was needed to set the minimum, which was 

similarly done via rEscale 

  Ẽrenormed ≅ rEscale × Eunormed   (65) 

Furthermore, it was often possible to help set the minimum by dropping the lowest 

energy bins (provided they contained no events) because the minimum was often 

“inferred” from the data by the slope of the line between the first big oscillation 

maximum and the lower energy nearest minimum, rather than by the location of the first 

big oscillation peak itself.  Therefore, dropping bins could adjust the slope of the line and 

thereby the fit the minimum. 
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Nuisance Handling 

 

 The use of the minimization subroutine included errors on the experimental 

nuisance parameters, namely the norms on the flux σS (signal), background σb (when 

included), and energy scale σE.  Each of these errors could be used to tune the width of 

the allowed curve or region: increasing these errors increased the width, decreasing them 

decreased the width of the resulting curve and/or region.  In the case of the energy, 

published data is presented in histogram fashion, arbitrarily divided into strict energy 

bins.  However, this is not representative of the true errors in the energy resolution of a 

given experiment.  For experiments where the energy resolution is significant, i.e., on the 

order of a few percent of the energy bin width or more, the spread in the energy at the 

edges of the bin should be taken into account.  In this work this was done by fitting a 

Gaussian energy distribution over each bin and averaging the oscillation probability over 

the normally-distributed energy function.  The extent of the effect of the energy 

resolution on the bin calculations is then partly captured by the width of the Gaussian.  

The error on this added energy shift was then encompassed via the equation 

 σE
bin = 

a

√Emidpoint
bin

 + d × Emidpoint
bin  

(66) 

where a and d are both hand-set calibration values in percent determined by trial-and-

error. 
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Implemented Physics 

 

 Once the reproduction code was completed and verified then the next step in the 

analysis was to drop in the desired physics we wished to analyze.  In the case of this work 

this was a minimal change as our two primary goals were to: (1) implement a full, exact, 

three-flavor matter oscillation probability, and to (2) re-conduct the analysis over a joint 

positive-negative θ13 search space.  The oscillation probability was only adjusted for 

those experiments where the values of the full, exact three-flavor probability in matter 

differed from the equation implied by the reference publication.  For those cases where it 

did not, as confirmed by numerical calculation and comparison of the decimal level 

difference, the original probability used in the reproduction was retained.  In those cases 

where it did differ by an unacceptable level a legacy code was used to calculate the full, 

exact, CP-conserving three-flavor oscillation probability for a constant density (one- or 

two-layer) matter profile.  The subroutine adapts the algebraic formalism of Ohlsson and 

Snellman [69] and uses direct matrix manipulation to facilitate code run time. 

 

Extracted Properties 

 

 The next step was to run the updated code to generate the best fit values and 

allowed parameter curves or regions for individual experiments, sets of data, and the 

global data set.  In order to combine data sets a post-processing of the output of each 

individual data set occurred in order to take into account the errors on fixed mixing 

parameters via an external marginalization program.  For combined data sets, after 

marginalization, best fit parameters and parameters bounds could then be estimated.  
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Unlike the bounds determination method discussed above, an additional post-processing 

code was used to determine the bounds on the extracted parameters.  This additional code 

was implemented to account for the fact that the bounds determination method defined 

above is intended for use with Gaussian statistics, i.e., analyses that produced symmetric 

results curves, whereas a number of experiments we analyzed produced distinctly 

asymmetric final curves.  Therefore, we developed a small code to calculate the error bars 

for the asymmetric case.  The tables of numerical results, allowed parameter range 

curves, and allowed parameter regions generated as a result of this phase of the code 

implementation cycle constitute the primary research products generated by this work. 

 

Combined Data 

 

To investigate the implications of the world’s data for neutrino mixing properties 

individual experimental data sets were combined in various groupings and as a whole. 

 

Sum Test 

 

The simple statistical sum test provides a time-efficient method of synthesizing 

the world’s data into one global data set over which best fit and upper bound values may 

be obtained using the same statistical methods applied to individual experimental data 

sets [70].  The sum test permits any number of data sets to be combined into one data set 

by adding the χ2(y ) values for each individual data set i at every sampling over the 

parameter space of y  across a set of N data sets, i.e., 
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χ
global
2  =  ∑ χ

i
2(y ) 

N

i = 1

 
(67) 

where i labels the separate experimental data sets. 

 This method is computationally simple and intuitive; since the χ2 test statistic is, 

by construction, always positive-valued, the minimum sum over a set of χ2’s (i.e., χ
global
2 ) 

is obtained when each χ
i
2(y ) in the set is individually minimized.  The relative effect of 

each individual χ
i
2(y ) on χ

global
2  is determined by the relative size of the χ2 values.  Given 

that these χ2’s include systematic errors in their calculation, the sum over a set of 

experimental χ2’s automatically takes into account the relative weighting that each 

individual data set should have in the global set based on the relative statistical strength 

of each experiment.  Furthermore, once χ
global
2 (y ) is calculated, the best fit and upper 

bound values for y  are obtained using the same analysis method as for an individual 

experiment. 

 

Marginalization 

 

 In order to eliminate parameters not under immediate study, while still accounting 

for the error in their known values, a standard marginalization technique of integrating 

the likelihood function over the parameters not being examined was used.  In the present 

case, these nuisance parameters were other mixing parameters not being examined.  

Marginalizing calculates the integral average of the statistical measure over the allowed 

range of the parameter to be marginalized away, thereby providing an independent 

extraction of the parameter of interest [71]. 
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Estimated Errors 

 

 To estimate errors for the final asymmetric allowed curves and regions we 

developed a simple recipe [72] to integrate over the allowed parameter range values to 

determine the points on the curve at which a certain percentage of the total solution space 

was covered, i.e., to determine the percent confidence levels from the shape of the curve.  

This was used to find errors for the final results, rather than using Gaussian error table 

values and looking for the line crossings between the chi-squared curves and the allowed 

parameter range curves at set values, such as Δχ2 = 2.71 for a one parameter analysis at 

the 90% confidence level, which was the method used to match reproduction codes.13  

Using our error estimation method the total area under the curve is determined by the 

allowed bounds on the parameter under investigation.  The confidence level bounds are 

then the points at which at a certain percentage of the allowed solution space is contained 

within the area under the curve where the line between the two bounds intersects the chi-

squared function, which need not necessarily define a horizontal line.  The need for such 

an error calculation was particularly evinced by the asymmetric shape of the θ13 chi-

squared curves for the reactor data. 

 

Identified Origins 

 

 The final phase of the research was, in light of the numeric results generated in 

the previous phase, to re-examine aspects of the data in order to determine the factors, 

                                                   
13 This is the method most often used by others in published work. 



 

91 

either the physics or the experimental or statistical features, which drove the results.  

Unlike the previous phases this phase followed no algorithm or recipe but was devised on 

a case-by-case basis using insight and trial-and-error.  The primary way to seek drivers of 

numerical results was to devise a hypothesis based on insight then qualitatively test the 

likelihood that it was a causal driver of a particular result by intentionally tuning the data.  

