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CHAPTERII

INTRODUCTION AND SUMMARY

[ntroduction

The demand for automation in modern society has been increasing steadily during the
last few decades. Robotic systems have played an important role in automation that
includes manufacturing, assembly, and biotechnology to name a few. In addition, thereis
a growing need for unmanned operation in different service and research sectors such as
search and rescue, nuclear waste clean up, planetary exploration and others. Such
complex applications increase the possibility of the system faults that are characterized
by critical and unpredictable changes in the system dynamics. The consequences of the
system faults can be extremely serious in terms of not only economic loss, but also
environmental impact and even human lives. Therefore the ability to adapt to faults is
important for the reliability and safety of the system. One way to address these needsisto
design afault tolerant control system (FTCS). Generally, the way to make a system fault
tolerant consists of two steps:

(1) Fault diagnosis: The existence of a fault has to be detected and the fault needs to

be isolated.
(2) Fault accommodation: The controller has to be able to adapt to the faulty

situation so that the overall system continues to satisfy its goal.



There are significant research activities in the development of new methodologies for
automated fault diagnosis and fault-tolerant control. However, unlike the fault diagnosis
for linear systems, which has been investigated extensively in the literature, the fault
diagnosis problem for nonlinear uncertain systems has received less attention.

The motivation for this dissertation stems from the above significant issues. We focus
on the fault diagnosis of nonlinear uncertain systems. First, we investigate the problem of
robust fault detection for a class of input affine nonlinear systems that include most
robotic systems. In this research, a model-based fault detection method is used. A
successful fault detection scheme should be robust to unavoidable modeling uncertainty,
such as external disturbance and model-plant-mismatch (MPM), thus preventing any
false aarm. We develop a new robust nonlinear fault detection methodology using
nonlinear analytic redundancy technique. The detailed theoretical development along
with the ssimulation results are presented in Manuscript 1. We investigate both the sensor
and actuator faults and experimentally verified the robust nonlinear analytic redundancy
(RNLAR) method on a PUMA 560 robotic manipulator. The experimental results are
given in Manuscript 2. We further investigate the relationship between the order of
redundancy and the robustness. We proposed a theorem in this regard and experimentally
confirmed the claim in Manuscript 3. Finally, we investigate the problem of fault
isolation, which is discussed is Manuscript 4. A Pioneer 3DX mobile robot is used to

experimentally verify the fault detection and isolation mechanism.



Manuscript 1: A Robust Nonlinear Analytic Redundancy Framework for Actuator Fault
Detection and its Application to Robotics

Background

Fault detection and isolation (FDI) techniques are broadly classified into two classes.
model-free approaches and model-based approaches. Traditionaly, model-free
approaches use hardware redundancy method for FDI. The mgor problems with the
hardware redundancy method are the extra cost and the additional space required to
accommodate the equipment. Model-based fault detection, on the other hand, utilizes the
mathematical model of the plant to generate residuals. Residuals are measures of
discrepancy between the expected and the measured system behavior. A substantial
research effort has been invested in model-based FDI during the last few decades. Given
the success of model-based approach and the powerful mathematical tools it provides, we
choose to concentrate on model-based methods. Model-based method gives better results
for robotic systems where an approximate model is available.

Some important survey papers in the model-based fault detection methods are [2-4].
The fundamental concept of model-based fault detection is analytical redundancy (AR).
The basic idea of AR is the comparison between the actual behavior of the monitored
plant and the behavior of a mathematical plant. AR is an especially interesting and useful
technique as it allows us to explicitly derive the maximum number of model-based
linearly independent consistency tests for a system [1]. Another important feature of AR
isthat it guarantees that the test residuals generated by the techniques will test the entire
space of “observable” faults [1]. Implementation methods of AR can be classified into

two groups: 1) indirect implementation, based on diagnostic observers, and 2) direct



implementation based on the parity relation technique. Conceptually, the direct
implementation based on parity relation is more straightforward than the observer-based
method.

The origin of parity relation based AR can be found in [1] for linear systems. The
detail description of parity relation for linear systems is given in [5]. The standard AR
fault detection technique is effectively limited to linear systems. It is worth noting that
most robotic systems are modeled as nonlinear systems. The linear AR concept was later
extended to nonlinear systems in [6]. The authors in [6] named this new technique
nonlinear analytic redundancy (NLAR) for fault detection. Note that [6] did not consider
fault detection in the presence of MPM and process disturbance. However, MPM and
process disturbances amost always exist in practical systems. A model dependent fault
detection scheme may not be useful under considerable MPM and process disturbances.
Thus a robust fault detection method that does not require a perfect model will be
valuable.

In the AR literature robustness issue is discussed mostly for linear systems. In [1]
robust residual generation was considered for linear systems based on an optimization
technique. Recently, in [7], [8] the authors extended the method presented in [1] to design
the primary residua considering both the MPM and process disturbances in linear
systems. As far as nonlinear systems are concerned, there is alack of literature on parity
relation based robust fault detection method.

In summary, the mgjority of robust FDI methods are applicable only for linear
systems. But, most robotic systems are modeled as nonlinear systems to capture their

complex dynamics. Therefore, there is a need for robust FDI method for nonlinear



systems. We propose a new robust nonlinear analytic redundancy (RNLAR) fault
detection technigue. The proposed RNLAR fault detection technique accommodates both
the MPM and process disturbances for multivariable dynamic systems. In this technique,

we extend the robustnessidea, used in [7] for linear systems, into the nonlinear domain.

Summary of Contribution

The main contribution of this part is the development of a rigorous method for
deriving robust nonlinear analytic redundancy (RNLAR) test residual that can be applied
to a wide range of nonlinear systems. RNLAR technique is applicable to systems
described by input affine nonlinear ordinary differential equations. The RNLAR method
extends the linear AR into nonlinear systems. It also extends the NLAR to include the
MPM and uncertainty of the system. The effectiveness of the method is verified by

simulation on amobile robot. Manuscript 1 is based on the following papers:

e Halder. B and Sarkar. N, “Robust Fault Detection Based on Nonlinear Analytic
Redundancy Techniques With Application to Robotics,” Proceedings of
International  Mechanical Engineering Congress and Exposition (IMECE),
Orlando, Florida, November 5-11, 2005-81098.

e (Submitted) Halder. B and Sarkar. N, “A Robust Nonlinear Analytic Redundancy
Framework for Actuator Fault Detection and its Application to Robotics,” Journal

of Automatica.



Manuscript 2: Robust Fault Detection of Robotic Manipul ator

Background

Robotic manipulation systems played an important role in automation industries that
include manufacturing, assembly, biotechnology to name a few. However,
notwithstanding their widespread applicability and use, robotic manipulators are known
to fail under normal operations [9] due to various faults that include sensor and actuator
faults, and component failure. Typical faults are caused by broken or bias sensor, wear in
mechanical components, overheating, and locked or damaged actuator. The likelihood of
developing fault increases both with the complexity and versatility of the manipulator
mechanism and the uncertainty of application domains. Consequently, fault detection is
important for the reliability and safety of robotic manipulators. A nonlinear fault
detection method is needed for robotic manipulator.

Various nonlinear diagnostic observer designs are proposed and implemented on
robotic manipulators to detect sensor and actuator faults [10-13]. Most of the works in
fault detection consider either a sensor fault or an actuator fault. In [10], the authors
proposed a method based on generalized momenta for actuator fault detection. However,
the proposed method could not detect sensor faults and was not robust in the presence of
disturbance, noise and model-plant-mismatch (MPM). In [14] the partia actuator fault
was considered in detail but sensor fault detection method was not discussed. In papers
[15-16] only sensor fault detection for robot manipulator was considered.

In summary, afault detection method that includes both the sensor and actuator faults

and considers the modeling uncertainty is still lacking in the literature but will be helpful



for fault detection of the robotic manipulators. We implement our RNLAR method to

detect sensor and actuator faults of the robotic manipulator.

Summary of Contribution
In this part of the research, the RNLAR method is extended to encompass the sensor
fault detection. The RNLAR method is implemented on a PUMA 560 robotic
manipulator. We present the experimental results under different sensor and actuator
faults. Manuscript 2 is based on the following papers:
e (Accepted) Hader. B and Sarkar. N, “Robust Fault Detection of Robotic
Manipulator,” International Journal of Robotics Research.
e Hader. B and Sarkar. N, “Robust Fault Detection of Robotic Systems: New
Results and Experiments,” Proceedings of International Conference on Robotics

and Automation (ICRA), Orlando, Florida, May 15-19, 2006, pp. 3795-3800.

Manuscript 3: Impact of the Order of Redundancy Relation in Robust Fault Detection of
Robotic Systems

Background

Robust fault detection is important for safe and reliable robotic applications. The first
step to successful fault detection is residual generation. Various model-based methods
have been developed in the literature using the analytic redundancy (AR) method [1-3].
The AR method is suitable for robotic application where approximate model is available.
To address the robustness issue, given in [1] the authors have proposed an optimization

method to select a parity vector from the parity space. They described the order of



redundancy relation as the ‘memory span’ of the redundancy relation. This work was
later extended by various researchers in [17], [18]. Most recently in [7], [8] the authors
designed optimal primary residual, which considered both the model-plant-mismatch
(MPM) and process disturbances for linear systems. In a number of works [18], [19], itis
pointed out that the selection of the order of the redundancy relation has an influence on
the optimization performance. In fact, it is proved in [20] that increasing the order of
redundancy relation leads to an increase in the dimension of the parity space, which in
turn provides greater flexibility in residual generation as well as improves robustness.
Note that the above-discussed conclusions regarding the increase in order of redundancy
relation have been proven for linear systems. There are no equivalent results available in
the literature for nonlinear systems. The objective of this work is to extend the above

results for nonlinear systems.

Summary of Contribution

In this work, we have studied the relation between order of redundancy relation and
robustness of the residual generation. The main contribution is to formulate and prove the
theorem that increasing the order of redundancy relation improves the system robustness.
The proposed theorem is an extension of the similar results obtained in linear systems
[20]. Based on the theorem, an algorithm has been proposed to determine the optimal
redundancy relation order. We have experimentally verified the claim on a PUMA 560
robotic arm. A comparative experimental study is presented to demonstrate the effect of

robust residuals. Manuscript 3 is based on the following papers:



e Halder. B and Sarkar. N, “Impact of the Order of Redundancy Relation in Robust
Fault Detection of Robotic Systems,” Proceedings of Conference on Decision and
Control (CDC), San Diego, California, December 13-15, 2006.

e (Submitted) Halder. B and Sarkar. N, “Study the Order of Redundancy Relation

for Nonlinear Systems,” Journal of Control Engineering Practice.

