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CHAPTER I 

 

INTRODUTION 

 

Conservation Biology and Genetics 

The field of conservation biology is a relatively young scientific discipline whose goals 

are to examine, analyze, and protect the Earth’s biodiversity. The field’s beginnings were 

prompted by awareness in the 20th century of issues surrounding habitat loss and fragmentation, 

pollution, and escalating human population growth. During the first half of the century, 

conservation was mostly practiced by departments of natural resources and forestry (Primack 

2002). In the 1970’s, traditional biologists began to discuss the need for a conservation science 

(Takacs 1996). The First International Conference on Conservation Biology was held at the San 

Diego Wild Animal Park in 1978 where a variety of people interested in conservation came 

together to discuss the emerging field (Gibbons 1992). In 1981, Soulé and Wilcox edited a book, 

Conservation biology: an evolutionary-ecological perspective, which is regarded as one of the 

founding documents of the field. Subsequently, Soulé (1985) published an article entitled ‘What 

is conservation biology?’ where he discussed the goals of the field to conserve the Earth’s 

biodiversity. The journal, Conservation Biology, introduced its inaugural issue in 1987 to 

provide an international voice for this growing discipline. The field of conservation biology has 

developed, over the past 25 years, into an interdisciplinary science drawing from the subjects of 

ecology, population genetics, evolution, and systematics. Studies of conservation biology often 

also incorporate a practical application through providing management strategies and suggestions 

to preserve biodiversity.  



While the field’s aims are quite broad, a main goal is to conserve endangered species 

through the maintenance of genetic diversity within species and the preservation of biological 

communities and habitats, i.e., conservation genetics (Primack 2002). Scientific studies of 

endangered species involve understanding ecological and evolutionary issues when populations 

are rare or isolated, as well as identifying populations of conservation concern through 

measuring population size, levels of genetic diversity and gene flow, and fitness of individuals. 

Population genetic and inbreeding theory connect the issues of population size, levels and 

partitioning of genetic diversity, and fitness together to describe and understand the evolutionary 

processes occurring in rare and endangered species (Figure I-1).  

Human-induced habitat destruction has led to the loss and fragmentation of populations 

of many taxa, including over 6000 plant species, causing reductions in both the number of 

populations and the size of individual populations (Wilcove et al. 1998) (Figure I-1A). Genetic 

diversity declines in small populations since heterozygosity is an inverse function of the effective 

population size, and loss of alleles due to genetic drift is more pronounced in small populations 

(Lynch et al. 1995; Young et al. 1996; Hedrick 2000) (Figure I-1B). Moreover, small and 

isolated populations are subject to inbreeding because of reduced numbers of potential mates 

(Barrett and Kohn 1991; Ellstrand and Elam 1993). Inbreeding leads to a loss of genetic diversity 

through the redistribution of alleles from the heterozygous to the homozygous state, and often, 

inbred individuals have lower fitness than outbred individuals owing to inbreeding depression 

(Keller and Waller 2002; Edmands 2007) (Figure I-1C). This fitness reduction is often due to the 

expression of deleterious recessive alleles in homozygous inbred individuals (Charlesworth and 

Charlesworth 1987). The interconnection of these factors suggests that positive feedback loops 
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exacerbating one another may lead to the demise of a population or species—the so called 

‘extinction vortex’ (Gilpin and Soulé 1986; Lynch et al. 1995). 

Conservation geneticists are interested in knowing if there are generalities that can be 

made with regard to rare species, such as whether or not reduced genetic diversity or restricted 

gene flow between populations are commonly associated with rarity and whether these aspects 

can predict population viability. Therefore, we often study various aspects of the feedback loop 

in an effort to understand why and how a population is declining. Many studies evaluate the 

effects of rarity and isolation on the genetic diversity of species by quantifying levels of genetic 

variation within and among populations with genetic markers, e.g., Song and Mitchell-Olds 

(2007); Neel (2008). Population surveys and estimates of effective or genetic population size are 

also conducted to aid in identifying populations of immediate concern, especially since 

population size and fitness are often related, e.g, Newman and Pilson (1997), Winter et al. 

(2008). Others studies investigate the consequences of habitat loss and fragmentation on 

endangered species by assessing fitness related phenotypic characteristics in populations through 

crossing studies either in the field or in controlled environments, e.g., Heiser and Shaw (2006); 

Bossuyt (2007). These different types of inquiries are often conducted independently due to time 

and monetary restrictions. However, when conducted in concert, they provide a more complete 

picture of how rarity and isolation negatively affect population viability, long term evolutionary 

potential, and how management efforts and resources are best focused.  

Population Genetics 

Levels of genetic diversity, both within and among populations, are of great interest to 

conservation geneticists since theoretical and experimental examinations have emphasized the 

importance of possessing genetic variation in order for populations to adapt to changing 
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environments (reviewed in Willi et al. 2006). In general terms, there is a trend for rare species to 

exhibit reduced genetic diversity. Hamrick and Godt (1989) reported limited genetic diversity at 

allozyme loci as a consequence of rarity in many plant species. In a large literature survey, they 

found that at the species level, geographic range (endemic, narrow, regional, or widespread) was 

a good predictor of levels of genetic diversity with endemic species having the lowest and 

widespread taxa possessing the highest genetic diversity. At the population level, widespread 

species also had greater genetic diversity than more geographically limited species.  

Hamrick and Godt’s (1989) study is often used as a compendium of allozyme genetic 

diversity in plants; such a compendium for dominant DNA markers and anonymous 

microsatellites exists as well (Nybom 2004). However, a limitation of these compendiums is that 

they do not account for phylogenetic relatedness. Felsenstein (1985) and Silvertown and Dodd 

(1996) suggest that comparisons to common congeners may minimize the confounding effects of 

phylogeny. Therefore, in order to determine if a rare species does indeed exhibit low genetic 

diversity, it is advantageous to compare genetic diversity measures in the rare species to a more 

widespread, common congener. Gitzendanner and Soltis (2000) reviewed congeneric species 

comparisons to determine if geographic distribution was related to genetic diversity measures 

when controlling for phylogenic effects. They found that, overall, rare plants had lower levels of 

genetic diversity when compared to their more widespread congeners. However, some rare 

species exhibit equivalent, and oftentimes, higher levels of diversity when compared to their 

common congeners.  

In the genus, Agastache, Vogelmann and Gastony (1987) found that measures of genetic 

variation for narrowly endemic species were higher than their geographically widespread 

congeners. Ranker (1994) found that the only known population of a rare Adenophorus periens 
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fern demonstrated high levels of allozyme genetic variability when compared to two widespread 

congeners. This high level of variability was attributed to its outcrossing mating system and 

perennial life cycle. In another narrowly endemic fern, Polystichum otomasui, genetic variability 

at 13 allozyme loci was unexpectedly high given its limited distribution in only a few valleys 

(Maki and Asada 1998). These authors also found that the sites consisted of a relatively large 

number of individuals. They posited that recent decline in the species, the large effective 

population size, and outcrossing mating system have contributed to the high levels of genetic 

diversity. The buffering effects of large population sizes and long generation times on genetic 

diversity have also been seen in animals (Kuo and Janzen 2004; Lippe et al. 2006). These studies 

suggest that life history traits and population size may play a major role in determining the 

amount of genetic variation at the population and species level.  

The partitioning of genetic variation between and within populations is also important 

when considering a conservation strategy for an endangered species. Knowledge of population 

genetic structure can give insight into population connectivity and identify populations of 

reduced or unique genetic diversity. This is particularly important if not all populations can be 

protected. In some rare species, the loss of a single population may have little impact on the 

species-wide genetic diversity, whereas in another this might significantly reduce total genetic 

variation and have implications for the survival of the species.  

The organization of genetic diversity, or population structure, can be assessed by 

measuring the proportion of total genetic variation that resides among populations, i.e. FST 

(Wright 1951), θ (Weir and Cockerham 1984) or GST (Nei 1973). Somewhat surprisingly, 

geographic range does not tend to influence measures of population structure at nuclear loci. 

Hamrick and Godt (1989) found no significant differences in allozyme measures of GST between 
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endemic, narrow, regional, or widespread taxa. Similarly, Gitzendanner and Soltis (2000) 

observed no differences in how nuclear genetic variation is partitioned within and among 

populations in their comparisons of rare and widespread plant congeners. However, for 

maternally inherited DNA markers, Duminil et al. (2007) found that narrowly restricted taxa had 

higher population structure (higher values of GST) than those regionally distributed. Other factors 

that appear to be most influential in determining population structure are mating system, for 

nuclear markers, and mode of seed dispersal, for maternally inherited markers (Duminil et al. 

2007). 

Levels and patterns of genetic diversity may also be shaped by natural hybridization, in 

which hybrids are likely to exhibit high levels of genetic diversity resulting from the mixing of 

parental genomes (Arnold 1997; Rieseberg and Wendel 1993). Thus, when a history of 

hybridization is suspected, comparisons made with congeners may not reveal the true loss of 

genetic variation. For example, if a rare species is of hybrid origin but subsequently loses genetic 

diversity, the rare hybrid could still maintain higher variation than a common congener, for some 

time. Thus, for rare or endangered species in which hybrid origin has been suggested, it is 

important to test for hybridity. In addition, introgression, the permanent incorporation of alleles 

from one species into another, can increase genetic diversity in a rare species (Arnold 1997). A 

further complicating issue with regard to hybridization and endangered species is that hybrid 

ancestry can affect the protection status of an endangered species. The listing of hybrids for the 

US Endangered Species Act has historically been a difficult undertaking (Allendorf et al. 2001). 

Hybrid ancestry is most reliably established with molecular data—biparentally and/or 

uniparentally inherited makers (Rieseberg and Ellstrand 1993), and conservation studies that use 

appropriate genetic markers may help to characterize genetic relationships between taxa when 

6 



instances of hybridization and introgression are in question (e.g. Bruneau et al. 2005). Thus, 

studies of genetic diversity and its organization should employ both nuclear (biparental) markers 

and uniparentally inherited DNA markers. 

Organellar genomes are largely uniparentally inherited (Sears 1980; Corriveau and 

Coleman 1988; Zhang et al. 2003). The traditional rule for organellar genomes, mitochondrial 

and chloroplast, in angiosperms is maternal transmission (paternal transmission in conifers) 

(Petit et al. 2005). As such, organellar DNA markers are employed in a variety of evolutionary 

applications including studies of hybridization (Rieseberg and Ellstrand 1993), phylogeography 

(Dobes et al. 2004), seed dispersal (Petit et al. 2005), and population genetics (McCauley et al. 

2003). Biologists typically accept this rule and rarely test this assumption. However, occasional 

paternal and/or biparental inheritance of organellar DNA in angiosperms has been documented 

(Hansen et al. 2007; McCauley et al. 2005; 2007). Therefore, in population genetic studies 

utilizing organellar DNA, the mode of inheritance should be verified since incorrect conclusions 

may be drawn if the organellar DNA is not strictly maternal. 

Population Size  

As mentioned previously, population size surveys and inventories are quite useful for 

identifying populations of immediate conservation concern, especially since these endeavors are 

relatively inexpensive (Primack 2002). However, this undertaking may be complicated if a 

species exhibits some level of asexual, or clonal reproduction, as do many plant species (Cook 

1983; Sipes and Wolf 1997; Esselman et al. 1999; Brzosko et al. 2002). Plants are able display 

clonal growth, in part, due to their construction: almost all plants grow through sequential 

reiteration of a basic module or structural unit (Harper 1981). This modular form of growth 

means that active meristem can always be available to reproduce these structural units; this type 
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of reproduction is vegetative since it does not involve meiosis and fertilization. Clonal growth is 

achieved through a variety of forms including the creation of bulbils or plantlets, stolons, and 

rhizomes (Moore et al. 1998). A clone is biologically defined by two terms: the genet and the 

ramet. A genet, or genetic individual, consists of all of the genetically identical members that 

derive from a single zygote (Sarukhan and Harper 1973). A ramet is an independent 

physiological individual consisting of its own shoot and root system and which is capable of 

independent survival and death (Cook 1983).  

Determining the extent of clonality, including the spatial structure and clonal diversity in 

a population, may be achieved through excavating the root system. However this method is not 

only extremely intrusive, it may incorrectly estimate the true number of individuals if root 

systems have degenerated or if ramets of the same genet have been disassociated. Therefore, the 

use of polymorphic genetic markers to distinguish individuals is advantageous given that it is a 

non-invasive sampling strategy yielding a high probability of distinguishing genets when 

sufficient markers are surveyed (Ainsworth et al. 2003).  

Populations of endangered species often have low numbers of individuals because of 

habitat reduction, but clonal growth may give the appearance of a large population even if there 

are far fewer genetic individuals. For example, a study of the rare Bartley’s reed bent grass 

(Calamagrostis porteri ssp. insperata) using allozymes, Random Amplified Polymorphic DNA 

(RAPD), and Intersimple Sequence Repeat (ISSR) markers revealed low numbers of genetic 

individuals indicating extensive clonal reproduction in four populations of this species (Esselman 

et al. 1999). Another investigation, using both Simple Sequence Repeat (SSR) and RAPD 

markers, showed that 170 apparently individual trees of the endangered Elaeocarpus 
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williamsianus across seven sites actually represented the same genetic individual (Rossetto et al. 

2004)!  

In addition to generating estimates of genetic population size, clonal studies aid in 

understanding the ecological and spatial dynamics of related individuals (Murawski and Hamrick 

1990) and how pollinator movement influences gene flow in insect pollinated species (Cook 

1983). Identifying the clonal diversity and structure of a plant population is important to 

understanding population dynamics since the genetic individual is likely the unit of selection 

(Harper 1985; Eriksson and Jerling 1990). Brzosko et al. (2002) were able to determine the 

clonal structure and diversity in three populations of a rare and endangered lady’s slipper 

(Cypripedium calceolus) using five polymorphic allozymes. They found that clonal reproduction 

had a significant impact on the genetic structure and diversity in these populations. Spatial 

structure and clonal diversity are also quite influential in species which exhibit a self-

incompatible (SI) mating system since relatedness at SI loci will reduce the number of potential 

mates (Eriksson and Jerling 1990). Therefore the identification of clonal structure and diversity 

using genetic markers gives insight into ecological and evolutionary processes in plant 

populations exhibiting such features.  

Population Fitness 

Small and isolated populations of endangered species may be subject to inbreeding 

because of reduced opportunities for mating. Consequently, such inbreeding may lead to a 

decrease in fitness relative to outcrossed individuals (inbreeding depression) due to decreased 

heterozygosity or expression of deleterious recessive alleles. Inbreeding depression or lowered 

population fitness may increase extinction risk (Newman and Pilson 1997; Saccheri et al. 1998; 

Wright et al. 2008). In addition, inbreeding depression is usually more severe in outcrossing 
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species. Husband and Schemske (1996) reviewed inbreeding depression in fifty-four plant taxa 

and found that predominately outcrossing species exhibited higher measures of inbreeding 

depression than those of predominately selfing species. Additionally, the deleterious effects of 

inbreeding depression are often more pronounced in stressful versus benign environments 

(Armbruster and Reed 2005). While small size alone is detrimental to population fitness, even 

relatively large populations separated by great distances may suffer negative fitness 

consequences since extreme isolation can inhibit gene flow from mediating the deleterious 

effects of inbreeding due to genetic drift (Keller and Waller 2004) and hinder the spread of 

advantageous mutations across populations (Rieseberg and Burke 2001). Isolated populations 

may also experience differentiation with regard to phenotypic fitness characters; these 

differences in quantitative traits are important for determining populations of immediate 

conservation concern or which populations would serve as appropriate sources for ex situ 

conservation reserves.  

Many conservation studies have accordingly investigated the fitness effects of crossing 

within and among populations to understand how rarity and isolation affect population viability 

(reviewed in Keller and Waller 2002). These studies often address the influence of population 

size and geographic proximity of populations on fitness. Frequently, studies find that there is 

increased fitness, or heterosis, in the F1 generation when gene flow is from a large to small 

population or in crosses between populations separated by large distances indicating inbreeding 

depression in those populations. Heterosis is thought to occur if inbred populations are fixed for 

different sets of deleterious recessive alleles that are masked in the F1 individuals (dominance) or 

if the F1 individuals exhibit higher levels of heterozygosity and thus higher fitness 

(overdominance). For this reason, a possible conservation strategy for increasing the likelihood 
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of survival in rare species is to introduce new genetic material into populations suffering from 

inbreeding depression, i.e., genetic rescue (Ingvarsson 2001; Tallmon et al. 2004).  

In the rare perennial, Scabiosa columbaria, van Treuren et al. (1993) found that crosses 

among populations enhanced fitness as compared to within population crosses. Self and intra-site 

crosses had significantly lower values for seed mass, germination rates, and survivorship rates 

than inter-site crosses of the extremely rare yellow pitcher plant, Sarracenia flava (Sheridan and 

Karowe 2000). In experimental crosses of the weedy perennial, Silene alba, Richards (2000) 

demonstrated that crosses among isolated sites restored germination rates, highlighting the 

importance of population connectivity and suggesting possible conservation strategies for rare 

and endangered species. Finally, Newman and Tallmon (2001) found evidence for the beneficial 

fitness effects of gene flow into experimentally fragmented populations of Brassica campestris. 

In this study, they simulated gene flow using different numbers of migrants into populations over 

five generations. In a sixth generation, they planted individuals in a common garden and 

evaluated individual fitness in the different treatments. Populations with a higher number of 

migrants per generation fared better than those with a lower number of migrants, providing 

evidence for the beneficial effects of gene flow.  

The immigration of genetically divergent individuals into a population can also lead to a 

decrease in fitness owing to the dilution of local adaptations or the disruption of favorable gene 

combinations. This decrease in fitness is termed outbreeding depression (Templeton 1986; Waser 

and Price 1989; Lynch and Walsh 1998). Waser and Price (1994) found evidence for outbreeding 

depression in the larkspur, Delphinium nelsonii, where progeny from intermediate crossing 

distances grew larger and survived longer than plants from more distant crosses. Similarly, 

Fenster and Galloway (2000) found evidence for reduced fitness in inter-population crosses of 
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the legume, Chamaecrista fasciculata, when compared to the parental fitness, indicating 

outbreeding depression. The negative fitness effects of outbreeding depression, however, may 

not be manifested until the F2 generation and beyond. The disruption of positive epistatic 

interactions among parental alleles will not occur until the F2 generation (and beyond) when 

recombination proceeds to break up co-adapted gene complexes (Lynch 1991; Tallmon et al. 

2004). Edmands (2007) reviewed evidence for inbreeding and outbreeding depression across a 

wide variety of taxa and found ample evidence for inbreeding depression. However, evidence for 

outbreeding depression was much less common in the literature; Edmands (2007) asserts that the 

experimental design of many studies does not provide for revealing outbreeding depression since 

many are limited to measuring fitness in a single F1 generation. Edmands (2007) and others 

(Tallmon et al. 2004) argue that it is important to study fitness past the F1 generation to fully 

investigate the effects of both inbreeding and outbreeding on population fitness. 

Comprehensive Studies 

The relationships between population size, genetic diversity, and fitness are of great 

importance to conservation biologists and managers. Positive correlations among these factors 

may indicate an “extinction vortex.” Thus, it is important to investigate whether and how these 

factors are connected and what role they play in the population viability of endangered species. 

Often in the case of endangered plant species, time and/or money constraints allow the study of 

only one or two of these aspects. Population estimates and surveys are relatively inexpensive but 

may require a large amount of search time, especially for relatively inconspicuous plants. If 

genetic markers are available, these studies may yield quick results; however, developing the 

high quality, polymorphic markers needed to study a population that may already be suffering 

from reduced genetic diversity is often time-consuming and expensive. Studies of the fitness 
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consequences of genetic isolation are quite informative but can take years depending on the 

biology of the organism. If there are strong correlations between the three aspects of the 

feedback loop, it may not be necessary to assess all three. Decisions of which populations are in 

need of immediate protection (in situ conservation strategies) or which populations would serve 

as a good source for genetic material (ex situ conservation strategies) could then be made in a 

timely manner using, for example, population genetic marker information (recommended by 

Center for Plant Conservation 1991; Primack 2002). 

Positive correlations have been found between population size and heterozygosity 

(Frankham 1996; Palstra and Ruzzante 2008), measures of genetic diversity and fitness (Reed 

and Frankham 2003), and population size and fitness (Newman and Pilson 1997; Reed 2005). 

The negative effects of rarity and habitat fragmentation are highlighted in a recent meta-analysis 

in which Leimu et al. (2006) reported overall positive relationships between population size, 

genetic diversity, and fitness. However, a conclusive association is not always clear since the 

variation in quantitative traits important to fitness may not be accurately revealed by neutral 

genetic variation (Lynch 1996), and some studies report non-significant or even negative 

relationships among the factors. Moreover, the sign and magnitude of these correlations may 

depend on a variety of factors including population history, mating system, life cycle, etc.  

In the rare biennial, Gentianella austriaca, a negative correlation was found between 

fitness and genetic diversity, and between population size and genetic diversity, whereas a 

positive correlation was found between population size and fitness (Greimler and Dobes 2000). 

By combining the population size with reproductive and genetic traits data, these authors 

concluded which populations were in most need of conservation. Further, Lammi et al. (1999) 

found that population size and genetic diversity were not associated with number of seeds, 
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germination rate, or seedling mass, but population size was correlated with genetic diversity in 

the regionally endangered, perennial clammy campion, Lychnis viscaria. These authors 

concluded that conservation efforts should include even the small populations with low genetic 

diversity since they showed no fitness declines—a point that may have been overlooked had only 

genetic diversity been evaluated. Thus, it is evident that to fully address the effects of habitat loss 

and fragmentation, studies should combine estimates of accurate population sizes, measurement 

of genetic diversity, and assessments of the fitness consequences of rarity.  

