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CHAPTER I 

 

INTRODUCTION 

 

Wound Healing 

Chronic skin wounds represent a significant clinical burden, especially in diabetic patients 

whose skin wounds can become ulcerated and even lead to limb amputation.  The current state of the 

art in biologic drugs for improving wound healing is Johnson and Johnson’s Regranex®, one of the 

only clinically effective biologic drugs, which delivers platelet-derived growth factor significantly 

improving wound healing, but unfortunately cannot close 50% of chronic wounds [1].  Recently, small 

interfering RNA (siRNA) has been proposed as a potential treatment for a range of pathologies 

including skin wounds, and biomaterial scaffold-based siRNA delivery has been recently sought using 

both natural and synthetic scaffolds [2-5].  

Non-healing diabetic skin wounds are characterized by a heightened and unresolved 

inflammatory phase leading to chronic ulceration.  Because specific inflammatory mediators integral 

to this phenotype have been identified, siRNA may be a strong candidate drug for the treatment of 

chronically inflamed ulcers through sequence-specific gene silencing.  By silencing pro-inflammatory 

genes (for example, p53, and Smad3 silencing have previously been attempted to improve wound 

healing) [4, 5]  the wound site may be transformed into a more reparative environment that enables 

progression from the prolonged inflammatory phase and into remodeling and wound closure. 

 

siRNA Discovery and Mechanism 

Controlled manipulation of gene expression using RNA interference (RNAi) has been 

rigorously pursued for almost two decades now, and thorough elucidation of this mechanism 

combined with recent breakthroughs in RNA delivery technologies have RNAi poised to make a 

tremendous impact. The initial discovery of RNAi came in 1990 when Napoli et al. observed an 

unexpected reduction in expression when delivering RNA in an attempt to overexpress chalcone 

synthase in Petunias [6]. Others elucidated and applied this finding by delivering antisense 



2 

oligodeoxynucleotides (ODN), complementary sequences of DNA, which yielded modest reduction in 

gene expression in C. elegans [7]. In 1998, Fire et al. showed that intracellular-acting double stranded 

RNA (dsRNA) was more effective than either the sense or anti-sense strand alone [8]. In fact, dsRNA 

has been shown to be 100 to 1000 times more effective than ODNs due to a longer half-life and 

greater potency [9]. Over the next few years, researchers proved that endogenous RNAi, known as 

microRNA (miRNA), exist and that it serves as a natural, post-transcriptional controller of gene 

expression where cellular machinery selectively degrades complementary mRNA in an enzymatic 

manner [10]. The elucidation of similar machinery for RNAi in mammalian cells further heightened the 

interest in therapeutically harnessing these pathways [11]. 

Since these early findings, the mechanisms of ODN and that of miRNA, dsRNA, siRNA, and 

short hairpin RNA (shRNA) have been more clearly elucidated (see Fig. 1). Single-stranded 

antisense ODN are thought to function by multiple mechanisms including translational arrest due to 

steric blockage of ribosomes by ODN-mRNA Watson-Crick base pairing and also through RNase-H-

mediated cleavage of both the ODN and mRNA strands [12]. Endogenous RNAi molecules in the 

form of microRNA (miRNA) enter the cytoplasm after transcription, or alternatively, functionally-similar 

dsRNA can be exogenously delivered. shRNA that more closely mimic the structure of endogenous 

miRNA have also been exogenously delivered [13]. In each of these cases, the RNase III family 

enzyme Dicer cleaves the miRNA/dsRNA/shRNA to produce guide RNA, more commonly known as 

small interfering RNA (siRNA). siRNA are double-stranded RNA 19-21 base pairs in length with 3’ 

nucleotide overhangs [14], these molecules can assemble into the RNA induced silencing complex 

(RISC), a nuclease complex that degrades complementary mRNA in a sequence specific, enzymatic 

manner [10]. RNAi efficiency has been further improved by delivering siRNA that directly enters the 

RISC rather than upstream dsRNA/shRNA that must be processed first by Dicer [15].  

These favorable properties of siRNA have led to rapid advancement into clinical tests for a 

variety of conditions including respiratory syncytial virus infection, macular degeneration, hepatitis B, 

renal failure, macular oedema, pachyonychia congenital, and solid tumors [16-18].   
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Figure 1 – RNAi mechanism: Mechanisms of RNA Interference (A) ODN silencing is 
believed to be induced by stericly blocking translation through hybridization with mRNA and 
RNAse-H mediated degradation of both the ODN and mRNA (B) Proposed mechanisms for 
RNA interference by miRNA, shRNA, dsRNA, and siRNA. Endogenous  miRNA,  which  is  
made  transcriptionally,  and  exogenously  delivered  shRNA/dsRNA  must  all  be  first  
processed  into  siRNA,  double  stranded RNA molecules around 20 base pairs in size. 
Exogenous siRNA can also be delivered that circumvents the need for dicer processing. 
siRNA is loaded onto the RISC complex and mediates degradation of mRNA complementary 
to the antisense siRNA strand. For each type of therapeutic RNAi, the exogenous RNA must 
reach the cytoplasm to interact with mRNA and other intracellular machinery required for 
gene silencing.  

 

Smart Delivery 

siRNA is regarded to have untapped clinical potential, but one of the major challenges to 

harnessing RNA interference pharmaceutically is efficient cytoplasmic delivery of the siRNA 

biomacromolecules into target cells.  “Naked” siRNA has a very short half-life in vivo due to rapid 

degradation by nucleases and clearance through kidney filtration.  siRNA is also relatively large 

molecular weight, anionic, and polar, making it impermeable to cell membranes.  This is problematic 

for initial cellular internalization and for escape from endo-lysosomal vesicles following uptake by 

endocytosis.  Thus, siRNA carriers are required that can both package and protect the siRNA and 
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deliver siRNA into the cytoplasm of the cell where the RISC machinery is located.   Polycations have 

been heavily studied as an approach to package and protect siRNA and enable endosome escape 

via the proton sponge effect.  However, most polycations are characterized by cytotoxicity and 

instability in vivo, and recent efforts have aimed to overcome these limitations. 