Manuscript 4: Robust Fault Detection and Isolation in Mobile Robot

Background

Fault detection and isolation are important problems in the development of reliable,
robust mobile robots. Both the fault detection and isolation is needed for a successful
fault diagnosis system. Residual generator for fault diagnosis needs to be designed to
support the isolation of faults. To facilitate fault isolation, the residual set needs to have
distinctive properties and unique characteristics of particular faults. There are two
fundamental approaches to enhance the residua for fault isolation: structured residuals
and directional residuals [5]. Structured residuals are so designed that each residual
responds to a different subset of faults and is insensitive to the others.

Structure residual method is used in the literature for fault diagnosis of mobile robot
[21-22] and other systems [7]. All the above methods does not account for the modeling
error and uncertainty of the system. We designed the primary residua vectors (PRV)
based on the robust nonlinear analytic method (RNLAR) in Manuscript 1. RNLAR
method is further developed to generate robust structured residual vectors (SRV), which

is fault-accentuated signal, for fault isolation in a mobile robot.



Summary of Contribution
A robust method for the detection and isolation of sensor and actuator faults is
presented in this work. The main contribution of this paper is to extent the RNLAR
method to design robust fault isolation method. The proposed robust nonlinear analytic
redundancy method was experimentally verified on a Pioneer 3-DX mobile robot. The
results show that both sensor and actuator fault detection and isolation are possible in the
presence of model-plant-mismatch (MPM) and disturbances. Manuscript 4 is based on
the following papers:
e (Accepted)Halder. B and Sarkar. N, “Experimental Results of Fault Detection and
Isolation in Mobile Robot,” International Journal of Automation and Computing.
e Halder. B and Sarkar. N, “Robust fault detection and isolation in mobile robot,”
Proceedings of International Federation of Automatic Control (IFAC), Beijing,

China, August 30- September 01, 2006, pp. 1483-1488.
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CHAPTERII: MANUSCRIPT 1

A ROBUST NONLINEAR ANALYTIC REDUNDANCY FRAMEWORK FOR
ACTUATOR FAULT DETECTION AND ITSAPPLICATION TO ROBOTICS

Bibhrajit Halder' Nilanjan Sarkar”

(Submitted to Journal of Automatica)

Abstract

A new approach to actuator fault detection in the presence of model uncertainty and
disturbances, and its application to a wheeled mobile robot (WMR) are presented in this
paper. Robust fault detection is important because of the universal existence of model
uncertainties and process disturbances in most systems. This paper proposes a new
approach, called robust nonlinear analytic redundancy (RNLAR) technique, to actuator
fault detection for input-affine nonlinear multivariable dynamic systems in the presence
of model-plant-mismatch (MPM) and process disturbance. Analytic redundancy, which is

a basis for residual generation to detect fault, is primarily used in the linear domain. The

'Graduate Research Assistant, Department of Mechanical Engineering, Vanderbilt
University, 2301 Vanderbilt Place, Nashville, TN-37235. Email:
bibhrajit.halder@vanderbilt.edu Phone: 1-615-343-6472, Fax: 1-615-343-6687.

*Associate Professor, Department of Mechanical Engineering, Vanderbilt University,
2301 Vanderbilt Place, Nashville, TN-37235. Email: nilanjan.sarkar@vanderbilt.edu

Phone: 1-615-343-7219, Fax: 1-615-343-6687.
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proposed RNLAR can be used to design primary residual vectors (PRV) for nonlinear
systems to detect actuator faults. The proposed methodology is applied to the actuator
fault detection of a WMR and the simulation results are presented to demonstrate its
effectiveness.

Keywords: Fault detection, analytical redundancy, robustness, nonlinear systems, mobile

robots.

1. Introduction

Recent technological advances in hardware and control techniques have allowed us to
design increasingly complex robots. However, it is unlikely that these complex robots
could be immune to system faults. Faults may result in mission failures that are costly in
mission critical enterprises such as planetary exploration, search and rescue, mine
mapping, demining and nuclear waste cleanup. Therefore the ability to adapt to faults can
be important for a robot in mission critical operations. One way to address these needs is
to design a fault tolerant control system (FTCS). Generally, a FTCS consists of two major
components: a fault detection and isolation (FDI) scheme, and a fault accommodation
mechanism. In this work we focus on actuator fault detection for a class of input affine
nonlinear systems that include robotic systems.

FDI techniques are broadly classified into two classes: model-free approaches and
model-based approaches. In a model-free approach, the system model is constructed
without the use of any knowledge obtained from physical laws [26] [28]. Recent model-
free techniques include the use of neural networks [34], Bayesian belief network [25],

and genetic programming [39] among others. Model-based fault detection, on the other

14



hand, utilizes the mathematical model of the plant to generate residuals. Residuals are
measures of discrepancy between expected and the measured system behavior. A
substantial research effort has been invested in model-based FDI during the last few
decades. Given the success of the model-based approach and the powerful mathematical
tools it provides, we choose to concentrate on this method. Some important survey papers
in this area are [6] [9] [13]. The fundamental concept of model-based fault detection is
analytical redundancy (AR). The basic idea of AR is the comparison between the actual
behavior of the monitored plant and the behavior of a mathematical plant.
Implementation methods of AR can be classified into two groups: 1) indirect
implementation, based on diagnostic observers, and 2) direct implementation based on
the parity relation technique.

The origin of observer-based fault detection can be traced back to [1] [15]. A survey
paper [7] gives the details about this method. In [24] the authors introduced a geometric
approach to designing observers for linear systems. Later it was extended to nonlinear
systems [3]. More details on the use of observer-based method can be found in [21] and
the references therein. Robust fault detection for nonlinear systems is mostly based on
nonlinear observer design approaches [32] [38] [40]. The authors in [38] proposed an
existence criterion for an observer-based robust residual design approach that can
accommodate disturbances in the system. This formulation, however, makes it more
difficult to be satisfied under considerable model-plant-mismatch (MPM). Various
methods are used to design the nonlinear observer to accommodate the MPM that include
sliding mode [35], adaptive/learning [16] and neural network approaches [23].

There exists a rich literature in parity relation based residual generation. In [2] the
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fundamental formulation of a parity relation was presented for linear systems. Various
researchers have combined linear AR with nonlinear systems [36] [41], by using the
method of linearization of the nonlinear system. The AR concept was later extended in
[19] [20] to nonlinear systems without linearization. They [19] introduced the idea of
nonlinear analytic redundancy (NLAR) for fault detection.

In [19], the authors assumed the existence of a perfect system model for fault
detection. However, MPM and process disturbances almost always exist in practical
systems. A model dependent fault detection scheme may not be useful under considerable
MPM and process disturbances. Thus a robust fault detection method that does not
require a perfect model will be valuable. However, robustness issues have mostly been
addressed for linear systems in the literature. In [2] a method is proposed for robust
residual generation based on an optimization technique. Several other researchers applied
the method given in [2], to minimize the effect of the disturbances or to minimize the
effect of MPM [10]. Recently, in [12] both the MPM and process disturbances are
considered. Also, in [18] a method is proposed for isolating sensor and actuator faults
with least sensitivity to the MPM and process disturbances. All the above robust FDI
methods are applicable to linear systems. As far as nonlinear systems are concerned, in
[33] the authors proposed an analytical redundancy based robust fault detection method
using a mathematical technique, called algebra of functions, to transfer the nonlinear
model into a weakly nonlinear model as the main step in designing the residuals. This
method provides satisfactory results but it assumes that modeling uncertainty can be

specified in the form of unknown constant or slowly varying system parameters.
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In this paper, we develop a new robust nonlinear analytic redundancy (RNLAR) fault
detection technique. The proposed RNLAR fault detection technique accommodates both
the MPM and process disturbances for multivariable dynamic systems to detect actuator
faults. We extend the robustness idea, used in [12] for linear systems, into the nonlinear

domain.

2. Problem Formulation

Consider a multivariable input-affine nonlinear dynamic system of the form:
q
(x)+>g;(x)u; +d(x,u), y=Cx+o (1)
i=1

where the state X is defined on an open subset U of ®"; u=[u, u, .. Uqr e R®9 is the

input; ye RMis the process output; C is the mx noutput matrix; d(X,U) represents an
unmeasured deterministic process disturbance vector [11]; O represents a Gaussian-
distributed white noise vector. The functions f, g,..., gq are R" valued smooth mappings
defined on the open set U, and define g = [gl g, ...gq]e R,
In the presence of faults, the input can be represented by
u=u?+u’ (2)
where u9 e % 9represents the fault-free input vector and u ' e R 9 represents the

actuator fault vector. It is assumed that u? is available for computation but u and o are

not. The magnitude of the noise is assumed to be significantly smaller then the magnitude

f

of faults. Under the nominal fault-free condition, u' is a zero vector. However, when an
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actuator fault occurs in the system, u’ will become non-zero. A schematic diagram of the

overall system is given in Figure 2-1.

Nominal plant model PRV output

Fault detection
block

Desired input Mowse

o
Hg id C&C/J\ }?0
(z)

Controller Dynamic system \Z)
ul .
dlx,u)
Actuator fault
Disturbances

Figure 2-1. Schematic diagram of the FDI system

Model-plant-mismatch is represented by
f(x)=f"(x)+ " (x). g(x)=g"(x)+g"(x) 3)
where f "(x), f“(x),g"(x), and g“(x) represent the nominal and uncertain part of the

mappings f and g, respectively. Combining (1), (2) and (3), the overall system with faults

is represented by

= (x)+ fu(x)+ (g (x)+g* (%) (U +u’ )+d(xu), y=Cx+o (4)
Simplifying (4) we get
x=fr(x)+g"(x)u? +e(x,u)+g(x)u’, y°=Cx+o0 (5)
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where e(x,u)= fu(x)+gu(x) (ug +u' )+ d(x,u). The vector e(xu) is called an error
vector, which contains both the uncertainty of the model and the disturbances. The
following assumptions will be used in this paper in order to design the robust actuator
fault detection method:

Assumption 1: The fault-free system is asymptotically stable. This is a general
assumption in the FDI literature [12] [20].

