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CHAPTER I 

 

INTRODUCTION 

 

Organisms experience several types of stress. 

Stress occurs when homeostasis is threatened, causing physiological and 

pathological changes (Jaggi et al., 2011).  Organisms can experience acute or chronic 

stress from internal or external sources (Figure 1).  Acute stress is short-lived and 

typically experienced once, such as a sudden, quick immersion in cold water or a single 

dose of ingested poison (Bhatia et al., 2011).  Chronic stress is long-lived, reoccurring 

several times subsequently or persisting, such as prolonged exposure to an environmental 

toxin or extreme temperatures (Bhatia et al., 2011).  Internal stressors are those that come 

 

 

Figure 1.  Types of stress and stressors.  Stress can either be acute (short-lived) or 

chronic (long-lived, continuous).  Both acute and chronic stress can be induced by 

internal or external stressors. 
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from within the organism, such as toxic metabolic byproducts.  External stressors are 

those from the environment, such as heat or physical trauma.   

The physiological and pathological changes within an organism upon stress occur in 

an attempt to maintain or restore homeostasis and enhance the probability of survival 

(Jaggi et al., 2011).  These changes are collectively known as the stress response.  All 

organisms experience various stressors at the whole animal and cellular levels.  Stressors 

at the animal level include lack of food, predation, poison, infection, and extreme 

temperatures.  The whole animal stress responses, “fight-or-flight” for acute stressors and 

“general adaptation syndrome” for chronic stressors, are typically controlled by hormonal 

changes within the animal (Charmandari, 2005).    

Stress also occurs at the cellular level, and all cells experience various stressors as 

part of their normal physiology.  Cellular stress typically involves the damage or defect 

of one or more types of macromolecules within the cell, such as DNA or proteins (Kültz, 

2005).  For this reason, molecular chaperones such as heat shock proteins (Hsps) are key 

components in several stress response mechanisms.  Another common type of cellular 

stress is the generation of reactive oxygen species (ROS) or other oxidative damage 

(Pastori, 2002).  Common stressors include heat shock, oxidative conditions, viral 

infection, hypoxia, mitochondrial stress, unfolded proteins, DNA-damaging agents, 

pharmaceuticals, and irradiation (Kolobova et al., 2009; Kedersha and Anderson, 2007).   

 

Cells have several mechanisms for stress response. 

Cells must be able to respond to stressors and have developed several mechanisms 

to do so.  The response to stress is tailored depending on the type and level of stress 
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(Fulda et al., 2010).  Cells have stress responses that can directly counteract stress-

induced damage (Kültz, 2005).  Other mechanisms can temporarily increase cell 

tolerance for stress-induced damage.  All stress responses aim for protection of the basic 

cellular functions and components such as DNA repair and stability, cell cycle control, 

and protein quality control (Kültz, 2005).   

Some mechanisms of stress response aid in cell survival and recovery, while other 

mechanisms induce cell death (Fulda et al., 2010).  Response mechanisms to enhance cell 

survival are employed to maintain and repair otherwise healthy cells (Kültz, 2005; Fulda 

et al., 2010).  Mechanisms to induce cell death are necessary to remove unhealthy cells 

that are beyond recovery (Kültz, 2005; Fulda et al., 2010).  Cells initially employ 

response mechanisms to aid in cell recovery, but if the stressor persists or the damage is 

too great, cells then activate death signaling pathways (Fulda et al., 2010).   

When cells undergo cell death as a stress response, there are several different 

pathways:  apoptosis (Kerr et al., 1972), autophagic cell death (Clark, 1957), and necrosis 

(Gulliver, 1838).  Apoptosis, or programmed cell death, is a common stress response that 

involves nuclei rounding and fragmentation, cell shrinkage and blebbing, and 

phagocytosis of cell fragments (Kerr et al., 1972; Elmore, 2007).  Apoptosis is a highly 

conserved process throughout evolution and a common target for therapeutics.  This 

process of cell death plays critical roles in embryonic development and aging in addition 

to stress response (Elmore, 2007).  There are two major apoptotic pathways in mammals 

(Kültz, 2005; Elmore, 2007).  The intrinsic apoptotic pathway involves the release of 

cytochrome c and other factors from mitochondria (Elmore, 2007).  This is described in 

more detail below.  The extrinsic apoptotic pathway is induced by specific ligands 
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binding to cell surface receptors, activating a signaling cascade (Elmore, 2007).  Both 

pathways involve the activation of caspase proteins, a family of cysteine proteases, and 

this largely accounts for the morphological changes seen (Samali et al., 1999).  Distinct 

caspases are activated during intrinsic versus extrinsic signaling (Kanamaru et al., 2012).  

Apoptosis has now also become known as caspase-dependent programmed cell death 

(Samali et al., 1999). 

Autophagic cell death is another programmed cell death pathway, and it involves 

the process of autophagy, or self eating (He and Klionsky, 2009).  During autophagy, 

long-lived proteins and organelles in the cytoplasm are sequestered in vesicles and 

degraded.  The double-membraned vesicle that results is termed an autophagosome (He 

and Klionsky, 2009).  It remains controversial whether the process of autophagy is toxic 

or protective for cells.  One role of autophagy is to rid the cell of unhealthy mitochondria 

through a specific process called mitophagy (Ashrafi and Schwarz, 2013).  There is 

evidence of cross-talk between apoptosis and autophagic cell death (Shimizu et al., 2004; 

Yu et al., 2004; Ullman et al., 2008) 

Necrosis is traditionally considered non-programmed cell death, instead associated 

with loss of ionic balance control that leads to swelling and membrane rupture, resulting 

in cellular lysis (Festjens et al., 2006).  Recently, evidence has mounted suggesting the 

process of necrosis is regulated by signaling pathways, termed necroptosis 

(Vandenabeele et al., 2010).  Evidence also suggests the mechanisms that promote 

necrosis can function to inhibit apoptosis (Festjens et al., 2006).  Necrosis induces an 

immune response due to the release of cellular contents (Festjens et al., 2006).   
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Stress granule formation is one type of stress response. 

One type of stress response is the formation of stress granules (Nover et al., 1989).  

The formation of stress granules is induced by many types of stress, including heat shock, 

UV irradiation, and oxidative conditions (Anderson and Kedersha, 2006).  Other 

stressors, such as DNA-damaging agents, do not induce stress granule formation 

(Kedersha and Anderson, 2007).  Typically, the assembly of stress granules is triggered 

by stress-induced phosphorylation of translation initiation factor eIF2α (Figure 2) 

Figure 2.  Stress granule formation and dispersal.  Upon stress, translation 

initiation factor eIF2α is phosphorylated, stalling the initiation complexes.  This 

leads to coalescence of stalled initiation complexes.  Through an unknown 

mechanism, other mRNAs and proteins are recruited and sequestered in the stress 

granule.  When the stress is relieved, stress granule components disperse into the 

cytoplasm through an unknown mechanism.  
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(Kedersha and Anderson, 2007).  This phosphorylation event prevents the recycling of 

GDP-bound eIF2α to GTP-bound eIF2α, which leads to a stalling of the translation 

initiation complex (Srivastava et al., 1998).  These stalled initiation complexes then 

coalesce to form stress granules, the exact mechanism of which remains unknown (Figure 

2).  Stress granules are generally composed of stalled initiation complexes, other mRNA 

translation machinery, mRNAs, proteins involved in mRNA regulation and metabolism, 

and other signaling proteins that have no known link to RNA (Kedersha and Anderson, 

2007). 

Stress granules serve to spatially and temporally sequester mRNAs and proteins 

during stress (Figure 2) (Kedersha and Anderson, 2007).  Proteins and mRNAs that are 

needed during stress response, such as heat shock proteins (Hsps), are not sequestered.  

Stress granules also act as triage centers, sorting mRNAs for sequestration or decay 

during times of cellular stress (Anderson and Kedersha, 2006).  For this reason, the 

composition of stress granules can be highly dynamic.  Stress granule components have 

diverse localizations and functions when cells are not experiencing stress.  Some stress 

granule proteins are known to interact with mRNAs and possibly recruit additional 

mRNAs to stress granules.  One of these proteins is G3BP (Ras-GAP SH3 domain 

binding protein), which is a major component of stress granules (Tourrière et al., 2003).  

Caprin-1 (cytoplasmic activation/proliferation-associated protein-1) is also a mRNA-

associated stress granule protein (Solomon et al., 2007).  G3BP, Caprin-1, or other 

critical stress granule components can self-aggregate and trigger stress granule formation 

when overexpressed, independently of eIF2α phosphorylation (Kedersha et al., 1999).  

Once stress is no longer present, stress granules disperse, and the sequestered mRNAs 
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can be immediately translated.  However, if the stress signal does not allow for stress 

granule dispersal, cells undergo apoptosis, or programmed cell death (Kedersha and 

Anderson, 2007).       

 

Mitochondria are highly involved in cellular stress response. 

Mitochondria were first identified over a century ago (Henle, 1841) and are vital 

organelles to the cell.  Mitochondria have various crucial functions within cells, including 

metabolism, ATP-generation, redox biochemistry, and calcium homeostasis (Horbinski 

and Chu, 2005).  Mitochondria also play a role in calcium signaling, in concert with and 

independently of the ER (Dorn and Scorrano, 2010; Gunter et al., 2000).  Because of 

their many roles, mitochondria are critical locations for signal integration.   

Mitochondria are also crucial organelles in regulation of stress response and 

decisions between cell survival and death.  As mentioned, cell death is one response to 

stress.  Mitochondria are responsible for releasing several pro-apoptotic factors, and 

mitochondria are acted upon by many other apoptosis-regulating proteins (Kanamaru et 

al., 2012).  Every pathway to apoptosis converges upon the mitochondria, the site of 

activation and release of caspases, cysteinyl aspartate proteases.  When cytochrome C is 

released from mitochondria into the cytoplasm, it triggers a signaling cascade that 

ultimately leads to apoptosis (Samali et al., 1999).  Recently, studies show mitochondria 

also play several roles in necroptosis, and the disruption of mitochondrial membranes is 

key to the execution of necroptosis (Vandenabeele et al., 2010).  Mitochondria also play 

roles in whether a cell undergoes autophagy, or “self eating”. 
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Figure 3.  Mitochondria are highly dynamic organelles.  A) Mitochondria 

(green) undergo fission and fusion.  During fission, active Drp1 (blue) is recruited 

to mitochondria outer membranes where it oligomerizes and promotes fission.  

During fusion, mitofusins 1 and 2 (red and orange, respectively) interact on 

mitochondria outer membranes to bring mitochondria in close proximity to one 

another.  Mitofusins facilitate outer membrane fusion, while Opa1 facilitates inner 

membrane fusion.  B) Mitochondria normally maintain a balance between fission 

and fusion.  Several factors can cause mitochondria fragmentation, such as 

increased fission.  Mitochondria hyperfusion and elongation can also be caused by 

several factors, including an increased rate of fusion. 
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Mitochondria themselves undergo mitophagy, a form of autophagy specifically 

associated with mitochondria (Ashrafi and Schwarz, 2013).  Mitochondria experience 

various stresses due to the production of stressors, such as reactive oxygen species 

(ROS), during metabolic processes (Kanamaru et al., 2012).  Due to this constant 

exposure to stressors, mitochondria have continuous quality control mechanisms. 

Dysfunction of mitochondria can result in a loss of membrane potential or overproduction 

of ROS, and other metabolic products, which then become cytotoxic (Nunnari and 

Suomalainen, 2012).  Mitophagy is one method to remove damaged mitochondria from 

the cell (Kissová et al., 2004; Lemasters, 2005).  Loss of membrane potential is one 

trigger for mitophagy, recruiting the E3 ubiquitin ligase, Parkin, to the mitochondrial 

outer membrane to degrade specific outer membrane proteins (Ashrafi and Schwarz, 

2013). 

Mitochondria are highly dynamic, constantly undergoing fission and fusion and 

maintaining a balance between these two processes (Figure 3) (Chen and Chan, 2009).  

Fusion serves as a quality control mechanism because it allows mixing of mitochondrial 

contents (Kanamaru et al., 2012).  If one mitochondrion has a mutation in a specific 

mtDNA gene, mitochondrial fusion allows for the chance to acquire a version that is not 

mutated.  Various events, such as cellular stress, can induce a shift in the balance between 

fission and fusion (Figure 3) (Chan 2012).  When the balance is shifted towards increased 

fusion or decreased fission, mitochondria become elongated and hyperfused (Figure 3) 

(Chen and Chan, 2009).  This is protective against apoptosis, partially due to limiting the 

release of pro-apoptotic factors from the mitochondria (Nunnari and Suomalainen, 2012).  

Hyperfused mitochondria are also protected from mitophagy.  When the balance is 
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shifted towards decreased fusion or increased fission, the mitochondria become 

fragmented (Figure 3) (Chen and Chan, 2009).  This is pro-apoptotic, in part due to an 

increase in mitochondrial outer-membrane permeabilization (Nunnari and Suomalainen, 

2012).  Fragmented mitochondria are smaller and more readily removed via mitophagy 

(Kanamaru et al., 2012). 

 

Inadequate stress response leads to disease development or progression. 

Inadequate or inappropriate stress response influences disease in several ways.  

Cells can respond to a stressor too strongly, not strongly enough, or inappropriately.  

First, the stressor could be too prolonged or strong, but not to the point of inducing cell 

death, and it could hinder the cell’s ability to completely recover to normal status (Fulda 

et al., 2010).  This would allow unhealthy cells to survive and possibly develop into a 

diseased state.  For example, a mutated gene or long-lived protein could remain within a 

cell causing it to become transformed and acquire tumor-initiating characteristics.  

Second, while in a diseased state, cells may have either a strengthened or weakened stress 

response, both of which could have detrimental effects (Fulda et al., 2010).  For instance, 

cancer cells with a strengthened stress response could be more resistant to treatment.  In 

contrast, diseased neurons with a weakened stress response could die upon even a weak 

stress episode.  The importance of proper stress response is apparent in the high degree of 

conservation of basic stress response pathways throughout evolution (Fulda et al., 2010).   

The ability or inability of a cell to respond to stress is highly associated with several 

disease states.  There is a growing body of literature that suggests progression of 

neurodegenerative diseases involves altered cellular stress response (Wolozin, 2012; 



11 
 

Roussel et al., 2013; Lagouge and Larsson, 2013).  Chronic stress has been linked to the 

development of depression and the progression of neurodegenerative and other diseases 

(Jaggi et al., 2011).  The loss of proper stress response in neurons has been implicated as 

a common factor across all neurodegenerative diseases (Fulda et al., 2010).   

Parkinson’s disease is the second most common neurodegenerative disease, and is 

characterized by the degeneration of dopaminergic neurons in the substantia nigra pars 

compacta.  Commonly mutated proteins in some cases of Parkinson’s disease are 

associated with mitochondrial function and resistance to oxidative stress, a common 

feature of Parkinson’s disease (Dodson and Guo, 2007).  Other mutated proteins include 

those involved in degradation of misfolded or damaged proteins (Dodson and Guo, 

2007).  Parkinson’s disease has been associated with activation of several stress response 

pathways, including heat shock response and unfolded protein response (Banerjee et al., 

2009).  Similarly, proper stress response is also important for related neurodegenerative 

diseases such as Alzheimer’s and Huntington’s (Gorman, 2008).    

Proper stress response is also vital to the maintenance of myocardial function, and 

improper stress response can lead to cardiovascular disease and myocardial infarction 

(Cook et al., 1999; von Harsdorf et al., 1999).  Cardiovascular disease is a group of 

disorders, and in many cases cardiomyocyte death occurs via necrosis and apoptosis.  

During ischemia/reperfusion-induced injury, ROS are produced and cause oxidative 

damage to cardiomyocytes (von Harsdorf et al., 1999). If mitochondrial function can be 

maintained, oxidative stress-induced cardiomyocyte death is prevented (Neuss et al., 

2001).  Therefore, cardiomyocytes must maintain a robust response mechanism to 

oxidative stress.   
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Stress response is also a critical factor in the development, progression, and 

treatment of cancer (Lowe and Lin, 2000; Hanahan and Weinberg, 2000; Lowe et al., 

2004).  Tumor formation occurs when the balance between cell proliferation and cell 

death is disrupted within a tissue.  If cells respond inappropriately to stress, unhealthy 

cells can avoid cell death.  This can result in cells with genetic instability, which then 

accumulate mutations that lead to cancerous growth (Lowe et al., 2004).  Resistance to 

cell death and enhanced stress response also contributes to the development of treatment-

resistant cancers.  Chemotherapy, irradiation, and immunotherapy are meant to stress 

cancer cells to the point of triggering cell death (Makin and Dive, 2001; Johnstone et al., 

2002; Fulda and Debatin, 2004).  Cancer cells that are resistant to the stress of therapeutic 

treatments hinder remission of the disease.  

  

Stress response is a complex, highly regulated process. 

Because stress response can literally determine the difference between life and 

death, cellular stress response is a highly regulated process.  Both intrinsic and extrinsic 

apoptotic pathways are highly regulated by pro- and anti-apoptotic signals and cascades 

(Kültz, 2005).  A critical anti-apoptotic pathway is the PI-3-K (phosphatidyl inositol 3 

kinase)/AKT (V-Akt murine thymoma viral oncogene homolog) pathway (Kültz, 2005).  

The p53 pathway is critical for many pro-apoptotic signals as it transactivates many 

proteins in pro-apoptotic cascades (Kültz, 2005).  Autophagy is also a highly regulated 

process and a family of autophagy-related proteins regulates each aspect of the 

autophagic process (Kanamaru et al., 2012).  The most upstream regulators of autophagy 

are the Unc51-like kinases 1 and 2 (ULK1/2), which are recruited to autophagosome 
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formation sites upon starvation (Kanamaru et al., 2012).  The elongation and closure of 

the autophagosome is partially regulated by the LC3-phosphatidylethanolamine 

conjugate.  Selective autophagy events, such as mitophagy, also have unique regulators.  

Mitophagy-specific regulators include PINK (PTEN-induced putative kinase 1) and 

Parkin (E3 ubiquitin ligase) (Kanamaru et al., 2012).  

As described above, mitochondrial dynamics, specifically the balance between 

fission and fusion, is vital to the role of mitochondria in stress response (Youle and van 

der Bliek, 2012).  Both mitochondrial dynamics and stress response are highly regulated 

processes, and protein kinase A (PKA) has emerged as an important regulator of 

mitochondrial dynamics (Rambold and Lippincott-Schwartz, 2011).  Both mitochondrial 

fission and fusion proteins have been identified as substrates for PKA phosphorylation.  

The mitochondria fission protein, Drp1 (dynamin-related protein 1), is inactivated by 

PKA phosphorylation.  This results in a decreased rate of fission, which leads to 

increased mitochondria elongation, a process that promotes cell survival (Figure 3) 

(Chang and Blackstone, 2007).  During starvation, the elongated mitochondria resulting 

from Drp1 inhibition do not undergo mitophagy, and help stressed cells maintain ATP 

levels (Gomes et al., 2011).  During hypoxia, the phosphorylation of Drp1 is suppressed, 

which leads to mitochondrial fragmentation and induction of cell death (Kim et al., 

2011).  Mfn2, a mitochondrial fusion protein, is also phosphorylated by PKA, and this 

promotes cell survival (Chen et al., 2004).  PKA signaling at the mitochondria regulates 

mitochondrial dynamics and stress response, as well as many other cellular processes.  

The complete details of signal integration at mitochondria remain unclear. 
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AKAPs provide signal integration. 

One way to integrate these signaling pathways is through scaffolding proteins in 

close proximity.  A-Kinase Anchoring Proteins (AKAPs) are a large, diverse family of 

functionally similar scaffolding proteins that associate with a variety of signaling proteins 

(Trӧger et al., 2012).  AKAPs were discovered as PKA (Protein kinase A) anchors that 

provide localized cAMP (cyclic AMP)/PKA signaling (Sarkar et al., 1984; Lohmann et 

al., 1984).  Cyclic AMP is a second messenger molecule (Krebs and Fischer, 1956; Rall 

et al., 1957; Sutherland and Rall, 1958; Wosilait and Sutherland, 1957) that activates 

PKA by causing dissociation of the catalytic subunits from the regulatory subunits 

(Beavo and Brunton, 2002).  The PKA holoenzyme is a tetrameric complex that consists 

of two catalytic (Cα, Cβ, or Cγ) and two regulatory (RIα, RIβ, RIIα, or RIIβ) subunits.  

AKAPs associate with PKA via binding the regulatory subunits (Scott, 1997).  Most 

AKAPs bind the RIIα/β regulatory subunits of PKA, but there are some AKAPs that bind 

RIα/β subunits or both RIα/β and RIIα/β (known as dual-specificity AKAPs) (Trӧger et al., 

2012).  Dual-specificity AKAPs include AKAP1, AKAP2, AKAP3, AKAP4, AKAP7β, 

AKAP10, AKAP11, BIG2, Ezrin, PAP7, SFRS17A, and cTnT (Table 1).  Though these 

dual-specificity AKAPs have the ability to bind both RIα/β and RIIα/β subunits, the 

affinities can vary drastically (Jarnaess et al., 2008).  SKIP is an AKAP that specifically 

binds only RIα/β subunits (Means et al., 2011).   

Though AKAPs were identified as PKA anchors, it has since been shown they play 

many other roles as well (Theurkauf and Vallee, 1982; Lohmann et al., 1984; Skroblin et 

al, 2010; Greenwald and Saucerman, 2011).  AKAPs function as anchors for targeting 

proteins to specific sub-cellular locations, and the localization and composition of AKAP  
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complexes is dynamic (Figure 4).  Several AKAPs, including AKAP1, AKAP7, AKAP9, 

AKAP10, BIG2, MTG8, and MTG16b, can localize to more than more subcellular 

location with this localization dependent on a variety of factors (Figure 4 and Table 1).  

AKAPs associate with both signaling enzymes and their substrates to bring the 

components of signaling cascades in close proximity (Michel and Scott, 2002).  An 

AKAP can interact with components of various signaling pathways/cascades 

simultaneously (Greenwald and Saucerman, 2011).  This allows AKAPs to provide 

spatiotemporal regulation of cAMP/PKA signaling, as well as serve as signal integration 

centers (Trӧger et al., 2012).   

  

Figure 4.  AKAPs scaffold PKA and other proteins to various subcellular 

locations.  Some examples are shown here.  For details, see text and Table 1. 
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Table 1.  Summary of current AKAP protein knowledge.  For each protein the 

following information is given:  1) all names for the protein; 2) the most well-

documented subcellular localizations; 3) the most well-documented cellular processes the 

protein is implicated in playing a role; 4) diseases in which the protein has been shown to 

have a direct role, and 5) references for the data in the table.   