In other words, data was intentionally skewed to assess whether or not perceived 

relationships between certain drivers and certain outcomes appeared to be true.  It should 

be understood that the majority of this work produced qualitative rather than quantitative 

understanding.  However, two quantitative assessments were also used as a result: (1) 

determination of the relative probabilities that a particular set of properties, from among a 

finite set of options, was likely to represent the true solution, and (2) a graphical 

presentation of the relative contribution of each individual experiment to the global 

result.  These two quantitative assessments and the insights into the drivers of the 

outcomes constitute the primary contribution of this work to this area of research. 
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CHAPTER IV 

 

FINDINGS 

 

In this chapter we present and discuss our findings regarding the mixing angles 

θ13 and θ23, the mass splitting ∆m32
2 , and the neutrino mass hierarchy.  In particular, we 

are interested in the significance of the symmetry paradigm in the results obtained.  We 

utilize the following data sets in the analysis: Daya Bay reactor data [10], RENO reactor 

data [11], MINOS muon neutrino long baseline appearance [41] and disappearance data 

[73], MINOS anti-neutrino data [74], and T2K muon neutrino long baseline appearance 

[75] and disappearance data [76]. 

We also include atmospheric Super-K data [78].  This data contains many of the 

small effects in which we are interested.  However, there is little agreement on the 

implications of these effects.  Rather than discuss their implications, we incorporate the 

data by only including their effects on constraining the bounds of θ23 and ∆m32
2 .  We do 

this by using a Gaussian likelihood function with the width of the Gaussian taken from 

the Particle Data Group [78].  This approach differs from our previous preliminary results 

[53].  There we used the results from our own model of Super-K atmospheric data [63].  

This result contained a strong preference for negative θ13, something different from 

other’s results (which also do not agree among each other).  Until there is some level of 

agreement in the field, we will bypass this debate by including the implications of the 

atmospheric Super-K data that are generally accepted as described above.  This is the 
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reason why, as we shall see, our present results no longer show a strong preference for 

negative θ13. 

 

Mixing Angle θ13 

 

 First we discuss the one-parameter implications of a three-parameter analysis for 

the neutrino mixing angle θ13, see Figure 10.  The mixing angle θ12 and ∆m21
2  have been 

fixed, while θ23 and ∆m32
2  have been marginalized out, and δCP was set to 0 rads.  We find 

the normal hierarchy, positive θ13 provides the best fit to the data.  Notice that the broken 

symmetry is evident in this result.  The symmetry pair of normal hierarchy-positive θ13 

(blue solid) and its partner inverse hierarchy-negative θ13 (green dash) lie the lowest and, 

hence, are the most likely while the other symmetry pair normal hierarchy-negative θ13 

(orange dot-dash) and its symmetry partner inverse hierarchy-positive θ13 (red dot) lie the 

highest.  This preference occurs at roughly the 90% C.L. level (Δχ2 = 2.71).  Also, θ13 is 

well constrained by the data, which can be seen from the steepness of the Δχ2 curve in 

Figure 10 with a clear valley around the minimum near θ13 ~ 0.16 rads.  While the 

existence of four distinct solutions matches our previous findings, the preference for 

{NH, +θ13} is new to this work. 

 

 



 

94 

 

Figure 10.  Final result for the mixing parameter θ13.  The curves are as follows: blue 

solid is NH and positive θ13; green dash is IH and negative θ13; orange dot-dash is NH 

and negative θ13; and red dot is IH and positive θ13. 

 

 

 We find this result for θ13 is mostly driven by the Daya Bay experiment, as 

illustrated by Figure 11.  Daya Bay has a well-defined minimum and stringent bounds on 

θ13 while RENO contributes little to the bounds and prefers a slightly larger value of θ13.  

In a joint reactor analysis, Daya Bay (blue dash curve) clearly dominates RENO (red dot-

dash curve) when combined (black solid curve).  This result is expected, since Daya Bay 

has much higher statistics and much smaller errors than RENO.  The best fit values for 

θ13 with errors are presented for each of the four cases in the Table 16. 
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Figure 11.  Contribution of experiments to the final result for θ13.  The curves are as 

follows: blue dash is Daya Bay; red dot-dash is RENO; and black solid is both 

experiments combined. 

 

 

Mixing Angle θ23 

 

 Next we discuss the one-parameter implications of a three-parameter analysis for 

the neutrino mixing angle θ23.  The mixing angle θ12 and ∆m21
2  have been fixed, while θ13 

and ∆m32
2  have been marginalized out, and δCP was set to 0 rads.  It is most informative to 

discuss our investigation of θ23 in two steps: first examining the result with the long 

baseline appearance data excluded, then discussing the results with the long baseline 

appearance data included.  In the previous section we found the mixing angle θ13 was 

mostly determined by the Daya Bay reactor experiment, i.e., the final result for θ13 was 
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very close to the result of Daya Bay by itself while the remaining experiments had very 

little impact. 

 On the other hand, as we shall see, the two parameters θ23 and ∆m32
2  are 

determined from a combination of experiments and their distinctive interplay.  The 

MINOS and T2K long baseline muon neutrino disappearance experiments, Super-K 

atmospheric experiment treated as described above, and the MINOS antineutrino 

disappearance experiment serve mainly to determine θ23 and ∆m32
2 .  Once these two 

parameters have been determined, due to the presence of the symmetry, there exist four 

distinct solutions or predictions.  To a reasonable approximation, the T2K and MINOS 

experiments then determine the hierarchy and the sign of θ13 via their agreement or 

disagreement with each of the four predictions. 

 We present our results in Figure 12 for the parameter θ23 and the analysis that 

contains all of the relevant experiments except the long baseline appearance T2K and 

MINOS.  The first noticeable feature is that there exists a double minimum with the 

curves approximately symmetric about the maximal mixing angle of π/4.  The double 

minimum arises because of a broken symmetry about the maximal mixing value.  This 

has not been previously observed, most likely because the MINOS collaboration and 

others use approximate oscillation probabilities whose leading terms in sin2 2θ23 are 

exactly symmetric about π/4.  A manuscript that investigates this phenomenon is in 

preparation. 
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Figure 12.  Intermediate result for the mixing parameter θ23.  The curves are as follows: 

blue solid is NH and positive θ13; green dash is IH and negative θ13; orange dot-dash is 

NH and negative θ13; and red dot is IH and positive θ13.  Curves exclude the T2K and 

MINOS appearance data. 

 

 The second new phenomenon in the curves is that the results are both hierarchy 

and sign of θ13 sensitive.  In the most recent T2K manuscript [77] the hierarchy 

dependence was first observed.  As they examined only positive θ13 solutions (as is 

customary), they could not have recognized the sign of θ13 dependence.  One can 

conjecture the existence of a pure hierarchy broken symmetry as the two normal 

hierarchy curves lie below the two inverse hierarchy curves. 

 In Figure 13 we present the total analysis for the parameter θ23.  Although the Δχ2 

between the four cases is significant, Δχ2 ~ 5, it is difficult to extract clean information 

because of the double minimum structure of the Δχ2 curve.  Notice the ordering of the 

curves and the relative spacing between the curves is consistent between the θ13 results, 

Figure 10, and the θ23 results, Figure 13. 
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Figure 13.  Final result for the mixing parameter θ23.  The curves are as follows: blue 

solid is NH and positive θ13; green dash is IH and negative θ13; orange dot-dash is NH 

and negative θ13; and red dot is IH and positive θ13. 

 

 

 It is important to note that the broken symmetry is evident in the final result.  The 

symmetry pair normal hierarchy-positive θ13 and inverse hierarchy-negative θ13 lie lowest 

while the other symmetry pair, normal hierarchy-negative θ13 and inverse hierarchy-

positive θ13, form a pair at higher Δχ2.  This preference occurs at roughly the 90% C.L. 

level.  Again we find the normal hierarchy, positive θ13 provides the best fit to the data.    