In this dissertation, I address these types of conservation genetic issues, including genetic 

population size, levels and patterns of genetic diversity, and fitness of populations in an 

extremely rare sunflower species. The whorled sunflower, Helianthus verticillatus Small, is a 

perennial sunflower restricted to only four locations in the United States: two in western 

Tennessee (Madison Co. and McNairy Co.), one in northeastern Alabama (Cherokee Co.), and 

one in northwestern Georgia (Floyd Co.) (Figure I-2). The species is a candidate for federal 

listing for the Endangered Species Act (ESA) and is listed as endangered by the state natural 

programs in each of the three states. It was first collected in western Tennessee in 1892 and not 

found again in the field until 1994 in Georgia (Matthews et al. 2002). In 1996 and 1998, 

populations of H. verticillatus in Alabama and Tennessee were discovered. In the fall of 2006, 

another population in McNairy Co., Tennessee, about 50 km from the first, was discovered. The 

Alabama and Georgia populations are about 3.5 km from each other whereas the Tennessee 

populations are about 350 km from the others. The species has slender rhizomes, a glaucous 

stem, leaves mostly verticillate in three’s or four’s, and ranges in height from 0.6-4.2m. H. 

verticillatus is clonal—growing in somewhat distinct clusters of stems in nature (personal 

observation). It has the diploid number of chromosomes for sunflowers: n=17 (Matthews et al. 
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2002). There is virtually no information on the historical range of H. verticillatus; the species 

may represent a narrow endemic or a relictual species that was once more extensive through this 

region.  

Since the species was not collected during most of the twentieth century, several authors 

studying an 1892 herbarium specimen speculated on its origin as an aberrant hybrid of either H. 

angustifolius L. (n=17) X H. eggertii Small (n=51) (Beatley 1963) or H. angustifolius X H. 

grosseserratus Martens (n=17) (Heiser et al. 1969). The former hybrid combination is not likely 

since H. eggertii is a hexaploid and H. verticillatus is a diploid species. However, H. 

angustifolius and H. grosseserratus are both diploid species and could represent parents of H. 

verticillatus. Matthews et al. (2002) reported on the current status of the species, concluding, 

based on morphological characters, that H. verticillatus should be considered a distinct diploid 

species. However, the United States Department of Agriculture Plant Database 

(http://plants.usda.gov) continues to list the species as a hybrid between H. angustifolius and H. 

grosseserratus. Natural hybridization and hybrid speciation is well documented in Helianthus 

with several named hybrids, stable hybrid zones, and three homoploid hybrid species in the 

genus (Heiser et al. 1969; Rieseberg 1991). Morphological characters can be unpredictable in 

how they will be expressed in hybrids (Rieseberg and Ellstrand 1993), therefore a genetic study 

of hybridization using molecular markers with known inheritance patterns should be carried out 

to either corroborate or reject the findings of Matthews et al. (2002). Since the species is a 

candidate for federal listing on the ESA, a study of hybrid ancestry may have important 

implications for the species’ listing. Specifically, hybrids have represented a concern for listing 

on the ESA, and there has been little resolution concerning the issue of whether or not they 

warrant legal protection (Allendorf et al. 2001). 
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First, I investigate patterns of genetic diversity, population structure, and hybridization, in 

H. verticillatus using 22 gene based simple sequence repeats (SSRs). Generally, primer 

development for SSR markers is laborious and time-consuming and may be prohibitively 

expensive (Zane et al. 2002, Squirrell et al. 2003). An alternative to developing an SSR library 

de novo is to search EST databases for SSRs (Kantety et al. 2002). There are hundreds of EST 

libraries for organisms available on GenBank, including a library for H. annuus L., the 

domesticated sunflower. SSRs developed from ESTs of H. annuus have proven to be more 

transferable across Helianthus species than traditionally derived anonymous SSRs (Pashley et al. 

2005), and EST-SSRs may be more highly conserved than anonymous SSRs since they are in 

genes. In this study, I will use H. angustifolius as a phylogenetic and ecological control with 

which to compare genetic diversity and population structure. The two species are in the same 

section of the genus Helianthus and grow in similar habitats—they overlap in some parts of their 

ranges. These genetic markers amplify in both species, therefore when the same loci are 

evaluated in cross-species comparisons, one can include the inherent differences in the level of 

variation from one locus to another in statistical analyses. 

Next, I study the inheritance patterns of chloroplast DNA (cpDNA) in controlled crosses 

of H. verticillatus to determine if cpDNA is indeed passed on strictly maternally as is thought to 

occur in most angiosperms. Inheritance of cpDNA can be expressed as a continuous trait ranging 

from strict maternal to strict paternal inheritance with all values of intermediate levels of DNA 

being passed from both parents (Welch et al. 2006). When both parents contribute DNA to their 

offspring, the mode of inheritance is bi-parental. DNA transmitted from the paternal donor in a 

typically maternally transmitted system constitutes paternal leakage. This can result in an 

individual who consists of a mixture of parental organellar genomes, i.e., the individuals are 
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heteroplasmic (McCauley et al. 2007). Utilizing three chloroplast SSRs, I examine 323 offspring 

haplotypes along with the respective maternal and paternal haplotypes to look for any evidence 

of non-maternal transmission of cpDNA. 

Then, I examine the genetic population size in the four known populations using EST-

SSRs. Previous reports made to the US Fish and Wildlife Service indicate that Georgia, the only 

formally protected site, contains thousands of individuals. However, this estimate was made by 

counting stalks and may significantly overestimate the number of distinct genetic individuals. 

Measurements of clonal diversity and spatial structure of clones are carried out to determine the 

extent of clonality in populations of H. verticillatus.  

Finally, I evaluate population differentiation with regard to phenotypic fitness 

characteristics of this rare sunflower and determine the potential consequences of gene flow 

among populations. The effects of rarity and isolation on the fitness of H. verticillatus 

populations are addressed by conducting controlled intra-population crosses in a common 

environment and asking 1) do the populations differ in their phenotypic fitness characteristics, 

and 2) how are these phenotypic fitness characteristics related to population genetic information? 

The potential for genetic rescue, through gene flow events among disjunct populations of 

extremely rare species, is examined by conducting inter-population crosses through the F2 

generation. In particular, questions relating to the genetic, or intrinsic, fitness consequences are 

addressed by asking: 1) is there the potential for genetic rescue as evidenced by the fitness 

outcomes of F1 crosses and 2) is there evidence for intrinsic outbreeding depression, especially in 

the F2 generation? Given these results, I discuss the implications for combining genetic marker 

information with that of controlled crosses for the management of extremely rare species. I will 

relate the results of this crossing study to the population size and genetic diversity studies.  
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In light of all of these results, I will consider the implications for conservation of this 

endangered species as well as those of combining population estimates, population genetic 

studies, and crossing experiments for the study of population viability in rare and endangered 

plant species. 
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Figure I-1. Extinction vortex schematic of the problems associated with rare and endangered 
species. Credit: Christopher G. Brown. 
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Figure I-2. Location of the four known Helianthus verticillatus populations. 
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Abstract 

 

Determining the genetic structure of isolated or fragmented species is of critical 

importance when planning a suitable conservation strategy. In this study, we use nuclear and 

chloroplast SSRs to investigate the population genetics of an extremely rare sunflower, 

Helianthus verticillatus Small, which is known from only three locations in North America. We 

investigated levels of genetic diversity and population structure compared to a more common 

congener, H. angustifolius L. using both nuclear and chloroplast SSRs. We also investigated its 

proposed hybrid origin from H. grosseserratus Martens and H. angustifolius. Twenty-two 

nuclear SSRs originating from the cultivated sunflower (H. annuus L.) expressed sequence tag 

(EST) database, and known to be transferable to H. verticillatus and its putative parental taxa, 

were used in this study thereby allowing for statistical control of locus-specific effects in 

population genetic analyses. Despite its rarity, H. verticillatus possessed significantly higher 

levels of genetic diversity than H. angustifolius at nuclear loci and equivalent levels of 

chloroplast diversity. Significant levels of population subdivision were observed in H. 

verticillatus but of a magnitude comparable to that of H. angustifolius. Inspection of multi-locus 

genotypes also revealed that clonal spread is highly localized. Finally, we conclude that H. 

verticillatus is not of hybrid origin as it does not exhibit a mixture of parental alleles at nuclear 

loci, and it does not share a chloroplast DNA haplotype with either of its putative parents.  
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Introduction 

 

The genetics of endangered species have been of great interest to both evolutionary 

biologists and conservation managers for some time (Hedrick 2001; e.g., volumes by Falk & 

Holsinger 1991; Avise & Hamrick 1996; Young & Clarke 2000). Conservation biologists are 

interested in knowing if there are generalities that can be made with regard to rare species, such 

as whether or not they typically exhibit reduced genetic diversity or restricted gene flow between 

populations, as predicted by population genetic theory when populations are small and isolated. 

While there is indeed a trend for rare species to exhibit reduced genetic diversity, some exhibit 

equivalent levels of diversity compared to their common congeners (Gitzendanner & Soltis 

2000). In order to determine if a rare species does exhibit low diversity, we must have a measure 

or standard with which to compare. Many studies of rare plants can make comparisons against 

other plant species that share similar life histories by making use of compendiums of studies of 

genetic diversity that utilize allozyme (Hamrick & Godt 1989), RAPD (randomly amplified 

DNA), or anonymous SSR (simple sequence repeat) markers (Nybom 2004). However, when 

using novel types of markers for which no compendium exists, comparisons against a common 

congener provide a useful standard against which rare species can be evaluated. Such 

comparisons minimize the confounding effects of phylogeny and life history on population 

genetic parameters (Felsenstein 1985; Karron 1987, 1991; Baskauf et al. 1994). 

In addition to considering species-wide levels of diversity, knowledge of the partitioning 

of genetic variation within and between populations, or population structure, is important when 

considering a conservation strategy for an endangered species, especially if not all populations 

can be protected. With a low level of population structure, the loss of a single population may 
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have little impact on the species-wide genetic diversity. With a high level of structure, the loss of 

a single population might significantly reduce overall genetic variation. Further, a species whose 

distribution has been reduced to small and isolated populations may be at particular risk of 

extinction due to: (1) the fixation of deleterious alleles within populations as a result of 

inbreeding due to restricted gene flow, (2) reduced genetic variation, and consequently an 

inability to adapt to a changing environment (Barrett & Kohn 1991), and/or (3) demographic or 

environmental stochasticity (Lande 1988, 1993). In fact, Lande (1988) argues that demographic 

factors may have a more immediate effect on population persistence than genetic factors. Despite 

this, Reed & Frankham (2003) found a significant positive correlation between heterozygosity 

and fitness in a meta-analysis of 34 plant and animal data sets, indicating that genetic variability 

is an important component to consider when formulating management plans. 

Levels and patterns of genetic diversity can also be shaped by natural hybridization, 

wherein hybrids might exhibit elevated levels of genetic diversity resulting from the mixing of 

parental genomes (Arnold 1997; Rieseberg & Wendel 1993). Given this possibility, comparisons 

made with a common congener may not accurately reflect the overall effects of rarity on the 

level of genetic variation found within a rare hybrid derivative. Thus, for rare or endangered 

species in which a hybrid origin has been suggested, it is important to test for hybridity. Hybrid 

ancestry is most reliably established with molecular data (Rieseberg & Ellstrand 1993; Chapman 

& Abbott 2005), and conservation studies that use appropriate genetic markers may help to 

characterize genetic relationships between taxa when hybridization and introgression might have 

occurred (e.g. Bruneau et al. 2005). Furthermore, hybrid ancestry can impact the status of 

endangered species that might otherwise be eligible for listing under the U.S. Endangered 

Species Act (ESA), as the listing of hybrids has sometimes been difficult (Allendorf et al. 2001). 
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Here we report the results of a population genetic survey of a rare and endangered sunflower 

species, Helianthus verticillatus Small, using both EST (expressed sequence tag) nuclear and 

chloroplast SSRs. Our nuclear markers are derived from the cultivated sunflower (H. annuus L.) 

EST database (http://cgpdb.ucdavis.edu) and have been found to be highly transferable across 

species within the genus Helianthus (Pashley et al. 2006). As such they are particularly useful 

for our purposes. Similarly, the chloroplast markers that we employed have been used 

successfully in species from across the Compositae (Wills et al. 2005). Thus, we were able to 

include in our survey a more widely distributed congener (H. angustifolius L.) as a phylogenetic 

and life history control whilst statistically controlling for inherent differences in the level of 

genetic variation from one locus to another. Specifically, we compare the species with regard to 

the level of standing genetic variation found at these markers and the degree to which that 

variation is partitioned among populations. Further, since H. verticillatus is thought to be clonal, 

we used EST-SSRs to determine if closely spaced stalks were indeed a single genetic individual 

or perhaps represented several individuals. This is an important issue when evaluating genetic 

effective population size from census data. Finally, we looked for a genetic signature of 

hybridization in H. verticillatus through a comparison with its putative parents, H. angustifolius 

and H. grosseserratus Martens. If H. verticillatus is a hybrid, then its genome should consist of a 

mixture of alleles from its parents. 
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Materials and Methods 

 

 

Study Species 

The whorled sunflower, Helianthus verticillatus, is an extremely rare, diploid (n = 17), 

perennial restricted to only three locations in the southeast interior of the United States: one in 

western Tennessee (35.49N, -88.72W; Madison Co.), one in northeastern Alabama (34.13N, -

85.44; Cherokee Co.), and one in northwestern Georgia (34.14N, -85.38W; Floyd Co.). This 

species is a candidate for federal listing for the Endangered Species Act (ESA) and is listed as 

endangered in each of the three states. First collected in western Tennessee in 1892, H. 

verticillatus was not found again in the field until 1994 in Georgia (Matthews et al. 2002). In 

1996 and 1998, populations of H. verticillatus in Alabama and Tennessee were also discovered. 

The Alabama and Georgia populations are about 3.5 km from each other whereas the Tennessee 

population is about 350 km from the others. The soil type in the Alabama and Georgia habitats is 

deep, poorly drained soils formed in alluvium and residuum from limestone, and the Tennessee 

soil type is silt loam from alluvial deposits of Tertiary Porters Creek clay (Matthews et al. 2002). 

Helianthus verticillatus is clonal with slender rhizomes, a glaucous stem, leaves mostly 

verticillate in three’s or four’s, prefers wet habitats, and flowers August to October. This species 

ranges in height from 0.6-4.2m, and its clones occur in somewhat distinct clusters in nature.  

There is no information available on the historical range of H. verticillatus; the species 

may represent a narrow endemic or a relictual species that was once more extensive throughout 

this region. Since this species was not collected during most of the twentieth century, several 

authors studying the 1892 herbarium specimen speculated that it might be of hybrid origin, 
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having resulted from matings between either H. angustifolius (n = 17) × H. eggertii Small (n = 

51) (Beatley 1963) or H. angustifolius × H. grosseserratus (n = 17) (Heiser et al. 1969). The 

former hybrid combination seems unlikely since H. eggertii is hexaploid and H. verticillatus is 

diploid. However, H. angustifolius and H. grosseserratus are both diploid species and might 

reasonably represent the parents of H. verticillatus. Matthews et al. (2002) reported on the 

current status of the species and concluded on the basis of several morphological characters that 

H. verticillatus should be considered to be a distinct species. However, the USDA Plant 

Database (http://plants.usda.gov/) continues to list H. verticillatus as a hybrid between H. 

angustifolius and H. grosseserratus.  

Helianthus angustifolius, a close relative of H. verticillatus, is commonly distributed over 

most of the eastern United States from New York to Florida and west to Texas. The species is 

perennial with slender or lacking rhizomes, leaves linear to narrowly lanceolate and alternate, 

usually found in moist, shady areas, and flowers September to October (Heiser et al. 1969). In 

the areas where H. verticillatus is located, H. angustifolius is the most common sunflower 

species. Helianthus grosseserratus is a perennial with short to medium rhizomes, leaves 

lanceolate to ovate and mostly opposite, found in dry to moderately wet prairies, and flowers 

August to October. The species is also commonly distributed across the eastern United States 

from New England to South Dakota and south to Texas (Heiser et al. 1969). All three species are 

members of the section Atrorubens within the genus Helianthus (Seiler & Gulya 2004), have 

overlapping distribution ranges, and are outcrossers pollinated by generalists. 

Collection of Plant Material and DNA Extraction 

Leaf material of H. verticillatus was collected from 22, 22, and 27 clusters of stalks found 

in the three known locations in Tennessee (TN), Georgia (GA), and Alabama (AL), respectively. 
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The species grows in clusters of up to five or six stalks, separated from other clusters by at least 

one meter. In order to determine if each cluster represented a single clone we collected leaves 

from two to three stalks per cluster for analysis. The total number of clusters varies among the 

populations, with about 70 in Tennessee and 30 in Georgia. In Alabama, the species is not found 

in well-defined clusters as in the other two populations—there are about 200-300 stalks. 

Individuals collected from GA were found in a single field, as was the case for the AL 

population. In contrast, the TN collection consisted of three subpatches separated by 100 to 200 

meters. 

Helianthus angustifolius leaf material was collected from two locations: (1) a population 

located about 10 km from the H. verticillatus TN population, and (2) a large continuous 

population consisting of thousands of plants, which connects the GA and AL H. verticillatus 

populations. We collected 13 individuals from the TN population and 25 individuals from 

throughout the continuous GA/AL site (hereafter referred to as the AL population). While H. 

grosseserratus is known to occur in Tennessee, difficulties in making collections from TN 

populations required us to obtain seeds from the North Central Regional Plant Introduction 

Station (NCRPIS; Ames, IA); 20 individuals of H. grosseserratus were assayed. Seeds were 

nicked with a razor blade, germinated on moist filter paper, and grown in the Vanderbilt 

University Department of Biological Sciences greenhouse. When the resulting plants were large 

enough, a leaf was collected for DNA extraction. Sampled accessions were: South Dakota 

(NCRPIS accession Ames 2742), North Dakota (Ames 22739), Wisconsin (PI 547187), Illinois 

(PI 547205) and Iowa (PI 613793). In all species, total genomic DNA was isolated from ~200 

mg of fresh leaf tissue using the Doyle & Doyle (1987) CTAB method. All DNA samples were 

quantified using a TKO-100 fluorometer (Hoefer Scientific Instruments, San Francisco).   
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Selection of Loci, PCR Conditions, and Genotyping 

Twenty-two EST-SSR loci developed for H. annuus and proven cross-transferable to H. 

verticillatus were chosen as genetic markers for this study (Pashley et al. 2006). Nineteen loci 

amplified in both H. verticillatus and H. angustifolius, and the remaining three amplified in H. 

verticillatus alone (Table II-1). All but one of the 22 EST-SSRs amplified in H. grosseserratus. 

For the survey of cpDNA (chloroplast DNA) variation and hybrid origin, three polymorphic 

chloroplast SSRs (cpSSRs: N39 and N30 [Bryan et al. 1999] and C7 [Weising & Gardner 1999]) 

were analyzed in the three species. 

SSR genotyping was performed using a modified version of the fluorescent labeling 

protocol of Schuelke (2000), as detailed in Wills et al. (2005). PCR was performed in a total 

volume of 20 µl containing 2 ng of template DNA for H. verticillatus, or 10 ng of DNA in the 

cases of both H. angustifolius and H. grosseserratus, 30 mM Tricine pH 8.4-KOH, 50 mM KCl, 

2 mM MgCl2, 125 µM of each dNTP, 0.2 µM M13 Forward (-29) sequencing primer labeled 

with either VIC, 6FAM or TET, 0.2 µM reverse primer, 0.02 µM forward primer and 2 units of 

Taq polymerase. The PCR conditions were as follows: 3 minutes at 95° C; ten cycles of 30 s at 

94° C, 30 s at 65° C and 45 s at 72° C, annealing temperature decreasing to 55° C by 1° C per 

cycle, followed by 30 cycles of 30 s at 94° C, 30 s at 55° C, 45 s at 72° C, followed by 20 m at 

72° C. 

PCR products were visualized on an MJ Research BaseStation automated DNA 

sequencer (South San Francisco, CA), and MapMarker® 1000 ROX size standards (BioVentures 

Inc., Murfreesboro, TN) were run in each lane to allow for accurate determination of fragment 

size. Cartographer v 1.2.6 (MJ Research) was used to infer individual genotypes according to the 

fragment sizes of the PCR products. 

39 



Analysis of Clonal Structure 

Leaves collected from 13 putative clones of H. verticillatus were initially genotyped for 

nine arbitrarily selected polymorphic EST-SSR loci (Table II-1 & see below). The probability 

that each cluster was a single genet and that identical genotypes were not simply obtained by 

chance, was calculated using a multilocus probability for codominant genotypes, Pcgen = (Пpi)2h , 

where pi is the frequency of each allele observed in the multilocus genotype and h is the number 

of heterozygous loci (Parks & Werth 1993; Sydes & Peakall 1998). The probability of obtaining 

n-1 more copies of that genotype by chance is given by (Pcgen)n-1,  where n is the number of times 

the genotype was observed. 

Analyses of Genetic Diversity and Population Structure 

Measures of genetic diversity, including mean number of alleles, observed and expected 

heterozygosity, and the inbreeding coefficient (f, Weir & Cockerham 1984) were calculated for 

each population of H. verticillatus and H. angustifolius using GDA v 1.0 (Lewis & Zaykin 

2001). Unbiased gene diversities (Nei 1987) were calculated for each locus in the two species 

using FSTAT (Goudet, 2001). Since H. grosseserratus seeds were obtained from NCRPIS and 

the collections were made without knowledge of specific location, this species was not included 

in the population genetic calculations but was used in the investigation of hybrid origin. 

ANOVAs were performed using JMP v. 4 (SAS Institute Inc.) to test for significant 

differences in measures of genetic diversity between H. verticillatus and H. angustifolius, 

without regard to population. We ran the models with the nineteen markers that amplified in both 

species (Table II-1). The main effects included in the ANOVA were species and locus, with the 

dependent variables being either the number of alleles at a locus or the expected heterozygosity. 

