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Figure 1-1. Sagittal view of the lower urogenital tract 

(Krongrad and Drollen, 1993). 

CHAPTER I 

 

INTRODUCTION 

Prostate overview 

The prostate is a male accessory reproductive gland commonly described as being about 

the size and shape of a walnut. The prostate is located below the bladder surrounding the 

urethra (Aumuller, 1989). The seminal vesicles, are diverticula of the Wolffian ducts and 

are attached to the prostate, between the rectum and the bladder (Josso, 1981). 

 

During ejaculation the prostate expels a proteolytic solution into the urethra. The fluid 

secreted by the prostate gland is rich in acid phosphatase, citric acid, the protease 

fibrinolysin, kallikreins 

(such as prostate 

specific antigen [PSA]), 

the enzyme amylase, 

fibronectin, 

phospholipids, 

cholesterol, zinc, 

calcium and many 

proteins with unknown 

function (Aumuller and 

Seitz, 1990). The proteins in the prostatic fluid modify the vaginal environment to support 

sperm survival in the female reproductive tract (Aumuller and Seitz, 1990). The anatomy 
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Figure 1-2. schematic diagram of the adult mouse 

genitourinary tract (lateral view). (Sugimura et al., 

1986b) 

of the human male reproductive tract is shown in Figure 1-1. The human prostate gland is 

located beneath the bladder and surrounds the first 3 cm of the urethra as it leaves the 

urinary bladder. The prostate is covered by a thin vascularized fibrous sheath surrounding 

a fibromuscular layer continuous with the smooth muscle surrounding the bladder. The 

fibromuscular layer extends within the organ and divide the gland into different zones 

(Kumar and Majumder, 1995; McNeal, 1980).  

 

Prostate structure 

The mouse prostate comprises 

four pairs of lobes named after 

their spacial orientation. These 

are: the anterior (AP), the 

ventral (VP), the dorsal (DP) 

and the lateral prostates (LP) 

(Figure 1-2). The DP and LP 

lobes are commonly referred to 

the dorsolateral prostate (DLP) 

due to their close position. The 

AP is also commonly referred to as the coagulating gland. The first discussion of the 

developmental organization of the human prostate was provided by Osward Lowsley in 

1912 (Lowsley, 1912). Lowsley‟s work was based on studies of fetal glands. He 

described five groups of periurethral embryonic tubules lobes: (a) middle (prespermatic 
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and posturethral), (b) right lateral, (c) left lateral, (d) posterior (postspermatic and 

posturethral), and (e) ventral (anterior to the urethra). Several years after Lowsley‟s 

observation of the prostate, L. M. Franks challenged Lowsley‟s concept of prostatic lobes, 

finding no evidence of lobe boundaries (Franks, 1954a). Franks proposed that carcinoma 

could be found anywhere within the lobes. Frank‟s model has been criticized for a lack of 

anatomical precision. McNeal reported histological heterogeneity of the prostate gland 

with sub-division into prostatic zones (McNeal, 1980; McNeal, 1983). Currently, the 

overwhelming majority of pathologists and urologists follow McNeal's model and do not 

adhere to a lobar architecture in respect to human prostate (McNeal, 1984). 

 

McNeal Prostate 

In contrast to mouse 

prostate, which is 

comprised of four lobes, the 

concept of 5-lobed human 

prostate as proposed by 

Lowsley has been replaced 

by that of zonal architecture 

derived from McNeal.The 

human prostate is composed of 4 glandular zones which were described by McNeal. The 

prostate includes the peripheral zone, transition zone, periurethral zone and central zone. 

Each zone has their own ductal system (McNeal, 1980) (Figure 1-3). The peripheral zone is 

 
Figure 1-3. Zones of human prostate. 
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closest to the rectum and is the back part of the prostate gland,. It composes almost 75% of 

the normal prostate gland. Approximately 70% of prostate carcinomas arise in this zone 

(McNeal, 1969). The randomly oriented muscle fibers formed the stroma. The central zone 

composes 25% of the normal prostate and approximately 5-10% of prostate carcinomas 

arise from this zone (McNeal, 1969). Approximately 5-10% of the normal prostate gland is 

transition zone. In the transition zone, the stroma is more compact than peripheral zone, and 

the glandular architecture is similar to the peripheral zone. The transition zone is the place 

where benign prostatic hyperplasia (BPH) originates and approximately 20% of prostate 

carcinomas arise from this zone (McNeal, 1978).  

 

Prostate development 

During the seventh week of human fetal development, the male and female urogenital 

systems are anatomically indistinguishable. Both the male and female embryos have a pair 

of undifferentiated gonads and two sets of ducts: the paramesonephric (Mullerian) ducts 

and the mesonephric (Wolffian) ducts. In males, gonads differentiate into the testes, which 

produce testosterone and Mullerian inhibiting substance (Jost, 1947). The Wolffian ducts 

are stabilized by testosterone and its metabolites, while in males Mullerian ducts regress 

because of the presence of Mullerian inhibiting substance except the extreme ends (Jost, 

1947). The lower end of the Mullerian tubercle is involved in the subsequent formation of 

the prostate utricle. Testosterone is required for late-stage Wolffian duct differentiation. 

These ducts differentiate into epididymis, ductus deferens, ejaculatory duct and seminal 

vesicles. (Anderson and Liao, 1968; Imperato-McGinley et al., 1985; Imperato-McGinley 
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et al., 1974; Walsh et al., 1983; Walsh et al., 1974). The urogenital sinus is also a 

component of the ambisexual stage in both male and females. In males, it develops into 

bladder, urethra, prostate, bulbourethral (in humans, Cowper‟s) glands, and periurethral 

glands under the influence of DHT (5-dihydrotestosterone), which is a potent mitogenic 

hormone (Anderson and Liao, 1968; Bruchovsky and Wilson, 1968; Imperato-McGinley et 

al., 1974). The female urogenital sinus can form prostate in response to androgens. It was 

determined by growing embryonic female urogenital sinuses from 13 to 18 day old 

embryonic mice and vaginas from 1 to 30 day old mice as grafts to male mouse hosts. All 

embryonic urogenital sinuses as well as vaginas from 1 day old mice were responsive to 

androgens and formed prostate, however, vaginas from mice 5 or more days old never 

formed prostate (Cunha, 1975). It was found that the developmental response of the 

age-dependent loss in responsiveness of the intact vagina to androgens results from an age- 

dependent loss in the ability of vaginal stroma to participate in prostatic morphogenesis. 

These data emphasize the importance of stromal factors during prostatic morphogenesis 

(Cunha, 1975). 

 

Stromal-epithelial interaction in prostate development 

The stroma encompasses all of the non-epithelial components of an organ. For most organs, 

stroma is mainly composed of fibroblasts, smooth muscle cells, blood vessels, nerves and 

fat cell etc. The predominant cells in adult prostates are smooth muscle cells.  
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The prostate develops from the embryonic urogenital sinus as a result of interactions of 

urogenital sinus epithelium (UGE) and urogenital sinus mesenchyme (UGM). Prostate 

development is controlled by steroid hormones that induce and maintain a complex cross 

talk between the stromal and epithelial cells (Cunha et al., 1992). The result of this 

intercellular communication depends upon the context and differentiation status of the 

cell type being stimulated (Hayward and Cunha, 2000; Hayward et al., 1998). In 

developing fetal prostate, DHT binds to the androgen receptors on mesenchymal cells to 

send signals to adjacent epithelium, inducing epithelial ductal brunching morphogenesis; 

expression of epithelial androgen receptors; regulation of epithelial cell proliferation; and 

specification of the expression of prostatic lobe-specific secretory proteins (Chung and 

Cunha, 1983; Cunha et al., 1987; Hayashi et al., 1993; Sugimura et al., 1986a; Takeda et 

al., 1990). Concurrently, the developing prostatic epithelium induces the differentiation 

and morphological patterning of smooth muscle in the UGM (Hayward et al., 1998; 

Hayward et al., 1997). In the healthy adult prostate, both epithelial and stromal 

compartments are highly differentiated. While under steady state concentration of 

androgen, the highly differentiated stroma is in close contact with highly differentiated 

and functional epithelium to maintain prostate homeostasis. The normal prostatic 

epithelial growth is regulated by reciprocal smooth muscle-epithelial cell interactions 

which are mediated by the local synthesis and action of paracrine signaling molecules 

(Hayward et al., 1997).  
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Abnormalities in smooth muscle-to-epithelial signaling may either actively promote 

carcinogenesis or permit the progression to neoplasia through the loss of restriction of 

normal homeostatic controls (Grossfeld et al., 1998; Hayward et al., 1998). Thus, the 

process of prostatic carcinogenesis may include aberrations in the interactions of the 

prostatic epithelium, with its smooth muscle microenvironment resulting in reciprocal 

de-differentiation of both the emerging carcinoma cells and the prostatic smooth muscle.   

 

Prostate disease. There are a number of diseases of the prostate, which can be divided 

into cancerous prostate problems, and non-cancerous prostate problems. The clinical 

conditions of non-cancerous prostate disease include the following: 

 

(1) Prostatism. A disease caused by urethra compression or obstruction, due most 

commonly to benign prostatic hyperplasia of the prostate gland. Symptoms include 

urination difficulties and, occasionally, urine retention. Prostatism can interfere with 

bladder urine flow rate (Hamilton et al., 2006).  

 

(2) Prostatitis. A disease resulting from inflammation of the prostate gland. 25 percent of 

men who have genital and urinary problems may have prostatitis (De Marzo et al., 2007). 

Prostatitis is composed of four disorders:  

(a) Acute bacterial prostatitis: the least common type of prostatitis and easy to 

diagnose and treat. Symptoms include fever, pain, increased white blood cells and 
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bacteria in the urine. Since the symptoms are caused by bacteria, an appropriate antibiotic 

is the treatment of choice for this type of prostatitis (Hua and Schaeffer, 2004). 

(b) Chronic bacterial prostatitis: uncommon and often associated with defects in the 

prostate. Therefore, effective treatment includes removing the defect and treating with 

appropriate antibiotics (Hua and Schaeffer, 2004).  

(c) Chronic prostatitis/chronic pelvic pain syndrome is the most common but least 

understood type of prostatitis (Rivero et al., 2007). It can be either inflammatory or 

noninflammatory. Men of any age can have this problem and the symptoms can appear 

sporadically. Antibiotics may not be the suitable choice because there is no solid evidence 

of bacteria infection in either types.  

(d) The fourth type of prostatitis is asymptomatic inflammatory prostatitis. There are 

infected cells in the semen but may not cause any symptoms (Simardi et al., 2004). It can 

be associated with infertility or prostate cancer . 

 

(3) Benign prostatic hyperplasia (Also called BPH or benign prostatic hypertrophy). An 

enlarged prostate is a sign of this disease. BPH is the most common prostate problem. 

Although it is not cancer, BPH symptoms are often similar to those of prostate cancer. It 

can cause discomfort and urinary problems. BPH represents an overgrowth of epithelial 

nodules and stroma tissue in the transition zone of the prostate. At cellular level, basal 

cell hyperplasia and increased stromal mass are commonly seen in BPH (Bostwick et al., 

1992). Advanced age and circulating androgens are the two well-established risk factors 

for BPH (Isaacs and Coffey, 1989). Autopsy data indicated that the presence of 
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microscopic BPH (histologically) in 80% of males at 71-80 and 90% at 81-90, however the 

incidence of microscopic BPH is greater the clinically detectable disease (Berry et al., 

1984). Enlargements of prostate cause increasing pressure within the bladder causing 

frequently contractions even only a small amount of urine is present. Eventually, the 

bladder loses the ability to empty itself, causing many problems.  

 

The prostate is regulated by sex-steroid hormone levels. Androgens and estrogens are 

important for prostate cell growth. Estrogen is generated through stromal aromatization of 

androgen and the ratio of estrogen/androgen increases in BPH patients (Roberts et al., 

2004; Shibata et al., 2000). As men age, lower concentration of testosterone and higher 

concentration of estrogen are found in the blood.. Studies have suggested that BPH may 

occur because the higher amount of estrogen increases smooth muscle cell proliferation and 

differentiation (Zhang et al., 1997). Anti-estrogens such as aromatase inhibitors 

(testolactone) which prevents conversion of androgen to estrogen have been used in the 

treatment of BPH patients (Royuela et al., 2001).  

 

The conversion of the main androgenic steroid testosterone to dihydrotestosterone (DHT) 

is catalyzed by the 5-reductase isoenzymes Types 1 and 2. DHT is required for secretory 

epithelial cells function. 5-reductase Type 1 is most prevalent in the liver and the skin, 

with minimal amounts found in the prostate, whereas Type 2 is most prevalent in the 

prostate . In the prostate, DHT is generated by 5-reductase type 2. Higher 5-reductase 

activity has been demonstrated in BPH as compared to in normal tissue (Silver et al., 1994). 



 10 

Clinically, finasteride (a 5-reductase type 2 inhibitor) has been used to treat BPH patients 

(Bautista et al., 2003; Sandhu and Te, 2004). 

 

Many growth factors (including: fibroblast growth factor [FGF] family members, insulin 

like factors [IGF], transforming growth factor  [TGF-, transforming growth factor s 

[TGF-, andepidermal growth factor [EGF]), mediate epithelial-stromal interaction to 

sustain prostate homeostasis. Increased FGF2 levels have been found in early stages of 

BPH patients (Mori et al., 1990). Transforming growth factor 1 (TGF-1) expression and 

secretion have also been shown to increase in BPH patients (Mori et al., 1990). Low 

concentrations of TGF-increase cell proliferation, but high concentrations inhibit 

stromal cell growth (Kassen et al., 1996). TGF-treatment could generate a reactive 

stroma composed of myofibroblasts and fibroblasts which express extra cellular matrix 

components and stromal cell markers, such as -smooth muscle actin, calponin and 

tenascin (Peehl et al., 1997; Tuxhorn et al., 2002). Elevation of a variety of factors 

influences extracellular matrix production and secretion, which is similar to the stroma of 

BPH patients (Untergasser et al., 2005). 

 

(4) PIN (Prostatic Intraepithelial Neoplasia). PIN has been identified as the most likely 

precursor lesion for prostatic carcinoma. The term was introduced in 1987 by Bostwick and 

Brawer (Bostwick and Brawer, 1987; Mikuz, 1997). PIN indicates the progressive 

abnormalities of phenotype and genotype that are similar to cancer rather than normal 

prostatic epithelium. PIN is strongly predictive of adenocarcinoma (Webber et al., 1995). 
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Figure 1-4. Role of inflammation in prostate carcinogenesis. 

(Nelson et al., 2004). Copyright @Massuchusetts Medical 

Society. 2003 

Two grades of PIN:low-grade PIN (LGPIN), and high-grade PIN (HGPIN)), has been used 

for diagnosis. However, many pathologists no longer report the presence of LGPIN and 

note only the histologic findings associated with HGPIN.  

 

(5) Prostate cancer. Early stage prostate cancer is not lethal, but can progress to become a 

systemic malignancy. Cancer grows in the interior of the prostate gland, but can spread to 

surrounding tissues near the prostate, such as the seminal vesicles and bladder and can 

metastasize to distant organs of the body prominently including bones, liver and lymph 

nodes (Coffey and Pienta, 1987). Early stage of prostate cancer can be treated successfully, 

but metastasized tumors are often lethal. Prostate cancer is the most common type of 

non-skin cancer in men in the United States and is the second leading cause of cancer death 

in men. It was estimated that 27,050 men in the United States will die of prostate cancer in 

2007 (American Cancer Society, 2007). African American men have the highest incidence 

of prostate cancer, 

and Asian and 

Native American 

men have the 

lowest incidence. 

Rates for Asian 

and African men 

increase 

dramatically when 
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they emigrate to the United States, suggesting an environmental (probably diet related) 

connection.  

 

It has been suggested that inflammation may contribute to the risk of developing prostate 

cancer (Goldstraw et al., 2007). Although there is no conclusive data supporting a role for 

inflammation in the pathogenesis of prostate cancer, there are accumulating data in favor 

of this idea. Inflammatory cytokines and genotoxic reactive oxygen radicals produced by 

microbial infections can increase cell proliferation and promote tumorigenesis (Dennis et 

al., 2002). Some pathologists have proposed inflammation as a factor in the etiology of 

prostate cancer (De Marzo et al., 2007). Chronic inflammation is commonly found in the 

peripheral zone of the prostate adjacent to foci of PIN or prostate cancer. The lesions are 

thought to form as a consequence of the regenerative proliferation of epithelium in 

response to injury caused by inflammatory oxidants (Hsieh-Li et al., 1995). The 

suggested pathway is shown in Figure 1-4.  

 

Gleason Score 

The Gleason score was established in 1966 by pathologist Dr. Donald Gleason, and has 

been widely used to diagnose prostate cancer (Gleason, 1977). He gathered biopsy 

information from nearly 3000 prostate cancer patients and developed a histopathologic 

scoring system. The score is based on the glandular histological patterning and cytological 

appearance. The Gleason score is used to help evaluate the prognosis of men with prostate 

cancer. Together with other parameters, it is used to predict prognosis and identify the best 
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Figure 1-5 Gleason score system 

(Gleason D, 1974) 

treatment strategy for prostate cancer.  

 

In a biopsy specimen the pathologist takes the two most prominent patterns or scores 

(scores ranges from 1 to 5) . The scores are added to obtain the final Gleason score. The 

Gleason score ranges from two to ten. A Gleason score of two is associated with the best 

prognosis and a score of ten with the worst. For example, a prostate biopsy specimen may 

be diagnosed by two scores, one is two and the other number is three. The final Gleason 

score in this case would be five. Gleason scores are associated with the following features 

(Figure 1-5): 

Grade 1. The cancerous prostate closely resembles normal prostate tissue. The glands are 

small, well-formed, and closely packed. 

Grade 2. The tissue still has well-formed glands, but they are larger and have more stroma 

tissue between them. 

Grade 3. The tissue still has recognizable 

glands, but the cells are darker. Some of the 

cells are beginning to infiltrate the 

surrounding tissue. 

Grade 4. The tissue has few recognizable 

glands. Many cells are invading the 

surrounding tissue. 

Grade 5. The tissue does not have 

recognizable glands. There are often just sheets of cells throughout the surrounding tissue.   

http://en.wikipedia.org/wiki/Cell_%28biology%29
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Risk factors for prostate cancer. The major risk factors for prostate cancer include 

genetic, dietary, and environmental factors that affect male hormones (such as DHT 

production) and make men more susceptible to this cancer.  

 

(1) Age. Age is the most important epidemiological risk factor for prostate cancer 

(Greenlee et al., 2001). As the population ages, new cases of prostate cancer will increase 

significantly. It is estimated that by age 70, about 65% of men have at least microscopic 

evidence of prostate cancers. There is a positive correlation between time and prostate 

cancer progression.  

 

(2) Family History. It has been suggested that heredity may play a role in prostate cancer. 

Men with a family history of prostate cancer may have a higher risk of having this disease 

(Damber, 1998; Gann, 2002; Lesko et al., 1996).  

 

 (3) Ethnicity. African American men have the highest risk for prostate cancer, more than 

50% higher than the risk for Caucasian American males (Bloom et al., 2006; Gann, 2002; 

Powell, 2007). Asian men have a lower risk for prostate cancer, but their risk increases if 

they move to North America (Lee et al., 2007). Therefore, environmental or dietary factors 

might be associated with the risk of developing prostate cancer.  

 

(4) Dietary Factors. A high-fat diet may increase the risk of prostate cancer. Researchers 

theorize that fat increases production of the hormone testosterone, which may promote the 
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growth of prostate cancer cells. Specific fat subtypes may influence cancer cell growth. A 

higher ratio of omega-3 fat acid/omega-6 fat acid can suppress prostate cancer cell growth 

(Kobayashi et al., 2006). Because prostate cancer is rare in many parts of Africa, it has been 

postulated that dietary factors may play a role in African American men and may put them 

at higher risk. HAs (heterocyclic amines), a group of carcinogens known as PhIP 

(2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine), is found in grilled beef, pork, 

chicken, lamb, and fish. It has been indicated that PhIP relates to prostate cancer incidence 

(Tang et al., 2007).  

 

(5) Exposure to Chemicals. The relationship between prostate cancer and chemical 

exposure is controversial. Men whose work involves heavy labor and those exposed to 

certain metals and chemicals, including cadmium, dimethyl formamide, and acrylonitrile, 

may be at higher risk for prostate cancer (O'Berg et al., 1985; Walrath et al., 1989). Some 

studies have indicated that farmers might be also be at higher risk (Parker et al., 1999).  

 

(6) Infection and Inflammation. Genetic factors that affect the body's response to viruses 

can also associate with inherited prostate cancer. Some association has been seen between 

prostate cancer and bacterial or viral infections, such as herpesvirus, human 

papillomavirus, and cytomegalovirus. It was suggested that men with genetic 

susceptibilities could develop a chronic inflammatory condition in the prostate by viral 

infection and possibly initiate cancerous changes. It proposed that exposure to 

environmental factors such as infectious agents and dietary carcinogens, and hormonal 
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imbalances could lead to prostate injury and  develop chronic inflammation and 

regenerative „risk factor‟ lesions, referred to as proliferative inflammatory atrophy (PIA), 

which could progress to PIN (prostatic intraepithelial neoplasia) and eventually invasive 

carcinoma (De Marzo et al., 2007). However, some recent studies have shown that there is 

no link between viral infections and prostate cancer development (Bergh et al., 2007).  

 

 (7) Smoking. Cigarette smoking may increase the risk of prostate cancer by affecting 

circulating hormone levels or through exposure to carcinogens (Plaskon et al., 2003). A 

few hypothetical mechanisms were proposed to enhance the risk of prostate cancer. It has 

been suggested that smoking can increase the circulating levels of bioavailable 

testosterone and lower levels of bioavailable estradiol in men (Ferrini and Barrett-Connor, 

1998). There are significant positive correlations between cigarettes smoked/day and 

serum total androstenedione as well as total and free testosterone in men (Dai et al., 

1988). Data from a population based case-control study suggest that smoking is a risk 

factor of prostate cancer Current smokers appear to be at moderately increased risk for 

this disease compared with non-smokers (Plaskon et al., 2003).  

 

Procedures used to evaluate prostate problems  

Blood and urine laboratory tests are necessary for men during their annual physical 

examinations. Evaluation of the prostate gland is also recommended by the National 

Cancer Institute and the American Cancer Society. 

 (1) DRE (digital rectal examination). A digital rectal examination is performed to 
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examine abnormalities of the prostate (Sneyd et al., 2003; Villers et al., 2003). Enlargement 

of the prostate gland can be found in BPH patients. An irregular or hard lump may indicate 

the presence of a tumor. However, the digital rectal exam is not the best method of 

detecting prostate cancer because not all abnormalities in the prostate can be found through 

the rectum without performing histological examination of the prostate tissue.  

 

(2) Blood prostate-specific antigen (PSA) test. PSA was discovered in 1970 by Ablin, and 

PSA testing has been widely used and is the most important method to detect prostate 

cancer (Ablin, 1997). PSA is a kallikrein serine protease that is secreted by prostate 

epithelial cells diffuses into the bloodstream in areas of tissue damage caused by, for 

example, inflammation or cancer. Morphological and histological changes of the prostate 

lead to leakage of PSA into blood. PSA levels higher than 4.0 ng/ml may indicate prostate 

disease (infection, enlargement of the prostate gland or prostate cancer). PSA testing is 

commonly recommended for men over 50. A PSA blood test can be done alone or in 

conjunction with DRE to improve the odds of detecting prostate cancer (Webber et al., 

1995). PSA is the only serum marker recommended by American Cancer Society to screen 

for prostate cancer, and the value is limited because of its lack of specificity and sensitivity. 

The cutoff upper limit of 4.0 ng/ml is still under debate. There is strong evidence that a PSA 

cutpoint of 4.0 ng/ml actually misses the majority of prostate cancers, up to 15% of which 

may be potentially aggressive cancers (Thompson et al., 2005).  