The presence of a global minimum near θ23 ~ 0.86 rads (second octant) is clear in Figure 

13, as is the existence of a local minimum at θ23 ~ 0.73 rads (first octant).  Furthermore, 

the relative locations of the global and local minima are the same for all four solutions.  



 

99 

While the existence of four distinct solutions matches our previous findings, the 

preference for {NH, +θ13} when extracting θ23 is new to this work.  Also, unlike our most 

recent previous work with θ23 [53], this work shows a clear, though statistically 

insignificant, global minimum rather than a symmetric set of double global minima. 

 The addition of the long baseline T2K and MINOS appearance experiments 

provides significant sensitivity to the hierarchy and sign of θ13, as can be seen by the 

increase in the separation between the individual curves from Figure 12 to Figure 13.  

The oscillation probability Pμe measured by these experiments has leading order terms 

that distinguish between hierarchies and sign θ13 so that this sensitivity is expected. 

 The challenge is that quality data is difficult to obtain because the peak of Pμe at 

the L/E value being used in T2K and MINOS is only ~ 6%.  This leads to limited 

statistics for finite running time.  MINOS was designed to measure Pμμ and obtain a value 

of the mass squared difference ∆m32
2 .  To maximize the incident flux, the detector is 

located on-axis at the peak of the beam.  This gives a significant background when trying 

to detect the few electron neutrinos being produced.  As a result, the background is 

unfortunately a significant fraction of the signal in the MINOS experiment.  To reduce 

the background, the T2K detector is located off-axis.  The background is forward peaked 

and thus misses the detector.  However, the signal is also forward peaked although less so 

than the background.  Hence, the incident flux on the detector is diminished by going off-

axis leading to a limited signal.  The present data from T2K only observes a total of 28 

electron neutrinos. 

  In Figure 14 we repeat the results of this analysis for the normal hierarchy-

negative θ13, the best fit case, together with the contribution of individual experiments to 
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this result.  First, looking at the minima we see that the double minimum structure arises 

from the MINOS neutrino (red dot-dash) and the MINOS antineutrino (maroon dot) 

disappearance experiments.  The T2K disappearance experiment (blue dash) has very 

shallow minima.  The Super-K (violet dot-dash-dash) results have a flat single minimum 

near maximal mixing. 

 

 

 

Figure 14.  Contribution of experiments to the best fit result {NH, -θ13} for θ23.  The 

curves are as follows: blue dash is T2K disappearance; red dot-dash is MINOS 

disappearance; violet dot-dash-dash is Super-K; and maroon dot is MINOS antineutrino 

disappearance; and black solid is all experiments combined. 

 

 

 Second, looking at the bounds we see that the T2K disappearance data (blue dash) 

dominates the bounds and to a lesser extent the MINOS antineutrino disappearance data 

(maroon dot).  This is a recent finding, in agreement with the trend in the literature that 



 

101 

shows that the most stringent constraint previously set by Super-K is being superseded by 

the most recent T2K data.  This result was expected as T2K is gaining statistics at the L/E 

relevant to the extraction of θ23.  Super-K is no longer the leading experiment in 

determining the value of θ23; the lead is now the two long baseline disappearance 

experiments. 

 Lastly, a comparison of Figure 13 and Figure 14 shows that the octant of the 

global and local minima changes between these two plots.  This is due to the fact that the 

full final result presented in Figure 13 includes the T2K and MINOS neutrino 

disappearance data while the combined result in Figure 14 (black solid curve) does not.  

Again this demonstrates that these two data sets play an important role in the extraction 

of θ23, even though they are not individually sensitive to this mixing parameter.  Since 

they are more sensitive to mass hierarchy effects than the other data sets it is possible that 

mass hierarchy effects partly help set the octant of θ23.  This global result is, therefore, a 

good example of the often subtle interplay between data sets.  The best fit values for θ23 

with errors are presented for each of the four cases in Table 16. 

 

Atmospheric Mass-Squared Difference 

 

 We now turn to discussing the one-parameter implications of a three-parameter 

analysis for the atmospheric mass-squared difference ∆m32
2 .  The mixing angle θ12 and 

∆m21
2  have been fixed, while θ13 and θ23 have been marginalized out, and δCP was set to 0 

rads.  As in our examination of θ23, we proceed in two steps.  We begin by examining the 

results with the T2K+MINOS long baseline appearance data excluded.  These results are 

given in Figure 15.  We see that the results are sensitive to hierarchy and sign θ13 as were 
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the θ23 results.  The sensitivity to hierarchy was pointed out in Ref. [77], while the 

sensitivity to the sign of θ13 is new.  The ordering of each case and the relative magnitude 

of the splittings are similar to those found for θ23. 

 

 

 

 

Figure 15.  Intermediate result for the atmospheric mass splitting.  The curves are as 

follows: blue solid is NH and positive θ13; green dash is IH and negative θ13; orange dot-

dash is NH and negative θ13; and red dot is IH and positive θ13. 

 

  

 Yet again, as our final result we find that the normal hierarchy, positive θ13 

provides the best fit to the data and yet again the symmetry pair containing {NH, +θ13} is 

preferred, as demonstrated by the relative locations of the blue-green (solid, dash) and 

red-orange (dot, dot-dash) curves, see Figure 16.  This preference occurs at roughly the 
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90% C.L. level.  This shows good agreement between the three analyses (θ13, θ23, and 

∆m32
2 ) as to the preferred solution.  Also, ∆m32

2  is well constrained by the data, which can 

be seen from the steepness of the Δχ2 curve in Figure 16 with a clear valley around the 

minimum near ∆m32
2  ~ 2.43 × 10-3 eV2.  While the existence of four distinct solutions 

matches our previous findings, as already mentioned, the preference for {NH, +θ13} is 

new to this work.  The best fit values for ∆m32
2  with errors are presented in Table 16. 

 

 

 

Figure 16.  Final result for the atmospheric mass splitting.  The curves are as follows: 

blue solid is NH and positive θ13; green dash is IH and negative θ13; orange dot-dash is 

NH and negative θ13; and red dot is IH and positive θ13. 

 

 

 The contribution of individual experiments to these results is pictured in Figure 

17.  The final result is an interesting consequence of a combination of T2K (blue dash) 
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and MINOS (red dot-dash) disappearance with Daya Bay [10] (green dot-dot-dash) 

playing a significant role.  There is tension between these three experiments as can be 

seen by the location of each minimum, MINOS at 2.32×10-3 eV2, T2K at 2.56×10-3 eV2, 

and Daya Bay at 2.53×10-3 eV2.  The results of the Super-K atmospheric and the MINOS 

antineutrino data are negligible. 

 The breakdown of contributions to the global final result for ∆m32
2  is not as clear 

as it was for the case of θ13 and θ23.  At first glance, the set of experiments included here 

may not seem to be in good agreement, as seen by the spread of the locations of the 

minima of the curves in Figure 17.  However, from the scale of the plot it is clear that 

they are all in decent agreement, but that no single experiment drives the location of the 

global minimum.  Similarly, no single experiment drives the lower or upper bounds of the 

global result (solid black curve).  By implication, the result for ∆m32
2  is clearly 

determined by a complex and subtle interplay between all the relevant data sets. 
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Figure 17.  Contribution of experiments to the final result for the atmospheric mass 

splitting.  The curves are as follows: blue dash is T2K disappearance; red dot-dash is 

MINOS disappearance; green dot-dot-dash is Daya Bay; violet dot-dash-dash is MINOS 

antineutrino disappearance; maroon dot is Super-K; and black solid is all experiments 

combined. 