Use of the same genetic markers in both taxa resulted in increased statistical power because 
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locus-to-locus variation was explicitly included in the model. Differences between the two 

species in population level measures of diversity were also tested for statistical significance. 

These comparisons were made for number of alleles, observed and expected heterozygosity, and 

the inbreeding coefficient. We calculated Spearman’s nonparametric correlation to test whether 

there was a significant correlation among gene diversities across loci in H. verticillatus and H. 

angustifolius. The effects of species and repeat motif (i.e. tri- or tetra-nucleotide repeat) on gene 

diversity were investigated via nested ANOVA with loci nested within repeat motifs. All 

proportions were transformed with an angular transformation prior to analysis (Sokal & Rohlf 

1995). 

Population genetic structure was estimated in an analysis of molecular variance 

(AMOVA) framework (Weir & Cockerham 1984; Excoffier et al. 1992) using ARLEQUIN v. 

2.0 (Schneider et al. 2000). This hierarchical analysis of variance partitions the total variance 

into that found within and among populations. The proportion of total diversity that was found 

among populations was reported as FST. FST estimates were analyzed in a two-factor ANOVA 

with species and locus as main effects. Once again, this model allows locus effects to be included 

as a factor in the model instead of being ascribed to error, thereby increasing the power to detect 

differences between species FST (Sokal & Rohlf 1995; McCauley et al. 1995). Principle 

Coordinate Analysis (PCO) was conducted on pairwise genetic distances among all three 

populations of H. verticillatus using the covariance standardized method implemented in the 

program GENALEX (Peakall & Smouse 2002). 

Analysis of Genetic Admixture 

The Bayesian clustering program STRUCTURE (Pritchard et al. 2000) was used to test 

whether H. verticillatus represented a genetic mixture of its putative parents, H. angustifolius and 
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H. grosseserratus, as might be expected if it is a hybrid derivative. We used the admixture model 

and correlated allele frequencies parameter. In this program, one assumes K populations 

contribute to the gene pool of the sample population. In this analysis, we set K = 2 and the data 

input consisted of multilocus genotypes from individuals of all three species. For our analysis, 

the admixture model considers H. angustifolius and H. grosseserratus as the two populations and 

determines what proportion of each ‘parent’ is present in each of the H. verticillatus individuals. 

The putative parents were used as prior population information by employing the USEPOPINFO 

feature. We assume that a proportion of a proposed hybrid’s genotype is drawn from both 

population one and two (Beaumont et al. 2001; James & Abbott 2005). Results are reported as q, 

the estimated proportion of membership from a given cluster. We used a burn-in period of 

50,000 with 106 MCMC iterations. GENALEX (Peakall & Smouse 2002) was again used to 

conduct PCO using the covariance standardized method on pairwise genetic distances amongst 

all three species in order to evaluate how distinct they are from one another. 

 

Results 

 

Clonal Structure in Helianthus verticillatus 

Ample levels of genetic diversity were found at the nine nuclear loci used to detect clonal 

structure in H. verticillatus (Table II-1 & see below). Our investigation of clonal structure 

revealed that all stalks from the same cluster yielded identical multilocus genotypes, consistent 

with the hypothesis that they are members of the same genet. In fact, the probabilities that the 

same EST-SSR multilocus genotype would be encountered a second time in an obligate 

outcrosser purely by chance ranged from 9.67 x 10-8 to 4.01 x 10-11, and the probabilities that the 
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same genotype would be encountered n more times (where n is the number of ramets that we 

surveyed) ranged from 2.05 x 10-9 to 2.62 x 10-20. Thus, it is highly unlikely that these genotypes 

are the result of sexual reproduction. Rather, all stalks from each of the observed clusters most 

likely represent the same genet, and we never found the same multilocus genotype in disjunct 

clusters. This result suggests that genets can be identified in the field based solely on the 

clustering of stalks and that the genetic population size is much smaller than the number of 

stalks.  

Genetic Diversity  

In H. verticillatus, 18 of 22 EST-SSRs were polymorphic, 13 of 19 were polymorphic in 

H. angustifolius, and 19 of 21 markers were polymorphic in H. grosseserratus. Average gene 

diversities calculated without regard to the population from which samples were drawn for each 

locus in H. verticillatus and H. angustifolius are shown in Table II-1. Gene diversity ranged from 

0 to 0.82 (0.48 ± 0.06, mean ± SE) in H. verticillatus (based on 22 loci) and from 0 to 0.78 (0.34 

± 0.07) in H. angustifolius (based on 19 loci). Gene diversity was significantly positively 

correlated across shared loci (rs= 0.74; P = 0.0006). A nested two-factor ANOVA on average 

gene diversities with species and repeat motif as main effects, and loci nested within motifs, 

yielded significant results for all effects (Table II-2), and revealed that H. verticillatus had 

significantly higher average gene diversity than H. angustifolius (F1,17 = 6.95, P = 0.017). For H. 

verticillatus, the mean number of alleles per polymorphic locus was 7.7 ± 0.96 (6.3 ± 0.83, all 

loci), and for H. angustifolius, the mean number of alleles per polymorphic locus was 4.9 ± 0.72 

(3.3 ± 0.64, all loci). These differences were significant (one-way ANOVA, polymorphic loci 

F1,29 = 5.01, P = 0.033; all loci, P = 0.022). Calculations of number of alleles, observed and 

expected heterozygosity, and the inbreeding coefficient were also made with regard to 
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populations (Table II-3). Mean expected heterozygosity within populations was significantly 

higher in H. verticillatus than in H. angustifolius (one-way ANOVA HE, F1,3 = 30.94, P = 0.012). 

The other measures of diversity (number of alleles, observed heterozygosity, inbreeding 

coefficient) did not differ significantly between the two species. 

Twelve unique chloroplast haplotypes were found in the three populations of H. 

verticillatus, whereas eight were found in the two populations of H. angustifolius. Among all the 

H. grosseserratus individuals, six unique chloroplast haplotypes were found. None of these 

haplotypes were shared between populations or species, and measures of chloroplast genetic 

diversity did not differ between H. verticillatus and H. angustifolius (Table II-4).  

Population Structure 

The H. verticillatus populations were moderately differentiated in terms of both nuclear 

and chloroplast diversity (FSTnuc = 0.118, P < 0.0001; FSTcp = 0.620, P < 0.0001). The two H. 

angustifolius populations were somewhat more differentiated with FSTnuc = 0.207 (P < 0.0001) 

and FSTcp = 0.700 (P < 0.0001). These nuclear and chloroplast measures of population 

differentiation are similar to values reported in other studies of plant populations (Petit et al. 

2005). The two-factor ANOVA conducted on twelve common, polymorphic loci revealed 

variation among loci, but not among species for FSTnuc (locus effect F11,11 = 2.84, P = 0.049; 

species effect F1,11 = 0.23, P = 0.63). Pairwise values, all of which were significantly different 

from zero (P < 0.0001), were as follows: Georgia and Alabama (FSTnuc = 0.083 and FSTcp = 

0.589), Tennessee and Georgia (FSTnuc = 0.146 and FSTcp = 0.389), Tennessee and Alabama 

(FSTnuc = 0.128 and FSTcp = 0.814). Subdividing the three patches of the TN population revealed 

slight but significant differentiation in nuclear markers among these patches (FSTnuc = 0.048, P < 

0.0323) and greater differentiation for chloroplast markers, (FSTcp = 0.432, P < 0.0001). The 
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PCO carried out on H. verticillatus revealed some overlap between individuals from GA and AL, 

whereas the TN population formed a distinct cluster, separated along PCO1 (PCO 1: 10.0%, 

PCO 2: 7.2%; Figure II-1A). 

Several loci in each of the H. verticillatus and H. angustifolius populations were found to 

be significantly out of Hardy-Weinberg equilibrium. Among the three populations of H. 

verticillatus five loci were consistently out of Hardy-Weinberg: BL0001, BL0008, BL0010, 

BL0018, and BL0027. Loci significantly out of Hardy-Weinberg equilibrium for H. angustifolius 

were BL0018 and BL0025. We used ARLEQUIN to calculate FST across loci with and without 

the assumption of Hardy-Weinberg equilibrium. Values of FST were only slightly different in 

both cases (i.e. H. verticillatus FSTnuc = 0.118 vs. FSTnuc = 0.113 respectively), and in no instances 

did the level of significance change. A test for linkage disequilibrium was not carried out on the 

data as a rejection of the linkage test could be due to departures from Hardy-Weinberg 

equilibrium (Excoffier & Slatkin 1998). Furthermore, with the large number of alleles per locus 

and large number of loci, a likelihood ratio test of linkage disequilibrium may not be valid due to 

a small number of expected individuals per genotypic class (Schneider et al. 2000). However, 

because the number of loci exceeds the number of chromosomes (17), undoubtedly some 

markers occur on the same linkage group. 

Genetic Admixture in Helianthus verticillatus 

The three species under consideration shared equivalent numbers of nuclear SSR alleles 

with each other. The mean number of shared alleles per locus was 1.79 ± 0.31 between H. 

verticillatus and H. angustifolius, 2.09 ± 0.20 between H. verticillatus and H. grosseserratus and 

1.50 ± 0.31 between H. angustifolius and H. grosseserratus. For one locus, BL0022, H. 

verticillatus and H. angustifolius were fixed for different alleles. On the other hand, H. 
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grosseserratus was polymorphic for this locus exhibiting four alleles, including the H. 

verticillatus allele. As noted above, each population of the three species possessed unique sets of 

chloroplast haplotypes. 

Genetic admixture analysis indicated that H. verticillatus is not a hybrid derivative of H. 

angustifolius and H. grosseserratus. The proportion of population membership of each species 

assigned by STRUCTURE using K=2 was 99.8% of the H. angustifolius individuals in one 

population, and 99.4% and 99.8% of H. grosseserratus and H. verticillatus individuals in the 

other. Therefore using a model with two groups corresponding to the two putative parents, all H. 

verticillatus individuals were assigned into the cluster with H. grosseserratus, suggesting that H. 

verticillatus is more closely related to H. grosseserratus than to H. angustifolius. It is important 

to note that, when using K = 3, H. verticillatus no longer groups with H. grosseserratus; rather, it 

formed a distinct cluster, indicating that H. verticillatus is genetically distinct from both H. 

grosseserratus and H. angustifolius. A PCO of all individuals from the three species also 

demonstrated these species are genetically distinct, with no overlap of H. verticillatus individuals 

with either of the putative parental clusters (PCO 1: 26.3%, PCO 2: 6.9%; Figure II-1B). 

 

Discussion 

 

Levels and Patterns of Genetic Diversity 

Despite the general expectation of reduced genetic variation in a rare species, Helianthus 

verticillatus does not exhibit a reduction in genetic diversity at either the population or the 

species level relative to its more common congener, H. angustifolius. In fact, for nuclear EST-

SSRs, H. verticillatus has significantly higher levels of gene diversity than does H. angustifolius. 
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While this is not a common result, Gitzendanner and Soltis (2000) demonstrated that endangered 

species sometimes exhibit levels of diversity as high as, or higher than, a common congener (e.g. 

in the genera Agastache [Vogelmann & Gastony 1987], Adenophorus [Ranker 1994] and 

Daviesia [Young & Brown 1996]).  

Ellstrand and Elam (1993) proposed that high levels of genetic diversity might be 

expected in rare species assuming they consist of relatively large populations. While the accurate 

determination of population sizes can be difficult in clonal species in general, the large number 

of available EST-SSR markers made the determination of clonal identity straightforward in TN 

and GA. We genotyped 2-3 stalks from 13 putative genets and found that all stalks within an 

observed cluster exhibited the same nine-locus genotype indicating that clonal identity can be 

reliably assessed by eye when the species is found in clusters. The number of distinct clusters in 

TN is about 70, whereas the GA population contains around 30. Because the clusters are less 

well-defined in AL, an estimate of the number of genets is more difficult to make; this 

population is, however, not likely to be large, as there are only a few hundred stalks, and some 

fraction of these are likely to be ramets of the same genet. Thus, large population size does not 

seem to be a likely explanation of the relatively high level of diversity present in this species.  

An alternative explanation of the relatively high diversity in H. verticillatus is that the 

widespread H. angustifolius exhibits unexpectedly low diversity. However, gene diversity in H. 

verticillatus does not differ significantly from the extremely widespread common sunflower, H. 

annuus. In this latter species, average gene diversity for the same 19 EST-SSRs, based on data 

from 13 populations (52 individuals in total), was 0.57 ± 0.02 (range 0.45 to 0.70; CH Pashley 

and JM Burke, unpublished data), as compared to 0.48 in H. verticillatus (two-factor ANOVA 

with species and locus as effects; F1,18 = 2.65, P = 0.12). While we did not do a formal statistical 
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comparison with H. grosseserratus because of differences in the way the samples were obtained, 

it is worth noting that gene diversity in H. verticillatus did not differ markedly from that of H. 

grosseserratus at the nineteen loci (0.48 vs. 0.44, respectively). Because we have no information 

concerning the historical distribution or population size of H. verticillatus, we have no way of 

knowing how long it has been since the species became rare. When combined with the presently 

small population sizes, the relatively high levels of genetic diversity in H. verticillatus may 

indicate that this species has not been rare for a long time, especially when we consider that it is 

a clonal perennial (see below). 

Another explanation for the relatively high levels of genetic variation exhibited by H. 

verticillatus is that it is of hybrid origin, as higher levels of genetic diversity may result from a 

mixing of parental alleles. Hybridization often plays a significant role in the evolution and 

speciation of plants (Arnold 1997; Rieseberg 1997), and its role in the evolution of the annual 

Helianthus species has been studied extensively (e.g., Heiser 1947; Rieseberg 1991; Rieseberg et 

al. 1995, 1996). Some Helianthus species freely hybridize in the wild, resulting in hybrid 

swarms, and three homoploid hybrid sunflower species have been reported (Rieseberg 1991). 

Based on our SSR data, however, H. verticillatus does not appear to be the product of 

hybridization between H. angustifolius and H. grosseserratus, as was proposed by Heiser et al. 

(1969). The STRUCTURE analysis with K = 2 places H. angustifolius into one population, 

whereas H. grosseserratus and H. verticillatus correspond to another. This result clearly 

indicates that H. verticillatus does not exhibit mixed ancestry as would be expected in the case of 

a hybrid swarm, as individuals of hybrid origin would likely consist of a mixture of the genomes 

of each of its parents. When combined with the findings of Matthews et al. (2002), who 

concluded from morphological evidence that H. verticillatus should be considered a distinct 

48 



species, our data suggest that H. verticillatus represents a good taxonomic species of non-hybrid 

origin. While introgressive hybridization could account for the high levels of heterozygosity 

observed in this study, our analysis likewise failed to provide any evidence of introgression.  

A final possibility is that the unexpectedly high levels of genetic variation in H. 

verticillatus result from the fact that relatively few generations have passed since it became rare. 

Helianthus verticillatus is a clonal perennial and, because of these life history attributes, 

populations may have not experienced extensive loss of variation due to the effects of small 

populations such as genetic drift and inbreeding. While nothing is known of the prior history of 

the species, FSTnuc may give insight into the historical distribution. The number of populations of 

H. verticillatus is very low (only three are known), and one of these is quite disjunct from the 

other two. Hence, gene flow between TN and GA/AL is probably rare. Despite this, there is only 

modest genetic differentiation among populations (FSTnuc = 0.118). It is therefore reasonable that 

a larger number of populations existed in a more continuous range in the past, but the species has 

experienced severe reduction in population numbers due to the removal of suitable habitat. In 

fact, other plant species associated with H. verticillatus populations are considered to have strong 

prairie affinities (e.g. Hypericum sphaerocarpum Michaux, Silphium terebinthinaceum Jacq., 

Andropogon gerardii Vitman), and fire suppression and conversion of large tracts of land to 

farmland during European settlement may have significantly reduced the prairie habitat that was 

once present in this region (Allison 1995). Another possible explanation is that H. verticillatus 

represents a historically narrow endemic, and one of the complexes (TN or GA/AL) has recently 

been derived from the other. However, we did not see evidence for a recent bottleneck in the 

form of loss of diversity associated with a founder event. In any case, genetic divergence is not 
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as high as might be expected for disjunct populations with a long history of isolation, especially 

when compared to estimates of population structure in H. angustifolius (FSTnuc = 0.207). 

On the Utility of EST-SSRs in Evolutionary Genetics 

This study is unique in that it involves a population genetic survey of an endangered plant 

species based on a large number of EST-SSRs. Compared to traditional methods of SSR 

development which are laborious and expensive (Zane et al. 2002, Squirrell et al. 2003), the 

transfer of SSRs from a species with an existing EST database to an endangered species is far 

less time consuming and costly. In addition, since EST-SSRs are more transferable across 

taxonomic boundaries than are anonymous SSRs (Pashley et al. 2006; Varshney et al. 2005), one 

can survey two or more taxa with a common set of genetic markers, thereby allowing for the 

statistical control of locus-specific effects when comparing estimates of genetic diversity and/or 

population structure. Indeed, if we had conducted a one-way ANOVA (accounting only for the 

effect of species identity) on genetic diversity in H. verticillatus and H. angustifolius, the means 

would not have been statistically different from one another (F1,36 = 1.60, P = 0.21). Thus, the 

higher statistical power afforded by the use of common markers across taxa allowed us to detect 

real differences between these species that would have otherwise gone undocumented.  

A point to consider when using EST-SSRs is that selection on these loci could affect 

population genetic parameters. However, Woodhead et al. (2005) found that population 

differentiation does not seem to be affected by selection as FST values based on EST-SSRs were 

similar to those based on anonymous SSRs and AFLPs (amplified fragment length 

polymorphisms). Given that EST-SSRs appear, on average, to be neutral, they can be used to 

study the effects of demography on the standing level of genetic variation, a common goal in 

conservation genetics. Such insights are a prerequisite for understanding the potential influence 
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of rarity and/or fragmentation on adaptive variation, which is likely to play a role in population 

persistence.  

Another possible concern with SSRs in general has to do with the occurrence of null 

alleles (i.e. alleles that fail to amplify because of mutations in the primer sites flanking the SSR 

repeat; Callen et al. 1993). Null alleles could account, at least in part, for the significant 

heterozygote deficits that were observed at some loci. Other explanations for the deviations may 

be selfing or biparental inbreeding due to spatial structuring. Sunflowers typically exhibit 

sporophytic self-incompatibility with rare selfing seen in the annuals but none encountered in the 

perennials (CB Heiser, personal communication). Furthermore, greenhouse work with all three 

of these species has resulted in no seed set from selfed flower heads (JR Ellis, unpublished data). 

It seems more likely that this pattern results from biparental inbreeding due to spatial structuring 

and non-random mating within populations. Recall that in the Tennessee population, a small but 

significant amount of micro-population structure was seen.   

An additional finding of this study was that gene diversity in H. verticillatus and H. 

angustifolius was dependent upon the repeat motif of the locus in question. In the two factor 

nested ANOVA, repeat motif had a significant effect on genetic diversity, with tri-nucleotide 

repeats exhibiting higher genetic diversity than tetra-nucleotide repeats (0.74 vs. 0.30, F1,17 = 

27.77, P < 0.0001). This point is particularly important in the context of cross-species 

comparisons, as the use of different loci in different taxa could easily bias estimates of genetic 

diversity. This possibility highlights the value of being able to use the same genetic markers 

across related species as different loci are likely to have quite different evolutionary histories. 

Conclusions and Conservation Implications 
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It is clear that the expectation of reduced genetic diversity in rare species is not always 

borne out, and low genetic diversity does not appear to be an immediate concern for H. 

verticillatus at this time. Furthermore, populations of H. verticillatus exhibited moderate levels 

of population differentiation using presumably neutral markers. Since these populations are 

geographically distinct and vary somewhat in ecological conditions, they are likely to be at least 

as differentiated at adaptive loci, if not more. Therefore, to preserve maximum species diversity, 

all three populations of H. verticillatus should be protected. Habitat loss is probably the cause of 

rarity in H. verticillatus as the species seems to be adapted to prairie habitats which have 

declined since European settlement (Matthews et al. 2002). Thus, habitat protection is of great 

concern and is probably the most immediate action to take at this time to preserve the species. 

Finally, the species is a candidate for federal listing on the U.S. Endangered Species Act (ESA), 

and our results have important implications for the species’ listing. More specifically, there has 

been little resolution concerning the issue of whether or not hybrids should warrant legal 

protection under the ESA (Allendorf et al. 2001). However, H. verticillatus does not appear to be 

a hybrid between the two proposed taxa; as such the hybrid issue should not inhibit its listing.  
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Tables and Figures 

 

Table II-1. Locus descriptions and mean values for Nei’s gene diversity (1987) for H. verticillatus and H. angustifolius.  
Locus Type of Repeat Location H. verticillatus H. angustifolius 

BL0001 tri UTR 0.711 0.336 
BL0002AB tetra UTR 0.133 N/A 
BL0003 tri Coding 0.689 0.704 
BL0004B tri Coding 0.347 0.090 
BL0005B tri UTR 0.817 0.699 
BL0006AB tetra UTR 0.656 N/A 
BL0007B tri Coding 0.609 0 
BL0008B tri Coding 0.777 0.646 
BL0010 tri Coding 0.703 0.508 
BL0011 tetra UTR 0.586 0 
BL0012B tetra UTR 0.222 0 
BL0013A tetra UTR 0.659 N/A 
BL0014 tri Coding 0 0.213 
BL0017B tri UTR 0.533 0.442 
BL0018BC tri Coding 0.738 0.784 
BL0020 tri Coding 0.493 0.529 
BL0022 tri UTR 0 0 
BL0023 tri UTR 0.381 0.419 
BL0025 tetra Coding 0.651 0.400 
BL0027 tri Coding 0.820 0.767 
BL0029 tetra UTR 0 0 
BL0030 tetra UTR 0 0 
Mean   0.478 ± 0.06* 0.344 ± 0.07* 

*Mean values ± SE are significantly different from each other at the P < 0.05 level, two-factor ANOVA, see text for details. 
AEST-SSRs that amplified in H. verticillatus only. BNine EST-SSRs genotyped for analysis of clonal structure. 
CEST-SSR that did not amplify in H. grosseserratus. 



