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CHAPTER 1 

 

INTRODUCTION 

 

Breast Cancer 

Worldwide, breast cancer is the most commonly diagnosed cancer in women, other than 

nonmelanoma skin cancer.1 In 2017 more than 250,000 breast cancer cases were diagnosed in the 

US and over 40,000 breast cancer related deaths occurred.2 Breast cancers exhibit a large range 

of morphological features, immunohistochemial profiles, and histological subtypes that can 

dictate their clinical course of treatment and outcome. Breast cancers can be subclassified based 

on histologic criteria (ductal versus lobular) as well as molecular profiling (estrogen receptor and 

progesterone receptor expression, HER2 amplification or triple negative). Breast cancers can 

also be subclassified based on gene expression profiles, and these intrinsic subtypes incompletely 

overlap with molecular subtypes.  

 Approximately 70% of all breast cancers are driven by estrogen receptor-α (ERα).3 

Hormone receptor positivity remains the central feature of this disease. ERα is a steroid hormone 

receptor and a transcription factor. When it binds estrogen, ERα activates oncogenic pathways in 

breast cancer cells.4 ERα positive tumors are treated with anti-estrogen therapy. ERα targeted 

therapies have been extremely successful in improving outcomes.5 However ER+ breast cancers 

are heterogeneous and exhibit significant variability in biological behavior, response to therapy 

and outcome.6 Although endocrine therapy has been successful in treating breast cancers, 

endocrine resistance, both de novo and acquired, remains a critical dilemma. Indeed, around 30-

50% of early breast cancer patients will relapse due to acquired resistance.7 Understanding the 
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molecular mechanisms underlying the diverse behavior of these tumors is critical to tailoring 

current therapies and developing new ones.  

 

Histological Subtypes of Breast Cancer 

 Breast cancer is a histologic diagnosis made according to pathological criteria. The most 

common breast cancer histology is invasive ductal carcinoma (IDC), accounting for 70-80% of 

breast cancers. Invasive lobular carcinoma (ILC) constitutes around 10-15% of breast cancer 

cases.2 Various types of rare histologies as well as mixed ductal/lobular make up the remainder 

of breast cancers.1 Originally, IDCs were thought to develop from the breast ducts, while ILCs 

developed from the lobules. However, we now know that both IDC and ILC arise from the same 

segment of the terminal duct lobular unit.4 Although these subtypes arise from the same 

structure, they differ in epidemiology, genetic signatures and histology. Compared to IDC, ILC 

is difficult to detect on mammography and tends to show a worse long-term outcome with a 

higher incidence of metastasis, recurrence and breast cancer mortality.8 IDCs are a heterogenous 

group of tumors that can appear as diffuse sheets, nests or singly distributed cells with different 

amounts of ductal differentiation.4 ILCs are characterized morphologically as single-file, small, 

round, discohesive cells. This phenotype is a consequence of the deregulation of cell-cell 

adhesion properties caused by the loss of E-cadherin expression. Loss of E-cadherin is found in 

about 90% of ILCs and thus is its main genomic feature.9 Currently IDC and ILC tumors are 

treated the same way. Recognizing that biological heterogeneity underlies histological 

heterogeneity, several studies have been aimed to focus on the molecular characterization of IDC 

and ILC. Studies have emerged to determine the genomic landscape of these two subtypes. 

Cirello and colleagues performed a comprehensive analysis of 817 breast tumor samples (127 
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ILCs, 490 IDCs and 88 mixed) [Ciriello et al. 2015] and Desmedt and colleagues performed a 

comprehensive analysis of 417 ILC tumors [Desmedt et al. 2016]. Mutations targeting PTEN, 

TBX3 and FOXA1 as well as activation of AKT are enriched in ILC compared to IDC.10 

Mutations in FOXA1 correlated with increased FOXA1 expression in ILC while GATA3 

mutations correlated with increased GATA3 expression in IDC. Additionally, ESR1 copy 

number gains were more frequent in ILC than IDC. These gains were associated with higher 

ESR1 mRNA levels as well as mRNA expression of TFF1, a canonical ESR1 transcriptional 

target.41 These studies clearly showed that ILC has distinct genomic features compared to IDC. 

Of importance, the distribution of hotspot mutations in genes such as FOXA1 and GATA3 in 

ILC and IDC may have implications in response to therapies. While these studies identified 

functional genomic characteristics in IDC and ILC tumors, higher-order structural features of 

their genomes have yet to be characterized. These distinct molecular portraits between the 

histological subtypes of breast cancer highlight the need for individualized therapies based on 

histology.   

 

Copy Number Alterations/Structural Variations 

 One of the hallmarks of cancer cells is genomic instability.11 Genomic instability 

generates mutations and large-scale structural variations like chromosomal translocations and 

copy number alterations that can drive tumor progression. Genome instability plays a critical role 

in cancer initiation, progression, evolution and drug resistance through reduced apoptosis, 

unchecked proliferation, increased motility and angiogenesis.12 Copy number alterations (CNAs) 

are gains or losses in copies of DNA segments and are present in many types of cancer.13 CNAs 

affect a greater fraction of the genome than single nucleotide polymorphisms (SNPs). 
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Furthermore, it is reported that 85% of the variation in gene expression of breast tumors are due 

to somatic CNAs.14 

 The first TCGA breast cancer study reported on 466 breast cancer tumors on six different 

technology platforms, one being DNA copy number analysis.10 They identified copy number 

alterations that are associated with molecular subtypes. As previously mentioned, Cirello and 

colleagues used a larger cohort and also performed copy number analysis and found that the 

frequency of copy-number alterations that are known breast cancer gains and losses, differed 

significantly between IDC and ILC. Copy number alterations were identified using Affymetrix 

SNP arrays to determine CNA. Affymetrix arrays use probes to detect SNPs as well as non-

polymorphic probes to detect CNAs.15 However, the CNA data obtained from these two studies 

lack resolution and sensitivity. Non-linked read CNAs and WES are other methods of finding 

CNAs. However, these methods are inferior to 10X linked reads because many structural 

variants are significantly longer than the DNA libraries produced by these technologies, whose 

insert lengths are about 300-500 nucleotides.16 In addition, such reads are too short for accurate 

de novo genome assembly. 

