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CHAPTER I 

INTRODUCTION 

Electronic Health Records (EHRs) provide researchers with access to large amounts of patient 

information. At Vanderbilt, the Synthetic Derivative (SD) provides a privacy preserving window into the 

EHR, allowing researchers access to de-identified image of the entire EHR. The SD is linked to a DNA 

repository, BioVU, that allows researchers to run genetic studies using already collected and de-

identified DNA samples, without the need for patient recontact. Together, these tools provide an 

opportunity for extensive genetic research. 

While the EHR provides easier access to patient information, they do not always clearly and 

accurately reflect a patient’s phenotypes of interest (e.g., diseases, conditions, signs and symptoms, and 

treatment response). They do chronicle the process of diagnosis, however, which can be looked at 

retrospectively to determine the most likely clinical phenotype. EHRs not only allow care providers 

ready access to have large amounts of information, they can also provide data in a format usable by 

computer based algorithms.  Access to this “raw data” allows for automated phenotype identification. 

While computer algorithms have been shown to generate accurate cohorts of patients and replicate 

genetic associations (1-5), not much analysis has been done on optimizing the development and use of 

these phenotype algorithms. Improving our understanding of this new science could allow researchers 

to more quickly and confidently integrate these methods into their own work.  

For these research projects, we studied the identification of rheumatoid arthritis (RA). We chose 

to study RA as a prototypic chronic disease for phenotype algorithms: patients are expected to see their 

care providers (and therefore receive billing codes for and clinical notes mentioning RA) many times 
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over the course of their lifetime. RA also has merits as a clinically impactful choice. It has a high 

prevalence in the United States, where approximately 1.3 million adults are afflicted (6). People with RA 

have a 50% increased risk of premature mortality and their life expectancy is reduced by 3 to 10 years 

compared to the general population (7). RA can have relatively mild symptoms, such as morning 

stiffness, but it can also significantly reduce quality of life, including joint destruction.  

EHRs are collections of many types of data about a patient, including billing records, lab and 

radiology reports, clinical documentation generated by providers, and others.  Only a small portion of 

each of those categories may be directly relevant to a given phenotype of interest, such as RA. The 

second chapter of this thesis is an evaluation of the predictive power of Support Vector Machines 

(SVMs) for the identification of RA in the EHR. We chose SVMs, a machine learning method, as our tool 

because it tends to be robust for highly dimensional data and often avoids overfitting that data. 

We compared the performance of models trained with expert-defined sets of attributes and 

those trained with naïve sets of attributes. These naïve sets of attributes contained all the information 

we extracted from the EHR, including billing codes, medications, and natural language processing 

results. The expert-defined sets were a subset of available attributes, consisting of those known to be 

relevant, including items such as text mentions of and billing codes specific to RA.  

In this study, we also determined the effects of training set size on the predictive power of 

models trained with both sets of data. This aspect of the study was designed to evaluate how many 

training samples would be required to train an accurate model. We used a previously published 

deterministic model shown to replicate genetic associations in RA as a benchmark for our study. We 

showed that both models were able to predict cases and controls accurately, but the models trained 

with an expert-defined set of features require fewer training samples to assign phenotypes well. 
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Another aspect of phenotype algorithms that had not been evaluated is their portability to other 

medical centers or EHR systems. Extending a phenotype algorithm to a new location adds another layer 

of complexity: Institutions may have different billing habits, insurance plans, and patient populations, 

their doctors may have different practice and documentation patterns, and EHR records themselves may 

be structured differently from EHR to EHR. Additionally, the methods used to retrieve information from 

the free text in the records with NLP, vary between institutions. All of these factors could contribute to 

poor cross-institution portability, which has not been thoroughly evaluated for machine learning 

methods. 

In the third chapter, we evaluate algorithm portability.  We used a previously published logistic 

regression model for RA and applied it at two new institutions. This model was trained using 500 

patients from the Partners HealthCare System, including Brigham and Women’s and Massachusetts 

General. We generated the same list of attributes for 376 individuals from Vanderbilt and 400 patients 

from Northwestern. Researchers at Northwestern replicated the NLP extraction methods as closely as 

possible, while Vanderbilt employed different, “general purpose” NLP methods to generate similar 

attributes. 

We showed that performance of the originally trained algorithm was good at all institutions. 

Retraining the model improved performance, even when retraining with not entirely one site’s data. The 

area under the receiver operating characteristic curve, a measurement of prediction accuracy, showed 

stronger performance for the original logistic regression model compared to models based solely on the 

number of RA ICD-9 billing codes a patient received. It was only necessary to make one change to the 

implementation of the original algorithm; we used a different, more widely available, measure of record 

size in this study. 



 4 
 

The fourth chapter supplies an overview of the results of these studies. In addition, it addresses 

the limitations of the research presented here. From there, it discusses the future directions for 

investigation in the field of EHR phenotype identification algorithms.  
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CHAPTER II 

NAÏVE ELECTRONIC HEALTH RECORD PHENOTYPE IDENTIFICATION FOR RHEUMATOID 

ARTHRITIS 

Authors 

Robert J. Carroll, Anne E. Eyler, MD, MS, Joshua C. Denny, MD, MS 

Introduction 

Electronic Health Records (EHRs) are valuable tools designed to assist care providers in treating 

patients; they also serve an increasingly important role in research. At Vanderbilt, a de-identified version 

of their EHR, called the Synthetic Derivative (SD)(1), allows for privacy-preserving research. This has 

been used in conjunction with the Vanderbilt DNA biobank, BioVU, which accrues DNA samples from 

discarded blood samples.  Together, these create a powerful tool for genome science that requires no 

additional patient recruitment. SD-based research has also been successfully applied to clinical research 

(2).  

One primary limitation to EHR-based research is accurately finding cases and controls for certain 

phenotypes. Genomic studies in particular benefit from large sample sizes given typically small effects 

sizes of most individual genetic variants and requirement to adjust for the large numbers of hypotheses 

tested. Use of EHRs linked to DNA biobanks has provided a new resource for genomic and clinical 

investigation beyond that provided by clinical trials and observational cohorts. Rheumatoid arthritis (RA) 

was among the early diseases to be investigated through EHR-based genomic analysis (3-5).  Current 

phenotype identification algorithms combine multimodal information including billing codes, natural 
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language processing, laboratory data, and medication exposures to accurately identify cases and 

controls in selective populations. Such algorithms take significant time and expert knowledge to 

develop. 

Current phenotype identification algorithms tend to be phenotype-specific, and require 

separate evaluation and multiple iterations of development by manual review with each new phenotype 

pursued. The first algorithms deployed for large-scale phenotype identification were designed using 

curated attributes deterministically combined with Boolean operators, and showed the practical 

effectiveness of automated phenotype identification (4). Phenotype identification algorithms that 

require no physician design in conjunction with training sets could allow for greater portability among 

systems and diseases. 

In this study, we used a cohort of physician-identified RA patients to evaluate the performance 

of a support vector machine (SVM) to accurately identify cases (6). We also compared the use of 

different categories of information contained with the EHR.  We show that an SVM can be trained on a 

set of attributes containing most ICD-9 codes and NLP-derived information and predict RA status with 

high sensitivity and recall without a need to significantly filter the attributes. 

Methods 

Patient Cohort 

The cohort used in this analysis was a gold standard reviewed set of 376 individuals from the SD.  

Based on the foundation of prior work5, we selected patients who had at least one 714.* ICD-9 billing 

code, where the asterisk represents a wildcard for the following digits, which includes “Rheumatoid 

arthritis and other inflammatory polyarthropathies,” but not including those patients with only codes in 
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the 714.3* block, representing juvenile rheumatoid arthritis (JRA). These selections were made from a 

patient pool containing approximately 10,000 patients. A rheumatologist classified these individuals as 

definite RA, possible RA, or not RA based on test results and the treating physician’s observations in 

notes. To enable the use of two level classification methods in this analysis, we followed the methods in 

Liao et al. and grouped possible RA patients with the not RA patients (5). 

Development of attributes for machine learning 

Two sets of attributes were prepared for each of the patients. The first data set contained no 

disease specific attribute limitations, referred to as the “naïve data set,” and the second data set 

contained only attributes clinically relevant to RA and related conditions, referred to as the “refined 

data set.” Both sets of attributes included the age and gender of the patient. The attributes each 

belonged to one of three subsets: ICD-9 codes, NLP results in the form of Unified Medical Language 

System (UMLS) Concept Unique Identifiers (CUIs), and medication names. All three subsets of attributes 

were gathered from the SD, and each attribute was represented as the natural log of one plus the total 

number of occurrences for that ICD-9 code, concept, or medication in the patient record. Each CUI was 

represented by two attributes; the first attribute corresponded to normal mentions of the concept, such 

as “patient has rheumatoid arthritis”, and the second attribute corresponded to negated mentions of 

the concept, such as “patient did not have RA”. The NLP was performed in two stages. First, the notes 

were processed by SecTag, which identifies the sections of clinical notes to which the text belongs (7). 

This allows occurrences of concepts identified later in the pipeline to be removed based on location; one 

example is the family history section of notes which may not apply directly to the individual. The notes 

were then processed by the KnowledgeMap Concept Identifier (KMCI)(8) which processes clinical notes 

and returns CUIs and any qualifiers, such as negation status, which is implemented via a modified form 
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of NegEx (9). Concepts were filtered based on their semantic type in the UMLS to include only concepts 

relating to patient presentation and diagnosis. CUIs were also removed from the attribute list if they 

appeared in the EHR of at least 50% of the approximately 10,000 patient records from which the cohort 

was selected. Total note counts for each patient were also included as an attribute in the NLP and Full 

models. Medication attributes were generated from medications found by MedEx, an NLP medication 

extraction tool, and filtered to those instances containing at least one of the following: dose, route, 

amount, or frequency, a heuristic for improving sensitivity (10). All three subsets were also filtered to 

attributes appearing in at least five patients in the cohort.  