 

(3) Prostate-specific membrane antigen (PSMA) test. PSMA is an integral glycoprotein, 
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and was shown to be overexpressed in prostate tumor epithelial cells and serum of cancer 

patients. Studies have suggested that PSMA correlates with Gleason score and stage of 

prostate cancer. Despite its expression by subsets of various types of malignancies, such as 

urothelial carcinomas of the bladder, PSMA is still considered to be relatively sensitive and 

highly specific for prostate cancer (Mhawech-Fauceglia et al., 2007).  

 

Other molecular markers such as prostate stem cell antigen, early prostate cancer antigen, 

hepsin, enhancer of zeste homolog gene 2, human glandular kallikrein 2, transforming 

growth factor-1, chromogranin A have been suggested as potential promising biomarkers 

for prostate cancer.  

 

If the DRE or PSA levels are unusual, ultrasound can also be performed to examine 

prostate cancer candidates. (Franco et al., 2000) 

 

(4) Transrectal ultrasound (TRUS). Prostate enlargement, cancer nodules, and tumor 

invasion to the seminal vesicles can all be found by ultrasound. TRUS can also be used 

for guidance of needle biopsies of the prostate gland (Mikuz, 1997). 

  

(5) Computed axial tomography scan (CAT scan). The combination of x-rays and 

computer technology can produce horizontally and vertically cross-sectional images , of 

the prostate. Abnormalities within the prostate gland can be found by CT scan, but 

additional tests such as PSA test should be used in combination to diagnose prostate cancer 
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(Golimbu et al., 1981). 

 

(6) Magnetic resonance imaging (MRI). This technique uses a combination of large 

magnets, radiofrequencies, and a computer to produce detailed images of organs and 

structures within the body (Vilanova and Barcelo, 2007). Prostate abnormalities can 

found by MRI. 

 

(7) Biopsy. A procedure in which tissue samples are removed from the prostate, and are 

examined under a microscope. A pathologist can examine the slide to determine if cancer 

is present within the prostate. Cancer cells have large nuclei, increase nuclei/cytoplasm 

ratio compared with normal cells. False-negative results might occur and some patients 

will need rebiopsy (Hori et al., 2006). Combination of endorectal MRI and magnetic 

resonance spectroscopy imaging (MRSI) might be a useful tool to decrease rebiopsy rate 

(Amsellem-Ouazana et al., 2005). 

 

Treatment of prostate cancer 

(1) Surgery. Radical prostatectomy is the most common therapy for early stage prostate 

cancer. The ideal responsive candidate can live 10 to 20 years after surgery. Radical 

prostatectomy is a major surgery performed to remove the entire prostate gland and the 

surrounding tissues such as the seminal vesicles. Lymph nodes can also be sampled for 

biopsy to examine if the cancer has metastasized or not. The goal is to remove the cancer 
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entirely and prevent its spread to other parts of the body. The risks after surgery include 

impotence, heart attack, stroke, blood clots, infection or bleeding like other surgeries.  

 

(2) Radiation therapy. Radiation therapy has been used in the treatment of prostate cancer for 

several decades (Zagars and Pollack, 1995). Prostate cancer is a radiation-sensitive neoplasm 

that demonstrates a classic sigmoid dose response curve to X-rays. Higher volume tumors 

need higher radiation doses. Tissues such as bladder and rectum are at risk when radiation is 

performed. 

 

(3) Hormone therapy. Hormone therapy blocks action of hormone and stops cancer cells 

from growing. Luteinizing hormone-releasing hormone agonists are potent inhibitor of 

gonadotropin secretion. Following an initial stimulation of gonadotropins, chronic 

administration of leuprolide acetate results in suppression of testicular steroidogenesis. 

Administration of luteinizing hormone-releasing hormone agonists has resulted in 

inhibition of the growth of certain hormone dependent tumors (such as prostatic tumors). 

Examples are leuprolide, goserelin, and buserelin. Antiandrogens exerts its action by 

inhibiting androgen uptake and/or by inhibiting nuclear binding of androgen to the 

androgen receptors on prostatic cells. Such as flutamide and  nilutamide. 

  

Studies are still being carried on to find the ideal therapy for localized prostate cancer. 

Currently, the two most common therapies used in the United States to treat prostate 

cancer remain radical prostatectomy and radiation therapy (Frank et al., 2007; Rossi, 

http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=46304&version=Patient&language=English
http://www.medterms.com/script/main/art.asp?articlekey=11384
http://www.medterms.com/script/main/art.asp?articlekey=2728
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=46304&version=Patient&language=English
http://www.medterms.com/script/main/art.asp?articlekey=3783
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=45274&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=45289&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=45180&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=46052&version=Patient&language=English
http://www.medterms.com/script/main/art.asp?articlekey=2239
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=45264&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=45300&version=Patient&language=English
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2006). The newer focal therapy consists of cryoablation techniques and heat 

energy–based treatments [high intensity focused ultrasound (HIFU), radiofrequency 

interstitial tumor ablation (RITA), and thermal brachytherapy] (Zhao et al., 2006). 

Radioactive seeds were first used by Dr. Anthoy D'Amico at Harvard Medical School to 

treat early stages of prostate cancer. Magnetic resonance imaging (MRI) was used to 

place 100 radioactive seeds into tumors inside prostate to destroy cancer cells. For some 

patients, it may be superior to the usual methods of surgical removal of the gland.  

 

Animal models of prostate cancer 

(1) Transgenic models. There are a limited number of promoters which were used to 

introduce transgenes to prostate epithelial cells. The probasin promoter is one of them. It 

includes the minimal promoter, long promoter and composite promoter containing multiple 

androgen response elements. 

 

TRAMP and LADY mouse models are two well-known animal models used to investigate 

prostate cancer progression (Masumori et al., 2001; Matusik et al., 2001). The TRAMP 

model uses the minimal rat probasin promoter to forcibly express the SV40 early genes (T/t 

antigen:Tag) specifically targeted to the terminally differentiated tall columnar epithelial 

cells of the mouse prostate. Male TRAMP mice develop progressive prostate disease that 

histologically and pathologically mimics human disease with metastatic spread to distant 

sites. The LADY mouse model uses a long probasin promoter to express large T antigen. It 

elicited a higher level of expression in the mouse prostate that was developmentally and 
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differentially regulated by androgen. The LADY model is advantageous in that expression 

is high but the disease progression is less aggressive with no metastasis (Abate-Shen and 

Shen, 2002). Although both the TRAMP and LADY models offer many advantages, they 

both differ from the human disease in their rapid onset and frequent occurrence of 

neuroendocrine tumor (Abate-Shen and Shen, 2002). The C3(1)-Tag mice also develop 

progressive prostate cancer, but tumors can be found in other tissues as well, which limits 

its use to prostate cancer research. Cryptdin-2-T and Gg-SV40 T also develop progressive 

prostate cancer, however the promoters used to drive SV40 large T antigen are not prostate 

specific.  

 

Other genes such as c-myc (Zhang et al., 2000), Ras and Fgf8b (Song et al., 2002) have 

been suggested to play a role in prostate cancer progression. These genes have been used in 

mouse models. However, in the majority of these models, only a relatively mild phenotype, 

such as hyperplasia or PIN, instead of adenocarcinoma was seen (Abate-Shen and Shen, 

2002).  

 

(2) Knockout models. Deletion of a gene of interest is another way to generate mouse 

models (Sharma and Schreiber-Agus, 1999). PTEN heterozygous knockout mice, Nkx3.1 

null and p27 null mice have displayed prostate phenotypes (Lei et al., 2006). The loss of 

these genes has been suggested to play a role in the development of human prostate cancer, 

and this theory is supported by observations in the knockout mice. Similar to transgenic 

mouse models, the resulting phenotypes in these knock out mice were hyperplasias as well. 
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Because of embryonic lethality of specific ablation, conditional knock out mice were 

generated by applying the PSA promoter to drive prostate-specific Cre expression. The 

targeted gene was inactivated by PSA-Cre targeted deletion of the floxed region resulting 

in the expression of a truncated protein lacking the gene function. It was found that 

targeted biallelic inactivation of Pten in the mouse Prostate leads to prostate cancer (Ma et 

al., 2005b). 

(3) Canine models. Dogs are the only species besides humans that develop spontaneous 

prostate cancer with high frequency (Waters and Bostwick, 1997; Waters et al., 1997). 

Dogs also display a high frequency of metastasis, especially to the bone (Rosol et al., 

2003). Compared to other animal models, the use of dog models is limited, because the 

high expense to maintain dog colonies and the progression of cancer is slow and thus time 

consuming (Waters et al., 1998).  

 

(4) Rat models. Several Lobund-Wistar, Dunning, and Noble rat models have been used 

extensively to study prostate cancer progression. Rats are one of the few species that 

spontaneously develop prostate adenocarcinomas. The Dunning rat model is the most 

common model and is widely used for nutritional studies (Dunning, 1963). Lobund Wistar 

was shown to have an increased incidence of prostate cancers in the anterior prostate 

(Pollard, 1992; Pollard, 1998). Noble rat have been used to study hormone-induced 

prostatic carcinogenesis and it was shown that IGF-1 and VEGF may be the critical 

regulators in mediating epithelial-stromal interactions in sex hormone-induced prostate 

carcinogenesis (Wang and Wong, 1998). However, these models are limited by long tumor 
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latencies, and lack of spontaneous metastases (Bostwick, 2000). 

  

Human models  

(1) Xenografts and orthotopic models. Cell lines, such as CWR22, LAPC and LNCaP cells, 

which were isolated from primary tumors or metastasized tissues can be injected 

subcutaneously or orthotopically in the severe combined immune deficiency (SCID) 

mice or nude mice (van Weerden and Romijn, 2000). They represent a range of malignant 

potential and also display differential responses to androgens. However, the cells are 

already transformed therefore limit their use to the study of prostate cancer initiation.  

 

(2) Tissue recombination and xenograft. The tissue recombination technique was studied in 

detail in the Cunha lab. To date this technique is one of the best models to study 

stromal-epithelial interactions. Epithelial cells are combined with stromal cells in a 

collagen gel, and grafted under kidney capsule of SCID or nude mice. Genes of interest can 

either be overexpressed or knocked down in a tissue specific manner. Based on the size and 

histology of the graft, the function of the gene can be examined. There are limited human 

models of prostate cancer progression. This technique can provide new insights to prostate 

cancer research (Hayward et al., 1998; Hayward, 2002) 

 

Virtues of BPH-1 cells and its derivatives  

Prostate cancer research has been hindered by a lack of well established, characterized, 

immortalized  benign prostatic epithelial cells lines that express markers of normal 
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prostatic epithelial cells. Such cells can used to study multistep carcinogenesis, cancer 

progression and study potential therapeutic agents to inhibit prostate cancer growth. 

BPH-1 cell line is one of such cell line has been widely used in prostate cancer research. 

It is by far the only line which start off benign an can by pushed into malignant 

phenotypes by either genetic modification or hormone treatment.  

 

(1) BPH-1 cell lines. BPH-1 cell line was established and characterized in 1995 by Dr. 

Simon W. Hayward (Hayward et al., 1995). Prostate tissues were isolated from a 68 

yr-old BPH patient undergoing transurethral resection of the prostate for urinary 

obstruction. The stromal fraction was separated from prostatic epithelial organoids by 

repeated unit gravity sedimentation. Epithelial cells from the organoid were immortalized 

by infection with the Zippneo SV virus carrying the large SV40 T antigen, which was 

used in establishment of LAZY mice. Resistant colonies were selected using 800 g/ml 

Geneticin in the culture medium and then expanded. Morphology of BPH-1 cells showed 

an even cobblestone appearance typical of epithelial cells which was similar to primary 

cultured prostatic epithelial cells. The expression profile of cytokeratin was consistent 

with luminal epithelial cells. BPH-1 cells respond to a number of different growth factors, 

such as EGF family and TGF-, EGF and TGF- stimulate BPH-1 cells proliferation, but 

TGF-1 and TGF-2 inhibit cell proliferation. Based on the fact that androgen receptor 

(AR) is induced by the urogenital sinus mesenchyme during development (Cunha et al., 

1980; Neubauer et al., 1983), the loss of AR expression in this cell line may be due to 

lack of inductive stromal signal. Grafting or injecting BPH-1 cells to male nude mice 
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could not demonstrate any tumorigenic response up to1 year (Ricke et al., 2006). 

However small clumps of cells could still be found in the grafts which demonstrated that 

cells were still viable in the host animals. This phenomenon indicated that BPH-1 is a 

benign prostatic epithelial cell which can be used as a parental cell line to generate 

derivative cell lines in order to study genes function. Modification of expression levels of 

oncogenes and tumor suppressors in BPH-1 cells can be utilized to study functions of 

those genes in prostate cancer progression. 

 

(2) BPH-1
CAFTD

 lines. Majority of human prostatic cancers arise as adenocarcinomas 

which are derived from the epithelial cells that form the glands and ducts of the prostate. 

As the carcinoma evolves, alterations in gene expression also occur in the adjacent 

stroma. These “changes” may enhance the invasive potential of the epithelial tumor (Ao 

et al., 2007; Grossfeld et al., 1998). BPH-1 cells can be induced to undergo malignant 

changes either by association with tumorigenic stromal microenvironment or by treatment 

with hormonal carcinogens (Olumi et al., 1999; Wang et al., 2001). It has been shown that 

carcinoma associated fibroblast (CAF) direct tumor progression in initiated human 

prostatic epithelium, while normal prostatic fibroblasts were incapable of stimulating 

such progression (Olumi et al., 1999).  

 

BPH-1 cells are considered to be initiated since they are SV-40 immortalized, therefore 

they are susceptible to further genetic changes to progress to a malignancy. The epithelial 

cells derived from these tumors (BPH1
CAFTD

) are tumorigenic without the stimulation of 
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stromal cells when re-grafted to mice. The data demonstrated for the first time that 

genetically initiated, non-tumorigenic epithelial cells can undergo a permanent malignant 

change with previous exposure to CAFs. Tissue from BPH-1 + CAF recombinants were 

put into culture and resistant epithelial cells were selected by G418. Four sublines were 

isolated from these tumors which were subsequently designated as BPH-1
 CAFTD

-1, -3, -5 

and –7. These lines were then regrafted to SCID mice and further cell selection was 

performed from which BPH-1
 CAFTD

-2, -4, -6 and –8 were derived (Hayward et al., 2001). 

All eight derivatives are tumorigenic in SCID mice. Tumors recapitulate small acinar 

prostatic carcinoma or squamous carcinoma. Although different CAF populations were 

used to recombine with BPH-1 cells to generate the 4 BPH-1
CAFTD

 derivatives, all 

BPH-1
CAFTD

 lines share recurrent chromosomal rearrangements. This finding indicated 

that common genetic changes can be induced by stromal environment through paracrine 

interactions.  

 

(3) BPH-1
TETD

. Previous data demonstrated that the non-tumorigenic BPH-1 cells can be 

induced to be form tumors under the influence of testosterone and estrogen (T+E2) as a 

result of paracrine signaling transduction (Wang et al., 2001). The cell lineages 

(BPH-1
TETD

-A and BPH-1
TETD 

–B) derived from the hormonally induced tumors are also 

tumorigenic like BPH-1
CAFTD

 lines. It demonstrated that stromal cells are required for this 

hormonally induced carcinogenesis (Hayward et al., 2001). The malignant potential of the 

isolated epithelial cells from the hormone induced tumors demonstrated BPH-1 cells are 
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permanently transformed under the influence of T + E2. BPH-1
TETD  

lines shared similar 

chromosome amplifications seen in BPH-1
CAFTD

 strains.  

 

BPH-1 and its derivatives have been widely used to study prostate carcinogenesis and 

evaluate stromal-epithelial interactions during carcinogenesis. These models allow for 

genetic manipulation of epithelium and stroma. The commonalities of these models, other 

conventional human models (RWPE, RC165N) and human prostate cancer progression 

(PRCA) are outlined Tables 1, 2, 3 which tabulate the abundant preliminary data using 

immunohistochemical, PCR, rtPCR, Western analysis, immunoprecipitation, gene 

expression array, SNP array and proteomic techniques (Data provided by Dr. William 

Ricke). The vast number of similarities between these models and human PRCA validates 

and justifies the use of these models in the study of PRCA-progression. Moreover, this 

model is well suited to address stromal-epithelial interactions during PRCA-progression. 
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Table 1. A comparison of human cell lines to human primary prostate epithelial cells 

grown in vitro. 

 Criteria                                    

Cells 
RWPE-1 RC165N BPH-1 

BPH-1
C

AFTD
 

Primary 

human    
References 

Keratins-8,18 + + + 

+ 

+ 

PD (Bello et al., 1997; Gu et 

al., 2005; Gu et al., 2006; 

Hayward et al., 1995)  

Keratin-14 - NT - 

 

- + 

(Bello et al., 1997; Gu et 

al., 2005; Gu et al., 2006; 

Hayward et al., 1995)  

chromogranin-A NT NT -  - UF 

AR mRNA + + + 

 

- + 
PD (Hayward et al., 1995; 

Lau et al., 2000) 

AR protein + + - 

- 

- 

PD (Bello et al., 1997; Gu 

et al., 2005; Gu et al., 

2006)  

PSA mRNA + - - 

 

- 
- 

UF (Bello et al., 1997; Gu 

et al., 2005; Gu et al., 

2006; Hayward et al., 

1995) 

pS2 NT NT - NT - (Lau et al., 2000) 

AR and glandular 

epithelium induction 

by stroma 

 

NT 

 

NT 
+ 

 

NT 
+ 

PD, UF (Cunha et al., 

1983; Lang et al., 2001a; 

Lang et al., 2001b; Wang 

et al., 2001) 

PSA induction by 

stroma 
NT NT NT 

 

NT + 

(Cunha et al., 1983; Lang 

et al., 2001a; Lang et al., 

2001b) 

E-cadherin NT NT + 

 

+ + 

UF (Bello et al., 1997; Gu 

et al., 2006; Hayward et 

al., 1995)  

in vitro: proliferation, 

forms mono-layers, 

cobblestone 

morphology 

 

+ 

 

+ 

 

+ 

 

 

 

+ 

 

+ 

 

 (Bello et al., 1997; Gu et 

al., 2006; Hayward et al., 

1995)  

Nontumorigenic in 

vivo 
+ + + 

 

- + 

 (Bello et al., 1997; Gu et 

al., 2005; Gu et al., 2006; 

Hayward et al., 1995 ) 

Immortalization HPV hTert 
SV-40 

Tag 

SV-40 

Tag - 

(Bello et al., 1997; Gu et 

al., 2005; Gu et al., 2006; 

Hayward et al., 1995) 
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Zinc content NT NT  +
*
 NT + (Feng et al., 2002) 

TGFinhibited + NT + 

- 

+ 

(Ao et al., 2006; Bello et 

al., 1997; Gu et al., 2005; 

Gu et al., 2006; Hayward 

et al., 1995) 

EGF, FGF-2, -7  

stimulated growth 
+ NT + 

 

NT + 

(Bello et al., 1997; Gu et 

al., 2005; Gu et al., 2006; 

Hayward et al., 1995)  

Race cs aa cs 

 

 

cs 
n/a 

(Bello et al., 1997; Gu et 

al., 2005; Gu et al., 2006; 

Hayward et al., 1995) 

*Zinc content is consistent with luminal epithelial levels and not cancer or benign 

prostate hyperplasia. NT=not tested; PD=preliminary data; UF=unpublished findings; 

cs=Caucasian; aa=African American 
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Table 2. Functional similarities between UGM+BPH-1 models and human PRCA  

Function 

UGM+BPH-1  

model 

Human 

Prostate 

E2-administration induces squamous metaplasia + + 

Anti-androgens stimulate squamous metaplasia + + 

Anti-androgens decrease growth of tumorigenic cells + + 

Progression states: non-tumorigenic tumorigenic state + + 

Progression states: tumorigenic into metastatic state + + 

Androgen-ablation decreased benign epithelial growth + + 

Androgen-ablation induced benign epithelial apoptosis + + 

Androgen-ablation decreased tumorigenic growth + + 

Androgen-ablation induced carcinoma apoptosis + + 

Isolated human benign, tumorigenic, metastatic cells + + 

NT=not tested; PD=preliminary data; UF=unpublished findings 
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Table 3. Comparisons of UGM+BPH-1 TRs vs human PRCA-progression 

 

Markers molecule 

Benign 

UGM+BPH-1 untreated 

Tumorigenic 

UGM+BPH-1+[T+E2] 
Parallels 
human  

Cell types  stroma epithelium stroma epithelium  

luminal cell Keratin-8,18 - + - + yes 

basal cell Keratin-14/p63 - + - +/- yes 

muscular 

stroma


 

a-actin + - + - yes 

fibroblastic 

stroma


 

vimentin +/- - + + yes 

vasculature


 Cd31 + - + - yes 

Steroid 

receptors 

AR + + + - yes 

 ER-


 - + - - yes 

 ER- + - + - yes 

AR regulated 

genes PSA - NT - NT 

 

NT 

 Nkx3.1


 - + - - yes 

Progression 

markers Akt - - - + 

yes 

 E-cadherin - + - - yes 

 MMP-9 low low low + yes 

 aromatase low low + + yes 

 TR-II NT + NT - yes 

 SSeCKS NT high NT low yes 

Epigenetics GSTpi

 - + - - yes 

Cellular 

progression:
 

  Orderly Benign Reactive Tumor/Mets 

    

yes 

 Genetics:  

LOH 
 

 

 

3p,8p, 

13p,q,17p 

  

   Tumor/Mets 

yes 

 

Proteomics-2

D/MSMS 


 

B23,G3PDH,

Lmn1 

NT low NT high yes 

yes  
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Table 3 continued. Preliminary data from Dr. William Ricke comparing UGM+BPH-1 

TRs vs human PRCA-progression 
 
 

Markers molecule 

tumorigenic 

CAF+BPH-1 untreated 
Parallels 
human  

Cell types  stroma epithelium  

luminal cell Keratin-8,18 - + yes 

basal cell Keratin-14/p63 - + yes 

muscular stroma


 a-actin + - yes 

fibroblastic stroma


 vimentin + - yes 

vasculature


 Cd31 NT - yes 

Steroid receptors AR + + yes 

 ER-


 - + yes 

 ER- + - yes 

AR regulated genes PSA + NT yes 

 Nkx3.1


 ? + yes 

Progression markers Akt + + 

yes 

 E-cadherin - +low yes 

 MMP-9 NT NT yes 

 aromatase NT low  

 TR-II _+ + yes 

 SSeCKS NT NT  

Epigenetics GSTpi

 NT NT  

Cellular 

progression: benign, 

tumorigenic, and 

metastatic 

transition


 

 Reactive Tumor/Met 

 

 

 

 

yes 

 

Genetics:  LOH 
 

 

 

3p,8p, 13p,q,17p 

  NT + 

yes 

 

Proteomics-2D/MS

MS 


 

B23,G3PDH,Lmn

1 

NT low yes 

yes NT= not tested; 


= factor is also a PRCA-progression marker; LOH=loss of 
heterozygosity; vasculature


, muscular stroma


, fibroblastic stroma


 are all localized in a 

manner consistent with human PRCA-progression. Detection of markers were performed 
by immunohistochemistry, gene expression arrays, rtPCR, SNP arrays, Mass Spec, 
Western blotting, and 2D gel electrophoresis. 
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Stroma in prostate carcinogenesis 

The process of prostatic carcinogenesis includes aberrations in the interactions of the 

prostatic epithelium and its local microenvironment. These changes result in reciprocal 

de-differentiation of both the emerging carcinoma cells and the prostatic smooth muscle. 

The vast majority of human prostatic cancers arise as adenocarcinomas, which are 

derived from the epithelial cells that form the glands and ducts of the prostate. As the 

carcinoma evolves, phenotypic changes and alterations in gene expression also occur in 

the adjacent stroma. These “changes” may enhance the invasive potential of the epithelial 

tumor (Grossfeld et al., 1998; Joesting et al., 2005). Chung and co-workers reported that 

co-inoculation of tumorigenic Nbf-1 fibroblasts with human PC-3 cells accelerated tumor 

growth (Chung, 1991; Chung, 1995; Chung et al., 1981). It was shown that CAFs were 

capable of stimulating carcinogenesis and inducing the progression of an initiated 

epithelium (the SV-40 immortalized BPH-1 cell line), while normal prostatic fibroblasts 

were incapable of stimulating such progression (Olumi et al., 1999). The mechanistic 

basis by which stromal-epithelial interactions enhance the process of carcinogenesis is 

still poorly understood. Many signaling pathways and molecules play important roles in 

controlling proliferation, differentiation and function in both epithelial and stromal cells. 