Protein name(s) Localization(s) Cellular 

process(es) 

Disease 

association(s) 

References 

AKAP1, D-

AKAP1, 

AKAP121, 

AKAP149, 

AKAP140, 

AKAP84, S-

AKAP84 

Mitochondria, 

endoplasmic 

reticulum, 

nuclear envelope 

Nuclear 

envelope 

maintenance; 

reverse 

transcription; 

mitochondrial 

function 

Female infertility; 

hypoxia 

Lin et al., 1995; 

Trendelenburg et 

al., 1996; Steen 

et al., 2003; 

Newhall et al., 

2006; Lemay et 

al., 2008; Rogne 

et al., 2009; Kim 

et al., 2011 

AKAP2, AKAP-

KL 

Apical surface, 

plasma 

membrane 

Actin 

cytoskeleton; 

cell polarity; 

aquaporin-0 

stabilization  

Cataracts  Dong et al., 

1998; Gold et 

al., 2012 

AKAP3, 

AKAP110, 

FSP95, 

Fibrousheathin-1 

Sperm flagella 

fibrous sheath 

Sperm motility Male infertility; 

ovarian cancer 

Vijayaraghavan 

et al., 1999; 

Turner et al., 

2001; Hasegawa 

et al., 2004 

AKAP4, 

AKAP82, FSC1 

Sperm flagella 

fibrous sheath 

Sperm motility Male infertility; 

cervical cancer 

Turner et al., 

1998; Turner et 

al., 2001; Saini 

et al., 2013 

AKAP5, 

AKAP79, 

AKAP150, 

AKAP75 

Plasma 

membrane; 

primary cilia 

Neuronal ion 

transport; 

pepsinogen 

secretion 

Altered synaptic 

transmission; 

Timothy 

syndrome; 

polycystic kidney 

disease 

Sarkar et al., 

1984; Xie and 

Raufman, 2001; 

Cheng et al., 

2011; Choi et 

al., 2011; Gold, 

2012 

AKAP6, 

mAKAP, 

AKAP100 

Nuclear 

envelope, 

sarcoplasmic 

reticulum 

Cardiomyocyte 

contractility 

Cardiac 

hypertrophy 

McCartney et 

al., 1995; Yang 

et al., 1998; Fink 

et al., 2001; 

Bauman et al., 

2007 

AKAP7, 

AKAP18/15α/β 

Plasma 

membrane 

Ion transport  Fraser et al., 

1998; Gray et 

al., 1998; Trotter 

et al., 1999 
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Table 1. (continued) 

AKAP7, 

AKAP18/15γ 

Cytosol, nucleus Ion transport  Trotter et al., 

1999 

AKAP7, 

AKAP18/15δ 

Endoplasmic 

reticulum, 

cytosol, vesicles 

Ion transport Heart failure Henn et al., 

2004; Lygren et 

al., 2007; Lygren 

and Taskén, 

2008 

AKAP8, 

AKAP95 

Nucleus, 

condensed 

chromatin  

Transcription 

regulation; 

chromatin 

condensation 

 Eide et al., 1998; 

Collas et al., 

1999; 

Akileswaran et 

al., 2001 

AKAP9, Yotiao Plasma 

membrane 

Cardiac 

repolarization; 

ion transport; 

NMDA receptor 

regulation 

Long QT 

Syndrome; 

cardiac 

arrhythmias 

Lin et al., 1998; 

Chen et al., 

2007; Piggott et 

al., 2008 

AKAP9, 

AKAP350, 

AKAP450,  

CG-NAP, 

hyperion 

Centrosome, 

Golgi apparatus, 

stress granules 

Cell cycle; 

microtubule 

dynamics; 

canaliculi 

development; 

stress granule 

formation 

 Schmidt et al., 

1999; Larocca et 

al., 2006; 

Kolobova et al., 

2009; Mattaloni 

et al., 2012 

AKAP10, D-

AKAP2 

Mitochondria, 

vesicles 

Receptor 

recycling 

Breast cancer; 

cardiac diseases 

Huang et al., 

1997a; Wang et 

al., 2001; 

Tingley et al., 

2007; 

Wirtenberger et 

al., 2007; Eggers 

et al., 2009 

AKAP11, 

AKAP220 

Vesicles, 

centrosome, 

peroxisomes  

Cell cycle; cell 

migration 

Oral 

carcinogenesis 

Lester et al., 

1996; Reinton et 

al., 2000; Garnis 

et al., 2005; 

Logue et al., 

2011 

AKAP12, 

Gravin, 

AKAP250, 

SSeCKS 

Cytosol, actin 

cytoskeleton 

Cell migration; 

cytoskeletal 

structure 

Prostate 

hyperplasia; acute 

myeloid leukemia; 

colorectal 

carcinoma 

Gordon et al., 

1992; Akakura et 

al., 2008; Liu et 

al., 2011; 

Akakura and 

Gelman, 2012; 

Mostafa et al., 

2013 
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Table 1. (continued) 

AKAP13, 

AKAP-Lbc, 

Ht31, Rt31, Brx-

1 

Cytosol, actin 

cytoskeleton 

Guanine 

nucleotide 

exchange;  

cytoskeletal 

dynamics 

Breast cancer; 

cardiac diseases 

Toksoz and 

Williams, 1994; 

Sterpetti et al., 

1999; 

Wirtenberger et 

al., 2007; Smith 

and Scott, 2013 

AKAP14, 

AKAP28, 

TAKAP80 

Cilia  Cilia beat 

frequency 

 Kultgen et al., 

2002 

MAP2 Microtubules  Cytoskeleton 

stabilization; 

microtubule 

bundling 

Prion diseases Dhamodharan 

and Wadsworth, 

1995; Zhang and 

Dong, 2012 

Ezrin, AKAP78, 

Villin-2 

Actin 

cytoskeleton 

Tubulogenesis  Polycystic kidney 

disease 

Orellana et al., 

2003 

Rab32 Mitochondria, 

mitochondria 

associated 

membranes 

(MAM), vesicles  

Mitochondria 

dynamics; 

enzyme 

trafficking 

Gastric and 

endometrial 

adenocarcinomas 

Alto et al., 2002; 

Shibata et al., 

2006; Wasmeier  

et al., 2006; Bui 

et al., 2010 

GSKIP, 

C14ORF129, 

HSPC210 

cytosol Wnt signaling  Chou et al., 

2006; 

Hundsrucker et 

al., 2010 

BIG2, 

ARFGEF2, 

ARFGEP2 

Golgi apparatus, 

cytosol 

Vesical 

trafficking 

autosomal 

recessive 

periventricular 

heterotopia 

Tanaka et al., 

1989; 

Shinotsuka et al., 

2002; Li et al., 

2003; Bui et al., 

2009 

SPHKAP, SKIP Cytosol, 

mitochondria  

Apoptosis   Lacaná et al., 

2002; Means et 

al., 2011 

MyRIP, SlaC2-c Secretory 

vesicles, actin 

cytoskeleton  

Vesicle 

trafficking 

Griscelli 

syndrome 

El-Amraoui et 

al., 2002; 

Fukuda and 

Kuroda, 2002; 

Goehring et al., 

2007; Van Gele 

et al., 2009 

Pericentrin, 

kendrin 

Centrosome  Microtubule 

organization; 

cell division 

Microcephalic 

osteodysplastic 

primordial 

dwarfism type 

II; schizophrenia 

Doxsey et al., 

1994;  Diviani et 

al., 2000; Rauch 

et al., 2008; 

Numata et al., 

2010 
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Table 1. (continued) 

Neurobeachin Golgi apparatus, 

postsynaptic 

plasma 

membrane 

Neuronal 

membrane 

trafficking 

Autism; synaptic 

function 

Gilbert et al., 

1999; Wang et 

al., 2000; 

Castermans et 

al., 2003 

WAVE-1, Scar Actin 

cytoskeleton 

Actin 

organization; 

cytoskeleton 

 Miki et al., 1998 

MTG8, 

RUNX1T1 

Nucleus, Golgi 

apparatus 

Transcription 

regulation 

Acute myeloid 

leukemia 

Miyoshi et al., 

1993; Fukuyama 

et al., 2001; 

Rochford et al., 

2004 

Myosin VIIA Actin 

cytoskeleton 

Cellular 

trafficking 

Usher syndrome 

type 1B 

Weil et al., 1995 

MTG16b, 

CBFA2T3, 

ZMYND4 

Golgi apparatus, 

plasma 

membrane 

T cell activation Leukemia  Calabi and Cilli, 

1998; Schillace 

et al., 2002;  

Asirvatham et 

al., 2004; Fiedler 

et al., 2010 

Synemin, 

desmuslin 

Z-discs, 

intermediate 

filaments 

Cell junctions Glioblastoma  Granger and 

Lazarides, 1980; 

Russell et al., 

2006; Lund et 

al., 2012; Pitre et 

al., 2012 

PAP7 mitochondria Cholesterol 

transport; steroid 

transport 

 Li et al., 2001; 

Hauet et al., 

2002 

Myospryn Z-discs, 

perinuclear 

Muscle 

contraction 

Muscular 

dystrohpy 

Benson et al., 

2004; 

Kouloumenta et 

al., 2007; 

Reynolds et al., 

2008 

SFRS17A, XE7 nucleus Splicing   Ellison et al., 

1992; Jarnaess et 

al., 2009 

Merlin, 

schwannomin, 

neurofibromin-2 

Actin 

cytoskeleton, 

adherens 

juntions 

Cell 

proliferation; 

motility 

Neurofibromatosis 

type 2; 

Schwannomas 

Rouleau et al., 

1993; Sainz et 

al., 1994; 

Lutchman M, 

Rouleau, 1995; 

Pećina-Šlaus, 

2013 
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Table 1. (continued) 

Moesin Cytosol, plasma 

membrane-

cytoskeleton 

interface 

Cytoskeleton ; 

migration 

Glioma  Lankes and 

Furthmayr, 

1991; Emery and 

Ramel, 2013; 

Zhu et al., 2013 

AKAP85, 

RSPH3 

Golgi apparatus, 

motile cilia 

Motility   Jivan et al., 2009 

RSK1 Cytosol, nucleus Cell survival; 

proliferation 

 Richards et al., 

1999; Romeo et 

al., 2012 

cTnT, cardiac 

troponin T 

Sarcomere  Contractility  Cardiomyopathy  Long and 

Ordahl, 1988; 

Tardiff, 2005; 

Sumandea et al., 

2011 

Cypher, ZASP Sarcomere Cytoskeleton  Myofibrillar 

myopathy; 

cardiomyopathy 

Faulkner et al., 

1999; Arimura et 

al., 2004; Kraya 

et al., 2013; Lin 

et al., 2013 

smAKAP Plasma 

membrane 

  Burgers et al., 

2012 

Myomegalin Golgi apparatus, 

centrosome 

Cytoskeleton, 

contractility   

 Verde et al., 

2001; Uys et al., 

2011; Roubin et 

al., 2013 

 

AKAPs comprise a very diverse family of proteins, and over 50 AKAPs have been 

identified to date in humans (Table 1) with many orthologues found in other species 

(Wong and Scott, 2004; Trӧger et al., 2012).  At least one AKAP is found in every tissue 

in the body (Welch et al., 2010).  The importance of AKAP function is evident in the 

lethality and severe phenotypes of many AKAP knockout mice (Carnegie et al., 2009; 

Skroblin et al., 2010).  Lethality is observed in knockout mice for AKAP6, AKAP10, 

AKAP13, WAVE-1, Ezrin, and Neurobeachin (Skroblin et al., 2010).  Knockout of 

AKAP1 and AKAP4 results in infertility in female and male mice, respectively.  Severe 

phenotypes are seen in many knockout mice, including prostate hyperplasia (AKAP12), 

neurological deficits (MAP2 and AKAP13), and primordial dwarfism (Pericentrin) 
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(Skroblin et al., 2010).  In many cases, diseases associated with AKAP proteins result 

from an alteration in specific AKAP complexes rather than a global cAMP/PKA 

signaling change (Trӧger et al., 2012).  Many AKAPs have loose associations with many 

diseases, but for simplicity only those diseases with a clear connection to an AKAP are 

included in Table 1.  Select AKAPs from Table 1 are discussed below. 

 

AKAP1 

AKAP1 (also known as D-AKAP1, AKAP121, AKAP149, AKAP140, AKAP84, 

and S-AKAP84) was first identified in mammalian spermatozoa, and localizes to the 

outer mitochondrial membrane (Lin et al., 1995) (Figure 4 and Table 1).  An amino 

terminal mitochondrial targeting sequence targets AKAP1 to mitochondria (Huang et al., 

1997b).  Disputing the belief that only PKA type II is scaffolded, AKAP1 was identified 

as the first dual-specificity AKAP associating with both RI and RII subunits (Huang et al., 

1997b; Ma and Taylor, 2008).  It was later discovered that AKAP1 also has dual 

localization to both the ER and mitochondria, achieved by alternatively splicing the 

amino terminus (Huang et al., 1999) and via a bi-functional element that is required for 

targeting to both organelles (Ma and Taylor, 2002).  Localization of AKAP1 to the 

nuclear envelope has also been observed, though the targeting domain is not identified 

(Steen et al., 2000).  

Due to the various subcellular localizations, AKAP1 also has several functions 

within the cell.  AKAP1 at the nuclear envelope scaffolds PKA, protein phosphatase 1 

(PP1), and lamins and functions to stabilize the nuclear lamina (Steen et al., 2000).  

Nuclear envelope-targeted AKAP1 serves to maintain the integrity of the nuclear 
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envelope (Steen et al., 2003).  AKAP1 also contains an RNA-binding KH domain 

(Trendelenburg et al., 1996) and has been shown to play a role in translation regulation 

(Ranganathan et al., 2002).  AKAP1 also anchors proteins and RNAs at the mitochondrial 

outer membrane (Ginsberg et al., 2003), and this RNA-tethering is important for 

maintaining the mitochondrial network (Rogne et al., 2009).  Mitochondrial-targeted 

AKAP1 regulates cytochrome c release from the mitochondria, with overexpression of 

AKAP1 protecting cells from apoptosis (Affaitati et al., 2003).  Mitochondrial oxidative 

metabolism is also partially regulated by AKAP1-scaffolded proteins (Livigni et al., 

2006).  When AKAP1 is displaced from the mitochondria it induces mitochondrial 

dysfunction, resulting in an increase in ROS, and therefore, induced oxidative stress in 

cardiomyocytes, smooth muscle cells, and hypertrophic mouse hearts in vivo (Perrino et 

al., 2010).  AKAP1 also plays a protective role in stress response in cardiomyocytes 

(Rogne et al., 2009; Perrino et al., 2010).  During cellular hypoxia, the proteolytic 

degredation of AKAP1 is up-regulated to alter the cAMP/PKA signaling at the 

mitochondria (Carlucci et al., 2008b).  Loss of AKAP1 expression leads to 

cardiomyocyte hypertrophy while increased expression protects cells against hypertrophy 

(Abrenica et al., 2009).  Interestingly, AKAP1 has also been linked to oocyte maturation 

and female infertility, though it remains unclear which subcellular pool functions in these 

processes (Newhall et al., 2006).  The full functionality of AKAP1 is an ongoing 

investigation that will likely yield more correlations to human disease. 
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Rab32     

As the name suggests, Rab32 was originally identified as a Rab GTPase involved in 

cellular trafficking (Bao et al., 2002) (Table 1).  Melanocytes, platelets, and mast cells 

express the highest levels of Rab32 (Cohen-Solal et al., 2003), most likely due to the 

critical role of Rab32 in the formation of granules, such as dense granules in platelets 

(Ambrosio et al., 2012) and pigmentation granules in melanocytes (Cohen-Solal et al., 

2003).  Rab32 is important for post-Golgi trafficking and the vesicular trafficking 

required for pigmentation (Wasmeier et al., 2006).  The trafficking facilitated by Rab32 

is also critical to the lysosomal degredation of proteins (Bultema et al., 2012).  Down-

regulation of Rab32 occurs in colon cancers (Mori et al., 2004) and gastric and 

endometrial adenocarcinomas (Shibata et al., 2006), but the cause or effect of this has not 

been further investigated.  Some evidence suggests Rab32 plays a role in tumor 

progression, invasion, and metastasis (Hofsli et al., 2008).  

It was quickly discovered that Rab32 also functions as an AKAP by scaffolding 

PKA with RII subunits (Alto et al., 2002).  Rab32 localizes to mitochondria, where it 

plays a role in mitochondrial dynamics regulation.  More specifically, Rab32 localizes to 

mitochondria-associated membranes (MAMs), the junctions between mitochondria and 

the endoplasmic reticulum (ER) (Bui et al., 2010).  There it serves to regulate MAM 

properties and ER-mitochondria crosstalk.  To regulate mitochondrial dynamics, Rab32 

interacts with Drp1, a mitochondrial fission protein (Bui et al., 2010).  Rab32 also has 

roles in the regulation of ER calcium release and the induction of apoptosis.  High 

expression levels of Rab32 delay apoptosis, while low expression levels of Rab32 
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accelerate apoptosis (Bui et al., 2010).  Further investigations are needed to fully 

understand the complex functions of Rab32 within the cell as well as in human disease. 

 

Pericentrin 

 Pericentrin (also known as kendrin) was first identified as a protein found in the 

pericentriolar material and at acentriolar microtubule-organization centers (Doxsey et al., 

2004; Flory et al., 2000) (Table 1).  Antibodies against pericentrin can disrupt cell 

division, which suggests a role for pericentrin in microtubule organization.  It is theorized 

that pericentrin and gamma-tubulin associate with one another and form a reticular lattice 

at the centrosome that is distinct from the gamma-tubulin ring complex (Dictenberg et 

al., 1998).  This lattice changes as a cell progresses through the cell cycle.  Pericentrin 

also interacts with dynein intermediate light chain, and this interaction is necessary for 

proper microtubule organization (Purohit et al., 1999).  Pericentrin is a cargo protein for 

dynein, and this interaction traffics pericentrin to the centrosomes (Young et al., 2000).  

It was later discovered that pericentrin is also an AKAP (Diviani et al., 2000).  The 

pericentrin and AKAP centrosomal-targeting (PACT) domain was then identified 

(Gillingham and Munro, 2000). 

 The crucial role of centrosomes in cell cycle regulation and microtubule 

organization is evidenced by the many diseases associated with centrosomal defects.  For 

example, disruption of proper centrosomal function and localization is common in tumor 

cells, which gives rise to genetic instability (Boveri, 1929; Pihan et al., 1998).  Because 

pericentrin is a critical component of centrosomes, pericentrin is also associated with 

various human diseases.  Many tumors have increased pericentrin expression or defects 
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in pericentrin localization or organization (Pihan et al., 1998).  Mutations in the 

pericentrin gene have been directly linked to Majewski/microcephalic osteodysplastic 

primordial dwarfism type II (MOPDII), in which all patients have loss-of-function 

pericentrin mutations (Rauch et al., 2008).  Patients with MOPDII have an extremely 

shortened stature of roughly twenty inches and have a much smaller brain for their body 

size (microcephaly).  The pericentrin mutations result in disorganized mitotic spindles 

and missegregation of chromosomes (Rauch et al., 2008).  Because the pericentrin gene 

is located on chromosome 21, researchers have begun investigating whether pericentrin 

plays a role in Down’s Syndrome (Salemi et al., 2013).  Furthermore, single nucleotide 

polymorphisms (SNPs) within the pericentrin gene have been linked with schizophrenia 

(Numata et al., 2010).  There are also reports of pericentrin mutations or SNPs being 

associated with other neurological problems such as major depressive disorder (Numata 

et al., 2009).  It is likely number of diseases associate with pericetrin mutations will 

continue to increase. 

 

AKAP9 gene products  

I am specifically interested in proteins encoded by the AKAP9 gene.  The multiply 

spliced gene contains 50 exons and is located on chromosome 7q21-22 (Schmidt et al., 

1999; Witczak et al., 1999).  There are several splice variants, including yotiao, 

AKAP350A, AKAP350B, and AKAP350C (Figure 5).  AKAP350A and yotiao are the 

most well-studied splice variants (Table 1).  We have previously identified AKAP350B 

and AKAP350C isoforms as potential splice variants, but their functions have not been 

studied further (Shanks et al., 2002a) (Figure 6).      
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Yotiao (AKAP9) 

Yotiao is the shortest splice variant and was the first AKAP9 gene product 

discovered (Lin et al., 1998) (Figure 5 and Table 1).  It is highly expressed in the brain 

and skeletal muscle, especially at neuromuscular junctions.  Yotiao associates with the 

NMDA (N-methyl-D-aspartate) receptor in neurons, and may assist in the cytoskeletal 

attachment of the receptor (Lin et al., 1998) (Figure 6).  The anchoring of protein 

phosphatase 1 (PP1) and PKA by yotiao facilitates the regulation of the NMDA receptor 

(Feliciello et al., 1999; Westphal et al., 1999).  The NMDA receptor is also regulated by 

Traf2 and NcK interacting kinase (TNiK), which is scaffolded near the receptor via 

yotiao (Coba et al., 2012).  Proper yotiao-anchoring of PP1 and other proteins is essential 

to dopamine-induced calcium flux (Tang and Bezprozvanny, 2004).  In the brain, yotiao 

Figure 5.  AKAP350 isoforms.  Each isoform is determined by the carboxyl-

terminus of the protein.  Yotiao only contains one RII domain (binding site of 

PKA regulatory subunit type II).  Other domains include YHR (Yotiao homology 

region), Golgi (Golgi-targeting domain), and PACT (pericentrin and AKAP350 

centrosomal-targeting domain). 
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also binds to and regulates various adenylyl cyclase isoforms, anchoring isoforms 1, 2, 3, 

and 9 with an inhibitory effect on isoforms 2 and 3 (Piggott et al., 2008). 

Yotiao is also highly expressed in the heart and other muscle tissues (Lin et al., 

1998).  Yotiao interacts with KCNQ1 via the leucine zipper region in the carboxyl 

terminus of yotiao (Marx et al., 2002).  Yotiao anchors PKA, PP1, and InsP3R1 (inositol 

1,4,5 trisphosphate receptor type 1) in close proximity to KCNQ1 to regulate the ion flow 

through the potassium channel (Marx et al., 2002; Tu et al., 2004; Chen et al., 2007; 

Piggott et al., 2008).  A mutation in yotiao disrupting the anchoring of KCNQ1 by Yotiao  

   

 

 

Figure 6.  Summary of current knowledge for AKAP9 gene products.  AKAP9 

gene products include yotiao, AKAP350A, AKAP350B, and AKAP350C.  For each, 

this diagram lists the major sub-cellular localization, select interacting partners, the 

normal function during non-stress conditions, the function during stress, and diseases 

directly associated with mutations and/or dysregulation of the protein.  For more 

information, see the text. 
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leads to long QT syndrome, a potentially fatal heart arrhythmia (Chen et al., 2007) 

(Figure 6).  Yotiao also scaffolds PKA, PP1 (Chen et al., 2005), and adenylyl cyclase 9 

(Li et al., 2012) to control the phosphorylation state of the I(Ks) (slowly activating 

potassium current) channel.  The phosphorylation state of I(Ks) channel is a critical 

regulator of cardiac cell response to stimulation by the sympathetic nervous system.  The 

yotiao-mediated regulation of I(Ks) channel function is regulated by the PKA-mediated 

phosphorylation of serine-43 in yotiao (Chen et al., 2005).  These studies suggest yotiao 

not only acts to scaffold proteins in close proximity to the I(Ks) channel, but also has an 

active role in regulating channel function (Chen and Kass, 2006).  The yotiao-anchored 

complex of PKA and InsP3R1 also works in concert with the EGFR (epidermal growth 

factor receptor) to regulate calcium flux by sensitizing cells to epidermal growth factor 

(EGF) (Hur et al., 2005).  Due to its regulation of ion flow, yotiao is critical for 

repolarization of cardiomyocytes, and its dysregulation can lead to chronic heart failure 

(Trӧger et al., 2012).  Therefore, yotiao is an important regulator in normal cardiac 

function as well as cardiac stress response (Figure 6).   

 

AKAP350A (AKAP9) 

AKAP350A (also known as AKAP450/AKAP9/CG-NAP) was identified shortly 

after yotiao (Schmidt et al., 1999; Witczak et al., 1999; Takahashi et al., 1999) (Table 1).  

AKAP350A localizes to the centrosome via the pericentrin and AKAP centrosomal 

targeting (PACT) domain (Gillingham and Munro, 2000) (Figure 5 and Figure 6).  In 

polarized MDCK (Madin-Darby canine kidney) cells the localization was asymmetrically 

on one pole of the centrosome (Schmidt et al., 1999; Witczak et al., 1999).  Localization 
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of AKAP350A to the Golgi apparatus was also observed (Takahashi et al., 1999), and a 

Golgi-targeting domain was identified (Shanks et al., 2002a) (Figure 5 and Figure 6).  

There are currently two PKA RII-binding sites identified in the AKAP350A protein.   

Several interacting partners for AKAP350A have been identified though the 

functions of some interactions have not been elucidated.  Transforming acidic coiled-coil-

containing protein 4 (TACC4) interacts with and is possibly sequestered by AKAP350A 

at the centrosome (Steadman et al., 2002).  AKAP350A interacts with CLIC4 (chloride 

intracellular channel 4) at the centrosome (Berryman and Goldenring, 2003) and CLIC5B 

at the Golgi (Shanks et al., 2002b) (Figure 6). The function of the CLIC proteins remains 

ambiguous, and the significance of these interactions has not yet been discovered.  The 

association of AKAP350A with protein kinase C delta (PKCδ) is modulated by the PKA 

phosphorylation of serine-370 in PCKδ, but the exact function of this interaction is not 

well known (Giamas et al., 2007).  AKAP350A also associates with protein kinase N 

(PKN) (Takahashi et al., 1999), protein phosphotase 2A (PP2A) (Takahashi et al., 1999), 

protein kinase C epsilon (PKCε) (Takahashi et al., 2000), casein kinase 1 delta/epsilon 

(CK1δ/ε) (Sillibourne et al., 2002), pituitary tumor transforming gene 1 (PTTG1)/securin 

(Moreno-Mateos et al., 2011), CDK5RAP2 (Wang et al., 2010), and Miki (Ozaki et al., 

2012).  The exact functions of these interactions have not yet been elucidated and require 

further investigation.   

AKAP350A is involved in several cellular processes including the cell cycle 

(Schmidt et al., 1999) and microtubule dynamics (Larocca et al., 2006).  The presence of 

AKAP350A is required for proper centrosomal function and maintenance, and when 

AKAP350A is dissociated from centrosomes, centriole duplication and progression of the 
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cell cycle is significantly impaired (Keryer et al. 2003a).  Some research suggests Cep72 

may be responsible for recruiting AKAP350A to the centrosome (Oshimori et al., 2009).  

AKAP350A recruits cyclin E/cdk2 to the centrosome to regulate centrosome 

amplification (Nishimura et al., 2005).  The interaction between AKAP350A and 

calmodulin likely regulates the structure and composition of the centrosomal matrix 

(Moisoi et al., 2002; Takahashi et al., 2002).  AKAP350A also anchors PDE4D3 

(phosphodiesterase 4D3) at the centrosome, and this interaction is involved in regulation 

of cAMP signaling at the centrosome and cell cycle progression (Taskén et al., 2001; 

McCahill et al., 2005; Terrin et al., 2012).  In conjunction with pericentrin, AKAP350A 

anchors the gamma-tubulin ring complex at the centrosome and helps create the 

microtubule nucleation center (Takahashi et al., 2002).  Cyclin G2 is potentially 

scaffolded with PP2A by AKAP350A to regulate microtubule stability and cell cycle 

progression (Arachchige et al., 2006).  The small GTPase, Ran, (Keryer et al., 2003b) 

and CM1 (CM-myomegalin) (Roubin et al., 2013) are anchored at the centrosome by 

AKAP350A, and these interactions function in microtubule organization.     

AKAP350A is also important for microtubule organization at the Golgi apparatus, 

as well as maintenance of the integrity and structure of the Golgi (Larocca et al., 2006; 

Rivero et al., 2009).  These effects are partly through the interaction of AKAP350A with 

CIP4 (Cdc42 interacting protein 4) (Larocca et al., 2004) (Figure 6).  AKAP350A 

localizes to the Golgi in a microtubule-dependent manner through interactions with the 

dynein-dynactin complex, specifically via the p150(Glued) subunit (Kim et al., 2007).  

Once there, AKAP350A is anchored to the Golgi via interaction with gm130, a cis-Golgi 

protein (Rivero et al., 2009).  Overexpression of gm130 increases the amount of Golgi-
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localized AKAP350A, and this increases the size of the Golgi (Roy et al., 2012).  

AKAP350A is required for proper structure, positioning, and function of the 

pericentrosomal Golgi ribbon, which is critical for directional migration and ciliogenesis 

this structure (Hurtado et al., 2011).   

Some cell-specific functions of AKAP350A have also been identified.  First, 

AKAP350A normally localizes at the centrosome and Golgi apparatus in T-cells, but 

upon activation of T-cell migration, AKAP350A is redistributed along microtubules in 

trailing cell extensions (El Din El Homasany et al., 2005).  There, AKAP350A localizes 

with tubulin, PKC, and LFA-1 integrin, an activator of T-cell migration, to partially 

regulate T-cell migration.  AKAP350A also serves to organize and regulate the activation 

of receptor proteins at the immune synapse during T-cell activation (Robles-Valero et al., 

2010).  Second, in cerebellar granule cells, AKAP350 scaffolds PKA and phosphotases in 

proximity to InsP3R1 to regulate calcium flux (Collado-Hilly and Coquil, 2009).  Third, 

in epithelial cells, AKAP350A regulates the formation of new adhesions by regulated the 

activity of Epac-1 (exchange protein directly activated by cAMP-1) (Sehrawat et al., 

2011).  Finally, AKAP350A is critical for the formation of canaliculi in hepatocytes 

(Mattaloni et al., 2012).  Knock-down of AKAP350A in hepatocytes disrupts the 

organization of filamentous-actin and inhibits the formation of canaliculi.  These data 

show AKAP350A has both ubiquitous and cell-specific functions during normal 

conditions. 