To create the refined data set, the naïve set was filtered to contain only attributes relevant to 

RA and related conditions. We selected all of the codified, NLP, and medication data specified in Liao et 

al., while aggregating each category independently (5). The ICD-9 codes 714.*, representing RA and JRA, 

were retained, as well as the codes 696.0 and 710.0, representing Psoriatic Arthritis (PsA), and Systemic 

Lupus Erythematosus (SLE) respectively. The CUIs for those four terms and their neighbors in the UMLS 

tree were compiled into a list using a web-based tool to generate related terms based on relationships 

defined with the UMLS (11). The list was reviewed, and clinically relevant entries were retained as 

attributes in the refined data set. Finally, a list of medications commonly used in treating RA was 

included.  These lists were constructed via consultation with rheumatologists through a prior project (3). 
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Figure 1: Flow chart showing data set creation  

Evaluation 

Two classes of algorithms were analyzed. The first was the deterministic algorithm found in 

Ritchie, et al, selected as it has been previously evaluated and shown to be able to replicate genetic 

associations known from previous genome wide association studies (3). The implemented algorithm 

selects patient records with at least one RA ICD-9, one RA text mention, one RA drug, and does not 

contain any ICD-9 codes or text matches for juvenile rheumatoid arthritis, inflammatory osteoarthritis, 

or reactive arthritis. The second class was comprised of two Support Vector Machines (SVMs). One SVM 
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was trained using the naïve data set and the other was trained using the refined data set. All SVMs were 

trained using a Gaussian Radial Basis Function (RBF) kernel. 

The main assessment was a comparison of the ability of the three algorithms to predict the 

disease status of individuals. Ten-fold cross validation was employed across the entire cohort to 

calculate the performance metrics. Individuals were stratified based on their disease status. The 

deterministic model required no training and was evaluated using the testing set of each fold of the 

cross validation. Both the SVM models were trained using another nested 10-fold cross validation to 

select the cost and gamma parameters, as applicable, for their kernels. The parameters were selected 

using a grid search across exponential sequences (e.g., 2-1, 20, 21). The gamma parameter search was 

across nine values centered on the value nearest 1/number of attributes, the default gamma in LIBSVM, 

and cost centered on one. An additional, localized search of the adjacent half units was performed in the 

region of the grid surrounding the best parameters from the first search (e.g., 20.5, 21, 21.5). If the best 

parameter selected in a majority of folds was on the border of the search space, the search space was 

expanded. 

Additional measures were compared between the components of the SVM models. Three 

categories of attributes as the sole input were tested in addition to the full data sets: ICD-9 based, NLP 

based, and medication based. Both the SVM trained on the naïve data set and the SVM trained on the 

refined data set were tested using these attribute subsets. In total, eight SVM algorithms were trained 

and tested in the 10-fold cross validation: six subset SVM models and the original two.  To generate the 

predictive measures, a ranked list was created using the LIBSVM probability option, which fits the 

predictions to a logistic distribution (12). Comparisons were made using the area under the curve (AUC) 

of the Receiver Operating Characteristic (ROC) curve. In addition, the precision, recall, and F-measure 

were reported after adjusting the threshold to produce 95% specificity. To graphically compare the 
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three algorithms, precision-recall curves were generated for the two SVMs, and a single point was 

plotted for the deterministic algorithm. 

We compared the SVM models to the previously-published deterministic model for which we 

calculated the precision, recall, and F-measure. Precision was calculated as true positives divided by 

total algorithm predicted positives. Recall was calculated as true positives divided by total gold standard 

positives. The F-measure was calculated as the first harmonic mean of precision and recall. 

Finally, the ability of both the SVMs trained on naïve and refined data sets to classify the cohort 

based on training set size was assessed using 10-fold cross validation. Twenty stratified samples of the 

training set were taken at intervals of 5% of the training set size within each fold of the cross validation. 

The mean and standard error of AUCs for each fold and subsample were recorded. 

Analysis was performed using the R statistical package version 2.13.1 (13). LibSVM was 

employed to train and test the SVMs using the package e1071 for R (12,14). ROC curves and 

performance measures were created using the package ROCR (15). Parallel processing was handled by 

the packages foreach, doMC, and multicore (16-18). 

Results 

The demographics for the cohort are shown in Table 1. The original split of disease status was 

185 definite RA individuals, 22 possible RA individuals, and 169 non-RA individuals. After merging to two 

categories, the patient population is nearly evenly split between cases (true RA patients) and controls 

(possible and not RA patients). The case group displays a much higher average number of RA ICD-9 

codes. The case patients also have been followed for RA over a longer period of time on average. 
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Table 1: Demographic details for the population (n=376) 

  Cases Controls 

  n (%) n (%) 

Total 185 (49.2%) 191 (50.8%) 

Female 141 (76.22%) 148 (77.49%) 

Ethnicity n (%) n (%) 

Caucasian 143 (77.3%) 155 (81.15%) 
African American 14 (7.57%) 26 (13.61%) 
Hispanic 1 (0.54%) 1 (0.52%) 
Asian 2 (1.08%) 1 (0.52%) 
Other 1 (0.54%) 1 (0.52%) 
Unknown 24 (12.97%) 7 (3.66%) 

Attributes Mean (SD) Mean (SD) 

Age (years) 52.88 (13.06) 56.2 (16.53) 
Follow up (years) 8.16 (4.17) 1.74 (2.99) 
Number of 714.*  34.1 (31.12) 5.42 (9.68) 
ICD-9 Codes     

 

The results for the model comparisons are shown in Table 2. The bolded rows titled “Full” 

represent the results for each of the three main algorithms. The highest scoring algorithm based on AUC 

was the SVM trained on the refined data set including ICD-9s, NLP, and medications, though the 

difference in AUC between the best refined and the best naïve models was only 1%. In both data sets, 

the ordering of subsets on performance was ICD-9, NLP, and Medications. Interestingly, the best naïve 

data set trained model was based on ICD-9 codes only, which performed slightly better than model 

trained on all attributes, which had a much larger number of attributes (17,110 vs. 795). 
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Table 2: The number of attributes and cross-validated performance  

Naïve Precision Recall F measure AUC Attributes 

Full 93.3 ± 0.5 79.7 ± 5.2 85.1 ± 3.7 94.2 ± 1.3 17110 

ICD-9 94.1 ± 0.2 87.1 ± 2.8 90.3 ± 1.6 95.6 ± 1.0 795 

NLP 92.2 ± 0.6 68.2 ± 5.6 77.4 ± 4.1 90.4 ± 2.1 15171 

Medication 88.9 ± 1.8 51.0 ± 5.4 63.5 ± 5.5 84.6 ± 2.6 1148 

Refined Precision Recall F measure AUC Attributes 

Full 93.7 ± 0.6 85.8 ± 5.7 88.6 ± 4.0 96.6 ± 1.1 59 

ICD-9 93.2 ± 0.5 78.1 ± 5.2 84.2 ± 3.5 95.5 ± 1.3 12 

NLP 91.8 ± 1.0 68.8 ± 7.5 76.8 ± 5.7 89.5 ± 2.1 33 

Medication 86.6 ± 1.6 40.5 ± 5.4 53.8 ± 5.2 83.3 ± 2.5 18 

Deterministic Precision Recall F measure AUC Attributes 

Full 75.2 ± 2.5 51.6 ± 2.6 60.5 ± 2.6 N/A N/A 

Performance measures are mean ± standard error. 

Figure 2 shows the averaged precision-recall curves for the SVMs trained using the refined and 

naïve data sets. The two SVM methods were very similar at low recall while the deterministic algorithm 

performed much worse. 

 

 

Figure 2: Averaged precision-recall curves for the full SVM models 
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Figure 3 shows the relationship between the AUC measure and training set size. The SVM 

trained with the naïve data set displays a direct relationship between training set size and AUC, while 

the SVM trained with the refined data set maintains a more constant performance across training set 

sizes.  

 

 

Figure 3: The average AUC ± SE versus training set size for the naïve and refined data sets 

Discussion 

This paper demonstrates that it is possible to create a high performance algorithm to detect 

cases of RA using machine learning techniques without significant manual selection of attributes.  

Indeed, the number of cases needed to train such a system appears very low, and the SVM trained on 

the naïve data set with only collections of all ICD-9 billing codes received by these patients performed 

well.  This study has important implication is the design of future phenotype identification algorithms 

and suggests that future algorithm development may be possible merely with machine learning 

techniques applied to relatively small sets of manually tagged records (about 50-100 cases).  



 15 
 

The SVM trained with a naïve data set performed very similarly to the SVM trained with a 

refined data set, although the recall and AUC of the refined SVM were better than with the naïve data 

set. Interestingly, the benefit of manual attribute selection manifested primarily in the ability to find 

more of the true cases (i.e., recall) from the population. ICD-9 codes were the best predictors amongst 

the variable sets. With respect to the naïve data set, training on ICD-9 codes alone outperformed 

training on the full set. The relationship of the number of ICD-9 codes in cases and controls foreshadows 

the strong performance of the ICD-9 based algorithms. 

The SVMs trained using subsets of the naïve data set outperformed each of their respective 

refined subsets, but the SVM trained on the full refined set outperformed the SVM trained on the full 

naïve set. This suggests that information important to RA identification is missing from each of the 

refined subsets, but the sets are complementary. In the case of the naïve data set, the combination of 

information actually decreases the performance from the ICD-9 only subset. This may be related to the 

addition of irrelevant interactions among the large number of attributes. 

NLP and medication methods showed more variability than the ICD-9 based models. One 

example source of error would be situations where patients may have RA in their notes or be prescribed 

a medication for a period of time before they see a rheumatologist and the diagnosis is contradicted 

only once. The total number of notes for each patient was included as an adjustment for this factor, but 

patients can have long-standing care before being diagnosed with true RA which could bias the effect of 

this adjustment. Weighting the findings in more recent notes or measuring the time since the last 

mention of RA may provide a way to decrease this aspect of the variability. 

The recall and precision of medication-only based algorithms was lower than the other subsets. 

RA is a chronic condition, so patients who have a verified diagnosis will acquire many RA drug 

prescriptions and mentions over time. Predicting on these counts alone would leave out many 
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individuals with more recently diagnosed cases of RA, however, partially explaining the low recall. Not 

all patients with RA are prescribed with RA specific medications, another contributor to low recall. The 

relatively higher precision is most likely due to the unlikely nature of a patient being on a RA medication 

for a long period of time without the condition. Some of the false positives are also explained by 

medications shared with other chronic autoimmune disorders. 

Considering Figure 3, the SVM trained on the refined data was more robust with respect to a 

smaller training set size than the SVM trained on the naïve data set. The refined SVM performs well until 

the number of patients in the training set reaches the number of attributes, around 20. This suggests 

that an accurate classification model for RA could be generated with as few as 20 manually tagged 

patients with a refined set of attributes, providing a potential model for rapid phenotype identification 

algorithm development.  The predictive power of the SVM trained on the naïve data set is based much 

more strongly on the number of patients trained. As with machine learning methods in general, 

increasing the number of attributes increases the required number of training samples for stable 

performance.  

The deterministic algorithm had a lower performance in this study than its original publication. 

The performance decrease in precision and recall is related to the difference in the gold standards. This 

study used an independent evaluation of the patient record, while the previous study was based on 

what the patient’s physician said in their record. 

