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CHAPTER I 

 

INTRODUCTION 

 

Echo Planar Imaging (EPI) is known for its ability to acquire magnetic resonance 

(MR) images in a very short time. It has been widely used in many applications, such as 

functional magnetic resonance imaging (fMRI) for the study of brain activity, diffusion 

tensor imaging (DTI) for tissue fiber detection, or perfusion imaging for the measurement 

of blood flow at microscopic levels. However, EPI images are prone to artifacts and 

distortions. Because these deteriorate the analysis of the images, artifacts and distortions 

need to be corrected prior to the analysis.  

A significant source of EPI image distortions is inhomogeneity in the main static 

magnetic field (B0). Both object independent factors, such as field imperfections and 

gradient nonlinearities, and spatially varying magnetic susceptibilities in the object 

contribute to inhomogeneity of B0. Furthermore, when acquiring several images over 

time, the susceptibilities can also be time-varying due to subject movement or respiration 

effects, which induce time-varying field inhomogeneities. Such inhomogeneities lead to 

geometric and intensity distortions in EPI images. Methods based on nonrigid registration 

have been employed to correct these distortions. These methods, by registering an EPI 

image to a reference image with negligible distortions, generate an image transformation 

that is applied to the EPI image to produce a corrected one, and they often rely on 

transformations with a very large number of degrees of freedom. Due to the complexities 

of the images to be registered and the registration algorithm itself, it is still a challenging 

task to make these methods perform robustly and accurately. 
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1. Research Goal and Contribution 

The goal of this research is to develop new methods based on nonrigid 

registration to correct for distortions in EPI images, to evaluate the effectiveness of the 

proposed methods, and to compare the proposed methods with a commonly used method: 

the field-map method. The effectiveness of any method based on registration depends on 

an accurate registration, and one approach to improving registration accuracy is to 

incorporate knowledge about the existing deformation into the registration process. In 

this work we add into our nonrigid registration algorithm known information about the 

distortions in EPI images. The proposed correction schemes are evaluated on both 

simulated and real images.  

The main contributions of this research are as follows. 

We include along with a standard Jacobian correction factor a new “rephasing” 

factor in the registration. We incorporate both factors into a previously published 

nonrigid registration algorithm—the Adaptive Bases Algorithm, or ABA—such that not 

only geometric distortion but also intensity distortion and attenuation in Gradient Echo 

(GE) EPI images can be corrected after the registration process. Nonrigid registration 

methods, such as ABA, are usually used to deform the shape of one image to make it 

match another one. However, in EPI images, because of the geometric distortion, the MR 

signal is redistributed in the reconstructed image, resulting in intensity distortion. This 

effect can be handled with the Jacobian factor. However, in GE EPI, which is the primary 

type of image used in functional MRI, intravoxel dephasing causes signal loss and thus 

intensity attenuation in the images. It is this attenuation which is corrected by the 

rephasing factor. Both of these intensity changes affect the accuracy of the ABA method, 
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which uses intensities for computation of the similarity measure. In our method, we 

compute the Jacobian factor and the rephasing factor from the deformation field after 

each update and incorporate them into the measure of image similarity. Our results show 

that the inclusion of these two factors improves the accuracy of estimation of geometric 

distortion and permits the correction of intensity values in GE EPI images.  

We also incorporate into our registration method a spatially varying scale 

mechanism to better approximate the geometric distortion in EPI images. The character 

of the geometric distortion in different regions of an EPI image can be quite different, 

thus suggesting the use of deformations whose properties are adapted spatially. We use a 

scale map to adapt the local scale of the transformations. To compute the scale map, a 

technique is proposed that relies on an estimate of the expected deformation field. This 

estimate is computed using knowledge of the physical processes that induce distortions in 

EPI images. We find that, in comparison with our earlier method using fixed scale, the 

proposed method finds deformation fields that are smoother and finds them faster without 

sacrificing accuracy.  

We propose in addition a hybrid method that combines both a field map and 

nonrigid registration for correction of distortions in EPI images. Field-map methods and 

nonrigid registration methods are the two most common post-processing techniques used 

in distortion correction for EPI images. Each of them has its advantages and 

disadvantages. The combination of these two has not yet been investigated. In this work, 

we use a measured field map to compute the initial values for the deformation field. This 

deformation field is then updated using nonrigid registration to compensate inaccuracies 
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in field-map measurements. A mask is generated according to the field map and the EPI 

image, and is used to constrain the deformation field during the registration.    

Finally, we compare three distortion correction methods for EPI images on both 

3T and 7T datasets. The aim of this comparison is to find how field-map method and 

registration method compare and which one of them should be chosen under certain 

situations. The methods we have compared include: the field map method (i.e., no 

registration), registration with spatially varying scale, as described in Chapter IV (i.e., no 

field map), and a method that combines both field map and registration, as introduced in 

Chapter V. Our results indicate that field-map methods should be used for the correction 

of relatively small geometric distortion. For intensity correction or for the correction of 

distortions in EPI images in which the distortions are much larger, the registration 

method and the combination method lead to better results.  

 

2. Significance 

EPI is widely used for a lot of applications, for example functional MRI (fMRI). 

Functional MRI, one of the most important developments in MRI, provides noninvasive 

measurements of human brain function. It is capable of detecting brain function in 

regions of the human cortex when tasks are performed or stimuli are received. fMRI is 

now used for the localization of visual, motor, language, memory, and somatosensory 

response for surgical resection [61], localization of “handedness”, and elucidation of 

brain function and metabolism altered by pathologies such as stroke, multiple sclerosis 

[62], and Alzheimer’s disease [63]. fMRI has also been used in clinical assessment of 

brain function. After acquiring fMRI scans, statistical analysis is needed to detect the 
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activation areas. Most often, the fMRI images are then aligned, i.e., “registered”, with a 

high-resolution anatomic image to identify precisely the anatomical location of the fMRI-

based findings. Distortions in fMRI images will affect both the statistical analyses and the 

correlation between functional and anatomical information, and thus need to be corrected 

effectively.  

MR scanners with higher and higher magnetic field are being built and deployed. 

As the strength of the magnetic field increases, so does the signal to noise ratio. This will 

permit increasing the spatial resolution of the images and shorten scanning time. But, the 

severity of the distortion artifacts also increases with the magnetic field. Correction of 

distortion in EPI images will thus remain an important topic in the years to come.   

A large body of work addressing such problems has been published. However, 

despite these efforts, methods that can be used routinely are still lacking. The long term 

objective of the work presented herein is to advance the state of the art in this area. 

 

3. Overview 

This chapter summarizes the goal, the main contribution, and the significance of 

this research. The reminder of the thesis is organized as follows. Chapter II introduces 

some background and related work. Chapter III presents a new approach for retrospective 

correction of the geometric distortion and signal loss in GE EPI images. Chapter IV 

proposes a spatially varying scale mechanism for our nonrigid registration method and 

applies it to geometric distortion correction in EPI images. Chapter V presents a field 

map constrained nonrigid registration approach for correction of distortions in EPI 
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images. Chapter VI compares three distortion methods. Chapter VII concludes this thesis 

and provides recommendations for future work.  
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CHAPTER II 

 

BACKGROUND AND RELATED WORK 

 

1. Distortions in EPI Images due to Main Magnetic Field Inhomogeneity 

Echo Planar Imaging (EPI) is a magnetic resonance imaging (MRI) technique 

permitting very rapid data acquisition. It acquires multiple image lines in k space (usually 

all lines in k space) after a single excitation, which leads to a very short scan time—2 

seconds for a 3D image is usual, as compared with scan times of three to five minutes for 

a conventional sequence, termed a “spin-warp” sequence. This makes EPI a widely used 

fast imaging technique in many applications, such as functional magnetic resonance 

imaging (fMRI), diffusion weighted imaging (DWI), and dynamic imaging with contrast 

agent enhancement. The tradeoff is a relatively low resolution (64 x 64 or 128 x 128). 

Also, a well-known problem with EPI is that it is more sensitive to image distortions than 

conventional MRI due to the encoding scheme that is used. The EPI acquisition requires 

a longer readout time and therefore a lower bandwidth along the phase encoding direction, 

which accentuate the geometric distortion in this direction due to off-resonance factors, 

such as inhomogeneity in the static B0 field, chemical shift, eddy-current effects, etc. See 

Figure 1 for an example. Among these factors, a primary source of distortion is 

inhomogeneity in the static B0 field [58], which we deal with in this work. This 

inhomogeneity is induced mainly by the magnetic susceptibility differences between 

various structures within the object placed inside the scanner. For head imaging, such 

inhomogeneities often occur at air-tissue or bone-tissue interfaces, such as those in the 

vicinities of the mouth, the nasal sinuses, and the ears. They cause severe geometric 
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distortion in certain brain areas, especially the orbitofrontal cortex and the temporal lobes. 

In addition to the geometric distortion, the acquired MR signals are redistributed in the 

reconstructed image space, which results in intensity distortion. In Gradient Echo (GE) 

EPI images, which are commonly used for fMRI, field inhomogeneity also gives rise to 

intravoxel dephasing, which causes signal loss (i.e., intensity reduction in the image) in 

some areas. These geometric and intensity distortions degrade image quality and will thus 

have an impact on the analysis of these images. 

 

 

 (a) (b) 

Figure 1: Illustration of EPI distortion. (a): A conventional MRI; (b): An EPI image. The 

distortions are mainly present in the frontal part of the EPI image, as indicated by the 

arrows. 

 

Furthermore, when acquiring a series of images, an additional difficulty caused by 

motion during the acquisition needs to be addressed. Indeed, when motion artifacts are 

ignored, one single EPI volume can be corrected and the same correction applied to all 

the other aligned volumes in the series. But when changes in the image due to head 

movement or other dynamic effects, such as those generated by respiration are considered, 

the correction needs to be adjusted differently for each volume in the time series. Even if 

the only dynamic changes are due to re-orientation of the head, a simple re-orientation of 
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the geometric correction computed on one volume is not sufficient to correct the other 

volumes. The reason is that the distortion map for a rotated head is different from the 

rotated version of the distortion map of the head before rotation [1].  

 

2. Distortion Correction Methods 

Many methods have been proposed to correct for distortions in EPI images caused 

by inhomogeneity in the main magnetic field. Shimming techniques, such as global 

shimming [3] or dynamic shimming [4], can be performed before images are acquired by 

adjusting the main magnetic field B0 to maximize its homogeneity. However, even after 

shimming, substantial field variations often remain, especially for those areas at the 

interfaces between substances with very different magnetic susceptibilities, where the 

field changes very rapidly. A technique called “z-shimming” alters the strength of the 

slice-selection gradient to compensate for the “through-plane” dephasing, which is 

caused by the component of field inhomogeneity perpendicular to the imaging plane [5], 

[6]. Unfortunately, z-shimming does not compensate for “in-plane” dephasing and it 

compensates for through-plane dephasing only at a few selected small regions in the 

volume, while exacerbating the effect in other areas. 

Another approach is to modify the standard acquisition sequences to acquire more 

information during the imaging process and to use this information to reduce acquisition 

artifacts. Chen et al. [7], [8] developed a phase-shift EPI pulse sequence to encode the 

EPI phase errors due to off-resonance-related factors. The encoded information can be 

applied to remove EPI distortions. While these methods can reduce geometric distortions 
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and even signal loss [9], they also lengthen the acquisition time and/or require specialized 

technical support, which is not always available.  

The so-called “forward-reverse” or “reversed-gradient” method was initially 

applied to correct distortions in images from spin-warp imaging [10] and then extended 

to EPI [11]-[13]. In this approach, a second image of the same object is acquired with one 

gradient reversed, which leads to reversed geometric distortion. These images are then 

used to generate the corrected image. It should be noted that this technique doubles the 

acquisition time and is vulnerable to noise, large distortions, and motion of the imaged 

object between acquisitions. 

The Point Spread Function (PSF) method relies on the fact that a distorted image 

can be described as a non-stationary convolution of an undistorted image with a spatially 

variant point-spread function that characterizes the effect of field inhomogeneities on the 

image. In this method, several additional images of the same object are acquired with 

additional phase-encoding gradient of varying strength applied before readout to map the 

PSF of each voxel. These PSFs encode the spatial information about the distortion and 

the overall distribution of intensities from a single voxel [14]. This method also increases 

the acquisition time significantly and is vulnerable to motion of the imaged object during 

the several image acquisitions.  

SENSitivity Encoding (SENSE) [73], one of the parallel imaging techniques, 

acquires a smaller number of k space lines in the phase encoding direction, and then uses 

a combination of the sampled signal from multiple coils to reconstruct the whole image. 

This increases the bandwidth in the phase-encoding direction, which mitigates the 

geometric distortion artifact [74], [75]. SENSE is now commonly used for fMRI, 
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diffusion imaging, and cardiac imaging to reduce both scan time and geometric distortion. 

However, signal attenuation caused by intravoxel dephasing cannot be reduced by such 

techniques.  

Field-map methods [15]-[18] employ a measured field map for the object inside 

the scanner to compute the existing distortions in the EPI images according to 

relationships between spatial distortion and field inhomogeneity. Preprocessing methods 

such as regularization [19] and unwrapping [20] algorithms are often needed to obtain a 

smooth field map. See Figure 2 for example. The accuracy of the obtained field map is 

sensitive to various effects, such as subject motion, respiration, blood flow, and the 

performance of the aforementioned processing algorithms.  

 

 

Figure 2: A measured field map before (left) and after (right) preprocessing. 

 

Other correction methods have also been proposed. Andersson et al. [1] employ a 

set of cosine basis functions to model the field inhomogeneity. The coefficients of the 

basis functions are computed using the EPI images and movement parameters estimated 

using a rigid-body registration algorithm. Signal loss is not considered in their work. In 

[21], an imaged organ is enveloped with a layer of material that has similar susceptibility 
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to that of the organ to shift the field inhomogeneity away from the imaged tissue. While 

this procedure is simple to implement and able to reduce distortions in EPI images to 

some degree, it does not work well, as the authors point out, for organs with complex 

shape and internal air cavities, such as the human head.  

All of these correction methods reduce the effects of geometrical distortion, but 

only z-shimming has an effect of intravoxel dephasing. As pointed out above, z-

shimming helps only with one component of this dephasing and only in selected regions 

of the image. Dephasing causes intensity attenuation in GE acquisitions, and intensity 

attenuation confounds the statistical analysis required for fMRI, which relies on GE. Thus, 

correction methods that effectively include the effects of dephasing along with 

geometrical distortion are needed.   

 

3. Registration-Based Methods for Distortion Correction 

Registration-based methods have also been proposed for distortion correction in 

EPI images [22]-[35]. Such methods, by registering an EPI image to a reference image 

with no or negligible distortion, generate a deformation field that is then applied to the 

EPI image to produce a corrected one. An illustration is given in Figure 3. 
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 (a) (b) (c) 

Figure 3: An illustration of registration method for distortion correction. (a): An EPI 

image; (b): An obtained deformation field; (c): A reference image. 