 

 

 Something that is clear in Figure 17 is that combining experiments is a very non-

linear process.  The individual chi-squareds do not simply add.  This is because the 

addition of a single experiment induces a response where the minima of each parameter 

and especially the errors on each of the parameters change, usually decreasing.  Having 

reduced errors on the parameter other than the one being examined can lead to a reduced 

error on the parameter being examined. 
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Multiple Solutions 

 

 As we have stressed repeatedly throughout this work, a large portion of the 

contribution of this research comes from highlighting that there clearly exist four 

solutions for the CP-conserving case when analyzing neutrino oscillation data in a full 

three-neutrino framework with matter effects.  Secondly, we have pointed out that the 

data can distinguish between these four solutions.  This was clearly seen in the one-

parameter analyses for θ13, θ23, and ∆m32
2 .  It can also clearly be seen in the two-

parameter implications of a three-parameter analysis between all possible pairs of these 

three mixing parameters, as illustrated in Figure 18 through Figure 20. 

 Figure 18 presents the 90% C.L. (Δχ2 = 4.61) allowed region for ∆m32
2  and θ13.  

The allowed region is calculated with respect to the local minimum for each of the four 

solutions.  If we were to use Δχ2 defined with respect to the best fit minimum {NH, +θ13} 

only that minimum would be present.  The region is a well-defined ellipse with a gentle 

tilt, indicating minimal correlations between these two parameters.  All four solutions 

have roughly the same allowed region.  
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Figure 18.  Final 90% C.L. allowed region for the atmospheric mass splitting and θ13.  

The curves are as follows: blue solid is NH and positive θ13; green dash is IH and 

negative θ13; orange dot-dash is NH and negative θ13; and red dot is IH and positive θ13. 

 

 

 In Figure 19 we give the 90% C.L. (Δχ2 = 4.61) allowed region for θ23 and θ13.  

The region is a well-defined hourglass.  All four solutions have roughly the same allowed 

region.   The preferred case, {NH, + θ13} (blue solid curve) and the case for {NH, - θ13} 

(orange dot-dash curve) are more symmetric than then other two solutions.  This may 

suggest that some sort of inverse hierarchy effect, perhaps a linear in θ13 effect, is at play 

in the data.  The hourglass shape is indicative of the two minima, one local and one 

global, seen earlier in the one-parameter analysis plot for θ23 (see Figure 13).  The 

location of the pinched in portion of the hourglass shape is significant: this occurs near 

the three-neutrino maximal mixing angle defined in Ref. [79].    This is a unique finding 
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presented here for the first time and not yet, to the best of our knowledge, previously 

mentioned anywhere in the literature.   

 

 

 

Figure 19.  Final 90% C.L. allowed region for θ13 and θ23.  The curves are as follows: 

blue solid is NH and positive θ13; green dash is IH and negative θ13; orange dot-dash is 

NH and negative θ13; and red dot is IH and positive θ13. 

 

 

 The final allowed region for θ23 and ∆m32
2  is shown in Figure 20.  Once again 

there are clearly four solutions (curves) visible and all are roughly the same shape.  Also, 

the double lobe shape of the allowed region is again driven by the double minima in θ23. 
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Figure 20.  Final 90% C.L. allowed region for θ23 and the atmospheric mass splitting.  

The curves are as follows: blue solid is NH and positive θ13; green dash is IH and 

negative θ13; orange dot-dash is NH and negative θ13; and red dot is IH and positive θ13. 

 

 

 We also examine the question of the relative importance of the MINOS 

appearance data with respect to the T2K appearance data when analyzing the data using 

the symmetry paradigm that contains four solutions, see Figure 21. 
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Figure 21.  Contribution of appearance data to the {NH, +θ13} final result for the 

atmospheric mass splitting.  The curves are as follows: black solid is all; blue dash is all 

minus T2K/MINOS appearance; red dot-dash includes T2K; green dot-dash-dash 

includes MINOS. 

 

 The solid black curve is the final result for the full analysis for the parameter 

∆m32
2 .  Compare this to the blue dash curve generated by all the experiments except the 

T2K and MINOS appearance data.  We see that the appearance data alters the results, but 

by a small amount.  The green dot-dash-dash curve includes the MINOS data, but not the 

T2K data.  Note that MINOS alone moves the blue dash curve a fraction of the way to the 

full results.  However, the red dot-dash curve, which represents incorporation of T2K and 

not MINOS, falls nearly on top of the black curve, the full answer.  This could be 

interpreted as T2K being dominant and MINOS being negligible. 

 In Figure 22 we perform the same investigation for θ13.  The long baseline 

appearance experiments do not alter the value of θ13 much, only increasing it from 0.157 

rads to 0.158 rads. 
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Figure 22.  Contribution of appearance data to the {NH, +θ13} final result for θ13.  The 

curves are as follows: black solid is all; blue dash is all minus T2K/MINOS appearance; 

red dot-dash includes T2K; green dot-dash-dash includes MINOS. 

 

 

 In Figure 23 we show the same curve except it is for the parameter θ23.  The 

mixing angle θ23 is the least determined of the mixing parameters and, due to the double 

minima, the least interpretable of the results.  The order of the curves differs at each 

minima.  On the right side, the solid black and red dot-dash are equal, indicating that the 

inclusion of only T2K reproduces the full results.  On the left side you find that the blue 

dash curve (omitting both T2K and MINOS) is equal to the green dot-dash-dash curve 

(MINOS only included).  If this was a linear system then, as implied by the relative 

positions of the curves in the right hand side, the full results would match the T2K results 
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only and the inclusion of the MINOS results would be negligible.  However, this pattern 

is not reproduced on the left hand side implying non-linear behavior.  The addition of an 

experiment leads to each of the three parameters responding in its own individual way 

giving a change that is not at all intuitive. 

 

 

 

Figure 23.  Contribution of appearance data to final {NH, +θ13} result for θ23.  The curves 

are as follows: black solid is all; blue dash is all without T2K/MINOS appearance; red 

dot-dash includes T2K; green dot-dash-dash includes MINOS. 
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Summary of Results 

 

 We present in Table 15 and Table 16 results of our analysis of the mixing 

parameters θ13, θ23, and ∆m32
2  and the value of the minimum χ2 for each of the four cases 

of hierarchy and sign θ13.  In Table 15 we present results for the intermediate analysis, the 

analysis in which we omit the T2K and MINOS long baseline experiments.  In Table 16 

we present the results for the full analysis. 

 

 

Table 15.  Intermediate mixing parameter values (without long baseline appearance data) 

with 90% C.L. errors and minimum χ2. 

 
Mass 

Hierarchy 

Sign of θ13 θ13 (rads) θ23 (rads) ∆m32
2

 (10-3 eV2) χ
min
2  

Normal Positive 0.156 -0.012
+0.014 

 0.722 -0.032
+0.174 

 2.43 -0.08
+0.08 

 0.73 

Normal Negative 0.156 -0.012
+0.014 

 0.722 -0.032
+0.174 

 2.44 -0.08
+0.08 

 0.0 

Inverse Positive 0.156 -0.011
+0.014 

 0.719 -0.032
+0.181 

 2.42 -0.08
+0.08 

 1.25 

Inverse Negative 0.157 -0.012
+0.014 

 0.719 -0.032
+0.181 

 2.41 -0.08
+0.08 

 1.70 

 

 

 We see in Table 15 that for the intermediate analysis, the parameters θ13 and ∆m32
2  

are well determined and do not have great sensitivity to hierarchy or sign θ13.  For θ23 the 

numbers in the Table do not adequately describe the double minimum structure of the χ2.  