Table II-2. Two factor nested ANOVA of Nei’s gene diversity (1987).   
 

Source Degrees of 
Freedom 

Sum of 
Squares 

F Ratio P 

Species 1 0.360 6.95 0.017 
Repeat Motif 1 1.42 27.8 <0.0001 

Locus[Repeat Motif] 17 3.08 4.42 0.002 
Species X Repeat 1 0.079 1.54 0.231 

Error 17 0.870   
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Table II-3. Expressed sequence tag-simple sequence repeat (EST-SSR) diversity in three populations of H. verticillatus and two populations 
of H. angustifolius. 
 

Species Population (N) A HO HE f 
H. verticillatus  TN  (22) 4.3(0.54) 0.35(0.05) 0.46(0.07) 0.23(0.14) 

 GA (22) 4.5(0.57) 0.40(0.08) 0.51(0.07) 0.22(0.04) 
 AL (27) 3.5(0.43) 0.32(0.01) 0.46(0.07) 0.32(0.10) 

H. angustifolius  TN (13) 2.8(0.45) 0.23(0.05) 0.34(0.07) 0.39(0.08) 
 AL (25) 3.6(0.43) 0.28(0.04) 0.36(0.06) 0.14(0.06) 

Mean H. verticillatus  4.1(0.31)* 0.36(0.02) 0.48(0.02)* 0.26(0.03) 
Mean H. angustifolius  3.2(0.40)* 0.26(0.03) 0.35(0.01)* 0.27(0.13) 
Values are averaged over all loci in each population: A, mean number ± SE of alleles per locus; HO, mean observed                                                          
heterozygosity ± SE; HE, mean expected heterozygosity ± SE; f, within population coefficient of inbreeding. *Mean                                                                 
values significantly different from one another, P < 0.05; two-factor ANOVA, species & locus effects (see text for details).  
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Table II-4. Chloroplast simple sequence repeat (SSR) diversity in three populations of H. verticillatus and two populations of H. 
angustifolius. 
 

Species Population (N) Haplotypes HE 
H. verticillatus  TN  (22) 4 (A,B,C,D) 0.29 

 GA (22) 6 (E,F,G,H,I,J)  0.55 
 AL (27) 2 (K,L) 0.05 

H. angustifolius  TN (13) 5 (M,N,O,P,Q) 0.31 
 AL (25) 3(R,S,T) 0.35 

Mean H. verticillatus  4(1.2) 0.30(0.14) 
Mean H. angustifolius  4(1.0) 0.33(0.02) 

Mean ± SE values in the two species were not significantly different from each other.    
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Figure II-1A. 
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Figure II-1B. 

 

Figure II-1. (A) Principle Coordinate Analysis (PCO) plot based on 22 loci among three H. verticillatus populations, (B) PCO plot 
based on 18 common loci among H. verticillatus (squares), H. grosseserratus (circles), and H. angustifolius (triangles).   
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Abstract 

 

A variety of questions in population and evolutionary biology are studied using 

chloroplast DNA (cpDNA). The presumed maternal inheritance in angiosperms allows for 

certain assumptions and calculations to be made when studying plant hybridization, 

phylogeography, molecular systematics, and seed dispersal. Further, the placement of 

transgenes in the chloroplast to lessen the probability of “escape” to weedy relatives has been 

proposed since such genes would not move through pollen. In many studies, however, strict 

maternal inheritance is assumed but not tested directly, and some studies may have sample 

sizes too small to be able to detect rare paternal leakage. Here, we study the inheritance of 

chloroplast DNA simple sequence repeats in 323 offspring derived from greenhouse crosses 

of the rare sunflower Helianthus verticillatus Small. We found evidence for rare chloroplast 

paternal leakage and heteroplasmy in 1.86 % of the offspring. We address the question of 

whether one can extrapolate the mode of chloroplast transmission within a genus by 

comparing our results to the findings of another sunflower species study. The findings of 

occasional paternal transmission of the chloroplast genome are discussed in the framework of 

using these markers in studies of population and evolutionary biology both in Helianthus and 

other angiosperms. 
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Introduction 

 

Population and evolutionary biologists use chloroplast DNA (cpDNA) in a variety of 

applications including studies of hybridization and population genetics (Rieseberg and 

Ellstrand, 1993; Welch and Rieseberg, 2002; Dobeš et al., 2004; Van Droogenbroeck et al., 

2006) and seed movement and dispersal in natural populations (McCauley, 1995; Ouborg et 

al., 1999; Hamilton and Miller, 2002; Petit et al., 2005). Since the chloroplast genome is 

largely maternally transmitted in angiosperms (Sears, 1980; Corriveau and Coleman, 1988; 

Zhang et al., 2003), these types of applications assume maternal inheritance (Birky, 1995; 

2001), though this assumption is only rarely tested. In fact, occasional paternal or biparental 

inheritance has been shown in some species (Sears, 1980; Corriveau and Coleman, 1988; 

Reboud and Zeyl, 1994; Röhr et al., 1998; Hansen et al., 2007; McCauley et al., 2007). Thus, 

when it occurs, paternal or biparental inheritance of the chloroplast genome could lead to 

incorrect conclusions in studies involving seed dispersal, hybrid origins, and evolutionary 

relationships should maternal inheritance be assumed. 

Further, researchers have posited that transgenes placed in the chloroplast genome of 

crops would reduce their probability of “escape” as the genes would not move through pollen 

if maternally inherited (Gressel, 1999; Grevich and Daniell, 2005; Daniell et al., 2005). In 

crop systems, non-maternal inheritance could lead to the escape of transgenes, for example 

that may confer herbicide resistance, thus leading to the possibility of creating “superweeds” 

since many domesticated crops grow in close proximity to their weedy wild relatives (Smith, 

1989; Haygood et al., 2004; Chapman and Burke, 2006). In fact, Haygood et al., (2004) 

found that even with low levels of paternal transmission, the probability of transgene escape 
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is considerable. Therefore, studying the transmission of the chloroplast genome can provide 

valuable information for the likelihood of transgene escape in domesticated crop species as 

well as accepting or rejecting the assumptions of maternal inheritance in population and 

evolutionary studies. 

In many plant genera, consistency of inheritance has been observed among the 

several congeners that happen to have been studied (Sears, 1980; Corriveau and Coleman, 

1988; Zhang et al., 2003). These findings suggest that chloroplast inheritance may be 

conserved within a genus. If so, one could extend information on the mode of inheritance of 

one species to its congeners. However, there are a few exceptions to this observation in 

which different members of a genus have conflicting modes of inheritance (Sears, 1980; 

Zhang et al., 2003)—thus raising the question: can one assume that the mode of chloroplast 

inheritance is identical among congeners? If not, then chloroplast inheritance needs to be 

assessed directly in each species in question. 

Several factors influence whether paternal leakage can occur and what effect it has on 

the population biology of plant species: whether and how often pollen grains contain cpDNA, 

how frequently it is transmitted to the zygote, and how intra-individual drift affects copies 

within cells. Large-scale studies designed to infer organellar inheritance in angiosperms have 

screened pollen grains for evidence of plastids or plastid DNA in generative or sperm cells 

(Sears, 1980; Corriveau and Coleman, 1988; Zhang et al., 2003). Using cytological evidence 

to determine the mode of plastid DNA inheritance, these studies have designated cpDNA 

transmission in hundreds of angiosperm species as either maternal or biparental. Due to their 

nature, these methods can only identify the potential mode of inheritance i.e. whether there is 

plastid DNA in the cell. Since these studies scan a great number of species, they often use a 
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small number of individuals per species which may miss rare paternal transmission. It is also 

not possible to determine the consequences for individual and population biology when the 

transmission mode is biparental since intra-individual drift of DNA copies during cell 

divisions will lead to individuals that sort almost completely to one type or the other (i.e. a 

homoplasmic individual) or to individuals that carry a mixture of paternal and maternal 

copies (i.e. a heteroplasmic individual) (Birky, 2001). Cell divisions represent founder effects 

or bottlenecks each generation which should enforce a highly homoplasmic state within the 

individual. However, occasional biparental inheritance would continue to introduce alternate 

alleles into the individual generating heteroplasmy. Chloroplast heteroplasmy has been 

documented in several angiosperms genera: Passiflora (Hansen et al., 2006; 2007), Senecio 

(Frey et al., 2005), Medicago (Johnson and Palmer, 1989), and Turnera (Shore 1994; 1998). 

We have investigated cpDNA inheritance and heteroplasmy in a rare sunflower 

species, Helianthus verticillatus Small, and compared it to the mode of inheritance found in a 

related economically important species, H. annuus (Rieseberg et al., 1994; Wills et al., 

2005). These two prior studies found no evidence for paternal leakage of cpDNA in H. 

annuus crosses and Wills et al. (2005) found no evidence for heteroplasmy (personal 

communication). Ellis et al. (2006) investigated population structure in H. verticillatus based 

on FST calculations for nuclear and cpDNA markers and found the latter to have a much 

greater FST. Based on the described cpDNA inheritance in H. annuus, the difference in 

magnitude between nuclear and chloroplast FST was explained in part by maternal inheritance 

of cpDNA. However, this assumed mode of inheritance has not been tested directly in H. 

verticillatus. Since we are focusing on just one species, we chose to look at chloroplast 

inheritance directly by examining progeny from controlled crosses in which the parents had 
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different cpDNA haplotypes. This approach allows the direct observation of chloroplast 

transmission and includes much larger sample sizes, thus giving a greater chance of detecting 

rare paternal leakage and quantifying the rate of leakage accurately. 

When designing an experiment to study rare events, one must take into account the 

power of detection. Milligan (1992) proposed a binomial model of organelle inheritance to 

determine the power of the analysis to detect paternal leakage at a given rate. He states that 

many studies that address organelle inheritance use insufficient sample sizes to detect 

leakage, and since some studies have found leakage rates of 0.01 to 2.5 % (Simmonds, 1969; 

Tilney-Bassett, 1978; Medgyesy et al., 1986), sample sizes in excess of 100 progeny are 

needed to detect leakage even at the 2.5 % level. Further, since the probability of non-

maternal chloroplast inheritance may vary among crosses (Birky, 1995; Mogensen, 1996), 

individuals will not be completely independent data points if they are from the same family. 

Consequently, when designing an experiment to evaluate organelle inheritance, one should 

choose as many families as possible recognizing the trade-off between the number of 

families and the number of offspring per family. Here we report on a study of cpDNA 

inheritance using cpSSRs (chloroplast simple sequence repeat; Provan et al., 2001) in 323 H. 

verticillatus offspring comprising 53 families and provide evidence for occasional paternal 

leakage and heteroplasmy of cpDNA in controlled greenhouse crosses. 

 

Materials and Methods 

 

Helianthus verticillatus is an extremely rare, diploid (n = 17) self-incompatible, 

perennial sunflower restricted to only four locations in the southeast interior of the United 
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States: two in western Tennessee (Madison Co. and Selmer Co.), one in northeastern 

Alabama (Cherokee Co.), and one in northwestern Georgia (Floyd Co.). It is a candidate for 

federal listing for the Endangered Species Act (ESA) and is listed as endangered in each of 

the three states. First collected in western Tennessee in 1892, it was not found again in the 

field until 1994 in Georgia (Matthews et al., 2002). In 1996 and 1998, the populations in 

Alabama and Madison Co., Tennessee, respectively, were discovered. In the fall of 2006, the 

fourth location in Selmer Co., Tennessee was discovered during an annual survey and search 

for the species. The Alabama and Georgia populations are about 3.5 km from each other 

whereas the Tennessee populations are about 350 km from the others and about 40 km from 

one another. In a prior study, the Alabama and Tennessee populations were found to be fixed 

for different cpDNA haplotypes making it possible to detect paternal leakage easily in 

crosses between the two populations (Ellis et al., 2006). 

In order to detect rare paternal leakage, the appropriate sample size must be used. We 

used Milligan’s (1992) equation for calculating the power of analysis for the number of 

individuals studied and the allowed percentage of non-maternal inheritance: 

β  =  1- (1-P)N 

where β is the power of the test to detect leakage, P is the probability of paternal 

transmission, and N is the number of progeny. We designed our experiment to be able to 

accept the strict maternal inheritance hypothesis 95 % of the time at a rate of leakage equal to 

or greater than one percent. To have this statistical power, 300 individuals (i.e. observations 

of inheritance) were needed according to this calculation. 

 Achenes from H. verticillatus were collected from the Alabama and Tennessee sites 

and grown in the Vanderbilt Biological Sciences greenhouse to serve as parents for the 
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crosses. Since the parents need to differ at the markers studied in order to detect paternal 

leakage, we genotyped the parents for the cpSSRs (method described below) to choose 

individuals with differing cpDNA haplotypes. Alabama and Tennessee individuals carried 

different cpDNA haplotypes; therefore, any inter-population crosses would have differing 

parental genotypes. The Tennessee population was polymorphic; thus, Tennessee by 

Tennessee intra-population crosses were also conducted with parents that differed in cpDNA 

haplotype. We used 272 offspring from 45 controlled greenhouse inter-population crosses 

(24 Alabama X Tennessee and 21 Tennessee X Alabama) and 51 individuals from eight 

greenhouse intra-population (Tennessee) crosses of H. verticillatus for a total of 323 

offspring.  

The crosses were carried out as follows: inflorescences were bagged prior to anthesis 

to prevent any unwanted pollinations. Crosses were conducted by brushing pollen with a 

paintbrush from inflorescences at anthesis into aluminum foil and then brushing pollen onto 

the stigmas of another inflorescence in which the same pollen removal had been conducted. 

Pollinations were conducted within one hour of collecting pollen and all pollinations were 

conducted at mid-morning (~1000 hours). Inflorescences were re-bagged and achenes were 

allowed to mature. Achenes (i.e. the offspring) were nicked with a razor blade, germinated on 

moist filter paper, and grown in the greenhouse. When the resulting plants were large 

enough, a leaf was collected for DNA extraction.  

Total genomic DNA was isolated from ~200 mg of fresh leaf tissue using the Applied 

Biosystems 6100 Nucleic Acid PrepStation DNA extraction machine and associated 

protocols (Foster City, California). All parents and offspring were genotyped for three 

polymorphic cpSSRs, [N39 and N30 (Bryan et al., 1999) and C7 (Weising & Gardner, 1999); 
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also used in Wills et al., 2005; Ellis et al., 2006] using PCR and fragment length analysis. 

Any individuals that indicated paternal leakage were re-genotyped two additional times to 

verify the results. Briefly, SSR genotyping was performed using a modified version of the 

fluorescent labeling protocol of Schuelke (2000), as detailed in Wills et al., (2005). PCR was 

performed in a total volume of 20 µl containing 2 ng of template DNA, 30 mM Tricine pH 

8.4-KOH, 50 mM KCl, 2 mM MgCl2, 125 µM of each dNTP, 0.2 µM M13 Forward (-29) 

sequencing primer labeled with either HEX, 6FAM or TET, 0.2 µM reverse primer, 0.02 µM 

forward primer and 2 units of Taq polymerase. The PCR conditions were as follows: 3 

minutes at 95° C; ten cycles of 30 s at 94° C, 30 s at 65° C and 45 s at 72° C, annealing 

temperature decreasing to 55° C by 1° C per cycle, followed by 30 cycles of 30 s at 94° C, 30 

s at 55° C, 45 s at 72° C, followed by 20 m at 72° C. 

PCR products were visualized on an MJ Research BaseStation automated DNA 

sequencer (South San Francisco, California). MapMarker® 1000 ROX size standards 

(BioVentures Inc., Murfreesboro, Tennessee) were run in each lane to allow for accurate 

determination of fragment size. Cartographer v 1.2.6 (MJ Research) was used to infer 

individual genotypes according to the fragment sizes of the PCR products. The parents used 

in this study carried one of four haplotypes with Alabama and Tennessee containing different 

haplotypes. Haplotypes were denoted A1, T1, T2, T3 named by the three-locus SSR sizes 

(C7-N30-N39: 145-176-174bp = A1; 148-177-181bp = T1; 149-177-184bp = T2; 149-177-

185bp = T3). Given that individuals showing paternal leakage would likely still carry some 

of the maternal haplotype (i.e. heteroplasmy), we scored individuals first for their primary 

fragment peak and scored any secondary peak when it met two criteria 1) it was the alternate 

allele that would be expected given the type of cross and 2) it was at least 10 % of the 
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primary peak fluorescence level. Any individual that indicated heteroplasmy was also 

genotyped two additional times (from the same DNA extraction). All parents were found to 

be of one primary haplotype. 

Since paternal leakage is most likely a rare occurrence, it is critical that parentage be 

verified to ensure that mistakes were not made during the handling of individuals throughout 

cultivation, DNA extractions, and genotyping. In order to detect any possible errors in 

mother-offspring assignment, parentage was verified in those offspring that did not indicate 

maternal cpDNA inheritance by genotyping the suspected leakage individuals as well as the 

maternal and paternal donors for nine previously described highly polymorphic nuclear EST-

SSRs BL 1, 2, 3, 4, 5, 8, 10, 13, and 17 (for details see Pashley et al., 2006; Ellis et al., 

2006).  

 

Results 

 

Out of 323 observations of inheritance, we found five cases of non-maternal 

inheritance equaling a leakage rate of at least 1.55 %. Table III-1 provides the cpDNA 

haplotypes for the offspring indicating paternal leakage. One offspring each of the AL2 X 

TN2, TN4 X AL3, TN6 X AL3 families showed the paternal haplotype. Two individuals of 

the TN3 X AL2 family had the paternal haplotype. Maternity and paternity was confirmed in 

each case that indicated paternal leakage using EST-SSRs. In each of the 323 offspring 

scored, a primary haplotype was observed; however, some offspring contained a secondary 

haplotype (at least 10 % of the primary peak) that represented the alternate allele of the 

appropriate size for the cross type (see Figure III-1 for a representative example). The highest 
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ratio observed for primary to secondary haplotype was roughly 2:1. All five individuals that 

indicated primary non-maternal inheritance also carried at least 10 % of the maternal 

haplotype, and one additional individual (from family AL2 X TN2) primarily contained the 

maternal haplotype but contained an observable percentage of the paternal haplotype 

according to our criteria (Table III-2). Further, a Fisher’s Exact Test indicated that the 

probability of detecting heteroplasmy is not independent of the probability of which parent 

provides the primary haplotype (p < 0.001). 

 

Discussion 

 

In this study we found paternal leakage of the chloroplast at a rate of 1.55 % (5/323 

observations) or 1.86 % (6/323) accounting for the individual that showed secondary paternal 

heteroplasmy. This low level of paternal transmission was observable in our study since we 

designed the experiment to be able to detect leakage 95 % of the time at a transmission rate 

of one percent or greater (Milligan, 1992). One caveat we would like to discuss with regard 

to calculating the detection ability is that since there is sometimes a family association with 

leakage (Birky, 1995; Mogensen, 1996; McCauley et al., 2007), the actual number of 

independent data points may not be the total number of observations, but rather probably lies 

somewhere between the number of families and the number of individuals. Thus when 

approaching the trade-off between number of families and offspring, and given a constraint 

on the total number of samples in a study, it is better to sample as many families as possible. 

Studies that employ a small number of families to detect non-maternal inheritance may be 

more likely to miss rare events of paternal leakage. In this study we sampled 53 families—a 
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number that is much larger than previous studies finding strict maternal chloroplast 

inheritance in other angiosperms (e.g. Vaillancourt et al., 2004; Van Droogenbroeck et al., 

2005). We only found evidence for paternal leakage in inter-population crosses. Often 

paternal leakage is reported in interspecific hybrids (Soliman 1987; Cruzan et al., 1993; 

Hansen et al., 2007) and thus it may be more likely for paternal leakage to occur in crosses 

between divergent populations than within population crosses. However, no formal statistical 

calculations were performed on this conclusion as we had so few within population crosses, 

thus limiting our statistical power.   

We also found evidence for chloroplast heteroplasmy in six individuals. 

Documentation of chloroplast heteroplasmy is rare (but see Frey et al., 2005) perhaps due in 

part to the dogma of strict maternal inheritance in angiosperms. Intra-individual variation has 

been observed and quantified for plant mitochondrial genes in several cases, (e.g. Hattori et 

al., 2002; McCauley et al., 2005; Welch et al., 2006) but such observations remain rare. 

Perhaps not surprisingly heteroplasmy occurs if paternal leakage takes place given that the 

mother presumably always transfers organelles to her offspring. Chloroplast heteroplasmy 

has consequences for the population biology of H. verticillatus. Given that founder effects or 

bottlenecks of chloroplasts occur with each successive cell division, even a small amount of 

paternal leakage at fertilization could, by chance, lead to a mature offspring with the majority 

paternal haplotype just as it might often be lost. Genetic drift within the individual will also 

vary at different life stages of the plant. A young plant will likely have fewer cell divisions 

and may harbor a greater mixture of chloroplast genes, while an older plant has completed 

more cell divisions thus allowing genetic drift to create a more homoplasmic state (recall we 

sampled H. verticillatus offspring at the young plant stage). 
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The findings of this study indicate caution must be used when assuming strict 

maternal inheritance of the chloroplast genome in angiosperms and in unstudied species of 

Helianthus for several reasons. First, chloroplast DNA is often employed in studies 

examining hybridization and introgression in plants (Rieseberg and Ellstrand, 1993; 

Edwards-Burke et al., 1997; Welch and Rieseberg, 2002; Van Droogenbroeck et al., 2006). 