The cells in the tumor microenvironment supporting and nurturing the developing tumor 

include stromal fibroblasts, infiltrating immune cells, as well as blood and lymphatic 

vascular networks (Mueller and Fusenig, 2004). Tissue reaction to wound healing 

represents circumstances in which "reactive" fibroblasts with unique phenotypic 

characteristics have been described (Grinnell, 1994). These lesions were characterized by 
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the appearance of myofibroblasts. Myofibroblasts are abundant during wound contraction, 

and gradually disappear during the later stages of scar formation (Grinnell, 1994; 

Schmitt-Graff et al., 1994). These cells may arise according to specific physiological needs 

as a result of modified signals from the microenvironment (Schmitt-Graff et al., 1994). 

Similar to that seen in myofibroblasts associated with wound healing, there is abnormal 

expression of smooth muscle actin, metalloproteinases and the production of extracellular 

matrix proteins (Basset et al., 1990; Chiquet-Ehrismann et al., 1986; Knudson and 

Knudson, 1993) These differences may enhance the invasive potential of initiated epithelial 

cells and modulate the phenotype of nearby epithelial cells. A detailed understanding of 

the changes occurring within tumor stroma and to the signaling mechanisms acting 

between stroma and epithelium will allow for the rational design of therapies aimed at 

inhibiting prostate tumor growth.  

 

Stroma as a therapeutic target in prostate cancer 

 
Figure 1-6. Therapeutic strategies that have been designed or suggested to 

 target different cells in the tumor microenvironment (Joyce, 2005) 
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Traditional therapy for all epithelial malignancies, including prostate cancer, has been 

targeted at the epithelial cell which represents a moving target for treatment, in the sense that 

as the disease progresses these cells acquire progressively severe genetic changes. The 

stroma may provide a more stable target at which to direct treatment. The supporting players 

of cancer in the tumor microenvironment include stromal fibroblasts, infiltrating immune 

cells, the blood and lymphatic vascular networks and the extracellular matrix (Joyce, 2005) 

(Figure 1-6). CAF-induced tumorigenesis of BPH-1 cells is an epigenetic effect that drives 

initiated BPH-1 cells to be tumorigenic CAFs have been used to study stromal-epithelial 

interactions in prostate cancer progression (Ao et al., 2007).  There is also a growing 

evidence that DNA methylation and histone modifications play essential roles in prostate 

cancer initiation and progression (Li et al., 2005).  

 

A detailed understanding of the signaling mechanisms between stroma and epithelium 

will allow for the rational design of therapies aimed at inhibiting prostate tumor growth. 

Specific growth factors may play an important role in the stroma-epithelial interactions. 

The FGF family contains members that have been studied in regard to prostatic growth 

and branching morphogenesis. It has been shown that FGF7 and FGF10 play important 

roles during prostatic development (Thomson et al., 1997). FGF-7 is capable of imitating 

some of the effects of testosterone (Thomson et al., 1997). FGF10 (also known as 

keratinocyte growth factor-2) shows a high degree of sequence homology and shares a 

same receptor with FGF7 (Ropiquet et al., 2000). It functions as a mesenchymal paracrine 

regulator of epithelial growth in the prostate and seminal vesical, is not regulated by 
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Figure 1-8. Graft size of BPH 

senescent
 and BPH-1

NPF
. 

BPH-1+NPF BPH-1+senescent fibroblast
 

Figure 1-7. BPH-1 invaded to host kidney after 

in vivo incubation with senescent fibroblasts. 

androgens (Thomson and Cunha, 1999). The IGF family is also includes important 

mediators, which may potentially influence prostatic growth and carcinogenesis. We have 

found that TGF-ß expression is elevated in CAFs versus normal prostatic fibroblasts 

(NPFs). Also stromal-derived TGF- can regulate expression of receptors for other 

growth promoting factors expressed by CAFs.  These data indicated that the TGF-beta 

pathway may be important for stromal cells to promote adjacent epithelial tumor 

progression. Recent experiments in mice suggest that TGF- is one of the 

fibroblast-supplied factors involved in suppression of epithelial transformation and loss of 

TGF- response in fibroblasts resulted in intraepithelial neoplasia in prostate through the 

activation of paracrine hepatocyte growth factor (HGF) pathway (Bhowmick et al., 

2004a; Bhowmick et al., 2004b).  

 

Senescence and prostate cancer 

The greatest risk factor of 

developing carcinoma of the prostate 

is advanced age. Cancer is a disease 
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of uncontrolled cell proliferation caused by upregulation of oncogenic signaling and 

downregulation of tumor suppressor signaling. To counteract the uncontrolled growth, 

cells can undergo apoptosis or senescence. However, it has been proposed that in some 

conditions senescence may actually promote tumor progression, possibly by secreting 

matrix metalloproteases, growth factors and cytokines. Senescent fibroblasts were shown 

to promote tumorigenesis by immortalizing pre-malignant epithelial cells (Bavik et al., 

2006). Evidence suggested that mutations in epithelial cells alone may not be sufficient for 

the development of cancer. Malignant transformation also requires changes in the 

microenvironment in which the initiated cells can progress to full malignancy. Cellular 

senescence is the phenomenon where normal diploid differentiated cells lose the ability to 

divide. The senescence response can limit the proliferation of normal cells by telomere 

shortening. However, it was suggested that senescent cells acquire multiple phenotypic 

changes, by compromising tissue structure and function. The response may benefit 

organism in early life by preventing cancer, but could be detrimental later in life as 

senescent cells accumulate by secreting factors that damage tissue homeostasis. Dr. Peter 

Nelson‟s group in Fred Hutchinson Research Institute showed that senescent fibroblasts 

modulate neoplastic epithelial cell proliferation through paracrine mechanisms (Bavik et 

al., 2006). Their data showed that senescent fibroblasts can stimulate benign BPH-1 cells 

growth in vitro by culturing BPH-1 cells with senescent fibroblasts conditional media. 

Their results suggested that a significant component of the senescent fibroblasts‟ 

proliferative influence toward epithelium is mediated through soluble factors. The host 

environment is increasingly viewed as an important active player for tumor growth and 

http://en.wikipedia.org/wiki/Cell_%28biology%29
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carcinogenesis. From our in vivo experiments, BPH-1 cells invaded the kidney after 

incubation with senescent fibroblasts under the renal capsule of SCID mice for two months 

(Figure 1-7). The isolated epithelial cells from BPH-1 + senescent fibroblast and 

BPH-1+NPF (which were designated as BPH-1
NPF

), showed clear difference in cell 

proliferation rate. The size of the grafts when re-grafted to kidney capsule alone showed 

clear difference (Figure 1-8). The size of BPH-1
senescent

 graft was bigger than that of 

BPH-1
NPF

. This phenomenon indicated after incubation with senescent fibroblasts the 

isolated BPH-1
senescent

 cells can grow independently under the kidney capsule.  

The somatic mutation theory of cancer suggests that carcinomas result from a single 

somatic cell that accumulates multiple DNA mutations or chromosomal alterations over 

time. The concept of a reactive stroma implies that the microenvironment is altered in 

response to epithelial change.  The reactive stroma theory suggests that stromal alterations 

are operative as primary or permissive events allowing for or magnifying a reactive 

phenotype. It was suggested that age-dependent stromal processes operate as a 

tissue-modifying field effect. A number of senescence induced mitogenic factors including 

HGF, IGF and amphiregulin (AREG) exert important effects on pre-neoplastic lesions. 

 

PTEN signaling pathway 

PTEN is one of the most frequently inactivated tumor suppressor genes in many human 

tumors, including prostate cancer. The PTEN tumor suppressor gene is located at 10q23, 

a region which has often shown deletions in prostate cancer (DeMarzo et al., 2003; 

Visakorpi, 1999; Visakorpi, 2003). The PTEN gene encodes a dual specificity 

H&E H&E 

SV-40 SV-40 
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phosphatase that regulates signal transduction pathways. It mainly functions as a lipid 

phosphatase and targets phosphatidylinositol 3,4,5-trisphosphate (PIP-3) (Maehama and 

Dixon, 1998). By dephosphorylating PIP-3, PTEN can downregulate the Akt/PKB 

signaling pathway thus promoting cell survival and inhibiting apoptosis. 

Importance of PTEN in prostate cancer and new thoughts 

The essential nature of PTEN function is evident from the early embryonic lethality of 

homozygous mutants. Pten heterozygous mutant mice develop cancers or dysplasias of 

multiple tissues including prostate (Di Cristofano et al., 2001; Di Cristofano et al., 1998; 

Suzuki et al., 1998). Loss of function of Nkx3.1 and PTEN cooperate in prostate cancer 

progression (Abate-Shen et al., 2003). In humans, PTEN undergoes Loss Of 

Heterozygosity (LOH) at relatively advanced stages in many cancers (Di Cristofano et 

al., 1998; Kim et al., 2002), suggesting that genes within this region are important for 

progression. The function of PTEN in initiating prostate cancer progression and in 

response to stroma has not been identified.  

 

Cyclin D1 in prostate tumorigenesis 

Cyclin D1 encodes the regulatory subunit of a holoenzyme that phosphorylates and 

inactivates the retinoblastoma protein and promotes progression through G1 to S phase of 

the cell cycle (Fu et al., 2004; Petty et al., 2003). Overexpression of cyclin D1 plays 

important roles in the development of a subset of human cancers including breast cancer, 

colon cancer and melanoma (Fu et al., 2004; Polsky and Cordon-Cardo, 2003). In human 

cancers, overexpression of cyclin D1 is one of the most commonly observed alterations 
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(Fu et al., 2004). Increased cyclin D1 abundance occurs relatively early during 

tumorigenesis. However, the role of cyclin D1 in prostate cancer has not been previously 

studied in detail. Studies have shown that mouse prostate epithelial cells have elevated 

cyclin D1 expression as they enter the cell cycle (Day et al., 2002). Some studies have 

suggested that human prostate carcinoma cell lines frequently express relatively high 

levels of cyclin D1 protein, even though this gene is not amplified in these cell lines (Day 

et al., 2002). This situation is analogous to that seen in a subset of human breast cancer 

cell lines and tumors. The functional effects of the increased expression of cyclin D1 in 

prostate carcinoma cells remain to be determined.  Immunostaining studies indicated 

that primary prostate carcinoma samples displayed moderate or strong expression of 

cyclin D1 protein. Overexpression of cyclin D1 can increase tumorigenicity of LNCaP 

cell lines (Chen et al., 1998). It has been reported that cyclin D1 overexpression might be 

related to the evolution of androgen-independent disease in prostate cancer (Chen et al., 

1998). However, several studies have also suggested that amplification and/or 

overexpression of cyclin D1 is not a common event in either primary and tumor-derived 

prostate cell lines (Chen et al., 1998). This calls into question the relevance of the in vitro 

studies and makes the point that while something may be possible it is not necessarily 

relevant. Since stromal environment plays an important role in tumor progression and no 

study has shown the role of cyclin D1 in the stroma, questions over the role of cyclin D1 

in prostate cancer progression has driven our attention to study the consequences of 

cyclin D1 over expression in both epithelial and stromal tissues.  
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Prostate cancer research has been hindered by the lack of well established, characterized, 

immortalized benign prostatic epithelial cells lines and human models. In this project, 

we have used a few benign prostatic epithelial cell lines in an effort to build new in vivo 

models of human prostate cancer progression. We have already successfully built a new 

model of human prostate cancer progression by overexpression cMyc oncogene. The 

aim of this project to build less aggressive models that represent distinct grades of 

disease by manipulating different genes. Taken together, important oncogenes (such as 

cyclin D1) and tumor suppressor genes (such as PTEN) are expected to be the essential 

players in the stromal-epithelial interaction in prostate cancer progression. A detail 

understanding of the mechanism of this interaction by modifying either the epithelial or 

the stromal compartments will elucidate new therapeutic targets. The central hypothesis 

of this proposal is that stromal-epithelial interactions play a crucial role in prostate 

cancer progression and are a potential therapeutic target.  
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CHAPTER II 

 

TISSUE-SPECIFIC CONSUQUENCES OF CYCLIN D1 OVEREXPRESSION IN 

PROSTATE CANCER PROGRESSION 

Introduction 

Prostate development is controlled by steroid hormones that induce and maintain a 

complex cross talk between the stromal and epithelial cells (Cunha and Young, 1992). 

The result of this intercellular communication depends upon the context and 

differentiation status of the cell type being stimulated (Hayward and Cunha, 2000; 

Hayward et al., 1998). The process of prostatic carcinogenesis includes aberrations in the 

interactions of the prostatic epithelium and its local microenvironment resulting in 

reciprocal de-differentiation of both the emerging carcinoma cells and the prostatic 

smooth muscle.  

 

The vast majority of human prostatic cancers arise as adenocarcinomas which, by 

definition, are derived from the epithelial cells that form the glands and ducts of the 

prostate. As the carcinoma evolves, phenotypic changes and alterations in gene 

expression also occur in the adjacent stroma. These “changes” may enhance the invasive 

potential of the epithelial tumor (Grossfeld et al., 1998; Joesting et al., 2005). Chung and 

co-workers reported that co-inoculation of tumorigenic Nbf-1 fibroblasts with human 

PC-3 cells accelerated tumor growth (Chung, 1991; Chung, 1995; Chung et al., 1991). 

More recently it was shown that human CAFs were capable of stimulating carcinogenesis 

and inducing the progression of an initiated epithelium (the SV-40 immortalized BPH-1 
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cell line), while normal prostatic fibroblasts were incapable of stimulating such 

progression (Olumi et al., 1999). The mechanistic basis by which stromal-epithelial 

interactions enhance the process of carcinogenesis is still poorly understood.  

 

The cells in the tumor microenvironment supporting and nurturing the developing tumor 

include stromal fibroblasts, infiltrating immune cells, blood and lymphatic vascular 

networks (Mueller and Fusenig, 2004; Tuxhorn et al., 2001). A detailed understanding of 

the changes occurring within tumor stroma and to the signaling mechanisms acting 

between stroma and epithelium will allow for the rational design of therapies aimed at 

inhibiting prostate tumor growth.  

 

Cyclin D1 encodes the regulatory subunit of a holoenzyme that phosphorylates and 

inactivates the retinoblastoma protein and promotes progression through G1 to S phase of 

the cell cycle (Fu et al., 2004; Petty et al., 2003). Overexpression of cyclin D1 plays 

important roles in the development of human cancers including breast, colon and 

melanoma (Bartkova et al., 1995; Hunter and Pines, 1994; Polsky and Cordon-Cardo, 

2003; Roy and Thompson, 2006; Sherr et al., 1992). Increased cyclin D1 expression 

occurs relatively early during tumorigenesis, however, its role in prostate cancer is not 

well understood. Studies have shown that mouse prostatic normal and Rb-/- epithelial 

cells have elevated cyclin D1 expression as they enter the cell cycle (Day et al., 2002). 

Human prostate carcinoma cell lines frequently express elevated levels of cyclin D1 

protein, although the gene is not amplified in these cells (Day et al., 2002). This situation 
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is analogous to that seen in a subset of human breast cancer cell lines and tumors (Arnold 

and Papanikolaou, 2005; Caldon et al., 2006). Overexpression of cyclin D1 can increase 

tumorigenicity of LNCaP cell lines. Additionally, androgen ablation has a smaller 

inhibitory effect on tumors formed by cyclin D1 overexpressing LNCaP cells compared 

with tumors formed by parental LNCaP cells, which regress after castration. This 

phenomenon suggests that cyclin D1 overexpression might be related to the evolution of 

androgen-independent prostate cancer (Chen et al., 1998). Immunostaining studies 

indicated that primary prostate carcinoma samples displayed moderate or strong 

expression of cyclin D1 protein in the epithelial compartment compared to normal 

epithelium. Little is known about the role of cyclin D1 in the stromal compartment of 

tumors, especially in adenocarcinomas. One study of cyclin D1 expression in esophageal 

carcinomas indicated that cyclin D1 is strongly expressed in stromal fibroblasts (Pera et 

al., 2001). 

 

In this chapter we examined the consequences of targeted regulation of cyclin D1 

expression in epithelial or stromal cells in order to investigate the effects of cyclin D1 in 

prostate cancer progression. 

 



 46 

Materials and Methods 

Cells 

BPH-1 (a non-tumorigenic prostate epithelial cell), and its tumorigenic derivatives 

BPH
CAFTD1

 and BPH
CAFTD2

 were from our own stocks. DU145, LNCaP and PC3 cells 

were obtained from ATCC (Rockville, MD, USA). NPFs, BPH fibroblasts and CAFs 

were isolated and bioassayed as previously described (Olumi et al., 1999). Prostatic 

Epithelial cell (PrE)1 cells were isolated from human benign prostate tissue. 957E/hTERT 

cells were generously supplied by Dr. John Issacs (Johns Hopkins). PrE3 cells were 

kindly provided by Dr. Dean Tang (M. D. Anderson). BPH-1
C7-cyclin D1

, BPH-1
C7-

, 

BPH-1
NPF

, NPF
cyclin D1

 and BPH-1
NPF-cyclin D1

 cells were generated as described below. All 

of the epithelial cells were maintained in RPMI 1640 (Gibco, Carlsbad, CA) with 1% 

antibiotic/antimycotic (Life Technologies, Grand Island, NY) and 5% Cosmic Calf Serum 

(CCS) (HyClone, Logan, Utah). All of the stromal cells were maintained in the same 

condition except 5% Fetal Bovine Serum (FBS) (Atlanta Biologicals, Atlanta, GA) was 

used. 

 

Construction of cyclin D1 expression vector 

The plasmid C7-cyclin D1 was constructed using the LZRS-EGFP backbone (Nolan 

Laboratory, Stanford University, CA). The CMV promoter was cut from pIRES-EGFP 

(Clontech, Palo Alto, CA) as a BglII/BamHI fragment. The fragment was then ligated into 

the BamHI site of the LZRS-EGFP backbone to produce C7-. The human cyclin D1 

cDNA clone was obtained from ATCC (Rockville, MD) and amplified by PCR using a 5’ 
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primer specific to translational start site and a 3’ primer containing an XhoI restriction site 

and the consensus sequence for the translational stop site. After PCR amplification, the 

product was gel purified, and cloned into pGem T-Easy (Promega, Madison, WI). 

Following DNA sequence verification, the cyclin D1 coding region was cut using 

EcoRI/XhoI and sub-cloned into the EcoRI/XhoI sites of pLZRS-EGFP to obtain 

C7-cyclin D1 construct. 

 

Generation of a stable cyclin D1 overexpressing BPH-1 cell line 

Viral particles were prepared as previously described and used to infect BPH-1 cells 

(Williams et al., 2005). Fresh virus was placed onto target cells every 24 hours until green 

fluorescent protein expression was observed. Cell sorting was performed to select the 

GFP-expressing BPH-1 cells. Two stable cell lines were generated: C7-cyclin D1 

overexpressing BPH-1 cell line and C7- control BPH-1 cell line which were designated as 

BPH-1
C7-cyclin D1 

and BPH-1
C7-

 respectively. 

 

Generation of NPF
cyclin D1

 cells 

Human prostatic cells were prepared as described previously (Williams et al., 2005). 

Cyclin D1 virus was generated using phoenix A cells, and the prostatic cells were infected 

as described (Williams et al., 2005). After 1 week of successive rounds of infection, some 

cells expressed EGFP when monitored by fluorescence microscopy. Differential 

trypsinization was used to separate fibroblasts from the epithelial cells. The resulting 

colonies were characterized by phenotype and their nature confirmed using 
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immunocytochemical staining against keratin and vimentin. After 12 passages, 

EGFP-expressing cells self sorted as all unstained cells became senescent and died. 

Western blotting analysis 

Cell lysates were prepared and western blotting was performed as previously described 

(Williams et al., 2005). Membranes were incubated with mouse monoclonal antibody to 

cyclin D1 (BD Biosciences Pharmingen, San Jose, CA, 1:1,000 dilution) or -tubulin 

(Santa Cruz Biotechnology, Santa Cruz, CA, 1:1,000 dilution) overnight, washed with 

PBS-Tween 20 for 1 hour, and incubated with horseradish-Peroxidase linked anti-mouse 

or anti-rabbit secondary antibody (Amersham Biosciences, Piscataway, NJ, 1:1,000 

dilution) for 1 hour. Bound antibodies were visualized using enhanced 

chemiluminescence western blotting detection reagents (Amersham Bioscences). Cyclin 

D1 expression levels were normalized to -actin and quantitated using Image J software 

from the NIH (http://rsb.info.nil.gov/ij/). 

 

Growth curves 

BPH-1
C7-

 and BPH-1
C7cyclin D1

 cells were plated in a 24-well plate (1000 cells/well) in 

RPMI 1640 medium supplemented with 5% CCS. After the cells had attached overnight, 

300 µl of Cell Titer 96 Aqueous One Solution (Promega, Madison, WI) was added at 

indicated times (1, 2, 3, 4, and 5 days) to each well and the absorbance was measured at 

490 nm after 3 hours of incubation at 37
o
C. Experiments were performed in triplicate. 

 

Wound healing assays 

http://rsb.info.nil.gov/ij/
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Confluent monolayers of BPH-1
C7-

 and BPH-1
C7-cyclin D1

 cells were grown in 6 well 

plates. An even line of cells was displaced by scratching through the layer using a pipet 

tip. Specific points on the wounds were identified and marked. These open areas were 

then inspected microscopically over time as the cells move in and fill the damaged area. 

Wounds were imaged at 0, 3, 6, and 8 hours post wounding and the cell migration rate 

into the wound was calculated. Experiments were performed in triplicate. 

 

Transwell migration assay 

One hundred thousand BPH-1
C7-

 or BPH-1
C7-cyclin D1

 cells were plated on top of the 8µm 

pore polycarbonate culture inserts (Becton Dickinson labware, Franklin Lakes, NJ),  

which were situated in wells of a 24-well culture plate and immersed in RPMI 1640 

medium supplemented with 5% CCS. The cells were incubated at 37ºC for 12 hours. The 

cells on the upper surface of the inserts were removed using cotton swabs and those 

which had migrated to the bottom side, were fixed with 11% glutaraldehyde (Sigma, St. 

Louis, MO) for 20 minutes, stained with 0.1% crystal violet (Sigma) for 20 minutes. 

Inserts were then washed with water 3 times. The number of cells that had migrated was 

counted using a microscope. The filters were viewed under bright-field optics to count 

stained cells in eight fields (with a 20X objective) for the two types of cells. The mean 

number of cells per field was determined, and results from at least three experiments were 

expressed as the mean relative cell migration ± Standard Deviation (SD), with that of 

BPH-1
C7-

cells set at 1. 
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Boyden chamber assay 

Polycarbonate culture inserts with 8 m-pores were coated with 20 l 2.5 mg/ml matrigel 

(BD Biosciences, Bedford, MA). After the gel solidified, the chambers were equilibrated 

with RPMI 1640 with 5% CCS for 2 hours in a humidified tissue culture incubator at 

37°C with 5% CO2 atmosphere. More media were then added to the lower compartment, 

and 100k BPH-1
C7-

 and BPH-1
C7-cyclinD1 

cells were seeded in the upper compartment of 

the chamber. Each cell group was plated in 3 duplicate wells. After 12 hours incubation, 

the matrigel was removed using a cotton swab. The number of cells that had migrated to 

the lower sides of the membrane was then determined as described for the transwell 

migration assay. 

 

Tissue recombination and xenografting 

One hundred thousand epithelial cells and 300k stromal cells were recombined to make 

the BPH-1
C7-

+ rUGM, BPH-1
C7-cyclinD1

 + rUGM, BPH-1 + NPF and BPH-1 + NPF
cyclin 

D1 
tissue recombinants as previously described (Hayward et al., 1999). After incubating 

overnight at 37
o
C, the tissue recombinants were grafted under the kidney capsule of adult 

male SCID mice (Harlan, Indianapolis, IN). All the experiments were repeated 6 times.  