 

Sustained Delivery 

Although siRNA activity is catalytic, it does have a finite half-life in the cell.  Previous reports 

generally note maximum silencing at around two days post-transfection [19] with normal gene 

expression restored by approximately one week in rapidly dividing cells [20].   One approach to 

extend silencing may be to achieve sustained, local release from scaffolds injected or transplanted 

onto the wound.  Mostly natural materials such as alginate, collagen, and agarose have been pursued 

for biomaterial-based siRNA delivery to this point [2-5]. Recently, key proof-of-concept studies were 

published describing effective topical siRNA gene silencing in vivo using agarose scaffolds loaded 

with siRNA packaged into the commercial transfection reagent Lipofectamine 2000.  This particular 

approach represents a significant breakthrough, though it did suffer from the potential limitation of 

siRNA diffusing from the scaffold in a relatively rapid “burst” release that required removal and re-

application of siRNA-loaded scaffolds to achieve better and more sustained siRNA activity [4, 5].  It 

may be possible to achieve more optimal wound therapies with delivery systems that integrate 

efficient, nontoxic siRNA carriers into an injectable delivery matrix that can achieve sustained and 

tunable rates of siRNA release for greater than 1 week.   

 

Approach 

Currently, there are no commonly-utilized clinical applications of intracellular-acting 

biomacromolecular drugs (i.e., growth factors act on extracellular receptors).  The delivery 

requirements for intracellular-acting biomolecules like siRNA are more rigorous because they cannot 

cross cellular membranes, and when endocytosed, the predominant fate is enzymatic degradation in 

lysosomes or recycling and extracellular clearance. Here, we describe a “smart” polymer carrier that 

“recognizes” environmental changes to become membrane disruptive in the lower pH environment of 



5 

endosomes.  This innovative approach to gene inhibition may enable a new level of pharmaceutical 

breadth and specificity that would overcome many of the shortcomings of small molecule drugs and 

also allow manipulation of intracellular targets that were previously considered “undruggable”.  The 

majority of recent applications of siRNA have focused on in vitro validation, systemic in vivo delivery, 

or in vivo applications where siRNA formulations have been injected locally in saline with no regard 

for persistence of sustained bioactivity (i.e. intraocular or intratumoral injection, lung inhalation). The 

use of siRNA for regenerative applications could be tremendously enhanced by means for its 

sustained, local delivery from scaffolds that serve as porous tissue templates.  The innovative 

combination of si-SPNs and PUR scaffolds provides a porous scaffold template for cell in-growth, 

ease of delivery for clinical applications (injectability), multiple levels of tunability for release kinetics, 

and ultimately, the ability to optimize siRNA activity for specific target genes and/or different 

pathological applications.  

Here, we introduce a robust approach for siRNA delivery to skin wounds. This new platform 

incorporates siRNA delivering “smart” polymeric nanoparticles (SPNs) into injectable, biodegradable, 

porous, polyurethane (PUR)-based synthetic scaffolds. 
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CHAPTER II 

 

SUSTAINED LOCAL DELIVERY OF SIRNA 

FROM AN INJECTABLE SCAFFOLD 

 

Introduction 

 The discovery of RNA interference [8] motivated extensive efforts toward harnessing gene-

silencing biomacromolecules for clinical therapeutic use. Small-interfering RNA (siRNA) has rapidly 

advanced into clinical trials for indications such as macular degeneration [21], skin disorders [22], and 

targeted delivery to melanoma [18, 23, 24].  The current work focuses on development of a platform 

technology to be used for the controlled, local delivery for regenerative medicine, which is a less 

mature but promising application area for siRNA [25].   

 Effective delivery has been the primary limitation to more rapid and widespread adoption of 

siRNA for clinical use due to its susceptibility to nucleases and poor intracellular cytosolic delivery 

[26].  A variety of strategies have been developed to protect siRNA and improve intracellular delivery 

including electrostatic complexation with cationic lipids, polymers, and polysacaccharides, as well as 

conjugation to cell-penetrating/fusogenic peptides, dendrimers, antibodies, vitamins, and 

nanoparticles [27-37]. Controlled polymerization techniques such as reversible addition-fragmentation 

chain transfer (RAFT) polymerization offer a promising approach to designing synthetic polymers that 

are monodispersed, and contain spatially-defined functionalities [38, 39], and the current work 

employs a RAFT-synthesized, pH-responsive polymer-based micellar nanoparticle (si-NP) recently 

optimized for efficient and biocompatible intracellular siRNA delivery [40, 41].   

 The polyplex, bioconjugate, and nanoparticulate siRNA carriers that have advanced to in vivo 

preclinical testing have been primarily delivered intravenously or through local injection (i.e., 

intratumoral) in PBS.  For tissue regeneration applications, it is anticipated that it will be desirable for 

siRNA activity to be locally sustained and mediated from a biocompatible and biodegradable tissue 

template. Because siRNA activity is typically transient and can be exhausted by one week in rapidly 

dividing cells [19, 20], natural materials including alginate, collagen and agarose have been applied 
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for sustained delivery of siRNA [2-5].  Pre-fabricated synthetic scaffolds made from ε-caprolactone 

and ethyl ethylene phosphate copolymer (PCLEEP) nanofibers have also been pursued for the 

release of siRNA/transfection reagent (TransIT-TKO) complexes and have been shown to achieve 

sustained delivery of bioactive siRNA for 28 days [42].     