AKAP350A is also involved in cellular stress response, specifically RNA stress 

granule formation (Kolobova et al., 2009) (Figure 6).  There is a cytosolic pool of 

AKAP350A that relocates to stress granules upon cellular stress.  Under normal and 
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stressed conditions, AKAP350A associates with other stress granule proteins such as 

Caprin-1 (cytoplasmic activation/proliferation-associated protein-1) and CCAR1 (cell 

cycle and apoptosis regulatory protein 1) (Kolobova et al., 2009) (Figure 6).  AKAP350A 

also associates with mRNAs in the absence and presence of stress, suggesting 

AKAP350A also functions to bring mRNAs into stress granules for sequestration 

(Kolobova et al., 2009).  Upon stress, there is also a loss of AKAP350A from the Golgi 

and fragmentation of the Golgi.  A decrease in the expression of AKAP350A leads to 

smaller, incomplete stress granules, suggesting AKAP350A is necessary for complete 

stress granule formation (Kolobova et al., 2009; Mason et al., 2011).  AKAP350A 

appears to serve many functions within cells, during stressed and non-stressed conditions.       

 

AKAP9 and disease 

The AKAP9 gene is associated with many diseases.  The only direct functional 

connection of an AKAP9 protein to disease is yotiao mutations in patients with long QT 

syndrome (Chen et al., 2007) (Figure 6 and Table 1).  However, there are several indirect 

associations of AKAP9 gene products with various diseases that require further 

investigation.  An AKAP9-BRAF fusion has oncogenic effects by activating the MAPK 

(MAP kinase) pathway in radiation-associated thyroid papillary carcinoma (Ciampi et al., 

2005; Fusco et al., 2005).  This fusion occurs via a paracentric inversion of the 

chromosome 7 long arm leading to a fusion of exons 1-8 of AKAP9 and exons 9-18 of 

BRAF.  This fusion causes constitutive BRAF serine/threonine kinase activity because it 

removes the amino-terminal autoinhibitory portion of BRAF (Ciampi et al., 2005).  The 

role, if any, of the AKAP9 portion of this fusion protein in the development and 
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progression of thyroid cancer remains unclear.  Single nucleotide polymorphisms (SNPs) 

occurring in the AKAP9 gene have been associated with an increased risk of lung (Rudd 

et al., 2006; Truong et al., 2010) and breast (Frank et al., 2008a; Milne et al., 2011) 

cancers, as well as metastatic melanoma (Kabbarah et al., 2010).  An increased risk of 

alcohol dependence has been associated with SNPs occurring in the AKAP9 gene in 

European Americans (Kendler et al., 2011).  Most recently, AKAP9 SNPs have been 

linked to an increased risk for schizophrenia (Costas et al., 2013).  The validity and 

mechanism of these associations remain unclear.  AKAP9 SNPs have also been linked to 

colorectal cancer (Webb et al., 2006), though other studies refute those findings (Frank et 

al., 2008b).  There is also a role for AKAP9 proteins in the formation of lung fibrosis that 

requires further investigation (Okunishi et al., 2011).  Knockout mouse studies have also 

shown that AKAP9 is essential for spermatogenesis and the maturation of sertoli cells 

(Schimenti et al., 2013).  Further investigations are needed to identify more roles for 

AKAP9 proteins in disease, as well as to clarify the associations already discovered.         

 

Rationale and Aims 

As demonstrated in Figure 6, many aspects of the AKAP9 gene products remain 

to be investigated.  Of the AKAP350 splice variants, AKAP350A is the most studied.  

However, the literature on AKAP350A is eclectic and implies many different interacting 

proteins and many different roles within the cell.  Further data is needed to begin 

connecting the pieces of literature together.  Given the many potential roles of 

AKAP350A within the cell, a greater understanding of AKAP350A would provide a 

greater understanding of master-regulatory proteins and the interconnectedness of various 
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signaling pathways.  The role of AKAP350A in stress response is a relatively new area of 

research, and the exact mechanisms and roles require further definition.  This knowledge 

would provide a better view of proteins with dual functions during stressed and non-

stressed conditions, as well as the molecular switch that occurs to activate stress 

responses.  Also, AKAP350A has yet to be directly linked to a disease though a 

connection likely exists (Figure 6).   

Two very obvious gaps in AKAP9 knowledge are the AKAP350B and 

AKAP350C splice variants, of which nothing is known (Figure 6).  To begin, the 

complete sequence of each splice variant remains unidentified, as does the sub-cellular 

localization.  Once these are known, work can begin on elucidating the roles of both 

splice variants.  Investigating these splice variants will allow us learn the similarities and 

differences among the AKAP9 splice variants.  Both yotiao and AKAP350A have 

distinct roles during non-stress and stress conditions (Figure 6).  I hypothesize that all 

AKAP9 splice variants have dual roles within cells, with distinct roles during non-stress 

and stressed conditions.   

To test this hypothesis, I developed several aims.  First, I further investigated the 

mechanism of involvement for AKAP350A in stress granule formation, maintenance, and 

dispersal.  Second, I elucidated the roles of AKAP350C during non-stressed and stressed 

conditions.  Third, I developed a mouse to knock out or conditionally knock out all 

known AKAP9 gene products.  This mouse will be a tool to investigate the roles of 

AKAP9 splice variants in whole-organism development and disease.    

This body of work further investigates the roles of AKAP9 splice variants in 

stress response.  Chapter II further investigates the mechanisms of stress granule 
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formation, maintenance, and dispersal, including the localization of AKAP350A during 

these processes.  This work also details the use of Darinaparsin-treatment as a tool to 

further study the role of AKAP350A in stress granule processes.  In Chapter III, we 

complete cloning of AKAP350C and characterize its targeting and association with 

mitochondria.  AKAP350C plays a role in regulation of mitochondrial dynamics, and this 

adaptive system is important in regulating the mitochondrial response to stress.  Indeed, 

AKAP350C also serves as a regulator of stress-induced apoptosis.  The importance of the 

AKAP9 gene products in cellular stress response is evident, and it is important to learn as 

much as possible about these proteins and their roles within those responses.  Chapter IV 

details two stories of phosphorylation data gathered throughout our investigations.  

Caprin-1 is phosphorylated within the AKAP350A complex in response to ultraviolet 

light irradiation.  Also, a third, novel PKA-binding site within the AKAP350 splice 

variants was discovered.  As it is integral to study the function of a protein within an 

organism as a whole, Chapter V details the development and partial characterization of 

AKAP9-null and AKAP9
F/F 

mice.  These mice are tools for studying the roles of AKAP9 

proteins in organism development and disease.  In conclusion, AKAP9 splice variants 

play dual roles in cells during non-stress and stressed conditions, and are required for 

proper stress response.
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CHAPTER II 

 

DARINAPARSIN IS A MULTIVALENT CHEMOTHERAPEUTIC WHICH 

INDUCES INCOMPLETE STRESS RESPONSE WITH DISRUPTION OF 

MICROTUBULES AND SHH SIGNALING 

 

Appears as:  Mason TA, Kolobova E, Liu J, Roland JT, Chiang C, and Goldenring JR.  

(2011)  Darinaparsin is a multivalent chemotherapeutic which induces incomplete stress 

response with disruption of microtubules and Shh signaling.  PLoS One, 6, e27699 

 

Introduction 

All cells experience various stressors during their physiological processes.  Stress 

is a ubiquitous problem and can trigger a range of responses within cells.  Common 

stressors include heat shock, oxidative conditions, viral infection, hypoxia, mitochondrial 

stress, DNA-damaging agents, and ultraviolet irradiation (Kolobova et al., 2009; 

Kedersha and Anderson, 2007).  Chemotherapeutic drugs and other pharmaceuticals are 

other common sources of cellular stress. 

Arsenicals are one category of chemotherapeutics undergoing continual 

investigation.  Organic and inorganic arsenicals have been used in the treatment of 

disease for thousands of years (Verstovsek et al., 2006; Tsimberidou et al., 2009).  

However, arsenicals are typically very potent and their toxicity typically limits their use 

(Tsimberidou et al., 2009; Campàs and Castañer, 2009).  Currently, arsenic trioxide 

(ATO, As2O3), an inorganic arsenical, is used for treatment in cases of recurrent acute 

promyelocytic leukemia (Mann et al., 2009).  This drug is limited by its toxicity on the 

liver and cardiovascular system.  Because of these toxicity issues, the development of 

less toxic arsenicals has become an area of great interest. 
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Darinaparsin (ZIO-101, S-dimethylarsino-glutathione) is an organic arsenical that is 

currently in Phase II clinical trials as a chemotherapeutic agent (Campàs and Castañer, 

2009; Wu et al., 2010).  While darinaparsin shows clinical promise, the drug’s 

mechanism of action continues to be investigated.  A series of in vitro and in vivo studies, 

coupled with observed differences in toxicity and potency, suggest darinaparsin employs 

a mechanism of action that is different from that of ATO. Darinaparsin appears more 

potent than ATO as some ATO-resistant cells are sensitive to the drug. Moreover, other 

cell types have shown an increased sensitivity to darinaparsin compared to ATO (Campàs 

and Castañer, 2009; Mann et al., 2009; Diaz et al., 2008; Matulis et al., 2009).  

Importantly darinaparsin does not demonstrate the same level or type of toxicity as ATO 

with no apparent toxicity to the liver or cardiovascular system.   

Previous studies have shown that both ATO and darinaparsin cause apoptosis and 

cell cycle arrest at G2/M in tumor cells (Tsimberidou et al., 2009; Mann et al., 2009).  

This effect is thought to occur in part through the disruption of mitochondrial functions, 

which leads to increased production of reactive oxygen species (ROS) (Quintás-Cardama 

et al., 2008).  An increase in ROS, if great enough, can trigger a cellular stress response. 

Recent preclinical studies of darinaparsin have shown anti-angiogenic activity in vitro 

and in vivo through controlling several signal transduction pathways and that 

darinaparsin is more potent than ATO under hypoxic conditions (Mann et al., 2009; Tian 

et al., 2010).   

One critical mechanism in the cellular stress response is the formation of RNA 

stress granules.  Stress granules function to sequester mRNAs and proteins during 

cellular stress.  Importantly, stress granules are not stable structures, but are dynamic with 
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a constant flux of proteins and mRNAs.  Stress granules are generally composed of a 

variety of preinitiation- and translation-related factors, proteins linked to mRNA 

metabolism, mRNAs, and RNA-binding proteins, as well as signaling proteins with no 

known link to mRNA (Kedersha and Anderson, 2007).  Typically, proteins and mRNAs 

necessary for cell survival during stress, such as heat shock proteins, are not sequestered 

in stress granules.  The mRNAs are sequestered in stress granules until the cell is no 

longer stressed or undergoes apoptosis (Thomas et al., 2011).  Once stress is no longer 

present, stress granules disperse, and the sequestered mRNAs can be translated.  Other 

RNA granules also exist in cells without stress, such as processing bodies (P-bodies) 

(Kolobova et al., 2009).  The different RNA granules do contain unique components, 

with stress granules containing components specialized for adaptation to dynamic 

stressors.  Though stress granule formation appears to be a ubiquitous cellular response, 

the mechanisms regulating formation, maintenance, and dispersal remain largely obscure. 

In this study, we examined both the mechanism of action for darinaparsin and the 

dynamics of stress granules formation, maintenance, and dispersal.  We propose that 

darinaparsin is a potent chemotherapeutic because it initiates a stress response, while also 

stalling the completion of the stress response by simultaneously depolymerizing 

microtubules.  The depolymerization of microtubules causes the stress granules to form 

incompletely, preventing the coalescence of stress granule components.  When 

darinaparsin is withdrawn, stress granules progress to final coalescence as microtubules 

repolymerize and disperse only after complete granule formation.  In addition, likely due 

to microtubule depolymerization, darinaparsin causes a loss of primary cilia and a 
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reduction in Shh signaling.  These findings support the concept that darinaparsin is a 

multivalent chemotherapeutic affecting several critical processes in neoplastic cells. 

 

Results 

Darinaparsin and sodium arsenite induce stress granule formation. 

Since darinaparsin is an organic arsenical, we first sought to evaluate whether 

darinaparsin could elicit RNA stress granules.  To determine the effect of darinaparsin on 

cells, we treated cells with darinaparsin and compared its effects to those of sodium 

arsenite.  Treatment of HeLa cells with 0.05 mM darinaparsin for 30 minutes induced 

stress granule formation, detected with antibodies against G3BP (Figure 7).  A titration of 

darinaparsin for short incubations showed stress granule formation was induced in a 

majority of cells at 0.03 mM.  Sodium arsenite treatment at 0.5 mM induced stress 

granule formation, as previously reported (Kolobova et al., 2009; Kedersha and 

Anderson, 2007).  Nevertheless, the stress granules induced by darinaparsin appeared 

smaller and were significantly greater in number when compared to sodium arsenite-

induced stress granules, and the granules were more dispersed throughout the cytoplasm 

(Figure 7E).     

As noted above, stress granule formation is a dynamic process.  Upon initial stress 

granule induction, many small granules form throughout the cytoplasm.  As stress 

continues, the smaller granules coalesce near the nucleus to form large, complete stress 

granules (Kolobova et al., 2009). The large, complete stress granules generally have 

similar compositions, but the smaller granules can vary in composition (Kolobova et al., 

2009).  Because stress granules can vary in composition, we evaluated the stress granules  
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Figure 7. Darinaparsin and sodium arsenite induce RNA stress granules.  HeLa 

cells were treated with 0.5 mM Sodium arsenite or 0.05 mM darinaparsin for 45 

minutes at 37°C.  Cells were fixed with supplemented 4% PFA.  All cells are stained 

for DNA with Dapi (blue) and  A) G3BP (green) and GW-182 (red), B) AKAP350 

(green) and G3BP (red), C) Caprin-1 (green) and G3BP (red), D) CCAR1 (green) and 

G3BP (red).  E)  The number of granules in sodium arsenite- and darinaparsin-treated 

cells was quantified using ImageJ software.  Results are mean +/- standard error.  

*p<0.0001 vs. sodium-arsenite  (Scale bars:  20 µM) 
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induced by darinaparsin in HeLa cells compared with stress granules induced by sodium 

arsenite, and cells that received no treatment served as a control (Figure 7).  We first 

studied the association of markers of Processing bodies (P bodies) with induced stress 

granules.  P-bodies serve as RNA degradation centers and are present in the absence or 

presence of cellular stress (Kolobova et al., 2009; Anderson and Kedersha, 2006).  Stress 

granules and P-bodies are separate entities, but they do communicate with one another 

and are dynamically linked (Kedersha et al., 2005).  To ensure the granules induced by 

darinaparsin were not P-bodies, we compared staining of a P-body marker, GW182, and a 

stress granule marker, G3BP (Figure 7A).  In untreated cells, GW182-stained P-bodies 

were small and distributed throughout the cytoplasm, while G3BP was diffuse throughout 

the cytosol.  Sodium arsenite treatment induced large G3BP-staining stress granules that 

clustered in the perinuclear region.  Only a few of the larger stress granules showed dual 

immunostaining with both G3BP and GW182.  Similarly, there was little overlap 

between the smaller darinaparsin-induced granules and GW182-labelled P-bodies.   

We next examined the presence of proteins previously found in stress granules in 

the granules induced by darinaparsin.  AKAP350A, a large scaffolding protein, localizes 

to stress granules and is important for their complete formation (Kolobova et al., 2009).  

Knockdown of AKAP350A with siRNA results in smaller stress granules upon treatment 

with sodium arsenite.  AKAP350A colocalized with G3BP in stress granules induced by 

sodium arsenite (Figure 7B).  After darinaparsin treatment, some granules contained both 

AKAP350A and G3BP, while others contained only one of the components.  Granules 

containing only one component were typically smaller and in the periphery of the 

cytoplasm.  AKAP350A interacts with RNA-binding proteins Caprin-1 and CCAR1, both 
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of which are also present in stress granules (Kolobova et al., 2009; Solomon et al., 2007; 

Rishi et al., 2003).  Caprin-1 colocalized with G3BP in stress granules induced by both 

sodium arsenite and darinaparsin (Figure 7C).  CCAR1 and G3BP colocalized in stress 

granules induced by sodium arsenite (Figure 7D).  However, as with AKAP350A, in 

darinaparsin-treated cells some stress granules contain both CCAR1 and G3BP, but many 

smaller granules stained for only one of the components. 

Darinaparsin inhibits microtubule polymerization. 

In previous studies, we have shown that microtubules are necessary for complete 

stress granule formation (Kolobova et al., 2009).  Pre-treatment of cells with nocodazole, 

which inhibits microtubule polymerization, prior to treatment with sodium arsenite, leads 

to the formation of stress granules which are smaller and greater in number.  The smaller 

granules suggest incomplete stress granule formation.  The similarity between 

darinaparsin-induced and nocodazole/sodium arsenite-induced stress granules led us to 

hypothesize that darinaparsin induces incomplete stress granule formation due to 

microtubule depolymerization.  Immunofluorescence in HeLa cells demonstrated that 

treatment with darinaparsin did induce microtubule depolymerization along with 

inducing stress granule formation (Figure 8A).  In cells treated with darinaparsin, 

microtubules were almost completely depolymerized, showing mainly cytosolic alpha-

tubulin staining.  In contrast, sodium arsenite treatment had no demonstrable effect on 

microtubules. 

To verify the effects of darinaparsin on microtubules, we assessed in vitro 

microtubule polymerization (Figure 8B).  Darinaparsin inhibited GTP-stimulated 

microtubule polymerization in a concentration-dependent manner.  Darinaparsin also  
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inhibited polymerization of microtubules stimulated by taxol, a microtubule stabilizer, at 

similar concentrations (data not shown).  These results suggest that darinaparsin 

sequesters free tubulin monomers, similar to the action of nocodazole (Xu et al., 2002).  

In contrast, sodium arsenite had only minimal effect on microtubule polymerization at 

concentrations up to 1 mM (Figure 8C).  Importantly, darinaparsin had no ability in vitro 

to depolymerize already polymerized microtubules (data not shown). 

Stress granules must complete formation before dispersal. 

We have previously shown that stress granules initially form as small granules in 

the cytosol, that then coalesce into the final, complete stress granules in the perinuclear 

region (Kolobova et al., 2009).  We now sought to evaluate stress granule dynamics 

further by investigating their dispersal once stress is relieved.  Because darinaparsin,  

Figure 8. Darinaparsin inhibits microtubule polymerization.  A)  HeLa cells were 

treated with 0.5 mM Sodium arsenite or 0.05 mM darinaparsin, or 33 nM 

Nocodazole/ 0.5 mM Sodium arsenite.  Cells are stained for DNA (Dapi, blue), a-

tubulin (red), and Caprin-1 (green; stress granule marker).  GTP-initiation of 

microtubule polymerization in the presence of darinaparsin (B) and sodium arsenite 

(C) was measured in vitro.  (Scale bars:  20 µM) 
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sodium arsenite, and nocodazole/sodium arsenite have differing effects, we monitored the 

dynamics of stress granule formation and dispersal during each treatment. 

We assessed the course of recovery of HeLa cells after treatment with 0.05 mM 

darinaparsin, 0.5 mM sodium arsenite, or a combination of 33 nM nocodazole and 0.5 

mM sodium arsenite.  Cells were fixed at the end of treatment for 45 minutes and after 

periods of recovery without treatment for up to three hours in complete media (Figure 9).  

At the end of treatment, sodium arsenite-treated cells had large, complete stress granules 

and intact microtubules, as expected (Figure 9).  After recovering without drug for one 

hour, the sodium arsenite-treated cells showed fewer stress granules, and by two hours of 

recovery, the stress granules had completely dispersed into the cytoplasm.  The 

microtubules remained unaffected by the sodium arsenite treatment for the duration of the 

experiment.  

In cells treated with darinaparsin, the microtubules were depolymerized and stress 

granules were significantly smaller than sodium arsenite-induced stress granules at the 

end of treatment (Figure 9).  After one hour of recovery in the absence of drug, the 

microtubules in cells treated with darinaparsin were repolymerized, and larger stress 

granules were now observed, especially in the perinuclear region.  After three hours of 

Figure 9. Stress granules must complete formation before dispersal.  HeLa cells 

were treated with 0.5 mM Sodium arsenite or 0.05 mM darinaparsin.  The 0 hour 

timepoint was taken at the end of treatment.  For recovery, cells were incubated in 

complete RPMI media.  Cells were fixed at timepoints with supplemented 4% PFA 

and stained for Caprin-1 and α-tubulin (A).  B)  Granule size was quantified for each 

hour of recovery using ImageJ software.  There were no granules at 2 hours of 

recovery from sodium arsenite.  Results are mean +/- standard error.  +p<0.0001 vs. 

sodium arsenite-treated.  *p<0.0001 vs. darinaparsin 0 hours of recovery.  

**p<0.0001 vs. darinaparsin 1 hour of recovery.  (Scale bars:  20 µM) 
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recovery, darinaparsin treated cells fully recovered with dispersal of stress granules.  

Similar results were obtained in recovery from the combination of treatment with both 

nocodazole and sodium arsenite, but recovery occurred more slowly (data not shown). 

The dynamics of stress granule formation are more clearly seen in continuous live cell 

imaging.  Similar to data shown in Figure 9, live cell imaging demonstrates that 

following removal of darinaparsin, small G3BP-labeled stress granules first coalesced in 

the perinuclear region and then dispersed (data not shown). These results suggest that 

stress granules must complete formation by coalescence along microtubule-dependent 

tracks before they can disperse into the cytoplasm.  

Darinaparsin affects Sonic Hedgehog signaling. 

Recent investigations have reported that ATO inhibits hedgehog signaling 

(Beauchamp et al., 2011; Kim et al., 2010).  We sought to investigate whether 

darinaparsin also affects hedgehog signaling.  Previous studies have shown that ATO 

does not affect primary cilium formation in mouse embryonic fibroblasts (MEFs) 

(Beauchamp et al., 2011).  To test the effects of darinaparsin on primary cilia, NIH 3T3 

cells were grown and induced to form primary cilia.  The cells were treated with 100 nM 

Smoothened Agonist (SAG) with or without 600 nM or 1 μM darinaparsin for 24 hours 

(Ehtesham et al., 2007).  The concentration of darinaparsin needed for long incubations 

was titrated, and 600 nM was the optimal concentration to have an effect while not 

causing cell death.  Fixed cells were stained for Arl13b to mark primary cilia.  Unlike 

cells treated with ATO, cells treated with 600 nM darinaparsin had a significant decrease 

in the number of primary cilia.  There was further loss of primary cilia at 1 μM  
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darinaparsin, suggesting a concentration-dependent decrease in primary cilia (Figure 10).  

In darinaparsin-treated cells that did form primary cilia, the primary cilia were shorter in 

length.  Similar to ATO (Beauchamp et al., 2011), darinaparsin treatment did not alter the 

intracellular localization of Gli1 (data not shown).  Given the loss of primary cilia 

observed with darinaparsin treatment, we also evaluated the drug’s effect on Shh 

signaling through an assay of Gli1 activation.  Figure 10 demonstrates that darinaparsin 

elicited a concentration-dependent inhibition of Shh signaling, as seen with ATO (Kim et 

al., 2010).  These results indicate that darinaparsin has broad effects on stress granule 

formation, microtubule dynamics and Shh signaling. 

Darinaparsin effects are independent of Mdr1 expression. 

Darinaparsin is a multivalent drug that appears to be more potent than similar 

drugs, such as ATO.  Therefore, we tested its efficacy in cells with multiple drug 

resistance.  Multiple drug resistance transporters are often a limiting factor on the 

practical efficacy of chemotherapeutic agents, especially in recurrent cancers (Chan et al., 

2006).While ATO is used to treat hematological malignancies, its use is limited in 

cancers expressing the multiple drug resistance protein, MRP-1 (Diaz et al., 2008).  

MRP1-expressing cells are resistant to ATO treatment, but are sensitive to treatment with    

Figure 10. Darinaparsin inhibits Sonic Hedgehog signaling and primary cilia 

formation.  NIH 3T3 fibroblasts were treated with 100 nM SAG (Shh agonist) with 

or without  0.6 μM or 1 μM darinaparsin (ZIO-101). A) Cells were fixed with 4% 

PFA and stained for  DNA (Dapi; blue), primary cilia (Arl13b; green), and α-

tubulin (red).  B) The number of primary cilia was determined from 6 samples per 

genotype (15-30 cells per sample).  C) The length of primary cilia was determined 

using Image J software. P values were calculated using unpaired t-test with n–1 

degree of freedom (GraphPad). **p<0.005, ***p<0.0001. D)  Luciferase assays 

were performed in the absence or presence of darinaparsin.  (Scale bars:  20 µM) 
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darinaparsin (Diaz et al., 2008).  This prompted us to examine another major drug 

resistance protein, Mdr1, which can rapidly pump drugs out of resistant cancer cells. 

Previous investigations have shown that ATO is not a substrate for Mdr1, and 

thus is effective in Mdr1-expressing cells (Chan et al., 2006).  We evaluated the effects of 

darinaparsin on stress granule formation in uterine sarcoma cells lines with or without 

expression of Mdr1.  Figure 11 demonstrates that darinaparsin and sodium arsenite 

induced stress granules in both ME-SA cells, which do not express Mdr1, and ME-

SA/Dx5 cells, which strongly over-express Mdr1.  Indeed, the Mdr1-over-expressing 

cells appeared to be more susceptible to darinaparsin treatment as shown by the rapid 

rounding up of these cells after treatment.  Along with previous studies, these results 

Figure 11. Darinaparsin is effective in Mdr-1-expressing cells.  ME-SA and ME-

SA/Dx5 cells were untreated or treated with 0.5 mM Sodium arsenite or 0.05 mM 

darinaparsin for 30 minutes at 37°C. Cells were fixed with supplemented 4% PFA 

and stained for G3BP. 
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demonstrate that darinaparsin effects are not altered by expression of multiple-drug 

resistance transporters. 

 

Discussion  

Arsenic salts are one of the oldest pharmaceutical classes (Verstovsek et al., 2006).  

Treatment with arsenicals has been utilized for both infectious diseases and cancer.   