Mice were sacrificed after four weeks and grafts were harvested, fixed and imbedded. 

 

Immunohistochemical staining 

Immunohistochemical staining was performed following a protocol that was described 

previously (Williams et al., 2005). Tissue slides were incubated with the primary 
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antibody against SV40 (Santa Cruz Biotechnology, Santa Cruz, CA, 1:1000 dilution) 

overnight. The polyclonal rabbit immunoglobulins/biotinylated anti-mouse secondary 

antibody (DAKO, Carpentiria, CA) was incubated for 60 minutes after the slides were 

washed with PBS buffer for 1 hour. After washing the slides in PBS extensively, slides 

were incubated in ABC-HRP complex (Vector Laboratories) for 30 minutes. Bound 

antibodies were then visualized by incubation with 3,3’ diaminobenzidine 

tetrahydrochloride (liquid DAB, DAKO). Slides were then rinsed extensively in tap 

water, counterstained with hematoxylin, and mounted.  

 

Isolation of cell strains and regrafting 

BPH-1
NPF

 and BPH-1
NPF-cyclin D1

 cells were isolated and selected with 50µg/ml G418 

(Clontech, Palo Alto, CA) from BPH-1 + NPF and BPH-1 + NPF
cyclin D1

 grafts, and 

regrafted without stromal cells to SCID mice as previously described (Hayward et al., 

1999). Four to fourteen weeks after grafting, the hosts were sacrificed. The harvested 

grafts were removed from the kidney and formalin-fixed for immunohistochemical 

analysis.  

 

Cell Cycle Analysis 

BPH-1
NPF

 cells and BPH-1
NPF-cyclin D1 

cells were harvested from monolayer culture. The 

cell pellets were washed and resuspended in PBS and fixed with 80% ETOH with 

vortexing. Cells were then pelleted and resuspended with PBS containing 1% CCS for 

cell counting after storing at -20
0
C for 4 hours. 100,000 cells were resuspended in 
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Propidium Iodide (PI) / RNase / 1% CCS / PBS. PI was used to stain double-stranded 

nucleic acids stoichiometrically. Cells were treated with RNase A in order to stain only 

the DNA. Cell cycle distribution was analyzed on the flow cytometer after at least 30 

minutes.  

 

Microarray analysis 

We collaborated with Dr. Peter Nelson in Fred Hutchinson Research institute to perform 

the microarray analysis. Cells were made in our laboratory and the analysis was done in 

Dr. Peter Nelson’s laboratory. NPF
cyclin D1

 cells were generated from NPFs, which were 

isolated from two different patient samples; CAFs were isolated from two different 

patient samples as well. RNA was isolated from NPFs, CAFs, and NPF
cyclin D1

 cells using 

total RNA isolation kit (Qiagen). Custom spotted cDNA microarrays were constructed as 

previously described (True et al., 2006) using a non-redundant set of 6,700 

prostate-derived cDNA clones identified from the Prostate Expression Data Base 

(PEDB), a public sequence repository of expressed sequence tag data derived from 

human prostate cDNA libraries. Total RNA was amplified through one round of linear 

amplification using the MessageAmp aRNA kit (Ambion, Austin, TX). Sample quality 

and quantification was assessed by agarose gel electrophoresis and absorbance at A260. 

Cy3 and Cy5 labeled cDNA probes were made from 4 µg of amplified RNA. Two 

NPF
cyclin D1

 and two CAF samples (labeled with Cy3) were hybridized head-to-head with 

an NPF control sample labeled with Cy5. Probes were hybridized competitively to 

microarrays under a coverslip for 16 h at 63°C. Fluorescent array images were collected 
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for both Cy3 and Cy5 by using a GenePix 4000B fluorescent scanner, and image intensity 

data were gridded and extracted using GenePix Pro 4.1 software. Differences in gene 

expression between NPF
cyclin D1

/NPF and CAF/NPF groups were determined using a 

two-sample t-test with Significance Analysis of Microarrays (SAM) software 

(http://www-stat.stanford.edu/_tibs/SAM/) with a False Discovery Rate (FDR) of ≤ 10% 

considered significant.  Similarities in gene expression between NPF 
cyclin D1

/NPF and 

CAF/NPF groups were determined using a one-sample t-test in SAM with an FDR of ≤ 

0.1% considered significant. These results were reduced to unique genes by eliminating 

all but the highest scoring clones for each gene.  A Pearson correlation coefficient was 

calculated in Excel to assess the strength of the linear relationship between NPF
cyclin 

D1
/NPF and CAF/NPF average log2 ratios. 
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Results 

Cyclin D1 expression levels are elevated in malignant human prostatic epithelial cell 

lines 

Cyclin D1 expression was examined by Western blotting in the prostate cancer cell lines, 

DU145, LNCaP, BPH
CAFTD1

 and BPH
CAFTD2

 and in a subset of non-tumorigenic prostatic 

cells, PrE1, 957E/hTERT (Dalrymple et al., 2005; Yasunaga et al., 2001), PrE3 and 

BPH-1 cell line. Cyclin D1 expression was found to be higher in all of the cancer cells as 

compared to the non-tumorigenic prostatic cells. A representative Western Blot is shown 

in Figure 2-1.Primary epithelial cells had the lowest cyclin D1 expression. The SV40 

T-antigen immortalized BPH-1 cells had higher cyclin D1 expression compared with PrE, 

957/hTERT and PrE, but lower expression level than that in malignant cell lines. These 

data crudely correlate cyclin D1 with tumorigenicity but, as with similar correlations seen 

in patient samples, do not address whether cyclin D1 overexpression is a cause or an 

effect of malignant change. In order to address this question we tested the consequences 

of overexpressing cyclin D1 in non-tumorigenic prostatic epithelial cells.  

 

Cyclin D1 overexpression in BPH-1 cells can increase cell proliferation rate, 

migration and invasive ability in vitro 

Western blotting showed that the BPH-1
cyclin D1 

cells have a 34 fold elevation in cyclin D1 

expression compared with control BPH-1
C7-

 cells (Figure 2-2, A). BPH-1
C7-cyclin D1

 cells 

showed enhanced motile ability in wound healing, transwell migration and Boyden 

chamber assays. Wound healing assays showed that BPH-1
C7-cyclin D1

 cells were 
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significantly more motile than BPH-1
C7-

 cells. This difference was clear after 3 hours and 

was very marked after 8 hours (Student’s t-test, P<0.001) (Figure 2-2, B). In a transwell 

migration study, the BPH-1
C7-cyclin D1

 cells migrated through the uncoated Boyden 

chambers to the underside of the insert in greater numbers in a 12 hour response to 

conditional medium containing 1% CCS in the lower chamber than BPH-1
C7-

 cells 

(Student’s t-test, P<0.05) (Figure 2-2, C). These data confirmed the elevated motility of 

BPH-1
C7-cycin D1

 cells, as seen in the wound healing assay. An invasion assay, in which the 

inside chamber was coated with matrigel to mimic the in vivo extracellular matrix, 

demonstrated that BPH-1
C7-cyclin D1

 cells had significantly increased invasive activity in 

vitro (Student’s t-test, P<0.01) (Figure 2-2, D). We used an MTT assay to assess the effect 

of cyclin D1 overexpression on the growth rate of BPH-1 cells. Our results showed that the 

cyclin D1 overexpressing cells proliferated faster than control cells. The difference was 

observed even after 24 hours incubation (Figure 2-2, E). Collectively the assays showed 

that when cyclin D1 is forcibly overexpressed, BPH-1 cells acquired an enhanced 

proliferation rate, motility and invasive ability in vitro.  

 

Cyclin D1 overexpressing BPH-1 cells are not tumorigenic in tissue recombinants 

with rUGM 

To determine whether cyclin D1 could exert a tumorigenic effect on prostate cells in vivo, 

100k BPH-1
C7-cyclin D1 

cells or control cells were recombined with 300k rUGM and grafted 

under the kidney capsule of SCID mice. The grafts were harvested after 4, 8, 12 and 16 

weeks. The results showed that BPH-1
C7-cyclin D1

 cells formed significantly larger and 
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more vascularized grafts under the induction of rUGM, compared with BPH-1
C7- 

cells. 

An example of the gross morphology of grafts at 8 weeks is shown in Figure 2-3, A. These 

results are consistent with our in vitro experiments, which showed that BPH-1
C7-cyclinD1

 

cells proliferate faster than controls. Histologically, both experimental and control grafts 

exhibited the formation of solid epithelial cords surrounded by a muscular stroma. SV-40 

T-antigen staining confirmed the origin of BPH-1 cells in both control and cyclin D1 

overexpressing groups and showed that there were sharp delineations from the host 

kidney (denoted as k in the figure) with no sign of invasion (Figure 2-3 B and C). It was 

noteworthy that a clear layer of stromal cells was always seen between the graft and host 

kidney under both control and test conditions. In the control grafts few epithelial cells 

were phospho histone H3 positive (indicating low proliferation rates). However, there 

were significantly more histone H3 positive cells in BPH-1
cyclin D1 

cords (Student’s t-test, 

P<0.01, data not shown). These data indicated that BPH-1
cyclin D1 

cells proliferated much 

faster than control cells (Figure 2-3, B and C). To assess whether cyclin D1 can transform 

BPH-1 cells in a longer period of time in vivo, we sacrificed mice every month for up to 4 

months. The histological appearance of the grafts at 4 months was similar to the earlier 

grafts with solid cord structures and no invasion of the kidney (date not shown). Therefore, 

while cyclin D1 can increase BPH-1 cell motility and promote cell proliferation in vitro, 

overexpression of the gene did not induce BPH-1 cells to undergo malignant 

transformation with associated invasion.  
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NPF
cyclin D1

 cells have increased life span compared with NPFs and CAF cells have 

upregulated cyclin D1 expression 

Since the stroma is viewed as an important active contributor to tumor growth, and in order 

to understand whether cyclin D1 performs different functions in stromal and epithelial 

tissues, we generated NPF
cyclin D1

 cells by overexpressing cyclin D1 in primary cultures of 

normal prostate stromal cells. To investigate whether the cyclin D1 overexpressing 

fibroblasts have an increased life span compared to control or non-infected cells, we 

passaged the cell mixtures 12 times. The uninfected cells underwent spontaneous 

senescence and died within 12 passages. The EGFP-expressing cells still looked healthy 

and grew well after 11 more passages (total 23 passages-Figure 2-3, A). Western blot 

analysis demonstrated that EGFP positive cells also overexpressed cyclin D1 (Figure 2-4, 

B). This result indicated that NPFs acquired a prolonged life span as a consequence of 

upregulated cyclin D1.  

 

It has previously been shown that CAF cells can induce BPH-1 cells to undergo malignant 

transformation while normal prostatic fibroblasts cannot (Olumi et al., 1999). Cyclin D1 

has been shown to be strongly expressed in stromal fibroblasts in carcinoma and 

adenocarcinoma (Pera et al., 2001). We were interested to determine whether human 

prostatic CAFs have elevated cyclin D1 expression and if so whether CAFs and NPF
cyclin D1 

cells share common functional sequelae. Therefore, we examined the expression level of 

cyclin D1 in NPFs, BPH fibroblasts and CAF cells. These experiments showed that CAFs 
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expressed a much higher level of cyclin D1 protein than either NPFs or fibroblasts isolated 

from BPH patients (Figure 3B).  

 

NPF
cyclin D1

 cells elicit CAF-like effects promoting tumorigenesis 

To investigate the in vivo consequences of overexpression of cyclin D1 in NPFs, 100k 

BPH-1 cells were recombined either with 300k NPF
cyclin D1

 or NPF cells. Grafts were 

harvested after one month. Tissue recombinants composed of BPH-1 + NPF
cyclin D1 

exhibited moderate growth, in contrast, consistent with previously published data, control 

recombinants composed of BPH-1 + NPFs demonstrated minimal growth. Control grafts of 

NPF and NPF
cyclin D1

were likewise small and flattened (Figure 2-5, A a and b). Comparison 

between the volume of the control and test recombinants showed that the test samples were 

significantly larger (Student’s t-test, P<0.01). The histological appearance of the BPH-1 + 

NPF
C7-cyclin D1

 grafts, as assessed by H & E staining, resembled a poorly differentiated 

carcinoma with areas of squamous differentiation (Figure 2-5 B,a and b). Instead of 

forming solid cord structures, some epithelium fused to form large nests with keratinization 

and a broad pushing margin against the host kidney (Figure 2-5, B a and b). Tumors also 

contained irregular epithelial cords intermingled within a fibrous stroma (Figure 2-5, B e 

and f-right arrow). In other areas, single epithelial cells were intermixed with fibrous 

stroma (Figure 2-5, B c-arrow and f-left arrow). SV-40 T antigen staining confirmed the 

origin of the epithelial component of the tumors as being from the BPH-1 cells (Figure 2-5, 

B c and f). E-cadherin expression was patchy, with positive expression in cell-cell junctions 

in some areas, but weak or absent in many areas (Figure 2-5, B d). The histology of 
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recombinants of BPH-1 + NPF
cyclin D1 

was similar to that previously described for BPH-1 + 

CAFs recombinants (Dalrymple et al., 2005; Olumi et al., 1999), although the overall 

tumor size was smaller. After 5 months of incubation in the kidney capsule, BPH-1 cells 

formed larger tumors with clear kidney invasion (Figure 2-5, B g and i). Small kidney 

tubes intermingled with tumor cells (Figure 2-5, B g-arrow and h-arrows) and there were 

no clear margins between the kidney and grafts.  

 

In contrast to the malignant histological appearance of the BPH-1 + NPF
cyclin D1

 

recombinants, the BPH-1 + NPF recombinants appeared benign and, as previously 

described, the bulk of the grafts were composed of stromal cells. Occasional small 

epithelial cords are found (Figure 2-5, B k and l).  This confirmed previous observations 

that stromal cells from normal peripheral zone recombined with BPH-1 cells produced 

benign or no visible grafts (Barclay et al., 2005; Olumi et al., 1999). To examine if NPF
 

cyclin D1
 cells are tumorigenic, we grafted either NPF or NPF

 cyclin D1
 cells alone to SCID 

mice. Both control groups formed flattened grafts (Figure 2-5, A c and d). H & E staining 

showed that both grafts were present as a thin layer of fibrous tissue (data not shown).  

 

Epithelial cells isolated from BPH-1 + NPF
cyclin D1

 grafts (BPH-1
NPF-cyclin D1

) are 

tumorigenic 

After cell culture and G418 selection, two cells strains were derived from BPH-1 + NPF 

and BPH-1 + NPF
cyclin D1 

grafts, designated BPH-1
NPF

 and BPH-1
NPF-cyclin D1

. The two 

strains were grafted in collagen gels beneath the renal capsule of male SCID mice. 
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Grossly, after 3 months, the BPH-1
NPF-cyclin D1

 cells formed significantly larger grafts than 

the control group (Figure 2-6, A-right). The control group formed small flattened grafts 

(Figure 2-6, A-left). Histologically, the BPH-1
NPF

 cells grew to form occasional small 

cords, which were SV-40 positive, similar to the grafts previously reported for BPH1 

cells grafted alone (Figure 2-6, B). The BPH-1
NPF-cyclin D1

 cells, in contrast, formed large 

fused nests generally with a broad pushing margin to the host kidney (Figure 5C,a-arrow).  

Many smaller nests with irregular shapes were scattered throughout the tumor and 

intermingled with stroma (Figure 2-6, C, d and e). Some infiltrative areas recapitulated 

prostatic carcinoma (Figure 2-6, C b-arrow). Cells contained a foamy cytoplasm and their 

borders were indistinct (Figure 2-6, C c-arrow) . Minimally invasive growth was found in 

some areas (Figure 2-6, C f). Tumors continued to express SV-40T-antigen confirming 

the BPH-1 origin of the malignant epithelium. 

 

DNA flow cytometry analysis demonstrated that stromal cyclin D1 caused a shift of the 

cell cycle distribution of BPH-1
 NPF-cyclin D1

 cells. An abnormal wider peak which contains 

55% of the cell population is located close to where the G2/M peak (which has twice the 

normal copies of DNA) is supposed to be, but its position is below the G2/M peak 

position. It was reported that a wide peak may represent two populations of cells with 

different quantities of DNA (Seidman et al., 1992). Given that the original BPH-1 

population has previously been described to have an abnormal chromosomal make up and 

further that this can be altered by exposure to cancer stroma it is possible that 

BPH-1
NPF-cyclin D1 

cells become hyperdiploid or nearly tetraploid, and the hyperdiploid cell 

mailto:G@/M
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population mixed with the tetraploid G2/M population to produce this abnormal peak. A 

large proportion (23.1%) of BPH-1
NPF-cyclin D1

 cells also appear to be polyploid with 

varying but high DNA content. In marked contrast, only 0.9% of BPH-1
NPF

 cells were 

found to be polyploid and BPH-1
NPF

 cells showed a normal distribution of cell 

populations with 64% cells in the G1 phase of cell cycle (Figure 2-6, D).   

 

Gene expression profiles were highly concordant between CAFs and NPF
cyclin D1

 cells 

This data were received from Dr. Peter Nelson lab. The gene expression patterns of NPFs, 

CAFs and NPF
cyclin D1

 cells were compared by cDNA microarray analysis (GEO 

submission (GSE6936) [NCBI tracking system #15248638]. NPF
cyclin D1

 cells and CAFs 

showed a high level of gene expression correlations when compared to NPFs (Pearson r = 

0.65 across all 5652 clones returning data in all 4 samples.) A one-sample t-test in SAM 

identified 118 unique genes up-regulated and 51 unique genes down-regulated (q-value ≤ 

0.1%) commonly expressed between NPF
cyclin D1

 cells and CAFs when compared with 

NPFs. (Figure 2-7 A and B). Relatively few significant differences in transcript 

abundance measurements between NPF
cyclin D1

 cells and CAFs were identified:  a 

two-sample t-test in SAM identified 6 unique genes up-regulated and 20 unique genes 

down-regulated (q-value ≤ 10%) in CAFs when compared with cyclin D1 overexpressing 

fibroblasts (Figure 2-7 C).  
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Figure 2-1. Cyclin D1 protein expression in a panel of human prostatic epithelial cells. 

Western blotting was performed to examine cyclin D1 protein expression levels in 

malignant (BPH-1
CAFTD1

, BPH-1
CAFTD2

, DU145, LNCaP and PC3) and non-tumorigenic 

(PrE1, 957E/hTERT, PrE3 and BPH-1) prostatic epithelial cell lines. The PrE1, 

957/hTERT, PrE3 cells had the lowest cyclin D1 expression compared with other 

transformed prostate cell lines. BPH-1 cells had moderate level of cyclin D1 expression.  
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Figure 2-2. In vitro comparison of BPH-1
C7-

 and BPH-1
C7-cyclin D1

 cells.  

(A) In order to examine the role of cyclin D1 in prostate cancer progression, C7- (control 

- BPH-1
C7-

) and cyclin D1 overexpressing (BPH-1
C7-cyclin D1

) BPH-1 cell lines were 

generated by stable retroviral infection. Cyclin D1 overexpression in BPH-1
C7-cyclin D1

 was 

confirmed by western blotting and band intensity quantitated. 
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Figure 2-2 (B). Wound healing assay. BPH-1
C7-cyclin D1

 closed wounds in the confluent 

monolayer significantly faster than BPH-1
C7-

 cells. Images (left) and quantitation (right) 

shown. Student’s t-test, P<0.001.  
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Figure 2-2 (C). Transwell migration study and invasion assay. BPH-1
C7-cyclin D1

 migrated 

through the uncoated Boyden chamber significantly faster than BPH-1
C7-

 Representative 

phase-contrast optical photomicrographs after overnight culture shown (a, above) and 

quantitated (a, bottom). Student’s t-test, P<0.05. BPH-1
C7-cyclin D1 

cells had increased 

invasive ability in a Matrigel coated Boyden chamber invasion assay compared to 

BPH-1
C7-

Representative phase-contrast optical photomicrographs after overnight 

culture shown (b, above) and quantitated (b, bottom). Student’s t-test, P<0.01. 
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Figure 2-2 (D). Proliferation assay. Cyclin D1 overexpression promoted BPH-1 cell 

proliferation significantly over control growth rate. (Student’s t-test, P<0.001). 



 67 

 

 

 

 

Figure 2-3. Overexpression of cyclin D1 in epithelium was insufficient to induce malignant 

transformation in BPH-1 cells as determined by in vivo assays.  

(A) BPH-1
C7-cyclin D1

 cells were not tumorigenic under the influence of the inductive rat 

UGM in the tissue recombination model. Gross morphology of 2 months grafts of 

BPH-1
C7-

 + UGM (left) and BPH-1
C7-cyclin D1

 + UGM (right). The volume of grafts 

containing BPH-1
C7-cyclin D1

 was significantly larger than controls. Student’s t-test, P< 0.01.  
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Figure 2-3 (B). H & E staining of BPH-1
C7-

 + UGM grafts showed that the recombinants 

formed solid cord structures with no sign of invasion to the host kidney. SV40 T-antigen 

staining confirmed the cell origin of the epithelium. Phospho histone H3 staining identified 

few positive cells in the solid cords. Higher magnification pictures were shown in bottom. 

Scale bar equals 50 µm. 
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Figure 2-3(C). H & E and SV-40 T antigen staining of BPH-1
C7-cyclin D1

 + UGM grafts. 

Histology is similar to that seen in the control groups. The basement membrane between 

kidney and graft was intact and there was no sign of invasion into the host kidney was seen. 

Phospho histone H3 staining identified significantly more positive cells in the solid cords 

compared in B. Higher magnification pictures were shown in bottom. Scale bar equals 50 

µm. 



 70 

A 

 

 

B 

 
Figure 2-4. Expression of cyclin D1 in human prostatic fibroblasts. (A) NPF

cyclin D1
 cells 

have increased life span compared with NPF cells. Control cells were all dead within 12 

passages. The NPF
cyclin D1

 cells appeared healthy after 23 passages (passage number shown 

adjacent to illustration) post-infection by C7-cyclin D1 overexpressing retroviral vector 

(total 23 passages). (B) Western blotting results confirmed cyclin D1 was overexpressed in 

NPF
cyclin D1

 cells. Human prostatic carcinoma-associated fibroblasts (CAF) cells also 

expressed elevated levels of cyclin D1 protein as compared to NPF or to BPH-derived 

fibroblasts. 
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Figure 2-5. Effects of NPF
cyclin D1

 cells on BPH-1 epithelium in vivo.(A) Gross morphology 

of one month grafts of tissue recombinants composed of BPH-1 + NPF(a), BPH-1 + 

NPF
cyclin D1

 cells (b), NPF alone (c) and NPF
cyclin D1

 alone (d). The graft volume of BPH-1 + 

NPF
cyclin D1

 was significantly larger than that of BPH-1 + NPF. Student’s t-test, P<0.001 

(right). 
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Figure 2-5 (B). Staining of BPH-1 + NPF
cyclin D1

 recombinants revealed organization 

resembling a poorly differentiated carcinoma. Some epithelium fused to form large nests 

(a, b) with keratinization and a broad pushing margin to kidney (a, arrow). Tumors 

contained irregular epithelial cords and epithelial cells intermingled within a fibrous stroma 

(c, e and f-right arrow). Single epithelial cells were intermixed with fibrous stroma in other 

areas (c-arrow and f-left arrow).  Immunohistochemical localization of SV-40 T antigen 

confirmed the origin of the tumors (c and f). E-cadherin staining was patchy (d). 
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Figure 2-5 (C). After 5 months incubation in kidney capsule, BPH-1 cells formed larger 

tumors and invaded the host kidney (g, h, i, j). Tumor cells surrounded and intermingled 

with kidney tubes (Figure 4B, g and h-arrows). There were no clear margins between 

kidney and grafts. H & E staining of BPH-1 + NPF grafts revealed small grafts with 

minimal epithelial growth consistent with previous observations (k, arrow and l). Scale bar 

equals 50 µm.  
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Figure 2-6. The BPH-1
NPF-cyclinD1

 cells which were isolated from BPH-1 + NPF
cyclin D1

 

grafts exhibited a transformed phenotype. (A) Gross morphology of 3 months grafts of 

BPH-1
NPF

 (left) and BPH-1
NPF-cyclinD1

 (right). The volume of the BPH-1
NPF-cyclinD1

 grafts 

was significantly larger than the control grafts (Student’s t-test, P<0.01).  
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Figure 2-6 (B). In grafts of BPH-1
NPF

 cells, occasionally, epithelial cords were seen. (a) and 

their origin confirmed by SV-40 staining (b). No evidence of malignant growth or invasion 

was seen in these grafts. Scale bar equals 50 µm.  
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Figure 2-6 (C). BPH-1
NPF-cyclin D1

 tumors were larger than controls with areas of 

keratinization. (a). The grafts formed a pushing margin directly touching the host kidney 

(a, arrow). Small nests of epithelial cells with irregular shapes intermingled with stroma 

(d and e). Some infiltrative areas (b-arrow) were found to be composed of bubbly 

cytoplasm and indistinct cells borders (c-arrow). Minimally invasive growth into the 

kidney was seen in a few areas. The invading cells expressed SV-40T antigen (f, arrow). 