Assumption 2: The system in (1) is observable. This assumption is needed in order
to guarantee the ability to find all the states from the system outputs and is also common
in the literature [2] [19] . We should note that the observability assumption does not mean
that we can (or we need to) find the fault-free states from faulty output measurements.

Assumption 3: The modeling uncertainty, denoted by f"(x) and g"(x) in (3),
which are unknown nonlinear vector functions of X, is bounded. We also assume that both

the inputs and the disturbances are bounded, which is similar to the assumption made in

[12]. Define fault-free error part,e’, as e = f"(x)+g"(x)u®+d. We assume that
ot ue]. et i<

function. Now,

max{”f “(x) Fo (X,u@J 1‘ where Fo(x,ug) is a known bounded

g" (xu®

u

g

el <] 0ol

(X)ugH+||d||. Thus we can say e is bounded,

e.g., e*H <L, where | | stands for the L,normand L= 3HF (X, ud ]‘ )

Thus the problem we seek to solve in this paper becomes: design robust residuals for
actuator faults for the nonlinear systems given by (5). By robust we mean the residual
will need to be sensitive to the faults but insensitive to the MPM and disturbances of the

system, i.e., insensitive to error as much as possible.
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3. Background Information

Consider the nonlinear system (1) without disturbance and noise:
. q
x=1(x)+2> g (x)u; y=Cx (6)
i=1

We briefly describe the basic steps of the NLAR technique as given in [19] to motivate

the design of a robust nonlinear analytic redundancy technique. For detailed information

on the NLAR technique, please refer to [19]. Two vectors O, and O,pp were defined as

follows:

(7)

where ( is the number of inputs and

L(j,l,m,...)=(ugjUglUgm-~-)'—~-~k(m>k(l)k<j)CX'
f,i=0
u =1L k(j)= :

n
The Lie derivative [14] [17] is defined as L;h= Zﬁ f, and the repeated Lie derivative

i=1 i

in (7) is written in the following ways: L; (L;(Lyh))=LL;L h=1L;h.
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Oupp = V—ZULg (8)

where Ly =L4Cx=gC
The general NLAR method works in the following manner:
1. Calculate O, from (7).
2. From 0, calculate the left null matrix, Q", such that Q"0, =0.
3. Next calculate O,pp using (8).
4. Finally, apply the NLAR equation: Q" 0,pp = PRV , where PRV is the primary residual

vector of the NLAR.
It is worth noting that the following important issues are not addressed in the method

mentioned above.

e It is not clear how to calculate Q" givenO,. This question is not a trivial one. It was
originally discussed for linear systems in [2] and later in [12] and [18].
Computationally, the PRV is given byQ"'0,5p, and as a consequence, the design of
PRV is equivalent to finding aQ" . Clearly, there are number of choices for Q' for a
given0, . We will show that the multiple choices for Q" can be utilized to design the

robust PRV. We will address this issue in detail in the subsequent sections.
e The effect of model uncertainty and the process disturbances are not taken into

account while designing the PRV.
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4. Robust Fault Detection Method

The two important mathematical structures for the NLAR technique are
O,andO pp. O,and O pp are defined based on (6) that does not include the MPM and
the process disturbances. The design of RNLAR technique, on the other hand, is based on
(5). In order to effectively analyze and account for the MPM and disturbance terms we
develop new mathematical structures that are analogous to O,and O,py but are more
appropriate for the RNLAR technique. In addition, we define an error matrix, G .

We describe the theoretical development of the RNLAR technique here. Some

practical implementation issues will be discussed later along with the simulation results.

Starting with the output y from (5), take the derivative of Y for S times and stack them

together in (9), where S is the order of the redundancy relation as defined in [2]. S

describes the ‘memory span’ of the redundancy relation.

"y] [Cx+o0
y | |cx+o
vV Cx+ 0.
|- )
Y] [Cx®+0° ]
[Cx+o0 -
ClF"(x)+g"(x) u® +e(x,u)+g"(x)u’ )+ o
d
c—(f" n g n f N
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Define the stacked output vectors,y, =[y y ¥ y ..]" € R™*)  Similarly, we define the
input stack vector,ug, the error stack vector, e, actuator fault stack vector, usf , and the
noise stacked vector, og as follows:

u =usus u® Jer® e =leee.TeR™ 0,=[00605.] e R™)

ud = [uf afaf ]T e R®

The right-hand side of (10) can be grouped into three major components: collection of the

error terms, collection of the input terms, and collection of the states. This leads to the

following compact form:

Yo = Hu, + T + Gee, + Hu! +0, (11)
where,
_ o )
L;Cx [ 0 0 0
a 3 C 0 0
LgCx+>. > L(j.1) |
T, = 1=0 ] G = C[Zuiaki/ax] C 0
q q .
L CxX+ >, > =0

| Jm(s+1)xns
L dm(s+1)x
0 0 0
Hg = <9 y O
7| cl(of /ax) g+ (0g/ ) f ] Cg 0
A Cl(of /ox)g+(0g/ax) f ] Cg mstixgs
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The terms A and Ajpcontain higher order derivatives of the vector functions f and g;.
The term I’y replaces O, in (7). We define new group formation, o, for the RNLAR
technique as follows:
Onpp = ¥s —HsUs (12)
Using (11) and (12), we get
Onpp =Ts +Ge& + HuUd +0 (13)
Equations (11) and (13) will be used to derive the residuals for actuator faults. Note that
in (12) y, andugare outputs and inputs of the system described in (5) (i.e., which
represents the actual plant). In (13)Hg, I'y and G are computed from the nominal

system given in (6) (i.e., the mathematical model of the plant).

4.1 Robust Actuator Fault Detection

Our objective is to design a residual vector that is less sensitive to the error vector and
most sensitive to the actuator fault. The ideal outcome would be to design a residual
vector that is only sensitive to the actuator fault and completely insensitive to the error
vector. Let us investigate whether we can achieve the ideal outcome. We rearrange (13)

to obtain

Onpp = QEg+ Hud +0g (14)
where Q. =[I'y Ggland Eg {el }
S

Select a transformation matrix, C, from the space C defined by C = {cs ciQ = [0]}

Pre-multiplying both sides of (14) with Cl results:
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T T f

R, =CsOnpp =Cs HgUg +0 (15)
Ryis called the primary residual vector (PRV) for actuator fault. It appears that R,is
completely insensitive to the error vector. But note that, for a full rank C matrix c, can

only have its first m columns to be nonzero and the rest of the elements to be zero due to

the block-triangular structure of the matrix Gg sincec! G = 0 . Also note that the first m

rows of H gmatrix are zero. Hencec! H . = [0]. Substituting this in (15) gives

T T
R; =Cs Onpp = C5 05 (16)
Hence both the error vector and the fault contributing term ¢l H (u/ are annihilated at

the same time. This implies that the actuator residual is insensitive to not only the error
vector but also to the fault. Therefore, no actuator fault can be detected if the error vector
is completely removed when the outputs are non-redundant (i.e., C is a full row rank

matrix).

4.2 Generating PRV for Actuator Fault

Faced with the above problem, it can be concluded from (16) that complete
elimination of the effect of the error vector from the PRV is not possible

whenc! Q. =[0]= c/H  =[0]. This result is consistent with actuator fault detection

results obtained for linear systems. In this case, we present a design methodology for the
PRV that makes it insensitive to the error vector but sensitive to the actuator faults as

much as possible. Select a transformation vector, W, , from the parity space w, defined by
W, = {Ws Wil = [0]} Pre-multiplying both sides of (13) with W, results:

Ra=Wl(ys_Hsus)=W-sr(Gses+Hsusf +Os) (17)
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It can be observed from (17) that the actuator residual, R, is sensitive to both the
actuator faults and the uncertainty of the system. It is desirable that R, should be highly
sensitive to the actuator faults and mostly insensitive to the error terms in order to be able
to detect actuator fault in the presence of error term. The above desired property can be

translated mathematically into the statement, WI G, , Where the

is less than” Wl H,

coefficient of the error vector is W,Gyand the coefficient of the fault vector is WiH,.
Both GgandHgare system dependent matrices. However, Wwgcan be chosen
independently from the parity space to satisfy the above requirement. Hence the problem

becomes, select a transformation vector w, for the parity space in such a way that

H w! G, . In the literature this problem is discussed for linear systems.

is less than " wiHg

Both [2] and [12] frame this problem as a linear optimization problem and use the

linearity property to determinews. For a nonlinear system, which is the case here, this
translates into solving a nonlinear optimization problem where the functional structure of
W, is unknown. In other words, we do not know the functional form of each element of
W, (e.g., whether they are polynomial, exponential etc.) and we cannot realistically guess

them without any other knowledge. This makes the nonlinear optimization problem very
difficult to solve. In order to overcome this problem, we propose a novel method for

designing W, for nonlinear systems.
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4.3 Design Methodology

Given the states Xe R"and inputsue RY, consider an open set U, € R™Y such that

the states and the inputs are restricted onU,, ie., X,=(X,u)eU,. We define the

T T
Ws GSGS Wi

T T, -
WS HSHS WS

following performance function, Js(X,U) =

We formulate the robust problem as follows: Find a w,from the parity space such that
J<K(x,) Vx,eU,for some predefined0<K(x,)<1. The choice of K(x,)will

determine the sensitivity of actuator residual to the actuator fault and insensitivity to the

error term. A small value of K will guarantee the sensitivity requirement of w, . Here we

omit the subscripts fromw,and other terms for notational simplicity.
Define Sy =GG', S, = HH"and R=S; — KS,, . Now using the newly defined notation,
the above problem becomes:

GivenI' ,G, and H, produce a vector function we Rm(sm such that the following

conditions are satisfied:

L.wr=[0] wH=[0]

) (18)
2.W RwWs0V x,eU,

We propose the following theorem in order to solve the above problem.

Theorem:

Part (i): Let # (R) be the number of distinct, non-positive, eigenvalues of R. If,

,a_(R)Z 2 then Jw that satisfies both Conditions 1 and 2 in (18). Also if A, are the non-

positive eigenvalues of R and V, are the corresponding eigenvectors, forie {1,2...,n}, then
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W(Xe):

a; (%, )V (x, )satisfies Condition 2. For i >2, we can always choose «;(X,)

=

1

such that Condition 1 satisfies.

