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CHAPTER I 

	

INTRODUCTION 

	

microRNAs (miRNAs) 

	

microRNA (miRNAs) are evolutionarily conserved, small non-coding RNAs that 

post-transcriptionally regulate gene expression.  They were initially identified in forward 

genetic screens in C.elegans as regulators of developmental timing (Lee et al., 1993; 

Wightman et al., 1993).  Later, they were also discovered in plants, flies and vertebrates, 

involved in nearly all developmental and pathological processes (Ambros, 2003; Chen et 

al., 2005; Lagos-Quintana et al., 2003; Pasquinelli et al., 2000).  As of March 2018, the 

miRNA registry (http://www.mirbase.org/) contained 38,589 miRNAs in vertebrates and 

invertebrates, with 2588 annotated miRNAs in the human genome; although biological 

functions of most of these miRNAs remain to be discovered (Griffiths-Jones et al., 2006). 

miRNA-mediated gene silencing involves two main components, miRNAs base-

paring with their target mRNAs in complex with Argonaute (AGO) proteins thereby 

recruiting factors that initiate translational repression as well as mRNA deadenylation 

and decay (Huntzinger and Izaurralde, 2011).  miRNA binding sites are generally located 

in the 3’ untranslated region (UTR) of mRNAs and referred as miRNA recognition 

elements (MREs) (Bartel, 2009).  For target recognition, the crucial region on the miRNA 

is located from nucleotides 2 to 7 and termed as the ‘miRNA seed’.  Meanwhile, the 
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nucleotides downstream of the seed sequence are involved in additional imperfect base-

pairing of the miRNA with the target mRNA.  In the human genome, more than 60% of 

protein-coding genes carry at least one conserved MRE.  When non-conserved MREs are 

also taken into consideration, most protein-coding genes are thought to be regulated by 

miRNAs (Friedman et al., 2009).  While miRNAs can bind to many target mRNAs, 

multiple miRNA can also target the same mRNAs.  This characteristic makes miRNAs 

unique potent regulators of gene expression.  Thus, the biogenesis and function of 

miRNAs themselves are tightly regulated as well.  

 Due to gene duplication in the genomes of many species, there are multiple 

related miRNA loci with related sequences.  miRNAs with identical seed sequences are 

generally referred as ‘miRNA families’ (Bartel, 2009).  One example is the let-7 family 

which consists of 14 paralogous loci in the human genome.  miRNA family members 

generally have redundant functions, although some distinct roles have been reported as 

well (Ha and Kim, 2014).  Some miRNAs may share common evolutionarily origins, but 

nevertheless diverge in their seed sequences.  One such example is miR-141 and miR-

200c miRNAs that derived from miR-200 superfamily but their seed sequences vary by 1 

nucleotide.  It has been shown that targets of miR-141 and miR-200c do not overlap; 

therefore each miRNA has distinct functions (Kim et al., 2013).  

 

miRNA biogenesis and function 

Generation of active ~22 nt long mature miRNAs is facilitated by series of 

biogenesis events as illustrated in Figure 1.  Genomic localization of miRNAs is diverse. 

They can either be located intragenically, in introns or exons of annotated genes or 
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intergenically.  While the majority of the miRNAs are encoded by the introns of coding 

and non-coding transcripts in the human genome, less than 15% of zebrafish miRNAs 

have intragenic localizations (Ha and Kim, 2014; Rodriguez et al., 2004).  miRNAs that 

are located in close proximity to each other in the genome are transcribed as a single 

polycistronic transcriptional unit.  Interestingly, miRNAs in such clusters often display 

individual regulatory targets (Roush and Slack, 2008). 

Transcription of miRNAs is mediated by RNA Polymerase II (RNA Pol II) (Cai 

et al., 2004; Lee et al., 2004).  The long primary miRNA transcripts (pri-miRNA)s can 

take on a number of forms but most commonly form a long transcript with one or more 

characteristic hairpin structures.  A typical pri-miRNA is composed of a 33-35bp long 

stem, a terminal loop and single-stranded RNA segments at the 5’ and 3’ sides (Lee et al., 

2002).  The maturation process is initiated by the nuclear RNase III-like enzyme Drosha 

which crops the stem-loop to release a ~65-70 nt long small hairpin-shaped precursor 

miRNA (pre-miRNA) (Lee et al., 2003).  This cleavage is catalyzed by the Drosha along 

with its essential cofactor Dgcr8 which together make up the Microprocessor complex, 

(Denli et al., 2004; Gregory et al., 2004; Han et al., 2004).  Drosha and Dgcr8 are 

conserved in animals and they are essential for embryonic development (Chong et al., 

2010; Wang et al., 2007). 

The pre-miRNA is exported out of the nucleus in an Exportin 5 dependent manner 

(Lund et al., 2004; Yi et al., 2003).  Upon export to the cytoplasm, the pre-miRNA is 

acted upon by a second RNase III-like enzyme, Dicer (Bernstein et al., 2001; Hutvágner 

et al., 2001; Ketting et al., 2001).  Dicer associates with its binding partner TRBP and 

cleaves the loop region of the pre-miRNA, liberating a small RNA duplex approximately 
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Figure 1 miRNA biogenesis and function 
 
miRNAs are transcribed by RNA polymerase II to generate pri-miRNAs that are 
generally composed of several stem-loop structures.  Pri-miRNAs are further processed 
by the Drosha-Dgcr8 complex to form pre-miRNAs which are exported from the nucleus 
by Exportin5 in a Ran-GTP dependent manner. Pre-miRNAs are processed by Dicer to 
generate small RNA duplexes which are incorporated into RNA Induced Silencing 
Complexes (RISC).  After strand selection, one strand is retained in RISC and this mature 
miRNA guides RISC to the 3’UTR of target mRNAs.  Perfect complementarity between 
miRNA and target mRNA leads to mRNA cleavage and imperfect base pairing is 
followed by translation repression and mRNA deadenylation.  Figure by Abby Olena.  
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21 nucleotides long (Grishok et al., 2001; Haase et al., 2005).  This small RNA duplex is 

subsequently loaded onto one or more Ago proteins to form the ribonucleoprotein 

complex called the RNA induced silencing complex (RISC).  Following the loading of 

the miRNA duplex, the ‘passenger’ strand, the one with less thermodynamic stability at 

the 5’ end, is quickly removed (Khvorova et al., 2003; Schwarz et al., 2003).  The 

remaining strand of the complex, the ‘guide’ strand, stays incorporated and a mature 

RISC is formed.  Another determinant for guide strand selection is the composition of the 

first nucleotide (Czech et al., 2009; Ghildiyal et al., 2010; Okamura et al., 2009).  

Animal miRNAs function by binding to specific mRNA targets, typically in the 3’ 

untranslated region (UTR), with imperfect base pairing.  The seed region plays an 

important role in miRNA-target association (Lewis et al., 2003).  For most efficient 

miRNA-mediated RNA silencing, there is perfect base pairing between the seed sequence 

and complementary sites in the 3’UTR of the target mRNA, called the miRNA 

recognition element (MRE) (Doench and Sharp, 2004; Lewis et al., 2005).  The 3’ end of 

the miRNA can also contribute to target recognition but most pairing arrangements result 

in a bulge in the center of the miRNA:mRNA which blocks cleavage by Ago2 s 

(Kiriakidou et al., 2004).  Besides these common requirements for miRNA-target 

interaction, noncanonical miRNA target recognition types are fairly common, especially 

with imperfect seed pairing (Li 2008, Shin 2010, Loeb 2012).  Imperfect pairing in this 

manner complicates in silico target prediction.  Nevertheless, target repression is 

mediated by RISC in two modes; through promoting mRNA destabilization and 

repression of translation, both leading to target mRNA degradation (Ameres and Zamore, 
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2013).  These two modes of miRNA-mediated target repression are not necessarily 

mutually exclusive  (Bazzini et al., 2012; Djuranovic et al., 2012).  

 

miRNAs in vertebrate embryogenesis 

 Since the first discovery of miRNAs in regulating developmental timing in 

C.elegans, biological roles of miRNAs have been tested during various developmental 

processes in multiple model organisms (Alvarez-Garcia and Miska, 2005).  One strategy 

to determine the general requirement for miRNAs in development is to interfere with the 

miRNA biogenesis pathway.  Dicer knockout mutants have been generated in multiple 

model organisms, though I summarize the findings only in two vertebrates, mice and 

zebrafish here.  

In mice, Dicer1 mutants die at 7.5 days of gestation (Bernstein et al., 2003).  

Dicer1 mutant embryos have defects in axis formation and gastrulation, while the 

embryonic stem cell pool is also affected.  Conditional deletion of Dicer1 in embryonic 

stem cells leads to proliferation and differentiation defects (Kanellopoulou et al., 2005; 

Murchison et al., 2007).  Since Dicer is a shared enzyme also required for the RNA 

interference (RNAi) pathway, the defects observed in Dicer mutants may not be only 

attributed to defects in miRNA biogenesis.  Therefore, to specifically interfere with 

canonical miRNA production, Dgcr8 mutants were generated (Suh et al., 2010).  DGCR8 

is the essential cofactor of Drosha and specifically required in miRNA biogenesis (Chong 

et al., 2010; Han et al., 2004).  Zygotic Dgcr8 knockout embryos undergo embryonic 

arrest prior to E6.5 (Wang et al., 2007).  However, together with the analysis of maternal 

zygotic mutants of Dgcr8, it has been shown that Dgcr8 null embryos can develop 
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through the blastocyst stage (Suh et al., 2010).  Therefore, canonical miRNAs are not 

required for preimplantation development.  

In zebrafish, zygotic mutants of Dicer undergo developmental arrest 7 to 10 days 

post fertilization (Wienholds 2003).  To assess the maternal contribution of Dicer in these 

embryos, maternal zygotic Dicer (MZdicer) mutants were generated (Giraldez et al., 

2005).  MZdicer mutants display earlier morphogenesis defects affecting gastrulation, 

somitogenesis, brain and heart development, while early embryonic patterning and cell 

specifications appear normal.  Interestingly, expression of miR-430 in MZdicer mutants 

can rescue many of the defects described above (Giraldez et al., 2005).  Injection of miR-

430 leads to normal brain ventricle formation as well as rescue of the midbrain-hindbrain 

boundary.  Additionally, there is partial rescue of gastrulation, somitogenesis, and retinal 

development. This shows that defects observed in MZdicer mutants in zebrafish can be 

attributed to loss of miRNA function.  Further analysis of miR-430 and MZdicer mutants 

showed that miR-430 is responsible for targeting and depleting the pool of maternal 

mRNAs during the maternal-zygotic transition (MZT) (Giraldez et al., 2006).  This 

demonstrates how a single miRNA can solely regulate one of the major developmental 

steps by targeting hundreds of mRNAs.  

As the requirement of canonical miRNAs in vertebrate development is well-

understood by generation of knockout alleles of proteins involved in miRNA biogenesis, 

the roles of single miRNAs are less well known.  miRNA expression analyses through 

extensive in-situ hybridization analyses, as well as high-throughput sequencing has 

clearly shown that miRNAs have highly specific temporal and spatial expression patterns 

(Ason et al., 2006; Kloosterman et al., 2006; Kloosterman and Plasterk, 2006; Wei et al., 
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2012; Wienholds, 2005).  Due to embryonic lethality in zygotic Dicer1 mutants in mice, 

several groups generated conditional alleles of Dicer in mice and reported various tissue-

specific roles of miRNAs (Amiel et al., 2012).  In zebrafish, there are numerous reports 

of miRNAs regulating various developmental processes (Alvarez-Garcia and Miska, 

2005; Wienholds and Plasterk, 2005; Zhao and Srivastava, 2007). 

Our laboratory has focused on novel functions of miRNAs during zebrafish 

development, such as miR-214 modulating Hedgehog signaling in muscle cell 

specification (Flynt et al., 2007), miR-8 regulating osmotic stress response (Flynt et al., 

2009), miR-92 regulating the endoderm formation and left-right asymmetry (Li et al., 

2011a), miR-153 regulating  synaptic transmission during neuronal development (Wei et 

al., 2013) and miR-216a regulating Notch signaling during retinal development (Olena et 

al., 2015).  

 

Zebrafish Retina Regeneration 

	

Neural degeneration in the retina is the main cause of blindness and other retinal 

diseases with vision impairment in humans.  A potential strategy for the treatment of 

these types of retina diseases is to induce the regenerative potential of the retina itself.  

However, mammals are not capable of endogenous repair for retinal damage.  Zebrafish 

is an ideal system to study retina regeneration because they have a full regenerative 

capacity upon retinal damage, which is especially intriguing because the structure, 

function, and cell types of the zebrafish retina are largely conserved (Fadool and 

Dowling, 2008; Gallina et al., 2013; Lamba et al., 2008; Stenkamp, 2007).  Therefore, 
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understanding the molecular mechanisms controlling the robust regenerative capacity in 

the zebrafish retina may reveal new information to develop therapeutics for human retinal 

diseases.  

 

  
 
Figure 2  Vertebrate retinal anatomy.   
 
(A) The diagram of the eye with the retina lining the back of the eye.  Axons of the ganglion cells 
make up the optic nerve (ON).  The retina has three nuclear layers separated by two synaptic 
layers; outer nuclear layer (ONL), inner nuclear layer (INL) and ganglion cell layer (GCL).  (B) 
Illustration of the cell types located in each nuclear layer of the retina.  Rod (R) and cone (C) 
photoreceptors are located in the ONL.  Bipolar (BP), horizontal (H), amacrine (A) cells and 
Müller glia are located in the INL.  MG’s processes extend into the ONL and GCL.  Ganglion 
cells (GC) are located in the GCL. Adapted from (Wan and Goldman, 2016)  

 

Retina Structure  

The vertebrate retina is a light-sensitive tissue lining the posterior eye and 

functions to convert signals from the photons into neural stimuli, followed by 

transmission of this information to processing centers in the brain (Bassett and Wallace, 

2012).  It develops as a part of the central nervous system (CNS) and forms a three-
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layered structure (Fig 1) (Chuang and Raymond, 2002; Otteson et al., 2001; Stenkamp, 

2007).  

The outer nuclear layer (ONL) or the photoreceptor layer of the retina consists of 

cone and rod photoreceptors.  The interneurons, including horizontal, bipolar, amacrine 

cells and one type of glia, Müller glia, reside in the inner nuclear layer (INL) of the 

retina, and retinal ganglion cells (RGCs) are in the innermost layer.  There are two 

synaptic layers in the retina: the outer plexiform layer (OPL) that separates the ONL and 

the INL; and the inner plexiform layer (IPL) that separates the INL and the ganglion cell 

layer.  

 

Retina Cell Types 

The major classes of interneurons, ganglion cells and cone photoreceptors are 

further subdivided into subpopulations based on their morphology and function.  It is 

estimated that there are more than 60 cellular subpopulations which contribute to the 

complex circuitry of the vertebrate retina (Masland, 2012, 2001).  Recent advances in  

single cell RNA sequencing have confirmed that at least 39 transcriptionally distinct 

populations can be detected in the retinas and potentially more cell types can be identified 

with improved techniques (Macosko et al., 2015). 

Photoreceptors are the sensory or input neurons that mediate phototransduction in 

the retina.  Rod cells mediate dim light vision, while cone cells mediate vision in high 

intensity light enabling responses to different wavelengths of light (Kolb et al., 2001).  In 

zebrafish, there are four classes of cone cells based on spectral sensitivity and 

morphology (Allison et al., 2010; Fadool and Dowling, 2008; Raymond et al., 1993).  
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Red and green-sensitive cones are paired as long double cones.  The long single cones are 

blue-sensitive and the short single cones are ultraviolet (UV)-sensitive cones.  The cones 

in the zebrafish retina are arranged in a “row mosaic” in which rows of blue and UV-

sensitive cones alternate with rows of red and green-sensitive double cones.  This 

geometric mosaic organization of cones is thought to be crucial for spatial resolution of 

color vision (Solomon and Lennie, 2007).  

Bipolar cells are involved in transmitting signals from the photoreceptors to the 

ganglion cells.  Early studies suggested that there are four main types of bipolar cells: 

ON, OFF, sustained and transient, based on their response to stimuli from the 

photoreceptors and signal types postsynaptic to bipolar cells (Kaneko, 1970; Masland, 

2012; Werblin and Dowling, 1969).  However, recent studies have shown that the true 

number of bipolar cells is 12, connected either to one cone or a few rod cells (Masland, 

2012).   

Horizontal cells are the inhibitory interneurons that modulate the signaling between 

photoreceptors and bipolar cells (Poché and Reese, 2009; Thoreson and Mangel, 2012).  

They are located in the upper INL and have lateral processes within the OPL.  There are 

two or three types of horizontal cells in most vertebrates, although mice have only one 

type of horizontal cell.  They provide inhibitory feedback to rods and cones and possibly 

to dendrites of bipolar cells (Masland, 2012).   

Amacrine cells constitute another class of inhibitory neurons with nearly 30 different 

subtypes (Masland, 2012; Zhang and McCall, 2012).  They have multiple connectivity 

and provide the majority of the synaptic input to the ganglion cells, exert inhibitory 



	 12	

signals at the axon terminals of the bipolar cells, and also synapse with each other (de 

Vries et al., 2011; Eggers and Lukasiewicz, 2011).  

Müller glia (MG) are the predominant glial cell and comprise approximately 4-5% of 

all cells in the retina (Jadhav et al., 2009; Reichenbach and Bringmann, 2010a).  They 

have processes spanning all three layers and provide physical support to other neurons.  

They also provide homeostatic and metabolic support to other neurons by regulating K+ 

concentration, buffering neurotransmitters, providing neurons for nutrients, and removing 

metabolic waste of the neurons (Bringmann et al., 2006; Newman and Reichenbach, 

1996; Reichenbach and Bringmann, 2013, 2010b).  MG are also important players in 

retina regeneration, as discussed below. 

Ganglion cells are the output neurons of the retina, connecting visual input signals to 

visual centers in the brain (Lamba et al., 2008).  Since various combinations of inputs 

from bipolar and amacrine cells combine, there are multiple number of functional types 

of ganglion cells (Masland, 2012).  

 

Response to retinal damage 

Retinal damage response in mammals 

 In mammals, retina regeneration does not occur spontaneously.  Endogenous 

response to injury in mammalian retina typically involves reactive gliosis, which may 

have neuroprotective roles early after injury but leads to detrimental effects on nearby 

neurons at later stages (Bringmann et al., 2006; Bringmann and Reichenbach, 2009; 

Reichenbach and Bringmann, 2010b).  Some of the characteristics of reactive gliosis are 
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upregulation of glial fibrillary acidic protein (GFAP), hypertrophy, loss of supportive 

functions of MG, and formation of glial scars by some of the MG that reentered the cell 

cycle (Bringmann et al., 2006; Fawcett and Asher, 1999; Honjo et al., 2000).  These 

responses of MG to injury inhibit proper retina regeneration in mammals.   

 Due to the lack of spontaneous neuron replacement after retinal injury, it was 

thought that MG only undergo reactive gliosis without any neurogenesis.  However, later 

reports showed that MG have a neurogenesis potential but with a very limited 

proliferative response to injury.  Neurotoxin N-methyl-D- aspartic acid (NMDA)-induced 

excitotoxic retinal damage was shown to promote MG dedifferentiation, cell cycle re-

entry and the generation of limited numbers of new bipolar cells and rod photoreceptors 

(Ooto et al., 2004).  The proliferative response of MG in adult mice can be stimulated 

even more by intraocular injections of alpha-aminoadipate (AAA), glutamate, NMDA, or 

N-methyl-N-nitrosourea (MNU) (Karl et al., 2008; Ooto et al., 2004; Osakada et al., 

2007).  Transgenic lineage tracing following NMDA induced damage and treatment with 

either EGF or FGF and insulin showed that MG were the source of bromodeoxyuridine 

(BrdU)-labeled cells, some of which later differentiated into amacrine cells (Karl et al., 

2008).  

 Another strategy to induce reprogramming of mouse MG to a neurogenic state is 

to express proneural transcription factors.  This strategy originated somatic cell 

reprogramming experiments in which fibroblasts or astrocytes in culture were directly 

reprogrammed to neurons using proneural transcription factors (Ang and Wernig, 2014; 

Guo et al., 2014; Vierbuchen et al., 2010).  One such factor is achaete-scute complex-like 

1 (Ascl1) which is a member of basic helix-loop-helix (BHLH) family of transcription 
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factors.  Ascl1 is normally expressed during retinal development and regulates neural 

progenitor cell  (NPC) proliferation (Castro et al., 2011); however it is not expressed in 

adult mouse retina after retinal damage or growth factor treatment (Karl et al., 2008).  

Interestingly, Ascl1is also capable of direct reprogramming of fibroblasts (Vierbuchen et 

al., 2010) and astrocytes (Berninger et al., 2007) into neurons in culture.  In dissociated 

cultures of MG and it was shown that overexpressing Ascl1 could convert mouse MG to 

a neural progenitor state, confirmed by upregulation of neural progenitor genes and 

downregulation of glial genes, along with in vitro differentiation assays (Pollak et al., 

2013).  This finding led to subsequent efforts to test whether forced expression of Ascl1 

was sufficient for MG reprogramming in vivo.  By expressing Ascl1 specifically in MG 

using a transgenic line Glast-CreER/tetO-Ascl1, it was shown that MG are able to 

generate progenitors after NMDA induced damage in mice up to two weeks old (Ueki et 

al., 2015).  MG-derived progenitors were able to give rise to neurons with detectable 

markers for amacrine , bipolar cells and photoreceptors.  However, by postnatal day 16, 

MG lose their neurogenic capacity regardless of forced expression of Ascl1.  Recently, 

the same group showed that it is possible to stimulate MG to generate neural progenitors 

in adult mice by using forced expression of Ascl1 approach along with treatment with a 

histone deacetylase inhibitor after NMDA damage in 3-5 months old adult mice (Jorstad 

et al., 2017).  These findings, collectively, show that MG have neurogenic potential in 

mice although with limited proliferative response.  The implications are that neurogenic 

capacity can be stimulated when the molecular mechanisms that normally limit the MG 

reprogramming are resolved and therapeutic strategies are developed accordingly. 
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Retina regeneration in zebrafish 

 Zebrafish has become a popular model organism for regeneration studies with a 

robust regeneration capacity of multiple tissue types including fins (Knopf et al., 2011; 

Nakatani et al., 2007; Thatcher et al., 2008), heart muscle (Poss et al., 2002; Zhang et al., 

2013), pancreas (Curado et al., 2007; Moss et al., 2009), nervous tissue of the central 

nervous system (CNS), including the spinal cord (Becker et al., 1997; Goldshmit et al., 

2012) and the retina (Stenkamp, 2007).  Retina regeneration in teleost fish has been well  

 

 
 
Figure 3 Zebrafish retina regeneration model upon constant intense light lesion. 
 
(1) Constant intense light lesion leads to apoptosis of photoreceptors, rod and cones. Upon retinal 
damage, MG dedifferentiate into a multipotent state and re-enter the cell cycle. (2) MG undergo 
asymmetric cell division to give rise to a neural progenitor cells (NPCs). (3) NPCs undergo 
multiple rounds of cell division to produce NPC clusters which migrate to the outer nuclear layer 
(ONL) and differentiate into photoreceptor cells (or any missing cell type). (4) Photoreceptor 
cells completely regenerate 28 days after constant intense light exposure. 
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documented since initial experiments in goldfish (Lombardo, 1972, 1968).  Goldfish are 

capable of regenerating their retina upon partial surgical ablation.  This was later 

confirmed using the Na+/K+-ATPase inhibitor oubain to destroy retinal neurons (Maier 

and Wolburg, 1979; Raymond et al., 1988).  Interestingly, most of the cells that 

proliferate upon damage did not seem to originate from the circumferential marginal zone 

(CMZ), which is the site of stem cells at the periphery of the retina that normally 

contribute to persistent neurogenesis throughout the life of teleost fish.  Proliferating 

radially elongated cell clusters were instead mostly detected in the central retina, in the 

INL and ONL; their cellular origin was originally thought to be rod precursor cells 

(Braisted et al., 1994; Hitchcock et al., 1992; Negishi et al., 1991; Otteson and Hitchcock, 

2003).  