The minimum that is the lower of the two minima is the absolute minimum.  The errors 

are the distance from the minimum to the value of χ2 = 2.71.  Going to smaller values, 

this is small.  Going to larger values, this goes beyond the other minimum and is large. 
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Table 16.  Final mixing parameter values with 90% C.L. errors and minimum χ2. 

Mass 

Hierarchy 

Sign of θ13 θ13 (rads) θ23 (rads) ∆m32
2

 (10-3 eV2) χ
min
2  

Normal Positive 0.158 -0.012
+0.014 

 0.868 -0.178
+0.039 

 2.42 -0.08
+0.08 

 0 

Normal Negative 0.157 -0.011
+0.014 

 0.868 -0.167
+0.036 

 2.44 -0.08
+0.08 

 4.18 

Inverse Positive 0.159 -0.011
+0.014 

 0.872 -0.142
+0.032 

 2.42 -0.08
+0.08 

 4.48 

Inverse Negative 0.160 -0.012
+0.014 

 0.872 -0.160
+0.032 

 2.40 -0.08
+0.08 

 1.50 

 

 

 In Table 16 we present our final results for the analysis using all the data.  We see 

that the parameters θ13 and ∆m32
2  change very little.  The appearance data contributes little 

to their determination.  The difference between the four cases is now much larger than it 

is for the intermediate analysis.  Pμe is much more sensitive than is Pμμ to hierarchy and 

sign θ13 as expected.  We also see in the full results the signature of the two-fold 

symmetry.  The two best fit cases, {NH, +θ13} and {IH, -θ13}, are one of the symmetry 

pairs and the other two solutions, {NH, -θ13} and {IH, +θ13}, the other symmetry pair are 

nearly degenerate.  This pattern indicates that the information in the T2K appearance data 

(T2K dominates for the appearance channel) is spectral.  Further distinction between 

individual cases within a symmetry pair requires better knowledge of the magnitude of 

the cross-section. 

 We also see a distinct change in the value of θ23 from its value for the 

intermediate analysis.  Although the numbers in the Tables are quite different, the change 

is actually small.  The appearance data alter two things: the minimum corresponding to 

the larger value of θ23 is now the absolute minimum and the difference between each of 

the solutions has increased. 
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 Since the parameters θ13 and ∆m32
2  are not changed by appearance data, ignoring 

θ23 for the moment, how do these experiments distinguish between hierarchy and sign 

θ13?  The answer arises from the fact that for a given set of mixing parameters, the 

oscillation probability Pμe is different for each of the four cases of hierarchy and sign θ13.  

The experiments other than the appearance experiments fix the mixing parameters and 

give four distinct predictions for the appearance experiments.  The level of agreement 

between the data and each of the four experiments then determines the preference for 

each of the four cases. 

 In Table 17 we compare our results with the results from three recent global 

analyses.  There is good general agreement. For θ23, we include the location of the two 

minima if results are given by the authors for a second minima.  All but Capozzi et al. 

[80] report a second minimum, but Gonzalez-Garcia et al. [27] do not report any 

distinction between the hierarchy and Forero et al. [22] find two solutions only for the 

normal hierarchy.  We include for completeness our results for negative θ13 although no 

one else has provided any information on these two solutions.  The T2K collaboration 

[76] finds a single minima for θ23 at 0.90 rads.  The only qualitative difference is that we 

find the absolute minimum to lie above π/4 while Capozzi et al. find the minimum below 

π/4 to be lowest. 
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Table 17.  Comparison of our results with three other recent global analyses.  Others give 

only the positive θ13 solutions.  They, however, do include the CP-phase δCP.  The 

column θ23 < (θ23 >) represent a solution with θ23 less than (greater than) π/4.  NH: 

normal hierarchy; IH: inverse hierarchy. 

 
 ∆m32

2
 (10-3 eV2) θ13 (rads) θ23 < (rads) θ23 > (rads) 

 NH IH NH IH NH IH NH IH 

Gonzalez-Garcia [27] 2.47 2.43 0.151 0.151 0.698 -- 0.880 -- 

Forero [22] 2.55 2.43 0.157 0.159 0.712 -- 0.899 0.886 

Capozzi [80] 2.43 2.38 0.153 0.156 0.722 0.740 -- -- 

This work (+θ13) 2.42 2.42 0.158 0.159 0.726 0.730 0.868 0.872 

This work (-θ13) 2.44 2.40 0.157 0.160 0.726 0.730 0.868 0.872 

 

 

 In Table 18 we present the probability that each of the four choice is correct.  To 

calculate the probability of a solution being correct, we must maintain the relative 

magnitude of the chi-squareds for each of the four cases, as we have done in the chi-

squared graphs.  We are then quantifying that the better the fit, the smaller the chi-

squared.  In marginalizing from N parameters to N-1 parameters we are making the 

assumption that the likelihood function for N parameters (not necessarily normalized) is 

given in terms of the N-parameter chi-squared function we have calculated by fitting our 

model to the data. 

 ℒ (a1, …, an) ≡ exp {-χ2 (a1, …, an)/2} (68) 

The assumption being made is that ℒ is a probability distribution.  Practitioners do not 

mention it, but this is a Bayesian approach and is not unique.  For a given parameter ai, 

you are free to choose a prior.  The practice is to choose a parameter and take the prior to 

be a constant. 

 Without any additional assumptions, when you are down to N = 1 and four cases 

you simply marginalize one more time.  You calculate ℒ(a) from χ(a) and if you have 

maintained the relative magnitudes for χi(a), i = 1,4, the number Ni(a) ≡ ∫ da ℒi(a) is the 
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probability that case i is correct once you normalize by dividing by ∑ Ni(a)4
i = 1 .  Notice 

that this is not ambiguous if you have no correlations or if you have Gaussian statistics. 

 

 

Table 18.  Percent probability of being the true solution for each of the four solutions. 

Mass 

Hierarchy 

Sign of θ13 Probability of Being True 

Solution 

Normal Positive 58.6 % 

Normal Negative 7.2 % 

Inverse Positive 6.3 % 

Inverse Negative 27.9 % 

 

 

 Although the normal hierarchy, positive θ13 solution is preferred, this is still at a 

statistically insignificant level (58.6% probability of correctness).  However, all three 

analyses of each of the three mixing parameters we examined agreed on {NH, +θ13} 

being the preferred solution, showing good convergence.  The next best solution is the 

{IH, -θ13} solution, the symmetry partner to the best fit solution.  The symmetry is 

broken into individual cases by matter effects but its presence is clear. 
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CHAPTER V 

 

CONCLUSIONS 

 

 In this chapter we present some concluding remarks and discuss our suggestions 

for how to build on the work presented here as well as what the research presented herein 

implies for the analysis of upcoming neutrino oscillation data. 

 

Summary: Indications from the Alternative Analysis Paradigm 

 

 In this work we have used an alternative paradigm, allowing the bounds on the 

mixing angle θ13 to roam from -π/2 to +π/2, in order to analyze the world’s neutrino 

oscillation data. Throughout we used a full, exact, calculation of the three-neutrino 

oscillation probabilities. This allowed us to extract values for the mixing parameters θ13, 

θ23, and ∆m32
2  as well as to seek hints of the neutrino mass hierarchy using the most 

recent MINOS, T2K, Daya Bay, and RENO data as well as constraints on θ23 from 

Super-Kamiokande data. 