 

Studholme et al. [22] register SE EPI images to a spin-warp SE image. They 

derived constraints for a nonrigid registration algorithm, which are based on physical 

principles governing SE EPI imaging. The deformation is estimated in only one direction 

(the phase encoding direction), and the Jacobian of the deformation field is used to 

correct for intensity distortion. They use a set of cubic B-splines to parameterize the 

transformation and the normalized mutual information between these images as the 

similarity measure. Kybric et al. [23] present a unidirectional registration algorithm to 

unwarp distorted EPI images by registering them to a spin-warp GE image. They also 

model the deformation field with B-splines but use the sum of squared differences (SSD) 

as the similarity measure. A preprocessing step that consists of filtering and histogram 

equalization is applied to compensate for intensity differences between source and target 

images. Hellier and Barillot [24] use a piecewise affine transformation to estimate a 

deformation field for the correction of geometric distortions in EPI images. They use 

mutual information as the cost function.  
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In [25], Skerl et al. employ optic flow to register EPI images to T1-weighted 

images. The proposed approach includes skull removal and intensity remapping. 

Ardekani and Sinha [26] use a registration method based on optical flow to correct the 

geometric distortions in diffusion-weighted images (DWIs) due to both magnetic field 

inhomogeneities and eddy current effects. They first register a baseline EPI (no diffusion 

weighting) to a T2-weighted fast-spin-echo (FSE) image and then use the obtained 

deformation map to initialize the warping of the DWIs to the FSE image. This approach 

requires preprocessing of the EPI images with global or local intensity matching, which, 

in turn, requires segmentation. No correction of intensity distortion is included. In [27], 

Gholipour et al. use distortion regions estimated from a measured field map to constrain 

the deformation parameters during the nonrigid registration of EPI images to a reference 

image. Pauchard et al. [28] aim at reducing the distortions in images with metallic 

implants by employing a point-based registration algorithm that produces a 

transformation based on the thin-plate spline. A specially designed 3-D grid phantom is 

initially imaged as a reference image. Then a metallic implant, which is the same as that 

in the patient environment, is positioned in this grid phantom and imaged to produce a 

distorted image. The transformation is calculated on the basis of points extracted from the 

distorted grid images and from the reference image. In this work, deformation is 

constrained to be in the readout direction and intensity correction using the Jacobian of 

the transformation is included.  

Registration-based methods for reducing the distortions in DWI usually use an 

affine model or a geometric distortion model derived from acquisition principles, which 

leads to the estimation of a few parameters as in [29], [30]. Netsch et al. [31], [32] study 
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image-based distortion correction in DWI. They apply a consistency test to compare a 

dedicated transformation adapted to distortion induced by eddy currents [2] and a 3D 

affine transformation as well as similarity measures using mutual information (MI) and 

local correlation. Nielsen et al. [33] compare the affine and polynomial registration for 

correction of distortion induced by eddy currents in diffusion tensor imaging of newborns. 

They use mutual information as their similarity measure. Based on visual inspection of 

fractional anisotropy maps obtained with both registration techniques, they found that 2
nd
 

order polynomial registration performs slightly better than affine registration for artifact 

reduction. Rohde et al. [34] used a registration algorithm based on MI to correct both 

rigid-body motion and distortion induced by eddy currents in DWI images. They align 

DWI images to a reference image by optimizing a cost function with 14 parameters, 

which include a rigid motion with six degrees of freedom and a quadratic term to model 

the effect of eddy currents. A brightness correction factor is then used to correct the 

intensity distortions in the image. Mistry et al. [35] use a Fourier Transform as the 

interpolation method in an affine registration algorithm to correct distortions in DWI 

images. 

 

4. Regularization of Deformation Fields in Nonrigid Registration 

Because the geometric distortion in EPI images is not rigid motion, nonrigid 

registration is needed for its correction. While rigid or affine registration transforms 

images globally, nonrigid registration deforms images locally by finding a deformation 

field that maps each location in one image onto its corresponding location in the other 

one. The transformation T can be written as: ( ) ( )xvxx +=T , with x a coordinate vector in 
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image space and v(x) a deformation field. The deformation field can be computed in two 

different ways—using parametric or nonparametric methods. Parametric approaches 

represent the deformation field with a weighted sum of basis functions. The basis 

functions can have global support, i.e., spanning the entire image, such as the Discrete 

Cosine Transform (DCT) [36], [37] and thin-plate spline [38]-[40], or local support, i.e., 

being zero outside a subregion, such as B-splines [41], [42] or radial basis functions [43]. 

Nonparametric approaches compute the deformation for each image voxel directly. 

Examples include optical-flow/demon-based methods [44]-[46], elastic models, [47] and 

viscous fluid models [48]. The nonparametric methods are more flexible than 

representations using basis functions but are usually more computationally demanding. 

One of the key problems with nonrigid registration methods is the need to 

introduce constraints on the deformation field. Nonrigid registration typically requires a 

very large number of degrees of freedom to capture correctly the local deformations 

between images to be registered. In the general case, for 3D images, each voxel in the 

image is allowed to be displaced independently in all three directions if there is no 

constraint applied. As a consequence, registration of two images with 256x256x128 

voxels can lead to a problem with more than 25 million unknown parameters. This is not 

only computationally demanding but also requires solving problems such as topological 

correctness, invertability, and correctness of the transformation over homogeneous 

regions. To solve these issues, regularization of the deformation fields is often required. 

The regularized deformation field is typically assumed to be a continuous, one-to-one, 

and topology preserving mapping [49]. However, for pairs of images having different 
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anatomic components or components that have a different topology, such one-to-one 

mapping may not even exist.  

A number of techniques have been used to regularize the deformation field. One 

approach is to regularize the field uniformly. In [41], for example, Rueckert et al. add a 

penalty term, related to the second derivative of the deformation field, to the cost function 

to constrain the transformation to be smooth. Rohlfing et al. [50] propose volume-

preservation transformations, which are achieved by introducing a term that penalizes 

transformations whose Jacobian is different from one. Thirion et al. [44] and Guimond et 

al. [45], use a stationary Gaussian filter to smooth the deformation field after each update 

in a demon-based registration algorithm. In [43] Rhode et al., apply a constraint to the 

relative value of the coefficients of adjacent basis functions to keep the Jacobian of the 

transformation positive definite. In many situations, however, the characteristics of the 

deformation are spatially dependent due to intrinsic properties of the images to be 

registered. For example, in images consisting of hard tissue and soft tissue, the former is 

expected to remain more rigid than the latter. A priori information about the deformation 

can be used to adapt spatially the regularization of the deformation fields and methods to 

do so have been proposed recently. In [51] Hellier et al. use a robust estimator on the 

regularization term to take into account possible discontinuities of the deformation field 

in a registration method based on optical flow. In [52] Hava et al. propose a modified 

viscous-fluid algorithm to reduce or prohibit deformations in specific areas based on an 

initial segmentation. Duay et al. [53] assign different values to a stiffness parameter used 

in the method described in [43] for image regions with different properties, thereby 

permitting the spatial adaptation of the transformation characteristics. In [54] Staring et al. 
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propose three constraints on the Jacobian of the local deformation field inside a pre-

generated mask to preserve the rigidity of the transformation on vessels. Li et al. [55] add 

an additional term to the cost function for minimizing the displacement of bone structure 

and use it for whole-body registration. Stefanescu et al. [46] employ two non-stationary 

regularization steps in a demon-based algorithm. They apply diffusion equations to both 

the intermediate correction field and the overall deformation field. The image gradient 

and information on structures in the images are used to provide values for the parameters 

in the diffusion equations. In [59], Commowick et al. employ an idea similar to 

Stefanescu’s in [46] to build a statistical stiffness map for the deformation field.  

When basis functions are used for parameterizing the deformation field, the 

support size of each basis function also affects the regularization of the deformation field. 

Smoothness of the deformation field is intrinsic at scales smaller than the support size. To 

accommodate highly local deformations, a high density of basis functions with a small 

support size is needed. But relying on a dense regular grid of basis functions leads to a 

complex optimization problem with a very large number of degrees of freedom. In recent 

years, approaches have been proposed to address this problem. For instance, Rohde et al. 

[43] put basis functions on a regular grid first and then identify mismatched regions based 

on the gradient of the cost function with respect to the coefficients of these basis 

functions. Control points are then placed only on these regions and are optimized 

separately. Rohlfing et al. [56] and Schnabel et al. [57] use local entropy to identify 

active and inactive regions, and only control points in the active regions are allowed to be 

changed during the optimization. Similarly, Park et al. [40] identify those mismatched 
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regions based on local Mutual Information (MI) and entropy measures, and they add one 

control point each time at the location where the maximum local mismatch occurs.  

The above techniques explore various ways to introduce constraints into nonrigid 

registration for different applications. In this thesis, our purpose is to add prior 

knowledge into nonrigid registration methods for the correction of distortions in EPI 

images. In the following chapters, we present several approaches to do this and we 

provide a comparison among three different methods. 
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CHAPTER III 

 

ACCOUNTING FOR SIGNAL LOSS DUE TO DEPHASING IN THE 

CORRECTION OF DISTORTIONS IN GRADIENT-ECHO EPI VIA NONRIGID 

REGISTRATION 

 

1. Introduction 

Because they can be acquired very rapidly, GE EPI images are commonly used 

for applications such as functional imaging and cardiac imaging. But EPI images are 

sensitive to geometric distortions caused by main magnetic field inhomogeneity [58]. 

Such distortions are a major source of problems in functional studies because they can 

compromise both the activation detection results and the accurate correlation of 

activation sites with their corresponding anatomical locations. Also, unlike spin-echo (SE) 

EPI images, in which signal is preserved during the image formation process, GE EPI 

images suffer from signal loss (i.e. intensity reduction) caused by intravoxel dephasing, 

which further complicates the problem.  

As introduced in Chapter II, many registration based methods have been proposed 

to correct distortions in EPI images. While MR imaging physics has been used in some of 

these methods (see for instance [22], [23], [25]-[27], [34]), a physics-based model 

specifically derived for GE EPI has not been incorporated into any of them. This chapter 

presents an extension to a previously published registration-based correction method, 

which is designed to correct GE EPI images. After describing our method, we test it on 

both simulated and real images. 

The reminder of the chapter is organized as follows. In Section 2, we derive the 

correction term we introduce and the registration algorithm we use. In Section 3, we 
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apply the method to both simulated and real brain data. Finally, in Section 4, we discuss 

the advantages and disadvantages of the proposed approach.  

 

2. Methods 

 

2.1. Signal in gradient echo EPI   

Inhomogeneity in the static magnetic field (B0) can cause not only geometric and 

intensity distortions in GE EPI images but also intravoxel dephasing, which leads to 

signal loss. Considering normal 2D GE EPI, let m and n represent the m
th
 and the n

th
 

sampling points in the readout and the phase encoding directions, respectively, with 

22 MmM <≤−  , 22 NnN <≤− . Ignoring T2 effects, the MR signal S for a slice at 

location z1 in the presence of field inhomogeneity ( )zyxB ,,∆  can be expressed as an 

integration of the signals from the spins over the excited slice: 

 ( ) ( )( ) ( ) ( )( )
∫∫∫

∆++∆−
−=

tzyxBGyntmxGi pbxxezyxzyxpAznmS
,,2

11 ,,,,,,
τγπρωω  (1) 

Here, A is a constant, ( )( )1,, ωω −zyxp  is the slice selection (here z) profile, with ( )zyx ,,ω  

the spins’ frequency of precession and 1ω  the frequency of the RF pulse; ( )zyx ,,ρ  is the 

spin density at location ( )zyx ,, , γ  is the gyromagnetic ratio in Hz/Tesla 

( TeslaHz105774.42 6×=γ  for hydrogen), xG  is the gradient in the x direction, bG  is 

the average blip gradient in the y direction during the period  pτ , xt∆  is the time interval 

between adjacent points in the readout direction, t is the elapsed time at the n
th
 line in the 

phase encoding direction and the m
th
 point in the readout direction, with the time origin at 

the center of the 90-degree RF pulse. t can also be expressed as: 
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 yxTE tntmtt ∆+∆+=  (2) 

where tTE is the echo time and yt∆  is the time interval between adjacent points in the 

phase encoding direction.  

Let zG  be the gradient in the z direction. ( )zyx ,,ω  and 1ω  in the slice selection 

profile can be computed as ( ) ( )( )zyxBzGBzyx z ,,,, 0 ∆++= γω  and ( )zGzB 101 += γω . Then: 
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Using Eqs. (2) and (3) in (1) gives: 
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with ( )

y

pbeff
y

t

G
G

∆
=

τ
 the effective gradient. 

Defining spatial frequencies kx and ky in k space xxx tmGk ∆≡ γ , ( )
y

eff
yy tnGk ∆≡ γ , Eq. 

(4) can be written as: 
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2.2. Geometric and intensity distortions in GE EPI images 

According to the Fourier shift theorem, the additional phase in k-space induced by 

( )zyxB ,,∆  will cause a pixel shift in the reconstructed image space, as can be seen in Eq. 

(5). Signal emanating from location ( )zyx ,,  will be shifted to ( )zyx ′′′ ,,  with:  
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Because of geometric distortions, the MR signal is redistributed in the 

reconstructed image, which results in intensity distortions. If the image is compressed, 

one image voxel will contain signal emanating from more tissue than it would if the 

image was not compressed; this will cause a local intensity increase. The converse is true 

if the image is stretched. Change in intensity values can be related simply to the local 

deformation through the Jacobian of this deformation. Suppose that geometric distortions 

map coordinate ( )zyx ,,  to coordinate ( )zyx ′′′ ,, . Then the Jacobian J of this transformation 

is computed as follows:  
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Putting Eq. (6) into Eq. (7), we get: 

 ( )
z

eff
yx G

z

B
G

y

B
G

x

B
J

∂

∆∂
+

∂

∆∂
+

∂

∆∂
+= 1  (8) 



  24 

During our correction process, we assume that J is larger than zero, so “folding” 

of the image does not occur. While such an assumption is reasonable under most 

circumstances, folding may happen when the field inhomogeneity changes rapidly, but 

this cannot be corrected by retrospective correction methods based on the image itself, 

such as the method proposed herein. 

According to Eq. (6), for a location ( )zyx ,, , the geometric distortion in each 

direction is linearly proportional to the inverse of the corresponding gradient in that 

direction, i.e., when the gradient is small, the distortion is large, and vice versa. The field 

of view (FOV), or physical dimension of the image, in the kx and the ky directions can be 

written as: 

 ( ) 1FOV
−∆= xxx tGγ , 

( )( ) 1FOV
−

∆= y

eff

yy tGγ  (9) 

Typically, FOVx and FOVy are equal, and yt∆  can be computed as:  

 xxpy tNt ∆+=∆ τ  (10) 

with Nx  the number of sampling points in the readout direction. 

We then obtain: 
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Usually the size of EPI images is 64x64 or 128x128 pixels, so ( )eff
yG  is much 

smaller than xG . Also, zG  is much larger than ( )eff
yG . Because of their much larger 

gradients, the distortions in the readout and the slice selection directions are much smaller 
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than that in the phase encoding direction. In a typical EPI image, the distortions in the 

phase encoding direction may be up to several mm while distortions in the other 

directions are less than one tenth mm [16]. Here we assume that pixel displacements in 

the frequency and slice selection directions are negligible so that: 
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,'  (12) 

We note that such unidirectional distortion model has been used in previous distortion 

correction work [22], [23], [25], [26].  

Eq. (8) can thus be rewritten as: 

 ( )eff
yG

y

B
J

∂
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+≈ 1  (13) 

As shown in Eq. (22), this term is used to change the image intensity during registration.  

We use Eqs. (12) and (13) as our geometric and intensity distortion models. Note 

that they also hold for SE EPI, as described by Studholme et al. [22]. 