There are hundreds of regions of the genome that are recurrently amplified and deleted, 

and most of these do not encompass known oncogenes or tumor suppressor genes. Identification 

of recurrent CNAs, which are reported to have a strong association with clinical phenotypes, has 

resulted in new therapeutic options.17 Therefore, CNAs in breast cancer patients could be 

regarded as potential biomarkers, presenting the opportunity for new therapeutics. Determining 

the genes that are targeted by CNAs will benefit the mechanism by which those CNAs arise as 

well as the positive and negative effects on gene expression. 
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10X Phased Sequencing 

 Whole genome sequencing has produced tens of thousands of genomes that are 

collections of short-read sequences aligned to the composite reference human genome sequence. 

It is cost-effective, high-throughput and accurately calls bases but it fails to reliably call 

structural variants, assess variation across the entire genome and reconstruct long-range 

haplotypes. Most genome analyses are performed with short reads, resulting in analyses of small 

variants over nonrepetitive parts of the genome.18 Structural variants, especially those larger than 

a few thousand bases or those that are in repetitive elements, are almost impossible to resolve 

with short-read sequencing. Thus, we are underrepresenting the amount of structural variation in 

the genome when using these sequencing approaches.  

10X is a synthetic long-read technology that works by using as little as 1 ng of high 

molecular weight DNA that is partitioned (100kb) into micelles known as Gel-bead in 

EMulsions (GEMs). Each GEM contains approximately 0.3x genome copies and a unique 

barcode.19 The long pieces of DNA in each droplet are fragmented and barcoded. These 

fragments are then used for library building and sequencing. Each long piece of DNA in a 

micelle has the same barcode, and so must have been close together in space. Thus, after 

sequencing, the barcoded short-reads can be assembled into continuous sequences through their 

unique barcode, known as linked reads. This technology is able to reconstruct long-range 

information from short-reads, unlike current whole-genome sequencing methods  

Linked reads allow mapping to 38Mb of sequence not accessible to short-reads, making 

423 difficult to sequence genes accessible to NGS.8 10X can give more information about 

structural variation in cancer cells and resolve maternal and paternal haplotypes. 20 Furthermore, 

it has low input requirements and error rates.  
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My Project 

 We wanted to utilize 10X genomics as our technology to understand the complete 

landscape of structural variant changes of invasive ductal and invasive lobular carcinomas. 

Structural variants are key to cancer development, and improved identification of structural 

variants will lead to new insights into molecular types in cancer. Advantages to using cell lines 

for these experiments are that they are relatively genomically pure, such that there is no 

contamination from normal cell infiltrate, they are cell characterized, and it is easy to get large 

pieces of DNA from them. MCF7 and T47D are two of the most widely used ER+ IDC cell 

lines, with many more extensively studied in the literature. However, very few ER+ ILC cell 

lines have been reported in the literature, MDA-MB-134 (MM134) and SUM44PE being the 

most widely used. 

From our 10X data we can easily assemble genomes, find more structural variants 

(SNVs, deletions, amplifications and translocations), access areas of the genome previously 

inaccessible and resolve haplotypes from breast cancer histological subtypes. Furthermore, we 

can use 10X data to better understand ER regulation. Our 10X sequencing data coupled with 

ChIP-seq ER data allows us to learn more about how ER is affected by structural variants. 

Comparing this data with RNA-seq we can also gain more information as to how ER is driving 

gene expression.  

In conclusion we sequenced our four cell lines, MCF7, T47D, MM134 and SUM44, 

using 10X linked read sequencing and were able to identify structural variants in great detail. We 

characterized amplifications, deletions and translocations found in each of the four cell lines as 

well as structural variants the cell lines share, specifically the histological subtypes. We also 
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further characterized structural variants that were already known in these cell lines. What we 

have found is that structural variation in cancer cell lines is diverse. Each cell line has hundred of 

unique structural variants and it will be pertinent to discover what structural variants are 

functionally relevant.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	8	

CHAPTER 2 

 

ANALYSIS 

 

Structural Variant Analysis 

10X sequencing technology uses the Lariat aligner through the Long Ranger pipeline to 

align barcoded linked reads. All the linked reads for a single barcode are aligned simultaneously, 

with the prior knowledge that the reads arise from a small number of long (10kb-200kb) 

molecules.21 The large-scale structural variant caller looks for distant pairs of loci in the genome 

that share many more barcodes than would be expected by chance. Any overlap indicated that 

the two loci that are very distant in the reference sequence are close in the sample and generates 

a candidate structural variant. Candidate structural variants are then refined by comparing the 

layout of reads and barcodes around the event and the patterns expected in deletions, inversions, 

duplications and translocations to identify the type of structural variants and also find the 

maximum-likelihood of breakpoints.21 

Files generated from the Long Ranger pipeline are then available using Loupe genome 

browser, which allows for easy visualization of the data. Included in this browser is visualization 

of the barcode overlap evidence for large-scale structural variants called by Long Ranger. For 

each variant, the structural variant list provides a quality score for the variant, the locations of the 

two breakpoints (chromosome and position), a list of genes that are close to the breakpoints and 

the distance between the breakpoints. The quality score is a log-likelihood score comparing that 

there is a structural variant between two loci or that the observed barcode overlap between two 
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loci was generated by chance. The higher the score, the stronger the evidence is that there is a 

structural variant.  