 Rod precursor cells are found in the ONL and are a persistent source of rod 

photoreceptors (Stenkamp, 2011).  As fish grow throughout life, the retina extends and 

cones, ganglion cells and INL neurons are spaced further apart.  On the other hand, rod 

photoreceptors increase in density during larval development and maintain a constant 

density as the retina expands (Johns and Easter, 1977; Stenkamp, 2011).  Rod precursor 

cells were first identified by 3H-thymidine-labeling experiments (Johns and Fernald, 

1981; Johns, 1982).  These studies showed 3H-thymidine incorporation into the ONL and, 

on longer post-treatment retinal sections, incorporation into rod photoreceptor nuclei.  

Interestingly, radiolabel was also associated with spindle-shaped cells associated with 

Müller glial (MG) processes in the INL, although in lesser numbers (Raymond and 

Rivlin, 1987).  Later studies showed that the source of rod progenitors is the population 

of slowly dividing cells with spherical nuclei at the base of INL, and these cells give rise 
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to the spindle-shaped proliferating cell clusters migrating from the INL into the ONL 

(Julian et al., 1998; Otteson et al., 2001).  

 Identification of the rod-lineage in the INL strengthened hypotheses that the 

source of rod precursors in the normal retina and regenerated neurons in the damaged 

retina could be the same.  Following different types of retina damage in zebrafish 

including laser lesion (Wu et al., 2001), surgical lesion (Yurco and Cameron, 2005), heat 

lesion (Raymond et al., 2006), and constant intense light damage (Vihtelic and Hyde, 

2000), the INL showed robust proliferative activity and spindle-shaped nuclei migrated 

from the INL to ONL along MG processes.  The cells that re-enter the cell-cycle in the 

INL near the site of local ablation are characteristic of MG (Raymond et al., 2006; Wu et 

al., 2001; Yurco and Cameron, 2005).  Further studies comfirmed that MG are the source 

of progenitor cells during retina regeneration ((R. L. Bernardos et al., 2007; Fausett and 

Goldman, 2006).  Fausett and Goldman generated a transgenic zebrafish expressing GFP 

driven by a fragment of the α1 tubulin promoter (tuba1a-GFP) which showed GFP 

expression was specific to MG in injured retinas (Fausett and Goldman, 2006).  By 

bromodeoxyuridine (BrDU) labeling and stem cell marker expression analyses, MG were 

shown to dedifferentiate, become multipotent, and give rise to proliferating progenitors.  

These findings are supported using a different transgenic fish expressing nuclear-targeted 

GFP in glial cells driven by the zebrafish glial fibrillary acidic protein (GFAP) regulatory 

elements (gfap-nGFP) (Rebecca L Bernardos et al., 2007).  Again, GFP expression was 

specific to MG after retinal damage and the levels were sufficient to lineage trace the 

MG-derived progenitors as they proliferated and differentiated.  The results support that 

MG are the source of rod progenitor cells in undamaged retina and also the source of 
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NPCs upon constant intense light damage.  MG-derived NPCs replace lost photoreceptors 

after intense light damage (Rebecca L Bernardos et al., 2007) and also any other lost 

retina cell type after mechanical injury (Fausett and Goldman, 2006). 

 

Molecular mechanisms underlying MG Reprogramming 

 The current model for retina regeneration in adult zebrafish is shown in Figure 3.  

The very first step of regeneration is that MG sense damage in the retina and 

consequently dedifferentiate.  Extrinsic factors that are sensed by MG upon retinal 

damage have not been completely identified or characterized.  TNF-α, produced by dying 

neurons, can stimulate MG to dedifferentiate (Nelson et al., 2013).  However, it is still 

not clear whether TNF-α is sufficient to induce MG to proliferate and dedifferentiate in 

the undamaged retina.  ϒ-aminobutyric acid (GABA) levels decrease after photoreceptor 

death and a decrease in GABA levels has also been proposed to stimulate MG to 

dedifferentiate and proliferate (Rao et al., 2017).  Other factors proposed to regulate the 

initiation of retina regeneration are genes encoding growth factors and cytokines 

including Hb-EGF, insulin, Igf-1, IL11 and leptin (Wan et al., 2014, 2012a; Zhao et al., 

2014).  These genes are induced in the retina after injury and are involved in stimulation 

of MG proliferation.  However, as opposed to TNF-α and GABA-mediated MG 

activation, these factors are expressed by MG-derived progenitors; therefore they are 

likely to be acting downstream in either autocrine and paracrine fashion. 

 As MG sense damage, one of the first physical events observed in MG is 

interkinetic nuclear migration (IKM) by which injury induced MG nuclei migrate 

apically along radial glia processes towards the outer limiting membrane (R. L. 
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Bernardos et al., 2007; Lahne et al., 2015).  IKM is a distinctive property of 

neuroepithelial cells and radial glia; and is thought to be required for mitotic division 

(Del Bene et al., 2008; Murciano et al., 2002).   

 Upon retinal damage, MG dedifferentiate to a stem cell-like state and re-enter the 

cell cycle.  During this step, gene programs characteristic of both dedifferentiation and 

proliferation are induced in MG by increased expression of cell cycle genes, such as 

PCNA and Cyclin B1 (Kassen et al., 2007); cytoskeletal components Tuba1a (Fausett and 

Goldman, 2006); the proneural bHLH transcription factor gene Ascl1a (Fausett et al., 

2008); and the pluripotency factor genes Lin28, Oct4, Nanog, Klf4, Myca, Mycb, and 

Sox2 (Ramachandran et al., 2010b).  One important signaling pathway that regulates the 

dedifferentiation of MG is the canonical Wnt pathway (Ramachandran et al., 2011).  

Activation of the Wnt pathway through β-catenin stabilization is necessary and sufficient 

for MG to re-enter the cell cycle and produce multipotent neural progenitors.  Initial 

reentry into the cell cycle is by asymmetric division to replace the parent cell and produce 

multipotent NPCs that then undergo additional rounds of replication (Rebecca L 

Bernardos et al., 2007; Gorsuch and Hyde, 2013; Nagashima et al., 2013; Thummel et al., 

2010a, 2008).  Neural progenitors continue proliferating and produce clusters of cells that 

migrate in close association with the radial processes of dedifferentiated MG.  The 

adherence of neural progenitor cells to MG processes is thought to be mediated by N-

cadherin (Nagashima et al., 2013).  Loss of N-cadherin function leads to mislocalization 

of proliferating NPCs preventing them from migrating back to the INL.  Only a few 

factors have been identified that regulate NPC proliferation.  Pax6b regulates the 
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proliferation during early NPC cluster formation while Pax6a is responsible for NPC 

proliferation after the early NPC clusters have already formed (Thummel et al., 2010a).   

 Once the NPCs arrive at the site of damage, they exit the cell cycle and 

differentiate into lost neural cell types.  The timing of cell cycle exit of NPCs and how 

they are specified to regenerate the correct cell types remains poorly understood (Gorsuch 

and Hyde, 2013).  Apical-basal gradients of signaling environments may play a role in 

cell fate specification as in retinal patterning during development (Del Bene et al., 2008; 

Hochmann et al., 2012; Qin et al., 2011).  In any case, the regenerated retina of teleost 

fish is fully functional and visually mediated behaviors are recovered (Fimbel et al., 

2007; Mensinger and Powers, 1999; Sherpa et al., 2008).  

 

miRNAs in Retina Regeneration 

 Despite the various factors and signaling pathways identified as regulators of 

retina regeneration, the role of non-coding RNAs is less well-understood, especially 

miRNAs.  The first discovery for the role of miRNAs in retina regeneration was made 

using the zebrafish model where lin-28 expression is induced within 6 hours of puncture-

induced retinal damage leading to depletion of let-7 in MG-derived progenitors 

(Ramachandran et al., 2010a).  let-7 normally represses regeneration-associated mRNAs 

that are required for MG dedifferentiation.  Therefore, lin-28 mediated depletion of let-7 

relieves the block for MG dedifferentiation.  

 Rajaram et. al. demonstrated a global requirement for the miRNAs during retina 

regeneration in zebrafish by showing that Dicer is required for the proliferation of the 

MG-derived neural progenitors (Kamya Rajaram et al., 2014a).  Dynamic expression 
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patterns of miRNAs using RNAseq from RNA purified from whole retinas identified 36 

differentially expressed miRNAs (Kamya Rajaram et al., 2014a).  Using morpholino-

mediated knock-down, miR-142b, 146a, 71, 27c and 31 were found to be required for the 

proliferation of MG-derived progenitors during regeneration.  Among 23 miRNAs with 

reduced expression, miR-203 was found to regulate NPC proliferation through targeting 

of pax6b (Kamya Rajaram et al., 2014b).  Elevated levels of miR-203 inhibit the 

expansion of progenitor cells but do not affect MG dedifferentiation or the initial 

generation of of NPCs.  Interestingly, Pax6b was previously found to play a role during 

early neural progenitor cell divisions during retina regeneration (Thummel et al., 2010b). 

 Recent reports support for a conserved role for miRNAs during retina 

regeneration between zebrafish and mammals.  Lin28-mediated inhibition of let-7 is 

required for MG-derived NPC formation and proliferation after NMDA-induced retina 

damage in young adult mice (Yao et al., 2016).  In addition, overexpression of Lin-28 

through intravitreal viral-mediated gene transfer in mice is sufficient to induce MG 

proliferation through suppressing let-7.  

 In mice, a cell-autonomous role for miRNAs in controlling MG cell fate has 

recently started to be explored.  miRNA expression profiles of cultured MG and freshly 

isolated MG from adult mouse retinas were generated using a variation of DNA 

microarrays, NanoString nCounter (Stefanie G. Wohl and Reh, 2016).  Seven miRNAs 

were found to be enriched in MG, including miR-204, miR-9, and miR-125–5p.  

Conditional knockout of Dicer in mouse MG also demonstrated a global requirement for 

miRNAs in the maintenance of glial homeostasis and retinal architecture (Wohl et al., 

2017).  Also, overexpression of miR-9 was able to partially rescue the Dicer knockout 
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defects in MG phenotype.  Cell-autonomous role of miRNA in neurogenic potential of 

MG has only been addressed in vitro by using postnatal day 12 cultured MG (Quintero et 

al., 2016; Stefanie Gabriele Wohl and Reh, 2016).  These studies showed evidence for the 

role of miR-124-9-9 in potentiating the reprogramming of cultured MG into neurons.  

Recent reports also support for a conserved role for miRNAs during retina regeneration 

between zebrafish and mammals.  Lin28-mediated inhibition of let-7 is required for MG-

derived NPC formation and proliferation after NMDA-induced retina damage in young 

adult mice (Yao et al., 2016).  In addition, overexpression of Lin-28 through intravitreal 

viral-mediated gene transfer in mice is sufficient to induce MG proliferation through 

suppressing let-7. 

 

Epigenetic Regulation of MG Reprogramming 

Epigenetics play an essential role in the regulatory mechanisms of gene 

expression (Barrero et al., 2010; Telese et al., 2013).  Two main components of 

epigenetic modification are DNA methylation and histone posttranslational 

modifications.  The main focus in this thesis will be on histone modifications.     

In eukaryotic cells, DNA is organized into chromatin through highly-ordered 

packaging with histone proteins.  The fundamental unit is the nucleosome, in which four 

histone proteins, H2A, H2B, H3 and H4, are organized into an octomeric structure 

encompassing 146 bp of DNA (Kornberg, 1974; Kornberg and Thomas, 1974; Luger et 

al., 1997).  This core nucleosome and the unwrapped connector DNA can be visualized 

as a “beads on a string” structure (Olins and Olins, 1974).  One of the striking features of 

histones that contributes to chromatin complexity are a group of post translational 



	 23	

modifications that alter the N-terminal “tails” that protrude out of the core nucleosome 

(Barrero et al., 2010; Kouzarides, 2007).  Some of these modifications introduce changes 

in chromatin structure, chromatin compaction or relaxation, while others act as docking 

sites for recruiting and stabilizing additional protein complexes.  Among the most 

common post translational modifications are phosphorylation of serine and lysine 

residues, acetylation or methylation of arginine and lysine residues, and sumoylation and 

ubiquitylation of specific lysine residues.  Methylation in mono-, di-, or trimethyl forms 

adds extra complexity.  The collection of enzymes that add and remove these histone 

modifications, as well as the proteins that interact with them are known as chromatin-

modifying factors. 

Genome-wide analyses of histone modifications have shown that these 

modifications are not uniformly distributed.  Each type of modification has certain 

common features based on the genomic loci where they are enriched (Bernstein et al., 

2012; Ernst et al., 2011; Liu et al., 2005; Pokholok et al., 2005).  While acetylation of 

histones is almost always associated with transcriptional activation, methylation of lysine 

residues on histones is correlated with different transcriptional states depending on which 

residue is modified (Bernstein et al., 2007, 2005; Campos and Reinberg, 2009; 

Kouzarides, 2007).  Methylation of H3 lysine 4 (H3K4), H3 lysine 36 (H3K36) and H3 

lysine 79 (H3K79) mostly correlates with active transcription.  On the other hand, 

methylation of H3 lysine 9 (H3K9), H3 lysine 27 (H3K27) and H4 lysine 20 (H4K20) are 

associated with the transcriptional repression.  Histone acetylation leads to neutralization 

of positive charges and thereby a reduction in histone-DNA interactions.  This 

mechanism is thought to drive open chromatin formation and increase the accessibility of 
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DNA for the transcriptional machinery (Dion et al., 2005; Hongs et al., 1993; Megee et 

al., 1995; Shogren-knaak et al., 2006; Zentner and Henikoff, 2013).  On the other hand, 

methylation of lysine resides does not interfere with ionic interactions between histones 

and the DNA and instead alters docking sites for recruiting proteins with different methyl 

binding domains.  For example, H3K4 tri-methylation (H3K4me3) at actively transcribed 

genes facilitates transcription by recruiting the chromatin remodeler CHD1 through its 

chromo domain (Gaspar-Maia et al., 2009).  It has been also shown that H3K4me3 

interacts with the TAF3 subunit of the general initiation factor TFIID, which then 

promotes the assembly/stabilization of the pre-initiation complex (PIC) (Lauberth et al., 

2013; Vermeulen et al., 2007).  

The significance of epigenetic mechanisms is well defined through chromatin 

modification mapping studies in embryonic stem cells (ESCs) and differentiated cell 

types.  In pluripotent ESC, genes controlling developmental pathways, especially lineage 

specific transcription factors, are repressed by Polycomb group (PcG) proteins and are 

preferentially de-repressed during differentiation (Boyer et al., 2006; Bracken, 2006; Lee 

et al., 2006).  

Given that reprogramming events during early development (Gifford et al., 2013; 

Mikkelsen et al., 2007; Vastenhouw et al., 2010), induced pluripotent stem cell (iPSC) 

generation (Maherali et al., 2008; Mansour et al., 2012), and nuclear transfer (Wilmut et 

al., 2002) involve changes in histone methylation patterns, characterizing the epigenetic 

regulators of MG reprogramming is more or less expected.  Epigenetic regulation of 

zebrafish retina regeneration has been studied in the context of DNA methylation (Powell 

et al., 2013, 2012).  Genome-wide DNA methylation analysis in purified MG showed that 
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transcriptional regulatory regions of regeneration and pluripotency-associated genes such 

as Ascl1a, Hb-egfa, lin28, Oct4 and Sox2 have low methylation levels and there is no 

change in the methylation levels in these regions compared to dedifferentiated MG after 

retinal damage (Powell et al., 2013).  This suggests that regeneration-associated genes are 

already poised for activation in post-mitotic MG.  To determine whether low DNA 

methylation patterns underlie the high regenerative potential of zebrafish MG, the same 

DNA methylation analysis was performed on mouse retinas and found to be very similar 

(Powell et al., 2013).  Therefore, the restricted regenerative potential of mouse MG 

cannot be attributed to DNA methylation on regeneration-associated genes.  This 

suggests that other epigenetic mechanisms such as posttranslational histone modifications 

and chromatin modifiers might be key to understanding the restricted regenerative 

potential of MG in mammals.  Indeed, comparing young postnatal and adult mouse 

retinas showed that accessible chromatin in mouse mature MG decreases rapidly with 

age, concomitant with decreased regenerative potential (Jorstad et al., 2017; Ueki et al., 

2015).  However, to date, no precise histone modification signatures on regeneration-

associated genes, as well as role of chromatin modifying enzymes have been identified. 

 

Summary 

	

The work presented in this thesis focuses on characterizing functions of miRNAs 

in craniofacial development and retina regeneration in zebrafish.  Chapter II describes the 

role of miR-27 in regulating the chondrogenesis during pharyngeal morphogenesis.  

Chapter III focuses on retina regeneration in adult zebrafish and describes how miR-216 
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regulates the initiation of retina regeneration through targeting a histone 

methyltransferase.  In Chapter IV, I present the genome-wide transcriptome analysis of 

MG dedifferentiation during retina regeneration serving as a resource for further 

functional analysis to discover novel miRNA-target interactions.  Collectively, this thesis 

demonstrates the key instructive roles of miRNAs in development and regeneration. 
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CHAPTER II 

 

miR-27 REGULATES CHONDROGENESIS BY SUPPRESSING FOCAL 

ADHESION KINASE DURING PHARYNGEAL ARCH DEVELOPMENT 

 

Nergis Kara, Chunyao Weib, Alexander C. Commanday, and James G. Pattonc 
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Abstract 

	

Cranial neural crest cells are a multipotent cell population that generate all the 

elements of the pharyngeal cartilage with differentiation into chondrocytes tightly 

regulated by temporal intracellular and extracellular cues.  Here, we demonstrate a novel 

role for miR-27, a highly enriched microRNA in the pharyngeal arches, as a positive 

regulator of chondrogenesis.  Knock down of miR-27 led to nearly complete loss of 

pharyngeal cartilage by attenuating proliferation and blocking differentiation of pre-

chondrogenic cells.  Focal adhesion kinase (FAK) is a key regulator in integrin-mediated 

extracellular matrix (ECM) adhesion and has been proposed to function as a negative 

regulator of chondrogenesis.  We show that FAK is downregulated in the pharyngeal 

arches during chondrogenesis and is a direct target of miR-27.  Suppressing the 

accumulation of FAK in miR-27 morphants partially rescued the severe pharyngeal 

cartilage defects observed upon knock down of miR-27.  These data support a crucial role 

for miR-27 in promoting chondrogenic differentiation in the pharyngeal arches through 

regulation of FAK.  
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Introduction 

	

Craniofacial abnormalities are among the most common human birth defects, cleft 

lip and palate being among the five most common congenital malformations (Gorlin et 

al., 1990).  Although an increasing number of genetic mutations have been implicated 

with these malformations, there is limited information about the etiology of congenital 

craniofacial disorders.  In zebrafish, many features that control craniofacial development 

and pharyngeal skeletal elements are conserved with that of higher vertebrates (Yelick 

and Schilling, 2002).  Most skeletal structures in the skull and the entire pharyngeal 

skeleton are derived from a unique population of cells, cranial neural crest (CNC) cells 

(Couly et al., 1993; Lumsden et al., 1991; Schilling and Kimmel, 1994).  CNC cells 

migrate from the dorsal neural tube in three streams to populate the pharyngeal arches.  

Post-migratory CNC cells go through mesenchymal condensation during which pre-

chondrogenic cells (PCCs) aggregate and increase their cell-cell contacts.  Coincident 

with dynamic changes in the extracellular matrix (ECM), PCCs differentiate into 

chondrocytes surrounded by a type-II collagen and aggrecan rich matrix (Hall and 

Miyake, 2000; Kozhemyakina et al., 2015). 

Vertebrate CNCs are a migratory, multipotent cell population, able to differentiate 

into cartilage, bone, teeth forming cells, and non-ectomesenchyme derivatives, such as 

neurons, pigment cells and glia (Baroffio et al., 1991).  Chondrogenic differentiation of 

CNC cells is regulated by various signaling pathways including Tgf-β, Bmp, and Fgf 

pathways, as well as changes in cell shape (Kozhemyakina et al., 2015).  As cell-cell 

interactions increase during mesenchymal condensation, PCCs become more rounded.  

Recent studies have shown that restricting cell spreading on synthetic substrates, or by 
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maintaining high-cell density to prevent cell spreading, promotes chondrogenic 

differentiation of mesenchymal stem cells (Gao et al., 2010; McBride and Knothe Tate, 

2008).  Interestingly, mechanical forces or changes in the ECM that perturb cell shape 

lead to the formation of integrin-mediated focal adhesions, which in turn prevents 

chondrogenesis (Eyckmans et al., 2011; Tang et al., 2013a; Yim and Sheetz, 2012).  

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and an essential 

component of focal adhesions (Parsons, 2003).  Apart from its well-established roles in 

cell adhesion and migration, FAK is also involved in regulating mesenchymal stem cell 

fates in response to cell shape changes and integrin-β1 activation (Mitra et al., 2005; Pala 

et al., 2008; Takahashi et al., 2003; Tang et al., 2013a).  Exactly how FAK is regulated in 

the pharyngeal arches during chondrogenesis is not known. 

miRNAs are small noncoding RNAs that regulate the expression of target 

mRNAs at the post-transcriptional level.  miRNAs bind to the 3’UTR of their targets with 

imperfect base pairing and induce deadenylation, translational repression, and 

degradation of the target mRNA (Huntzinger and Izaurralde, 2011; Krol et al., 2010).  

Tissue-specific expression of miRNAs allows them to regulate multiple developmental 

processes in diverse organisms (Flynt et al., 2007; Giraldez et al., 2005; Li et al., 2011b; 

Wei et al., 2013; Wienholds, 2005).  Previous studies reported that miRNAs are required 

for skeletal development using mice with conditional deletion of Dicer, an RNaseIII-like 

enzyme required for miRNA biogenesis, in either NC cells or early chondrocytes in the 

craniofacial cartilage or growth plate (Kobayashi et al., 2008; Zehir et al., 2010).  Global 

deficiency of all miRNAs in NC cells resulted in the loss of the majority of NC-derived 

craniofacial cartilage and bone (Zehir et al., 2010).  These studies show that miRNA 
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expression is crucial for skeletal development but only a small subset of miRNAs have 

been characterized as to their targets and control of whole organism cartilage and bone 

development (miR-92a, miR-140 and miR-452) (Eberhart et al., 2008; Nakamura et al., 

2011; Ning et al., 2013; Sheehy et al., 2010).  

In this study, we demonstrate a novel role for miR-27, a highly conserved miRNA 

family, during craniofacial cartilage development.  Knock down of miR-27 inhibited 

pharyngeal arch morphogenesis and caused severe defects in the neurocranium.  We 

show that these craniofacial defects are caused by impaired proliferation and 

differentiation of chondrogenic progenitors.  Knock down of ptk2aa (FAK), a direct 

target of miR-27, can partially rescue the cartilage defects in miR-27 morphants 

indicating a novel mechanism whereby miR-27 regulates chondrogenic differentiation in 

the pharyngeal arches through modulation of FAK levels.  

 

Results 

	

Zebrafish miR-27 is expressed in pharyngeal arches 

In zebrafish, there are five members of the miR-27 family with nearly identical 

mature miRNA sequences, but encoded on separate chromosomes (Fig. 4A).  miR-27 is a 

highly conserved miRNA family, the sequences of mature miR-27a among different 

vertebrate species are identical except for a single nucleotide at the 3’ end (Fig. 4B).  The 

seed sequences are identical among family members suggesting that identical target 

mRNAs are commonly regulated.  Microarray and high-throughput sequencing analyses 

during early zebrafish development have shown that miR-27 family members are 
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expressed as early as 24 hours post fertilization (hpf), but upregulated at later stages (Wei 

et al., 2012; Wienholds, 2005).   

 

	
	
Figure 4  miR-27 is a highly conserved miRNA with enriched expression in the 
pharyngeal arches.   
 
(A) Alignment of the zebrafish miR-27a-e sequences by ClustalW2, with conserved regions 
highlighted in blue and indicated with stars.  (B) Alignment of miR-27a sequences from human 
(hsa), mouse (mmu),  xtr (Xenopus),  and dre (zebrafish).  (C) miR-27a expression in embryos 
between 24 hpf to 72 hpf, detected by whole-mount in situ hybridization.  Expression of miR-27a 
(D), miR-27b (E), miR-27c (F), in 4dpf embryos detected by whole-mount in situ hybridization.  
Lateral views with images on the right are closed up views of the head. 