This study was limited in several ways. First, only performance for one phenotype that is well-

represented in the ICD9 codes was established. This study was also performed on the data from only 

one institution; reporting habits and writing styles can vary among physicians and institutions.   The 

algorithm also preselected patients with at least one ICD9 code as a “minimum requirement” to be in 

the set, significantly increasing the prevalence of RA in the population to about 50%.  Such criteria may 
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also reduce recall somewhat, though this is not expected given the chronicity of RA and its associated 

morbidity. The gold standard was also generated based on the review of only one physician.  Finally, 

methods that rely on count data are not as likely to be as efficacious for acute diseases as they are for 

chronic ones; the margin between patients with a long-standing chronic disease and a misdiagnosis is 

larger than that between a patient with a treatable infection and a misdiagnosis.  More research is 

needed into multi-modal methods for both chronic and acute diseases. 

Conclusion 

This study demonstrates that application of an SVM to non-curated collections of attributes can 

classify patients with RA, although the SVM model based on a refined set of all attributes perform 

slightly better and can be trained with relatively fewer cases.  Both performed significantly better than a 

previously-published deterministic algorithm. Future research deriving cases and controls for EHR data 

may be able to leverage machine learning techniques without variable selection to simplify the process 

of case selection. Further investigation with other disease phenotypes is needed.  
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Introduction 

Electronic Health Records (EHRs) can improve patient care and safety, reduce costs, and 

improve guideline adherence.  Since EHRs contain a longitudinal record of patient disease, treatment, 

and outcomes, EHRs can also be a valuable tool for conducting clinical and genomic research studies.  

Several recent studies have demonstrated that genomic research can be performed using subjects 

derived entirely from EHRs (1-5). Typically, research populations are derived using “phenotype 

algorithms” that combine structured data with unstructured, narrative data from the EHR. These 

algorithms often take significant human effort and time to develop, requiring domain expertise, 

programming skills, and iterative evaluation and development. Given the potentially significant up-front 

development cost, it is of interest to determine if such algorithms can be easily ported to new 
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institutions.  The accuracy of such phenotype algorithms applied across multiple institutions with 

heterogeneous EHRs has not been broadly evaluated. 

Rheumatoid arthritis (RA) is the most common autoimmune inflammatory arthritis worldwide 

and afflicts 1.3 million adults in the United States.(6) It has been previously studied using phenotype 

algorithms to identify EHR case cohorts (1,2,7). Early genetic studies of EHR-linked cohorts of RA 

patients have been replicated known associations (1,2).  Further development of collections of EHR-

linked cohorts for RA and other phenotypes may enable not only enhanced understanding of disease 

risks but also investigation of outcomes and treatment responses.  

Previous phenotyping studies have demonstrated some of the challenges to defining 

populations retrospectively in the EHR. Liao et al. developed an electronic algorithm to identify RA 

patients using logistic regression operating on billing codes, laboratory and medication data, and natural 

language processing (NLP) concepts with a 94% positive predictive value and sensitivity of 63% (7).  In 

this study, we test the portability of a trained algorithm developed at one institution to identify RA 

status for patients at two separate institutions using independent EHR systems. We demonstrate that 

this algorithm can be successfully ported to new institutions while maintaining a high positive predictive 

value. Algorithm portability could eliminate a significant amount of redundant effort and allow 

collection of larger, more homogenous disease cohorts from multiple sites. 

  Background and Significance 

Although designed primarily for clinical care and administrative purposes, EHRs are becoming an 

important tool for biomedical and genomic research. These comprehensive records typically include 

demographics, hospital admission and discharge notes, progress notes, outpatient clinical notes, 

medication prescription records, radiology reports, laboratory data, and billing information.  These data 
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are electronically stored generally as either codified data or narrative (free text) data.  These data can 

then be extracted into “research data marts” that allow for efficient querying and analysis.  Examples of 

such data marts include the Partners data mart developed using Informatics for Integrating Biology and 

the Bedside (i2b2) technology(8), the Mayo Clinic Enterprise Data Trust(9), the Vanderbilt Synthetic 

Derivative(10), and the Northwestern Enterprise Data Warehouse (11).  The Vanderbilt Synthetic 

Derivative and the Northwestern Enterprise Data Warehouse also allow for prospective de-identification 

(10,11). 

The early methods of phenotype identification focused primarily on the use of International 

Classification of Diseases, version 9-CM (ICD-9) billing code data, but these studies often found 

performance limitations for sensitivity and/or positive predictive value (12-14). Natural Language 

Processing (NLP) methods have been used to gather more information about patients from their EHRs. 

In Savova et al., NLP was shown to predict peripheral arterial disease status with sensitivities between 

73% and 96% and positive predictive values between 63% and 99% (15). A study by Penz et al. found 

that NLP methods were able to identify 72% of central venous catheter placements, while administrative 

data only identified less than 11% of those patients (16). Friedlin et al. found that NLP methods that 

outperformed ICD-9 based methods to identify pancreatic cancer patients; the NLP methods achieved a 

positive predictive value of 84% and a sensitivity of 87%, while the ICD-9 based methods had a positive 

predictive value of only 38%, with a sensitivity of 95% (17). 

This step is made possible by the steady development of NLP methods over the last two 

decades, improving both capabilities and accuracy. Currently, there are a variety of NLP tools available 

to extract information from free text in EHRs, including the Medical Language Extraction and Encoding 

(MedLEE) system (18), the KnowledgeMap Concept Identifier (KMCI) (19), the clinical Text and 

Knowledge Extraction System (cTAKES) (20), the Health Information Text Extraction (HITEx) system (21), 
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and MetaMap (22). These systems map medical terminology from free text to controlled vocabularies, 

such as the Unified Medical Language System (UMLS).  In addition to the identification of structured 

concepts, the surrounding semantic context of those concepts can be determined.  Contextual features 

include negation (e.g., “no history of rheumatoid arthritis”), status (e.g., “discussed RA treatment”) 

(23,24), and clinical note section location (e.g., “family medical history of rheumatoid arthritis”) (25). 

Modern NLP systems can incorporate these features to improve sensitivity and/or positive predictive 

value (PPV) of concept identification (26). 

The original Liao et al. RA algorithm used HITEx to find relevant disease names, medications, and 

laboratory results (7). This system employed a series of regular expressions to find relevant concepts, as 

well as clinical note section identification and concept negation detection.  Use of HITEx in this study 

was shown to improve sensitivity from 51% to 63% and PPV from 88% to 94% over algorithms operating 

only on structured data, resulting in identification of approximately 25% more patients. The ability of 

higher-level phenotype identification algorithms to integrate the results from differing underlying NLP 

engines and concept dictionaries (i.e., UMLS vs. custom regular expressions) has not been previously 

studied. 

There now exist large, independent biorepositories of genetic information linked to EHR data 

that can be used to identify genetic predictors of disease and treatment response. To create larger 

patient pools to increase the power of studies, especially for diseases with low prevalence, cohorts must 

be combined across these biorepositories.  Ongoing collaborations, such as the Pharmacogenomics 

Research Network (PGRN)(27) and the Electronic Medical Records and Genomics (eMERGE) 

Network(28), include multiple institutions with EHR-linked biobanks that could utilize portable 

phenotype algorithms to accelerate cohort generation and scientific discovery. 
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Methods 

Patient Selection 

Vanderbilt University 

A database was created using Vanderbilt University Medical Center’s Synthetic Derivative, a de-

identified copy of the EHR system (10). Synthetic Derivative records are linked to DNA samples obtained 

from blood leftover after routine clinical testing. This biorepository, named BioVU, currently contains 

over 129,000 samples as of August 2011. A full description of this database has been published 

previously (10). From the first 10,000 adults accrued into BioVU (age ≥18 years), we selected all subjects 

with at least one ICD-9 code for rheumatoid arthritis or related diseases (714.*), excluding those with 

only the ICD-9 code for juvenile rheumatoid arthritis (JRA, 714.3). This is a highly sensitive method of 

finding RA cases which greatly enriches the data set. We randomly selected 376 de-identified records 

which were then reviewed by rheumatologists (AE, CB) to confirm or reject the diagnosis of RA.   

Northwestern University   

A database was created using the Northwestern Medical Enterprise Data Warehouse (EDW) 

(11). The EDW is an integrated repository of over 11 terabytes of clinical and biomedical research data.  

It contains data on over 2.2 million patients, derived primarily from Northwestern Memorial Hospital 

(inpatient and outpatient records) and the Northwestern Medical Faculty Foundation (outpatient 

records).  At the time of this study, the EDW contained 6124 patients with at least one ICD-9 code for RA 

or related diseases (714.*), excluding those who were deceased, under the age of 18, or containing only 
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the JRA code (714.3). We randomly selected 400 patients from among this set for review by a 

rheumatologist (AM) to confirm or reject the diagnosis of RA. 

Partners Healthcare 

As previously described (7), a database was created from the Partners Healthcare EHR utilized 

by Brigham and Women’s Hospital and Massachusetts General Hospital. The Partners EHR contains 

approximately 4 million patients. We created a de-identified database of all potential RA patients in the 

EHR by selecting all patients with at least one 714.* ICD-9 code (excluding 714.3) or those who had 

laboratory testing for antibodies against cyclic citrullinated peptide (anti-CCP Ab), resulting in a database 

of 29,432 subjects. Patients who were deceased or age < 18 years were excluded. Five hundred subjects 

were randomly selected from this database for medical record review by rheumatologists (KPL, RMP) to 

determine RA status. The published RA classification algorithm applied in this paper was developed on 

this training set based on RA status assigned by the reviewing rheumatologists. (7) 

Study Approval 

The study was approved by the Institutional Review Boards of each institution. Each EHR system 

contained comprehensive inpatient and outpatient records, including diagnosis, billing, and procedural 

codes, physician text notes, discharge summaries, laboratory test results, radiology reports, and both 

inpatient and outpatient medication orders. 

Phenotype Algorithm 

The algorithm applied in this study was a published logistic regression model developed by Liao 

et al (7). Twenty-one attributes of the patients’ medical records were generated for RA and three 
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related autoimmune diseases that can mimic RA: JRA, Psoriatic Arthritis (PsA), and Systemic Lupus 

Erythematosus (SLE). These attributes came from both codified medical data and narrative text, 

represented in Figure 4. The details of these attributes can be found in Supplementary Table 1. One 

change was made to the attributes from their original publication. Instead of normalizing the 

“Normalized ICD-9 RA” attribute by the number of “facts” for that individual, we normalized the RA code 

count using the individual’s total number of ICD-9 codes. Both are measures of the size of the health 

record for each individual, but the total number of ICD-9 codes is more universally available across 

institutions. 