To build a detailed map of breast cancer copy number changes, we used 10X whole 

genome sequencing on four commonly studied breast cancer cell lines: 2 ductal cell lines 

(MCF7, T47D) and 2 lobular cell lines (SUM44, MM134). 10X identified 1,059 structural 

variants in the MCF7 cell line, composed of 575 amplifications, 311 deletions and 173 

translocations. Altogether, 32.7% of the MCF7 genome was involved in copy number changes, 

with 12.6% of the genome involved in amplifications and 20.1% of the genome involved in 

deletions.  775 structural variants were identified in the T47D cell line, composed of 309 

amplifications 423 deletions and 43 translocations. Altogether, 66.3% of the T47D genome was 

involved in copy number changes, with 27.9% of the genome involved in amplifications and 

38.4% of the genome involved in deletions.  463 structural variants were identified in SUM44, 

composed of 277 amplifications, 145 deletions and 41 translocations. Altogether, 35.3% of the 

SUM44 genome was involved in copy number changes, with 5.9% of the genome involved in 

amplifications and 29.4% of the genome involved in deletions. 182 structural variants were 

identified in MM134, composed of 70 amplifications, 64 deletions and 48 translocations. (Figure 

1 and Table 1).  Altogether, 15.6% of the MM134 genome was involved in copy number 

changes, with 4.8% of the genome involved in amplifications and 10.8% of the genome involved 

in deletions.   

We observed that our ductal cell lines have more amplifications than our lobular cell 

lines.  MCF7 has the largest number of translocations, while T47D has the largest fraction of the 

genome affected by copy number changes. Lobular cell lines have a smaller fraction of the 

genome affected by copy number variants, compared to lobular cell lines. Table 1 lists the 
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average size of amplifications and deletions and we observe that although a small fraction of the 

genome is involved in copy number changes, there is a slightly larger average deletion size in 

lobular cell lines. We next determined how many genes are included in amplifications and 

deletions. For this analysis we used any overlapping sequence of an amplification or deletion 

with the gene to count that gene. We found that on average more genes were involved in 

amplifications than deletions. MCF7 had 5737 genes involved in amplifications and 46 genes 

involved in deletions. T47D had 13182 genes involved in amplifications and 222 genes involved 

in deletions. MM134 had 1862 genes involved in amplifications and 18 genes involved in 

deletions. SUM44 had 2521 genes involved in amplifications and 46 genes involved in deletions. 

This is interesting because our average amplification distance is smaller for all of the cell lines 

than the average deletion distance, yet the amplifications seem to be affecting more genes. 

However, T47D and MM134 have a much greater average amplification distance and have a 

much greater number of genes involved, which makes sense. Determining genes involved in 

translocations we identified known genes at the start and end section of the chromosome. MCF7 

has potentially 120 gene fusions, 26 potential gene fusions in T47D, 38 potential gene fusions in 

MM134 and 35 potential gene fusions in SUM44.  

Combining all our amplifications, deletions and translocations of all four cell lines we 

have 2,447 structural variants. Of those structural variants 629 (25%) occur in 2 cell lines, 154 

(6%) occur in 3 cell lines and 14 (0.6%) occur in all four cell lines. Of the variants that occur in 

all four cell lines, half occur in chromosome 11. When we categorize for histological subtype, 

IDCs have a combined 1,834 structural variants and ILCs 645. Within the two IDC cell lines 316 

variants occur in both MCF7 and T47D (17%). Strikingly, only 10 variants occur in both 

MM134 and SUM44 (1.5%).  
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Additionally we constructed circos plots of our structural variant data to better visualize 

the structural variants within the genome (Fig. 1). Using these methods we identified patterns of 

amplifications, deletions, and translocations. Not only do ductal cell lines contain more 

amplifications and deletions than the lobular cell lines but we see that the chromosomal regions 

that are being amplified for deleted appear to be the same in the two cell lines. 
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SUM44 MM134

MCF7 T47D

a

Fig.1 | Structural variants found in cancer genomes. a. Circos plots of all four cancer genomes. 
The tracks from outer to innercircles are chromosome coordinates, duplications (red) and 
deletions (blue), and translocations (The color of the link is set to the 2nd chromosome in the 
link coordinate) b. Violin plot of number and size distribution of amplifications in each cell line c. 
Violin plot of deletions

b c
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Gene Expression Analysis  

To identify transcriptomic alterations, we performed RNA-seq on our four cell lines. A 

principal component analysis (PCA) was performed on the duplicated biological replicates to 

determine the level of gene expression similarity (Figure 2a). We can observe that the replicates 

of each cell line cluster closely together which is what we would expect. Additionally each cell 

line has unique variation, but we can note that MM134 and SUM44 appear to cluster closer 

together.   

 We used DESeq2 to identify differentially expressed genes (DEGs) between our cell 

lines. Our negative binomial linearized model compares differential expression of genes between 

histological subtypes. Applying this model, we used an interaction term for histological subtype 

and were able to get a list of DEGs between subtypes to determine if ER is regulating different 

genes in ductal vs. lobular. We found 6,978 DEG (FDR 0.05) in our ductal vs. lobular cell lines. 

We took these genes and ran iRegulon through Cytoscape to identify enriched motifs and 

transcription factors in our gene set. Our top hits included BHLHE40, ATF4 and NFKB1 (Figure 

2b). BHLHE40 is a transcription factor that is directly activated by HIF1A under hypoxia and 

has been shown to confer a pro-survival and pro-metastatic phenotype to breast cancer cells.44 

ATF4 is a transcription factor that upregulates genes involved in amino acid transport, 

glutathione biosynthesis and the antioxidative stress response.45 NFKB1 is a subunit of NKFB 

which has been shown to be a suppressor of aging, inflammation and cancer.46 

 We next wanted to take a closer look at our amplifications and deletions and determine if 

they were affecting gene expression. Figure 2c is an oncoplot of specific genes that are amplified 

or deleted in at least two cell lines. While previous analysis identified much higher numbers for 

structural variants found in multiple cell lines, this analysis only looked at structural variants that 
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occurred on a known gene as well as amplified the entire gene. Two genes that stuck out to us 

were LRP1B and DPYD. Both of these genes have been shown to have an effect on 

chemotherapy treatment. LR1PB plays a role in the drug endocytosis of the chemotherapeutic 

agent, liposomal doxirubicin.42 It has been shown that deletion or mutation of LR1PB is 

associated with acquired chemotherapy resistance. LR1PB is deleted in three of our cell lines. 