 Porous, biocompatible, and biodegradable polyester polyurethanes (PUR) comprise a 

promising class of synthetic injectable biomaterials that can provide both mechanical support and 

also controlled drug release to regenerating tissues [43].   Several drugs,  including insulin-like growth 

factor-1 (IGF-1), hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), recombinant 

human bone morphogenetic protein 2 (rhBMP-2), platelet-derived growth factor (PDGF), and the 

antibiotic vancomycin have been incorporated into and delivered from PUR scaffolds [44-48].  

Additionally, PURs support the ingrowth of cells in excisional cutaneous wounds [47] and bone 

defects [46, 48]. Further advantages of PURs are that they adhere to tissue, do not stimulate 

inflammation [47], and biodegrade into biocompatible side products at rates that can be tuned based 

on the polyester triol and isocyanate precursor compositions [49].  Importantly, the use of lysine-

derived polyisocyanates in the PUR scaffolds makes them more clinically translatable because they 

can be synthesized using a two-component foaming process that allows a short manipulation time for 

filling of any shape or size defect, followed by rapid curing in situ [50, 51]. 

 The current study pursues a novel application of PURs to deliver pH-responsive micellar si-

NPs designed for the intracellular delivery of siRNA.  This investigation validates homogenous 

loading of siRNA nanocarriers within the PUR scaffold, sustained, diffusion-controlled release of 

intact nanoparticles, and maintenance of gene silencing bioactivity of the released si-NPs. 

 

Methods 

 

Materials 

All chemicals were purchased from Sigma-Aldrich (Milwaukee, WI, USA) except the 

following.  Purchase of siRNA was from Applied Biosciences (Ambion), LDH cytotoxicity kit from 

Roche, Hiperfect transfection reagent (positive control) from Qiagen, and PD10 desalting columns 
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from GE healthcare.  Lysine Triisocyanate (LTI) was purchased from Kyowa Hakko Kogyo Co., Ltd. 

(Tokyo, Japan).  DMAEMA, and butyl methacrylate were vacuum distilled prior to use.  2,2’-Azobis(2-

methylpropionitrile) (AIBN) was recrystallized twice with methanol. 

 

Synthesis of 4-cyano-4-(ethylsulfanylthiocarbonyl) sulfanylvpentanoic acid (ECT) 

The RAFT chain transfer agent ECT was synthesized following protocols previously 

described by Convertine et al. [40] adapted from Moad et al. [52].  Briefly, Ethanethiol (76 mmol, 4.72 

g) was reacted with carbon disulfide (79 mmol, 6.0 g) in the presence of sodium hydride (79 mmol, 

3.15 g) in diethyl ether for 1h. The resulting sodium S-ethyl trithiocarbonate was further reacted with 

iodine (25 mmol, 6.3 g) to obtain bis(ethylfulfanythiocarbonyl) disulfide, which was further refluxed 

with 4,4’-azobis(4-cyanopentanoic acid) in ethylacetate for 18 h.  The crude ECT was purified by 

column chromatography using silica gel as the stationary phase and ethyl acetate:hexane (50:50) as 

the mobile phase. 
1
H NMR (400MHz, CDCl3):  1.36 t (SCH2CH3);  1.88 s (CCNCH3);  2.3–2.65 m 

(CH2CH2);  3.35 q (SCH2CH3). 

 

Synthesis of 2-propyl acrylic acid (PAA)  

The synthesis of PAA was adapted from existing methods [53]. In brief, diethyl 

propylmalonate (200 mmol, 40.45 g) was stirred in 1M KOH in 95% ethanol and acifidied with HCl to 

yield 2-carbopropoxybutyric acid, which was reacted with diethylamine (200 mmol, 14.62 g) and 

formalin (200 mmol, 16.11 g) at room temperature for 24h, followed by reflux at 60°C for 8 hours.  

After acidification, the resulting 2 propylacrylate was refluxed in 2M KOH for 20 h to yield   2-propyl 

acrylic acid, which was extracted, dried, and vacuum distilled under vacuum to yield a colorless oil. 
1
H 

NMR (400 MHz, CDCl3)  0.97 t (CH3CH2);  1.55 m (CH3CH2CH2);  2.31 t (CH3CH2CH2);  5.69-

6.32 q (CH2=C);  12 s (CCOOH). 

  

Synthesis and characterization of pDMAEMA macro CTA 

The synthesis of the poly[2-(diethylamino)ethyl methacrylate] pDMAEMA macro chain 

transfer agent (mCTA) was conducted by RAFT polymerization using conditions adapted from [40].  
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Based on a polymerization kinetics experiments (Appendix A), the RAFT polymerization was 

conducted at 70 °C under a nitrogen atmosphere for eight hours with 1,4-dioxane as the solvent (70% 

by weight), an initial monomer to CTA ratio of 100, and a CTA to initiator ratio of 10.  The pDMAEMA 

mCTA was isolated by precipitation into n-hexane (x3) and dried overnight.  The polymer was 

analyzed by gel permeation chromatography (GPC, Shimadzu Crop., Kyoto, Japan) with an inline 

Wyatt miniDAWN TREOS light scattering detector (Wyatt Technology Corp., Santa Barabara, CA) 

and 
1
H nuclear magnetic resonance spectroscopy (NMR, Bruker 400Mhz Spectrometer equipped with 

9.4 Tesla Oxford magnet) for molecular weight and polydispersity.   

 

Synthesis and characterization of DMAEMA-b-(PAA-co-BMA-co-DMAEMA)  

RAFT polymerization was utilized to synthesize the second block as previously described 

[40].   Additional monomers butyl methacrylate (BMA), PAA, and DMAEMA were added to the 

pDMAEMA mCTA chain with an initial monomer to mCTA ratio of 250 in stoichiometric quantities of 