 

Figure 4: Algorithm Overview  

To adjust for the use of this alternate measure in the published model, we fit a linear regression 

model to Partners data with log-facts as the outcome and log-total ICD-9 count as the predictor. This 
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model was used to estimate the number of “facts” for each patient from the total ICD-9 count for 

Northwestern and Vanderbilt individuals when applying the original model; the adjustment is presented 

in Supplementary Table 1.  

Medications were identified differently across institutions. At Partners and at Northwestern, 

medications were recorded in two ways: from an outpatient order entry system and from NLP on the 

patient’s inpatient and outpatient record using regular expression matching clinical drug names (using 

HITEx). In contrast, all of Vanderbilt’s medications were derived using an NLP system called MedEx, 

which produced RxNorm-encoded medications along with signature information (29). To ensure that 

these NLP-derived mentions represented actual medication use, we required each medication extract to 

contain a reference to a dose, route, frequency, or strength, a heuristic that has worked well in prior 

studies (30,31).   
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Table 3: Comparison of EHR and Natural Language Processing systems used for algorithm. 

 

Implementations by Institution 

Partners 
Boston, MA 

Northwestern 
Chicago, IL 

Vanderbilt 
Nashville, TN 

EHR system Internally-developed 
EpicCare (Outpatient) 

and Cerner PowerChart 
(Inpatient) 

Internally-developed 

Number of patients 4 million 2.2 million 1.7 million 

Research EHR data  
Enterprise Data 

Warehouse 
Enterprise Data 

Warehouse 
De-identified image of 

EHR (Synthetic Derivative) 

Medication Source 

Structured medication 
entries (inpatient and 
outpatient) and text 

queries 

Structured outpatient 
medication entries and 

inpatient and 
outpatient text queries 

NLP (MedEx) for 
outpatient medications 
and structured inpatient 

records 

NLP system 
(disease concepts, lab results, 
medications, erosions) 

HITEx HITEx 
KnowledgeMap Concept 

Identifier 

NLP concept queries  
Customized RegEx 

queries 
Customized RegEx 

queries from Partners 

Generic UMLS concepts, 
derived from 

KnowledgeMap web 
interface 

NLP=Natural Language Processing  

RegEx=Regular expressions 

Table 3 displays information about the three EHRs included in this study, and how each type of 

attribute was handled.  Each institution had a different EHR system.  At Northwestern, the same 

methods published at Partners were used to retrieve the attributes, using the HITEx NLP system with a 

set of customized regular expression queries (Supplementary Table 2). At Vanderbilt, NLP was 

performed using KMCI, which was applied without customization to identify UMLS concepts with clinical 

note section tagging and negation. Concepts were selected based on expansions of the UMLS tree 

around key terms, such as “Rheumatoid Arthritis” (Supplementary Table 3), selected using a web-based 

interface developed as part of the KnowledgeMap web application (32). 
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Analysis 

As shown in Figure 5, we applied the published logistic regression model to the 21 attributes 

derived from the Northwestern and Vanderbilt research data marts.  To test whether local retraining 

would improve model classification, we also retrained models with the original attributes using the R 

statistical program (33). The glmnet package was used to train the models, and the ROCR package was 

used for performance measurements and ROC curves (34,35). We applied the adaptive lasso method to 

reduce the coefficients and avoid overfitting in these retrained logistic regression models (36). 

 

Figure 5: Evaluation Flowchart 

We used five-fold cross validation to measure the algorithm performance for the within-site and 

combined-site analyses. The data set containing all three institutions was randomly split into five groups, 

stratified by both site and disease status. This method created one set of divisions that could be used for 

training and testing the complete data set, as well as for the individual sites’ data. The across-site 
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analyses was trained on the complete set of one institution and tested on the complete set of another 

institution. 

Estimates for the area under the receiver operating characteristic curve (AUC), PPV, and 

sensitivity were calculated using the average across each fold of the cross validation, where applicable. 

When calculating sensitivity and PPV, we selected a threshold value for the logistic regression model 

that yielded a specificity of 97%, the same target specificity used by Liao et al. The PPV is the rate of true 

positives in those classified as positive in the algorithm, or (True Positives)/(True Positives + False 

Positives). The sensitivity is the rate of true positives divided by all true cases, or (True Positives)/(True 

Positives + False Negatives).  For the performance measures of the original algorithm, we applied the 

previously trained model to the entire data set. In the case of Partners data, these values were 

determined using 5-fold cross validation.  

Finally, we compared the logistic regression model to three simple ICD-9 models, based on the 

ideas presented in an administration database study (37). Each of the three methods was based on a 

simple threshold based assignment. If the patient had more than a given number of ICD-9 codes for RA, 

they were considered RA positive. The first two used the fixed thresholds of 1 and 3. The third used a 

floating threshold, where the optimal cutoff was selected to give a specificity of 97%. 
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Results 

Table 4: Demographic and clinical information of study subjects 

  Partners (n=500) Northwestern (n=390) Vanderbilt (n=376) 

  RA Non-RA RA Non-RA RA Non-RA 

Total 96 (19.2%) 404 (80.8%) 102 (26.2%) 288 (73.8%) 185 (49.2%) 191 (50.8%) 

Age 60.7 ± 15.9 56.0 ± 18.6 54.3 ± 14.8 58.9 ± 16.8 52.9 ± 13.1 56.2 ± 16.5 

Female 74 (77.1%) 303 (75.0%) 83 (81.4%) 209 (72.6%) 148 (80.0%) 141 (73.8%) 

Ethnicity             

Caucasian 64 (66.7%) 286 (70.8%) 40 (39.2%) 120 (41.7%) 143 (77.3%) 155 (81.2%) 

African American 3 (3.1%) 46 (11.4%) 18 (17.6%) 46 (16.0%) 14 (7.6%) 26 (13.6%) 

Hispanic 2 (2.1%) 29 (7.2%) 6 (5.9%) 18 (6.3%) 1 (0.5%) 1 (0.5%) 

Other 6 (6.3%) 7 (1.7%) 13 (12.7%) 44 (15.3%) 3 (1.6%) 2 (1.0%) 

Unknown 21 (21.9%) 36 (8.9%) 25 (24.5%) 60 (20.8%) 24 (13.0%) 7 (3.7%) 

Drugs             

Anti-TNF use 50 (52.1%) 50 (12.4%) 67 (65.7%) 37 (12.8%) 88 (47.6%) 26 (13.6%) 

MTX 77 (80.2%) 105 (26.0%) 70 (68.6%) 61 (21.2%) 133 (71.9%) 63 (33.0%) 

Codes             

RA 93 (96.9%) 329 (81.4%) 102 (100.0%) 283 (98.3%) 185 (100.0%) 191 (100.0%) 

SLE 2 (2.1%) 37 (9.2%) 3 (2.9%) 22 (7.6%) 14 (7.6%) 32 (16.8%) 

JRA 7 (7.3%) 28 (6.9%) 1 (1.0%) 18 (6.3%) 6 (3.2%) 8 (4.2%) 

PsA 2 (2.1%) 21 (5.2%) 0 (0.0%) 12 (4.2%) 6 (3.2%) 14 (7.3%) 

EHR Followup* 9.38 ± 6.77 10.14 ± 6.85 6.30 ± 4.69 6.05 ± 4.85 9.97 ± 4.06 9.06 ± 4.32 

* Mean ± SD in years, calculated as first ICD-9 code to last. 

Table 4 displays the demographic information for the cohorts in each of the three institutions. 

The mean age for all six groups was over 50. Vanderbilt had a higher percentage of cases confirmed by 

chart review than Northwestern or Partners (49% vs. 26% and 19%, respectively).  Importantly, at each 

site, patients classified as true RA patients also had billing codes for other, possibly overlapping diseases 

such as SLE, JRA, and PsA. 

The results from the algorithm analyses are shown in Table 3. The AUC of the logistic regression 

algorithm, using the original (published) beta coefficients and an adjusted total ICD-9 count, was 92% at 

Northwestern and 95% at Vanderbilt. For comparison, performance for the original beta coefficients 
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using the data with normalization by an unadjusted total ICD-9 count at Northwestern was an AUC of 

84%, sensitivity of 8%, and PPV of 47%, and at Vanderbilt it was an AUC of 96%, sensitivity of 53%, and 

PPV of 94%.  In general, retraining the algorithm and testing it at that institution yielded small 

performance improvements. The performance of the algorithm when trained and tested on 

Northwestern’s data had an AUC of 92%, which was lower than the cross validated AUC of 97% at both 

Vanderbilt and Partners. 
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Table 5: Model performance  

  Testing Set 

  Partners Northwestern Vanderbilt Average 

Algorithm PPV Sens AUC PPV Sens AUC PPV Sens AUC PPV Sens AUC 

Published Algorithm 88%* 79%* 97%* 87% 60% 92% 95% 57% 95% 90% 65% 95% 

Retrained with:             

Northwestern 79% 47% 89%
# 

87% 73% 92% 93% 43% 89%
# 

86% 54% 90% 

Vanderbilt 85% 74% 97% 82% 40% 88% 97% 81% 97% 88% 65% 94% 

Combined 86% 71% 97% 86% 65% 91% 97% 82% 96% 90% 72% 95% 

ICD-9 Only:
¥
             

>1 RA code 22% 97% N/A 26% 100% N/A 49% 100% N/A 33% 99% N/A 

>3 RA code 55% 81% N/A 42% 87% N/A 73% 98% N/A 57% 89% N/A 

>Optimal 80% 49% 88% 80% 36% 84% 93% 43% 93% 84% 43% 88% 

Optimal Code Count  53   29   48   43.3  

The positive predictive value (PPV) and sensitivity (Sens) values reported represent model performance with a 
specificity set at 97% for logistic regression models.   

*These results are from a 5-fold cross validation on the Partners training set. The PPV and sensitivity as published 
in Liao et al. was calculated from a separate Partners validation set (PPV 94%, sensitivity 63%). 

¥
ICD-9 cutoff used the count of 714.* codes, excluding codes for juvenile rheumatoid arthritis (714.3*).  The 

optimal number of codes was the threshold resulting in 97% specificity. 

#
These AUCs are significantly different (p<0.05) from the originally published algorithm’s performance. 

Table 5 shows that at a 97% specificity threshold, sensitivity improved significantly when models 

where training using local institutional data. Sensitivity ranged from 43% to 74% for models trained 

using no local data, and from 65% to 82% in models trained on local data, including the models trained 

on combined data from all three sites. 