Scale bar equals 50 µm. k = host kidney. 
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Figure 2-6 (D). FACS analysis demonstrated striking differences in cell population 

distribution between BPH-1
NPF

 and BPH-1
NPF-cyclin D1

 cells. The majority (64%) of the 

BPH-1
NPF

 cells were in the G1/G0 phase of cell cycle. In contrast, in BPH-1
NPF-cyclin D1

 cells 

an abnormal peak which contains 55% of the total cell population is located close to but 

somewhat below where the G2/M peak would be expected. Additionally, polyploid cells 

composed of 23.1% of the total population in the BPH-1
NPF-cyclin D1

 cells. 

mailto:G@/M


 78 

 

 

Figure 2-7 (A). cDNA Microarray analysis identified similar gene expression profiles of 

the cyclin D1 overexpressing normal fibroblasts and CAFs compared with NPFs. Heat map 

colors reflect fold ratio values between each sample and NPF reference (see scale.) Results 

of a one-sample t-test comparing NPF
cyclin D1

 cells and CAFs vs. normal fibroblasts. Shown 

are the 118 unique genes up-regulated in both NPF
cyclin D1

 cells and CAFs compared to 

normal fibroblasts (q-value ≤ 0.1%.).  



 79 

 

Figure 2-7 (B). Shown are the 51 unique genes down-regulated in both NPF
cyclin D1

 cells and 

CAFs compared to normal fibroblasts (q-value ≤ 0.1%.). 
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Figure 2-7 (C). Results of a two-sample t-test comparing NPF
cyclin D1

 cells with CAFs. 

Shown are the six unique genes upregulated in CAFs and 20 unique genes down-regulated 

in CAFs compared to cyclin D1 overexpressing cells (q-value ≤ 10%.) 
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Discussion 

The concept of stroma as a contributor to, and potentially as an initiator of, carcinogenesis 

have led to altered perceptions of the development and progression of epithelial 

malignancies. Histopathologic examination has shown clear differences in gene 

expression patterns between the reactive stroma of tumors and normal stroma, 

additionally these differences have clinical prognostic value (Ayala et al., 2003; Bosman 

et al., 1993; Tuxhorn et al., 2002). The importance of stromal-epithelial interactions in 

tumorigenesis has been demonstrated in many malignancies, including, carcinoma of the 

skin, colon, breast and prostate (De Cosse et al., 1973; Fukamachi et al., 1986; Singer et 

al., 1995; Wright et al., 1994). Stromal-epithelial interactions not only play an important 

role in normal development and adult growth quiescence of the prostate (Cunha et al., 

2004) but changes in these interactions can promote a malignant progression of initiated 

epithelium and result in tumorigenesis (Grossfeld et al., 1998; Hayward et al., 1997; 

Mueller and Fusenig, 2004). 

 

There are cases in which addition of a single dominant-acting oncogene is sufficient to 

transform a non-tumorigenic cell. For example, massive overexpression of c-myc 

converted normal prostatic epithelial cells to rapidly become an invasive prostate 

carcinoma cell (Williams et al., 2005), while lower levels of c-myc expression had similar 

but slower effects (Ellwood-Yen et al., 2003). Similarly loss of genes with tumor 

suppressor function can also contribute to malignancy (Wang et al., 2003). These 

observations emphasize the importance of genetic changes as key factors in malignancy. 
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Alterations in the microenvironment adjacent to the epithelial cells can drive 

non-tumorigenic cells to become malignant both in vivo and in vitro (Hayward et al., 

2001; Maffini et al., 2004; Pierce, 1974). Stromal factors can also elicit reversion of a 

malignant teratocarcinoma to a benign phenotype despite of genetic changes within the 

epithelial cells (Hayashi and Cunha, 1991; Mintz, 1978). The growth and differentiation 

of epithelial cells from R3327 Dunning prostatic adenocarcinoma (DT) were modified 

when reassociated with normal stromal environment. The epithelial cells were induced to 

differentiate to tall columnar secretory epithelial cells and tumorigenesis was remarkably 

diminished (Hayashi and Cunha, 1991; Hayashi et al., 1990). Experiments in mice 

suggested that genetic inactivation of the stromal TGF-RII receptor resulted in the 

transformation of normal epithelial cells (Bhowmick et al., 2004b). Bissell’s group 

demonstrated that by manipulating ECM proteins, human breast cancer cells reverted to 

normal functional cells in culture and tumorigenicity was reduced dramatically in mice 

(Weaver et al., 1997).  

 

Cyclin D1 is an important oncogene in many human cancers, but its function in prostate 

cancer is not clear (Bubendorf et al., 1999; Gumbiner et al., 1999; Kallakury et al., 1997). 

We show here that cyclin D1 is upregulated in prostate cancer cell lines indicating that it 

might be associated with prostate tumorigenicity. Overexpression of cyclin D1 can 

increase tumorigenicity of LNCaP cell lines (Chen et al., 1998). We have observed that 

BPH-1 cells in which cyclin D1 was overexpressed did not become tumorigenic under the 

influence of inductive rUGM in the tissue recombination model when grafted to SCID 
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mice. However, the cyclin D1 overexpressing cells did have a higher proliferation rate in 

vitro and in vivo and motility in vitro. Such observations indicated that this single gene is 

not enough to transform BPH-1 cells even in the face of SV40 large T antigen, which is 

expressed in these cells. This underlines the important point that increased proliferation 

per se is insufficient for malignant transformation. 

 

In marked contrast to the effects in epithelial cells, overexpression of cyclin D1 in primary 

cultures of benign human prostatic fibroblasts extended the lifespan and altered the 

behavior of the stromal cells, nonetheless falling short of directly inducing malignant 

transformation. Cyclin D1 induced these cells to behave in a manner similar to CAFs, 

imparting an ability to elicit malignant transformation in BPH-1 epithelial cells in a tissue 

recombination model. The cyclin D1 overexpressing fibroblasts have increased life span 

compared with NPFs. NPFs were all dead within 12 passages. However, the NPF
cyclin D1

 

cells appeared healthy after an additional 11 passages. NPFs overexpressing cyclin D1 may 

be selectively advantageous for the proliferation and survival characteristics often 

associated with oncogenesis compared with non-infected cells in the same mixture. 

However it should be noted that, as when expressed in epithelial cells, expression of cyclin 

D1 did not result in transformation of the stromal cell population. As a result of in vitro 

adaptation, cells may pick up generic alterations such as the mRNA changes we have seen 

in microarray data. However, NPF
cyclin D1

 cells are not fully immortal and are not 

tumorigenic by themselves. This is consistent with observations that CAFs are also not 

immortal and not tumorigenic per se, but have the ability to transform adjacent BPH-1 
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cells.  

 

By expressing cyclin D1 in stromal cells we demonstrated that benign stromal cell 

behavior can be modified to mimic that of cancer stromal cells. NPF
cyclin D1

 cells have a 

potential to transform BPH-1 cells similar to that seen with CAFs although with a reduced 

intensity. Tissue architecture in recombinants showed irregular epithelial cords and 

epithelium infiltrating into the stroma. This observation indicated that the presence of 

altered stromal cells in proximity to an initiated epithelium has an important biological 

impact on prostatic carcinogenesis. Expression of this single oncogene in the stroma may 

mimic the effects of CAFs on epithelium by modifying the local microenvironment. 

Specifically altering the expression of growth factors and ECM proteinases results in 

expansion and malignant progression of the initiated epithelial cells.  

 

BPH-1 cells form tumors after recombination with CAFs, and epithelial cells derived 

from these tumors (BPH1
CAFTD

) are tumorigenic without the stimulation of stromal cells 

when re-grafted to mice (Hayward et al., 2001). The present study shows that the 

tumorigenic behavior of BPH-1
NPF-cyclin D1

 cells (derived from recombination of BPH-1 + 

NPF
cyclin D1

 cells) also resulted in a permanent malignant transformation of epithelial cells 

similar to that seen with CAF.  

 

Cell cycle analyses of cells from malignant tissues have demonstrated the presence of 

aneuploid cells as well as normal diploid cells (Givan, 2001). In the present study, an 



 85 

abnormal peak in cell cycle histogram of BPH-1
NPF-cyclin D1

 likely represented 

hyperdiploid cells. Many of these cells had multiple nuclei. It has been shown that 

aneuploidy is the possible underlying mechanism and potential consequences in the 

pathogenesis of human lung cancer (Masuda and Takahashi, 2002). Clinical progression 

of prostate cancer is also associated with formation of DNA aneuploidy (Koivisto, 1997). 

These data suggested that BPH-1
NPF-cyclin D1

 cells might be transformed through 

chromosomal changes (aneuploidy).  

 

The histological appearance BPH-1
NPF-cyclin D1

 tumors was consistent with poorly 

differentiated carcinoma. It is important to note that CAFs have elevated expression 

levels of cyclin D1 protein, and therefore many of their characteristics could be linked to 

the downstream consequences of this change. Microarray comparison of the NPF
cyclin D1

 

and CAFs vs. NPF showed highly concordant gene expression profiles. The same 118 

unique genes were up-regulated and 51 unique genes were down-regulated in NPF
cyclin D1

 

cells and CAFs when compared with NPFs. Relatively few significant differences in 

transcript abundance measurements between NPF
cyclin D1

 cells and CAFs were identified. 

These data indicate that cyclin D1 expression in stroma can critically affect paracrine 

interactions with adjacent epithelial cells in a manner resembling CAFs.  

 

In summary, the present study in this chapter demonstrated for the first time the 

importance of cyclin D1 as a potential regulator of paracrine interactions in prostate 

cancer progression. The cyclin D1 overexpressing fibroblasts have an increased life span 
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and share many commonalities with CAFs making them a potentially useful research tool. 

Traditional therapy for all epithelial malignancies, including prostate cancer, has been 

targeted at the epithelial cells which progressively acquire genetic changes. The stroma 

may provide a more stable target at which to direct treatment, since the gene expression 

profile differs from that seen in normal tissues. We should also bear in mind that the 

tumor stromal compartment is heterogeneous and that CAFs are a mixed population of 

fibroblastic cells. Juxtacrine signaling between fibroblastic cells of different types may 

contribute to changes in overall paracrine signaling which boosts the growth of epithelial 

cells. Interactions with other stromal cell types including inflammatory cells or nerve 

cells also turn out to be of critical importance. A better understanding of these complex 

interactions within the stroma and between stroma and epithelium, and the manner in 

which these are influenced by gene expression in stromal cells will allow for the rational 

design of therapies aimed at inhibiting prostate tumor growth. 
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CHAPTER III 

 

CATHEPSIN D ACTS AS AN ESSENTIAL MEDIATOR TO PROMOTE 

MALIGNANCY OF BENIGN PROSTATIC EPITHELIUM. 

Introduction 

Cathepsin D is a ubiquitous lysosomal aspartyl endoproteinase which is overexpressed and 

hypersecreted by human breast cancer cells (Rochefort, 1992). Overexpression of 

cathepsin D has been shown to increase the risk of breast cancer metastasis. (Ferrandina et 

al., 1997; Foekens et al., 1999; Rochefort, 1992). Cathepsin D was shown to stimulate 

cancer cell proliferation (Westley and May, 1999). Cathepsin D may be responsible for 

positive regulation of proliferation, motility, and/or invasion of cells by triggering 

activation of ras/MAPK/ERKs (Laurent-Matha et al., 2005). Immunohistochemical studies 

indicated that cathepsin D not only promoted cancer cell proliferation by an autocrine 

mechanism, but also tumor angiogenesis via a paracrine mechanism by staining with 

PCNA, whose expression is associated with proliferating cells in late G1 and S phase 

(Berchem et al., 2002). It is the first time that the potential paracrine action of cathepsin D 

was found in the context of a tumor.  

 

Cathepsin D overexpression was shown to be important in epithelial growth, but also 

affects fibroblast behavior. Cathepsin D was required for fibroblast invasive growth using 

a three-dimensional (3D) coculture assay with breast cancer cells. Cathepsin D was found 

to be crucial for fibroblast invasive outgrowth and could act as a key paracrine 

communicator between breast cancer and stromal cells, independently of its catalytic 
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activity (Laurent-Matha et al., 2005). The mechanism of how cathepsin D involves in the 

paracrine signaling is still under investigation.  

 

There are a few studies which examined the function of cathepsin D in prostate cancer 

progression. Some data demonstrated that a greater expression of mature cathepsin D with 

a higher catalytic activity in prostate cancer specimens is the most notable difference from 

normal specimens (Cherry et al., 1998). The normal glands were, in general, found to be 

negative for cathepsin D expression, but carcinoma samples have greater positive punctate 

lysosomal staining. Therefore, cathepsin D may prove to be a useful marker of prostate 

cancer progression (Makar et al., 1994). Endogenous cathepsin D can possibly modulate 

androgen receptor function in LNCaP cells and in prostate cancer specimens. Its activity 

appears to differ significantly between normal and malignant tissue. Cathepsin D may play 

a pivotal role as a growth modulator in androgen-dependent prostate cancer (Mordente et 

al., 1998). Some studies also indicated that cathepsin D, which is produced by reactive 

stromal cells but not the cancer cells, influence the prognosis of breast cancer (Tetu et al., 

1999).  

 

As the carcinoma evolves, phenotypic changes and alterations in gene expression in the 

adjacent stroma may enhance the invasive potential of the epithelial tumor (Cunha et al., 

2002; Cunha et al., 2003). The microenvironment affects tumor formation, growth, 

invasiveness and metastasis. Stromal-epithelial interactions are mediated, in large part, by 

paracrine signaling between epithelial tumor cells and neighboring stromal fibroblasts (Ao 
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et al., 2007). In addition to receiving signals from epithelial cells, the stromal fibroblasts 

can also stimulate tumorigenesis by releasing factors which act on epithelial cells or 

exchange enzymes, growth factors and cytokines with epithelium to modify local 

extracellular matrix (ECM), stimulate migration and invasion, and promote proliferation 

and survival of tumor cells (Liotta and Kohn, 2001).  

 

In tissue recombination model, it was shown that human prostatic CAFs are capable of 

stimulating carcinogenesis and inducing the progression of an initiated epithelium (BPH-1 

cell line), while normal prostatic fibroblasts were incapable of stimulating such 

tumorigenesis (Olumi et al., 1999). The mechanistic basis by which stromal-epithelial 

interactions enhance the process of prostatic carcinogenesis and tumor invasion is 

beginning to be dissected and studied. TGF- pathway is a crucial component in this 

interaction (Ao et al., 2007; Ao et al., 2006). Cyclin D1 was also shown to be a mediator of 

carcinogenesis. Our previous study in chapter II demonstrated that cyclin D1 

overexpressing prostate fibroblasts (NPF
cyclin D1

) transformed BPH-1 cells and drove 

BPH-1 cells to be invasive in a similar manner to CAFs. Cathepsin D expression was 

increased 7 fold in NPF
cyclin D1

 cells and also in CAFs, indicating a possible role of 

cathepsin D as a paracrine mediator of cancer progression. 

 

In the chapter, we highlight the possibility that cathepsin D may participate in paracrine 

signaling interactions between epithelial cancer cells and NPF
cyclin D1

 cells or CAF cells. 

The expression of cathepsin D was examined in clinical samples and tissue recombinants. 
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The function of cathepsin D in NPF
cyclin D1

 cells was examined in a 3D coculture assay. We 

then went on to study the effects of knocking down cathepsin D in CAFs to investigate the 

importance of cathepsin D in this paracrine signaling interaction.  
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Methods 

Cells 

BPH-1 (a non-tumorigenic human prostatic epithelial cell), NPF and CAF cells were from 

our own stocks (Hayward et al., 2001). BPHfib and CAF cells were isolated from human 

prostate samples. NPF
cyclin D1

 cells was generated as discribed in chapter II (He et al., 

2007). Cells were maintained in RPMI 1640 (Gibco, Carlsbad, CA) with 1% 

antibiotic/antimycotic (Life Technologies, Grand Island, NY) and 5% Cosmic Calf Serum 

(CCS-HyClone, Logan, Utah).  

 

Generating genetically modified cell lines 

The pSuper.Retro-control (PSR- OligoEngine, Seattle, WA) and pSuper.Retro-cyclin D1 

shRNA (PSR-cyclinD1sh-kindly provided by Dr. Rene Bernards and Dr. Daniel Peeper 

from the Netherlands Cancer Institute) were transduced into CAFs by retroviral infection 

as described previously (Williams et al., 2005). The successfully infected cells were 

selected using puromycin (5ug/ml) to generate two cell lines (CAF
PSR

 and CAF
PSR-cyclin 

D1sh
). The pSilencer 2.1-cathepsin D1 shRNA vector was kindly provided by Dr. Daniel 

E. Johnson from the University of Pittsburgh Cancer Institute. We cut both pSilencer 

2.1-cathepsin D1shRNA and pSuper.Retro plasmids with HindIII and BamH1, and 

inserted the cathepsin D shRNA sequence to pSuper.Retro vector to generate the 

retroviral cathepsin D knockdown vector which is designated as PSR-cathepsinDsh. The 

PSR and PSR-cathepsinDsh were transduced into CAFs by retroviral infection as 

described previously (Williams et al., 2005). The successfully infected cells were selected 
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using puromycin (5g/ml) to generate two cell lines (CAF
PSR

 and CAF
PSR-cathepsinDsh

). PSR 

and PSR-cathepsinDsh vector was retrovirally infected to NPF
cyclin D1

 cells to generate 

NPF
cyclin D1- control 

and NPF
cyclin D1-cathepsin Dsh 

respectively.  

 

Western blotting analysis 

Cells were grown in T75 cell culture flasks at 37

C until they were confluent. After 

washing with PBS three times, 300 µl cold lysis buffer (10 mM HEPES pH 7.9; 10mM 

KCl: 0.1mM EDTA; 0.1mM EGTA; 0.1mM DTT; 1 protease complete tablet (Roche, 

Indianapolis, IN)) were added to each flask. The cells were cooled on ice for 30 minutes 

with lysis buffer, and then were scraped from flasks. Cell lysates were sonicated 5 times (10 

second/time) and centrifuged for 20 minutes at 4°C. Protein concentrations were measured 

for western blotting. Twenty µg protein was loaded and electrophoresed through 10% 

NuPAGE BisTris gel (Invitrogen, Carlsbad, CA) and electrophoretically transferred to 

nitrocellulose membranes. Membranes were blocked with PBS-Tween20 with 5% non fat 

milk and incubated with mouse primary antibody to PTEN (1:1000, Santa Cruz 

Biotechnology, Santa Cruz, CA), Cdk2 (1:1000, Santa Cruz), Cdk4 (1:1000, Santa Cruz), 

Cdk6 (1:1000, Santa Cruz), cyclin E (1:1000, Santa Cruz), cyclin D1 (1:1000, BD 

Biosciences Pharmingen, San Jose, CA) ,-actin (1:5000, Sigma) or cathepsin D 

(1:1000, Cell Signaling, Denvers, MA) overnight and washed with PBS-Tween 20 for 1 

hour, and incubated with horseradish-Peroxidase linked anti-mouse secondary antibody 

(Amersham Biosciences, Piscataway, NJ, 1:1,000 dilution) for 1 hour. Bound antibodies 
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were visualized using enhanced chemiluminescence western blotting detection reagents 

(Amersham Bioscences).  

 

Tissue recombination and xenografting 

BPH + CAF
PSR

, BPH-1+ CAF
PSR-cyclinD1sh

, BPH-1 + CAF
PSR-cathepsin Dsh 

tissue 

recombinants were made as described in chapter II (Williams et al., 2005). 100k epithelial 

cells and 600k stromal cells were recombined to make the resultant recombinants. All the 

experiments were repeated 6 times.  Mice were sacrificed after 6 weeks and grafts were 

harvested, fixed, and paraffin embedded.  

 

Wound healing assays 

Confluent monolayers of NPF, NPF
cyclin D1

, NPF
cyclin D1-cathepsinD control 

and NPF
cathepsin Dsh

 

cells were grown in 6 well plates. Wound healing assays were performed as described in 

chapter II. Wounds were imaged at 0, 3, 6, and 8 hours post wounding and the cell 

migration rate into the wound was calculated. Experiments were performed in triplicate. 

 

Outgrowth assay 

100k NPF, NPF
cyclin D1

, NPF
cyclin D1-cathepsinD control

 or NPF
cyclin D1-cathepsin Dsh

 were 

resuspended at 4°C in Matrigel (0.2 ml, 10 mg/ml; Becton and Dickinson), and quickly 

added to a preset layer of Matrigel in 24-well plates as described previously (Garcia et al., 

1990). The top Matrigel layer was solidified at 37°C for 30 minutes and covered with 
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culture medium containing 10% FCS (0.5 ml). Cells outgrowth from the Matrigel was 

monitored under microscope after 14 days. 

 

Conditioned Medium 

NPF, NPF
cyclin D1

, NPF
cyclin D1- control

 or NPF
cyclin D1-cathepsin Dsh

 cells were seeded with 5% 

FCS in RPMI 1640 at a density of 500k per 75-cm
2
 flask, allowed to grow, and attached 

overnight. Confluent cultures of cells were rinsed twice in PBS and incubated for 3 days 

in RPMI + 0.5% FCS. The medium was collected, centrifuged, passed through a 0.45-µm 

filter (Millipore), and stored at –80°C for later use. Conditioned medium was thawed and 

diluted 1:1 with fresh DMEM + 0.5% FCS before use. BPH-1 cells were seeded at 20k 

per well in six-well plates in conditioned medium. The cultures were incubated for 3 days 

and the total number of BPH-1 cells was determined by direct counting in a 

hemacytometer. 

 

Immunofluorescence staining 

Cells were plated on glass (Superfrost) slides and allowed to attach and grow overnight. 

After fixation in methanol for 5 minutes at –20°C, samples were washed twice in PBS, 

blocked for 30 minutes with 5% goat serum (Vector Laboratories, Burlingame, CA), and 

incubated at room temperature for 1 hour with primary antibodies against-actin 

(1:500, Sigma), -actin (1:500, Sigma), vimentin (1:100; Sigma,) and wide spectrum 

keratin (1:100; DAKO, Carpinteria, CA) followed by washing for 30 minutes in PBS. 

Staining was visualized using fluorescence-conjugated secondary anti-rabbit IgG (whole 
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molecule) TRITC Conjugate (Sigma) or anti-mouse IgG (whole molecule) FITC 

Conjugate (Sigma). Slides were visualized and imaged using a Zeiss upright microscope 

with an attached Axiocam camera and proprietary software.  

 

Immunohistochemical staining 

Immunohistochemical staining was performed as previously described in chapter II. 

Tissue slides were then incubated with the primary antibody against cathepsin D (1:1000, 

Cell Signaling), Vimentin (1:500, Sigma) overnight. The polyclonal rabbit or mouse 

immunoglobulins/biotinylated anti-mouse secondary antibody (DAKO, Carpentiria, CA) 

was incubated for 60 minutes after the slides were washed with PBS buffer for 1 hour. 