Part (ii): When x~(R)=1then there exists W such that w=aV , only if w'T'=[0] where V is
the eigenvector corresponding to the non-positive eigenvalue of R.

Part (iii): Ifz~(R)=0, i.e., all the eigenvalues of R are positive, then there is no such
wthat satisfies both Conditions 1 and 2. The proof of the above theorem is given in the
Appendix I.

Here, we give a few simple examples of both linear and nonlinear systems to illustrate the

design method.

Example 1. (Linear system) Let us consider the following matrices:

0 0 0 0 0 0 00
T 1 0 0 2 -5 0 00

r=[5 31 2] G= = (19)
15 -1 0 34 -15 =5 0 0
23 -5 1 41 =30 2 5 0

and let K =.05
The matrix R is easy to calculate and so are the eigenvalues and the corresponding
eigenvectors of R

0 0 0 0

0 -0.4500 7.8500 11.4000
0 7.8500 155.70 258.30
0 1140 258.30 424.50

R=GG' —KHH' =

A =-1.7351, V, =[0 —.639 .665 —.386]", 1, =—0.1168,
V,=[0 -.7688 .537 —.347[
A,=0,V;=[1 0 0 0], 4, =581.602, V,=[0 .023 .5187 —.8546]
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Hereu (R)=3>2, hence JIw that satisfies the sensitivity condition, which can be
represented by w = oV, + a,V, + a,V,. Pick ; =1,, =0.9419 and «a; =0to satisfy the
conditionw'T=0. To check that this choice of ¢ 'salso satisfies the inequality of

Condition 2, we calculate the performance function J.

_w'GG Tw _ 7.8008

=" = = 0.0405 <005 =K
wTHH Tw 1927911

Once w is determined then the residual can be calculated using the

relationr, = w” (y, - Hu ). Next we give a nonlinear example.

Example 2. (Nonlinear system) Consider the following matrices:

. 0 01 0 1 0
r=[5x 8x] G= H= (20)
2% 0 0 0 X

and letK =.2
Here the eigenvalues and the corresponding eigenvectors of R are given as follows:

-0.19 0
R:GGT—KHHT:[ }

0 —(4/25)%°
A =-0.19,V, =1 o]
A, =—(4/25)%>, V, =[0 1]

We chose W= a,(X)V, +a, (x)V, where @, =X, and @, =—(5/8)X, . To check that this
choice of ¢;salso satisfy the inequality condition, we calculate the performance function

J.

w'GGTw  01x 7+ (1/64)x,*
WIHH Tw x,7 +(25/64) x,*

<02 =K
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The above two simple examples demonstrate the design methodology. Next, we make
some comments on the choice of K. The choice of K will determine the sensitivity of
PRV to the actuator fault and insensitivity to the error term. The desired value of K
1S0 < K <1. Any value of K > 1 will amplify the error term. A small value ofK,
i.e.,, K <1, guarantees a robust PRV. The following question arises naturally. What is
the minimum possible value of K? The optimization problem solved in [12] indirectly
answers this question for linear systems. For nonlinear systems, the general approach of
our method is as follows:

Step 1. Choose a small value for K.

Step 2. Find the nature of eigenvalues of Rbased on the  choice of K.

Step 3. If there are more then two distinct non-positive eigenvalues, then calculate W.
Step 4. If the above condition does not satisfy, then increase the value of K and go to Step
2.

Below, we give a simple example to demonstrate the effect of K on the eigenvalue of R.

Consider the following linear matrices

1
~1 H =
-2

(21)

()

Il
w o =
N - O
S NN
—_ W W

We calculate the value of R by keeping K as variable

2-13K 5-23K 1-3K
R=GG" —KHHT ={5-23K 38-58K 22-3K
1-3K  22-3K 17-K

Figures 2-2, 2-3, and 2-4 show the nature of the three eigenvalues for 0<K<1. As

observed from the figures that for K =0.1there is only one non-positive eigenvalue. As
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0.2, the number of non-positive eigenvalues increases

we increase the value of K to K

to two and we can design the robust PRV.

anfeAuabig

Figure 2-2. Nature of first eigenvalue

anfeausbig

Figure 2-3. Nature of second eigenvalue
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Figure 2-4. Nature of third eigenvalue

5. Simulation Results

We performed computer simulation on a wheeled mobile robot (WMR) to support our
theoretical results. A Simulink model of WMR was used to examine the effect of
actuator faults using the RNLAR residuals. Before presenting the results, a dynamic
model of the WMR is presented.

The WMR is subject to both holonomic and nonholonomic constraints. A detailed
discussion on modeling of WMR can be found in the literature [31]. As a result, only the
relevant equations are briefly mentioned here. It is assumed that the WMR is driven by
two differential wheels (the front passive caster is omitted). The relevant parameters for
the WMR are presented in Table I in Appendix II. The nominal equations of the WMR,

without MPM and the disturbance, can be written as:
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M (a1, )&y +V (0. 6 ) = E(a, )u®, Ala,)a, =0 (22)

—si —-cd cd "
A(qx)= sin ¢ co.s¢ C C JE(q) = 0 010 and
—cos¢ —sing r/2 r/2 0 0 01

a, =[x y. 6, 6] where (X.,Yy.) 1s the center of mass of mobile robot,¢ is the
heading angle measured from the X-axis, ¢ ¢, are angular positions of the two driving
wheels as shown in Fig. 2-5. u9 = [Trg 7° P are the given torques applied to the two

wheels. M (g, )e R*is the symmetric, positive definite inertia matrix and V(q,,d, )is
the vector of centrifugal and Coriolis forces. The elements of M(q, ) and V(q,,d, ) are

given in Appendix II.

Figure 2-5. Schematic diagram of the mobile robot
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Equation (22) can be represented into the state space as follows:
x=f"(x)+g"(x)u® (23)

where x= [xc Ye 6 6 6, § Ir is the state vector. The details of each term of (23) are
given in Appendix II. Equation (23) represents the nominal model of the WMR. We
introduce model-plant-mismatch in the system by varying the mass of mobile robot by

25%. This changes the actual value of matrix M and V as follows:
M&=M+AM; V&=V +AV (24)
The detail of AM and AV are given in Appendix II. We also introduce a friction, F, and

disturbance terms, d, in the actual system. The WMR in the presence of MPM and

disturbances can be represented as:

M #(q,)d, +V 2(ay.q, )+ F +d = E(q,)u (25)

Equation (25) can be represented into the state space as follows:

x=f(x)+g(x)u

= x=fr(x)+g"(x)ud +e(x,u)+g"(x)u’ (26)

where e(x,u)= f"(x)+g"(x)u). The details of each term of (26) are given in Appendix II.

The following output equation is used:

1 00000 c,
y= x=| " |x 27)
010000 c,

We make the following remarks to explain the simulation results:
1) The nominal WMR model does not include the friction term. However, in the
Simulation a coefficient of Coulomb friction of 0.1 and a coefficient of viscous

friction of 0.001 are used as MPM.

34



2)

3)

4)

5)

6)

The mass of the WMR in nominal model is 7Kg. We alter the mass value up to
25% to introduce another MPM.
To calculate the residuals as in (17) we run the nominal and actual model in

parallel. We use the nominal model as in (23) to calculate the terms,Gg, Hg,
and r_ while y_ and ugcomes from model (26) with the friction term.

We have used a band-limited white noise block in Simulink to add noise in the
simulation. The specific values that we have used in the noise block for
simulation were: noise power= 0.008, sample time= 0.1 and speed=23341,
which corresponded to a mean of 0.019 and variance of 0.0918.

In the simulation we have used numerical differentiation using the derivative
block available in Matlab. The derivative block in Matlab uses forward
differentiation technique for numerical differentiation. We should mention that
numerical differentiation of noisy sensor signal is well-known to be ill-posed in
the sense that a small noise in measurement data can induce a large error in the
approximate derivatives [37]. In the simulation we obtained reasonable results
using standard numerical differentiation. However, in other instances when the
standard numerical differentiation is not sufficient, one can use various low-
pass-filters and regularization methods such as Savitzky-Golay smoothing
filters [29] to reduce the effect of noise in differentiation.

Faults are considered detected if the magnitudes of the residuals cross some pre-
determined threshold value. We design the threshold value as twice the absolute
maximum value achieved in a fault-free run with the same parameters to

demonstrate the effectiveness of the proposed RNLAR technique.
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7) Generating the RNLAR residuals for WMR has been automated using the

Matlab symbolic toolbox and Mathematica.

5.1 Actuator Fault Detection Results

We present actuator fault detection results when the WMR is tracking i) a straight-
line trajectory with desired velocity of 2cm/sec along the x-direction and ii) a circular
trgectory of radius 25 cm and angular velocity pi/30 radian/sec. The desired x-axis for
the straight-line trgjectory is given in Fig. 2-6. The x-axis and y-axis for the circular task
trajectories are given in Figs. 2-7 and 2-8. These two sets of trajectories were chosen
because it was shown by Dubin [5] that a WMR can reach any arbitrary final position and
orientation starting from any arbitrary initial position and orientation using trajectories
that are composed of only straight-line and circular segments. In [22] various types of
actuator faults have been discussed that are relevant for a WMR operation. We choose
two common actuator faults among them to demonstrate the proposed fault detection
methodology. First, we consider a partial actuator fault where one actuator generates only
a part of the desired torque. This type of fault represents degradation in the actuator
system (e.g., friction due to jamming, problemsin transmission etc.). The second actuator
fault that we consider is a constant torque output. This may occur due to constant
polarization of the actuator, called actuator bias.