50% BMA, 25% PAA, and 25% DMAEMA.  The initiator AIBN was used with a mCTA to initiator ratio 

of 5.  The polymerization was conducted for 18 hours under a nitrogen atmosphere at 70
o
C.  The 

resulting polymer was isolated by precipitation into chilled 50:50 ether:pentane, redissolved in 

acetone and precipitated into chilled pentane twice, and vacuum dried overnight.  The polymer was 

then dissolved in a minimal amount of ethanol, diluted into dH2O, and further purified using PD10 

desalting columns (GE Healthcare).  The eluent was frozen and lyophilized yielding a pure polymer 

powder.  The polymer was analyzed by GPC for number average molecular weight (Mn) and 

polydispersity.  NMR in CDCl3 and D2O was used to determine composition and verify the formation 

of micelles with a DMAEMA corona.  Transmission Electron Microscopy (TEM, Philips CM20 

Transmission Electron Microscope, EO, Netherlands) and Dynamic Light Scattering (DLS, Zetasizer 

nano-ZS Malvern Instruments Ltd, Worcestershire, U.K.) were used to confirm presence and size of 

micelles, to determine the critical micelle concentration, and to characterize micelle pH-

responsiveness. Carbon TEM grids (Ted Pella Inc. Redding, CA) were spotted with 5uL of polymer 

solution (~50ug/mL) and dried under vacuum for 24 hours. 
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Formation and Characterization of siRNA-loaded Micellar Nanoparticles  

siRNA was dissolved in nuclease free water, and  si-NPs were formed by injecting siRNA in 

nuclease free polypropelene tubes, diluting with PBS, adding polymer in PBS, and incubating at room 

temperature for 30 minutes.  si-NPs were formulated based on the charge ratio defined as the 

number of positively charged tertiary amines (assumed to be 50% at physiologic pH) on the 

DMAEMA block (N) to the number of negatively charged phosphate groups on the backbone of 

siRNA (P).  Complexes were formed anywhere between 0.5 and 8 N/P.  A 2% agarose gel was 

prepared with 0.5 μg/mL ethidium bromide and allowed to gel at room temperature.  si-NPs and 

controls were run for 40 minutes at 100 V.  This experiment was also conducted after pre-incubating 

the si-NPs in 50% serum to verify serum stability.  Dynamic light scattering and potential were used 

for physicochemical characterization of the si-NPs, and TEM was used to further verify si-NP size and 

morphology. 

 

Synthesis of si-NP-loaded PUR Scaffolds 

Polyester triols were synthesized as previously described from a glycerol starter targeting 900 

Da and a backbone comprising 60 wt% ε-caprolactone, 30 wt% glycolide, and 10 wt% D,L-lactide [47, 

54, 55].  si-NPs were synthesized as described above using an N/P of 4 and 4 nmol of fluorescently 

labeled (6-FAM) siRNA against GAPDH or non-labeled siRNA with a scrambled sequence.  si-NPs 

were frozen and lyophilized and the resulting powder was rigorously mixed into 134 μmol of the polyol 

component of PUR using a Hauschild DAC 150 FVZ-K SpeedMixer (FlackTek, Inc., Landrum, SC).  A 

slight excess of lysine triisocyanate (387 μmol) was then added and scaffolds were allowed to cure at 

room temperature forming a porous PUR foam over approximately 10 minutes. 134 μmol of water 

was included in the polyol because it reacts with LTI to produce CO2 which acts as a blowing agent 

and creates pores in the scaffold.  The resulting 200 mg foams were sectioned into discs with a 

diameter of 13mm and a thickness of approximately 3mm. 
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PUR Characterization 

Confocal microscopy (Zeiss LSM 510Meta) equipped with differential interference contrast 

(DIC) was used to analyze the distribution of si-NPs in the scaffold. The 13mm diameter by 3mm 

cylindrical foams were immersed in 1mL of PBS in a 24 well plate.  Releasate was collected at 

regular intervals approximating an infinite sink condition, and release data were fit to the Weibull 

function [48, 56].  Releasate was analyzed by TEM and DLS for presence and size of released si-

NPs.   

 

Cell Culture and siRNA Knockdown 

Mouse Embryonic Fibroblasts (NIH3T3) were cultured in Dulbecco’s Modified Eagle’s 

Medium (DMEM, Gibco Cell Culture, Carlsbad, CA) supplemented with 5% Bovine Calf Serum (BCS, 

Gibco), and 1% penicillin-streptomycin (Gibco).  For gene silencing experiments, NIH3T3 mouse 

embryo fibroblasts were seeded at a density of 12,500 cells/cm
2
 in a 12 well plate and allowed to 

adhere overnight.  Fresh NPs or released NPs were added in fresh media with a final concentration of 

6.25nM to 50nM siRNA and allowed to incubate for 24 hours.  Each group was analyzed with n=3, 

and each replicate was run in triplicate during qRT-PCR.  The cells were lysed and homogenized with 

QIAshredder (Qiagen), and RNA was purified using the RNeasy® Mini Kit (Qiagen).  RNA quantity 

and quality was assessed with a nanodrop spectrophotometer ND-1000 (Thermo Scientific).  cDNA 

was synthesized with iScript
TM

 cDNA synthesis kit (BIO-RAD) on a C1000
TM

 thermal cycler. 

Quantitative PCR was done using IQ
TM

 Real Time SYBR Green PCR Supermix on a quantitative 

thermal cycler (Bio-Rad iCycler iQ).  GAPDH expression was normalized to β-Actin expression using 

the ΔΔCT method.  Primers used were: β-actin Forward 5’-CTACGAGGGCTATGCTCTCCC-3’, β-

actin backward 5’-CGTCCTCATGCTACTCAGGCC-3’, GAPDH Forward 5’-

CTCACTCAAGATTGTCAGCAATG-3’, GAPDH Backward 5’-GAGGGAGATGCTCAGTGTTGG-3’. 

