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CHAPTER I 

 

BACKGROUND AND LITERATURE REVIEW 

 

Overview of virus-induced apoptosis 

Processes by which viruses injure and kill host cells are essential determinants of 

viral pathogenesis.  Apoptosis is a genetically programmed form of cell death that plays an 

important regulatory role in many biological processes such as organ development, cellular 

homeostasis, and immunity.  Apoptosis can be triggered by a variety of environmental 

stimuli and results in numerous morphological and biochemical changes including cell 

shrinkage, vacuolization, membrane blebbing, condensation of nuclear chromatin, and 

cleavage of chromosomal DNA into oligonucleosome-length fragments (3, 126, 167, 218).  

Membrane-bound fragments of apoptotic cells are efficiently removed by phagocytes without 

inducing an inflammatory response. 

 Many viruses are capable of inducing apoptosis of infected cells (126, 140, 153, 167, 

188).  In some cases, apoptosis triggered by virus infection may serve as a component of host 

defense to limit viral replication or spread (162).  This defense mechanism is mediated either 

directly by self-destruction of host cells prior to completion of the viral replication cycle or 

indirectly through immune recognition of infected cells by cytotoxic T lymphocytes (126, 

167).  In other instances apoptosis may enhance viral infection by facilitating viral 

dissemination or allowing the virus to evade host inflammatory responses (37, 126, 188).  For 

some viruses, cellular factors operant during apoptosis may function to increase the 

production of viral progeny (140, 167).  The biochemical pathways activated by most viruses 

to induce apoptosis are largely unknown.   
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 This thesis was focused on mechanisms used by mammalian reoviruses to induce 

apoptosis.  Reoviruses are highly tractable models for studies of viral replication and 

pathogenesis.  Apoptosis is the principal means of cell killing employed by some reovirus 

strains and therefore may influence viral virulence (40, 125, 128, 145, 199).  My research 

was directed toward identifying components of the cellular signaling apparatus required for 

reovirus-induced apoptosis and determining the effector mechanisms that elicit the apoptotic 

response during reovirus infection.  Identifying and understanding the cellular components of 

the virus-induced apoptotic signaling machinery will help understand disease mechanisms 

and identify new targets for therapeutic intervention. 

 

Reovirus structure and replication 

Mammalian reoviruses are nonenveloped viruses that contain a genome of 10 discrete 

segments of double-stranded (ds) RNA (reviewed in Nibert and Schiff (122)).  These viruses 

are the prototype members of the Orthoreovirus genus of the Reoviridae family.  Reoviruses 

exhibit a broad host range infecting most mammalian species, including humans (reviewed in 

Tyler (195)).  Reoviruses were named respiratory enteric orphan viruses on the basis of their 

repeated isolation from the respiratory and enteric tracts of children with no obvious clinical 

symptoms of illness (157).  Disease associated with reovirus infection is unusual and 

restricted to the very young.  There are three reovirus serotypes, which can be differentiated 

on the basis of hemagglutination profiles and neutralization assays (149).  A major 

mechanism of cell killing by reovirus is the genetically programmed cell death pathway that 

leads to apoptosis.   

Reoviruses particles are approximately 85 nm in diameter and formed by eight 

structural proteins arranged in two concentric protein shells (or capsids) with icosahedral 

symmetry (42, 52) (Fig. 1).  The T=1 inner capsid surrounds the centrally condensed 10  
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Figure 1.  The reovirus virion.  The reovirus virion contains two concentric protein shells 
termed the outer capsid and core.  The core contains 10 dsRNA gene segments that are 
classified by size as large (L), medium (M), or small (S).  The viral attachment protein, σ1, is 
depicted as a ball and stick model protruding from the outer capsid.  Viral proteins σ3 and 
μ1 form the outer capsid and serve as substrates for endocytic proteases. 



 4

dsRNA gene segments and, together with the genomic RNA, forms the tightly packed viral 

core.  It is assembled from two major proteins, λ1 and σ2 (120 and 150 copies each, 

respectively) (42, 142), and minor core proteins μ2 (~20 copies) and λ3 (~12 copies) (43).  

The T=13 (left-handed) outer capsid is constructed from complexes of proteins σ3 and μ1 

present in 600 copies each.  A core spike, formed by pentamers of the λ2 protein (60 copies), 

projects from the inner capsid through the outer capsid at the 12 axes of five-fold symmetry 

(142).  Partially inserted within a turret-like opening of the λ2 pentamer is the delicate, fiber-

like trimeric attachment protein, σ1 (36 copies) (29, 58). 

The reovirus replication cycle is entirely cytoplasmic (reviewed in Nibert and Schiff 

(122)).  Reovirus virions are capable of binding to cell-surface carbohydrate (11), and 

junctional adhesion molecule-A (JAM-A) (11).  Following viral attachment, reovirus virions 

enter cells by receptor-mediated endocytosis (6, 20, 155, 183), in which β1 integrins mediate 

internalization (102).  Within an endocytic compartment, the viral outer capsid is removed to 

generate infectious subvirion particles (ISVPs) (Fig. 2).  During virion-to-ISVP disassembly, 

σ3 is degraded and lost from virions, σ1 undergoes a conformational change, and μ1 is 

cleaved to form particle-associated fragments δ and φ.  Removal of σ3 exposes hydrophobic 

domains in μ1 that facilitate interactions of ISVPs with endosomal membranes (26, 27), 

leading to delivery of core particles into the cytoplasm and concomitant activation of the viral 

transcriptase (122).  Transcription of the viral genome occurs within the core, and nascent 

mRNAs are released through turret-like openings at the viral vertices.  Viral mRNAs are used 

as template for viral protein synthesis and replication of viral genomic dsRNA (90, 161).  

Particles containing dsRNA segments are termed replication particles.  These particles are 

transcriptionally active and yield additional viral mRNAs resulting in an amplification of  
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Figure 2.  Entry of reovirus into cells.  Following attachment to cell-surface receptors, 
reovirus virions enter cells by receptor-mediated endocytosis.  Within an endocytic 
compartment, the viral outer capsid undergoes acid-dependent proteolysis resulting in 
generation of ISVPs.  Steps in viral entry are completed by interaction of ISVPs with 
endosomal membranes, leading to delivery of transcriptionally active core particles into the 
cytoplasm. 
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viral protein synthesis (81, 117).  Following addition of viral outer-capsid proteins to the 

replication particles, progeny virions are assembled and exit the cell. 

 

Reovirus pathogenesis and diseases 

The pathogenesis of reovirus infection has been studied most extensively using 

newborn mice, in which serotype-specific patterns of disease have been identified (reviewed 

in Virgin et al.  (207)).  The best characterized of these models is reovirus pathogenesis in the 

murine central nervous system (CNS).  The segmented nature of the reovirus genome has 

allowed the determination of the genetic basis for complex viral phenotypes by analysis of 

reassortant viruses containing mixtures of gene segments derived from parental strains that 

exhibit a biological polymorphism of interest.  Using this strategy, strain-specific differences 

in the pathogenesis of reovirus CNS infections have been genetically mapped (50, 211).  This 

work has provided important insights into mechanisms of reovirus tropism and virulence. 

Following oral inoculation of newborn mice, reovirus is internalized by intestinal M 

cells (216) and undergoes primary replication in lymphoid tissue of Peyer’s patches (83, 118, 

154).  Virus then invades the CNS, yet strains of different serotypes use different routes of 

dissemination and manifest distinct pathologic consequences.  Serotype 1 (T1) reovirus 

spreads to the CNS hematogenously and infects ependymal cells (197, 211), resulting in 

hydrocephalus (210).  In contrast, serotype 3 (T3) reovirus spreads to the CNS through 

nerves and infects neurons (118, 197, 211), causing lethal encephalitis (187, 210).  Analysis 

of reassortant viruses obtained by coinfecting cells with prototype strains T1 Lang (T1L) and 

T3 Dearing (T3D) demonstrated that the pathways of viral spread in the host (197) and 

tropism for neural tissues (50, 211) segregate with the viral S1 gene, which encodes the viral 
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attachment protein, σ1 (89, 209).  These studies suggest that σ1 determines the CNS cell 

types that serve as hosts for reovirus infection.   

Reovirus infection causes pathology and physiologic dysfunction in a wide range of 

organs and tissues, including the hepatobiliary system, the myocardium, lungs, and endocrine 

tissues (207).  Of these, myocarditis (174) has become a particularly well-established 

experimental model of reovirus-induced disease.  Myocarditis caused by reovirus infection is 

unusual in comparison to other viral etiologies of myocarditis in that the pathogenesis is not 

immune mediated.  Instead, reovirus cytopathicity is a direct cause of myocyte injury, which 

results from a complex interplay of the interferon (4, 124, 175) and apoptosis pathways (44).  

Efficiency of viral RNA synthesis is a key factor in determining the extent of myocardial 

injury.  Accordingly, viral gene segments encoding proteins involved in viral transcription 

and genome replication play important roles in determining strain-specific differences in the 

capacity of reovirus to induce myocarditis (171, 172, 175).   

 

Genetics of reovirus-induced apoptosis 

 Reovirus induces the biochemical and morphological characteristics of apoptosis both 

in cultured cells (40, 145, 199) and in the murine CNS (125, 128) and heart (44, 128).  

Insights into mechanisms by which reovirus induces apoptosis have emerged from studies 

using strains T1L and T3D, which differ in the capacity to induce apoptosis in a variety of 

cell types (Fig. 3).  Reovirus strain T3D induces apoptosis much more efficiently than T1L in 

murine L929 (L) cells (199), Madin-Darby canine kidney (MDCK) cells (145), and HeLa 

cells (38).  These differences have been analyzed genetically using T1L x T3D reassortant 

viruses and indicate that the S1 gene is the principal determinant of differences in the  
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Figure 3.  Reovirus-induced apoptosis.  HeLa cells were adsorbed with either gel saline 
(mock), T1L, or T3D at an MOI of 100 PFU/cell and incubated at 37°C for 48 h in medium. 
Cells were harvested, stained with acridine orange (AO), and scored for apoptosis using 
morphological criteria.  The results are expressed as the mean percentage of cells undergoing 
apoptosis for three independent experiments.  Error bars indicate standard deviations.
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capacity of T1L and T3D to induce apoptosis (38, 145, 199).  However, a smaller, 

independent contribution is made by the M2 gene segment. 

 The S1 gene is bicistronic and encodes the nonstructural protein σ1s, along with the 

attachment protein σ1 (55, 75, 158).  The role of σ1s in reovirus-induced apoptosis was 

tested using strains T3C84 and T3C84-MA, which vary in the expression of σ1s.  Results 

from these experiments showed that expression of σ1s is not required for apoptosis induction 

(146), indicating that the σ1 protein is the S1 gene product responsible for mediating the 

strain-specific differences in apoptosis by reovirus. 

 The M2 gene encodes outer-capsid protein μ1 (112, 120), a 76-kDa amino-terminal 

myristilated protein (123).  The μ1 protein is proteolytically cleaved within the endocytic 

pathway (5, 20), and these cleavage fragments are proposed to interact with endosomal 

membranes to deliver viral cores into the cytoplasm (70, 71, 101).  The exact role of the μ1 

protein in apoptosis is unknown, but it may contribute to apoptosis induction by directly 

interacting with intracytoplasmic sensors of viral infection resulting in proapoptotic 

signaling. 

 In addition to receptor binding steps being an important determinant of apoptosis 

induction by reovirus, viral replication steps following attachment are also required to induce 

signals that lead to apoptosis.  Inhibitors of viral disassembly abolish the capacity of virions, 

but not ISVPs, to induce apoptosis (39).  However, inhibitors of RNA synthesis, particles 

devoid of dsRNA, and temperature-sensitive (ts) viral mutants arrested at defined steps in 

reovirus replication have no effect on apoptosis induction (39).  Taken together, these results 

suggest that reovirus disassembly resulting in ISVP formation, but not viral transcription or 

subsequent steps in viral replication, is required to induce apoptosis.   
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Apoptosis induced by reovirus requires activation of NF-κB 
 

A critical component of the intracellular signal transduction apparatus that leads to 

apoptosis following reovirus infection is nuclear factor-κB (NF-κB) (40).  NF-κB is a 

transcription factor family that plays important roles in cell growth and survival.  The 

prototypical form of NF-κB consists of two subunits, p50 and RelA (RelA) (7).  NF-κB is 

retained in the cytoplasm in a nonactivated state by the IκB family of inhibitor proteins.  

Following signal-dependent phosphorylation on two amino-terminal serine residues, IκB is 

ubiquitinated and targeted for degradation via the proteasome (7, 132).  NF-κB is released 

from IκB, which exposes a nuclear localization signal on NF-κB and results in its 

translocation to the nucleus (17).  Agonists that stimulate a transient pattern of NF-κB 

activity, such as TNF-α, promote the selective degradation of IκBα (16).  In contrast, agents 

that elicit a prolonged NF-κB response, including bacterial lipopolysaccharide and IL-1, are 

associated with degradation of both IκBα and IκBβ (189).  There exist two cytokine-

inducible IκB kinases (IKKs), termed IKKα and IKKβ, that phosphorylate IκBα and IκBβ at 

the appropriate regulatory serines (104, 203).  IKKα and IKKβ are components of a large (~ 

500-900 kDa), multisubunit complex that contains a regulatory subunit called IKKγ (51, 115, 

151, 223, 226).  The IKK catalytic subunits are activated following stimulation with several 

NF-κB-inducing agonists, including TNF-α and IL-1 (51, 115, 226).   

Two principal signaling pathways are known to activate NF-κB via the IKK complex.  

The classical NF-κB pathway is stimulated in response to cytokines, LPS, dsRNA, and most 

negative-stranded RNA viruses.  This pathway is dependent on IKKβ and IKKγ for 

phosphorylation and subsequent degradation of IκBα and nuclear translocation of the p50 

and RelA (RelA) subunits of NF-κB (21, 92, 156, 184, 194, 223).  The alternative pathway is 
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dependent on the activation of NF-κB-inducing kinase (NIK), which in turn leads to 

phosphorylation of IKKα (220).  Activated IKKα phosphorylates the IκB-like molecule, 

p100, which is processed to form the NF-κB subunit, p52 (163).  The p52 subunit binds to 

RelB, translocates to the nucleus, and activates NF-κB-dependent gene expression (179).  

The alternative pathway of IKK activation is thought to operate independently of both IKKβ 

and IKKγ (47).   

NF-κB activation can either potentiate (1, 62, 82) or inhibit apoptosis (15, 100, 202) 

depending on the nature of the NF-κB agonist.  Many RNA viruses are capable of activating 

NF-κB, including dengue virus (77), influenza virus (131), reovirus (40), respiratory 

syncytial virus (108), and Sindbis virus (94).  Interestingly, activation of NF-κB is required 

for the induction of apoptosis by some viruses, including dengue virus (105), reovirus (40), 

and Sindbis virus (94). 

Reovirus activates NF-κB in cell culture beginning at 2-4 h post-infection and 

reaches maximal levels of activation at 6-8 h post-infection (Fig. 4) (40).  Electrophoretic 

mobility shift assays using antibodies specific for p50 and RelA identified both of these 

subunits in the NF-κB complexes activated during reovirus infection.  Cells devoid of either 

p50 or RelA do not activate NF-κB following reovirus infection (40), providing further 

evidence that these NF-κB subunits are in the complexes activated by reovirus.  Three lines 

of evidence suggest that NF-κB activation is required by reovirus to induce apoptosis (40).  

First, treatment of HeLa cells with a proteasome inhibitor blocks NF-κB activation following 

reovirus infection and substantially diminishes reovirus-induced apoptosis.  Second, transient 

expression of a dominant-negative form of IκB that constitutively represses NF-κB activation 

significantly reduces levels of apoptosis induced by reovirus.  Third, and most convincingly,  
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Figure 4.  NF-κB activation in response to reovirus.  Nuclear extracts were prepared from 
uninfected HeLa cells (0 h), mock-infected cells (Mock), or cells infected with T3D at an 
MOI of 100 PFU/cell for the times shown.  Cells also were treated with 20 ng/ml of TNFα
for 30 min as a positive control.  Extracts were incubated with a radiolabeled NF-κB 
consensus oligonucleotide, and resulting protein-oligonucleotide complexes were resolved by 
acrylamide gel electrophoresis, dried, and exposed to film.  NF-κB-containing complexes are 
indicated. 
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apoptosis by reovirus is substantially diminished in mouse embryo fibroblasts lacking either 

of the NF-κB subunits p50 or RelA.  These findings indicate that NF-κB plays an essential 

role in the mechanism by which reovirus induces apoptosis of host cells.   

 

Significance of the research 

Many viruses are capable of inducing apoptotic cell death.  However, mechanisms of 

virus-induced apoptosis are not well understood.  The main objective of this thesis research is 

to understand mechanisms by which reovirus activates NF-κB and induces apoptosis.  I 

describe four main findings that help elucidate these mechanisms.  First, reovirus can induce 

apoptosis in cells lacking JAM-A using a mechanism dependent on the μ1 protein.  Second, 

IKKα and IKKγ are required for reovirus-induced NF-κB activation and apoptosis indicating 

that reovirus activates a novel NF-κB pathway resulting in cell death.  Third, NF-κB 

functions in a proapoptotic manner in the brain while playing an antiapoptotic function in the 

heart of mice infected with reovirus.  Fourth, IFN-β inhibits reovirus-induced apoptosis by 

reducing reovirus replication in cardiac myocytes.  Understanding mechanisms of NF-κB 

activation may result in the development of novel pharmacologic methods to combat disease 

caused by pathological activation of NF-κB.  Moreover, data from this research will generate 

new knowledge about how viruses activate NF-κB and induce apoptosis.  Such knowledge 

may foster development of new antiviral therapeutics that mediate apoptosis blockade.   
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CHAPTER II 

 

JAM-A-INDEPENDENT, ANTIBODY-MEDIATED UPTAKE OF REOVIRUS INTO 
CELLS LEADS TO APOPTOSIS 

 
 
 

Introduction 

Reovirus infection is initiated by the attachment of virions to cell-surface receptors 

via the σ1 protein (89, 209).  The σ1 protein engages both JAM-A (11, 24, 57, 137) and cell-

surface carbohydrate (2, 49, 133, 134) to initiate viral entry.  Anti-JAM-A mAb J10.4, which 

inhibits reovirus binding to JAM-A, also blocks reovirus-induced apoptosis (11), indicating 

that JAM-A binding is essential for initiating the apoptotic process.  The JAM-A cytoplasmic 

tail is approximately 45 amino acids in length, contains 13 potential phosphorylation sites, 

and interacts with several PDZ domain-containing proteins, suggesting a role in ligand-

induced cell signaling (14, 54).  Inhibition of binding to sialic acid by treatment with 

neuraminidase also diminishes the apoptotic response elicited by reovirus (38).  Thus, 

binding to both JAM-A and sialic acid is required for maximum levels of apoptosis following 

reovirus infection.   

In addition to receptor binding, post-attachment events are required for the induction 

of apoptosis by reovirus (39).  Inhibition of viral disassembly using ammonium chloride, a 

weak base that increases vacuolar pH (110) or E64, an inhibitor of cysteine proteases 

such as those contained in the endocytic compartment (9), abolishes reovirus-induced 

apoptosis.  On the other hand, interference with steps in viral replication subsequent to 

ISVP formation and membrane penetration using ribavirin, an inhibitor of RNA synthesis 

(139), does not perturb apoptosis induced by reovirus (39).  Thus, in addition to sialic 

acid- and JAM-A-mediated attachment of reovirus to cells, replication steps during or 
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after viral disassembly that occur before the cytoplasmically delivered core becomes 

transcriptionally active, also contribute to reovirus-induced apoptosis.  

In keeping with studies of inhibitors of viral receptor binding, analysis of T1L x T3D 

reassortant viruses indicates that the σ1-encoding S1 gene is the primary genetic determinant 

of differences in the capacity of these strains to induce apoptosis in numerous cell types (145, 

199, 200).  The μ1-encoding M2 gene also has been implicated in the apoptotic response 

induced by reovirus (199, 200).  Since the μ1 protein functions in virus-induced endosomal 

membrane penetration following disassembly but prior to viral RNA synthesis (93, 121, 127), 

the deleterious effects of reovirus disassembly inhibitors on apoptosis induction suggest a 

functional link between the M2 gene segment and differences in the efficiency of apoptosis 

exhibited by different reovirus strains (145, 199, 200).   

 In this study, we determined whether reovirus is capable of inducing apoptosis 

independent of JAM-A and sialic acid binding.  We found that antibody-mediated uptake of 

reovirus into JAM-A-negative, Fc-receptor-expressing cells results in productive infection 

and leads to apoptosis in a σ1-independent fashion.  Moreover, apoptosis induced following 

this uptake pathway also is dependent on viral disassembly.  Analysis of reassortant viruses 

and an M2 mutant virus demonstrates that the μ1 protein influences the strength of 

proapoptotic signaling following reovirus infection.  These data suggest that signaling 

induced as a result of σ1 interactions with JAM-A and sialic acid are not necessary for 

apoptosis induced by reovirus and that the μ1 protein is the viral factor that stimulates the 

cellular apoptotic machinery. 
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Results 

 

A JAM-A truncation mutant lacking the cytoplasmic tail is expressed at the cell surface 
  

 To determine whether the cytoplasmic tail of JAM-A contributes to reovirus-induced 

apoptosis by evoking proapoptotic signaling events, chinese hamster ovary (CHO) cells were 

stably transfected with empty vector or vector encoding full-length JAM-A or a C-terminally 

truncated form of JAM-A that lacks the cytoplasmic tail (JAM-AΔCT).  CHO cells were 

selected since they are poorly permissive to reovirus infection (57); yields of reovirus 

following infection of CHO cells are 100- to 1000- fold lower in the absence of ectopic 

expression of JAM-A {Forrest, 2003 #4656; Campbell, 2005 #5059}.  Whole-cell extracts 

from stably expressing cells were analyzed for expression of JAM-A by immunoblotting 

(Fig. 5A).  While no JAM-A-specific band was detected in the vector-transfected cells, both 

full-length JAM-A and the faster migrating JAM-AΔCT proteins were expressed to high 

levels in the cell lines tested.  The surface expression of both JAM-A and JAM-AΔCT was 

assessed by flow cytometry using JAM-A-specific mAb J10.4 (Fig. 5B).  Both wild-type and 

mutant JAM-A proteins displayed approximately equivalent surface expression, suggesting 

that removal of the C-terminal domain of JAM-A does not prevent transport of JAM-A to the 

cell surface.  These stably transfected cells are therefore suitable for analysis of infection and 

apoptosis induction by reovirus. 

 

Reovirus induces equivalent levels of apoptosis in CHO cells that express JAM-A and 
JAM-AΔCT 

 
To determine whether CHO cells stably expressing JAM-AΔCT can support reovirus 

infection, cells were adsorbed with reovirus strain T3D at an MOI of 10 PFU per cell, and 

viral infectivity was assessed by using indirect immunofluorescence (Fig. 6A).  CHO cells  
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Figure 5.  Stable expression of JAM-A and JAM-A∆CT in CHO cells.  (A) Whole-cell 
lysates (1 x 105 cell equivalents) were prepared from CHO cells stably transfected with 
empty vector, JAM-A, or JAM-A∆CT, resolved by SDS-PAGE, transferred to nitrocellulose, 
and immunoblotted using anti-JAM-A mAb J10.4.  The positions of full-length JAM-A and 
truncated JAM-A∆CT are shown on the right.  The positions of molecular weight standards 
(in kilodaltons) are shown on the top.  (B) Stably transfected CHO cells (1 x 106) were 
incubated with either anti-JAM mAb J10.4 (filled histograms) or an isotype-matched control 
mAb (open histograms) at 10 μg/ml, followed by incubation with PE-labeled anti-mouse Ig 
secondary antibody.  The results are presented as mean fluorescence intensity. 
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transfected with either empty vector or those engineered to stably express full-length JAM-A 

were used as controls.  In contrast to vector-transfected cells, cells expressing either JAM-A 

or JAM-AΔCT were equivalently capable of supporting infection by T3D.  These data 

indicate that although JAM-A expression is required for efficient infection of CHO cells, the 

JAM-A cytoplasmic tail is dispensable. 

To determine whether the JAM-A cytoplasmic tail is required for apoptosis, stably 

transfected CHO cell lines were adsorbed with T3D at an MOI of 100 PFU per cell, and 

apoptosis was assessed by using AO staining (Fig. 6B).  None of the cell lines tested showed 

significant apoptosis following mock infection (< 5%).  T3D infection of vector-transfected 

cells induced levels of apoptosis equivalent to those following mock infection of cells.  In 

contrast, T3D infection of either the JAM-A- or JAM-AΔCT-expressing cell lines induced an 

equivalent percentage of cells to undergo apoptosis (~ 22%).  Therefore, analogous to our 

findings in the infectivity assays, the cytoplasmic tail of JAM-A is not required for reovirus-

induced apoptosis. 

 

Antibody-mediated uptake of reovirus into Fc receptor-expressing cells leads to 
infection and apoptosis 

 
To determine whether the requirement for JAM-A during reovirus infection and 

apoptosis can be bypassed, we utilized antibody-mediated infection of Fc receptor-expressing 

CHO (CHO-B1) cells.  These cells stably express the B1 isoform of the mouse Fc receptor II 

(80).  Therefore, in the absence of JAM-A, these cells should allow internalization of 

antibody-reovirus complexes into cells via Fc receptors, resulting in efficient infection of 

normally non-permissive cells.  For these experiments, T3D virions were incubated with 

increasing concentrations of σ1-specific, neutralizing mAb 9BG5 (23) prior to infection of 

CHO-B1 cells.  HeLa cells were used in parallel to confirm the neutralizing efficacy of mAb  
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Figure 6.  Infection and apoptosis of JAM-A- and JAM-AΔCT-expressing CHO cells. (A) 
Cells were adsorbed with T3D at an MOI of 10 PFU/cell.  After incubation at 37°C for 18 h, 
cells were fixed using methanol.  Infected cells were visualized by immunostaining with 
polyclonal rabbit anti-reovirus sera, followed by incubation with Alexa546-labeled anti-rabbit 
IgG.  Reovirus-infected cells were quantified by counting fluorescent cells.  The results are 
presented as mean fluorescent focus units (FFU)/field.  Error bars indicate standard deviations.
(B) Cells were adsorbed with either PBS (mock) or T3D at an MOI of 100 PFU/cell. Cells 
were harvested at 48 h after infection and stained with AO.  The results are expressed as the 
mean percentage of cells undergoing apoptosis for three independent experiments.  Error bars 
indicate standard deviations. 
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9BG5 at the concentrations tested.  For each cell line, the number of infected cells was 

assessed 18 h post-infection by indirect immunofluorescence.  As anticipated, the efficiency 

of reovirus infection of HeLa cells decreased in proportion to antibody concentration with 

little infection detected in the presence of 2.5 μg per ml of 9BG5 (Fig. 7A).  We conclude 

that 9BG5 interferes with σ1-JAM-A interactions, which are critical for reovirus infection of 

HeLa cells.  In contrast, the efficiency of infection of CHO-B1 cells by T3D increased in 

proportion to 9BG5 concentration, with maximal infection observed in the presence of a 

completely neutralizing concentration of 9BG5, 2.5 μg per ml (Fig. 7A).  These findings 

demonstrate that reovirus infection can be established in a JAM-A-independent manner if an 

alternative high-affinity binding moiety is provided.  These data corroborate a previous report 

of antibody-mediated enhancement of reovirus infection of a murine macrophage-like cell 

line (22). 

To determine whether infection initiated in a JAM-A-independent manner also 

triggers apoptosis, the capacity of reovirus-9BG5 complexes to induce apoptotic cell death of 

both HeLa cells and CHO-B1 cells was assessed by using AO staining (Fig. 7B).  

Approximately 35% of HeLa cells showed apoptotic nuclei at 48 h post-infection in the 

absence of antibody treatment of virions.  Consistent with the decrease in the capacity of 

reovirus to infect HeLa cells in the presence of 9BG5, the percentage of cells undergoing 

apoptosis also decreased with increasing 9BG5 concentrations.  However, in the absence of 

9BG5, T3D induced minimal apoptosis in CHO-B1 cells in comparison to mock-infected 

cells.  In concordance with the infectivity data, the percentage of apoptotic CHO-B1 cells 

increased with increasing concentrations of 9BG5, with maximal apoptosis seen following 

pretreatment with 2.5 μg per ml mAb (~ 25%).  These findings demonstrate that reovirus 

infection initiated in the absence of JAM-A binding also leads to apoptosis.  Therefore σ1-
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JAM-A interactions or signaling pathways induced as a consequence of these interactions are 

dispensable for apoptosis induction by reovirus. 

To exclude the possibility that binding of mAb to Fc receptor contributes to apoptosis 

induction, we tested whether incubation of reovirus with irrelevant anti-Myc mAb 9E10 was 

capable of inducing apoptosis (Fig. 7C).  While incubation of T3D with two different mAbs 

directed against the reovirus outer-capsid, 7F4 (λ2) and 9BG5 (σ1), induced 21% and 22% 

apoptosis, respectively following infection of CHO-B1 cells, incubation of T3D with mAb 

9E10 failed to induce apoptosis at levels over mock-infected cells.  These findings suggest 

that only antibodies directed against reovirus outer-capsid proteins allow virus attachment to 

CHO-B1 cells and subsequent induction of apoptosis.  To exclude the involvement of 

signaling induced as a result of Fc receptor crosslinking due to binding of reovirus-antibody 

complexes, Fc receptors were crosslinked using 2.4G2 (a rat anti-Fc receptor mAb) and an 

IgM antibody directed against rat IgG.  This treatment did not induce apoptosis in CHO-B1 

cells in comparison to mock-treated cells.  As an additional control for the effect of 

crosslinking Fc receptors, T1L core particles, which lack outer-capsid proteins σ1, σ3, and 

μ1, were incubated with mAb 7F4 and added to CHO-B1 cells.  Neither untreated cores nor 

7F4-core complexes induced apoptosis of these cells.  These data suggest that apoptosis does 

not result from proapoptotic signaling induced as a consequence of Fc-receptor crosslinking 

but requires binding of reovirus particles containing outer-capsid proteins. 

 

Viral disassembly is required for apoptosis-induced by Fc-mediated uptake of reovirus 
 

 To determine whether viral disassembly in cellular endosomes is required for 

apoptosis following Fc-mediated delivery of reovirus, CHO-B1 cells were treated with AC 

prior to infection by mAb-treated T3D virions.  Treatment of cells with 20 mM AC, a  
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Figure 7.   Infection and apoptosis of HeLa cells and CHO-B1 cells in the presence of 
mAb 9BG5.   (A) Reovirus particles were incubated overnight with the indicated 
concentration of mAb 9BG5 and adsorbed to either HeLa cells or CHO-B1 cells at an MOI 
of 100 PFU/cell.  After incubation at 37°C for 18 h, cells were fixed using methanol. 
Infected cells were visualized by immunostaining with polyclonal rabbit anti-reovirus sera, 
followed by Alexa546-labeled anti-rabbit IgG.  Reovirus-infected cells were quantified by 
counting fluorescent cells.  The results are presented as mean fluorescent focus units 
(FFU)/field.  Error bars indicate standard deviations.  (B) HeLa cells or CHO-B1 cells were 
adsorbed with 100 PFU/cell of either virus or virus-antibody complex and harvested at 48 h 
after infection and stained with AO.  (C) CHO-B1 cells were mock-infected, infected with 
T3D virions with or without 2.5 μg per ml of Myc-specific mAb 9E10 (antibody control),
σ1-specific mAb 9BG5, or λ2-specific mAb 7F4 at an MOI of 100 PFU/cell, or infected 
with T1L core particles with or without 2.5 μg per ml of mAb 7F4 at an MOI of 104

particles/cell.  CHO-B1 cells also were incubated with 1 μg/ml anti-Fc receptor rat IgG mAb 
2.4G2, followed by incubation with 5 μg/ml of IgM specific for rat IgG (anti-FcR).  Cells 
were harvested at 48 h after infection and stained with AO.  The results are expressed as the 
mean percentage of cells undergoing apoptosis for three independent experiments.  Error 
bars indicate standard deviations.  *, P < 0.05 as determined by Student's t test in 
comparison to T3D incubated with control mAb 9E10. 
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concentration sufficient to block reovirus disassembly (183, 213), abolished the capacity of 

T3D to induce apoptosis (Fig. 8A).  Thus, acid-dependent proteolytic disassembly is required 

for apoptosis induction by this uptake mechanism.  To determine whether the apoptosis-

inhibitory effect of AC is due to blockade of viral RNA synthesis, we tested ribavirin, an 

inhibitor of viral RNA synthesis (139), for the capacity to diminish apoptosis.  In keeping 

with our previously published results (39), apoptosis induced by reovirus infection via Fc-

mediated uptake was unaffected by ribavirin (Fig. 8A).  To corroborate these results, we 

tested the apoptosis inducing capacity of UV-inactivated reovirus virions, which are 

incapable of establishing productive infection (166).  We found that UV- inactivated reovirus 

is capable of inducing apoptosis following Fc receptor-mediated uptake of a high MOI of 

virus (Fig. 8B).  These findings are consistent with our previously published observations 

(199).  Collectively, these results demonstrate that steps in reovirus replication cycle that 

occur after attachment but before transcription are required for virus-induced apoptosis, 

regardless of the type of receptor used to initiate infection (39).  In addition, these results 

suggest that death signaling during reovirus infection may occur independently of receptor 

engagement. 

 

Fc receptor-dependent infection abolishes σ1-related differences in the apoptosis-
inducing capacity of reovirus 

 
 Differences in the capacity of some reovirus strains to induce apoptosis are linked to 

differences in affinity for sialic acid (38).  To determine whether reovirus strains that are 

incapable of binding to sialic acid can induce apoptosis when infection is initiated via Fc-

dependent uptake, strains T1L and T3SA-, neither of which is capable of binding to sialic 

acid (10, 28, 49), were incubated with σ1-specific antibodies and adsorbed to CHO-B1 cells.  

Incubation of T1L virions with type 1 σ1-specific mAb 5C6 (206) and incubation of T3SA-  
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Figure 8.  Effect of inhibitors of viral replication on apoptosis induced by reovirus. 
T3D alone or preincubated with 2.5 μg/ml of mAb 9BG5 was adsorbed to CHO-B1 cells at 
an MOI of 500 PFU/cell.  After incubation at 37°C for 48 h in untreated medium or medium 
containing either 20 mM AC or 200 µM ribavirin, cells were stained with AO.  The results 
are expressed as the mean percentage of cells undergoing apoptosis for three independent 
experiments.  Error bars indicate standard deviations.  *, P < 0.05 as determined by 
Student's t test in comparison to T3D incubated with mAb 9BG5. 
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virions with type 3 σ1-specific 9BG5 (23) resulted in significantly higher levels of apoptosis 

in CHO-B1 cells in comparison to levels observed following infection with T1L and T3SA- 

virions in the absence of antibody treatment (Fig. 9).  The percentage of cells undergoing 

apoptosis following antibody-mediated infection of non-sialic-acid-binding reovirus strains 

was at least equal to that observed following infection with T3D.  Therefore, σ1-related 

differences in apoptosis efficiency are overcome when infection is initiated via Fc-mediated 

uptake.  These results make it unlikely that the σ1 protein is the viral effector of apoptosis 

induction. 

 

Differences in apoptosis induction following Fc receptor-dependent infection of T1L x 
T3D reassortant viruses are linked to the M2 gene segment 

 
 We have demonstrated previously that the viral S1 and M2 gene segments segregate 

with differences in the apoptosis-inducing capacity of T1L and T3D (145, 199).  To ascertain 

whether any strain-specific differences exist when the effect of the S1 gene segment is 

circumvented by Fc receptor-dependent uptake, CHO-B1 cells were adsorbed with T1L x 

T3D reassortant viruses after incubation with σ1-specific antibodies.  Type 1 and type 3 

strains were incubated with σ1-specific mAbs 5C6 and 9BG5, respectively, prior to infection.  