 

2.3. Signal loss due to intravoxel dephasing in GE EPI 

Intravoxel dephasing is a process in which spins within an imaged voxel lose 

phase coherence due to static magnetic field inhomogeneities. The phase factor 

( ) TEtzyxBi
e

,,2 ∆− γπ  in Eq. (5) is the source of the intravoxel dephasing effects in GE EPI. It 

does not exist in SE EPI since there is an 180
o
 pulse that restores coherence to the spins at 

the echo time tTE. 

Changing integration variables from ( )zyx ,,  to ( )zyx ′′′ ,,  in Eq. (5), we have: 
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To obtain the reconstructed complex image, we take the inverse Fourier transform 

of the k-space data: 
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here C is a constant. In the above equation, we ignore the fact that the signal in k-space is 

acquired for only a finite amount of time. Otherwise, we would need to convolve the 

image obtained with Eq. (15) with a point spread function of the k-space truncation filter, 

as in [4], [65].  

Assuming that the spin density ( )zyx ,,ρ  and the Jacobian ( )zyxJ ,,  at voxel 

( )111 ,, zyx  are constant, and that the slice selection function p is a boxcar, Eq. (15) can be 

written as: 
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with D a constant, ( )zyxi ,,0  the complex image without distortion and zv  the voxel size 

in the z direction. If the voxel size is not too large and the variation of B∆  is not too 

severe, B∆  across the voxel of interest can be written as a linear field: 

 ( ) ( ) ( )
111 1110 zyx BzzByyBxxBB ∆−′+∆−′+∆−′+∆=∆  (17) 

with 
11 aa BB

=
∂∆∂=∆

α
α , in which a can stand for x, y, or z.  



  27 

Combining Eqs. (16) and (17) gives: 

 
( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )2sinc,,

,,,,

1

11110

1

1

1111110

z

21
0

2

2

2121
0111

φ
γπ

γπγπ

∆=

′=

∆−′+∆−′+∆−−

+

−

∆−′−−∆−′+∆−′+∆−− ∫
yxTE

z

z

zTEyxTE

ByyBxxBti

vz

vz

Bzzti

z

ByyBxxBti

eJzyxi

zdeveJzyxizyxi
 (18) 

Here, 
11

2 zTEzz Btv ∆=∆ γπφ  (19) 

The factor 
( ) ( )( )

111102 yxTE ByyBxxBti
e

∆−′+∆−′+∆− γπ
 changes the phase of the image but not the 

magnitude. By taking the magnitude of the complex image, we obtain: 

 ( ) ( ) ( )2sinc,,,,
1z

1
0111 φ∆= −Jzyxizyxi  (20) 

We define  

 ( ) ( )2sinc,,
1z

φ∆≡zyxh  (21) 

as the “dephasing factor”, which describe the dephasing effects due to B∆  in the slice 

selection direction [65]-[68], and accordingly ( )zyxh ,,1−  as the “rephasing factor”. B∆  

also causes dephasing effects in the x and y directions [4], [65], which are omitted here 

because, as a result of the relatively small voxel sizes in these directions, they are 

typically much smaller than h. With Eqs. (20) and (21), the distortion corrected image 

can be calculated as: 

 ( ) ( ) ( ) ( )zyxhzyxJzyxizyxi ,,,,,,,, 1
10

−⋅⋅=  (22) 

Here the geometric distortions in the x and z directions are omitted, i.e. xx =1  and zz =1 . 

According to the above equation, the intensity value at ( )zyx ,,  in the corrected image can 
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be computed by multiplying the intensity value at ( )zyx ,, 1  in the distorted image by both 

the Jacobian and rephasing factors at ( )zyx ,, . The amount of intensity changes at a certain 

location caused by geometric distortion and intravoxel dephasing depends on the 

magnitudes of J
-1
 and h at this location, respectively. The values of J

-1
 and h are each 

proportional to the gradient of B∆  in the y and z directions, separately. While J
-1
 can have 

values ranging from smaller than one to larger than one, h always takes values smaller 

than one. Usually h is dominant in the regions close to the air and tissue interfaces, e.g. 

the frontal sinus of brain. 

 

2.4. Nonrigid registration algorithm  

Our nonrigid registration method is based on the ABA algorithm proposed in [43]. 

In this algorithm, the deformation field is modeled as a linear combination of a set of 

basis functions: 

 ( )∑
=

−Φ+=′
n

i

ii

1

xxcxx  (23) 

where, x and x' are corresponding locations in units of voxels in two images to be 

registered, and ( )ixx −Φ  is the basis function centered at location ix  with coefficient ic . 

( ) ( )s
2

YY φ=Φ , with 
2
⋅  the Euclidean norm, and s the size of the support of the basis 

function. ( ) ( )⋅=⋅ lk ,φφ , with k=1 and l=2, is one of Wu’s compactly supported radial basis 

functions (RBF) [76]. It is C
2
 smooth and strictly positive definite in 3R . An optimum 

transformation is obtained by finding the coefficients of the basis functions that maximize 

the normalized mutual information between the images. In a typical application, 
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registration is performed in a multilevel approach by progressively changing the 

resolution of the images and the support region of the basis functions. At each level, a set 

of basis functions with the appropriate size is first placed on a regular grid. The gradient 

of the similarity measure with respect to the coefficients of the basis functions is then 

computed and used to identify regions of mismatch. Optimization is performed on these 

regions independently. The process is repeated until the highest image resolution and 

highest density of basis functions is reached. Note that modifying the value of one of the 

coefficients affects only the displacements in a local region due to the basis functions’ 

compact support. The support region of the basis function can thus be adapted for 

capturing displacements at various scales. 

In this work, the geometric distortion in a GE EPI image is estimated by 

registering it nonrigidly to a reference image in which geometric distortions are 

negligible. The distortion model for GE EPI, given by Eq. (22), is incorporated into the 

registration process, which includes unidirectional deformation and intensity corrections 

using the Jacobian and rephasing factors. The displacement in the phase encoding (here y) 

direction at location x  ( 3R∈x ) in the reference image with voxels as units, ( )xyDF , is 

parameterized by the linear combination of the basis functions as described in Eq. (23): 

 ( ) ( ) NicDF
N

i

iiy ≤≤−Φ=∑
=

1,
1

xxx . (24) 

According to Eq. (12), we constrain the displacement to be in the y direction only, 

so the displacement at location x  is ( ) ( )[ ]TyDFDF 00 xx = . Relating this to Eq. (12), we 

have: 



  30 

 
( )
( ) ( ) yyeff
y

vDF
G

B
x

x
=

∆
. (25) 

The multiplicative factor yv , which is the voxel size in the y direction, changes the units 

of displacement from voxel to mm. Then ( )xxx DF+=′ , with x' the location corresponding 

to x in the distorted image. 

Because the undistorted reference image is typically a T1-weighted image and the 

EPI images are typically T2-weighted images, we use the normalized mutual information 

[69] between the images as our similarity measure Esim. With the distortion model of GE 

EPI described in Eq. (22), we have:  

 ( )( ) ( )( ) ( )( ) ( )( )( )
( ) ( )( ) ( )( ) ( )( )( )xxxxxxx

xxxxxxx

DFhDFJDFIIH

DFhDFJDFIHIH
E

ER

ER
sim

,,,,

,,,

1

1

−

−

⋅⋅

⋅⋅+
= . (26) 

Here, ( )xRI  and ( )( )xx DFI E ,  are the reference image and deformed EPI image, 

respectively, and ( )⋅H   and ( )⋅⋅,H  stand for the marginal entropy and joint entropy 

functions, respectively. Note that the Jacobian factor ( )( )xx DFJ ,  and rephasing factor 

( )( )xx DFh ,1−  are included in the cost function. Given a deformation field DF, the intensity 

value at each location x in the distortion-corrected EPI image is first estimated from the 

original EPI image through trilinear interpolation, and then multiplied by ( )( )xx DFJ ,  and 

( )( )xx DFh ,1−  for local intensity correction. 

The Jacobian J is computed from the deformation field (DF). The rephasing 

factor h
-1
 is computed from the gradient of B∆  according to Eqs. (19) and (21). Given 

DF, according to Eq. (25), the corresponding B∆  can be calculated as:  
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Here, ( )( ) 1FOV
−

∆= y
eff
yy tGγ  is the field of view (FOV), or physical dimension of the image, 

in the y direction. Next, as required in Eq. (19), the gradient of B∆  in the z direction at 

each location is estimated using finite difference. An alternative would be to compute this 

gradient analytically from the parameterized deformation field in Eq. (24). Experiments 

show that both methods provide very similar results when the space between the 

locations of adjacent basis functions is not too small (larger than 5 voxels). 

 

3. Experiments and Results 

 

3.1. Simulated GE EPI image 

In order to evaluate the proposed algorithm for distortion correction, we employed 

an MR simulator, which we have developed [64], to generate a distortion-free EPI image 

as a reference image. We then used this reference image and a measured field map to 

create a simulated EPI image with geometric distortion and modified intensity values 

using Eq. (22). Inputs to the simulator are three tissue volumes: white matter, gray matter, 

and CSF, which are segmented from a T1-weighted volume acquisition of a human 

subject’s head. The output is a simulated 128x128x28 distortion-free GE EPI image. 

Imaging was performed on a Philips Intera Achieva 3T MR scanner. The T1-weighted 

image was acquired using an Inverse Recovery Turbo Spin Echo (IR TSE) pulse 

sequence with 28 slices, 4.5 mm slice thickness, 0.4 mm gap, matrix size 256x256, field 

of view (FOV) 240mm, TE = 10ms, and TR = 2000ms. A field map of the same subject 
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was acquired during the same study from the phase difference between two Fast Field 

Echo (FFE, gradient echo) scans collected at differing echo times. The field map has the 

same dimensions and voxel size as the anatomical image. It was first unwrapped using 

PRELUDE in FSL [70] and then used to compute the distortions in the GE EPI, which 

were applied to the reference image to simulate a real GE EPI image. Before the 

simulation, both the reference image and the field map were masked using a brain mask 

obtained with BET [70]. The geometric distortion computed from the field map is used as 

the ground truth to which the deformation fields obtained with our method is compared. 

 

 

 (a) (b) (c) (d) 

Figure 4: Simulated brain images are shown in both axial (top) and sagittal (bottom) 

views. (a): Simulated distortion-free image; (b): Distorted image with geometric 

distortion only; (c): Distorted image with geometric distortion and the Jacobian factor; (d): 

Distorted image with geometric distortion, Jacobian, and dephasing. 

 

Figure 4 shows the simulated distortion-free image and its distorted versions. The 

outer contour of the head is outlined in (a) and overlaid onto the other images to show the 
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induced distortions more clearly. Note, as shown in the figure, that only a portion of the 

brain is used for simulation to reduce computation time. Distortion occurs mainly in the 

frontal area because of the proximity of the sinuses, which produce relatively large field 

perturbations. Figure 4 (b) shows the distorted image with geometric distortion only. 

Figure 4 (c) shows the effect of distortion on SE EPI images. As the image is compressed, 

the intensity increases because more signal contributes to the voxels in the distorted area. 

In Figure 4 (d), dephasing has been introduced to simulate a GE EPI image, leading to 

intensity reduction in certain regions.  

 

 

 (a) (b) (c) (d) 

Figure 5: (a): The distortion map (ground truth) derived from a measured field map of a 

human brain. (b)-(d): The deformation field obtained through unidirectional nonrigid 

registration: with ABA (b); with ABA-J (c); and with ABA-JRE (d). 

 

To correct the distortions, we register the image in Figure 4 (d) to that in Figure 4 

(a) using our nonrigid registration algorithm with and without Jacobian and rephasing 

factors. We label the original registration method ABA, the method with the Jacobian 

factor ABA-J, and the method with both the Jacobian and rephasing factors as ABA-JRE. 

Figure 5 shows the magnitude of the distortion field (ground truth) and of the 

deformation fields estimated through registration. Adding the Jacobian factor (Figure 5 

(c)) has a clear effect on the result, but the patterns in the estimated deformation field do 
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not correspond to the ground truth. Introducing the rephasing factor (Figure 5 (d)) 

improves the results further; this is especially visible in the frontal part of the image. The 

corresponding distortion corrected images are shown in Figure 6 (c)-(e). Figure 6 (a) and 

(b) are added for comparison. As was the case in Figure 4, the outer contour is drawn on 

the distortion-free image and overlaid on these corrected images. These figures show that 

without correction factors, the nonrigid registration algorithm stretches the distorted 

image but intensity values in hypo- and hyper-intense areas are not corrected. The 

Jacobian term corrects the region of hyper-intensity (pointed by the arrow in Figure 6 (d)). 

The rephasing term improves the image in areas in which signal dropout can be observed 

(pointed by the arrow in Figure 6 (e)).  

 

 

 (a) (b) (c) (d) (e) 

Figure 6: Images after distortion correction. (a): Simulated distortion-free image same as 

in Figure 1(a); (b): Simulated distorted image same as in Figure 1(d); (c)-(e): Images 

corrected using nonrigid registration: with ABA (c), with ABA-J (d), with ABA-JRE (e). 

 

To evaluate the correction results quantitatively, we compute the root mean 

square (rms) value over each image slice of the magnitude in voxels of the difference at 
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each point inside the brain between the distortion field that is calculated from the field 

map and the deformation field that we obtain with our method. These rms values indicate 

the residual errors after distortion correction. The values are calculated slice by slice to 

show the effectiveness of the correction method on different parts of the brain. The 

results are plotted in Figure 7 (a). This figure shows that for the lower part of the brain 

(corresponding to slices 1-7), where the intravoxel dephasing effect is severe or obvious, 

ABA-JRE produces better results than the approach without the rephasing factor. For the 

upper part of the brain (corresponding to slices 8-12), where only minimal amount of  

dephasing effect exists, adding the rephasing factor does not change the results 

substantially and may even worsen them. Close inspection of the deformation field shows 

that for these slices adding the rephasing factor reduces accuracy some but produces 

deformation fields that are smoother. Figure 7 (b) shows the rms values of the intensity 

differences between the reference image and the EPI images before and after correction. 

Those values are also computed slice by slice. This figure shows that ABA-JRE produces 

the corrected image with intensity values that are the closest to the reference image.  
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 (a) (b) 

Figure 7: Root mean square value vs. slice number for (a): the original distortion field 

(DF) and the differences between DF and the obtained deformation fields using ABA, 

ABA-J and ABA-JRE methods, (b): the intensity differences between the reference 

image and the EPI images before and after correction using three methods. 

 

3.2. Human brain images 

Brain MRI images of 5 humans are used as subjects for the evaluation of the 

performance of the algorithm. For each subject, a set of GE EPI image volumes and a 

single, standard, multi-shot, spin-echo image volume with high in-plane resolution were 

acquired on a Philips 3T scanner, with SENSE enabled. The image resolution for GE 

EPIs is 128 x 128 (interpolated from 80x80), with 28 slices, TE 35 ms, voxel size 1.875 x 

1.875 x 4.5 mm. The spin-echo volumes also have 28 slices but a 256 x 256 in plane 

resolution. They were downsampled to 128 x 128 to match the size of GE EPIs for 

registration purposes. Figure 8 (a) shows a representative slice from the spin-echo 

volume of a representative subject. Because it is a standard, multi-shot acquisition, its 

geometrical distortion is negligible; because it is a spin-echo image, there is no signal 

loss due to dephasing. Thus, it provides a standard for comparison. Figure 8 (b) shows a 

representative slice from a representative GE-EPI volume. A comparison of Figure 8 (b) 

slice number slice number 
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to (a) shows clearly that geometric distortion and intensity reduction are present in the 

frontal regions of the EPI image.  