 

Imaging of Cell Uptake of si-NPs Post-release from PUR Scaffolds 

NIH3T3s were seeded at 12,500 cells/cm
2
 in 8 well chamber slides and incubated for 4 hours 

with FAM labeled siRNA containing si-NPs released from PUR scaffolds.  The media was removed, 
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and the cells were washed 3x with PBS and fixed in 4% paraformaldehyde for 30 minutes. After 2 

washes in PBS, cell nuclei were counterstained with Hoechst 33258 (5 μg/mL, Sigma) and then 

washed an additional 3x.  Images were acquired on a fluorescent microscope. 

 

Cytotoxicity 

NIH3T3 cells were seeded at a density of 12,500 cells/cm
2
 in a 96 well plate and allowed to 

adhere overnight.  si-NPs were then added in fresh media and allowed to incubate for 24 hours. The 

cells were then lysed and analyzed for intracellular LDH with a Cytotoxicity Detection Kit (Roche 

Applied Science) as previously described [57], and a plate reader (infinite F500, Tecan Group Ltd., 

Mannedorf, Switzerland) set for absorbance at 492nm with reference at 595nm. 

 

Statistical analysis 

All data are reported as means ± standard error of the mean (SEM).   Analysis of Variance 

(ANOVA) was used to determine treatment effects and p<0.05 was considered significant. 
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Results 

 

Polymer synthesis and characterization 

4-cyano-4-(ethylsulfanylthiocarbonyl) sulfanylvpentanoic acid (ECT) was synthesized as 

previously described [40].  2-propyl acrylic acid (PAA) was synthesized using established methods 

[53].  RAFT polymerization was used to synthesize a mCTA of DMAEMA (Mn = 11200g/mol, PDI = 

1.40, (Appendix B). The pDMAEMA mCTA was used to polymerize a second block with a resultant 

Mn of 32040 g/mol for a total Mn of 43240 g/mol (PDI = 1.41) as shown in Appendix B.  
1
H-NMR was 

used to confirm the percent composition of the second block which was determined to be 30%PAA, 

25%DMAEMA, and 45%BMA (Appendix C).   When dissolved in D2O, 
1
H-NMR peaks from the core-

forming terpolymer are suppressed, verifying the formation of micelles in an aqueous environment. 

(Appendix C).  The polymer structure is depicted in Fig 2.  

 
Figure 2 – Chemical composition of materials used for siRNA delivery: A) Chemical 
structure of the micelle-forming, pH–responsive diblock copolymer used for siRNA packaging 
and intracellular delivery.  The homo-DMAEMA first block was designed for siRNA 
condensation due to the positive charge on the tertiary amines.  The second block is pH-
responsive and tuned for endosomal escape due to micelle destabilization and endosomolytic 
activity triggered by protonation of PAA and DMAEMA.  B) Chemical structure of 
polyurethane precursors.  LTI reacts with the –OH groups of the polyol to form urethane 
bonds and create the PUR network. 

 

si-NP synthesis and characterization 

Micellar nanoparticles were self-assembled in an aqueous environment and characterized for 

size and morphology by DLS and TEM respectively.  TEM and DLS (Fig 3) report similar diameters of 
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31 nm and 39.6 nm respectively, with the smaller diameter seen with TEM being due to micelle 

dehydration.   

 
Figure 3 – Physicochemical characterization of freshly prepared and PUR-released si-
NPs:  A) Dynamic light scattering demonstrated that si-NP diameter was around 40-nm at 
N/P ratios of 2 or greater, and at N/P = 1, the charge neutrality caused the NPs to be less 

stable and larger.  This is further represented by the potential, which was slightly negative 
at N/P of 1, 8.3 mV at N/P of 2, and approximately 20 mV at all N/P of 4 or greater. B) The 
TEM image confirmed the micellar architecture and size of fresh si-NPs.  Releasate si-NPs 
had a larger diameter of approximately 100 nm as shown both by DLS and TEM (B, bottom), 

and PUR-release si-NPs also had significantly reduced potential that was approximately 
charge neutral.  
 

on a DLS-detected loss of micelle stability (Fig 4a).  DLS was also used to demonstrate the 

dependency of the CMC on pH.  The results confirm that micelle structure was destabilized at pH 5 at 

a concentration of 100 g/mL, which is important for micelle endosomolytic behavior (Fig 4b) [41].  

 
Figure 4 – Micelle stability is dependent on concentration and pH:  A) critical micelle 
concentration (CMC) determination using DLS demonstrated disruption of micelles occurred 
at 2 μg/mL.  B) DLS also revealed pH-dependent destabilization of the micelles at pH = 5 at a 
concentration of 100 μg/mL.  
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Gel electrophoresis determined serum stable complexation of siRNA into si-NPs across a range of 

N:P ratios (Appendix D). 

 

 si-NP-loaded PUR scaffolds 

PUR foams were synthesized by reacting polyester triols (polyol) with lysine triisocyanate 

forming the porous polyurethane foam (Fig 2b).  Differential interference contrast microscopy (DIC) of 

PUR scaffolds revealed an intact, connected porous structure (Figure 5b,e) with a mean pore 

diameter of 150μm ± 64μm.  Confocal microscopy shows a relatively homogenous distribution of 

fluorescently labeled siRNA containing NPs throughout the PUR matrix (Fig 5a-c) comparable to the 

distribution seen in the PUR containing naked siRNA (Fig 5d-f).    

 
Figure 5 – FAM labeled siRNA and si-NPs distribution within the PUR scaffold:  
Comparison of fluorescent confocal images of PUR scaffolds loaded with FAM-labeled siRNA 
or si-NPs. Row 1 is a scaffold loaded with naked siRNA.  Row 2 is a scaffold loaded with si-
NPs.  The 3

rd
 row is an empty scaffold to verify that there is no green auto-fluorescence of the 

PUR scaffold.  Note that scaffold pores contain no fluorescence, and the distribution between 
naked siRNA and si-NPs is similar. 
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siRNA-NP Release Kinetics and Modeling 

Release from the scaffold was quantitatively assessed using si-NPs made with fluorescently 

labeled siRNA.   Approximately 20% of the payload was released in the first 12 hours followed by a 

sustained release approaching 80% cumulative release by 21 days (Fig 6).   