Each of the reassortant viruses tested produced an approximately similar number of infected 

cells as judged by indirect immunofluorescence (data not shown), suggesting equivalent 

efficiency of antibody-mediated uptake and infection.  The percentage of cells undergoing 

apoptosis as a result of antibody-mediated infection of cells was assessed at 48 h after 

infection.  The reassortant viruses were ranked from highest to lowest by apoptosis-inducing 

capacity (Table 1).  Although the reassortants did not cluster distinctly into two groups with 

high and low apoptotic potential, six of the seven strains with the highest levels of apoptosis 

had an M2 gene segment derived from T3D.  Conversely, seven of the eight strains with the  
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Figure 9.  Apoptosis induction in CHO-B1 cells following Fc-mediated infection by 
T1L and T3SA-.  Cells were adsorbed with T3D, T3SA-, or T1L with or without 2.5 μg per 
ml of mAb 9BG5 (for type 3 strains) or mAb 5C6 (for T1L) at an MOI of 100 PFU/cell. 
Following infection at 37°C for 48 h, cells were harvested and stained with AO.  The results 
are expressed as the mean percentage of cells undergoing apoptosis for three independent 
experiments.  Error bars indicate standard deviations. 
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lowest levels of apoptosis had an M2 gene segment derived from T1L.  Analysis of the data 

using the Mann-Whitney test showed that only the M2 gene segregated at a statistically 

significant level with the capacity of these strains to induce apoptosis (P = 0.02).  There was 

not a statistically significant association between apoptosis and the S1 gene (P = 0.28), which 

is the primary apoptosis determinant following infection of JAM-A-expressing cells, when 

infection was initiated in an Fc-dependent fashion (38, 145, 199, 200).  These data suggest 

that the M2-encoding μ1 protein, which functions in penetration of cell membranes (93, 121, 

127), is the primary viral determinant of strain-specific differences in apoptosis induction 

following infection by Fc-mediated uptake. 

 

Reovirus mutant tsA279 is inefficient in apoptosis induction 

   To determine whether a mutant virus with a defective μ1 protein is altered in the 

capacity to trigger apoptosis, we used reovirus strain tsA279.64, which contains a 

temperature-sensitive mutation that maps to the M2 gene segment (67).  This virus was 

derived from a coinfection of T1L and tsA279, which contains temperature-sensitive 

mutations in both the M2 and L2 gene segments.  The tsA279.64 virus contains the mutant 

M2 gene segment but not the mutant L2 gene segment, thus facilitating analysis of the 

contribution of the M2 gene segment to apoptosis induction.  When assembled at non-

permissive temperature, virions containing the mutant M2 gene segment cannot penetrate 

membranes due to a misfolded μ1 protein (67).  To examine whether μ1-mediated membrane 

penetration is required for apoptosis induction, HeLa cells were adsorbed with increasing 

MOIs of tsA279.64 virions assembled under permissive and non-permissive conditions.  The 

percentage of cells with apoptotic nuclei were assessed by using AO staining 48 h after 

infection at non-permissive temperature (Fig. 10).  At all MOIs tested, particles assembled at  
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Table 1.  Apoptosis induction by T1L x T3D reassortant viruses in CHO-B1 cells 

Origin of gene segments a 
Virus 
strain L1 L

2 
L3 M1 M

2 
M3 S1 S2 S3 S4 % Apoptosis b 

EB138 D L L D D L D D L L 80.52 

KC150 D L L L D L D D L D 62.86 

EB97 D D L D D D D D D L 52.31 

EB68 L D L L D L L L D D 41.29 

1HA.3 L L L L L L D L L L 40.63 

EB144 L L L L D D L L D L 38.27 

KC9 D D L D D D L D D D 35.06 

EB98 L D L L L L L D L D 32.62 

EB121 D D L D L D L D D D 28.94 

EB120 D D D L L D D D L L 26.69 

G16 L L L D L L L D L L 24.46 

G2 L D L L L L D L L L 23.14 

EB143 D L L L L L D L L L 23.04 

EB145 D D D D D L L D D D 16.28 

EB113 L L L D L L L L D L 14.54 
 

a Parental origin of each gene segment: L, gene segment derived from T1L; D, gene segment 
derived from T3D. 
b CHO-B1 cells (2 x 105) were adsorbed with virus strains at an MOI of 100 PFU per cell. 
After 1 h, the inoculum was removed, fresh medium was added, and cells were incubated at 
37oC for 48 h and stained with AO to assess apoptosis. Shown are the mean percentage of 
cells undergoing apoptosis for three independent experiments. The M2 gene was the only 
gene associated with the efficiency of apoptosis as determined by using the non-parametric 
Mann-Whitney test, without adjusting for multiple comparisons (P = 0.02). 
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Figure 10.  Apoptosis induced by μ1 temperature-sensitive mutant tsA279.64.  HeLa 
cells were adsorbed with tsA279.64 grown at permissive or non-permissive temperatures 
at the MOIs shown.  Following infection at 37°C for 48 h, cells were harvested and 
stained with AO.  The results are expressed as the mean percentage of cells undergoing 
apoptosis for three independent experiments.  Error bars indicate standard deviations.  *, 
P < 0.05 as determined by Student's t test in comparison to virions grown at permissive 
temperature at an equivalent MOI.viations. 
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non-permissive temperature induced less apoptosis than particles assembled at permissive 

temperature.  These data demonstrate that virions containing a μ1 protein that is inefficient in 

membrane penetration are less potent inducers of apoptosis, which further highlights a key 

role for the μ1 protein in apoptosis induction. 

 

Discussion 

 We have previously shown that binding of reovirus to JAM-A and sialic acid is 

required for efficient induction of apoptosis (11, 38).  In addition, we have reported that viral 

disassembly in cellular endosomes is also necessary for apoptosis induction by reovirus (39).  

However, since receptor binding is prerequisite for virus disassembly, these findings do not 

resolve the question of whether reovirus attachment and disassembly provide two distinct 

signals, both of which are required for apoptosis induction, or whether the viral disassembly 

events are sufficient for proapoptotic signaling.  To address this question, we uncoupled 

reovirus attachment to JAM-A and sialic acid from viral disassembly by providing an 

alternative means of viral entry.  We report here that antibody-mediated uptake of reovirus 

into Fc receptor-expressing CHO cells independent of binding to JAM-A and sialic acid leads 

to productive infection (22) and apoptosis.  Furthermore, we demonstrate that antibody-

directed binding of reovirus to Fc receptors expressed on CHO cells is not sufficient for 

reovirus-induced apoptosis.  Analogous to JAM-A- and sialic acid-dependent infection, viral 

replication steps during or after disassembly in endosomes but prior to RNA synthesis also 

are required for reovirus-induced apoptosis when infection is initiated by Fc-mediated 

uptake.  Analysis of apoptosis induction by T1L x T3D reassortant viruses following Fc-

mediated uptake showed that differences in the efficiency of apoptosis exhibited by type 1 

and type 3 strains segregates with the μ1-encoding M2 gene segment.  Neither core particles 
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that lack the μ1 protein and are therefore incapable of penetrating endosomal membranes, nor 

the thermosensitive M2 mutant virus tsA279, which contains a misfolded, penetration-

defective μ1 protein, can efficiently induce apoptosis.  These findings suggest that reovirus 

membrane-penetration protein μ1 induces proapoptotic signaling events during or after 

endosomal membrane penetration. 

 Our reassortant analysis indicated that only the viral M2 gene segment segregated 

statistically significantly with the capacity to induce apoptosis.  Although the apoptosis-

inducing capacities of T3D M2 containing reassortants were generally higher than those of 

T1L M2 containing viruses, the percentage of cells undergoing apoptosis formed a 

continuum rather than two distinct clusters.  We think that since apoptosis is induced during 

or after membrane penetration mediated by the μ1 protein, steps in the viral replication cycle 

preceeding these m1 events, such as viral attachment, internalization and disassembly, also 

are likely to affect the magnitude of apoptosis.  Thus, viral genes that affect these steps also 

might influence the apoptotic response.  Minor strain-specific effects of other viral gene 

segments may also explain why we observe that Fc-mediated uptake of T1L induces 

significantly greater apoptosis that T3D (Fig. 5 and parents in Table 1, Student’s t test, p 

<0.05).  Since we did not find any linkage between the S1 gene and apoptotic potential, we 

do not think that the differences in the efficiencies of the two σ1 antibodies utilized for this 

analysis contribute to these results.  An alternative explanation to account for the unusually 

high and low apoptosis inducing capacities of the reassortants may be the presence of 

mutations in their M2 gene that alter the capacity of the virus to induce apoptosis.  Thus, 

although multiple reovirus genes contribute to the capacity of reovirus to induce apoptosis, 

based on our statistical analysis of reassortant viruses as well as analysis of an M2 ts mutant, 

we conclude that the M2 gene product μ1 is the primary mediator.   
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 In addition to the findings described in this chapter, three independent lines of 

evidence support a crucial role for μ1 in reovirus-induced apoptosis.  First, differences in 

apoptosis efficiency displayed by strains T1L and T3D are linked to the μ1-encoding M2 

gene (145, 199, 200).  Second, studies with pharmacologic inhibitors of reovirus replication 

place the apoptosis-inducing events subsequent to viral disassembly but prior to RNA 

synthesis (39), which coincides with μ1-mediated membrane penetration (26, 93, 121, 127).  

Third, transient transfection of a plasmid encoding T3D μ1 is sufficient to induce apoptosis 

in CHO cells (36).  Interestingly, although plasmid-mediated expression of μ1 neither mimics 

normal delivery of μ1 via endosomal rupture during viral membrane penetration, nor de novo 

expression of μ1 in infected cells (since μ1 is always found associated with its protector 

protein σ3 (168, 169, 190), it leads to the same consequence. 

 It is not known how the viral disassembly events culminating in μ1-mediated 

membrane penetration elicit proapoptotic signaling.  We envision two possibilities.  First, 

endosomal disruption by μ1 may lead to release of hydrolytic enzymes such as cathepsins, 

which in turn damage mitochondria and stimulate death signaling (46, 64, 144).  

Interestingly, mitochondrial injury has been reported as early as 4 h following reovirus 

adsorption, suggesting the involvement of an early viral replication event (85, 86).  It is also 

possible that release of these enzymes causes apoptosis via their action on death regulators 

such as Bid (182).  Of note, Bid cleavage has been observed during reovirus infection and has 

been hypothesized to play a role in apoptosis induction (85).  Second, fragments of μ1 

produced during proteolytic viral disassembly are known to gain access to the cytoplasm 

(27).  These fragments may activate other cellular sensors of viral infection or directly injure 

mitochondria to induce apoptosis.  Concordantly, the μ1 protein localizes to mitochondria 

during infection or when expressed from plasmids in transfected cells, suggesting a post-
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endosomal site of action.  Interestingly, a 30-residue C-terminal fragment of μ1 is sufficient 

to localize to mitochondria and induce apoptosis in transfected cells (36).   

 Although our findings point to μ1 as a key viral regulator of proapoptotic signaling, 

this work does not explain the previously established unequivocal association between the 

S1-encoded σ1 protein and the efficiency of apoptosis induction by reovirus (145, 199, 200).  

Strains encoding a σ1 protein capable of binding to JAM-A and sialic acid are the most 

potent inducers of apoptosis (38).  We did not observe efficient infection of CHO-B1 cells in 

the absence of mAb pretreatment at the MOIs used.  Therefore, we think that these cells do 

not express sufficient quantities of sialic acid or JAM-A on the cell surface to effect 

productive infection.  Thus, infection of these cells appears to be dependent only on the 

presence of a high-affinity receptor such as the Fc receptor.  Since the efficiency of antibody-

mediated uptake and delivery of both sialic-acid-binding and non-sialic-acid-binding strains 

of reovirus via Fc receptors is essentially equivalent in CHO-B1 cells, σ1-related differences 

are negated.  An alternative explanation for our findings is that antibody-mediated attachment 

of virions to Fc receptors stimulates a signaling cascade in cells that mimics signaling 

induced as a consequence of σ1 binding to JAM-A and sialic acid and that Fc receptor-

mediated signaling acts in concert with the viral disassembly events to elicit apoptosis.  

However, given the marked differences in functional properties displayed by JAM-A and Fc 

receptors, this explanation seems less likely.  Therefore, our current and previous results 

suggest that the linkage of σ1 to apoptosis efficiency is not related to σ1-mediated 

stimulation of the cellular proapoptotic machinery, but rather the capacity of σ1 to efficiently 

deliver virions into endosomes for disassembly.  We hypothesize that as opposed to viral 

infection, which requires penetration by just one infectious virion, efficient apoptosis 

induction by reovirus requires endosomal penetration by multiple virions.  Since sialic acid 
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allows more avid binding of virions to cells (10), we think that this entry route may deliver 

virions more efficiently into endosomal compartments for uncoating and subsequent 

membrane penetration, leading to higher levels of apoptosis (38). 

 This study highlights a new role for the viral membrane-penetration protein μ1 in 

apoptosis induction.  Other viruses such as coronavirus, Sindbis virus, and vaccinia virus also 

have been reported to require post-attachment cell entry events in endosomes to induce 

apoptosis (78, 98, 138).  However, the viral determinants of apoptosis by these viruses are 

unknown.  Interestingly, entry of Sindbis virus into endosomes induces apoptosis through 

activation of sphingomyelinases and release of the proapoptotic second messenger, ceramide 

(76).  Although we anticipate that interactions between the enveloped Sindbis virus with 

endosomes differ from those with μ1, it is possible that ceramide plays a role in reovirus-

induced apoptosis.  Collectively, these studies point to cellular endosomes as sites from 

which proapoptotic signaling events are initiated and imply a conserved mechanism by which 

host cells detect the presence of invading pathogens.  Pathogen detection during the entry 

phase may allow host cells to more efficiently limit the spread of infection by initiating a 

suicidal response.  Alternatively, induction of apoptosis by a virus early in its replication 

cycle may prevent the development of an inflammatory response, thereby allowing the virus 

to better evade host defenses.   

A fascinating similarity exists between the properties of reovirus protein μ1 and 

several toxins elaborated by bacteria and viruses.  Analogous to the capacity of μ1 to mediate 

membrane permeabilization (26, 71, 101, 192), α toxin of Staphylococcus aureus, 

lysteriolysin O of Listeria monocytogenes, and killer toxins (K1 and K2) of the yeast L-A 

virus, also can form pores in host cell membranes (107, 191, 212, 215).  Interestingly, each of 

these toxins also has the capacity to induce apoptotic cell death (143, 212).  Our ongoing 
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studies are focused on understanding the precise mechanism by which μ1 induces apoptosis 

during reovirus infection.  Through these studies we hope to gain broader insight into events 

at the pathogen-host interface that evoke death signaling and cause disease. 
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CHAPTER III 

 

IκB KINASE SUBUNITS α AND γ ARE REQUIRED FOR ACTIVATION OF NF-κB 
AND INDUCTION OF APOPTOSIS BY MAMMALIAN REOVIRUS 

 

Introduction 

Transcription factor NF-κB plays an important regulatory role in apoptosis evoked by 

reovirus in cultured cells (40) and in vivo (128).  Inducible members of the NF-κB family are 

sequestered in the cytoplasm by inhibitory IκB proteins, including IκBα, IκBβ, IκBε, and 

p100/NF-κB2 (8, 69, 176, 204, 214).  In response to a wide variety of NF-κB inducers, IκB 

proteins are phosphorylated at specific serine residues, earmarking these molecules for 

destruction by the ubiquitin-proteasome pathway (21, 30, 69, 132, 194, 214).  

Phosphorylation of IκB proteins is mediated by cytokine-inducible IκB kinases (IKKs) IKKα 

and IKKβ (104, 203), which can form higher order complexes containing a regulatory 

subunit called IKKγ/Nemo (51, 115, 151, 223, 226).  A primary function of IKKβ is to 

modulate the inhibitory interaction of IκBα with the prototypical form of NF-κB containing 

p50/RelA dimers (48, 51, 115, 141, 177).  This regulatory circuit, termed the classical 

pathway of NF-κB activation, is strictly dependent on the presence of IKKγ/Nemo (156, 160, 

223).  In contrast, IKKα functions in an alternative IKKγ-independent pathway of NF-κB 

activation that leads to proteolytic processing of p100 and production of a fully functional 

p52 Rel subunit (35, 163, 179).  Unlike the classical, IKKβ-directed pathway of NF-κB 

activation, the alternative pathway involving IKKα is dependent on prior phosphorylation of 

this IKK by NF-κB-inducing kinase (NIK) (95, 163, 221).   
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To better understand the mechanism of NF-κB activation by reovirus, I conducted 

experiments to define the NF-κB/Rel, IκB, and IKK proteins that are under reovirus control.  

These studies revealed that NF-κB/Rel proteins are mobilized to the nuclear compartment 

with biphasic kinetics following reovirus infection.  Reovirus-induced activation of NF-

κB/Rel proteins is accompanied by selective degradation of IκBα, suggesting a role for 

IKKβ.  However, subsequent studies with IKK subunit-deficient cells clearly demonstrate 

that IKKα rather than IKKβ plays an essential role in the mechanism by which reovirus 

activates NF-κB and downstream apoptotic genes.  I also assembled evidence indicating that 

the reovirus/IKKα axis is intact in cells lacking NIK, an upstream activator of IKKα, but not 

in cells lacking the IKKβ regulatory subunit IKKγ/Nemo.  Taken together, these data suggest 

that reovirus activates the IKKα pathway of the NF-κB signaling apparatus downstream of 

NIK, perhaps via direct interactions with the regulatory subunit IKKγ/Nemo.   

 

Results 

 

Reovirus infection results in the biphasic activation of NF-κB/Rel DNA-binding proteins 

In prior studies, we found that reovirus activates the functional expression of 

p50/RelA complexes, suggesting the involvement of classical NF-κB signaling (40).  

However, it remained unclear whether NF-κB/Rel proteins linked to the alternative pathway 

of the NF-κB pathway are activated during reovirus infection.  To more completely define 

the composition of NF-κB complexes activated by reovirus, we used nuclear extracts from 

reovirus-infected HeLa cells and Rel-specific antibodies to monitor the composition of DNA-

binding complexes formed in EMSAs.  NF-κB/Rel DNA-binding activity was readily 
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detected over background levels (mock treatment) within 2 hours after infection with reovirus 

strain T3D (Fig. 11A), which potently induces apoptosis in cultured cells (40, 145, 199) and 

the murine CNS (125).  Peak levels of NF-κB/Rel DNA-binding activity were observed at 4-

8 h post-infection.  Supershift analysis of extracts obtained at 4, 6, and 8 h post-infection 

revealed the presence of DNA/protein complexes containing p50 and RelA, but neither p52 

nor RelB (Fig. 11B), suggesting preferential usage of the classical versus alternative NF-κB 

pathway by reovirus.  Complexes containing c-Rel were apparent in supershift assays only 

after 8 h of infection (Fig. 11B).  Thus, reovirus induces a biphasic pattern of NF-κB/Rel 

activation featuring the initial nuclear translocation of complexes consisting of p50 and RelA, 

followed by those containing p50, RelA, and c-Rel.  Given that the cellular gene encoding c-

Rel contains functional NF-κB binding sites (63), this expression pattern may reflect de novo 

synthesis of c-Rel rather than its mobilization from a latent cytoplasmic pool.   

 These initial experiments conducted over an 8 h timecourse provided no evidence for 

the capacity of reovirus to stimulate the nuclear expression of p52, a signature Rel protein 

involved in the alternative pathway of NF-κB signaling.  To further investigate whether 

reovirus interfaces with the alternative NF-κB pathway, we extended the timecourse of T3D 

infection to 24 h and monitored extracts for processing of p100 to p52 (163).  Levels of p100 

were significantly reduced between 16 and 24 h post-infection (Fig. 12).  Consistent with a 

precursor/product relationship, diminution in p100 protein levels were accompanied by a 

significant increase in the steady-state levels of p52 (Fig. 12, panels A and C).  Taken 

together with the NF-κB/Rel profiling data shown in Fig. 11B, this finding suggests that 

reovirus engages not only the classical pathway of NF-κB signaling but also the alternative 

pathway, albeit at much later times of infection.   
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Figure 11.  Biphasic activation of NF-κB/Rel proteins in reovirus-infected cells.  (A) 
Nuclear extracts were prepared from uninfected HeLa cells (0 h), mock-infected cells 
(Mock), or cells infected with T3D at an MOI of 100 PFU/cell for the times shown.  Cells 
also were treated with 20 ng/ml of TNFα for 30 min as a positive control.  Extracts were 
incubated with a radiolabeled NF-κB consensus oligonucleotide, and resulting protein-
oligonucleotide complexes were resolved by acrylamide gel electrophoresis, dried, and 
exposed to film.  (B) Nuclear extracts prepared at 4, 6, and 8 h post infection were incubated 
with antisera specific for p50, p52, RelA, RelB, or c-Rel prior to the addition of a 
radiolabeled NF-κB consensus oligonucleotide.  NF-κB-containing complexes are indicated.
 



 40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

0 2 4 6 8 12 16 20 24

2 4 6 8 12 16 20 24 8

Mock

T3D LTβ

p100

p52

β-actin

p100

p52

β-actin

Time (h)

Time (h)

B

0 2 4 6 8 12 16 20 24
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Mock
T3D

Time post-infection (h)

D
en

si
ty

 (p
10

0/
ac

tin
)

*
* *

C

0 2 4 6 8 12 16 20 24
0.0

0.5

1.0

1.5

2.0

2.5

3.0
Mock
T3D

Time post-infection (h)

D
en

si
ty

 (p
52

/p
10

0)

*

*

Figure 12.  Processing of p100 to p52 during reovirus infection.  (A) Whole-cell extracts 
were prepared from uninfected HeLa cells (0 h), mock-infected cells (Mock), or cells 
infected with reovirus T3D at an MOI of 100 PFU/cell for the times shown.  Cells also were 
treated with 2 μg/ml of an agonistic lymphotoxin-β receptor antiserum for 8 h as a positive 
control.  Extracts were resolved by SDS-PAGE, transferred to nitrocellulose membranes, 
and immunoblotted by using an antiserum specific for p100/p52.  Band intensity was 
quantified by using the Image J program.  The results are presented as the mean ratio of (B) 
p100/actin or (C) p52/p100 for three independent experiments.  Error bars indicate standard 
deviations.  *, P < 0.05 as determined by Student’s t test in comparison to untreated cells (0 
h). 
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Reovirus infection leads to the selective degradation of IκBα 

 Activation of the classical NF-κB pathway by physiologic agonists is primarily 

dependent on degradation of IκBα (reviewed in (19, 59, 66)), an inhibitor that sequesters 

p50/RelA complexes in the cytoplasmic compartment (8).  We have previously shown that 

degradation-resistant forms of IκBα attenuate reovirus-induced apoptosis, which is critically 

dependent on NF-κB activation (40).  However, mammalian cells express other labile 

inhibitors that are structurally similar to IκBα, such as IκBβ (96) and IκBε (214).  Indeed, 

prior studies suggest a potential role for signal-dependent degradation of IκBβ (189) and 

IκBε (214) in the inducible nuclear entry of c-Rel.  To determine whether any of these 

inhibitors is under reovirus control, we monitored their levels in T3D-infected cells in 

immunoblotting studies using IκB-specific antibodies.  The cellular pool of IκBα was 

significantly reduced within 4 h after infection with T3D (Fig. 13, A and B).  In contrast, 

levels of IκBβ and IκBε were maintained under the same stimulatory conditions over the 

entire 8 h timecourse (Fig. 13, C-F).  We conclude that IκBα is a primary cellular target of 

reovirus, which is fully consistent with its capacity to stimulate nuclear translocation of NF-

κB p50/RelA.   

 

IKKα and IKKγ are required for reovirus-induced NF-κB activation 

 We next investigated the mechanism by which reovirus destabilizes IκB proteins.  

Cytokine-induced degradation of NF-κB inhibitors is dependent on their phosphorylation at 

specific serine residues by IKKs such as IKKα and IKKβ (21, 51, 226).  These structurally-

related enzymes can interact and form higher-order complexes with other cellular proteins 

(reviewed in (59, 66)).  Integration of the regulatory protein IKKγ/Nemo into such complexes  
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Figure 13.  Reovirus infection leads to degradation of IκBα but not IκBβ or IκBε. 
Cytoplasmic extracts were prepared from uninfected HeLa cells (0 h), mock-infected cells 
(Mock), or cells infected with reovirus T3D at an MOI of 100 PFU/cell for the times shown. 
Cells also were treated with 20 ng/ml of TNFα for 10 min as a positive control.  Extracts 
were resolved by SDS-PAGE, transferred to nitrocellulose membranes, and immunoblotted 
by using antisera specific for (A) IκBα, (C) IκBβ, or (E) IκBε.  An actin-specific antiserum 
was used to detect levels of actin as a loading control.  Band intensity corresponding to 
levels of (B) IκBα, (D) IκBβ, and (F) IκBε was quantified by using the Image J program. 
The results are presented as the mean ratio of IκB/actin for three independent experiments. 
Error bars indicate standard deviations.  *, P < 0.05 as determined by Student’s t test in 
comparison to untreated cells (0 h). 
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is required for the activation of IKKβ (156, 160, 223) but not IKKα (35, 47, 163).  The most 

well-characterized substrate of IKKβ is IκBα (73, 115), whereas IKKα catalyzes 

phosphorylation of p100/NF-κB2 (163, 221).   

To determine whether either IKKα or IKKβ is required for reovirus-induced 

activation of NF-κB, cellular IKK complexes were immunopurified from HeLa cells either 

before or after infection with T3D and monitored for their capacity to phosphorylate IκBα in 

vitro.  In keeping with the kinetics of IκBα degradation (Fig. 13A) and NF-κB activation 

(Fig. 11A), IκB kinase activity exceeding basal levels in uninfected cells was readily detected 

within 4 h after exposure to T3D and sustained for at least an additional 4 h (Fig. 14A).  

These data suggest that IKKs are critically involved in the mechanism by which reovirus 

diminishes the cellular pool of IκBα (Fig. 13A).   

To determine whether IKK activation is required for the nuclear translocation of NF-

κB by reovirus, cells were treated with escalating doses of the IKK inhibitor BAY 65-1942 

prior to infection with T3D.  Importantly, BAY 65-1942 inhibits IKKβ more efficiently than 

IKKα (227).  As demonstrated in EMSAs, treatment of cells with BAY 65-1942 suppressed 

NF-κB signaling induced by reovirus (Fig. 14, B and C), although incompletely, perhaps 

reflecting incomplete blockade of IKKα.  Immunoblotting studies of nuclear extracts from 

the same panel of infected cells indicated that BAY 65-1943 had a profound inhibitory effect 

on reovirus-induced nuclear translocation of RelA (Figs. 14, D and E), which is primarily 

under the control of IKKβ.  These pharmacological data suggest that reovirus activates NF-

κB via a mechanism involving either IKKα, IKKβ, or both of these IKKs.   

To identify the IKK subunits responsible for NF-κB activation by reovirus, NF-κB 

DNA-binding activity was assessed in murine embryo fibroblasts (MEFs) deficient for  
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Figure 14.  Involvement of IKKs in reovirus-induced NF-κB activation.  (A) Whole-cell 
extracts were prepared from uninfected HeLa cells (0 h), mock-infected cells (Mock), or 
cells infected with reovirus T3D at an MOI of 100 PFU/cell for the times shown.  Cells also 
were treated with 20 ng/ml of TNFα for the times shown as a positive control.  The IKK 
complex was immunoprecipitated by using an IKKγ-specific antiserum prior to incubation 
with a GST-IκBα substrate in the presence of [γ-32P]ATP.  Kinase reactions were resolved 
by SDS-PAGE, transferred to nitrocellulose, and visualized by autoradiography.  (B) HeLa 
cells were pretreated with IKK inhibitor BAY 65-1942 for 1 h at the concentrations shown 
and uninfected (Untreated), mock-infected (Mock), or infected with reovirus T3D at an 
MOI of 100 PFU/cell for the times shown.  Nuclear extracts were incubated with a 
radiolabeled NF-κB consensus oligonucleotide, and resulting protein-oligonucleotide 
complexes were resolved by acrylamide gel electrophoresis, dried, and exposed to film.  (C) 
Band intensity was quantified by determining PSL units relative to uninfected cells for four 
independent experiments.  Error bars indicate standard deviations.  *, P < 0.05 as 
determined by Student’s t test in comparison to untreated cells (0 μM).  (D) Nuclear extracts 
from the experiment shown in panel B were resolved by SDS-PAGE, transferred to 
nitrocellulose, and immunoblotted by using a RelA-specific antiserum.  (E) Band intensity 
was quantified relative to uninfected cells by using the Image J program.  The results are 
presented as the mean RelA band intensity for three independent experiments.  Error bars 
indicate standard deviations.  *, P < 0.05 as determined by Student’s t test in comparison to 
untreated cells (0 μM). 
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IKKα, IKKβ, or the IKKβ regulatory subunit IKKγ/Nemo.  In initial experiments, EMSAs 

were conducted with nuclear extracts from wild-type MEFs following infection with T3D for 

8 h, which corresponds to peak levels of NF-κB DNA-binding activity (Fig. 11A).  Reovirus 

induced NF-κB DNA binding activity to levels comparable to or exceeding those observed in 

control experiments with wild-type MEFs treated with the cytokine TNFα (Fig. 15A), a 

potent agonist of IKK.  Similar results were obtained with nuclear extracts from reovirus-

infected MEFs lacking IKKβ (Fig. 15A).  However, the capacity of reovirus to activate NF-

κB was completely disrupted in MEFs lacking IKKα (Fig. 15A), indicating preferential 

usage of this IKK relative to IKKβ.  MEFs lacking the regulatory subunit IKKγ/Nemo (Fig. 

15A) also were incapable of reovirus-mediated NF-κB signaling.  Immunoblotting studies of 

nuclear extracts from the same panel of infected cells confirmed these results (Fig. 15C).  

Nuclear translocation of RelA was detected in wild-type MEFs and IKKβ-deficient MEFs, 

but not in MEFs lacking IKKα or IKKγ.  Differences in reovirus-mediated signal 

transduction in IKK-deficient MEFs could not be attributed to differences in viral infection or 

growth (Fig. 16).  Thus, these findings suggest that IKKα and IKKγ are required for reovirus-

induced NF-κB activation. 

NIK is capable of phosphorylating and activating IKKα in response to some agonists 

of the alternative NF-κB pathway, such as lymphotoxin β (95, 109).  To determine whether 

NIK is required for NF-κB activation in response to reovirus, NIK-deficient MEFs were used 

to probe for NF-κB induction by EMSA and immunoblotting in response to reovirus T3D 

infection (Fig. 17).  Reovirus infection resulted in NF-κB activation in both wild-type and 

NIK-deficient MEFs, indicating that NIK is dispensable for reovirus-induced NF-κB 

activation.  Taken together, these data confirm a requirement for endogenous IKK in the  
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Figure 15.  IKKα and IKKγ are required for reovirus-induced activation of NF-κB. 
(A) Wild-type MEFs or MEFs deficient in IKKα, IKKβ, or IKKγ were uninfected (0 h), 
mock-infected (Mock), infected with reovirus T3D at an MOI of 100 PFU/cell for 8 h, or 
treated with 20 ng/ml of TNFα for 1 h.  Nuclear extracts were incubated with a radiolabeled 
NF-κB consensus oligonucleotide.  Resulting protein-oligonucleotide complexes were 
resolved by acrylamide gel electrophoresis, dried, and exposed to film.  NF-κB-containing 
complexes are indicated.  (B) Band intensity was quantified by determining PSL units 
relative to uninfected cells for three independent experiments.  Error bars indicate standard 
deviations.  *, P < 0.05 as determined by Student’s t test in comparison to mock-treated 
cells (0 h).  (C) Nuclear extracts from the experiment shown in panel A were resolved by 
SDS-PAGE, transferred to nitrocellulose, and immunoblotted by using a RelA-specific 
antiserum.   
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Figure 16.  Cells deficient in IKK subunits are permissive for reovirus infection and 
growth.  (A) Wild-type MEFs or MEFs deficient in IKKα, IKKβ, or IKKγ were infected 
with T3D at an MOI of 1000 PFU/cell. After 24 h incubation, cells were fixed and 
incubated with reovirus-specific antiserum. Infected cells were identified by using indirect 
immunofluorescence. (B) Cells and medium were infected with reovirus T3D at an MOI of 
1 PFU/cell and incubated for the times shown. Cells and medium were frozen and thawed 
twice, and viral titers were determined by plaque assay. The results are expressed as the 
mean viral titers for three independent experiments. Error bars indicate standard deviations. 
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Figure 17.  Reovirus-induced activation of NF-κB in NIK-deficient cells.  (A) Wild-type 
MEFs or NIK-deficient MEFs were uninfected (0 h), mock-infected (Mock), infected with 
reovirus T3D at an MOI of 1000 PFU/cell for 8 h, or treated with 20 ng/ml of TNFα for 30 
min.  Nuclear extracts were incubated with a radiolabeled NF-κB consensus 
oligonucleotide.  Resulting protein-oligonucleotide complexes were resolved by acrylamide 
gel electrophoresis, dried, and exposed to film.  NF-κB-containing complexes are indicated. 
(B) Nuclear extracts from the experiment shown in panel A were resolved by SDS-PAGE, 
transferred to nitrocellulose, and immunoblotted by using a RelA-specific antiserum. 
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mechanism by which reovirus activates NF-κB and strongly suggest that this virus selectively 

utilizes the IKKα arm of the NF-κB signaling pathway.  Surprisingly, IKKγ/Nemo, which is 

known to regulate IKKβ rather than IKKα, is also required for NF-κB activation by 

reovirus, but NIK is dispensable.   

 

IKKα and IKKγ are required for reovirus-induced apoptosis 

 Since IKKα and IKKγ are required for NF-κB activation following reovirus 

infection (Fig. 15), we examined whether IKK stimulation by reovirus leads to apoptotic cell 

death.  IKK-deficient MEFs were infected with reovirus T3D, and apoptosis was assessed by 

quantitation of caspase 3/7 activity (Fig. 18A).  Levels of activated caspase 3/7 following 

infection of wild-type and IKKβ-deficient MEFs were substantially greater than those 

following infection of MEFs deficient in either IKKα or IKKγ.  To corroborate these results, 

we tested wild-type and IKK-null MEFs for viability following infection with T3D (Fig. 

18B).  In comparison to wild-type and IKKβ-deficient MEFs, a significantly greater 

percentage of IKKα- and IKKγ-deficient MEFs remained viable during a time course of 

reovirus infection.   

To determine whether NIK is required for apoptosis induction following reovirus 

infection, NIK-deficient MEFs were infected with reovirus T3D, and apoptosis was assessed 

by quantification of caspase 3/7 activity (Fig. 18C).  Levels of caspase 3/7 activity in MEFs 

deficient in NIK were equivalent to those in wild-type cells following infection with T3D.  In 

parallel with these results, we observed no significant difference in the viability of wild-type 

and NIK-deficient MEFs following T3D infection (Fig. 18D).  Together, these functional 

data with IKK- and NIK-deficient MEFs strongly correlate with the capacity of reovirus to 

modulate IκBα and NF-κB during infection (Figs.  11-16).  Our findings suggest that IKKα  
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Figure 18.  IKKα and IKKγ are required for reovirus-induced apoptosis.  Wild-type 
MEFs or (A) MEFs deficient in IKKα, IKKβ, IKKγ, or (C) NIK were mock-infected, 
infected with reovirus T3D at an MOI of 1000 PFU/cell for 24 h, treated with 10 ng/ml of 
TNFα for 12 h, or treated with 10 ng/ml of TNFα and 10 μg/ml of cycloheximide for 12 h. 
Caspase 3/7 activity was quantified by using a luminescent substrate.  The results are 
expressed as the mean caspase activity relative to mock-infected cells for three independent 
experiments.  Wild-type MEFs or (B) IKK-deficient MEFs or (D) NIK-deficient MEFs were 
mock-infected, infected with reovirus T3D at an MOI of 1000 PFU/cell for 48 h, treated 
with 10 ng/ml of TNFα for 24 h, or treated with 10 ng/ml of TNFα and 10 μg/ml of 
cycloheximide for 24 h.  Cell viability was quantified by trypan blue exclusion.  The results 
are expressed as the mean percentage of cell death for three independent experiments.  Error 
bars indicate standard deviations.  *, P < 0.05 as determined by Student’s t test in 
comparison to mock-infected cells. 
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and IKKγ are required for the activation of NF-κB induction of apoptosis in response to 

reovirus.  In keeping with NF-κB activation by reovirus, apoptosis is completely independent 

of the IKKα inducer NIK, indicating a different mechanism of IKKα activation in response 

to reovirus. 