After washing the slides in PBS extensively, slides were incubated in ABC-HRP complex 

(Vector Laboratories) for 30 minutes. Bound antibodies were then visualized by 

incubation with 3,3’ diaminobenzidine tetrahydrochloride (liquid DAB, DAKO). Slides 

were then rinsed extensively in tap water, counterstained with hematoxylin, and mounted.  
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Results 

Characterization of cyclin D1 overexpressing fibroblast cells 

Expression of epithelial and stromal markers was examined by immunofluorescence in 

cultured fibroblasts to monitor the phenotypic characteristics. Three markers of stromal 

differentiation (-actin, -actin and vimentin) were examined in NPF, NPF
cyclinD1

, BPHfib 

and CAF cells. Keratin staining (wide spectrum) was be used to confirm lack of epithelial 

contamination. It was found that all the cells maintain fibroblastic or myofibroblastic 

characteristics with high expression of vimentin, and moderate expression of -actin and 

- actin (Figure 3-1). Keratin expression was negative in all four cell lines which 

indicated that they are all fibroblasts without epithelial cell contamination. 

 

Cathepsin D increased the motile ability of NPF
cyclin D1

cells 

Chapter II showed that NPF
cyclin D1

 cells can elicit permanent malignant transformation in 

initiated but non-tumorigenic BPH-1 cells, similar to the malignant changes which have 

been described in BPH-1 + CAF tissue recombinants. In order to investigate the underlying 

mechanism of this malignant transformation, we at first compared the effect of cyclin D1 

overexpression on the migration of NPFs. It was shown that NPF
cyclin D1

 cells were found to 

have enhanced motile ability in wound healing assay compared with control NPFs (Figure 

3-2, A). This difference was clear after 3 hours and was very marked after 8 hours 

(Student’s t-test, P<0.01). However, when cathepsin D was knocked down by retroviral 

infection in NPF
cyclin D1

 cells, the motile ability was reduced in NPF
cyclin D1-cathepsin Dsh

 cells. 
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The observation suggested that cathepsin D may be an essential mediator of NPF
cyclin D1 

migration in vitro.  

 

Cathepsin D is important for 3D outgrowth of NPF
cyclin D1 

fibroblasts 

We next studied if cathepsin D is important for NPF
cyclin D1

 fibroblast outgrowth in 3D 

matrices. As shown in Figure 3B, overexpression of cyclin D1 promoted outgrowth of 

normal prostatic fibroblasts embedded into Matrigel. After 14 days of culture, NPF
cyclin D1

 

cells had adopted a stellate morphology of growing and invasive colonies with 

protrusions sprouting into the surrounding matrix (Figure 3-2, B). In contrast, normal 

prostatic fibroblasts presented a well-delineated spherical appearance of quiescent cells 

and grew poorly, neither invading nor forming protrusions to the surrounding matrix 

(Figure 3-2, B). We then went on to examine if cathepsin D is important for NPF
cyclin D1

 

outgrowth from matrigel. Cathepsin D was knocked down in NPF
cyclin D1

 cells by 

retroviral infection. It was found that the invasive outgrowth of NPF
cyclin D1

 was reversed 

by knocking down cathepsin D those cells (Figure 3-2, B). Neither invasion nor 

protrusion formation into the surrounding matrix was found in NPF
cyclin D1-cathepsin Dsh

 cells. 

But the NPF
cyclin D1-control

 cells maintained the invasive growth feature. These data 

indicated that cathepsin D is an essential factor of promoting NPF
cyclin D1 

cells invasion in 

vitro. Inhibition of cathepsin D leads to a decreased in fibroblast invasive growth. These 

data indicated that cathepsin D might also be an potential paracrine factor in  

stromal-epithelial interaction in vivo.  
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Evaluation of cathepsin D as a paracrine mediator of neoplastic epithelial cell growth 

in vitro 

The identification of cyclin D1 induced expression of transcripts encoding cathepsin D 

with the potential to influence epithelial proliferation in vitro prompted experiments 

designed to determine whether conditional medium from NPF
cyclin D1

 fibroblasts could 

stimulate the growth of immortalized prostate epithelial cells (BPH-1). To determine 

whether the influence of NPF
cyclin D1

  on epithelial growth resulted from secretary factors. 

We generated conditioned medium from NPF and NPF
cyclin D1

 cells, and measured BPH-1 

cell numbers after growth for 3 days in the different conditioned media. The proliferation of 

BPH-1 cells was stimulated 1.7-fold (P<0.01) with medium from NPF
cyclin D1

, when 

compared with medium from with NPF (Figure 3-2, C). Cathepsin D expression in 

NPF
cyclin D1

 conditional medium was also upregulated compared with NPF
 
conditional 

medium (Figure 3-2, D). These results suggest that a significant component of NPF
cyclin D1

 

proliferative influence toward epithelium is mediated through secreted cathepsin D.  

 

Evaluation of cathepsin D as a paracrine mediator of neoplastic epithelial cell growth 

in tissue recombinants in vivo 

To examine whether CAF or NPF
cyclin D1

 induces cathepsin D expression in vivo and also to 

examine if cathepsin D expression in tissue recombinants correlates what we have seen in 

clinical samples, we checked cathepsin D expression in BPH-1 + NPF, BPH-1 + NPF
cyclin 

D1
, BPH-1 + rUGM and BPH-1+CAF tissue recombinants. Among these recombinants, 

CAF and NPF
cyclin D1 

can drive non-tumorigenic BPH-1 cells to undergo malignant 

http://cancerres.aacrjournals.org/cgi/content/full/66/2/794#FIG4
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transformation (Hayward et al., 2001; He et al., 2007). BPH-1 + NPF, and BPH-1 + UGM 

formed benign structures and none of the epithelial cells were transformed. 

Immunohistochemical staining revealed minimal expression of cathepsin D in BPH-1 + 

NPF and BPH-1 + UGM recombinants. In marked contrast, cathepsin D expression in was 

elevated in BPH-1 + NPF
cyclin D1

 and BPH-1 + CAF recombinants (Figure 3-3, A). This 

observations are consistent with what we have seen in clinical samples. This result 

indicated that upregulation of cathepsin D might be involved in the interaction that between 

NPF
cyclin D1 

or CAFs and non-tumorigenic BPH-1 cells. However, this correlation did not 

address the question whether the upregulation is an effect of tumorigenicity
 
or is a required 

paracrine signaling event for epithelial transformation in vivo.  

 

BPH-1
NPF-cyclin D1

 cells had increased cathepsin D and CDK2, but not CDK4/6 

expression 

In order to understand the mechanism by which stromal cyclin D1 or CAFs affects the 

prostate cancer cellular processes through paracrine signaling, western blotting assays were 

performed on BPH-1
NPF

, BPH-1
CAFTD1

 and BPH-1
NPF-cyclin D1

 cells (the epithelial cells 

isolated from BPH-1 + NPF
cyclin D1

 tumors) to examine expression levels of several genes 

which are involved in cell cycle regulation. Our results showed that overexpression of 

cyclin D1 in the stroma increased CDK2 and cyclin E protein expression in the adjacent 

epithelium (Figure 3-3, B). No change was seen in CDK4 and CDK6 protein levels. These 

data indicated that the tumorigenic response of BPH-1 to either CAFs or NPF
cyclin D1

 cells 

resulted in an increased expression of cyclinE/cdk2, but not cyclin D1/cdk4/cdk6 in the 
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permanent transformed epithelium. These  data were consistent with our previous finding 

that cyclin D1 upregulation in epithelium might not be essential for tumorigenicity (He et 

al., 2007). Cathepsin D protein expression level was upregulated in BPH-1
CAFTD1

 and 

BPH-1
NPF-cyclin D1

 cells compared with control BPH-1
NPF 

cells. This observation suggested 

that NPF
cyclin D1 

secreted cathepsin D which could affect adjacent BPH-1 cells. The stromal 

fibroblasts stimulated epithelial tumorigenesis by releasing cathepsin D which acts on 

epithelial cells to stimulate proliferation and invasion.  

 

Cyclin D1 and cathepsin D are both required for CAF induced tumorigenicity in vivo 

To examine the function of cyclin D1 and cathepsin D in CAF-induced tumorigenicity in 

BPH-1 transformation, we used retroviral transfection of shRNA vectors to knock down 

either cyclin D1 or cathepsin D expression in CAF cells. Western blotting indicated there 

were approximately 50% knockdown of cyclin D1 and 95% cathepsin D protein expression 

respectively (Figure 3-4, C). It was found that BPH-1 + CAF
cyclinD1sh

 and BPH-1 + 

CAF
cathepsin Dsh

 recombinants formed significantly smaller grafts compared with BPH-1+ 

CAF grafts (Figure 3-4, A). Histologically, BPH-1 + CAF recombinants formed 

adenosquamous carcinoma as previously described. Knockdown of either cyclin D1 or 

cathepsin D recombinants formed small, benign cords with no tumorigenic response 

(Figure 3-4, B). Similarly, after cathepsin D is knocked down in NPF
cyclin D1

 cells, their 

ability to transform BPH-1 cells was reduced (data not shown). Interestingly, cathepsin D 

expression in CAF
cyclinD1sh

 cells was downregulated and cyclin D1 expression in 

CAF
cathepsin D

 cells was also downregulated suggesting some form of co-regulation of these 
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proteins (Figure 3-4, C). 
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Figure 3-1. Characterization of cyclin D1 overexpressing fibroblasts. Three markers of 

stromal differentiation (-actin, -actin and vimentin) were examined in NPF, NPF
cyclinD1

, 

BPHfib and CAF cells. Keratin staining was be used to confirm lack of epithelial 

contamination. All the cells maintain fibroblastic characteristic with high expression of 

vimentin, and moderate expression of -actin and -actin. Keratin expression was 

negative in all four cell lines.  
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Figure 3-2. Cathepsin D is a critical mediator between BPH-1 cells and NPF
cyclin D1

 in vitro. 

(A) NPF
cyclin D1

 cells had enhanced motile ability in wound healing assay compared with 

control NPFs. The motile ability was reduced in NPF
cyclin D1-cathepsin Dsh

 cells. (B) Cathepsin 

D is important on 3D outgrowth of NPF
cyclin D1 

fibroblasts. Overexpression of cyclin D1 

promoted outgrowth of normal prostatic fibroblasts embedded into Matrigel after 14 days 

of culture. The invasive outgrowth of NPF
cyclin D1

 was reversed by knocking down 

cathepsin D those cells. (C) Evaluation of cathepsin D as a paracrine mediator of 

neoplastic epithelial cell growth in vitro. (D) Cathepsin D expression in NPF
cyclin D1

 

conditional medium was also upregulated compared with NPF
 
conditional medium  
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Figure 3-3. Evaluation of cathepsin D as a paracrine mediator of neoplastic epithelial cell 

growth in tissue recombinants in vivo. (A) Immunohistochemical staining revealed 

minimal expression of cathepsin D in BPH-1 + NPF and BPH-1 + UGM recombinants. In 

marked contrast, cathepsin D expression in  BPH-1 + NPF
cyclin D1

, BPH-1 + CAF were 

induced. (B) BPH-1
NPF-cyclin D1

 cells had increased cathepsin D and CDK2/cyclin E, but not 

cyclin D1 expression. Overexpression of cyclin D1 in stromal environment could increase 

CDK2 and cyclin E protein expression in the adjacent epithelium. But there was no change 

in CDK4 and CDK6 protein levels. Cathepsin D protein expression level was upregulated 

in BPH-1
NPF-cyclin D1

 and BPH-1
CAFTD1

 compared with control BPH-1
NPF 

cells. 
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Figure 3-4. Cyclin D1 and cathepsin D are required for CAF induced tumorigenicity in 

vivo. (A) BPH-1 + CAF
cyclinD1sh

 and BPH-1 + CAF
cathepsin Dsh

 recombinants formed 

significantly smaller grafts compared with BPH-1+ CAF grafts. (B) Histologically, BPH-1 

+ CAF recombinants formed adenosquamous carcinoma. Knockdown recombinants 

formed benign, small cords structure with no tumorigenic response. (C) Western blotting 

indicated there were 50% knockdown of cyclin D1 and 95% cathepsin D protein expression 

CAF
cyclinD1sh

 and CAF
cyclinD1sh

 cells respectively. Cathepsin D expression in CAF
cyclinD1sh

 

cells was downregulated and cyclin D1 expression in CAF
cathepsin D

 cells was downregulated 

as well.  
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Figure 3-5. Cathepsin D plays a crucial role for prostatic fibroblast outgrowth and may 

favor prostate tumor progression via a paracrine loop. 

Epithelial-stromal interactions 
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Discussion 

A number of chemokines and cytokines have been shown to involve in stromal-epithelial 

interaction in prostate cancer progression. Recent report suggested that cross talk between 

paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human 

prostatic epithelium (Ao et al., 2007). The authors highlighted the links between 

TGF-CXCR12/SDF-1 pathways and showed that these pathways are linked paracrine 

factors contributing to in CAF-driven tumorigenesis in vivo.  

 

Tumor is a heterogenous disease, therefore many additional pathways are likely involved 

in stromal-epithelial interaction. Invasive prostate tumor stroma displayed induction of 

genes encoding ECM proteins and ECM degrading enzymes including members of the 

cathepsin family. Recent elegant study indicated that cathepsin D was robustly induced in 

stromal cells derived from prostate intraepithelial neoplasia (PIN) and invasive cancer in 

a multistage model of prostate carcinogenesis by cDNA microarray analysis of 

laser-microdissection (Bacac et al., 2006). The human ortholog of cathepsin D identified 

in the stromal reaction to tumor progression in this mouse model was observed to be 

expressed in several human cancers, including prostate cancer. Cathepsins have been 

suggested to participate in the progression of a variety of human cancers (Gocheva et al., 

2006; Joyce et al., 2004; Joyce and Hanahan, 2004; Nomura and Katunuma, 2005). 

Cathepsins have recently been shown to be upregulated in pancreatic tumor model and 

contribute to invasive tumor growth (Gocheva et al., 2006). Cathepsin D is overexpressed 

and hypersecreted by epithelial breast cancer cells and stimulates their proliferation 

(Laurent-Matha et al., 2005). Clinical studies indicated that cathepsin D overexpression is 
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associated with increased risk of breast cancer metastasis and patient survival rate 

(Foekens et al., 1999; Maurizi et al., 1996). Cathepsin D is also crucial for fibroblast 

invasive outgrowth and acts as a paracrine communicator between the epithelial and 

stromal tissues. Cathepsin D was proposed to be mitogenic and to assist cancer cells in 

digesting ECM during tumor invasion (Laurent-Matha et al., 2005).  

 

Our previous data have shown that overexpression of cyclin D1 in primary cultures of 

benign human prostatic fibroblasts extended the lifespan, altered the behavior of the 

stromal cells and induced malignant transformation of adjacent epithelium in vivo (chapter 

II) (He et al., 2007). Cyclin D1 induced these cells to behave in a manner similar to CAFs, 

towards the non-tumorigenic BPH-1 cells in a tissue recombination model. Stromal 

reactions to tumor growth are accepted to support tumor progression by providing growth 

factors, cytokines or chemokines that promote tumor cell survival, proliferation and 

migration (Ao et al., 2007; Olumi et al., 1999). The data presented here provide important 

messages by which paracrine signaling can promote tumorigenesis between tumor stroma 

and epithelium. 

 

In this chapter, we proposed that cathepsin D is a crucial mediator between BPH-1 and 

either NPF
cyclin D1 

or CAFs. Cathepsin D is upregulated in both NPF
cyclin D1 

cells and CAFs 

as determined by microarray and western blot analysis (He et al., 2007). NPF
cyclin D1 

cells 

have increased motile ability compared with control NPFs in a wound healing assay. By 

knocking down cathepsin D in NPF
cyclin D1 

cells, their motile ability was decreased. Also, 
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the invasive growth of NPF
cyclin D1

 cells was inhibited by knocking down cathepsin D in 

those cells. The stellate morphology of growing and invasive colonies with protrusions 

sprouting into the surrounding matrix of NPF
cyclin D1 

cells disappeared after cathepsin D 

expression was decreased. The cell went back to a quiescent growth status as seen in 

NPFs.  

 

Since cathepsin D is a secreted factor, we showed here that NPF
cyclin D1 

conditioned 

medium promoted the growth of BPH-1 cells. In order to determine that cathepsin D is 

the mediator of this growth promotion, we used the conditioned medium from the 

cathepsin D knock down NPF
cyclin D1

 cells to culture BPH-1 cells. It was found the growth 

promotion to BPH-1 cells was partially inhibited. Therefore, cathepsin D is necessary for 

NPF
cyclin D1

 cells to promote the epithelium growth in vitro.  

 

In a tissue recombination model, cyclin D1 and cathepsin D upregulation in NPF
cyclin D1

 

fibroblasts or CAFs favors BPH-1 growth in vivo by secreting and exchanging this 

protease to help BPH-1 cells digest ECM and invade to host kidney. As tumorigenesis 

progresses, the tumor cells  express elevated cathepsin D. We showed that during 

malignant transformation, the isolated BPH-1
NPF-cyclin D1 

cells from BPH-1 + NPF
cyclin D1

 

tumors continued to express upregulated cathepsin D. The data might suggest that the 

BPH-1
NPF-cyclin D1 

cells were tumorigenic alone when grafted to kidney capsule of SCID 

mice as a result of upregulated cathepsin D.  
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Our previous data showed that NPF
cyclin D1 

cells and CAFs elicited permanent malignant 

transformation of BPH-1 cells (Hayward et al., 2001; He et al., 2007). Both cyclin D1 and 

cathepsin D were shown to be upregulated in NPF
cyclin D1 

cells and CAFs. When cyclin D1 

or cathepsin D expression was knocked down in CAFs by retroviral transduction, CAFs 

had much reduced activity to transform BPH-1 cells. In the CAF
cyclin D1sh

 cells, cathepsin 

D was also downregulated. This confirmed our hypothesis that cathepsin D is an 

important mediator between BPH-1 and CAFs. Interestingly, in the CAF
cathepsin Dsh 

cells, 

cyclin D1 is also downregulated. This phenomenon makes sense because cyclin D1 is an 

cell cycle mediator, CAF
cathepsin Dsh

 cells had lost their ability to transform BPH-1 resulting 

in reduced proliferation and growth. The reduced proliferation and growth reciprocally 

promoted cells to secrete less cathepsin D. This loop effect between cyclin D1 and 

cathepsin D disfavored the interactions between stroma and epithelium. Similarly, when 

cathepsin D was knocked down in NPF
cyclin D1 

cells, these cells also had reduced ability to 

transform BPH-1 cells. These data indicated cathepsin D is not only in important 

mediator of stroma-epithelial cross talk in vitro, but also an essential component to favor 

this interaction in vivo.  

 

Our study demonstrated that cathepsin D plays a crucial role in prostatic fibroblast 

outgrowth and may favor prostate tumor progression acting via a paracrine loop. Under 

these circumstances, cathepsin D is overexpressed and secreted by fibroblasts, and is 

captured in vivo by epithelial cells. The resultant cathepsin D overexpression in tumor 

epithelium promotes proliferation and stimulates motility and invasion of epithelium and 
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consequently enhance tumor-host homeostasis (Figure 3-6). The identification of factors 

such as cathepsin D that participate in the tumor-stroma communication might be crucial 

for the development of new stromal therapy of prostate cancer based on the fact that 

stroma might be a more stable target compared with the moving epithelium.  

 



 112 

CHAPTER IV 

 

FUNCTION OF PTEN IN NEW HUMAN IN VIVO MODELS REPRESENTING 

DISTINCT GRADES OF PROSTATE CANCER 

 

Introduction 

PTEN is one of the most frequently inactivated tumor suppressor genes in human tumors 

including prostate cancer. In humans, PTEN undergoes loss of heterozygosity (LOH) at 

relatively advanced stages in many cancers (Di Cristofano et al., 1998; Fujiwara et al., 2000; 

Garcia et al., 1999). The PTEN gene encodes a dual specificity phosphatase that regulates 

signal transduction pathways. PTEN mainly functions as a lipid phosphatase and targets 

phosphatidylinositol 3,4,5-trisphosphate (PIP-3) (Maehama and Dixon, 1998). By 

dephosphorylating PIP-3, PTEN can downregulate the Akt/PKB signaling pathway thus 

promoting cell survival and inhibiting apoptosis. PTEN can also antagonize the activity of 

PIP-3 affecting the G1 cell cycle transition (Wymann and Pirola, 1998). 

 

PTEN is located at 10q23, a commonly deleted region in prostate cancer (DeMarzo et al., 

2003; Visakorpi, 1999; Visakorpi, 2003). The biological importance of PTEN is evident from 

the early embryonic lethality of homozygous mutants. PTEN heterozygous mice develop 

cancers or dysplasias of multiple tissues including prostate (Di Cristofano et al., 2001; Di 

Cristofano et al., 1998; Suzuki et al., 1998). Loss of function of Nkx3.1 and PTEN cooperate 

in transgenic mouse models of prostate cancer progression (Abate-Shen et al., 2003). Since 

heterozygous and homozygous deletion of PTEN in animal models can result in prostate 

cancer, we were interested in identifying if and how PTEN suppression could play a role in 

initiation and progression of models of human prostate cancer and investigating responses to 

stromal environment.  
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Genetic insults to prostatic epithelium have been postulated to alter paracrine signaling to the 

prostatic smooth muscle (Hayward et al., 1997). Phenotypic changes consistent with this 

concept have been reported in stromal cells associated with human prostate tumors (Tuxhorn 

et al., 2002). Such changes have been demonstrated to be prognostic indicators of disease 

progression (Ayala et al., 2003). Presently, the profile of genetic changes in epithelium which 

results in a loss of normal stromal differentiation is not clearly understood. Stromal-epithelial 

interactions play a key role in the development and adult maintenance the prostate (Cunha 

and Young, 1992). Previous studies have shown that the inductive mesenchymal cells of 

normal prostate can suppress the growth of well differentiated prostate tumor cells (Hayashi 

et al., 1990). These results suggest that not all genetic lesions are sufficient to elicit 

significant alterations in the stromal-epithelial signaling axis with the additional possibility 

that fully differentiated prostate smooth muscle acts to restrain prostate tumor growth 

perhaps until a threshold of genetic damage has occurred. Such a mechanism suggests that 

stroma normally acts to suppress tumorigenesis and may explain the high incidence of small 

slow growing or latent prostate tumors which are found at autopsy in men who die from 

causes unconnected to prostate cancer (Franks, 1954b; Franks, 1976). In such a scenario 

these foci will not progress to an invasive phenotype until they accumulate a profile of 

genetic changes allowing them to escape the growth control exerted by the normal adjacent 

stroma. After the threshold is reached, the stromal microenvironment is altered in comparison 

to normal stroma and exhibits features of stroma involved in wound repair. The reactive 

stroma includes elevated numbers of myofibroblasts and fibroblasts with induced vimentin 

expression (Tuxhorn et al., 2002).  

 



 114 

In this chapter, we examined the hypothesis that the ability of human prostatic epithelial cells 

to induce and maintain smooth muscle differentiation in adjacent stroma is negatively related 

to the level of genetic damage sustained by those epithelial cells. Suppression of PTEN was 

examined to determine the effects of stromal cells on the ability to transform epithelial cells 

and to affect differentiation of the local microenvironment.  
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Methods 

Cells 

BPH-1 (a non-tumorigenic human prostatic epithelial cell), and its tumorigenic derivatives 

BPH
CAFTD1

 and BPH
CAFTD2

, PrE (prostatic epithelial cells)1 and PrE3 were from our own 

stocks (Hayward et al., 1995; Hayward et al., 2001). PrE cells were isolated from human 

benign prostate tissue and spontaneouly immortalized.PC3, DU145 and LNCaP were 

obtained from ATCC (Rockville, MD, USA). BPH-1
PSR

 (pSuper.Retro empty vector infected 

BPH-1 cells), BPH-1
PTENsh 

(pSuper.Retro PTEN shRNA vector infected BPH-1 cells), PrE1
PSR

 

(pSuper.Retro empty vector infected PrE1 cells), PrE1
PTENsh, 

(pSuper.Retro PTEN shRNA 

infected PrE1 cells), PrE3
PSR

 (pSuper.Retro empty vector infected PrE3 cells) PrE3
PTENsh 

(pSuper.Retro PTEN shRNA vector infected PrE2 infected cells), PrE3
pLNCX-control

 (pLNCX 

control vector infected PrE3 cells), PrE3
pLNCX-PTENsh

 (pLNCX PTEN shRNA vector infected 

PrE3 cells) and PrE3
pLNCX-myrAKT

 (pLNCX myristolated-Akt vector infected PrE3) cells were 

generated as described below. 957E/hTERT cells were generously supplied by Dr. John 

Issacs (Johns Hopkins). Cells were maintained in RPMI 1640 (Gibco, Carlsbad, CA) with 1% 

antibiotic/antimycotic (Life Technologies, Grand Island, NY) and 5% Cosmic Calf Serum 

(CCS-HyClone, Logan, Utah).  