While ATO is approved for treatment of refractory leukemias, its toxicity limits its use 

(Mann et al., 2009).  In contrast, darinaparsin, an organic arsenical, shows a wide range 

of potency against many cancer cells and has low toxicity when administered in humans 

(Mann et al., 2009).  While darinaparsin induces apoptosis and G2/M arrest in a number 

of cell lines, the exact mechanism responsible for the anti-neoplastic effects of the 

compound seem to vary according to cell types (Mann et al., 2009).  The present 

investigation indicates that darinaparsin acts as a multivalent pharmaceutical that induces 

a stress response, but does not permit its completion due to its influence as a microtubule 

polymerization inhibitor.  Microtubule depolymerization by darinaparsin also causes loss 

of primary cilia and Shh signaling. The effect on Shh signaling is probably due to the loss 

of Smoothened presentation on primary cilia.  Inhibition of microtubule polymerization 

by darinaparsin likely accounts for the arrest of cells in G2/M noted in previous studies 

(Mann et al., 2009).  The G2/M arrest is characteristic of microtubule depolymerization 

inhibitors such as nocodazole (Jordan et al., 1992).  Together these effects make this 

organic arsenical drug a potent chemotherapeutic with multiple mechanisms that target 

key regulators of neoplasia. 
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Formation of RNA stress granules following various cellular stressors is considered 

a critical adaptive mechanism in cell survival.  Stress granules accumulate translational 

intermediates including critical mRNAs that are important for reestablishment of cell 

function after the release of stress (Kedersha and Anderson, 2007).  Darinaparsin induces 

stress granule formation and simultaneously inhibits microtubule polymerization.  This 

scenario leads to incomplete formation of stress granules.  The inability to form stress 

granules or incomplete stress granule formation likely leads to apoptosis in affected cells 

(Thomas et al., 2011).  Importantly, the unique property of darinaparsin to stimulate 

incomplete stress granule formation has allowed us to investigate the process of stress 

granule processing after removal of the blockade.  Removal of darinaparsin led to 

completion of stress granule formation, with coalescence of smaller granules into larger 

perinuclear granules, coincident with the repolymerization of microtubules. These results 

are consistent with our previous results that stress granules form initially in the cell 

periphery and then coalesce after centripetal transport along microtubule tracks 

(Kolobova et al., 2009).  Following withdrawal of darinaparsin, stress granules only 

dissipated after completion of granule formation.  These findings indicate that stress 

granules must complete their full program of formation and coalescence prior to 

subsequent disassembly. 

Recent investigations have noted that arsenic trioxide can inhibit Shh signaling 

(Beauchamp et al., 2011; Kim et al., 2010).  Similarly, we have observed that 

darinaparsin also strongly inhibits Shh-induced Gli1 expression.  Nevertheless, in 

contrast with arsenic trioxide, darinaparsin also causes the loss of microtubules and the 

primary cilium, the site of Smoothened presentation (Beauchamp et al., 2011; Kim et al., 



52 
 

2010).  Since Shh is considered a major driver in multiple cancers, it appears that 

darinaparsin has the ability to dismantle key aspects of Shh signaling machinery 

necessary for the proliferative drive in neoplastic cells. 

Darinaparsin appears to be more potent but less toxic than ATO.  Previous studies 

have noted that darinaparsin and ATO both induce an increase in ROS, but darinaparsin 

produces a greater increase (Tsimberidou et al., 2009).  Darinaparsin is a potent inhibitor 

of microtubule polymerization while the effects of ATO on microtubules can vary.  Some 

studies have reported that ATO is a strong microtubule polymerizing agent that 

synergizes with taxol, while others have shown ATO inhibition of the effects of taxol 

(Carré et al., 2002; Duan et al., 2010; Ling et al., 2002).  Also, darinaparsin is effective 

in cells with ATO-resistance (Diaz et al., 2008; Matulis et al., 2009).  Part of this latter 

difference may be due to the ability of some multiple drug resistance transporters, such as 

MRP1, to transport ATO out of cells (Matulis et al., 2009).  In contrast, the expression of 

MRP1 does not alter the effects or potency of darinaparsin (Diaz et al., 2008).  As noted 

previously for ATO (Chan et al., 2006), effectiveness of darinaparsin is not altered in 

Mdr1-expressing cells.  In clinical trials, darinaparsin appears less toxic than ATO (Mann 

et al., 2009).  In general, organic arsenicals, such as darinaparsin, are typically less toxic 

than inorganic arsenicals, such as ATO (Matulis et al., 2009).  The lower toxicity of 

darinaparsin may seem a bit counterintuitive given its broad range of activities, including 

strong action against microtubule polymerization.  Indeed, the differences in practical 

therapeutic effects of darinaparsin may accrue from a relative therapeutic index of 

multiple specific target activities impacting neoplastic cells versus non-specific 

generalized effects of arsenicals affecting mitochondrial functions (Mann et al., 2009).  
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In any case, the range of actions of darinaparsin against multiple drivers of neoplastic 

cells may make this organic arsenical an effective therapy for multiple resistant solid and 

hematological malignancies. 

 

Methods 

Cell Culture 

HeLa cells (American Type Culture Collection, ATCC) were maintained at 37°C in 

5% CO2 using complete RPMI media supplemented with 10% fetal bovine serum (FBS).  

Polyjet was used for transfections according to the manufacturer’s protocol (SignaGen).  

NIH 3T3 fibroblasts were maintained in high-glucose Dulbecco's modified Eagle's 

(DMEM) medium supplemented with 10% FBS. To induce cilia formation, 3T3 cells 

were grown on poly-L-lysine coated coverslips and maintained in DMEM medium 

supplemented with 0.5% calf serum.  ME-SA and ME-SA/Dx5 cells (American Type 

Culture Collection, ATCC) were maintained at 37°C in 5% CO2 using complete 

McCoy’s media supplemented with 10% FBS. 

Cell stress and recovery 

For stress induction, HeLa cells were incubated at 37°C for 45 minutes (fixed cells) 

or 30 minutes (live cells) with a final concentration of either 0.5 mM sodium arsenite 

(Riedel de Haen) or 0.05 mM darinaparsin (gift from Ziopharm).  For microtubule 

depolymerization, cells were first incubated on ice for 30 minutes.  Then, cells were 

treated with 33 nM nocodazole (Calbiochem) for 90 minutes at 37°C.  In recovery 

experiments, cells were washed twice with serum-free media after treatment, and 

incubated in complete RPMI media at 37°C for duration of recovery.  For primary cilia 
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staining, 3T3 cells were treated with100 nM Smoothened Agonist (SAG) (Ehtesham et 

al., 2007), and with or without darinaparsin 18 hours before staining. 

Fluorescence microscopy and analysis 

For stress and recovery studies, HeLa cells grown on coverslips were fixed at room 

temperature for 15 minutes using 4% paraformaldehyde (PFA) supplemented with 0.1% 

Triton X-100, 80 mM K-PIPES pH 7.2, 1 mM EGTA, 1 mM MgSO4, and 30% glycerol.  

Cells were permeabilized with 0.25% Triton X-100 and blocked with 5% normal serum 

for one hour at room temperature.  The cells were incubated with primary antibodies for 

one hour at room temperature:  rabbit anti-AKAP350A (1:200), rabbit anti-Caprin-1 

(1:1000, gift from John Schrader), mouse anti-α-tubulin (1:5000, Sigma), rabbit anti-

CCAR1 (1:1000), goat anti-GW182 (1:100, Santa Cruz), and mouse anti-G3BP (1:800, 

BD Transduction).  This was followed by incubation at room temperature for one hour 

with species-specific fluorescent secondary antibodies (1:500; Invitrogen or Jackson 

Immunoresearch).  Coverslips were mounted using Prolong Gold with DAPI 

(Invitrogen).  Cells were imaged using a 60x oil immersion lens on Olympus FV-1000 

confocal fluorescence microscope (Vanderbilt Cell Imaging Shared Resource).  The 

number and average size of granules in sodium arsenite- and darinaparsin-treated cells 

were determined using ImageJ software (NIH).  At least ten cells were used per 

calculation.  Changes in granule number and size were analyzed using a Student’s t-test.  

Changes in granule size over time in darinaparsin-treated cells were analyzed using a 

one-way analysis of variance (ANOVA).  Live-cell imaging was performed using a 60x 

oil immersion lens on the DeltaVision Deconvolution microscope (Vanderbilt Epithelial 

Biology Center Imaging Resource). 
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For primary cilia staining, 3T3 cells grown on coverslips were fixed for 20 minutes 

in 4% paraformaldehyde and permeabilized for 15 minutes in PBS with 0.3% Triton-X 

100.  The cells were incubated in primary antibodies overnight at 4°C:  rabbit-anti-

Arl13b (1:2000; gift from Tamara Caspary, Emery University) and mouse-anti-α-tubulin 

(1:5000; Calbiochem).  This was followed by incubation at room temperature for one 

hour with species-specific fluorescent secondary antibodies (1:1000; Invitrogen).  DAPI 

was included in the final washes before the samples were mounted in Fluor Saver 

(Calbiochem) for microscopy. Images were taken with Opti-Grid Confocal microscope. 

Cilia frequencies were determined from Arl13b/DAPI- stained cells from 6 samples per 

treatment (15-30 cells per sample). Ciliary length was measured using NIH ImageJ 

software. Bases and ends of immunolabeled individual cilia were marked in the confocal 

z-stack images and outlined, and the calculated length was recorded. P values were 

calculated using unpaired t-test (GraphPad). 

Microtubule polymerization 

The effects of darinaparsin on microtubule polymerization were assayed using a 

fluorescence-based polymerization assay (Cytoskeleton, Inc).  Microtubule 

polymerization was initiated by GTP or GTP/Taxol (1 µM) in the presence of increasing 

concentrations of either darinaparsin (0.3 µM to 300 µM) or arsenite (1 µM to 1 mM).  

Polymerization was monitored each minute by fluorescence measurement for a total of 

one hour in a Biotek Fluorescence plate reader.   

Luciferase reporter assay 

NIH3T3 cells were plated at 1.0X105 cells/ml (24-well plate) 16 hours before 

transfection. Cells were co-transfected with 0.3 µg 8XGli1-luciferase reporter construct 
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and 0.03 µg Renilla-luciferase control construct in each well. At 8 hours after 

transfection, cells were fed low serum medium (0.5% calf serum + DMEM), and then 

treated with Shh agonist (10 nM SAG) with or without darinaparsin for an additional 20 

hours. Luciferase assays were performed with the Dual-Glo Luciferase System 

(Promega) according to the manufacturer’s instructions. Each assay was performed in 

triplicate and the results are presented as the relative fold-increase (normalized to Renilla-

luciferase activity) over non-SAG-treated cells.  
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CHAPTER III 

 

AKAP350C TARGETS TO MITOCHONDRIA VIA A NOVEL DOMAIN AND 

AFFECTS MITOCHONDRIAL MORPHOLOGY 

 

Partially appears as:  Mason TA, Goldenring JR, and Kolobova E. (submitted) 

AKAP350C targets to mitochondria via a novel domain and affects mitochondrial 

morphology. 

 

Introduction 

Mitochondria have crucial roles within cells regulating metabolism, decisions 

between cell survival and death, redox biochemistry, and calcium homeostasis (Horbinski 

and Chu, 2005).  Mitochondria also play a role in calcium signaling, in concert with and 

independently of the endoplasmic reticulum (ER) (Dorn and Scorrano, 2010; Gunter et 

al., 2000).  Because of their many roles, mitochondria are critical locations for signal 

integration.  Mitochondria also exhibit localized cyclic AMP (cAMP)/Protein Kinase A 

(PKA) signaling, and cAMP is involved in many aspects of cell function and survival 

(Carlucci et al., 2008a).  Decisions between cell survival and cell death, through 

apoptosis or autophagy, are largely regulated by mitochondria (Fulda et al., 2010).  

Mitochondrial biogenesis and activity can be regulated by changes in cAMP/PKA 

signaling.  PKA-regulated ion channels also exist in the mitochondrial membranes 

(Nishida et al., 2009).  Some cAMP/PKA-regulated calcium and potassium channels play 

roles cardioprotection (Nishida et al., 2009).  

Mitochondria are highly dynamic, constantly undergoing fission and fusion and 

maintaining a balance between the two processes (Chen and Chan, 2009).  Various 



58 
 

events, such as cellular stress, can induce a shift in the balance between fission and fusion 

(Chan 2012).  When the balance is shifted towards increased fusion or decreased fission, 

mitochondria become elongated and hyperfused (Chen and Chan, 2009).  When the 

balance is shifted towards decreased fusion or increased fission, the mitochondria become 

fragmented (Chen and Chan, 2009).  This dynamic nature of mitochondria morphology 

also affects nearly every aspect of mitochondrial function.   

The importance of proper mitochondrial dynamics is evident in the various 

diseases associated with defects in mitochondrial dynamics.  Mutations in mitofusin 2 

(Mfn2), a mitochondrial outer membrane fusion protein, are known to cause Charcot-

Marie-Tooth type 2A (Züchner et al., 2004).  Autosomal dominant Optic Atrophy is 

caused by mutations in optic atrophy 1 (Opa1), a mitochondrial inner membrane fusion 

protein (Eiberg et al., 1994).  Defects in mitochondrial dynamics have also been 

associated with Parkinson’s, Alzheimer’s, and Huntington’s diseases (Chen and Chan, 

2009; Liesa et al., 2009). 
 
When mitochondrial dynamics are disrupted, this can lead to 

oxidative stress which has been found to play a role in the pathology of Parkinson’s and 

Huntington’s diseases (Subramaniam and Chesselet, 2013; Jin et al., 2013).   

Because of the importance of mitochondrial dynamics, the processes of fission 

and fusion are highly regulated.  PKA is an important regulator of mitochondrial 

dynamics (Rambold and Lippincott-Schwartz, 2011).  Drp1 (dynamin-related protein 1), 

a mitochondria fission protein, is inactivated by PKA phosphorylation, resulting in 

decreased fission and increased mitochondria elongation, a process that promotes cell 

survival (Chang and Blackstone, 2007).  Mfn2 is also phosphorylated by PKA, and again 

promotes cell survival (Chen et al., 2004).  PKA signaling at the mitochondria regulates 
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mitochondrial dynamics, but it also is involved in other signaling pathways as well.  The 

complete details of signal integration at mitochondria remain unclear.   

A-Kinase Anchoring Proteins (AKAPs) were discovered as PKA anchors that 

establish localized cAMP/PKA signaling through sequestration of PKA, but they play 

many other roles in protein scaffolding (Theurkauf and Vallee, 1982; Lohmann et al., 

1984).  AKAPs function as anchors for targeting proteins to specific subcellular 

locations, and the localization and composition of AKAP complexes is dynamic.  AKAPs 

comprise a very diverse family of proteins, with over 50 AKAPs identified to date (Wong 

and Scott, 2004).  The importance of AKAP function is evident in the embryonic lethality 

of most AKAP knockout mice (Carnegie et al., 2009).  At least one AKAP is found in 

every tissue in the body (Welch et al., 2010).  

Previous studies have identified AKAPs involved with the mitochondria.  

AKAP149 (also known as D-AKAP1 and AKAP121 in mouse) localizes to both the ER 

and mitochondria and plays a role in stress response in cardiomyocytes (Ma and Taylor, 

2008; Rogne et al., 2009; Perrino et al., 2010).  When AKAP149 is displaced from the 

mitochondria it induces mitochondrial dysfunction (Perrino et al., 2010).  This causes an 

increase in reactive oxygen species, and therefore induced oxidative stress in 

cardiomyocytes, smooth muscle cells, and hypertrophic mouse hearts in vivo (Perrino et 

al., 2010).  AKAP149 anchors proteins and RNAs at the mitochondrial outer membrane 

and plays an important role in cAMP signaling.  Overexpression of AKAP149 reduces 

apoptosis (Affaitati et al., 2003).  Rab32, also an AKAP, interacts with the ER and 

mitochondria.  Rab32 localizes to mitochondria-associated membranes (MAMs), where it 

serves to regulate MAM properties and interacts with Drp1 (Bui et al., 2010).  High 
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expression levels of Rab32 delay apoptosis, while low expression levels of Rab32 

accelerate apoptosis.  It is possible other AKAPs localize to mitochondria and serve as 

regulators of their dynamics and functions.    

We have investigated the function of a splice variant of AKAP350, also known as 

AKAP450, AKAP9, and CG-NAP (Schmidt et al., 1999; Witczak et al., 1999; Takahashi 

et al., 1999).  There are several known splice isoforms of AKAP350:  yotiao, 

AKAP350A, AKAP350B, and AKAP350C.  Yotiao, associated with plasma membranes 

in excitable cells, and AKAP350A, associated with centrosomes and the Golgi apparatus, 

are the most studied isoforms.  We previously identified AKAP350B and AKAP350C 

isoforms as potential splice variants, but their functions have not been studied further 

(Shanks et al., 2002a).   

In this study, we completed cloning of AKAP350C and identified it as a 

mitochondria-targeted AKAP.  AKAP350C lacks the centrosome- and Golgi-targeting 

domains found in AKAP350A.  AKAP350C has a unique mitochondrial targeting 

sequence in its carboxyl terminus consisting of an amphipathic alpha helix.  This alpha 

helix is necessary and sufficient for mitochondrial localization of AKAP350C.  

Overexpression of full-length AKAP350C induces a collapse of mitochondria towards 

the nucleus.  AKAP350C interacts with Mff (mitochondria fission factor) and mitofusins 

1 and 2, and over-expression of AKAP350C is associated with increased apoptosis.  Our 

results suggest that AKAP350C is responsible for coordination of mitochondrial 

structural dynamics. 
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Results 

Characterization of AKAP350C. 

AKAP350C was previously identified using 3’-rapid amplification of cDNA ends 

(RACE) in a human lung cDNA (Schmidt et al., 1999; Shanks et al., 2002a).  We have 

now completed cloning of AKAP350C from CaCo2 (human colorectal adenocarcinoma) 

RNA. The AKAP350C cDNA is 9.5 kb and codes for a protein of 3184 amino acids.   

Figure 12.  Characterization of AKAP350C. A) The AKAP350 splice variant is 

determined by the ending of the protein (red).  Both variants contain two PKA RIIα-

binding domains (yellow).  AKAP350A contains one leucine zipper region (green), 

while AKAP350C contains only one.  Other domains include YHR (Yotiao homology 

region; grey), Golgi (Golgi-targeting domain; purple), and PACT (pericentrin and 

AKAP350 centrosomal-targeting domain; blue).  B) AKAP350C has a unique 55-

amino acid sequence, which contains a predicted alpha helix (Protean).  C) The alpha 

helix predicted is amphipathic.  D)  HeLa cells were stained for edogenous 

AKAP350C (green), MTCO2 (mitochondria; blue), and calreticulin (ER; red).  (Scale 

bars: 20 µm) 
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AKAP350C is missing the carboxyl-terminal region containing centrosomal- and Golgi-

targeting domains found in AKAP350A (Figure 12A) (Schmidt et al., 1999; Gillingham 

and Munro, 2000; Shanks et al., 2002a).  Instead, the carboxyl terminus of AKAP350C 

contains a unique 55-amino acid sequence (Figure 12B).   An amphipathic alpha helix is 

predicted in the first half of this sequence (Figure 12B and C).  AKAP350C is 

ubiquitously expressed among tissues and cell lines (data not shown).   

To examine the endogenous localization of AKAP350C, we made two isoform-

specific antibodies against different epitopes in the AKAP350C-specific carboxyl 

terminal sequence and validated the specificity of these antibodies (Figure 13 and data 

Figure 13.  Specificity of AKAP350C antibodies.  HeLas cells were grown on 

collagen-coated coverslips.  Cells were stained for AKAP350C (green), 

mitochondria (MTCO2, red), and nuclei (DAPI, blue).  The AKAP350C antibody 

was pre-incubated with either PBS or 20 µM blocking antigen peptide.  (Scale bars: 

20 µm) 
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not shown).  In immunofluorescence staining, both antibodies showed mitochondrial 

localization of AKAP350C in all cells and tissues we examined (Figure 13 and data not 

shown). 

The amphipathic alpha helix is required and sufficient for targeting to 

mitochondria. 

The AKAP350C sequence contains no known mitochondrial-targeting motifs, so 

determining its targeting domain could shed light on a previously unknown targeting 

motif or mechanism.  The carboxyl-terminal 55 amino acids is the only sequence unique 

to AKAP350C, so we hypothesized that the mitochondrial-targeting domain is contained 

within that unique sequence.  The only identifiable structural feature within the unique 

sequence was an amphipathic alpha helix (Figure 12B and C).  Therefore, I evaluated 

whether the amphipathic alpha helix was required for mitochondrial localization of 

AKAP350C, using synthetic constructs to overexpress GFP-tagged AKAP350C 

fragments.  I created several mutant constructs for GFP-chimeras of amino acids 2680-

3184 of AKAP350C (AKAP350C-F3) and GFP-AKAP350C-C55 (the last 55 amino 

acids 3130-3184) following the schematic in Figure 14.  The overexpressed GFP-

AKAP350C-F3 (Figure 15) and GFP-AKAP350C-C55 (Figure 17) localize in a 

distribution that overlaps with mitochondria, suggesting that the carboxyl 55 amino acids 

can specify targeting. 

Several truncation and point mutants were examined for their ability to target to 

mitochondria.  The truncation mutant F3-L3136X, which only contains 6 of the 55 amino 

acids, abolished targeting to the mitochondria (Figure 15), supporting the importance of 

the unique AKAP350C carboxyl terminus in specifying mitochondrial targeting.  Proline    
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Figure 14.  Schematic of GFP-AKAP350C constructs for mitochondrial 

targeting.  Quickchange site-directed mutagenesis was used to create truncation 

and point mutants.  Synthetic AKAP350C sequence was used as template. 
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Figure 15.  The AKAP350C carboxyl-terminal amphipathic alpha helix is 

required for targeting to mitochondria.  HeLa cells were grown on collagen-

coated coverslips.  Cells were transfected with various AKAP350C constructs 

using Polyjet and stained for MTCO2 (mitochondria; blue) and calreticulin 

(ER; red).  (Scale bars: 20 µm) 
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Figure 16.  The structure of the AKAP350C carboxyl-terminal 

amphipathic alpha helix is required for targeting to mitochondria.  HeLa 

cells were grown on collagen-coated coverslips.  Cells were transfected with 

various AKAP350C point mutant constructs using Polyjet and stained for 

MTCO2 (mitochondria; blue) and calreticulin (ER; red).  (Scale bars: 20 µm) 
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Figure 17.  The AKAP350C carboxyl-terminal amphipathic alpha helix 

is sufficient for targeting to mitochondria.  HeLa cells were grown on 

collagen-coated coverslips.  Cells were transfected with various AKAP350C 

C55 constructs using Polyjet and stained for MTCO2 (mitochondria; blue) 

and calreticulin (ER; red).  The red arrow indicates mitochondrial staining. 

(Scale bars: 20 µm) 
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substitution mutants F3-L3139P and F3-V3143P, which disrupt the alpha helical 

structure, also abolished mitochondrial targeting of AKAP350C (Figure 16).  The 

truncation mutant F3-I3154X, which removes the amino acids after the alpha helix, 

retained mitochondrial targeting (Figure 15).  This mutant appears to have enhanced 

targeting to the mitochondria when compared with wildtype.  Double mutants F3-

L3139P-I3154X and F3-V3143P-I3154X no longer targeted to the mitochondria (Figure 

16).  As expected, the proline disrupting the alpha helix abolishes the enhanced targeting 

seen in F3-I3154X.  Interestingly, the truncation mutant F3-H3170X has a mixed 

localization, localizing partially to mitochondria and partially to the cytosol (Figure 15).  

This suggests the possibility of another domain in the last 30 amino acids that could 

target another organelle.  Finally, removal of the alpha helix (F3-deletion) also blocked 

targeting to the mitochondria (Figure 15).  Thus, any mutation that deleted or disrupted 

the alpha helix abolished mitochondrial targeting of AKAP350C. 

Next, I examined whether the alpha helix is sufficient for targeting mitochondria.  

As mentioned above, C55-wildtype localized near the mitochondria, similar to F3-

wildtype.  The C55 constructs are small and do not target as well as the larger F3 

constructs.  However, a pattern can still be observed.  As predicted, C55-L3136X, C55-

L3139P, and C55-V3143P all have a cytosolic localization (Figure 17).  The C55-

H3170X has a mixed localization, similar to that of F3-H3170X (Figure 17).  As shown 

in Figure 17, C55-I3154X localizes to the mitochondria.  This 24 amino acid fragment, 

mostly comprised of the 17 amino acid amphipathic alpha helix, was sufficient to target 

GFP to the mitochondria.  Therefore, the alpha helix is required and sufficient for 

mitochondrial targeting of AKAP350C. 
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Biochemical confirmation that the amphipathic alpha helix is required for 

association with mitochondria. 

I next utilized a biochemical approach to evaluate the sub-cellular distribution of 

the various AKAP350C mutants.  Mitochondria were isolated from cells expressing the 

AKAP350C mutants and compared with other sub-cellular fractions.  As predicted based 

on data in Figure 15 and Figure 16, mutants which deleted or disrupted the amphipathic 

helix, including F3-L3136X, F3-L3139P, and F3-deletion, abolished association with 

mitochondria and these constructs partitioned in the microsomal fraction and 100,000 x g 

supernatant (Figure 18 and data not shown).  AKAP350C constructs that retained an 

intact amphipathic helix localized with mitochondria, including F3 and F3-I3154X 

(Figure 18).  Wildtype F3 localized in both mitochondrial and microsomal fractions, 

which may be due to the high level of overexpression of this construct.  These   

 

Figure 18.  Biochemical confirmation that the amphipathic alpha helix is 

required for AKAP350C association with mitochondria.  Mitochondria were 

isolated from HEK-293 cells transfected with GFP-AKAP350C constructs.  In each 

case, Lane 1 contains the mitochondrial fraction; Lane 2 contains the microsomal 

fraction (pellet of 100,000 x g centrifugation); and Lane 3 contains the supernatant of 

the 100,000 x g centrifugation.  In each lane, 12.5 µg of protein were loaded.  

Membranes were probed for MTCO2 (mitochondria), calreticulin (ER), and GFP 

(AKAP350C construct).  The GFP westerns shown were taken at different exposures 

due to differences in level of expression. 
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Figure 19.  Overexpression of AKAP350C disrupts mitochondria morphology.  
HeLa cells were grown on collagen-coated coverslips.  Cells were transfected with 

various AKAP350C constructs using Polyjet and stained for MTCO2 (mitochondria; 

blue) and calreticulin (ER; red).  (Scale bars: 20 µm) 
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results confirm that the amphipathic alpha helix is required for AKAP350C association 

with the mitochondria. 

Overexpression of AKAP350C localizing to mitochondria disrupts mitochondria 

morphology. 

When full length AKAP350C protein (GFP-AKAP350C-FL) was overexpressed, 

the mitochondrial structure was disrupted and GFP-AKAP350C-FL localized in a 

distribution overlapping with mitochondria and the endoplasmic reticulum (Figure 19).  