 

Discussion 

Results reported here identify constituents of the NF-κB signaling apparatus induced 

by reovirus and provide evidence that NF-κB activation during reovirus infection requires 

integral components of both the classical and alternative pathways.  Using MEFs deficient in 

the expression of individual IKK subunits, we demonstrate that reovirus-infected cells 

lacking IKKα are impaired for NF-κB activation (Fig. 15) and apoptotic programming (Fig. 

18), whereas both of these processes are operative in cells lacking IKKβ.  Despite its 

preferential usage of IKKα, reovirus retains the capacity to elicit both NF-κB activation and 

apoptosis in the absence of NIK (Fig. 16 and 19), a known activator of IKKα in cytokine-

treated cells (95, 163).  Furthermore, targeted disruption of the gene encoding IKKγ/Nemo, 

which is dispensable for cytokine-induced signaling of IKKα (35, 47), significantly 

attenuates reovirus-induced NF-κB activation and apoptosis (Fig. 15 and 18).  In light of 

these findings with NIK and IKKγ, the precise mechanism of reovirus action on IKKα 

remains unclear.  The simplest interpretation of these results is that reovirus accesses the 

cellular NF-κB machinery by directly interfacing with IKKα/IKKγ complexes, with IKKγ 

serving as an adaptor that docks one or more reovirus gene products.  In keeping with this 

possibility, IKKγ tethers the HTLV1 Tax protein to IKK complexes, resulting in persistent 

activation of IKKβ and NF-κB (25, 33).  In what may be another related finding, IKKγ also is 
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required for Tax-induced activation of IKKα (219).  Although data emerging from studies of 

IKKβ-deficient mice suggest the presence of functional IKKα/IKKγ complexes (91, 92, 150, 

184), direct evidence for the existence of IKKα/IKKγ complexes in wild-type animals has 

not been reported.  Notwithstanding, our results clearly establish that reovirus activates NF-

κB and downstream proapoptotic genes via a mechanism involving IKKα but not IKKβ.   

The principle in vivo substrate of IKKβ is IκBα (51, 115, 141).  This cytoplasmic 

inhibitor tightly controls the nuclear translocation of p50/RelA dimers (8), effectors of the 

classical NF-κB pathway (reviewed in (19, 59, 66)).  The principle in vivo substrate of IKKα 

is p100/NF-κB2 (163).  An integral inhibitor in the alternative NF-κB pathway, p100 

assembles with the transactivator protein RelB (163, 179).  Following IKKα-mediated 

phosphorylation, p100 is processed to p52 via a proteasome-dependent mechanism, 

permitting the nuclear entry of p52/RelB complexes (163, 179).  Given these distinct 

mechanisms, our findings with reovirus-infected cells suggest an unconventional function for 

IKKα in substrate targeting.  Specifically, we were unable to detect either p52 or RelB DNA-

binding activity in nuclear extracts from cells following 4 to 8 h of reovirus infection (Fig. 

11B).  Instead, at these early timepoints the predominant Rel species detected were p50 and 

RelA (Fig. 11B), which are primarily under IκBα control (7, 8).  Consistent with this Rel 

profile, IκBα protein levels were significantly reduced by 4 h post-infection (Fig. 13).  

Although p100 processing to p52 was observed at late time points during reovirus infection 

(16 h), it seems unlikely that this delayed response contributes to the more rapidly evolving 

signals required for apoptosis (39, 40, 145).  Accordingly, we propose that IKKα rather than 

IKKβ targets IκBα for proteolytic destruction and regulates the nuclear translocation of 

p50/RelA complexes in reovirus-infected cells.  This working model is fully concordant with 

the phenotype of cell lines deficient for either IKKα, p50, or RelA, all of which are impaired 
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for reovirus-induced NF-κB activation and proapoptotic signaling (Figs.  14, 15, and (40)).  

In agreement with this model, prior studies with recombinant proteins indicate that IKKα can 

efficiently phosphorylate NF-κB-bound forms of IκBα in vitro (225).   

Both IKKα and IKKβ contain regulatory serine phosphoacceptors in their so-called 

"T loop" domains (48, 115).  Signal-dependent phosphorylation of the T loop serines in 

IKKα and IKKβ is a prerequisite for their catalytic activation (48).  Based on in vitro studies 

with recombinant proteins, IKKα and IKKβ can autophosphorylate at these T loop serines 

(48, 160, 186).  Physiologic agonists of the alternative NF-κB pathway stimulate T loop 

phosphorylation and activation of IKKα via the upstream kinase NIK (95, 163, 221).  

However, NIK is dispensable in the mechanism by which reovirus induces NF-κB activation 

and apoptosis (Fig. 16 and 18).   

What signal transducers couple reovirus to IKK?  Experiments using 

pharmacological inhibitors suggest that NF-κB-dependent apoptotic signaling is triggered by 

viral replication steps that occur after disassembly but prior to RNA synthesis (39).  Strain-

specific differences in the capacity of reovirus to induce apoptosis segregate with viral genes 

encoding the σ1 and μ1 proteins (38, 145, 199), which play important roles in viral 

attachment (89, 209) and membrane penetration (26, 27, 101), respectively.  Importantly, 

transient expression of μ1 is sufficient to induce apoptosis in cell culture (36), implicating 

this protein in the reovirus/NF-κB signaling axis.  We envision three potential mechanisms 

by which μ1, or perhaps another viral gene product, initiates NF-κB signal transduction 

during reovirus infection.  First, μ1 may activate viral sensors that mediate the recruitment of 

the adaptor protein IFN-β promoter stimulator (IPS-1), which leads to the activation of NF-

κB in response to viral infections by recruiting TNF-associated factor 6 to the signaling 
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complex (84, 116, 164, 222).  Second, μ1 may activate a novel cellular kinase that 

phosphorylates the T loop of IKKα.  Third, μ1 may interact with IKK complexes directly, 

leading to conformational changes that stimulate oligomerization and trigger 

autophosphorylation of the T loop in IKKα (74, 136).  Additional studies will be required to 

precisely define the mechanism by which reovirus hijacks NF-κB to mediate apoptotic cell 

death. 
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CHAPTER IV 

 

ORGAN-SPECIFIC ROLES FOR TRANSCRIPTION FACTOR NF-κB IN REOVIRUS-
INDUCED APOPTOSIS AND DISEASE 

 

Introduction 

 Mechanisms of viral disease involve complex interactions of pathogen virulence 

factors and host responses.  Perhaps the best-understood basis of organ-specific viral 

pathology is the availability of cell-surface molecules required for viral attachment and entry.  

Rarely, however, is viral disease ascribable solely to receptor recognition.  More commonly, 

additional virus-host interactions determine the outcome of infection (198), and these pivotal 

steps are of much interest in studies of viral pathogenesis.  Factors expected to modulate viral 

growth and virulence in an organ-dependent manner include the capacity of virus to 

efficiently utilize the host translational apparatus, including strategies to circumvent antiviral 

effects of IFN; availability of cellular proteins to facilitate viral replication and gene 

expression; and changes in the intracellular signaling dynamic induced by viral infection.   

The NF-κB family of transcription factors plays a key role in the regulation of cell 

growth, activation, differentiation, and survival.  Following exposure of cells to a variety of 

stimuli, NF-κB is activated and translocates to the nucleus (17), where it serves as a 

transcriptional regulator (111, 204).  In systems in which NF-κB is activated during 

apoptosis, NF-κB can either prevent (15, 97, 111, 202) or potentiate (1, 53, 82, 94) cell death 

signaling.  Following reovirus infection of cultured cells, the heterodimeric NF-κB complex 

p50/RelA enters the nucleus and activates proapoptotic gene expression (40).  When NF-κB 

activation is inhibited using proteasome inhibitors or dominant-negative forms of IκBα, 

reovirus-induced apoptosis is blocked (40).  Moreover, cell lines deficient in either of the p50 
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or RelA NF-κB subunits do not undergo apoptotic cell death following reovirus infection.  

These findings indicate that activation of NF-κB in cell culture is required for reovirus-

induced apoptosis.   

Experiments reported in this chapter demonstrate that the p50 subunit of NF-κB plays 

an essential role in the development of encephalitis and myocarditis in reovirus-infected 

mice.  Although reovirus infects the intestine and disseminates systemically following peroral 

inoculation of mice lacking the NF-κB p50 subunit, apoptosis is diminished in the brain yet 

strikingly enhanced in the heart.  These findings suggest a novel role for NF-κB in the 

pathogenesis of viral infection; it serves a proapoptotic function in the CNS, while mediating 

a prosurvival function in the myocardium.  

 

Results 

 

Reovirus activates NF-κB in vivo 

To determine whether reovirus is capable of NF-κB activation in the intact host, we 

performed in vivo luciferase assays using transgenic mice engineered to express luciferase 

under control of an HIV long-terminal repeat promoter that contains NF-κB consensus 

binding sites (88).  These mice were inoculated perorally with either PBS (mock-infected) or 

104 PFU reovirus strain T3SA+, which was chosen for these studies because of its capacity to 

activate NF-κB and induce a potent apoptotic response in cultured cells (38).  Seven days 

after inoculation, the mice were imaged for luciferase activity as a marker for NF-κB 

activation (Fig. 19A and B).  Little luciferase activity was detected in the mock-infected mice 

(Fig. 19A).  In contrast, reovirus-infected animals exhibited systemic luciferase activity (Fig. 

19B), which indicates that reovirus is capable of NF-κB activation in vivo. 

 



 57

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

B

Figure 19.  NF-κB activation following reovirus infection of HLL mice.  Newborn HLL 
mice were inoculated perorally with (A) PBS (mock) or (B) 104 PFU of reovirus T3SA+. 
Mice were inoculated intraperitoneally with luciferin 7 days post-infection and imaged for 
luciferase activity as a marker for NF-κB activation.  Bioluminescence indicates areas of 
NF-κB activation. 
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Reovirus-induced activation of NF-κB in the murine CNS and heart is dependent 
on p50 

 
To determine whether reovirus activates NF-κB in the murine CNS and heart, we 

performed EMSAs using brain and heart extracts prepared from reovirus-infected or mock-

infected wild-type and p50-null mice.  Newborn p50+/+ and p50-/- mice were inoculated 

with either PBS or 104 PFU reovirus T3SA+.  Cell extracts were prepared from brain and 

heart tissue 12 days after inoculation, incubated with a radiolabeled oligonucleotide 

consisting of the NF-κB consensus binding sequence, and resolved by PAGE using 

nondenaturing conditions (Fig. 20A and D).  NF-κB DNA-binding activity was detected in 

extracts from the brain of reovirus-infected p50+/+ but not p50-/- mice (Fig. 20A).  Similarly, 

NF-κB DNA-binding activity was detected in the heart of p50+/+ mice infected with reovirus 

but not p50-/- animals (Fig. 20D).  These findings indicate that reovirus infection in the 

murine CNS and heart induces nuclear translocation of NF-κB, which is contingent on the 

expression of the NF-κB p50 subunit.   

To confirm the specificity of NF-κB DNA-binding activity in these experiments, we 

incubated cell extracts from reovirus-infected p50+/+ mouse brain and heart with a 32P-

labeled NF-κB consensus oligonucleotide in the presence of excess unlabeled consensus 

oligonucleotide (Fig. 20B and E).  Binding of the radiolabeled probe was competed with that 

of unlabeled consensus oligonucleotide, which suggests that the gel-shift activity detected 

following reovirus infection is specific for sequences bound by NF-κB.   

In cell culture, reovirus infection results in the nuclear translocation of NF-κB 

complexes containing subunits p50 and RelA (40).  As an additional specificity control in 

these experiments for the activation of NF-κB, nuclear extracts were prepared from reovirus-

infected p50+/+ mouse brain or heart and incubated with an antiserum specific to RelA prior 

to the addition of the NF-κB-specific oligonucleotide (Fig. 20C and F).  Addition of the  
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Figure 20.  Reovirus-induced NF-κB gel-shift activity following infection of p50 +/+ 
and p50 -/- mice.  (A and C) Newborn p50 +/+ and p50 -/- mice were inoculated perorally 
with either 104 PFU of reovirus T3SA+ (Reo) or PBS.  (A) Brains and (C) hearts were 
resected 12 days post-inoculation, and cell extracts were prepared.  Extracts were incubated 
with a 32P-labeled NF-κB consensus oligonucleotide and resolved by nondenaturing 
polyacrylamide gel electrophoresis.  Activated NF-κB complexes are indicated.  Shown is a 
representative experiment of four performed.  (B and D) Extracts were prepared from either 
(B) brains or (D) hearts of p50 +/+ mice 12 days following peroral inoculation with 
T3SA+.  Prior to the addition of the 32P-labeled oligonucleotide probe, extracts were 
incubated with either a control antibody specific for reovirus protein σ3 (α-reovirus) or an 
antibody specific for NF-κB subunit p65 (α-p65).  Super-shifted complexes containing p65 
are indicated.  *, non-specific bands. 
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RelA-specific antiserum resulted in bands of higher relative molecular mass, which verified 

that RelA is present in the NF-κB complexes activated following reovirus infection.  These 

findings provide strong evidence that reovirus infection of the murine CNS and heart induces 

the nuclear translocation of NF-κB and this effect is abolished in mice lacking p50. 

 

NF-κB subunit p50 is not required for efficient reovirus replication or dissemination in 
the murine host 

 
To determine whether p50 plays a role in reovirus growth in vivo, we inoculated 

p50+/+ and p50–/– mice intracranially or perorally with 104 PFU reovirus T3SA+.  Viral 

titers in the brain were determined by plaque assay 2, 4, and 6 days after intracranial 

inoculation (Fig. 21A) and in the intestine, liver, brain, and heart 4, 6, 8, 10, and 12 days after 

peroral inoculation (Fig. 21B).  Following intracranial inoculation, viral titers in p50+/+ and 

p50-/- mice were equivalent at all time points tested.  After peroral inoculation, virus 

replicated efficiently in the intestines of both p50+/+ and p50-/- mice and disseminated to the 

liver, brain, and heart.  Viral titers in the intestine, liver, and brain did not differ between 

p50+/+ and p50-/- mice.  In sharp contrast, viral titers in the hearts of p50-/- mice were more 

than 1,000-fold higher than those in the hearts of p50+/+ animals.  These findings suggest 

that p50 is dispensable for reovirus growth in vivo and that the absence of p50 in the heart, 

but not in other tissues tested, allows for increased reovirus replication. 

 

NF-κB subunit p50 is required for efficient induction of apoptosis in the CNS following 
reovirus infection 

 
To assess reovirus-induced pathologic changes in the CNS of p50+/+ and p50-/- 

mice, we prepared brain sections from mice euthanized at 12 days following peroral 

inoculation with reovirus T3SA+ and examined them after staining with H&E (Fig. 22A and 

B).  Brain sections from reovirus-infected p50+/+ and p50-/- mice exhibited evidence of  
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Figure 21.  Growth of reovirus in p50 +/+ and p50 -/- mice.  (A) Titers of reovirus in 
brain after intracranial inoculation of p50 +/+ and p50 -/- mice.  Newborn mice were 
inoculated with 104 PFU of reovirus T3SA+.  At days 2, 4, and 6 post-inoculation, mice 
were euthanized, brains were harvested, and viral titers were determined by plaque assay. 
(B) Titers of reovirus in intestine, liver, brain, and heart after peroral inoculation of p50 +/+ 
and p50 -/- mice.  Newborn mice were inoculated with 104 PFU of T3SA+.  At days 4, 6, 8, 
10, and 12 post-inoculation, mice were euthanized, organs were harvested, and viral titers 
were determined by plaque assay.  The results are expressed as the mean viral titers for two 
to four animals for each timepoint.  Error bars indicate standard deviations.  *, P < 0.05 by 
T test. 
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Figure 22.  Inflammation, reovirus protein expression, TUNEL staining, and 
immunohistochemical detection of activated caspase-3 in the brain of reovirus-infected 
(A) p50 +/+ and (B) p50 -/- mice.  Newborn mice were inoculated perorally with 104 PFU 
of reovirus T3SA+.  At 12 days post inoculation, brains were harvested, paraffin embedded, 
sectioned, and stained with hematoxylin and eosin, polyclonal reovirus-specific antiserum, 
TUNEL, or activated caspase 3-specific antiserum as indicated.  Shown are consecutive 
sections of diencephalon.  Original magnifications were 100X (top panels) and 400X 
(bottom panels).  (C) Newborn mice were inoculated intracranially with 104 PFU of T3SA+ 
or gelatin saline (mock).  At 6 days post-inoculation, mice were euthanized, and brain 
sections were stained using a TUNEL assay.  Shown are sections of the upper brain stem. 
Original magnifications were 200X.  Brown staining indicates reovirus protein, fragmented 
DNA, or activated caspase 3. 
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meningoencephalitis.  Inflammatory infiltrates were detected primarily in the cerebral cortex, 

hippocampus, diencephalon, and brain stem.  Morphologically, inflammatory cells were 

mostly lymphocytes and macrophages/microglia with some plasma cells and neutrophils.  

Inflammatory changes were more extensive in p50+/+ mice (Fig. 22A) than in p50-/- mice 

(Fig. 22B), which suggests that the neurovirulence of reovirus is attenuated in mice lacking 

an intact NF-κB signaling apparatus.   

To assess the distribution of reovirus protein expression in the CNS of p50+/+ and 

p50-/- mice, we prepared brain sections from mice euthanized 12 days following peroral 

inoculation and stained them using a reovirus-specific antiserum (Fig. 22A and B).  

Immunohistochemical staining for reovirus protein demonstrated the presence of 

immunoreactive neurons in brains of both p50+/+ and p50-/- mice (Fig. 22A and B).  

Antigen-positive neurons were detected in a pattern recapitulating the inflammatory changes; 

the cerebral cortex, hippocampus, diencephalon, and brain stem were primarily involved.  

The number of reovirus-infected cells and their distribution was similar in p50+/+ and p50-/- 

mice (Fig. 22A and B).  These results suggest that the lack of p50 does not alter reovirus 

tropism for specific neural regions.   

To determine whether p50 is required for apoptosis in the murine CNS, we prepared 

brain sections from reovirus-infected p50+/+ and p50-/- mice 12 days following peroral 

inoculation (Fig. 22A and B) or 6 days following intracranial inoculation (Fig. 22C) and 

assayed them for fragmented DNA using the terminal dUTP nick-end labeling (TUNEL) 

technique.  Apoptotic cells were quantified by counting all TUNEL-positive cells in cortex, 

hippocampus, basal ganglia, diencephalon, and brain stem of each section obtained from 

mice inoculated intracranially (Fig. 23).  Numbers of TUNEL-positive cells in the brains of 

infected p50+/+ mice were significantly greater than those in the brains of infected p50-/- 

mice.  These findings were the same following both peroral and intracranial inoculation (Fig. 
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22).  Thus, reovirus-induced apoptosis in the murine CNS is dependent on the p50 subunit of 

NF-κB.   

Activation of caspase 3 is a highly specific biomarker of apoptotic cell death (22).  To 

confirm that DNA fragmentation observed in the brains of reovirus-infected p50+/+ mice is 

due to apoptosis, we stained brain sections with an antiserum specific for the activated form 

of caspase 3 (Fig. 22A and B).  Activated caspase 3 was detected in regions of the brain in 

which TUNEL-positive staining also was observed.  Moreover, cells immunoreactive for 

caspase 3 were detected at a much higher frequency in the brains of p50+/+ mice.  

Morphologically, cells immunoreactive for caspase 3 were primarily neurons, and most 

immunoreactive neurons also exhibited morphologic evidence of apoptosis.  These results 

provide additional evidence that expression of NF-κB subunit p50 is required for efficient 

induction of apoptosis during reovirus infection in the murine CNS. 

 

Absence of NF-κB subunit p50 leads to enhanced pathology and massive apoptosis in 
the murine heart following reovirus infection 

 
Since viral titers in the hearts of p50-/- mice were more than 1,000-fold higher than 

in those of p50+/+ mice (Fig. 21B), we examined heart tissue for evidence of inflammation 

and tissue injury.  Newborn p50+/+ and p50-/- mice were inoculated perorally with either 104 

PFU reovirus T3SA+ or PBS and weighed daily.  Mice were euthanized at various time 

points after  inoculation, and hearts were removed and weighed.  There were no significant 

differences in the heart weights of mock-infected p50+/+ and p50-/- mice (Fig. 24A).  

Surprisingly, heart weights of reovirus-infected p50-/- mice were significantly greater than 

those of p50+/+ mice (Fig. 24B).  Differences in the percent heart weight (heart weight 

relative to total body weight) of infected p50+/+ and p50-/- mice became detectable at 8 days 

after inoculation and continued to increase with time, while there was no significant increase  
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Figure 23.  Quantitation of TUNEL staining in (A) cortex and hippocampus, (B) basal 
ganglia and diencephalon, and (C) brain stem of reovirus-infected p50 +/+ and p50 -/-
mice.  TUNEL staining was performed using tissue sections prepared 2, 4, and 6 days 
following intracranial inoculation of p50 +/+ and p50 -/- mice with 104 PFU of reovirus 
T3SA+.  For each brain region, all positive cells in a single parasagittal section were 
counted for four to eight animals.  The results are expressed as the mean number of 
apoptotic cells per region.  Error bars indicate standard deviations.  *, P < 0.05 by T test. 
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in the percent heart weight of infected p50+/+ mice (Fig. 24B).  Dramatic differences were 

observed in the gross appearance of hearts dissected from p50+/+ and p50-/- animals 

following infection with reovirus (Fig. 24C).  Hearts from reovirus-infected p50-/- mice had 

a blanched appearance with diffuse surface irregularities corresponding to confluence of 

purulent lesions, consistent with overt myocarditis.  In contrast, hearts from mock-infected 

p50-/- or p50+/+ mice or reovirus-infected p50+/+ mice displayed no overt abnormalities.   

To determine whether reovirus-induced myocardial injury in p50-/- mice is associated 

with contractile dysfunction, we performed echocardiography on 10-day-old mice after 

peroral inoculation with either reovirus T3SA+ or PBS.  Fractional shortening, assessed by 2-

dimensional, directed M-mode measurements, was substantially decreased in reovirus-

infected p50-/- mice (<10%; Fig. 24D), while it was preserved in mock-infected p50-/- mice 

(>40%; Fig. 24E) and reovirus-infected p50+/+ mice (>40%; Fig. 24F).  Heart size was also 

increased in reovirus-infected p50-/- mice compared with mock-infected p50-/- mice and 

reovirus-infected p50+/+ mice.  Intact atrioventricular conduction was observed in all mice, 

which suggests that the pathologic process was not specifically targeted to the conduction 

system.  These results suggest that the myocardial pathology associated with reovirus 

infection of p50-/- mice is associated with diminished contractility.   

On a microscopic level, hearts of p50-/- animals displayed extensive myocyte 

destruction with features of apoptotic and necrotic cell death.  Affected areas were notable 

for cell fragments, granular debris, and scattered calcifications.  Thorough sectioning of the 

organ block revealed that pathology was not limited to any particular region of the heart.  

Hearts from reovirus-infected p50+/+ mice and mock-infected p50-/- and p50+/+ mice 

demonstrated no significant microscopic pathology.  We conclude that reovirus is more 

pathogenic in the heart in the absence of NF-κB subunit p50.   
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Figure 24.  Heart pathology following reovirus infection of p50 +/+ and p50 -/- mice.
(A and B) Newborn p50 +/+ and p50 -/- mice were inoculated perorally with either (A) PBS 
(mock) or (B) 104 PFU of reovirus T3SA+, and heart size was monitored at two-day 
intervals.  Percent heart weight was calculated as the ratio of heart weight to body weight. 
The results are expressed as the mean heart weights of at least four animals for each 
timepoint.  Error bars indicate standard deviations.  *, P < 0.05 by T test.  (C) Hearts from 
mice euthanized 12 days following peroral inoculation with reovirus T3SA+ or gelatin 
saline (mock).  (D, E, and F) Electrocardiography and echocardiography of (D) reovirus-
infected p50 -/-, (E) mock-infected p50 -/-, and (F) reovirus-infected p50 +/+ mice. 
Newborn mice were inoculated perorally with 104 PFU of T3SA+, and tests were performed 
10 days post-inoculation.  A P-wave/QRS ECG complex is displayed above the 
corresponding echocardiographic image.  Systolic and diastolic LV cavity dimensions are 
indicated by bars superimposed on the M-mode images. 
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To assess the extent and location of reovirus infection in the murine myocardium in 

the presence and absence of p50, we performed reovirus antigen staining on heart sections 

from p50+/+ and p50-/- mice euthanized 12 days following peroral inoculation with reovirus 

T3SA+ (Fig. 25A and B).  Immunohistochemical staining for reovirus protein demonstrated 

immunoreactive myocytes in heart sections prepared from both p50+/+ and p50-/- mice (Fig. 

25A and B).  However, the number of reovirus-infected cells differed substantially between 

p50+/+ and p50-/- mice, consistent with the significant difference in viral titer in the hearts of 

these animals.   

To determine whether expression of p50 influences apoptosis in the murine heart, we 

inoculated p50+/+ and p50-/- mice perorally with reovirus and assessed them for apoptosis 

using TUNEL staining (Fig. 25A and B).  There were rare TUNEL-positive cells in the hearts 

of p50+/+ mice following reovirus infection (Fig. 25A), whereas numerous foci of apoptosis 

were present in the hearts of p50-/- mice (Fig. 25B).  Interestingly, foci of apoptotic cells in 

the hearts of p50-/- mice coincided with areas of intense staining for reovirus antigen, which 

suggests a link between reovirus replication and apoptosis in cardiac myocytes.   

To confirm that the absence of p50 leads to enhanced apoptosis in the heart during 

reovirus infection, we prepared heart sections from p50+/+ and p50-/- mice 12 days 

following peroral inoculation with reovirus and stained them for activated caspase 3 (Fig. 

25A and B).  Caspase 3 staining revealed numerous positive myocytes in the same areas of 

the heart that also were positive for reovirus antigen and TUNEL staining.  These results 

suggest that, in contrast to its effects in the murine CNS, the NF-κB p50 subunit protects 

against apoptosis induced by reovirus infection in the murine myocardium. 
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Figure 25.  Inflammation, reovirus protein expression, TUNEL staining, and 
immunohistochemical detection of activated caspase 3 in the heart of reovirus-infected 
(A) p50 +/+ and (B) p50 -/- mice.  Newborn mice were inoculated perorally with 104 PFU 
of reovirus T3SA+.  At 12 days post inoculation, hearts were harvested, paraffin embedded, 
sectioned, and stained with hematoxylin and eosin, polyclonal reovirus-specific antiserum, 
TUNEL, or activated caspase 3-specific antiserum as indicated.  Original magnifications 
were 25X (top panels) and 400X (bottom panels).  Brown staining indicates reovirus 
protein, fragmented DNA, or activated caspase 3. 
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IFN-β is induced in the heart of wild-type mice following reovirus infection 

Results presented thus far demonstrate that enhanced reovirus growth in the heart of 

p50-/- mice is associated with massive apoptosis.  We thought it possible that the absence of 

NF-κB-mediated activation of innate immune responses might lead to increased viral 

replication and resultant pathology in the heart.  To test this hypothesis, we inoculated 

p50+/+ and p50-/- mice perorally with reovirus T3SA+ or PBS.  Twelve days after 

inoculation, heart and brain were removed, and levels of IFN-β mRNA were determined 

using quantitative PCR (Fig. 26).  Using GAPDH mRNA as a standardization control, little 

IFN-β mRNA was induced in the brain of either p50-/- or p50+/+ mice in the presence or 

absence of reovirus infection (Fig. 26).  In contrast, IFN-β mRNA levels were substantially 

increased in the heart of reovirus-infected wild-type mice compared with p50-/- animals (Fig. 

26).  These results indicate that IFN-β induction by reovirus in the murine heart is dependent 

on NF-κB and suggest that IFN-β protects the heart from reovirus-induced apoptosis and 

disease. 

 

IFN-β treatment of p50-null mice attenuates reovirus-induced myocarditis 

To determine whether NF-κB-mediated expression of IFN-β plays a direct role in 

protection of the heart against apoptosis and disease caused by reovirus, we tested the effect 

of IFN-β treatment on reovirus infection of p50-/- mice.  Newborn p50-/- mice were 

inoculated intraperitoneally with either IFN-β or PBS 1 day prior to peroral inoculation with 

reovirus T3SA+ and treated daily for 9 days thereafter.  On day 10, the animals were 

euthanized, and brain and heart were removed for determination of viral titer and 

histopathology (Fig. 27).  IFN-β treatment significantly decreased viral titer in both brain and 

heart (Fig. 27A).  In p50-/- mice treated with IFN-β, viral titers reached only 102 PFU in the 

brain and were less than 102 PFU in the heart (Fig. 27A).  In parallel with these results,  
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Figure 26.  Levels of IFN-β mRNA in brain and heart of p50 +/+ and p50 -/- mice. 
Newborn mice were inoculated perorally with either PBS (mock) or 104 PFU of reovirus 
T3SA+.  At 12 days post-inoculation, brains and hearts were resected, and whole-organ 
RNA was isolated and used as a template to generate cDNA.  Levels of IFN-β and GAPDH 
cDNA were assessed by real-time PCR.  The results are expressed as the mean ratio of IFN-
β cDNA to that of GAPDH for two animals.  Error bars indicate standard deviations. 
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Figure 27.  Reovirus replication and apoptosis in infected p50 -/- mice following 
treatment with IFN-β.  Newborn mice were inoculated intraperitoneally with either IFN-β
or PBS 1 day prior to peroral inoculation with 104 PFU of reovirus T3SA+.  Animals were 
treated with either IFN-β or PBS for an additional 9 days, and brains and hearts were 
resected.  (A) Viral titers in the brain and heart.  Organs were homogenized, and viral titers 
were determined by plaque assay.  The results are expressed as the mean viral titers for three 
animals.  Error bars indicate standard deviations.  *, P < 0.05 by T test.  (B) Histopathology 
of reovirus infection in the heart.  Hearts of reovirus-infected p50 -/- animals from (A) were 
paraffin-embedded, sectioned, and stained with polyclonal reovirus-specific antiserum or 
processed for TUNEL analysis.  Original magnifications were 25X (top panels) and 200X 
(bottom panels).  Brown staining indicates reovirus protein or fragmented DNA. 
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apoptosis in the heart of IFN-β-treated p50-/- mice was substantially diminished (Fig. 27B).  

Thus, a critical component of the underlying mechanism of NF-κB-mediated protection 

against reovirus-induced myocardial injury is contingent on IFN-β. 

 

Discussion 

Results reported here indicate organ-specific roles for NF-κB in the pathogenesis of 

viral disease, which is a heretofore unknown property of this signaling molecule.  The key 

finding is that marked differences in the pathogenesis of reovirus infection in the CNS and 

heart are dependent on the action of NF-κB.  Following reovirus infection in the CNS, 

p50+/+ mice exhibited significant neuronal apoptosis, while p50-/- mice displayed a minimal 

apoptotic response.  In sharp contrast, reovirus induced little apoptosis in the heart of p50+/+ 

mice, whereas extensive apoptosis occurred in the heart of p50-/- mice.  These findings 

indicate that NF-κB subunit p50 plays two distinctly different roles in reovirus pathogenesis, 

serving a proapoptotic function in the brain, while mediating a prosurvival function in the 

heart.   

Studies using mice with targeted disruptions of specific NF-κB subunits have shown 

that NF-κB serves important functions in the development and function of innate and 

adaptive immunity (87, 165, 208).  Mice lacking p50 have no apparent developmental defects 

(165), and immune cells mature normally.  However, p50-/- mice display defects in B cell 

activation, isotype switching, and antibody production (165).  These defects render p50-/- 

mice more susceptible to infection by the Gram-positive bacterial pathogen Streptococcus 

pneumoniae, but they remain capable of efficiently clearing infection by the Gram-negative 

pathogens Escherichia coli and Haemophilus influenzae (165).  When p50-/- mice are 

infected with encephalomyocarditis virus, they are actually more resistant to infection than 

controls.  This difference is thought to be due to an increase in apoptosis that leads to a 
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decrease in viral growth (165).  These findings stand in stark contrast to what occurs in the 

CNS and heart of reovirus-infected mice.   

In experiments comparing reovirus infection of p50+/+ and p50-/- mice, we found 

that the presence or absence of p50 did not alter primary viral replication in intestinal tissue 

or dissemination of virus to the liver, brain, or heart.  Although viral replication in the brain 

after intracranial inoculation also was independent of p50, replication in the heart was 

increased in p50-/- mice by approximately 1,000-fold.  What might explain the enhancement 

of reovirus replication in the heart of p50-/- mice?  Reovirus strains have been characterized 

previously as having the capacity to grow in the murine heart and produce cardiac disease 

(170, 174).  In primary cardiac myocytes, nonmyocarditic reovirus strains induce more IFN-β 

and are more sensitive to the antiviral effects of this cytokine than myocarditic reovirus 

strains (175).  Furthermore, normally nonmyocarditic strains are capable of producing 

myocarditis in infected IFN-α/β receptor-/- mice (175).  Thus, it appears that type I IFNs 

restrict viral replication in the heart and attenuate cardiac disease.   

NF-κB is known to induce the expression of several mediators of innate immune 

responses including type I IFNs (31, 56, 224).  Therefore, absence of p50 may allow reovirus 

to achieve much higher titers and cause myocarditis.  We tested this hypothesis by 

determining brain and heart levels of IFN-β mRNA in response to reovirus infection of 

p50+/+ and p50-/- mice (Fig. 26) and by treating reovirus-infected p50-/- mice with IFN-β 

(Fig. 27).  In these experiments, we found a dramatic increase in IFN-β expression in the 

hearts of wild-type mice but only a minimal IFN-β response in the hearts of p50-null animals.  

Moreover, reconstitution of p50-/- mice with IFN-β substantially diminished reovirus 

replication and apoptosis, which resulted in diminished myocardial injury.  These results 

indicate that IFN-β is a necessary component of the NF-κB–mediated protective response 

against reovirus in the heart.  However, it is likely that other components of innate immunity 
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are involved in this effect.  Preliminary data from our laboratory suggest that in addition to 

IFN-β, IL-6, macrophage migration inhibitory factor (MIF), and tumor necrosis factor (TNF) 

are expressed at higher levels in the heart of p50+/+ mice than p50-/- mice (S.M. O’Donnell 

and T.S. Dermody, unpublished observation).  These findings suggest that following reovirus 

infection of the heart, NF-κB is activated and leads to induction of potent innate immune 

responses, which in turn attenuate viral replication at that site, resulting in diminished 

apoptosis and disease.   

The enhanced growth of reovirus in the heart of p50-/- mice compared with p50+/+ 

mice was associated with extensive myocarditis and resultant tissue injury and dysfunction.  

This result was confirmed by histopathological studies, echocardiography, and physical 

examination revealing signs of heart failure.  The pathology observed in the heart of p50-/- 

animals was characterized by extensive tissue damage and little inflammatory infiltrate, 

similar to findings made in previous studies of reovirus myocarditis (174).  Therefore, our 

results suggest that apoptosis is the primary mechanism of cardiac damage in reovirus-

induced myocarditis, as reported previously (44).  Damage to cardiac myocytes during 

reovirus infection occurs in the complete absence of adaptive components of host defense 

(173).  It is possible that a similar mechanism occurs in humans, which would explain why 

some patients with acute myocarditis develop heart failure in the setting of sustained viremia 

(103).   