 
 

Figure 6 – Release of siRNA and si-NPs from PUR scaffolds is diffusion controlled:  
The Weibull empirical model equation best-fit was determined and is overlaid here for each 
data set.   Naked siRNA is rapidly released with an initial burst of over 60% at 12 hours and is 
entirely released by 3 days.  si-NPs have a slower rate of release with a burst release of less 
than 20% during the first 12 hours, followed by sustained release that approaches 80% by 21 
days. 

 

Conversely, the much smaller naked siRNA diffuses from the scaffold much faster than si-NPs, 

reaching nearly 100% in 3 days. Importantly, TEM and DLS of releasate demonstrated that intact si-

NPs, although of larger diameter than fresh si-NPs (approximately 100nm), were delivered from the 

PUR scaffolds (Fig 2).   

The Weibull function has been previously used to evaluate the drug release mechanisms of 

drug eluting matrices that efficiently release their payload (cumulative release exceeding 60%) [48, 

56].  The release of si-NPs was fit to the Weibull empirical model in Equation 1: 
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      (     ) 

where Mt is the mass of si-NPs released at time t, M∞ is the total mass of si-NPs, a is a constant 

based on the system, and b is a constant based on the release kinetics.  Previous reports suggest 

that values of b < 0.75 indicate that Fickian diffusion is the dominant release mechanism [48, 56].  

The values obtained from the best fit were found to be a=1.892, b=0.699, R
2
=0.995 for siRNA only 

and a=0.317, b=0.560, with R
2
 = .996 for si-NPs.   

For additional evidence supporting diffusion-controlled release of siRNA, we performed a 

scaling analysis to compare the predicted and measured initial release rates. The Stokes-Einstein 

equation (eqn 2) and the Higuchi equation [58]  (eqn 3) were utilized together to further validate the 

diffusion-controlled release mechanism.  These equations, where D is the diffusivity, Mt is the rate of 

mass transfer, and r is the radius of the particle, provide relationships that allow the initial mass 

transfer rate to be related to the inverse of the square root of the radius of the solute: 

                  
 

 
 

                     √  

Assuming all conditions except hydrodynamic diameter are maintained constant between the 

two samples except yields the following scaling prediction: 

         
      
      

  
√      

√      
 

This analysis was completed assuming a hydrodynamic diameter of 2.56 nm for the siRNA, 

which was the value suggested by Barone et al for a 28 mer duplex RNA [59].  The hydrodynamic 

diameter of 38.69 nm that was experimentally determined using DLS for a charge ratio of 4/1 for si-

NPs was used.  Based on the measured initial release of 17% for si-NPs and 66% for naked siRNA, 

the left side of Eqn. 4 reduces to 3.88 and the right side 3.87.  Thus the scaling anlyais is consistent 

with the notion that the relase of siRNA from the scaffolds is governed by Fickaian diffusion.  
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PUR-released si-NP 

Cytotoxicity experiments showed that the si-NPs were cytocompatible at the doses used 

(Appendix E).  Gene expression analyzed by qRT-PCR showed significant reduction (p<0.05) in 

mRNA levels for GAPDH mediated by releasate collected between 0-24h, 24-48h, and 48-96h, while 

controls containing scrambled siRNA showed no activity (Fig 7a). Further experimentation showed 

that PUR-released si-NPs produced dose dependent silencing of GAPDH expression with the highest 

dose of 50 nM producing approximately 50% gene knockdown (Fig 7b) while freshly prepared si-NPs 

produced a dose dependent silencing with 83% reduction at 50nM.   The finding that there was a 

strong correlation between dose and gene silencing, indicated a siRNA dependent effect, and 

importantly, scrambled siRNA controls had no observable activity. The microscopic observation of 

diffuse fluorescent siRNA in the cytoplasm of cultured cells confirmed the maintenance of 

endosomolytic behavior, cytoplasmic delivery, and bioactivity of the PUR-released si-NPs (Fig 7c).   

  
 

Figure 7 – Fresh and released si-NPs are delivered intracellularly and mediate gene 
specific silencing:  qRT-PCR was used to measure expression of the model gene GAPDH 
relative to β-actin and then normalized to no treatment controls.  A) Bioactivity of freshly 
prepared and PUR-released si-NPs collected during the defined timeframes 0-24h, 24-48h, 
and 48-96h indicates that bioactivity of si-NPs released from the PUR is not significantly 
altered over time.  Statistical significance relative to scrambled control siRNA containing si-
NPs was noted at all time points (p<0.05).  B) Dose response of PUR-released si-NPs 
demonstrated a linear relationship (R

2
= 0.999) between siRNA dose and silencing activity, 

suggesting an siRNA-dependent gene silencing effect.  Minor reduction in siRNA bioactivity 
was apparent in PUR-released si-NPs relative to fresh si-NPs.  C) Diffuse green fluorescence 
is noted in the cytoplasm of NIH3T3s after 4 hours of incubation with PUR-released si-NPs. 
This presence of FAM-labeled siRNA in the cytoplasm confirmed effective siRNA cytoplasmic 
delivery. 
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Discussion 

Technologies that enable the efficient and sustained delivery of siRNA are a high-impact but 

relatively unmet need.  This is primarily due to the number and complexity of the delivery barriers that 

exist.  Here, a new platform is presented that is capable of both sustained and effective delivery of 

siRNA from a PUR scaffold capable of providing a biocompatible and biodegradable tissue template 

that can be cured in situ using a clinically-translatable injectable formulation. Due to nuclease 

susceptibility and membrane impermeability of naked siRNA, little success has been found with 

carrier-free siRNA delivery methodologies, and thus, the siRNA was first loaded into the pH-

responsive micellar si-NPs prior to formulation with the biomaterial matrix.   