Each of the algorithms performed better than a naïve algorithm using a heuristic requiring either 

one or three ICD-9 codes as a cutoff to determine RA cases when comparing PPV. The simple algorithms 

had a much higher sensitivity than the logistic regression models. Using a floating threshold chosen to 

provide 97% specificity (Table 3, “Optimal Code Count”) yielded an average decrease from the original 

model of 6% PPV and 22% specificity. The number of ICD-9 codes needed to achieve 97% specificity 

ranged from 29 to 53 across the three institutions.  The average AUC was 7% lower for the ICD-9 only 

algorithm. 
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Figure 6 presents the ROC curves for each training and testing combination. Each panel contains 

the test results for one institution, comprised of four curves, one for each training set. The within-site 

and combined-site curves are drawn using the average true positive rate for each false positive rate. 

 

Figure 6: ROC Curves  

The red/light curve is for the within-site evaluation, while the blue/dark curves are the combined- and across-site 
evaluations. The vertical line represents the 97% specificity cutoff used in this study. The test performance at 
Partners, Northwestern, and Vanderbilt are found in (a), (b), and (c), respectively. 

The betas from the lasso-reduced models are shown in Supplementary Table 1.  The betas and 

attributes selected via lasso were different among each trained model. However, the directions of the 

effects for similar classes of features were similar among different models.  All training and testing 

combinations yielded AUCs greater than 88%.  

Discussion 

These results show that a previously published logistic regression method developed at one 

institution is portable to two independent institutions that utilize different EHR systems, different NLP 

systems, different target NLP vocabularies, and patient populations. These results are among the first to 

establish phenotype algorithm portability across EHR systems. Use of existing, validated phenotype 
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algorithms in EHRs linked to DNA biobanks may enable collection of large patient cohorts from multiple 

institutions at relatively low cost. 

The published logistic regression model improved sensitivity by 22% and PPV by 7% compared 

to the optimal ICD-9 count threshold, demonstrating the added value of more complex phenotyping 

algorithms. In a practical setting assuming 1000 patients with at least 1 RA ICD-9 code and a 25% 

prevalence, the improved performance of the logistic regression model would yield 72 additional true 

cases (163 vs. 108, a 51% increase) while also returning slightly fewer false positives (18 vs. 20) 

compared to using the optimal ICD-9 count threshold.   

The simple ICD-9 threshold algorithm results reflect the shortcomings of relying on only billing 

data for phenotype identification. While this study shows that it is possible to achieve reasonable PPVs 

(≥80%) for RA using only ICD-9 codes, the number of ICD-9 codes required for optimal performance 

were much higher than the number typically used (e.g., >2 codes). Moreover, the high thresholds of 

between 29 and 53 codes that were required for optimal PPV performance resulted in low sensitivity 

(e.g., 36% at Northwestern).  The variable performance of the ICD-9 algorithm suggests broader issues in 

EHR phenotype identification: individual physicians diagnose and treat with their own biases, leading to 

different phenotypic “fingerprints” in the EHR that may be unique to their institution or their personal 

practice. More complex algorithms utilizing more sources of information may offset some of this 

variability. Indeed, other publications by the authors and others have found such use of multimodal 

information critical to accurate phenotyping (1,3,4,7,38,39).  

Application of the published logistic regression model required some modifications from the 

original version.  The original algorithm called for using the total number of “facts” (including billing 

codes, notes, and NLP-derived attributes, among other items) found in the EHR of each individual to 

normalize an attribute. In the context of Partners Healthcare, this choice allowed for the most 
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comprehensive estimation of record size. We found that the number of notes, visits, and NLP-derived 

attributes varied among institutions based on non-patient factors (e.g., what NLP system was used, what 

constituted a “note” in the system, and the length of EHR data capture).  Thus, when applying the model 

at other institutions, we select the total ICD-9 count as a normalizing metric representing record size. 

After this adjustment, performance of the published model was consistent with the retrained models. 

The change to ICD-9 normalization allowed this paper to present all necessary elements of the algorithm 

in the supplementary tables in such a way that they could easily be ported to other EHRs using various 

NLP systems.  

The individuals from Northwestern had on average a shorter EHR follow-up time, which may 

explain the lower ICD-9 threshold. Given the demonstrated importance of count data in the logistic 

regression model, this could also impact performance by increasing the overlap between long standing 

RA patients and those shorter term misdiagnoses.  

While different NLP systems were used to extract disease mentions at the different institutions, 

each method produced similar results, supporting the portability of these algorithms across NLP 

systems. Partners and Northwestern used regular expressions developed specifically for this task, 

applied via HITEx.  Vanderbilt used lists of existing UMLS concepts that represented these regular 

expressions, without any UMLS synonym augmentation, found via a general purpose NLP system, KMCI.  

Both systems support concept identification, negation detection, and section tagging.  Though the recall 

and precision of the NLP engines themselves were not rigorously evaluated, the similar overall 

performance suggests that generic UMLS NLP systems may be sufficient for good performance in at 

least some specific phenotype identification tasks.  

Likewise, different medication retrieval systems were used by each site.  Partners and 

Northwestern used codified data reported by their EHRs in addition to NLP-derived data from their 
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patient records. Vanderbilt used NLP to retrieve medications from both prescribing tools and patient 

records.  Using an approach that captures both codified and NLP information from the EHR can improve 

performance by capturing orders not entered electronically or from outside providers. However, NLP 

methods are more likely to misinterpret a medication as being prescribed that may have been 

mentioned in another context. One example of a misinterpretation would be a medication listed under 

known allergies, and another is a hypothetical statement, e.g., “Discussed starting methotrexate” in a 

patient note.  To minimize these false positives, we required the presence of dosing attributes in the 

MedEx-derived medication mentions.  It is interesting to note that the medications attributes were not 

selected when the model was retrained with Vanderbilt data. Although the lasso coefficient reduction 

method did not select the medication attributes, there was a significant univariate association (p < 10-9) 

between each drug category and RA status.  Further investigation revealed that the medication data was 

largely collinear with the RA ICD-9 count. 

The change in PPV for the Partners data set from the Liao et al. publication to the cross-

validated model presented here is in part due to the difference in the prevalence of RA between the 

data sets.  The validation set used in the Liao et al. publication was composed of algorithm-predicted RA 

patients, meaning the prevalence was much higher than the training set used in this study which had a 

prevalence of 20%. The higher prevalence of RA in the Vanderbilt data set explains the higher PPV for 

that institution. The AUC, representing error rates, is similar for the logistic regression model at all three 

institutions, as it is not affected by disease prevalence. The simple ICD-9 algorithm had an AUC at 

Vanderbilt of 93% compared to the average of 88%, suggesting that billing practices at Vanderbilt may 

be an underlying factor that improved performance at that site. 

Several limitations caution interpretation of these results.  This study only evaluated one chronic 

disease. Other diseases and findings may perform differently.  Algorithms for identifying other 
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conditions may not be portable. Also, only a logistic regression model was evaluated in this study.  Other 

machine learning methods, such as support vector machines or decision trees, may not be as portable to 

other locations.  Although we attempted to standardize the review process across each of the sites, 

individual site reviewing practices and categorizations may have varied, leading to differences in how 

true positives were classified.  Finally, implementation of this class of algorithms requires a vast research 

infrastructure to enable easy querying of data and to support the necessary system intensive processes, 

such as NLP and medication extraction tools; such research data marts therefore require significant 

institutional investment.  Freely available tools, such as i2b2, and future development of commercial 

EHR systems may lower the barriers to development of research data warehouses. 

Conclusion 

This study showed that a previously published logistic regression model for RA identification, 

while not specifically designed to be portable, was successfully implemented at two independent 

medical centers using different EHR and NLP systems. This work suggests that phenotype identification 

algorithms may be more broadly portable, a model that could significantly speed reuse of EHR data for 

research as well as allow the linking of EHRs for large-scale collaborations.  Future work should extend 

this to evaluate different algorithmic methods, phenotypes investigated, and local variability in clinical 

data including how it is reported, stored and processed. 
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CHAPTER IV 

SUMMARY 

Summary of Findings 

These two projects examine methods to improve the efficiency of creation of new phenotype 

identification methods. The first shows that expert knowledge is not necessary for the attribute 

selection in designing algorithms, but using it reduces the number of training records needed. The 

second shows that algorithms trained at one institution appear to perform well at others.  

These results also demonstrate that it is possible to train strongly predictive phenotype 

identification algorithms for RA in new ways. Training set sizes may not need to be as large as generally 

implemented, and expert knowledge used in selecting the attributes can be used to help reduce the size 

further. The portability of the RA identification algorithm suggests that phenotype algorithms for other 

diseases may be portable as well. These results together mean that algorithms for many diseases could 

be created, even under circumstances where there are only a handful of cases at any one institution. 

Limitations 

The primary limitation of these studies is that they encompass only one chronic disease. Once 

diagnosed, patients with most chronic diseases will continue to receive billing codes, clinical notes, and 

prescriptions in the course of treating and/or managing their condition over time. These results may not 

be as applicable to chronic or short term phenotypes, where data may be limited to a single encounter. 

In these experiments, we considered two different machine learning algorithms: SVMs and logistic 

regression. While some principles often hold between methods, others may not be transferrable. For 
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instance, SVMs were chosen in Chapter II as they are generally robust to highly dimension data, which 

may not be true in the case of the portable logistic regression model used in Chapter III. 

Future Directions 

It is important to start research ideas at the ground level and work up. While these articles only 

deal with the performance and development of phenotype algorithms, the potential they represent is 

found in their use as a tool for developing new patient cohorts. With this foundation, we can use them 

within the SD and BioVU to search for genetic associations in RA. If the strong performance of models 

trained with few records and models applied across institutions remains true for other phenotypes as 

well, we have learned that we can quickly develop and implement phenotype identification algorithms, 

and therefore cast even broader nets. 
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APPENDIX A 

ROLE OF THE STUDENT 

For Naïve Electronic Health Record Phenotype Identification for Rheumatoid Arthritis, I was 

responsible for the data aggregation, training and evaluation of the SVMs, and drafting the original 

document. For Portability of an algorithm to identify rheumatoid arthritis in electronic health records, I 

was responsible for the data aggregation at Vanderbilt, the retraining and evaluation of the logistic 

regression models on data from all sites, and drafting the original document. 
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APPENDIX B 

LASSO-REDUCED LOGISTIC REGRESSION MODELS AT EACH SITE 

Attribute Description Original 
Retrained 

Combined Vanderbilt Northwestern 

(Intercept) Regression Intercept -5.2088 -4.00186 -4.75161 -2.49521 

age Age of the patient -0.00096 -0.00426 0.010474 -0.00769 

sex Binary: Female is 1 -0.10729 -0.15874 -0.10372 0 

ICD-9 RA Number of encounters with 
the specified billing code. 
Defined as sets of ICD-9s >7 
days apart. Natural log 
transformed 

0.639367 0.786732 1.036392 0.234517 

ICD-9 PsA 0 -0.44454 0 -0.78851 

ICD-9 SLE -0.95937 -0.36747 -0.12847 -0.37016 

ICD-9 JRA -2.25118 -0.67657 -0.49168 0 

Normalized 
ICD-9 RA 

ICD-9 RA before 
transformation, normalized 
by the total ICD-9 counts. 66.02406* 91.33932 123.3725 18.72591 

Methotrexate Binary variable. Denotes 
exposure to this medication 
from codified sources. 