The DPYD gene encodes DPD, which is an enzyme that catalyzes fluorouracil metabolism.43 

Fluorouracil is a chemotherapy agent used to treat many different cancers. Deletion, or loss of 

function mutations of DPYD may not be able to metabolize fluorouracil at normal rates leading 

to potentially life-threatening fluorouracil toxicity. T47D has a DPYD deletion and SUM44 has 

DPYD amplification. 

To get a better idea of how these amplifications and deletions were affecting gene 

expression, we subset either amplifications or deletions for each cell line. We then made a heat 

map of Z-scores of gene expression. Between all cell lines there was no clear observation that 

when a gene was amplified it necessarily had higher gene expression levels. For example in 

Figure 2d, we have a list of genes that are amplified in MCF7, however not all of those genes 

have higher gene expression levels (indicated by green boxes). However it is important to note in 

this heat map, that when genes are upregulated in MCF7 they tend to be upregulated in T47D but 

downregulated in the lobular cell lines (and vice versa). This is representative of our other cell 

lines. Additionally, we took the list of genes amplified or deleted in each cell line and plotted 

box plots of gene expression. In Figure 2e dots in red represent the genes amplified in MCF7 

compared to all other genes. We see that most dots fall in the range of gene expression of all 

other and only a few express higher levels. This is representative of our other cell lines. We also 

determined how many of our differentially expressed genes were amplified or deleted. 
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Comparing all of our amplified gene names with our ductal vs. lobular DEG list we only found 

36 genes that are both amplified and differentially expressed. We found 155 genes that had some 

deletion in them and were differentially expressed.  

Next we wanted to generate DEG for each individual cell line, such that one cell line vs. 

all the others, to determine what DEGs are structural variants. Again we used DESeq2 but this 

time we included an interaction term for cell line. We found 5,530 genes differentially expressed 

in MCF7 cells wherein 148 had some structural variant. 3,904 genes were differentially 

expressed in T47D and 114 had some structural variant. We found much lower numbers for 

DEGs in our lobular cell lines. MM134 had 258 DEGs wherein only 10 were a structural variant 

and SUM44 had 272 DEGs and only 5 had some structural variant. We did a comparison to 

determine if we had any overlap in structural variants that were differentially expressed between 

cell lines and we only found a very small number of genes that were in two cell lines (Figure 2f).  

 We also did an analysis on ER binding sites in our amplified regions. Using ChIP-seq 

data we had locations of ER binding in each of our cell lines. We coupled this with our 

amplification data only selecting for amplifications smaller than 500,000 bps. We made this 

cutoff so we could determine specific focal amplifications of ER binding sites and anything 

bigger than 500,000 are unfocused. Using bedtools intersect we were able to determine the 

number of times ER binding sites intersected with an amplification (Table 2). Most striking is the 

number of intersections between ER binding and amplifications in MM134. There were only 39 

amplifications identified under 500,000 bps and of those 33 intersected with ER binding sites. 

The other cell lines had around 25-50% intersection. MM134 has a high average amplification 

distance (1676572 bps) so the cutoff removed many of the larger amplifications (Table 1).  

However it is interesting that the small amplifications MM134 does have are almost always 
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intersecting with an ER binding site. While amplifications are not always affecting the gene 

expression of the gene that is amplified, they could be having an affect on ER levels and 

regulation.  
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a  
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b BHLHE40

ATF4

NFKB1

d

Fig. 2 | Gene expression analysis a. PCA from RNA-seq data of all the genes of all 4 cell lines and replicates. b. Top 
motifs in our list of differentially expressed genes, BHLHE40, ATF4 and NKKB1. c. Oncoplot of amplifications and 
deletions identified using phased genomes. This oncoplot is only representative of genes that have amplifications or 
deletions in at least two cell lines. Amplifications of only the whole gene were taken into account for this analysis. d. Heat 
map of MCF7 amplified genes e. Box plot of gene expression of all genes. Dots in red represent the list of genes that are 
amplified in MCF7 (as listed in d). f. Venn diagram comparing DEGs that are also structural variants for each cell line.
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Characterization of CCDC170-ESR1 Fusion 

Gene fusions resulting from genomic rearrangements are important drivers for cancer 

initiation and progression. Both de novo and acquired resistance to endocrine therapy for ER+ 

breast cancers remains a significant clinical challenge. Recurrent point mutations around the 

ligand binding domain of estrogen receptor alpha gene (ESR1) have been found in up to 40% of 

post-treatment metastatic breast cancer patients, however these mutations fail to explain most 

cases of endocrine resistance.23 Evidence now suggests that ESR1 fusions are another class of 

mutations associated with endocrine resistance.23 Many ESR1 fusions have been identified in 

breast cancer, but their role in breast cancer is not completely understood.  

CCDC170-ESR1 fusion involves the first two non-coding exons of ESR1 fused to 

various C-termini sequences from the coiled-coil domain containing protein, CCDC170.24 This 

fusion generates truncated forms of CCDC170 proteins that, when introduced into ER+ breast 

cancer cells, reduced endocrine sensitivity.25 Another study identified ESR1-CCDC170 as a 

fusion that occurred with endocrine therapy resistance after letrozole treatment.26 ESR1-

CCDC170 has previously been identified in the MCF7 cell line, as well as about 3.5% of ER+ 

breast cancer cases in the TCGA.25 Additionally, previous studies have shown that an enhancer 

region of androgen receptor is a driver in castrate-resistant prostate cancer and androgen receptor 

is frequently amplified.47,48 This led us to hypothesize that this amplification in MCF7 cells 

could be driving ER. 