 Using this analysis paradigm to study neutrino oscillation data highlighted the 

existence of four distinct solutions in the case of CP-conservation, one for each sign of 

θ13 and neutrino mass hierarchy combination.  This represents a thorough analysis in the 

CP-conservation framework that allows the chi-squared values for each case to be 

presented and maintains their relative value.  The relative values allow the extraction of 

the probability of each of the four cases being correct.  This is in contrast to the 

traditional presentation in the literature of only two solutions in the CP-conserving 
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picture, one for each hierarchy assuming θ13 is positive and setting δCP to 0.  Using the 

traditional bounds, a thorough CP-conserving analysis must include one solution each for 

each mass hierarchy and for δCP = 0 and π and to extract a quantitative estimate of the 

preference for a particular hierarchy since the relative values of the chi-squareds need to 

be maintained. 

 Furthermore, using this alternative analysis paradigm to explore the oscillation 

probabilities led to the discovery of a broken four-fold symmetry in the limit of θ13 = 0.  

The symmetry is broken by non-zero θ13 into two, two-fold symmetries.  This symmetry 

is the simultaneous interchange of hierarchy and the sign of θ13.  This symmetry is then 

broken further by matter effects.  Note that to understand this symmetry, one needs to 

include all four solutions.  It is this fact that cements our preference for having the 

bounds on θ13 extend from –π/2 to +π/2.   

 We find that long baseline disappearance data (Pμμ) show a small sensitivity to 

hierarchy and sign θ13.  The hierarchy sensitivity was pointed out by the T2K 

collaboration [44].  This effect does not satisfy the above symmetry.  The symmetry 

applies to the long baseline appearance (Pμe) data, the larger symmetry breaking effect.  

The conclusions of this work are contained in Table 16 and Table 18, the extracted 

mixing parameters and the probabilities that each of the four cases is the correct one.  

Note that each of the four cases yields a separate, non-overlapping solution.  This allows 

us to add probabilities.  Thus the symmetry pair {NH, +θ13} + {IH, -θ13} is 58.6% + 

27.9% = 86.5% probable to be the correct symmetry pair, with the other pair {NH, -θ13} 

+ {IH, +θ13} is 7.2% + 6.3% = 13.5% likely to be correct. 
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 Although broken, the presence of the symmetry in the final results tells us that the 

dominant information in the T2K appearance experiment is the spectral information.  

Future data, in order to distinguish between the individual cases within a pair, will have 

to improve on the knowledge of the absolute magnitude of the data.  Furthermore, we 

find that positive θ13 is preferred over negative θ13 by 64.9% to 35.1%.  Most 

interestingly, the normal hierarchy is preferred over the inverse hierarchy by 65.8% to 

34.2%. 

 

Other Avenues for Continued Research 

 

 We now turn to discussing possible lines of further research in the broader field of 

neutrino oscillation phenomenology, as they relate to the global analysis presented here. 

 

Gather Mass Hierarchy Data 

 

 Gathering additional insight into the correct neutrino mass hierarchy is still an 

essential goal of the field.  Within our analysis paradigm, identifying the correct mass 

hierarchy combined with knowing the preferred pair of solutions would then 

automatically constrain indications for CP-violation.  The NOνA long baseline 

accelerator experiment has recently begun running and will soon be producing data.  This 

experiment’s extended baseline, through the earth’s mantle, means it has strong matter 

effects and hence is sensitive to both hierarchy effects and the CP-phase.  Therefore, we 

look forward to being able to include this data set in future work using either the 

alternative analysis paradigm presented here or in more traditional analysis frameworks. 
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Gather CP-Phase Data 

 

 Any insight into the possible magnitude of the CP-phase would be invaluable to 

implementing future symmetry paradigm analyses.  Again, similarly to the situation with 

mass hierarchy information, in our analysis paradigm knowledge about the CP-phase 

combined with knowledge of θ13 would constrain the possible neutrino mass hierarchy.  

In particular, much as with θ13 just ten years ago, we are encouraged as a field to begin 

trying to answer the question, is the CP-phase non-zero?  Any such indications will be 

crucial information to help determine the correct mass hierarchy, regardless of the 

analysis paradigm used, since matter hierarchy effects and CP-phase effects are easily 

convoluted in an analysis of the data.  This implies that one possible avenue of research is 

to pursue treating the CP-phase not as a tangential parameter to be marginalized or 

floated, but as the primary parameter to be fitted in future global analyses.  This is 

another area of research we are actively engaged in as we are currently working to extend 

the treatment presented here to include δCP as an additional fourth mixing parameter fitted 

in the global analysis. 

 

Address Speculative Fundamental Questions 

 

On a more theoretical level, it would be insightful to examine how the mass 

hierarchy is implemented in matter effects in order to ensure that the correct physics is 

extrapolated.  For example, answering the question, Does and/or should the sign of matter 

potential terms change under a change in the neutrino mass hierarchy?, particularly in 
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approximate expansion equations sometimes used to analyze oscillation data, is crucial to 

correctly implementing the analysis paradigm presented here in a study of the oscillation 

data.  It would also be very interesting to attempt to trace the source of the broken 

symmetry found in the Pμe oscillation probability.  Since this is the first major work using 

the symmetry analysis paradigm there is a lack of theoretical groundwork, including 

determining whether or not the vacuum symmetry is generated by some fundamental 

physical symmetry of either the mixing matrix or the mass matrix and if so how it is 

broken by large nonzero θ13. 

 

Last Remarks: Future Data and the Alternative Analysis Paradigm 

 

 Given the convenience and ease of using the bounds convention implemented in 

this work and the ability to generate four hypotheses that can be cleanly tested, we see it 

as a valuable next step for the field to consider analyzing experimental results using the 

symmetry-sensitive analysis paradigm discussed here, in addition to more traditional 

analyses methods.  This essentially doubles the amount of information gathered from the 

data with minimal adaption to accommodate the new analysis mode.  It also permits a big 

picture view of whether or not different analysis approaches converge to similar answers, 

a crucial guide to extracting mixing parameter values based on small effects as well as a 

being a measure of the robustness of various interpretations of the data.  In other words, 

we find that using an alternative analysis paradigm provides yet another useful tool for 

fully exploring the world’s neutrino oscillation data and we look forward to using it as a 

probe of future oscillation data in the hunt to complete the picture of neutrino oscillation 

phenomenology.  
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APPENDICES 

 

 For documentation purposes we present in the following Appendices a number of 

technical details relating to this work including additional figures and tables of inputs, 

which while completing the picture present in the main body of this work, are likely of 

interest only to the reader seeking particular technical details. 
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APPENDIX A 

 

Re-Framing the Analysis Paradigm: Figures of the Oscillation Probability 

 

 Here we present, in alphabetical order, oscillation probability plots for all the 

experiments included in this work.  These are for the full, exact, three-flavor oscillation 

probability in matter (assuming one constant density layer), over the entire energy range 

accessible to the experiment, in all cases.  In Table 19 we give the inputs used for all 

plots alike.  In Table 20 we give experiment-specific inputs used to generate the plots.  

We show the full energy range here, for thoroughness.  For Super-Kamiokande plots are 

reproduced from our previously published work [61].  The oscillation probabilities are 

plotted differently to the other experiments as Super-K does not have a fixed L or E, but 

rather a variable L/E making it extremely difficult to plot it in its entirety.  However, the 

reproduced plots shows the main features highlighted in this work, namely, the existence 

of four solutions and a sensitivity to linear and hierarchy effects.  For all plots, except 

Super-K, the curves are as follows: blue (solid) is NH and positive θ13; green (dash) is IH 

and negative θ13; orange (dot-dash) is NH and negative θ13; and red (dot) is IH and 

positive θ13. 
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Table 19.  Table of inputs used in all oscillation probability plots. 