In order to demonstrate the robustness of the proposed RNLAR technique, we
compare fault residuals generated from our proposed technique with that of the NLAR
technique as presented in [20] for the same fault conditions. We followed the procedure

presented in [24] to design NLAR residuals for this comparison. First, we present results
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when there is no MPM and disturbances. We consider a partial fault in the right actuator
for the straight-line trajectory. An 80% partial fault is introduced to the right actuator in
the simulation at t=7s. Under no MPM and disturbance condition we run the two nominal
models in parallel and calculate the PRV using NLAR and RNLAR methods. The
residual result using a NLAR and RNLAR test under no MPM and disturbances is
presented in Fig. 2-9 (a) and (b) respectively. As expected, both NLAR and RNLAR
detect the fault. Next, we introduced the MPM, disturbance and noise as discussed
earlier. The fault detection result with the NLAR residual is presented in Fig. 2-10(a) and
that with the RNLAR residual is presented in Fig. 2-10(b). The absolute maximum value
of the NLAR signal in a fault-free run, which was obtained separately, was 246.05. Thus
the magnitude of the threshold value for NLAR residual was chosen as 492.1. It can be
seen that before the fault occurred, the maximum value of the residual stayed
within+ 246.05. Now observe that, in 2-10(a) the absolute maximum value of NLAR
signal is 473.56, which is less than the threshold value, 492.1. Hence, we can conclude
that the fault is not detected for the given threshold. On the other hand, the absolute
maximum value of RNLAR signal in a fault-free run was 4.02 and in faulty run was
77.44. Magnitude of the threshold value is 8.04. Hence, the fault is detected clearly and
rapidly (i.e., almost instantaneously) in the RNLAR test. It can be seen that the RNLAR
residual is significantly more sensitive to the partial actuator fault when there exist both
the MPM and disturbance in the system.

We conducted another straight-line trajectory simulation with the bias actuator fault.

A constant right wheel torque 7, =0.14 was introduced to the right actuator at t=7s. The

residual test results are presented in Fig. 2-11 (a) for the NLAR technique, and in Fig. 2-
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11 (b) for the RNLAR technique for the bias actuator fault. In this case, the absolute
maximum value of the NLAR signal in a fault-free run was 246.005 and in faulty run
were 349.7. The absolute maximum values for the RNLAR signal were 7.712 and 526.4
in a fault-free run and in a faulty run, respectively. From these values we can conclude
that with the chosen threshold the NLAR residual cannot detect the faults while RNLAR
residual detects the fault clearly and quickly (i.e., almost instantaneously). We conclude
that the RNLAR residual is more sensitive to the bias actuator fault detection in the
presence of MPM and disturbance.

Next, we conducted the circular trajectory simulation for both partial and bias faults
in the left actuator. First, a 75% partial fault was introduced to the left actuator in the
simulation at t=5s. The fault detection result with the NLAR and RNLAR residuals are
presented in Fig. 2-12 (a) and (b), respectively. Here the absolute maximum value of the
NLAR signal in a fault-free run was 91.60. The maximum value of the NLAR residual in
a faulty run was 170.35, which was less than the threshold value, 183.2. Hence the fault
was not detected. For the RNLAR residual, the absolute maximum value in a fault-free
run was 23.58 and with fault were 1221.62. Hence, the fault was detected clearly and
rapidly (i.e., almost instantaneously) in the RNLAR test.

Finally, simulation with a bias left actuator fault was conducted for the circular

trajectory. A constant left wheel torque 7z = 0.13 was introduced to the left actuator at

t=5s. With the bias actuator fault, the residual test results are presented in Fig. 2-13 (a)
for the NLAR test and in Fig. 2-13 (b) for the RNLAR test. In this case, the absolute
maximum values of the NLAR signal were 49.212 and 86.48 in a fault-free run and in the

faulty run, respectively. On the other hand, the absolute maximum values for RNLAR
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signal were 1.435 and 30.31 in a fault-free and the fault run, respectively. Thus we can
conclude that with the chosen threshold the NLAR residual can not detect the fault while
the RNLAR residual detects the fault clearly and quickly.

It is clear from the above set of results that the presented RNLAR technique is useful
in detecting actuator faults in the presence of MPM and disturbance. The fault detection

using RNLAR technique is clear and fast.

6. Conclusion

A robust methodology for detecting the actuator faults in multivariable input-affine
nonlinear dynamic systems has been proposed in this paper. The presented robust
nonlinear analytic redundancy (RNLAR) technique is an extension to the robustness idea
used in the linear domain into the nonlinear domain. It also extends the current state-of-
the-art of nonlinear analytic redundancy (NLAR) techniques used for fault detection of
nonlinear systems. For actuator faults, it is shown that PRV cannot be made perfectly
insensitive to the MPM and disturbances. We proposed a new design methodology that
produces PRV, which are significantly more sensitive to the actuator fault then they are
to MPM and disturbances. We applied the RNLAR technique to the fault detection of a
wheeled mobile robot in computer simulation. A comparative study was presented
between the NLAR and the RNLAR techniques. It was shown that RNLAR residuals

perform significantly better under MPM and disturbances.
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APPENDIX [
Pr oof:

Part (i): The eigenvalues of R, 4; (X,), is a function of x.. We say A, (X,) is positive

if 4 (xs)>0 Vx, €U, ,and negative if 4, (x,)<0 Vx,eU,.

v
Let us consider the case where z” (R)>2. First we prove that w= Zaivi satisfies
i=1

Condition 2. Without loss of generality consideri=2, let 4, and 4, be the non-positive
eigenvalues and and VvV, be the corresponding  eigenvectors.
ThenW(X, )= & (Xe )V, (Xo )+ @, (X, )V, (X ), where a,(X,) and @, (x,)are the chosen

coefficients.

Observe that Ris a symmetric matrix. To see this,

si=(6e") =(6") 6T =6GT =5,

This implies Sg is symmetric. For similar reason S, is also symmetric. R is the linear
combination of Sgand S, , hence Ris also symmetric.

Now,

W RW= (V)T + @V R(V, + V)
= (VT + V] ) (@, RV, + o, RV, )

= (oM + oy ) (A1 + 0,1V
= 042/11 V1TV1 +0’22 /12V2TV2 21 (/12\/1TV2 +X1V2TV1)

where | is the identity matrix and V," and V. represent the transpose of V,and V,,

respectively. Since Ris a symmetric matrix, it implies V,V, =0 and V,'V, =0. Hence
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Wi Rw = ,a2 V'V, + 4,2V, V, But &fV,'V,and &;V, V, are always positive, hence
w' Rw< 0 for 4,4, <0.
This proves the first part of Part (i).

The second part of the claim, i.e., for i =22 we can always choose ¢; (X,) such that the

Condition 1 is satisfied. This is obvious because there is only one constraint and more
than one variable. This completes the proof of first claim.

Part (iii): Lets assume that 3 nonzero wthat satisfies Conditions 1 and 2 when
4~ (R)=0. More specifically w satisfies wRw<0Vvx. R is a symmetric matrix with all
positive eigenvalues. That implies R is a positive definite matrix, which then means
XTRX >0 VX #0, where X is an arbitrary nonzero vector. This is a contradiction. This

completes the proof.
Part (ii): This is a direct consequence of the other two claims. This completes the proof
of the theorem.

APPENDIX II:

Part A:
Table 2-1. Parameters for WMR
P, the intersection of the axis of symmetry with the driving wheel axis
P, the center of mass of the platform with coordinates (X, Y, )
Xy the world coordinate system
) the heading angle measured from the x-axis
i, ] the local coordinate system fixed with the WMR with (0 ,0) at P,
the distance between P, and P,
b the distance between either driving wheel and the axis of symmetry
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radius of each driving wheel

-

c r/2b

M, the mass of the WMR

J. the rotation inertia of the WMR about a vertical axis through P,
m, mass of each wheel

I inertia of each wheel

o,,6, angular positions of the two driving wheels, respectively

Part B: Description of matrixes M and V and the error term

M, 0 —Mcdsing M cdsing
0 M, Mdcosp —M cdcosp
M(q) = .
—Mcdsing  Mgodeosp  IC +1,, -Jc
Mcdsing —Mcdecosp  —JC JC +1,,
where
M, =M, +2m,
J=1J,+2m,b’
—~M.d¢* cos ¢
. — M _dg? sin
V(@ g=| o0l e
0
0

SO
f7(x)= Ty M eTmeg . Ty @ =6, 6T
—(s MS) (s MS® + S v) r |
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cbcosg—cdsing cbcosg@+cdsin @

S cbsing+cdcos¢g cbsing—cdcos@ ; ) 0
B I 0 nees (X)z[(sTMS)I}
0 1

Actual mass of the mobile robot, M& = M + AM . Substituting this in the overall mass

of the robot we get M2 =M & +2m,,

M2 0 —M2cdsing  M2cdsing
a 0 M? Mecdeosp —MZCAeosd | and AM =M @ —M
M (Q) = :
~Mlcdsing Micdcop  IC+,, -Jc
Mcdsing —Miedcosp  —JC 2+,
— M 2dg? cos ¢
_ a2 o:
Va(q,,q,) = Mcdg” sin¢ and AV =V@-v

SO

f(x)= -1 ) and
(x) {—(STMas) (STMaS®+STVa+STF+STd)’
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Abstract

In this paper, a new robust fault detection technique for robotic manipulators is
developed. The new approach called robust nonlinear analytic redundancy (RNLAR)
technique detects both the sensor and actuator faults in robotic manipulator. The
proposed RNLAR technique can compensate for the effects of model-plant-mismatch
(MPM) and process disturbance. The RNLAR can be used to design primary residual
vectors (PRV) for nonlinear robotic systems to detect sensor and actuator faults. A
nonlinear PRV design method to detect faults is proposed where the PRVs are highly

sensitive to the faults and less sensitive to MPM and process disturbance. Experimental
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results on aPUMA 560 are presented to justify the effectiveness of the RNLAR scheme.

Keywords. Fault detection, analytical redundancy, robustness, nonlinear system

1. Introduction

The demand for automation in modern society has been increasing steadily during the
last few decades. Robotic manipulation systems played an important role in automation
industries that include manufacturing, assembly, biotechnology to name a few. In
addition, there is a growing need for unmanned operation in different service and
research sectors such as search and rescue, nuclear waste clean up, planetary exploration
and others where robotic manipulators play an equally important role. However,
notwithstanding their widespread applicability and use, robotic manipulators are known
to fail under normal operations [1] due to various faults that include sensor and actuator
faults, and component failure. Typical faults are caused by broken or bias sensor, wear in
mechanical components, overheating, and locked or damaged actuator. The likelihood of
developing fault increases both with the complexity and versatility of the manipulator
mechanism (e.g., the more the number of components, the more the possibility of
developing faults) and the uncertainty of application domains (e.g., operating in
hazardous unstructured situations). Consequently, the reliability and safety of robotic
manipulators have received significant interest in recent years. One way to address these
needs is to design a fault tolerant control system (FTCS) for robotic manipulators.
Generaly, a FTCS consists of two major components: fault detection and isolation (FDI)
scheme, and a fault accommodation mechanism. In this work, we focus on the

development of a new fault detection technique for robotic manipulators that can be
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effective in the presence of modeling uncertainties and disturbances.