When strict maternal inheritance is assumed but paternal leakage occurs, incorrect 

conclusions regarding parental contributions during hybridization and directionality of 

introgression may be drawn. The sunflower genus is noted for having significant amounts of 

hybridization and introgression (Rieseberg, 1991; Rieseberg et al., 1995; 1996). Paternal 

transmission of the chloroplast found in H. verticillatus indicates the need to be cautious 

when studying aspects of hybridization in this genus. 

Next, the difference between measures of population structure (FST) using cpDNA 

and nuclear DNA is often used to evaluate the relative contributions of seed and pollen 

movement to total gene flow. In theory, if there is strict maternal inheritance of organellar 

genes then seeds will carry copies of the nuclear and cytoplasmic genomes while pollen will 

carry only nuclear genes (Birky et al., 1983, 1989; Petit et al., 1993). Paternal leakage will 

decrease values of FST based on organellar DNA, skewing estimates of the contributions of 

seeds and pollen to gene flow relative to that when maternal inheritance is assumed. 

Finally, it has been proposed that transgenes be placed in the chloroplast genome of 

crop species to prevent their escape (Gressel, 1999; Grevich and Daniell, 2005; Daniell et al., 

2005). However, low rates of paternal transmission of the chloroplast have been shown in 

crops species including tobacco (Medgyesy et al., 1986) and potato (Simmonds, 1969). 

Haygood et al., (2004) modeled transgene escape and found that even genes with leakage 
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rates as low as that found in our study will have an appreciable probability of escape into the 

wild. The possibility of transgene escape at such low leakage rates further highlights the 

necessity for studies examining mode of organellar inheritance to have a high statistical 

power to detect rare leakage. 

We were also interested in addressing the question of whether it is necessary to study 

chloroplast transmission in more than one species within the same genus (i.e. is it possible to 

extrapolate within the genus if one member species’ transmission has already been 

determined). In order to address this, we considered the results of three surveys of potential 

chloroplast transmission in angiosperms (Sears, 1980; Corriveau and Coleman, 1988; Zhang 

et al., 2003) and after accounting for overlap among them and assuming equal sampling 

intensities, we found that six out of 113 genera contained conflicting modes of inheritance. In 

three of the genera, there was predominantly one type of transmission with a low frequency 

of the other. In our study, we found H. verticillatus to have a low level of paternal leakage. 

This is in contrast to the observation of strict maternal inheritance found in another species, 

H. annuus, within the genus (Rieseberg et al., 1994; Wills et al., 2005). Combining their 

dataset with that of Rieseberg et al. (1994), Wills et al. (2005) determined they were able to 

detect paternal leakage at a rate of 1.35 % or greater, 95 % of the time, a study that is 

comparable in magnitude to ours. The findings of this literature survey and our results 

indicate the mode of chloroplast inheritance cannot always be extrapolated within a genus. 

Furthermore, the methods used in these studies may only provide conservative estimates 

given the limited sample sizes per species and ability to detect only the potential mode of 

inheritance. 
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In conclusion, we found evidence for a modest amount of paternal transmission of 

cpDNA and heteroplasmy in the perennial sunflower, H. verticillatus, in greenhouse crosses. 

We are also interested in the consequences of paternal leakage and heteroplasmy for the 

biology of natural populations. The next step is to address paternal leakage in the field. If we 

extrapolate our primary paternal leakage rate (1.55 %) to natural populations and assume 

every leakage event is detectable (i.e. the parents have different cpDNA haplotypes), at least 

200 offspring from the field would be necessary to have a 95 % chance of detecting leakage 

at the frequency we found in the crosses. However, every leakage event will not be 

detectable given the high level of chloroplast population structure, FST = 0.620 (Ellis et al., 

2006). The probability of the parents being different, assuming random mating within 

populations, can be calculated for n number of haplotypes by  

P = 1- p2-q2-r2-s2…n2 

where p, q, r and s are cpDNA haplotype frequencies from a given natural population. For 

example, using the four haplotype frequencies from the Tennessee population of H. 

verticillatus (Ellis et al., 2006), P = 0.48 (1- 0.72 - 0.122 - 0.122 - 0.062). Roughly, only half of 

the matings will be between parents that differ at these cpSSRs. Thus, multiplying 200, the 

number of offspring that must be inspected to observe leakage at a rate of 1.55 when parents 

differ at marker loci, by 1/P yields the expectation that 417 offspring must be examined to 

have a 95 % chance of detecting leakage at a rate of 1.55 % in natural populations given the 

population structure. These results indicate large sample sizes are necessary to ensure 

detection of rare paternal leakage in angiosperms especially in natural populations. 
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Tables and Figures 

 
Table III-1. Mother and offspring haplotypes showing primary non-maternal inheritance.  
 
      Family   Maternal/Paternal Haplotype       # Offspring/Haplotype 
AL2 X TN2 A1/T3 6A1/1T3 
TN4 X AL3 T1/A1 9T1/1A1 
TN6 X AL3 T2/A1 3T2/1A1 
TN3 X AL2 T2/A1 2T2/2A1 
Notes: Given are mother and offspring haplotypes consisting of alleles at three cpSSRs from 
controlled greenhouse crosses within and among the Madison Co., Tennessee and Cherokee 
Co., Alabama populations. Only families that showed evidence for primary non-maternal 
inheritance are presented. Information in bold type indicates paternal leakage. 
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Table III-2. Inheritance and heteroplasmy classification for all offspring. 
 
 Paternal Inheritance Maternal Inheritance 
Heteroplasmy 5 1 
No Heteroplasmy 0 317 
Notes: Offspring from all crosses classified according to the type of inheritance and presence 
or absence of heteroplasmy (see text for details). 
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 Figure III-1. Electropherogram from cpSSR (chloroplast simple sequence repeat) locus N39 
to show an example of chloroplast inheritance. Shown are a mother and three offspring from 
the AL2 X TN2 family. Note offspring one and two show maternal inheritance while 
offspring three contains the paternal allele as well as evidence of the maternal allele, 
indicating paternal leakage and biparental inheritance. There is a size marker at the 200bp 
position. 
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CHAPTER IV 

 

ESTIMATION OF CLONAL DIVERSITY IN POPULATIONS  

OF A RARE SUNFLOWER 

 
 

Abstract 

 

Populations of rare and endangered species often face many issues detrimental to 

their fitness and population viability, including the reduction of standing levels of genetic 

variation, the increased likelihood of inbreeding, and the fixation of deleterious alleles. These 

problems are exacerbated in small, isolated populations and may also contribute to further 

reductions in population size. Conservation biologists are thus concerned with active 

monitoring and management of rare and endangered populations since lowered fitness 

increases the probability of extinction. Knowledge of the population size is an important first 

step for identifying populations of immediate concern. However, this task may be difficult in 

plant species that exhibit clonal growth since a simple “head count” may not be appropriate. 

The use of simple sequence repeats markers (SSRs) provides a non-invasive sampling 

strategy for determining genetic individuals with high statistical power; but, the de novo 

development of such markers is often time consuming and costly. Here, I determine the 

genetic population size and clonal diversity in a rare sunflower, Helianthus verticillatus, 

using SSRs developed from the Expressed Sequence Tags of the domesticated sunflower H. 

annuus. This approach provides a relatively rapid and inexpensive method for assessing these 

factors in endangered species. Despite high clonal and genotypic diversity, populations of H. 
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verticillatus consist of far fewer genetic individuals than indicated in previous reports based 

on head counts. Findings are discussed in the context of the ecological and biological 

dynamics in clonal plant populations. Finally, the results of this study led to an upgrade in the 

priority status of this species for the Endangered Species List.  

This manuscript will be submitted for publication most likely to the journal 

Conservation Genetics. 

 

Introduction 

 

Conservation biologists and managers are concerned with preserving genetic 

variation and maintaining fitness in populations of rare or endangered species to promote 

population viability and evolvability (Primack 2002). Conservation guidelines have also 

emphasized the significance of possessing genetic variation because of its positive 

relationship to fitness (Leimu et al. 2006) and its importance for many ecological processes 

(Hughes et al. 2008). Standing levels of genetic variation may also provide the raw 

evolutionary material for populations to adapt to changing environments (Willi et al. 2006). 

However, human induced habitat destruction has led to the loss and fragmentation of many 

populations, causing reductions in both the number of populations, and the size of individual 

populations (Wilson 1992; Wilcove et al. 1998). Genetic diversity declines in small 

populations since heterozygosity is an inverse function of the effective population size and 

the loss of alleles due to genetic drift is more pronounced in small populations. Moreover, 

inbreeding is enhanced in small and isolated populations because of the reduced numbers of 

potential mates. Inbreeding also leads to a loss of genetic diversity through the redistribution 
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of alleles from the heterozygous to the homozygous state, and often, inbred individuals have 

lower fitness than outbred individuals owing to inbreeding depression (Charlesworth and 

Charlesworth 1987).  

Active monitoring and management of populations of endangered species are 

important conservation tasks since lowered population fitness increases extinction risk 

(Newman and Pilson 1997; Saccheri et al. 1998; Wright et al. 2008). Population censuses and 

surveys are often a first step to identify populations of conservation concern since population 

size can determine whether or not a species receives high priority for endangered status and 

protection (Primack 2002) and is often correlated with fitness (Lemui et al. 2006). However, 

these tasks may be complicated if species exhibit asexual or clonal reproduction, as do many 

plant species (Cook 1983), because a simple “head count” may not reveal the true number of 

genets, or genetic individuals, in a population. A genet consists of all of the genetically 

identical members that derive from a single zygote (Sarukhan and Harper 1973), while a 

ramet is an independent physiological individual consisting of its own shoot and root system 

and capable of independent survival and death (Cook 1983). 

The patterning of clones within populations can range from a clumped distribution 

(ramets of the same genotype always tightly clustered) to one that is uniform (no 

association). Investigating the extent of clonality, including the spatial structure and clonal 

diversity, in a population may be achieved through excavating the root system. However, this 

method is not only extremely intrusive in the case of rare and endangered species, it may 

incorrectly estimate the true number of individuals if root systems have degenerated between 

clone-mates or if some ramets have been disassociated and relocated to other areas of the 

site. Alternatively, the use of polymorphic genetic markers to distinguish individuals is a 
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non-invasive sampling strategy which yields high probabilities for distinguishing genets 

(Ainsworth et al. 2003). Often clonal studies employing genetic markers find a significantly 

lower number of genetic individuals than would have been determined from traditional 

surveys (Sipes and Wolf 1997; Esselman et al. 1999; Rossetto et al. 2004).  

Beyond generating estimates of genetic population size, studies of the clonal diversity 

and structure of rare and endangered species may aid in understanding the ecological and 

spatial dynamics of related individuals (Murawski and Hamrick 1990). Such studies also give 

insight into how pollinator movement influences gene flow in insect pollinated species (Cook 

1983). Moreover, these types of investigations are fundamental for understanding population 

evolutionary dynamics since the genetic individual is likely the unit of selection (Harper 

1985; Eriksson and Jerling 1990). 

The use of highly polymorphic genetic markers, such simple sequence repeats (SSRs) 

is advantageous for these types of investigations since they generally provide ample diversity 

to distinguish individuals with high probability, and their use provides a non-invasive 

sampling strategy for determining clonal relationships. Moreover, in a recent meta-analysis, 

Honnay and Jacquemyn (2008) demonstrated that studies which employed highly 

polymorphic loci, such as SSRs, yielded higher resolution than allozymes for measuring and 

determining clonal diversity and structure. However, in the case of rare or endangered taxa, 

obtaining SSRs is sometimes time-consuming and expensive. Employing SSRs developed 

from publicly available expressed sequence tag (EST) databases is a practical alternative to 

de novo methods (Bouck and Vision 2007; Ellis and Burke 2007). 

Here, I describe a study determining the genetic size and clonal diversity in 

populations of an extremely rare sunflower species, Helianthus verticillatus, using genetic 
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markers developed from ESTs of the domesticated sunflower, H. annuus. This rare 

sunflower, which is known to only four locations, is native to the southeast United States and 

exhibits sexual reproduction and clonal growth through rhizomes (Matthews et al. 2002). 

Management for the species has included population censuses and extensive surveys for any 

additional populations. Counts of the number of stalks have previously been made and 

reported to the United States Fish and Wildlife Service (USFWS) to aid in the listing and 

priority status of H. verticillatus. However, these counts may not represent the true number 

of genetic individuals since the species exhibits clonal growth, e.g., one site was reported to 

contain thousands of individuals. Moreover, the distribution and arrangement of clones 

within populations may be particularly important in this species since it is self-incompatible 

and insect pollinated.  

A previous population genetic survey using EST-SSRs revealed surprisingly high 

levels of genetic diversity in populations of this rare species (Ellis et al. 2006). Despite this, 

one population exhibited significantly lower fitness values for achene viability and 

germination, and the fitness differences may be related to the disparities in population sizes 

(Ellis and McCauley unpublished); however, a study of the clonal structure of these 

populations is necessary to make accurate estimates of population sizes. Here, I use EST-

SSRs to investigate clonal structure in populations of the rare H. verticillatus and ask 1) how 

many genetic individuals are in each population, 2) how are genetic individuals distributed 

within populations, 3) is this distribution similar in all populations, 4) how does clonality 

relate to previous findings of high genetic diversity in this species, and 5) are there 

associations between genetic population size and fitness in this species?  
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Materials and Methods 

 

Study Species 

Helianthus verticillatus is a diploid (n = 17) perennial restricted to only four locations 

in the southeast interior of the United States: two in western Tennessee in Madison County 

(Co.) and McNairy Co. (discovered 2006), one in northeastern Alabama in Cherokee Co., 

and one in northwestern Georgia in Floyd Co. The sunflower, which can grow to greater than 

four meters (m), has a glaucous stem, leaves mostly verticillate in three’s or four’s, and 

flowers August to October. The species exhibits rhizomatous clonal growth and often 

appears to grow in somewhat distinct clusters or clumps (personal observation). It is a 

candidate for federal listing for the Endangered Species Act (ESA) and is listed as 

endangered in each of the three states. The species was first discovered and named in the 

1890’s in Tennessee near the Madison Co. population. Ellis et al. (2006) demonstrated that 

H. verticillatus harbors high levels of genetic diversity at microsatellite markers as compared 

to a common congener, perhaps due to its clonal and perennial life history. Habitat loss is a 

likely cause of rarity in H. verticillatus as the species appears to be adapted to prairie habitats 

which have declined since European settlement (Allison 1995; Matthews et al. 2002).  

Ellis et al. (2006) assessed the clonal structure in the Madison Co., Tennessee 

location and found that clones were clumped, or highly structured, and estimated about 70 

genetic individuals in that population. However, the extent to which this species reproduces 

clonally in the remaining populations is not known. Also, Ellis et al. (2006) only qualitatively 
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assessed clonal structure in Madison Co., Tennessee; here, I re-evaluate this clonal data to 

include measures of clonal diversity (see below).  

Sample Collections 

Leaf samples of H. verticillatus were collected from population sites in Cherokee Co., 

Alabama, Floyd Co., Georgia, and a newly discovered population in McNairy Co., 

Tennessee. The Alabama population consists of two parts: plants along a small dirt road 

(AL1) and adjacent to this road (about 5 m away) in a wet field separated by a row of Rubus 

plants (AL2). The Georgia (GA) population contains individuals growing together in a wet 

prairie, while the McNairy Co., Tennessee population (McTN) consists of two sections of 

plants growing along Prairie Branch Creek. In all sites except the AL2, plants frequently 

grow in somewhat distinct clusters. In AL1, GA, and McTN sites, a leaf was collected from 

three stalks per cluster and the relative locations of individual stalks and distances between 

stalks were recorded. Note: clusters tended to consist of three to six stalks. In these sites, 

every cluster that was observed was sampled. Plants in AL2 do not grow in well-defined 

clumps, rather stems grow in abundance with no definition of clusters. Here, a meter wide 

transect was set through the largest patch of H. verticillatus individuals and the first 100 

stalks were collected along the transect (resulting in approximately an 11 m long transect). In 

total, 243 leaf samples were collected and analyzed (Alabama dirt road, AL1: 15 clusters, 45 

stalks; Alabama wet field, AL2: 100 stalks; Georgia, GA: 15 clusters, 45 stalks; McNairy 

Co., Tennessee site, McTN: 19 clusters, 57 stalks). Figures IV-1 to IV-3 provide rough 

schematics of the cluster layout in each of the collection areas. Total genomic DNA from 

each sample was isolated from ~200 mg of fresh leaf tissue using the Doyle and Doyle 

(1987) CTAB method. 
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Genotyping  

Genotyping for clonal investigations was performed on five previously developed 

highly polymorphic EST-SSRs (Pashley et al. 2006; Loci BL 2, 4, 6, 7, and 17), known to be 

in Hardy-Weinberg equilibrium within populations (Ellis et al. 2006), using a modified 

version of the fluorescent labeling protocol of Schuelke (2000), as detailed in Wills et al. 

(2005). PCR was performed in a total volume of 20 µl containing 2 ng of template DNA, 30 

mM Tricine pH 8.4-KOH, 50 mM KCl, 2 mM MgCl2, 125 µM of each dNTP, 0.2 µM M13 

Forward (-29) sequencing primer labeled with either VIC, 6FAM or TET, 0.2 µM reverse 

primer, 0.02 µM forward primer and 2 units of Taq polymerase. The PCR conditions were as 

follows: 3 minutes at 95° C; ten cycles of 30 s at 94° C, 30 s at 65° C and 45 s at 72° C, 

annealing temperature decreasing to 55° C by 1° C per cycle, followed by 30 cycles of 30 s at 

94° C, 30 s at 55° C, 45 s at 72° C, followed by 20 m at 72° C. 

PCR products were visualized on an MJ Research BaseStation automated DNA 

sequencer (South San Francisco, CA), and MapMarker® 1000 ROX size standards 

(BioVentures Inc., Murfreesboro, TN) were run in each lane to allow for accurate 

determination of fragment size. Cartographer v 1.2.6 (MJ Research) was used to infer 

individual genotypes according to the fragment sizes of the PCR products. 

Analysis of Clonal Structure 

The probability that each cluster was a single genet and that identical genotypes were 

not simply obtained by chance, was calculated using a multilocus probability for codominant 

genotypes, Pcgen = (Пpi)2h , where pi is the local population frequency of each allele observed 

in the multilocus genotype and h is the number of heterozygous loci (Parks and Werth 1993; 
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Sydes and Peakall 1998). The probability of obtaining n-1 more copies of that genotype by 

chance is given by (Pcgen)n-1,  where n is the number of times the genotype was observed. 

Following Ellstrand and Roose (1987), I calculated the proportion of ramets distinguishable 

by their multilocus genotypes as the number of genotypes divided by the sample size (ramets 

sampled), G/N ; the inverse of this is the number of ramets per genet. The average distance 

between stalks of the same genotype was also calculated and compared to the average 

distance between stalks of different genotypes. 

I calculated a measure of clonal diversity using the complement of the Simpson index 

corrected for finite sample sizes, D, as D = 1 - Σ [ni(ni - 1)]/[N(N - 1)], for i 1 to G, where ni 

is the number of ramets per genet i, N is the total number of individuals sampled, and G is 

the number of genets (Pielou 1969). For example, if all ramets were different genotypes, i.e., 

each stalk surveyed was a separate genet, D would equal one. However, if all ramets 

surveyed were the same genotype, i.e., all the same genet, D would equal zero. Then, I 

calculated an evenness measure which scales the diversity measure, D, to the minimum and 

maximum possible values, as E = (D - Dmin)/(Dmax - Dmin), where Dmin = [(G - 1)(2N - 

G)]/[N(N - 1)], and Dmax = [N(G - 1)]/[G(N - 1)] (Fager 1972). When stalks are collected 

randomly in a site or patch (as in AL2), values of G/N, D, and E may accurately be compared 

across other clonal studies which do the same. This was not the sampling strategy in AL1, 

GA, or McTN; however, since sampling within clusters was equivalent across these sites, 

clonal diversity values may be compared across these populations in this study.  
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Results 

 

Ample levels of genetic diversity were detected at the five nuclear loci analyzed to 

detect clonal diversity patterns in H. verticillatus. Pcgen values across the all sites ranged from 

0.01 to 1.28 x 10-12; (Pcgen)n-1 values range from 4.19 x 10-4 to 3.07 x 10-33. The qualitative 

range of clonal structure from AL1, GA, and McTN varied from all stalks within a cluster 

consisting of identical genotypes (8 clusters in AL1, 11 in GA, 14 in McTN) to all stalks 

consisting of different genotypes (2 clusters in AL1, 1 in GA). The number of clusters that 

consisted of two or more genotypes was 7 in AL1, 3 in GA, and 5 in McTN. There was also 

one case in which two clusters separated by one meter shared identical genotypes in GA. 

Tables IV-1 to IV-3 provide information regarding the clonal data for these three sites. In 

AL2, several genotypes were observed more often than others with two genotypes being 

surveyed eight times each (Table IV-4).  

To a large extent, clusters tended to consist of the same genotype. The average 

distance between stalks of the same genotype was 0.12 m ± 0.32 (mean ± SE) with the 

average distance between stalks of different genotypes being 14.98 ± 0.25, indicating a 

clumped distribution. In AL1, 24 unique multilocus genotypes, or genets, were found out of 

45 sampled stalks and 15 clusters, the AL2 sample detected 46 genets out of 100 samples; in 

GA there were 18 genets out of 45 sampled stalks and 15 clusters, and McTN had 24 genets 

for 57 sampled stalks and 19 clusters. In the four sites about half of the stalks sampled 

resulted in unique genetic individuals, i.e., the proportion distinguishable, G/N, was AL1 = 

0.53, AL2 =0.46, GA = 0.40, McTN = 0.42. The number of ramets per genet is the inverse of 

this value: AL1 = 1.9, AL2 = 2.2, GA = 2.5, McTN = 2.4. Table IV-5 provides values for 

101 



 

G/N, D, and E. Note that the pattern of one genotype per two stalks as seen in the AL1, GA, 

and McTN sites was also observed in AL2 despite the un-ordered spacing of stalks. 