Parameter Value 

θ12 0.592 rads 

θ13 0.157 rads 

θ23 0.785 rads 

δCP 0.0 rads 

∆m21
2

 7.50×10-5 eV2 

∆m32
2

 2.32×10-3 eV2 

∆m31
2

 ∆m21
2  + ∆m32

2
 

matter density 2.6 g/cm3 

 

 

Table 20.  Table of experimental inputs used for oscillation probability plots. 

Experiment Baseline L Energy Range E 

Daya Bay 1042.5 m 1×10-4 – 12.0 MeV 

MINOS 735 km 1×10-3 – 10.0 GeV 

RENO 1089 m 1×10-4 – 12.0 MeV 

T2K 295 km 1×10-3 – 2.0 GeV 
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Figure 24.  Four solutions for Daya Bay antineutrino disappearance probability.  The 

curves are as follows: blue solid is NH and positive θ13; green dash is IH and negative 

θ13; orange dot-dash is NH and negative θ13; and red dot is IH and positive θ13. 

 

Figure 25.  Four solutions for MINOS antineutrino appearance probability.  The curves 

are as follows: blue solid is NH and positive θ13; green dash is IH and negative θ13; 

orange dot-dash is NH and negative θ13; and red dot is IH and positive θ13. 
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Figure 26.  Four solutions for MINOS antineutrino disappearance probability.  The 

curves are as follows: blue solid is NH and positive θ13; green dash is IH and negative 

θ13; orange dot-dash is NH and negative θ13; and red dot is IH and positive θ13. 

 

Figure 27.  Four solutions for MINOS neutrino appearance probability.  The curves are as 

follows: blue solid is NH and positive θ13; green dash is IH and negative θ13; orange dot-

dash is NH and negative θ13; and red dot is IH and positive θ13. 
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Figure 28.  Four solutions for MINOS neutrino disappearance probability.  The curves 

are as follows: blue solid is NH and positive θ13; green dash is IH and negative θ13; 

orange dot-dash is NH and negative θ13; and red dot is IH and positive θ13. 

 

 

Figure 29.  Four solutions for RENO antineutrino disappearance probability.  The curves 

are as follows: blue solid is NH and positive θ13; green dash is IH and negative θ13; 

orange dot-dash is NH and negative θ13; and red dot is IH and positive θ13. 
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Figure 30.  “The oscillation probabilities Pee and Peμ vs neutrino energy for [earth’s-

diameter crossing neutrinos] of the Super-K experiment…The (blue) solid curves are for 

both hierarchies and for θ13 = 0; the (red) dashed curves are for the NH and θ13 = +0.15; 

the (green) dot-dot-dashed curves are for the IH and θ13 = +0.15.  For Peμ, the (turquoise) 

dot-dashed curve is the NH and θ13 = -0.15; the (orange) dotted curve is the IH and θ13 = -

0.15.” Reproduced from Escamilla-Roa et al. [61]. 
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Figure 31.  Four solutions for T2K neutrino appearance probability.  The curves are as 

follows: blue solid is NH and positive θ13; green dash is IH and negative θ13; orange dot-

dash is NH and negative θ13; and red dot is IH and positive θ13. 

 

 

Figure 32.  Four solutions for T2K neutrino disappearance probability.  The curves are as 

follows: blue solid is NH and positive θ13; green dash is IH and negative θ13; orange dot-

dash is NH and negative θ13; and red dot is IH and positive θ13.  
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APPENDIX B 

 

Technical Analysis: Calibration Oscillation Probabilities 

 

 All reproduction codes, except for Super-K, utilized neutrino oscillation 

probabilities whose use was implied by, inferred from, or stated in published articles, 

dissertation, talks, and pre-prints.  For reference, we list the oscillation probabilities 

initially used to match codes to published results.  Experiments are listed in alphabetical 

order. 

Daya Bay [10] 

                   Pν̅e→ν̅e
 = 1 - cos4 θ13 sin

2
2θ12 sin

2
∆21 

                                   - sin
2

2θ13 (cos2 θ12 sin
2

∆31 + sin
2 θ12 sin

2
∆32)  (69) 

where  

 ∆ji ≡ 1.267∆mji
2(eV2) [

L(m)

E(MeV)
]  (70) 

 sin
2

∆ee ≡ cos2 θ12 sin
2

∆31 + sin
2 θ12 sin

2
∆32 (71) 

such that the parameter extracted was |∆mee
2 |. 

MINOS Antineutrino Disappearance [74] 

 
Pνμ→νμ

 = 1 - sin
2

2θ̅ sin
2 (

1.267∆m̅2[eV2]L[km]

E[GeV]
) 

(72) 

such that the parameters extracted were sin
2

2θ̅ and |∆m̅2|. 

MINOS Neutrino Appearance [67] 
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Pμe =  s23
2

sin
2

2θ13

C13
2

sin
2 C13∆    

        +  c23
2

sin
2

2θ12

C12
2

sin
2 αC12∆ 

        - 2αs12
2 s23

2
sin

2
2θ13

C13
2

sin C13∆ [∆
cos C13∆

C13

(1-A cos 2θ13)-A
sin C13∆

C13

(cos 2θ13 -A)

C13

] 

       + αs13 sin 2θ12 sin 2θ23

sin C13∆

AC13
2

× 

{cos δ [C13 sin(1+A)∆- (1-A cos 2θ13) sin C13∆]- C13sin δ [cos C13∆ - cos(1+A)∆]} 

       - s13

sin 2θ12

C12

sin 2θ23

(1-α) sin αC12∆

(1+A-α+Aαc12
2 )

× 

{sin δ [cos αC12∆ - cos(A+α-2)∆]+ cos δ [sin(A+α-2)∆ - sin αC12∆

× (
cos 2θ12 - (A α⁄ )

C12

- 
αAC12

2(1-α)

sin
2

2θ12

C12
2

)]} 

          - 2αs13 sin 2θ12 sin 2θ23 cos(∆+δ)
sin A∆

A

sin(A-1)∆

(A-1)
 

(73) 

where 

 
α ≡  

∆m21
2

∆m31
2

 
(74) 

 
∆ ≡ 

∆m31
2 L

4E
  

(75) 

 
A ≡ 

VL

2∆
  

(76) 

 
C12 ≡ √sin

2
2θ12 + [cos 2θ12-(A α⁄ )]2  

(77) 
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C13 ≡ √sin

2
2θ13 + (A- cos 2θ13)

2  
(78) 

such that the parameter extracted was 2 sin
2 θ23 sin

2
2θ13.  

MINOS Neutrino Disappearance [73] 

 
Pνμ→νμ

 = 1 - sin
2

2θ sin
2 (

∆m2L

4E
) 

(79) 

such that the parameters extracted were sin2 2θ  and |∆m2|. 

RENO [11] 

 
Psurvival ≈ 1 - sin

2
2θ13 sin

2 (
1.267∆m31

2 L

E
) 

(80) 

such that the parameter extracted was sin2 2θ13. 

T2K Appearance [75] 

 The full, exact, three-flavor oscillation probability with matter effects was used, 

see Chapter I Eqs. (7)-(9), such that the parameter extracted was sin2 2θ13. 