 

To determine the onset of expression of each miR-27 member, we performed qRT-PCR at 

several key developmental stages starting from the 1-cell stage (Fig.5A,B).  Overall, all 

miR-27 members have low expression levels between the 2 somite-stage (2ss) and 24hpf, 
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while their expression is upregulated starting at 48hpf, reaching a peak at 72hpf.  miR-27c 

is expressed at significantly higher levels compared to other members, while miR-27d 

and miR-27e have very low expression levels throughout the stages we analyzed.  For this 

reason, we focused on spatial expression of miR-27a, miR-27b and miR-27c by 

performing whole-mount in situ hybridization by locked nucleic acid (LNA) probes on 

zebrafish embryos (Fig. 5C-E, Fig. 4C-F).  At 4dpf, miR-27a, b and c are expressed 

strongly in the pharyngeal arches (Fig. 5C-E, Fig. 4D-F).  Earlier during development, 

miR-27a is detected in the pharyngeal arch primordia that are composed of post-

migratory chondrocyte progenitors, as well as in the eye, vasculature, the midbrain-

hindbrain boundary (MHB), and the pectoral fins at 24 and 32 hpf (Fig. 4C).  At 48 and 

72hpf, miR-27a expression is more confined to the pharyngeal cartilage, cartilage joints 

and pectoral fins along with less expression in the ethmoid plate (EP) and brain.  Strong 

expression of miR-27 in the pharyngeal arches, as well as earlier prechondrogenic 

mesenchyme, suggest that miR-27 may regulate cartilage development in zebrafish.   

 

Knockdown of miR-27 leads to craniofacial and pectoral fin cartilage defects 

To determine the function of miR-27, we performed loss-of-function experiments by 

injecting antisense morpholinos against miR-27.  The first morpholino we tested was 

designed complementary to the mature miR-27 sequence (MO-27) and targets all 

members of the miR-27 family (Table 1).  Injection with MO-27 resulted in 

approximately 70% loss of miR-27 (Fig. 5J).  Knockdown of miR-27 did not lead to any 

gross morphological changes during early development, but by 3 dpf and even more so 
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Figure 5 Knock down of miR-27 leads to craniofacial and pectoral fin defects.  

(A,B) qRT-PCR for miR-27a-e at the indicated developmental stages normalized to U6 snRNA.  
Fold changes were calculated using ΔΔC(t) method comparing all miR-27 levels to miR-27c 
levels at the 3 somite stage (ss).  Due to comparably higher levels, miR-27c expression profile is 
shown separately.  (C-E) Expression of miR-27a, miR-27b and miR-27c in 4dpf embryos detected 
by whole-mount in situ hybridization by locked nucleic acid  (LNA) probes.  All are ventral 
views of the head.  (F,G) Dorsal view of 3 dpf live embryos injected with either 5ng standard 
control morpholino (MO-ctl) or MO-27 at the single-cell stage.  Pectoral fins are indicated with 
arrowheads.  (H,I) Morphology of the head in 4 dpf embryos injected with either MO-ctl or MO-
27.  Lateral views, jaws are indicated with arrowheads.  Scale bar, 300µm.  (J) miR-27 and U6 
levels in uninjected control and miR-27 morpholino (MO-27) injected embryos at 48hpf detected 
by Northern blot.  (K-P) Head cartilages stained with Alcian blue in 4dpf embryos injected with 
(K,L) standard control morpholino (MO-ctl), (M,N) 4-mismatch miR-27 morpholino (MO27-
4mis) and (O,P) MO-27.  Top panels, ventral views; bottom panels, lateral views.  The indicated 
ratio represents the number of embryos with the represented phenotype/total number of observed 
embryos.  Cartilage labels: ep, ethmoid plate; tc, trabeculae cranii; m, Meckel’s cartilage; pq, 
palatoquadrate; ch, ceratohyal; hs, hyosymplectic; cb, ceratobranchial.  Anterior side of the 
embryos is to the left.  (Q,R) Staining of pectoral fin skeleton in 4dpf embryos by Alcian blue.  
The right side pectoral fin is shown with anterior to the top.  The cleithrum (cl) and 
scapulocoracoid (sc) cartilages and postcoracoid process (pc) of pectoral fins are missing and the 
endoskeletal disc cartilage (ed) is smaller in miR-27 morphants compared to the controls.  Scale 
bar, 200 µm. 
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by 4 dpf, miR-27 morphants displayed pectoral fin outgrowth defects and severely 

reduced pharyngeal cartilage, concomitant with smaller heads and eyes (Fig. 5F-I).  To  

analyze the cartilage defects more specifically, we performed Alcian blue staining.  In 

miR-27 morphants, nearly all of the cartilage in the pharyngeal arches, as well as in the 

pectoral fins, was missing (Fig. 5O-R).  In addition, miR-27 knockdown led to an 

abridged palate in the neurocranium, where the bilateral trabeculae were joined in the 

midline but the ethmoid plate did not extend properly.  Closer examination of the pectoral 

fins revealed that the cleithrum (cl) and scapulocoracoid (sc) cartilages and postcoracoid 

process (pc) of pectoral fins were missing and the endoskeletal disc cartilage (ed) was 

smaller in miR-27 morphants compared to the controls (Fig. 5Q,R).   

To ensure specificity with the morpholino knockdowns, we performed a series of 

control experiments.  First, apart from the use of a standard control morpholino (MO-ctl; 

Gene Tools), we designed a morpholino containing four-base mismatches (MO27-4mis) 

compared to MO-27 (Fig. 5M,N).  MO27-4mis injection did not cause any defects in 

pharyngeal arch morphogenesis.  Second, we designed a third set of morpholinos 

complementary to the loop sequences of each precursor mir-27 member (Fig. 7A-C, 

Table 1).  Compared to MO-27 which targets all miR-27 family members, loop 

morpholinos target individual family members by inhibiting the processing of the 

corresponding precursor miRNA (Kloosterman et al., 2007).  Knock down of miR-27a by 

MO27a loop led to exactly the same phenotype as the MO-27 injections with loss of 

nearly all the pharyngeal cartilage and a severely reduced neurocranium.  (Fig.7A).  

Knock down of miR-27b using the MO27b loop morpholino led to loss of branchial  
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Figure 6  Dose-dependent changes in cartilage defects by mature miR-27 knock-
down.   
 
(A) Head cartilage staining by alcian blue of 4 dpf old embryos injected with different doses of 
the MO-27 morpholino.  (B) Head cartilage staining by alcian blue of 4 dpf old embryos injected 
with different doses of the MO-27-4MM morpholino that is complementary to the mature miR-27 
with 4 base-pair mismatches.  All are ventral views and the ratio of the observed phenotype to the 
total number of embryos is shown for each image. 

 

arches along with severely reduced Meckel’s and ceratohyal cartilage, as well as an 

abridged neurocranium (Fig. 7B).  In contrast, knockdown of miR-27c did not affect the 

pharyngeal arches (Fig. 7C).  These experiments enabled us to determine which miR-27 
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members are involved in pharyngeal cartilage formation, as well as provide evidence that 

the defects observed upon loss of all miR-27 family members using the MO-27 

morpholino are unlikely to be due to nonspecific effects or toxicity.  In addition, the 

effects of the MO-27 and miR-27 loop morpholinos were dose dependent across an order 

of magnitude concentration as determined by alcian blue staining on embryos injected 

with different doses (Fig. 6A-B, Fig.7A-C).  Injection of the mismatch morpholino did 

not generate any observable phenotypes at any concentration tested (Fig. 6A,B).  

Knockdown miR-27a and miR-27b separately also showed dose-dependent defects in 

pharyngeal cartilage formation (Fig. 7A,B).  Finally, we tested the knockdown efficiency 

of each morpholino.  By Northern blots, we confirmed approximately 70% loss of miR-

27 upon MO-27 injection at the single cell stage (Fig. 5J).  To determine the efficacy of 

the miRNA loop morpholinos, we performed qRT-PCR for miR-27a, miR-27b and miR-

27c in 48hpf embryos injected with two different concentrations of MO-27a loop, MO-

27b loop and MO27c loop (Fig. 7E-G).  All loop morpholinos led to knockdowns in the 

range of 50-90% of the targeted mature miR-27.  

As miR-27 is required for pharyngeal arch development, we next tested whether 

conditional miR-27 overexpression would induce any craniofacial cartilage defects as 

well.  To conditionally overexpress miR-27, we established two separate transgenic lines, 

Tg(hsp70l:miR27eGFP) in which pri-miR-27b is expressed under the heat shock promoter 

(hsp70l), and Tg(sox10:miR-27eGFP) in which pri-miR-27 is expressed under the neural-

crest specific sox10 promoter (Fig. 8).  We induced the expression of miR-27 in 

Tg(hsp70l:miR27eGFP) at 24 hpf  and confirmed upregulation at 48hpf by qRT-PCR (Fig. 

8B).  After overexpression, we performed alcian blue staining at 4 dpf and detected no  
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Figure 7 Dose-dependent changes in cartilage defects by mature miR-27 a, b and c 
knock-down.  
 
Head cartilage staining of 4 dpf old embryos injected with different doses of the MO-27a loop 
(A) MO-27b loop (B) MO-27c loop (C) morpholinos complementary to the loop and Dicer 
cleavage site of the corresponding precursor miR-27.  All are ventral views and the ratio of the 
observed phenotype to the total number of embryos is shown for each image.  (D) Alcian blue 
staining of the 4dpf embryos injected with 4.8 ng MO-ctl.  qRT-PCR of miR-27a (E), miR-27b 
(F), and miR-27c (G) in 30hpf old embryos injected with 4.8ng MO-ctl, MO27a loop, MO27b 
loop, and MO27c loop at either 2.4ng or 4.8ng. 
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significant differences in the pharyngeal cartilage as well as in the neurocranium in 

hsp70:miR27eGFP transgenic embryos relative to their non-transgenic siblings (Fig. 8A).  

When miR-27 was overexpressed in the sox10+ NC cells in Tg(sox10:miR-27beGFP) 

embryos, we again did not detect any defects in craniofacial cartilage morphogenesis in 

the transgenic embryos compared to their non-transgenic siblings (Fig.8C). 

 

	
 
Figure 8  Conditional and neural crest-specific miR27 overexpression does not 
lead to any defects in pharyngeal arch morphogenesis.   
 
(A) Alcian blue staining of heat shocked Tg(hsp70:miR-27b-eGFP) and wild-type siblings.  Heat 
shock was performed at 24 hpf and embryos were fixed and stained at 4dpf.  Images are ventral 
views of the head cartilage and the ratio of the observed phenotype to the total number of 
embryos is shown for each image.  (B) qRT-PCR of miR-27b in 72hpf old Tg(hsp70:miR-27b-
eGFP) and wild-type siblings.  Relative miR-27b levels were normalized to control U6 snRNA.   

 

miR-27 is required in post-migratory CNC cells for proper pharyngeal arch 

morphogenesis 

Because craniofacial cartilage elements are derived from ectomesenchymal CNC 

cells, we tested whether miR-27 knockdown perturbs early neural crest migration.  To 

determine whether the migration of CNC cells was affected, we analyzed CNC cells 
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during migration into the pharyngeal arches using a transgenic line that expresses another 

marker of CNC cells, sox10 (Tg(sox10(7.2):mRFP)vu234)(Dutton et al., 2001).  The 

sox10+ arches did not differ in size between embryos at 18 and 24 hpf (Fig. 9A).  

Complementary in situ hybridization experiments for sox10 and another CNC cell 

marker, dlx2a, showed the same expression patterns at 16 hpf and 22 hpf in morphants 

and controls (Fig. 9B,C), suggesting that mir-27 knockdown does not affect CNC cell 

specification or migration.  

 
 
Figure 9  Early cranial neural crest (CNC) cell specification and migration are 
not affected in miR-27 morphants.   
 
(A) Lateral view of Tg(sox10(7.2):mRFP)vu234 embryos injected either with MO-ctl or MO27 
showing cranial neural crest cell streams populating the pharyngeal arches at 18hpf and 24hpf.  
Anterior is to the left and posterior is to the right.  Neural crest streams are numbered from 1-3.  
The indicated ratio represents the number of embryos with the represented phenotype/total 
number of observed embryos.  (B,C) Expression of the neural crest cell marker, sox10, and CNC 
marker dlx2a in MO-ctl and MO27 embryos at 16 hpf and 22 hpf detected by whole-mount in situ 
hybridization.  Dorsal view of embryos with anterior side to the top. 

 



	 41	

 

To determine the earliest time point when the miR-27 morphants show defects in 

craniofacial development, we analyzed pre-cartilage condensation within the pharyngeal 

arches using a transgenic line marking the ectomesenchyme lineage of CNC cells 

(Tg(fli1a:eGFP)y1) (Lawson and Weinstein, 2002) (Fig. 10A).  In Tg(fli1a:eGFP)y1 

embryos at 26 hpf, we did not detect any differences in the size and patterning of the 

fli:EGFP+ arches.  However, at 30 and 36 hpf, the size and fluorescence intensity of the 

fli1a:eGFP+ arches were significantly perturbed in the miR-27 morphants (Fig. 10A,B).  

We also detected reduced expression domains for the post-migratory CNC cell marker, 

dlx2a, at 36 hpf in the posterior pharyngeal arches, while at 30 hpf there was not a 

detectable reduction in dlx2a expression yet (Fig. 10C,D).  It is important to note that by 

36 hpf, the patterning of the pharyngeal arches was similar between control embryos and 

miR-27 morphants, while elongation of the arches along the dorsal-ventral axis was 

disrupted upon miR-27 knockdown.  By 48 hpf, defects in the pharyngeal arch sizes were 

more severe in the morphants and morphogenesis of the first two arches was not 

complete (Fig. 10A, B).  These data suggest that the onset of the pharyngeal arch 

morphogenesis defects upon loss of miR-27 is between 30 and 36 hpf.  

To gain insight into the requirement of miR-27 in pharyngeal arch morphogenetic 
movements, we performed in vivo time-lapse imaging of pre-chondrogenic crest cells in 
Tg(fli1a:eGFP)y1 embryos.  Time-lapse imaging showed that migration of CNC cells 
into the pharyngeal arches in the anterior-posterior axis was slower in miR-27 morphants 
compared to the controls.  Convergence of the first two arches by 48hpf was not complete 
in the morphants as the first pouch in between the two arches was still visible, while in 
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Figure 10  Morphogenesis of the pharyngeal arches is disrupted in miR-27a 
morphants between 30 and 36hpf.   
 
(A) Live images of Tg(fli1a:eGFP)y1 embryos at 26, 30, 36, 48 hpf; lateral views with anterior to 
the left.  Each pharyngeal arch is numbered.  Embryos were injected with either 5ng MO-ctl or 
MO-27 at the single cell stage and observed with confocal microscopy at the indicated stages.  
Time-lapse videos captured by spinning-disk confocal microscopy are shown in Supp. Movies 1 
and 2.  Scale bar, 100 µm.  (B) Quantification of normalized and relative fli1a:eGFP fluorescence 
intensity in the pharyngeal arches of MO-ctl and MO-27 embryos at the indicated time points.  
The relative fluorescence intensities were normalized to the area of the arches selected and the 
fluorescence background in each image.  Error bars indicate SEM and the number of embryos 
analyzed is indicated above the bars.  For 26 hpf, n=3; for 30 hpf, n=5; for 36 hpf, n=4; for 48 
hpf, n=4.  Data represent three independent experimental trials.  The n.s. non-significant, 
**p<0.01, ****p<0.0001 (Student’s t-test).  (C-D) Expression of the CNC marker dlx2a in 
embryos at 30 and 36 hpf.  Embryos were injected with the corresponding morpholinos as 
described above.  Pharyngeal arch expression domains are labeled.  The indicated ratio represents 
the number of embryos with the represented phenotype/total number of observed embryos.  Scale 
bar, 200 µm. 
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control embryos the first two arches did not have any clear boundary at this point 

(Movies A1 and A2).  These findings suggest that miR-27 is required for pharyngeal arch 

morphogenesis, but not in early patterning of the arches by 30hpf. 

	

miR-27 is required for the differentiation of pre-chondrogenic crest cells 

To identify what stage of cartilage development mir-27 regulates, we analyzed 

pharyngeal mesenchymal condensation and chondrogenic differentiation of post-

migratory PCCs.  To assess mesenchymal condensation, we stained with peanut 

agglutinin (PNA), a lectin that preferentially binds to the cell surface during condensation 

(Hall and Miyake, 1995).  PNA staining of the fli1a:eGFP+ PCCs showed that 

mesenchymal condensations were equally detectable in miR-27 morphants and control 

embryos at 48 hpf (data not shown).  Next, we analyzed the distribution of the 

extracellular matrix (ECM) protein fibronectin which is highly expressed during 

mesenchymal condensation (Hall and Miyake, 2000; Singh and Schwarzbauer, 2014).  

PCCs in both morphants and control embryos had equal fibronectin matrix distribution at 

48 hpf (Fig. 11).  To analyze the differentiation of PCCs, we performed in situ 

hybridization for the chondrogenic differentiation marker sox9a (Bi et al., 1999; Yan et 

al., 2002) at 55 hpf and for col2a1a, the major collagen in chondrocytes, at 72hpf (Fig. 

12A).  Both markers showed reduced expression domains in the ethmoid plate precursor 

and first two pharyngeal arches, as well as complete loss of expression in the ventral 

pharyngeal arches of the miR-27 morphants.  We could not detect expression of the 

osteogenic differentiation marker, runx2b (Flores et al., 2004) in the pharyngeal arches of 

miR-27 morphants at 60hpf. 
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Figure 11  Fibronectin matrix of pre-chondrogenic crest (PCC) cells during 
mesenchymal condensation is not affected by miR-27 knock down.   
 
Anti-fibronectin and anti-GFP immunostaining in transverse sections of Tg(fli1a:eGFP)y1 
embryo heads at 48hpf.  Embryos were injected with either 5ng MO-ctl or MO-27 at the single 
cell stage.  TOPRO-3 was used as a nuclei marker. 

 

To assess the differentiation of PCCs further, we analyzed mature chondrocytes in 

the pharyngeal arches by immunostaining with anti-Col2 in fli1a:eGFP embryos at 

61hpf.  In control embryos we could easily detect fli1a:eGFP+ cells in the first two arch 

condensations that are secreting Col2 into the ECM, while in miR-27 morphants there 

were very few to no Col2+ fli1a:eGFP+ cells detected (Fig. 12B).  To determine whether 

miR-27 only perturbs collagen production or completely blocks chondrogenic 

differentiation, we performed wheat germ agglutinin (WGA) staining to detect mature 

chondrocytes.  WGA staining indicated that in miR-27 morphants, mature chondrocytes 

are missing, while the control embryos had WGA labeled chondrocytes in fli1a:eGFP+ 

condensations at 61hpf.  These results together suggest that loss of miR-27 does not affect 

mesenchymal condensation of CNC cells, but completely blocks differentiation of 

pharyngeal PCCs.  
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Figure	12		 miR-27 is required for differentiation of pre-chondrogenic crest 
(PCC) cells in pharyngeal arches.  
 
(A) Expression of the chondrogenic marker sox9a, the osteogenic marker, runx2b, and the 
chondrocyte-specific marker col2a1a in MO-ctl or MO-27 (5ng) injected embryos, detected by 
whole-mount in situ hybridization.  Arrowheads indicate the expression domain of the 
ceratobranchial arches.  All panels except the top panel for col2a1a are lateral views.  Top panel 
for col2a1a expression is a ventral view with the first pharyngeal arch indicated by an arrowhead.  
(B) Anti-Col2 and anti-GFP immunostaining in the pharyngeal arch region between the eye and 
otic vesicle (ov) in Tg(fli1a:eGFP)y1 embryos at 61hpf.  A single optical section of the confocal 
stacks is shown in each image, with anterior to the left.  Embryos were injected with the 
corresponding morpholinos as described above.  (C) Wheat-germ agglutinin staining and anti-
GFP immunostaining in the pharyngeal arch region between the eye and otic vesicle (ov) in 
Tg(fli1a:eGFP)y1 embryos at 61hpf.  The indicated ratio represents the number of embryos with 
the represented phenotype/total number of observed embryos. Scale bar, 50 µm. 

 

miR-27 knock down impairs the PCC proliferation and survival 

Defects in the extension of the pharyngeal arches in miR-27 morphants suggest 

that inactivation of miR-27 causes PCC proliferation defects.  We analyzed the 

proliferation of pre-chondrogenic cells at 30 and 36 hpf, the earliest time points where 

defects can be detected in the pharyngeal arches (Fig. 10A).  Immunostaining for 

phosphorylated histone 3 (pH3) in fli1a:eGFP embryos showed that there was a  
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Figure	13		 miR-27 knock-down impairs proliferation and survival of PCC cells.  
 
(A) Anti-phospho histone 3 (pH3) and anti-GFP immunostaining in Tg(fli1a:eGFP)y1 embryos at 
32 and 36 hpf.  Embryos were injected with either 5ng MO-ctl or MO-27 at the single cell stage.  
Lateral view with anterior to the left.  (B) Quantification of pH3+GFP+ cells normalized to the 
GFP+ area in each embryo.  For 30 hpf, n=7; for 36 hpf, n=8.  (C) TUNEL staining and anti-GFP 
immunostaining in Tg(fli1a:eGFP)y1 embryos at 36 and 54 hpf.  Embryos were injected with the 
corresponding morpholinos and image layouts are as described above.  (D) Quantification of 
TUNEL+GFP+ cells normalized to the GFP+ area in each embryo.  Error bars indicate SEM.  For 
36 hpf, n=9; for 54 hpf, n=5.  *p<0.05, ***p<0.001 (Student’s t-test).  Data are from four 
independent experiments.  Scale bars, 100 µm. 

 

significant reduction in the number of mitotic PCCs in miR-27 morphants compared to 

controls at both 30 and 36hpf (Fig. 13A,B).  Upon mir-27 knockdown, the impairment in 

PCC proliferation was more severe at 36hpf compared to 30hpf (Fig. 13A,B). 

Next, we investigated whether apoptosis in prechondrogenic cells might 

contribute to the pharyngeal arch extension defects in miR-27 morphants.  TUNEL assays 

in fli:EGFP embryos showed that at 36hpf there was not a significant difference in the 
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number of apoptotic PCCs in miR-27 morphants compared to control embryos.  However, 

at 54hpf, when PCCs are differentiating into mature chondrocytes, there was a significant 

increase in the number of apoptotic PCCs in the morphants compared to the controls 

(Fig. 13C,D).  These findings suggest that the initial pharyngeal arch growth defects in 

miR-27 morphants are due to a decrease in PCC proliferation.  At later stages, PCCs that 

were not able to differentiate into chondrocytes undergo apoptosis. 

Ptk2aa (FAK) is a direct target of miR-27 in vivo 

To investigate the molecular mechanism through which miR-27 regulates 

pharyngeal cartilage development, we tested candidate mRNA targets of miR-27 using 

the online target prediction algorithm TargetScanFish (Lewis et al., 2005).  We focused 

on a subset of potential target mRNAs based on their spatiotemporal expression patterns 

at different developmental stages.  After initial testing of multiple candidate mRNAs, 

ptk2aa was selected for further functional analyses.  Ptk2aa is a zebrafish focal adhesion 

kinase (FAK) gene whose expression is ubiquitous at the shield stage and accumulates in 

the head, axial region and tail at the 10-somite stage (Crawford et al., 2003).  At 24hpf, 

there is strong expression detected in the head and dorsal axis (Fig. 14A, B).  Since we 

detected miR-27 expression in the pharyngeal arch region starting at 24hpf (Fig. 4C), and 

because pharyngeal arch defects in miR-27 morphants are first observed around 30-36 hpf 

(Fig. 10A), we decided to determine the expression pattern of ptk2aa at these crucial time 

points.  Early ptk2aa expression was detected strongly in the head, as previously 

reported, and between 30 and 48 hpf, was detected in the midbrain, MHB, and paraxial 

mesoderm axis, with low expression in the pharyngeal region (Fig. 14C-F) (Crawford et 
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al., 2003).  At 58 hpf, ptk2aa expression in the jaw cartilage was not detectable (Fig. 