 

Generating genetically modified cell lines 

pSuper.Retro vector (OligoEngine, Seattle, WA) was used as a backbone to clone a PTEN 

short hairpin RNA (shRNA) sequence. A 19 nucleotide PTEN target sequence 

(5’AGATGAGAGACGGCGGCGG3’) corresponding to nucleotides 206-224 of PTEN 

mRNA was selected for constructing PTEN shRNA vector (Ning, 2004 #8479). 

pSuper.Retro empty and pSuper.Retro-PTENsh constructs were transduced to targeted 
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BPH-1 and PrE3 cells using retroviral infection as described in chapter II. Successfully 

infected cells were selected by 5µg/ml puromycin (Sigma) for 3 days. pLNCX control and 

pLNCX myr-Akt vectors were kindly provided by Dr. Hideyuki Miyauchi at Chuba 

University in Japan. PrE3 cells were gifts from Dr. Dean Tang at MD Anderson Cancer 

Center. PrE3
pLNCX control

 and PrE3
pLNCX-myr-Akt

 cells were generated by retroviral infection as 

described in chapter II and selected by 400µg/ml G418 for a week.  

 

Western blotting analysis 

Western blotting analysis was performed as previously described in chapter II. Membranes 

were incubated with mouse monoclonal antibody to PTEN (Santa Cruz Biotechnology, Santa 

Cruz, CA, 1:1,000 dilution), rabbit polyclonal phospho-Akt (Ser 473) (1:1000, Cell 

Signaling, Denvers, MA) and -actin (1:5000, Sigma) overnight and washed with 

PBS-Tween 20 for 1 hour, and incubated with horseradish-Peroxidase linked anti-mouse 

secondary antibody (Amersham Biosciences, Piscataway, NJ, 1:1,000 dilution) for 1 hour. 

Bound antibodies were visualized using enhanced chemiluminescence western blotting 

detection reagents (Amersham Bioscences). PTEN expression levels were normalized to 

-actin and quantitated using NIH Image J software  (http://rsb.info.nih.gov/ij/). 

 

Growth curves 

BPH-1
PSR

 and BPH-1
PTENsh

 cells were plated in a 24-well plate (1000 cells/well) in RPMI 

1640 medium supplemented with 5% CCS. After the cells had attached overnight, 300 µl 

Cell Titer 96 Aqueous One Solution (Promega, Madison, WI) was added at indicated times 

(1, 2, 3, 4, and 5 days) to each well and the absorbance was measured at 490 nm after 3 hours 

incubation. Experiments were performed in triplicate. 

http://rsb.info.nih.gov/ij/
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Wound healing assays 

Confluent monolayers of BPH-1
PSR

 and BPH-1
PTENsh

 cells were grown in 6 well plates. 

Wounds were imaged at 0, 3, 6, and 9 hours post wounding and the cell migration rate into 

the wound was calculated. Experiments were performed in triplicate. 

 

Transwell migration assay 

Detail method was described in chapter II. Results from at least three experiments were 

expressed as the mean relative cell migration ± SD, with that of BPH-1
PSR 

cells set at 1. 

 

Boyden chamber assay 

Detail method was described in chapter II.  

 

Tissue recombination and xenografting 

BPH-1
PSR

+ rUGM, BPH-1
PTENsh 

+ rUGM, PrE3
pLNCX-control 

+ rUGM and PrE3
pLNCX-myrAkt

 + 

rUGM tissue recombinants were made as previously described in chapter II (Hayward et al., 

1999). 100k BPH-1
PSR

 or BPH-1
PTENsh

, 600k PrE3 
pLNCX-control 

or PrE3
pLNCX-myrAk

 were 

recombined with 300k rUGM cells. All the experiments were repeated 6 times. Mice with 

BPH-1 grafts were sacrificed after 2 months and mice with PrE grafts were sacrificed after 6 

months and grafts were harvested, fixed, and paraffin embedded.  

 

Immunohistochemical and Immunofluorescence staining 

Immunohistochemical and immunofluorescence methods have been described previously in 

chapter II (Ao et al., 2006; Williams et al., 2005). Briefly, primary antibodies against -actin 

(1:1000, Sigma), -actin (1:1000, Sigma), vimentin (1:1000, sigma), AR (1:1000, Santa Cruz 
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Biotechnology,), E-cadherin (1:1000, BD Biosciences PharMingen, San Diego, CA), 

anti-phospho histone H3 (1:200, Upstate, Lake Placid, NY), CK14 (1:100, gift from E. B. 

Lane, University of Dundee), and Rabbit polyclonal to Ku 70 (1:500, Abcam, Inc., 

Cambrige, MA) were incubated with tissue sections at 4
°
C overnight. Polyclonal rabbit 

immunoglobulins/biotinylated anti-mouse or mouse immunoglobulins/biotinylated 

anti-rabbit secondary antibody (DAKO, Carpinteria, CA) were incubated for 60 minutes the 

next day after the slides were washed with PBS buffer for 1 hour for immunohistochemical 

staining of  -actin, -actin, vimentin, AR, E-cadherin and anti-phospho histone H3. The 

secondary anti-rabbit IgG (whole molecule) TRITC Conjugate (Sigma) or anti-mouse IgG 

(whole molecule) FITC Conjugate (Sigma) was used for immunofluorescence staining of Ku 

70, CK14 or vimentin for immunofluorescence.  

 

Cell Cycle Analysis 

Cell cycle analysis of BPH-1
PSR 

cells and BPH-1
PTENsh 

cells was performed using the method 

described in chapter II. 
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Results 

PTEN expression is downregulated in prostate cancer cell lines 

PTEN expression was examined by Western blotting in the prostate cancer cell lines, 

PC3, DU145, LNCaP, BPH
CAFTD1

 and BPH
CAFTD2

 and in a subset of non-tumorigenic 

PrE1, 957E/hTERT, PrE3 and BPH-1 prostatic cells. PTEN expression was found to be 

lower in all of the cancer cells as compared to the non-tumorigenic prostatic cells (Figure 

4-1, A). Non-tumorigenc epithelial cells had the highest PTEN expression, but malignant 

cell lines have a lower PTEN expression level. These data crudely correlate PTEN 

expression with tumorigenicity.  

 

Internal mutation and deletion of PTEN is detected in BPH
CAFTD

 cell lines but not in 

PH-1 cells 

To better understand the genomic instability of the BPH-1 derived human prostate cancer 

cell lines (BPH
CAFTD1

 and BPH
CAFTD2

), leading to decrease of PTEN expression, we 

designed primers  to amplify the PTEN genomic DNA sequence by RT-PCR. The PCR 

products were cloned into T-easy and sequenced to examine differences between cell lines. 

Sequence analysis indicated that the entire coding sequence was intact in the parental 

BPH-1 cells. In contrast, the BPH
CAFTD

 cell lines, contained point mutations, insertions and 

deletions in the  five prime untranslated region(5’UTR) of mRNA (messenger RNA) . As 

shown in Figure 4-1, B, two obvious insertions (9 bp and 15 bp) and one deletion (28 bp) 

were found in BPH
CAFTD1

 cells in the 5’UTR. Since no deletions, insertions, or mutations 

were found in the coding sequence of BPH
CAFTD

 cell lines, the downregulation of PTEN in 
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these cells may be due to problems related to transcription initiation, incorrect translation 

start site, or mRNA instability. These data are consistent with findings that clinical tumors 

frequently have acquired mutations in noncoding regions of PTEN (Liaw et al., 1997; Liu 

et al., 1997). Our data correlate loss of PTEN with tumorigenicity but, like similar 

correlations seen in patient samples, do not address whether this correlation is a cause or an 

effect of malignant change. In order to address this question, we tested the consequences of 

knocking down PTEN in non-tumorigenic prostatic epithelial cells.  

 

Suppression of PTEN in BPH-1 cells can increase cell migration, and invasion in vitro 

Western blotting showed that BPH-1
PTENsh 

cells have a 0.55 fold decrease in PTEN 

expression compared with control BPH-1
PSR

 cells after normalization to -actin 

expression (Figure 4-2, A). Phospho-Akt expression was elevated in the PTEN 

knockdown cells (2.2 fold), confirming functional changes predicted by this 

manipulation. BPH-1
PTENsh

 cells showed enhanced mobility in wound healing, transwell 

migration, and Boyden chamber assays. Wound healing assays showed that BPH-1
PTENsh 

cells were significantly more motile than control BPH-1
PSR

 cells. This difference was clear 

after 6 hours (Student’s t-test, P<0.01) (Figure 4-2, B). In a transwell migration study, more 

BPH-1
PTENsh 

cells migrated through the uncoated Boyden chambers to the underside of the 

insert in a 12 hour response to conditional medium containing 1% CCS than BPH-1
PSR

 

cells (Student’s t-test, P<0.01) (Figure 4-2, C). These data confirmed the elevated motility 

of BPH-1
PTENsh

 cells. An invasion assay, in which the inside chamber was coated with 

matrigel to mimic the in vivo extracellular matrix, demonstrated that BPH-1
PTENsh

 cells had 
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significantly increased invasive activity in vitro (Student’s t-test, P=0.01) (Figure 4-2, D). 

Collectively these assays showed that when PTEN expression is suppressed, BPH-1 cells 

acquired an enhanced motility and invasive ability in vitro.  

 

BPH-1
PTENsh

 cells were deficient in cell cycle control and had a higher proliferation 

rate compared with control cells 

Previous reports demonstrated that PTEN induced cell cycle arrest by decreasing the 

number of cells in S phase, which is indicative of S-phase entry inhibition (Paramio et al., 

1999). Consistent with this, we saw that BPH-1 cells with PTEN knocked down had an 

increased fraction of cells in the S and G2/M phases of the cell cycle (Figure 4-2, E b and 

c). Cell cycle analysis was also consistent with proliferation where we observed that PTEN 

knock down cells proliferated faster than control cells (Figure 4-2, E a).  

 

Partial loss of PTEN expression drove BPH-1 cells to grow as an invasive tumor To 

determine whether PTEN loss could exert a tumorigenic effect on prostate cells in vivo, 

100k BPH-1
PTENsh 

or control epithelial cells were recombined with 300k rUGM cells and 

grafted under the kidney capsule of SCID mice. The grafts were harvested after 4 weeks. 

The results showed that recombinants contains BPH-1
PTENsh 

cells were significantly larger 

grafts than BPH-1
PSR 

containing recombinants (Figure 4-3, A, P<0.01). These results were 

consistent with our in vitro observations. Grossly, control grafts formed white solid cores. 

Histologically, they exhibited the formation of solid epithelial cords surrounded by a 

muscular stroma, as previously described (Cunha et al., 2002). There were sharp 
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delineations between the grafts and the host kidney with no sign of invasion (Figure 4-3, 

B a and b). In clear contrast, based on gross observation the grafts using PTEN 

knockdown epithelium contained areas where blood vessels were formed and areas 

composed of either cysts or necrotic tissue. The histological appearance of the 

BPH-1
PTENsh

 + rUGM grafts, as assessed by H & E staining and SV-40 T-antigen staining, 

resembled a poorly differentiated carcinoma phenotype (Figure 4-3, B e and f). There was 

heterogeneity in the resultant tumors in that some cases grew as noninvasive proliferative
 

lesions on the surface of the host kidney, some contained individual cells with large 

nuclei and dense cytoplasm scattered with stroma, while others formed invasive
 
lesions 

that engulfed and destroyed kidney tissue (Figure 4-3, B e and f). Irregular areas of 

necrotic tissue also extended throughout the grafts with positive SV-40 T antigen staining 

which confirmed the BPH-1 cell origin of the tumor epithelium (Figure 4-3, B f and inset). 

Invasion and infiltration into the kidney were observed. Previous unpublished data showed 

that LNCaP + rUGM grafts contained much less stroma compared with BPH-1 + rUGM 

grafts, indicating a rapid tumor growth. The same observation was also seen  in 

recombinants of c-myc overexpressing epithelial cells with rUGM (Williams et al., 2005). 

The present chapter also showed that no fibromuscular stroma was observed in the 

invading area. Tumor cells invaded the kidney and engulfed nephrons after 1 month of 

growth. In contrast, control grafts did not invade the kidney and graft epithelium was 

separated from kidney by a stromal layer. Well defined epithelial cell junctions 

demonstrated by E-cadherin staining were noted (Figure 4-3, B c). In the PTEN 

knockdown cells, E-cadherin expression was almost absent, consistent with the malignant 
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phenotype (Figure 4-3, B g). BPH-1
PTENsh

 cells have significantly elevated phosphorylated 

histone H3 (pHisH3) cells throughout the grafts compared with control grafts (Figure 3 B, d 

and h, 0.7/100m
2 

positive cells in BPH-1
PSR

 grafts, 4.33/100m
2
 positive cells in 

BPH-1
PTENsh 

grafts, P<0.001). These data show that a moderate suppression (55%) PTEN 

in BPH-1 cells not only significantly increased motility and promoted cell proliferation, 

and invasion in vitro, but also was sufficient to induce malignant transformation and 

invasion in vivo. 

 

Suppression of PTEN in BPH-1 cells caused a loss of stromal differentiation 

Immunohistochemical analysis was used to assess the effect of epithelial cells on adjacent 

stroma. The three markers used, vimentin, smooth muscle -actin, smooth muscle -actin, 

representing respectively, a fibroblastic marker, an early marker of smooth muscle 

differentiation, and a late marker of smooth muscle differentiation. The stromal cells in 

BPH-1
PSR

 + rUGM tissue recombinants had abundant -actin and -actin expression, but 

almost no vimentin expression (Figure 4-3, C a, b and c), which indicated a well 

differentiated stroma surrounding the epithelium. In stromal cells of BPH-1
PTENsh

 + rUGM 

tissue recombinants, there was suppression of -actin expression, moderate -actin 

expression(Figure 4-3C, d) and induction of vimentin expression (Figure 4-3, C f, arrow 

and I), indicating poorly differentiated stroma correlating with a cancer phenotype.  

 

Activation of Akt signaling pathway elicited an atypical hyperplasia phenotype 
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To determine whether constitutive activation of Akt could exert a tumorigenic effect on 

prostate cells in vivo, 100k BPH-1
Akt 

cells (generated as described as previously- ((Ao et 

al., 2006)) or BPH-1 cells were recombined with 300k rUGM and grafted under the 

kidney capsule of SCID mice. The grafts were harvested after 4 weeks. The BPH-1
Akt 

cells formed larger grafts under the induction of rUGM, compared with BPH-1
 
groups 

(data not shown). Histologically, both control grafts and Akt overexpressing grafts had 

sharp delineations from the host kidney with no sign of invasion (Figure 4-4, A a and e). 

However, the BPH-1
Akt

 cells formed small solid cord structures and many cells had 

enlarged and elongated nuclei, which indicated an atypical hyperplasia  phenotype 

(Figure 4-4, A e). Both BPH-1 and BPH-1
Akt

 cells continued to express SV-40 T antigen 

(Figure 4-4, A b and f). Control grafts had well defined cell junctions demonstrated by 

E-cadherin staining (Figure 4-4, A c). E-cadherin expression was almost absent in the 

BPH-1
Akt

 cells consistent with a malignant phenotype (Figure 4-4, A g). BPH-1
Akt 

cells 

have significantly increased number of pHisH3 positive cells throughout the grafts 

compared with control grafts (Figure 4-4, A d and h, 0.3/100m
2 

positive cells in 

BPH-1grafts, 2.33/100m
2
 positive cells in BPH-1

Akt 
grafts, P<0.01). These data showed 

activation of Akt in BPH-1 cells could also promote cell proliferation, and induce 

transformation in vivo.  

 

Activation of Akt in BPH-1 cells caused a loss of stromal differentiation 

The stromal cells in BPH-1 + rUGM tissue recombinants had a well differentiated stroma 

with abundant -actin and -actin expression, but very low vimentin expression (Figure 
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4-4, B a, b and c). In stromal cells of BPH-1
Akt

 + rUGM tissue recombinants, there was 

suppression of -actin expression, moderate expression of -actin (Figure 4-4, B d) and 

induction of vimentin expression (Figure 4-4, B f, arrow and I), consistent with a poorly 

differentiated stroma. 

 

The effect of PTEN knock down is consistent by using a new human prostatic 

epithelial cells line 

In order to assess whether the results obtained in BPH-1 cells were consistent we repeated 

the experiments using a new human prostatic epithelial cell line PrE3, which has been 

immortalized by retrovirally introduced SV-40 T antigen by retroviral infection. These 

cells give rise to a normal-appearing glandular structures when recombined with rUGM 

(Figure 4-5, A a) In order to test the consequences of suppression of PTEN in these cells, 

PTEN knocked down and control constructs were retrovirally infected to PrE3 cells. The 

knocked down cells were then grafted under the renal capsule of SCID mice after 

recombined with rUGM. After 5 months of growth under the kidney capsule of SCID 

mice, PrE3
PSR

 + rUGM tissue recombinants formed glandular structures, Ku 70 

immunofluorescence staining and SV-40 T antigen staining (data not shown) were 

positive in the nuclei of the epithelial cells, indicating that the glands were formed from 

the grafted human cells. (Figure 4-5, A b). In contrast,  in + rUGM tissue recombinants 

the epithelial cells formed large solid cords with enlarged nuclei (Figure 4-5, A f). 

Multilayered cells forming nests recapitulated a PIN structure. Since the parental PrE3 

cells formed normal glandular structure, knocking down only one tumor suppressor even 
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in the face of SV-40 may not be enough for these cells to undergo malignant change. 

PrE3
PTENsh

 cells continued to express Ku 70 (Figure 4-5 A, g) and SV-40 T antigen (data 

not shown). Consistent with the consequences of suppression of PTEN in BPH-1 cells, 

recombinants of PrE
PTENsh 

+ rUGM showed expression of vimentin in adjacent stroma 

(Figure 4-5A, j). The stromal cells in PrE3
PSR

 + rUGM and PrE3
PTENsh

 + rUGM grafts 

expressed -actin and actin (Figure 4-5, A c, d, h and i). Epithelial cells in both control 

and knock down recombinants continuously expressed AR (Figure 4-5, B a and e). 

E-cadherin staining was positive at the cell-cell junctions of control recombinants (Figure 

4-5, B b), however, in the PTEN knockdown recombinants, staining was patchy and,
 
in 

many places, undetectable (Figure 4-5, B f). PrE3
PTENsh

 cells proliferated much faster in 

vivo than control PrE3
PSR 

cells, demonstrated by significantly increased pHisH3 positive 

cells (Figure 4-5, A d and h, 0.3/100m
2 

positive cells in PrE3 grafts, 3/100m
2
 positive 

cells in PrE3
PTENsh 

grafts, P<0.01). pHisH3 positive cells could only occasionally be found 

in control grafts (Figure 4-5, B c and g). CK 14 expression was absent in PrE
PTENsh

 cells, 

indicating that as PIN lesions progressed, basal cells were lost. In contrast, normal glands 

were CK14 positive in the basal layer (Figure 4-5, B d and h). 

 

Constitutive expression of myrislated Akt in PrE3 cells caused a high-grade 

cribriform PIN phenotype 

In order to confirm the consequences of PTEN suppression in prostate cancer 

progression, we retrovirally overexpressed Akt in PrE3 cells. After 5 months of growth 

under the kidney capsule of SCID mice PrE3
pLNCX-control

 + rUGM tissue recombinants 
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formed benign appearing glandular structures (Figure 4-6, A a), with Ku 70-positive 

nuclei. PrE3
myr-Akt

+ rUGM tissue recombinants fused into large ducts lined with epithelial 

cells with a cribriform high grade PIN-like structure (Figure 4-6, A f). Cells in these 

structures continued to express Ku 70 (Figure 4-6, A g). There were multiple epithelial 

layers in the cords and cells have enlarged nuclei consistent with a PIN phenotype. 

PrE3
myr-Akt 

cells had induced vimentin expression in stroma (Figure 4-6, A g and j). 

-actin and -actin expression did not change much in the rUGM compared with control 

recombinants. Both control and knock down recombinants expressed AR (Figure 4-6, B a 

and e). E-cadherin expression was detected in cell-cell junctions of control recombinants 

(Figure 4-6, B b), however, the PrE3
myr-Akt

 cells had decreased E-cadherin staining 

(Figure 4-6, B f). PrE3
myr-Akt

 cells proliferated significantly faster in vivo than control 

PrE3
pLNCX-control 

cells as demonstrated by increased pHisH3 staining (0.3/100m
2 

positive 

cells in PrE3
pLNCX-control

  grafts, 1.7/100m
2
 positive cells in PrE3

myr-Akt 
grafts, P<0.01).  

(Figure 4-6, B c and g). Control glands retained CK14 expression in the basal layer. 

However, lack of CK 14 expression in structures generated by PrE3
myr-Akt

 cells indicated 

that basal cells were lost. (Figure 4-6, B d and h).  
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               non-tumorigenic                   tumorigenic 

 

Figure 4-1. PTEN protein expression in a panel of human prostatic epithelial cells and 

internal mutation or deletion of PTEN in BPH
CAFTD

 cell lines. (A) Western blotting was 

performed to examine PTEN protein expression levels in malignant (BPH-1
CAFTD1

, 

BPH-1
CAFTD2

, DU145, LNCaP and PC3) and non-tumorigenic (PrE1, 957E/hTERT, PrE3 

and BPH-1) prostatic epithelial cell lines. The PrE1, 957/hTERT, PrE3 cells had the 

highest PTEN expression compared with other transformed prostate cell lines. BPH-1 cells 

had a moderate level of PTEN expression. These two bands might correspond to two 

isoforms of the PTEN protein 
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Figure 4-1 (B) Two obvious insertions (9 bp and 15 bp) and one deletion (28 bp), all 

highlighted, were found in BPH
CAFTD1

 cells in the 5’UTR region of the mRNA.  
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Figure 4-2. In vitro assays for BPH-1
PSR

 and BPH-1
PTENsh

 cells. (A) In order to examine 

the role of PTEN in prostate cancer progression, PSR (control - BPH-1
PSR

) and PTEN 

knock down (BPH-1
PTENsh

) BPH-1 cell lines were generated by stable retroviral infection. 

PTEN downregulation in BPH-1
PTENsh

 was confirmed by western blotting and band 

intensity quantitated. There was 55% PTEN protein downregulation and 2.2 fold pAKT 

upregulation in BPH-1
PTENsh

 cells. 
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Figure 4-2 (B). Wound healing assay. BPH-1
PTENsh

 closed wounds in the confluent 

monolayer significantly faster than BPH-1
PSR

 cells. Images (left) and quantitation (right) 

shown. Student’s t-test, P<0.001. 
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Figure 4-2 (C). Transwell migration study. BPH-1
PTENsh

 migrated through the uncoated 

Boyden chamber significantly faster than BPH-1
PSR

 Representative phase-contrast optical 

photomicrographs after overnight culture shown (a, left) and quantitated (a, right). 