There are significant research works on robot fault detection in the literature. Fault
detection techniques are broadly classified into two classes: model-free [2-7] approaches
and model-based approaches [8-18]. Model-free approaches to manipulator fault
detection include neural networks and fuzzy logic to generate the residuals. Residuals are
measures of discrepancy between the expected and the measured system behaviors.
Model-based fault detection techniques, on the other hand, utilize mathematical models
of the plant to generate residuals. Given the previous research [27] on the modeling of
robotic manipulators as well as the success of model-based approach, we choose to
concentrate on designing a new fault detection mechanism using model-based techniques.
Some important survey papers in the model-based fault detection method are [8-10]. The
fundamental concept of model-based fault detection is analytical redundancy (AR). The
basic idea of AR is the comparison between the actual behavior of the monitored plant
and the behavior of a mathematical plant. Implementation methods of AR can be
classified into two groups:. 1) indirect implementation, based on diagnostic observers, and
2) direct implementation based on parity relation technique [11]. In [38] fundamental
equivalence between parity relation and diagnostic observer based method was presented.
In this work, we present a new fault detection mechanism that is based on parity relation
technique. As a result, we only mention a few major works on fault detection based on
diagnostic observers and concentrate primarily on the relevant literature on fault
detection using parity relation technique.

Various nonlinear diagnostic observer designs are proposed and implemented on

robotic manipulators to detect sensor and actuator faults [12-16]. Most of the works in
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fault detection consider either a sensor fault or an actuator fault. In [12], the authors
proposed a method based on generalized momenta for actuator fault detection. However,
the proposed method could not detect sensor faults and was not robust in the presence of
disturbance, noise and model-plant-mismatch (MPM). The authors of [12] later presented
[13] an adaptive scheme to encompass the uncertain robot dynamics. A discrete-time
diagnostic observer was designed in [14], where MPM, disturbance and noise were
included in the system. They experimentally tested the proposed adaptive method on an
industrial manipulator. For more observer design methods for FDI please refer to [15-16]
and the reference therein. In [17] an observer-based fault detection approach was
demonstrated experimentally for total actuator failure (i.e., the actuator was considered to
be completely damaged). In [18] the partial actuator fault was considered in detail but
sensor fault detection method was not discussed. In papers [19-20] only sensor fault
detection for robot manipulator was considered.

Conceptualy, the direct implementation based on parity relation is more
straightforward than the observer based approach [11]. But the literature on parity
relation based fault detection of robot manipulator is not rich. This is mainly due to lack
of theoretical work on parity relation for nonlinear systems. Most research results on
parity based fault detection techniques are for linear systems. The origin of parity
relation that was based on anaytic redundancy (AR) can be found in [28] for linear
systems. The detail description of parity relation for linear systems is given in [25].
However, since a robotic manipulator is a highly nonlinear system, the above-mentioned
results cannot be directly applied here.

Various researchers have combined linear AR with nonlinear systems [39] [40], by



using the method of linearization of the nonlinear system. The AR based parity relation
was later extended to nonlinear systems in [21-22]. This work assumed the existence of a
perfect system model for fault detection and did not consider the presence of disturbance.
We argue that model-plant-mismatch (MPM) and disturbances exist in most practical
systems and therefore require explicit analysis of these issues in the context of parity
relation based approach to fault detection of robotic manipulators.

In the AR literature robustness issue is discussed only for linear systems. In [28]
robust residual generation was considered for linear system based on an optimization
technique. Later, the authors in [29] extended the method given in [28], where the effect
of the disturbances was minimized through the use of an unknown input observer. In
papers [29-31] the robust residuals were designed but they all considered only MPM in
residual generation. Recently, in [32-33] the authors extended the method presented in
[28] to design the primary residual, which considered both the MPM and process
disturbances in linear systems. As far as nonlinear systems are concerned, there is a lack
of literature on parity relation based robust fault detection method. One notable work in
this context is [33], where a mathematical technique, called algebra of functions is used
for robust fault detection. However, it assumes that modeling uncertainty can be specified
in the form of unknown constant or slowly varying system parameters.

It is worth mentioning at this point that there exists a body of work on the fault
tolerance of robotic manipulators that seek to determine fault tolerance measures (mostly
using kinematic redundancies of the systems) with the assumption of existence of fault
detection method [24-26]. The success of such an approach depends on robust and

reliable fault detection techniques [23]. We believe that our proposed technique will
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complement this body of literature.

The new robust nonlinear analytic redundancy (RNLAR) method accommodates
MPM and process disturbances. The RNLAR method can detect both the sensor and
actuator fault. We extend the robustness idea, given in [32] for linear systems, into the
nonlinear domain. The RNLAR scheme is experimentally tested on a PUMA 560 robotic

manipulator.

2. Dynamic Model of Robot Manipulator

We used a Unimate PUMA 560, as shown in Figure 3-1, for experiment. PUMA is
well-characterized industrial manipulator that has been utilized in numerous industrial
and robotic research applications. PUMA is a three degree-of-freedom harmonic-drive

mani pulator with athree degree-of-freedom wrist attached at its endpoint.

Figure 3-1. Unimate PUMA 560 robot manipulator
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Armstrong et a. [27] derived an explicit dynamic model of the PUMA 560 arm and
measured the parameters necessary to implement model-based control. We mention the
eguation of motion that is expressed in generalized coordinates of the PUMA arm,
6,,6,,and g, , where
6, : the angle of rotation of the Link 1 about the vertical axis
6, : the angle measured from horizontal to Link 2
6, : the angle measured from Link 2 to Link 3
They are represented in vector form by:

0= [91 6, 93]T (1)

In the absence of joint friction, the equation of motion for the robot manipulator is:
M(6)d+N(6)[o 6]+ P(6)]62 |+ G(6)=T ?)
where M (0) represents the inertia matrix, N(@)is the matrix of Coriolistorques, P() is
the matrix of centrifugal torques, G(@)is the vector of gravity torques, [0 éjare notation
for the vector of velocity products, [6'?21 are vectors of squared velocities and T is the

generalized joint force torques. The details of each term and the numeric parameters for
the components of the model of the PUMA arm are given in [27].

Equation (2) can be expressed in state space form as follows:

k= 1)+ a My, y=cx=lg, 6, 6] ®

i=1
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tx)=l6, 6 6 -m(N[edl+rlp?)-cl gx)=[a, o, %][&M}

u=[u u, uy] eR®=T,Cisa3x6output matrix andye R* isthe fault-free actual

process output. It is worth mentioning that (3) represents the nominal model of a PUMA
560.

In the presence of faults, the actuator input and the sensor output can be represented

u=u%+uf, y°=cx+y" +o (4)
where u? e R represents the fault-free input vector, u’ e R>3represents the actuator fault
vector, y°e R* represents the observed output vector, y' e R* represents the sensor
fault vector and o represents a Gaussian-distributed white noise vector. It is assumed that
u? and y° are available for computation but u", y " and o are not. The magnitude of the
noise is assumed to be significantly smaller then the magnitude of faults. Under the
nominal fault-free condition, u’ and y' are zero vectors. However, when either a sensor
and/or an actuator fault occur in the system, u’ and y " will become non-zero.

M odel -plant-mismatch is represented by
f(x)=f"(x)+ f*(x). g(x)=g"(x)+g"(x) (5)
where f "(x), f(x),g"(x), and g"(x) represent the nominal and uncertain part of the

mappings f and g, respectively. Combining (3), (4), (5), and an unmeasured deterministic

process disturbance vector, d (X, U) , the overall system with faults is represented by

x=fr(x)+ f u(x)+(g”(x)+ gU(x)) (ug +u' )+d(x,u), y°=Cx+y'+0  (6)

Simplifying (6) we get
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x=fr(x)+g"(x)ud +e(x,u)+g"(x)u’, y°=Cx+y' +o (7)
where g(x,u) = f *(x)+g*(x) (ug +u' )+ d(x,u).
For a general system, we represent number of states by n, number of inputs by q, and

number of outputs by m. The vectore(x,u), called an error vector, contains both the

uncertainty of the model and the disturbances.
The following assumptions will be used in this paper in order to design the robust

fault detection method:

Assumption 1: The fault-free robotic manipulator is asymptoticaly stable. Thisis
ageneral assumption in the literature [22] [32].

Assumption 2: System (3) is observable. This assumption is needed in order to
guarantee the ability to find al the states from the system outputs. We should note that
observability assumption does not mean that we can (or we need to) find the fault-free

states from faulty output measurements.

Assumption 3: The modeling uncertainties denoted by " (x) and g“(x) in (4),
which are unknown nonlinear vector functions of x, are bounded. We a so assume that
both the inputs and the disturbances are bounded. Define fault-free error part,e”, as
e = f"(x)+g"(x)u? +d. We assume that

g* (xu?, [d(x) <

-

6

F (x, u? ]‘ where F, (x, ud ) is aknown bounded

function. Now, He* H < ‘

f “(x)ﬂ +

g“(x)ugu+||d|| Thuswecansay € isbounded,

eg., He* H <L, where | ||standsfor the L,normand L= j‘F(x, u¢ ]‘ :
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Thus the problem we seek to solve becomes: design robust residuals for sensor and/or
actuator faults for the robotic manipulator given by (6). By robust we mean the residual
will need to be sensitive to the faults but insensitive to the MPM and disturbances of the

system, i.e., insensitive to &(x,u) as much as possible.

3. Robust Nonlinear Analytic Redundancy

The analytic redundancy (AR) method for linear systemsis given in [28]. The mgjor
issue in the use of analytic redundancy technique is how to deal with the presence of
MPM and process disturbances, and their effect on the robustness of the resulting fault
detection algorithm. In this work, we address the above issue for nonlinear systems. In
order to present our mathematical framework, we first define several key matrices that
will be needed in the subsequent development. We define the following matrices. a state

matrix, I'y, an error matrix, G, and an input matrix, H

1L gy

(8)

L Jm(ss1pa
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0 0 0

C 0 0
G, = C[Iz uok; /axj C 0 9)
=
A C(le uok; / axj C
L i=0 Jm(s+1)xns
0 0 0
o Cg" 0 0
>l cllormrox)g" +(og" rax) £ | Cg" 0
Ay, C[(af”/ax)g”+(ag”/ax)f”] Cg" m{s+1as

where

(30 mye) = (U U ) Loy ) CX-
| f.i=0
Up =1, k(l)={ }

gj!j;éo

oh

The Liederivativeisdefined as Lih= a_f‘ and the repeated Lie derivative [34] [35] is

n
i=1 9N

written in the following ways: L;(Lj(L¢h))=LiL;Lch=Ljh. s is the order of the

redundancy relation as defined in [28]. s describes the ‘memory span’ of the redundancy

relation. The terms A and A, contain higher order derivatives of the vector functions
fhand g.