Using our 10X data, we identified this fusion in MCF7. Interestingly, the increased 

resolution of the 10X data allowed identification of an amplified region within the CCDC170-

ESR1 fusion (Figure 3a). Utilizing UCSC Genome Browser, we observed that this region is 

essentially the ESR1 promoter. Interestingly, this region was amplified at least three times, with 
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three sets of independent breakpoints. One of these amplifications was an inversion, which 

creates the CCDC170-ESR1 fusion.  Given this information we wanted to investigate whether 

this amplified region could be driving gene expression of ESR1. In TCGA, 14 breast cancer 

tumors from 660 ER+ primary breast samples are identified as having this ESR1 fusion (2.1%). 

Within those 14 breast tumors, two of the fusions occur out-of-frame while the rest are in the 

5’UTR-coding region. We compared ESR1 mRNA levels of these fusion positive tumors against 

fusion negative numbers (Figure 3e). We observed that tumors harboring the CCDC170-ESR1 

fusion had slightly higher ESR1 levels than tumors that did not have the fusion.  
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Fig. 3 | Characterization of CCDC170-ESR1 fusion in MCF7 cells. a. Track taken from Loupe brower of 10X phased 
MCF7 sequencing data observing the CCDC170-ESR1 junction. The taller red sections identifies an amplified region 
while the green, red, and yellow arcs are where the translocation occurs. b. 23 breast cancer tumors in TCGA were 
identified having this fusion. This oncoprint show that within those 23 tumors 22% had amplified ESR1. c. Box plot of 
ESR1 mRNA levels taken from TCGA samples. Compared to CNA, ESR1 mRNA levels are not much difference in 
expression so this region may not be having an effect on gene expression d. Exon expression plot for fused genes of a 
TCGA sample with the CCDC170-ESR1 fusion. Expression was normalized across all exons; blue = lowest 
expression, red = highest expression. Line indicates where genes are connected. C6orf97 is another name for 
CCDC170. e. ESR1 read counts of TCGA samples. Fusion negative are 546 breast tumors without the CCDC170-
ESR1 fusion, fusion positive are the 14 breast tumors that do have this fusion.
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Translocations Between Chromosomes 8 and 11 in Invasive Lobular Carcinomas 

Depending on the chromosome breakpoint, a translocation can result in the misregulation 

of normal gene function or the fusion of genes. In many cases, these gene rearrangements are 

considered to be the primary cause of various cancers. Studies suggest that around 20% of all 

cancers are caused by chromosomal translocations.27 For example, the translocation of 

chromosomes 9 and 22 causes chronic myelogenous leukemia (CML).28 Chromosomal 

translocations like these are used as diagnostic markers for cancer and its therapeutics.  

We discovered a pattern of translocations in our two lobular cell lines, MM134 and 

SUM44, between chromosomes 8 and 11 (Figure 4a). While all translocations involved different 

genes they were all within a few hundred kilobases from each other. Chromosome 8 is 145 Mbs 

in length and the translocations occurred in a 42.3 Mb region. Chromosome 11 is 135 Mbs in 

length and the translocations occurred in a 37.5 Mb region (Figure 4b). To determine if this 

pattern was evident in breast cancer samples, we searched for this translocations in 550 breast 

cancer cases in TCGA. Of those 550 cases, 9 included 8 to 11 translocations in the region of the 

cell line translocations (Figure 4a). Two of these samples had two translocations in this region. 

Although ILC tumors composed only 15.5% of samples, they accounted for 44.4% of 8:11 

translocation. 

Using gene expression levels from our RNA-seq data we were able to determine the gene 

expression of genes in this region. Combining a list of genes from chromosome 8 and 

chromosome 11 we were able to cluster genes according to expression and cell line using the R 

package, Heatmap.2 (Figure 4e). It is evident within the ~700 genes in these regions that there is 

a difference in gene expression between our ductal and lobular cell lines. When many genes are 

upregulated in the lobular cell lines (green) they are downregulated in our ductal cell lines (red). 
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Therefore, this region of translocation could be playing a role in gene expression in a histological 

subtype specific way.  

We next hypothesized that ERα binding may play an important role in gene regulation in 

this region. Using cell line specific ERα ChIP-seq data, we identified 243 ERα binding sites in 

MM134 and 133 in SUM44. In the same 8:11 region, we see similar ERα binding site in the to 

ductal cell lines (191 in MCF7 and 139 in T47D). However, 233 ERα binding sites are unique to 

the lobular subtype (Figure 4c). To determine if there are more ER binding sites in this region 

than you would expect by chance, we sampled the same Mb size in random regions of either 8 or 

11 chromosomes 1000 times and determined how many ER binding sites are in those regions. 

Bedtools shuffle allowed us to generate a list of random genomic regions so we could use 

bedtools intersect to overlap this with ER ChIP. we took this list and found that there were 32 

times that the number of shuffled intersections exceeded my observed out of 1000 trials. 

Therefore, our p-value = 0.0359 indicated that the translocation regions of these chromosomes 

have statistically more ER binding sites then random regions of the chromosomes.  