The clonal structure identified in these populations was somewhat different from that 

obtained previously from the Madison Co., Tennessee (MdTN) population, where all stalks 

from the same cluster yielded identical multilocus genotypes, compared to the finding here of 

some clusters having multiple genotypes (Ellis et al. 2006). This previous result suggested 

that genets could be identified in the field based solely on the clustering of stalks and that the 

genetic population size is much smaller than the number of stalks. However, the AL1, GA, 

and McTN samples have somewhat different patterns of clonal structure given that some 

clusters contain more than one genotype and that stalks of two clusters in GA had identical 

genotypes. Still, the number of genetic individuals in the three populations surveyed here is 

smaller than the number of stalks—about two times smaller. Note that the difference in 

clonal structure between the two studies was not due to a lack of statistical power as nine 

nuclear loci were used in the previous study compared to five here. 

 

Discussion 

 

Genetic Population Size and Clonal Variation  

This study revealed that populations of H. verticillatus consist of far fewer genetic 

individuals than previously reported based solely upon counting stalks. The proportion of 

distinguishable ramets based on their multilocus genotypes ranged from 0.40 to 0.53, and the 

mean number of ramets per genet ranged from 1.9 to 2.5. In general, most clusters of stalks 

consisted of the same genotype. This was similar to the pattern found for the previously 
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studied Madison Co., Tennessee population in which clusters corresponded to genetic 

individuals (Ellis et al. 2006). Therefore, counting distinct clusters is more appropriate than 

counting stalks for estimating the number of genetic individuals. All observed clusters were 

sampled in the Georgia and McNairy Co., Tennessee populations and along the Alabama dirt 

road, and simply counting clusters would have only slightly underestimated the number of 

genetic individuals (AL1: 15 clusters, 24 genets; GA: 15 clusters, 18 genets; McTN: 19 

clusters, 24 genets). However, given the sensitive nature of endangered species and the 

extreme rarity both in numbers of individuals and populations, a conservative estimate of 

counting clusters seems more appropriate in this species. In AL2, 46 distinct genets were 

identified along the 100 stalk transect. In this entire site, several hundred stalks were present, 

and given that roughly half are distinguishable, or put differently, on average there were 2.2 

ramets per genet, there may be at least 100 but probably no more than 200 genetic 

individuals present in the wet field.  

Clonal diversity was similar and high across all sites surveyed ranging from 0.95 to 

0.98. Fager’s evenness measures were also high and uniform in all the study sites ranging 

from 0.93 to 0.96 and indicated that genotypes were evenly distributed among clones. The 

Madison Co., Tennessee population also had equivalent values for these measures (as 

calculated from Ellis et al. 2006). Contrasting clonal values in the AL2 site, which was 

sampled randomly with respect to clusters (see Methods), with means from studies of other 

clonal species reveals that this population exhibits high levels of clonal diversity and high 

evenness measures (AL2: D = 0.97, E = 0.95; self-incompatible species’ mean from Honnay 

and Jacqeumyn’ meta-analysis [2008]: D = 0.75 ± 0.04, E = 0.67 ± 0.05). 
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Consequences of Clonal Reproduction 

Knowledge of levels and patterns of clonal diversity is important to understanding 

biological and ecological dynamics in plant populations. In insect pollinated species, these 

factors are associated with how pollinator movement influences gene flow (Cook 1983), and 

a high level of clonal structure can have detrimental effects of plant fitness. For example, a 

clumped clonal structure in the whortleberry, Vaccinium myrtillus, promoted increased 

selfing and subsequently reduced fitness through geitonogamous self-pollination (the transfer 

of pollen between flowers of the same genet) as bumblebee pollinators displayed short flight 

distances between foraging visits (Albert et al. 2008). In self-incompatible species, clonal 

diversity and structure may be especially important since these factors influence mate 

availability and influence the likelihood of receiving related, incompatible pollen (Handel 

1985; Charpentier et al. 2000).   

Some have also suggested that clonal reproduction may lower genotypic diversity 

(Chung 1995; Sydes and Peakall 1998). Honnay and Jacqeumyn (2008) proposed that there 

may be negative consequences associated with clonal reproduction in self-incompatible 

species through reduced mate availability and decreased sexual recruitment given that self-

incompatible species have lower genotypic diversities than self-compatible species. The 

findings of previous work (Ellis et al. 2006), however, indicate that genotypic diversity is 

high in this extremely rare species. Clonal reproduction does not appear to have negatively 

affected genotypic diversity; but rather, it may have provided a buffer against the loss of 

genetic diversity, generally associated with such rare species, by reducing the probability of 

genet death (Cook 1983). Its perennial life cycle, combined with clonal growth, may mean 

that relatively few generations have passed since H. verticillatus became rare. This 
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possibility of a relatively recent decline is also suggested by Matthews et al. (2002) based 

upon historical information from species with similar prairie affinities.  

The high level of clonal and genotypic diversity in this species may also indicate 

ongoing sexual reproduction and recruitment in these populations, facilitating the 

maintenance of genetic diversity. Soane and Watkinson (1979) demonstrated through 

modeling and experimentation that even low rates of seedling recruitment can be enough to 

maintain or increase population genetic diversity. Other clonal species have exhibited similar 

levels of clonal and genotypic diversity attributed to sexual reproduction, for example, Burke 

et al. (2000) found high levels of genotypic diversity in clonal populations of Louisiana Iris, 

indicating ongoing sexual reproduction in spite of substantial clonal growth. This pattern has 

also been observed in rare species; in the outcrossing endangered lady’s slipper, Cypripedium 

calceolus, populations maintained high levels of genotypic diversity despite a low level of 

sexual recruitment (Brzosko et al. 2002). Finally, in the endemic perennial, Adenophora 

grandiflora, Chung and Epperson (1999) demonstrated high levels of genetic diversity 

attributed, in part, to predominate outcrossing this species.  

Another interesting point to consider with respect to conservation management is the 

relationship among population size, genetic diversity, and fitness of endangered species. 

Population genetic and inbreeding theory predict positive associations among these factors 

(Charlesworth and Charlesworth 1987; Ellstrand and Elam 1993; Lande 1995); and 

correspondingly so, Leimu et al. (2006) found overall positive correlations among these 

factors in a meta-analysis considering studies which evaluated these relationships in plants. 

Previous work indicated high levels of genetic diversity in all populations of this species 

(Ellis et al. 2006), yet a recent study of fitness related traits demonstrated that the Madison 

105 



 

Co., Tennessee populations exhibited lower levels of achene viability and germination rates 

than the Alabama population (Ellis and McCauley unpublished data). The lower quantitative 

fitness values in the Madison Co., Tennessee population may be related to the smaller 

number of genetic individuals in this site and suggest the potential for higher levels of 

inbreeding there as compared to Alabama. Moreover, the small Georgia population exhibited 

extremely poor fitness, with low germination rates and no individuals surviving to flowering. 

The McNairy Co., Tennessee site had not been discovered when this fitness study was 

conducted; given the previous results, however, the fitness and viability of this population 

should be considered since it also contains a low number of genetic individuals.  

Conservation Implications 

While H. verticillatus harbors high levels of genetic and clonal diversity, the number 

of individuals is alarmingly low. This, combined with the fact that only four populations are 

known to exist in this species, calls for an immediate conservation management plan of these 

populations. The only officially protected population is the Georgia site which contains the 

smallest number of genetic individuals and exhibits poor fitness. This site was originally 

reported to contain thousands of stalks and photographs from a 1998 survey indeed 

demonstrate a large number of tall (> 4 m) H. verticillatus individuals (Allison 2002; J. 

Matthews personal communication). However, in recent trips (annually 2004 – 2007) to this 

population, a drastically lower number of stalks was observed and no plants were taller than 

1.5 m (personal observation). The data of this study was reported to the USFWS, and they 

subsequently changed the priority ranking for this species from a low to high priority. The 

Alabama wet prairie site and the adjacent dirt road individuals, by far, represent the largest 

population of H. verticillatus individuals known, yet there is not formal protection for it. 
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Protection of this site is especially warranted since it also harbors significantly different 

quantitative variation for achene viability and germination rates. If possible, habitat 

protection for the remaining Tennessee sites is also important given the low number of 

populations in this species. 
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Tables and Figures 

 

Table IV-1. Alabama (Site 1) Clonal Data   
Cluster       

(No. stalks 
Sampled) 

No. genotypes 
within cluster 

Genotype No. times 
genotype 
observed 

Prob. of 
genotype 

(Pcgen) 

Prob. being 
present n 

times 
(Pcgen)n-1 

AL 1 (3) 2 AL 1 - A 1 0.04204494 N/A 
  AL 1 - B 2 0.00070654 0.00070654 

AL 2 (3) 1 AL 2 - A 3 0.00014479 2.09641E-08 
AL 3 (3) 3 AL 3 - A 1 0.00011285 N/A 

  AL 3 - B 1 6.8406E-05 N/A 
  AL 3 - C 1 4.5313E-05 N/A 

AL 4 (3) 2 AL 4 - A 2 4.4167E-07 4.4167E-07 
  AL 4 - B 1 4.9349E-08 N/A 

AL 5 (3) 1 AL 5 - A 3 3.4987E-05 1.22406E-09 
AL 6 (3) 3 AL 6 - A 1 5.7933E-05 N/A 

  AL 6 - B 1 0.00102266 N/A 
  AL 6 - C 1 5.8018E-06 N/A 

AL 7 (3) 1 AL 7 - A 3 2.279E-06 5.19384E-12 
AL 8 (3) 1 AL 8 - A 3 0.00024296 5.90298E-08 
AL 9 (3) 1 AL 9 - A 3 9.7243E-06 9.45629E-11 

AL 10 (3) 2 AL 10 - A 2 0.00254701 0.00254701 
  AL 10 - B 1 0.00102266 N/A 

AL 11 (3) 1 AL 11 - A 3 8.9943E-06 8.08983E-11 
AL 12 (3) 1 AL 12 - A 3 4.7908E-05 2.29522E-09 
AL 13 (3) 1 AL 13 - A 3 3.7862E-06 1.43352E-11 
AL 14 (3) 2 AL 14 - A 2 4.5889E-06 4.58886E-06 

  AL 14 - B 1 9.2725E-07 N/A 
AL 15 (3) 2 AL 15 - A 2 8.2291E-05 8.22907E-05 

  AL 15 - B 1 7.5728E-06 N/A 
Cluster (No. stalks sampled) = a priori defined cluster and the number of stalks sampled from 
that cluster. No. genotypes within cluster = number genotypes present in cluster as detected 
by genetic data. Genotype = arbitrary multi-locus genotype descriptor. No. times genotype 
observed = how many time the particular genotype was observed in the total sample. Prob. of 
genotype (Pcgen) = (Пpi)2h. Prob. being present n times = (Pcgen)n-1 (see text for more detail).  
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Table IV-2. Georgia Clonal Data 
Cluster       

(No. stalks 
Sampled) 

No. genotypes 
within cluster 

Genotype No. times 
genotype 
observed 

Prob. of 
genotype 

(Pcgen) 

Prob. being 
present n 

times 
(Pcgen)n-1 

GA 1 & 2 (6) 1 GA 1 - A 6 0.00014722 6.91611E-20 
GA 3 (3) 1 GA 3 - A 3 6.58E-06 4.32786E-11 
GA 4 (3) 1 GA 4 - A 3 1.5619E-10 2.43945E-20 
GA 5 (3) 1 GA 5 - A 3 1.5334E-08 1.5334E-08 
GA 6 (3) 1 GA 6 - A 3 0.00583714 3.40722E-05 
GA 7 (3) 1 GA 7 - A 3 1.4606E-05 2.13344E-10 
GA 8 (3) 2 GA 8 - A 2 2.9662E-05 2.9662E-05 

  GA 8 - B 1 3.2596E-06 N/A 
GA 9 (3) 1 GA 9 - A 3 2.7798E-08 7.72712E-16 

GA 10 (3) 3 GA 10 - A 1 1.2214E-10 N/A 
  GA 10 - B 1 5.4272E-08 N/A 
  GA 10 - C 1 2.4926E-12 N/A 

GA 11 (3) 1 GA 11 - A 3 1.4111E-08 1.99124E-16 
GA 12 (3) 2 GA 12 - A 2 1.3779E-08 1.3779E-08 

  GA 12 - B 1 7.3056E-06 N/A 
GA 13 (3) 1 GA 13 - A 3 1.3779E-08 1.89871E-16 
GA 14 (3) 1 GA 14 - A 3 1.2827E-12 1.64541E-24 
GA 15 (3) 1 GA 15 - A 3 7.0206E-05 4.92887E-09 

See Table IV-1 for description of columns. 
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Table IV-3. Tennessee Clonal Data 
Cluster       

(No. stalks 
Sampled) 

No. genotypes 
within cluster 

Genotype No. times 
genotype 
observed 

Prob. of 
genotype 

(Pcgen) 

Prob. being 
present n 

times 
(Pcgen)n-1 

McTN 1 (3) 2 McTN 1 - A 2 7.76932E-05 7.76932E-05 
  McTN 1- B 1 0.000197375 N/A 

McTN 2 (3) 1 McTN 2 - A 3 0.007146792 5.10766E-05 
McTN 3 (3) 1 McTN 3 - A 3 5.90467E-06 3.48651E-11 
McTN 4 (3) 1 McTN 4 - A 3 2.7314E-06 7.46056E-12 
McTN 5 (3) 1 McTN 5 - A 3 0.02904768 0.000843768 
McTN 6 (3) 1 McTN 6 - A 3 4.44787E-05 1.97835E-09 
McTN 7 (3) 1 McTN 7 - A 3 7.16164E-06 5.12891E-11 
McTN 8 (3) 1 McTN 8 - A 3 2.07024E-06 4.28589E-12 
McTN 9 (3) 2 McTN 9 - A 2 7.00322E-07 7.00322E-07 

  McTN 9- B 1 2.5625E-07 N/A 
McTN 10 (3) 1 McTN 10 - A 3 1.57001E-05 2.46492E-10 
McTN 11 (3) 1 McTN 11 - A 3 0.000133436 1.78052E-08 
McTN 12 (3) 1 McTN 12 - A 3 2.44915E-05 5.99834E-10 
McTN 13 (3) 1 McTN 13 - A 2 5.5084E-06 5.5084E-06 
McTN 14 (3) 2 McTN 14 - A 2 6.15797E-06 6.15797E-06 

  McTN 14- B 1 0.002778662 N/A 
McTN 15 (3) 1 McTN 15 - A 3 2.09002E-07 4.36819E-14 
McTN 16 (3) 1 McTN 16 - A 3 0.000538697 2.90194E-07 
McTN 17 (3) 2 McTN 17 - A 1 5.59503E-06 N/A 

  McTN 17- B 2 0.000601665 0.000601665 
McTN 18 (3) 2 McTN 18 - A 2 1.34903E-06 1.34903E-06 

  McTN 18- B 1 6.71404E-07 N/A 
McTN 19 (3) 1 McTN 19 - A 3 0.000230218 5.30002E-08 
See Table IV-1 for description of columns. 

115 



 

Table IV-4. Alabama wet prairie site (AL2) transect of stalks. 
Genotype 

(put. genet) 
No. times 
genotype 
observed 

(put. ramet) 

Prob. of 
genotype 

(Pcgen) 

Prob. being 
present n 

times 
(Pcgen)n-1 

AL2 – 1 1 0.00261791 N/A 
AL2 – 2 3 0.00012423 1.5433E-08 
AL2 – 3 2 4.0148E-05 4.0148E-05 
AL2 – 4 1 0.00046984 N/A 
AL2 – 5 1 5.7854E-05 N/A 
AL2 – 6 2 3.9908E-06 3.9908E-06 
AL2 – 7 1 2.288E-06 N/A 
AL2 – 8 5 1.7616E-05 9.63E-20 
AL2 – 9 3 6.2577E-05 N/A 

AL2 – 10 1 1.0032E-05 N/A 
AL2 – 11 2 2.6387E-05 2.6387E-05 
AL2 – 12 1 3.7748E-07 N/A 
AL2 – 13 1 0.08399425 N/A 
AL2 – 14 4 0.00018769 6.61147E-12 
AL2 – 15 1 0.01421948 N/A 
AL2 – 16 1 0.00010162 N/A 
AL2 – 17 2 0.00041909 0.00041909 
AL2 – 18 1 1.7272E-05 N/A 
AL2 – 19 1 1.5296E-05 1.5296E-05 
AL2 – 20 1 1.001E-06 1.0087E-05 
AL2 – 21 1 1.0087E-05 N/A 
AL2 – 22 1 0.00190656 N/A 
AL2 – 23 1 3.1442E-06 N/A 
AL2 – 24 3 7.2727E-07 5.28924E-13 
AL2 – 25 2 5.2654E-06 5.2654E-06 
AL2 – 26 1 1.1103E-05 N/A 
AL2 – 27 1 0.000806 N/A 
AL2 – 28 5 1.4492E-05 6.39229E-25 
AL2 – 29 3 1.076E-06 1.15785E-12 
AL2 – 30 1 5.4592E-06 N/A 
AL2 – 31 8 1.108E-07 2.05076E-49 
AL2 – 32 1 7.4821E-08 N/A 
AL2 – 33 2 0.00031687 0.000316866 
AL2 – 34 8 2.2664E-05 3.07182E-33 
AL2 – 35 3 2.5634E-06 6.57088E-12 
AL2 – 36 1 2.8723E-07 N/A 
AL2 – 37 1 1.0758E-06 N/A 
AL2 – 38 1 8.1648E-05 N/A 
AL2 – 39 2 3.3368E-05 3.3368E-05 
AL2 – 40 1 6.1011E-07 N/A 
AL2 – 41 7 0.00041909 5.41812E-21 
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AL2 – 42 1 9.9748E-05 N/A 
AL2 – 43 1 3.8097E-05 N/A 
AL2 – 44 4 9.7325E-07 9.21876E-19 
AL2 – 45 3 0.00016732 2.79958E-08 
AL2 – 46 2 4.4671E-05 4.4671E-05 

See Table IV-1 and Results for description of columns. 
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Table IV-5. Clonal diversity measure for all sites. 
Population G/N D E 
Alabama 1 0.53 0.98 0.96 
Alabama 2 0.46 0.97 0.95 
Georgia 0.40 0.95 0.96 
McNairy Co, TN 0.42 0.98 0.93 
Madison Co, TN* 0.41 0.95 0.99 
*Madison Co. data from Ellis et al. (2006).
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Figure IV-1. Alabama dirt road site (AL1) and adjacent wet field (AL2). Note: width of 
cluster not to scale. Individuals of AL1 were collected along a small dirt road. Adjacent to 
the dirt road, separated by a row of Rhubus, was a large patch of H. verticillatus individuals 
that did not appear to grow in distinct clusters. Thus, for these individuals (AL2), a one 
meter-wide transect was set through the middle of the patch of H. verticillatus plants and 
running the entire length of the patch. The dotted rectangle roughly estimates the boundaries 
of the patch. 
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Figure IV-2. Georgia site (GA). Note: width of cluster not to scale. 
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Figure IV-3. McNairy County, Tennessee Site (McTN). Note: width of cluster not to scale. 
Individuals here, were collected along a small creek. 
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Abstract 

 

Knowledge of the genetic and demographic consequences of rarity is crucial when evaluating 

the effects of habitat loss and fragmentation on population viability, and for creating 

management plans in rare plant species. Reduction in population size and in the number of 

populations can lead to decreased genetic diversity and increased inbreeding. Genetic 

diversity is often correlated with levels of fitness and is frequently used to identify 

populations of greatest conservation concern, or those that may be good candidates for ex 

situ conservation programs. However, an association between these factors is not always 

clear, and crossing studies evaluating whether there is phenotypic differentiation among 

populations in fitness related traits can inform managers of suffering populations or good 

sources for ex situ materials. Crossing studies can also evaluate the potential for ‘genetic 

rescue’ to boost fitness in suffering populations. To address these questions, we conducted 

two generations of controlled crosses between populations of the extremely rare and 

fragmented sunflower, Helianthus verticillatus. We measured achene viability, germination, 

survival, and pollen viability (F1 only) in 176 F1 and 159 F2 families. The populations were 

differentiated with respect to phenotypic fitness measures with one population having 

significantly lower achene viability and germination. Also, the potential for genetic rescue 

was observed as gene flow into the less fit population resulted in higher fitness measures in 

both the F1 and F2. Results are discussed with respect to the importance of combining genetic 

marker data with crosses and the implications for conservation in disjunct populations of rare 

species.  
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Introduction 

 

Habitat destruction is one of the greatest factors contributing to the decline of global 

biodiversity and has led to the fragmentation and loss of whole populations, as well as to 

reductions in numbers of individuals within populations, in many species worldwide 

(Wilson, 1992; Wilcove et al., 1998). Many issues affect small, isolated populations, 

including genetic factors, that make them a crucial concern for conservation biologists and 

managers. Populations which remain small lose genetic diversity faster than their larger 

counterparts since genetic drift is stronger in small populations (Lande, 1995). Reductions in 

standing levels of genetic diversity can limit a species’ ability to respond or adapt to 

changing environmental conditions, affecting long-term viability and important ecological 

processes (Frankel et al., 1995; Willi et al., 2006; Hughes et al., 2008). Further, the 

accumulation of deleterious mutations can be significant given that purifying selection is less 

effective in small populations (Lynch et al., 1995) and subjects such populations to 

inbreeding depression, which has been shown to increase extinction risk in small populations 

(Charlesworth and Charlesworth, 1987; Ellstrand and Elam, 1993; Newman and Pilson, 

1997; Wright et al., 2008). Moreover, even if populations are relatively large, extreme 

isolation could prevent populations from realizing the positive effects of gene flow, such as 

spreading advantageous mutations (Rieseberg and Burke, 2001) and alleviating the 
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deleterious effects of inbreeding associated with genetic drift (Keller and Waller, 2004; 

reviewed in Palstra and Ruzzante, 2008). 