0 0 0 0.541961 

Anti-TNF 0.958811 0.745813 0 0.818504 

Other 
Medications 0 0 0 0.147411 

RF Negative Binary variable for the 
Rheumatoid Factor test. 

0.850944 -0.42402 -0.32315 -0.58007 

RF Positive 0 0.748071 0.795551 0 

NLP RA Natural log transformed 
count of the number of notes 
with the specified concept. 

0.969956 0.733087 0.645841 0.914909 

NLP SLE -0.52562 -0.21839 -0.09926 0 

NLP JRA 0 -1.00356 -1.27468 0 

NLP PsA -0.85581 -0.05785 0 0 

Methotrexate Binary variable. Denotes 
exposure to this medication 
from narrative sources. 

0.631764 0.442066 0 0 

Anti-TNF 0.520743 0.321728 0 0.908849 

Other 
Medications 0.298111 0.479028 0 0.020784 

Cyclic 
citrullinated 
Peptide 

Binary variable. Denotes 
positive mention of this test 
in narrative sources. 1.312583 0.701096 0 0 

NLP RF Binary variable. Denotes 
positive mention of this test 
in narrative sources. 0 -0.28693 0 1.279047 

Seropositive Binary variable. Denotes 
positive mention of this term 
in narrative sources. 2.773642 1.04373 0 0.16429 

Erosions Binary variable. Denotes 
positive mention of this 
finding in narrative sources. 1.259249 0.540583 0.464227 0 
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*This attribute was normalized by the number of “facts” and not by the ICD-9 count.  To estimate the number of 
“facts” from the total ICD-9 count, we applied the following transformation: facts = e

3.075 + 0.874*ln(icd9_count)
. 
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APPENDIX C 

REGULAR EXPRESSIONS USED IN HITEX ALGORITHM 

  

Variable	name concept_name regex

nlpRA Rheumatoid	Arthritis (?i)(?m)(?s)\b(rheumatoid\s+arth?ritis)\b

nlpErosion Erosion (?i)(?m)(?s)\b(ero[sd]\w+)\b

nlpPsA Psoriatic	Arthritis (?i)(?m)(?s)\bpsoriatic(\s+arth?ritis|\s+arthropath?y)?\b

nlpPsA Psoriatic	Arthritis (?i)(?m)(?s)\b(arth?ritis\s+psoriatica|arth?ropath?ic\s+psoriasis)\b

nlpJRA Juvenile	Rheumatoid	Arthritis (?i)(?m)(?s)\bjuvenile\s+(rheumatoid\s+arth?ritis|ra|idiopath?ic\s+arth?ritis)\b

nlpJRA Juvenile	Rheumatoid	Arthritis (?i)(?m)(?s)\b(jra|jia)\b

nlpSLE Lupus (?i)(?m)(?s)\b(sle|systemic\s+lupus\s+er[iy]them[ao]tosus|systemic\s+lupus|lupus)\b

nlpspos Seropositive (?i)(?m)(?s)\bsero\s*-?\s*positive\b

nlpspos Seropositive (?i)(?m)(?s)\bauto\s*-?\s*anti\s*-?\s*body\s*-?\s*positive\b

nlpspos Seropositive (?i)(?m)(?s)\bpositive\s+auto\s*-?\s*anti\s*-?\s*body\b

nlpRF RFPositive

(?i)(?m)(?s)(borderline\s+|slightly\s+|strongly\s+|low\s+|weakly\s+|low\s*-?\s*titer\s+|high\s*-

?\s*titer\s+)?(\+\s*|pos(itive|itivity)?\s+|elevated\s+|increased\s+)((test\s+)?for\s+)?(IgG\s+)?((anti\s*-?\s*CCP\s+antibod(ies|y)|anti\s*-

?\s*CCP|CCP\s+antibod(ies|y)|(anti\s*-?\s*)?cyclic\s+citrullinated\s+peptide(\s+antibod(ies|y))?|a(\s*-\s*)?CCP|anti\s*-

?\s*citrullinated\s+protein\s*/?\s*peptide\s+antibod(ies|y)|anti\s*-

?\s*citrullinated\s+(protein|peptide)\s+antibod(ies|y)|ACPA|ACP\s+antibod(ies|y)|CCP)\s+and\s+)?(\bRF|rheumatoid\s+factor(s)?)

nlpRF RFPositive

(?i)(?m)(?s)(\bRF|rheumatoid\s+factor(s)?)(\s+and\s+(anti\s*-?\s*CCP\s+antibod(ies|y)|anti\s*-?\s*CCP|CCP\s+antibod(ies|y)|(anti\s*-

?\s*)?cyclic\s+citrullinated\s+peptide(\s+antibod(ies|y))?|a(\s*-\s*)?CCP|anti\s*-?\s*citrullinated\s+protein\s*/?\s*peptide\s+antibod(ies|y)|anti\s*-

?\s*citrullinated\s+(protein|peptide)\s+antibod(ies|y)|ACPA|ACP\s+antibod(ies|y)|CCP))?\s+(is\s+|was\s+|are\s+|has\s+(also\s+)?been\s+)?(also\s+)?(found\s+)?(to\s+

be\s+)?(also\s+)?(borderline\s+|slightly\s+|strongly\s+|low\s+|weakly\s+|low\s*-?\s*titer\s+|high\s*-

?\s*titer\s+)?(present\b|\+|positive|positivity|pos\b|elevated|increased|greater\s+than\s+\d{2,})

nlpRF RFPositive

(?i)(?m)(?s)(\bRF|rheumatoid\s+factor(s)?)(\s+and\s+(anti\s*-?\s*CCP\s+antibod(ies|y)|anti\s*-?\s*CCP|CCP\s+antibod(ies|y)|(anti\s*-

?\s*)?cyclic\s+citrullinated\s+peptide(\s+antibod(ies|y))?|a(\s*-\s*)?CCP|anti\s*-?\s*citrullinated\s+protein\s*/?\s*peptide\s+antibod(ies|y)|anti\s*-

?\s*citrullinated\s+(protein|peptide)\s+antibod(ies|y)|ACPA|ACP\s+antibod(ies|y)|CCP))?\s*\+

nlpRF RFPositive

(?i)(?m)(?s)(?<!(no\s{1,100}))(presence\s+of\s+circulating\s+|presence\s+of\s+|circulating\s+)(IgG\s+)?((anti\s*-?\s*CCP\s+antibod(ies|y)|anti\s*-

?\s*CCP|CCP\s+antibod(ies|y)|(anti\s*-?\s*)?cyclic\s+citrullinated\s+peptide(\s+antibod(ies|y))?|a(\s*-\s*)?CCP|anti\s*-

?\s*citrullinated\s+protein\s*/?\s*peptide\s+antibod(ies|y)|anti\s*-

?\s*citrullinated\s+(protein|peptide)\s+antibod(ies|y)|ACPA|ACP\s+antibod(ies|y)|CCP)\s+and\s+)?(\bRF|rheumatoid\s+factor(s)?)

nlpRF RFStandalone (?i)(?m)(?s)(\bRF\b|\brheumatoid\s+factor\b)

nlpccp CCPStandalone

(?i)(?m)(?s)\b(anti\s*-?\s*CCP\s+antibod(ies|y)|anti\s*-?\s*CCP|CCP\s+antibod(ies|y)|(anti\s*-?\s*)?cyclic\s+citrullinated\s+peptide(\s+antibod(ies|y))?|a(\s*-

\s*)?CCP|anti\s*-?\s*citrullinated\s+protein\s*/?\s*peptide\s+antibod(ies|y)|anti\s*-

?\s*citrullinated\s+(protein|peptide)\s+antibod(ies|y)|ACPA|ACP\s+antibod(ies|y)|CCP)\b

nlpccp CCPPositive

(?i)(?m)(?s)(borderline\s+|slightly\s+|strongly\s+|low\s+|weakly\s+|low\s*-?\s*titer\s+|high\s*-

?\s*titer\s+)?(\+\s*|pos(itive|itivity)?\s+|elevated\s+|increased\s+)((test\s+)?for\s+)?(IgG\s+)?((\bRF|rheumatoid\s+factor(s)?)\s+and\s+)?(anti\s*-

?\s*CCP\s+antibod(ies|y)|anti\s*-?\s*CCP|CCP\s+antibod(ies|y)|(anti\s*-?\s*)?cyclic\s+citrullinated\s+peptide(\s+antibod(ies|y))?|a(\s*-\s*)?CCP|anti\s*-

?\s*citrullinated\s+protein\s*/?\s*peptide\s+antibod(ies|y)|anti\s*-?\s*citrullinated\s+(protein|peptide)\s+antibod(ies|y)|ACPA|ACP\s+antibod(ies|y)|CCP)

nlpccp CCPPositive

(?i)(?m)(?s)(anti\s*-?\s*CCP\s+antibod(ies|y)|anti\s*-?\s*CCP|CCP\s+antibod(ies|y)|(anti\s*-?\s*)?cyclic\s+citrullinated\s+peptide(\s+antibod(ies|y))?|a(\s*-

\s*)?CCP|anti\s*-?\s*citrullinated\s+protein\s*/?\s*peptide\s+antibod(ies|y)|anti\s*-

?\s*citrullinated\s+(protein|peptide)\s+antibod(ies|y)|ACPA|ACP\s+antibod(ies|y)|CCP)(\s+and\s+(\bRF|rheumatoid\s+factor(s)?))?\s+(is\s+|was\s+|are\s+|has\s+(also

\s+)?been\s+)?(also\s+)?(found\s+)?(to\s+be\s+)?(also\s+)?(borderline\s+|slightly\s+|strongly\s+|low\s+|weakly\s+|low\s*-?\s*titer\s+|high\s*-