14G).  Consistent with the in situ data, active FAK protein (FAK-pY397) showed little to  

 

	
	
Figure	14		 Expression pattern of ptk2aa during development.   
 
(A-G) ptk2aa expression in embryos between 24 hpf and 58 hpf, detected by whole-mount in situ 
hybridization.  Lateral views with the pharyngeal arch primordia indicated by an arrowhead.   
 

no co-localization with the arches as marked by fli1a:eGFP at 36 and 48hpf (Fig.15A,B).  

The reduction of ptk2aa expression in the pharyngeal arch region compared to the higher 

expression in the head at 24hpf is consistent with the prediction that ptk2aa might be 

targeted by miR-27. 
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Figure	15		 PCC cells in the pharyngeal arches have low levels of active FAK 
(pY397-FAK) at 36 and 48 hpf.  
 
(A) Schematic of a transverse cross-section of the zebrafish head at 36 hpf.  M, mesencephalon; 
H, hypophysis; E, eye; PA, pharyngeal arch.  Dorsal (D) is to the top, ventral (V) is to the bottom.  
(B) Anti-phospho FAK (pY397-FAK) and anti-GFP immunostaining on transverse sections of 
Tg(fli1a:eGFP)y1 embryos at 36 and 48 hpf.  PCC cells in the pharyngeal arch (PA) region are 
indicated by arrowheads.  Scale bar, 50 µm.  (C) Anti-phospho FAK (pY397-FAK), anti-
phalloidin (to label cell borders) and nuclear TO-PRO-3 immunostaining on transverse sections 
of telencephalon in wild-type embryos at 29 hpf.  Embryos were injected with either 3ng MO-ctl 
or MO-ptk2 at the single cell stage.  The indicated ratio represents the number of embryos with 
the represented phenotype/total number of observed embryos.  Scale bar, 10 µm.    
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Ptk2aa has two miRNA binding elements (MREs) for miR-27 in the 3’UTR (Fig. 

16A).  To test whether miR-27 can target ptk2aa, we performed GFP reporter assays.  As  

shown in Fig. 16B, injection of GFP-ptk2aa 3’UTR mRNA into one-cell stage embryos 

caused strong GFP expression at 24hpf, while co-injection of the mRNA and mature miR-

27 mimic RNAs decreased GFP fluorescence levels.  Western blots of pooled protein 

lysates from these embryos confirmed that co-injection of miR-27 significantly decreased 

GFP protein levels (Fig. 16D,E).  To demonstrate specificity of targeting, we created 

mutations that disrupted the miR-27 seed regions within both MREs in the ptk2aa 3’UTR.  

Co-injection of the mutated transcripts with miR-27 did not decrease the GFP 

fluorescence compared to injection of the reporters alone (Fig. 16C).  These results 

support the hypothesis that miR-27 can regulate ptk2aa through the two MREs in its 

3’UTR. 

Next, we tested whether miR-27 regulates endogenous ptk2aa.  We injected 

mature miR-27 mimic RNAs in two different concentrations into single cell embryos and 

then prepared protein lysates from injected embryos at 24 hpf followed by western blots 

with antibodies against FAK.  Increasing doses of miR-27 led to a 50-70% decrease in 

endogenous FAK protein levels (Fig. 16F).  As a complementary experiment, we 

analyzed FAK protein levels when miR-27 was knocked down.  We injected either miR-

27 morpholinos or control morpholinos into single cell embryos at the same 

concentration as we used in the functional analyses described above.  Western blot 

analyses showed that FAK levels were more than 2-fold upregulated in the miR-27 
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morphants compared to control embryos at 2dpf (Fig. 16G,H).  Collectively, these results 

indicate that miR-27 regulates FAK in vivo.  

	
 
Figure 16   miR-27 targets FAK and regulates FAK levels in vivo.   
 
(A) Schematic of the reporter mRNA consisting of the coding sequence of GFP fused to the 
ptk2aa 3’UTR.  Two predicted miRNA recognition elements (MREs) are indicated.  Predicted 
base-pairing between MREs (shown in green) and the miR-27a sequence (shown in red).  (B) 
Embryos injected with either GFP-ptk2aa 3’UTR reporter mRNA alone or co-injected with miR-
27a imaged at 24hpf.  (C) Reporter assays with GFP-ptk2aa 3’UTR mRNA containing mutations 
in the miR-27 seed sites.  (D) Western blots with anti-GFP and anti-tubulin antibodies using the 
lysates from embryos injected with the GFP-ptk2aa 3’UTR reporter mRNA alone or co-injected 
with miR-27a.  (E) Quantification of GFP levels by Western blots normalized to the levels of 
tubulin.  (F) Western blots with anti-FAK and anti-GAPDH antibodies using lysates from 24hpf 
embryos either uninjected or injected with 100 or 200pg miR-27a.  (G) Western blots with anti-
FAK and anti-GAPDH antibodies using lysates from 48hpf embryos injected either with MO-ctl 
or MO-27.  (H) Quantification of FAK levels from Western blots shown in (G) normalized to the 
levels of tubulin.  At least 20 embryos were pooled for protein lysates.  Error bars indicate SEM.  
**p<0.01 (Student’s t-test).   
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Knock down of ptk2aa (FAK) partially rescues pharyngeal cartilage defects in miR-27 

morphants 

Next, we investigated whether the pharyngeal cartilage defects in miR-27 

morphants are caused by misregulation of ptk2aa (FAK).  Given that FAK is upregulated 

in miR-27 morphants, we hypothesized that knocking down FAK in the morphants would 

rescue the pharyngeal cartilage defects.  To knock down FAK, we designed antisense 

morpholinos that block the translation start site of both ptk2aa and ptk2ab.  We titrated 

the ptk2 morpholinos and determined the highest concentration (3ng) that did not disrupt 

normal morphological development at 1 dpf (data not shown).  At this concentration, 

Ptk2 morpholinos (MO-ptk2) efficiently blocked translation of a ptk2aa reporter 

construct (Fig. 17).  We then injected morpholinos against miR-27 in two different 

concentrations, co-injected with either control or ptk2 morpholinos, and examined 

whether the craniofacial defects were suppressed upon knockdown of miR-27.  We 

categorized the pharyngeal cartilage phenotypes observed at 4 dpf into three groups 

(CH1, CH2 and CH3) based on the ceratohyal position and size (Fig. 18A).  CH1 had the 

least severe cartilage phenotype with Meckel’s cartilage not as anteriorly extended as 

compared to wild type embryos, along with three missing posterior branchial arches.  In 

CH2, the sizes of all visible pharyngeal cartilage elements were shorter in comparison to 

CH1, the ceratohyal cartilage was not able to extend anteriorly, and all branchial arches 

were missing.  CH3 had the most severe cartilage phenotype with Meckel’s cartilage and 

the branchial arch phenotypes similar to CH2, but the ceratohyal cartilage had a more 

severe phenotype by shifting posteriorly.  Co-injection of ptk2 morpholinos and miR-27 

morpholinos both at low (2ng) and high (4ng) concentrations increased the frequency of  
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Figure 17  Ptk2 morpholino targets the translation start site of the ptk2aa.   
 
(A) Design of the reporter construct (MOptk2 BS-GFP) that carries the ptk2aa 5’UTR carrying 
the translation start site fused to the open reading frame of GFP without the translation start site.  
This construct carries the SP6 promoter that enables in vitro transcription.  (B-C) Live images of 
1 dpf embryos injected with MOptk2 BS-GFP mRNA.  (D-E) Live images of 1 dpf embryos 
injected with MOptk2 BS-GFP mRNA and ptk2a morpholino (MO-ptk2).   

 

the CH1 phenotype, while significantly decreasing the frequency of the more severe 

phenotypes (CH2, CH3) (Fig. 18B).  The ability to suppress the cartilage defects in miR-

27 morphants by coincident knockdown of ptk2aa is consistent with regulation of FAK 

by miR-27. 

Next, we quantitatively evaluated the level of rescue in extension of the 

ceratohyal cartilage in the anterior-posterior axis.  We measured the distance between 

Meckel’s cartilage and the ceratohyal cartilage to a reference point where the 

palatoquadrate cartilage and hyosymplectic cartilage joint (Fig. 18C).  To normalize 
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these lengths to the width of the pharyngeal skeleton, we measured the distance between 

the palatoquadrate cartilage and the hyosymplectic cartilage joins, as previously 

described (Wu et al., 2015).  The ratio (C/A), which represents the normalized length of 

Meckel’s cartilage, did not show any significant difference in MO-ptk2 and MO-27 (2ng) 

co-injected embryos compared to injection of only MO-27 (2ng) (data not shown).  The 

ratio (C-B)/A represents the positional relationship between Meckel’s cartilage and the 

ceratohyal cartilage.  As the phenotypes get more severe, the ceratohyal cartilage shifts 

more posteriorly and the (C-B)/A ratio increased in miR-27 morphants compared to 

controls (Fig. 18D).  However, when we knocked down ptk2 along with miR-27, the ratio 

was significantly smaller than in miR-27 morphants, consistent with defects observed 

when we used higher miR-27 morpholino concentrations (data not shown).  This indicates 

that ptk2 knockdown partially suppresses the severe ceratohyal positioning in the mild 

miR-27 morphants.  Overall, these results demonstrate that miR-27 knock down leads to 

craniofacial cartilage defects due to misregulation of ptk2. 

 

Discussion 

	

miR-27 is essential for chondrogenic differentiation  

We show that miR-27 is required for cartilage development both in the pharyngeal 
arches and the pectoral fins, which are derived from CNC cells and the paraxial 
mesoderm, respectively (Le Douarin et al., 2004; Lee et al., 2013).  Using loss-of-
function studies, we show that miR-27 knockdown does not affect neural crest 
specification and migration of the CNC cell streams, but is instead required for the 
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Figure 18  Suppressing FAK in miR-27 morphants partially rescues cartilage 
defects.   
 
(A) Three categories of representative head cartilage phenotypes in 4dpf old embryos injected 
with MO-27, along with either standard control morpholino MO-ctl or translation blocking MO-
ptk2 at the single-cell stage.  Ventral views of head cartilage stained with alcian blue.  Ceratohyal 
cartilage indicated by an arrowhead and Meckel’s cartilage indicated with an arrow.  (B) 
Embryos were injected with 2ng or 4ng MO-27 either co-injected with 3ng MO-ctl or MO-ptk2.  
Percentage of embryos with the corresponding head cartilage phenotypes (CH1-CH3) at 4dpf.  
The distribution of phenotypes in MO-ptk2 and MO-27 injected embryos are compared to those 
injected with MO-ctl and MO-27. ***p<0.0001 (Chi-squared goodness of fit test), n=40-60 
embryos.  Data are from three independent experiments.  (C) Analysis of cartilage positions.  
Ventral view of head cartilages in wild-type embryos stained with alcian blue.  A represents the 
distance between the palataquadrate (pq) and ceratohyal (ch) cartilage joints.  B represents the 
distance from the anterior joint of the two ceratohyals to the baseline shown by a dashed line.  C 
represents the distance from the anterior end of Meckel’s cartilage (m) to the baseline.  (D) (C-
B)/A ratio was calculated for quantitative analysis of anterior-posterior extension of the 
ceratohyal cartilage.  This ratio increases as the ceratohyal position extends posteriorly instead of 
anteriorly.  Percentage increase of the (C-B)/A ratio in MO-27 and MO-ctl injected embryos or 
embryos co-injected with both MO-27 and MO-ptk2 compared to the ratio in wild-type embryos.  
Error bars represent SEM. n=40-60 embryos, **p<0.01 (student’s t-test).  
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proliferation and differentiation of PCCs.  This suggests that miR-27 promotes a 

chondrogenic differentiation program regardless of the origin of the pre-chondrogenic  

progenitor cells.  Biallelic knockout clones for the miR-23a~27a~24-2 and miR-

23b~27b~24-1 clusters in ESCs demonstrated that these clusters are indispensable for 

ESC differentiation in vitro and in vivo (Ma et al., 2014).  Our study shows that either 

miR-27a or miR-27b knockdown leads to severe craniofacial defects (Fig. 7), consistent 

with the requirement for both isoforms in ESC differentiation and supporting the idea that 

both family members cooperate to control chondrogenic differentiation.   

Although the role of miR-27 in chondrogenesis has not been reported before, the 

miR-23a~27a~24-2 cluster was implicated in skeletal development by negatively 

regulating in vitro osteogenic differentiation (Hassan et al., 2010).  Interestingly, one of 

the most crucial bone-specific transcription factors, Runx2, was reported to suppress the 

transcription of the miR-23a~27a~24-2 cluster early in osteogenesis, while in the final 

osteocyte stage of differentiation this cluster is upregulated and functions to attenuate 

continuing bone formation.  These findings, along with our results demonstrating that 

miR-27 is a positive regulator of chondrogenesis, suggest that miR-27 plays a major role 

in the cell fate commitment program of skeletal stem cells.  

 

miRNA knockdown and knockout experiments 

Loss-of-function studies using morpholinos must be interpreted carefully with 

multiple controls to avoid possible off-target effects, as well as a reliable confirmation of 

morpholino efficacy.  We have performed multiple control experiments following 

published guidelines such as the use of mismatch control morpholinos, targeting the same 
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Figure 19  miR-27a mutants have pharyngeal cartilage defects upon partial 
knock-down of miR-27b.   
 
(A) Schematic representation of the miR-27a precursor and generation of miR-27a mutants by 
CRISPR/Cas9.  The blue box on the miRNA precursor represents the gRNA target region 
corresponding to the mature miR-27a seed.  (B) The region of the miR-27a gene sequence that 
shows the CRISPR/Cas9 targeted region.  miR-27a-5p and miR-27a-3p are shown in red.  The 
seed region of mature miR-27a is shown in the grey box.  The target region for the designed 
sgRNA is underlined in green.  Arrow points to the PAM sequence.  (C) Alcian blue staining of 4 
dpf miR-27aΔ/Δ and WT siblings injected with 1.5ng of MO-27b loop at the one-cell stage.  (D) 
Phenotypic categorization of the pharyngeal cartilage in 4dpf miR-27aΔ/Δ, miR-27a+/Δ and WT 
siblings injected with 1.5ng of MO-27b loop at the one-cell stage.  n=20 for WTs, n=36 for miR-
27a+/Δ and n=20 in miR-27aΔ/Δ.  (E) Analysis of cartilage positions.  Ventral view of head 
cartilage in wild-type embryos stained with alcian blue.  A represents the distance between the 
palataquadrate (pq) and ceratohyal (ch) cartilage joints.  B represents the distance from the 
anterior end of Meckel’s cartilage (m) to the baseline. (F) The B/A ratio was calculated for 
quantitative analysis of anterior-posterior extension of the Meckel’s cartilage.  Error bars 
represent SEM.  Statistical analysis was done using one-way ANOVA with Fisher’s Least 
Significant Difference (LSD) test,  *p<0.05. 
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gene with two morpholinos, testing dose dependent effects, and ensuring the efficacy of 

knock downs (Eisen and Smith, 2008).  In addition, the TUNEL assays showed that there 

was no increase in apoptosis in pre-chondrogenic cells at the stage when pharyngeal arch  

	
defects were detected suggesting that the morphant phenotype is not due to p53-induced 

apoptosis (Robu et al., 2007).  Due to the fact that MO-27 targets the mature full length 

miR-27 RNA, we do not have a miR-27 isoform that is immune to the MO which could 

be used to rescue the morphant phenotype.  However, and most importantly, we were 

able to suppress the effects of miR-27 knockdown by co-injection of morpholinos against 

the miR-27 target ptk2aa.  

An ideal strategy to confirm morpholino associated phenotypes is to analyze 

mutant alleles of the same gene.  There have been concerns about the lack of concordance 

between mutant and morphant phenotypes of the same genes in zebrafish (Kok et al., 

2015; Stainier et al., 2015).  To address these concerns, we generated a miR-27a mutant 

line (miR-27aΔ/Δ) that carried a 6 bp deletion in the miRNA seed region using the 

CRISPR/Cas9 system (Fig. 19A,B).  Analysis of F2 and F3 embryos of heterozygous 

mutant parents either did not show any detectable craniofacial defects or the phenotypes 

similar to the miR27 morphants were observed with low penetrance in the homozygous 

mutants.  There could be multiple reasons for the discrepancy between the miR-27 

morphants and the mutants.  One possibility is genetic compensation upon CRISPR-

mediated mutation of the miR-27a gene, as has been reported recently, after other 

CRISPR and TALEN mediated mutations (Blum et al., 2015; Rossi et al., 2015).  The 

candidate genes most likely contributing to the genetic compensation would be the other 

members of miR-27 family.  Since we already showed that miR-27b is also required for 
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pharyngeal cartilage morphogenesis (Fig. 7B), we hypothesized that miR-27b expression 

might compensate for the loss of miR-27a in miR-27aΔ/Δ embryos.  Injection of MO27b-

loop at low concentration normally results in no detectable defects in the pharyngeal 

cartilage (Fig. S3B, Fig. S9C).  However, we found that exclusively homozygous miR-

27aΔ/Δ embryos are sensitized to limited loss of miR-27b knockdown compared to miR-

27a+/Δ and WT siblings (Fig. 19C-F).  miR-27b knockdown with low doses of MO 

injection resulted in shorter pharyngeal elements, as shown by significant decreases in 

Meckel’s extension compared to miR-27a+/Δ heterozygotes and WT siblings (Fig. S9E-F).  

This indicates that miR-27b can contribute to compensation of the miR-27a loss in miR-

27aΔ/Δ embryos.  However, there could also be other genes that compensate for the loss of 

miR-27a, including protein coding genes as well as other miRNAs.  Most miRNAs target 

multiple mRNAs, it is unlikely that ptk2aa (FAK) is only targeted by miR-27 family 

members, consistent with the finding that we were only able to partially suppress the 

severe ceratohyal positioning defect in the miR-27 morphants by coincident ptk2 

knockdown.  TargetScan predicts 7 miRNAs with significant seed matches that could 

target ptk2.2 and could conceivably compensate for the loss of miR-27 and retain proper 

regulation of ptk2.2.  It remains to be determined whether any of these miRNAs are 

temporally and spatially expressed in a manner consistent with regulation of pharyngeal 

arch development. 

 While generation of 5 independent lines and crosses to generate a line lacking 

expression of all miR-27 family members is beyond the scope of this report, we did 

attempt to utilize multiplex CRISPR/Cas9 using guide RNAs that target all miR-27 

family members in early embryos (Narayanan et al., 2016).  Unfortunately, we did not 



	 60	

observe any resulting phenotypes at 4dpf, potentially due to the fact that the level of miR-

27 knockdown in early embryos was not sufficient, averaging less than 50%.   

 

 
 
Figure 20 Vasculature defects in miR-27 morphants.   
 
Vasculature patterning in live Tg(fli1a:eGFP)y1 embryos at 56 hpf.  Embryos were injected with 
either MO-ctl or MO-27 at the single cell stage.  Arrowheads indicate branching defects in the 
intersegmental vessels in miR-27 morphants.  

 

miR-27 regulates pharyngeal cartilage development through targeting FAK 

miRNAs are well-known for their role in preventing translation and accelerating 

decay of target mRNAs, thereby providing a precise mechanism for spatiotemporal 

control of developmental processes (Krol et al., 2010; Zhao and Srivastava, 2007).  Given 

that miR-27 knockdown prevents chondrogenic differentiation, the target mRNA of miR-

27 would be hypothesized to be a negative regulator of PCC proliferation and 

differentiation.  Here, we identify ptk2aa (FAK) as a novel in vivo target of miR-27.  

Ptk2aa and ptk2ab are paralogs of the zebrafish focal adhesion kinase (FAK) gene 

(Crawford et al., 2003; Henry et al., 2001).  ptk2ab also carries two MREs for miR-27 in 

its 3’UTR but our GFP reporter assays showed no detectable regulation of ptk2ab 3’UTR 

by miR-27.  Importantly, we show that craniofacial cartilage defects can be partially 

rescued by ptk2a (FAK) knockdown (Fig. 18).  This suggests that FAK accumulation is 
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required for proper chondrogenesis.  

 

Potential roles of FAK during chondrogenic differentiation 

Loss of miR-27 does not prevent mesenchymal condensation of the PCCs (Fig. 7).  

However, PCC proliferation was significantly impaired in miR-27 morphants during the 

condensation stage (Fig. 13A,B).  We hypothesize that FAK accumulation due to miR-27 

knockdown does not affect condensation, but rather proliferation and differentiation of 

PCCs.  A remaining question is whether in miR-27 morphants, the effect of FAK 

accumulation during chondrogenesis is cell-autonomous.  Previous studies have shown a 

cell-autonomous role of FAK on mesenchymal stem cells by performing in vitro 

chondrogenesis assays (Bursell et al., 2007; A. M. DeLise et al., 2000; Pala et al., 2008; 

Tang et al., 2013a).  Conditional deletion of the membrane-anchored metalloproteinase 

MT1-MMP in mesenchymal progenitors caused a loss of β1 integrin/FAK signaling 

activation and thereby promoted differentiation towards the chondrogenic versus 

adipogenic or osteogenic lineages (Tang et al., 2013a).  Similarly, using a micromass 

model of chondrogenesis with FAK+/+ and FAK-/- embryonic fibroblasts, FAK signaling 

was reported as a negative regulator of chondrogenesis (Pala et al., 2008).  Loss of FAK 

in embryonic mesenchymal cells resulted in a significant increase in chondrogenic 

differentiation along with a higher expression of chondrogenic genes compared to wild-

type cells (Pala et al., 2008).  Induction of chondrogenic differentiation observed in FAK 

null cells is strikingly similar to effects reported upon inhibition of other components in 

the FAK signaling pathway.  For example, inhibition of the FAK interacting kinase Src 

and the RhoA/ROCK pathway downstream of FAK/Src complex resulted in cell 
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rounding and loss of stress fibers along with upregulation of chrondrogenic markers, 

Sox9, collagen type II and aggrecan during in vitro chondrogenesis (Bursell et al., 2007; 

Woods et al., 2005; Woods and Beier, 2006).  All these findings demonstrate that FAK 

signaling suppresses chondrogenic differentiation with likely involvement of downstream 

RhoA/Rock signaling  

An important role for FAK in focal adhesion complexes is to control 

mechanotransduction in cells that are subject to external mechanical forces or ECM 

remodeling (Eyckmans et al., 2011; Yim and Sheetz, 2012).  Interestingly, mechanical 

stretching or ECM-mediated cell shape changes activate β1-integrin/FAK signaling and 

consequently inhibit chondrogenesis of mesenchymal stem cells (Onodera et al., 2005; 

Takahashi et al., 2003; Tang et al., 2013a; Woods et al., 2007).  These studies support our 

hypothesis that miR-27 regulates chondrogenesis in the pharyngeal arches by maintaining 

low levels of FAK.  

miR-27 regulates differentiation programs in other tissue types 

The miR-23~27~24 cluster has been implicated as a positive regulator for 

mesoderm differentiation of embryonic stem cells (ESC) by directly targeting 

pluripotency-maintenance factors (Ma et al., 2014).  We show that miR-27 is also 

essential for development of specific mesoderm and neural crest-derived cell/tissue types 

in vivo.  Previous reports showed that miR-27 is required for angiogenesis, adipogenesis, 

and development of the embryonic vasculature consistent with phenotypes we observe 

upon knockdown of miR-27 (Biyashev et al., 2012; Kang et al., 2013; Urbich et al., 2012; 

Zhou et al., 2011) (Fig. 20).  Together, miR-27 emerges as a key factor that negatively 

regulates the stemness of progenitor cells promoting the differentiation of multiple tissue 
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types.  

 

Materials and Methods 

	

Zebrafish husbandry and lines 

Wild-type (AB) (Walker, 1999), Tg(fli1a:eGFP)y1 (Lawson and Weinstein, 

2002), Tg(sox10(7.2):mRFP)vu234 (Kirby et al., 2006) lines were maintained at 28.50C 

on a 14:10 hour light:dark cycle.  Embryos were raised in egg water (0.03% Instant 

Ocean) at 28.50C, staged by morphology (Kimmel et al., 1995) and hours post 

fertilization (hpf).  For whole-mount immunohistochemistry and in situ hybridization 

analyses, embryos were raised in egg water supplemented with 0.003% N-phenylthiourea 

(PTU; Sigma-Aldrich) to prevent melanin formation.  Zebrafish maintenance, embryo 

collection, and analyses were performed with the approval of the Vanderbilt University 

Institutional Animal Care and Use Committee (M/09/398). 