In contrast to the enhanced growth of reovirus in the heart of p50-/- mice, viral 

growth in the CNS of p50+/+ and p50-/- mice was equivalent.  However, we observed 

dramatic differences in the number of apoptotic cells in the two mouse strains as indicated by 

TUNEL and caspase 3 staining.  Therefore, the efficiency of viral growth is not strictly 

correlated with the extent of the apoptotic response.  Nonetheless, despite these p50-

dependent differences in viral growth, our results suggest that apoptosis is an important 
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mechanism of reovirus-induced disease in both the CNS and heart.  In the CNS of p50-/- 

mice, apoptosis and inflammation following reovirus infection were diminished.  However, 

in the hearts of these animals, apoptosis and tissue injury were enhanced.  This correlation 

between apoptosis and pathology lends support to the hypothesis that therapies directed at 

blocking programmed cell death might attenuate viral virulence, consistent with results from 

previous studies of reovirus-induced myocarditis (44).  However, our findings suggest that 

pharmacologic inhibition of NF-κB activation may reduce pathologic injury at some sites and 

exacerbate disease at others, depending on the nature of the NF-κB agonist.   

The precise cell types responsible for the p50-dependent effects on apoptosis in 

response to reovirus infection in mice are not apparent from our study.  It is possible that 

expression of p50 in neurons is required for apoptosis of these cells and expression of p50 in 

cardiac myocytes mediates protection of these cells against apoptotic injury.  However, it is 

also possible that p50-dependent immune responses contribute to the observed differences in 

cell fate.  For example, NF-κB-mediated release of cytokines such as TNF-α from immune 

cells might contribute to the neuronal apoptosis that occurs during reovirus infection of the 

CNS, whereas NF-κB-mediated release of type I IFNs from immune cells might mediate a 

protective effect in the heart.  Since adoptive transfer of immune cells is not technically 

feasible in the newborn mice required for studies of reovirus pathogenesis, discrimination 

between these possibilities awaits the development of mice with tissue-specific ablation of 

NF-κB activity.   

The role of NF-κB in response to a variety of cellular stresses has been studied 

extensively using cultured cells (60).  However, little is known about the contributions of 

specific NF-κB subunits in vivo.  The extensive array of NF-κB inducers and target genes 

(130) suggests that numerous mechanisms exist to direct transcription of appropriate NF-κB-

dependent genes in response to specific stimuli.  One such regulatory mechanism is likely to 
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be the activation of specific NF-κB complexes (e.g., p50/RelA heterodimers) for each 

inducing signal.  Individual homodimeric and heterodimeric NF-κB complexes exhibit 

different affinities for target DNA sequences (61), and this provides a potential mechanism 

by which NF-κB-inducing stimuli regulate transcriptional activity of specific subsets of 

cellular genes.  We showed previously that reovirus requires p50/RelA for efficient apoptosis 

in cell culture (40).  However, we found in the current study that p50 plays organ-specific 

roles in disease pathogenesis in vivo.  These findings emphasize that NF-κB subunits can 

have different functions following activation with the same stimulus depending on the 

cellular environment.  Continuing studies in this area may reveal new layers of control of NF-

κB responses and extend understanding of how viruses cause tissue-specific injury. 
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CHAPTER V 

 

INTERFERON-β INHIBITS REOVIRUS-INDUCED APOPTOSIS IN CARDIAC 
MYOCYTES BY BLOCKING VIRAL REPLICATION 

 

Introduction 

Viral myocarditis is often fatal in infants and can progress to chronic myocarditis, 

dilated cardiomyopathy, or cardiac failure in adults (217).  Many viruses have been shown to 

cause myocarditis, but enteroviruses and adenoviruses account for most reported cases (106, 

147, 148, 193).  Enterovirus-induced myocarditis is immune-mediated (41, 147), while 

cardiac damage in response to adenovirus is caused by virus-induced cytopathicity (106).  

Mechanisms used by viruses to directly injure the heart are not well understood.   

Certain strains of reovirus cause myocarditis in experimentally infected mice (174).  

Cardiac damage following reovirus infection is independent of the adaptive immune system 

(172, 173), which normally plays a protective role in reovirus-infected animals (173).  

Instead, reovirus directly induces apoptosis in the heart resulting in myocarditis (44).  An 

important determinant of reovirus-induced myocarditis is interferon-β (IFN-β) (128, 175).  

Strains of reovirus capable of causing myocarditis (i.e., myocarditic strains) induce less IFN-

β than nonmyocarditic strains and are not as sensitive to its antiviral effects (175).   

IFN-β is secreted from infected cells and binds to the IFN α/β receptor resulting in 

dimerization and activation of the Janus-associated kinase (JAK) family of kinases.  Once 

activated, JAKs phosphorylate tyrosine residues on the signal transducer and activator of 

transcription (STAT) molecules STAT 1 and STAT2 (68, 135, 159, 180).  The STAT 

proteins interact with IFN regulatory factor 9 (IRF-9) to form ISGF3, which translocates to 

the nucleus and enhances the expression of IFN-stimulated genes (ISGs).  Classical ISGs 
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include double-stranded RNA-dependent protein kinase (PKR) and 2’-5’ oligoadenylate 

synthetase, which both function to inhibit translation in infected cells (180). 

Reovirus infection leads to NF-κB activation in numerous cell types (34, 40, 128).  

However, the outcome of NF-κB activation varies depending on the infected tissue (128).  

NF-κB activation in the CNS leads to high levels of neuronal apoptosis and resultant 

encephalitis.  In contrast, NF-κB activation in the heart leads to IFN-β production, which 

limits viral replication and protects against apoptosis.  In the absence of NF-κB signaling, 

reovirus infection induces widespread apoptotic damage to cardiac myocytes, resulting in 

myocarditis.  Cell types involved in these highly divergent responses to reovirus infection in 

vivo have not been defined.  Moreover, pathways that act upstream and downstream of NF-

κB in reovirus-infected animals are not known.  

In the experiments described in this chapter, I used primary cardiac myocyte cultures 

(PCMCs) to better understand mechanisms of reovirus-induced myocarditis.  First, I tested 

whether PCMCs are permissive for reovirus infection and growth.  Second, I assessed 

PCMCs for apoptosis in response to reovirus.  Third, I determined the effect of IFN-β on 

reovirus infection, growth, and apoptosis.  The results suggest that IFN-β mediates an anti-

apoptotic role by diminishing viral infection and growth in cardiac myocytes.   

 

Results 

 

Reovirus infection of primary cardiac myocytes 

 In a previous study, we found that the p50 subunit of NF-κB is required for induction 

of IFN-β expression and protection against the apoptotic response elicited by reovirus in the 

heart (128).  To better understand mechanisms of reovirus-induced apoptosis in cardiac 
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tissue, we generated PCMCs and tested these cultures for the capacity to support reovirus 

infection.  PCMCs were infected with reovirus strain T3SA+, a potent inducer of apoptosis 

(38), and infectivity was quantified by indirect immunofluorescence (Fig. 28).  

Approximately 60 cells per visual field were observed to be infected with reovirus 20 h post-

adsorption, suggesting that PCMCs are permissive for reovirus infection.   

Since IFN-β serves a protective function in the murine heart (128, 173), we next 

tested the effect of pretreatment with either IFN-β or IFN-β-specific antiserum on reovirus 

infection in PCMCs (Fig. 28).  Treatment with IFN-β significantly reduced reovirus infection 

in these cultures in comparison to untreated control cells.  Similar results were obtained when 

myocytes were treated with ribavirin, a viral RNA synthesis inhibitor (139), prior to 

infection.  In contrast, treatment with IFN-β-specific antiserum had little effect on reovirus 

infection in the myocyte cultures, suggesting that cells present in the intact heart other than 

myocytes are responsible for secreting cardioprotective IFN-β.  Together, these data indicate 

that reovirus is capable of infecting cardiac myocytes and that infection is potently inhibited 

by the exogenous administration of IFN-β.   

 

Reovirus growth in primary cardiac myocytes 

 To determine whether PCMCs are capable of supporting the complete reovirus 

replication cycle, we measured yields of infectious progeny by plaque assay following a time 

course of reovirus T3SA+ infection (Fig. 29).  Reovirus produced high titers in PCMCs at 24 

and 48 h post-infection, reaching yields in excess of 100-fold at the later time point.  

However, reovirus growth in cardiac myocytes was virtually abolished by pretreatment with 

IFN-β.  Similarly, treatment with either ribavirin or E64, a protease inhibitor that blocks 

reovirus disassembly (5), diminished reovirus growth in PCMCs.  In keeping with our  
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Figure 28.  Reovirus infection in PCMCs.  PCMCs were pretreated with either fresh 
medium (control), 1.2 x 104 units of IFN-β, 275 neutralizing units of IFN-β-specific 
antiserum, or 25 or 200 μM of ribavirin.  Cells were then infected with T3SA+ at an MOI of 
10 PFU/cell.  After 24 h incubation, cells were fixed and incubated with reovirus-specific 
antiserum.  Infected cells were identified by using indirect immunofluorescence.  The 
results are expressed as the mean fluorescent focus units/field of vision for three 
independent experiments. Error bars indicate standard deviations.  
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Figure 29.  Reovirus growth in PCMCs.  PCMCs were pretreated with either fresh 
medium (control), 1.2 x 104 units of IFN-β, 275 neutralizing units of IFN-β-specific 
antiserum, 100 μM E64, or 25 or 200 μM of ribavirin.  Cells were then infected with 
T3SA+ at an MOI of 10 PFU/cell and incubated for the times shown.  Cells and medium 
were frozen and thawed twice, and viral titers were determined by plaque assay.  The results 
are expressed as the mean viral titers for three independent experiments.  Error bars indicate 
standard deviations.  
 



 83

findings in the immunofluorescence assays of new viral protein synthesis, IFN-β-specific 

antiserum treatment had little effect on reovirus growth in PCMCs.  From these data, we 

conclude that PCMCs are capable of supporting reovirus growth and that IFN-β reduces the 

production of viral progeny in these cultures. 

 

Reovirus-induced caspase 3/7 activation in primary cardiac myocytes 

 To determine whether reovirus is capable of inducing apoptotis in PCMCs, we 

infected the cultures with reovirus T3SA+ and assessed apoptosis by quantitation of caspase 

3/7 activity (Fig. 30).  In comparison to mock-infected cells, levels of caspase 3/7 activity 

were substantially greater in cells infected with T3SA+.  Similar to viral growth assays, 

caspase 3/7 activity was diminished by pretreatment with IFN-β and completely abolished by 

either E64 or ribavirin.  Caspase 3/7 activity in PCMCs treated with IFN-β-specific antiserum 

prior to reovirus infection was unaffected in comparison to mock-infected PCMCs.  These 

data indicate that inhibition of caspase 3/7 activity by IFN-β correlates with inhibition of 

viral growth.   

 

Reovirus-induced caspase 3/7 activation in cardiac myocytes lacking the  
IFN-α/β receptor 

 
 To obtain additional evidence for an antiviral function of IFN-β in reovirus infection 

of PCMCs, we generated cardiac myocytes from mice deficient in the IFN-α/β receptor 

(119).  These cultures were tested for the capacity to support reovirus growth by plaque assay 

(Fig. 31).  Reovirus produced high titers in IFN-α/β receptor-null PCMCs at 24 and 48 h 

post-infection, reaching yields in excess of 50-fold at the later time point.  Viral growth was  
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Figure 30.  IFN diminishes apoptosis in PCMCs following reovirus infection.  PCMCs 
were pretreated with either fresh medium (control), 1.2 x 104 units of IFN-β, 275 
neutralizing units of IFN-β-specific antiserum, 100 μM E64, or 200 μM ribavirin.  Cells 
were then either mock-infected or infected with reovirus T3SA+ at an MOI of 100 PFU/cell 
for 24 h.  Caspase 3/7 activity was quantified by using a luminescent substrate.  The results 
are expressed as the mean caspase activity relative to mock-infected cells for three 
independent experiments.  Error bars indicate standard deviations. 
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Figure 31.  Reovirus growth in PCMCs lacking the IFN-α/β receptor.  IFN-α/β
receptor-null PCMCs were pretreated with either fresh medium (control), 1.2 x 104 units of 
IFN-β, 100 μM E64, or 200 μM ribavirin.  Cells were then infected with T3SA+ at an MOI 
of 10 PFU/cell and incubated for the times shown.  Cells and medium were frozen and 
thawed twice, and viral titers were determined by plaque assay.  The results are expressed as 
the mean viral titers for three independent experiments.  Error bars indicate standard 
deviations.  
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Figure 32.  Reovirus induces apoptosis in PCMCs lacking the IFN-α/β receptor.  IFN-
α/β receptor-null PCMCs were pretreated with either fresh medium (control), 1.2 x 104 units 
of IFN-β, 100 μM E64, or 200 μM ribavirin.  Cells were then either mock-infected, infected 
with reovirus T3SA+ at an MOI of 100 PFU/cell for 24 h, or treated with 10 ng/ml of 
TNFα and 10 μg/ml of cycloheximide (CHX) for 12 h.  Caspase 3/7 activity was quantified 
by using a luminescent substrate.  The results are expressed as the mean caspase activity 
relative to mock-infected cells for three independent experiments.  Error bars indicate 
standard deviations. 
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blocked by treating PCMCs with either E64 or ribavirin prior to infection.  As expected, 

treatment with IFN-β had no effect on PCMCs lacking expression of the relevant receptor.   

 We next investigated whether reovirus is capable of inducing apoptosis in cardiac 

myocytes lacking the IFN-α/β receptor.  IFN-α/β receptor-null PCMCs were infected with 

reovirus T3SA+, and apoptosis was assessed by quantitation of caspase 3/7 activity (Fig. 32).  

Reovirus induced substantial levels of caspase 3/7 activity in the receptor-null PCMCs, and 

this activity was blocked by treatment of cells with either E64 or ribavirin prior to infection.  

The increase in caspase 3/7 activity induced by reovirus in IFN-α/β receptor-null PCMCs 

paralleled that in reovirus-infected wild-type PCMCs (compare Figs. 30 and 31).  Therefore, 

signaling from the IFN-α/β receptor during reovirus infection of these cells does not 

contribute to apoptosis.    

 

Discussion 

 This study was designed to determine the relationship of IFN, viral replication, and 

apoptosis in reovirus-infected cardiac myocytes.  Two important conclusions emerge from 

these experiments.  First, reovirus infection of PCMCs leads to increased caspase 3/7 activity, 

indicative of apoptosis.  Second, treatment with IFN-β inhibits reovirus growth and decreases 

virus-induced apoptosis in PCMCs.  Together, these findings suggest that IFN-β-mediated 

inhibition of reovirus replication in cardiac myocytes diminishes apoptotic cell death.   

Myocytes lost or damaged during viral infection are not replenished, which raises the 

possibility that these cells have a unique response in the presence of virus.  Previous reports 

indicate that basal levels of IFN-β are higher in PCMCs than in primary cardiac fibroblast 

cultures (PCFCs) (181).  Furthermore, PCMCs express more IFN-β than PCFCs when 

exposed to reovirus (181).  This heightened IFN response suggests that these differentiated, 
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nondividing, essential cells display an enhanced immune response against pathogens such as 

reovirus.  However, we found that the pretreatment of PCMCs with an antiserum specific for 

IFN-β had no effect on reovirus infection (Fig. 28), growth (Fig. 29), or apoptosis (Fig. 30).  

Additionally, PCMCs isolated from IFN-α/β receptor-null mice are fully permissive for 

reovirus growth (Fig. 31) and undergo apoptosis following reovirus infection (Fig. 32).  

These findings suggest that IFN-β expressed by PCMCs in response to reovirus is not 

sufficient to inhibit viral replication or apoptosis.  Collectively, these results support the 

hypothesis that the IFN-β responsible for inducing the antiviral response in PCMCs 

following reovirus infection is produced by another cell type, perhaps in PCFCs. 

NF-κB induces the expression of type I IFNs following stimulation with numerous 

agonists (31, 56, 224).  We and others previously have shown that numerous ISGs are 

induced in an NF-κB-dependent manner in reovirus-infected cells (45, 129, 178).  Since 

reovirus-induced apoptosis is also NF-κB-dependent, it seemed possible that IFN-β 

expression as a result of NF-κB activation elicits programmed cell death in infected cells by 

an autocrine pathway.  In support of this possibility, IFN-α/β enhances apoptosis in response 

to double-stranded RNA and influenza virus (185), suggesting that IFN-α/β release sensitizes 

cells for apoptosis in response to certain stimuli.  This response could aid in viral clearance 

by earmarking infected cells for elimination by phagocytic cells.  However, this mechanism 

is not involved in the cell death response in PCMCs following reovirus infection.  There are 

three lines of evidence that support this conclusion.  First, pretreatment with IFN-β 

diminishes apoptosis in PCMCs in response to reovirus (Fig. 30).  Second, pretreatment with 

IFN-α/β-specific antiserum had no effect on reovirus-induced apoptosis (Fig. 30).  Third, 

reovirus infection of IFN-α/β receptor-null PCMCs and wild-type PCMCs produced 

equivalent levels of apoptosis (Fig. 32).  It is possible that IFN functions to sensitize some 
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types of cells to apoptosis following reovirus infection, but this cytokine does not enhance 

death signaling in cardiac myocytes.   

Previous reports indicate that reovirus replication is not required for apoptosis in 

HeLa cells (39) and L929 cells(199).  However, we found that viral replication is required for 

apoptosis in reovirus-infected PCMCs.  Reovirus replication is inhibited in PCMCs following 

pretreatment with IFN-β, which also diminishes reovirus-induced apoptosis (Figs. 29 and 

30).  We also observed that pretreatment with RNA synthesis inhibitor ribavirin reduced both 

viral growth and apoptosis in reovirus-infected PCMCs (Figs. 31 and 32).  These data are 

consistent with data gathered from animals infected with reovirus demonstrating that IFN-β 

treatment inhibits both viral growth and abolishes apoptosis in the heart (128).  Together, 

these findings suggest that viral replication is required for reovirus-induced apoptosis in 

cardiac myocytes and that IFN-β functions in blocking apoptosis by reducing reovirus 

growth. 

In this study, we show that reovirus growth in PCMCs is diminished by pretreatment 

with IFN-β and this blockade of viral replication correlates with inhibition of reovirus-

induced apoptosis.  We also found that endogenous IFN-β produced by PCMCs is not 

sufficient to limit reovirus growth, suggesting that PCMCs must be preexposed to IFN-β to 

inhibit viral infection.  Future studies will identify the cell types responsible for producing 

cardioprotective IFN and elucidate mechanisms of the IFN-mediated antiviral state in cardiac 

myocytes.    
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CHAPTER VI 

 

SUMMARY AND FUTURE DIRECTIONS 

 

 Processes by which viruses injure and kill their host cells are essential 

determinants of viral pathogenesis. Although general features of virus-induced cell death 

are understood, little is known about the cellular sensors of viral infection that trigger cell 

killing.  A thorough understanding of mechanisms of virus-induced apoptosis is essential for 

uncovering a role for this apoptotic process in viral pathogenesis and designing antiviral 

therapeutics targeting specific signaling pathways elicited by viruses responsible for cell 

death and disease.  The work described in this thesis uses mammalian reovirus, a highly 

tractable experimental model, to elucidate intracellular signaling pathways activated by 

viruses to cause cell death and disease. 

The data presented in this thesis support the following conclusions: 1) reovirus-

induced apoptosis is independent of viral attachment to cell-surface receptors such as JAM-A 

and sialic acid (Chapter II); 2) reovirus stimulates IKK complexes consisting of the α and γ 

subunits to phosphorylate IκBα leading to NF-κB activation and apoptosis (Chapter III); 3) 

NF-κB activation functions in a proapoptotic manner in the brain and an antiapoptotic 

manner in the heart of reovirus-infected animals (Chapter IV); and 4) IFN-β mediates an 

antiviral state by inhibiting viral proliferation and apoptosis in cardiac myocytes (Chapter V).  

This chapter summarizes the data presented in this dissertation and highlights future 

directions for this research. 
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The role of μ1 in reovirus-induced apoptosis 

Results from Chapter II demonstrate that signaling pathways activated by binding of 

σ1 to JAM-A and sialic acid are dispensable for reovirus-mediated apoptosis.  Instead, we 

found that the μ1 protein plays an essential function in stimulating proapoptotic machinery.  

Analysis of T1L x T3D reassortant viruses revealed that the μ1-encoding M2 gene 

segment is the only viral determinant of the apoptosis-inducing capacity of reovirus when 

infection is initiated via Fc receptors.  Additionally, a temperature-sensitive, membrane 

penetration-defective M2 mutant, tsA279.64, is an inefficient inducer of apoptosis.  The 

μ1 protein contains three putative membrane-interaction motifs, including the N-terminal 

myristate moiety and two amphipathic α-helices (79, 93, 121, 123), and three known 

proteolytic cleavage sites.  These include an autocatalytic cleavage site at amino acid 42, 

which separates μ1N and μ1C, and a cleavage site at amino acid 580, which releases the δ 

and φ fragments (27, 121, 127).  While cleavage at the autocatalytic site is required for 

membrane penetration, the physiologic consequences of the δ-φ cleavage are unknown (27, 

127).  This cleavage occurs concomitantly with the formation of ISVPs and allows release of 

δ into the cytoplasm following endosomal membrane penetration (27).  A third, less 

understood, cleavage leads to release of ~10 C-terminal amino acids (114).   

Future studies will identify the mechanism of μ1-induced apoptosis following 

reovirus infection.  To determine whether μ1 is sufficient for induction of death signaling, 

cells will be transfected with plasmids encoding full-length μ1, μ1 cleavage fragments, or μ1 

truncation mutants and tested for NF-κB activation and apoptosis induction.  This strategy 

will allow us to extensively mutagenize regions within μ1 and rapidly screen for domains 

that affect its capacity to induce apoptosis.   
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To define functional domains in μ1 important for proapoptotic signaling, we will use 

a reverse genetics approach recently established in our laboratory to test viruses containing of 

specific point mutations in the μ1 protein for the capacity to induce apoptosis.  The glycine 

residue at the myristoylation site will be substituted with alanine, and apolar residues within 

the amphipathic α-helices will be replaced with polar residues to disrupt helix stability.  

These mutations will likely alter μ1-membrane interactions.  Cleavage sites in μ1 will be 

altered individually and in combination to assess the role of specific μ1 cleavage events in 

apoptosis induction.  These studies will identify regions in μ1 required for reovirus-induced 

apoptosis and may allow μ1 cleavage events to be disassociated from μ1-mediated membrane 

penetration in proapoptotic signaling. 

 

The role of Rel subunits p52 and c-Rel in reovirus-induced apoptosis 

We found in chapter III that both p52 (16 h) and c-Rel (8 h) are activated following 

the initial induction of NF-κB complexes containing p50 and RelA.  Processing of p100 

results in the formation of p52, but it is unclear how c-Rel becomes activated following 

reovirus infection.  Levels of both IκBβ and IκBε remain unchanged following an 8 h 

timecourse of reovirus infection, suggesting that c-Rel is not activated via degradation of 

either of these IκB isoforms.  Reovirus-induced c-Rel activation could result from 

nuclear translocation of NF-κB complexes consisting of p50 and RelA at early times of 

infection and induction of c-Rel expression leading to its subsequent activation in the 

form of c-Rel homodimers or RelA/c-Rel heterodimers.  Interestingly, previous reports 

indicate that NF-κB activation is abolished at late times of infection (6-8 h) in both p50- 
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and RelA-deficient cell lines following reovirus infection (40).  These findings suggest 

that both p50 and RelA are required for c-Rel induction in response to reovirus.   

It is possible that initial activation of p50/RelA NF-κB complexes inhibits apoptosis 

at early times during infection and complexes containing p52 or c-Rel promote apoptosis at 

later times of infection.  To test the role of p52 and c-Rel in reovirus-induced apoptosis, we 

will use cells deficient in either p52/NF-κB2 or c-Rel to determine whether reovirus is 

capable of inducing apoptosis in the absence of these signaling molecules.  Alternatively, 

overexpression of the Rel subunits p50 and RelA could be used to assess whether these NF-

κB complexes function to inhibit apoptosis when constitutively active during reovirus 

infection.  Results from these experiments will define the role of p52 and c-Rel in reovirus-

induced apoptosis. 

 

The mechanism of IKK activation in response to reovirus 

Results from chapter III illustrate that reovirus stimulates IKK complexes consisting 

of the α and γ subunits.  Upon activation, IKK phosphorylates IκBα leading to the nuclear 

translocation of p50/RelA complexes.  This novel NF-κB pathway activated by reovirus is 

independent of NIK, which is responsible for phosphorylating IKKα following the induction 

of the alternative pathway of NF-κB activation by some agonists(95, 163, 221).  The 

mechanism elicited by reovirus that is responsible for IKK stimulation remains unresolved 

and is currently being investigated in our laboratory. 

Since μ1 plays an important role in reovirus-induced apoptosis, we envision a 

mechanism in which this viral protein interacts directly with IKK inducing a conformational 

change in the complex and subsequent autophosphorylation of the catalytic subunits.  We 

have begun to test this hypothesis by transiently expressing μ1 in combination with 
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individual IKK subunits and performing immunoprecipitation assays with antiserum specific 

for the appropriate IKK molecule followed by immunoblotting using μ1-specific antiserum.  

Additional experiments along this line of inquiry will resolve whether μ1 can directly 

activate IKK. 

An alternative explanation for the mechanism of IKK activation in response to 

reovirus is that μ1, or another viral protein, interacts with a kinase or an adaptor protein 

upstream of IKK resulting in the phosphorylation of the IKK catalytic subunits.  To identify 

these possible interactions, yeast-two-hybrid experiments could be utilized to determine 

possible μ1-interacting candidates that may potentially function in IKK activation.  Mutants 

of μ1 will be used to determine the domains that are required for this interaction.  These 

experiments will elucidate the mechanism of IKK activation in response to reovirus and 

further characterize the function of μ1 in reovirus-induced apoptosis. 

 

The role of IKK in reovirus pathogenesis 

Findings reported in chapter IV indicate that NF-κB activation in the CNS leads to 

high levels of neuronal apoptosis and encephalitis.  In contrast, NF-κB activation in the heart 

leads to IFN-β production, which limits viral replication and protects against apoptosis.  In 

the absence of NF-κB signaling, reovirus infection induces widespread apoptotic damage to 

cardiac myocytes, resulting in myocarditis.  Mechanisms underlying the divergent cellular 

fates following NF-κB activation by reovirus in vivo remain unclear.  Data from chapter III 

suggests that IKKα and IKKγ are required for reovirus-induced NF-κB activation in cell 

culture.  These findings implicate the alternative pathway of NF-κB signaling in reovirus-

infected cells.  However, we also have evidence indicating that p50/RelA heterodimers are 

the predominant nuclear species following reovirus infection of cultured cells (Chapter III) 



 95

and in vivo (Chapter IV), consistent with the classical mode of NF-κB signaling.  In light of 

these results, we think it possible that the differential effects of NF-κB signaling in reovirus 

disease could be attributable to tissue-specific activation of different IKK subunits, which in 

turn influence the composition of nuclear NF-κB complexes. Considering the findings 

presented in chapters III and IV, these mechanisms may involve tissue-specific activation of 

different IKK subunits, which in turn may influence the composition of nuclear NF-κB 

complexes.  Experiments using tissue-specific IKKα- or IKKβ-deficient mice should clarify 

the function of IKK in reovirus-induced disease.   

 

Conclusions 

 With this research, we set out to establish a better understanding of the apoptotic 

response induced during reovirus infection that culminates in disease.  The studies performed 

in this thesis carefully dissect mechanisms of reovirus-induced NF-κB activation and 

apoptosis.  The long-term goal of this work is to identify intracellular events elicited by 

reovirus that activate NF-κB resulting in apoptosis induction and tissue damage in the host.  

Knowledge gained from this research could lead to the development of therapeutics designed 

specifically to inhibit viral replication or block signaling pathways required for virus-induced 

apoptosis.  Identification of a novel NF-κB activation pathway elicited by reovirus is 

particularly intriguing due to the potential impact in the field.  These findings set the stage for 

precise biochemical analysis of the mechanisms employed by reovirus to induce apoptosis 

and cause disease.   
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CHAPTER VII 

 

DETAILED METHODS OF PROCEDURE 

 

Cells, viruses, and antibodies 

Spinner-adapted murine L929 cells were grown in either suspension or monolayer 

cultures in Joklik's modified Eagle's minimal essential medium (Irvine Scientific, Santa Ana, 

Calif.) supplemented to contain 5% fetal bovine serum (Gibco-BRL, Gaithersburg, Md.), 2 

mM L-glutamine, 100 U of penicillin per ml, 100 mg of streptomycin per ml, and 0.25 mg of 

amphotericin per ml (Gibco-BRL).  HeLa cells and MEFs were maintained in monolayer 

cultures in Dulbecco's minimal essential medium (Gibco-BRL) supplemented to contain 10% 

fetal bovine serum, L-glutamine, and antibiotics as described for L cells.  CHO cells were 

maintained in Ham's F12 medium supplemented with fetal bovine serum, L-glutamine, and 

antibiotics as described for HeLa cells.   

 The prototype reovirus strain T3D are laboratory stocks.  Reovirus strain T3SA+ was 

generated by reassortment of reovirus strains T1L and type 3 clone 44-MA (12).  Viral stocks 

were prepared by plaque purification and passage in L cells (205).  Purified virions were 

prepared by using second- and third-passage L-cell lysate stocks as previously described (58, 

155).  Viral particles were freon-extracted from infected-cell lysates, layered onto 1.2 to 1.4 

g/cm3 CsCl gradients, and centrifuged at 62,000 x g for 18 h. Bands corresponding to virions 

(1.36 g/cm3) were collected and dialyzed in virion storage buffer (150 mM NaCl, 15 mM 

MgCl2, 10 mM Tris [pH 7.4]).  Concentrations of reovirus virions in purified preparations 

were determined from the equivalence 1 OD260 = 2.1 x 1012 virions.  The particle-to-PFU 

ratio of stocks used for viral infectivity assays was approximately 10-100 to 1.   
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Generation and characterization of mAbs 5C6, 9BG5, and 7F4, which are specific for 

the type 1 σ1, type 3 σ1, and λ2 proteins, respectively, have been previously described (23, 

195).  The immunoglobulin G (IgG) fractions of polyclonal rabbit antisera raised against T1L 

and T3D (206) were purified by using protein A-sepharose as previously described (10).  A 

mixture of these sera was capable of recognizing all strains of reovirus used in this study.  

Protein-A purified, JAM-A-specific mAb J10.4 was obtained from Dr. Charles Parkos 

(Emory University) (99).  Anti-Myc mAb 9E10 and anti-Fc rat mAb were purchased from 

BD Biosciences (San Jose, CA).  Fluorescent dye-conjugated secondary antibodies were 

purchased from Molecular Probes (Eugene, OR).  Antisera specific for IκBα, IκBβ, IκBε, 

p50, RelA/RelA, RelB, c-Rel, IKKγ, and β-actin were purchased from Santa Cruz 

Biotechnology (Santa Cruz, CA).  The antibody antiserum for p100/p52 was purchased from 

Upstate Biotechnology (Lake Placid, NY).  The agonistic lymphotoxin-β receptor antiserum 

was purchased from BD Biosciences (San Jose, CA).  The IKK inhibitor BAY 65-1942 was 

obtained from Dr. K. Ziegelbauer (Bayer Health Care AG, Leverkusen, Germany).  Rabbit 

polyclonal antiserum specific to the activated form of caspase 3 (anti-caspase 3/Asp 175) was 

purchased from Cell Signaling Technology (Danvers, MA).  IFN-β and IFN-α/β-specific 

antiserum was purchased from Calbiochem (San Diego, CA).   

 

Generation of CHO cells stably expressing JAM-A or JAM-AΔCT 

Human JAM-A was subcloned into expression plasmid pcDNA3.1 (Invitrogen, 

Carlsbad, CA).  Truncation mutant JAM-AΔCT was generated by PCR using full-length 

JAM-A cDNA as template.  Sequences encoding amino acids 1-260 (Δ261-299) were cloned 

and appended with a stop codon using T7 primer and 5’-

TACGGGATCCTCAGGCAAACCAGATGCC-3’ as forward and reverse primers, 
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respectively.  The PCR product was digested with BamHI and introduced into pcDNA3.1 

using complementary restriction sites.  Fidelity of cloning was confirmed by automated 

sequencing.  CHO cells stably expressing empty vector alone, JAM-A, and JAM-AΔCT were 

generated by transfection of CHO-K1 cells with empty pcDNA3.1 vector, pcDNA3.1 

encoding JAM-A, or pcDNA3.1 encoding JAM-AΔCT.  Cells were grown to 50% 

confluence in 6 cm dishes (Costar, Cambridge, MA) and transfected with 4 μg of each 

plasmid by using Lipofectamine Plus reagent (Invitrogen) according to the manufacturer's 

instructions.  Transfected cells were selected by growth in the presence of 1 mg per ml G418.  

After the tenth passage in the presence of G418, cells expressing high levels of JAM-A as 

assessed by JAM-A-specific mAb J10.4 staining (mean fluorescence intensity > 5000) were 

separated using a BD FACsort cell sorter (Becton-Dickinson, Palo Alto, CA). 

 

Immunoblot assays 

Following treatment, whole-cell extracts were generated by incubation with lysis 

buffer (10 mM HEPES [pH7.4], 10 mM KCL, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM DTT, 

0.1% Igepal, 1 mM Na4O7P2, 1 mM NaF, 1 mM NaVO3, and 1 μM microsystin).  Extracts 

(10-50 μg total protein) were resolved by electrophoresis in 10% polyacrylamide gels and 

transferred to nitrocellulose membranes.  Membranes were blocked at 4ºC overnight in 

blocking buffer (PBS containing 0.1% Tween-20 and 5% BSA).  Immunoblots were 

performed by incubating the membranes with primary antibodies diluted 1:500 to 1:2000 in 

blocking buffer at room temperature for 1 h.  Membranes were washed three times for 10 min 

each with washing buffer (PBS containing 0.1 Tween-20) and incubated with horseradish 

peroxidase-conjugated goat anti-rabbit (Amersham Biosciences, Piscataway, NJ) and bovine 

anti-goat antibodies (Santa Cruz Biotechnology) diluted 1:2000 and 1:3000, respectively.  
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Following three washes, membranes were incubated for 1 min with chemiluminescent 

peroxidase substrate (Amersham Biosciences) and exposed to film.  Band intensity was 

quantified using the Image J program (NIH, Bethesda, MD). 

 

Flow cytometric analysis for JAM-A surface expression 

CHO cells stably transfected with empty vector, JAM-A, or JAM-AΔCT were 

detached from plates using PBS containing 10 mM EDTA.  Cells were washed twice with 

chilled PBS prior to incubation with 10 μg per ml of either JAM-A specific mAb J10.4 or an 

isotype-matched control mAb at 4°C for 1 h.  Cells were stained with a 1:1000 dilution of 

PE-labeled anti-mouse IgG at 4°C for 1 h and analyzed using a FACScan flow cytometer 

(Becton-Dickinson). 