The RAFT synthesized polymer shown in Fig 2A is the basis for the si-NPs and was 

specifically designed for improved cytoplasmic uptake, siRNA protection, and endosome escape [40, 

41].  Toxicity of typically-utilized polyplexes made with cationic polymers [60] and the limitations 

associated with inefficient bioactivity due to lysosomal degradation or extracellular clearance [61] 

motivated the development of the polymer. si-NPs are formulated at positive charge ratios (typically 

4:1) providing a net positive charge which facilitates efficient cell uptake by most cell types [62, 63].  

Once in the endosome, decreasing pH destabilizes the micelle structure due to protonation of PAA 

and DMAEMA monomers and exposes the membrane-disruptive core [64].  The configuration of the 

second block (Fig. 2A) is finely tuned to provide a sharp pH response at the desired pH by 

incorporating appropriate amounts of hydrophobic BMA [65] and pH responsive DMAEMA and PAA. 

Fig 4B confirmed the pH-dependent micelle destabilization using DLS and it is hypothesized that this 

destabilization allows the hydrophobic 2
nd

 block to penetrate and disrupt endosomal membranes and 

facilitate siRNA delivery to the cytoplasm [66-69].  Once internalized, siRNA may be competitively 

dissociated from the polymer through interactions within the cytoplasm by other ionic molecules [62] 

thus gaining access to the RNAi machinery in the cytoplasm. 

Recently, biomaterials have been pursued for sustained siRNA delivery, with natural 

materials such as alginate, collagen and agarose being mostly used in these applications due to their 

biocompatibility [2-5].   However, these natural materials generally lack tunability and have been 

limited to rapid burst release of siRNA.   The best sustained delivery to date has been achieved using 
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PCLEEP nanofiber scaffolds, however, the manufacture of the scaffold requires complex equipment 

(electrospinning apparatus) and must be pre-made to a defined size and geometry [42]. Therefore, 

there still remains a significant need for a more clinically translatable biomaterial that can conform to 

tissue defects of varied sizes and shapes where it will cure in situ and deliver siRNA locally in a 

sustained manner. 

  PUR scaffolds provide multiple advantages as a biomaterial for controlled drug delivery to 

tissue defects for several reasons. PUR scaffolds can be easily adapted to be injectable making 

clinical use easier and requiring no additional fabrication equipment [50, 51].  After injection, PURs 

react in situ to form a biocompatible and biodegradable tissue scaffold with inter-connected pores that 

effectively serves as a template for cell influx and tissue formation and remodeling [47].  The 

mechanism of degradation includes hydrolytic degradation (on the order of months) and macrophage-

mediated oxidative degradation by reactive oxygen species (ROS) secretion (on the order of weeks) 

that is ideal for the timescale of wound healing [49].  Finally, PUR has been shown to deliver biologics 

efficiently, typically delivering as much as 80% of the payload [46-48].  However, a previous study has 

reported that 50-m PLGA microspheres with rhPDGF bound to the surface supported <10% release 

over 21 days, suggesting that primary amines in the protein reacted with the polyisocyanate, resulting 

in loss of activity [47].  The present study has confirmed for the first time that nanoparticulate carriers 

incorporated in reactive PUR scaffolds support high-efficiency, diffusion-controlled release as seen in 

Fig 6.  The release data demonstrates cumulative release of si-NPs approaching 80% over 21 days 

compared to naked siRNA which was released rapidly, approaching 100% delivery of the payload in 

three days.  The mechanism of release for both free siRNA and si-NPs was found to be diffusion-

controlled based on the Weibull model.  Further, scaling analysis with the Stokes-Einstein and 

Higuchi equations demonstrated that the initial release rates of siRNA and si-NPs scales appropriated 

to the hydrodynamic diameter of the solute. The diffusion-based release suggests that an additional 

level of control exists by altering si-NP diffusivity in the PUR matrix to tune the rate of release by 

varying the nanoparticle size. 

It is hypothesized that, in many applications, sustained delivery of siRNA into tissue defects 

will be ideal for producing a therapeutic effect since siRNA produces relatively transient gene 
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silencing activity [70]. It is hypothesized that when the formulation tested here is translated in vivo, the 

initial burst release will establish gene silencing while the continual, slower siRNA delivery over the 

next few weeks will sustain the initial effect over a few weeks.  Importantly, several approaches exist 

for tuning PUR-based drug delivery to be more rapid or more sustained [46].  

Fig 7A demonstrates that the activity of released NPs is not significantly reduced over the 

time frames tested (0-24, 24-48, 48-96 hours).  Sustained delivery of active complexes is critical to 

compensate for transiency of siRNA in a highly proliferative environment (i.e. tissue regeneration). 

Fig 7B demonstrates that the siRNA-mediated reduction in GAPDH of PUR-released si-NPs is dose 

dependent.   However, it is evident that there is partial loss of bioactivity post-release from the 

scaffold compared to fresh si-NPs.  It is possible that this reduction in silencing is due to 

reorganization of the micelle structure or a partial si-NP aggregation during lyophilization and 

incorporation into the PUR. There was a detectable difference in size revealed by TEM and DLS (Fig 

3) of fresh micelles versus PUR-released micelles, and the potential of PUR-relesate si-NPs was 

also found to be reduced.  It could also be possible that unreacted components in the PUR 

specifically adsorb to the surface of the released si- -potential of the si-

NPs resulting in aggregation. Our unpublished data have shown that 1-2% of the PUR mass leaches 

from the reactive material during the first 45 minutes of cure when incubated in serum medium.  The 

primary components in the leachates include polyester triol, dipropylene glycol, and triethylene 

diamine.  Hydrolytic degradation of the cured scaffolds releases α-hydroxy acids [49], which could 

bind electrostatically to the positive surface of the si-NPs.  However, further studies will be necessary 

to better understand and overcome the alteration of the si-NPs during processing, and excipients 

such as agarose and sucrose may provide one route for improving their stability during lyophilization 

[71]. 