Next, we define a new group formation, O\pp , Which is based on the sensor reading
and given control inputs. We start with the output y°as given in (7). We take the

derivative of y°for stimes and stack them together in (11),
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o] [Cx+y'+o
yo | |Cx+y'+o

yo | | Cx+y" +o.

LY 1 [ex®+y¥ +0° ]

Cx+y' +0

C(f"(x)+g"(x)ug +e(x,u)+gr(x)u’ )+ VAR

= C%(f”(x)+ g"(x)u? +e(x,u)+g"(x)u’ )+ y'+o

(11)

(12)

Define the stacked vectors, y, = [yo y° y° y° ]T e R™%  Similarly, we define the

input stack vector, ug, the error stack vector, e, actuator fault stack vector, u! , sensor

fault stack vector ysf , and the noise stacked vector, o asfollows:

. .o S . P ns
u=usu? .. Jer® e =[eee..JeR

0.=[006..erRCD; yf =yt y' y' [ e R+

ulf =fufutuf ] er®

Using the definitions of Tg,Gg, and Hg we rearrange (12) asfollows:

ys=Hu +T,+y! +Gee, +Hu! +o,
We define O\pp for RNLAR asfollows:
ONDD =Ys— Hsus

Equation (14) together with the definition of O pp implies
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Owop =T +V! +Ge, +Hu! +o, (15)

Equations (13) and (15) will be used to derive the residuals for sensor and actuator faults.

Note that in (14) y.andugare outputs and inputs of the actual system. In (15)H, T
and G, are computed from the nomina system (i.e., the mathematical model of the

plant).

4. Robust Fault Detection M ethod

In this section, we discuss the design procedure for robust fault detection for both
actuator and sensor fault. The detail of robust actuator fault detection residual method
was discussed in Manuscript 1. The robust sensor fault detection residual method is

discussed here.

4.1 Robust Sensor Fault Detection Method

We consider the sensor fault, hence the stacked actuator fault vector,u,", is assumed

to be zero. Thissimplifies (15) into
Owop =Ts + V! +Ge, +0, (16)
We would like to design the residual such that the sensor residual is completely

insensitive to the error vector. To achieve this, we rearrange (16) to obtain

1
ONDD =Ys— Hsus = [Fx Gs]|:e :|+ ysf + O :QSES+ YSf + 0O (17)

S

1
where Q = [T, G.] and Eg :L‘ }
S
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We select a transformation matrix, w,, which islocated in the left null space of Q, i.e,

w. Q. =[0]. Premultiplying both sides of (17) with wy results:

R = W;-ONDD = WI ySf + W-SI-OS (18)

It appears that R is completely insensitive to the error vector. But note that, for a full
rank C matrix wg can only have its first m columns to be nonzero and the rest of the
elements to be zero due to the block-triangular structure of the matrixGg
sincew! G, = 0. This implies that redundant sensors are needed to detect the sensor

faults. Therefore, no sensor fault can be detected if the error vector is completely
removed when the outputs are non-redundant (i.e., C isafull row rank matrix).

Faced with the above problem, we present a design methodology for the PRV that
makes it insensitive to the error vector but sensitive to the sensor faults as much as

possible. Select a transformation matrix,w, that is located in the left null space of Iy,
i.e., W T =[0]. Pre-multiplying both sides of (16) with w,” result:

Rr = WrT O NDD — WrT ysf +WrT Gses +WrT Os (19)

It can be observed that both the sensor fault and the error vector affect the PRV. It is

desirable that R, should be highly sensitive to the sensor faults and mostly insensitive to
the error terms. The above desired property can be translated mathematically into the

following statement: H W, G, , Where the coefficient of the error vector

isIessthanHWrT

is W," Ggand the coefficient of the fault vector isw;" . A similar problem arises during the

design of PRV for actuator faults. In the literature this problem was discussed for linear



systems. In [32] they frame this problem as a linear optimization problem and use the
linearity property. For a nonlinear system, which is the case here, this trandates into

solving a nonlinear optimization problem where the functional structure of w, is
unknown. In other words, we do not know the functional form of each element of w,

(e.g., whether they are polynomial, exponentia etc.) and we cannot realistically guess
them without any other knowledge. This makes the nonlinear optimization problem very

difficult to solve. In order to overcome this problem, we propose a novel method for
designing W. for nonlinear systems. Given the states xe R"and inputsue R, consider
an open set U, e R™? such that the states and the inputs are restricted onu,, i.e,
X, =(x,u)e U, . Here we omit the subscripts from wand other terms for notational

simplicity. Define two performance functions,

T T
J :w for actuator fault residual, R, and
W HH W
T T
J :% for sensor fault residual, R, where | is the identity matrix. We

formulate the robust problem for actuator performance index in Manuscript |. The same
procedure will be applicable to sensor performance index where H will be substituted by

5. Experimental Results

We use the first three joints of a Unimation PUMA 560 to verify the presented fault

detection algorithm. We replaced the microcontroller board of the PUMA to develop an
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open architecture system. This alows us to implement the controllers that are essential
for this experiment. In addition, we interfaced the robot with Matlab and Real-time
Workshop to allow fast and easy system development. The joint angles of the robot are
measured using encoders. The encoder readings are acquired with a sample time of
0.001seconds from a Measurement Computing PCI-QUADO4 card. The torque output to
the robot is given with a Measurement Computing PCIM-DDAO06/16 card with the same

sample time. The encoder outputs are used for calculating the residualsin the experiment.

5.1 Experimental Set-up

We designed experiments to detect both actuator and sensor faults. In these
experiments the PUMA was asked to track a circular trgjectory in the x-y plane. The x-

axis and y-axis for the circular task trajectories are given in Figures 3-2 and 3-3.

-0.04

Y-axis

-0.16 1 1 L L
0 5 10 15 20 25
Time (sec)

Figure 3-2. Desired X-axis trajectory
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0.6

0.58 -

X-axis

. . . .
0 5 10 15 20 25
Time (sec)

Figure 3-3. Desired Y -axis trgjectory

While the manipulator tracked the trgjectory we introduced senor and actuator faults (not
at the same time) and monitored the sensor and actuator residuals. The endpoint of the
PUMA was controlled by aPID controller with the following PID gains. P=400, I=5 and
D=15. We should mention that the RNLAR residuals are independent of the choice of the
controller. We compare our results with NLAR technique as described in [22] that does
not consider MPM and disturbances in its formulation. We make the following comments
before presenting the results:

1) In modeling the PUMA, the friction term is not considered. Also the parameter
estimation for PUMA is not perfect. All these factors contribute to the MPM
and the disturbances in the experiments.

2) We perform numerical differentiation using the derivative block, which uses
forward differentiation technique, avalable in Matlab. Numerical

differentiation of noisy sensor signal is well-known to be ill-posed in the sense
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3)

4)

5)

that a small noise in measurement data can induce a large error in the
approximate derivatives [41]. Although we obtained reasonable results in the
experiments using the standard numerical differentiation block provided by
Matlab but one can use various low-pass-filters and regularization methods such
as Savitzky-Golay smoothing filters [42] to reduce the effect of noise in
differentiation if needed.

To calculate the residuals as in (19) we run the nominal model in parallel with

the PUMA. We use the nominal model as in (3) to calculate the terms, G, H,
and r_ while y_ and u are obtained directly from the experimental data.

Faults are considered detected if the magnitudes of the residual s cross some pre-
determined threshold value. We design a threshold value as twice the absolute
maximum value achieved in a fault-free run with the same parameters to
demonstrate the effectiveness of the proposed RNLAR technique. Note that in
order to minimize false alarms one would possibly choose an even larger
threshold. In such a case, as will be seen from the results (described later), the
RNLAR technique will outperform the NLAR technique even more significant
manner.

Generating the RNLAR residuals for WMR require mathematical calculation of
various terms. We use the Matlab symbolic toolbox and Mathematica to
generate al the terms and combine them appropriately to create the RNLAR

tests.

68



5.2 Actuator Fault Detection Results

Various types of actuator faults are discussed in [12]. We choose a partia actuator
fault where one actuator generates only a part of the desired torque. This type of fault
represents degradation in the actuator system (e.g., friction due to jamming, problems in
transmission etc.). We introduced two kinds of partial fault: sudden partial fault and slow
partial fault.

In the experimental set-up the sudden partial actuator faults were introduced by
multiplying the controller calculated output by 0.75 after 11 seconds of operation. In
order to demonstrate the robustness of the proposed RNLAR technique, we compare fault
residuals generated from our proposed technique with that of the NLAR technique [21]
for the same fault conditions. First, we present results when there is no fault. The NLAR
and RNLAR residual results are given in Figures 3-4 and 3-5, respectively. These figures
demonstrate the effect of error vector that captures MPM and disturbance on NLAR and
RNLAR residuals, respectively. Next, we introduced a sudden partial fault on the first
actuator. The fault detection result with the NLAR residual is presented in Figure 3-6 and
that with the RNLAR residual is presented in Figure 3-7. The absolute maximum value of
the NLAR signal in a fault-free run was 81.4. Thus the magnitude of the threshold value
for NLAR residua was chosen as 162.8. It can be seen that before the fault occurred, the
maximum value of the residual stayed within+ 81.4 . Now observe that, in Figure 3-6 the
absolute maximum value of NLAR signal was 143.56, which was less than the threshold
value, 162.8. Hence, we can conclude that the fault was not detected for the given
threshold. On the other hand, the absolute maximum value of RNLAR signal in a fault-

free and faulty run was 11.32 and 3671.11 respectively. The magnitude of the threshold
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vaue was 22.64. Hence, the fault was detected clearly and rapidly (i.e,, amost
instantaneously) in the RNLAR test. It can be seen that the RNLAR residual is
significantly more sensitive to the sudden partial actuator fault.