Constructs 

The ptk2aa (NM_198819.1) mRNA 3’UTR was amplified by RT-PCR using 

forward (5’- GGCGAATTCGACCTCCACACTGGCTGGATCATC-3’) and reverse (5’-

CGGCTCGACCTGAGCATTCGGTACACACTTTCTGTATTA-3’) primers.  ptk2ab 

(NM_131796.1) mRNA 3’UTR was amplified by RT-PCR using forward (5’-

CGGACTAGTCTACTCACCCACCCTCACGTTAAGC-3’) and reverse (5’-

CGGCTCGAGTGCCTTGCTGTTAAACATCATTTGG-3’) primers.  Each 3’UTR was 

cloned downstream of the GFP coding sequence in the PCS2+ vector.  miRNA 
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recognition elements (MREs) within the ptk2aa 3’UTR were deleted using the 

QuikChange Lightning Site-Directed Mutagenesis Kit (Stratagene).  The first MRE was 

deleted using sense (5’- GAATAATAATACTGAAGCTGACGGAGGGCTGAGGTA -

3’) and anti-sense (5’- TACCTCAGCCCTCCGTCAGCTTCAGTATTATTATTC -3’) 

primers.  The second MRE was deleted using sense (5’- 

CAAAATCAGTTCTATGGTGAAGGGGCGGGATTAAACAA -3’) and anti-sense (5’- 

TTGTTTAATCCCGCCCCTTCACCATAGAACTGATTTTG -3’) primers.  For the 

ptk2aa in situ probe, a 1.1kb region was amplified by RT-PCR using forward (5’- 

GTAGTAGGATCCTCAGAAACAGACGACTACGCA-3’) and reverse (5’- 

GTAGTACTCGAGTGGTTCCAGCTCTCAAGCG-3’) primers containing BamHI and 

XhoI sites for cloning into PCS2+.  The ptk2aa coding region without the 3’UTR was 

amplified by RT-PCR using forward (5’-

GTAGTAGAATTCCCTAGCGTACGGTAAAGGCA-3’) and reverse (5’-

GTAGTACTCGAGAAGGGTGATGTTCCTCCGTG-3’) primers and cloned into 

PCS2+.  For the reporter construct for MO-ptk2, GFP was amplified with a forward 

primer carrying the MO binding site overlapping the ptk2aa translation start site (5’- 

GTAGTAGGATCCAAGGCATGGCGACGGCATTCCTGGACATGGTGAGCAAGGG

CGAGG-3’) and reverse (5’- GTAGTAGAATTCGCCTTCTAGAGCTCGTCCA -3’) 

primer and cloned into pCS2+. 

512 pME-miR was a gift from Nathan Lawson (Addgene plasmid # 26032).  

Around 300bp fragment spanning the miR-27b gene was amplified using genomic DNA 

from 24 hpf old embryos and cloned into 512pME-miR using EcoRI restriction digestion 

site.  Hsp70l:miR27b-eGFP and sox10:miR27b-eGFP plasmids were generated using 
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pDestTol2CG2 vector, p5E-hsp70l (Kwan et al., 2007), p5E-sox10 (Das and Crump, 

2012), p3E-eGFPpA (Kwan et al., 2007) and assembled using the Multisite Gateway 

cloning system (Invitrogen).  

Transgenesis 

To generate the Tg(hsp70l:miR27b-eGFP) and Tg(sox10:miR-27b-eGFP) lines, 

the mixture of Tol2 mRNA (25pg) and plasmid (20pg) was injected into the single-cell 

stage embryos.  Injected embryos were prescreened for GFP fluorescence and raised in 

egg water at 280C for five days before transferring them Aquatic Habitats system.  

Transgenic F1 lines were established by crossing founder and wild-type adults. 

RNA synthesis 

mRNAs were in vitro synthesized from linearized constructs using mMESSAGE 

mMACHINE® SP6 Transcription Kit (Life Technologies).  Digoxigenin-UTP-labeled 

anti-sense RNA probes were in vitro synthesized from linearized constructs using either 

T7 or T3 RNA polymerases and DIG RNA labeling mix (Roche Applied Sciences).  In 

vitro transcribed RNA was purified by NucAwayTM Spin Columns (Life Technologies). 

Morpholinos, Microinjections 

Morpholinos were purchased from Gene Tools and their sequences are listed in 

Table 1.  MO-27 was designed complementary to mature miR-27a and the MO-27a loop 

targets the Dicer cleavage site and the loop of the miR-27a precursor.  MO-ptk2 was 

designed against the translation start site of ptk2aa.  All injections were performed in 

fertilized 1-cell stage embryos.  For reporter assays, GFP-ptk2aa3’UTR mRNA was 

injected at 150pg/embryo concentration either alone or with a synthetic miR-27a duplex 
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(Dharmacon) at 75pg/embryo.  Double stranded mature miR-27a was synthesized with 3′-

UU overhangs for the following target sequence: 5’-

UUCACAGUGGCUAAGUUCCGCU-3’.  MO-27 morpholinos were injected at 

5ng/embryo concentration unless specified.  

Table 1 List of morpholinos used in the study 

 

 

 

Alci

an 

Blue 

Stai

ning 

Embryos were fixed with 4% phosphate-buffered paraformaldehyde (PFA) for 1 

hour at room temperature.  Fixed embryos were rinsed in PBS with 0.1% Tween-20 two 

times and rinsed in 50% EtOH for 10 minutes on a rocker.  Embryos were then stained in 

0.2% Alcian blue, 30mM MgCl2 in 75% EtOH overnight on a rocker and bleached with 

1.5% H2O2 and 1% KOH for 20 minutes.  

Generation of miRNA mutants by CRIPSR/Cas9 

sgRNAs were designed using CRISPRscan (http://www.crisprscan.org).  sgRNA 

and Cas9 mRNAs were prepared as described previously (Yin et al., 2015).  The sgRNA 

target region for miR-27a gene was 5’-GGATATCCTATGTTCACAG-3’.  WT embryos 

were injected at the one-cell stage with 300 ng/µL Cas9 mRNA and 50ng/ µL sgRNA.  

Morpholino name Sequence 

MO-standard control 

(MO-ctl) 

5’-CCTCTTACCTCAGTTACAATTTATA-3’ 

MO-27-4mis 5’-GCGCAACTTACCCAGTGTCAACA-3’ 

MO-27 5’-GCGGAACTTAGCCACTGTGAACA-3’ 

MO-27a loop 5’-TAGCCACTGTGAACATAGGATATCC-3’ 

MO-27b loop 5’-CTTAGCCACTGTGAACAAAGAGTTC-3’ 

MO-27c loop 5’-CCACTGTGAACATTGAAGTTCGATC-3’ 

MO-ptk2 5’-TCCAGGAATGCCGTCGCCATGCCTT-3’ 
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Mutagenesis efficiency was confirmed by heteroduplex mobility assay analysis of the 

PCR amplicon of the CRISPR targeted genomic region.  F1 heterozygous mutant 

embryos were obtained by crossing founder adults carrying germline miR-27a mutations 

with WT adults.  Indels in the miR-27a gene in the F1 adults were identified and a 6bp 

deletion in the miRNA seed region was selected for further breeding.   

qRT-PCR 

Taqman small RNA assays (Life Technologies) were used to perform qRT-PCR 

of the indicated miRNAs.  5ng of total RNA isolated from 50 pooled embryos at the 

indicated stages were used per RT reaction and 1.33µl of 1:2 diluted resultant cDNA was 

used in 10µl qPCR reaction in technical triplicates.  qPCR reactions were conducted in 

either 96-well plates using Bio-Rad CFX96 Real-time system or in 384-well plates using 

Bio-Rad CFX384 Real-time System.  All quantifications were normalized to an 

endogenous U6 snRNA control.  Fold changes were calculated using the ∆∆C(t) method, 

where ∆ = C(t)miRNA − C(t)U6 snRNA, and ∆∆C(t) = ∆C(t)condition1 − ∆C(t) 

condition2, and FC = 2−∆∆C(t).  Taqman probe #: U6 snRNA: 001973; dre-miR-27a-3p: 

007138_mat; dre-miR-27b: 008075_mat; dre-miR-27c: 006826_mat; dre-miR-27d: 

003373_mat; dre-miR-27e: 007922_mat.  

Immunoblotting and Northern Blots 

Embryos were deyolked at the indicated time points and placed in RIPA buffer 

with Complete Protease Inhibitor Cocktail (Roche 04693159001), followed by 

homogenization with a pestle.  Separation of total proteins and transfer was performed as 

described (Olena et al., 2015).  The following antibodies were used for western blots: 
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rabbit anti-GFP (1:1000, Torrey Pines), rabbit anti-α-tubulin (1:1000, Abcam), mouse 

anti-FAK (1:300, H-1 Santa Cruz Biotechnology), mouse anti-GAPDH (1:20,000, 

Ambion), anti-rabbit and anti-mouse HRP-conjugated secondary antibodies (1:5000, GE 

Healthcare).  Quantification of band intensities was performed in ImageJ and intensities 

for each protein of interest were normalized to the loading control levels (either α-tubulin 

or gapdh).  Data was represented as the mean for normalized band intensities from at 

least 3 independent pools of protein extract.  Northern blots were performed as described 

(Flynt et al., 2007; Wei et al., 2013).  Quantification of the band intensities was 

performed in ImageJ and intensities for miR-27 were normalized to the loading control 

levels (U6).  

In situ hybridization 

Whole-mount in situ hybridization was performed as described (Thisse and 

Thisse, 2008).  Embryos were hybridized to digoxygenin-UTP labeled RNA probes for 

foxd3 (Kelsh et al., 2000), sox10 (Dutton et al., 2001), dlx2a (Akimenko et al., 1994), 

sox9a (Chiang et al., 2001) and col2a1 (Yan et al., 1995) at 700C in a hybridization 

solution containing 50% formamide.  Hybridized probes were detected using anti-

digoxigenin alkaline-phosphatase conjugated antibodies, followed by incubation with 

nitro blue tetrazolium chloride and 5-bromo-4-chloro-3-indolyl-phosphate (NBT/BCIP) 

solution (Roche Applied Sciences).  Whole-mount miRNA in situ hybridization was 

performed as described (Olena et al., 2015) using miRCURY 5’- and 3’-DIG labeled 

LNA (locked nucleic acid) probes (Exiqon). LNA probe #:  dre-miR-27a: 613249-360; 

dre-miR-27b: 613734-360; dre-miR-27c-3p: 613613-360.  
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Immunofluorescent staining 

To visualize mature chondrocytes, anti-type II collagen (anti-Col2) antibodies and 

wheat germ agglutinin (WGA) were used for staining of sections.  Tg(fli1a:eGFP)y1 

embryos at 61 hours post fertilization (hpf) were fixed in 4%PFA at 40C overnight, 

washed with PBT twice and permeabilized with proteinase K (10ug/ml) for 30min.  

Embryos were then incubated in blocking buffer (2mg/ml BSA, 2% donkey serum, 4% 

DMSO, 0.1% Triton-X in PBS) for 2 hours and stained with anti-GFP (1:500, A-11120 

Invitrogen), anti-collagen type II (Col2) (1:200, Rockland) or WGA–Alexa-Fluor-555 

conjugate (1:200, Molecular Probes) overnight at 40C, followed by Cy3-conjugated and 

Alexa Fluor 488-conjugated secondary antibody (1:100 and 1:200, Jackson Immuno) 

staining for 2 hours.  

For phospho-histone 3 (pH3) staining, embryos were fixed, permeabilized as 

above, and incubated in blocking buffer (10mg/ml BSA, 2% donkey serum, 1%DMSO, 

0.1% Triton-X in PBS). Embryos were then stained with anti-pH3 (1:200, 06-570 

Millipore) in blocking buffer.  For anti-fibronectin immunostainings, Tg(fli1a:eGFP)y1 

embryos were fixed, cryopreserved, and mounted in Cryomatrix (Thermo).  12µm thick 

cryosections were incubated in blocking buffer (1mg/ml BSA, 1%DMSO, 1% Triton-X 

in PBS) and then stained with anti-fibronectin (1:100, Sigma F-3648), Alexa 568 

conjugate (Life Technologies, L32458) along with anti-GFP (1:500, Life Technologies, 

A11120) in blocking buffer. 

To detect apoptosis, whole-mount TUNEL labeling was performed using an in 

situ Cell Death Detection Kit, TMR red (Roche), followed by anti-GFP (1:500, Torrey 

Pines Biolabs) staining. 
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Phospho-FAK pTyr397 (pFAK) staining was performed as described (Crawford 

et al., 2003; Koshida et al., 2005) using anti-pFAK [pY397] antibody (Invitrogen, 44-

624G, originally from BioSource).  This antibody was validated in zebrafish embryos 

previously by Western blotting and immunohistochemistry (Crawford et al., 2003; Henry 

et al., 2001).  We also validated the specificity of the anti-pFAK [pY397] antibody by 

loss of pFAK signal in in MO-ptk2 embryos (Fig. 15C).  12µm thick cryosections of 

Tg(fli1a:eGFP)y1 embryos were incubated with anti-pFAK at 1:300 and anti-GFP (A-

11120 Invitrogen) at 1:500, then stained with Cy3-conjugated and Alexa Fluor 488-

conjugated secondary antibodies (1:100 and 1:200, Jackson Immuno) for 2 hours.  For 

pFAK staining in wild-type embryos shown in Supplemental Figure 7C, embryos were 

stained with Alexa Fluor 488-conjugated phalloidin (1:100, Molecular Probes) and TO-

PRO-3 (1:1000, Molecular Probes) along with the Cy3-conjugated secondary antibody 

for pFAK.  

Imaging and Image processing 

For time-lapse imaging, Tg(fli1a:eGFP)y1 embryos were anesthetized at the 

indicated time points and mounted laterally in 0.6% agarose.  Confocal stacks of the 

pharyngeal arch region were taken at 15 minutes intervals using a PerkinElmer spinning 

disk confocal microscope with a heating unit (PerkinElmer, 20X objective).  For imaging 

of immunofluorescent stainings, either a PerkinElmer spinning disk confocal microscope 

or a META Zeiss LSM 510 Meta confocal microscope were used.  Images were 

processed using either Volocity software (Improvision/PerkinElmer) or ImageJ software.  
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Cell counts and statistical analyses 

For quantifying the pH3+ and TUNEL+ cells in fli1a:eGFP+ pharyngeal arches, 

cells positive for both GFP and marker of interest were counted, normalized to the whole 

area for fli1a:eGFP+ arch region using ImageJ software.  Data were represented as a 

mean for normalized counts for the marker of interest and statistical analyses was 

performed using a two-tailed Student’s t-test.   

 Fluorescence intensity measurements are done using ImageJ software as 

described (Gavet and Pines, 2010).  For each image, “integrated density”, “area” and 

“mean gray value” of the fli1a:eGFP+ region, as well as background were measured.  

Corrected fluorescence intensity of the selected region was calculated according to the 

formula: “Corrected fluorescence intensity= Integrated Density - (Area of selected region 

* mean fluorescence of background)”.  Data were represented as a mean of corrected 

fluorescence intensity for each experimental condition and statistical analyses were 

performed using a two-tailed Student’s t-test.  
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Introduction 

	

A promising strategy to restore impaired vision due to degenerative retinal 

disorders is to induce endogenous repair mechanisms to regenerate lost cell types.  

Unfortunately, mammals are unable to spontaneously regenerate retinal neurons and 

instead, damage often induces reactive gliosis (Bringmann et al., 2009).  However, retinal 

damage in teleost fish, including zebrafish, initiates a robust spontaneous regenerative 

response that restores both retinal structure and function (Goldman, 2014).  Given that 

the cells and structure of the retina are highly conserved among vertebrates, 

understanding the molecular mechanisms that allow zebrafish to spontaneously 

regenerate damaged retinas is key to develop novel therapeutic strategies for retinal 

damage and disease in humans. 

In zebrafish, Müller glia (MG) are the source of the regenerated neurons in the 

retina (R. L. Bernardos et al., 2007; Fausett and Goldman, 2006).  After injury, MG 

dedifferentiate, undergo asymmetric cell division, and generate a population of 

proliferating neuronal progenitor cells (Nagashima et al., 2013; Ramachandran et al., 

2010a; Thummel et al., 2008).  MG-derived neural progenitors are able to differentiate 

into any of the lost retinal cell types and fully restore visual function in the zebrafish 

retina.  Although many of the major cellular events and several differentially expressed 

genes have been identified, precise molecular mechanisms that regulate retina 

regeneration remain largely unknown (Goldman, 2014; Lenkowski and Raymond, 2014; 

Kamya Rajaram et al., 2014b).   

Micro RNAs (miRNAs) are a family of highly conserved small noncoding RNAs 

that post transcriptionally regulate gene expression and play important roles in many 
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cellular processes during development and regeneration (Thatcher and Patton, 2010; 

Wienholds and Plasterk, 2005; Zhao and Srivastava, 2007).  We recently showed that the 

major miRNA processing enzyme, Dicer, is required for retina regeneration in zebrafish 

and profiled dynamic miRNA expression patterns in the retina during regeneration 

induced by constant intense light damage (Kamya Rajaram et al., 2014a).  Here, we 

report that miR-216 acts a gatekeeper for MG reprogramming, maintaining MG in a 

quiescent state in undamaged retina.  miR-216 suppression is necessary and sufficient for 

MG dedifferentiation and proliferation.  We identify the disruptor of telomeric silencing-

1-like (Dot1l) as a bona fide target of miR-216 and demonstrate that the miR-216/Dot1l 

regulatory axis mediates the initiation of retina regeneration through the Wnt/β-catenin 

pathway.  Previous studies in multiple species have revealed that Dot1l is able to regulate 

transcription of Wnt-target genes by directly interacting with T-cell factor (TCF)/β-

catenin complexes (Castaño Betancourt et al., 2012; Mahmoudi et al., 2010; Mohan et al., 

2010).  Our work uncovers for the first time the role of Dot1l downstream of miR-216 in 

the context of retina regeneration and proliferation of Müller glia.  

 

Results 

	

miR-216 is suppressed in dedifferentiated MG during early retina regeneration  

We previously demonstrated a general requirement for the Dicer-dependent 

miRNA biogenesis pathway during retina regeneration induced by constant intense light 

damage in adult zebrafish (Kamya Rajaram et al., 2014a).  miR-216 is a highly conserved  
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Figure 21  miR-216 is suppressed in Müller Glia during retina regeneration.  
 
 (A) Alignment of the zebrafish miR-216a-b sequences by ClustalW2, with conserved regions 
highlighted in blue and indicated with stars.  Alignment of miR-216a sequences from human 
(hsa), mouse (mmu),  xtr (Xenopus),  and dre (zebrafish).  (B) Schematic for post-mitotic and 
dedifferentiated MG sorting.  Adult zebrafish were dark adapted for 2 weeks and exposed to 
constant intense light lesioning for 45 hours.  For post-mitotic MG isolation, GFP-positive cells 
were sorted from dark adapted Tg(gfap:gfp) retinas.  For dedifferentiated MG isolation, GFP-
positive cells were isolated from 45 hr light lesioned Tg(1016tuba1a:GFP) retinas.  (C) Fold 
changes in miR-216a and miR-216b levels in FACS-purified MG were determined by qPCR.  
Both miR-216a and miR-216b are enriched in post-mitotic MG (GFP+) from undamaged retinas 
in Tg(gfap:gfp) fish.  After 45h of light damage, miR-216 is down-regulated ~5 fold in 
dedifferentiated MG (GFP+) in Tg(1016tuba1a:gfp) fish.  miR-216 expression did not change in 
non-MG cells (GFP-) during regeneration.  Shown are data from five independent experiments 
with three technical replicates of qPCR.  MG were purified from 18 and 20 light damaged fish in 
each experiment. Error bars are SEM.  * p<0.05, ** p<0.01.  Two-way ANOVA with Fisher’s 
LSD post-hoc test. 
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miRNA family (Fig. 21A) with previously characterized functions in gliogenesis during 

retina development (Olena et al., 2015).  We sought to test whether miR-216 might also  

regulate reprogramming of Müller glia during retina regeneration.  First, we determined 

the expression levels of miR-216a/b in quiescent and proliferating MG, as well as non-

MG cells in the retina.  We used fluorescence activated cell sorting (FACS) to isolate 

GFP+ quiescent MG from undamaged Tg(gfap:gfp) retinas, GFP+ dedifferentiated and 

proliferating MG after 45 hours intense light damaged Tg(1016tuba1a:gfp) retinas 

(Bernardos and Raymond, 2006; Fausett and Goldman, 2006), and GFP- cells from both 

sorts (non-MG) (Fig.21B).  GFAP is expressed in quiescent MG, the Tg(1016tuba1a:gfp) 

transgenic line specifically marks dedifferentiated MG and MG-derived neural 

progenitors in actively regenerating retinas (Fausett and Goldman, 2006).  Quantitative 

real-time PCR (qPCR) analysis showed that both miR-216a and miR-216b are 

significantly enriched in quiescent MG compared to non-MG cell population in the 

undamaged retinas (Fig. 21C).  However, miR-216a/b are significantly down regulated in 

dedifferentiated MG in regenerating retinas compared to quiescent MG.  When we 

compared non-MG cell populations in undamaged and intense light damaged retinas, we 

did not detect any significant change in expression levels of miR-216a/b.   

 

miR-216 suppression is required for MG dedifferentiation and proliferation  

To test whether miR-216 suppression is required for MG dedifferentiation and 

proliferation during retina regeneration, we performed over expression analysis of miR-

216.  We injected and electroporated miR-216 or a control miRNA intravitreally into the 

eye of Tg(tuba1a:gfp) transgenic fish before intense light damage (0h) and assessed the 
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effects on MG dedifferentiation and proliferation at 45h of light exposure (Fig. 22A).  

While there were numerous GFP+ dedifferentiated MG in control miRNA injected  

 

	
 
Figure 22  miR-216 gain-of-function impairs MG dedifferentiation and 
proliferation.   
 
(A) Experimental scheme. Control miRNA or miR-216 was injected and electroporated into the 
left eyes of Tg(1016tuba1a:gfp) zebrafish before intense light exposure (0h).  After 45h, retinas 
were collected, sectioned and immunostained using antibodies against GFP and PCNA.  Nuclei 
were counterstained with TOPRO (blue).  (B) miR-216 gain-of-function abolished tuba1a:GFP 
transgene expression and significantly reduced the number of INL PCNA+ proliferating cells.  (C) 
Quantification of PCNA+ cells in the INL and ONL.  Data represent mean +/- s.e.m (n=5-6 fish); 
**, p<0.01 (Student’s t-test).  (D) Experimental scheme. (E) Quantification of total GFP+ and 
PCNA+ cells.  Data represent mean +/- s.e.m (n= 10 fish); * p<0.03 , ** p<0.003 (Student’s t-
test). ONL, Outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer. Scale bar 
50um.  
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retinas at 45h of light damage, there was a striking absence of GFP+ dedifferentiated MG 

in miR-216 overexpressing retinas (Fig. 22B).  We then analyzed the effect of miR-216 

overexpression on MG proliferation using proliferating cell nuclear antigen (PCNA) as a 

proliferation marker.  Compared to control miRNA overexpressing retinas which had 

clusters of PCNA+ cells in the inner nuclear layer (INL), excess miR-216 resulted in 

significantly decreased numbers of proliferating MG (Fig. 22C).  Proliferation of rod 

progenitor cells in the outer nuclear (ONL) was not affected (Fig. 22C).   

Next we assessed β-catenin accumulation in MG, since it was previously shown 

that β-catenin accumulation as a result of Wnt signaling activation is necessary for MG 

dedifferentiation and proliferation (Ramachandran et al., 2011).  Control miRNA 

overexpressing retinas expressed β-catenin in MG that co-localized with the PCNA+ 

clusters (Fig. 23B), while miR-216 overexpression resulted in complete loss of β-catenin 

staining in the INL.  These results show that suppression of miR-216 is required for the 

dedifferentiation and proliferation of MG during retina regeneration.  
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Figure 23  miR-216 gain-of-function impairs β-catenin accumulation in MG after 
intense light damage.   
 