 

  

 (a) (b) (c) (d) 

  

 (e) (f) (g) 

Figure 8: Images after distortion correction. (a): the spin echo anatomic image; (b): the 

GE EPI image; (c)-(e): Images corrected using nonrigid registration: (c) with neither the 

Jacobian nor dephasing factors, (d) with the Jacobian factor only, (e) with both the 

Jacobian and rephasing factors. (f): Image corrected using a measured field map; (g): 

intensity profiles along the line from top to bottom in (b), (e) and (f). Arrows in (c) and (d) 

point the regions where the images are inappropriately stretched and intensity attenuation 

is still present after registration.  

 

We registered each of the subject’s GE EPI volumes to the spin-echo volume 

using our proposed method to correct for geometric distortion and signal loss. For 

comparison, nonrigid registrations without the Jacobian factor or rephasing factor were 

also performed. Figure 8 (c)-(e) show the correction results for one of the subjects. In 

Figure 8 (c) and (d), the rephasing factor is not considered. Although the outline of the 

upper part of the brain is stretched when geometric distortion alone is considered, the 
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region in the frontal area of the brain (pointed by arrows) is inappropriately stretched and 

intensity attenuation is still present as before. Using the Jacobian factor as in Figure 8 (d) 

does not help much. When the rephasing factor is used, as in Figure 8 (e) intensity is 

recovered, at least partially, and the corrected image is similar to the corrected image 

obtained with the measured field map, which is shown in Figure 8 (f).  The intensity 

profiles plotted in Figure 8 (g) further show that the method we propose leads to 

corrected images that are similar (and arguably better in the frontal part) to those obtained 

with a field map approach, which can be considered as the standard when the field map is 

available and measured accurately. 

Figure 9 shows multiple slices of a GE EPI image before (a) and after (b) 

correction, and it highlights the strengths and remaining weaknesses of the algorithm. 

When signal loss is extremely severe as is the case for the images 1 to 3 in the top row, 

the algorithm is unable to correct the artifacts. It is unlikely that any post-acquisition 

algorithm will lead to satisfactory results for this type of artifact. When the signal loss is 

small to moderate as is the case for images 4,5,6,7, and 8 our approach leads to 

satisfactory results. Figure 10 shows one slice in each of the other four volumes we have 

used to test our algorithm. It can be seen that intensity reduction, especially in the region 

just anterior to the ventricle, has been corrected after applying the proposed method.  
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(a) 

 

(b) 

Figure 9: Multiple slices of an EPI image before (a) and after (b) correction using the 

proposed method. The slices are numbered as 1 to 8, starting from left to right and then 

top to bottom. 
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Figure 10: Correction results from other four datasets. Top row: before distortion 

correction, bottom row: after distortion correction. 

 

4. Discussion 

We have proposed a new approach for retrospective correction of the geometric 

distortions and signal loss in GE EPI images. An intensity-based multimodal nonrigid 

registration is used for this purpose. A rephasing factor is added as a novel component in 

the similarity measure and used to correct for the signal loss artifact observed in GE EPI 

but not SE EPI. We have shown that introducing such a factor derived from the physics 

of MR imaging enhances the registration process. Not only does it help in correcting the 

images geometrically but it also permits the correction of intensity values. This may have 

a positive impact on the analysis of these images and improve, for instance, the detection 

and localization of activation regions in fMRI studies.  

As our results have shown, our method improves the results but is not capable of 

correcting the images completely. In areas in which signal loss is very severe, it is 

unlikely that any intensity-based or even a method based on field maps, would be able to 

recover the signal. In areas in which signal loss is moderate, our method leads to results 
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that are qualitatively similar to those obtained with a field map approach. Assessing 

quantitatively which of these method leads to more accurate results is difficult. Our 

method is prone to errors related to local minima and accuracy of numerical methods for 

the computation of the gradients. Methods based on field maps are sensitive to errors 

related to phase unwrapping and motion. The later is of particular importance for long 

acquisition sessions. A field map acquired at the beginning of the study may not be 

registered to an image volume acquired during the study. As discussed in [1], [17], 

simply registering the field map to a volume is not sufficient, and in order to avoid this 

misregistration problem, many field maps must be acquired during the study, each 

requiring two additional volume acquisitions. Acquiring a field map takes several 

seconds (in EPI space, as in [17]) or a few minutes (in non-EPI space as in [18]), and 

these additional acquisitions may result in an unacceptable reduction in the temporal 

resolution of the study. The time needed for the method we propose depends on the size 

of the image and the number of basis functions used to model the distortion field, but it 

does not affect acquisition time. For the real brain images presented in this study, a 

typical registration takes between 8 and 9 minutes on a PC with a 3G Hz CPU and 1GB 

of RAM. If time between acquisition and analysis is critical, such an approach may not 

be practical. If, however, correction of the images can be done independently of the 

analysis of the images or when a field map is not available, our method provides a 

solution. Although it is outside the scope of this work, the comparison of activation maps 

obtained after geometric and intensity correction with a field-map approach and with our 

method would be a valuable extension to this work.  
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The Jacobian and rephasing factors need to be estimated for correcting intensity 

distortions. This requires the computation of the spatial derivative of the field map, which 

is approximated here by a deformation field. Approximation errors often exist due to 

imperfect registration or missing information in distorted images. The errors will 

typically be accentuated when the derivatives are computed. This, in turn, will affect the 

registration process. It is especially true for the rephasing factor because it is proportional 

to the reciprocal of a small number that is calculated using the gradient of the 

deformation field. In areas where the signal-to-noise ratio (SNR) is low, the accurate 

estimation of the corresponding deformation field is more difficult. This may lead to 

inaccurate correction factors, which may deteriorate the images further rather than 

enhancing them. Also, as the results have shown, correction of the images where signal 

attenuation is very severe remains imperfect.  This suggests developing methods that can 

automatically identify regions over which the algorithm is likely to succeed and regions 

over which it may not. 

In this chapter, we discussed a correction method that is designed for GE EPI 

images by introducing an intensity correction factor. In the next chapter we will propose 

an approach in which the characteristic of the geometric distortion in EPI images is taken 

into consideration.  
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CHAPTER IV 

 

NONRIGID REGISTRATION WITH SPATIALLY VARYING SCALE OF 

DEFORMATIONS: APPLICATION TO GEOMETRIC DISTORTION 

CORRECTION IN ECHO PLANAR IMAGES 

 

1. Introduction 

As mentioned in Section 3, Chapter II, nonrigid registration-based methods have 

been used to correct for the distortions in EPI images [22]-[27]. Because these methods 

often rely on deformations with a very large number of degrees of freedom, their 

regularization is of great importance for their accuracy, robustness, and speed. In Section 

4, Chapter II, various techniques used to regularize the deformation field have been 

introduced. They can be categorized into two groups: uniform and adaptive. Among the 

latter approach, the adaptive placement of basis functions or control points have been 

used in some registration algorithms by means of the detection of mismatched regions in 

advance, such as in [40], [56], [57]. While such adaptive methods reduce the optimization 

complexity, the detection of mismatched or active regions is typically done at the same 

scale over the entire image. This not only is time consuming but also assumes that the 

properties of the transformation do not change spatially. This assumption may lead to 

spurious local displacements due to local optima in regions in which the deformation 

field ought to be smooth and regular. The use of prior knowledge to constrain the 

deformation fields may help to alleviate the problem.  

Recently, Pekar et al. [91] propose a method in which the scale of the 

transformation is adapted spatially. They apply Gaussian-shaped forces at control points 

and use a PDE (Navier equation) to model the connection between the forces and the 
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resulting deformation field. The influence areas of the forces, i.e. the Gaussian width σ, 

are adjusted automatically together with their strengths and the positions of the control 

points during the optimization. While, as claimed by the authors, the method can achieve 

similar results by using less control points than registration methods based on regular 

grids, the optimization complexity is increased because the position of the control points 

are additional free parameters. Also, a priori information about the deformation field is 

not considered in their method. 

In this chapter, we propose an approach to integrate a priori information into our 

registration algorithm. We introduce a scale map into the algorithm to specify the support 

size of the basis functions to be used over the various regions of the image. We also 

present a method to compute the scale map from a priori information, namely, an 

estimate of the expected deformation field. Knowledge of the physical processes that 

induce distortion in the EPI images is used to calculate this estimate. The proposed 

approach is applied to both simulated and real images. The remainder of the chapter is 

organized as follows. Section 2 presents our approach in detail. Section 3 describes the 

distortions in EPI images and ways by which the estimated deformation field can be 

created. Experiments on simulated and real data are presented in Section 4. Finally, 

conclusions are drawn in Section 5.  

 

2. Nonrigid Registration with Spatially Varying Scale 

Our approach is based on a previously proposed nonrigid registration method—

the Adaptive Bases Algorithm (ABA) [43]. The main steps in our approach are shown in 

Figure 11. The computation of a scale map and the way to use it in the ABA method are 
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presented in this section. The approach we use to estimate an expected distortion field is 

described in the next section. 

 

 

Figure 11: A flow chart for our approach. 

 

2.1. Revisit of the ABA method  

The ABA method has been described in Chapter III. Here we rewrite the equation 

that models the deformation field, ( )xD , : 
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where s is the support size of the basis function. During the registration, a multilevel 

approach is performed by progressively changing the resolution of the images and the 

support size of the basis functions. A particular combination of image resolution and 

basis function density is called a “level”. In this algorithm, the support size of the basis 

functions is inversely proportional to their density, i.e. when the density increases by 

some factor, the size of the support decreases by that same factor. In the application 

described in this paper, in order to focus our experiments on the effects of the scale of 

deformation, we use only one image resolution. Thus, only the density of basis functions 

varies with level. 
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2.2. dfinal and scale map 

In the ABA method, the scale of the transformation is controlled by the density of 

basis functions at the final level, which we call dfinal, which is a 1 x 3 vector containing 

the densities in the x, y, and z directions. When dfinal is low for a given region, few basis 

functions with a large support size are used, which leads to transformations that are 

smooth and regular everywhere within the region. On the other hand, a high dfinal permits 

the modeling of highly local deformations with a large number of degrees of freedom. 

Such a model allows almost arbitrary deformations, corresponding to a weak 

regularization. Hence, dfinal can be viewed as a regularization factor which determines the 

scale of a deformation field. To adjust dfinal spatially, a scale map S, which is a volume 

that has the same size as the image, is introduced into the ABA algorithm as a new 

component. According to S, a higher dfinal is assigned to the regions where we anticipate 

rapid variations in the deformation field, and a lower dfinal is assigned to regions where 

slow variations are expected. In a multi-level approach, all the levels up to the pre-

specified dfinal’s are used for the regions with different scales in the registration. The 

method we use to generate S is described in the following part. 

 

2.3. Generation of scale map 

Based on a priori information about the expected deformation field, a number of 

strategies can be used to generate a scale map. One could assign manually a scale to a 

given location in the scale map, but this requires the scale information for each location 

to be known a priori. We use this approach in the experiments described in Section 4.1. 

When such information is not available a priori, it needs to be computed. One solution, in 
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this case, is to use an estimated deformation field and to extract scale information from 

that field. The estimated field can be derived from a deformation field computed from a 

large population, as in [59] and [77], or it can be generated using knowledge about the 

problem at hand, which is the approach we follow in this work. Here, we present a 

technique to compute a scale map from an estimated deformation field. The generation of 

this field is based on knowledge about the physics of EPI, which is described in Section 3.  

To compute a scale map of a given deformation field, we first need to determine 

areas in the field that are smooth and slowly varying and areas in which changes are 

faster. The approach we use to do this is similar to the multilevel scheme we use in the 

ABA algorithm. We use as many levels as in the registration algorithm and we use the 

same number of RBFs in each level. During the optimization, because the deformation 

field is known, the optimization process in the registration method is replaced by a least 

squares approximation. Conceptually, we fit the field, first with a few basis functions 

with large support, then with more and more basis functions with smaller and smaller 

support. If the field changes slowly, the fitting is good enough with few basis functions. 

When the field changes rapidly, more basis functions are necessary. Practically, we store 

in an array ( ) ( ) ( )[ ]znynxnzyxzyx NNNNNNNNN ,,,,,,,, 222111 L=Θ  the numbers of basis 

functions we use in the x, y, and z directions at each iteration. The density of basis 

functions corresponding to level j is then ( ) [ ] ( )zzjyyjxxj vNvNvNjj ,,== VΘd , where 

( )zyx vvv ,,=V  is the size of the image in the x, y, and z directions. The values in each 

direction increase monotonically from the beginning to the end of the array. Here, n, the 

length of Θ , is the number of iterations we use when fitting the field. Given a 

deformation field 0D , we do the following at the  m
th
 iteration:  
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Step 1: Set the current deformation field, ( )m,current xD , as the residual deformation 

field obtained from the previous iteration ( )1,residual −mxD , i.e. 

 
( ) ( )
( ) ( )xDxD

xDxD

0residual

residualcurrent

0,

1,,

=

−= mm
. (29) 

Step 2: Use RBFs at level m (i.e. with total number zmymxmm NNNN ××= ) to 

approximate ( )m,current xD  with a least-squares approach. A new residual deformation field 

( )m,residual xD  is computed as: 
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where Ω  represents the entire image space, and mj,x  is the spatial location of the j
th
 basis 

function at level m, and ( )Ω∈Cc j  is the coefficient of the j
th
 basis functions.  

After all ( ) nmm ≤≤1,,residual xD  are obtained, the scale map can be computed by 

selecting a number of scales and thresholding the corresponding residualD . One could use 

as many scales as entries in the Θ  array. But, this would be impractical. Often the nature 

of the problem dictates the number of scales to be used. For instance, in the application 

described herein, two scales, named low scale and high scale, are used to model the 

deformation field (see Section 3.2 for details). We then empirically decide the density of 

basis functions that define the low and the high scale. ( )3d  could, for instance, specify the 

density of basis functions we want to use to model the field at the low scale. We examine 

the value in ( )3,residual xD  after ( )3Θ  basis functions are used in the fitting. Areas in 

( )3,residual xD  for which the value is below a threshold is considered to be approximated 
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well by using basis functions with density up to ( )3d . And the corresponding areas in the 

scale map S are then labeled as low scale and assigned the value 3. The other areas are 

labeled as high scale and assigned the value n. When registering the images, we use the 

same array Θ  to specify the density of the basis functions used at each level. Following 

our example, dfinal will be set to ( )3d  in the low scale areas and to ( )nd  in the high scale 

areas. This instructs the registration algorithm to use basis functions with densities up to 

( )3d  in the low scale areas and up to ( )nd  in the high scale areas. 

Note that we use “iteration” only in describing our method for generation of the 

scale map. The RBF level advances one during each iteration. The Selection of scales in 

the scale map performs only once after all iterations end. 

 

2.4. Algorithm overview 

Our algorithm is summarized as follows: 

1. Choose a RBF array Θ  with length n and select K scales of interest (in our current 

application, K=2) 

2. Generate 0D , an estimate of  the expected deformation field. 

3. Compute a scale map S via the iterative method described above. Define scale 

regions kR , Kk ≤≤1 , as the union of the locations at which the scale values are 

equal to ks . 