Conservation geneticists are thus interested in the consequences of rarity and 

population isolation for the long-term persistence and sustainability of species, including rare 

or endangered plant species. Data from numerous genetic marker studies demonstrates that 

rarity and fragmentation tend to erode levels of genetic variation in plants (Hamrick and 

Godt, 1989; Gitzendanner & Soltis, 2000; Nybom, 2004). These measures of genetic 

diversity are often positively correlated with levels of fitness in populations (Leimu et al., 

2006) and are therefore frequently used to identify populations of the greatest conservation 

concern (Bonin et al., 2007). Since resources for protecting endangered species are limited 

and time constraints may be substantial, decisions of which populations are in need of 

immediate protection (in situ conservation strategies) or which populations would serve as a 

good source for genetic material (ex situ conservation strategies) are often made using 

information regarding population genetic information from markers (Center for Plant 

Conservation, 1991; Primack 2002; McDonald-Madden et al., 2008).  

A definitive association between these factors is not always clear, however, given that 

some studies report non-significant or even negative relationships between fitness and 

genetic variation, e.g., Lammi et al. (1999), Greimler & Dobes (2000), Jacquemyn et al. 

(2007). Particularly interesting are the many studies of rare or endangered plant species that 

report unexpectedly high levels of genetic diversity as revealed by markers (Lewis & 

Crawford, 1995; Young and Brown, 1996; Maki & Asada, 1998; Song & Mitchell-Olds, 

2007). In these cases, we may especially want to ask how the molecular genetic diversity and 

fitness variation within and among populations are related. Information from neutral genetic 
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variation may not accurately reflect variation in quantitative traits that are important to 

fitness (Lynch, 1996; Merila and Crnokrak, 2001). Thus, it may be risky to draw conclusions 

about the population viability of rare species based solely upon genetic marker information 

(Oostermeijer et al., 2003; Ouborg et al., 2006). Studies which combine measurements of 

population fitness, genetic diversity, and population structure may ensure that quantitative 

variation related to viability as well as neutral genetic variation for future adaptability are 

preserved, especially when not all populations can be protected (Rader et al., 2005).  

Comparing phenotypic fitness measures from controlled intra-population crosses of 

an endangered species can inform conservation biologists whether there is population 

differentiation with regard to these fitness related life-history traits. When populations are 

isolated, their evolutionary trajectories and dynamics can become independent of one 

another; these populations may exhibit differentiation in fitness characteristics due to 

differences in susceptibility to inbreeding depression as a result of genetic drift (Keller and 

Waller, 2002; Glemin et al., 2003; Willi et al., 2005) or due to differential selection and 

adaptation (Nagy and Rice, 1997; Becker et al., 2006). Information regarding both genetic 

and phenotypic differentiation will be important when determining which populations may 

be the most appropriate to protect or the best source candidates for captive breeding 

programs or seed storage (Primack, 2002).  

 Evaluation of the fitness consequences of controlled inter-population crosses can 

give insight into how more active conservation strategies, such as introducing new 

individuals or gene flow events, will affect the viability of populations, as well as provide a 

first look at the genetic basis of any differentiation. Frequently, experiments find that there is 

increased fitness, or heterosis, in the F1 generation of crosses between small or isolated 
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populations (e.g. Heschel and Paige, 1995; Richards, 2000). For this reason, a possible 

conservation strategy for increasing the likelihood of survival in rare species is to introduce 

new genetic material into populations suffering from reduced fitness, i.e., ‘genetic rescue’, 

the increase in population fitness owing to immigration of new alleles (Richards, 2000; 

Ingvarsson, 2001; Tallmon et al., 2004). 

Although genetic rescue can lead to heterosis, the immigration of genetically 

divergent individuals into a population can also lead to a decrease in fitness (outbreeding 

depression) owing to the dilution of local adaptations or disruption of co-adapted gene 

combinations, and the success of genetic rescue may decrease with increasing genetic 

isolation, especially in the case of highly disjunct rare species (Templeton, 1986; Waser and 

Price, 1989; Lynch, 1991). Fewer studies have found evidence for outbreeding depression 

perhaps since many experiments only study fitness of individuals in the F1 generation 

(Tallmon et al., 2004; Edmands, 2007). Outbreeding depression is more likely to be 

manifested in the F2 generation and beyond since heterozygosity peaks in the F1 and 

recombination will not break up any co-adapted gene complexes until later generations 

(Lynch, 1991; Fenster and Galloway, 2000). Furthermore, outbreeding depression due to the 

disruption of favorable epistatic interactions would have to be greater than the positive 

fitness effects on the population fitness due to heterosis in the F1 generation, in order for 

outbreeding depression to be detected in the F1 generation. Studies evaluating the fitness 

consequences of outbreeding should be carried out to at least the F2 generation in order to 

fully investigate the effects of both inbreeding and outbreeding on population fitness, as 

emphasized by Tallmon et al. (2004) and Edmands (2007).  
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In this study, we evaluate population differentiation with regard to phenotypic fitness 

characteristics and consider the potential consequences of gene flow in populations of the 

rare sunflower, Helianthus verticillatus. Despite the general expectation of reduced genetic 

variation in rare species, H. verticillatus does not exhibit low levels of genetic diversity nor 

are there significant differences in levels of genetic variation among its few and isolated 

populations (Ellis et al., 2006). If fitness is correlated with genetic diversity, one might 

expect no significant decline in fitness or differences in fitness between these populations. 

Moreover, measures of population genetic structure revealed only moderate levels of genetic 

differentiation despite extreme geographical separation in this species. The high levels of 

population genetic diversity and relatively low population structure indicated that these 

populations may be interchangeable with regard to protection and that any population would 

be a good source for seed storage. However, as mentioned previously, it may be dangerous to 

rely solely upon information from genetic markers for determining populations of immediate 

concern, especially in species with unexpected population genetic results. Thus, by 

conducting controlled intra-population crosses in a common environment, we investigate the 

effects of rarity and isolation on the fitness of H. verticillatus populations and ask: 1) do the 

populations differ in their phenotypic fitness characteristics or are they interchangeable, and 

2) how are these phenotypic fitness characteristics related to population genetic information? 

We are also interested in the potential for genetic rescue through gene flow events among 

disjunct populations of extremely rare species. Specifically, we also address questions 

relating to the genetic, or intrinsic, fitness consequences of isolation by conducting inter-

population crosses through the F2 generation and asking: 1) is there the potential for genetic 

rescue as evidenced by higher mean fitness of hybrid individuals as compared to any or all 
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parental populations, and 2) is there evidence for intrinsic outbreeding depression, especially 

in the F2 generation? Given these results, we discuss the importance of combining genetic 

marker information with that of controlled crosses and the implications for management of 

extremely rare, isolated species.  

 

Materials and Methods 

 

Study Species 

Helianthus verticillatus was first collected in western Tennessee in 1892 and was not 

found in nature again until 1994 when it was discovered in Floyd Co., Georgia. In 1996 and 

1998, populations of H. verticillatus in Cherokee Co., Alabama and Madison Co., Tennessee, 

respectively, were discovered (Matthews et al., 2002). In the fall of 2006, another population 

in McNairy Co., Tennessee about 50 km from the Madison Co. site, was discovered. The 

species is an extremely rare diploid (n = 17) self-incompatible perennial known only to these 

four locations in the southeast interior of the United States. The Alabama and Georgia 

populations are about 3.5 km from each other whereas the Tennessee populations are about 

350 km from the others. The species is clonal with slender rhizomes, a glaucous stem, leaves 

mostly verticillate in three’s or four’s, prefers wet habitats, and flowers August to October. 

Mature plants range in height from 0.6-4.2m in the field, and clones occur in somewhat 

distinct clusters in nature. It is a candidate for Federal listing for the Endangered Species Act 

(ESA) and is listed as endangered in each of the three states. The Georgia site has formal 

protection under a conservation easement; however, there is no official protection for the 

remaining sites. The populations are highly clonally structured and consist of a small number 
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of genetic individuals (Ellis et al., 2006). Extensive surveys for any additional populations of 

this species have been carried out since the rediscovery of the species in 1994 and still only 

four locations are known (pers. comm. Tennessee Natural Heritage Division). 

Crossing Experiment and Design 

 Composite flower heads of H. verticillatus from different genetic individuals were 

collected in the fall of 2004 from the Alabama, Georgia, and Madison Co., Tennessee sites. 

These are the three populations for which we also have extensive genetic marker information 

(Ellis et al., 2006). The McNairy Co., Tennessee population had not been discovered when 

this experiment began and thus, was not included. Two attempts at cultivating Georgia plants 

failed, as these flower heads contained a very low number of viable achenes which exhibited 

poor germination rates. No Georgia plants survived to flowering in the greenhouse. Further, 

many of these Georgia plants do not flower in the field and this may indicate extremely low 

fitness in this population. Therefore, only the Madison Co., Tennessee and Alabama 

populations were included in the crossing experiment. As mentioned earlier, these are two of 

the populations which were studied previously for population genetic diversity and structure 

(Ellis et al. 2006). Thus, at the time of this crossing study, these two sites represented two-

thirds of the known populations of this species and half of the currently known populations. 

 Heads were allowed to dry for one week, and achenes were then removed and 

placed in small coin envelopes. These envelopes were placed in sealed plastic jars in the 

refrigerator (four degrees Celsius) for one month to break seed dormancy (pers. comm. J.F. 

Matthews). After one month, achenes were nicked with a razor blade, allowed to germinate 

on moistened filter paper, and then transplanted and grown in the Vanderbilt University 

Department of Biological Sciences greenhouse. These represented the parental individuals in 
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the following cross study and are hereafter referred to as ‘parentals’. Plants were grown in a 

commercially purchased top soil and perlite mixture. Grow lights were kept on a 16:8 light: 

dark cycle. The temperature ranged from about 25-30 degrees Celsius with roughly 70 

percent humidity over the course of the experiment. Since this species can grow over four 

meters high, we had to build a support system of PVC piping in the greenhouse and crosses 

were conducted from a three meter ladder. This experiment was the first time a crossing 

study of this magnitude had been conducted in this species.  

 Parental plants reached reproductive maturity in the fall of 2005 and four types of 

crosses were conducted: intra-population F1 crosses (Tennessee X Tennessee, or TT1; 

Alabama X Alabama, or AA1; seed donor is listed first followed by pollen donor) and inter-

population F1 crosses in both directions (Tennessee X Alabama, or TA1; Alabama X 

Tennessee, or AT1). The parental individuals included 16 Alabama and 16 Tennessee genets 

(non-clones). The species is self-incompatible and hermaphroditic; thus, parent individuals 

served as both pollen donor and pollen recipient, e.g., crossing individual TN1 with 

individual AL2 produced two families: TN1 X AL2 and AL2 X TN1. Our original intended 

experimental design provided that every individual would receive all treatments; however, 

due to the asynchronous nature of flowering, our final design was not fully factorial at the 

family level. The crosses were carried out as follows: inflorescences were bagged prior to 

anthesis to prevent any unwanted pollinations. Crosses were conducted by brushing pollen 

with a paintbrush from an inflorescence into aluminum foil and then brushing pollen onto the 

stigmas of another inflorescence in which the same pollen removal had been conducted. 

Pollinations were conducted within one hour of collecting pollen and all pollinations were 
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carried out at mid-morning (~1000 hours) for consistency. Inflorescences were re-bagged and 

achenes were allowed to mature.  

Components of fitness of the F1 offspring were assayed by determining the proportion 

of achenes that were viable, the proportion of viable achenes that germinated, the proportion 

of germinating seedlings that survived to the five true leaf stage, and pollen viability for each 

cross, i.e., family. Achene viability proportion was measured by counting the number of 

hard, black achenes (filled or viable) and the number of flat (unfilled or inviable) achenes and 

dividing the number of filled achenes by the total. Achenes were then put through the same 

vernalization period as the parentals. After a month, up to 20 achenes per cross, i.e., family, 

were germinated using the same nicking method as before and proportion of seeds 

germinated was scored as the number of seeds germinated in seven days out of the total 

attempted. Then, up to 10 germinated seedlings per family were planted in cone-tainers in the 

greenhouse to assess survival proportions. Plants were monitored until they died or reached 

five sets of true leaves. At this stage, three individuals from each of 100 families (25 of each 

cross type) were randomly selected and repotted into large pots and grown to maturity in 

order to measure pollen viability and for the next generation of crossing. When plants 

reached reproductive maturity, pollen was removed from an inflorescence and placed on a 

glass slide. One drop of a 0.1% solution of MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyltetrazolium bromide; thiazolyl blue) was added to each pollen sample, and a cover-

slip was used to mix and cover the pollen and MTT mixture. The pollen samples were then 

examined under a light microscope at 1000X magnification. More than 300 pollen grains per 

sample were scored as either purple (viable) or clear (inviable), and the viable proportion of 
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pollen grains was calculated as the ratio of purple-stained pollen grains to the total number of 

pollen grains scored.  

The same crossing methods were used to produce the F2 generation (designated: AA1 

X AA1 = AA2, AT1 X AT1 = AT2, TA1 X TA1 = TA2, TT1 X TT1 = TT2; direct inbreeding of 

relatives was avoided). Achene viability, germination, and survival to five true leaves were 

measured. Figure V-1 summarizes the entire crossing design.  

Statistical Analysis of Fitness 

We used Analysis of Variance (ANOVA) as calculated by JMPIN version 5 software 

(SAS Institute) to analyze the effect of cross type on the F1 and F2 offspring fitness 

measurements. Family was not included as an effect in the analysis since the design was not 

fully factorial at the family level due to asynchronous flowering of individuals. All 

proportion variables were arcsine square root transformed (Sokal and Rohlf, 1995). The main 

effect was cross type, with the variables achene viability, germination, survival, and pollen 

viability (F1 only) initially analyzed separately. Cumulative fitness for the F1 and F2 offspring 

was calculated as the product of achene viability, germination, and survival. Post hoc Tukey-

Kramer tests were performed in order to indicate which specific treatment means differed, 

e.g., do the two parental populations differ from one another with regard to fitness traits, do 

the offspring of inter-population crosses have higher fitness values than offspring of one or 

both of the pure population crosses?  

One caveat worth mentioning pertains to the various relationships between the intra-

population and the F1 (or F2) fitness measures possible in a crossing experiment. Generally, 

when evaluating heterosis, the fitness of hybrid individuals is compared to the mid-parent 

value, or the mean of the F1 (or F2) inter-population families is compared to the mean of the 
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source population families (Lynch & Walsh 1998). However, this approach may overlook 

information on possible fitness differences between the individual source populations being 

studied; thus, we have chosen to evaluate source populations separately. We also identify the 

potential for genetic rescue when the fitness of the inter-population crosses is higher than that 

of either set of intra-population crosses. 

 

Results 

 

 Overall, 176 F1 crosses, or families, were produced (39 AA1, 51 AT1, 42 TA1, and 44 

TT1). In total, 4754 F1 achenes (filled and un-filled) were scored, of those germination was 

attempted with 2306 filled achenes, and 990 plants were subsequently monitored for survival 

in the greenhouse. Achene viability means across all F1 families ranged from zero to one, 

with an overall mean of 0.71. F1 family means for germination ranged from 0.20 to one, with 

an overall mean of 0.76. F1 family survival means ranged from zero to one, with an overall 

mean of 0.70. Pollen viability F1 family means overall means ranged from 0.5 to 0.98, with 

an overall mean of 0.80. ANOVA indicated that there was a significant effect of cross type 

on achene viability, germination, and cumulative fitness (achene viability F3,172 = 3.48, p = 

0.017; germination F3,129 = 4.34, p = 0.006; cumulative fitness F3,161 = 2.95, p = 0.034). 

Mean survival and pollen viability did not differ among cross types. For achene viability, a 

Tukey-Kramer test revealed that TT1 families had a significantly lower mean than AT1; the 

test also revealed that TT1 had lower germination rates than AA1 and AT1. TT1 crosses had 

significantly lower cumulative fitness values than AT1 crosses (Figure V-2).  
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The F2 crosses included 159 families (35 AA2, 53 AT2, 49 TA2, 22 TT2) in which 

achene viability, germination, and survival were measured. In total for F2 crosses, 3846 

achenes (filled and un-filled) were scored, germination was attempted with 1870 filled 

achenes, and 1063 plants were monitored for survival in the greenhouse. Achene viability 

means across all F2 families ranged from zero to one, with an overall mean of 0.66. 

Germination F2 family means ranged from zero to one, with an overall mean of 0.87. 

Survival F2 family means ranged from zero to one, with an overall mean of 0.87. ANOVA 

indicated that there was also a significant effect of cross type on achene viability, 

germination, and cumulative fitness in the F2 (achene viability F3,155 = 8.44, p < 0.001; 

germination F3,116 = 5.31, p = 0.002; cumulative fitness F3,155 = 7.27, p < 0.0001). Mean 

survival did not differ among cross types. For achene viability, a Tukey-Kramer test revealed 

that TT2 families had significantly lower mean than all other families. TA2 families had the 

highest germination rates and were significantly higher than AT2 and TT2 families; TT2 

families had significantly lower germination rates than AA2 families. Finally, TT2 families 

had significantly lower cumulative fitness values than all other cross types (Figure V-3).   

 

Discussion 

 

Phenotypic Differentiation 

In this study, we found evidence for phenotypic differentiation between the 

Tennessee and Alabama populations with regard to components of fitness. Over two 

generations of crossing within these populations, Tennessee displayed lower germination 

rates than Alabama (roughly 25 percent less in the both generations). In the second 
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generation, Tennessee also exhibited lower achene viability and cumulative fitness values 

than the Alabama population (nearly 20 percent lower achene viability and almost 40 percent 

lower cumulative fitness). Given the general positive correlation between genetic marker 

diversity and fitness measures in the literature (Liemu et al., 2006), these results were 

somewhat unexpected since a recent investigation of the population genetics of these same H. 

verticillatus populations found no significant differences in heterozygosity between these two 

populations at 22 SSR loci (Madison Co., Tennessee He = 0.46 ± 0.07; Cherokee Co., 

Alabama He = 0.46 ± 0.07, Ellis et al., 2006). Moreover, this highly disjunct species exhibited 

only moderate levels of nuclear population genetic differentiation (FST = 0.12).  

The evolutionary mechanism for the observed phenotypic fitness differences between 

the two populations is not known. However, two explanations seem likely: 1) more extensive 

inbreeding within the Tennessee population, or 2) differential adaptation between the two 

populations—note that these possibilities are not mutually exclusive.  

Lower fitness values in the Tennessee population may indicate inbreeding as a result 

of genetic drift and/or bi-parental inbreeding within this population. Our finding of lower 

fitness at the early stages of the life cycle corresponds with the general observation that 

inbreeding depression in outcrossing perennials occurs at this time (Husband and Schemske, 

1996). The increase in fitness of Tennessee plants following inter-population crossing to 

levels comparable to the Alabama population also indicates that this population may have 

been somewhat inbred since inter-population crosses may mask deleterious recessive alleles 

and increase heterozygosity (Charlesworth and Charlesworth, 1987). Many studies have also 

reported similar low offspring fitness in small, isolated populations of plant species often 
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attributed to inbreeding (Heschel and Paige, 1995; Fischer and Matthies, 1998; Luijten et al., 

2002; Paschke et al., 2002; Severns, 2003; Yates et al., 2007). 

Two factors may contribute to higher rates of inbreeding and the subsequent lower 

fitness in the Tennessee populations compared to the Alabama population: 1) population size 

and 2) minor population sub-structuring. The Tennessee population is smaller than the 

Alabama population, consisting of about 70 genets (versus several hundred in Alabama) 

(Ellis et al., 2006). It should be noted that the Georgia population, which exhibited such poor 

fitness that it could not be studied, consists of less than 20 genets, and the newly discovered 

Tennessee population, which was not available at the time of this study, contains just 19 

genets (Ellis, unpublished data). Other studies have reported positive correlations between 

population size and fitness measures in fragmented plant populations. For example, Kery et 

al. (2000) reported strong reductions in fitness measures in smaller populations compared to 

larger populations in two rare, self-incompatible perennial species, Primula veris and 

Gentiana lutea. Leimu et al. (2006) found overall positive correlations between population 

size and fitness in a meta-analysis considering 45 studies which evaluated this relationship in 

plants. While the fact that our species has only four populations did not allow us to conduct a 

replicated study of the relationship between size and fitness, these results indicate a trend 

towards a similar correlation. Another factor potentially contributing to the observed 

inbreeding depression in this study is a small level of population structure in the Tennessee 

population. Ellis et al. (2006) found slight, but significant (FST = 0.048), population sub-

structuring among three closely spaced patches which may further exacerbate the effects of 

inbreeding. 
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An alternative explanation for the observed population differentiation at fitness traits 

is differential adaptation between the two populations without inbreeding. For example, a 

mutation appearing in the Alabama population which provides increased achene viability or 

higher germination rates may be selected for in this site. This selection could lead to 

population differentiation at these traits, independent of any inbreeding-associated reduced 

fitness, if Tennessee has not experienced the same mutation/selection regime or if the 

adaptation has not spread by gene flow. In a species connected by moderate gene flow, a 

beneficial mutation is expected to spread across populations relatively rapidly (Slatkin, 1976; 

Rieseberg and Burke, 2001). However, in this highly disjunct species, where gene flow 

among populations is currently improbable, advantageous mutations are unlikely to be 

spread. This possibility emphasizes the importance of population connectivity for long term 

sustainability. Note, because our experiment was conducted in a controlled greenhouse 

environment, the differences between populations probably represent intrinsic genetic 

differences separate from adaptation to local environments.  