Interestingly a t(8;11) translocation between DOC4 and NRG1, was identified in the 

breast cancer cell line MDA-MB-175 (ER+, IDC).27 This translocation results in Υ-heregulin 

which is an autocrine factor under the regulation of the DOC4 promotor, that is implicated in the 

proliferation of breast cancer cells. While these specific genes are not involved in any of the 

translocations that we have identified, it is interesting to note that t(8:11) translocations are found 

in other breast cancer cell lines and patient samples.  
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Fig. 6 Characterization of 8-11 translocation in lobular cell lines. a. Circos plot of chromosome 8 and chromosome 11 translocations. Each color arc represents 
either MM134 cell line (gray), SUM44 cell line (red) or one of the 9 TCGA breast cancer samples. b. Chromosome tracks take from UCSC Genome brower to 
highlight the regions the translocations take place. c. ER binding sites in the 8-11 chromosome regions for lobular and ductal cell lines. d. Table identifying the 
genes involved in the translocations.

b

d
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FGFR1 Amplification in SUM44 Lobular Cell Line 

Fibroblast growth factors and their receptors (FGFRs) are involved in different 

physiologic processes and play important roles in cancer proliferation, survival, differentiation 

and apoptosis.29 FGFR alterations have been found in 7.1% of cancers, with the majority being 

gene amplifications (66%). In breast cancer, FGFR1 is amplified in about 8.7% of patients.30 

FGFR1 gene amplifications are associated with de novo endocrine resistance.31 Furthermore, 

tumors harboring FGFR1 amplification displayed a worse distant metastasis-free survival.  

 Studies have shown that FGFR1 is over-expressed in the MM134 and SUM44 cell line 

and through viability assays that SUM44 is resistant to 4-hydroxytamoxifen.31,32 This resistance 

was reversed when cells were treated with siRNA against FGFR1. Using our 10X data we 

wanted to better characterize this amplification in the ILC cell lines.  Using our RNA-seq data 

we confirmed that FGFR1 is overexpressed in both MM134 and SUM44 (Figure 5a). We took 

the genes located on the 8p11.2-p12 amplicon of ILCs where FGFR1 is located at 8p11.23. As 

we can see many genes in this amplicon of MM134 and SUM44 have high levels of expression 

compared to our IDC cell lines.  

 We next wanted to view FGFR1 using the Loupe browser through 10X Genomics. This 

allows us to visualize our linked-read data. The structural variants view of this application allows 

us to look for the FGFR1 amplification. We located FGFR1 and confirmed a highly amplified 

region in both SUM44 and MM134 (Figure 5b,c). Each position in the matrix corresponds to a 

pair of loci from the two axes. The darker the color the greater number of barcodes that were 

observed in reads from both loci, therefore, the dark red regions are indicative of areas of 

amplification. Additionally, the chromosome track above the matrix highlights breakpoints 

within the region you are looking at. We see numerous breakpoints at the end of the 
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amplification in both SUM44 and MM134. However, the amplified region is completely missing 

in our ductal cell lines (Figure 5d,e) and breakpoints are missing in MCF7.  
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Amplifications of Small Enhancers of MCF7 

The increased resolution of structural variant calls using linked read data allows the 

identification of small events that may be missed by other technologies. Indeed, there are 207 

amplifications in MCF7 (36% of amplifications) that are 250kb or smaller in size. We 

hypothesized that these small amplification may represent amplification of enhancer elements. 

Indeed, 81.6% (169 of 207) of these amplifications contain one or more H3K4me1 binding site. 

Furthermore, 70 of these amplifications (33.8%) contain one or more ESR1 binding sites, as 

detected by ChIPseq. Next, we compared the breakpoints of these amplifications to CTCF 

binding sites. CTCF is an insulator that has been show to mediate looping of enhancer elements. 

CTCF ChIPseq data for MCF7 from the ENCODE project was downloaded, and the distance 

from each amplification breakpoint to the closest CTCF binding sites were calculated. Whether 

this difference was closer than expected by chance was analyzed using two different methods. 

First, the amplification breakpoints, maintaining amplification distance, were shuffled 1000 

times throughout the genome, and the distribution of distances to the closest CTCF binding site 

to shuffled break point was compared to the distribution of distances of the actual break points to 

CTCF binding sites. In all 1000 tries, the actual distribution was statistically significantly smaller 

than the random distribution (KS test, FDR < 0.01).  

We also used the R package GenometricCorr to test the null hypothesis that CTCF 

binding sites and amplification break points are spatially independent (Figure 6). The low (0) p-

value calculated in relative.distances.ks.p.value is in accordance with the observation that the 

break points	and CTCF sites overlap. Relative.distances.ecdf.area.correlation is positive, so the 

CTCF sites and breakpoints are in general closer to the projection.test.p.value is zero, indicating 

either significant overlap or significant lack of overlap. Projection.test.lower.tail is FALSE, 
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meaning that we are in the upper tail of the distribution and there is significantly more overlap of 

the CTCF sites and breakpoints than we would expect if they were independent. 

Projection.test.obs.to.exp=2 confirms it. All three permutation tests give <0.01 meaning that the 

observed spatial relationships (absolute or relative distance apart) are significantly different than 

what is seen in the permutation distribution. From the p-values of the permutation distributions 

we cannot tell whether the query and reference intervals are significantly close together or 

significantly far apart. As the value of the scaled.absolute.min.distance.sum.lower.tail is TRUE, 

we know that the absolute distances between query and reference are consistent and small, and, 

finally, the jaccard.measure.lower.tail is FALSE, indicating an unexpectedly high overlap, as 

defined by the Jaccard measure.  
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Figure 6 | Amplifications of small enhancers in MCF7: CTCF vs breakpoints. The low p-value in relative.distances.ks.p.value defines that the 
break points and CTCF sites overlap. Relative.distances.ecdf.area.correlation is positive, so the CTCF sites and breakpoints are in general 
closer. The projection.test.p.value is zero, indicating either significant overlap or significant lack of overlap. Projection.test.lower.tail is FALSE, 
meaning that we are in the upper tail of the distribution and there is significantly more overlap of the CTCF sites and breakpoints than we would 
expect if they were independent. Projection.test.obs.to.exp=2 confirms it. The value of the scaled.absolute.min.distance.sum.lower.tail is TRUE, 
shows that the absolute distances between query and reference are consistent and small, and, finally, the jaccard.measure.lower.tail is FALSE, 
indicating an unexpectedly high overlap.  
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CHAPTER 3 

 

METHODS 

 

Cell Culture 

MCF7, T47D and MM134 cell were obtained from Carlos Arteaga, Vanderbilt 

University. MCF7 cells were grown in DMEM supplemented with 10% heat-inactivated fetal 

bovine serum (FBS), 50 U/mL penicillin, and 50 mg/mL streptomycin. T47D cells were grown 

in RPMI supplemented with 10% heat-inactivated FBS, 0.002% insulin, and 50 U/mL penicillin, 

and 50 mg/mL streptomycin. MM134 cells were grown in 1:1 ratio of DMEM and L-15 

supplemented with 10% heat-inactivated FBS, 50 U/mL penicillin, and 50 mg/mL streptomycin. 