 

Fluorescent-focus assays of viral infectivity 

Monolayers of cells (2 x 105) in 24-well plates (Costar) were adsorbed with various 

MOIs of reovirus at room temperature for 1 h.  Following removal of the inoculum, cells 

were washed with PBS and incubated in complete medium at 37°C for 18 h to permit 

completion of a single cycle of viral replication.  Monolayers were fixed with 1 ml of 

methanol at -20°C for a minimum of 30 min, washed twice with PBS, blocked with 2.5% Ig-

free bovine serum albumin (Sigma-Aldrich, St.  Louis, MO) in PBS, and incubated at room 

temperature for 1 h with polyclonal rabbit anti-reovirus serum at a 1:1000 dilution in PBS-

0.5% Triton X-100.  Monolayers were washed twice with PBS-0.5% Triton X-100 and 

incubated with a 1:1000 dilution of Alexa546-labeled anti-rabbit IgG.  Monolayers were 

washed with PBS, and infected cells were visualized by indirect immunofluorescence using 

an Axiovert 200 fluorescence microscope (Carl Zeiss, New York, NY).  Infected cells were 
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identified by the presence of intense cytoplasmic fluorescence that was excluded from the 

nucleus.  No background staining of uninfected control monolayers was noted.  Reovirus 

antigen-positive cells were quantified by counting fluorescent cells in at least three random 

fields of view in duplicate wells at a magnification of 20X. 

 

Antibody-mediated infections 

Reovirus virions (1 x 1011) were incubated at 4°C overnight with various 

concentrations of mAb in 1 ml PBS.  Cells were adsorbed with virus at an MOI of either 100 

or 500 PFU per ml at room temperature for 1 h.  Following removal of the inoculum, cells 

were washed with PBS and incubated in complete medium at 37°C for various intervals.  For 

inhibition of viral disassembly and RNA synthesis, cells were maintained in 20 mM AC or 

200 μM ribavirin, respectively, throughout the course of infection.  For inhibition of 

disassembly, cells also were pretreated for 1 h with medium containing 20 mM AC. 

 

Quantitation of apoptosis by acridine orange (AO) staining 

Cells (2 x 105) grown in 24-well tissue-culture plates were adsorbed with reovirus 

virions or mAb-virion complexes at various MOIs.  Following incubation at 37°C for 48 h, 

the percentage of apoptotic cells was determined by using AO staining as previously 

described (199).  For each experiment, 200 to 300 cells were counted in three independent 

wells, and the percentage of cells exhibiting condensed chromatin was determined by epi-

illumination fluorescence microscopy using a fluorescein filter set (Carl Zeiss). 
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Electrophoretic mobility shift assay (EMSA) 

Cells (3 x 106) grown in 100 mm tissue-culture dishes (Costar, Cambridge, MA) were 

treated with 20 ng/ml of TNF-α (Sigma-Aldrich, St.  Louis, MO), adsorbed with T3D at a 

multiplicity of infection (MOI) of 100 plaque forming units (PFU)/cell, or treated with gel 

saline (mock-infection).  After incubation at 37°C for various intervals, nuclear extracts (10 

μg total protein) were assayed for NF-κB activation by an EMSA using a 32P-labeled 

oligonucleotide consisting of the NF-κB consensus-binding sequence (Santa Cruz 

Biotechnology) as previously described (40).  For supershift assays, 2 μg of rabbit polyclonal 

antiserum specific for p50, p52, RelA, RelB, or c-Rel was added to the binding-reaction 

mixtures and incubated at 4°C for 30 min prior to the addition of radiolabeled 

oligonucleotide.  Nucleoprotein complexes were subjected to electrophoresis in native 5% 

polyacrylamide gels at 180 V for 90 min, dried under vacuum, and exposed to Biomax MR 

film (Kodak, Rochester, NY).  Band intensity was quantified by determining photostimulus 

luminescence (PSL) units using a Fuji2000 phosphor imager and the Multi Gauge software 

(Fuji Medical Systems, Inc., Stamford, CT).   

 

Kinase assay 

Cells (8 x 105) were treated with 20 ng/ml of TNFα, adsorbed with T3D at an MOI of 

100 PFU/cell, or mock-infected.  Whole-cell extracts were incubated with an IKKγ-specific 

antiserum in the presence of ELB buffer (50 mM HEPES [pH 7.4], 250 mM NaCl, 5 mM 

EDTA, 0.1% Igepal).  Immunoprecipitates were equilibrated in kinase buffer (10 mM 

HEPES [pH 7.4], 0.5 mM dithiothreitol, 5 mM MgCl2, 1 mM MnCl2, 12.5 mM β-

glycerophosphate, 50 µM Na3VO4, 2 mM NaF) and incubated with 10 µM ATP, 5 µCi of [γ-

32P]ATP (Perkin Elmer), and 1 µg of recombinant GST protein fused to amino acids 1-54 of 
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IκBα (GST-IκBα) at 30°C for 30 minutes (32).  Kinase reactions were terminated by heat 

denaturation in the presence of 1% SDS.  Radiolabeled products were resolved by SDS-

PAGE, transferred to nitrocellulose membranes, and visualized by autoradiography.   

 

Caspase 3 activity assay 

Cells (3 x 103) grown in clear-bottom, black-walled, 96-well tissue-culture plates 

(Costar) were inoculated with 10 ng/ml of TNFα, a combination of 10 ng/ml of TNFα and 10 

μg/ml of cycloheximide (Sigma-Aldrich), T3D at an MOI or 1000 PFU/cell, or mock-

infected.  Following incubation at 37°C for 24 and 12 h with respect to T3D- or TNFα-

treatment, caspase 3 activity was quantified by using the Caspase-Glo 3/7 Assay (Promega).  

Luminescence was detected by using a Topcount NXT luminometer (Packard Biosciences 

Co., Meriden, CT). 

 

Trypan blue exclusion assay 

Cells (4 x 104) grown in 6-well tissue-culture plates were inoculated with 10 ng/ml of 

TNFα, a combination of 10 ng/ml of TNFα and 10 μg/ml of cycloheximide, T3D at an MOI 

of 1000 PFU/cell, or mock-infected.  Following incubation at 37°C for 48 and 24 h with 

respect to T3D- or TNFα-treatment, cells were collected and washed with PBS.  The cell 

pellet was resuspended in 50 ml of PBS and stained using 100 ml of a solution containing 

0.4% trypan blue (Kodak) in PBS.  For each experiment, 200 to 300 cells were counted and 

the percentage of cell death was determined by light microscopy (Axiovert 200; Zeiss, 

Oberköchen, Germany). 
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Mice and inoculations 

 HIV long-terminal repeat luciferase (HLL)  mice were generated as described 

previously (18).  Control p50+/+ mice (B6129PF1/J-AW-J/AW) and p50-/- mice (B6129P-

Nfkb1tm1Bal) (165) were obtained from the Jackson Laboratory.  Newborn mice weighing 2.0-

2.5g (2-4 days old) were inoculated either intracranially or perorally with purified T3SA+ 

diluted in PBS.  Intracranial inoculations were delivered to the right and left hemispheres (5 

μl each) using a Hamilton syringe (BD Biosciences) and a 30-gauge needle (196).  Peroral 

inoculations were delivered into the stomach (50 ml) by passage of a polyethylene catheter 

0.61 mm in diameter (BD Biosciences) through the esophagus (154).  The inoculum 

contained 0.5% (vol/vol) green food coloring so that accuracy of delivery could be judged.  

For determination of NF-kB activation, viral titer, and immunohistochemical staining, mice 

were euthanized at various intervals following inoculation and organs were collected. 

 

Assessment of NF-κB activation by in vivo luciferase activity 

 Two-day-old HLL mice were inoculated perorally with either 104 PFU T3SA+ or 

PBS.  Mice were anesthetized with isoflurane before imaging and immobilized for the 

duration of the integration time of photon counting (3 minutes).  Luciferin (0.75 g/mouse in 

0.2 ml isotonic saline) was inoculated intraperitoneally and mice were imaged using an 

intensified charge-coupled devise camera (C2400-32; Hamamatsu Corp.).  For the duration 

of photon counting, mice were placed inside a light-tight box.  Light emission from each 

mouse was detected as photon counts and a digital false-color photon emission image of the 

mouse was generated.   
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In vivo EMSAs 

 Two-day-old p50+/+ and p50-/- mice were inoculated perorally with either 104 PFU 

T3SA+ or PBS.  Mice were euthanized 12 days after inoculation.  Brains and hearts were 

aseptically removed, snap frozen on dry ice, and stored at -70°C.  Organs were weighed, 

placed in a mortar with liquid nitrogen, and ground into a powder.  Lysis buffer (20 mM 

HEPES [pH 7.9], 25% glycerol, 0.42 M NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM 

phenylmethylsulfonyl fluoride, 0.5 mM dithiothreitol) was added in a ratio of 1 ml per 200 

mg of tissue.  Samples were frozen and thawed 3 times and centrifuged at 12,000 g for 10 

minutes.  The supernatant was used as the whole-cell extract. 

 Whole-cell extracts (10 μg total protein) were assayed for NF-κB activation by 

EMSA using a 32P-labeled oligonucleotide (1 ng) consisting of the NF-κB consensus binding 

sequence (Santa Cruz Biotechnology Inc.) as described above and previously (40).  For 

competition experiments, unlabeled consensus oligonucleotide at various concentrations was 

added to the reaction mixtures along with radiolabeled oligonucleotide.  For supershift 

experiments, 1 μl of a rabbit polyclonal antiserum specific to RelA (250 μg/ml; Santa Cruz 

Biotechnology Inc.) was added to the binding reaction mixtures and incubated at 4°C for 30 

minutes prior to the addition of radiolabeled oligonucleotide.  Nucleoprotein complexes were 

subjected to electrophoresis in native polyacrylamide gels, which were dried and exposed to 

film. 

 

Determination of viral titer in infected organs. 

 Organs (intestine, liver, heart, and brain) from infected p50+/+ and p50-/- were 

placed into vials containing 1 ml gelatin saline, frozen (-20°C) and thawed once, and 
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sonicated for 20 seconds.  Titers of virus present in organ homogenates were determined by 

plaque assay using L cell monolayers (205). 

 

Histology, immunohistochemistry, and TUNEL staining 

 Litters of newborn p50+/+ and p50-/- mice were inoculated intracranially or perorally 

with either 104 PFU T3SA+ or PBS.  Mice were euthanized, and brain and heart tissues were 

fixed in 10% buffered paraformaldehyde.  Fixed organs were embedded in paraffin, and 6-

μm histological sections were prepared.  Sections were stained with H&E for evaluation of 

histopathologic changes, processed for immunohistochemical detection of reovirus antigen, 

assayed for DNA fragmentation using the TUNEL technique (201), or processed for the 

immunohistochemical detection of activated caspase 3 (12).  Cells demonstrating TUNEL 

staining were quantitated separately in each parasagittal brain section in the following 

regions: cerebral cortex, hippocampus, basal ganglia, diencephalons, and brain stem.  The 

mean number of positive cells per region was determined for each treatment group and time 

point.  Observers were blinded to the identity of the mouse strain and the nature of the 

inoculum. 

 

Echocardiography 

 Echocadiography was perfomed on conscious 10-day-old pups as previously 

described for adult mice (152) except that the total field depth was set to 1 cm (minimum 

possible), and external heating and rapid sample acquisition were used to prevent excessive 

heat loss.  Electrocardiograms were digitally sampled and correspons to the usual surface 

lead I. 
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RNA isolation and real-time PCR 

 Two-day-old p50+/+ and p50-/- mice were inoculated perorally with either 104 PFU 

T3SA+ or PBS.  Mice were euthanized, and brain and heart tissues were homogenized using 

a Dounce homogenizer.  RNA was extracted from brain and heart homogenates using the 

TRIZOL RNA extraction protocol (Invitrogen Corp.).  RNA (3 μg) was used in a reverse 

transcription reaction containing x10 buffer, 25 mM MgCl2, 100 μM dithiothreitol, 1 U 

RNasin (Promega), 10 mM dNTPs, 50 μM random hexamers, and 1 U AMV reverse 

transcriptase (Promega).  The reaction was incubated at 43°C for 1 h and then at 95°C for 10 

min. 

 Real-time PCR reactions were carried out using the Bio-Rad iCycler and iQ 

Supermix buffer containing DNA polymerase and SYBR Green (Bio-Rad Laboratories).  

Two to 3 replicate amplification reactions were performed in 96-well plates (Bio-Rad 

Laboratories).  Each reaction contained 12.5 μl iQ Supermix buffer, 300 nM forward and 

reverse primers, and 1 μl cDNA in a final volume of 25 μl.  Primers for the reactions were as 

follows: A) IFN-β forward, 5’-GGAGATGACGGAGAAGATGC-3’, B) IFN-β reverse, 5’-

CCCAGTGCTGGAGAAATTGT-3’, C) GAPDH forward, 5’-

CAACTACATGGTCTACATGTTC-3’, D) GAPDH reverse, 5’-

CTCGCTCCTGGAAGATG-3’.  Cycling conditions were as follows: 95°C for 10 min and 

then 45 cycles at 95°C for 15 sec, 60°C for 30 sec, and 72°C for 15 sec. 

 Data were analyzed using Bio-Rad iCycler PCR detection and analysis software 

version 3.0 (Bio-Rad Laboratories).  DNA was quantitated using the standard curve method 

with the background subtracted.  Known concentrations of cDNA were used to obtain the 

standard curve for each gene (concentrations between 0.0228 and 710 ng).  A melting curve 
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was determined for each sample to detect primer dimers, in which case data were not used.  

Results are expressed as values for IFN-β cDNA divided by those for GAPDH cDNA. 

 

IFN-β treatment of mice 

 Two-day-old p50-/- mice were inoculated intraperitoneally with either 5 x 104 U IFN-

β (Calbiochem) suspended in PBS containing 0.1% BSA or PBS alone in a volume of 25 μl 1 

day prior to peroral inoculation with 104 PFU T3SA+.  Infected mice were treated daily for 9 

days with either IFN-β or PBS.  On day 10, following viral inoculation, animals were 

euthanized and organs were removed.  Organs were processed for determination of viral titer 

and histopathological analysis. 

 Animal husbandry and experimental procedures were performed in accordance with 

NIH Public Health Service policy and approved by the Vanderbilt University School of 

Medicine Institutional Animal Care and Use Committee. 

 

Primary cardiac myocyte generation 

 To generate primary cardiac myocyte cultures, 2- to 4-day-old neonates were 

euthanized and the apical two-thirds of the hearts were removed, minced, and trypsinized 

(13).  Cells were plated at a density of 1.25 x 106 per well in six-well plates (Costar) and 

incubated for 1.5 to 2 h in order to isolate rapidly adhering cardiac fibroblasts.  Cardiac 

myocytes were resuspended in DMEM (Gibco BRL) supplemented with 7% fetal calf serum 

(Gibco BRL), 0.06% thymidine (Sigma-Aldrich) and plated as indicated for each procedure.  

Myocyte cultures contained 5 to 20% fibroblasts, consistent with levels reported by others 

(65, 72, 113), and consistent with cell heterogeneity in the heart. 
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Statistical analysis 

Mean values obtained in infectivity and apoptosis assays were compared using the 

unpaired Student’s t test as applied with Microsoft Excel software.  P values of less than 0.05 

were considered to be statistically significant.  The contribution of each of the reovirus gene 

segments to apoptosis induction was assessed by using the non-parametric Mann-Whitney 

test without adjusting for multiple comparisons and the panel of T1L x T3D reassortant 

viruses as previously described ((145)). 
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Apoptosis plays a major role in the cytopathic effect induced by reovirus following infection of cultured cells
and newborn mice. Strain-specific differences in the capacity of reovirus to induce apoptosis segregate with the
S1 and M2 gene segments, which encode attachment protein �1 and membrane penetration protein �1,
respectively. Virus strains that bind to both junctional adhesion molecule-A (JAM-A) and sialic acid are the
most potent inducers of apoptosis. In addition to receptor binding, events in reovirus replication that occur
during or after viral disassembly but prior to initiation of viral RNA synthesis also are required for reovirus-
induced apoptosis. To determine whether reovirus infection initiated in the absence of JAM-A and sialic acid
results in apoptosis, Chinese hamster ovary (CHO) cells engineered to express Fc receptors were infected with
reovirus using antibodies directed against viral outer-capsid proteins. Fc-mediated infection of CHO cells
induced apoptosis in a �1-independent manner. Apoptosis following this uptake mechanism requires acid-
dependent proteolytic disassembly, since treatment of cells with the weak base ammonium chloride diminished
the apoptotic response. Analysis of T1L � T3D reassortant viruses revealed that the �1-encoding M2 gene
segment is the only viral determinant of the apoptosis-inducing capacity of reovirus when infection is initiated
via Fc receptors. Additionally, a temperature-sensitive, membrane penetration-defective M2 mutant, tsA279.64,
is an inefficient inducer of apoptosis. These data suggest that signaling pathways activated by binding of �1 to
JAM-A and sialic acid are dispensable for reovirus-mediated apoptosis and that the �1 protein plays an
essential role in stimulating proapoptotic signaling.

The mammalian reoviruses are prototype members of the
Orthoreovirus genus within the Reoviridae family (70). These
viruses are composed of two concentric icosahedral capsids
enclosing a segmented, double-stranded RNA genome (46).
Reoviruses are highly virulent in newborn mice and injure a
variety of organs, including the brain, heart, and liver (70).
Apoptosis induced as a consequence of reovirus infection plays
an important role in the pathogenesis of both reovirus-induced
encephalitis (48, 50, 57) and myocarditis (20, 21, 50). Reovi-
ruses also induce apoptosis of cultured cells (19, 59, 71).

Reovirus infection is initiated by the attachment of virions to
cell surface receptors via the �1 protein (37, 74). The �1
protein of all three reovirus serotypes engages junctional ad-
hesion molecule-A (JAM-A) (5, 11, 27, 53). The �1 protein
also binds to cell surface carbohydrate; however, the type of
carbohydrate bound varies with serotype (1, 23, 51, 52). After
receptor binding, virions are internalized into cells by receptor-
mediated endocytosis (7, 26). Virions undergo acid-dependent
proteolytic disassembly within cellular endosomes, leading to
the formation of infectious subvirion particles (ISVPs) (2, 8,
15, 24, 63, 66). ISVPs are characterized by the loss of outer-
capsid protein �3, a conformational change in attachment pro-

tein �1, and cleavage of outer-capsid protein �1 to form par-
ticle-associated fragments � and � (13, 44, 47). Subsequent to
ISVP formation the �1 protein is shed, and the �1 cleavage
fragments undergo conformational rearrangement, yielding
ISVP*s (12, 14). ISVP*s are putative entry intermediates that
penetrate endosomes and deliver transcriptionally active cores
into the cytoplasm (45, 49).

Clues about mechanisms by which reoviruses induce apop-
tosis first emerged from studies of strain-specific differences in
the efficiency of apoptosis induction. Reovirus strain type 3
Dearing (T3D) induces apoptosis in cultured cells more effi-
ciently than strain type 1 Lang (T1L) (17, 59, 71). Studies using
T1L � T3D reassortant viruses demonstrated that these strain-
specific effects are determined by the viral S1 and M2 gene
segments (59, 71, 72). The S1 gene encodes the attachment
protein �1 (37, 74), and the M2 gene encodes membrane
penetration protein �1 (38, 44, 49). Thus, these genetic exper-
iments suggest critical functions for the �1 and �1 proteins in
apoptosis induction by reovirus.

Analysis of reovirus strains T3/C44-SA� (T3SA�) and T3/
C44MA-SA� (T3SA�), which are isogenic at all loci except
for a single amino acid polymorphism in �1 (4), has pointed to
an important role for sialic acid binding in reovirus-induced
apoptosis (17). Sialic-acid-binding strain T3SA� induces apo-
ptosis significantly more efficiently than non-sialic-acid-binding
strain T3SA�. Concordantly, removal of cell surface sialic acid
with neuraminidase or blockade of virus binding to cell surface
sialic acid using a soluble competitor, sialyllactose, abolishes
the capacity of T3SA� to induce apoptosis (17). However,
engagement of sialic acid is not sufficient to induce apoptosis.
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Blockade of �1 binding to JAM-A using either �1- or JAM-
A-specific monoclonal antibodies (MAbs) also diminishes the
apoptosis-inducing capacity of sialic-acid-binding reoviruses
(5, 71). Collectively, these data demonstrate that reovirus
strains that bind to both JAM-A and sialic acid are the most
potent inducers of apoptosis.

In addition to receptor binding, postattachment events also
are required for reovirus-mediated apoptosis induction (18).
Inhibition of viral disassembly using ammonium chloride (AC),
a weak base that increases vacuolar pH (43), or E64, an inhib-
itor of cysteine proteases such as those contained in the endo-
cytic compartment (3), abolishes reovirus-induced apoptosis.
On the other hand, interference with steps in viral replication
subsequent to ISVP formation and membrane penetration us-
ing ribavirin, an inhibitor of viral RNA synthesis (55), does not
perturb apoptosis induced by reovirus (18). Thus, in addition
to sialic acid- and JAM-A-mediated attachment of reovirus to
cells, replication steps during or after viral disassembly that
occur before the cytoplasmically delivered core becomes tran-
scriptionally active also contribute to reovirus-induced apop-
tosis. Since the M2-encoded �1 protein functions in virus-in-
duced endosomal membrane penetration following disassembly
but prior to viral RNA synthesis (38, 44, 49), the deleterious
effects of reovirus disassembly inhibitors on apoptosis induc-
tion suggest a functional link between the M2 gene segment
and differences in the efficiency of apoptosis exhibited by dif-
ferent reovirus strains (59, 71, 72).

In this study, we determined whether reovirus is capable of
inducing apoptosis independent of JAM-A and sialic acid bind-
ing. We found that antibody-mediated uptake of reovirus into
JAM-A-negative, Fc-receptor-expressing cells results in pro-
ductive infection and leads to apoptosis in a �1-independent
fashion. Moreover, apoptosis induced following this uptake
pathway also is dependent on viral disassembly. Analysis of
reassortant viruses and an M2 mutant virus demonstrates that
the �1 protein influences the strength of proapoptotic signal-
ing following reovirus infection. These data suggest that sig-
naling induced as a result of �1 interactions with JAM-A and
sialic acid are not necessary for apoptosis induced by reovirus
and that the �1 protein is the viral factor that stimulates the
cellular apoptotic machinery.

MATERIALS AND METHODS

Cells, viruses, and antibodies. HeLa cells were maintained in Dulbecco’s
modified Eagle medium supplemented to contain 10% fetal bovine serum (FBS),
50 U per ml of penicillin, and 50 �g per ml streptomycin (Invitrogen, Carlsbad,
CA). Chinese hamster ovary (CHO) cells were maintained in HAM’s F12 me-
dium supplemented to contain 10% FBS, 50 U per ml of penicillin, and 50 �g per
ml streptomycin. For maintenance of stably transfected CHO cells, the medium
was additionally supplemented to contain 1 mg per ml G418 (Invitrogen).
CHO-B1 cells, which express the B1 isoform of murine Fc receptor II, were
obtained from Ira Mellman (Yale University). Cells were maintained in MEM
Alpha supplemented to contain 10% FBS, 50 U per ml of penicillin, 50 �g per
ml streptomycin, and 10 �M methotrexate (EMD Biosciences, San Diego, CA)
as previously described (34).

T1L and T3D are laboratory stocks. Isolation and characterization of T3SA�
and T3SA� have been previously described (4). Reovirus temperature-sensitive
mutant tsA279.64 was obtained from Kevin Coombs (University of Manitoba)
(30). Purified reovirus virions were generated by using second- or third-passage
L-cell lysate stocks of twice-plaque-purified reovirus as previously described (28).
Viral particles were freon-extracted from infected cell lysates, layered onto 1.2-
to 1.4-g/cm3 CsCl gradients, and centrifuged at 62,000 � g for 18 h. Bands
corresponding to virions (1.36 g/cm3) were collected and dialyzed in virion

storage buffer (150 mM NaCl, 15 mM MgCl2, 10 mM Tris-HCl [pH 7.4]).
Concentrations of reovirus virions in purified preparations were determined
from an equivalence where an optical density at 260 nm of 1 equaled 2.1 � 1012

virions (64).
Reovirus T3D virions were inactivated using a UV cross-linker (Ultra-lum-

UVC-508; Marsh Biomedical, Rochester, NY). Virus at a concentration of 109

PFU per ml was irradiated by using short-wave (254 nm) UV on ice at a distance
of 10 cm for 5 min at 1,20,000 �J/cm2 in a 6-cm tissue culture dish (Costar,
Cambridge, MA). These conditions are sufficient to reduce viral infectivity to
levels that are undetectable by fluorescent focus assays using confluent L929 cell
monolayers (data not shown).

Generation and characterization of MAbs 5C6, 9BG5, and 7F4, which are
specific for the type 1 �1, type 3 �1, and �2 proteins, respectively, have been
previously described (10, 73). The immunoglobulin G (IgG) fractions of poly-
clonal rabbit antisera raised against T1L and T3D (76) were purified by using
protein A-Sepharose as previously described (4). A mixture of these sera was
capable of recognizing all strains of reovirus used in this study. Protein A-puri-
fied, JAM-A-specific MAb J10.4 was obtained from Charles Parkos (Emory
University) (40). Human coxsackievirus and adenovirus receptor (hCAR)-spe-
cific MAb RmcB was provided by Jeffrey Bergelson (University of Pennsylvania).
Anti-Myc MAb 9E10 and rat anti-Fc MAb were obtained from BD Biosciences
(San Jose, CA). Fluorescent dye-conjugated secondary antibodies were obtained
from Molecular Probes (Invitrogen).

Generation of CHO cells stably expressing JAM-A or JAM-A�CT. Human
JAM-A was subcloned into expression plasmid pcDNA3.1 (Invitrogen). Trunca-
tion mutant JAM-A	CT was generated by PCR using full-length JAM-A cDNA
as template. Sequences encoding amino acids 1 to 260 (	261 to 299) were cloned
and appended with a stop codon using T7 primer and 5
-TACGGGATCCTC
AGGCAAACCAGATGCC-3
 as forward and reverse primers, respectively. The
gene-specific primer encompasses nucleotides 981 to 995 of the JAM-A cDNA. The
PCR product was digested with BamHI and introduced into pcDNA3.1 using com-
plementary restriction sites. Fidelity of cloning was confirmed by automated se-
quencing. CHO cells stably expressing empty vector alone, JAM-A, and JAM-A	CT
were generated by transfection of CHO-K1 cells with empty pcDNA3.1 vector,
pcDNA3.1 encoding JAM-A, or pcDNA3.1 encoding JAM-A	CT. Cells were
grown to 50% confluence in 6-cm dishes and transfected with 4 �g of each plasmid
by using Lipofectamine Plus reagent (Invitrogen) according to the manufacturer’s
instructions. Transfected cells were selected by growth in the presence of 1 mg per
ml G418. After the 10th passage in the presence of G418, cells expressing high levels
of JAM-A as assessed by JAM-A-specific MAb J10.4 staining (mean fluorescence
intensity, �5,000) were separated using a BD FACsort cell sorter (Becton-Dickin-
son, Palo Alto, CA).

Immunoblot for JAM-A. Cell extracts were prepared from CHO cells (1 � 106)
transfected with empty vector, JAM-A, or JAM-A	CT by sonication in phos-
phate-buffered saline (PBS) supplemented to contain protease inhibitor cocktail
(Roche, Indianapolis, IN). Extracts were resolved by electrophoresis in 10%
polyacrylamide gels and transferred to nitrocellulose membranes. Immunoblots
were performed by using JAM-A-specific MAb J10.4 followed by horseradish
peroxidase-conjugated goat anti-mouse secondary antibody (Amersham Phar-
macia Biotech, Piscataway, NJ), each diluted 1:1,000 in PBS containing 0.1%
Tween 20 and 5% low-fat dry milk.

Flow cytometric analysis for JAM-A surface expression. CHO cells stably
transfected with empty vector, JAM-A, or JAM-A	CT were detached from
plates using PBS containing 10 mM EDTA. Cells were washed twice with chilled
PBS prior to incubation with 10 �g per ml of either JAM-A specific MAb J10.4
or control MAb (hCAR-specific MAb) at 4°C for 1 h. Cells were stained with a
1:1,000 dilution of phycoerythrin (PE)-labeled anti-mouse IgG at 4°C for 1 h and
analyzed using a FACScan flow cytometer (Becton-Dickinson).

Assessment of viral infectivity by indirect immunofluorescence. Monolayers of
cells (2 � 105) in 24-well plates (Costar) were adsorbed with the indicated
multiplicity of infection (MOI) of reovirus at room temperature for 1 h. Follow-
ing removal of the inoculum, cells were washed with PBS and incubated in
complete medium at 37°C for 18 h to permit completion of a single cycle of viral
replication. Monolayers were fixed with 1 ml of methanol at �20°C for a mini-
mum of 30 min, washed twice with PBS, blocked with 2.5% Ig-free bovine serum
albumin (Sigma-Aldrich, St. Louis, MO) in PBS, and incubated at room tem-
perature for 1 h with polyclonal rabbit anti-reovirus serum at a 1:1,000 dilution
in PBS–0.5% Triton X-100. Monolayers were washed twice with PBS–0.5%
Triton X-100 and incubated with a 1:1,000 dilution of Alexa546-labeled anti-
rabbit IgG. Monolayers were washed with PBS, and infected cells were visualized
by indirect immunofluorescence using an Axiovert 200 fluorescence microscope
(Carl Zeiss, New York, NY). Infected cells were identified by the presence of
intense cytoplasmic fluorescence that was excluded from the nucleus. No back-
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ground staining of uninfected control monolayers was noted. Reovirus antigen-
positive cells were quantified by counting fluorescent cells in at least three
random fields of view in duplicate wells at a primary magnification of 20�.

Antibody-mediated infections. Reovirus virions (1 � 1011) were incubated at
4°C overnight with various concentrations of MAbs in 1 ml PBS. Cells were
adsorbed with virus at an MOI of either 100 or 500 PFU per ml at room
temperature for 1 h. Following removal of the inoculum, cells were washed with
PBS and incubated in complete medium at 37°C for various intervals. For
inhibition of viral disassembly and RNA synthesis, cells were maintained in 20
mM AC or 200 �M ribavirin, respectively, throughout the course of infection.
For inhibition of disassembly, cells also were pretreated for 1 h with medium
containing 20 mM AC.

Quantitation of apoptosis by acridine orange (AO) staining. Cells (2 � 105)
grown in 24-well tissue culture plates were adsorbed with reovirus virions or
MAb-virion complexes at various MOIs. Following incubation at 37°C for 48 h,
the percentage of apoptotic cells was determined by using AO staining as pre-
viously described (71). For each experiment, 200 to 300 cells were counted in
three independent wells, and the percentage of cells exhibiting condensed chro-
matin was determined by epi-illumination fluorescence microscopy using a fluo-
rescein filter set (Carl Zeiss).

Antibody-mediated cross-linking of Fc receptors. Cells (2 � 105) were chilled
to 4°C and incubated with 1 �g per ml of rat anti-Fc MAb 2.4G2 at 4°C for 30
min. Unbound antibody was removed by washing with chilled PBS, and cells were
incubated with 5 �g per ml of IgM specific for rat IgG at 4°C for 30 min.
Following incubation at 37°C for 48 h, cells were scored for apoptosis.

Statistical analysis. Mean values obtained in infectivity and apoptosis assays
were compared using the unpaired Student’s t test as applied with Microsoft
Excel software. P values of less than 0.05 were considered statistically significant.
The contribution of each of the reovirus gene segments to apoptosis induction
was assessed by using the nonparametric Mann-Whitney test without adjusting
for multiple comparisons and a panel of T1L � T3D reassortant viruses as
previously described (59).

RESULTS

A JAM-A truncation mutant lacking the cytoplasmic tail is
expressed at the cell surface. Anti-JAM-A MAb J10.4, which
inhibits reovirus binding to JAM-A, also blocks reovirus-in-
duced apoptosis (5). These findings suggest that JAM-A bind-
ing is essential for reovirus-induced apoptosis. The JAM-A
cytoplasmic tail is approximately 45 amino acids in length,
contains 13 potential phosphorylation sites, and interacts with
several PDZ domain-containing proteins, suggesting a role in
ligand-induced cell signaling (6, 25). To determine whether the
cytoplasmic tailof JAM-Acontributes toreovirus-inducedapop-
tosis by evoking proapoptotic signaling events, CHO cells were
stably transfected with empty vector or vector encoding full-

length JAM-A or a C-terminally truncated form of JAM-A
that lacks the cytoplasmic tail (JAM-A	CT). CHO cells were
selected for these experiments, since they are poorly permis-
sive to reovirus infection (27); yields of reovirus following
infection of CHO cells are 100- to 1,000-fold higher following
ectopic expression of JAM-A (11, 27). Whole-cell extracts
from stably expressing cells were analyzed for expression of
JAM-A by immunoblotting (Fig. 1A). While no JAM-A-spe-
cific band was detected in the vector-transfected cells, both
full-length JAM-A and the faster migrating JAM-A	CT pro-
teins were expressed to high levels in the cell lines tested. The
surface expression of both JAM-A and JAM-A	CT was as-
sessed by flow cytometry using JAM-A-specific MAb J10.4
(Fig. 1B). Both wild-type and mutant JAM-A proteins dis-
played approximately equivalent surface expression, suggesting
that removal of the C-terminal domain of JAM-A does not pre-
vent transport of JAM-A to the cell surface. These stably trans-
fected cells are therefore suitable for analysis of infection and
apoptosis induction by reovirus.

Reovirus induces equivalent levels of apoptosis in CHO cells
that express JAM-A and JAM-A�CT. To determine whether
CHO cells stably expressing JAM-A	CT can support reovirus
infection, cells were adsorbed with reovirus strain T3D at an
MOI of 10 PFU per cell, and viral infectivity was assessed by
using indirect immunofluorescence (Fig. 2A). CHO cells trans-
fected with either empty vector or those engineered to stably
express full-length JAM-A were used as controls. In contrast to
vector-transfected cells, cells expressing either JAM-A or
JAM-A	CT were equivalently capable of supporting infection
by T3D. These data indicate that although JAM-A expression
is required for efficient infection of CHO cells, the JAM-A
cytoplasmic tail is dispensable.

To determine whether the JAM-A cytoplasmic tail is re-
quired for apoptosis, stably transfected CHO cell lines were
adsorbed with T3D at an MOI of 100 PFU per cell, and
apoptosis was assessed by using AO staining (Fig. 2B). None of
the cell lines tested showed significant apoptosis following
mock infection (�5%). T3D infection of cells transfected with
vector alone induced levels of apoptosis equivalent to those
following mock infection of cells. In contrast, T3D infection of
either the JAM-A- or JAM-A	CT-expressing cell lines in-

FIG. 1. Stable expression of JAM-A and JAM-A	CT in CHO cells. (A) Whole-cell lysates (1 � 105 cell equivalents) were prepared from CHO
cells stably transfected with empty vector, JAM-A, or JAM-A	CT; resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis;
transferred to nitrocellulose; and immunoblotted using anti-JAM-A MAb J10.4. The positions of full-length JAM-A and truncated JAM-A	CT
are shown on the right. The positions of molecular mass standards (in kilodaltons) are shown on the left. (B) Stably transfected CHO cells (1 �
106) were incubated with either anti-JAM MAb J10.4 (filled histograms) or an isotype-matched control (anti-hCAR) MAb (open histograms) at
10 �g per ml, followed by incubation with PE-labeled anti-mouse Ig secondary antibody. The results are presented as fluorescence intensity.
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duced an equivalent percentage of cells to undergo apoptosis
(
22%). Therefore, analogous to our findings in the infectivity
assays, the cytoplasmic tail of JAM-A is not required for reo-
virus-induced apoptosis.