(A) Experimental scheme.  Control miRNA or miR-216 was injected and electroporated into the 
left eyes of wild-type zebrafish before intense light exposure (0h). After 45h, retinas were 
collected, sectioned and immunostained using antibodies against β-catenin (red), PCNA (green).  
Nuclei were counterstained with TOPRO (blue).  (B) β-catenin colocalized with PCNA+ 
proliferating MG after 45h of intense light damage.  β-catenin accumulation was not detected in 
miR-216 overexpressing retinas. 

 

We then analyzed the effects of miR-216 overexpression on MG proliferation at a 

later stage of retina regeneration (Fig. 22D,E).  At 60 hours of intense light exposure, 

there were significantly less dedifferentiated MG marked by GFP, as well as PCNA+ 

proliferating progenitors in the INL of miR-216 overexpressing Tg(tuba1a:GFP) retinas 

compared to control (Fig. 22E,F).  This suggests that the inhibitory effects of miR-216 

overexpression on the proliferation of MG and MG-derived progenitors are observed at 

later stages of regeneration, consistent with the model suppression of miR-216 is a critical 

step in both the initiation of MG dedifferentiation and the generation of proliferating 
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progenitor cells during retina regeneration. 

 

Dot1l is a direct target of miR-216 in vivo 

To investigate the molecular mechanism through which miR-216 regulates MG 

reprogramming, we used the target prediction algorithm TargetScanFish and narrowed 

down the list of candidate target genes based on their spatiotemporal expression using the 

RNA-seq transcriptome analysis in purified MG before and after retinal injury 

(unpublished data) (Lewis et al., 2005).  Among the candidate targets, Dot1l emerged as a 

potential regulator of retina regeneration, since it was previously shown that it functions 

as an activator of canonical Wnt dependent transcription in zebrafish (Mahmoudi et al., 

2010) and canonical Wnt activation is necessary for MG dedifferentiation and 

proliferation during retina regeneration (Ramachandran et al., 2011).  

There are 3 miRNA recognition elements (MREs) for miR-216 in the 3’UTR of 

dot1l mRNA (Fig. 24A).  To test whether miR-216 directly targets dot1l, we performed 

GFP reporter assays in embryos.  We cloned the dot1l 3’UTR downstream of the GFP  
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Figure 24  Dot1l is a direct target of miR-216.   
 
(A) Schematic of the reporter mRNA consisting of the coding sequence of GFP fused to the dot1l 
3’UTR.  Three predicted miRNA recognition elements (MREs) are indicated.  Predicted base-
pairing between MREs (shown in green) and the miR-216a sequence (shown in red).  (B) 1 dpf 
old embryos injected at the one-cell stage with 100pg of GFP-dot1l 3’-UTR, with or without 
100pg of miR-216.  GFP expression was apparent in embryos injected with GFP-dot1l 3’-UTR 
but was reduced in embryos co- injected with miR-216.  (C) Quantification of relative 
fluorescence in 1dpf embryos injected with GFP reporter only or miR-216 along with GFP 
reporter.  (D) 1 dpf old embryos injected at the one-cell stage with 100pg of GFP-dot1l 3’-UTR 
carrying mutations in all miR-216 MRE sites.  Embryos were injected with the mutant reporter, 
either alone or co-injected with miR-216.  (E) Quantification of relative fluorescence in 1dpf 
embryos injected with mutant GFP reporter alone, or with co-injection of miR-216.   
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coding sequence and in vitro transcribed reporter mRNAs.  We then injected the reporter  

mRNAs either alone or with co-injected miR-216 mimics into 1-cell stage zebrafish 

embryos.  At 24 hours post fertilization (hpf), GFP expression levels were significantly 

lower in the embryos co-injected with miR-216 compared to the ones injected with only 

the reporter mRNA (Fig. 24B).  This indicates that miR-216 can directly target the 

3’UTR of the dot1l mRNA.  To test whether this targeting is via the MREs predicted by 

the target algorithm, we mutated the miR-216 seed sites in all three MRE sites.  Reporter 

assays using the mutated reporter construct did not show any changes in the levels of 

GFP fluorescence upon co-injection with miR-216 (Fig. 24D,E).  This result shows that 

dot1l mRNAs can be targeted by miR-216 through the indicated MREs.  

To determine the spatial expression pattern of Dot1l, we analyzed the expression 

of Dot1l by immunohistochemistry and detected punctate localization of Dot1l protein in 

tuba1a:GFP+/PCNA+ dedifferentiated and proliferating MG after 51h of light exposure 

(Fig. 25A).  Then, to analyze the changes in expression levels of Dot1l, we used FACS to 

isolate quiescent MG in Tg(gfap:gfp) retinas and dedifferentiated MG in Tg(tuba1a:gfp) 

retinas (Fig. 25B).  qPCR analysis showed that there is ~2-fold upregulation in dot1l 

transcripts in the dedifferentiated MG compared to post-mitotic MG (Fig. 25C).  We did 

not detect changes in dot1l expression in other retinal cells.  Next, we investigated 

whether miR-216 is able to target endogenous dot1l in the retina during regeneration.  We 

injected and electroporated miR-216 mimics into the dorsal retina and exposed the fish to 

24h of constant intense light damage (Fig. 25D).  We confirmed the increased levels of 

miR-216 in miRNA mimic injected retinas (Fig. 25F).  Increased miR-216 levels led to a  
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Figure 25  miR-216 targets Dot1l in the retina during photoreceptor 
regeneration.   

(A) Dot1l (red), GFP and PCNA (blue) immunostaining on 51 hr intense light lesioned 
Tg(1016tuba1a:gfp) retinas.  Dot1l is expressed in proliferating MG.  Arrows indicate some 
GFP+/PCNA+ dedifferentiated MG that express Dot1l.  (B) Schematic for post-mitotic and 
dedifferentiated MG sorting.  For post-mitotic MG isolation, GFP+ cells were sorted from dark 
adapted undamaged Tg(gfap:gfp) retinas.  For dedifferentiated MG isolation, GFP-positive cells 
were isolated from 45 hr light lesioned Tg(1016tuba1a:GFP) retinas.  (C) Fold changes in dot1l 
levels in FACS-purified MG were determined by qPCR.  After 45h of light damage, dot1l is up-
regulated in dedifferentiated MG (GFP+) in Tg(1016tuba1a:gfp) fish.  Dot1l expression did not 
change in non-MG cells (GFP-) during regeneration.  Data represent mean +/- s.e.m from 15 
undamaged fish and dedifferentiated MG were purified from 18 light damaged fish.  (D) 
Experimental scheme.  Wild-type adult zebrafish were dark adapted. Control miRNA or miR-216 
was injected and electroporated into the left eyes before intense light exposure.  After 24 hours of 
light exposure, retinas were dissected for RNA isolation.  (E) Fold changes in dot1l levels in 
siLuc or miR-216 mimic electroporated retinas were quantified by qPCR.  After 24h of light 
damage, dot1l is downregulated in miR-216 overexpressing retinas ~20 fold.  Data represent 
mean +/- s.e.m from 3 independent experiments.  6 retinas were pooled for RNA isolation in each 
experiment.  ** p<0.01 (Student’s t-test), p=0.0093.  (F) Fold changes in miR-216 levels in siLuc 
or miR-216 mimic electroporated retinas were quantified by qPCR.  miR-216 levels were 
upregulated by 15-fold in miR-216 mimic injected retinas compared to controls.  Data represent 
mean +/- s.e.m from 6 retinas.  ONL, outer nuclear layer; INL, inner nuclear layer; GCL, 
ganglion cell layer. Scale bar 50um. 
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significant decrease (~95%) in endogenous dot1l mRNA levels, as shown by the qPCR 

analysis (Fig. 25E).  Collectively, these results indicate that miR-216 regulates dot1l in 

the adult retina. 

	

Dot1l is necessary for proliferation during retina regeneration  

 Given that excess miR-216 inhibits the dedifferentiation and proliferation of MG, 

we hypothesized that Dot1l would be required for the early phases of retina regeneration.  

To analyze the loss-of-function of Dot1l during retina regeneration, we knocked down 

Dot1l by injecting and electroporating previously characterized morpholinos (MOs) 

against dot1l into the retina prior to intense light damage (Mahmoudi et al., 2010) (Fig. 

26A).  We used the Tg(tuba1a:GFP) transgenic line to assess the dedifferentiation of 

MG, cell cycle re-entry of MG, and proliferation of MG-derived progenitors.  At 45h of 

constant intense light damage, there were significantly less dedifferentiated MG, as well 

as decreased numbers of PCNA+ proliferating progenitors in retinas electroporated with 

Dot1l MO (Fig. 26B,C).  To test for specificity and possible off target effects of MOs, we 

used a second Dot1l morpholino (MO-Dot1l-2) and again assessed the effect of Dot1l 

knock-down in the regenerating retinas after intense light damage (A.1A).  Dot1l-MO-2 

injected retinas also displayed significantly reduced numbers of PCNA+ proliferating 

neural progenitors at 45h of light damage (A.1A).   

To test whether the requirement of Dot1l is through its histone methyltransferase 

activity, we used a small molecule inhibitor of Dot1l catalytical activity, (iDot1l; 

EPZ004777), that competitively binds to the S-adenosylmethionine-binding pocket of  
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Figure 26  Dot1l is required for MG dedifferentiation and proliferation during 
retina regeneration.   

(A) Experimental scheme.  Control morpholino (MO) or Dot1l MO was injected and 
electroporated into the left eyes of Tg(1016tuba1a:gfp) zebrafish before intense light exposure 
(0h). After 45h, retinas were collected, sectioned and immunostained using antibodies against 
GFP, PCNA.  Nuclei were counterstained with TOPRO (blue).  (B) Dot1l loss-of-function 
reduced tuba1a:GFP transgene expression and the number of INL PCNA+ proliferating cells.  (C) 
Quantification of GFP+ dedifferentiated MG and PCNA+ proliferating progenitors in MO-ctl and 
MO-Dot1l electroporated retinas.  Data represent mean +/- s.e.m (n= 5-6 fish); **, p<0.01 by 
two-tailed, Mann–Whitney U test.  (D) Control vehicle (DMSO) or iDot1l (Dot1l inhibitor- 
EPZ004777) was injected intravitreally into the left eyes of Tg(1016tuba1a:gfp) zebrafish before 
intense light exposure (0h).  After 45h, retinas were collected, sectioned and immunostained 
using antibodies against GFP, PCNA.  Nuclei were counterstained with TOPRO (blue).  (E) 
Quantification of total GFP+ and PCNA+ cells.  Error bars represent  mean +/- s.e.m (n=10 fish); 
*p=0.0111; ****p < 0.0001 by two-tailed, Mann–Whitney U test.  ONL, Outer nuclear layer; 
INL, inner nuclear layer; GCL, ganglion cell layer. Scale bar 50um. 
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Dot1l (Daigle et al., 2011).  Compared to the control vehicle injected retinas, intravitreal 

injection of iDot1l led to a significant reduction in the number of dedifferentiated MG, as 

well as the number of proliferating progenitors in the INL after 45h of intense light 

damage (Fig. 26D,E).  Together, the knockdown experiments and pharmacologic 

inhibition experiments support the hypothesis that Dot1l is required for MG 

reprogramming acting as an epigenetic modifier required for dedifferentiation and 

proliferation of MG-derived neural progenitors during retina regeneration. 

 

Suppression of miR-216 is sufficient for retina regeneration through targeting Dot1l 

 Next, we investigated whether miR-216 down-regulation is sufficient to drive 

MG-dedifferentiation and the formation of neural progenitors.  To test this, we 

suppressed the miR-216 levels by injection and electroporation of antisense miR-216 

morpholinos (MO-216) in undamaged Tg(tuba1a:gfp) retinas.  At 51 hours post injection 

(hpi), we assessed whether loss of miR-216 function results in the initiation of a 

regenerative response similar to what happens after retinal damage (Fig. 27A).  

Surprisingly, while we did not detect any dedifferentiated GFP+ MG in most of the 

control morpholino injected retinas, miR-216 suppression resulted in a significant 

increase in the number of dedifferentiated MG in undamaged Tg(tuba1a:gfp) retinas 

(Fig. 27B, C).  We also detected significantly higher numbers of proliferating PCNA+ 

MG in miR-216 suppressed retinas compared to control morpholino injected retinas (Fig. 

27B, D).   

 We hypothesized that miR-216 suppression stimulates MG proliferation through 

targeting Dot1l.  Thus, co-suppressing Dot1l along with miR-216 should block MG  
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Figure 27  miR-216 suppression stimulates MG dedifferentiation and 
proliferation in the uninjured retina through regulating Dot1l.   

(A) Experimental scheme.  Undamaged Tg(1016tuba1a:gfp) zebrafish were injected and 
electroporated with control MO (n=5), miR-216 MO (n=6), or both (n=5).  Eyes were collected at 
51 h post-injection and immunostained using antibodies against GFP or PCNA.  Nuclei were 
counterstained with TOPRO (blue).  (B) miR-216 MO significantly increased the number of 
PCNA+ and GFP+ cells in the INL, while there was no significant difference between miR-216 
MO + Dot1l MO co-injected eyes and control eyes.  (C) Quantification of GFP+ dedifferentiated 
MG and PCNA+ proliferating progenitors in MO-ctl, MO-216 and MO-216 + MO-Dot1l 
electroporated retinas.  The error bars represent mean ± s.e.m.  ** p < 0.01, PCNA p-
value=0.0098 and GFP p=0.0039 by one-way ANOVA with Dunnett’s multiple comparisons test.  
ONL, Outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer. Scale bar 50um. 

 

proliferation.  To test this, we combined intravitreally injection and electroporation of 

both Dot1l and miR-216 morpholinos in uninjured Tg(tuba1a:gfp) retinas.  Compared to 

the control retinas, we no longer observed a significant increase in the number of 

dedifferentiated and proliferating MG at 51 hours post injection (Fig. 27B, D).  This 
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result demonstrates that miR-216 must be downregulated to activate Dot1l during retina 

regeneration and that Dot1l is required for the initiation of MG proliferation.   

 

Wnt/β-catenin signaling is required downstream of miR-216/Dot1l during retina 

regeneration 

 Dot1l is a histone methyltransferase responsible for H3K79me3 modification 

associated with gene activation (Feng et al., 2002; Shanower et al., 2005; Steger et al., 

2008; Van Leeuwen et al., 2002).   It was previously reported that Dot1l serves as a co-

activator Wnt/β-catenin signaling (Mahmoudi et al., 2010; Mohan et al., 2010) which is 

known to be activated during retina regeneration and is required for the formation of MG-

derived progenitors (Meyers et al., 2012; Ramachandran et al., 2011).  Since our initial 

finding showed that miR-216 suppression is necessary for MG-dependent retina 

regeneration, we wanted to test whether miR-216 suppression is also required for the 

activation of Wnt/β-catenin signaling.  We injected and electroporated miR-216 mimics 

or control miRNAs in the retinas of adult wild-type fish prior to intense light damage 

(Fig. 23A).  At 51h of light damage, β-catenin accumulation was clearly observed in MG 

associated with PCNA+ neural progenitors in control retinas.  However, no β-catenin 

accumulation was observed in miR-216 overexpressing retinas (Fig. 23B).  This led us to 

hypothesize that the miR-216/Dot1l regulatory pathway regulates retina regeneration 

through canonical Wnt signaling.  We first tested whether the proliferation defects after 

knockdown of Dot1l could be rescued by activation of Wnt signaling.  To activate Wnt 

signaling, we pharmacologically stabilized β-catenin using a glycogen synthase kinase-3β 

(GSK3β) inhibitor (Ramachandran et al., 2011).  We intravitreally injected the GSK3β  
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Figure 28  miR-216 and Dot1l regulate retinal regeneration through the Wnt/β-catenin 
pathway.  

(A) Experimental scheme.  Control morpholino or Dot1l morpholino was injected and 
electroporated into the left eyes of wild-type zebrafish, followed by either 4% DMSO or GSK3β-
inhibitor (1mM) before intense light exposure (0h).  Eyes were collected after 51 hours of intense 
light lesion and immunostained using antibodies against PCNA.  Nuclei were counterstained with 
TOPRO (blue).  (B) Dot1l MO significantly decreased the number of PCNA+ cells in the INL, 
while there was no significant difference between Dotl1l MO + GSK3β-inhibitor co-injected eyes 
and control eyes.  (C) Quantification of PCNA+ proliferating progenitors in MO-ctl+DMSO, MO-
Dot1l+DMSO, MO-ctl+ GSK3β-inhibitor and MO-Dot1l + GSK3β-inhibitor electroporated 
retinas.  Activation of Wnt signaling rescued the decrease in the number of proliferating 
progenitors upon Dot1l knockdown after 51 hours of intense light lesion.  Error bars 
represent mean ± s.e.m. (n=9-11 fish).  * p < 0.05, p-value=0.0167 (MO-ctl+DMSO vs MO-
Dot1l+DMSO) by one-way ANOVA with Dunnett’s multiple comparisons test.  (D) 
Experimental scheme.  Control morpholino or miR-216 morpholino was injected and 
electroporated into the left eyes of Tg(1016tuba1a:GFP) zebrafish, followed by either 4%DMSO 
or XAV939(10µM).  Eyes were collected at 51 h post-injection and immunostained using 
antibodies against GFP for dedifferentiated MG and PCNA for proliferating progenitors.  Nuclei 
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were counterstained with TOPRO (blue).  (E) Suppression of miR-216 by MO-216 injection 
stimulates MG proliferation, however upon co-injection with XAV939 no significant increase in 
the number of proliferating progenitors was detected.  (F) Quantification of PCNA+ proliferating 
progenitors in MO-ctl+DMSO, MO-216+DMSO, MO-ctl+ XAV939 and MO-216 + XAV939 
electroporated retinas.  Inhibition of Wnt signaling reversed the increase in the number of 
progenitors upon miR-216 knockdown after 51 hours of intense light lesion.  Error bars represent 
mean ± s.e.m (n=18-21 fish).  ** p < 0.01, p-value=0.0089 (MO-ctl+DMSO vs MO-216+DMSO) 
by one-way ANOVA with Dunnett’s multiple comparisons test.  ONL, Outer nuclear layer; INL, 
inner nuclear layer; GCL, ganglion cell layer. Scale bar 50um. 

 

inhibitor or control vehicle (DMSO) with either control MOs or Dot1l MOs prior to 

intense light damage (Fig. 28A).  At 51h of light damage, Dot1l depletion resulted in 

significantly decreased numbers of PCNA+ proliferating progenitors compared to control 

retinas (Fig. 28B).  However, co-injection of Dot1l MOs and the GSK3β inhibitor 

showed no defects in the number of neural progenitors.  Of note, injection of the GSK3β 

inhibitor alone did not elevate the regenerative response above that observed after intense 

light damage.  This suggests that Dot1l regulates MG proliferation through Wnt/ β-

catenin signaling during intense light damage induced retina regeneration. 

Finally, we investigated whether miR-216 depletion in undamaged retinas would 

induce MG proliferation through modulating Wnt/ β-catenin signaling (Fig. 28D).  We 

pharmacologically inhibited canonical Wnt signaling by injecting XAV939, a tankyrase 

inhibitor, which stabilizes Axin and eventually stimulates β-catenin degradation (Huang 

et al., 2009).  For this, we injected either XAV939 (10µM) or control vehicle (DMSO) 

along with co-injection of either control or miR-216 MO into undamaged retinas (Fig. 

28D).  Intravitreal injection of XAV939 at 10µM concentration was previously shown to 

be sufficient to prevent injury dependent β-catenin accumulation in MG (Ramachandran 

et al., 2011).  As above, miR-216 morpholino injection in undamaged retinas caused 

spontaneous proliferation of MG as detected by the presence of significantly higher 
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numbers of PCNA+ proliferating cells in the INL at 51hpi (Fig. 28E, F).  However, co-

injection of XAV939 and MO-216 no longer caused any significant increase in the 

number PCNA+ proliferating cells compared to control MOs or DMSO injected retinas.  

These results demonstrate that Wnt/ β-catenin signaling is required for spontaneous MG 

proliferation initiated by depletion of miR-216.  

 

Discussion 

	

Müller glia (MG) dedifferentiation and re-entry into cell-cycle are key events 

during retina regeneration.  In zebrafish, MG are capable of eliciting a robust 

regenerative response upon damage, while in mammals MG lack the spontaneous 

proliferative response and typcially become reactive and undergo hypertrophy 

(Bringmann et al., 2006).  Understanding the molecular mechanisms of MG activation 

during regeneration is necessary to develop therapeutic strategies for retinal diseases in 

humans.  Here, we identified a novel miRNA-mediated mechanism regulating initiation 

of retina regeneration in adult zebrafish.  We show that suppression of miR-216 in MG is 

required for dedifferentiation and proliferation upon constant intense light damage 

leading to de-repression of the H3K79 methyltransferase Dot1l which is required for 

regeneration.  Furthermore, we demonstrate that miR-216 and Dot1l regulate MG 

activation through Wnt/β-catenin signaling.  Together, our data provide a novel 

mechanism through which miR-216 serves a gatekeeper for MG dedifferentiation and 

proliferation by suppressing Dot1l during retina regeneration. 

Although many individual miRNAs have been identified that regulate cell fate in 
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development and disease, only a few miRNAs have been shown to be functionally 

involved in modulating retina regeneration (Kamya Rajaram et al., 2014a, 2014b; 

Ramachandran et al., 2010c).  We show that miR-216 is expressed in quiescent MG in 

adult zebrafish retina and must be repressed to allow MG dedifferentiation and re-entry 

into cell cycle.  Expression of miR-216 was not observed to change in non-MG cells of 

the retina.  Interestingly, miR-216 was first reported to modulate retinal gliogenesis by 

targeting snx5 (sorting nexin 5) during development (Olena et al., 2015).  miR-216 is 

suppressed in the central retina to allow MG specification through activation of Notch 

signaling.  In that model, miR-216 targets snx5 (sorting nexin 5) to block association of 

the Notch ligand Delta and prevent Delta endocytosis and thereby regulate Notch 

signaling.  It predicts that miR-216 functions in cells containing the Notch ligand Delta.  

Interestingly, we did not detect any significant changes in snx5 expression levels in 

FACS-purified MG populations before and after intense light damage (data not shown).  

In addition, a previous study showed that while Notch receptors are present in 

proliferating neural progenitors, Notch ligands were detected in cells adjacent to the 

proliferating progenitors during retina regeneration (Wan et al., 2012b).  Therefore, miR-

216 plays distinct roles during development versus regeneration regulating distinctly 

different targets.  

Previous reports have shown that it is possible to stimulate MG proliferation in 

undamaged zebrafish retinas through manipulation of various factors such as tumor 

necrosis factor α (TNFα) (Nelson et al., 2013), GSK-3β (Ramachandran et al., 2011), 

leptin, interleukin-6 (IL-6) (Zhao et al., 2014) and γ-aminobutyric acid (GABA) (Rao et 

al., 2017).  Although the interdependency of these factors is still to be determined, they 
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hold great promise as therapeutic agents to induce regenerative response in mammals.  

Here, we show that miR-216 is an endogenous inhibitor of retina regeneration and 

suppression of miR-216 is sufficient to induce a regenerative response in the absence of 

damage.  This suggests that miR-216 might be upstream of the many signaling pathways 

that are required for MG proliferation.  Indeed, stimulation of MG proliferation upon 

suppression of miR-216 was blocked by co-suppression of canonical Wnt signaling (Fig. 

28E, F).  In addition, excess miR-216 levels resulted in loss of β-catenin accumulation in 

MG after intense light damage (Fig. 23).  These findings suggest that miR-216 serves as 

an inhibitory factor in quiescent MG that needs to be suppressed to turn on canonical Wnt 

signaling and allow MG to dedifferentiate and proliferate. 

It is perhaps not surprising that epigenetic modifications accompany cell fate 

changes in MG during retina regeneration.  Analysis of DNA methylation profiles in 

quiescent MG and MG-derived progenitors have shown that many pluripotency and 

regeneration-associated genes are hypomethylated during zebrafish retina regeneration 

(Powell et al., 2013).  Interestingly, in mouse MG, these genes are also hypomethylated, 

suggesting that DNA methylation is not an epigenetic barrier for retina regeneration in 

mammals.  Accessible chromatin in mouse mature MG decreases relatively rapidly, 

coincident with the loss of neurogenic capacity in postnatal development (Jorstad et al., 

2017; Ueki et al., 2015).  This suggests that changes in histone modifications may 

underlie MG reprogramming during retina regeneration in zebrafish but the precise 

chromatin modifying enzymes have remained unknown.   