4. For j = 1 to n 

a. For k = 1 to K 

If ksj ≤ , place basis functions in region kR  with density ( )jd .  

End For 
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b. Identify the basis functions which cover mismatched areas according to 

the gradients of the similarity measure with respect to the coefficients of 

the basis functions. 

c. Optimize the coefficients of the basis functions in the mismatched areas.  

End For 

 

3. A priori Information about Distortions in EPI Images 

 

3.1. Distortions in EPI images 

As mention in Section 2.2, Chapter III, it is known that geometric distortion in 

EPI images in the presence of an inhomogeneous main magnetic (B0) field is directed 

almost exclusively along the phase encoding direction (here the y direction). The 

displacement at location ( )zyx ,,  is rewritten here as:  

 ( ) ( )[ ]Tzyxyzyx 0,,0,, ∆=D  (31) 

where ( )zyxy ,,∆  is the geometric distortion at the original position ( )zyx ,,  and is 

calculated by: 

 ( ) ( ) yyzyxBzyxy BWFOV,,,, ∆=∆ γ . (32) 

Here, γ  is the gyromagnetic ratio, B∆  is the perturbation of the B0 field, and FOVy and 

BWy are the Field of View and bandwidth in the phase encoding direction, respectively.  

The Jacobian factor has been derived in Eq. (13) in Chapter III and is rewritten 

here: 
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 ( ) ( )( ) 11 ,,1,,
−− ∂∆∂+= yzyxyzyxJ . (33) 

Additionally, for Gradient Echo (GE) EPI images, the dephasing factor has been 

derived in Eq. (21) in Chapter III and is rewritten here: 

 ( ) ( )( )( )zzyxBtvzyxh z ∂∆∂= ,,sinc,, TEγπ  (34) 

with zv  the voxel size of the EPI image in the z direction and TEt  the echo time. From 

Eqs. (32) - (34), the distortion model in EPI images can be written as: 

 ( ) ( ) 1
0 ,,,, −⋅=∆+ Jzyxizyyxi  (35) 

or  

 ( ) ( ) hJzyxizyyxi ⋅⋅=∆+ −1
0 ,,,, . (36) 

Here, i  and 0i  are images with and without distortions, respectively. Eq. (35) holds for 

Spin Echo (SE) EPI images, which have no signal loss caused by intra-voxel dephasing 

effect, and Eq. (36) holds for GE EPI images. They have been used in registration based 

distortion correction methods for SE EPI images [22] and GE EPI images [78], 

respectively. 
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3.2. Characteristics of the geometric distortion  

According to Eq. (32), the amount of geometric distortion is proportional to the 

amplitude of the B0 field inhomogeneity B∆ . Such inhomogeneity is induced mainly by 

the magnetic susceptibility differences between substances within the subject inside the 

scanner. In this work we focus on the EPI images for human brain. In the brain, there 

exist mainly two substances which have very different susceptibility: air and water (i.e. 

soft tissue). The magnitude of the distortion typically changes smoothly in the areas 

inside the brain but dramatically at the interfaces between air and tissue. Because of this, 

we classify the existing geometric distortions as one of two types: low or high. 

 

 

 (a) (b) (c) (d) 

Figure 12: Anatomic image (a) and EPI image (b) of a subject are shown. (c) is the 

corresponding geometric distortion map. Profiles of distortion in units of voxels in the 

phase encoding direction in (c) are shown in (d). The positive horizontal direction in (d) 

corresponds to the downward direction in (c) in voxels. 

 

An example of the geometric distortion that can be observed in a real EPI image 

is illustrated in Figure 12. Figure 12 (a) is one slice of a high-resolution, multi-shot image 

volume. We call this image an “anatomic image” because of the anatomical detail it 

shows, and we note that geometrical distortion is negligible throughout this volume 

because of the multi-shot protocol used in its acquisition. Figure 12 (b) is an EPI image 

of the same subject. Figure 12 (c) is the corresponding geometric distortion map for the 
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EPI protocol derived from a measured field map via Eq. (32). Profiles along the phase 

encoding direction, which is vertical in Figure 12 (c), are shown in Figure 12 (d) to 

demonstrate various types of changes across the image. By comparing the values in the 

three different plots in Figure 12 (d), it can be seen that a large amount of variation is 

present in the frontal area of the brain (from the 20
th
 to the 60

th
 pixel, where numbers 

increase downward), whereas the changes are substantially smaller inside the brain (from 

the 60
th
 to 110

th
 pixel).  

 

3.3. Estimation of the distortion field in EPI images 

As described in Section 2.3, we calculate a scale map based on ( )zyx ,,0D , an 

estimate of the expected deformation field. In our application, ( )zyx ,,0D  can be generated 

based on knowledge of the physical phenomena affecting the images, as discussed above. 

To generate ( )zyx ,,0D , we segment the anatomic image of a subject into air and water 

using a simple thresholding method. The threshold in this method is selected based on the 

histogram of the image. The obtained binary image is further processed by morphological 

‘dilate’ and ‘erode’ operations to remove small gaps or speckles. A water/air 

susceptibility map is created based on this binary image and then convolved with a kernel 

to generate a simulated field map using the method described in [64]. A distortion field at 

each location ( )zyx ,,  is computed from this field map and used as the y component of 

( )zyx ,,0D , which is 0 in the x and the z components, as shown in Eq. (31). Note that 

accurate simulation of the field map is a complicated task in itself [64], [79], [80], and it 

requires precise head models. To initiate our scale map calculation, however, we need 

only a rough approximation. More specifically, the estimated deformation field is 
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expected to have variations similar to those of the real one, but the amplitude of the 

estimated deformation field at each location does not need to be accurate. 

 

4. Experiments and Results 

In this section we describe experiments in which we evaluate our method and 

show how it compares to our previous approach in which a uniform scale is used, which 

we call the “fixed scale” approach. First we apply the proposed approach to 2D images 

with known deformations and known scale information to demonstrate the importance of 

varying the scale spatially. Then, we apply it to both simulated and real 3D EPI images, 

which contain geometric and intensity distortions. The smoothness, accuracy, and 

running time of the algorithm with and without spatial scale adaptation are compared.  

 

4.1. Experiments with 2D MR data 

In this section, a pair of 2D MR images is used to illustrate the workings of the 

method and to demonstrate the importance of spatial scale adaptation. A 128 x 128 T1-

weighted brain image is used as the source image. It is then deformed with a known 

deformation field Dtest to generate the target image. The source and target images are 

shown in Figure 13 (a) and (b). To create Dtest with known scales, a real deformation field 

is first computed from a measured field map for the same subject, see Figure 13 (c). This 

field is then approximated twice with basis functions placed on an 18 x 18 regular grid 

and on a 10 x 10 regular grid, respectively, to create two approximations. The first one 

permits modeling changes at a higher scale than the second. The upper half of the first 

approximation and the bottom half of the second approximation are then combined to 
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create Dtest, see Figure 13 (d). Dtest is thus the deformation field we need to recover 

through registration of the source and target images.  

 

 

 (a) (b) (c) (d) 

Figure 13: (a): Source image, (b): target image, (c): a real deformation field from which 

Dtest is computed, (d): Dtest with high scale in the upper part and low scale in the low part 

(separated by the red line). 

 

 

 

Figure 14: Scale map and placement of basis functions. 

 

In this example, the scale of the transformation is known. Rather than estimating 

it, we manually specify a scale map with two scales: high scale in the upper half and low 

scale in the lower half. The RBF density corresponding to the high scale is (20/128, 

20/128) in the x and y directions and that corresponding to low scale is (11/128, 11/128). 
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The scale map and the location at which basis functions are placed are illustrated in 

Figure 14. 

 

 

 (a) (b) (c) (d) 

Figure 15: Dtest (a) and deformation fields obtained with different approaches: (b) low 

scale, (c) high scale, (d) spatially varying scale. Dashed lines show the location of the 

profiles in Figure 16. 

 

Figure 15 shows Dtest (a) and the deformation fields obtained with the nonrigid 

registration algorithm using different scales (b)-(d). Figure 15 (b) shows the estimated 

deformation field when a low scale is used everywhere in the image; Figure 15 (c) and (d) 

show the same when a high scale and a spatially varying scale are used, respectively. The 

Sum of Squared Differences (SSD) between Dtest and each of the estimated distortion 

fields are 69.9, 53.4 and 42.3 pixels respectively. The displacement along the vertical 

dashed lines drawn in each of the panels is plotted in Figure 16. These results illustrate 

the advantage of using a priori information on the type of displacement that can be 

expected in a region and of adjusting the scale of the transformation accordingly. Figure 

15 (b) shows that a low scale is insufficient to estimate the top part of the deformation 

field. It may be surprising that using high scale in both regions produces a distortion 

estimate that is inferior to that obtained when using spatially varying scale. However, as 

Figure 16 shows, using a uniformly high scale leads to oscillations in the low scale region 
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because of local minima (using a high scale value increases the number of degrees of 

freedom in the transformation and therefore the complexity of the optimization problem). 

The best result is obtained when the scale is varied spatially.  

 

 

Figure 16: Plots of the displacement changes along the dashed lines shown in Figure 15. 

Here, the positive horizontal direction corresponds to the downward direction in Figure 

15 (a)-(d) in voxels. 

 

4.2. Experiments with 3D simulated and real EPI images 

4.2.1. Parameters for the scale map 

In the set of experiments conducted with both simulated and real EPI images, we 

experimentally choose a RBF array Θ  with 6 levels to compute the scale map. The same 

Θ  is also used in our registration process. We select the 4
th
 and the 6

th
 RBF densities (i.e. 

( )4d  and ( )6d ) as the dfinal′s for the low and the high scales, respectively. Figure 17 shows 

an example of a given deformation field (a) and the corresponding scale map (b) obtained 

with these parameters. As expected, the low scale region mainly corresponds to area 

inside the brain while most of the high scale region is located in the frontal part of the 
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image, close to the sinuses. Note that for simulated EPI images, we compute each scale 

map from the deformation field derived from a measured field map; for real EPI images, 

we compute each scale map using an estimate of the distortion field obtained with the 

method described in Section 3.3. 

 

 

 (a) (b)   

Figure 17: (a): Distortion field; (b): scale map with low scale in the black area and high 

scale in the white areas. 

 

4.2.2. Simulated GE EPI images 

In this section, simulated GE EPI images are used to evaluate the proposed 

method. A 256 × 256 × 28 T1-weighted head image volume of each of six subjects is 

acquired using a Philips 3T MR scanner. A field map for each of the subjects is also 

acquired during the same study from the phase difference between two Fast Field Echo 

(FFE, gradient echo) scans collected at differing echo times. The field map has the same 

dimensions and voxel size as the T1-weighted image. Using our MR simulator [64], six 

distortion-free EPI volumes (size 128 × 128 × 12) corresponding to the six subjects are 

generated. The input to the simulator consists of three tissue volumes: white matter, gray 

matter, and CSF, which are segmented from each of the six T1-weighted images. Figure 

18 (a) shows a typical slice in a distortion-free image volume. 
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 (a) (b) (c) (d) (e) 

Figure 18: (a): Simulated distortion-free EPI image; (b): distorted version of (a); (c): 

corrected version of (b) using the proposed method; (d): difference image: (b)-(a); (e): 

difference image: (c)-(a). 

 

We then use these reference images and the measured field maps to create six 

simulated EPI images with geometric distortion and modified intensity values according 

to Eq. (36). The distorted version of Figure 18 (a) is shown in Figure 18 (b). The 

geometric distortions computed from the field maps are used as the ground truth to which 

the deformation fields obtained with our method are compared. The distortion model 

given in Eq. (36) is included in our registration method as described in [78]. The 

registrations are performed using three approaches: fixed low scale (i.e. use level 1-4 in 

Θ  everywhere), fixed high scale (i.e. use level 1-6 in Θ  everywhere) and spatially 

varying scales (i.e. a scale map with value 4 and 6). Figure 18 (c) shows the image in 

Figure 18 (b) after it has been corrected with our spatially varying scale approach. Figure 

18 (d) and (e) are the intensity differences, (b)-(a) and (c)-(a), respectively; these show a 

substantial reduction in both geometric and intensity distortions after correction.  

Figure 19 compares the residual errors, inside the low scale region (a) and the 

high scale region (b), of the deformation fields estimated with both the fixed low scale 

and the fixed high scale approaches. The errors are computed as the mean absolute 
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difference (MAD) between the estimated deformation fields and the ground truth. It can 

be seen that in the low scale region increasing the density of the basis functions does not 

substantially affect accuracy. However, increasing their density improves accuracy in the 

high scale region. Although using radial basis functions with high density everywhere in 

the image may appear to be a solution, it is not ideal. There are indeed several 

disadvantages in using high density when it is known to be unnecessary. First, 

computation time increases. Second, the algorithm may over fit the data. As will be 

shown in the next section in which real images are used, using too many degrees of 

freedom in regions where it is not needed leads to deformation fields that are not as 

smooth as what would be expected from our knowledge of the physical process (this 

problem is not as apparent with the simulated images we use in this section because they 

are themselves smoother than the real ones). 
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 (a) (b)   

Figure 19: Initial displacement and residual errors for 3D simulated images inside the low 

scale region (a) and the high scale region (b) using the fixed low scale and the fixed high 

scale approaches. 
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Figure 20 shows the residual errors over the entire deformation field when the 

fixed high scale and the spatially varying scale approaches are used. These results show 

that, with the data used in this section, the spatially varying scale approach leads to an 

accuracy that is comparable to the fixed high scale approach. However, as shown in 

Table 1, it does it in a fraction of the time.  
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Figure 20: Initial displacement and residual errors for 3D simulated images over the 

entire deformation field using the fixed high scale and the spatially varying scale 

approaches. 

 

Table 1: Registration times for 3D simulated EPI images (min). 

Subject ID 1 2 3 4 5 6 

High Scale 5.03 3.75 3.63 3.38 4.87 4.68 

Spatially Varying Scale 3.20 2.12 2.10 2.03 3.45 3.05 

Time Reduction 36% 43% 42% 40% 29% 35% 

 



  62 

4.2.3. Real GE EPI images 

In this section, the spatially varying scale scheme is evaluated with real GE EPI 

images of six subjects. For each subject, a set of GE EPI images and a single high-

resolution, multi-shot, spin-echo anatomic image are acquired on a Philips 3T scanner. 

The image resolution for the GE EPIs is 128 × 128 (interpolated from 80 × 80), with 12 

slices, TE 35 ms, voxel size 1.875 × 1.875 × 4.5 mm, with 0.4mm gap. The anatomic 

images have the same number of slices as the GE EPIs but have 256 × 256 in-plane 

resolution. They are downsampled to 128 × 128 for registration purpose. See Figure 21 (a) 

and (b) for an example. Note that the non-brain tissue in each image is removed using a 

brain extraction tool [70]. As can be seen, the geometric distortion and intensity 

attenuation are present mainly in the frontal regions of the brain. Each GE EPI image is 

registered to its corresponding anatomic image using the proposed method to correct for 

geometric distortion and signal loss.  

 

 

 (a) (b) (c) (d)  

Figure 21: (a): anatomic image; (b): EPI image; (c) and (d): corrected images using 

nonrigid registration with fixed scale (c) and spatially varying scale (d). More signal 

recovery is apparent in some places (arrow) with spatially varying scale. 