SUM44 cells were purchased from Asterand Bioscience and grown according to their 

instructions. SUM44 cells were grown in Hams F-12 supplemented with 2% heat-inactivated 

FBS, 1g/L BSA, 5mM ethanolamine, 10nM HEPES, 1ug/ml hydrocortisone, 5ug/ml insulin, 

50nM sodium selenite, 5ug/ml apo-Transferrin, 10nM Triiodo Thyronine 

  

10X Sequencing 

HMW DNA preparation for 10X Genomics WGS 

High molecular weight (HMW) DNA was extracted from all cell lines using the Salting 

Out Method (10X Genomics). Starting with 1.5 x 106 live cells, pellet and lyse overnight with 

proteinase K at 37o. DNA is then extracted using Eppendorf DNA LoBind tubes. Extracted 

genomic DNA was analyzed via TapeStation at VANTAGE to check size and integrity. 

TapeStation gives us a DNA Integrity Number (DIN) wherein a high DIN (scale of 1 to 10) is 
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indicative of highly intact DNA and a low DIN of degraded DNA.  All samples had a DIN >9 

and a mean DNA size >50 kb. 

10X Genomics WGS library construction 

10X WGS Libraries were constructed at VANTAGE using the 10X Chromium protocol 

(10X Genomics), starting with 1.2 ng of DNA for each sample. The finished libraries were 

sequenced to ∼30X coverage on an Illumina HiSeq3000 platform. The resulting sequencing base 

call files (BCLs) were processed by the Long Ranger Pipeline (10X Genomics) for alignment, 

structural variant discovery, and phasing. 

10X Genomics WGS- Long Ranger pipeline 

Samples were demultiplexed and paired end fastq files with matching barcode index files 

were generated with the Long Ranger (v2.2.2) mkfastq functions. The Long Ranger Pipeline 

(10X Genomics) was run on our four samples. This pipeline performs alignment using the Lariat 

aligner, which bins read-pairs containing the same molecular barcode identifier into read clouds 

and performs the alignment of these read-pairs simultaneously with the prior knowledge that 

these read-pairs originate from a small number of larger DNA molecules. The output of the 

pipeline included barcoded and phased BAM files, VCFs, SV VCFs, BEDPEs and a Loupe file 

for data visualization.  

 

RNA-Sequencing 

RNA Collection 

Cells were harvested at steady-state and RNA was purified using the RNeasy kit 

(Qiagen). RNA samples were subjected to Turbo DNAse (Thermo Scientific) and RNA SpikeIns 

were added as controls. 
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RNA Library building and analysis 

RNA samples were assessed for quality at VANTAGE core at Vanderbilt; samples with 

RNA integrity number of 7 or greater were used to generate RNA libraries using NEBNext 

Poly(A) mRNA Magnetic Isolation and NEBNext Ultra RNA Library Prep Kit for Illumina. 

Libraries were sequenced at VANTAGE with PE75 to a depth of approximately 30 million reads 

per sample on an Illumina HiSeq3000. RNA-seq reads were aligned to the human genome 

(hg19) with splice-aware aligner STAR and number of reads was quantified and normalized 

using HTSeq (Dobin et al., 2013). Differential expression analysis was performed in R using 

DESeq2. 

 

ChIP-Sequencing 

ChIP was done using MCF7, T47D, MM134 and SUM44 and in DMEM, RPMI, 

DMEM:L-15, or Hams F-12 respectively. Cells were grown to 80% confluency, washed 3 times 

in ice-cold PBS, and then fixed for 10 minutes at room temperature using 7% formaldehyde, 

followed by quenching with 2.5 mol/L glycine. Cells were first lysed using Farnham lysis buffer 

and then with nuclei lysis buffer (50 mmol/L Tris-HCl pH 8.0, 10 mmol/L EDTA pH 8.0, 1% 

SDS). Chromatin was sonicated using a Covaris LE220 with the following conditions: 35 

minutes at peak power 350, duty factor 15, 200 cycles/burst, and average power 52.5; 200 mL of 

the chromatin was saved for input. Sonicated chromatin was diluted using ChIP Dilution Buffer 

(50 mmol/L Tris-HCl pH 8.0, 0.167mol/L NaCl, 1.1% Triton X-100, 0.11% sodium 

deoxycholate), RIPA-150, protease inhibitors, and sodium butyrate. ERα antibodies (Santa Cruz 

sc-543X) were linked to magnetic anti-rabbit Dynabeads (sheep anti-rabbit IgG M-280 from Life 

Technologies), and then incubated with chromatin for >12 hours at 4C. Immunoprecipitate (IP) 
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was washed with the following buffers (RIPA-150, RIPA-500, RIPALiCl, and TE Buffer) for 5 

minutes each. Chromatin-IPs were eluted from the beads, treated with RNase A at 65°C with 

shaking for 4 hours to reverse crosslinking, followed by proteinase-K treatment at 55°C for 1 

hour. Next, DNA was purified using phenol–chloroform extraction, followed by ethanol 

precipitation and subsequent quantification by Qubit. Standard Illumina ChIPseq Library Kits 

were used to build sequencing libraries. Libraries were sequenced at Vanderbilt Technologies for 

Advanced Genomics (VANTAGE). The fastq files were aligned to human genome version 19 by 

BWA (Burrows–Wheeler aligner). Peaks were called against matching input using SPP 

according to ENCODE best practices.  