This disruption of mitochondrial morphology was not observed with overexpression of 

GFP-AKAP350C-F3 (Figure 15).  I next examined whether targeting-deficient mutants 

of AKAP350C-FL would have a similar affect.  Overexpression of GFP-AKAP350C-FL-

L3136X did not alter mitochondrial morphology as dramatically and distributed in the 

cytosol.  In contrast, GFP-AKAP350C-FL-I3154X associated with mitochondria and 

caused mitochondrial collapse (Figure 19).  Additionally, GFP-AKAP350C-FL-H3170X 

partially associated with mitochondria and caused mitochondrial collapse.  These studies 

suggested that an increased amount of AKAP350C at mitochondria disrupted the 

mitochondrial morphology, causing a structural collapse. 

To investigate further the nature of the mitochondrial morphology changes, I 

imaged cells using transmission electron microscopy.  HEK-293T cells expressing GFP-

AKAP350C-FL, GFP-AKAP350C-FL-I3154X, or GFP were flow-sorted for GFP-

positive cells.  The GFP-positive cells were then embedded and imaged.  Control cells 

expressing only GFP exhibited normal mitochondria distributed throughout the cell 

(Figure 20).  Cells expressing AKAP350C-FL or FL-I3154X displayed clustering of 

mitochondria in the perinuclear region.  The mitochondria did not appear hyper-fused.  

Rather, a number of abnormal morphologies were observed including mitochondria with 
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membranous protrusions lacking internal cristae (Figure 20).  Preliminary studies indicate 

this is not due to the process of mitophagy (data not shown).  These differing 

morphologies suggested that AKAP350C plays a role in regulating mitochondrial 

dynamics and/or morphology.   

AKAP350C does not target mitochondria by direct association with lipids. 

Determining how the amphipathic alpha helix targets AKAP350C to 

mitochondria is important for understanding this new targeting domain.  I examined 

whether AKAP350C associated with lipids through the amphipathic alpha helix.  I made  

 

 

Figure 20.  Overexpression of AKAP350C localizing to mitochondria 

induces clustering and disrupts mitochondria morphology.  HEK-293T cells 

were transfected with various AKAP350C constructs or GFP-only control.  Cells 

were flow-sorted and GFP-positive cells were collected.  The cell pellets were 

fixed, embedded, and processed for imaging with transmission electron 

microscopy.  (Scale bars: 2 microns) 



73 
 

     

 

 

constructs of the carboxy-terminal 102 amino acids of AKAP350C in bacterial 

expression vectors containing S-tags (Figure 21A).  Purified protein was used to probe 

lipid-dotted membranes.  Purified wildtype S-tag-End-C, S-tag-End-C-V3143P, and S-

tag-End-C-deletion all show a positive interaction with phosphatidic acid (PA) (Figure 

21B and data not shown).  Because there is no difference between the wildtype 

interactions and those of the mutant proteins, it is not likely that AKAP350C targets 

mitochondria via direct lipid interaction.   

Figure 21.  AKAP350C does not target mitochondria by direct association 

with lipids.  A) Diagram of AKAP350C fragments in pET30a vectors.  The End 

fragments are 102 amino-acids.  B)  PIP strips (lipid-dotted membranes) were 

probed with bacterially expressed, purified AKAP350C fragments.  Protein was 

detected using S-protein antibodies conjugated to horseradish peroxidase (HRP) 

secondary. 
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AKAP350C associates with mitochondrial fission and fusion proteins. 

Given that AKAP350C is scaffolding PKA, which is well known regulator of 

mitochondrial fission/fusion dynamics (Rambold and Lippincott-Schwartz, 2011), I 

sought to determine whether AKAP350C is associated with fission regulator proteins 

such as Mff and fusion regulator proteins such as Mfn1 and Mfn2. To examine those 

interactions, we overexpressed GFP-AKAP350C together with myc-Mff, myc-Mfn1 or 

myc-Mfn2 in HEK cells and then used GFP-binding protein-conjugated beads to isolate 

complexes (Rothbauer et al., 2006). We found that both GFP-AKAP350C-FL and GFP-

AKAP350C-F3-I3154X specifically isolated Mff, Mfn1 and Mfn2 (Figure 22).  

We next examined immunostaining of endogenous AKAP350C in HeLa cells, 

overexpressing mCherry-Mff, mCherry-Mfn1 or mCherry-Mfn2 (Figure 23). As 

described previously (Otera et al., 2010; Otera and Mihara, 2011), Mff overexpression 

resulted in short, fragmented mitochondria, whereas overexpression of mitofusins 

induced a spectrum of mitochondrial fusion leading to eventual mitochondrial collapse 

and formation of perinuclear clusters with enlarged mitochondria (Santel et al., 2003, 

Pich et al., 2005). 
  
We observed substantial co-localization of AKAP350C with Mff 

(Figure 23A), Mfn1 (Figure 23, B and C) and Mfn2 (Figure 23, D and E).  

It should be noted that the extent of mitochondrial fusion, and therefore 

mitochondrial shape, varied depending on the level of mitofusin protein expression. Low 

levels of mitofusin over-expression resulted in an elongated, fused mitochondrial network  
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Figure 22.  AKAP350C associates with mitochondrial fission and fusion 

proteins. GFP-tagged AKAP350C or empty pEGFP-C1 vectors were co-

expressed with either  myc-tagged Mff, myc-tagged Mfn1 or myc-tagged 

Mfn2 in HEK-293T cells.  Proteins isolated using GFP-binding protein 

conjugated beads were probed for myc-tag (to detect Mff, Mfn1, Mfn2) and 

for GFP (to detect AKAP350C). Empty pEGFP-C1 vector was used as a 

negative control.  Dual detection was performed on the same membrane for 

both GFP and myc using Odyssey Li-Cor system. 
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Figure 23. Endogenous AKAP350C co-localizes with overexpressed 

fission/fusion proteins (Mff/Mitofusins).  HeLa cells were transfected with either 

Cherry-Mff (A), Cherry-Mfn1 (B, C), or Cherry-Mfn2 (D, E) and dual-stained for 

endogenous AKAP350C (green) and mitochondria marker MTCO2 (blue).  Note, 

that higher levels of  expression of mitofusins (C and E for Mfn1 and Mfn2, 

respectively) change the pattern of endogenous AKAP350C staining. The degree 

of co-localization between endogenous AKAP (green) and overexpressed 

Mff/Mfn1/Mfn2 (red) were quantified using Pearson's Correlation Coefficient 

(PCC). PCCs were determined using JACOP plug-in of ImageJ software. PCC: (A) 

0.918; (B) 0.908; (C) 0.920; (D) 0.938; (E) 0.880.  (Scale bars: 20 µm) 
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with extensive co-localization of endogenous AKAP350C (see Figure 23B and Figure 

23D for Mfn1 and Mfn2, respectively).      

Higher levels of mitofusins over-expression encouraged formation of further 

fused mitochondrial clusters (see Figure 23C and Figure 23E for Mfn1 and Mfn2, 

respectively) that eventually collapsed around perinuclear region (data not shown). We 

also noted that overexpression of mitofusins changed the pattern of endogenous 

AKAP350C staining, with endogenous AKAP350C accumulating with the fused 

mitochondria (Figure 23, C and E). The association of AKAP350C with both 

mitochondria fission and fusion proteins supports the concept of a dynamic organization 

of AKAP350C scaffolding complexes, which may scaffold fission/fusion proteins at the 

mitochondria. 

Overexpressed GFP-AKAP350C-F3-I3154X construct also significantly 

overlapped with overexpressed Cherry-Mff, Cherry-Mfn1 and Cherry-Mfn2 and 

demonstrated the same spectrum of mithochondrial morphologies depending on levels of 

mitofusins overexpression that we observed with endogenous AKAP350C (Figure 24A).  

Finally, the GFP-AKAP350C-F3-I3154X construct also greatly overlapped with 

endogenous AKAP350C on mitochondria, whereas F3-deletion (the non-targeting 

mutant, see above) was completely cytosolic (Figure 24B). 

Overexpression of AKAP350C induces apoptosis as well as potentiates both TRAIL- 

and NaBu-induced apoptosis onset.   

Mitochondrial fission and fusion balance is highly related to the ability of cell to 

adapt to various cellular stresses and contributes in quality control by eliminating 

damaged material by mitophagy and apoptosis (Otera et al., 2013). Because of possible  
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role of AKAP350C in fission/fusion balance, we evaluated if overexpression of full 

length of AKAP350C or F3-I3154X would influence apoptosis. To test this, we 

transfected HEK cells with full length GFP-AKAP350C, GFP-F3-I3154X or empty 

pEGFP vector. To induce apoptosis, cells were either treated with 500 ng/ml of TRAIL 

for 4 hours or with 5 mM Sodium Butyrate (NaBu) for 24 hours.  After treatments cells 

were collected in SDS-containing lysis buffer and analyzed by western blot (Figure 25). 

We assessed PARP-cleavage as it is a reliable and established apoptosis indicator 

downstream of caspase activation. Overexpression of AKAP350C induced PARP-

cleavage in untreated HEK cells as well as increased PARP-cleavage in both TRAIL- and 

NaBu-treated cells, which suggests increased levels of apoptosis (Figure 25). The 

increased PARP-cleavage in cells overexpressing GFP-F3-I3154X compared to full 

length AKAP350C may be due to the higher levels of expression of GFP-F3-I3154X 

compared to wild type (Figure 25).  These results suggest that overexpression of  

 

Figure 24.  Overexpressed AKAP350C co-localizes with fission/fusion 

proteins (Mff/Mitofusins). (A)  HeLa cells were transfected with GFP-F3-

I3154X (green) and either Cherry-Mff, Cherry-Mfn1, or Cherry-Mfn2 (red) and 

then stained for the mitochondrial marker MTCO2 (blue).  (B) F3-I3154X, but not 

F3-delition mutant co-localizes with endogenous Mff. HeLa cells were transfected 

with GFP-AKAP360C (F3-I3154X or F3-delition)(green)  and dual-stained with 

anti-Mff antibody (red) and mitochondrial marker MTCO2 (blue). The degree of 

co-localization between  AKAP (green) and Mff/Mfn1/Mfn2 (red) were quantified 

using Pearson's Correlation Coefficient (PCC). PCCs were determined using 

JACOP plug-in of ImageJ software. PCC were 0.943 (GFP-F3-I3154X with 

Cherry-Mff), 0.775 (GFP-F3-I3154X with Cherry-Mfn1), 0.970 (GFP-F3-I3154X 

with Cherry-Mfn2), 0.932 (GFP-F3-I3154X with endogenous Mff, red), whereas 

F3-deletion mutant of AKAP350C exhibited uniform cytosolic staining.  (Scale 

bars: 20 µm) 
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Figure 25.  Overexpression of AKAP350C promotes apoptosis.  HEK cells 

were transfected with empty pEGFP vector (1), full length GFP-AKAP350C 

(2) or GFP-F3-I3154X (3). After transfection cells were treated with either  

500 ng/ml of TRAIL for 4h or 5 mM sodium butyrate (NaBu) for 24, 

harvested in lysis buffer, and then analyzed by Western blot for PARP 

activation.  α-tubulin staining was used as an internal loading control. The 

same membrane was probed for cleaved PARP and for tubulin 

simultaneously, and then re-probed for GFP. 
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AKAP350C induces apoptosis as well as potentiates both TRAIL- and NaBu-induced 

apoptosis.   

 

Discussion 

In this study, we identified a novel AKAP350 splice variant, AKAP350C, which 

localizes to mitochondria and disrupts mitochondrial morphology.  We completed 

cloning of AKAP350C, which contains 55 amino acids of unique protein sequence 

relative to other splice variants.  This relatively small unique sequence greatly 

differentiates AKAP350C from AKAP350A in terms of subcellular distribution and role.  

I also identified a novel mitochondrial-targeting domain within AKAP350C.  The 

carboxyl-terminal 55-amino acids contain an amphipathic alpha helix that is required and 

sufficient for mitochondrial targeting of AKAP350C.  Since AKAP350C also associated 

with Mff and mitofusins, the results suggest that AKAP350C likely participates in 

regulation of mitochondrial fusion and fission dynamics.   

While it is clear that the amphipathic alpha helix in the unique carboxyl terminal 

of AKAP350C is required for targeting to the mitochondria, the interacting partner for 

this helix remains unclear.  We have determined that AKAP350C can associate with Mff 

and mitofusins, but these proteins cannot account for the targeting to the mitochondria.  It 

is possible that AKAP350C can interact with lipids on the mitochondrial outer membrane 

through either hydrophobic interactions or electrostatic charge.  In preliminary studies, I 

have not been able to identify any direct interactions with either phospholipids or 

phosphatidyl-inositides (Figure 21).  Proteins such as hexokinase I contain domains of 

charged and hydrophobic regions that lay upon the surface of the outer membrane (Gelb 
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et al., 1992, Sui and Wilson, 1997).  Additionally a similar complex binding mechanism 

has been proposed for D-AKAP1 localization to mitochondria (Ma and Taylor, 2002).  

Further investigations will be required to determine the discrete molecular mechanisms 

responsible for AKAP350C association with mitochondria. 

Mitochondria are critical signaling integration centers, and AKAPs serve to 

scaffold many proteins in close proximity for sequestration of coordinated signaling 

within cells, thereby allowing greater spatial and temporal control of signaling cascades.  

Loss of an AKAP protein, and subsequently the signal integration it provides, is typically 

embryonic lethal in knockout mice (Carnegie et al., 2009).  AKAP350C likely serves as a 

signaling focal point for the regulation of mitochondrial dynamics, scaffolding PKA and 

mitochondria fission and fusion proteins in close proximity.  Upon Mfn1 or Mfn2 

overexpression, AKAP350C colocalizes with mitofusins.  This scaffolding could lead to 

local coordination of phosphorylation and dephosphorylation of fusion and fission 

proteins.   

Interestingly, overexpression of full-length AKAP350C caused mitochondrial 

structural collapse.  One possible explanation is that the increased recruitment of 

mitochondrial fission and fusion proteins associated with AKAP350C caused an 

imbalance between fission and fusion.  Alternatively, the overexpression of AKAP350C 

may saturate a receptor protein on the mitochondrial surface.  By electron microscopy, 

mitochondria in cells over-expressing AKAP350C showed abnormal morphologies with 

outer membrane blebbing without internal christae.  These abnormal morphologies were 

not associated with any markers of miophagy (data not shown).  Thus, it appears likely 

that AKAP350C may act as a regulator of mitochondrial structure. 
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Mitochondrial dynamics and the balance between fission and fusion is an 

important process in regulating cellular stress response (Youle and van der Bliek, 2012).  

Our data showed that AKAP350C associates with mitochondrial fission/fusion proteins 

and likely aids in regulating mitochondrial dynamics.  Additionally, overexpression of 

AKAP350C exacerbated TRAIL-induced apoptosis.  These results suggest that 

AKAP350C is involved in the regulation of mitochondrial dynamics under non-stress 

conditions, but also plays a role in the regulation of mitochondria during stress response.  

Another splice variant, AKAP350A, also serves dual roles, localizing to the Golgi 

apparatus (Shanks et al., 2002a) and centrosome (Schmidt et al., 1999) during non-stress 

conditions, while re-localizing to RNA stress granules during stress response (Kolobova 

et al., 2009). 

Other AKAP proteins are known to localize to mitochondria, including AKAP149 

and Rab32.  Seemingly redundant, these AKAPs likely function uniquely under steady-

state conditions.  For example, AKAP149 is involved in mitochondrial RNA processing, 

but there is no known role for Rab32 or AKAP350C involving RNA.  It is possible these 

mitochondria-targeted AKAPs are both redundant and distinct, meaning that they play 

different roles when all are present, but can compensate at least partially if one is lost.  

Mitofusins 1 and 2 are one example of this distinct and redundant strategy employed for 

mitochondrial dynamics (Chen et al., 2003).  Mfn1 and Mfn2 are 60% homologous 

(Santel et al., 2003) and have shared functions, but each mitofusin also functions 

uniquely.  When Mfn1 is knocked down or knocked out, Mfn2 can only partially 

compensate, and vice versa.  Given the crucial role for mitochondria in cell survival, this 

redundancy could account for the localization of multiple AKAPs at mitochondria. 
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Since mitochondrial fission and fusion proteins participate in neurodegenerative, 

cardiovascular, and other diseases (Stetler et al. 2013, Joseph et al. 2012), AKAP350C as 

a signal integration center could provide an important future therapeutic target for 

regulation of mitochondrial function in stress and disease. 

 

Methods 

Cloning of AKAP350C 

We previously cloned the 3’-end of AKAP350C from a 3’-RACE strategy using a 

human lung cDNA (Schmidt et al., 1999; Shanks et al., 2002a).  To amplify the complete 

sequence, we synthesized a cDNA from 5 µg of CaCo-2 cell total RNA using an anti-

sense primer specific for AKAP350C (AS1: 

CGTAGCTGTTTAAACCAATTAGACAATCCTC).   The resulting cDNA was then 

used for as template for amplification using Advantage Taq polymerase (Clontech) of the 

AKAPA350C sequence with a nested AKAP350C anti-sense primer (AS2: 

CTAACCCCTAGAGTAATTAATATAGATTGTATC) and Sense primers from all 50 

exons of the known AKAP9 gene.  The largest polymerized fragment was obtained with 

a sense primer from Exon 5 (Exon 5-S: CTGAACAAGGAGCACAAGACAGTCCGAC) 

and AS2.  To complete the 5’ sequence, we performed created a 5’-RACE linkered RNA 

from CaCo-2 RNA (Ambion RLM-RACE) and synthesized cDNA primed with AS1.  

The 5’ ends were then amplified with a universal primer from the linker region (5’-RACE 

inner) and an antisense primer against Exon 5.  The resulting PCR fragments were cloned 

into pTOPO and sequenced to determine authentic 5’ sequences.  The complete DNA 

sequence was then assembled using DNASTAR software.  The resulting sequence was 
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deposited in Genbank as an update of the original AKAP350C 3’-cDNA sequence 

AF247727. 

Expression analysis 

Tissue cDNAs used were supplied (Qiagen).  Cell line cDNAs were made from 

total RNA extracted from cell pellets.  

AKAP350C-specific antibodies 

Two AKAP350C-specific antibodies were made.  The first antibody was 

produced against SSHSHNVKDTIYINYSRG (Antibody Facility at the University of 

Georgia).  The second antibody was produced against CDKLIWLHKQVKRFHFV 

(Covance).  The peptide used for antibody production was used to block the antibody 

during staining to show specificity of antibodies. 

Cell culture 

HeLa cells (American Type Culture Collection, ATCC) were maintained at 37°C 

in 5% CO2 using complete RPMI media supplemented with 10% fetal bovine serum 

(FBS).  HEK-293 cells (American Type Culture Collection, ATCC) were maintained at 

37°C in 5% CO2 using complete DMEM media supplemented with 10% fetal bovine 

serum (FBS).  Polyjet was used for transfections according to the manufacturer’s protocol 

(SignaGen).  To induce apoptosis cell were treated either with 500 ng/ml of TRAIL 

(Recombinant Human TRAIL/Apo2 ligand; BioVision). for 4 hours or with 5 mM 

Sodium Butyrate (NaBu) for 24 hours. 

GFP-AKAP350C assembly 

 Synthetic constructs of AKAP350C fragments were ordered from GeneART.  

Amino acids 1-1400 were received as fragment 1 (F1) in a modified pEGFP vector 
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missing the HindIII site normally in the multicloning site.  Amino acids 1360-2700 were 

received as fragment 2 (F2) in pMA vector.  Finally, amino acids 2680-3184 were 

received as fragment 3 (F3) in pMA vector.  AKAP350C-F3 was subcloned into pEFGP-

C3 using XhoI and BamHI restriction site.  Assembly of full length AKAP350C was 

achieved via triple ligation at 16C overnight using pEGFP-AKAP350C-F1 (cut with 

HindII and BamHI), AKAP350C-F2 (cut from pMA with HindIII and XhoI), and 

AKAP350C-F3 (cut with XhoI and BamHI). 

Mutagenesis 

 Point mutations were created using Quickchange PCR techniques (Agilent 

Technologies).  Primers were designed using the Quickchange primer design tool.  The 

synthetic sequence of AKAP350C (GeneART) was used for all mutagenesis. 

Plasmid construction 

Human Mff was amplified from human heart tissue cDNA using primers 5'-

GAGCGTCGACATGAGTAAAGGAACAAGCAGTGACAC-3' and 5'-

GAGCGGATCC CTAGCGGCGAAACCAGAGC-3' and was ligated as a SalI/BamHI 

fragment into SalI/BamHI sites of pmCherry-C1 (a gift from Dr. Roger Tsien, University 

of California, San Diego) and pMyc-C1. Human Mfn1 and Mfn2 were also amplified 

from human heart tissue cDNA using primers 5'-GAGCGAATTC 

ATGGCAGAACCTGTTTCTCCACT-3' and 5'-GAGCGGATCC 

TTAGGATTCTTCATTGCTTGAAGG-3' (Mfn1) or  5'-

GAGCGAATTCATGTCCCTGCTCTTCTCTCGATG-3' and 5'-

GAGCGGATCCCTATCTGCTGGGCTGCAGGTACT-3' (Mfn2) and were ligated in 

EcoR1/BamH1 sites of pmCherry-C1 and pMyc-C2. 



87 
 

Fluorescence microscopy and analysis 

HeLa cells grown on collagen-coated coverslips were fixed at room temperature for 

15 minutes using 4% paraformaldehyde (PFA) supplemented with 0.1% Triton X-100, 80 

mM K-PIPES pH 7.2, 1 mM EGTA, 1 mM MgSO4, and 30% glycerol.  Cells were 

permeabilized with 0.25% Triton X-100 and blocked with 5% normal serum for one hour 

at room temperature.  The cells were incubated with primary antibodies for one hour at 

room temperature:  rabbit-anti-AKAP350C serum (1:300), mouse-anti-MTCO2 (1:400, 

Abcam), chicken-anti-calreticulin (1:750, Abcam), mouse-anti-Mfn1 (1:200, Abcam), 

mouse-anti-Mfn2 (1:200, Abcam), and rabbit-anti-Mff (1:200, PTG Lab).  This was 

followed by incubation at room temperature for one hour with species-specific 

fluorescent secondary antibodies (1:500; Invitrogen or Jackson Immunoresearch).  

Coverslips were mounted using Prolong Gold with DAPI (Invitrogen).  Cells were 

imaged using a 60x oil immersion lens on Olympus FV-1000 confocal fluorescence 

microscope (Vanderbilt Cell Imaging Shared Resource).   

Mitochondria preparation and analysis 

 HEK-293 cells were transfected with AKAP350C constructs.  Mitochondria were 

isolated using the Qproteome Mitochondria Isolation Kit (Qiagen) following the protocol 

for high-purity preparations.  An additional 100,000 x g centrifugation step was 

performed on the microsomal fraction from the kit to further separate the ER and 

cytosolic fractions.  Proteins from the ER and cytosol fractions were precipitated using 

the protein precipitation method in the Qproteome Mitochondria Isolation kit handbook.  

Protein concentrations of each fraction were taken using the BCA Protein Assay kit 

(Pierce), and 12.5 µg protein from each fraction was run in a 10% polyacrylamide gel.  
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Proteins were transferred to nitrocellulose membrane.  Primary antibodies used for 

western blotting were mouse-anti-MTCO2 (1:1,000; Abcam), rabbit-anti-calreticulin 

(1:1,000, Abcam), and rabbit-anti-GFP (1:5,000, Abcam).  Secondary antibodies were 

donkey-anti-mouse-HRP (1:5,000) and donkey-anti-rabbit-HRP (1:5,000) from Jackson.  

Signal was detected using ECL Western Blotting Substrate (Pierce). 

Flow-sorting and EM analysis 

HEK-293T cells were transfected with GFP and GFP-AKAP350C constructs.  

Cells were flow-sorted and GFP-positive cells were collected (with assistance from Dr. 

Jim Higginbotham).  The cell pellets were then given to the Vanderbilt Cell Imaging 

Shared Resource core for fixation, embedding, and processing (courtesy of Dr. Janice 

Williams).  Transmission electron microscopy images were taken using a Philips/FEI T-

12 electron microscope. 

Protein expression and purification 

 AKAP350C fragments were cloned into pET30 vectors.  Constructs were used to 

transform BL-21-DE3-RIL bacteria.  Autoinduction media (Studier 2005) was used to 

induce protein expression in the bacteria during overnight growth.  Bacteria were then 

pelleted and sonicated.  Expressed protein was purified using Ni-NTA-agarose beads and 

eluted from the beads with high concentration of Imidazole.   

Lipid-binding assay 

 Purified protein was used for overlay onto PIP strips (Echelon).  The overlay was 

performed according to company protocol for blocking and protein incubation.  After the 

protein incubation, the membranes were washed with PBS-T, as in the company protocol, 

but then also washed with TBS-T, as per protocol for the antibody used for detection.  
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Protein was detected using S-protein-HRP-conjugate antibody (Novagen) according to 

company protocol.  Signal was detected using chemiluminescence.     

GFP pull-down and western blotting 

HEK-293T cells were co-transfected with GFP-tagged AKAP350C or empty 

pEGFP-C1 vectors with either myc-tagged Mff, Mfn1 or Mfn2. 24 h after transfection 

cells were lysed with co-IP buffer (1% digitonin, 120 mM NaCl, 50 mM HEPES, pH 7.5, 

supplemented with protease inhibitors and phosphatase inhibitors) for 15 min at 4°C and 

lysates were centrifugated at 16,000g for 10 min. Clarified  lysates were diluted with lysis 

buffer lacking digitonin to bring final concentration of digitonin to 0.5%.The pull-downs 

were performed using GFP-binding protein-conjugated agarose beads for 2h at 4°C 

(Rothbauer et al., 2006). Beads were washed three times with co-IP buffer with 0.1% 

digitonin and once with co-IP buffer lacking digitonin and future analyzed by western 

bloting using an Odyssey imager (LiCor). The same membrane was probed for both GFP-

tag and Myc-tag simultaneously. Memebrane was probed with the primary antibodies: 

910-C2 mouse-anti-myc (1:1,000; Vanderbilt Molecular Recognition Shared Resource)  

and rabbit-anti-GFP (1:10,000; Abcam) followed by incubation with IRDye secondary 

antibodies: donkey-anti-Mouse IRDye680RD (1:40,000) and donkey-anti-Rabbit 

IRDye800CW (1:40,000) (LiCor). 