 

Figure 21 (c) and (d) show the images after correction using nonrigid registration 

methods with fixed (high) scale and spatially varying scale, respectively. The iso-
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intensity contour of the brain is outlined in (a) and overlaid onto the other images. Both 

approaches lead to similar results albeit the spatially varying scale method seems able to 

recover more signal in the area above the ventricles (shown with white arrows in the 

figure).  

 

  

 (a) (b) 

Figure 22: Estimated distortion fields for 6 subjects using fixed scale (a) and spatially 

varying scale (b). The regions enclosed by the blue rectangles are shown in Figure 23. 
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 (a) (b) 

Figure 23: A close look at the distortion fields obtained with fixed scale (a) and spatially 

varying scale (b), corresponding to the regions inside the blue rectangles shown in Figure 

22. 

 

The smoothness and regularity of the deformation fields obtained with our 

approaches is illustrated in Figure 22 to Figure 24. Figure 22 (a) and (b) show examples 

of the deformation fields obtained with the fixed scale and the spatially varying scale 

approaches, respectively, for all six subjects. In all cases, the deformation fields obtained 

with both approaches are qualitatively similar, but the varying scale approach leads to 

smoother fields. Figure 23 shows a 3D view of the magnitude of the deformation field 

over the rectangular windows shown in Figure 22. Clearly, the use of spatially varying 

scale leads to a smoother deformation field. To evaluate the smoothness of the 

deformation fields (12 in total) over the entire image volume, the Laplacian of each 

deformation field is computed, summed over the volume, and normalized. Figure 24 plots 

this value for the 6 volumes that have been used to evaluate our method. Using spatially 

varying scales leads to a reduction on the order of 13%. Timing information for both 

approaches is provided in Table 2, which shows a substantial amount of reduction for the 

spatially varying scale method.  
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Figure 24: Comparison of the Laplacian magnitudes of the deformation fields. 

 

Table 2: Registration times for 3D real EPI images (min). 

Subject ID 1 2 3 4 5 6 

Fixed Scale 4.38 4.18 4.18 4.05 4.38 4.6 

Spatially Varying Scale  2.81 2.85 2.47 2.4 2.6 2.58 

Time Reduction 36% 32% 41% 41% 41% 44% 

 

5. Discussion 

Regularizing deformation fields obtained with nonrigid registration algorithms is 

a difficult issue. Too much regularization leads to inaccuracies. Too little regularization 

leads to spurious and physically unlikely deformation. Results presented in this paper 

show that this is the case for EPI images. Excessive regularization leads to 

transformations that are inaccurate in areas where the magnetic field changes rapidly. 

Using a regularization scheme that leads to good results in these areas, e.g. basis 

functions with small support everywhere, unfortunately leads to transformations that are 

not as smooth as expected in areas where the field changes slowly. This paper proposes a 

novel approach in which the regularization of the field is adapted spatially by means of a 
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scale map. We also introduce a method by which this scale map can be generated 

according to a priori information. Our experimental results show that the proposed 

approach leads to transformations that are smoother and that can be computed faster than 

those computed when a fixed scale is used without sacrificing accuracy.  

In the ABA method, the scale of the regions of mismatch is detected 

automatically by employing a multi-scale approach, in which basis functions up to the 

highest level are applied to the whole image. There is no a priori information 

incorporated. Thus, in regions of the images in which the field change slowly, the final 

density of basis functions may be too high. This lengthens the process and can also lead 

to spurious displacements. By avoiding the use of more complex basis functions in 

regions that do not require them, the proposed approach addresses both of these problems. 

As discussed in the Introduction section, varying the scale spatially based on a 

priori information was also employed in [46], [59]. These methods rely on a non-

stationary diffusion filter applied to the computed displacement field. The diffusion 

parameter in the diffusion filter is estimated based on knowledge about deformability of 

segmented tissues. Instead of working on the computed deformation field, we constrain 

the field at the time of computation using a pre-computed scale map. This reduces the 

optimization complexity as well as the computational time. Furthermore, such a spatially 

varying scale mechanism has not been used for EPI images before.  

Clearly, the generation of the scale map and of the expected deformation field 

carries a computational overhead. In our experiments, the scale map computation itself 

can be done in about 40 seconds; computation of the field map takes about 50 seconds. If 

these are included in the total computation time, then the spatially varying scale method 
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loses its computational advantage for the correction of a single volume. However, in 

practice, the scale map needs to be computed only once for an fMRI study, which may 

involve more than a hundred volumes. In this case, the method we propose is 

advantageous. For illustration purposes, we consider registrations on an fMRI dataset 

with one hundred volumes. The running times for the fixed scale and the spatially 

varying scale approaches (on a PC with a 3.0G Hz CPU and 1GB of RAM) are 315 min 

and 208 min, respectively, which represent a 34% reduction in time. 

The main parameters that need to be selected include the length of the array Θ , 

the number of basis functions to be used at each level, and the number of scales to be 

used in the scale map. The application often suggests the number of scales to use. The 

length of the array and the number of basis functions to use at every level typically 

require experimentation when the method is applied to a new type of image. In our 

experience, when a set of parameter is chosen for one application and one type of image, 

the same set of parameters can be used across volumes.  

Thanks to our simulated images, we are able to show quantitatively that our 

method holds promise on single EPI image volumes. Further studies will investigate the 

effect of our correction algorithm on fMRI time series and determine whether or not 

correction modifies the location and extend of areas of activation.  

In this chapter we bring a regularization scheme into our nonrigid registration for 

distortion correction when a measured field map is not available. When a field map is 

acquired with EPI acquisitions, it can be utilized to help the registration process. The way 

to do that will be introduced in the next chapter. 
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CHAPTER V 

 

FIELD-MAP-CONSTRAINED NONRIGID REGISTRATION FOR 

CORRECTION OF DISTORTIONS IN ECHO PLANAR IMAGES 

 

1. Introduction 

In Chapter II, we have discussed the fact that two broad classes of algorithms 

have been proposed for distortion correction: field-map methods [15]-[18] and nonrigid 

registration methods [22]-[28]. Success of field map methods is largely a function of the 

accuracy of the field map estimation. In the regions of the brain where the field 

inhomogeneity is severe or the signal to noise ratio is very low, it is difficult to estimate a 

field map accurately, even if unwrapping/regularization algorithms are used. Physics-

based constraints have been added to nonrigid registration methods to help the 

registration process, as described in Chapters III and IV. The registration process could 

be further improved if information extracted from the field maps is incorporated. In this 

chapter we propose to combine the field-map method with nonrigid registration. The field 

map is used only where it is believed to be reliable. Nonrigid registration takes 

precedence over the field map where it is not. The proposed approach is demonstrated on 

a simulated brain EPI image and on a real EPI image of a phantom. 

 

2. Integration of the Field Map with Nonrigid Registration 

The same physical model for EPI as that described in Chapter III is used here for 

distortion correction. By assuming that the phase encoding direction is along the y axis, 

we rewrite the equation for this model as: 
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 ( ) ( ) 1
10 ,,,, −⋅⋅∆+= hJzyyxizyxi  (37) 

where 0i  and 1i  are the intensity values in the corrected and distorted images, 

respectively, and J  and 1−h  represent the Jacobian factor and the rephasing factor at the 

position ( )zyx ,, , respectively. y∆  is the geometric distortion at the position ( )zyx ,, . 

We perform distortion correction in two steps.  In the first step, we compute a 

distortion map y∆  directly from the field map and use it as the initial value for the 

deformation field of our nonrigid registration algorithm. This y∆  is also used to compute 

the Jacobian factor J  and the rephasing factor 1−h  (for GE images), and the distorted 

image is initially corrected using Eq. (37). We then refine the results obtained in this first 

step through nonrigid registration. To do so, we use our Adaptive Bases Algorithm (ABA) 

with physics-based constraints. As described in Chapter III, this algorithm uses a linear 

combination of radial basis functions (RBFs) with finite support to model the 

deformation field. These RBFs are placed on a set of grid points in the image and their 

amplitudes are changed to maximize the normalized mutual information between the 

reference image and the corrected image.  

To accelerate the registration process and reduce the chances of falling into local 

minima, we utilize information contained in the field map to constrain the optimization. 

Our strategy is based on one assumption: inaccuracies in the field map occur mainly 

where the field inhomogeneity is large or changes rapidly and where there is severe 

signal attenuation, which results in low SNR. The reason is that in these areas the 

measured field map can suffer severe phase wrapping or unreliable measurement due to 

low SNR. We build two masks delineating these regions— fieldmsk , based on the 
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magnitude and gradients of the field map and imagemsk  based on the intensity of the 

image. Only components of the field map in the y and z directions are considered because 

they are responsible for the major geometric and intensity distortions. We define the first 

mask as: 

 ( )( ) ( )( ) ( )hJyfield thrdhareathrdJabsareathrdyabsareamsk <>−>∆= ∆ UU 1  (38) 

Here, ( )




=
otherwise

area
0

 trueisA 1
A  stands for a brain region with 1 at the locations where the 

condition inside parenthesis is satisfied and 0 otherwise. ythrd∆ , Jthrd  and hthrd  are 

thresholds that are set empirically. See Figure 25 (a) for the result. The regions, in which 

severe distortions are expected, such as frontal brain, are included in the mask.  

 

 

 (a) (b) (c) 

Figure 25: (a): fieldmsk , the mask generated according to the measured field map; (b): 

imagemsk , the mask generated according to the distorted EPI image; (c) the union of 

fieldmsk  and imagemsk . 

 

We also consider the fact that Jacobian and rephasing corrections may not work 

well over areas with severe signal attenuation because of low SNR. This is addressed by 
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identifying regions in the EPI images below an intensity threshold and avoiding placing 

basis functions over these areas, which gives the second mask, imagemsk , see Figure 25 

(b). 

 ( )itymax_intensthrdintensityareamsk imimage ×>=  (39) 

with 10 << imthrd . The union of these two masks, see Figure 25 (c), is used to guide the 

placement of the grid points, i.e. RBFs are placed only inside this mask. We call this 

mask rbfmsk  with: 

 imagefieldrbf mskmskmsk U=   (40) 

Figure 26 shows the locations of the grid points when rbfmsk  is used and when it 

is not. As can be seen, only a small portion of basis functions will be employed in the 

registration process with mask.  

 

 

Figure 26: The placement of the grid points without (left image) and with (right image) a 

mask as the constraint. 
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3. Experiments and Results 

We first test the proposed method using a simulated image obtained with an MR 

simulator [64]. Figure 27 (a) shows a simulated distortion-free image, and Figure 27 (b) 

shows its distorted version created with a real field map measured from a human brain. 

Figure 27 (c) is the intensity difference between Figure 27 (a) and (b). As expected, the 

distortions happen mainly in the frontal area of the brain. The measured field map is then 

perturbed to simulate inaccuracy of field map estimation. This corrupted field map is 

subsequently used as the input to the field-map method and our approach to correct for 

the distortion in the image shown in Figure 27 (b). The differences between the corrected 

images and the distortion-free image are shown in Figure 27 (d)-(f). Histograms of 

intensity differences between the distortion-free image and the distorted image as well as 

the images corrected with (1) the nonrigid registration-based method only, (2) the field 

map-based method, and (3) the method we propose are compared in Figure 28. A lower 

curve indicates better results, and our proposed approach is clearly an improvement. 

Furthermore, our approach greatly speeds up the calculations because optimization is 

performed on only a small part of the image. In this case, CPU time was reduced to 

0.8min from 4.3min.  
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Figure 27: (a): distortion-free EPI image; (b): distorted image; (c): difference between (a) 

and (b); (d)-(f): differences between distortion-free EPI image and images corrected via 

nonrigid registration alone (d), the field-map alone (e), and our approach (f). 
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Figure 28: Histograms of difference images. 

(a) (b) (c) 

(e) (f) (d) 
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In Figure 29, an imaging phantom is used to compare results obtained with our 

approach to those obtained with the SPM FieldMap toolbox [71], which implements a 

method based on the field map alone. Note that the residual shift near the right edge of 

the gray part to which the arrows point in Figure 29 (c) (SPM toolbox) has substantially 

eliminated in Figure 29 (d) (our method).  

 

 

Figure 29: (a): reference image; (b): overlay of the reference image on the distorted 

image; (c) and (d): overlay of the reference image (gray level) on the corrected images (in 

color) by two methods: SPM FieldMap toolbox (c) and our approach (d). (b), (c) and (d) 

are magnified to show the differences). 

 

3.1. Selection of thresholds for mask 

The computation of the RBF mask used in our method depends on several 

thresholds, as can be seen in Eqs. (38) and (39). When the values for these thresholds 

change, the region covered by the mask varies, and that change may affect the correction 

results. The purpose of this experiment is to determine how the change of the RBF mask 

affects the results. We pick one threshold ( ythrd∆ ) and change its value from 0.5 to 1.5 

(voxel units) with step size 0.25. We then generate five RBF masks corresponding to 

different ythrd∆ , as shown Figure 30. It can be seen that the region of the RBF mask 

 
(a) (b) (c) (d) 
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reduces gradually when ythrd∆  is getting bigger. Each of these RBF masks is used in our 

method to correct the image shown in Figure 27 (b).  By comparing the corrected images, 

we find that using different masks has a negligible effect on the results. This suggests that 

our approach is not sensitive to the RBF mask changing in certain range. 

 

 

Figure 30: Different RBF masks ( rbfmsk ), from left to right corresponding to ythrd∆  

changing from 0.5 to 1.5 with step size 0.25.  

 

4. Conclusion 

We propose a strategy for the correction of distortions in EPI images, which 

combines field map and nonrigid registration methods. Our results indicate that using the 

field map both to initialize and to constrain our non-rigid registration algorithm may 

improve the obtained results.  

We have introduced a correction method limited to GE EPI images (Chapter III), 

and two correction methods for both SE and GE EPI images: a registration method 

(Chapter IV) and a combination method (this chapter). Comparing our methods with 

another commonly used post-processing method: field-map methods on real brain images 

is an interesting problem and will be performed in the next chapter. 
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CHAPTER VI 

 

COMPARISON OF THREE DISTORTION CORRECTION METHODS FOR EPI 

IMAGES 

 

1. Introduction 

In Chapter II, many distortion correction methods for EPI images have been 

described. They are generally divided into two groups: prospective methods, which rely 

on techniques designed to reduce these artifacts during or before the acquisition of the 

images and retrospective methods, which rely on the processing of the images after 

acquisition. Among the retrospective methods that have been proposed, field-map 

methods and registration methods have been widely used in a number of applications.  

Field-map methods need additional scans from which to calculate a field map. 

This type of method usually requires pre-processing of the acquired field map, such as 

regularization and phase unwrapping. The accuracy of the field map depends on a 

number of factors such as respiration, blood flow, and other imaging artifacts, and the 

performance of the aforementioned pre-preprocessing method. Subject motion during EPI 

images acquisition also influences the effectiveness of the field-map methods [1]. 

Registration methods compute a deformation field by registering the EPI image to a 

reference image (usually a conventional MR image) in which the distortion is negligible. 

The obtained deformation field, which provides an estimate to the existing geometric 

distortion, is applied to the EPI image to produce a corrected one. The accuracy of such 

methods depends on the optimization technique, the similarity measure, and the 

deformation model that are used as well as on the quality of the image to be registered. 
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Recently, the combination of the two types of methods has been proposed, as described in 

Chapter V. In this approach, a displacement map computed with a field map is used to 

initialize a deformation field, which is then refined with a registration based method. This 

displacement map is also used to constrain the optimization during registration, which 

can both accelerate the process and reduce problems of local minima. Each of these 

methods has its advantages and disadvantages, but very few comparative studies in which 

these techniques have been evaluated side by side can be found in the published literature.  