Student’s t-test, P<0.01. (D) Invasion assay. BPH-1
PTENsh 

cells had increased invasive 

ability in a Matrigel coated Boyden chamber invasion assay compared to 

BPH-1
PSR

Representative phase-contrast optical photomicrographs after overnight culture 

shown (left) and quantitated (right). Student’s t-test, P=0.01. 
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Figure 4-2 (E). Cell cycle analysis and proliferation assay. BPH-1 cells with PTEN 

knockdown had an increased fraction of cells in the S and G2/M phases of the cell cycle (a 

and b). PTEN knockdown promoted BPH-1 cell proliferation significantly over control 

growth rate. (Student’s t-test, P<0.001) (c).  
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Figure 4-3. In vivo comparisons of BPH-1
PSR

 and BPH-1
PTENsh

 cells. (A). BPH-1 
PTENsh 

cells (right) formed significantly larger grafts than control (left) after 3 months of growth 

under the kidney capsule of SCID mice (P<0.01).   
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Figure 4-3 (B) (a). H & E staining and SV-40 T-antigen staining demonstrated that 

BPH-1
PTENsh

 cells invaded to kidney (e, f and inset). E-cadherin was clear in cell-cell 

junctions of control grafts (c), however, E-cadherin expression was low in the PTEN knock 

down cells (g). BPH-1
PTENsh

 cells had increased pHisH3 positive cells (h) indicating 

increased proliferation compared with control.  
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Figure 4-3 (C). Suppression of PTEN in BPH-1 cells caused a loss of stromal 

differentiation. BPH-1
PSR

 + rUGM tissue recombinants had abundant -actin and -actin 

expression, but almost no vimentin expression (a, b and c) In BPH-1
PTENsh

 + rUGM tissue 

recombinants, there was suppression of -actin expression (d and g), no significant change 

of - actin expression (e and h) and induction of vimentin expression (f and i) 
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Figure 4-4. Activation of Akt signaling pathway elicited a atypical hyperplasia 

phenotype. (A) Both control grafts and Akt overexpressing grafts had no sign of invasion 

(a and e). BPH-1
Akt

 cells formed smaller solid cord structures and many cells had 

enlarged and elongated nuclei within the cords which indicated a atypical hyperplasia 

phenotype (e). Both BPH-1 and BPH-1
Akt

 cells continued to express SV-40 T antigen (b 

and f). Control grafts had clear cell junctions demonstrated by E-cadherin staining (c). 

E-cadherin expression was almost absent in the BPH-1
Akt

 cells (g). BPH-1
Akt 

cells have 

significantly increased number of pHisH3 positive cells throughout the grafts. 
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Figure 4-4 (B). Activation of Akt in BPH-1 cells caused a loss of stromal differentiation. 

The stromal cells in BPH-1 + rUGM tissue recombinants had abundant -actin and -actin 

expression, but almost no vimentin expression (a, b and c). In stromal cells of BPH-1
Akt

 + 

rUGM tissue recombinants, there was suppression of -actin expression (d) and induction 

of vimentin expression (f, arrow and I).  



 139 

 

Figure 4-5. The effect of PTEN knock down is consistent by using a new human prostatic 

epithelial cells line. (A) PrE3
PSR

 + rUGM tissue recombinants formed glandular structures 

after 5 months post grafting (a) with positive Ku 70 staining (b). PrE3
PTENsh 

+ rUGM 

tissue recombinants formed a PIN lesion (f). Cells continuously expressed Ku 70 (g) with 

induced vimentin expression (j). No obviousactin and -actin change was found in the 

PIN lesion (h and I) compared with control (c and d).  
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Figure 4-5 (B) Epithelial cells in both control and knock down recombinants continued to 

express AR (a and e). E-cadherin was positive in cell-cell junction of control 

recombinants (b), but E-cadherin expression was patchy in the PIN lesion (f). Increased 

pHisH3 positive cells in PrE3
PTENsh

 cells ((g and inset (higher magnification)) than 

control PrE3
PSR 

cells (c). CK 14 expression was negative in PrE3
PTENsh

 cells (h), but the 

normal glands were CK14 expression in the basal layer (d).  
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Figure 4-6. Constitutive expression of myrislated Akt in PrE3 cells caused a high grade 

cribriform PIN phenotype. (A) PrE3
pLNCX-control

 + rUGM tissue recombinants formed 

glandular structures 5 months post grafting (a) with positive Ku 70 immunofluorescence 
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staining (b). In clear contrast, cells in PrE3
pLNCX-myr-Akt 

+ rUGM tissue recombinants 

formed a high grade PIN lesion in which cells fused into a big nest with enlarged nuclei 

(f). Cells continuously expressed Ku 70 (g) with induced vimentin expression (j). No 

obvious–-actin and -actin change was found in the PIN lesion (h and i) compared with 

control (c and d). 
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Figure 4-6 (B). Suppression of PTEN in less initiated prostate epithelial cells caused a 

hyperplasia phenotype. (B) Epithelial cells in both control and knock down recombinants 

continued to express AR (a and e). E-cadherin was positive at cell-cell junctions of 

control recombinants (b), but E-cadherin expression was lost in the PIN lesion (f). 

Increased pHisH3 positive cells in PrE3
PTENsh

 cells ((g and inset (higher magnification)) 

than control PrE3
PSR 

cells (c). CK 14 expression was negative in PrE3
PTENsh

 cells (h), but 

the normal glands retained CK14 expression in the basal layer (d). 
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Discussion 

Loss of PTEN expression has been detected in many cancers including prostate (Di 

Cristofano et al., 2001; Di Cristofano et al., 1998). Elevation of Akt is a common 

response to the loss of the PTEN tumor suppressor gene (Cantley and Neel, 1999) and 

occurs frequently in human prostate cancer (Davies et al., 1999; Li et al., 1997). When 

PTEN activity was restored in PTEN null cells, Akt expression was suppressed, which 

directly links PTEN to Akt activity (Davies et al., 1999; Myers et al., 1998; Stambolic et 

al., 1998).  

 

We determined that BPH-1 derived tumorigenic cell lines and a subset of prostate cancer 

cell lines had lower PTEN expression compared with parental BPH-1 and other 

non-malignant human prostatic epithelial cell lines. These molecular characteristics are 

consistent with differences between normal and malignant cells in primary prostate cancer, 

in which PTEN expression was downregulated in tumorigenic cells. Mutations, additions 

and deletions of PTEN genomic DNA were found in the noncoding 5’UTR of the PTEN 

gene in tumorigenic cells, but not in the benign parental BPH-1 cells. It has recently been 

reported that the long 5’UTR sequences of PTEN contains a promoter that is responsible 

for constitutive PTEN expression(Han et al., 2003). This promoter was mapped to the 

region between –551 and –220 bases upstream of the translation start site. The region 

where we found deletions contains multiple binding sites for transcription factors such as 

Sp1.Down-regulation of PTEN expression could be due to loss of this promoter activity 

(Ma et al., 2005a). Thus we speculate that PTEN downregulation in BPH-1
CAFTD

 cells may 

also due to loss of this second promoter activity. Deletions in this region my possibly affect 
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PTEN promoter activity in the 5’UTR. However, at this point it is not clear whether or not 

this area of the human 5’UTR contains the  promoter and important transcription factor 

binding sites. In the future, a luciferase reporter assay should be performed to explore this 

hypothesis and to find candidate transcription factors which can constitutively activate the 

promoter in 5’UTR. 

 

In this chapter, we made a PTEN knock down BPH-1 cell line to examine the consequences 

of loss of PTEN in benign prostate cells both in vitro and in vivo. BPH-1
PTENsh 

cells had 

enhanced proliferation, mobility, and invasion as compared with control cells. We were 

able to show that partial suppression of PTEN expression in the presence of SV40 was 

sufficient to drive human prostatic epithelium to form invasive tumors within the in vivo 

tissue recombination model. The BPH-1
PTENsh

 cells retained expression of  SV-40 T 

antigen and proliferated faster than control cells in vivo. Retroviral infection of BPH-1 cells 

with the control plasmid resulted in a benign solid cord structure. Suppression of PTEN 

produces a cancer phenotype within our xenograft model that is progressive and invasive. 

The resulting tumors resemble a poorly differentiated invasive advanced carcinoma. A 

single addition of a dominant
 

acting oncogene may be sufficient to convert a 

non-tumorigenetic
 
cell to a fully tumorigenetic cell. Such as overexpression of c-MYC in 

benign prostate epithelium caused a cancer phenotype (Williams et al., 2005). This 

observation emphasized the importance of genetic changes as key determinants of 

malignancy. The BPH-1 cells were SV-40 T-antigen initiated, but this is insufficient per se 

to produce a tumor. The levels of PTEN suppression by a retroviral delivery system would 
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certainly constitute an additional molecular hit. The in vitro and in vivo data indicated the 

important role of PTEN in transformation of cells at early stages of tumor progression.  

 

We went on to suppress PTEN in another initiated prostatic epithelial cell line (PrE3) and 

saw similar in vivo consequences to those seen in BPH-1 cells . However, PrE3 cells 

formed well differentiated glandular structures in the tissue recombination model. 

Knocking down PTEN in the PrE3 cells caused a PIN phenotype instead of an invasive 

tumor. To our knowledge, no data have been reported concerning the role of PTEN in 

initiating prostate cancer progression in vivo because of the lack of normal human prostatic 

cell lines. Our data provide new insights into the role of this lesion in prostate cancer 

progression. 

 

Loss of PTEN expression can be a pivotal point in the cellular decision-making process that 

determines if a cell will undergo proliferation. PTEN suppression within the BPH-1 cells 

and PrE3 cells appeared to exhibit a proliferative effect which was demonstrated by 

elevation of pHisH3 positive cells. The lack of expression of the basal cell marker CK14 

indicated that the PTEN knock down tumor, like human prostate adenocarcinoma, loses 

basal cells during tumor formation. The same phenomenon was also seen in PrE3
PTENsh

 PIN 

lesions. In the glands formed by PrE3 control cells, CK14 expressing cells clearly 

surrounded luminal cells, which confirmed the benign nature of these cells. 

 

The hallmark of malignancy is the acquisition of an invasive phenotype. This process may 



 147 

involve breakdown of cell-cell junctions, increased motility, and increased proliferation of 

the tumor cells. One of the cell-cell junction molecules, E-cadherin, exerts a critical role in 

the control of tumorigenicity. It is subjected to inactivation by multiple mechanisms 

including genetic and epigenetic events (Kotelevets et al., 2001). It was suggested that 

PTEN might participate in tumor cell invasion through stabilizing cell-cell junctions in 

kidney tumorigenic cell lines in vitro (Kotelevets et al., 2001). Transient reduction of 

PTEN expression by RNAi induces loss of cell adhesion (Mise-Omata et al., 2005). Our 

data suggested that when PTEN expression is partially lost in BPH-1 cells, they gained 

invasive ability and lost E-cadherin expression in vivo. The same phenomenon was seen in 

the PIN lesions formed by PrE3
PTENsh

 cells. Decreased or absent E-cadherin expression is a 

common occurrence in human prostate cancer (Rokhlin and Cohen, 1995; Umbas et al., 

1992). Failure to detect E-cadherin expression may suggest cancer development in partial 

loss of PTEN model, which clearly correlates with the difference between normal and 

tumor cells in cancer patients.  

 

Normal prostatic stroma predominantly expresses -actin and actin, but not vimentin, 

while tumor stroma expresses predominantly vimentin with some actin (Hayward et al., 

1996). Our unpublished data demonstrated that LNCaP + rUGM tissue recombinants little 

-actin expression and that most stromal cells had strong vimentin expression. This result 

correlated with the differences that we and others have seen in clinical samples. Our data 

suggested that partial loss of PTEN in epithelium resulted in a more 

fibroblastic/myofibroblastic stroma with a downregulation of actin and upregulation of 
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vimentin, consistent with a reactive stroma. These observations reflected the importance 

of PTEN in regulating stromal differentiation and thus stromal-epithelial interactions and 

in human prostate cancer progression. Homozygous deletion of PTEN is lethal, while 

heterozygote PTEN mice develop mPIN but only progress to an invasive phenotype after 

another genetic hit (Abate-Shen et al., 2003; Di Cristofano et al., 2001; Kim et al., 2002). In 

this human model we showed an accelerated progression after partial loss of PTEN in 

BPH-1 cells because the epithelium is already SV40 immortalized.  

 

Akt is downstream PTEN signaling pathway and is constitutively activated in many 

cancers including prostate cancer (Nicholson and Anderson, 2002). We showed that the 

PTEN/Akt axis is important in human prostate cancer progression. Constitutive 

overexpression of Akt in both BPH-1 and PrE3 cells accelerated cell growth in vivo, 

demonstrated by increased numbers of pHisH3 positive cells. Out studies showed that loss 

of PTEN and constitutively activation of Akt protein can have dramatically different effects 

on tumor physiology. The recombinant of BPH-1
Akt

 + rUGM formed an atypical 

hyperplasia structure instead of an invasive tumor. A critical downstream effector of Akt, 

which contributes to tumorigenesis, is mTOR (Hay and Sonenberg, 2004). Constitutively 

Akt activation activates mTOR and at the same time mTOR activation inhibits Akt via an 

inhibitory feedback mechanism to controls cell proliferation and tumor progression. 

However, the loss of even one copy of PTEN may be sufficient to overcome this feedback 

mechanism, reactivate Akt, and dramatically enhance tumor severity and produce a 

different phenotype (Manning et al., 2005). 
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Since PrE3 cells formed benign glandular structures, which indicated a less initiated 

phenotype compared with BPH-1 cells, which loss the ability to form glandular structure. 

The more aggressive PIN structures in PrE3
myr-Akt

 grafts suggested that Akt activation is a 

further downstream effect of PTEN loss in human prostate cancer. The phenotype of the 

tissue recombinants was similar to what was seen in PTEN knock down recombinants. The 

present study demonstrated the contribution of an individual gene to carcinogenesis. This is 

an approach which we have successfully applied to the overexpression of the c-myc 

proto-oncogene in human prostatic epithelial cells resulted in a new in vivo model in 

which benign human prostatic epithelial cells undergo malignant transformation to form 

metastatic tumors with continued expression of key markers such as PSA and AR.  

 

In summary, our current work developed less aggressive models representing distinct 

grades of disease, with defined stage progression. Such models can be a target of 

molecular interrogation to determine how common genetic alterations affect prostate 

cancer phenotypes and lead to further genetic changes in response  to common 

therapeutic strategies such as androgen ablation. 
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CHAPTER V 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

The stromal microenvironment can either positively or negatively regulate tumor 

progression, however it is still unclear why the environment plays a dual role. The 

mechanistic basis for stromal programming is not completely understood. Many 

molecules and pathways play important roles in controlling proliferation, differentiation, 

and function of both epithelial and stromal cells. In adulthood, normal prostatic epithelial 

growth is regulated by reciprocal interactions between smooth muscle  and epithelial 

cells.  These interactions are mediated by the local synthesis and action of paracrine 

signaling molecules (Hayward et al., 1997). Signaling abnormalities between smooth 

muscle and epithelial cells may either actively promote carcinogenesis or permit the 

progression to anaplasia via loss of normal homeostatic controls (Hayward et al., 1998). 

Leland Chung’s group reported that co-inoculation of tumorigenic Nbf-1 fibroblasts (an 

androgen-sensitive rat prostate fibroblast cell line) with human PC-3 cells accelerated 

tumor growth (Chung, 1995; Chung et al., 1981; Chung et al., 1991). The Cunha 

laboratory has indicated, using an in vivo model, that CAFs were capable of stimulating 

carcinogenesis and inducing the malignant progression of an initiated epithelium (BPH-1 

cell line), while normal prostatic fibroblasts were incapable of stimulating such 

progression (Hayward et al., 2001; Olumi et al., 1999; Orimo et al., 2005)Other 

laboratories have made observations consistent with this result (Barclay et al., 2005; 

Hayward et al., 2001; Olumi et al., 1999; Orimo et al., 2005). Thus, the process of 
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prostatic carcinogenesis may include aberrations in the interactions of the prostatic 

epithelium, with its smooth muscle microenvironment resulting in reciprocal 

de-differentiation of both the emerging carcinoma cells and the prostatic smooth muscle. 

It is also possible that the stromal changes observed occur through the recruitment of 

other cell types such as macrophages or other bone marrow-derived cells. A detailed 

understanding of the signaling mechanisms between stroma and epithelium will allow 

design of therapies aimed at inhibiting prostate tumor growth. We have found that TGF- 

expression is elevated in CAFs versus normal prostatic fibroblasts, which promotes 

invasion of tumorigenic but not non-tumorigenic cell lines (Ao et al., 2006). Crosstalk 

between a paracrine-acting cytokine (TGF- and chemokine pathways (SDF-1/CXCR4) 

promotes malignant progression of BPH-1 cells (Ao et al., 2007). Recently, it was shown 

that TGF- is one of the fibroblast-supplied factors involved in suppression of epithelial 

transformation (Bhowmick et al., 2004a; Bhowmick et al., 2004b). Loss of TGF- 

responsiveness in fibroblasts resulted in PIN through the activation of the paracrine 

hepatocyte growth factor (HGF) pathway (Bhowmick et al., 2004a; Bhowmick et al., 

2004b). These data indicate that TGF-inhibits cell growth in non-transformed prostatic 

cells, but functions in a pro-oncogenic manner in transformed prostatic cells. TGF-is 

one important paracrine mediator of stromal-epithelial interactions, and is essential for 

stromal programming to promote adjacent epithelial tumor progression. However, the 

paracrine environment is complex and other important mediators of paracrine signaling 

and tumor progression that are waiting to be investigated. Changes in the epithelial and 
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stromal cells which modulate this signaling environments are not well understood and are 

a focus of this work.  

 

In chapter II, I examined the consequences of manipulating cell proliferation in both 

epithelial and stromal cells by overexpressing cyclin D1. I observed that cyclin D1 

overexpressing BPH-1 cells did not become tumorigenic under the influence of inductive 

rUGM in the tissue recombination model. However, the cyclin D1 overexpressing cells 

did have a higher proliferation rate in vitro and in vivo. These data underline the 

important point that increased proliferation per se is insufficient for malignant 

transformation of epithelial cells even in the face of SV-40 T-antigen expression. 

However, overexpression of cyclin D1 in NPF cells is sufficient to drive adjacent BPH-1 

cells to become tumorigenic, an observation confirmed by the transformation of 

BPH-1
NPF-cyclin D1

 cells. These observations indicate that upregulation of proliferation as 

well as changes in stromal gene expression can change the environment to promote 

carcinogenesis in less damaged epithelium. This underlines the idea that carcinoma is not 

solely a disease of epithelial cells but is a product of both the damaged epithelium and an 

altered microenvironment.  

 

In chapter III, I proposed a possible mechanism for prostate cancer progression which 

involved stromal-epithelial interactions. Our data indicated that cathepsin D is a crucial 

mediator between BPH-1 and either NPF
cyclin D1 

or CAFs in vitro and in vivo. Cathepsin D is 

upregulated in both NPF
cyclin D1 

cells and CAFs as determined by microarray and western 
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blot analysis. My study demonstrated that cathepsin D plays a crucial role in prostatic 

fibroblast outgrowth and may favor prostate tumor progression acting via a paracrine 

loop. Cathepsin D is overexpressed and secreted by fibroblasts, and is captured in vivo by 

epithelial cells. The resultant cathepsin D overexpression in tumor epithelium promotes 

proliferation, motility, and invasion of epithelium and consequently enhances tumor-host 

homeostasis. The identification of factors such as cathepsin D that participate in the 

tumor-stroma communication might be crucial for the development of stromally-targeted 

therapy of prostate cancer. 

 

In chapter IV, I defined the role of clinically observed genetic lesions in deregulating 

stromal differentiation. The ability of epithelial cells with defined alterations to establish 

and maintain smooth muscle differentiation in adjacent stromal cells was examined. 

Partial suppression of PTEN in the presence of SV40T expression is sufficient to initiate 

malignant transformation of human prostatic epithelium and caused high-grade PIN in 

benign PrEs. The ability of human prostatic epithelial cells to induce and maintain smooth 

muscle differentiation in adjacent stroma was shown to be negatively correlated to the 

level of genetic damage sustained by those epithelial cells. 

 

The aim of this project was to examine how an oncogene (cyclin D1) and a tumor 

suppressor (PTEN) might affect stromal-epithelial interactions with the goal of building 

new models of human prostate cancer in vivo. A summary of this project is shown in 

Figure 5-1. Specifically, expression of cyclin D1 or PTEN are either positively or 
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negatively regulated in human prostatic epithelial or stromal cells. The effects of these 

changes are then assessed in tissue recombination models. This approach has been 

successfully applied to the overexpression of the c-myc proto-oncogene in human 

prostatic epithelial cells resulting in malignant transformation to form metastatic tumors 

with continued expression of key molecules such as PSA and the androgen receptor 

(Williams et al., 2005). In this project, we aimed to develop less aggressive models that 

represent distinct grades of disease. Such models can be a target of molecular 

interrogation to determine how these common genetic alterations affect prostate cancer 

phenotypes and lead to further genetic changes in response to common therapeutic 

strategies such as androgen ablation. 

In summary, I found that by manipulating the proliferation of stromal fibroblasts by 

overexpressing cyclin D1 could alter the microenvironment  resulting in the 

transformation of initiated BPH-1 cells through paracrine signaling. Cathepsin D was 

proposed to be an important mediator in these stromal-epithelial interactions. I also found 

that genetically modified epithelium (loss of PTEN) had reduced ability to induce and/or 

maintain smooth muscle differentiation in adjacent stromal cells, consistent with changes 

seen in the stromal cells adjacent to tumors in clinical samples. 

 

Cyclin D1 degradation is mediated by phosphorylation and ubiquitin-dependent 

proteolysis (Diehl et al., 1997). Glycogen synthase kinase-3ß (GSK-3) phosphorylates 

cyclin D1 leading to cyclin D1 ubiquitination and proteasomal degradation (Diehl et al., 

1998). GSK-3 is phosphorylated and deactivated by Akt and GSK-3activity is elevated 
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by overexpression of PTEN (Ohigashi et al., 2005). When PTEN expression is knocked 

down, GSK-3activity is reduced and less cyclin D1 is degraded by phosphorylation. 

However, the accumulation of cyclin D1 in epithelial cells are not enough to drive cells to 

undergo malignant transformation. In addition to its role in regulating the AKT cell 

survival pathway, PTEN also suppresses the mitogen-activated protein (MAP) kinase 

signaling pathway and interact with integrin signaling pathways. Therefore, the phenotypes 

in PTEN knocked down cell in epithelial cells may be caused by cyclin D1-independent 

pathways. In the future, MAP kinase and integrin pathways will be examined if they are 

involved in the invasive phenotype in BPH-1
PTENsh

 cells. I examined the function of PTEN 

in epithelial cells in this project. However, the function of PTEN in stromal environment is 

waiting to be dissected and the link between PTEN and cyclin D1 in stroma can be studies 

in the future. 

 

Prostate cancer research has been hindered by lack of well established, characterized, 

immortalized benign prostatic epithelial cells lines that express markers of normal 

prostatic epithelial cells. Such cells can be used to study multi-step carcinogenesis, cancer 

progression, and potential therapeutic agents to inhibit prostate cancer growth. The 

BPH-1 cell line is one such cell line that has been widely used in prostate cancer research. 

It is by far the only line which starts off benign an can be pushed to a malignant 

phenotype by either genetic modification or hormone treatment. The cells do not form 

tumors in SCID mice until 1 year post-grafting, which makes them an appropriate model 

to study tumor progression and stromal-epithelial interactions. However, BPH-1 cells are 



 156 

SV-40 immortalized, and they do not form glandular structures in vivo. Dr. Ming Jiang in 

our laboratory developed a spontaneously immortalized prostate epithelial cell line, which 

is designated as PrE1. These cells give rise to normal glandular structure when 

recombined with rUGM. In the future, more genes and pathways which might be 

involved in stromal-epithelial interactions can be fully investigated using this new 

prostatic epithelial cell line.  
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Figure 5-1. Working model of this project. Cyclin D1 overexpressing BPH-1 cells did not 

become tumorigenic under the influence of inductive rUGM in the tissue recombination 

model. However, overexpression of cyclin D1 in NPF cells is sufficient to drive adjacent 

BPH-1 cells to become tumorigenic possibly through upregulation of cathepsin D. Partial 

suppression of PTEN in the presence of SV40-T antigen expression is sufficient to initiate 

malignant transformation of human prostatic epithelium and caused high-grade PIN in 

benign PrE. The ability of human prostatic epithelial cells to induce and maintain smooth 

muscle differentiation in adjacent stroma was shown to be  negatively correlated to the 

level of genetic damage sustained by those epithelial cells. 
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