For cleaved-PARP detection, HEK-293T cells were transfected with either GFP-

tagged AKAP350C full-length, F3-I3154X or empty pEGFP-C1 vectors.  Cells were 

lysed in SDS-containing lysis buffer and analyzed by Western blotting.  The same 

membrane was simultaneously probed with primary antibodies rabbit-anti-cleaved PARP 

(Asp214/215) (1:1,000, Abcam) and mouse anti-alpha-tubulin (1:10,000, Sigma), and 
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later re-probed with rabbit anti-GFP (1:10,000, Abcam).  Signal was detected using a 

LiCor Odyssey imager. 
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CHAPTER IV 

 

IDENTIFICATION OF A NOVEL CAPRIN-1 PHOSPHORYLATION SITE AND 

KINASE, AND DISCOVERY OF A THIRD PKA-BINDING SITE IN AKAP9 

PROTEINS 

 

Introduction 

All organisms experience stress at an organismal and cellular level, and proper 

stress response is crucial for survival (Jaggi et al., 2011).  Cells have developed several 

stress responses and the capability to tailor the response depending on the type and level 

of stress (Fulda et al., 2010).  All stress responses aim for protection of the basic cellular 

functions and components such as DNA repair and stability, cell cycle control, and 

protein quality control (Kültz, 2005).  Cells initially employ response mechanisms to aid 

in cell recovery, but if the stressor persists or the damage is too great, cells then activate 

death signaling pathways to remove unhealthy cells (Fulda et al., 2010).     

During inadequate stress response, cells can respond too strongly, not strongly 

enough, or inappropriately.  First, if a cell survives a stress but fails to completely recover 

to normal status, a mutated gene or long-lived protein could remain within a cell causing 

it to develop into a disease (Fulda et al., 2010).  Second, a strengthened stress response 

could have detrimental effects such as cancer cells being more resistant to treatment 

(Lowe and Lin, 2000; Hanahan and Weinberg, 2000; Lowe et al., 2004).  Third, a 

weakened stress response could have detrimental effects such as diseased neurons with a 

weakened stress response dying upon even a weak stress episode (Wolozin, 2012; 

Roussel et al., 2013; Lagouge and Larsson, 2013).  The importance of proper stress 
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response is apparent in the high degree of conservation of basic stress response pathways 

throughout evolution (Fulda et al., 2010).   

Because stress response literally can determine the difference between life and 

death, cellular stress response is a highly regulated process.  Phosphorylation is one key 

protein modification highly involved in the regulation of cellular homeostasis, stress 

response, autophagy, the cell cycle, and many other aspects of cellular function (Karve 

and Cheema, 2011).  The human genome encodes roughly 500 protein kinases and 200 

protein phosphatases, and over 30% of proteins are phosphorylated at some time in their 

existence (Cohen, 2001).  Major areas of study include determining phosphorylation 

sites, discerning kinase-substrate dynamics, and identifying temporal and spatial 

regulation of phosphorylation events.  The phosphorylation state of a protein can alter its 

function in many ways, including activation, deactivation, marking for degradation, 

alteration of interacting partners, and sub-cellular localization (Cohen, 2001).  

Dysregulation of protein phosphorylation has been implicated in many diseases including 

cancer, neurodegenerative disease, and metabolic disorders (Fulda et al., 2010; Karve and 

Cheema, 2011).  Many pathogens and toxins utilize alterations in protein phosphorylation 

as their mechanism of action (Cohen, 2001).  Therefore, the integration and regulation of 

signaling cascades is critical for appropriate stress response. 

One way to integrate these signaling pathways is through scaffolding proteins in 

close proximity.  A-Kinase Anchoring Proteins (AKAPs) are a large, diverse family of 

functionally similar scaffolding proteins that associate with a variety of signaling proteins 

(Trӧger et al., 2012).  AKAPs were discovered as PKA (Protein kinase A) anchors that 

provide localized cAMP (cyclic AMP)/PKA signaling, but it has since been shown they 
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play many other roles as well (Theurkauf and Vallee, 1982; Lohmann et al., 1984).  

AKAPs function as anchors for targeting proteins to specific sub-cellular locations, and 

the localization and composition of AKAP complexes is dynamic.  AKAPs associate with 

both signaling enzymes and their substrates to bring the components of signaling 

cascades in close proximity (Michel and Scott, 2002).  This allows AKAPs to provide 

spatiotemporal regulation of cAMP/PKA signaling, as well as serve as signal integration 

centers (Trӧger et al., 2012).  AKAPs comprise a very diverse family of proteins, and 

over 50 AKAPs have been identified to date (Wong and Scott, 2004; Trӧger et al., 2012).  

The importance of AKAP function is evident in the embryonic lethality of most AKAP 

knockout mice (Carnegie et al., 2009).  At least one AKAP is found in every tissue in the 

body (Welch et al., 2010).   

AKAP9 gene products are integral for many cellular stress responses.  The 

AKAP9 gene has four known products: yotiao, AKAP350A, AKAP350B, and 

AKAP350C.  Yotiao is important for repolarization of cardiomyocytes, and its 

dysregulation can lead to chronic heart failure (Trӧger et al., 2012).  Disrupting the 

anchoring of KCNQ1 by yotiao leads to long QT syndrome, a potentially fatal heart 

arrhythmia (Chen et al., 2007).  Therefore, yotiao is an important regulator in cardiac 

stress response.  AKAP350A is also involved in cellular stress response, specifically 

stress granule formation (Kolobova et al., 2009).  Upon cellular stress, AKAP350A 

localizes to stress granules and associates with mRNAs.  AKAP350A also associates with 

other stress granule proteins, such as CCAR1 (cell cycle and apoptosis regulatory protein 

1) and caprin-1 (cytoplasmic activation/proliferation-associated protein-1) (Kolobova et 

al., 2009).  The previous chapter shows AKAP350C plays a role in regulation of 
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mitochondrial dynamics, a highly adaptive process involved in many aspects of cellular 

stress response.  It remains to be seen in which stress response AKAP350B participates. 

  Cellular stress response is an intricate network of pathways, and any additional 

information discovered could be a key piece of the puzzle.  This chapter contains several 

puzzle pieces that may help make connections when added to the large body of literature 

currently available.  I discovered caprin-1 is phosphorylated on a serine residue in vitro, 

most likely by casein kinase II.  This phosphorylation could regulate the function of 

caprin-1 during stress as well as its function when stress is not present.  Also, a third RIIα-

binding site was identified in AKAP350C, with homology to other AKAP9 gene 

products.  Further investigations detailing the exact mechanisms involved in these 

phenomena are needed and could open new avenues for research.     

 

Results 

AKAP350A associates with Caprin-1 and its kinase, Casein Kinase 2. 

AKAP350A has been shown to associate with mRNAs (Kolobova et al., 2009), 

but whether AKAP350A interacts with mRNAs directly or through an intermediate 

protein remains unknown.  I initially sought to determine which proteins in the 

AKAP350A complex associates with mRNAs by using the CLIP method (Ule et al., 

2005).  Briefly, this method involves using ultra-violet light to crosslink proteins and 

RNA.  This is followed by cell lysis and an immunoprecipitation of your protein of 

interest.  The immunoprecipitate is incubated with polynucleotide kinase (PNK) and 
32

P-

gamma-ATP.   
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Figure 26.  AKAP350A associates with Caprin-1 and its kinase, Casein 

Kinase II.  UV crosslinked HEK-293T lysates were used for AKAP350A 

immunoprecipitations.  Immunoisolates underwent in vitro 

phosphorylation with 
32

P-ɣ -ATP.  A)  One major band is radiolabeled.  

Subsequent analyses show this band contains Caprin-1.  B)  Controls show 

protein, not RNA, is being phosphorylated.  One control omits 

polynucleotide kinase (PNK; kinase for RNA), and another control omits 

PNK and UV crosslinking (crosslinks RNA to proteins).  C)  Several 

kinase inhibitors were added during the in vitro phosphorylation step and 

were compared to the signal seen with no inhibitor (-). 
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This is then run on a gel and the radiolabel is detected.  A single major band was seen 

upon detection of the radiolabeled signal (Figure 26A).  This band was cut from the gel 

and sent for proteomics analysis, and was determined to be caprin-1 (data not shown).  

As mentioned, AKAP350A associates with caprin-1 (Kolobova et al., 2009), a stress 

granule protein, and caprin-1 is known to associate with mRNAs during stress granule 

formation (Solomon et al., 2007).  I then decided to perform a control experiment with 

one sample excluding the protein-RNA crosslinking, and another sample excluding the 

PNK that phosphorylates the RNA.  When RNA is not present or when RNA cannot be 

phosphorylated, there is still a band of phosphorylation that contains caprin-1 (Figure 

26B).  This suggested that a protein is being phosphorylated instead of RNA.  Since 

caprin-1 is the protein contained in the labeled band, it can be concluded that caprin-1 

phosphorylation was being detected.  When UV light and PNK were excluded, a second 

band was seen around 150 kDa, but proteomics analysis did not reveal the protein 

contained in this band. 

This in vitro phosphorylation event also suggested that AKAP350A associates 

with the kinase responsible for phosphorylating caprin-1 in this system.  To address 

which kinase phosphorylates caprin-1, I repeated the CLIP protocol but included various 

kinase inhibitors during the in vitro phosphorylation step (Figure 26C).  The inhibitor 

STO-609 was the only inhibitor that blocked phosphorylation of caprin-1 (Figure 26C).  

This inhibitor has been shown to inhibit casein kinase II (CK2), among other kinases 

(Bain et al., 2007).  CK2 has been identified in several proteomic analyses of AKAP350 

immunoisolates and was found to be co-immunoprecipitated by AKAP350A (data not 

shown).  Other inhibitors tested were PKI (protein kinase A inhibitor), KT5720 (inhibits 
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PKA, Aurora B, and many others), staurosporine (inhibits PKC, PDK1, AMPK, and 

others), H-89 (inhibits PKA, PKB, ROCK-II and others), D4476 (inhibits CK1 and 

PKD1), and BIM-1 (inhibits PKCα, β1, β2, γ, δ, ε) (Davies et al., 2000; Bain et al., 2003; 

Bain et al., 2007).  Magnesium is required for oxidative phosphorylation (Sacktor, 1954), 

so a sample with no additional magnesium and EDTA to chelate residual magnesium was 

used as a negative control for phosphorylation (Figure 26C). 

Caprin-1 is phosphorylated on a serine residue in vitro. 

Caprin-1 has many predicted phosphorylation sites (C-Phos software).  I next 

wanted to determine whether caprin-1 is phosphorylated on a serine, threonine, or 

tyrosine residue.  To address this question, I performed phospho-amino acid analysis 

using two-dimensional thin layer chromatography.  The samples for this were obtained 

from the 
32

P-labeled band that contains caprin-1.  Comparing the image for amino acid  

 

   

Figure 27.  Caprin-1 is phosphorylated on a serine residue in vitro.  The 

radiolabeled band containing caprin-1 was excised from the gel and then digested 

to obtain single residues.  This sample was used for two-dimensional thin layer 

chromatography.  Radiolabel was detected using a phosphor-imager screen.  

Amino acid residues were detected using a ninhydrin spray.   
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labeling (ninhydrin spray) to the radiolabel detection shows that the main radiolabeled 

component in the caprin-1 band is a serine residue (Figure 27).  There is a slight signal 

for phosphorylated threonine as well, so it is possible there is a second, less prominent 

phosphorylation event occurring in vitro.  Caprin-1 contains a predicted CK2 

phosphorylation site at serine-179 (C-Phos software). 

Phosphorylation of caprin-1 by CK2 is not affected by sodium arsenite- or 

Darinaparsin-treatment. 

 As discussed previously, caprin-1 localizes to stress granules upon cellular stress.  

The exact mechanism triggering caprin-1 relocalization remains unknown.  I investigated 

whether the phosphorylation of caprin-1 by CK2 is altered upon the induction of stress 

granule formation.  Cells were pre-treated with either sodium arsenite or Darinaparsin 

prior to UV crosslinking; the rest of the CLIP protocol was followed as described 

previously with the addition of phosphatase inhibitors.  Pre-treatment of cells with 

sodium arsenite or Darinaparsin did not affect the in vitro phosphorylation of caprin-1 

(data not shown).  This suggests the change in the phosphorylation state of caprin-1 is 

unique to UV-induced stress. 

AKAP350 contains a third PKA-binding site. 

As evidenced by the name, AKAPs are most well-known for their ability to 

scaffold PKA.  Among its many roles within the cell, PKA is a key player in the 

regulation of cellular stress response (Diviani et al., 2013).  AKAPs associate with PKA 

via its regulatory (R) subunits, and AKAP350A binds regulatory subunit type II alpha 

(RIIα).  Two RIIα-binding sites have been identified in AKAP350A (Schmidt et al., 1999; 
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Witczak et al., 1999; Takahashi et al., 1999) within a region of homology between 

AKAP350A and AKAP350C.   

To investigate the importance of PKA-binding to AKAP350A and AKAP350C 

function, I created single and double mutants of AKAP350C with one or both RIIα-

binding sites mutated (Figure 28A).  However, I found that the double mutant, GFP-

AKAP350C-R1R2, still bound to RIIα (data not shown).  This led to an examination of the 

rest of the AKAP350C sequence to look for other potential RIIα-binding sites, which have 

a secondary structure of an amphipathic alpha helix.  An additional amphipathic alpha 

helix (helix number 3) was found from amino acids 1197 to 1216 (Figure 28B).  A 

proline-substitution point mutation was used to disrupt this alpha helix and test whether 

the disruption abolished association with 
32

P-RIIα.  Another alpha helix (helix number 4) 

was also mutated to control for specificity of helix 3.  I performed an overlay experiment 

with a recombinant fragment of AKAP350C and recombinant RIIα radiolabeled with 
32

P.    

The fragment of AKAP350C used for the overlay assay contains helices 1, 3, and 4 

(350C-H134).  Recombinant Rab14 served as a negative control for RIIα binding.  The 

association of wildtype 350C-H134 with RIIα is greatly decreased upon mutation of the 

known RIIα- binding site, helix 1 (350C-H134-R1) (Figure 28C).  The association of 

350C-H134-R1 with RIIα was abolished by the additional mutation of the third helix 

(350C-H134-R1R3) (Figure 28C).  The additional mutation of helix 4 (350C-H134-

R1R4) did not have an effect on the amount of RIIα binding compared to 350C-H134-R1.   

 To further verify helix 3 as an additional third RIIα-binding site in the AKAP350 

proteins, I next examined the ability of the mutant constructs to associate with RIIα 

compared to wildtype.  GFP-binding protein-conjugated beads (Rothbauer et al., 2006)  
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Figure 28.  AKAP350 proteins contain a third PKA-binding site.  A)  Diagram 

of AKAP350C with two original RIIα-binding sites (1 and 2) and new third site (3).  

B)  Third site is an amphipathic alpha helix.  White circles are hydrophobic 

residues, black are charged, and grey are polar.  C)  Recombinant AKAP350C 

fragments containing helices 1, 3, and 4 (control helix) and Rab14 (PKA-binding 

negative control) were used for overlay with 
32

P-RIIα.  D)  HEK-293T cells were 

transfected with various AKAP350 fragments.  Lysates were used for GFP pull-

downs, and the samples were run in a 10% gel and transferred to nitrocellulose.  

Membranes were probed for RIIα and GFP.  Film was scanned and signal was 

quantified using LiCor Odyssey software. 
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were utilized for GFP pull-downs with lysates from HEK-293T cells overexpressing 

AKAP350C fragments (Figure 28A).  Wildtype AKAP350C-F1 (amino acids 1-4200) 

and wildtype AKAP350C-F2 (amino acids 1360-2700) both associate with RIIα (Figure 

28D).  AKAP350C-F1-R3 does not bind RIIα, verifying that mutating helix 3 abolishes 

the ability of fragment 1 to bind RIIα (Figure 28D).  AKAP350C-F2-R1R2 and 

AKAP350C-F2-R1R2R4 do not associate with RIIα (Figure 28D), which suggests there 

are no additional RIIα-binding sites within fragment 2.  Mutation of helix 4 has no affect 

on RIIα-binding.  

    

Discussion 

In these studies, I discovered two pieces of information that will add to the body 

of knowledge for the puzzle of cellular stress response regulation.  First, I discovered that 

caprin-1 is phosphorylated on a serine residue by casein kinase II (CK2) in vitro (Figure 

26).  Caprin-1 has many potential phosphorylation sites and much work is being done to 

determine its phosphorylation state under various conditions.  It is important to know the 

site of phoshorylation, the kinase, and when that phosphorylation occurs in order to better 

elucidate where this data fits in the overall network of stress response regulation.  My 

data shows caprin-1 and CK2 are both co-immunoprecipitated by AKAP350A, so they 

are both present in the AKAP350A complex.  Also, Figure 27 shows that the site of 

phosphorylation in this system is likely a serine residue.  Further work to determine the 

exact phosphorylation site and the function of this phosphorylation in vivo is needed.   

Phosphorylation of caprin-1 does not seem to be affected by the induction of 

stress granule formation. Exposure to UV rays, like those used for crosslinking in these 
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experiments, is a stressor for cells (Latonen and Laiho, 2005; Fulda et al., 2010).  UV 

irradiation triggers stress response pathways and DNA damage checkpoints (Latonen and 

Laiho, 2005), and prolonged or severe UV irradiation can induce apoptosis (Fulda et al., 

2010).  It is possible that the changes in the phosphorylation of caprin-1 by CK2 are a 

response to the specific stressor of UV irradiation.  Indeed, CK2 has been shown to 

phosphorylate p53 after cells are stressed with UV light (Keller et al., 2001).   

This new phosphorylation information could also impact research regarding the 

function of caprin-1 outside of cellular stress response.  Caprin-1 also plays roles in 

disease and regular cell functions.  Caprin-1 interacts with Fragile-X Mental Retardation 

protein (FMRP) and functions to transport neuronal RNA granules (El Fatimy et al., 

2012).  When FMRP does not function properly, this can result in numerous neurological 

sequelae in Fragile X Syndrome (Kolobova et al., 2009; El Fatimy et al., 2012).  

Phosphorylation could affect the interaction of caprin-1 with FMRP or RNAs.  Indeed, 

FMRP has been found in proteomic analyses of AKAP350A immunoisolates (data not 

shown).  Caprin-1 was initially discovered as a protein regulating lymphocyte 

proliferation (Grill et al., 2004), and knockdown or knockout of caprin-1 greatly reduces 

cell proliferation (Wang et al., 2005).  It has also previously been shown that caprin-1 is 

phosphorylated, but the phosphorylation site and kinase were not identified (Grill et al., 

2004). 

My discovery of a third RIIα-binding site within the AKAP350 proteins is a major 

development in the PKA scaffolding literature.  PKA is a critical regulatory kinase within 

the phosphorylation literature (Kanamaru et al., 2012; Diviani et al., 2013).  We can now 

use RIIα-binding deficient mutants, with all three sites mutated, to study the functionality 
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of AKAP350 proteins independently of their PKA scaffolding.  These mutants could 

possibly be used as dominant negatives when overexpressed in order to determine the 

effects of loss of temporal and spatial regulation of PKA by AKAP350 proteins.  In 

AKAP350 knock-down cell lines, these constructs would be especially powerful to 

rescue all functions of the AKAP350 protein with the exception of PKA-scaffolding.   

The location of the new RIIα-binding site is in a region that is homologous 

between AKAP350A, AKAP350C, and yotiao.  The discovery of this new site could 

impact research from the past two decades involving PKA regulation by AKAP9 gene 

products.  Any previous studies performed with RIIα-binding mutants may need to be 

repeated using truly RIIα-binding-deficient mutants.  Yotiao and AKAP350A were 

discovered during a time when protein structure prediction computer programs were not 

available, and the prediction of amphipathic alpha helices (RIIα-binding sites) was done 

by eye.  This greatly increased the chances of missing a binding site.  Indeed, of the three 

research groups that discovered AKAP350, only one group identified two binding sites 

(Takahashi et al., 1999) while the others only identified one (Schmidt et al., 1999; 

Witczak et al., 1999).  Though protein structure prediction programs have been available 

for some time, nothing has instigated the need to investigate the possibility of additional 

RIIα-binding sites until now.  The impact of the discovery of an additional RIIα-binding 

site remains to be seen.      

The phosphorylation of Caprin-1 by CK2 and the discovery of an additional RIIα-

binding site in AKAP9 gene products are two critical pieces of the stress response-

regulation puzzle.  All cells experience various stressors throughout their existence, and it 

is critical for cells to be capable of responding to each stress.  The cellular stress response 
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is a highly regulated complex integration of signaling pathways (Fulda et al., 2010).  

Protein phosphorylation is one of the key components in this regulation (Cohen, 2001; 

Karve and Cheema, 2011).  Studies are ongoing in every area of phosphorylation, 

including determining phosphorylation sites, discerning kinase-substrate dynamics, and 

identifying temporal and spatial regulation of phosphorylation events.  Phosphorylation 

or dephosphorylation can alter the function of a protein in many ways, including 

activation, deactivation, mark for degradation, change interacting partners, and alter sub-

cellular localization (Cohen, 2001).  Every additional piece of information is added to the 

puzzle to find its appropriate place within the regulation of cellular stress response. 

   

Methods 

Cell culture 

HeLa cells (American Type Culture Collection, ATCC) were maintained at 37°C 

in 5% CO2 using complete RPMI media supplemented with 10% fetal bovine serum 

(FBS).  HEK-293T cells (American Type Culture Collection, ATCC) were maintained at 

37°C in 5% CO2 using complete DMEM media supplemented with 10% fetal bovine 

serum (FBS).  Effectene was used for some transfections according to the manufacturer’s 

protocol (Qiagen).  Polyjet was used for some transfections according to the 

manufacturer’s protocol (SignaGen). 

CLIP 

 I adapted the CLIP protocol from the Darnell Laboratory (Ule et al., 2005).  

HEK-293T were grown to about 80% confluency.  After washing, cells were crosslinked 

with 400 mJ/cm
2
 ultraviolet light.  Cells were then pelleted and lysed with M-PER 
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(Thermo Scientific) with protease inhibitors (Sigma).  Lysates were treated with RQ1 

DNase (Promega) and RNase A (USB).  Protein concentration was determined using the 

BCA protein assay (Pierce).  Equal amounts of protein from each lysate were used for the 

immunoprecipitation.  AKAP350A was immunoprecipitated using the rabbit-anti-

AKAP350A antibody we developed, and magnetic sheep-anti-rabbit Dynabeads 

(Invitrogen).  Beads were resuspended in reaction buffer (70 mM Tris-Cl, pH 7.5; 10 mM 

MgCl2; 5 mM DTT), and inhibitors were added at this step, if applicable.  Polynucleotide 

Kinase (PNK, New England Biolabs) was then added, if applicable.  Then, 3000 Ci/mM 

32
P-gamma-ATP was added, and the mix was incubated at 37°C for 10 minutes while 

shaking.  The supernatant was disposed of, and the beads were washed with ice-cold PBS 

then resuspended in sample buffer.  The samples were run in a polyacrylamide gel.  The 

gel was then dried and exposed to film or a phosphoimager screen.  The inhibitors were 

used at the following final concentrations: 10 µM H-89 (Sigma), 10 µM KT5720 

(Sigma), 10 µM PKI (Sigma), 100 nM Staurosporine (Sigma), 10 µM STO-609 

(Calbiochem), 200 nM BIM-1 (Cayman Chemical), and 10 µM D 4476 (Cayman 

Chemical).  For stress pre-treatment, cells were incubated at 37°C for 45 minutes with a 

final concentration of either 0.5 mM sodium arsenite (Riedel de Haen) or 0.05 mM 

darinaparsin (Ziopharm) prior to UV crosslinking.  Lysates were treated with phosphatase 

inhibitors (Sigma).   

Phospho-amino acid sample preparation 

The radiolabled samples from the CLIP protocol (above) were run in a 

polyacrylamide gel, which was then stained with colloidal coomassie.  The gel was then 

dehydrated and exposed to phospho-imaging screen.  The coomassie-stained and 
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radiolabeled band was cut from the gel and put in a glass dish.  The gel piece was 

incubated with 100 mM ammonium bicarbonate (AmBic) for 15 minutes at room 

temperature.  The gel was diced, and then put into screw-top 1.5 mL tube.  Then, 500 µL 

fresh 100 mM AmBic was put in the tube and incubated overnight at room temperature.  

Fresh AmBic was placed in the tube and incubated at room temperature for 15 minutes.  

The AmBic was discarded and replaced with a 1:1 solution of acetonitrile to 100 mM 

AmBic and incubated at room temperature for 15 minutes.  This was repeated as 

necessary to destain the gel.  Next, I added 100% acetonitrile, and incubated the sample 

at room temperature for 15 minutes, repeating until gel was dehydrated.  To the dry 

samples, I then added 300 µL of 0.01 µg/µL trypsin in 25 mM AmBic, and incubated this 

overnight at 37 °C.  The supernatant was placed in a new tube.  Then, 200 µL 60% 

acetonitrile/0.1% formic acid was added to the gel pieces and incubated at room 

temperature for 15 minutes.  This supernatant was added to the previous supernatant, and 

then dried in a vacuum until no liquid remained.  The pellet was washed with 100 µL 

water and dried in a vacuum a total of three times.  Then, 100 µL 6N HCl was added and 

heated at 100°C for two hours.  The HCl was diluted with 900 µL water, and then dried 

in a vacuum.  This was washed with water and dried in a vacuum two times.  

Phospho-amino acid analysis thin-layer chromatography 

 The running buffer (2.5% formic acid, 8% acetic acid at pH 1.9) was used to 

make the standards: 2 mg phosphoserine, 2 mg phosphothreonine, and 2 mg 

phosphotyrosine into 1 mL running buffer.  The running control was running buffer 

containing phenol red and xylene cyanole.  The dried samples were resuspended in 10 µL 

running buffer, and 2 µL standards were added to each sample.  First, 2 µL control was 
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spotted on the nitrocellulose plate about 2 cm from left and bottom of the plate.  Then, 2 

µL sample was spotted about 2 cm from bottom, centered in the plate.  The plate was 

carefully wetted using an overlayed filter paper with holes cut out around the spots, 

taking care to approach the spots evenly from all directions.  The filter paper was 

removed and plate was placed samples-down into the running apparatus, with the 

samples at the negative electrode.  This was covered with a glass plate and run at 500V 

until dye reached about half way across the plate.  The plate air dried overnight. 

 Next, the plate was rotated 90° counterclockwise.  The plate was wetted with the 

second dimension running buffer (1% pyridine, 10% acetic acid at pH 3.5) using filter 

paper strips, careful to approach the line the sample ran evenly from all directions.  This 

was run as before, at 500V, and the plate was air dried overnight.  The plate was sprayed 

with ninhydrin to image amino acids.  The plates were exposed to a phospho-imager 

screen to detect 
32

P radiolabeling.  