In this chapter, we compare three approaches. The first one relies solely on a field 

map and is called FLD. The second, which is called REG, is a registration method. The 

last one, called COMB, combines the two. This study is performed on both 3T and 7T 

EPI images. This chapter is organized as follows: Section 2 describes the data we have 

used. Section 3 presents some pre-processing steps and introduces briefly the three 

distortion correction methods. Results on experiments performed on the 3T and 7T real 

EPI images are presented in Section 4. Conclusions are drawn in Section 5. 

 

2. Data Acquisition 

For each subject, three types of data have been acquired. The first are T2*-

weighted Gradient Echo (GE) EPI images, which are commonly used in functional MR 

studies. These images are then corrected using three different methods described in this 

chapter. The second is a GE non-EPI field-map image. This image measures the 

deviations of the magnetic field from homogeneity. The third is a conventional MR 

image. It is assumed that this image has negligible distortions. All data acquisitions are 

performed on a Philips 3T or 7T MR scanner.  
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Ten subjects were scanned using a 3T scanner. The GE EPI images were acquired 

using a FEEPI sequence, with matrix size 128 x 128 (interpolated from 80 x80), slice 

number 28, TE 35 ms, TR 1988.3 ms, field of view (FOV) 240 x 240 mm, and slice 

thickness 4.5 mm with 0.4 mm gap. Phase encoding is in the anterior-posterior direction. 

SENSE is used for the acquisition (SENSE factor 1.7). A T1-weighted high resolution 

conventional image for each subject was acquired using an Inverse Recovery Turbo Spin 

Echo (IR TSE) pulse sequence, with the same slice number and FOV as those used for  

the EPI images; the matrix size is 256 x 256, TE 10 ms, and TR 2000ms. It takes 1 min 

56 s to acquire such an image volume. Each field map is obtained from the phase 

difference between two Fast Field Echo (FFE, gradient echo) scans collected at different 

echo times. The field map has the same number of slices, FOV, and matrix size as the 

EPI image. It takes 55 s to acquire this image. 

We also acquired a set of multi-shot EPI images for one subject on a 7T scanner.  

Normally EPI is a single-shot imaging technique, i.e. a single excitation pulse results in a 

complete image. However, a multi-shot EPI, using multiple excitations per image, may 

be used to increase spatial resolution and/or reduce geometric distortion. Here, five EPI 

scans were acquired with different numbers of shots: 2, 4, 8, 16 and 32.  All scans have a 

matrix size of 128 x 128, slice number 15, TE 25 ms, FOV 192 x 192 mm, and slice 

thickness 4.0 mm with 0 mm gap. TR times are inversely proportional to the numbers of 

shots and change from 990.10 ms for the 2-shot scan to 61.88 ms for the 32-shot scan. 

Acquisition times are 2.8s for 2 shots, 7.5s for 4 shots, 9.4s for 8 shots, 14s for 16 shots 

and 43.2s for 32 shots. A high resolution conventional MR image is acquired using a FFE 

pulse sequence, with the same number of slices and FOV as the EPI images, matrix size 
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256 x 256, TE 5 ms, TR 500 ms. A field map is also acquired using the method used for 

3T data. It has the same slice number, matrix size and FOV as the conventional image 

and takes 110 s to be acquired. 

 

3. Methods 

 

3.1. Data processing 

Since the scalp is clearly imaged in the conventional MR images while it is not in 

the EPI images (see Figure 31 for example), it may affect the registration results, 

especially around the boundary of the brain. Therefore, both EPI and conventional MR 

images are preprocessed by applying a brain mask to remove non-cerebral parts. The 

brain mask for each subject is generated by using the Brain Extraction Tool (BET) 

software [70] on a magnitude image obtained from the field-map scan. After masking, the 

conventional MR images are downsampled from 256 x 256 x 28 to 128 x 128 x 28 to 

facilitate the following registration process. 

The scan for field map acquisition provides two images simultaneously: one 

magnitude image and one frequency image (with unit in Hz). These two images are 

derived from the two complex images C1 and C2, acquired at different echo times: TE,1 

and TE,2, respectively. The magnitude of C1 and C 2 are the same and either of the two can 

be used as the magnitude image. The phase difference accrued between the two images is 

{ }2*
1CCΦ ∠=∆  and is called the phase image. The frequency image is calculated as:  

 
T∆

∆
=
π2
Φ

f  (41) 
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where 2,1, EE TTT −=∆  is the change in echo time. Because the phase difference is 

wrapped into the range [-π, π], it needs to be unwrapped by adding multiples of 2π when 

necessary. This was done by using a tool called PRELUDE [70]. PRELUDE takes as 

input both the magnitude image and the phase image (converted from the frequency 

image according to Eq. (41)). The software produces an unwrapped phase image. Also, 

regions in this image where the intensities are low in the magnitude image are assigned a 

phase value of zero. This is so because at these locations, the phase information can not 

be estimated accurately. This phase image is then converted back to the frequency image. 

The brain mask used for EPI images is also used here to mask the obtained frequency 

image. To increase the signal to noise ratio, this frequency image is smoothed using a 2D 

Gaussian kernel. Finally, this preprocessed frequency map is used to compute a 

displacement map D  as:  

 
yv⋅

⋅
=
BW

FOVf
D  (42) 

where BW is the bandwidth in the phase encoding (here y) direction and vy is the voxel 

size in the y direction. 

 

3.2. Description of three distortion correction methods 

(a) Field map method for distortion correction (FLD) 

With the displacement map D  computed according to Eq. (42), EPI images are 

undistorted using the pixel-shift method [16]. Intensity correction factors, i.e. Jacobian 

and rephasing factors as described in chapter III, are included to correct for intensity 

distortion and signal loss, respectively. Tri-linear interpolation is used for resampling. 
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(b) Registration with spatially varying scales (REG) 

This method has been introduced in detail in Chapter IV and is described here 

only briefly. The conventional MR image for each subject is used as the reference image 

to which the EPI image is non-rigidly registered. Before registration, a simulated 

distortion field is first generated for each subject using an MR simulator [64]. The input 

to the simulator is a water/air mask for this brain. Given the simulated distortion field, a 

scale map with two values (4 and 6) is computed and used to vary spatially the final 

density of the basis functions. During registration, six levels of radial basis functions 

(RBF) are used to model a deformation field, which provides an estimate of the existing 

geometric distortion in the EPI image. The first four levels of RBF are used in regions 

where the scale map is equal to 4 and all six levels of RBF are used in regions where the 

scale map is equal to 6. Only one image resolution is used. The optimization is performed 

along only the y direction, which is the phase-encoding direction in EPI images. 

(c) Registration with field map as initialization (COMB) 

This method has been introduced in detail in Chapter V. Here again we provide 

only a brief description. The source and target images are the same as the ones used in 

method REG, but the deformation field is initialized with the distortion map computed 

from the field (frequency) map. This deformation field is then refined through the 

nonrigid registration process. As is the case in method REG, six levels of RBF and only 

one image resolution are used during registration. A binary mask, computed from the 

distortion map and the EPI image, as described in Chapter V, is used to guide the 

placement of basis functions during registration, i.e. RBFs are placed only in regions with 

a mask value equal to 1. In the regions in which the mask value is zero, the displacements 
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provided by the field map are used. This method reduces the number of regions to be 

optimized and thus requires less time than method REG. 

 

4. Experiments and Results 

4.1. 3T EPI images with ten datasets 

In this experiment, we compare the three distortion correction methods using ten 

3T datasets. Figure 31 shows an example of the acquired conventional MR (left column) 

and EPI (right column) images in both axial and sagittal views. They are then processed 

as described in Section 3.1 and used for distortion correction. 

  

 

 

Figure 31: Conventional MR (Left column) and EPI (right column) images of one subject. 

 

For each subject, we apply the three distortion correction methods to the original 

EPI image. Results from one of the subjects are shown in Figure 32, in both sagittal and 

axial views. Figure 32 (a) shows the conventional MR images. Figure 32 (b)-(e) shows 
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the EPI images before correction and corrected with methods FLD, REG and COMB, 

respectively. The outer contour of the brain is outlined in (a) and overlaid onto the other 

images to show the existing geometric distortions. All three correction methods provide 

similar geometric correction results. One notes that the geometric distortion in the 

original EPI image is mild except for the frontal part of the brain. This is confirmed by 

checking the displacement map computed from the measured field map for this subject 

using Eq. (42). Figure 33 shows the displacement map (a) and a mask in which the 

magnitude of the displacement is larger than one voxel (b). Each slice of mask (b) is 

overlaid onto the corresponding EPI slice. This figure shows that severe geometric 

distortions are concentrated in the frontal areas and the edge of the brain. The mean of the 

magnitude of the displacements for each slice is computed and plotted in Figure 34. It 

shows that the mean values become quite small (less than 0.5 voxel) after the 12
th
 slice. 

Signal loss is, however, quite perceptible in the EPI image, as shown in Figure 32 

(b). Figure 32 (c)-(e) shows that all three methods are able to reduce the signal loss effect 

thanks to the use of the intensity correction factors discussed in the Methods section. But, 

the results from method FLD appear to induce more unrealistically high intensity values 

into the corrected image than methods REG and COMB, as pointed by the arrows in 

Figure 32 (b).  
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 (a) (b) (c) (d) (e) 

Figure 32: Distortion correction results for one subject using three methods. (a): 

Conventional MR image; (b): EPI image before correction; (c), (d) and (e): EPI image 

after correction with method FLD, REG and COMB. Both sagittal (the 1
st
 row) and axial 

(the 2
nd
 to the 5

th
 row) views are shown. The locations of the axial views are indicated 

with the dotted lines in the top left image. 
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 (a) (b) 

Figure 33: Displacement map computed from a measured field map. (a): 28 slices of the 

displacement map; (b): a mask (the brightest regions), in which the magnitude of 

displacement is larger than one voxel, overlaid on the original EPI image. 
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Figure 34: Mean in voxel units of the magnitude of displacement across slices. 

 

Comparing the three correction methods one subject at a time is difficult as one 

method may appear superior to the other in one case and inferior in another case. To 

address this issue, we have compared methods on the entire population after spatial 

normalization. 
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Spatial normalization is an important step during multi-subject studies for EPI 

images, such as group analysis in fMRI [81] or DTI [82]. It is used to align the same 

brain regions across subjects together, which may enhance the statistical power of a 

random effects group study. Here, we randomly choose the conventional MR image of 

one subject as a template and align the conventional MR images of other subjects to the 

template. This alignment includes two steps: First, a rigid registration technique [83], [84] 

with six degrees of freedom (three rotation angles and three translations) is employed to 

match each image to the template roughly; Second, the rigidly transformed image is 

locally deformed to the template using a nonrigid registration method [43]. For each 

subject, the combination of the two deformation fields obtained in the two steps is then 

applied to the EPI images before or after correction. With this procedure, we generate 

four groups of spatially normalized images based on four sets of EPI images: before 

correction, and corrected with methods FLD, REG, and COMB.  

We compute the average of the normalized images for each case and show the 

results in Figure 35. As can be seen, for all cases, the overall shape of the averaged EPI 

images resembles that of the conventional image except possibly in the anterior region, 

where intensity attenuation is too severe to determine the boundary. This may be 

explained by the relatively small displacements existing in the original EPI images as 

observed in the previous experiment. But, noticeable intensity differences between the 

results can be found in the frontal and temporal cortex, as pointed by the arrows. Intensity 

profiles along the lines drawn in Figure 35 (b)-(e) are plotted in Figure 36 to show the 

intensity differences between results from the three methods. The region encircled by an 

ellipse in this figure highlights the amount of intensity recovered near the edge by the 
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three methods. These results show that the REG and COMB methods are better than the 

FLD method at recovering the signal.  

 

 

 (a) (b) (c) (d) (e) 

Figure 35: Average of the spatially normalized conventional MR image (a), EPI images 

before correction (b), corrected with methods FLD (c), REG (d) and COMB (e). Two 

rows show images at slice number 10 and 13. 
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Figure 36: Intensity profiles along the lines from left to right in Figure 35 (b)-(e) top row. 
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To compare more quantitatively the influence of the correction method on the 

normalization results, we first check the improvement in similarity between each of the 

normalized EPI images and the template due to the three distortion correction methods. 

To do so, we compute two similarity measures: normalized mutual information (NMI) 

[69] and the correlation ratio (CR) [85]. The results for each correction method are 

plotted in Figure 37. Using the boxplot function provided by Matlab [The MathWorks, 

Natick, MA], the statistics on these results is computed and shown in Figure 38. In this 

figure, the columns show the statistics on the similarity values obtained before correction 

and after correction with the three methods. The box is bounded on the bottom by the 

first quartile and on the top by the third quartile. The red line in the middle of the box 

indicates the median. By comparing the medians of all groups of data for both similarity 

measures, it can be seen that images from all subjects show an improved match with the 

template after correction. Among the three methods, method REG provides the highest 

median values. We also perform a paired t-test with Bonferroni correction between each 

pair of correction methods to test whether or not the results are statistically different. 

While there is no significant difference at p = 0.05 (0.017 with Bonferroni correction for 

three tests) between methods FLD and COMB or between methods COMB and REG, 

method REG is significantly different from method FLD (p < 0.01 for NMI and p < 0.006 

for CR).  
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 (a) (b) 

Figure 37: Similarity measures between the normalized EPI images and the template. (a): 

Normalized Mutual Information (NMI); (b): Correlation Ratio (CR). 

 

 

 (a) (b) 

Figure 38: Box plot of the values for two similarity measures. (a): NMI; (b): CR. 

 

We also use another method to compare the correction techniques. For each 

method, we take the 10 normalized volumes and applied a principal component analysis 

to this set of images. We then compute the principal component images, which are the 

projections of the original images onto the principal components. If all the images in the 

set were absolutely identical, the first principal component image would be identical to 
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these images and the other ones would be zero. If there are differences between these 

images, the first principal component image would capture the common feature among 

all the images and the higher order PC images would capture differences between these 

images. In addition, the eigenvalue associated with each principal component image is 

the variance in this component. The larger it is, the more information the component 

image contains. Figure 39 shows the first five principal component images for the three 

methods. The image from method FLD appears to contain more variations than that from 

method REG or COMB. Figure 40 plots the cumulative sum of the eigenvalues as a 

function of the number of principal components. This plot shows that the difference 

among the normalized images is the largest with the FLD method and the smallest with 

the REG method, again indicating that the FLD method is not able to correct images as 

well as the other methods.  

 

 

Figure 39: First five principal component images for methods FLD (top row), REG 

(middle row), and COMB (bottom row). 
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Figure 40: Cumulative variance explained by principal components for each distortion 

correction method. 

 

4.2. 7T EPI images with multiple shots 

In this experiment, we examine the three distortion correction methods using 

multiple-shot EPI images collected on a 7T MR scanner. Because they provide a high 

signal-to-noise ratio, higher spatial and temporal resolution, and improved contrast, ultra 

high field (7T and above) scanners are increasingly being used for many applications. 

However, susceptibility effects also increase in proportion with the field strength. Thus, 

susceptibility induced distortions in 7T EPI images are more severe than those in 3T 

images. To reduce such distortions, multi-shot imaging techniques are used for EPI scans. 