Antibody-mediated uptake of reovirus into Fc receptor-ex-
pressing cells leads to infection and apoptosis. To determine
whether the requirement for JAM-A during reovirus infection
and apoptosis can be bypassed, we utilized antibody-mediated
infection of Fc receptor-expressing CHO (CHO-B1) cells.
These cells stably express the B1 isoform of the mouse Fc
receptor II (34). Therefore, in the absence of JAM-A, these
cells should allow internalization of antibody-reovirus com-
plexes into cells via Fc receptors, resulting in efficient infection
of normally nonpermissive cells. For these experiments, T3D
virions were incubated with increasing concentrations of �1-
specific, neutralizing MAb 9BG5 (10) prior to infection of
CHO-B1 cells. HeLa cells were used in parallel to confirm the
neutralizing efficacy of MAb 9BG5 at the concentrations
tested. For each cell line, the number of infected cells was
assessed 18 h postinfection by indirect immunofluorescence.
As anticipated, the efficiency of reovirus infection of HeLa
cells decreased in proportion to antibody concentration, with
little infection detected in the presence of 2.5 �g per ml of
9BG5 (Fig. 3A). We conclude that 9BG5 interferes with �1-
JAM-A interactions, which are critical for reovirus infection of
HeLa cells. In contrast, the efficiency of infection of CHO-B1
cells by T3D increased in proportion to 9BG5 concentration,

with maximal infection observed in the presence of a com-
pletely neutralizing concentration of 9BG5, 2.5 �g per ml (Fig.
3A). These findings demonstrate that reovirus infection can be
established in a JAM-A-independent manner if an alternative
high-affinity binding moiety is provided. These data corrobo-
rate a previous report of antibody-mediated enhancement of
reovirus infection of a murine macrophage-like cell line (9).

To determine whether infection initiated in a JAM-A-inde-

FIG. 2. Infection and apoptosis of JAM-A- and JAM-A	CT-ex-
pressing CHO cells. (A) Cells were adsorbed with T3D at an MOI of
10 PFU per cell. After incubation at 37°C for 18 h, cells were fixed
using methanol. Infected cells were visualized by immunostaining
with polyclonal rabbit anti-reovirus sera, followed by incubation with
Alexa546-labeled anti-rabbit IgG. Reovirus-infected cells were quan-
tified by counting fluorescent cells. The results are presented as mean
fluorescent focus units (FFU) per field. Error bars indicate standard
deviations. (B) Cells were adsorbed with either PBS (mock) or T3D at
an MOI of 100 PFU per cell. Cells were harvested at 48 h after
infection and stained with AO. The results are expressed as the mean
percentage of cells undergoing apoptosis for three independent experi-
ments. Error bars indicate standard deviations.

FIG. 3. Infection and apoptosis of HeLa cells and CHO-B1 cells in
the presence of MAb 9BG5. (A) Reovirus T3D particles were incu-
bated overnight with the indicated concentration of MAb 9BG5 and
adsorbed to either HeLa cells or CHO-B1 cells at an MOI of 100 PFU
per cell. After incubation at 37°C for 18 h, cells were fixed using
methanol. Infected cells were visualized by immunostaining with poly-
clonal rabbit anti-reovirus sera, followed by Alexa546-labeled anti-
rabbit IgG. Reovirus-infected cells were quantified by counting fluo-
rescent cells. The results are presented as mean fluorescent focus units
(FFU) per field. Error bars indicate standard deviations. (B) HeLa
cells or CHO-B1 cells were adsorbed with 100 PFU per cell of either
virus or virus-antibody complex, harvested at 48 h after infection, and
stained with AO. (C) CHO-B1 cells were mock-infected, infected with
T3D virions with or without 2.5 �g per ml of Myc-specific MAb 9E10
(antibody control), �1-specific MAb 9BG5, or �2-specific MAb 7F4 at
an MOI of 100 PFU per cell or were infected with T1L core particles
with or without 2.5 �g per ml of MAb 7F4 at an MOI of 104 particles
per cell. CHO-B1 cells also were incubated with 1 �g per ml of anti-Fc
receptor rat IgG MAb 2.4G2, followed by incubation with 5 �g per ml
of IgM specific for rat IgG (anti-FcR). Cells were harvested at 48 h
after infection and stained with AO. The results are expressed as the
mean percentage of cells undergoing apoptosis for three independent
experiments. Error bars indicate standard deviations. �, P � 0.05 as
determined by Student’s t test in comparison to T3D incubated with
control MAb 9E10.
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pendent manner also triggers apoptosis, the capacity of reo-
virus-9BG5 complexes to induce apoptotic cell death of both
HeLa cells and CHO-B1 cells was assessed by using AO stain-
ing (Fig. 3B). Approximately 35% of HeLa cells showed apop-
totic nuclei at 48 h postinfection in the absence of antibody
treatment of virions. Consistent with the decrease in the ca-
pacity of reovirus to infect HeLa cells in the presence of 9BG5,
the percentage of cells undergoing apoptosis also decreased
with increasing 9BG5 concentrations. However, in the absence
of 9BG5, T3D induced minimal apoptosis in CHO-B1 cells in
comparison to mock-infected cells. In concordance with the
infectivity data, the percentage of apoptotic CHO-B1 cells
increased with increasing concentrations of 9BG5, with maxi-
mal apoptosis seen following pretreatment with 2.5 �g per ml
MAb (
25%). These findings demonstrate that reovirus infec-
tion initiated in the absence of JAM-A binding also leads to
apoptosis. Therefore, �1-JAM-A interactions or signaling
pathways induced as a consequence of these interactions are
dispensable for apoptosis induction by reovirus.

To exclude the possibility that binding of MAb to the Fc
receptor contributes to apoptosis induction, we tested whether
incubation of reovirus with irrelevant anti-Myc MAb 9E10 was
capable of inducing apoptosis (Fig. 3C). While incubation of
T3D with two different MAbs directed against the reovirus
outer-capsid, 7F4 (�2) and 9BG5 (�1), induced 21% and 22%
apoptosis, respectively, following infection of CHO-B1 cells,
incubation of T3D with MAb 9E10 failed to induce apoptosis
at levels higher than those of mock-infected cells. These find-
ings suggest that only antibodies directed against reovirus out-
er-capsid proteins allow virus attachment to CHO-B1 cells and
subsequent induction of apoptosis. To exclude the involvement
of signaling induced as a result of Fc receptor cross-linking due
to binding of reovirus-antibody complexes, Fc receptors were
cross-linked using 2.4G2 (a rat anti-Fc receptor MAb) and an
IgM antibody directed against rat IgG. This treatment did not
induce apoptosis in CHO-B1 cells in comparison to mock-
treated cells. As an additional control for the effect of cross-
linking Fc receptors, T1L core particles, which lack outer-
capsid proteins �1, �3, and �1, were incubated with MAb 7F4
and added to CHO-B1 cells. Neither untreated cores nor 7F4-
core complexes induced apoptosis of these cells. These data
suggest that apoptosis does not result from proapoptotic sig-
naling induced as a consequence of Fc-receptor cross-linking
but requires binding of reovirus particles containing outer-
capsid proteins.

Viral disassembly is required for apoptosis induced by Fc-
mediated uptake of reovirus. To determine whether viral dis-
assembly in cellular endosomes is required for apoptosis fol-
lowing Fc-mediated delivery of reovirus, CHO-B1 cells were
treated with AC prior to infection by MAb-treated T3D viri-
ons. Treatment of cells with 20 mM AC, a concentration suf-
ficient to block reovirus disassembly (66, 77), abolished the
capacity of T3D to induce apoptosis (Fig. 4A). Thus, acid-
dependent proteolytic disassembly is required for apoptosis
induction by this uptake mechanism. To determine whether
the apoptosis-inhibitory effect of AC is due to blockade of viral
RNA synthesis, we tested ribavirin, an inhibitor of viral RNA
synthesis (55), for the capacity to diminish apoptosis. In keep-
ing with our previously published results (18), apoptosis in-
duced by reovirus infection via Fc-mediated uptake was unaf-

fected by ribavirin (Fig. 4A). To corroborate these findings, we
tested the apoptosis-inducing capacity of UV-inactivated reo-
virus virions, which are incapable of establishing productive
infection (60 and data not shown). We found that UV-inacti-
vated reovirus induced apoptosis following Fc receptor-medi-
ated uptake of a high MOI of virus (Fig. 4B), consistent with
our previously published observations (71). Collectively, these
results demonstrate that steps in reovirus replication that occur
after attachment but before transcription are required for in-
duction of apoptosis, regardless of the type of receptor used to
initiate infection (18). In addition, these results suggest that
death signaling during reovirus infection may occur indepen-
dently of receptor engagement.

Fc receptor-dependent infection abolishes �1-related differ-
ences in the apoptosis-inducing capacity of reovirus. Differ-
ences in the capacity of some reovirus strains to induce apop-
tosis are linked to differences in the affinity for sialic acid (17).
To determine whether reovirus strains that are incapable of
binding to sialic acid can induce apoptosis when infection is
initiated via Fc-dependent uptake, strains T1L and T3SA�,
neither of which is capable of binding to sialic acid (4, 16, 23),
were incubated with �1-specific antibodies and adsorbed to
CHO-B1 cells. Incubation of T1L virions with type 1 �1-spe-
cific MAb 5C6 (73) and incubation of T3SA� virions with type
3 �1-specific 9BG5 (10) resulted in significantly higher levels of
apoptosis in CHO-B1 cells in comparison to levels observed
following infection with untreated T1L and T3SA� virions
(Fig. 5). The percentage of cells undergoing apoptosis follow-
ing antibody-mediated infection of non-sialic-acid-binding

FIG. 4. Apoptosis following Fc receptor-mediated uptake of viable
and UV-inactivated reovirus virions. (A) T3D alone or preincubated
with 2.5 �g per ml of MAb 9BG5 was adsorbed to CHO-B1 cells at an
MOI of 500 PFU per cell. (B) UV-inactivated T3D preincubated with
2.5 �g per ml of MAb 9BG5 was adsorbed to CHO-B1 cells at the
indicated MOIs. After incubation at 37°C for 48 h in untreated medium
or medium containing either 20 mM AC or 200 �M ribavirin, cells were
stained with AO. The results are expressed as the mean percentage of
cells undergoing apoptosis for three independent experiments. Error bars
indicate standard deviations. �, P � 0.05 as determined by Student’s t test
in comparison to T3D incubated with MAb 9BG5.
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reovirus strains was at least equal to that observed following
infection with T3D. Therefore, �1-related differences in apop-
tosis efficiency are overcome when infection is initiated via
Fc-mediated uptake. These results make it unlikely that the �1
protein is the viral effector of apoptosis induction.

Differences in apoptosis induction following Fc receptor-
dependent infection of T1L � T3D reassortant viruses are
linked to the M2 gene segment. We have demonstrated previ-
ously that the viral S1 and M2 gene segments segregate with
differences in the apoptosis-inducing capacity of T1L and T3D
(59, 71). To ascertain whether any strain-specific differences exist
when the effect of the S1 gene segment is circumvented by Fc
receptor-dependent uptake, CHO-B1 cells were adsorbed with
T1L � T3D reassortant viruses after incubation with �1-specific
antibodies. Type 1 and type 3 strains were incubated with �1-
specific MAbs 5C6 and 9BG5, respectively, prior to infection.
Each of the reassortant viruses tested produced a similar number
of infected cells as assessed by indirect immunofluorescence (data
not shown), suggesting equivalent efficiency of antibody-mediated
uptake and infection. The percentage of cells undergoing apopto-
sis as a result of antibody-mediated infection of cells was assessed
at 48 h after infection. The reassortant viruses were ranked from
highest to lowest by apoptosis-inducing capacity (Table 1). Al-
though the reassortants did not cluster distinctly into two groups
with high and low apoptotic potential, six of the seven strains
with the highest levels of apoptosis had an M2 gene segment
derived from T3D. Conversely, seven of the eight strains with
the lowest levels of apoptosis had an M2 gene segment derived
from T1L. Analysis of the data using the Mann-Whitney test
showed that only the M2 gene segregated at a statistically
significant level with the capacity of these strains to induce
apoptosis (P � 0.02). There was not a statistically significant
association between apoptosis and the S1 gene (P � 0.28),
which is the primary apoptosis determinant following infection
of JAM-A-expressing cells (17, 59, 71, 72), when infection was
initiated in an Fc-dependent fashion. These data suggest that
the M2-encoding �1 protein, which functions in penetration of
cell membranes (38, 44, 49), is the primary viral determinant of
strain-specific differences in apoptosis induction following in-
fection by Fc-mediated uptake.

Reovirus mutant tsA279 is inefficient in apoptosis induction.
To determine whether a mutant virus with a defective �1

protein is altered in the capacity to trigger apoptosis, we used
reovirus strain tsA279.64, which contains a temperature-sensi-
tive mutation that maps to the M2 gene segment (30). This
virus was derived from a coinfection of T1L and tsA279, which
contains temperature-sensitive mutations in both the M2 and
L2 gene segments. The tsA279.64 virus contains the mutant M2
gene segment but not the mutant L2 gene segment, thus facil-
itating analysis of the contribution of the M2 gene segment to
apoptosis induction. When assembled at nonpermissive tem-
perature, virions containing the mutant M2 gene segment can-
not penetrate membranes due to a misfolded �1 protein (30).
To examine whether �1-mediated membrane penetration is
required for apoptosis induction, HeLa cells were adsorbed
with increasing MOIs of tsA279.64 virions assembled under
permissive and nonpermissive conditions. The percentage of
cells with apoptotic nuclei was assessed by using AO staining
48 h after infection at nonpermissive temperature (Fig. 6). At
all MOIs tested, particles assembled at nonpermissive temper-
ature induced less apoptosis than particles assembled at per-
missive temperature. These data demonstrate that virions con-
taining a �1 protein that is inefficient in membrane penetration
are less potent inducers of apoptosis, which further highlights
a key role for the �1 protein in apoptosis induction.

DISCUSSION

We have previously shown that binding of reovirus to JAM-A
and sialic acid is required for efficient induction of apoptosis (5,
17). In addition, we have reported that viral disassembly in cel-

FIG. 5. Apoptosis induction in CHO-B1 cells following Fc-medi-
ated infection by T1L and T3SA�. Cells were adsorbed with T3D,
T3SA�, or T1L with or without 2.5 �g per ml of MAb 9BG5 (for type
3 strains) or MAb 5C6 (for T1L) at an MOI of 100 PFU per cell. After
incubation at 37°C for 48 h, cells were harvested and stained with AO.
The results are expressed as the mean percentage of cells undergoing
apoptosis for three independent experiments. Error bars indicate stan-
dard deviations. �, P � 0.05 as determined by Student’s t test in
comparison to the same strain incubated without antibody.

TABLE 1. Apoptosis induction by T1L � T3D reassortant
viruses in CHO-B1 cells

Virus isolate
Origin of gene segmentsa

%
Apoptosisb SD

L1 L2 L3 M1 M2 M3 S1 S2 S3 S4

Reassortant
EB138 D L L D D L D D L L 80.5 3.84
KC150 D L L L D L D D L D 62.8 2.23
KC9 D D L D D D L D D D 58.6 3.28
EB97 D D L D D D D D D L 52.3 3.89
EB68 L D L L D L L L D D 41.2 4.98
1HA.3 L L L L L L D L L L 40.6 7.15
EB144 L L L L D D L L D L 38.2 3.99
EB98 L D L L L L L D L D 32.6 3.17
EB121 D D L D L D L D D D 28.9 8.13
EB113 L L L D L L L L D L 26.6 3.85
G16 L L L D L L L D L L 24.4 3.62
G2 L D L L L L D L L L 23.1 4.90
EB143 D L L L L L D L L L 23.0 4.05
EB145 D D D D D L L D D D 16.2 3.40
EB120 D D D L L D D D L L 14.5 3.33

Parental
T3D D D D D D D D D D D 23.0 1.81
T1L L L L L L L L L L L 33.6 2.34

a Parental origin of each gene segment: L, gene segment derived from T1L; D,
gene segment derived from T3D.

b CHO-B1 cells (2 � 105) were adsorbed with virus strains at an MOI of 100
PFU per cell. After 1 h, the inoculum was removed, fresh medium was added,
and cells were incubated at 37°C for 48 h and stained with AO to assess apop-
tosis. Shown are the mean percentage and standard deviations of cells undergo-
ing apoptosis for three independent experiments. The M2 gene was the only gene
associated with the efficiency of apoptosis as determined by using the nonpara-
metric Mann-Whitney test, without adjusting for multiple comparisons (P �
0.02).
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lular endosomes is also necessary for apoptosis induction by
reovirus (18). However, since receptor binding is a prerequisite
for virus disassembly, these findings do not resolve the ques-
tion of whether reovirus attachment and disassembly provide
two distinct signals, both of which are required for apoptosis
induction, or whether the viral disassembly events are sufficient
for proapoptotic signaling. To address this question, we un-
coupled reovirus attachment to JAM-A and sialic acid from
viral disassembly by providing an alternative means of viral
entry. We report here that antibody-mediated uptake of reo-
virus into Fc receptor-expressing CHO cells independent of
binding to JAM-A and sialic acid leads to productive infection
(9) and apoptosis. Furthermore, we demonstrate that anti-
body-directed binding of reovirus to Fc receptors expressed on
CHO cells is not sufficient for reovirus-induced apoptosis.
Analogous to JAM-A- and sialic acid-dependent infection, vi-
ral replication steps during or after disassembly in endosomes
but prior to RNA synthesis also are required for reovirus-
induced apoptosis when infection is initiated by Fc-mediated
uptake. Analysis of apoptosis induction by T1L � T3D reas-
sortant viruses following Fc-mediated uptake showed that dif-
ferences in the efficiency of apoptosis exhibited by type 1 and
type 3 strains segregate with the �1-encoding M2 gene seg-
ment. Neither core particles that lack the �1 protein and are
therefore incapable of penetrating endosomal membranes nor
the thermosensitive M2 mutant virus tsA279.64, which contains
a misfolded, penetration-defective �1 protein, can efficiently
induce apoptosis. These findings suggest that reovirus mem-
brane penetration protein �1 induces proapoptotic signaling
during or after endosomal membrane penetration.

In our reassortant analysis, the viral M2 gene segment was
the only viral gene segment that segregated at a statistically
significant level with apoptosis-inducing capacity. Although
levels of apoptosis induced by reassortant viruses containing a
T3D M2 gene segment were generally higher than those in-
duced by reassortant viruses containing a T1L M2 gene seg-
ment, the percentage of cells undergoing apoptosis formed a
continuum of values rather than two distinct clusters. Since our
data suggest that apoptosis is induced during or after endoso-
mal membrane penetration mediated by the �1 protein, steps
in viral replication preceding membrane penetration, such as

attachment, internalization, and disassembly, also may influ-
ence the magnitude of the apoptotic response. Thus, viral gene
products that mediate these steps also may contribute to the
observed differences in levels of apoptosis. Minor strain-spe-
cific effects attributed to other viral gene segments also may
explain our finding that antibody-mediated uptake of parental
strain T1L into Fc receptor-expressing cells induced higher
levels of apoptosis than those induced by T3D (Fig. 5, Table 1).
Alternatively, the type 1 and type 3 �1-specific MAbs used in
our experiments may differ in either affinity for �1 or efficiency
in internalization via Fc receptors. However, we think that this
explanation is unlikely, since no association between the �1-
encoding S1 gene and apoptosis-inducing potential was ob-
served. Therefore, although it is likely that there are multiple
viral genetic determinants of reovirus-induced apoptosis, our
statistical analysis of T1L � T3D reassortant viruses, in addi-
tion to our findings using M2 temperature-sensitive mutant
tsA279.64, lead us to conclude that the M2-encoded �1 protein
is the primary mediator of proapoptotic signaling.

In addition to the findings here, three independent lines of
evidence support a crucial role for �1 in reovirus-induced
apoptosis. First, differences in apoptosis efficiency displayed by
strains T1L and T3D following infection of JAM-A-expressing
cells are linked in part to the �1-encoding M2 gene (59, 71,
72). Second, studies using pharmacologic inhibitors of reovirus
replication place the apoptosis-inducing events subsequent to
viral disassembly but prior to RNA synthesis (18), which coin-
cides with �1-mediated membrane penetration (12, 38, 44, 49).
Third, transient transfection of a plasmid encoding T3D �1 is
sufficient to induce apoptosis in CHO cells (C. M. Coffey, L. J.
Anguish, A. Sheh, I. S. Kim, K. Chandran, M. L. Nibert, and
J. S. Parker, Abstr. Am. Soc. Virol. Annu. Meet., abstr. W41-4,
2005). Interestingly, although plasmid-mediated expression of
�1 neither mimics normal delivery of �1 via endosomal rup-
ture during viral membrane penetration nor de novo expres-
sion of �1 in infected cells (since �1 is mostly found associated
with its protector protein �3 [61, 62, 67]), it leads to the same
consequence.

It is not known how the viral disassembly events culminating
in �1-mediated membrane penetration elicit proapoptotic sig-
naling. We envision two possibilities. First, endosomal disrup-
tion by �1 may lead to release of hydrolytic enzymes such as
cathepsins, which in turn damage mitochondria and stimulate
death signaling (22, 29, 58). Interestingly, mitochondrial injury
has been reported as early as 4 h following reovirus adsorption
(35, 36), suggesting the involvement of an early viral replica-
tion event. It is also possible that release of these enzymes
causes apoptosis via their action on death regulators such as
Bid (65). Of note, Bid cleavage has been observed during
reovirus infection and has been hypothesized to play a role in
apoptosis induction (35). Second, fragments of �1 produced
during proteolytic viral disassembly are known to gain access to
the cytoplasm (14). These fragments may activate other cellu-
lar sensors of viral infection or directly injure mitochondria to
induce apoptosis. Concordantly, the �1 protein localizes to
mitochondria during infection or when expressed from plas-
mids in transfected cells (C. M. Coffey, L. J. Anguish, A. Sheh,
I. S. Kim, K. Chandran, M. L. Nibert, and J. S. Parker, Abstr.
Am. Soc. Virol. Annu. Meet., abstr. W41-4, 2005), suggesting a
postendosomal site of action. Interestingly, a 30-residue C-termi-

FIG. 6. Apoptosis induced by �1 temperature-sensitive mutant
tsA279.64. HeLa cells were adsorbed with tsA279.64 grown at permis-
sive or nonpermissive temperatures at the MOIs shown. After incuba-
tion at 37°C for 48 h, cells were harvested and stained with AO. The
results are expressed as the mean percentage of cells undergoing
apoptosis for three independent experiments. Error bars indicate stan-
dard deviations. �, P � 0.05 as determined by Student’s t test in
comparison to virions grown at permissive temperature at an equiva-
lent MOI.
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nal fragment of �1 is sufficient to localize to mitochondria and
induce apoptosis (C. M. Coffey, L. J. Anguish, A. Sheh, I. S.
Kim, K. Chandran, M. L. Nibert, and J. S. Parker, Abstr. Am.
Soc. Virol. Annu. Meet., abstr. W41-4, 2005).

Although our findings point to �1 as a key viral regulator of
proapoptotic signaling, this work does not explain the previ-
ously established unequivocal association between the S1-en-
coded �1 protein and the efficiency of apoptosis induction by
reovirus (59, 71, 72). Strains encoding a �1 protein capable of
binding to JAM-A and sialic acid are the most potent inducers
of apoptosis (17). We did not observe efficient infection of
CHO-B1 cells in the absence of MAb pretreatment at the
MOIs used. Therefore, we think that these cells do not express
sufficient quantities of sialic acid or JAM-A on the cell surface
to effect productive infection. Thus, infection of these cells
appears to be dependent only on the presence of a high-affinity
receptor such as the Fc receptor. Since the efficiency of anti-
body-mediated uptake and delivery of both sialic-acid-binding
and non-sialic-acid-binding strains of reovirus via Fc receptors
is essentially equivalent in CHO-B1 cells, �1-related differ-
ences are negated. An alternative explanation for our findings
is that antibody-mediated attachment of virions to Fc receptors
stimulates a signaling cascade in cells that mimics signaling
induced as a consequence of �1 binding to JAM-A and sialic
acid and that Fc receptor-mediated signaling acts in concert
with the viral disassembly events to elicit apoptosis. However,
given the marked differences in functional properties displayed
by JAM-A and Fc receptors, this explanation seems less likely.
Therefore, our current and previous studies suggest that the
linkage of �1 to apoptosis efficiency is not related to �1-me-
diated stimulation of the cellular proapoptotic machinery but
rather the capacity of �1 to efficiently deliver virions into en-
dosomes for disassembly. We hypothesize that, as opposed to
viral infection, which requires penetration by just one infec-
tious virion, efficient apoptosis induction by reovirus requires
endosomal penetration by multiple virions. Since sialic acid
allows more avid binding of virions to cells (4), we think that
this entry route may deliver virions more efficiently into endo-
somal compartments for uncoating and subsequent membrane
penetration, leading to higher levels of apoptosis (17).

This study highlights a new role for the viral membrane
penetration protein �1 in apoptosis induction. Other viruses,
such as coronavirus, Sindbis virus, and vaccinia virus, also have
been reported to require postattachment cell entry events in
endosomes to induce apoptosis (33, 39, 54). However, the viral
determinants of apoptosis by these viruses are unknown. In-
terestingly, entry of Sindbis virus into endosomes induces apop-
tosis through activation of sphingomyelinases and release of
the proapoptotic second messenger, ceramide (32). Although
we anticipate that interactions between the enveloped Sindbis
virus with endosomes differ from those with �1, it is possible
that a lipid second messenger also plays a role in reovirus-
induced apoptosis. Collectively, these studies point to cellular
endosomes as sites from which proapoptotic signaling events
are initiated and imply a conserved mechanism by which host
cells detect the presence of invading pathogens. Pathogen de-
tection during the entry phase may allow host cells to more
efficiently limit the spread of infection by initiating cell death.
Alternatively, induction of apoptosis by a virus early in its
replication cycle may prevent or attenuate the development of

an inflammatory response, thereby allowing the virus to better
evade host defenses. A fascinating similarity exists between the
properties of reovirus protein �1 and several toxins elaborated
by bacteria and viruses. Analogous to the capacity of �1 to
mediate membrane permeabilization (12, 31, 41, 69), � toxin of
Staphylococcus aureus, lysteriolysin O of Listeria monocyto-
genes, and killer toxins (K1 and K2) of the yeast L-A virus also
can form pores in host cell membranes (42, 68, 75, 78). Inter-
estingly, each of these toxins also has the capacity to induce
apoptotic cell death (56, 75). Our ongoing studies are focused
on understanding the precise mechanism by which �1 induces
apoptosis during reovirus infection. Through these studies we
hope to gain broader insight into events at the pathogen-host
interface that evoke death signaling and cause disease.
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 45 
ABSTRACT 

 
Reoviruses induce apoptosis both in cultured cells and in vivo. Apoptosis plays a 

major role in the pathogenesis of reovirus encephalitis and myocarditis in infected 
animals. Reovirus-induced apoptosis is dependent on activation of transcription factor 50 
NF-κB and downstream cellular genes. To better understand the mechanism of NF-κB 
activation by reovirus, NF-κB signaling intermediates under reovirus control were 
investigated at the level of Rel, IκB, and IκB kinase (IKK) proteins. We found that 
reovirus infection leads initially to nuclear translocation of p50 and RelA, followed by 
delayed mobilization of c-Rel and p52. This biphasic pattern of Rel protein activation is 55 
associated with degradation of the NF-κB inhibitor IκBα, but not the structurally-related 
inhibitors IκBβ or IκBε. Using cells deficient in individual IKK subunits, we demonstrate 
that IKKα but not IKKβ is required for reovirus-induced NF-κB activation and apoptosis. 
Despite the preferential usage of IKKα, both NF-κB activation and apoptosis were 
attenuated in cells lacking IKKγ/Nemo, an essential regulatory subunit of IKKβ. 60 
Moreover, deletion of the gene encoding NF-κB-inducing kinase (NIK), which is known 
to modulate IKKα function, had no inhibitory effect on either response in reovirus-
infected cells. Collectively, these findings indicate a novel pathway of NF-κB/Rel 
activation involving IKKα and IKKγ/Nemo, which together mediate the expression of 
downstream proapoptotic genes in reovirus-infected cells.  65 
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INTRODUCTION 

 
 Mammalian reoviruses are nonenveloped viruses that contain a genome of 10 
segments of double-stranded RNA (43). Following infection of newborn mice, reovirus 95 
disseminates systemically, causing injury to the central nervous system (CNS), heart, and 
liver (65). Apoptosis induced by reovirus appears to be the primary mechanism for virus-
induced encephalitis (44, 45, 48) and myocarditis (19, 20, 45). Disassembly of 
internalized virus in the endocytic pathway provides the viral trigger for stimulating the 
signaling pathways that elicit an apoptotic response (16, 18). 100 
 

Transcription factor NF-κB plays an important regulatory role in apoptosis 
evoked by reovirus in cultured cells (17) and in vivo (45). Inducible members of the NF-
κB family are sequestered in the cytoplasm by inhibitory IκB proteins, including IκBα, 
IκBβ, IκBε, and p100 (2, 28, 57, 68, 71). In response to a wide variety of NF-κB 105 
inducers, IκB proteins are phosphorylated at specific serine residues, earmarking these 
molecules for destruction by the ubiquitin-proteasome pathway (6, 10, 28, 46, 64, 71). 
Phosphorylation of IκB proteins is mediated by cytokine-inducible IκB kinases (IKKs) 
IKKα and IKKβ (39, 67), which can form higher order complexes containing a 
regulatory subunit called IKKγ/Nemo (23, 41, 51, 75, 78). A primary function of IKKβ is 110 
to modulate the inhibitory interaction of IκBα with the prototypical form of NF-κB 
containing p50/RelA dimers (22, 23, 41, 47, 58). This regulatory circuit, termed the 
classical pathway of NF-κB activation, is strictly dependent on the presence of 
IKKγ/Nemo (53, 54, 75). In sharp contrast, IKKα functions in an alternative IKKγ-
independent pathway of NF-κB activation that leads to proteolytic processing of 115 
p100/NF-κB2 and production of a fully functional p52 Rel subunit (13, 55, 60). Unlike 
the classical, IKKβ-directed pathway of NF-κB activation, the alternative pathway 
involving IKKα is dependent on prior phosphorylation of this IKK by NF-κB-inducing 
kinase (NIK) (36, 55, 73).  

 120 
To better understand the mechanism of NF-κB activation by reovirus, we 

conducted experiments to define the NF-κB/Rel, IκB, and IKK proteins that are under 
reovirus control. These studies revealed that NF-κB/Rel proteins are mobilized to the 
nuclear compartment with biphasic kinetics following reovirus infection. Reovirus-
induced activation of NF-κB/Rel proteins is accompanied by selective degradation of 125 
IκBα, suggesting a role for IKKβ. However, subsequent studies with IKK subunit-
deficient cells clearly demonstrate that IKKα rather than IKKβ plays an essential role in 
the mechanism by which reovirus activates NF-κB and downstream apoptotic genes. We 
also assembled evidence indicating that the reovirus/IKKα axis is intact in cells lacking 
NIK, an upstream activator of IKKα, but not in cells lacking the IKKβ regulatory subunit 130 
IKKγ/Nemo. Taken together, these data suggest that reovirus activates the IKKα pathway 
of the NF-κB signaling apparatus downstream of NIK, perhaps via direct interactions 
with the regulatory subunit IKKγ/Nemo.  

 
 135 
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MATERIALS AND METHODS 

 140 
Cells, viruses, and reagents. HeLa cells, 293T cells, and murine embryo 

fibroblasts (MEFs) were maintained in DMEM containing 10% fetal bovine serum 
(FBS), 2 mM L-glutamine, 100 U/ml of penicillin, 100 μg/ml streptomycin, and 25 ng/ml 
of amphotericin B (Invitrogen, Carlsbad, CA). MEFs deficient in IKKα (29, 33), IKKβ 
(34, 61), IKKγ (53), and NIK (76) have been described previously.  145 

 
Reovirus type 3 Dearing (T3D) is a laboratory stock. Purified reovirus virions 

were generated by using second- or third-passage L-cell lysate stocks of twice-plaque-
purified reovirus as described previously (24). Viral particles were Freon-extracted from 
infected cell lysates, layered onto 1.2- to 1.4-g/cm3 CsCl gradients, and centrifuged at 150 
62,000 x g for 18 h. Bands corresponding to virions (1.36 g/cm3) were collected and 
dialyzed in virion storage buffer (150 mM NaCl, 15 mM MgCl2, 10 mM Tris-HCl [pH 

7.4]). Concentrations of reovirus virions in purified preparations were determined from an 
equivalence of one optical density unit at 260 nm equals 2.1 x 1012 virions (59). Viral 
titer was determined by plaque assay using L cells (69). 155 

 
Antisera specific for IκBα, IκBβ, IκBε, p50, p65/RelA, RelB, c-Rel, IKKγ, and 

β-actin were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). The antibody 
antiserum for p100/p52 was purchased from Upstate Biotechnology (Lake Placid, NY). 
The agonistic lymphotoxin-β receptor antiserum was purchased from BD Biosciences 160 
(San Jose, CA). The IKK inhibitor BAY 65-1942 was obtained from Dr. K. Ziegelbauer 
(Bayer Health Care AG, Leverkusen, Germany). 

 
Electrophoretic mobility shift assay (EMSA). Cells (3 x 106) grown in 100 mm 

tissue-culture dishes (Costar, Cambridge, MA) were treated with 20 ng/ml of TNF-α 165 
(Sigma-Aldrich, St. Louis, MO), adsorbed with T3D at a multiplicity of infection (MOI) 
of 100 plaque forming units (PFU)/cell, or treated with gel saline (mock-infection). After 
incubation at 37°C for various intervals, nuclear extracts (10 μg total protein) were 
assayed for NF-κB activation by an EMSA using a 32P-labeled oligonucleotide consisting 
of the NF-κB consensus-binding sequence (Santa Cruz Biotechnology) as previously 170 
described (17). For supershift assays, 2 μg of rabbit polyclonal antiserum specific for 
p50, p52, RelA, RelB, or c-Rel was added to the binding-reaction mixtures and incubated 
at 4°C for 30 min prior to the addition of radiolabeled oligonucleotide. Nucleoprotein 
complexes were subjected to electrophoresis in native 5% polyacrylamide gels at 180 V 
for 90 min, dried under vacuum, and exposed to Biomax MR film (Kodak, Rochester, 175 
NY). Band intensity was quantified by determining photostimulus luminescence (PSL) 
units using a Fuji2000 phosphor imager and the Multi Gauge software (Fuji Medical 
Systems, Inc., Stamford, CT).  

 
Immunoblot assay. Cells (8 x 105) were treated with 20 ng/ml of TNF-α, 180 

adsorbed with T3D at an MOI of 100 PFU/cell, or mock-infected. Whole-cell extracts 
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were generated by incubation with lysis buffer (10 mM HEPES [pH7.4], 10 mM KCL, 
0.1 mM EDTA, 0.1 mM EGTA, 1 mM DTT, 0.1% Igepal, 1 mM Na4O7P2, 1 mM NaF, 1 
mM NaVO3, and 1 μM microsystin). Extracts (10-50 μg total protein) were resolved by 
electrophoresis in 10% polyacrylamide gels and transferred to nitrocellulose membranes. 185 
Membranes were blocked at 4ºC overnight in blocking buffer (PBS containing 0.1% 
Tween-20 and 5% BSA). Immunoblots were performed by incubating the membranes 
with primary antibodies diluted 1:500 to 1:2000 in blocking buffer at room temperature 
for 1 h. Membranes were washed three times for 10 min each with washing buffer (PBS 
containing 0.1 Tween-20) and incubated with horseradish peroxidase-conjugated goat 190 
anti-rabbit (Amersham Biosciences, Piscataway, NJ) and bovine anti-goat antibodies 
(Santa Cruz Biotechnology) diluted 1:2000 and 1:3000, respectively. Following three 
washes, membranes were incubated for 1 min with chemiluminescent peroxidase 
substrate (Amersham Biosciences) and exposed to film. Band intensity was quantified 
using the Image J program (NIH, Bethesda, MD). 195 

 
Kinase assay. Cells (8 x 105) were treated with 20 ng/ml of TNFα, adsorbed with 

T3D at an MOI of 100 PFU/cell, or mock-infected. Whole-cell extracts were incubated 
with an IKKγ-specific antiserum in the presence of ELB buffer (50 mM HEPES [pH 7.4], 
250 mM NaCl, 5 mM EDTA, 0.1% Igepal). Immunoprecipitates were equilibrated in 200 
kinase buffer (10 mM HEPES [pH 7.4], 0.5 mM dithiothreitol, 5 mM MgCl2, 1 mM 
MnCl2, 12.5 mM β-glycerophosphate, 50 µM Na3VO4, 2 mM NaF) and incubated with 
10 µM ATP, 5 µCi of [γ-32P]ATP (Perkin Elmer), and 1 µg of recombinant GST protein 
fused to amino acids 1-54 of IκBα (GST-IκBα) at 30°C for 30 minutes (11). Kinase 
reactions were terminated by heat denaturation in the presence of 1% SDS. Radiolabeled 205 
products were resolved by SDS-PAGE, transferred to nitrocellulose membranes, and 
visualized by autoradiography.  