Conclusions 

Injectable poly(ester urethane) foams were successfully utilized for sustained release of 

bioactive si-NPs for an extended period of 21 days.  The si-NPs synthesized using RAFT were found 

to remain intact and bioactive following incorporation into and release from PUR scaffolds, although 

changes in si-NP size and bioactivity were evident relative to fresh si-NPs.  As a platform technology, 
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the combination of PUR scaffolds and pH-responsive micellar siRNA carriers provides a logical 

approach to basic scientific studies of long-term siRNA-mediated gene silencing at local, pathological 

or healing tissue sites.  The described system also has the potential to be applied to control cell 

phenotype and fate in tissue constructs developed in vitro.  Finally, as a therapeutic, the described 

approach may be applied to reduce expression of deleterious genes and improve regeneration in 

tissue defects.   
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CHAPTER III 

 

FUTURE DEVELOPMENTS OF INTEREST 

 

Optimization of Release 

Based on the work presented in Chapter II, optimization of the quantity and quality of si-NPs 

is required.  The mechanism of release from scaffold has been determined to be fickian diffusion, but 

details about the inclusion of si-NPs into the PUR scaffold are somewhat unclear.  It is known that 

inclusion of PBS salts assists release.  A better controlled system may utilize excipients that 

condense around si-NPs and covalently bind to the scaffold during synthesis [71].  These excipients 

may protect the structure, provide efficient release, and maintain their bioactivity.  Encapsulation in 

PLGA microspheres may provide an additional method of controlling release [46].  

 

Further Degrees of Control 

Adding additional functionality to the polymers may improve the activity upon release and 

may add provide an additional means of control.  Methods of stabilizing the polymers through 

preparation may maintain activity.  Moieties that assist in siRNA release may improve activity once 

present inside the cell. Also, on-demand release of active complexes could improve wound healing by 

releasing active si-NPs only when the wound environment is over-expressing inflammatory signals.  

This may include a self-catalyzed hydrolytically degradable cation that can more efficiently unpacks 

and releases siRNA [72]. Reducible cationic polymers containing dithiols may have a similar effect by 

releasing siRNA when in the reducing environment of the cytoplasm in the presence of glutathione.  

Micelle crosslinking provides a remarkable way of increasing the stability of micelles through the 

processing into PUR scaffolds and can provide an additional means of controlled release [73].  A pH-

responsive cross-linked micelle would improve stability until delivered into endosomes where the pH-

labile bonds would break.  Similarly, reducible cross-linked micelles would only break apart once 

exposed to glutathione in the cytoplasm of cells making them more stable to delivery. Micelles may 

also be cross-linked with enzymatically degradable peptides.  Lastly, micelles may be tethered to the 
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scaffold through covalent linkages that are degradable by any of the aforementioned mechanisms 

(intracellular pH, reactive oxygen species signaling, enzymatic activity, etc) for on-demand release.  

Finally, another potential future advance will be development of methods to achieve cell type-specific 

targeting of siRNA in the skin wound.  For example, in hyperinflammatory wounds, one may be able 

to optimize therapeutic benefit and/or minimize nonspecific effects by targeting of siRNA specifically 

to leukocytic cell types.   

 

Testing of siRNA targets in animal models 

Molecular biologists have made tremendous advances toward understanding the mechanistic 

control of wound healing.  This body of work will help to identify a variety of genes whose silencing 

could be potentially sought in wound healing therapies.  One future requirement will be to identify the 

most therapeutically useful target genes for different pathological situations (i.e, chronic wound vs. 

burn or trauma victim, etc.).  The first animal model tested will be a mouse that constituitivly 

expresses luciferase such that longitudinal gene knockdown studies can be done in the same mouse.  

Next, reporter mice will be used that express luciferase upon stimulation through an NFκB promoter.  

This model will be key in showing a reduction in inflammatory signaling in the mouse wound.  Finally, 

a study in diabetic mice may reveal an improvement in time to wound closure leading to a promising 

clinical application. 
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APPENDIX 

Appendix A:  RAFT Kinetic Experiment 

 

 

Supplementary Figure 1:  RAFT kinetics study on polymerization of pDMAEMA mCTA. A) 

Conversion is initially linear and then begins to plateau.  B) The log plot of the kinetics shows 

a linear first order polymerization kinetics.  Eight hour polymerization time was selected for 

the desired block length and %conversion. 

 

Appendix B:  GPC Chromatograms 

 

 

Supplementary Figure 2: Refractive Index traces from Gel Permeation Chromatography for 

macro CTA of DMAEMA (dotted line) and diblock copolymer (solid line)  
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Appendix C:  1H NMR DMAEMA-b-(PAA-co-BMA-co-DMAEMA) 

 

 

Supplementary Figure 3: 
1
H NMR in CDCL3 (A) and D2O (B) demonstrates micelle 

formation.  A)  CDCL3 spectrum has all peaks due to the good solvation of both blocks.  B) 

Peaks in the hydrophobic block are suppressed due to the poor solvation.  Peaks in the 

DMAEMA block show up the strongest. 
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Appendix D: Gel Retardation Assay 

 

 

 

Supplementary Figure 4: si-NPs effectively complex siRNA and are serum stable.  Gel 

electrophoresis of si-NPs formulated at varying charge ratios shown in yellow letters.  The left 

half of the gel is in nuclease free water.  The right half is completed in 50% Bovine Calf 

Serum proving stability to serum proteins.  A charge ratio of 4:1 was utilized for further 

experimentation. 
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Appendix E: Cytotoxicity Assay 

 

Supplementary Figure 5:  Cytotoxicity profile of treatment groups shows minimal toxicity at 

the charge ratios used during this study.  
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