Our data support the hypothesis that miR-216 regulates MG dedifferentiation and 

proliferation through targeting the H3K79 methyltransferase Dot1l.  First, 3’UTR 



	 94	

reporter assays showed that miR-216 targets the 3’UTR of Dot1l (Fig. 24).  Second, we 

showed that Dot1l is upregulated in dedifferentiated MG compared to post-mitotic MG 

after 45hours of constant intense light damage (Fig. 25A-C).  Third, morpholino 

knockdown and inhibition of Dot1l H3K79 methyltransferase activity showed that Dot1l 

upregulation is required for MG activation during early regeneration (Fig. 26B-E).  

Lastly, suppression of miR-216 alone is sufficient to stimulate a regenerative response in 

the undamaged retina, while co-suppressing Dot1l prevented the MG proliferation. 

Previous studies in multiple species have revealed that Dot1l is the only 

methyltransferase that catalyzes the histone H3-lysine 79 (H3K79) mono-, di-, and 

trimethylation (Feng et al., 2002; Jones et al., 2008; Shanower et al., 2005; Steger et al., 

2008; Van Leeuwen et al., 2002).  It has been proposed that Dot1l-mediated H3K79 

methylation is associated with the transcription of Wnt-target genes, which is mediated 

by TCF transcription factors and the co-activator β-catenin (Clevers, 2006).  A direct 

interaction between Dotl1l and β-catenin-dependent TCF4 complexes was identified in 

zebrafish intestinal stem cells, as well as in mouse small intestinal crypts (Mahmoudi et 

al., 2010).  The hypothesis is that recruitment of Dot1l to Wnt target genes by β-catenin 

leads to H3K79 methylation and preferential activation of transcription of Wnt target 

genes.  The interaction of Dot1l with β-catenin was confirmed in Drosophila embryos by 

demonstrating the presence of β-catenin within Dot1L-containing protein complexes and 

a requirement of H3K79me3 in regulating Wnt target genes (Mohan et al., 2010).  

Additionally, in a genome-wide association study (GWAS) a Dot1l polymorphism was 

linked to reduced risk for osteoarthritis.  Further it was shown that Dot1l interacts with 

Tcf4 in articular chondrocytes and is required for Wnt-dependent chondrogenesis 
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(Castaño Betancourt et al., 2012).  In zebrafish, retinal damage including both intense 

light and mechanical damage leads to activation of Wnt/ β-catenin signaling in MG 

(Meyers et al., 2012; Ramachandran et al., 2011).  In this study, we showed that 

canonical Wnt signaling is required downstream of Dot1l activity during MG 

dedifferentiation and proliferation.  Our data show that hyperactivation of Wnt signaling 

by stabilizing β-catenin alleviates the defects due to Dot1l knockdown during retina 

regeneration (Fig. 28A, B).  Although this finding does not provide a direct interaction of 

Dot1l with β-catenin/Tcf4 components, it does support the model that Dot1l is an 

upstream regulator of β-catenin-dependent signaling during retina regeneration.  

Together, our study reports the discovery of a novel miR-216 mediated 

mechanism regulating the MG reprogramming in response to photoreceptor loss in adult 

zebrafish.  Retinitis pigmentosa and age-related macular degeneration involve 

photoreceptor dysfunction that eventually leads to loss of vision.  It will be interesting to 

test whether suppressing miR-216 levels will induce mammalian MG proliferation and 

neural progenitor production. 

 

Methods 

	

Zebrafish husbandry and adult zebrafish light lesioning 

Wild-type (AB) (Walker, 1999), Tg(1016tuba1a:gfp) (Fausett and Goldman, 

2006), Tg(gfap:gfp)mi2001 (Bernardos and Raymond, 2006) lines were maintained at 

28.50C on a 14:10 hour light:dark cycle.  All experiments with zebrafish were performed 

with the approval of the Vanderbilt University Institutional Animal Care and Use 
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Committee.  Adult zebrafish used for the experiments were between 5-12 months old.  

Constant intense light lesioning to induce cone and rod photoreceptor cell death was 

performed as previously described (Kamya Rajaram et al., 2014c).  Briefly, adult fish 

were dark adapted for 14 days, transferred to clear tanks placed between two fluorescent 

lights with light intensity at ~20,000 lux for 16h-3days.  The tank temperature was 

maintained at 30- 33°C.  

Fluorescence activated cell sorting (FACS) 

FACS was used to isolate GFP+ and GFP- cells from the retinas of undamaged 

Tg(gfap:gfp)mi2001 and Tg(1016tuba1a:gfp) fish using BD FACSAria III (BD 

Biosciences) at the VUMC Flow Cytometry Shared Resource.  Retinas were dissociated 

as previously described (Kamya Rajaram et al., 2014b) with the following changes.  After 

the retinas were dissected, they were collected in Leibovitz L-15 media (ThermoFisher 

#21083-027) and treated with 1mg/ml hyaluronidase (Sigma #H3884) at room 

temperature for 15 minutes on a rocker.  Cells from the dissociated retinas were stained 

with propidium iodide to detect dead cells.  12 adult fish were used for each FACS 

experiment.  As a quality control, sorted GFP+ cells were re-analyzed to check the purity 

of the cell population by re-sorting.   

RT-PCR 

Total RNA was isolated from FAC-sorted cells using TRIzol-LS (ThermoFisher # 

10296028).  Taqman small RNA assays (Life Technologies) were used to perform qRT-

PCR of the indicated miRNAs.  5ng of total RNA was used per RT reaction and 1.33µl of 

1:2 diluted resultant cDNA was used in 10µl qPCR reaction in technical triplicates.  
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qPCR reactions were conducted in either 96-well plates using Bio-Rad CFX96 Real-time 

system or in 384-well plates using Bio-Rad CFX384 Real-time System.  All 

quantifications were normalized to an endogenous U6 snRNA control.  Fold changes 

were calculated using the ∆∆C(t) method, where ∆ = C(t)miRNA − C(t)U6 snRNA, and 

∆∆C(t) = ∆C(t)condition1 − ∆C(t) condition2, and FC = 2−∆∆C(t).  Taqman probe #: U6 

snRNA: 001973; has-miR-216a:002220; hsa-miR-216b: 002326.  For RT-PCR of 

mRNAs, RNA was DNase treated (TURBO DNAfree kit ThermoFisher #AM1907), 

converted to cDNA using Maxima first strand cDNA synthesis kit (Thermo Scientific) 

and qPCR was performed using SYBR Green (Biorad).  All qPCR primers spanned exon-

exon junctions (IDT).  miRNA realtime PCR was perfomed using Taqman probes as per 

the manufacturer’s instructions (Life Technologies).  Relative RNA expression during 

regeneration were determined using the ΔΔCt method and normalized to 18s rRNA levels 

and U6 snRNA levels for mRNAs and miRNAs respectively.  Real time PCR was 

performed on a Biorad CFX 96 Real time system.  The following primer sequences were 

used: dot1l-qpcr-fp: 5’- CATGATGCTGCACACGAAAT-3’; dot1l-qpcr-rp: 5’-

TCTCGAAGCTCTTGGTGTCA-3’; 18srRNA-qpcr-fp: 5’-

ACGCGAGATGGAGCAATAAC-3’; 18srRNA-qpcr-rp: 5’-

CCTCGTTCATGGGAAACAGT-3’. 

Plasmid construction and embryo injections 

The dot1l 3’UTR was amplified from cDNA by PCR with the following primers: 

dot1l-3’utr-fp: 5’-AGACTTGAATTCCCTTCCAGGAACTGAGTTTAACC-3’ dot1l-

3’utr-rp: 5’- AGTCTGCTCGAGCAGCTCCACAGGTAAATGATCC-3’.  The 3’UTR 

was cloned downstream of the GFP coding sequence in the PCS2+ vector.  miRNA 
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recognition elements (MREs) within the dot1l 3’UTR were deleted using the 

QuikChange Lightning Site-Directed Mutagenesis Kit (Stratagene).  mRNAs were in 

vitro synthesized from linearized constructs using mMESSAGE mMACHINE® SP6 

Transcription Kit (Life Technologies).  In vitro transcribed RNA was purified by 

NucAwayTM Spin Columns (Life Technologies).  For reporter assays, GFP-dot1l-3’UTR 

mRNA was injected at 100pg/embryo concentration either alone or with a synthetic miR-

216a duplex (Dharmacon) at 100pg/embryo.  

Morpholino and miRNA mimic injection & electroporation 

Lissamine tagged morpholinos (MOs) (Gene Tools) were injected intravitreally 

and electroporated into adult zebrafish eyes prior to light lesioning as described 

(Thummel et al., 2008b).   The following 3'-Lissamine-tagged MOs were used: Gene 

Tools standard control MO: 5’-CCTCTTACCTCAGTTACAATTTATA-3’; Dot1 

MO: 5’-CCCAGCTATACACACAAAAAGCAGC-3’; Dot1l MO-2: 

5’AAGAGAACATTTCTCACCTCCTGGT-3’; miR-216a MO: 5’-

TCACAGTTGCCAGCTGAGATTA-3’. 

Duplex mature miRNAs (Thermo scientific) were injected and electroporated into eyes 

prior to start of light lesioning as previously described (Rajaram, 2014b).  Double 

stranded mature miRNAs were synthesized with 3’- UU overhangs for the following 

target sequences: miR-216: 5’-UAAUCUCAGCUGGCAACUGUGAUU-3’ control: 5’-

AAAAACAUGCAGAAAAUGCUG-3’ Electroporation was performed using the Gene 

Pulser XcellTM Electroporation Systems (Biorad).  
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Pharmacological treatment 

To stimulate Wnt signaling, GSK-3β Inhibitor I (Calbiochem; CAS 327036-89-5) 

was intravitreally injected at 1mM in 4%DMSO.  Wnt signaling was blocked by the 

tankyrase inhibitor/axin stabilizing agent XAV939 (Cayman chemical; 10mM stock in 

DMSO) intravitreally injected at 10µM in 4%DMSO.  For catalytic inhibition of Dot1l, 

EPZ004777 (Calbiochem; CAS 1338466-77-5) was intravitreally injected. 

Immunohistochemistry 

Adult zebrafish eyes were collected and fixed in either 4% paraformaldehyde at 

40C overnight or a fixant containing 9 parts 95% ethanol:1 part 37% formaldehyde (for 

dot1l IHC), cryoprotected in 30% sucrose/1X PBS before embedding.  10-12 micron 

sections were obtained using a cryostat (Leica), collected on charged Histobond slides 

(VWR), dried and stored at -80°C.  For IHC, slides were warmed to room temperature, 

rehydrated in 1X PBS and blocked (3% Donkey serum, 0.1% TritonX-100 in 1X PBS) 

for 1–2h at room temperature before incubating with primary antibodies overnight at 40C.  

The following primary antibodies were used: mouse anti-PCNA monoclonal antibody 

(1:500, Sigma), anti-PCNA polyclonal antibody (1:500, Abcam), rabbit anti-GFP 

polyclonal antiserum (1:1000, Torrey Pines Biolabs), mouse anti-β-catenin antibody 

(1:500, BD Bioscience) and rabbit anti-dot1l polyclonal antibody (1:200, Bethyl labs).  

After primary antibody incubation, sections were washed and incubated with secondary 

antibody and nuclear stain TOPRO 3 (1:1000, Invitrogen) at room temperature.  

Secondary antibodies were donkey anti-mouse AF488 (1:200), donkey anti-mouse 

AF647 (1:200), donkey anti-mouse Cy-3 (1:100), donkey anti-rabbit Cy3 (1:100) and 

donkey anti-rabbit AF488 (1:200)(Jackson Immuno).  Slides were washed, dried and 
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coverslipped with Vectashield (Vector labs).  Antigen retrieval was performed for β-

catenin and PCNA IHC as previously described (Kamya Rajaram et al., 2014b). 

 

Imaging and image processing 

For imaging of immunofluorescent staining, a META Zeiss LSM 510 Meta 

confocal microscope was used.  Images were processed using ImageJ software 4.13.  

Fluorescence intensity measurements were done using ImageJ software (Gavet and Pines, 

2010).  For each image, “integrated density”, “area” and “mean gray value” of the 

fli1a:eGFP+ region, as well as background, were measured.  Corrected fluorescence 

intensity of the selected region was calculated according to the formula: “Corrected 

fluorescence intensity= Integrated Density - (Area of selected region * mean fluorescence 

of background)”.  Data were represented as a mean of corrected fluorescence intensity for 

each experimental condition and statistical analyses were performed using a two-tailed 

Student's t-test.  For immunostaining and cell quantification, only retina sections that 

comprised optic nerves were used.  All cell counts were done in the central-dorsal retina, 

at a linear distance of ~300 microns from the optic nerve.  In all figures, data are 

represented as mean +/- standard error of the mean (s.e.m).  Significance was calculated 

by the non-parametric Mann–Whitney U test for cell quantifications. 
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Introduction 

	

Retinal degenerative diseases involving photoreceptor cell loss are among the 

most common eye-related disorders and currently lack therapeutic treatments that would 

endogenously replace lost neurons.  Unlike mammals, zebrafish has a robust regenerative 

response upon retinal damage.  During retina regeneration, Müller glia (MG) respond to 

retinal damage by undergoing a reprogramming event through which they re-enter the 

cell cycle, divide asymmetrically, and generate multipotent neural progenitor cells.  

Studies with various retinal damage models showed that MG-derived neural progenitor 

cells (NPCs) are capable of differentiating into any type of lost neuronal cells.  

Limited neurogenic potential of mammalian MG is apparently possible but the 

numbers of NPCs and the cell types regenerated are very restricted.  Strategies to induce 

reprogramming of mouse MG hold great potential as a therapeutic approach for retinal 

diseases.  One strategy to induce MG reprogramming in mice is to overexpress proneural 

transcription factors, such as achaete-scute complex-like 1 (Ascl1).  Ascl1 is one of the 

key regulators of MG dedifferentiation in zebrafish (Ramachandran et al., 2010b) and has 

been shown to induce expression of other genes and signaling pathways necessary for 

regeneration, including Lin28 (Ramachandran et al., 2010b), Myc (Ramachandran et al., 

2010b), Insm1a (Ramachandran et al., 2012a), canonical Wnt (Ramachandran et al., 

2012b, 2011) and Notch (Wan et al., 2012b).  However, Ascl1 is not induced in the 

mouse retina upon injury, unlike zebrafish retina regeneration (Karl et al., 2008).  

Conditional expression of Ascl1 in mouse MG failed to induce the MG reprogramming in 

the mature retina, while in young mice up to two weeks old, limited neurogenic potential 

of MG was demonstrated (Ueki et al., 2015).  Epigenetic modifications in the whole 
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retina, along with the forced expression of Ascl1, has also been used to induce MG 

reprogramming (Jorstad et al., 2017).  Intravitreal injection of the histone deacetylase 

inhibitor trichostatin-A (TSA) enabled adult mice to generate neurons from MG upon 

retinal injury.  These reports demonstrate that other factors in addition to Ascl1 are 

required to induce the neurogenic capacity of MG in mammalian retina.  However, 

therapeutic use of broad inhibitors of chromatin modifying enzymes such as TSA is 

likely to be of little use due to genome-wide effects and induction of off target dormant 

gene networks (Chang et al., 2012).  Therefore, identification of the factors sufficient to 

activate the regenerative potential of MG is crucial.  

 Zebrafish retina regeneration is an invaluable model to discover novel inductive 

mechanisms of MG reprogramming.  Although the number of regeneration-associated 

factors and signaling pathways has expanded in the past decade, our understanding of 

genome-wide transcriptional changes of MG reprogramming is limited.  Here, I provide 

high-throughput RNA-sequencing analysis of post-mitotic and dedifferentiated MG 

during constant intense light damage-induced retina regeneration.  My analysis identified 

a list of differentially expressed genes, many of which have not been studied in 

regeneration serving as a resource for further functional analysis to discover novel 

molecular mechanisms for robust retina regeneration.  
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Results 

	

FAC-sorting enriches for GFP-positive MG in the Tg(gfap:gfp) retinas 

 To identify differentially expressed genes during MG dedifferentiation, we used 

constant intense light lesioning to induce photoreceptor apoptosis in adult zebrafish 

retinas.  Retinas from Tg(gfap:gfp) adult fish were collected before and after 37 hours of 

intense light damage.  Tg(gfap:gfp) transgenic zebrafish express GFP in all MG driven by 

the GFAP (glial fibrillary acidic protein) promoter (Bernardos and Raymond, 2006).  We 

used fluorescence activated cell sorting (FAC sorting) to enrich for populations of post-

mitotic MG from undamaged MG, and dedifferentiated MG from intense light damaged 

retinas (Fig. 29A).  To test whether our tissue dissociation protocol reliably yields single 

cells, we imaged dissociated retinal cells and confirmed the presence of single cells 

including GFP-positive (GFP+) MG (Fig. 29B).  Dissociated retinal cells were analyzed 

by flow cytometry (Fig. 1C) and live GFP+ cells were FAC-sorted.  The percentage of 

GFP+ cells did not change (~15-16%) in undamaged and intense light damaged retinas.  

This confirms that at 37h of light damage, GFP fluorescence is retained in 

dedifferentiated MG of Tg(gfap:gfp) fish (K Rajaram et al., 2014).  After FAC-sorting of 

MG, we re-analyzed the sorted cell population by flow cytometry (Fig. 29D).  Our 

analysis showed that 85% of the cells were GFP+ compared to 15% GFP+ cells before 

sorting.  This demonstrates that FAC-sorting can generate an enriched population of 

GFP+ MG. 
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Figure 29  Fluorescence activated cell sorting of MG from dissociated retinas of 
Tg(gfap:gfp) yields enriched GFP+ cells.  
 
(A) Retinas from undamaged or intense light damaged (37h) Tg(gfap:gfp) fish were dissociated.  
(B) Bright-field and GFP fluorescence images of single cells dissociated from retinal tissues.  (C) 
Flow cytometry analysis of retinal cells dissociated from 37h intense light damaged Tg(gfap:gfp) 
fish.  Viable cells do not take up propidium iodide (PI-A).  Intact viable cells were gated based on 
GFP fluorescence intensity.  Gating was adjusted based on GFP- compensation control cells (not 
shown here).  Percentages for each gated population are shown.  85% of the intact cells were 
alive,  ~15% of the live intact cells were GFP+.  (F) Confirmation of the enrichment of GFP+ cells 
by flow cytometry analysis.  99.6% of the intact cells were alive based on the percentage for PI-A 
negative population.  85.8% of the intact viable cells were GFP+. 
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RNA-Seq analysis of Müller Glia during retina regeneration reveals dynamic 

transcriptome changes in response to intense light damage 

To identify specific genes that are critical for MG dedifferentiation during 

regeneration of the intense light damaged retina, we performed high-throughput RNA-

sequencing.  We collected RNA and prepared sequencing libraries from FAC-sorted MG 

of Tg(gfap:gfp) retinas before light damage (0h) and after 37h of light damage (37h).  

37h of intense light damage marks the time of cell cycle re-entry of the MG when MG 

dedifferentiate upon retinal damage (Kassen et al., 2007; K Rajaram et al., 2014).  After 

mapping the reads to the zebrafish genome assembly (Zv9) and performing pairwise 

analyses between samples, two biological replicates of each time point showed very high 

correlation (r=0.98) (Fig. 30A).  Using Principal Component Analysis (PCA), we 

determined that the mRNA profiles of MG from undamaged and intense light damaged 

retinas are distinct (Fig. 30B).  

Differential gene expression analysis was performed comparing the transcriptome 

profiles of MG from undamaged and intense light damaged retinas (Fig. 31).  We 

identified 3694 genes that were significantly up (1426/5641) or down (2268/5641) 

regulated (FDR≤0.01) by more than 2-fold in MG from 37h light damaged retinas 

compared to undamaged retinas.  Our analysis confirmed differential expression of 

previously characterized regeneration associated genes (Table 2) (Kassen et al., 2007; 

Ramachandran et al., 2012c, 2010c; Thummel et al., 2010b; Veldman et al., 2010; Wan et 

al., 2012a; Zhao et al., 2014).  

The top 20 up and down regulated genes identified many uncharacterized 

candidate factors involved in MG reprogramming (Table 3 and 4).  To validate the  
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Figure 30  Pairwise similarity and comparable principle component analysis 
(PCA) between the RNA-Seq samples.  
 
(A) Spearman correlation analysis was performed on all RNA-sequencing samples.  Replicates of 
MG at 0h (0h_1 and 0h_2) and MG from 37h light damaged retinas (37h_1 and 37h_2) had 
higher correlations (r=0.98) compared to 0h vs 37h samples (r=0.94).  (B) PCA analysis revealed 
that the transcriptome profiles of MG from undamaged retinas (0h) and light damaged retinas 
(37h) are distinct from each other. 

 

sequencing results, we examined expression of four significantly up (stm, anxa2a, mmp9, 

ctgfa) and two significantly down (coch and dkk1b) regulated genes by qPCR.  The 
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relative expression changes of these transcripts detected by qPCR agreed with those 

revealed by RNA-seq analysis, although fold changes detected by qPCR were higher 

(Fig. 32). 

 

Figure 31   Volcano plot representation of differential expression analysis of 
genes in dedifferentiated MG (37h) vs post-mitotic MG.  
 