 
Caspase 3 activity assay. Cells (3 x 103) grown in clear-bottom, black-walled, 

96-well tissue-culture plates (Costar) were inoculated with 10 ng/ml of TNFα, a 210 
combination of 10 ng/ml of TNFα and 10 μg/ml of cycloheximide (Sigma-Aldrich), T3D 
at an MOI or 1000 PFU/cell, or mock-infected. Following incubation at 37°C for 24 and 
12 h with respect to T3D- or TNFα-treatment, caspase 3 activity was quantified by using 
the Caspase-Glo 3/7 Assay (Promega). Luminescence was detected by using a Topcount 
NXT luminometer (Packard Biosciences Co., Meriden, CT). 215 

 
 Trypan blue exclusion assay. Cells (4 x 104) grown in 6-well tissue-culture 
plates were inoculated with 10 ng/ml of TNFα, a combination of 10 ng/ml of TNFα and 
10 μg/ml of cycloheximide, T3D at an MOI of 1000 PFU/cell, or mock-infected. 
Following incubation at 37°C for 48 and 24 h with respect to T3D- or TNFα-treatment, 220 
cells were collected and washed with PBS. The cell pellet was resuspended in 50 ml of 
PBS and stained using 100 ml of a solution containing 0.4% trypan blue (Kodak) in PBS. 
For each experiment, 200 to 300 cells were counted and the percentage of cell death was 
determined by light microscopy (Axiovert 200; Zeiss, Oberköchen, Germany). 
 225 
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Statistical analysis. Mean values obtained in EMSA, immunoblot, and apoptosis 
assays were compared using the unpaired Student’s t test as applied with Microsoft Excel 
software (Microsoft, Redmond, WA). P values of less than 0.05 were considered to be 230 
statistically significant. 
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RESULTS 
 275 

Reovirus infection results in the biphasic activation of NF-κB/Rel DNA-
binding proteins. In prior studies, we found that reovirus activates the functional 
expression of p50/RelA complexes, suggesting the involvement of classical NF-κB 
signaling (17). However, it remained unclear whether NF-κB/Rel proteins linked to the 
alternative pathway of the NF-κB pathway are activated during reovirus infection. To 280 
more completely define the composition of NF-κB complexes activated by reovirus, we 
used nuclear extracts from reovirus-infected HeLa cells and Rel-specific antibodies to 
monitor the composition of DNA-binding complexes formed in EMSAs. NF-κB/Rel 
DNA-binding activity was readily detected over background levels (mock treatment) 
within 2 hours after infection with reovirus strain T3D (Fig. 1A), which potently induces 285 
apoptosis in cultured cells (17, 49, 66) and the murine CNS (44). Peak levels of NF-
κB/Rel DNA-binding activity were observed at 4-8 h post-infection. Supershift analysis 
of extracts obtained at 4, 6, and 8 h post-infection revealed the presence of DNA/protein 
complexes containing p50 and RelA, but neither p52 nor RelB (Fig. 1B), suggesting 
preferential usage of the classical versus alternative NF-κB pathway by reovirus. 290 
Complexes containing c-Rel were apparent in supershift assays only after 8 h of infection 
(Fig. 1B). Thus, reovirus induces a biphasic pattern of NF-κB/Rel activation featuring the 
initial nuclear translocation of complexes consisting of p50 and RelA, followed by those 
containing p50, RelA, and c-Rel. Given that the cellular gene encoding c-Rel contains 
functional NF-κB binding sites (26), this expression pattern may reflect de novo synthesis 295 
of c-Rel rather than its mobilization from a latent cytoplasmic pool.  

 
 These initial experiments conducted over an 8 h timecourse provided no evidence 
for the capacity of reovirus to stimulate the nuclear expression of p52, a signature Rel 
protein involved in the alternative pathway of NF-κB signaling. To further investigate 300 
whether reovirus interfaces with the alternative NF-κB pathway, we extended the 
timecourse of T3D infection to 24 h and monitored extracts for processing of p100 to p52 
(55). Levels of p100 were significantly reduced between 16 and 24 h post-infection (Fig. 
2). Consistent with a precursor/product relationship, diminution in p100 protein levels 
were accompanied by a significant increase in the steady-state levels of p52 (Fig. 2, 305 
panels A and C). Taken together with the NF-κB/Rel profiling data shown in Fig. 1B, this 
finding suggests that reovirus engages not only the classical pathway of NF-κB signaling 
but also the alternative pathway, albeit at much later times of infection.  
 
 Reovirus infection leads to the selective degradation of IκBα. Activation of the 310 
classical NF-κB pathway by physiologic agonists is primarily dependent on degradation 
of IκBα (reviewed in (3, 25, 27)), an inhibitor that sequesters p50/RelA complexes in the 
cytoplasmic compartment (2). We have previously shown that degradation-resistant 
forms of IκBα attenuate reovirus-induced apoptosis, which is critically dependent on NF-
κB activation (17). However, mammalian cells express other labile inhibitors that are 315 
structurally similar to IκBα, such as IκBβ (37) and IκBε (71). Indeed, prior studies 
suggest a potential role for signal-dependent degradation of IκBβ (63) and IκBε (71) in 
the inducible nuclear entry of c-Rel. To determine whether any of these inhibitors is 
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under reovirus control, we monitored their levels in T3D-infected cells in 
immunoblotting studies using IκB-specific antibodies. The cellular pool of IκBα was 320 
significantly reduced within 4 h after infection with T3D (Fig. 3, A and B). In contrast, 
levels of IκBβ and IκBε were maintained under the same stimulatory conditions over the 
entire 8 h timecourse (Fig. 2, C-F). We conclude that IκBα is a primary cellular target of 
reovirus, which is fully consistent with its capacity to stimulate nuclear translocation of 
NF-κB p50/RelA.  325 
 

IKKα and IKKγ are required for reovirus-induced NF-κB activation. We 
next investigated the mechanism by which reovirus destabilizes IκB proteins. Cytokine-
induced degradation of NF-κB inhibitors is dependent on their phosphorylation at 
specific serine residues by IKKs such as IKKα and IKKβ (6, 23, 78). These structurally-330 
related enzymes can interact and form higher order complexes with other cellular proteins 
(reviewed in (25, 27)). Integration of the regulatory protein IKKγ/Nemo into such 
complexes is required for activation of IKKβ (53, 54, 75) but not IKKα (13, 21, 55). The 
most well-characterized substrate of IKKβ is IκBα (30, 41), whereas IKKα catalyzes 
phosphorylation of p100/NF-κB2 (55, 73).  335 

 
To determine whether either IKKα or IKKβ is required for reovirus-induced 

activation of NF-κB, cellular IKK complexes were immunopurified from HeLa cells 
either before or after infection with T3D and monitored for their capacity to 
phosphorylate IκBα in vitro. In keeping with the kinetics of IκBα degradation (Fig. 3A) 340 
and NF-κB (Fig. 1A) activation, IκB kinase activity exceeding basal levels in uninfected 
cells was readily detected within 4 h after exposure to T3D and sustained for at least an 
additional 4 h (Fig. 4A). These data suggest that IKKs are critically involved in the 
mechanism by which reovirus diminishes the cellular pool of IκBα (Fig. 3A).  

 345 
To determine whether IKK activation is required for the nuclear translocation of 

NF-κB by reovirus, cells were treated with escalating doses of the IKK inhibitor BAY 
65-1942 prior to infection with T3D. Importantly, BAY 65-1942 inhibits IKKβ more 
efficiently than IKKα (79). As demonstrated in EMSAs, treatment of cells with BAY 65-
1942 suppressed NF-κB signaling induced by reovirus (Fig. 4, B and C), although 350 
incompletely, perhaps reflecting incomplete blockade of IKKα. Immunoblotting studies 
of nuclear extracts from the same panel of infected cells indicated that BAY 65-1943 had 
a profound inhibitory effect on reovirus-induced nuclear translocation of p65/RelA (Figs. 
4, D and E), which is primarily under the control of IKKβ. These pharmacological data 
suggest that reovirus activates NF-κB via a mechanism involving either IKKα, IKKβ, or 355 
both of these IKKs.  

 
To identify the IKK subunits responsible for NF-κB activation by reovirus, NF-

κB DNA-binding activity was assessed in MEFs deficient for IKKα, IKKβ, or the IKKβ 
regulatory subunit IKKγ/Nemo. In initial experiments, EMSAs were conducted with 360 
nuclear extracts from wild-type MEFs following infection with T3D for 8 h, which 
corresponds to peak levels of NF-κB DNA-binding activity (Fig. 1A). Reovirus induced 
NF-κB DNA binding activity to levels comparable to or exceeding those observed in 
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control experiments with wild-type MEFs treated with the cytokine TNFα (Fig. 5A), a 
potent agonist of IKK. Similar results were obtained with nuclear extracts from reovirus-365 
infected MEFs lacking IKKβ (Fig. 5A). However, the capacity of reovirus to activate NF-
κB was completely disrupted in MEFs lacking IKKα (Fig. 5A), indicating preferential 
usage of this IKK relative to IKKβ. MEFs lacking the regulatory subunit IKKγ/Nemo 
(Fig. 5A) also were incapable of reovirus-mediated NF-κB signaling. Immunoblotting 
studies of nuclear extracts from the same panel of infected cells confirmed these results 370 
(Fig. 5C). Nuclear translocation of p65/RelA was detected in wild-type MEFs and IKKβ-
deficient MEFs, but not in MEFs lacking IKKα or IKKγ. Differences in reovirus-
mediated signal transduction in IKK-deficient MEFs could not be attributed to 
differences in viral infection or growth (data not shown). Thus, these findings suggest 
that IKKα and IKKγ are required for reovirus-induced NF-κB activation. 375 

 
NIK is capable of phosphorylating and activating IKKα in response to some 

agonists of the alternative NF-κB pathway, such as lymphotoxin β (36, 40). To determine 
whether NIK is required for NF-κB activation in response to reovirus, NIK-deficient 
MEFs were used to probe for NF-κB induction by EMSA and immunoblotting in 380 
response to reovirus T3D infection (Fig. 6). Reovirus infection resulted in NF-κB 
activation in both wild-type and NIK-deficient MEFs, indicating that NIK is dispensable 
for reovirus-induced NF-κB activation. Taken together, these data confirm a requirement 
for endogenous IKK in the mechanism by which reovirus activates NF-κB and strongly 
suggest that this virus selectively utilizes the IKKα arm of the NF-κB signaling pathway. 385 
Surprisingly, IKKγ/Nemo, which is known to regulate IKKβ rather than IKKα, is also 
required for NF-κB activation by reovirus, but NIK is dispensable.  

 
IKKα and IKKγ are required for reovirus-induced apoptosis. Since IKKα 

and IKKγ are required for NF-κB activation following reovirus infection (Fig. 5), we 390 
examined whether IKK stimulation by reovirus leads to apoptotic cell death. IKK-
deficient MEFs were infected with reovirus T3D, and apoptosis was assessed by 
quantitation of caspase 3 activity (Fig. 7A). Levels of activated caspase 3 following 
infection of wild-type and IKKβ-deficient MEFs were substantially greater than those 
following infection of MEFs deficient in either IKKα or IKKγ. To corroborate these 395 
results, we tested wild-type and IKK-null MEFs for viability following infection with 
T3D (Fig. 7B). In comparison to wild-type and IKKβ-deficient MEFs, a significantly 
greater percentage of IKKα- and IKKγ-deficient MEFs remained viable during a time 
course of reovirus infection.  

 400 
To determine whether NIK is required for apoptosis induction following reovirus 

infection, NIK-deficient MEFs were infected with reovirus T3D, and apoptosis was 
assessed by quantification of caspase 3 activity (Fig. 7C). Levels of caspase 3 activity in 
MEFs deficient in NIK were equivalent to those in wild-type cells following infection 
with T3D. In parallel with these results, we observed no significant difference in the 405 
viability of wild-type and NIK-deficient MEFs following T3D infection (Fig. 7D). 
Together, these functional data with IKK- and NIK-deficient MEFs strongly correlate 
with the capacity of reovirus to modulate IκBα and NF-κB during infection (Figs. 1-6). 
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Our findings suggest that IKKα and IKKγ are required for the induction of NF-κB 
activation leading to apoptosis in response to reovirus. In keeping with the activation of 410 
NF-κB by reovirus, apoptosis is completely independent of the IKKα inducer NIK, 
indicating a different mechanism of IKKα activation in response to reovirus. 
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DISCUSSION 455 
 

Apoptosis is a genetically programmed form of cell death that plays an important 
regulatory role in many biological processes. Many viruses are capable of inducing 
apoptosis of infected cells (52). In some cases, apoptosis triggered by viral infection may 
serve as a component of host defense to limit viral replication or spread. In other 460 
instances, apoptosis may enhance viral infection by facilitating viral dissemination or 
allowing virus to evade host inflammatory responses (4, 5, 52). Apoptosis has been 
shown to play an important role in reovirus-induced disease (19, 20, 44, 45). Although 
we previously uncovered an essential function for NF-κB activation in reovirus-induced 
apoptosis (17), it was not known how reovirus activates this signal-transduction 465 
mechanism. Results reported here identify constituents of the NF-κB signaling apparatus 
induced by reovirus and provide evidence that NF-κB activation during reovirus infection 
requires integral components of both the classical and alternative pathways. 

 
 Using MEFs deficient in the expression of individual IKK subunits, we 470 
demonstrate that reovirus-infected cells lacking IKKα are impaired for NF-κB activation 
(Fig. 5) and apoptotic programming (Fig. 7), whereas both of these processes are 
operative in cells lacking IKKβ. Despite its preferential usage of IKKα, reovirus retains 
the capacity to elicit both NF-κB activation and apoptosis in the absence of NIK (Fig. 6 
and 7), a known activator of IKKα in cytokine-treated cells (36, 55). Furthermore, 475 
targeted disruption of the gene encoding IKKγ/Nemo, which is dispensable for cytokine-
induced signaling of IKKα (13, 21), significantly attenuates reovirus-induced NF-κB 
activation and apoptosis (Fig. 5 and 7). In light of these findings with NIK and IKKγ, the 
precise mechanism of reovirus action on IKKα remains unclear. The simplest 
interpretation of these results is that reovirus accesses the cellular NF-κB machinery by 480 
directly interfacing with IKKα/IKKγ complexes, with IKKγ serving as an adaptor that 
docks one or more reovirus gene products. In keeping with this possibility, IKKγ tethers 
the HTLV1 Tax protein to IKK complexes, resulting in persistent activation of IKKβ and 
NF-κB (7, 12). In what may be another related finding, IKKγ also is required for Tax-
induced activation of IKKα (72). Although data emerging from studies of IKKβ-deficient 485 
mice suggest the presence of functional IKKα/IKKγ complexes (34, 35, 50, 61), direct 
evidence for the existence of IKKα/IKKγ complexes in wild-type animals has not been 
reported. Notwithstanding, our results clearly establish that reovirus activates NF-κB and 
downstream proapoptotic genes via a mechanism involving IKKα but not IKKβ.  
 490 

The principle in vivo substrate of IKKβ is IκBα (23, 41, 47). This cytoplasmic 
inhibitor tightly controls the nuclear translocation of p50/RelA dimers (2), effectors of 
the classical NF-κB pathway (reviewed in (3, 25, 27)). The principle in vivo substrate of 
IKKα is p100/NF-κB2 (55). An integral inhibitor in the alternative NF-κB pathway, 
p100 assembles with the transactivator protein RelB (55, 60). Following IKKα-mediated 495 
phosphorylation, p100 is processed to p52 via a proteasome-dependent mechanism, 
permitting the nuclear entry of p52/RelB complexes (55, 60). Given these distinct 
mechanisms, our findings with reovirus-infected cells suggest an unconventional function 
for IKKα in substrate targeting. Specifically, we were unable to detect either p52 or RelB 
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DNA-binding activity in nuclear extracts from cells following 4 to 8 h of reovirus 500 
infection (Fig. 1B). Instead, at these early timepoints the predominant Rel species 
detected were p50 and RelA (Fig. 1B), which are primarily under IκBα control (1, 2). 
Consistent with this Rel profile, IκBα protein levels were significantly reduced by 4 h 
post-infection (Fig. 3). Although p100 processing to p52 was observed at late time points 
during reovirus infection (16 h), it seems unlikely that this delayed response contributes 505 
to the more rapidly evolving signals required for apoptosis (16, 17, 49). Accordingly, we 
propose that IKKα rather than IKKβ targets IκBα for proteolytic destruction and 
regulates the nuclear translocation of p50/RelA complexes in reovirus-infected cells. This 
working model is fully concordant with the phenotype of cell lines deficient for either 
IKKα, p50, or p65/RelA, all of which are impaired for reovirus-induced NF-κB 510 
activation and proapoptotic signaling (Figs. 4, 5, and (17)). In agreement with this model, 
prior studies with recombinant proteins indicate that IKKα can efficiently phosphorylate 
NF-κB-bound forms of IκBα in vitro (77).   

 
Both IKKα and IKKβ contain regulatory serine phosphoacceptors in their so-515 

called "T loop" domains (22, 41). Signal-dependent phosphorylation of the T loop serines 
in IKKα and IKKβ is a prerequisite for their catalytic activation (22). Based on in vitro 
studies with recombinant proteins, IKKα and IKKβ can autophosphorylate at these T 
loop serines (22, 54, 62). Physiologic agonists of the alternative NF-κB pathway 
stimulate T loop phosphorylation and activation of IKKα via the upstream kinase NIK 520 
(36, 55, 73). However, NIK is dispensable in the mechanism by which reovirus induces 
NF-κB activation and apoptosis (Fig. 6 and 7). What signal transducers couple reovirus 
to IKK? Experiments using pharmacological inhibitors suggest that NF-κB-dependent 
apoptotic signaling is triggered by viral replication steps that occur after disassembly but 
prior to RNA synthesis (16). Strain-specific differences in the capacity of reovirus to 525 
induce apoptosis segregate with viral genes encoding the σ1 and μ1 proteins (15, 49, 66), 
which play important roles in viral attachment (32, 70) and membrane penetration (8, 9, 
38), respectively. Importantly, transient expression of μ1 is sufficient to induce apoptosis 
in cell culture (14), implicating this protein in the reovirus/NF-κB signaling axis. We 
envision three potential mechanisms by which μ1, or perhaps another viral gene product, 530 
initiates NF-κB signal transduction during reovirus infection. First, μ1 may activate viral 
sensors that mediate the recruitment of the adaptor protein interferon-β promoter 
stimulator (IPS-1), which mediates the activation of NF-κB in response to viral infections 
by recruiting TNF-associated factor 6 to the signaling complex (31, 42, 56, 74). Second, 
μ1 may activate a novel cellular kinase that phosphorylates the T loop of IKKα. Third, 535 
μ1 may interact with IKK complexes directly, leading to conformational changes that 
stimulate oligomerization and trigger autophosphorylation of the T loop in IKKα {Poyet, 
2000 #5490; Inohara, 2000 #4965; . Studies to test these models for reovirus-induced 
activation of IKKα are currently underway.   

 540 
Reovirus infection leads to NF-κB activation in numerous cell types {Connolly, 

2000 #2472; Clarke, 2003 #5019; O'Donnell, 2005 #5195}. However, the functional 
consequences of NF-κB activation in vivo differ depending on the infected tissue. NF-κB 
activation in the CNS leads to high levels of neuronal apoptosis and encephalitis (45). In 
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contrast, NF-κB activation in the heart leads to interferon-β production, which limits viral 545 
replication and protects against apoptosis (45). In the absence of NF-κB signaling, 
reovirus infection induces widespread apoptotic damage to cardiac myocytes, resulting in 
myocarditis. Mechanisms underlying the divergent cellular fates following NF-κB 
activation by reovirus in vivo remain unclear. Considering the results presented in this 
study, these mechanisms may involve tissue-specific activation of different IKK subunits, 550 
which in turn may influence the composition of nuclear NF-κB complexes. Experiments 
using tissue-specific IKKα- or IKKβ-deficient mice should clarify the function of IKK in 
reovirus-induced disease.  
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 FIGURE LEGENDS 
 910 

FIG. 1. Biphasic activation of NF-κB/Rel proteins in reovirus-infected cells. (A) 
Nuclear extracts were prepared from uninfected HeLa cells (0 h), mock-infected cells 
(Mock), or cells infected with T3D at an MOI of 100 PFU/cell for the times shown. Cells 
also were treated with 20 ng/ml of TNFα for 30 min as a positive control. Extracts were 
incubated with a radiolabeled NF-κB consensus oligonucleotide, and resulting protein-915 
oligonucleotide complexes were resolved by acrylamide gel electrophoresis, dried, and 
exposed to film. (B) Nuclear extracts prepared at 4, 6, and 8 h post infection were 
incubated with antisera specific for p50, p52, RelA, RelB, or c-Rel prior to the addition 
of a radiolabeled NF-κB consensus oligonucleotide. NF-κB-containing complexes are 
indicated. 920 
 

FIG. 2. Processing of p100 to p52 during reovirus infection. (A) Whole-cell 
extracts were prepared from uninfected HeLa cells (0 h), mock-infected cells (Mock), or 
cells infected with reovirus T3D at an MOI of 100 PFU/cell for the times shown. Cells 
also were treated with 2 μg/ml of an agonistic lymphotoxin-β receptor antiserum for 8 h 925 
as a positive control. Extracts were resolved by SDS-PAGE, transferred to nitrocellulose 
membranes, and immunoblotted by using an antiserum specific for p100/p52. Band 
intensity was quantified by using the Image J program. The results are presented as the 
mean ratio of (B) p100/actin or (C) p52/p100 for three independent experiments. Error 
bars indicate standard deviations. *, P < 0.05 as determined by Student’s t test in 930 
comparison to untreated cells (0 h). 

 
FIG. 3. Reovirus infection leads to degradation of IκBα but not IκBβ or IκBε. 

Cytoplasmic extracts were prepared from uninfected HeLa cells (0 h), mock-infected 
cells (Mock), or cells infected with reovirus T3D at an MOI of 100 PFU/cell for the times 935 
shown. Cells also were treated with 20 ng/ml of TNFα for 10 min as a positive control. 
Extracts were resolved by SDS-PAGE, transferred to nitrocellulose membranes, and 
immunoblotted by using antisera specific for (A) IκBα, (C) IκBβ, or (E) IκBε. An actin-
specific antiserum was used to detect levels of actin as a loading control. Band intensity 
corresponding to levels of (B) IκBα, (D) IκBβ, and (F) IκBε was quantified by using the 940 
Image J program. The results are presented as the mean ratio of IκB/actin for three 
independent experiments. Error bars indicate standard deviations. *, P < 0.05 as 
determined by Student’s t test in comparison to untreated cells (0 h). 
 

FIG. 4. Involvement of IKKs in reovirus-induced NF-κB activation. (A) Whole-945 
cell extracts were prepared from uninfected HeLa cells (0 h), mock-infected cells (Mock), 
or cells infected with reovirus T3D at an MOI of 100 PFU/cell for the times shown. Cells 
also were treated with 20 ng/ml of TNFα for the times shown as a positive control. The 
IKK complex was immunoprecipitated by using an IKKγ-specific antiserum prior to 
incubation with a GST-IκBα substrate in the presence of [γ-32P]ATP. Kinase reactions 950 
were resolved by SDS-PAGE, transferred to nitrocellulose, and visualized by 
autoradiography. (B) HeLa cells were pretreated with IKK inhibitor BAY 65-1942 for 1 h 
at the concentrations shown and uninfected (Untreated), mock-infected (Mock), or 
infected with reovirus T3D at an MOI of 100 PFU/cell for the times shown. Nuclear 
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extracts were incubated with a radiolabeled NF-κB consensus oligonucleotide, and 955 
resulting protein-oligonucleotide complexes were resolved by acrylamide gel 
electrophoresis, dried, and exposed to film. (C) Band intensity was quantified by 
determining PSL units relative to uninfected cells for four independent experiments. 
Error bars indicate standard deviations. *, P < 0.05 as determined by Student’s t test in 
comparison to untreated cells (0 μM). (D) Nuclear extracts from the experiment shown in 960 
panel B were resolved by SDS-PAGE, transferred to nitrocellulose, and immunoblotted 
by using a RelA-specific antiserum. (E) Band intensity was quantified relative to 
uninfected cells by using the Image J program. The results are presented as the mean 
RelA band intensity for three independent experiments. Error bars indicate standard 
deviations. *, P < 0.05 as determined by Student’s t test in comparison to untreated cells 965 
(0 μM). 
 
 Fig. 5. IKKα and IKKγ are required for reovirus-induced activation of NF-κB. 
(A) Wild-type MEFs or MEFs deficient in IKKα, IKKβ, or IKKγ were uninfected (0 h), 
mock-infected (Mock), infected with reovirus T3D at an MOI of 100 PFU/cell for 8 h, or 970 
treated with 20 ng/ml of TNFα for 1 h. Nuclear extracts were incubated with a 
radiolabeled NF-κB consensus oligonucleotide. Resulting protein-oligonucleotide 
complexes were resolved by acrylamide gel electrophoresis, dried, and exposed to film. 
NF-κB-containing complexes are indicated. (B) Band intensity was quantified by 
determining PSL units relative to uninfected cells for three independent experiments. 975 
Error bars indicate standard deviations. *, P < 0.05 as determined by Student’s t test in 
comparison to mock-treated cells (0 h). (C) Nuclear extracts from the experiment shown 
in panel A were resolved by SDS-PAGE, transferred to nitrocellulose, and 
immunoblotted by using a RelA-specific antiserum.  
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FIG. 6. Reovirus-induced activation of NF-κB in NIK-deficient cells. (A) Wild-
type MEFs or NIK-deficient MEFs were uninfected (0 h), mock-infected (Mock), 
infected with reovirus T3D at an MOI of 1000 PFU/cell for 8 h, or treated with 20 ng/ml 
of TNFα for 30 min. Nuclear extracts were incubated with a radiolabeled NF-κB 
consensus oligonucleotide. Resulting protein-oligonucleotide complexes were resolved 985 
by acrylamide gel electrophoresis, dried, and exposed to film. NF-κB-containing 
complexes are indicated. (B) Nuclear extracts from the experiment shown in panel A 
were resolved by SDS-PAGE, transferred to nitrocellulose, and immunoblotted by using 
a RelA-specific antiserum. 
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FIG. 7. IKKα and IKKγ are required for reovirus-induced apoptosis. Wild-type 
MEFs or (A) MEFs deficient in IKKα, IKKβ, IKKγ, or (C) NIK were mock-infected, 
infected with reovirus T3D at an MOI of 1000 PFU/cell for 24 h, treated with 10 ng/ml of 
TNFα for 12 h, or treated with 10 ng/ml of TNFα and 10 μg/ml of cycloheximide for 12 
h. Caspase 3/7 activity was quantified by using a luminescent substrate. The results are 995 
expressed as the mean caspase activity relative to mock-infected cells for three 
independent experiments. Wild-type MEFs or (B) IKK-deficient MEFs or (D) NIK-
deficient MEFs were mock-infected, infected with reovirus T3D at an MOI of 1000 
PFU/cell for 48 h, treated with 10 ng/ml of TNFα for 24 h, or treated with 10 ng/ml of 
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TNFα and 10 μg/ml of cycloheximide for 24 h. Cell viability was quantified by trypan 1000 
blue exclusion. The results are expressed as the mean percentage of cell death for three 
independent experiments. Error bars indicate standard deviations. *, P < 0.05 as 
determined by Student’s t test in comparison to mock-infected cells. 
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Organ-specific roles for transcription  
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1Department of Pediatrics, 2Elizabeth B. Lamb Center for Pediatric Research, 3Department of Microbiology and Immunology,  
4Department of Pathology, 5Department of Surgery, and 6Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA. 

7Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA.

Reovirus induces apoptosis in cultured cells and in vivo. In cell culture models, apoptosis is contingent upon 
a mechanism involving reovirus-induced activation of transcription factor NF-κB complexes containing 
p50 and p65/RelA subunits. To explore the in vivo role of NF-κB in this process, we tested the capacity of 
reovirus to induce apoptosis in mice lacking a functional nfkb1/p50 gene. The genetic defect had no apparent 
effect on reovirus replication in the intestine or dissemination to secondary sites of infection. In comparison 
to what was observed in wild-type controls, apoptosis was significantly diminished in the CNS of p50-null 
mice following reovirus infection. In sharp contrast, the loss of p50 was associated with massive reovirus-
induced apoptosis and uncontrolled reovirus replication in the heart. Levels of IFN-β mRNA were markedly 
increased in the hearts of wild-type animals but not p50-null animals infected with reovirus. Treatment of 
p50-null mice with IFN-β substantially diminished reovirus replication and apoptosis, which suggests that 
IFN-β induction by NF-κB protects against reovirus-induced myocarditis. These findings reveal an organ-
specific role for NF-κB in the regulation of reovirus-induced apoptosis, which modulates encephalitis and 
myocarditis associated with reovirus infection.

Introduction
Mechanisms of viral disease involve complex interactions of pathogen 
virulence factors and host responses. Perhaps the best-understood 
basis of organ-specific viral pathology is the availability of cell-surface 
molecules required for viral attachment and entry. Rarely, however, 
is viral disease ascribable solely to receptor recognition. More com-
monly, additional virus-host interactions determine the outcome of 
infection (1), and these pivotal steps are of much interest in studies 
of viral pathogenesis. Factors expected to modulate viral growth and 
virulence in an organ-dependent manner include the capacity of virus 
to efficiently utilize the host translational apparatus, including strat-
egies to circumvent antiviral effects of IFN; availability of cellular pro-
teins to facilitate viral replication and gene expression; and changes in 
the intracellular signaling dynamic induced by viral infection.

Mammalian orthoreoviruses (simply called reoviruses here) have 
served as highly tractable models for studies of viral pathogenesis. 
Reoviruses are nonenveloped, icosahedral viruses with a genome 
consisting of 10 double-stranded RNA segments (2). After infec-
tion of newborn mice, reoviruses disseminate systemically, produc-
ing injury to a variety of organs, including the CNS, heart, and 
liver (3). Strain-specific differences in receptor utilization influ-
ence some types of reovirus disease (4, 5); however, disease patho-
genesis at other sites is more complex (6, 7).

The NF-κB family of transcription factors plays a key role in the 
regulation of cell growth, activation, differentiation, and survival. 
Following exposure of cells to a variety of stimuli, NF-κB is acti-
vated and translocated to the nucleus (8), where it serves as a tran-
scriptional regulator (9, 10). In systems in which NF-κB is activated 
during apoptosis, NF-κB can either prevent (10–13) or potentiate 
(14–17) cell death signaling. Following reovirus infection of cul-
tured cells, the heterodimeric NF-κB complex p50/p65 translocates 
to the nucleus and activates proapoptotic gene expression (18). 
When NF-κB activation is inhibited using proteasome inhibitors 
or dominant-negative forms of IκBα, reovirus-induced apoptosis 
is blocked (18). Moreover, cell lines deficient in either of the p50 or 
p65 NF-κB subunits do not undergo apoptotic cell death following 
reovirus infection. These findings indicate that activation of NF-κB 
in cell culture is required for reovirus-induced apoptosis.

In the CNS (19) and heart (20) of newborn mice, reovirus induc-
es the morphological and biochemical features of apoptosis. This 
cell-death response in brain and heart tissue is associated with 
reovirus-induced disease. Inhibitors of apoptosis ameliorate heart 
disease (20), which indicates a causal relationship between pro-
grammed cell death and reovirus-induced myocarditis. However, 
the molecular basis of CNS and cardiac pathology during reovirus 
infection has not been fully elucidated.

We now demonstrate that the p50 subunit of NF-κB plays an 
essential role in the development of encephalitis and myocarditis 
in reovirus-infected mice. Although reovirus infects the intestine 
and disseminates systemically following peroral inoculation of 
mice lacking the NF-κB p50 subunit, apoptosis is diminished in 
the brain yet strikingly enhanced in the heart. These findings sug-

Nonstandard abbreviations used: EMSA, electrophoretic mobility shift assay; HLL, 
HIV long-terminal repeat luciferase; L cell, L929 cell.
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gest a novel role for NF-κB in the pathogenesis of viral infection; 
it serves a proapoptotic function in the CNS, while mediating a 
prosurvival function in the myocardium.

Results
Reovirus activates NF-κB in vivo. To determine whether reovirus is 
capable of NF-κB activation in the intact host, we performed in 
vivo luciferase assays using transgenic mice engineered to express 
luciferase under control of an HIV long-terminal repeat promoter 
that contains NF-κB consensus binding sites (21). These mice were 
inoculated perorally with either PBS (mock-infected) or 104 PFU 
reovirus strain T3SA+, which was chosen for these studies because 
of its capacity to activate NF-κB and induce a potent apoptotic 
response in cultured cells (22). Seven days after inoculation, the 
mice were imaged for luciferase activity as a marker for NF-κB acti-
vation (Figure 1, A and B). Little luciferase activity was detected in 
the mock-infected mice (Figure 1A). In contrast, reovirus-infected 
animals exhibited systemic luciferase activity (Figure 1B), which 
indicated that reovirus is capable of NF-κB activation in vivo.

Reovirus-induced activation of NF-κB in the murine CNS and heart is 
dependent on p50. To determine whether reovirus activates NF-κB in 
the murine CNS and heart, we performed electrophoretic mobility 
shift assays (EMSAs) using brain and heart extracts prepared from 
reovirus-infected or mock-infected wild-type and p50-null mice. 
Newborn p50+/+ and p50–/– mice were inoculated with either PBS 
or 104 PFU reovirus T3SA+. Cell extracts were prepared from brain 
and heart tissue 12 days after inoculation, incubated with a radio-
labeled oligonucleotide consisting of the NF-κB consensus binding 
sequence, and resolved by PAGE using nondenaturing conditions 
(Figure 2, A and D). NF-κB DNA-binding activity was detected in 
extracts from the brain of reovirus-infected p50+/+ but not p50–/– mice 
(Figure 2A). Similarly, NF-κB DNA-binding activity was detected in 
the heart of p50+/+ mice infected with reovirus but not p50–/– ani-
mals (Figure 2D). These findings indicate that reovirus infection in 

the murine CNS and heart induces nuclear translocation of NF-κB, 
which is contingent on the expression of the NF-κB p50 subunit.

To confirm the specificity of NF-κB DNA-binding activity in 
these experiments, we incubated cell extracts from reovirus-infected 
p50+/+ mouse brain and heart with a 32P-labeled NF-κB consensus 
oligonucleotide in the presence of excess unlabeled consensus oli-
gonucleotide (Figure 2, B and E). Binding of the radiolabeled probe 
was competed with that of unlabeled consensus oligonucleotide, 
which suggests that the gel-shift activity detected following reovi-
rus infection is specific for sequences that are bound by NF-κB.

In cell culture, reovirus infection results in the nuclear transloca-
tion of NF-κB complexes containing subunits p50 and p65 (18). As 
an additional specificity control in these experiments for the activa-
tion of NF-κB, nuclear extracts were prepared from reovirus-infect-
ed p50+/+ mouse brain or heart and incubated with an antiserum 
specific to p65 prior to the addition of the NF-κB–specific oligonu-
cleotide (Figure 2, C and F). Addition of the p65-specific antiserum 
resulted in bands of higher relative molecular mass, which verified 
that p65 is present in the NF-κB complexes activated following reo-
virus infection. These findings provide strong evidence that reovi-
rus infection of the murine CNS induces the nuclear translocation 
of NF-κB and this effect is abolished in mice lacking p50.