?\s*titer\s+)?(present\b|\+|positive|positivity|pos\b|elevated|increased|greater\s+than\s+\d{2,})

nlpccp CCPPositive

(?i)(?m)(?s)(anti\s*-?\s*CCP\s+antibod(ies|y)|anti\s*-?\s*CCP|CCP\s+antibod(ies|y)|(anti\s*-?\s*)?cyclic\s+citrullinated\s+peptide(\s+antibod(ies|y))?|a(\s*-

\s*)?CCP|anti\s*-?\s*citrullinated\s+protein\s*/?\s*peptide\s+antibod(ies|y)|anti\s*-

?\s*citrullinated\s+(protein|peptide)\s+antibod(ies|y)|ACPA|ACP\s+antibod(ies|y)|CCP)(\s+and\s+(\bRF|rheumatoid\s+factor(s)?))?\s*\+

nlpccp CCPPositive

(?i)(?m)(?s)(?<!(no\s{1,100}))(presence\s+of\s+circulating\s+|presence\s+of\s+|circulating\s+)(IgG\s+)?(anti\s*-?\s*CCP\s+antibod(ies|y)|anti\s*-

?\s*CCP|CCP\s+antibod(ies|y)|(anti\s*-?\s*)?cyclic\s+citrullinated\s+peptide(\s+antibod(ies|y))?|a(\s*-\s*)?CCP|anti\s*-

?\s*citrullinated\s+protein\s*/?\s*peptide\s+antibod(ies|y)|anti\s*-?\s*citrullinated\s+(protein|peptide)\s+antibod(ies|y)|ACPA|ACP\s+antibod(ies|y)|CCP)

nlpccp CCPPositive (?i)(?m)(?s)CCP(\s*|\s+(is|was|has\s+been|are)\s+)(\d{3,}|[2][123456789]|[3456789][0123456789])

nlptnf Adalimumab (?i)(?m)(?s)\badalimumab\b

nlptnf Humira (?i)(?m)(?s)\bhumira\b

nlptnf Etanercept (?i)(?m)(?s)\betanercept\b

nlptnf Enbrel (?i)(?m)(?s)\benbrel\b

nlptnf Infliximab (?i)(?m)(?s)\binfl[ie]ximab\b

nlptnf Remicade (?i)(?m)(?s)\bremicade?\b

nlptnf Golimumab (?i)(?m)(?s)\bgolimumab\b

nlptnf Simponi (?i)(?m)(?s)\bsimponi\b

nlptnf Tocilizumab (?i)(?m)(?s)\btocilizumab\b

nlptnf Actemra (?i)(?m)(?s)\bactemra\b

nlptnf Certolizumab (?i)(?m)(?s)\bcertolizumab\b

nlptnf Cimzia (?i)(?m)(?s)\bcimzia\b

nlptnf Abatacept (?i)(?m)(?s)\babat[ao]cept\b

nlpmed Orencia (?i)(?m)(?s)\borencia\b

nlpmed Anakinra (?i)(?m)(?s)\ban[ao]kinra\b

nlpmed Kineret (?i)(?m)(?s)\bkin[ei]ret\b

nlpmed Rituximab (?i)(?m)(?s)\br[ie]tux[ie]mab\b

nlpmed Rituxan (?i)(?m)(?s)\brituxan\b

nlpmed Leflunomide (?i)(?m)(?s)\bleflun[ao]mide?\b

nlpmed Arava (?i)(?m)(?s)\barava\b

nlpmed Sulfasalazine (?i)(?m)\bsulfasal(a|o)?zine?\b

nlpmed Azulfidine (?i)(?m)(?s)\bazulfidine?\b

nlpmed Cyclosporine (?i)(?m)(?s)\bcyclospor[iy]ne?\b

nlpmed Sandimmune (?i)(?m)(?s)\bsandimmune?\b

nlpmed Neoral (?i)(?m)(?s)\bneoral\b

nlpmed Gold (?i)(?m)(?s)\bgold\b

nlpmed Myochrysine (?i)(?m)(?s)\bmyochr[yi]sine?\b

nlpmed Solganal (?i)(?m)(?s)\bsolg[ao]n[ao]l\b

nlpmed Ridaura (?i)(?m)(?s)\bridaura\b

nlpmed Auranofin (?i)(?m)(?s)\bauran[ao]fine?\b

nlpmed Aurothioglucose (?i)(?m)(?s)\bauroth[ie]oglucose\b

nlpmed Hydroxychloroquine (?i)(?m)(?s)\bhydroxychloroquine?\b

nlpmed Plaquenil (?i)(?m)(?s)\bplaquen[yi]l\b

nlpmtx Methotrexate (?i)(?m)(?s)\bmethotr[ei]xate?\b

nlpmed Rheumatrex (?i)(?m)(?s)\brheum[ao]trex\b

nlpmed Trexall (?i)(?m)(?s)\btrexall\b

nlpmed Abitrexate (?i)(?m)(?s)\babitr[ei]xate\b

nlpmed Mexate (?i)(?m)(?s)\bmexate\b

nlpmed Folex (?i)(?m)(?s)\bfolex\b

nlpmed Azathioprine (?i)(?m)(?s)\bazath[ie]oprine?\b

nlpmed Imuran (?i)(?m)(?s)\bimurane?\b

nlpmed Penicillamine (?i)(?m)(?s)\bpenicill[ao]mine?\b

nlpmed Cuprimine (?i)(?m)(?s)\bcupr[ie]mine?\b

nlpmed Depen (?i)(?m)(?s)\bdepen\b

nlpmed Cyclophosphamide (?i)(?m)(?s)\bcyclophosphamide?\b

nlpmed Cytoxan (?i)(?m)(?s)\bcytoxan\b
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APPENDIX D 

UMLS CONCEPTS USED IN KNOWLEDGEMAP ALGORITHM 

Attribute CUI Name 

RA C0003873 rheumatoid arthritis (diagnosis) 

  C0015773 Felty's Syndrome [Disease/Finding] 

  C0035450 Rheumatoid nodule (morphologic abnormality) 

  C0263741 Extra-articular rheumatoid process (disorder) 

  C0409628 Other rh.arthr.+visc/syst.dis. 

  C0409629 Rheumatoid arthritis of interphalangeal joint of toe (disorder) 

  C0409630 Rheumatoid arthritis of lesser metatarsophalangeal joint (disorder) 

  C0409631 Rheumatoid arthritis of first metatarsophalangeal joint (disorder) 

  C0409632 Rheumatoid arthr-oth tarsal jt 

  C0409633 Rheumatoid arthritis of talonavicular joint (disorder) 

  C0409634 Rheumatoid arthritis of subtalar joint (disorder) 

  C0409635 Rheumatoid arthritis of ankle (disorder) 

  C0409636 Rheumatoid arthritis of tibiofibular joint (disorder) 

  C0409637 rheumatoid arthritis of knee (diagnosis) 

  C0409638 Rheumatoid arthritis of sacroiliac joint (disorder) 

  C0409639 Rheumatoid arthritis of hip 

  C0409640 Rheumatoid arthritis of distal interphalangeal joint of finger (disorder) 

  C0409641 Rheumatoid arthritis of proximal interphalangeal joint of finger (disorder) 

  C0409642 Rheumatoid arthritis of metacarpophalangeal joint (disorder) 

  C0409643 rheumatoid arthritis of wrist (diagnosis) 

  C0409644 Rheumatoid arthritis of distal radioulnar joint (disorder) 

  C0409645 Rheumatoid arthritis of elbow 

  C0409646 Rheumatoid arthritis of acromioclavicular joint (disorder) 

  C0409647 Rheumatoid arthritis of sternoclavicular joint (disorder) 

  C0409648 Rheumatoid arthritis of shoulder 

  C0409649 Oth rheumatoid arthritis-spine 

  C0409650 Rheumatoid arthritis of cervical spine (disorder) 

  C0409651 Seropositive rheumatoid arthritis, unspecified 

  C0409652 ARTHRITIS RHEUMATOID SERONEGATIVE 

  C0409653 Rheumatoid arthritis with organ / system involvement (disorder) 

  C0409657 Rheumatoid arthritis with multisystem involvement (disorder) 

  C0477542 Other specified rheumatoid arthritis 

  C0564784 Rheumatoid arthritis of multiple joints (disorder) 

  C0564785 Rheumatoid arthritis of hand joint (disorder) 

  C0564786 Rheumatoid arthritis of ankle and/or foot (disorder) 

  C0564787 Rheumatoid arthr - other joint 

  C0581345 Flare of rheumatoid arthritis (disorder) 

  C0837507 Felty's syndrome, multiple sites 

  C0837508 Felty's syndrome, shoulder region 

  C0837509 Felty's syndrome, upper arm 

  C0837510 Felty's syndrome, forearm 



 48 
 

  C0837511 Felty's syndrome, hand 

  C0837512 Felty's syndrome, pelvic region and thigh 

  C0837513 Felty's syndrome, lower leg 

  C0837514 Felty's syndrome, ankle and foot 

  C0837515 Felty's syndrome, other site 

  C0837516 Felty's syndrome, site unspecified 

  C0837597 Rheumatoid nodule, multiple sites 

  C0837598 Rheumatoid nodule, shoulder region 

  C0837599 Rheumatoid nodule, upper arm 

  C0837600 Rheumatoid nodule, forearm 

  C0837601 Rheumatoid nodule, hand 

  C0837602 Rheumatoid nodule, pelvic region and thigh 

  C0837603 Rheumatoid nodule, lower leg 

  C0837604 Rheumatoid nodule, ankle and foot 

  C0837605 Rheumatoid nodule, other site 

  C0837606 Rheumatoid nodule, site unspecified 

  C0837627 Rheumatoid arthritis, unspecified, multiple sites 

  C0837628 Rheumatoid arthritis, unspecified, shoulder region 

  C0837629 Rheumatoid arthritis, unspecified, upper arm 

  C0837630 Rheumatoid arthritis, unspecified, forearm 

  C0837631 Rheumatoid arthritis, unspecified, hand 

  C0837632 Rheumatoid arthritis, unspecified, pelvic region and thigh 

  C0837633 Rheumatoid arthritis, unspecified, lower leg 

  C0837634 Rheumatoid arthritis, unspecified, ankle and foot 

  C0837635 Rheumatoid arthritis, unspecified, other site 

  C1304214 Rheumatoid nodulosis (disorder) 

SLE C0024137 Cutaneous lupus erythematosus (disorder) 

  C0024138 LUPUS ERYTHEMATOSUS DISCOID 

  C0024140 subacute cutaneous lupus erythematosus (diagnosis) 