Protein expression and purification 

AKAP350C fragments were cloned into pET30 vectors.  Constructs were used to 

transform BL-21-DE3-RIL bacteria.  Autoinduction media (Studier 2005) was used to 

induce protein expression in the bacteria during overnight growth.  Bacteria were then 

pelleted and sonicated.  Expressed protein was purified using Ni-NTA-agarose beads and 

eluted from the beads with high concentration of Imidazole.   

Radiolabeling 

 The radiolabeling reaction buffer contains 0.1 µg PKA, 50 mM MOPS, pH 6.8, 

50 mM NaCl, 2 mM MgCl2, 1 mM DTT, 0.1 mg/mL BSA, and water to a final volume of 

300 µL.  Then, add 2 µg RIIα and 50 µCi 
32

P -gamma-ATP.  Mix well, and incubate on 
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ice for 1.5 hours.  The 
32

P-RIIα is cleaned using spin desalting columns according to the 

manufacturer’s protocol (Thermo Scientific). 

Overlay 

 Bacterially expressed and purified AKAP350C fragments were run in a 10% 

polyacrylamide gel.  The proteins were then transferred to nitrocellulose and blocked 

with 5% milk in TBS-T (0.1% Tween-20).  The 
32

P-RIIα was added to milk until it was 

100,000 counts per minute.  This mixture was incubated with the membrane at room 

temperature for 3.5 hours while rocking.  The membrane was then washed for 15 minutes 

three times with TBS-T.  The membrane was then wrapped in plastic and exposed to film 

or a phosphoimager screen. 

GFP pull-down and western blotting 

HEK-293T cells were transfected with various AKAP350C constructs.  Cells 

were lysed with M-PER (Thermo Scientific).  The pull-downs were performed using 

GFP-binding protein-conjugated agarose beads for 2h at room temperature (Rothbauer et 

al., 2006).  Samples were run in a 10% polyacrylamide gel, and proteins were transferred 

to nitrocellulose membrane.  Primary antibodies used for western blotting were mouse-

anti-RIIα (1:1000; BD) and rabbit-anti-GFP (1:5000, Abcam).  Secondary antibodies were 

donkey-anti-mouse-HRP (1:5000) and donkey-anti-rabbit-HRP (1:5000) from Jackson.  

Signal was detected using ECL Western Blotting Substrate (Pierce).  Film was scanned 

and signal quantified using LiCor Odyssey software. 
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CHAPTER V 

 

DEVELOPMENT AND INITIAL CHARACTERIZATION OF AKAP9-

KNOCKOUT AND CONDITIONAL AKAP9
F/F 

MICE 

 

Introduction 

 Animal models have become an integral part of modern scientific research.  These 

systems allow the study of a particular protein in the in vivo niche as opposed to the 

artificial environments of laboratory plastic and glassware (Gama Sosa et al., 2010).  In 

vivo animal studies also provide scientists with an avenue for broadening their in vitro 

studies into systemic studies.  Genetically modified mice are the most common in vivo 

model used for studying human disease (Gama Sosa et al., 2010).  The use of animal 

models in stress response is very prominent and necessary given that often the whole 

organism, not just an isolated cell type, experiences the stress.  A study in whole animals 

is necessary to better understand the complexities of an organism’s response to a stressor. 

 One common method of utilizing animal models to study stress is to use 

genetically modified, or transgenic, animals to examine the role of a specific protein or 

family of proteins in stress response.  For example, researchers have used transgenic 

mouse models of Parkinson’s disease to study the effects of oxidative stress on the 

progression of the disease (Varçin et al., 2012).  Many of these models of Parkinson’s 

disease involve the genetic mutation of individual proteins or protein families, such as 

Parkin or the PARK proteins, that are involved in or increase susceptibility to oxidative 

stress (Varçin et al., 2012).  Mice expressing a mutant form of Parkin, an E3 ubiquitin 

ligase, exhibit the hallmark features associated with Parkinson’s disease (Hart and Xu, 

http://www.hindawi.com/17237031/
http://www.hindawi.com/17237031/
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2009).  Importantly, mitochondria isolated from Parkin-deficient mice have decreased 

respiration, and the mice exhibit widespread metabolic issues (Palacino et al., 2004).  

Parkin-deficient mice also express lower numbers of stress response proteins and are 

more susceptible to oxidative stress (Palacino et al., 2004).  Additionally, many of the 

genetic knockout mouse models of Parkinson’s disease exhibit mitochondrial dysfunction 

and/or increased levels of oxidative stress.  From these in vivo studies, mitochondrial 

dysfunction and oxidative stress have been strongly linked to Parkinson’s disease 

pathogenesis (Varçin et al., 2012).   

 Transgenic mouse models are also used to identify previously unknown roles of 

stress response in the pathogenesis of diseases.  Researchers studying Osteogenesis 

imperfecta (OI) developed a mouse model of the disease, and they discovered the 

unfolded protein response is involved in the pathogensesis of OI (Lisse et al., 2008).  The 

mice have a mutation in procollagen 1, type 1 (COL1A1), which causes the collagen to 

misassemble and not be secreted, resulting in accumulation in the endoplasmic reticulum 

(ER).  This triggers ER stress, specifically the unfolded protein response.  If this stress is 

prolonged, it induces apoptosis in osteoblasts, thereby contributing to the disease 

progression (Lisse et al., 2008).  This suggests that ER stress-mediated apoptosis is a key 

player in the pathogenesis of Osteogenesis imperfecta, and has fueled a new avenue for 

research on this disease. 

 Proper stress response is a critical element in development and disease prevention.  

AKAP9 gene products, which include yotiao, AKAP350A, AKAP350B, and 

AKAP350C, are involved in various stress responses.  Thus, it is important to determine 

the role these proteins play on a whole tissue and organism level.  Yotiao, the shortest 

http://www.hindawi.com/17237031/
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AKAP9 splice variant, is important for repolarization of cardiomyocytes.  Dysregulation 

of yotiao can lead to chronic heart failure (Trӧger et al., 2012).   Furthermore, disrupting 

the anchoring of the potassium channel subunit, KCNQ1, by yotiao leads to long QT 

syndrome, a potentially fatal heart arrhythmia (Chen et al., 2007).  Therefore, yotiao is a 

critical regulator of the cardiac stress response.   

AKAP350A is also involved in cellular stress response, specifically stress granule 

formation (Kolobova et al., 2009; Mason et al., 2011).  Upon cellular stress, AKAP350A 

localizes to stress graules and associates with mRNAs and other stress granule proteins 

(Kolobova et al., 2009).  Stress granule formation is induced by many stressors including 

viral infection, during which some viruses suppress while others hijack the stress 

response (White and Lloyd, 2012).  Irradiation also induces stress granule formation in 

tumor cells following whole animal radiotherapy (Moeller et al., 2004).  During stress 

granule formation, protein and mRNA components of stress granules aggregate 

(Anderson and Kedersha, 2006).  Misregulation of this aggregation process has been 

implicated in several diseases, especially neurodegenerative disorders (Wolozin, 2012).  

More specifically, aberrant aggregation of stress granule proteins is implicated in the 

pathogenesis of amyotrophic lateral sclerosis (ALS) (Li et al., 2013).     

As seen in Chapter III, another splice variant, AKAP350C, targets to 

mitochondria and is involved in the regulation of mitochondrial fission and fusion.  

Knockout of mitochondria fission and fusion proteins typically results in embryonic 

lethality (Kanamaru et al., 2012).  The balance between the processes of fission and 

fusion is a key component in the ability of mitochondria to respond to cellular stress 

(Fulda et al., 2010).  As described above, inadequate mitochondrial stress response is a 
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key feature in many neurodegenerative and other diseases.  Therefore, investigations of 

these AKAP9 gene products on a whole animal scale will provide novel insight into their 

role in stress response and possibly numerous diseases    

In this chapter, I describe the development of AKAP9-knockout (AKAP9
-/-

) and 

conditional knockout (AKAP9
F/F

) mice, as well as fibroblasts derived from null mouse 

tissue.  The development of AKAP9
-/-

 mice is significantly impaired, resulting in death 

by 13 days of age.  This death presumably results from the severe lung impairment.  The 

AKAP9
-/-

 mice would possibly develop a liver phenotype if they were able to age (as is 

possible with AKAP9
F/F

 mice).  The fibroblasts from AKAP9
-/-

 mice proved to be useful 

because they led to the discovery of tissue-specific preferential splicing.  This splicing 

prompted the development of conditional knockout AKAP9
F/F 

mice so that AKAP9 can 

be removed at varying time points.  These AKAP9 mouse models now allow for 

investigations into the role of AKAP9 in a variety of tissues and diseases. 

 

Results 

Generation of AKAP9
-/WT

 and
 
AKAP9

WT/WT 
genetic chimeras.  

AKAP9 knockout-first, conditional-potential embryonic stem (ES) cells were 

purchased from Knockout Mouse Project (KOMP).  The cells were heterozygous with 

one wildtype allele and one knockout-first, conditional-potential mutant allele (Figure 

29A).  The knockout-first allele has a LacZ reporter and Neomycin-resistance cassette 

flanked by Flp recombinase target (Frt) sites inserted between exons 7 and 8 of the 

AKAP9 gene, which contains a total of 51 exons (Figure 29).  This cassette also has a  
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splice site acceptor, so exon 7 was designed to splice into the LacZ/Neo cassette, which 

contains a stop codon.  The result would be a severely truncated, presumably non-

functional AKAP9 protein.  This truncation mutant would be less than one-fifth of the 

full length protein.  This would effectively knock out all known splice variants of 

AKAP9:  yotiao, AKAP350A, AKAP350B, and AKAP350C. 

The AKAP9 knockout-first, conditional-potential ES cells from a C57BL/6 

background were injected into albino C57BL/6 embryos.  The embryos were then 

transferred to an albino C57BL/6 female to generate chimera offspring.  In total, 3 male 

chimeras and one female chimera were generated, identified by black and white coat 

color (Figure 29B).  The female and two males were estimated to be 80% derived from 

Figure 29.  Generation of AKAP9
-/-

 knockout-first chimeras.  A) Diagram of 

mutant allele in embryonic stem cells purchased from KOMP.  A LacZ/Neo 

cassette is inserted between exons 7 and 8, so that exon 7 will splice into the 

cassette which contains a stop codon.  Frt-recombination sites flank the 

LacZ/Neo cassette, and LoxP-recombination sites flank exon 8.  B)  One of the 

male chimeras estimated to be 80% derived from the injected ES cells (the black 

coat color). 



114 
 

the injected cells, and the other male was estimated to be 10% derived from the injected 

cells.  The resulting chimeras were crossed to albino C57BL/6 mice, with one chimera 

resulting in germline transmission.  When a black pup is born from the albino mother, 

this indicates the pup received an allele from the injected ES cell DNA as the black coat 

color is dominant over the recessive albino allele.  Because the ES cells were 

heterogenous, these black pups must then be genotyped to determine the presence of the 

wildtype or mutant allele.  After genotyping, nine black pups were obtained with four 

pups having the mutant allele.  Once AKAP9 knockout-first heterozygous (AKAP9
-/WT

) 

mice were obtained, they were crossed to each other to generate AKAP9 knockout-first 

homozygous (AKAP9
-/-

) mice.  

AKAP9
-/-

 mice have a severe lung phenotype. 

AKAP9
-/-

 mice survive birth but suffer a severe phenotype after birth.  

Interestingly, the eight AKAP9-/- mice obtained thus far have been male.  All of the mice 

that were born had died or had to be euthanized by 13 days of age due to failure to thrive, 

with the exception of one.  Compared to their littermates, the AKAP9
-/-

 mice were less 

than half the size (Figure 30A).  Additionally, they appeared to have stunted hair growth 

initially.  The pups also appeared lethargic when compared to littermates.  Atrophied 

testes were observed in the AKAP9
-/-

 mouse that lived longer than 13 days of age (data 

not shown).  Upon analysis of the AKAP9
-/-

 organs, the lungs appeared large for the body 

size when compared to a littermate.  Histology showed the lungs to be the only grossly 

affected tissue.  In the AKAP9
-/-

 mice, the walls of the alveoli appear very thin when 

compared to wildtype age-matched mice (Figure 30B).  The single-cell squamous  
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epithelial walls of the alveoli in the AKAP9
-/-

 mice appear to be stretched and 

occasionally appear to have ruptured.  From the histological examination of all tissues, 

the lung phenotype is presumably the cause of death. 

 

AKAP9
-/-

 mice have a liver phenotype. 

By gross analysis of AKAP9
-/-

 tissues, it was noted there may be a gross liver 

phenotype, though one was not seen during histological examinations.  An AKAP9
-/-

 pup 

Figure 30.  AKAP9
-/-

 mice have a severe size and lung deficiency.  A)  AKAP9
-/-

 

pups are less than half the size of their littermates.  B)  Hematoxylin and eosin stain 

of AKAP9
-/-

 lungs.  Tissues were fixed in 4% paraformaldehyde overnight at 4°C. 

(Scale bars: 100 µm) 
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that was euthanized at five days old had pale spots throughout the liver.  The spots were 

evenly distributed, similar in size, and affected all lobes.  Furthermore, the entire liver 

was pale in the AKAP9
-/-

 pup euthanized at 8 days old.  When the 13-day-old AKAP9
-/-

 

pup was examined, the liver was almost completely white.  This pattern suggests a   

progressive phenotype in the liver that may become a health issue in aged mice.  Further 

investigation into the liver phenotype is warranted. 

Characterization of AKAP9
-/-

 and AKAP9
-/WT

 fibroblasts. 

 The severe phenotype seen in the AKAP9
-/-

 pups prompted me to devise another 

way to study the effects of knocking out AKAP9.  For this, I isolated skin fibroblasts 

from tail tissues of AKAP9
-/-

, AKAP9
-/WT

, and wildtype littermates.  AKAP9
-/-

 fibroblasts 

propagated much slower than the AKAP9
-/WT

 and wildtype fibroblasts.  Therefore, it was 

not possible to characterize the AKAP9
-/-

 fibroblasts as fully as the other lines.  

 Surprisingly, the AKAP
-/-

 fibroblasts still expressed at least one of the AKAP9 

gene products.  When stained with an antibody against an epitope in AKAP350A and 

AKAP350C, immunostaining was observed in the AKAP9
-/-

 fibroblasts.  This antibody 

was previously characterized and verified, so these results suggest at least one AKAP9 

splice variant is still present in the AKAP9
-/-

 fibroblasts.  This led us to test cDNA made 

from skin and lung total RNA for the presence of AKAP350A.  We found wildtype 

AKAP350A message is still expressed in the skin, comparable to wildtype tissue, but not 

in the lung.  We hypothesize there is tissue-specific preferential splicing around the 

inserted cassette, thereby splicing around the inserted stop codon, producing full length 

protein.  Further investigation is needed to determine which tissues lack AKAP9 

expression. 
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 Upon further examination of the fibroblasts, the AKAP350 immunostaining 

appears to label the Golgi apparatus (Figure 31A and B).  In some cells, the Golgi 

structure appears to be fragmented (Figure 31A), while in other cells the Golgi appears 

intact (Figure 31B).  AKAP350A localizes to the Golgi (Shanks et al., 2002a) and 

centrosome (Schmidt et al., 1999) under non-stress conditions.  AKAP9
-/WT

 and wildtype 

fibroblasts show similar staining patterns with the AKAP350 antibody (Figure 31C and 

D, respectively).  All three genotype groups also exhibited centrosomal staining.  Using a 

commercially available antibody to the N-terminus of the AKAP9 gene products, I 

verified localization of an AKAP9 protein on the Golgi (Figure 31E).  AKAP350 has 

been shown to play a role in ciliogenesis (Hurtado et al., 2011), so I sought to determine 

if fibroblasts isolated this way could be utilized to study this process.  These fibroblasts 

do make primary cilia, though some cells exhibit multiple primary cilia (Figure 31F). 

Developing the conditional AKAP9
F/F 

mice. 

Due to the issue of preferential splicing around the cassette, I developed the 

conditional knockout mouse line.  AKAP9
-/WT 

mice were bred with mice with flippase 

recombinase (Flp).  When Flp is present in an AKAP9
-/WT

 mouse, recombination occurs 

between the Frt sites, removing the LacZ/Neo cassette and the early stop codon, 

producing an AKAP9F/WT mouse (Figure 32A).  This recombination removes exon 8.  

The splicing from exon 7 to exon 9 will result in nonsense mutations and early 

termination, effectively knocking out all full length AKAP9 proteins.  AKAP9
F/WT 

mice 

were then crossed to obtain AKAP9
F/F 

mice, homozygous for the conditional knockout 

allele.  All tissues appear normal and these mice were phenotypically wildtype as 
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Figure 31.  Characterization of AKAP9
-/-

, AKAP9
-/WT

, and wildtype fibroblasts.  
Skin fibroblasts were isolated from tail tissue.  Fibroblasts were grown on poly-

lysine-coated coverslips and were fixed with 4% paraformaldehyde.  A, B, C, D)  

AKAP9
-/-

 (A, B), AKAP9
-/WT

 (C), and wildtype (D) cells were stained with our 

AKAP350 antibody (red).  E) AKAP9
-/WT

 cells were stained with Golph4 (Golgi, 

green) and the commercial antibody BD-AKAP450 (AKAP9 N-terminus, red).  F)  

AKAP9
-/WT

 cells were stained with alpha-tubulin (green) and acetylated-tubulin 

(red).  All cells were also stained with DAPI (nuclei, blue).  (Scale bars: 20 µm) 
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expected.  The AKAP9
F/F 

mice can then be bred to various mice expressing Cre 

recombinase to cause recombination between the LoxP sites (Figure 32B).  Both global 

and tissue-specific, such as lung and liver, Cre-driver mice are of interest. 

Discussion 

I have developed AKAP9
-/-

 mice using ES cells purchased from KOMP (Figure 

29A and Figure 30).  These mice have a dramatically shortened lifespan, living up to 13 

days of age.  The apparent cause of death is a lung defect, but more research is needed to 

determine the exact cause (Figure 30).  The stretched appearance and rupturing of the 

 

 

      

Figure 32.  Schematic of AKAP9 conditional alleles.  A) Diagram of mutant 

allele in embryonic stem cells purchased from KOMP.  A LacZ/Neo cassette is 

inserted between exons 7 and 8, so that exon 7 will splice into the cassette which 

contains a stop codon.  Frt-recombination sites flank the LacZ/Neo cassette, and 

LoxP-recombination sites flank exon 8.  B) When Flp is expressed, recombination 

occurs between Frt sites, deleting the LacZ/Neo cassette.  Splicing occurs normally.  

C) Upon Cre expression, recombination occurs between the LoxP sites, removing 

exon 8.  Splicing from exon 7 to exon 9 results in nonsense mutations and early 

termination. 
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alveoli walls suggests hyperinflation of the lungs.  An AKAP9 splice variant could 

regulate cellular organelle dynamics and be required for the lungs to return to a deflated 

state.  AKAP9-mediated regulation of lung function is likely, as PKA regulates many 

aspects of the pulmonary endothelial barrier (Sayner, 2011).  Many alveolar ion channels 

and proper fluid clearance from the alveoli are highly regulated by PKA, and the 

dysregulation can lead to pulmonary edema (Maron et al., 2005; Sayner, 2011).  AKAP9 

splice variants also serve as regulators for various stress responses.  It is possible the 

stress of birth and beginning to breath requires a response regulated by an AKAP9 

variant.  Continued dysregulation of AKAP9-mediated stress response could induce a 

diseased state in the lungs, ultimately causing death.   

AKAP9
-/-

 mice are less than half the size of their littermates and have 

phenotypically abnormal liver and testes.  Fibroblasts from tail tissues were able to be 

cultured for eight weeks (Figure 31).  From these cultures, I found that AKAP9
-/-

 mice 

have tissue-specific splicing around the inserted transgene.  Due to viability and splicing 

issues, I also developed the conditional knockout AKAP9
F/F

 (Figure 32).  These mice are 

ready to be bred to mice expressing Cre recombinase to obtain tissue-specific AKAP9 

knockout. 

In a recent study, researchers investigated the role of AKAP9 gene products in 

spermatogenesis using an AKAP9 knockout mouse derived concurrently with our mice, 

from ES cells purchased at KOMP (Schimenti et al., 2013).  They discovered delayed 

maturation and mislocalization of cells involved in spermatogenesis.  Indeed, I also noted 

atrophied testes in our AKAP9
-/-

 mice.  In contrast to our breeding scheme, they opted to 
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breed AKAP9
-/WT

 mice directly with constitutive Cre-expressing mice and, thus forgoing 

the conditional potential (Schimenti et al., 2013).  These mice were then crossed with 

other mice containing a second mutation in exon 13 in the AKAP9 gene.  Also, this study 

only examined the effects of AKAP9 knockout in the testes, and no other tissues were 

investigated.  Interestingly, the researchers mention overall animal viability was not 

affected in their mice past 100 days of age (Schimenti et al., 2013), which is in stark 

contrast to our findings of the mice living less than two weeks after birth.  Whether the 

different breeding strategies or additional mutations, caused this discrepancy remains to 

be investigated.   

The AKAP9
-/-

 mice remain a powerful tool for future studies.  The dramatically 

shortened lifespan of AKAP9
-/-

 mice suggests at least one AKAP9 gene product is 

important in development and possibly disease.  Further characterization of the lung 

defect in AKAP9
-/-

 mice at the cellular and sub-cellular level is needed to determine the 

exact defect and whether these mice could serve as a disease model.  One possible 

explanation is a defect in the development or maintenance of the lung smooth muscle.  

The smooth muscle is responsible for the contractility of the lungs (Low and White, 

1998), and the hyperinflated lungs seen in the AKAP9-/- mice could be due to a defect in 

smooth muscle contraction.  Hyperinflation of the lungs is also seen in various disease 

states, such as chronic obstructive pulmonary disease (COPD) (Ferguson, 2006).  A 

decrease in connective tissues in the alveoli, commonly seen in COPD, could also be an 

explanation for the hyperinflation in the AKAP9
-/-

 mice, as connective tissue also affects 

contractility.   
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The conditional AKAP9
F/F 

mouse is an especially powerful tool that will allow 

knockout of AKAP9 proteins in adult mice, something not possible with the AKAP9
-/-

 

mice.  This would allow the investigation of the roles of AKAP9 proteins in maintaining 

homeostasis and in aging, as well as development and progression of disease.  The 

AKAP
F/F

 mice could be crossed with a liver-specific Cre-expressing mouse to 

investigate, in adults, the potential liver phenotype seen developing in the AKAP9
-/-

 pups.  

AKAP350A plays a role in bile secretion in the liver by regulating the polarity of 

hepatocytes constituting the canaliculi (Mattaloni et al., 2012).  Progressive familial 

intrahepatic cholestasis (PFIC) is a disease resulting from the inability to secrete bile, and 

is partially characterized by metabolic and nutrition deficiencies (Nicolaou et al., 2012).  

The progressive nature of this disease is similar to the progressive nature of the liver 

phenotype seen in AKAP9
-/-

 mice.  Also, metabolic and nutrition deficiencies could 

account for the small size of the AKAP9
-/-

 mice. 

As demonstrated above, studying an AKAP9 genetic mutant mouse model could 

provide insight into novel roles for AKAP9 proteins during development, aging, and the 

development and progression of disease.  The involvement of an AKAP9 protein in 

development appears likely since the AKAP9
-/-

 mice have a severe lung phenotype 

(Figure 30) which was not expected to be the primary phenotype based on current 

literature.  This could potentially lead to the use of these mice in the development of 

therapeutics.  The mice can also be used to study the effects of stress on development and 

disease.  Also, studying the effects of the absence of these proteins within a whole 

organism may possibly elucidate novel roles of the proteins within signaling pathways or 

in specific cell types. 
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Methods 

Animal Care and Use 

All animal care, maintenance, and treatment of animals in these studies was done 

in strict accordance with protocols approved by the Institutional Animal Care and Use 

Committee of Vanderbilt University.   

Generation of genetic chimeras 

 Knockout-first, conditional potential AKAP9
-/WT

 embryonic stem (ES) cells from 

a C57BL/6 background (clone number EPD0033_5_B01) were purchased from Knockout 

Mouse Project (KOMP; Davis, CA).  These ES cells were microinjected into wildtype 

albino C57BL/6 embryos in the Vanderbilt Transgenic Mouse/Embryonic Stem Cell 

Shared Resource (TMESCSR).  The embryos were then transferred to recipient wildtype 

albino C57BL/6 females.  Genetic chimeras were identified by black and white fur color. 

Genotyping AKAP9
-/WT

, AKAP9
-/-

, AKAP9
F/WT

, and AKAP9
F/F

 mice 

 The AKAP9 gene was detected in all mice using the sense primer 

GTAATGTTTACATGTTCACTGGGAAATG and the anti-sense primer 

GTGTGCACGAACCTGATCCGCAT.  Upon PCR, the band sizes are different 

depending on the allele:  wildtype is about 500 nucleotides, knockout-first (Figure 29A) 

is 6,147 nucleotides, and the conditional allele (Figure 32A) is 700 nucleotides.  For the 

AKAP9 PCR reactions, Advantage Taq II (Qiagen) was used with an extension time of 

one minute.  The LacZ cassette was detected using the sense primer 

TGCCGCTCATCCGCCACAT and the anti-sense primer 

CACCGATCGCCCTTCCCAACAGT.  Upon PCR using RedTaq (Sigma), a band of 



124 
 

about 600 nucleotides is seen in AKAP9 
-/WT

 and AKAP9
-/-

 mice.  The presence of Flp 

recombinase was detected following the protocol from Jackson Laboratory (mouse stock 

# 003800).  A band of 725 nucleotides was detected in all first-generation AKAP
F/WT 

mice. 

Tissue fixation, embedding, and sectioning 

 Immediately upon harvest, tissues were submerged in 4% paraformaldehyde for 

fixation overnight at 4°C with gentle agitation.  Tissues were then washed three times 

with 70% ethanol for a minimum of 30 minutes each time at 4°C.  Tissues were paraffin-

embedded and 5 µm sections were used for all staining. 

Tissue staining 

Hematoxylin and eosin staining was performed by the Translational Pathology 

Shared Resource at Vanderbilt University. 

Developing mouse fibroblasts 

 Fresh mouse tails from one-day-old pups were incubated in 0.04% bleach at room 

temperature rotating for 15 minutes, then washed twice with 1x Hank’s balanced saline 

solution (HBSS).  Tails were then put fresh HBSS and diced, then placed in a clean tube. 