T2k Disappearance [76] 

 The full, exact, three-flavor oscillation probability with matter effects was used, 

see Chapter I, Eqs. (7)-(9), such that the parameters extracted were sin2 θ23 and ∆m32
2  

(NH), ∆m31
2  (IH).  
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APPENDIX C 

 

Technical Analysis: Tables of Code Inputs 

 

 In this Appendix we compile tables of all the numerical inputs used in the code to 

reproduce published experimental results as discussed in Chapter III.  Note, for all cases 

the CP-phase was set to δCP = 0.0 rads (CP-conserving) and the earth’s matter potential 

used was V = 3.78×10-14 ρ ∙ eV2, where ρ is the earth’s matter density in g/cm3.  Due to 

the large number of data sets, we do not list values for items such as mixing parameters, 

baselines, energies, or data points, which were taken directly from values listed in the 

relevant publications.  Here we only list those items which would be needed to reproduce 

our analysis and which were determined by us and not published elsewhere, such as the 

errors included, the scale factors added, the type of χ2 equation used and so on.  We 

present the experiments in alphabetical order.  Note, scale factors and errors are presented 

in decimal form, not percent, throughout. 

 

 

Table 21.  Daya Bay input parameters used in analysis. 

Electron Antineutrino Disappearance 

 Data taken from [10]: Figure 4, top panel 

 All data points used 

 Used Gaussian χ2 

 Scaled signal per bin by factor rflux = 1.013 

 Included systematic errors: 

 Flux (1-Pee) σflux = 0.085 

 Benchmarks matched: full fit; best fit sin2 2θ13 and 68.3% C.L. lower and upper bounds 
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Table 22.  MINOS antineutrino disappearance input parameters used in analysis. 

Muon Antineutrino Disappearance 

 Data taken from [74]: Figure 3 

 Used 22 out of 13 bins; dropped first bin with 0 counts 

 Used Poisson χ2 

 Scaled signal per bin by factor rflux = nuisance parameter fitted by minimization routine 

 Overall energy scale included, Escale = 1.02 

 Included systematic errors 

 Flux σflux = 1.00 

 Energy σEnergy = C √E = 0.27 √E 

 Calibrated prediction to match best fit result 

 Theory = predicted signal 

 rf = scale factor to fit minimum = 0.975 

 bf = background counts per bin 

 Peμ
av

 = full, exact, three-neutrino oscillation probability in matter per bin 

  Peμ
cal

 = calculated for published best fit mixing parameters 

Theory = rf × bf ×
Peμ

av

Peμ
cal

 

 Gauss-Hermite integration (Gaussian E distribution) used to calculate predicted signal per bin 

 Benchmarks matched: best fit sin
2

2θ̅ and ∆m̅
2
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Table 23.  MINOS neutrino appearance input parameters used in analysis. 

Electron Neutrino Appearance 

 Data taken from [41]: Figure 2 

 All data points used (used first 4 bins and merged last 3 bins as in Figure 2, bottom panel) 

 Used Poisson χ2 

 Scaled signal per bin by factor rflux = nuisance parameter fitted by minimization routine 

 Included systematic errors: 

 Flux σflux = 0.319 

 Calibrated prediction to match best fit result 

 Theory = predicted signal 

 rf = scale factor to fit minimum = 1.46 

 Ncal = calibration factor for each bin from Figure 5 histogram 

 Peμ
av

 = full, exact, three-neutrino oscillation probability in matter per bin 

  Peμ
cal

 = calculated for NH and positive θ13 

Theory = rf × Ncal ×
Peμ

av

Peμ
cal

 

 Benchmarks matched: best fit sin2 2θ13 and 90% C.L. lower and upper bounds 
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Table 24.  MINOS neutrino disappearance input parameters used in analysis. 

Muon Neutrino Disappearance 

 Data taken from [73]: Figure 1, top left panel 

 All data points used 

 Used Poisson χ2 

 Scaled signal per bin by factor rflux = nuisance parameter fitted by minimization routine 

 Overall energy scale included, Escale = 1.04 

 Included systematic errors 

 Flux σflux = 1.00 

 Energy σEnergy = (A √E⁄  + BEmidpoint
bin )C = (0.510 √E⁄  + 0.02Emidpoint

bin )0.32 

 Calculated predicted signal using Monte Carlo no oscillation prediction 

 Theory = predicted signal 

 rf  = scale factor to fit minimum = 1.045 

 MCno osc = published far detector Monte Carlo no oscillation prediction 

 Pμμ= full, exact, three-neutrino oscillation probability in matter per bin 

 bf = background counts per bin 

Theory = rf × MCno osc  × Pμμ+ bf 

 Gauss-Hermite integration (Gaussian E distribution) used to calculate predicted signal per bin 

 Benchmarks matched: best fit sin
2

2θ and ∆m
2
; 7 points from the 90% C.L. solid allowed region 

curve in Figure 3 
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Table 25.  RENO input parameters used in analysis. 

Electron Antineutrino Appearance 

 Data taken from [11]: Figure 4, top panel 

 All data points used 

 Used Gaussian χ2 

 Calculated theoretical signal by averaging spectral data calculation from Figure 4, top panel, for 

each detector at weighted baselines given in Figure 3, bottom panel 

 Scaled signal per bin by factor rflux = 0.01658 

 Included systematic errors: 

 Near detector σND = 0.01360 

 Far detector σFD =  0.01129 

 Benchmarks matched: Figure 3, top panel, best fit sin2 2θ13 and upper and lower bounds at sin2 

2θ13 = 0.00 and 0.20  

 

 

Table 26.  Super-K input parameters used in analysis. 

Super-K Restriction on θ23 and ∆m32
2

 

 Data fitted [76]: blue allowed region in Figure 4 

 Represented restriction using a normal data distribution: 

χ2 =(
∆m32,dist

2  - ∆m32,fit
2

σ
∆m

2

)

2

+(
sin

2
2θ23

dist
- sin

2
θ23

fit

σθ

)

2

 

 Included systematic errors: 

 Mixing angle σθ  = 0.0326 

 Mass-splitting σ
∆m

2 =  0.2352×10-3 
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Table 27.  T2K neutrino appearance input parameters used in analysis. 

Electron Neutrino Appearance 

 Data taken from [75]: Figure 4 

 Used 22 of 25 data points (for published fit region below 1250 MeV); dropped first 3 bins 

 Used Poisson χ2 

 Scaled signal per bin by factor rflux = nuisance parameter fitted by minimization routine 

 Included systematic errors 

 Flux σflux = 0.099 

 Benchmarks matched: best fit sin2 2θ13 and upper and lower bounds at 68% C.L. 

 

 

Table 28.  T2K neutrino disappearance input parameters used in analysis. 

Muon Neutrino Disappearance 

 Data taken from [76]: Figure 2 

 Used 16 out of 18 bins; dropped first 2 bins with 0 counts 

 Used Poisson χ2 

 Scaled per bin and treated as nuisance parameter fitted by minimization routine 

 rflux = overall norm multiplying predicted signal 

 rEbin = multiplies energy per bin 

 Overall energy scale included, Escale = 1.07 

 Gaussian energy resolution function included 

 σEnergy = C + A√E = 0.105 + 1.06√E 

 Published analysis ran over two disconnected regions (sin2 2θ23 < π/4 and sin2 2θ23 > π/4); ran 

our analysis over one singly connected region (θ23 = [0, π/2]) 

 Included systematic errors 

 Flux σflux = 0.55 

 Energy σEnergy = 0.005 

 Benchmarks matched: best fit sin2 θ23 and |∆m32
2 |, asymmetric shape of θ23 bounds and elliptical 

shape of 2-D allowed region in θ23-|∆m32
2 | 
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