While differential adaptation in fitness traits is plausible, inbreeding depression may 

become a more parsimonious explanation for the observed fitness differences with increasing 

numbers of differentiated traits since inbreeding affects the genome globally. The potential 

reasons for the underlying phenotypic differentiation require further investigation; however, 

our results demonstrate that, contrary to genetic marker information, these populations are 

not interchangeable with regard to quantitative fitness characteristics.  

Potential for Genetic Rescue 

We were also interested in the potential for genetic rescue as a more active 

conservation strategy. Thus, we monitored inter-population crosses to the F2 generation to 
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increase the likelihood of observing any possible outbreeding depression; fewer studies have 

followed fitness this far (Tallmon et al., 2004; Edmands, 2007), and outbreeding depression 

in the F2 can be as detrimental as inbreeding depression (Edmands, 2007). While some have 

found outbreeding depression in a single generation of crosses, e.g., Montalvo and Ellstrand 

(2001), there are theoretical reasons to expect that outbreeding depression might not be 

observable until the F2 and later generations as mentioned previously.  

We did not, however, find any evidence for outbreeding depression in inter-

population crosses in either the first or second generation of this study. Inter-population 

crosses had equivalent fitness values to the Alabama crosses and were statistically higher 

than the Tennessee crosses. The potential ‘hybrid breakdown’, a decline in inter-population 

offspring as compared to the parents, was not detected. By evaluating populations 

independently, we were able to show that the fitness of the inter-population crosses was 

higher than pure Tennessee crosses but equivalent to pure Alabama crosses. This information 

would have been lost had we averaged the parental fitness values. The F1 results indicate that 

some dominant gene action owing to the masking of deleterious recessives in the Tennessee 

population, instead of additive or overdominant effects, may play a role in the fitness 

characteristics studied. This finding corresponds with the general understanding that traits 

underlying fitness often have high dominance components (Crnokrak and Roff, 1995) and 

that inbreeding depression frequently involves the action of partially recessive harmful 

alleles (Charlesworth and Charlesworth, 1999; Keller and Waller, 2002). Our results did not 

mimic pure dominance as we did not observe the decline in fitness that is expected due to 

segregation in the F2, but rather the fitness benefit gained by outcrossing Tennessee 

individuals as compared to the pure Tennessee crosses was exaggerated in the F2 generation. 
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Thus, the mode of gene action underlying fitness loci remains to be explained, and our 

findings indicate it may not be simple. 

The increased fitness in the inter-population F1 and F2 hybrids suggests the potential 

for genetic rescue in the Tennessee population. The potential for genetic rescue has been 

shown in other rare or endangered plant species. Immigrant pollen from regional populations 

of the rare pitcher plant, Sarracenia flava, resulted in more vigorous offspring and inter-site 

crosses were recommended for conservation management (Sheridan and Karowe 2000). 

Paschke et al. (2002) found that introducing pollen from outside populations resulted in 

higher reproductive success and greater offspring size in the self-incompatible, endemic 

Cochlearia bavarica. Finally, Willi et al. (2007) demonstrated that inter-population hybrids 

of the rare Ranunculus reptans maintained high fitness even into the F2 generation, 

indicating genetic rescue in this species. 

Implications for Conservation  

Our results indicate that these populations are not interchangeable with regard to 

phenotypic fitness-related characteristics. While a general positive relationship exists 

between genetic diversity and population fitness (Leimu et al. 2006), some studies have 

reported non-significant or negative correlations between these measures, e.g., Bonnin et al., 

2002; Leimu and Mutikainen, 2005; Lopez-Pujol et al., 2008). In these studies and the case 

of H. verticillatus, measuring genetic diversity alone would have been insufficient in 

identifying the Tennessee population as a conservation concern. Many studies of endangered 

species only include information from genetic marker data as these types of studies may 

often be conducted in a timely manner (Conner and Hartl 2004). Knowledge of quantitative 

measures for fitness related traits is important in determining the best source for ex situ 
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conservation management. When possible, marker and fitness studies should be combined to 

fully assess the future evolutionary potential and the demographic and fitness consequences 

of small, isolated populations. 

This study also demonstrates a potential for genetic rescue and suggests management 

strategies to address the population viability of the Tennessee population. Outcrossing 

Tennessee individuals produced more fit offspring than pure Tennessee offspring and these 

fitness benefits carried through to the F2 generation. A potential conservation strategy could 

be to transplant Tennessee X Alabama seeds or seedlings into the Tennessee population to 

boost fitness. In a self-incompatible species, like H. verticillatus, loss of S alleles is also 

important to mate availability, e.g., Young et al. (2000), and introducing new genetic 

individuals into a population can increase S allele diversity thereby increasing the number of 

potential mates (DeMauro, 1993; Hoebee et al. 2008). Some have proposed that only a few 

introduced individuals per generation are needed for genetic rescue (Tallmon et al., 2004), 

and even one individual may be sufficient to increase fitness in a suffering population 

(Ingvarsson, 2001).  However, the possibility for outbreeding depression in later generations 

cannot be ruled out (Fenster and Galloway, 2000); it is also feasible that transplanted hybrid 

individuals would be ill fit for surviving in the Tennessee environment. We did not examine 

the potential for ‘hybrid breakdown’ due to the dilution of locally adapted alleles (extrinsic 

outbreeding depression) since our study was conducted in the greenhouse (cf. Fenster and 

Dudash 1994). We chose a common environment to address intrinsic factors associated with 

inbreeding and outbreeding and to control external factors such as nutrient availability, 

precipitation, and temperature. Future studies that monitor survival of reciprocal transplant 
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individuals and inter-population hybrids planted into each of the different biotic and abiotic 

environments may give insight into these issues.  

The comparison in the greenhouse of Tennessee to Alabama crosses alone 

demonstrates the considerable fitness differences between the two populations, with 

Tennessee being much lower overall. The assessment of fitness in the greenhouse may also 

be a relatively conservative measure since the field is likely to exhibit much harsher 

conditions (Lynch & Walsh, 1999). The statistical increase in fitness owing to immigration 

of Alabama alleles into the Tennessee population offers great promise and stresses the 

urgency for a conservation strategy in this population.   
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Figures 

 

 

Figure V-1. Schematic of the crossing experiment. Sixteen parental individuals (P) from each 
population were collected from the field, grown to maturity, and crossed (Alabama X 
Alabama-AxA, Alabama X Tennessee-AxT, Tennessee X Alabama-TxA, Tennessee X 
Tennessee-TxT). The offspring (F1) were assayed for fitness at the achene stage (achene 
viability), the embryonic stage (germination), the seeding stage up to five sets of true leaves 
(survivability), and the mature plant stage (pollen viability). The F1 individuals were then 
crossed (AxA X AxA, AxT X AxT, TxA X TxA, TxT X TxT), and their offspring (F2) were 
also measured for achene viability, germination, and survivability. Graphic credit: 
Christopher G. Brown. 
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Figure V-2. Mean fitness measurements ± SE for the F1 families (A.) Achene viability. (B.) 
Germination. (C.) Survival. (D.) Pollen Viability (E.) Cumulative Fitness. Different letters 
indicate measurements that showed significant cross treatment effects at the p ≤ 0.05 level 
for ANOVA and Tukey-Kramer testing. 
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Figure V-3. Mean fitness measurements ± SE for the F2 families (A.) Achene viability. (B.) 
Germination. (C.) Survival. (D.) Cumulative Fitness. Different letters indicate measurements 
that showed significant cross treatment effects at the p ≤ 0.05 level for ANOVA and Tukey-
Kramer testing. 
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CHAPTER VI 

 

ANCILLARY  

 

 The following is a short collection of several small projects I conducted during my 

dissertation research. This ancillary chapter contains interesting findings that were not 

included in separate chapters because they were the result of smaller scale studies.  

 

Helianthus verticillatus Herbarium Sample 

 

 In addition to the studies based on extant individuals of Helianthus verticillatus, I 

obtained leaves from two herbarium specimens, derived from the original 1892 collections 

and housed at the New York Botanical Garden (NY Specimen ID: 73465; Collector: S. M. 

Bain, Aug. 1892). I examined the genetic relationship between the two herbarium specimens 

and extant individuals employing previously studied EST-SSRs (Ellis et al. 2006; Pashley et 

al. 2006). Specifically, I was interested in asking 1) are the two herbarium samples from the 

same or different genets, 2) since the species is clonal, perennial, and may have long 

generation times, are the herbarium specimens still living clones in the extant population, and 

3) how different are the herbarium specimens from extant individuals? Special precautions 

were made so as not to contaminate the specimen DNA with other sunflower DNA. To avoid 

contamination issues, the DNA was extracted in a different laboratory located in a different 

building than where the sunflower research is normally conducted with Qiagen DNeasy Plant 

Maxi Kit (Qiagen, Valencia, CA). None of the equipment (pipettes, pipette tips, etc.) had 
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previously been used to study vascular plants. The dried leaf (~ 0.2g) was ground with liquid 

nitrogen. The herbarium specimens were genotyped for the same EST-SSR loci as the extant 

material. To examine the relationship between the H. verticillatus herbarium specimen and 

the extant H. verticillatus populations, a Principle Coordinates Analysis (PCO) was 

conducted on the four H. verticillatus populations and the herbarium specimen. 

Results of the Herbarium DNA 

 Both herbarium specimens consisted of the same multi-locus genotype, (Pcgen)n-1 =  

1.13E-17 (see Chapter IV Materials and Methods for description of multi-locus probability 

calculation). Most likely then, the two samples were collected from the same genet. The 

specimens contained six unique alleles out of 24 detected alleles when compared to the 

extant H. verticillatus individuals (Ellis et al. 2006). Two loci that were monomorphic in the 

extant populations were also monomorphic (having the same alleles) in the herbarium 

samples, and the herbarium specimens contained the ‘H. verticillatus’ allele at a diagnostic 

locus between the three species (H. verticillatus, H. angustifolius, H. grosseserratus). In a 

PCO plot of H. verticillatus and the herbarium specimen (figure VI-1), the herbarium 

specimen clustered near individuals of the Tennessee populations. The first and second 

components explained 29.9 and 19.2 percent of the variation respectively. Genetic marker 

data indicates that the herbarium specimens represent a single genet of H. verticillatus 

possibly from Tennessee, and it was not an individual that was found in the previous Ellis et 

al. (2006) study.  
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Newly Discovered McNairy Co., Tennessee Population 

 

Methods and Analysis  

Measures of genetic diversity, including mean number of alleles, observed and 

expected heterozygosity, and the inbreeding coefficient (f, Weir and Cockerham 1984) were 

calculated in the newly discovered McNairy Co., Tennessee population using the program 

GDA v 1.0 (Lewis and Zaykin 2001). Data from the McNairy Co., Tennessee population was 

also analyzed with the existing information on the other three locations of this species for 

population genetic structure (Ellis et al. 2006). Using an AMOVA framework (Weir and 

Cockerham 1984; Excoffier et al. 1992), population genetic structure was estimated in the 

program ARLEQUIN v. 2.0 (Schneider et al. 2000). Also, the new population was included 

in a PCO which was conducted on pairwise genetic distances among all four populations of 

H. verticillatus. 

Results McNairy Co., Tennessee Population Genetics  

The McNairy Co. population contained previously un-sampled alleles at several of 

the EST-SSRs studied and contained new multi-locus genotypes. Mean number of alleles per 

polymorphic locus measured 3.65 ± 0.44 (mean ± SE). Mean expected heterozygosity was 

0.53 ± 0.06 and mean observed heterozygosity was 0.39 ± 0.05. FIS, the inbreeding 

coefficient was 0.24 ± 0.07. These values are comparable to those of the other three 

populations (Ellis et al. 2006).  

Population structure, as calculated by AMOVA, for the four populations (McNairy 

Co. and AL, GA, Madison Co., TN studied in Ellis et al. 2006) was FST = 0.168, P < 0.0001. 

This value was slightly higher than the calculation from Ellis et al. (2006), FST = 0.118. 
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Pairwise values, however, demonstrated that the new McNairy Co., Tennessee population 

was somewhat more differentiated from the other populations of H. verticillatus. All pairwise 

values of FST were significantly different from zero (P < 0.0001), and were as follows: 

Georgia and Alabama (FST = 0.083), Madison Co., TN and Georgia (FST = 0.146), Madison 

Co., TN and Alabama (FST = 0.128), McNairy Co, TN and Madison Co., TN (FST = 0.111), 

McNairy Co, TN and Georgia (FST = 0.168), and McNairy Co, TN and Alabama (FST = 

0.185). Furthermore, the PCO carried out on all four populations of H. verticillatus revealed 

similar relationships to the AMOVA and explained a large portion of the variance, 

cumulatively 49.38%. The PCO demonstrated overlap between individuals from GA and AL 

along both PCO1 and PCO2. The Madison Co, TN population formed a somewhat distinct 

cluster and was only separated along PCO2. The newly discovered McNairy Co., TN formed 

the most distinct cluster of individuals and was separated along PCO1 (PCO 1: 29.9%, PCO 

2: 19.2%; Figure VI-1). 

 

Reproductive barriers in Helianthus verticillatus 

 

Insect Observations 

I was also interested in identifying whether H. angustifolius poses a threat to the 

taxonomic identity of H. verticillatus through natural hybridization by conducting 

interspecific crosses in the greenhouse (see below) and observing pollinators in the field. The 

threat for natural hybridization is present given that the two species grow in close proximity 

with one another and overlap in flowering time. The rare species flowers early in the fall 

(August to early October), and the common species flowers a little later (September to late 
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October). I observed insects in the field and collected visitors, herbivores, and pollinators 

from both H. verticillatus and H. angustifolius individuals. This was to determine if they 

overlap in pollinators and thus have an opportunity for natural hybridization. Native bees, 

Mellisodes bimaculatus, were present when only H. verticillatus was flowering in August to 

mid September. However, in late September, when the common species was flowering with 

the rare, these native bees were no longer observed. Instead, European honeybees, Apis 

mellifera, were common and observed flying between the rare and the common species. 

Also, bees were observed flying mainly short distances between visits which often resulted in 

visits to flowers on the same plant. 

Interspecific Crosses of Helianthus species 

Interspecific crosses were conducted among H. verticillatus, H. grosseserratus, and 

H. angustifolius individuals to investigate crossing barriers among the species once thought 

to be the progenitors of the putative hybrid, H. verticillatus (Heiser et al. 1969). Crosses and 

fitness measurements were carried out following the methods outline in Chapter V. While 

some individuals from hybrid crosses were successful (i.e. several individuals survived to 

five true leaves), reproductive isolation remains strong but not complete in the greenhouse. In 

total, 17 H. angustifolius by H. grosseserratus, 88 H. angustifolius by H. verticillatus, and 6 

H. grosseserratus by H. verticillatus families were evaluated. Intraspecific crosses were more 

likely to have at least one viable achene (X2 = 70.2, p < 0.0001), one germinated seedling (X2 

= 68.7, p < 0.0001), and one seedling surviving to five true leaves (X2 = 90.4, p < 0.0001) 

than interspecific crosses. See Tables VI-1 and VI-2. 

I also genotyped surviving seedlings at a species diagnostic EST-SSR (BL 22) in 

putative experimental hybrid individuals for which I was able to obtain a leaf for DNA; this 
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locus is fixed between the species. All methods were carried out for marker BL 22 as in 

Chapter II. Out of 34 putative hybrids created through interspecific hybridization, only seven 

were heterozygous at the species specific marker. Thus, the rest of the individuals may have 

been the result of selfing or the Mentor effect (Richards 1986). Finally, an interesting 

observation to point out is that when flower heads were bagged, no achenes were viable. 
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  Figure VI-1. Principle coordinates analysis of Helianthus verticillatus populations and    
  the herbarium specimen. 
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Table VI-1. Number of interspecific families with at least one viable achene, one germinated 
seedling, and one seedling surviving to five true leaves.  
Interspecific No. Crosses Set >1 achene Germinated >1 achene Survival >1 achene 
HA x HG 17 7 6 5 
HA x HV 88 24 24 11 
HG x HV 6 2 2 2 
HV x HV 176 156 153 146 
 
 
Table VI-2. Interspecific families grouped by cross type (Inter- or Intra- specific) with at 
least one viable achene, one germinated seedling, and one seedling surviving to five true 
leaves. 
Cross Type No. Crosses Set>1 achene Germinated >1 achene Survival >1 achene 
INTER- 111 33 32 18 
INTRA- 176 142 141 136 
 
 
Table VI-3. Interspecific crosses genotyped for a species-diagnostic  
EST-SSR to determine if seedlings were the product of selfing or  
hybrid crossing. 
Interspecific No. crosses Genotyped Nuclear Heterozygotes 
HA x HG 17 6 2 
HA x HV 88 25 4 
HG x HV 6 3 1 
 
HA = Helianthus angustifolius  
HG = H. grosseserratus 
HV = H. verticillatus  
 
 
 

164 



 

CHAPTER VII 

 

CONCLUSION 

 

The results of this dissertation demonstrate the need for studies of rare or endangered 

species to include combined assessments of population genetic parameters, population size, 

and fitness, particularly since some do not follow general theoretical and experimental 

expectations. The finding of high genetic diversity in populations of Helianthus verticillatus 

was somewhat surprising given its small number of populations and the considerable 

geographic isolation among them. However, the species exhibits clonal growth and has a 

perennial life cycle, potentially affording longer generation times and reducing the 

probability of genet death (Cook 1983). Moreover, a sufficient amount of time may not have 

yet passed for the effects of rarity on the population genetic diversity to be manifested: the 

species is often found with other rare and endangered plant species that exhibit high prairie 

affinities and have likely become rare since European settlement and the subsequent land 

conversion in the 19th century (Allison 1995; Matthews et al. 2002). Additionally, there may 

be more, undiscovered populations which serve to connect the known populations through 

gene flow further buffering the loss of genetic diversity.  

 This dissertation also demonstrates the value of utilizing existing genomic resources 

of related species for the development of highly polymorphic genetic markers. Here, the use 

of simple sequence repeats (SSRs) developed from Expressed Sequence Tag (EST) databases 

allowed for the rapid and relatively inexpensive study of the population genetics of H. 

verticillatus. De novo development of SSRs would have required significantly more time and 
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money—two common and limiting factors for the study of rare or endangered species. The 

availability of these markers also allowed for the investigation of the hypothesis that H. 

verticillatus was the product of recent hybridization between two diploid, widespread 

sunflowers, H. angustifolius and H. grosseserratus (Heiser et al. 1969). Confirming previous 

morphological findings, genetic marker data revealed that H. verticillatus represents a good 

taxonomic species of non-hybrid origin. Finally, employing these genetic markers, I was able 

to investigate the genetic population size and the extent of clonality in all four populations of 

H. verticillatus. This work demonstrated that populations consisted of far fewer individuals 

than previously reported, with some populations consisting of quite low numbers. This 

finding, combined with that of the taxonomic status of the species, prompted the United 

States Fish and Wildlife Service (USFWS) to upgrade the priority ranking of H. verticillatus 

from low to high. 

Another somewhat surprising result of this dissertation research was the finding of 

rare paternal inheritance of chloroplast DNA (cpDNA) in inter-population crosses of H. 

verticillatus individuals. Many types of evolutionary investigations employ organellar 

markers, and these applications typically assume strict maternal inheritance (Birky 2001); 

this assumption, however, is rarely tested. Paternal inheritance may lead to incorrect 

conclusions in population genetic studies employing cpDNA, thus it is important to test these 

assumptions. While there was evidence for paternal inheritance, it was rare and did not 

appear to significantly decrease the calculations of chloroplast population structure given that 

values in H. verticillatus did not differ from that of the widespread H. angustifolius or the 

average of other angiosperm species.  
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 Populations of H. verticillatus exhibited significant differentiation in phenotypic 

fitness related traits, despite high amounts of genetic variation and no significant differences 

in levels of variation among populations. In a crossing study between the Alabama and 

Madison County, Tennessee populations, I found that the Tennessee population had 

significantly lower achene viability and germination rates as compared to the Alabama 

population. Crosses among these populations revealed elevated values for these traits in the 

hybrids and no evidence for outbreeding depression through the second generation. These 

results indicate genetic rescue as a potential conservation strategy in the considerably smaller 

Tennessee population. Moreover, the smallest population, Georgia, also exhibited low levels 

of achene viability and germination rates, and no individuals survived to flowering, making a 

formal crossing study not possible.  

 Throughout the duration of this research, recommendations have been made to both 

the Tennessee Natural Heritage: Rare Plants Division and the USFWS for conservation 

management guidelines. Greenhouse propagated individuals have also been transplanted to a 

wet prairie on the campus of Freed-Hardeman University (near the Madison Co., Tennessee 

site) for a restoration project. Many important insights have been gained during the course of 

this research; however, several future projects would be valuable. First, surveys for any 

additional populations of the species using information regarding the soil type, associated 

species, and historical locations of prairies would be pertinent. Second, the fitness crossing 

study was conducted in the greenhouse in order to have a controlled environment for 

measuring fitness traits; thus, extrinsic outbreeding depression due to the dilution of locally 

adapted alleles was not tested. A transplant study which monitors the survival of inter-

population hybrids planted into each of the different biotic and abiotic environments would 
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be appropriate to further evaluate the potential for genetic rescue. Finally, given the 

likelihood of pollen transfer from a widespread congener, additional studies of the threat to 

the taxonomic integrity of H. verticillatus are warranted. These studies would be especially 

important to the conservation of this rare species given the reduced fitness associated with 

interspecific crossing, either through extreme outbreeding depression in true interspecific 

hybrids, or extreme inbreeding depression in actual self-fertilized individuals (recall Mentor 

Effect from ancillary data). 

 In conclusion, this dissertation research has demonstrated that an appropriate 

conservation strategy is to protect the only four known populations. Populations of H. 

verticillatus harbor high levels of genetic diversity, exhibit a great deal of geographical 

distinctness in regard to locality, and show evidence of phenotypic differentiation in fitness 

traits. Habitat protection is the most immediate and comprehensive action to take at this time 

to preserve the species. 
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