  C0024141 LUPUS ERYTHEMATOSUS SYSTEMIC 

  C0024143 Systemic lupus erythematosus glomerulonephritis syndrome (disorder) 

  C0024145 Sarcoidosis, lupus pernio type (disorder) 

  C0030327 Lupus erythematosus profundus (disorder) 

  C0155180 Discoid lupus erythematosus of eyelid (disorder) 

  C0242380 Nonbacterial verrucal endocardiosis (disorder) 

  C0263591 Drug-induced lupus erythematosus (disorder) 

  C0263592 Drug-induced lupus erythematosus due to procainamide (disorder) 

  C0263593 Drug-induced lupus erythematosus due to hydralazine (disorder) 

  C0263594 Drug-induced lupus erythematosus due to diphenylhydantoin (disorder) 

  C0264514 Lupus disease of the lung (disorder) 

  C0267807 Lupus hepatitis (disorder) 

  C0268754 
Systemic lupus erythematosus glomerulonephritis syndrome, World Health 
Organization (WHO) class I (disorder) 

  C0268755 
Systemic lupus erythematosus glomerulonephritis syndrome, World Health 
Organization (WHO) class II (disorder) 

  C0268756 
Systemic lupus erythematosus glomerulonephritis syndrome, World Health 
Organization (WHO) class III (disorder) 

  C0268757 
Systemic lupus erythematosus glomerulonephritis syndrome, World Health 
Organization (WHO) class IV (disorder) 

  C0268758 
Systemic lupus erythematosus glomerulonephritis syndrome, World Health 
Organization (WHO) class V (disorder) 
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  C0268759 
Systemic lupus erythematosus glomerulonephritis syndrome, World Health 
Organization (WHO) class VI (disorder) 

  C0339908 Lung disease with systemic lupus erythematosus (disorder) 

  C0393968 Systemic lupus erythematosus encephalitis (disorder) 

  C0406633 Lupus erythematosus chronicus (disorder) 

  C0406634 Lupus erythematosus migrans (disorder) 

  C0406635 Lupus erythematosus nodularis (disorder) 

  C0406636 Lupus erythematosus tumidus (disorder) 

  C0406637 Erythema multiforme-like lupus erythematosus (disorder) 

  C0406638 Lupus erythematosus unguium mutilans (disorder) 

  C0409974 lupus erythematosus 

  C0409975 Limited lupus erythematosus (disorder) 

  C0409976 Systemic lupus erythematosus with organ/system involvement 

  C0409977 Bullous systemic lupus erythematosus (disorder) 

  C0409978 Systemic lupus erythematosus with multisystem involvement (disorder) 

  C0409979 Neonatal lupus erythematosus (disorder) 

  C0477525 Other local lupus erythematosus 

  C0477587 Other forms of systemic lupus erythematosus 

  C0521471 Systemic lupus erythematosus rash 

  C0521513 Systemic lupus erythematosus arthritis (disorder) 

  C0542297 LE SYNDROME AGGRAVATED 

  C0543635 localized discoid lupus erythematosus (diagnosis) 

  C0558705 Lupus erythematosus associated with renal failure 

  C0587239 Systemic lupus erythematosus with pericarditis 

  C0740415 Lupus encephalitis 

  C0752332 Lupus Vasculitis, Central Nervous System [Disease/Finding] 

  C1274832 Acute systemic lupus erythematosus (disorder) 

  C1274833 Fulminating systemic lupus erythematosus (disorder) 

  C1274834 Systemic lupus erythematosus of childhood (disorder) 

  C1274836 Subacute cutaneous lupus erythematosus, papulosquamous type (disorder) 

  C1274838 Hypertrophic type discoid lupus erythematosus (disorder) 

  C1274839 Rosaceous type discoid lupus erythematosus (disorder) 

  C1274840 Discoid lupus erythematosus of mucous membranes (disorder) 

  C1274841 Discoid lupus erythematosus of oral mucosa (disorder) 

  C1274842 Discoid lupus erythematosus of genital mucous membranes (disorder) 

  C1274843 Discoid lupus erythematosus of scalp (disorder) 

  C1274844 Discoid lupus erythematosus of face (disorder) 

  C1274845 Discoid lupus erythematosus of lip (disorder) 

  C1274846 Discoid lupus erythematosus of hands (disorder) 

  C1274847 Discoid lupus erythematosus of foot (disorder) 

  C1274848 Disseminated discoid lupus erythematosus (disorder) 

  C1274858 Lupus erythematosus-associated nail dystrophy (disorder) 

  C1364022 Systemic lupus erythematosus-related syndrome (disorder) 

JRA C0157916 acute polyarticular juvenile rheumatoid arthritis (diagnosis) 

  C0157917 Pauciarticular juvenile rheumatoid arthritis (disorder) 

  C0157918 Monarticular juvenile rheumatoid arthritis (disorder) 

  C0263739 Chronic polyarticular juvenile rheumatoid arthritis (disorder) 

  C0311221 polyarticular juvenile rheumatoid arthritis (diagnosis) 

  C0409625 Juvenile reactive arthritis 

  C0409667 Juvenile Chronic Polyarthritis 

  C0409671 Juvenile rheumatoid arthr.unsp 
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  C0409678 Juvenile arthritis of inflammatory bowel disease (disorder) 

  C0477545 Other juvenile arthritis 

  C0553662 Chronic Childhood Arthritis 

  C0837691 Juvenile rheumatoid arthritis, multiple sites 

  C0837692 Juvenile rheumatoid arthritis, shoulder region 

  C0837693 Juvenile rheumatoid arthritis, upper arm 

  C0837694 Juvenile rheumatoid arthritis, forearm 

  C0837695 Juvenile rheumatoid arthritis, hand 

  C0837696 Juvenile rheumatoid arthritis, pelvic region and thigh 

  C0837697 Juvenile rheumatoid arthritis, lower leg 

  C0837698 Juvenile rheumatoid arthritis, ankle and foot 

  C0837699 Juvenile rheumatoid arthritis, other site 

  C0837700 Juvenile rheumatoid arthritis, site unspecified 

  C0837741 Juvenile arthritis, unspecified, multiple sites 

  C0837742 Juvenile arthritis, unspecified, shoulder region 

  C0837743 Juvenile arthritis, unspecified, upper arm 

  C0837744 Juvenile arthritis, unspecified, forearm 

  C0837745 Juvenile arthritis, unspecified, hand 

  C0837746 Juvenile arthritis, unspecified, pelvic region and thigh 

  C0837747 Juvenile arthritis, unspecified, lower leg 

  C0837748 Juvenile arthritis, unspecified, ankle and foot 

  C0837749 Juvenile arthritis, unspecified, other site 

  C0837750 Juvenile arthritis, unspecified, site unspecified 

  C1384600 Systemic onset juvenile chronic arthritis (disorder) 

  C1444840 Juvenile seronegative polyarthritis (disorder) 

  C1444841 Juvenile idiopathic arthritis, oligoarthritis (disorder) 

  C1444844 Juvenile idiopathic arthritis, enthesitis related arthritis (disorder) 

  C1444845 Juvenile idiopathic arthritis, undifferentiated arthritis (disorder) 

PsA C0003872 Arthritis;psoriatic 

  C0343176 Psoriatic arthritis with spine involvement (disorder) 

  C0409672 Juvenile psoriatic arthritis (disorder) 

  C0409682 Psoriatic arthritis with distal interphalangeal joint involvement 

  C0409683 Psoriatic dactylitis (disorder) 

  C0477543 Other psoriatic arthropathies 

  C1444609 Iritis in psoriatic arthritis (disorder) 

RF C0035448 Rheumatoid factor (substance) 

  C0201660 RF 

  C0201661 Qualitative Rheumatoid Factor Test 

  C0201662 Rheumatoid factor, quantitative (procedure) 

  C0584621 Serum rheumatoid antigen measurement (procedure) 

  C1254833 Rf Titer Test 

  C1256157 Quant Rheumatoid Factor Test 

  C1272655 Fluid rheumatoid factor measurement (procedure) 

  C1273454 Rheumatoid factor screening test 

  C1295062 IgM rheumatoid factor assay (procedure) 

  C1532421 Rheumatoid factor IgG measurement (procedure) 

  C1532542 IgA rheumatoid factor measurement (procedure) 

  C1972676 Rheumatoid factor | bld-ser-plas 

  C1972677 Rheumatoid factor | cerebral spinal fluid 

  C1972678 Rheumatoid factor | body fluid 
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  C1972679 Rheumatoid factor | synovial fluid 

  C1972680 Rheumatoid factor IgA | bld-ser-plas 

  C1972681 Rheumatoid factor IgG | bld-ser-plas 

  C1972682 Rheumatoid factor IgM | bld-ser-plas 

  C2591264 Rheumatoid factor | Pleural fluid 

Seropositive C0409651 Seropositive rheumatoid arthritis, unspecified 

  C0477541 Other seropositive rheumatoid arthritis 

  C0585962 Seropositive errosive rheumatoid arthritis 

  C0837548 Other seropositive rheumatoid arthritis, shoulder region 

  C0837549 Other seropositive rheumatoid arthritis, upper arm 

  C0837550 Other seropositive rheumatoid arthritis, forearm 

  C0837551 Other seropositive rheumatoid arthritis, hand 

  C0837552 Other seropositive rheumatoid arthritis, pelvic region and thigh 

  C0837553 Other seropositive rheumatoid arthritis, lower leg 

  C0837554 Other seropositive rheumatoid arthritis, ankle and foot 

  C0837555 Other seropositive rheumatoid arthritis, other site 

  C0837556 Other seropositive rheumatoid arthritis, site unspecified 

  C0837557 Seropositive rheumatoid arthritis, unspecified, multiple sites 

  C0837558 Seropositive rheumatoid arthritis, unspecified, shoulder region 

  C0837559 Seropositive rheumatoid arthritis, unspecified, upper arm 

  C0837560 Seropositive rheumatoid arthritis, unspecified, forearm 

  C0837561 Seropositive rheumatoid arthritis, unspecified, hand 

  C0837562 Seropositive rheumatoid arthritis, unspecified, pelvic region and thigh 

  C0837563 Seropositive rheumatoid arthritis, unspecified, lower leg 

  C0837564 Seropositive rheumatoid arthritis, unspecified, ankle and foot 

  C0837565 Seropositive rheumatoid arthritis, unspecified, other site 

  C0837566 Seropositive rheumatoid arthritis, unspecified, site unspecified 

Erosions * C0333307 Superficial ulcer 

  C0587240 Erosion of bone 

CCP** C1624602 Anti-Antibodies 

 
*Erosion results were limited to those found in radiology reports. 
**Where the original text contained "ccp" 
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