NF-κB subunit p50 is not required for efficient reovirus replication or dis-
semination in the murine host. To determine whether p50 plays a role in 
reovirus growth in vivo, we inoculated p50+/+ and p50–/– mice intra-
cranially or perorally with 104 PFU reovirus T3SA+. Viral titers in the 
brain were determined by plaque assay 2, 4, and 6 days after intra-
cranial inoculation (Figure 3A) and in the intestine, liver, brain, and 
heart 4, 6, 8, 10, and 12 days after peroral inoculation (Figure 3B). 
Following intracranial inoculation, viral titers in p50+/+ and p50–/– 
mice were equivalent at all time points tested. After peroral inocula-
tion, virus replicated efficiently in the intestines of both p50+/+ and 
p50–/– mice and disseminated to the liver, brain, and heart. Viral 
titers in the intestine, liver, and brain did not differ between p50+/+ 
and p50–/– mice. In sharp contrast, viral titers in the hearts of p50–/– 
mice were more than 1,000-fold higher than those in the hearts of 
p50+/+ animals. These findings suggest that p50 is dispensable for 
reovirus growth in vivo and that the absence of p50 in the heart, but 
not in other tissues tested, allows for increased reovirus replication.

NF-κB subunit p50 is required for efficient induction of apoptosis in the 
CNS following reovirus infection. To assess reovirus-induced patho-
logic changes in the CNS of p50+/+ and p50–/– mice, we prepared 
brain sections from mice euthanized at 12 days following peroral 
inoculation with reovirus T3SA+ and examined them after stain-
ing with H&E (Figure 4, A and B and data not shown). Brain 
sections from reovirus-infected p50+/+ and p50–/– mice exhibited 
evidence of meningoencephalitis. Inflammatory infiltrates were 
detected primarily in the cerebral cortex, hippocampus, dienceph-
alon, and brain stem. Morphologically, inflammatory cells were 
mostly lymphocytes and macrophages/microglia with some plas-
ma cells and neutrophils. Inflammatory changes were more exten-
sive in p50+/+ mice (Figure 4A) than in p50–/– mice (Figure 4B),  

Figure 1
NF-κB activation following reovirus infection of HLL mice. Newborn 
HLL mice were inoculated perorally with PBS (A) or 104 PFU reovirus 
T3SA+ (B). Mice were inoculated intraperitoneally with luciferin 7 days 
after infection and imaged for luciferase activity as a marker for NF-κB 
activation. Bioluminescence indicates areas of NF-κB activation.
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which suggests that the neurovirulence of reovirus is attenuated 
in mice lacking an intact NF-κB signaling apparatus.

To assess the distribution of reovirus protein expression in the 
CNS of p50+/+ and p50–/– mice, we prepared brain sections from 
mice euthanized 12 days following peroral inoculation and stained 
them using a reovirus-specific antiserum (Figure 4, A and B and data 
not shown). Immunohistochemical staining for reovirus protein 
demonstrated the presence of immunoreactive neurons in brains 
of both p50+/+ and p50–/– mice (Figure 4, A and B). Antigen-positive 
neurons were detected in a pattern recapitulating the inflamma-
tory changes; the cerebral cortex, hippocampus, diencephalon, and 
brain stem were primarily involved. The number of reovirus-infect-
ed cells and their distribution was similar in p50+/+ and p50–/– mice 
(Figure 4, A and B). These results suggest that the lack of p50 does 
not alter reovirus tropism for specific neural regions.

To determine whether p50 is required for apoptosis in the murine 
CNS, we prepared brain sections from reovirus-infected p50+/+ and 
p50–/– mice 12 days following peroral inoculation (Figure 4, A and B) 
or 6 days following intracranial inoculation (Figure 4C) and assayed 
them for fragmented DNA using the TUNEL technique. Apoptotic 
cells were quantitated by counting all TUNEL-positive cells in cor-
tex, hippocampus, basal ganglia, diencephalon, and brain stem of 
each section obtained from mice inoculated intracranially (Figure 5).  
Numbers of TUNEL-positive cells in the brains of infected p50+/+ 
mice were significantly greater than those in the brains of infected 
p50–/– mice. These findings were the same following both peroral 

and intracranial inoculation (Figure 4). Thus, 
reovirus-induced apoptosis in the murine CNS is 
dependent on the p50 subunit of NF-κB.

Activation of caspase-3 is a highly specific bio-
marker of apoptotic cell death (23). To confirm 
that DNA fragmentation observed in the brains of 
reovirus-infected p50+/+ mice is due to apoptosis, 
we stained brain sections with an antiserum spe-
cific to the activated form of caspase-3 (Figure 4,  
A and B). Activated caspase-3 was detected in 
regions of the brain in which TUNEL-positive 
staining also was observed. Moreover, cells immu-
noreactive for caspase-3 were detected at a much 
higher frequency in the brains of p50+/+ mice. Mor-
phologically, cells immunoreactive for caspase-3 
were primarily neurons, and most immunoreac-
tive neurons also exhibited morphologic evidence 
of apoptosis. These results provide additional 
evidence that expression of NF-κB subunit p50 is 
required for efficient induction of apoptosis dur-
ing reovirus infection in the murine CNS.

Absence of NF-κB subunit p50 leads to enhanced pathol-
ogy and massive apoptosis in the murine heart following 
reovirus infection. Since viral titers in the hearts of 
p50–/– mice were more than 1,000-fold higher than 
in those of p50+/+ mice (Figure 3B), we examined 
heart tissue for evidence of inflammation and tis-
sue injury. Newborn p50+/+ and p50–/– mice were 
inoculated perorally with either 104 PFU reovi-
rus T3SA+ or PBS and weighed daily. Mice were 
euthanized at various time points following inoc-
ulation, and hearts were removed and weighed. 
There were no significant differences in the heart 
weights of mock-infected p50+/+ and p50–/– mice 

(Figure 6A). Surprisingly, heart weights of reovirus-infected p50–/–  
mice were significantly greater than those of p50+/+ mice (Figure 6B).  
Differences in the percent heart weight (heart weight relative to total 
body weight) of infected p50+/+ and p50–/– mice became detectable at 
8 days after inoculation and continued to increase with time, while 
there was no significant increase in the percent heart weight of 
infected p50+/+ mice (Figure 6B). Dramatic differences were observed 
in the gross appearance of hearts dissected from p50+/+ and p50–/– 
animals following infection with reovirus (Figure 6C). Hearts from 
reovirus-infected p50–/– mice had a blanched appearance with dif-
fuse surface irregularities corresponding to confluence of purulent 
lesions, consistent with overt myocarditis. In contrast, hearts from 
mock-infected p50–/– or p50+/+ mice or reovirus-infected p50+/+ mice 
displayed no overt abnormalities.

To determine whether reovirus-induced myocardial injury in 
p50–/– mice is associated with contractile dysfunction, we per-
formed echocardiography on 10-day-old mice after peroral inocu-
lation with either reovirus T3SA+ or PBS. Fractional shortening, 
assessed by 2-dimensional, directed M-mode measurements, was 
substantially decreased in reovirus-infected p50–/– mice (∼10%;  
Figure 6D), while it was preserved in mock-infected p50–/– mice (>40%; 
Figure 6E) and reovirus-infected p50+/+ mice (>40%; Figure 6F).  
Heart size was also increased in reovirus-infected p50–/– mice com-
pared with mock-infected p50–/– mice and reovirus-infected p50+/+ 
mice. Intact atrioventricular conduction was observed in all mice, 
which suggests that the pathologic process was not specifically 

Figure 2
Reovirus-induced NF-κB gel-shift activity following infection of p50+/+ and p50–/– mice. 
(A and D) Newborn p50+/+ and p50–/– mice were inoculated perorally with either 104 PFU 
reovirus T3SA+ or PBS. Brains (A) and hearts (D) were resected 12 days after inocula-
tion, and cell extracts were prepared. Extracts were incubated with a 32P-labeled NF-κB  
consensus oligonucleotide and resolved by nondenaturing PAGE. Activated NF-κB com-
plexes are indicated. Shown is a representative experiment of 4 performed. (B and E)  
Extracts were prepared from either brains (B) or hearts (E) of reovirus-infected p50+/+ 
mice and incubated with 32P-labeled NF-κB consensus oligonucleotide in the presence 
of unlabeled NF-κB consensus probe (cold competitor) at the molar concentrations 
shown. Extracts prepared from either brains or hearts of uninfected p50+/+ mice were 
incubated with 32P-labeled NF-κB consensus oligonucleotide and electrophoresed in the 
lane labeled “Mock.” NF-κB complexes are indicated. (C and F) Extracts were prepared 
from either brains (C) or hearts (F) of reovirus-infected p50+/+ mice, and prior to the 
addition of the 32P-labeled oligonucleotide probe, extracts were incubated with either a 
control antibody specific to reovirus protein σ3 (α-Reo) or an antibody specific to NF-κB 
subunit p65 (α-p65). Supershifted complexes containing p65 are indicated.
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targeted to the conduction system. These results suggest that the 
myocardial pathology associated with reovirus infection of p50–/– 
mice is associated with diminished contractility.

On a microscopic level, hearts of p50–/– animals displayed exten-
sive myocyte destruction with features of apoptotic and necrotic 
cell death. Affected areas were notable for cell fragments, granular 
debris, and scattered calcifications. Thorough sectioning of the 
organ block revealed that pathology was not limited to any partic-
ular region of the heart. Hearts from reovirus-infected p50+/+ mice 
and mock-infected p50–/– and p50+/+ mice demonstrated no sig-
nificant microscopic pathology. We conclude that reovirus is more 
pathogenic in the heart in the absence of NF-κB subunit p50.

To assess the extent and location of reovirus infection in the 
murine myocardium in the presence and absence of p50, we per-
formed reovirus antigen staining on heart sections from p50+/+ and 
p50–/– mice euthanized 12 days following peroral inoculation with 
reovirus T3SA+ (Figure 7, A and B). Immunohistochemical stain-
ing for reovirus protein demonstrated immunoreactive myocytes in 
heart sections prepared from both p50+/+ and p50–/– mice (Figure 7,  
A and B). However, the number of reovirus-infected cells differed 
substantially between p50+/+ and p50–/– mice, consistent with the 
significant difference in viral titer in the hearts of these animals.

To determine whether expression of p50 influences apoptosis in 
the murine heart, we inoculated p50+/+ and p50–/– mice perorally 
with reovirus and assessed them for apoptosis using TUNEL stain-
ing (Figure 7, A and B). There were rare TUNEL-positive cells in 
the hearts of p50+/+ mice following reovirus infection (Figure 7A), 
whereas numerous foci of apoptosis were present in the hearts of 
p50–/– mice (Figure 7B). Interestingly, foci of apoptotic cells in the 
hearts of p50–/– mice coincided with areas of intense staining for 
reovirus antigen, which suggests a link between reovirus replica-
tion and apoptosis in cardiomyocytes.

To confirm that the absence of p50 leads to enhanced apoptosis in 
the heart during reovirus infection, we prepared heart sections from 
p50+/+ and p50–/– mice 12 days following peroral inoculation with 
reovirus and stained them for activated caspase-3 (Figure 7, A and B).  
Caspase-3 staining revealed numerous positive myocytes in the same 
areas of the heart that also were positive for reovirus antigen and 
TUNEL staining. These results suggest that, in contrast to its effects 
in the murine CNS, the NF-κB p50 subunit protects against apopto-
sis induced by reovirus infection in the murine myocardium.

IFN-β is induced in the heart of wild-type mice following reovirus infec-
tion. Results presented thus far demonstrate that enhanced reovirus 
growth in the heart of p50–/– mice is associated with massive apopto-
sis. We thought it possible that the absence of NF-κB–mediated acti-
vation of innate immune responses might lead to increased viral rep-
lication and resultant pathology in the heart. To test this hypothesis, 
we inoculated p50+/+ and p50–/– mice perorally with reovirus T3SA+ 
or PBS. Twelve days after inoculation, heart and brain were removed, 
and levels of IFN-β mRNA were determined using real-time PCR 
(Figure 8). Using GAPDH mRNA as a standardization control, little 
IFN-β mRNA was induced in the brain of either p50–/– or p50+/+ mice 
in the presence or absence of reovirus infection (Figure 8). In con-
trast, IFN-β mRNA levels were substantially increased in the heart 
of reovirus-infected wild-type mice compared with p50–/– animals 
(Figure 8). These results indicate that IFN-β induction by reovirus 
in the murine heart is dependent on NF-κB and suggest that IFN-β 
protects the heart from reovirus-induced apoptosis and disease.

IFN-β treatment of p50-null mice attenuates reovirus-induced myocar-
ditis. To determine whether NF-κB–mediated expression of IFN-β 
plays a direct role in protection of the heart against apoptosis and 
disease caused by reovirus, we tested the effect of IFN-β treatment 
on reovirus infection of p50–/– mice. Newborn p50–/– mice were 
inoculated intraperitoneally with either IFN-β or PBS 1 day prior 

Figure 3
Growth of reovirus in p50+/+ and p50–/– mice. (A) Titers of reovirus in brain after intracranial inoculation of p50+/+ and p50–/– mice. Newborn mice 
were inoculated with 104 PFU reovirus T3SA+. At days 2, 4, and 6 after inoculation, mice were euthanized, brains were harvested, and viral titers 
were determined by plaque assay. (B) Titers of reovirus in intestine, liver, brain, and heart after peroral inoculation of p50+/+ and p50–/– mice. 
Newborn mice were inoculated with 104 PFU T3SA+. At days 4, 6, 8, 10, and 12 after inoculation, mice were euthanized, organs were harvested, 
and viral titers were determined by plaque assay. The results are expressed as the mean viral titers for 2–4 (A) or 4–8 (B) animals for each time 
point. Error bars indicate SDs. *P < 0.05 by Student’s t test.
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to peroral inoculation with reovirus T3SA+ and treated daily for 9 
days thereafter. On day 10, the animals were euthanized, and brain 
and heart were removed for determination of viral titer and histo-
pathology (Figure 9). IFN-β treatment significantly decreased viral 
titer in both brain and heart (Figure 9A). In p50–/– mice treated with 
IFN-β, viral titers reached only 102 PFU in the brain and were less 
than 102 PFU in the heart (Figure 9A). In parallel with these results, 
apoptosis in the heart of IFN-β–treated p50–/– mice was substan-
tially diminished (Figure 9B). Thus, a critical component of the 
underlying mechanism of NF-κB–mediated protection against 
reovirus-induced myocardial injury is contingent on IFN-β.

Discussion
Here we report organ-specific roles for NF-κB in the pathogenesis of 
viral disease, which is a heretofore unknown property of this signal-
ing molecule. The key finding is that marked differences in the patho-
genesis of reovirus infection in the CNS and heart are dependent on 
the action of NF-κB. Following reovirus infection in the CNS, p50+/+ 
mice exhibited significant neuronal apoptosis, while p50–/– mice 
displayed a minimal apoptotic response. In sharp contrast, reovirus 
induced little apoptosis in the heart of p50+/+ mice, whereas exten-
sive apoptosis occurred in the heart of p50–/– mice. These findings 
indicate that NF-κB subunit p50 plays 2 distinctly different roles in 
reovirus pathogenesis, serving a proapoptotic function in the brain, 
while mediating a prosurvival function in the heart.

The NF-κB family of transcription factors is composed of p50/p105,  
p52/p100, p65 (RelA), c-Rel, and RelB. Studies using mice with 
targeted disruptions of specific NF-κB subunits have shown that 
NF-κB serves important functions in the development and function 
of innate and adaptive immunity (24–26). Mice lacking p50 have 
no apparent developmental defects (24), and immune cells mature 
normally. However, p50–/– mice display defects in B cell activation, 
isotype switching, and antibody production (24). These defects ren-
der p50–/– mice more susceptible to infection by the Gram-positive 
bacterial pathogen Streptococcus pneumoniae, but they remain capable 
of efficiently clearing infection by the Gram-negative pathogens 
Escherichia coli and Haemophilus influenzae (24). When p50–/– mice are 
infected with encephalomyocarditis virus, they are actually more 
resistant to infection than controls. This difference is thought to 
be due to an increase in apoptosis that leads to a decrease in viral 
growth (24). These findings stand in stark contrast to what occurs 
in the CNS and heart of reovirus-infected mice.

In experiments comparing reovirus infection of p50+/+ and p50–/–  
mice, we found that the presence or absence of p50 did not alter 
primary viral replication in intestinal tissue or dissemination of 
virus to the liver, brain, or heart. Although viral replication in the 
brain after intracranial inoculation also was independent of p50, 
replication in the heart was increased in p50–/– mice by approxi-
mately 1,000-fold. What might explain the enhancement of reovi-
rus replication in the heart of p50–/– mice? Reovirus strains have 

Figure 4
Inflammation, reovirus protein expression, TUNEL staining, and immunohistochemical detection of activated caspase-3 in the brain of reovirus-
infected p50+/+ (A) and p50–/– (B) mice. Newborn mice were inoculated perorally with 104 PFU reovirus T3SA+. At 12 days after inoculation, 
brains were harvested, paraffin embedded, sectioned, and stained with H&E, polyclonal reovirus-specific antiserum (Reo), TUNEL, or activated 
caspase-3–specific antiserum as indicated. Shown are consecutive sections of diencephalon. Original magnification, ×100 (top panels) and ×400 
(bottom panels). (C) Newborn mice were inoculated intracranially with 104 PFU T3SA+ or gelatin saline (Mock). At 6 days after inoculation, mice 
were euthanized, and brain sections were stained using a TUNEL assay. Shown are sections of the upper brain stem. Original magnification, 
×200. Brown staining indicates reovirus protein, fragmented DNA, or activated caspase-3.
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been characterized previously as having the capacity to grow in the 
murine heart and produce cardiac disease (27, 28). In primary car-
diomyocytes, nonmyocarditic reovirus strains induce more IFN-β 
and are more sensitive to the antiviral effects of this cytokine than 
myocarditic reovirus strains (29). Furthermore, normally nonmyo-
carditic strains are capable of producing myocarditis in infected 
IFN-α/β–/– mice (29). Thus, it appears that type I IFNs restrict viral 
replication in the heart and attenuate cardiac disease.

NF-κB is known to induce the expression of several mediators of 
innate immune responses including type I IFNs (30–32). Therefore, 
absence of p50 may allow reovirus to achieve much higher titers and 
cause myocarditis. We tested this hypothesis by determining brain 
and heart levels of IFN-β mRNA in response to reovirus infection of 
p50+/+ and p50–/– mice (Figure 8) and by treating reovirus-infected 
p50–/– mice with IFN-β (Figure 9). In these experiments, we found a 
dramatic increase in IFN-β expression in the hearts of wild-type mice 
but only a minimal IFN-β response in the hearts of p50-null ani-
mals. Moreover, reconstitution of p50–/– mice with IFN-β substan-
tially diminished reovirus replication and apoptosis, which resulted 
in diminished myocardial injury. These results indicate that IFN-β is 
a necessary component of the NF-κB–mediated protective response 
against reovirus in the heart. However, it is likely that other com-
ponents of innate immunity are involved in this effect. Preliminary 
data from our laboratory suggest that in addition to IFN-β, IL-6,  
MIF, and TNF are expressed at higher levels in the heart of p50+/+ 
mice than p50–/– mice (S.M. O’Donnell and T.S. Dermody, unpub-
lished observation). These findings suggest that following reovirus 
infection of the heart, NF-κB is activated and leads to induction of 
potent innate immune responses, which in turn attenuate viral rep-
lication at that site, resulting in diminished apoptosis and disease.

The enhanced growth of reovirus in the heart of p50–/– mice com-
pared with p50+/+ mice was associated with extensive myocarditis 
and resultant tissue injury and dysfunction. This result was con-
firmed by histopathological studies, echocardiography, and physical 
examination revealing signs of heart failure. The pathology observed 
in the heart of p50–/– animals was characterized by extensive tissue 
damage and little inflammatory infiltrate, similar to findings made 
in previous studies of reovirus myocarditis (27). Therefore, our 
results suggest that apoptosis is the primary mechanism of cardiac 
damage in reovirus-induced myocarditis, as reported previously 
(20). Damage to cardiomyocytes during reovirus infection occurs in 

the complete absence of adaptive components of host defense (33). 
It is possible that a similar mechanism occurs in humans, which 
would explain why some patients with acute myocarditis develop 
heart failure in the setting of sustained viremia (34).

In contrast to the enhanced growth of reovirus in the heart of 
p50–/– mice, viral growth in the CNS of p50+/+ and p50–/– mice 
was equivalent. However, we observed dramatic differences in the 
number of apoptotic cells in the 2 mouse strains as indicated by 
TUNEL and caspase-3 staining. Therefore, the efficiency of viral 
growth is not strictly correlated with the extent of the apoptotic 
response. Nonetheless, despite these p50-dependent differences 
in viral growth, our results suggest that apoptosis is an impor-
tant mechanism of reovirus-induced disease in both the CNS and 
heart. In the CNS of p50–/– mice, apoptosis and inflammation fol-
lowing reovirus infection were diminished. However, in the hearts 
of these animals, apoptosis and tissue injury were enhanced. This 
correlation between apoptosis and pathology lends support to the 
hypothesis that therapies directed at blocking programmed cell 
death might attenuate viral virulence, consistent with results from 
previous studies of reovirus-induced myocarditis (20). However, 
our findings suggest that pharmacologic inhibition of NF-κB acti-
vation may reduce pathologic injury at some sites and exacerbate 
disease at others, depending on the nature of the NF-κB agonist.

The precise cell types responsible for the p50-dependent effects on 
apoptosis in response to reovirus infection in mice are not apparent 
from our study. It is possible that expression of p50 in neurons is 
required for apoptosis of these cells and expression of p50 in cardio-
myocytes mediates protection of these cells against apoptotic injury. 
However, it is also possible that p50-dependent immune responses 
contribute to the observed differences in cell fate. For example, NF-κB– 
mediated release of cytokines such as TNF-α from immune cells 
might contribute to the neuronal apoptosis that occurs during 
reovirus infection of the CNS, whereas NF-κB–mediated release of 
type I IFNs from immune cells might mediate a protective effect in 
the heart. Since adoptive transfer of immune cells is not technically 
feasible in the newborn mice required for studies of reovirus patho-
genesis, discrimination between these possibilities awaits the devel-
opment of mice with tissue-specific ablation of NF-κB activity.

The role of NF-κB in response to a variety of cellular stresses has 
been studied extensively using cultured cells (35). However, little is 
known about the contributions of specific NF-κB subunits in vivo. 

Figure 5
Quantitation of TUNEL staining in cortex and hippocampus (A), basal ganglia and diencephalon (B), and brain stem (C) of reovirus-infected 
p50+/+ and p50–/– mice. TUNEL staining was performed using tissue sections prepared 2, 4, and 6 days following intracranial inoculation of p50+/+ 
and p50–/– mice with 104 PFU reovirus T3SA+. For each brain region, all positive cells in a single parasagittal section were counted for 4–8 ani-
mals. The results are expressed as the mean number of apoptotic cells per region. Error bars indicate SDs. *P < 0.05 by Student’s t test.
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The extensive array of NF-κB inducers and target genes (36) suggests 
that numerous mechanisms exist to direct transcription of appro-
priate NF-κB–dependent genes in response to specific stimuli. One 
such regulatory mechanism is likely to be the activation of specific 
NF-κB complexes (e.g., p50/p65 heterodimers) for each inducing sig-
nal. Individual homodimeric and heterodimeric NF-κB complexes 
exhibit different affinities for target DNA sequences (37), and this 
provides a potential mechanism by which NF-κB–inducing stimuli 
regulate transcriptional activity of specific subsets of cellular genes. 
We showed previously that reovirus requires p50/p65 for efficient 
apoptosis in cell culture (18). However, we found in the current study 
that p50 plays organ-specific roles in disease pathogenesis in vivo. 
These findings emphasize that NF-κB subunits can have different 
functions following activation with the same stimulus depending 
on the cellular environment. Continuing studies in this area may 

reveal new layers of control of 
NF-κB responses and extend 
understanding of how viruses 
cause tissue-specific injury.

Methods
Cells, virus, and antibodies. Spin-
ner-adapted murine L929 cells 
(L cells) were grown in suspen-
sion or monolayer culture and 
maintained as described pre-
viously (18). Reovirus strain 
T3SA+ was generated by reas-
sortment of reovirus strains type 
1 Lang (T1L) and type 3 clone 
44-MA (5). Virus was purified 
after growth in L cells by cesium 
chloride gradient centrifuga-
tion (38). Rabbit polyclonal 
anti-reovirus serum raised 
against strain T1L was obtained 
as described previously (22). 
Rabbit polyclonal antiserum 
specific to the activated form of 
caspase-3 (anti–caspase-3/Asp 
175) was obtained from Cell 
Signaling Technology.

Mice and inoculations. HIV 
long-terminal repeat lucifer-
ase (HLL) mice were gener-
ated as described previously 
(39). Control p50+/+ mice  
(B6129PF1/J-AW-J/AW) and p50–/–  
mice (B6129P-Nfkb1tm1Bal)  
(24) were obtained from The 
Jackson Laboratory. New-
born mice weighing 2.0–2.5 g  
(2–4 days old) were inocu-
lated either intracranially or 
perorally with purified T3SA+ 
diluted in PBS. Intracranial 
inoculations were delivered 
to the right and left cerebral 
hemispheres (5 µl each) using 
a Hamilton syringe (BD Bio-

sciences) and a 30-gauge needle (40). Peroral inoculations were delivered 
into the stomach (50 µl) by passage of a polyethylene catheter 0.61 mm  
in diameter (BD) through the esophagus (41). The inoculum con-
tained 0.5% (vol/vol) green food coloring so that accuracy of delivery 
could be judged. For determination of NF-κB activation, viral titer, and 
immunohistochemical staining, mice were euthanized at various inter-
vals following inoculation, and organs were collected.

Assessment of NF-κB activation by in vivo luciferase activity. Two-day-old 
HLL mice were inoculated perorally with either 104 PFU T3SA+ or PBS. 
Mice were anesthetized with isoflurane before imaging and immobilized 
for the duration of the integration time of photon counting (3 min-
utes). Luciferin (0.75 g/mouse in 0.2 ml isotonic saline) was inoculated 
intraperitoneally, and mice were imaged using an intensified charge-
coupled devise camera (C2400-32; Hamamatsu Corp.). For the duration 
of photon counting, mice were placed inside a light-tight box. Light 

Figure 6
Heart pathology following reovirus infection of p50+/+ and p50–/– mice. (A and B) Newborn p50+/+ and p50–/– mice 
were inoculated perorally with either PBS (mock) (A) or 104 PFU reovirus T3SA+ (B), and heart size was moni-
tored at 2-day intervals. Percent heart weight was calculated as heart weight divided by body weight. The results 
are expressed as the mean heart weights of at least 4 animals for each time point. Error bars indicate SDs.  
*P < 0.05 by Student’s t test. (C) Hearts from mice euthanized 12 days following peroral inoculation with reovirus 
T3SA+ or gelatin saline (Mock). (D, E, and F) Electrocardiography and echocardiography of reovirus-infected 
p50–/– (D), mock-infected p50–/– (E), and reovirus-infected (F) p50+/+ mice. Newborn mice were inoculated per-
orally with 104 PFU T3SA+, and tests were performed 10 days after inoculation. A P-wave/QRS ECG complex 
is displayed above the corresponding echocardiographic image. Systolic and diastolic LV cavity dimensions are 
indicated by bars superimposed on the M-mode images.
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emission from each mouse was detected as photon counts, and a digital 
false-color photon emission image of the mouse was generated.

EMSAs. Two-day-old p50+/+ and p50–/– mice were inoculated perorally with 
either 104 PFU T3SA+ or PBS. Mice were euthanized 12 days after inoculation. 
Brains and hearts were aseptically removed, snap frozen on dry ice, and stored 
at –70°C. Organs were weighed, placed in a mortar with liquid nitrogen, and 
ground into a powder. Lysis buffer (20 mM HEPES [pH 7.9], 25% glycerol, 
0.42 M NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM phenylmethylsulfonyl 
fluoride, 0.5 mM dithiothreitol) was added in a ratio of 1 ml per 200 mg of 
tissue. Samples were frozen and thawed 3 times and centrifuged at 12,000 g 
for 10 minutes. The supernatant was used as the whole-cell extract.

Whole-cell extracts (10 µg total protein) were assayed for NF-κB activa-
tion by EMSA using a 32P-labeled oligonucleotide (1.0 ng) consisting of 
the NF-κB consensus binding sequence (Santa Cruz Biotechnology Inc.) 
as described previously (18). For competition experiments, unlabeled con-
sensus oligonucleotide at various concentrations was added to the reaction 
mixtures along with radiolabeled oligonucleotide. For supershift experi-
ments, 1 µl of a rabbit polyclonal antiserum specific to p65 (250 µg/ml; 
Santa Cruz Biotechnology Inc.) was added to the binding reaction mixtures 
and incubated at 4°C for 30 minutes prior to the addition of radiolabeled 
oligonucleotide. Nucleoprotein complexes were subjected to electrophore-
sis in native polyacrylamide gels, which were dried and exposed to film.

Determination of viral titer in infected organs. Organs (intestine, liver, heart, 
and brain) from infected p50+/+ and p50–/– mice were placed into vials con-
taining 1 ml gelatin saline, frozen (–20°C) and thawed once, and sonicated 
for 20 seconds. Titers of virus present in organ homogenates were deter-
mined by plaque assay using L cell monolayers (42).

Histology, immunohistochemistry, and TUNEL staining. Litters of newborn p50+/+ 
and p50–/– mice were inoculated intracranially or perorally with either 104 PFU 
T3SA+ or PBS. Mice were euthanized, and brain and heart tissues were fixed in 
10% buffered paraformaldehyde. Fixed organs were embedded in paraffin, and 
6-µm histological sections were prepared. Sections were stained with H&E for 
evaluation of histopathologic changes, processed for immunohistochemical 

detection of reovirus protein, assayed for DNA fragmentation using the 
TUNEL technique (43), or processed for the immunohistochemical detection 
of activated caspase-3 (5). Cells demonstrating TUNEL staining were quan-
titated separately in each parasagittal brain section in the following regions: 
cerebral cortex, hippocampus, basal ganglia, diencephalon, and brain stem. 
The mean number of positive cells per region was determined for each treat-
ment group and time point. Observers were blinded to the identity of the 
mouse strain and the nature of the inoculum.

Echocardiography. Echocardiography was performed on conscious 10-day-
old pups as previously described for adult mice (44) except that the total field 
depth was set to 1 cm (minimum possible), and external heating and rapid 

Figure 7
Inflammation, reovirus protein expression, 
TUNEL staining, and immunohistochemical 
detection of activated caspase-3 in the 
heart of reovirus-infected p50+/+ (A) and 
p50–/– mice (B). Newborn mice were inocu-
lated perorally with 104 PFU reovirus T3SA+. 
At 12 days after inoculation, hearts were 
harvested, paraffin embedded, sectioned, 
and stained with H&E, polyclonal reovirus-
specific antiserum, TUNEL, or activated 
caspase-3–specific antiserum as indicated. 
Original magnification, ×25 (top panels) and 
×400 (bottom panels). Brown staining indi-
cates reovirus protein, fragmented DNA, or 
activated caspase-3.

Figure 8
Levels of IFN-β mRNA in brain and heart of p50+/+ and p50–/– mice. New-
born mice were inoculated perorally with either PBS (Mock) or 104 PFU 
reovirus T3SA+. At 12 days after inoculation, brains and hearts were 
resected, and whole-organ RNA was isolated and used as a template 
to generate cDNA. Levels of IFN-β and GAPDH cDNA were assessed 
by real-time PCR. The results are expressed as the mean ratio of IFN-β 
cDNA to that of GAPDH for 2 animals. Error bars indicate SDs.
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sample acquisition were used to prevent excessive heat loss. Electrocardio-
grams were digitally sampled and correspond to the usual surface lead I.

RNA isolation and real-time PCR. Two-day-old p50+/+ and p50–/– mice were 
inoculated perorally with either 104 PFU T3SA+ or PBS. Mice were euthanized, 
and brain and heart tissues were homogenized using a Dounce homogenizer. 
RNA was extracted from brain and heart homogenates using the TRIZOL 
RNA extraction protocol (Invitrogen Corp.). Three micrograms of RNA was 
used in a reverse-transcription reaction containing ×10 buffer, 25 mM MgCl2, 
100 µM dithiothreitol, and 1 U RNasin (Promega), 10 mM dNTPs, 50 µM 
random hexamers, and 1 U AMV reverse transcriptase (Promega). The reac-
tion was incubated at 43°C for 1 hour and then at 95°C for 10 minutes.

Real-time PCR reactions were carried out using the Bio-Rad iCycler and 
iQ Supermix buffer containing DNA polymerase and SYBR Green (Bio-Rad 
Laboratories). Two to 3 replicate amplification reactions were performed in 
96-well plates (Bio-Rad Laboratories). Each reaction contained 12.5 µl iQ 
Supermix buffer, 300 nM forward and reverse primers, and 1 µl cDNA in a 
final volume of 25 µl. Primers for the reactions were as follows: (a) IFN-β for-
ward, 5′-GGAGATGACGGAGAAGATGC-3′, (b) IFN-β reverse, 5′-CCCAGT-
GCTGGAGAAATTGT-3′, (c) GAPDH forward, 5′-CAACTACATGGTCTA-
CATGTTC-3′, and (d) GAPDH reverse, 5′-CTCGCTCCTGGAAGATG-3′. 
Cycling conditions were as follows: 95°C for 10 minutes and then 45 cycles 
at 95°C for 15 seconds, 60°C for 30 seconds, and 72°C for 15 seconds.

Data were analyzed using Bio-Rad iCycler PCR detection and analysis soft-
ware version 3.0 (Bio-Rad Laboratories). DNA was quantitated using the stan-
dard curve method with the background subtracted. Known concentrations 
of cDNA were used to obtain the standard curve for each gene (concentra-
tions between 0.0228 and 710 ng). A melting curve was determined for each 
sample to detect primer dimers, in which case data were not used. Results are 
expressed as values for IFN-β cDNA divided by those for GAPDH cDNA.

IFN-β treatment of mice. Two-day-old p50–/– mice were inoculated 
intraperitoneally with either 5 × 104 U IFN-β (Calbiochem) suspended in PBS 
containing 0.1% BSA or PBS alone in a volume of 25 µl 1 day prior to peroral 
inoculation with 104 PFU T3SA+. Infected mice were treated daily for 9 days 
with either IFN-β or PBS. On day 10 following viral inoculation, animals 

were euthanized, and organs were removed. 
Organs were processed for determination of 
viral titer and histopathological analysis.

Animal husbandry and experimental 
procedures were performed in accordance 
with NIH Public Health Service policy 
and approved by the Vanderbilt University 
School of Medicine Institutional Animal 
Care and Use Committee.

Data analysis. Results are expressed as the 
mean ± SD. Differences between mean val-
ues were compared using unpaired Student’s 
t tests as applied with Microsoft Excel soft-
ware. P values less than 0.05 were considered 
statistically significant.
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Figure 9
Reovirus replication and apoptosis in infected p50–/– mice following treatment with IFN-β. Newborn 
mice were inoculated intraperitoneally with either IFN-β or PBS 1 day prior to peroral inoculation 
with 104 PFU reovirus T3SA+. Animals were treated with either IFN-β or PBS for an additional 9 
days, and brains and hearts were resected. (A) Viral titers in the brain and heart. Organs were 
homogenized, and viral titers were determined by plaque assay. The results are expressed as 
the mean viral titers for 3 animals. Error bars indicate SDs. *P < 0.05 by Student’s t test. (B) 
Histopathology of reovirus infection in the heart. Hearts of the reovirus-infected p50–/– animals 
represented in A were paraffin embedded, sectioned, and stained with polyclonal reovirus-spe-
cific antiserum or processed for TUNEL analysis. Original magnification, ×100. Brown staining 
indicates reovirus protein or fragmented DNA.
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