Volcano plot showing genes significantly deregulated in dedifferentiated MG at 37h of constant 
intense light damage compared to post-mitotic MG from undamaged retinas (|logFC|≥1, 
FDR≤0.001). 
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Table 2.  Differential expression of regeneration-associated genes 

Gene Symbol  logFCa FDRb 

lin28a 8.49 1.24E-43 
ascl1a 1.98 3.73E-05 
hbegfa 4.55 4.17E-19 
insm1a -3.38 4.52E-12 
il11a 5.85 7.09E-27 
lepa 3.13 2.83E-08 
lepb 8.23 9.58E-43 
pcna 0.74 0.182 
mycbp 1.58 0.001 
tuba1a 1.10 0.031 
pax6b -1.06 0.038 
a log2Fold Change=log2(37h MG/0h MG) 
b False discovery rate 
 

Table 3.  Top 20 upregulated transcripts in MG from 37h light damaged retinas 
compared to MG prior to light damage (0h) 

Gene 
symbol 

Gene name logFCa logCPMb PValuec FDRd 

stm  starmaker 8.64 9.36 3.39E-51 9.80E-47 
anxa2a  annexin A2a 8.31 9.13 8.42E-49 1.22E-44 
mmp9  matrix metallopeptidase a  8.28 9.26 1.28E-48 1.23E-44 
clcf1 cardiotrophin-like cytokine factor 

1 
9.22 5.94 1.93E-48 1.39E-44 

lin28a lin-28 homolog A 8.49 6.63 2.15E-47 1.24E-43 
lepb leptin b 8.23 7.16 1.99E-46 9.58E-43 
txn thioredoxin 7.62 8.68 7.47E-44 3.08E-40 
adamtsl7 ADAMTS-like 7 7.62 5.96 1.43E-41 5.15E-38 
cyp27c1 cytochrome P450, family 27, 

subfamily C, polypeptide 1 
7.01 6.65 1.22E-38 3.93E-35 

tnfrsf11b tumor necrosis factor receptor 
superfamily, member 11b 

6.94 6.77 2.31E-38 6.66E-35 

dkk1a dickkopf WNT signaling pathway 
inhibitor 1a 

7.54 4.66 3.40E-38 8.91E-35 

si:ch73-
65n21.2 

 7.34 4.14 2.31E-37 5.55E-34 

adma adrenomedullin a 6.77 7.36 3.78E-37 8.39E-34 
adam8a ADAM metallopeptidase domain 

8a 
6.87 5.90 7.74E-37 1.60E-33 
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eva1bb eva-1 homolog Bb 7.10 4.92 1.71E-36 3.29E-33 
rgs5b regulator of G protein signaling 

5b 
6.49 8.17 1.06E-35 1.91E-32 

HPN hepsin 6.90 3.81 1.86E-34 3.15E-31 
ttc25 tetratricopeptide repeat domain 25 7.56 3.22 2.15E-34 3.45E-31 
a log2Fold Change=log2(37h MG/0h MG) 
b CPM=count per million 
c uncorrected p-value 
d False discovery rate 
	

	

Table 4.  Top 20 downregulated transcripts in MG from 37h light damages retinas 
compared to MG prior to light damage (0h) 

Gene symbol Gene name logFCa logCPMb PValuec FDRd 
coch coagulation factor C homolog -6.00 6.70 1.08E-31 1.30E-28 
stxbp6l syntaxin binding protein 6 

 
-6.02 4.75 3.53E-30 2.99E-27 

FQ311879.2  -7.97 2.30 5.32E-29 3.80E-26 
abi3bpb ABI family member 3 (NESH) 

binding protein b 
-5.83 4.75 5.36E-29 3.80E-26 

opn1mw1 opsin 1 (cone pigments), 
medium-wave-sensitive 1 

-6.64 2.70 1.56E-27 9.76E-25 

dkk1b dickkopf WNT signaling 
pathway inhibitor 1b 

-5.37 7.24 1.79E-27 1.08E-24 

serpinf1 serpin peptidase inhibitor, clade 
F (alpha-2 antiplasmin, pigment 
epithelium derived factor), 
member 1 

-5.45 5.30 3.16E-27 1.76E-24 

gal3st1b galactose-3-O-sulfotransferase 
1b 

-7.28 2.15 1.55E-26 7.47E-24 

cyp19a1b  -5.17 6.28 8.02E-26 3.46E-23 
rsad2 radical S-adenosyl methionine 

domain containing 2 
-6.14 2.39 7.03E-25 2.71E-22 

slc2a1a solute carrier family 2 
(facilitated glucose transporter), 
member 1a 

-4.94 9.41 1.28E-24 4.87E-22 

zgc:152791  -6.20 2.28 1.85E-24 6.76E-22 
PLEKHA4 pleckstrin homology domain 

containing, family A,member 4 
-4.59 6.55 6.99E-22 2.15E-19 

atp1b4 ATPase Na+/K+ transporting 
subunit beta 4 

-4.51 8.94 1.35E-21 4.02E-19 
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cyp2n13 cytochrome P450, family 2, 
subfamily N, polypeptide 13 

-4.85 3.29 1.88E-21 5.42E-19 

si:dkey-9c18.3  -7.63 1.14 1.97E-21 5.64E-19 
pcp4a Purkinje cell protein 4a -4.48 6.34 4.19E-21 1.16E-18 
edn3b endothelin 3b -5.10 2.43 4.20E-21 1.16E-18 
cacng1a calcium channel, voltage-

dependent gamma subunit 1a 
-6.17 1.48 5.04E-21 1.36E-18 

vegfab vascular endothelial growth 
factor Ab 

-4.48 5.65 5.86E-21 1.57E-18 

clec11a C-type lectin domain containing 
11A 

-5.01 2.57 9.51E-21 2.50E-18 

a log2Fold Change=log2(37h MG/0h MG) 
b CPM=count per million 
c uncorrected p-value 
d False discovery rate 
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Figure 32.  Validation of RNA-seq analysis. 

Fold changes in selected gene expression levels in FACS-purified MG were determined by qPCR.  
Stm, anxa2a, mmp9 and ctgfa were significantly upregulated in dedifferentiated MG (37h light 
damaged) compared to post-mitotic MG (undamaged).  Coch and dkk1b were significantly 
downregulated in dedifferentiated MG (37h light damaged) compared to post-mitotic MG 
(undamaged).  Data represent mean +/- s.e.m. from 3 independent experiments.  P-values were 
calculated for each gene (MG 0h vs MG 37h light damaged comparison) by Student’s t-test: stm 
(5.16*10-6), anxa2a (3.23*10-5), mmp9 (2.19*10-6), coch (0.7*10-3), dkk1b (0.002), ctgfa (0.001). 
y-axis in log2 scale.  

 

	

Methods 

	

Zebrafish husbandry and adult zebrafish light lesioning 

Wild-type (AB) (Walker, 1999) and Tg(gfap:gfp)mi2001 (Bernardos and Raymond, 

2006) lines were maintained at 28.50C on a 14:10 hour light:dark cycle.  All experiments 

with zebrafish were performed with the approval of the Vanderbilt University 
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Institutional Animal Care and Use Committee.  Adult zebrafish used for the experiments 

were between 5 months old.  Constant intense light lesioning to induce cone and rod 

photoreceptor cell death was performed as previously described (Kamya Rajaram et al., 

2014c).  Briefly, adult fish were dark adapted for 14 days, transferred to clear tanks 

placed between two fluorescent lights with light intensity at ~20,000 lux for 37 hours.  

The tank temperature was maintained at 30- 33°C.  

Retinal dissection and dissociation 

FACS was used to isolate GFP+ and GFP- cells from the retinas of undamaged 

Tg(gfap:gfp)mi2001 fish using BD FACSAria III (BD Biosciences) at the VUMC Flow 

Cytometry Shared Resource.  Retinas were dissociated as previously described (Kamya 

Rajaram et al., 2014b) with the following changes.  After the retinas were dissected, they 

were collected in Leibovitz L-15 media (ThermoFisher #21083-027) and treated with 

1mg/ml hyaluronidase (Sigma #H3884) at room temperature for 15 minutes on a rocker.  

Cells from the dissociated retinas were stained with propidium iodide to detect dead cells.  

12 adult fish were used for each FACS experiment. 100µm nozzle was used for sorting. 

70,000 cells were sorted into 700µl TRIzol-LS.  

RNA purification, mRNA library preparation and sequencing 

Total RNA was isolated from FAC-sorted cells using TRIzol-LS (ThermoFisher # 

10296028). RNA pellets were resuspended in 20 of RNase-free water.  The concentration 

and integrity of the extracted total RNA was analyzed by Qubit Fluorometer (Invitrogen) 

and Agilent 2100 Bioanalyzer (Applied Biosystems), respectively.  RNA with RIN value 

with 7.0 or above were used for library preparation.  Sequencing library preparations and 
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sequencing were performed by the VANTAGE at Vanderbilt University Medical Center 

using SMARTer low input RNA kit (Clontech), utilizing the polyA tail for initial 

priming. High throughput RNA sequencing was perfomed on four libraries in total, 

multiplexed in one lane of the Illumina HiSeq2500. On average 150 million 75 bp paired-

end reads were generated for each group.  

Read mapping and differential expression analysis 

The quality of the reads was assessed before and after trimming with FastQC (v0.11.2). 

Reads were mapped to the zebrafish genome Zv9 using tophat2 (v2.0.13) with bowtie2 

(v2.2.3). Htseq-count (v0.6.1p1) was used for gene-level counting. edgeR was used for 

differential expression analysis and PCA analysis. The cutoffs for log2 fold change 

(log2FC) and FDR are |log2FC|≥1 and FDR≤0.001.  

qRT-PCR analysis 

For RT-PCR of mRNAs, RNA was DNase treated (TURBO DNAfree kit ThermoFisher 

#AM1907), converted to cDNA using Maxima first strand cDNA synthesis kit (Thermo 

Scientific) and qPCR was performed using SYBR Green (Biorad).  All qPCR primers 

spanned exon-exon junctions (IDT) (Table 5).  Relative RNA expression during 

regeneration were determined using the ΔΔCt method and normalized to 18s rRNA.  Real 

time PCR was performed on a Biorad CFX 96 Real time system. 
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Table 5 Q-PCR primers used for the validation of RNA-seq 

Primer name Sequence (5’-3’) 
Q-stm-F GTCCAGCTTCAGACCAGCTT 
Q-stm-R CGGAACAAACACTGTCCGGG 
Q-anxa2a-F CATTGCTGAGCACACAAAGGG 
Q-anxa2a-R AGTCTAAGCGAGTGCGTGTT 
Q-mmp9-F CACACAGGGAGACGCTCATT 
Q-mmp9-R TAGCGGGTTTGAATGGCTGG 
Q-coch-F GGTGTTTGTTGATGGGTGGC 
Q-coch-R TCCTTGCACACTGCCTTTCT 
Q-dkk1b-F AATGACCCTGACATGATTCAGC 
Q-dkk1b-R AGGCTTGCAGATTTTGGACC 
Q-ctgfa-F TTCTTAAGATGGGCTGTGGCT 
Q-ctgfa-R GGTCGCAAACATCTCGTTCTG 
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CHAPTER V 

	

SUMMARY AND CONCLUSIONS 

	

Significance 

Since the seminal discovery of the first miRNA, lin-4, in C. elegans in 1993, over 

30,000 miRNAs are identified in over 200 species (Griffiths-Jones et al., 2006).  

Discoveries in function and biogenesis of miRNAs along with other small noncoding 

RNAs, redefined the biology of gene regulation.  These discoveries have broadened the 

view of RNA from the original “central dogma of molecular biology” in which RNA was 

mostly thought to serve a messenger role that mediates the flow of information from 

DNA to proteins.  Additionally, advances in high-throughput sequencing that identified 

miRNA populations and mapped their genomic loci helped refute the “junk DNA 

hypothesis” which proposed that more than 80% of the genome is non-functional 

(Gerstein et al., 2007; Landgraf et al., 2007; Ohno, 1972). 

miRNAs are involved in nearly all developmental and pathological processes 

(Ambros, 2003; Chen et al., 2005; Lagos-Quintana et al., 2003; Pasquinelli et al., 2000).  

In early miRNA studies, miRNAs were proposed to resemble to adjustable resistor, a 

rheostat, as in an electric circuit (Bartel and Chen, 2004).  This analogy was made based 

on the cases where miRNA target sites have combinatorial effects and protein levels of 

target mRNA decrease, but are not totally extinguished.  This proposed model suggested 

that miRNAs are only micromanagers of gene expression, mostly fine-tuning protein 
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levels.  However, the strong phenotypes achieved upon loss-of-function of major 

components of the miRNA biogenesis pathway and/or individual miRNAs have 

demonstrated that miRNAs can indeed function as crucial developmental switches 

(Bernstein et al., 2003; Flynt et al., 2007; Giraldez et al., 2006; Li et al., 2011b; Stefani 

and Slack, 2008; Suh et al., 2010; Wang et al., 2007).  

Despite the vast number of identified miRNAs with corresponding expression 

patterns, very few have actually been fully functionally characterized.  Unlike plant 

miRNAs binding to their target mRNAs with perfect complementarity, metazoan 

miRNAs most commonly form imperfect base pairs with target sequences. Although 

binding through the seed sequence is an important determinant, other factors such as 

RNA secondary structure, positions of the miRNA binding sites, 3’UTR sequence 

features surrounding target sites may also affect miRNA:mRNA interactions (Bartel, 

2009).  These variable together create difficulty developing in silico target identification 

algorithms for animal miRNAs.  Identifying the targets of individual miRNAs requires 

precise temporal and spatial analyses along with genetic manipulation of individual 

miRNA expression.   

 

Summary of Results 

	

 Research presented in this dissertation identified novel regulatory functions for 

miR-27 in craniofacial development and miR-216a in retina regeneration.  I demonstrated 

that miR-27 is a highly enriched miRNA in the pharyngeal arches and required for 

craniofacial chondrogenesis.  miR-27 loss-of-function led to nearly complete loss of 
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pharyngeal cartilage.  I demonstrated that the miR-27 loss-of-function phenotype is due to 

attenuation of proliferation and blocking differentiation of cranial neural crest cells.  I 

identified focal adhesion kinase (FAK) as a direct target of miR-27 and a regulator of 

pharyngeal arch morphogenesis in pharyngeal arches.  miR-27 suppresses FAK levels on 

the pharyngeal arch primordia, thus regulating chondrogenic differentiation.  For miR-

216a, I discovered that it functions during Müller glia dedifferentiation and proliferation 

during retina regeneration in adult zebrafish.  Cell type-specific gene expression analyses 

and in vivo manipulation of miRNA levels showed that miR-216a suppression is 

necessary and sufficient for MG proliferation.  The H3K79 methyltransferase, Dot1l is a 

target of miR-216 and is required  for retina regeneration.  Altogether, these two studies 

demonstrate a requirement for miRNAs controlling cell fate changes during development 

and regeneration.  Lastly, I completed MG-specific transcriptome analysis during the 

early phases of retina regeneration, thus serving as an invaluable resource to discover 

novel cell-autonomous factors that initiate the MG dedifferentiation and proliferation. 

 

Discussion and Future Directions 

	

Role of miR-27 in pharyngeal arch morphogenesis 

Vertebrate cranial neural crest (CNC) cells are a multipotent cell population that 

can differentiate into cartilage, bone, neurons, pigment cells and glia (Baroffio et al., 

1991).  I discovered that miR-27 is involved in chondrogenic differentiation of CNCs.  

Previous studies provided evidence for a global miRNA requirement for skeletal 

development in mice using conditional deletion of Dicer in either NC cells or early 
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chondrocytes in craniofacial cartilage (Kobayashi et al., 2008; Zehir et al., 2010). 

Blocking the miRNA biogenesis pathway with Dicer deletion led to loss of the majority 

of NC-derived craniofacial cartilage and bone.  Although these findings underlined the 

requirement for miRNAs in cartilage and bone development, only a few individual 

miRNAs were identified that regulate chondrocyte formation (Eberhart et al., 2008; 

Nakamura et al., 2011; Ning et al., 2013; Sheehy et al., 2010). 

I discovered ptk2aa (FAK) is a novel in vivo target of miR-27.  First, using GFP 

reporter assays, I showed that miR-27 is able to target two MREs on the 3’UTR of fak 

mRNA.  FAK protein levels change upon overexpression and knock down of miR-27.  

Lastly, co-suppression of FAK in miR-27 morphants was able to partially rescue the 

pharyngeal arch defects in the embryos.  Together, these findings support the model in 

which miR-27 regulates chondrogenic differentiation by suppressing FAK levels in 

CNCs. 

Interestingly, a potential role for FAK in chondrogenesis was reported previously, 

using in vitro assays (Bursell et al., 2007;  a. M. DeLise et al., 2000; Pala et al., 2008; 

Tang et al., 2013b).  These reports provided evidence that supports a mechanism in which 

FAK signaling suppresses chondrogenic differentiation with likely involvement of 

downstream RhoA/Rock signaling.  I tested a direct involvement of FAK in 

chondrogenic differentiation by overexpressing pktk2aa in embryos following two 

strategies, either injecting ptk2aa mRNA into single cell embryos, or performing mosaic 

analysis by conditionally expressing ptk2aa in CNCs.  Ubiquitous overexpression of 

ptk2aa led to early defects in embryogenesis preventing downstream analysis at later 

stages when pharyngeal arches form.  In the second strategy, limited expression in only a 
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few single cells that were overexpressing FAK prevented analysis of chondrocyte-

specific ECM markers.  In the future, it will be useful to generate conditional alleles for 

both temporal and spatial analysis of FAK overexpression using the Cre/loxP system.  

This strategy will allow analysis of potential cell-autonomous roles for FAK in CNCs in 

vivo.   

 

Role of miR-216a in MG dedifferentiation and proliferation during retina regeneration 

 MG dedifferentiation and proliferation underlies the unique regenerative capacity 

of zebrafish retinas.  Mammalian MG respond to retinal damage by undergoing reactive 

gliosis resulting in glial scars, rather than initiating a regenerative response.  

Understanding the molecular mechanisms of MG function during retina regeneration is 

crucial for developing new therapeutic approaches.  

 I discovered a miR-216 mediated mechanism that initiates MG reprogramming 

during retina regeneration.  Analysis of gene expression of purified MG populations 

before and after intense light damage showed that miR-216a is significantly 

downregulated in dedifferentiated MG.  To test if suppression of miR-216a is required for 

retina regeneration, gain-of-function analysis of miR-216a was performed.  Using the 

Tg(tuba1a:GFP) line in which transgene expression is turned on specifically in 

dedifferentiated MG, miR-216a overexpression resulted in decreased numbers of 

dedifferentiated and proliferating MG.  Interestingly, I demonstrated that miR-216 

suppression is sufficient to stimulate MG dedifferentiation and cell-cycle re-entry in the 

absence of damage.  While only a few individual miRNAs involved in retina regeneration 

have been identified (Kaur et al., 2018; Kamya Rajaram et al., 2014b, 2014a; 
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Ramachandran et al., 2010a), my finding serves as the discovery of the first miRNA 

solely regulating MG dedifferentiation.  

Using lineage tracing methods and various retinal damage models in zebrafish, 

previous reports showed that MG-derived NPCs are multipotent and able to differentiate 

into any cell type in the retina (Rebecca L Bernardos et al., 2007; Fausett and Goldman, 

2006).  Future work is needed to provide greater insight into the dedifferentiation of MG 

upon miR-216a suppression in the absence of damage.  Although I was able to show a 

significant increase in proliferating MG and dedifferentiation of MG through the 

activation of the tuba1a reporter, the neurogenic potential of the newly generated neural 

progenitor cells (NPCs) remains unknown.  

 

Epigenetic Regulation of MG dedifferentiation 

During development, as pluripotent stem cells differentiate into ‘multipotent’ 

adult stem cells and then to fully differentiated ‘unipotent’ cells, lineage-specific 

epigenetic modifications lead to the restriction of transcriptional circuits and fixation of 

the lineage fate.  This constitutes one of the reasons why differentiated cells only 

inefficiently reprogram to a more potent cell type as in nuclear reprogramming and 

transdifferentiation experiments (Takahashi and Yamanaka, 2006; Wernig et al., 2007; 

Zhou et al., 2008).  Further studies on nuclear reprogramming of somatic cells showed 

that epigenetic modifications constitute one of the major roadblocks to efficient 

reprogramming experiments and manipulation of the levels of certain chromatin 

modifying enzymes can help to increase the efficiency of cell fate changes (Onder et al., 

2012; Pasque et al., 2011; Rais et al., 2013).  In this context, epigenetic mechanisms are 
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likely involved in MG dedifferentiation during retina regeneration.  Analysis of DNA 

methylation status of pluripotency and regeneration-associated genes in post-mitotic and 

dedifferentiated MG demonstrated that that there is no significant change in DNA 

methylation status on regeneration-associated genes (Powell et al., 2013, 2012).  The 

transcriptional regulatory regions of regeneration and pluripotency-associated genes such 

as Ascl1a, Hb-egfa, lin28, Oct4 and Sox2 have low methylation levels.  Interestingly, 

mouse MG exhibited the same hypomethylated pattern on the same genes (Powell et al., 

2013).  Therefore, the lost regenerative capacity of MG cannot be based on mechanisms 

involving DNA methylation.  This suggests the involvement of post-translational histone 

modifications and chromatin modifiers during retina regeneration.  

The findings presented in this thesis suggest a mechanism by which miR-216 

regulates MG dedifferentiation and proliferation through targeting the H3K79 

methyltransferase Dot1l.  miR-216 targets the 3’UTR of dot1l by GFP reporter assays and 

Dot1l levels are affected upon miR-216 gain-of-function.  Gene expression analysis in 

purified post-mitotic and dedifferentiated MG showed that Dot1l is upregulated in 

dedifferentiated MG.  Loss-of-function analyses of Dot1l through either morpholino 

knockdown or inhibition by enzymatic activity, demonstrated that Dot1l is required for 

MG dedifferentiation and proliferation.  In addition, I provided in vivo evidence for the 

regulation of Dot1l by miR-216 during the process of MG proliferation.  While 

suppression of miR-216 alone was sufficient to stimulate a regenerative response in the 

undamaged retina, co-suppression of Dot1l prevented MG proliferation. 

Future work is needed to analyze the potential regulation H3K79 methylation 

levels by Dot1l in MG during retina regeneration.  Given that H3K79 methylation is 
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generally associated with actively transcribed genes (Feng et al., 2002; Jones et al., 2008; 

Shanower et al., 2005; Steger et al., 2008), one hypothesis is that Dot1l is required for 

maintaining the expression of regeneration-associated genes in dedifferentiating MG.  

Previous reports demonstrated that Dot1l-mediated H3K79 methylation is associated with 

the transcription of Wnt-target genes, mediated by TCF transcription factors and the co-

activator β-catenin (Castaño Betancourt et al., 2012; Clevers, 2006; Mahmoudi et al., 

2010; Mohan et al., 2010).  Additionally, a direct interaction between Dot1l and β-catenin 

was identified in zebrafish and mouse intestinal stem cells (Mahmoudi et al., 2010).  In 

this thesis, I provide evidence that canonical Wnt signaling is required downstream of 

Dot1l during retina regeneration.  Stabilization of β-catenin through small molecule 

inhibitor of GSK3β was able to rescue the proliferation defects due to Dot1l knockdown.  

Although this supports that Dot1l is an upstream regulator of β-catenin-dependent 

signaling during retina regeneration, more work is needed to show that Dot1l mediates 

H3K79 methylation on canonical Wnt target genes in MG.   Generation of zebrafish 

Dot1l specific antibodies will enable chromatin immunoprecipitation (ChIP) experiments 

to test the interaction of Dot1l with regulatory DNA regions of Wnt-target genes.  In 

addition, ChIP-sequencing for H3K79 in purified MG population would provide genome-

wide enrichment sites for the Dot1l-mediated histone modification and other potential 

downstream targets for Dot1l that might be involved in retina regeneration. 
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Conclusion 

	

In conclusion, work presented in this thesis demonstrates that miRNAs are key 

players in cell-fate transitions during pharyngeal arch morphogenesis in embryos and 

retina regeneration in adult zebrafish.  Spatiotemporal expression of miRNAs is critical 

for both normal differentiation, as well as reprogramming upon tissue damage. This work 

emphasizes that miRNAs have key instructive roles in development and regeneration, 

rather than being just micromanagers of gene expression. 
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APPENDIX 

A. Supplemental Figures 

A.1.  Time-lapse imaging of the pharyngeal arches in Tg(fli1a:eGFP)y1 embryos injected 

with MO-ctl at the single cell stage.  Imaging was performed starting at 30hpf till 48hpf.  

Anterior is to the left. (included in online version of the paper 

http://dx.doi.org/10.1016/j.ydbio.2017.06.013) 

 

A.2.  Time-lapse imaging of the pharyngeal arches in Tg(fli1a:eGFP)y1 embryos injected 

with MO-27 at the single cell stage.  Imaging was performed starting at 30hpf till 48hpf.  

Anterior is to the left. (included in online version of the paper, 

http://dx.doi.org/10.1016/j.ydbio.2017.06.013) 

 

A.3.  

	

Dot1l knock-down by an alternative morpholino injection inhibits MG proliferation during 
retina regeneration.   

Supplemental Figure 1
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(A) Experimental scheme.  Control morpholino or a second independent Dot1l morpholino 
(Dot1l-MO-2) was injected and electroporated into the left eyes of Tg(1016tuba1a:gfp) zebrafish 
before intense light exposure (0h).  After 45h, retinas were collected, sectioned and 
immunostained using antibodies against GFP, PCNA.  Nuclei were counterstained with TOPRO 
(blue).  (B) Dot1l loss-of-function reduced the number of INL PCNA+ proliferating cells.  (C) 
Quantification of PCNA+ proliferating progenitors in MO-ctl and MO-Dot1l electroporated 
retinas.  Data represent mean +/- s.e.m (n= 7-10 fish); *, p<0.05 by two-tailed Student’s t-test.  
ONL, Outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer.  Scale bar 50um. 

 

A.2	

	

β-catenin stabilization stimulates MG dedifferentiation and proliferation. 

 (A) Tg(1016tuba1a:gfp) adult fish were intravitreally injected with 1mM GSK-3β inhibitor 
(n=8) or control vehicle (DMSO) (n=4).  Eyes were collected 51h post injection and sectioned 
retinas were immunostained using antibodies against GFP for dedifferentiated MG and PCNA for 
proliferating progenitors.  Nuclei were counterstained with TOPRO (blue).  (B) Quantification of 
PCNA+ proliferating progenitors and (C) GFP+ dedifferentiated MG in control vehicle and GSK-
3β inhibitor injected retinas.  Data represent mean +/- s.e.m (n= 4-8 fish); *, p<0.05 by two-tailed, 
Mann–Whitney U test.  ONL, Outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell 
layer.  
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