According to the physics of MR imaging, geometric distortion in images is reduced by 

half when the number of shots during imaging is doubled. Here, we compare the 

correction results obtained on these 7T datasets using the three methods. We also 

evaluate the ability of each of these methods to produce an image equivalent to an image 

acquired with more shots than the image being corrected. The conventional MR image is 
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shown in Figure 41 (a). It can be seen that there exists spurious intensity variation across 

the image, and more specifically, the intensity values in the central of the image are much 

higher than expected. This phenomenon is called center whitening or dielectric resonance 

artifacts [86], [87], which is caused by an inhomogeneous radiofrequency
 
distribution in 

larger tissue volumes and is more pronounced at high field imaging. To mitigate the 

effect of this artifact on our registration method, which uses intensities as its similarity 

measure, we preprocess the image using the method described in [88], which uses a 

parametric estimation of a bias field to correct the image. The image after bias correction 

is show in Figure 41 (b). 

 

  

  

 (a) (b) 

Figure 41: 7T conventional MR images. (a): Before bias correction; (b): After bias 

correction. 

 

One axial slice in each EPI image acquired with 2, 4, 8, 16 or 32 shot is shown in 

Figure 42 (a)-(e). The corresponding slice in the conventional MR image is shown in 

Figure 42 (f). To illustrate the amount of geometric distortions visible in the EPI images, 
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lines along some visible structures are drawn in the conventional MR image and overlaid 

onto the EPI images. The displacements of the structures in the EPI image with 2-shot (a) 

are clearly visible. With more shots, the amount of displacement is reduced. In the 

images with 16- and 32- shots, the lines already match the corresponding structures very 

well.  

 

 

Figure 42: EPI images acquired with different shot numbers: 2 (a), 4 (b), 8 (c), 16 (d), 

and 32 (e), and the corresponding conventional MR image (f). Lines along visible 

structures in (f) are manually drawn and overlaid onto (a)-(e).  

 

Figure 43 shows the images in Figure 42 after correction using methods FLD (left 

column), REG (middle column) and COMB (right column). Rows from top to bottom in 

this figure correspond to shot numbers 2 to 32, respectively. The lines drawn in Figure 42 

(f) are overlaid onto the images to evaluate the correction results. By checking the 

(a) (b) (c) 

(d) (e) (f) 
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corrected images in the top two rows, which are generated from the images with 2- and 4- 

shots, it can be seen  that method FLD reduces the distortions but also that noticeable 

displacements remain  (left column). In the images corrected with methods REG and 

COMB (middle and right columns), the lines match the corresponding structures more 

closely. For the images with 16- and 32- shots, in which geometric distortions are not 

noticeable, corrections barely change the images. By visually comparing the degree of 

match between the manually drawn lines and the structures in the corrected 2-shot images 

(shown in the first row in Figure 43) with that in the original EPI images (shown in 

Figure 42), we observe that the remaining geometric distortions in the 2-shot images 

corrected using methods REG and COMB are comparable to the original 16- or 32-shot 

images. This implies that with the help of such post-processing methods, a lower number 

of shots can be used while keeping the geometric distortion in the acquired image 

comparable to the distortion observed in images with more shots. This, in turn, reduces 

acquisition time. In our experiments, the imaging time differences between 2-shot and 

16- and 32- shots is 11.2s and 41.4s, respectively. 
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Figure 43: EPI images after correction with method FLD (left column), REG (middle 

column), and COMB (right column). Rows from top to bottom correspond to shot 

numbers 2, 4, 8, 16 and 32, respectively. 
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Figure 40, Continued 

 

To compare the correction results quantitatively, we also draw lines in the EPI 

images along the same structures as in the conventional image. After correction, we 

deform the lines in each image using the deformation fields provided by the three 

methods separately. We then compute a distance measure between the lines in the 

conventional image and those in each EPI image before and after deformation. The 

distance measure is defined as the square root of the sum of squared minimum distances 

from each point on the lines in the EPI image to the lines in the conventional image. A 

lower value of this measure means a better match between the structures in the EPI and 

the conventional images. Table 3 shows the results. For all EPI images, the three 

correction methods are able to reduce the distance measures. For the 2-shot image, 

methods REG and COMB provide noticeable lower distance measures than that from 

method FLD. For the images with higher shots, all three methods perform similar.  
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Table 3: The distance measures between the lines drawn in the conventional MR image 

and those drawn in the EPI images and their deformed versions (voxel).  

Shots 2 4 8 16 32 

Before Correction 42.13 25.08 17.15 14.09 13.83 

FLD 23.52 14.83 10.97   9.38   8.36 

REG 16.20 13.84 11.94 11.35 11.20 

COMB 15.60 13.38 11.78 11.22   9.86 

 

5. Discussion 

In this study we have compared three retrospective distortion correction methods 

for EPI images. Both 3T and 7T images are used in the experiments. The results we have 

obtained indicate that the choice of a method for distortion correction largely depends on 

the type of distortions to be corrected as well as on the availability of data.  

For EPI images in which the distortion is relatively small, such as the 3T EPI 

images used in our experiments, all three methods perform in a similar way if geometric 

corrections alone are considered.  In this case and if the data can be acquired, field map 

methods should be the preferred to registration methods because of their simplicity.  

Field map based methods, however, are prone to causing their own intensity 

artifacts when used for intensity correction. These artifacts are due mainly to the 

difficulty of calculating the rephasing factor, which requires the computation of the 

derivative of the measured field map across axial slices (here in the z direction). In EPI 

acquisitions, in order to limit the scan time, a small number of axial slices are usually 

acquired. This may lead to a rapidly changing field in the z direction. Therefore, the 

estimated derivative of the field in the z direction may be inaccurate and cause severe 

intensity artifacts. Applying a simple low-pass filter to the field map in the z direction can 

not solve this problem. These intensity artifacts are less discernible in the registration 
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methods due to the smoothness of the RBF modeled deformation field. Therefore, when 

intensity correction is needed, a registration method or a method combining registration 

and field-mapping should be preferred. The combination approach has the additional 

advantage of being faster than the method based purely on registration while leading to 

comparable results. Note that the accuracy of registration methods is limited by the voxel 

size and the optimization algorithm they use. When the geometric distortion is small (less 

than one voxel), the estimation error introduced in the registration process may be 

comparable to the distortion itself. Although it is difficult to observe in our 3T data, this 

type of error may be reduced in the combination approach because of the constraints 

introduced by the field map.  

For EPI images in which the distortion is much larger, such as in the 7T EPI 

images we have used, while the results show no apparent difference between the 

registration method and the combination method, both of them outperform the field-map 

method. An interesting finding is that the corrected 2- or 4-shot EPI images appear to 

have an amount of geometric distortions that is comparable to the amount of distortions 

observed in the uncorrected 16- or 32 shot EPI images, which take much longer to 

acquire. 

The effectiveness of the field-map method is largely determined by the accuracy 

of the field inhomogeneity measurement. Our experiments for 7T images show that a 

field map may not be accurately measured when the existing inhomogeneity is severe. In 

this work, we use the standard field map acquisition method to get a field estimate. More 

sophisticated imaging techniques, such as [89], could be used to improve the quality of 

the obtained field map. It is also worth mentioning that other imaging artifacts existing in 
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conventional MR acquisition may also affect the estimate of the field map. Another 

potential issue which may affect field map based methods is motion. Since susceptibility 

artifacts are related to subject movement [1], a field map acquired at the beginning of the 

study may not reflect the field inhomogeneity during the study, and simply transforming 

the field map to an EPI image space is not sufficient. 

Finally, one notes that the similarity measure used in our registration method is 

calculated based on image intensities, more specifically, the histogram of the intensities. 

One assumption of the method is that different tissues in the image have different 

intensity ranges. Therefore, strong intensity variations across the image, as in the 7T 

conventional MR image, or low contrast between different tissues, which usually happens 

in EPI images with low resolution, may affect the accuracy of the registration results. In 

conclusion, the selection of one or the other approach for correction of distortions in EPI 

images should be based on a careful analysis of the image characteristics. 
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CHAPTER VII 

 

CONCLUSION AND FUTURE WORK 

 

1. Conclusion 

In this thesis we developed methods based on nonrigid registration to correct in 

EPI images the geometric and intensity distortions caused by the inhomogeneity in the 

main magnetic field. Our methods are founded on the physics of Echo Planar Imaging. 

First, we incorporated a new rephasing factor into our nonrigid registration algorithm to 

account for signal loss due to dephasing in GE EPI images. Second, we introduced a 

spatially varying scale mechanism into our registration algorithm to adapt the local scale 

properties of the deformation field to match these with the characteristics of the actual 

geometric distortions in EPI images. Third, we proposed to combine the field-map 

method and the nonrigid registration method for correction of distortions in EPI images. 

We also compared three distortion correction methods to study their advantages and 

disadvantages, which provides insights into the selection of field map based or 

registration based methods for distortion correction of EPI images under certain 

circumstances. 

GE EPI images are susceptible to both geometric distortions and signal loss. 

While MR imaging physics has been used in nonrigid registration methods for distortion 

correction, a physics-based model specifically for GE EPI has not been used in any 

registration method. In Chapter III, we added into our registration algorithm a new 

intensity correction factor derived to compensate for intra-voxel dephasing in GE EPI 

images. Intra-voxel dephasing causes signal loss and thus intensity attenuation in the 
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images. The new rephasing factor we introduce, which changes the intensity of a voxel in 

images during the registration, is used to improve the accuracy of the intensity-based 

nonrigid registration method and mitigate the intensity attenuation effect.  Simulation-

based experiments were first used to evaluate the method. An MR simulator and a real 

field map were used to generate a realistic GE EPI image. The geometric distortion 

computed from the field map was used as the ground truth to which the estimated 

nonrigid deformation can be compared. We then applied the algorithm to 5 datasets of 

real human brain images. The results show that, after registration, alignment between EPI 

and multi-shot, spin-echo images, which have relatively long acquisition times but 

negligible distortions, is improved and that signal loss caused by dephasing can be 

recovered. 

The property of geometric distortion in EPI images can be quite different across 

the images. The magnitude of the distortion changes smoothly in areas inside the brain 

but dramatically at the interfaces between air and tissues. This makes the distortion 

heterogeneous. To make the deformation field estimated by nonrigid registration be as 

similar to the real distortions as possible, such characteristics should be included in the 

registration process. In Chapter IV, we proposed a novel approach in which the 

regularization of the field is adapted spatially based on a scale map. We also presented a 

method by which this scale map can be generated according to a priori information about 

the distortions. In the experiments, we first applied the proposed approach to images with 

known deformation and scale information. Then, we applied it to simulated and real 3D 

EPI images. Our results show that the proposed approach provide transformations that are 
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smoother and that can be computed in a much shorter time (39% less in average for 6 

datasets) than those computed when a fixed scale is used without sacrificing accuracy.  

Field map methods and nonrigid registration methods are two commonly used 

retrospective methods for distortion correction in EPI images. Field map methods are 

simple and fast, but they require additional scans to obtain a field map. Also, the accuracy 

of the field map measurement is influenced by a number of factors, such as imaging 

artifacts, subject motion, etc. Methods based on nonrigid registration on the other hand 

need no additional scan time, and they use an estimated deformation field to approximate 

the distortions in EPI images. The computation of the deformation field is usually time-

consuming and the result may be affected by local minima.  The combination of these 

two methods has not heretofore been studied. In Chapter V, we proposed to use a 

measured field map as a constraint for the nonrigid registration method. We tested the 

approach on a simulated image and on a real EPI image of a phantom and found that the 

correction results are improved and the computational time is reduced.  

Which distortion correction method should be chosen for an EPI image is an 

interesting question to be answered. In Chapter VI, we compared the methods we 

proposed in this thesis and a field map method on 10 datasets of 3T images and a set of 

7T data which includes 5 different shots of EPI images. The effect of correction for both 

geometric and intensity distortions are compared. The experimental results we have 

obtained with these datasets suggest that while the three correction methods appear to 

perform similarly, field map methods, due to their simplicity, should be preferred for the 

correction of small geometric distortion. When intensity correction is needed or the 

distortion is larger, the registration method and the combination method perform better. 
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2. Future Work 

In Chapter IV, we used a nonrigid registration with spatially varying scale to 

estimate the distortions in EPI images. In the experiments, the number of scales (2) used 

for the classification of the existing distortions is chosen empirically. Whether this 

selection is optimum has not been investigated yet. The use of more scales in the scale 

map would be worth exploring. Also, besides the scale property, another property, called 

the stiffness, of the deformation field could be adapted spatially. In the ABA algorithm, a 

stiffness parameter λ  is used to control the stiffness of the transformation. Duay et al. 

[53] have utilized such technique with success for the nonrigid image registration of 

images with large space occupying lesions by assigning two different λ  values for the 

intra-ventricular and extra-ventricular regions. Here, as was done for the scale map, a 

stiffness map could be introduced to control the stiffness of the deformation field. The 

stiffness map could be computed based on the Jacobian of an estimated distortion field, 

which measures the amount of displacement in the field.   

The methods proposed in this thesis have been evaluated on single EPI images 

and the results are promising. An extension of this work will be to use them on fMRI 

time series. Because subject movement usually exists during an fMRI scan, the EPI 

images in this scan need to be aligned to correct the motion artifact. Instead of 

performing distortion correction after aligning them together, the EPI images should be 

first corrected and then aligned. This is because the physics of MR imaging tells us that 

geometric distortions will happen mainly in the phase encoding direction, which is 

usually along the y axis in the image. We used this fact in our registration-based 

correction method, and we constrain our deformation to be in the y axis direction only. 
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But, after registration (which typically includes rotation) the phase encoding direction 

may no longer lie along an image axes. Therefore, assuming that a reference image and 

an fMRI time series have been acquired, distortion correction on these images should be 

performed as follows. First, the reference image is rigidly registered to each of the EPI 

image in the series to generate a reference image for each EPI images. Second, the 

distortions in each EPI image are corrected using the proposed methods. Third, the 

corrected images are registered to each other for motion correction. Activation analysis 

can then be performed on images with and without distortion correction to compare the 

changes. 

When extending our methods into time series, temporal smoothness along the 

obtained deformation fields (in the aligned space) could be used as an additional 

constraint to help the registration. This is because one can assume that the distortion at 

the same anatomic location in the EPI images change smoothly along time. To impose 

this constraint in the registration process, a simple approach is to perform nonrigid 

registration for the EPI images sequentially and use the obtained deformation field from 

the previous image as the initial deformation field for the current image. Note that the 

previous deformation field needs to be transformed into the current image space. 

Another interesting direction for nonrigid registration based methods is to correct 

for distortions in diffusion weighted images (DWIs). In this thesis, we focused mainly on 

the distortions caused by inhomogeneity in the static magnetic field. While such 

inhomogeneity also contributes to distortions in DWIs, another important source for 

distortions in DWIs is the eddy current effect, which is especially manifested in diffusion 

imaging due to the strong and rapidly switching diffusion weighting gradients. This effect 
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may lead to shear, shift, and scaling of the resultant images [90]. As mentioned in 

Chapter II, affine or polynomial registration methods have been used to correct such 

distortions [29]-[35]. Incorporating physics-based models into nonrigid registration to 

correct for distortions due to static-field inhomogeneity as well as the eddy current effect 

in DWIs has not been investigated. A model derived from eddy current principles could 

be added into the proposed methods in this work to provide an approach dedicated for 

DWIs distortion correction. 
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