 

Data visualization 

For visualizing the genome-wide landscape of SVs, we applied the perl Circos package v0.69-6 

(Krzywinski et al., 2009). Specifically for visualization of results of structural variants and gene 

expression, we applied custom R code using R-packages ggplot2 (v2.2.1) and heatmap.2 

(v3.0.1).  
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CHAPTER 4 

 

CONCLUSION 

 

Breast cancer is the most commonly diagnosed, non-skin cancer, in the developed world 

in women.33 In fact 1 out of every 8 women will be diagnosed with breast cancer within their 

lifetime in the United States, accounting for over 40,000 deaths annually.34 Breast cancers 

exhibit a large range of morphological features, immunohistochemial profiles, and histological 

subtypes that can dictate their clinical course of treatment and as well as outcome. Breast cancers 

can be subclassified based on histologic criteria (ductal verses lobular) as well as molecular 

profiling (estrogen receptor and progesterone receptor expression, HER2 amplification or triple 

negative). Breast cancers that are driven by ER account for 70% of all breast cancers and while 

anti-estrogen therapies have been successful in improving outcomes, ER+ breast cancers are very 

heterogeneous.35,36 In addition to molecular profiling, breast cancer is a histological diagnosis. 

IDCs account for 70-80% of breast cancers while ILC account for 10-15%.34 While these 

subtypes differ in histology they also have different genetic signatures. Previous work has shown 

different genomic landscapes between the two subtypes with different functional genomic 

characteristics.37 These distinct molecular portraits between the histological subtypes of breast 

cancer highlight the need for individualized therapies based on histology.   

 Advances in long-read sequencing technologies have produced better quality reference 

genome assemblies and identified previously hidden genomic variation in human genomes.38,39  

Previous studies have compared long-read sequencing against short-read Illumina paired-end 

sequencing to investigate the performance of long and short reads for cancer genome analysis.40 
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These studies found that long-read sequencing can expose complex structural variations with 

more certainty that short-read sequencing. This is due to better mapping through repetitive 

elements that are often next to structural variants.  Long-read sequencing, such as 10X phased 

sequencing, is a valuable resource to capture the complexity of structural variations on both the 

genomic and transcriptomic levels. 

The work presented began as we were investigating recurrently mutated transcription 

factors in ER+ breast cancer. We became aware of the distinct genomic differences between 

histological subtypes during our analysis and wanted to investigate other structural variant 

differences between the two subtypes. Thus, we were able to utilize a rather new and 

underutilized technology to better identify complex genomic differences between histological 

subtypes previously unreported.  

This research aimed to identify structural variation between histological subtypes of ER+ 

breast cancer. Using 10X genomics as well as RNA-seq we wanted to understand the complete 

landscape of structural variant changes of invasive ductal and invasive lobular carcinomas. 

Additionally we aimed to better understand ER regulation in our histological subtypes utilizing 

ER ChIP-seq. In the work that I presented we have identified over 2,600 large structural variants 

between our four cell lines using long-read sequencing. This type of sequencing has never been 

done before for T47D, MM134 or SUM44. 

Based on whole genome sequencing and RNA-sequencing analysis it can be concluded 

that structural variants between cancer genomes are diverse. The results indicated some 

similarities between lobular cell lines such as the 8-11 translocations, which are also evident in 

TCGA samples. Additionally, 316 variants were identified that are shared between ductal cell 

lines.  However for the most part, these cell lines have a large number of unique structural 
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variants (1,682, which is 68% of all the structural variants we identified). Therefore, we can 

conclude that structural variation is varied between different breast cancer cell lines.  

Future studies should focus on further characterizing specific structural variants of 

interest. While we have identified 316 common variants between IDC and 10 common variants 

between ILC, the need to determine direct functional consequences of those variants are very 

important. Are these silent variations or are they having an impact on cancer progression. 

Additionally since we only have direct similarity between 10 variants in ILC could they be a 

defining characteristic of the histological subtype. Furthermore, the identified 8-11 translocation 

requires better characterization. While we identified this structure and the genes involved in our 

lobular cell lines as well as TCGA samples in this translocation, we have yet to determine if 

these contribute functionally to the lobular phenotype. Additionally, we further characterized the 

previously reported CCDC170-ESR1 in MCF7 cells by identifying an amplification of an 

enhancer region. While our data identifies this fusion in our 10X data we also looked at samples 

in TCGA that had the fusion and were better able to understand gene expression levels of ER in 

this context. I think further studies could be implemented on MCF7 cells to understand how the 

amplification is influencing ER functions. For example, we could cut out the amplified region 

using CRISPR and if it is driving ER expression, ER expression levels will drastically drop. As a 

control you could cut this region out of T47D, in which it is not amplified and you would see a 

much less reduction in ER expression levels.  

It is important to consider that we only sequencing four cell lines (two of each 

histological subtype). Better conclusions could be drawn from larger cohorts but unfortunately 

many more studies are limited by the number of immortalized cell lines (especially for lobular). 

The next steps would be to use our technological approach and apply it on patient samples. 
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While we have the large database of TCGA that include 660 ER+ breast cancer tumors, these 

were only sequenced using short-read technologies. It would be incredibly useful to take patient 

tumors of both histological subtypes and use long-read sequencing to see if we get similar 

numbers of structural variants as well and any overlapping structural variants as our cell lines.  

In summary this work has expanded our knowledge of the diversity of structural variation 

not only in cancer genomes but also specifically between the two histological subtypes of ER+ 

breast cancer. This type of analysis in invaluable in the field of cancer genomics because it sheds 

light on previously unreported structural variants as well as further characterizing ones that have 

already been identified. This analysis also shows the advancement of sequencing technologies. 

While short-read Illumina based sequencing is commonplace for sequencing needs, we need to 

take into account all the information it is missing and new technology that can fill in those gaps 

in knowledge.  
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