Collagenase was added to a final volume of 1000 u/µL (collagenase blend type H, 

Sigma), and incubated at 37°C for 25 minutes.  Samples were centrifuged at 2000 rpm for 

five minutes, and the supernatant discarded.  After washing once with 1x HBSS, 0.05% 

trypsin was added.  The samples were vortexed and incubated at 37°C for 20 minutes.  

Samples were then centrifuged at 2000 rpm for 5 minutes, and the supernatant discarded.  

The pellet was resuspended in 500 µL fibroblast media, pipetted to break up aggregates.  

For the fibroblast media, 10% fetal bovine serum, 1% MEM nonessential amino acids, 
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and 1% penicillin/streptomycin was added to DMEM media.  The resuspensions were 

plated in a 3-cm dish, and 2 mLs fibroblast media was added.  These were incubated at 

37°C with humidity and 5% CO2, disturbing dish as little as possible for 4-8 days.  

Fluorescence microscopy 

 Fibroblasts were grown on poly-lysine-coated coverslips and were fixed at room 

temperature for 15 minutes using 4% paraformaldehyde (PFA) supplemented with 0.1% 

Triton X-100, 80 mM K-PIPES pH 7.2, 1 mM EGTA, 1 mM MgSO4, and 30% glycerol.  

Cells were permeabilized with 0.25% Triton X-100 and blocked with 5% normal serum 

for one hour at room temperature.  The cells were incubated with primary antibodies for 

one hour at room temperature:  mouse-anti-acetylated-tubulin (1:200, Sigma), rabbit-anti-

gamma-tubulin (1:1000, Sigma), mouse-anti-AKAP350 (1:250), mouse-anti-AKAP450 

(1:200, BD), and rabbit-anti-GOLPH4 (1:400, Abcam).  The cells were then incubated 

with secondary antibodies for one hour at room temperature:  goat-anti-mouse-Alexa-568 

(1:500) and goat-anti-rabbit-Alexa-488 (1:500), both from Jackson.  Coverslips were 

mounted using Prolong Gold plus DAPI (Invitrogen).  Cells were imaged using a 60x oil 

immersion lens on Olympus FV-1000 confocal fluorescence microscope (Vanderbilt Cell 

Imaging Shared Resource).   

Preparation of cDNA 

 Total RNA was isolated from frozen tissue with Trizol (Invitrogen) following the 

manufacturer’s protocol.  RNA was then treated with RNase-free RQ1 DNase (Promega).  

The High Capacity Reverse Transcription kit (Applied Biosystems) was used for making 

cDNA following the manufacturer’s protocol using oligo dT primers for AKAP9
-/-

 RNA.  
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CHAPTER VI 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Conclusions 

Every cell experiences stress at some point, and how the cell responds to stress is 

critical to cell function (Fulda et al., 2010).  Improper stress response can result in the 

survival of unhealthy cells that could result in progression to disease, resistance of 

disease cells to treatments, or erroneous cell death as seen in cardiovascular and 

neurodegenerative diseases (Fulda et al., 2010).  Stress response can literally determine 

the difference between life and death, and, therefore, cellular stress response is a highly 

regulated process.  The integration of numerous signaling pathways is central to this 

complex regulation.    

A-kinase anchoring proteins (AKAPs) are large scaffolding proteins that serve as 

signal integration centers (Trӧger et al., 2012).  AKAPs act to scaffold kinases and their 

substrates as well as many other signaling proteins in close proximity to one another 

(Michel and Scott, 2002).  This allows greater spatial and temporal control of the 

activation, deactivation, and integration of signaling cascades (Trӧger et al., 2012).  

Many AKAPs have been identified, with each AKAP serving a unique function, and 

every cellular process is associated with at least one AKAP in some way (Table 1).  Our 

lab is specifically interested in proteins encoded by the AKAP9 gene.  There are several 

AKAP9 gene splice variants, including yotiao, AKAP350A, AKAP350B, and 

AKAP350C (Figure 5).  Of these splice variants, AKAP350A (also known as     
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AKAP450/AKAP9/CG-NAP) (Schmidt et al., 1999; Witczak et al., 1999; Takahashi et 

al., 1999) and yotiao are the most well-studied (Figure 6). 

Without prior stress, AKAP350A localizes to the centrosome (Schmidt et al., 

1999) and the Golgi apparatus (Shanks et al., 2002a) (Figure 33 and Figure 34).  During 

non-stressed conditions, AKAP350A has roles in several cellular processes, including 

cell cycle regulation (Schmidt et al., 1999), canalicular development (Mattaloni et al., 

2012), and microtubule organization (Larocca et al., 2006).  Upon cellular stress, 

AKAP350A relocalizes from the Golgi to stress granules (Kolobova et al., 2009) (Figure 

33 and Figure 34).  AKAP350A associates with mRNAs and stress granule proteins both  

Figure 33.  Summary of additional knowledge for AKAP9 gene products.  
AKAP9 gene products include yotiao, AKAP350A, AKAP350B, and AKAP350C.  

For each, this diagram lists the sub-cellular localization, the interacting partners, 

the normal function during non-stress conditions, the function during stress, and 

diseases associated with mutations and/or misregulation of the protein.  Bold, red 

text indicates new knowledge obtained in this body of work. 
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Figure 34.  Schematic of AKAP350A and yotiao in a cell.  AKAP350A- and 

yotiao-interacting proteins are green.  PKA associates with yotiao and AKAP350A 

at all sub-cellular locations.  A)  Under normal conditions, yotiao localizes to the 

plasma membrane, and AKAP350A localizes to the Golgi apparatus, centrosome, 

and cytosol.  For more information, see Chapter I.  B)  Upon stress, AKAP350A is 

dispersed from the Golgi and localizes to stress granules.  There, AKAP350A 

associates with proteins and either directly or indirectly with mRNAs.  AKAP350A 

may associate with other stress granule proteins, such as G3BP or p-EIF2α.  

AKAP350A also associates with caprin-1 and CK2, but it is unclear where this 

interaction occurs.  AKAP350A at the centrosome and yotiao at the plasma 

membrane remain unchanged.  For more information, see Chapters I, II, and IV. 
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during stress and during non-stress conditions (Kolobova et al., 2009), and the trigger for 

AKAP350A relocalization is unknown. 

In this study, we used darinaparsin-treatment as a tool to better understand the 

temporal dynamics of stress granule formation, maintenance, and dispersal.  Darinaparsin 

is an organic arsenical chemotherapeutic currently in Phase II clinical trials (Campàs and 

Castañer, 2009; Wu et al., 2010).  Understanding the mechanism of action of a drug is 

crucial to understanding cell susceptibility and potential development of resistance.  

During our studies on the mechanism of action of darinaparsin, we discovered that 

darinaparsin induces stress granule formation but also stalls the completion of the stress 

response (Mason et al., 2011).  Darinaparsin effectively acts similar to the combination 

treatment of sodium arsenite and nocodazole, as it induces a stress response while 

simultaneously destabilizing microtubules (Mason et al., 2011).  Using darinaparsin-

treatment as a tool for studying stress granule dynamics, we were able to show that stress 

granules must complete formation before they are able to disperse (Mason et al., 2011).  

Darinaparsin-induced stress granules are smaller, more numerous, and do not contain all 

components when compared to sodium arsenite-induced stress granules.  AKAP350A 

only localized to a sub-set of darinaparsin-induced stress granules (Mason et al., 2011).  

A greater understanding of the formation, maintenance, and dispersal of stress granules 

will allow further targeting of these processes for therapeutics.   

During these studies, I also discovered that AKAP350A potentially scaffolds 

casein kinase II (CK2), which phosphorylates caprin-1 (Figure 34).  Previous studies 

show AKAP350A associates with mRNAs and caprin-1 during stressed and non-stress 

conditions (Kolobova et al., 2009), but it is not known if AKAP350A associates with 
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mRNAs directly or through a mediator.  While investigating the mRNA-binding protein 

in the AKAP350A complex, I found that caprin-1 was phosphorylated in vitro.  Caprin-1 

contains many potential phosphorylation sites, and though it has previously been shown 

that caprin-1 is phosphorylated (Grill et al., 2004), the kinase and phosphorylation site 

were not known.  Understanding the phosphorylation states of caprin-1 could provide 

insight into the roles caprin-1 plays in stress granule formation and other cellular 

processes, such as proliferation.  Subsequently, I discovered that CK2 is also part of the 

AKAP350A immunoisolate complex and is responsible for the in vitro phosphorylation 

of a serine residue in caprin-1 (Figure 33).  Further investigation is needed to validate this 

phosphorylation event in vivo and to determine the function of this phosphorylation.  

Knowing the kinase for caprin-1 phosphorylation is critical for understanding the 

regulation of caprin-1 function, and possibly the regulation of stress granule dynamics.   

Because AKAP350A potentially scaffolds caprin-1 and CK2, investigations into 

the functions of these proteins ultimately provides insight into the function of 

AKAP350A.  Indeed, I identified a possible role for AKAP350A in ultraviolet (UV) 

light-induced stress response (Figure 33).  Caprin-1 was only phosphorylated in vitro 

using lysates of cells that were stressed with UV light.  Darinaparsin- and sodium 

arsenite-induced stress response did not alter the phosphorylation state of caprin-1.  

Further investigations are needed to fully determine the role of AKAP350A in UV-

induced stress response.   

Another AKAP9 gene product, AKAP350C, was previously identified as a 

potential splice variant (Shanks et al., 2002a), but remained uncharacterized for almost a 

decade.  In this present study, we completed cloning of AKAP350C and identified it as a  
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mitochondria-targeted AKAP (Figure 33).  AKAP350C lacks the centrosome- and Golgi-

targeting domains found in AKAP350A (Figure 5) but contains a unique mitochondrial 

targeting sequence in the carboxyl terminus consisting of an amphipathic alpha helix.  

This is a novel targeting domain, and the alpha helix is necessary and sufficient for 

mitochondrial localization of AKAP350C.  Alpha helices typically interact with proteins 

or membranes through either hydrophobic or electrostatic interactions with residues or 

phospholipids, respectively (Ma and Taylor, 2002).  However, it does not appear that the 

amphipathic alpha helix in AKAP350C targets to mitochondria through electrostatic 

interactions with lipids.  Other lipid or protein interactions remain possibilities and need 

to be investigated (Figure 35).  Overexpression of full-length AKAP350C induced a 

collapse of mitochondria towards the perinuclear region.  This suggests AKAP350C 

serves as a signaling center for the regulation of mitochondrial structural dynamics 

Figure 35.  Schematic of AKAP350C at the mitochondria.  AKAP350C 

scaffolds PKA, Mff, Mfn1, and Mfn2 in close proximity at the mitochondria outer 

membrane.  Mff anchors Drp1 to the outer membrane, and when Drp1 is 

phosphorylated by PKA it becomes cytosolic.  Mfn2 is also phosphorylated by 

PKA, though the function is unclear.  AKAP350C is anchored to the mitochondria 

by an unknown entity.  AKAP350C possibly oligomerizes, creating a signaling 

hub for mitochondrial dynamics. 
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(Figure 33 and Figure 35).  Indeed, AKAP350C interacts with Mff (mitochondria fission 

factor), a mitochondrial fission protein, and mitofusins 1 and 2, mitochondrial fusion 

proteins (Figure 33 and Figure 35).  The importance of these interactions and the 

mechanism of mitochondrial collapse remain to be investigated.  Mitochondrial dynamics 

and the balance between fission and fusion is an important process in regulating cellular 

stress response (Youle and van der Bliek, 2012).  We found that overexpression of 

AKAP350C is associated with increased apoptosis and exacerbates TRAIL- and sodium 

butyrate-induced apoptosis.  The exact mechanism for regulation of apoptosis by 

AKAP350C remains to be elucidated.  AKAP350C can potentially dimerize or 

oligomerize, allowing it to bring together many copies of the mitochondrial regulatory 

proteins (data not shown) (Figure 35).  These combined results suggest that AKAP350C 

is responsible for coordination of mitochondrial structural dynamics and stress response 

(Figure 33 and Figure 35). 

AKAPs associate with PKA via binding of the PKA regulatory (R) subunits.  

More specifically, the AKAP9 gene products bind regulatory subunit type II alpha (RIIα).  

Two RIIα-binding sites have been previously identified in AKAP350A (Schmidt et al., 

1999; Witczak et al., 1999; Takahashi et al., 1999), with one of these sites also found in 

yotiao and both found in AKAP350C.  During my AKAP350C studies, I also discovered 

a third, novel RIIα-binding site in an area of homology between yotiao, AKAP350A, 

AKAP350C, and possibly AKAP350B.  The newly identified RIIα-binding is an 

amphipathic alpha helix similar to other known RIIα-bindings.  This third PKA-binding 

site is an amphipathic alpha helix, similar to other known PKA-binding sites.  The 

identification of a third RIIα-binding site has significant ramifications on the field.  
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Studies using mutants of AKAP9 proteins previously considered PKA-deficient may 

need to be re-examined. 

To study the roles of the AKAP9 gene products in vivo, I developed AKAP9-

knock out (AKAP9
-/-

) and AKAP9-conditional knock out (AKAP9
F/F

) mouse lines.  

AKAP9
-/-

 mice are significantly impaired, resulting in death by 13 days of age.  This 

death presumably results from the severe lung impairment, the most obvious, major 

phenotype.  Additionally, the AKAP9
-/-

 mice appear to develop a liver phenotype that 

seems to progress with age.  The progression and severity of this phenotype is of interest 

to investigate in older mice (as is possible with AKAP9
F/F

 mice).  Investigations into 

fibroblast lines isolated from AKAP9
-/-

 mice proved to be useful because they led to the 

discovery of tissue-specific preferential splicing.  This splicing prompted the 

development of conditional knockout AKAP9
F/F 

mice so that AKAP9 can be removed at 

varying time points and in various tissues.   

The use of animal models in stress response is very prominent and necessary 

given that often the whole organism, not just an isolated cell type, experiences the stress.  

As shown in Figure 33, the associations between AKAP9 splice variants and disease 

remain relatively unknown.  Misregulation of yotiao is linked to long QT syndrome, but 

that is the only known association.  The dramatically shortened lifespan of AKAP9
-/-

 

mice suggests at least one AKAP9 gene product is important in development and 

possibly disease.  The conditional AKAP9
F/F 

mouse is an especially powerful tool that 

will allow knockout of AKAP9 proteins in adult mice, something not previously possible.  

The AKAP9
-/-

 and AKAP9
F/F

 mice will aid in identifying other diseases associated with 

AKAP9 proteins.         
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This body of work strengthens the concept that AKAP9 gene products have dual 

roles in cells with functions during non-stressed conditions and also during cellular stress 

response.  Currently, three of the four known splice variants have been characterized and 

found to have dual roles (Figure 33).  Yotiao functions normally in the repolarization of 

cardiomyocytes, but also serves as a regulator of cardiac stress response (Trӧger et al., 

2012).  AKAP350A has several roles during non-stressed conditions, including regulation 

of cell cycle progression (Schmidt et al., 1999), microtubule dynamics (Larocca et al., 

2006), and development of canaliculi (Mattaloni et al., 2012).  During stress, AKAP350A 

functions in the regulation of stress granule formation (Kolobova et al., 2009), and 

possibly UV-induced stress response (Figure 33).  I have shown now that AKAP350C is 

involved in the regulation of mitochondrial dynamics under non-stress conditions, as well 

as plays a role in the regulation of mitochondria during stress response (Figure 33).  The 

AKAP9
-/-

 and AKAP9
F/F

 mouse lines that I developed are powerful tools that will be 

utilized to determine the consequences of losing the dual-regulation complexes, formed 

by the AKAP9 proteins, in the development and progression of disease. 
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Future directions 

Examine stress granule dynamics. 

Darinaparsin-treatment is a useful tool for further investigating the dynamics of 

stress granule formation, maintenance, and dispersal.  Using darinaparsin-treatment, it 

was discovered that stress granules must complete formation before they can disperse 

(Mason et al., 2011).  Darinaparsin-induced stress granules are smaller, more numerous, 

and are incomplete.  Though the composition of stress granules is becoming increasingly 

known, the exact mechanisms of formation, maintenance, and dispersal remain largely 

unknown.   

Darinaparsin-induced stress granules do not complete formation (Mason et al., 

2011).  Interestingly, these incomplete stress granules are heterogenous and do not 

contain all of the known stress granule components.  Determining the assembly of stress 

granule components in a temporal manner would allow further elucidation of the 

mechanisms required for the process of formation.  It would be interesting to investigate 

which stress granule components associate with one another before becoming part of the 

complete stress granule.  If one protein is found to be present in all incomplete stress 

granules, this protein would be a likely candidate for a regulator of stress granule 

formation.  If this master recruiting protein is discovered, it would be an excellent target 

for future therapeutics.   

For incomplete stress granules, the stressor must be removed and then stress 

granule formation completed before the stress granules can disperse (Mason et al., 2011).  

This suggests not all components are required to initiate stress granule formation, but all 

components may be required to initiate dispersal.  Defining which component(s) is (are) 
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last to enter complete stress granules could aid in determining the trigger for dispersal.  

For example, if AKAP350A is the last component in stress granule formation, then it 

would be the first component examined as the dispersal trigger.  Another approach is to 

examine post-translational modifications of stress granule components and determine if 

any of those modifications are required for stress granule dispersal.  The phosphorylation 

of eIF2α triggers stress granule formation, so it is likely a similar mechanism is used to 

trigger dispersal. 

  

Elucidate role of CK2-mediated caprin-1 phosphorylation.  

These studies show caprin-1 is phosphorylated on a serine reside by CK2 in vitro, 

but this data requires further validation and characterization.  Caprin-1 contains a 

predicted CK2 phosphorylation site at serine-179 (C-Phos software).  Once CK2-

mediated phosphorylation of caprin-1 is verified, a phospho-deficient mutant of caprin-1 

at this residue could serve to validate caprin-1 phosphorylation at this site.   

Once the CK2-mediated phosphorylation of caprin-1 is characterized, the in vivo 

role of that phosphorylation is the next step in investigations.  Phospho-deficient and 

phosphomimetic mutants of caprin-1 can be utilized for these experiments, possibly 

performing rescue experiments caprin-1-null (Wang et al., 2005) or caprin-1 knock-down 

cells.  The phosphorylation state of caprin-1 in AKAP9-deficient mouse fibroblasts or 

knock-down cells is also of interest.  Because caprin-1 localizes to stress granules and 

can induce stress granule formation upon overexpression, determining the role of caprin-

1 phosphorylation in stress granule formation is critical.  Depending on the results of 
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these experiments, another possible avenue of research is the role of AKAP350A in the 

regulation of UV-induced stress response. 

 

Further characterize AKAP350C targeting. 

AKAP350C targets to mitochondria via a novel targeting domain that is an 

amphipathic alpha helix.  This targeting domain is contained within the first half of the 

carboxyl-terminal 55-amino acid sequence unique to AKAP350C.  However, as shown in 

Chapter III, GFP-AKAP350C-F3-H3170X targets only partially to the mitochondria, 

with the remaining population localizing to the cytosol or ER.  This suggests a second 

targeting domain is contained in the other half of the carboxyl-terminal 55-amino acid 

sequence.  Further characterization of this potential second targeting domain could 

provide insight into an entirely new function for AKAP350C.  AKAP350A has dual 

localizations to the centrosome and Golgi during non-stressed conditions, so the same 

could also apply to AKAP350C. 

One obvious gap in AKAP350C knowledge is what the amphipathic alpha helical 

targeting domain is associating with.  Though interacting proteins have been identified, 

they cannot account for the targeting of AKAP350C to mitochondria.  The possibility 

remains that AKAP350C is interacting with lipids.  We show the helix does not associate 

with phospholipids or inositides directly through electrostatic interactions.  However, 

hydrophobic interactions between phospholipids and the alpha helix remain a possibility.  

Proteins such as hexokinase I contain domains of charge and hydrophobic regions that 

lay upon the surface of the outer membrane (Gelb et al., 1992, Sui and Wilson, 1997).  

Additionally a similar complex binding mechanism has been proposed for D-AKAP1 
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localization to mitochondria (Ma and Taylor, 2002).  This must be examined as a possible 

mechanism for AKAP350C mitochondrial targeting.   

 

Further define AKAP350C-regulated mitochondrial dynamics. 

We know AKAP350C associates with the mitochondrial fission and fusion 

proteins, but we do not know whether this is a direct interaction.  It is also not known if 

this interaction is constitutive or dynamic.  Determining the intricacies of AKAP350C 

interaction with Mfn1, Mfn2, and Mff could shed light on the exact mechanism for 

AKAP350C regulation of mitochondrial dynamics.   

All AKAPs serve as anchors for cAMP/PKA signaling, so the role of 

AKAP350C-anchored PKA in the regulation of mitochondrial dynamics should be 

investigated.  This may prove difficult given the fact that other AKAPs localize to the 

mitochondria as well, and perhaps partially compensate for changes in AKAP350C-

mediated PKA signaling.  One way to circumvent this issue is performing in vitro 

experiments so other AKAPs are not present.  Possible in vitro experiments to conduct 

include measuring changes in phosphorylation states of proteins such as Drp1 and Mfn2 

and the association of mitochondrial proteins with AKAP350C following treatments such 

as forskolin, an activator of cAMP/PKA signaling. 

 

Investigate AKAP350C regulation of apoptosis. 

 Mitochondrial dynamics and the balance between fission and fusion is an 

important process in regulating cellular stress response (Youle and van der Bliek, 2012).  

Overexpression of AKAP350C induces apoptosis and enhances TRAIL- and sodium 
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butyrate-induced apoptosis.  Further investigation is needed to determine the mechanism 

of AKAP350C-induced apoptosis.  AKAP350C potentially regulates apoptosis through 

two different pathways, the first being the same mechanism utilized for AKAP350C-

mediated regulation of mitochondrial dynamics.  Another possibility is that AKAP350C 

regulates apoptosis through a mechanism completely independent of that for regulation 

mitochondrial dynamics.  Being such a large protein, AKAP350C likely interacts with 

more than just four proteins: PKA, Mfn1, Mfn2, and Mff. 

 

Characterize AKAP350B. 

AKAP350B is the last AKAP9 splice variant that is known to exist but is not 

characterized, which is an obvious gap in knowledge.  Given what is known of the other 

splice variants (Figure 33), AKAP350B likely has a role in both normal cell physiology 

and cellular stress response.  AKAP350B hypothetically has a small segment of unique 

sequence, as is the case for AKAP350A and AKAP350C, and it would be interesting to 

examine the purpose of that unique sequence.  

 

Investigate PKA-independent roles of AKAP9 splice variants. 

The PKA-independent roles of AKAP9 proteins have not been very well 

characterized.  The identification of a third RIIα-binding site warrants reexamining any 

previous investigations of binding-deficient AKAP9 protein constructs.  AKAPs have 

more functions than just anchoring PKA, so it is important to investigate the functions of 

full-length, completely RIIα-binding-deficient mutants of AKAP350A and AKAP350C.  It 

is possible the overexpression of these mutants could act as dominant negatives by out-
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competing endogenous protein.  Compensation by other AKAPs could be an issue so in 

vitro studies may be required.   

 

Investigate oligomerization of AKAP9 splice variants. 

Interestingly, the proline substitution mutations in GFP-AKAP350C-C55-V3143P 

and GFP-AKAP350C-C55-L3139P abolished mitochondrial targeting but also caused 

relocalization to the centrosome.  One possibility is that a centrosomal-targeting domain 

is also within the carboxyl-terminal 55 amino acids of AKAP350C.  The more likely 

explanation is that the proline substitution somehow enhanced oligomerization of the 

construct with AKAP350A, which localizes to the centrosome.  

Preliminary data suggests that AKAP350A and AKAP350C oligomerize with 

each other.  Peptides specific to AKAP350A were identified in proteomics analyses of 

AKAP350C isolates.  Also, overexpressed GFP-AKAP350C pulls down an endogenous 

AKAP350 protein, though it is not clear whether the endogenous protein is AKAP350A 

or AKAP350C.  Further characterization of the dimerization or oligomerization of the 

AKAP9 splice variants is needed. 

 

Fully characterize AKAP9
-/-

 mice. 

 With the exception of yotiao, the role of AKAP9 splice variants in development 

and disease remain unknown.  The AKAP9
-/-

 mice could prove an invaluable tool for 

these investigations.  The most important next step is to determine which tissues have 

preferential splicing around the transgene.  Currently, only the lung and skin have been 

investigated, with the skin exhibiting preferential splicing.  Learning which tissues are 
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affected by the transgene, like the lung, could provide insight into the differential splicing 

of AKAP9 in different tissues.   

 The AKAP9
-/-

 mouse lung phenotype requires further examination.  Deciphering 

whether the exact defect in the lung is smooth muscle, connective tissue, or something 

else will shed light on a previously unknown role of an AKAP9 gene product in lung 

development.  This could also lead to the discovery of a link between a lung disease and 

the dysfunction or misregulation of an AKAP9 splice variant.   

If investigations of preferential splicing indicate the liver and testes are affected 

by the transgene, the phenotypes in those tissues should be further examined.  There 

appeared to be a liver phenotype developing, with the liver becoming increasingly pale, 

but this requires closer inspection at the tissue and cellular level.  The possible testes 

phenotype is also an area of interest as all AKAP9
-/-

 mice have been male, and the one 

surviving male appeared to have atrophied testes.  Another study concluded AKAP9 

splice variants are critical for spermatogenesis, and loss of AKAP9 resulted in atrophied 

testes (Schimenti et al., 2013).  However, the splice variant responsible and the exact 

mechanism have not been identified.   

 

Utilize AKAP9
F/F

 mice. 

 Due to preferential splicing and viability issues in the AKAP9
-/-

 mice, the 

AKAP9
F/F

 mice have the greatest potential for providing insights into the roles of 

AKAP9 proteins in vivo.  One experimental approach would be to cross AKAP9
F/F

 mice 

with a mouse expressing an inducible global Cre recombinase, such as a tubulin-Cre 

mouse.  This would allow the AKAP9
F/F

 mouse to reach adulthood, and the effects of 
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losing AKAP9 proteins at a later time point can be investigated.  A more targeted 

approach is crossing AKAP9
F/F

 mice with mice expressing tissue-specific Cre 

recombinase.  An obvious choice is a lung-specific Cre, but the liver, heart, and brain are 

also interesting possibilities given the possible phenotype in the liver and the importance 

of yotiao in the heart and brain.  Investigating the role of AKAP9 proteins in the heart is 

also of interest given the importance of proper mitochondrial function in cardiomyocytes.  

AKAP350C regulates mitochondrial dynamics and stress response, and therefore, may 

cooperate with yotiao in the regulation of cardiomyocyte function. 
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