Next, the same experiment was repeated with slow partial fault in the first actuator.
The slow partia actuator faults were introduced by multiplying the controller-cal cul ated
output with the function given in Figure 3-8. The residua test results are presented in
Figure 3-9 for the NLAR technique and in Figure 3-10 for the RNLAR technique. In this
case, the absolute maximum value of the NLAR signal in faulty run was 89.7, which was
less than the threshold value, 162.8. The absolute maximum value for the RNLAR signal
was 42.12 in a faulty run, which was more than the threshold value, 22.64. From these
values we can conclude that with the chosen threshold the NLAR residual cannot detect
the faults while RNLAR residual detects the fault with atime delay.

Next, we performed similar experiments with fault in the second actuator. Here we
only present the comparison results for sudden second actuator fault. The fault detection
result with the NLAR residual is presented in Figure 3-11 and that with the RNLAR
residual is presented in Figure 3-12. In this case, the absolute maximum value of the
NLAR signal in a faulty run was 92.7. The absolute maximum value for the RNLAR
signal was 30800 in afaulty run. From these values we can conclude that with the chosen
threshold the NLAR residual cannot detect the faults while RNLAR residual detects the
fault clearly and quickly (i.e., amost instantaneously).

Finally, we introduced a fault in third actuator. Here, we present the RNLAR
residuals under both the sudden and slow partia third actuator fault. The RNLAR

residuals under sudden and slow partial actuator faults are shown in Figure 3-13 and 3-
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14. We can observe that the fault was detected in both cases. It is clear from the above set
of results that the presented RNLAR technique is useful in detecting actuator faultsin the
presence of MPM and disturbance. The fault detection using RNLAR technique is clear

and fast.

5.3 Sensor Fault Detection Results

Various kinds of sensor faults in robotics are discussed in [36-37]. For experimenta
purpose partial sensor fault was considered where one encoder reflected only afraction of
the actual value. This type of fault occurs when there is an offset or bias in the sensor
reading. We introduced two kinds of partial fault: sudden partial fault and slow partial
fault.

In the experimental set-up the sudden partial sensor faults were introduced by
multiplying the joint encoder with 0.80 after 11 seconds of operation. Here also, we
compared both the NLAR and the RNLAR residuals. We introduced the sudden partial
fault on first encoder. The residual test results are presented in Figure 3-15 for the NLAR
technique and in Figure 3-16 for the RNLAR technique for the first encoder fault. In this
case, the absolute maximum value of the NLAR signal in a fault-free run was 68.13 and
in faulty run was 73.54. The magnitude of the threshold value for NLAR residual was
chosen as 136.26; hence we conclude that the fault was not detected for the given
threshold. The absolute maximum values for the RNLAR signal were 15.87 and 972.4 in
a fault-free run and in a faulty run, respectively. From these values we can conclude that
with the chosen threshold the NLAR residual cannot detect the sensor fault while

RNLAR residual detects the fault clearly and quickly (i.e., almost instantaneously).
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We repeated the same experiment with slow partial fault in the first encoder. The
slow encoder fault was introduced in the same way as we did for the slow actuator fault.
The fault detection results with the NLAR and RNLAR residuals are presented in Figure
3-17 and 3-18, respectively. The maximum value of the NLAR residual in a faulty run
was 70.01, which was less than the threshold value, 142.19. Hence the fault was not
detected. For the RNLAR residual, the absolute maximum value with fault was 69.84.
Hence, the fault was detected with atime delay in the RNLAR test.

We introduced sudden partial fault in the second encoder. Here we only present the
comparison results for sudden second encoder fault. The fault detection result with the
NLAR residual is presented in Figure 3-20 and that with the RNLAR residual is
presented in Figure 3-20. In this case, the absolute maximum value of the NLAR signal
in a faulty run was 78.21. The absolute maximum value for the RNLAR signal was
29102 in afaulty run. From these values we can conclude that with the chosen threshold
the NLAR residual cannot detect the faults while RNLAR residual detects the fault
clearly and quickly.

Finally, we introduced a fault in third encoder. Here, we present the RNLAR
residuals under both the sudden and slow partial third encoder fault. The RNLAR
residuals under sudden and slow partial actuator faults are shown in Figures 3-21 and 3-
22, respectively. We can clearly observe that the fault was detected in both cases. In
conclusion, we have performed experiments with actuator and sensor faults on a PUMA
560. We presented the comparison results of NLAR and RNLAR. We observe that the
RNLAR residuals successfully detected both the sensor and actuator faults for al cases

under MPM and disturbances.
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Figure 3-14. RNLAR under slow third actuator fault
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Figure 3-16. RNLAR under sudden first encoder fault
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Figure 3-22. RNLAR under slow third encoder fault
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6. Conclusion

A robust methodology for detecting sensor and actuator faults in multivariable input-
affine nonlinear dynamic systems has been proposed in this paper. The presented robust
nonlinear analytic redundancy (RNLAR) technique is an extension of the robustness idea
used in linear domain into the nonlinear domain. It also extends the current state-of-the-
art of nonlinear analytic redundancy (NLAR) techniques used for fault detection of
nonlinear systems. We have shown that although residual output for actuator and sensor
faults could not be made completely insensitive the MPM and disturbances, our presented
RNLAR technigue could minimize their effects to detect faults. We have presented a new
theorem to this effect that provides a constructive technique to design such a PRV. We
experimentally verified the presented methodology in relation to the sensor and actuator

fault detection of a PUMA 560 manipulator.
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IMPACT OF THE ORDER OF REDUNDANCY RELATION IN ROBUST FAULT
DETECTION OF ROBOTIC SYSTEMS
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Abstract

This paper presents a new approach, called robust nonlinear analytic redundancy
(RNLAR) technique to actuator fault detection for input-affine nonlinear multivariable
dynamic systems that include most robotic systems. Robust fault detection is important
because of the universal existence of model uncertainties and process disturbances in
most systems. Analytic redundancy, which is a basis for residual generation to detect
fault, is primarily used in the linear domain. In this paper, we characterize the order of
redundancy relation for nonlinear systems in terms of robustness. We propose and prove

that an increase in the order of redundancy relation increases the robustness in the sense
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of a performance index defined in this paper. We further develop an agorithm to select
the redundancy relation order and design robust nonlinear fault detection residuals.
Experimental results on a PUMA 560 robotic arm are presented to verify the claim.

Keywords: Nonlinear fault detection, order of redundancy, robustness, robotic systems

1. Introduction

During the last decade, as the applications of robots steadily expanded, there is
significant research activity in the area of robot reliability and fault tolerance [1]. One
way to address these needs is to design a fault tolerant control system (FTCYS) for robotic
systems. Generally, a FTCS consists of two magor components. a fault detection and
isolation (FDI) scheme, and a fault accommodation mechanism. In this paper we focus on
the fault detection part of FTCS.

Considerable research effort has been invested in model-based fault detection
methods since 1970s. Among them the parity relation-based schemes have been very
successful. Some important survey papers in this area are given in [2]-[5]. The
fundamental formulation of parity relation for linear systems is presented in [6], which
was based on analytic redundancy (AR) of the system. More detail is given in [7].
Robustness is an important aspect in the fault detection method. To address the
robustness issue, in [6] the authors have proposed an optimization method to select a
parity vector from the parity space. This work was later extended by various researchers
in [8][9]. Most recently in [10][11] the authors designed optimal primary residual, which
considered both the model-plant-mismatch (MPM) and process disturbances for linear

systems.
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The journey from linear AR residual generation methods to nonlinear analytic
redundancy (NLAR) residual generation methods started with the use of linearized model
of the nonlinear system to derive the AR residuals [14][15]. The AR concept was later
extended to nonlinear systems without linearization. In [16] the authors proposed a
nonlinear analytic redundancy scheme based on parity relation method.

It was pointed out in [9] that the selection of the order of redundancy relation has an
influence on the optimization performance. In fact, it is proved in [12] that increasing the
order of redundancy relation leads to an increase in the dimension of the parity space,
which in turn provides greater flexibility in residual generation as well as improves
robustness. Note that the above-discussed conclusions regarding the increase in order of
redundancy relation have been proven for linear systems. There are no equivalent results
available in the literature for nonlinear systems. The objective of this paper is to extend
the above results for nonlinear systems.

Recently we proposed a new approach, called robust nonlinear analytic redundancy
(RNLAR) technique [13]. We extended the robustness idea, used in [10] for linear
systems, into the nonlinear domain. In this paper we prove that an increase in the order of
redundancy relation increases the robustness of the nonlinear residuals. This result is
compatible with its linear counter part as given in [9] [12]. We further provide
experimental verification of this claim using a Unimation PUMA 560 robotic arm as a

test-bed. Finally, we summarize our contributions.
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2. RNLAR Residua Generation

Consider the nonlinear system (1)

q

X= f(x)+zgi (x)u; +d(x,u); y=Cx 1)

i=1
where the state x is defined on an open subset U of R"; u=[u u, .. ug[l eR9 isthe
processinput; ye R™ isthe process output; C is mxn output matrix; d(x,u) represents an
unmeasured deterministic process disturbance vector. The functions f, gi,..., gy are }"
valued smooth mappings defined on the open set U, and g=|g; g5 ...qu. In the presence

of faults the system is represented by

x=fr(x)+g"(x)u? +e(x,u)+gr(x)u’

, y=Cx+o0 (2
where e(x,u)= f v (x)+g"(x) (ug +uf )+d(x,u), f"(x), f'(x),g"(x), and g“(x)
represent the nominal and uncertain part of the mappings f and g, respectively.
u% e R9represents the fault-free input vector, u’ e 9 represents the actuator fault

vector, and o represents a Gaussian-distributed white noise vector. It is assumed that u®

is available for computation but u and o are not. The magnitude of the noise is assumed
to be significantly smaller than the magnitude of faults. We design robust residuals for
the nonlinear systems given by (2). By robust we mean the residua will need to be
sensitive to the faults but insensitive to the MPM and disturbances of the system, i.e.,
insensitive to &(x,u) as much as possible. We proposed a new approach, called robust
nonlinear analytic redundancy (RNLAR), to minimize the effect of error and accentuate
the effect of faults. The details of RNLAR method are given in chapter Il and Il1. Here

we mention the steps that are important in thiswork. We take the derivative of the system
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output for s times, where s is the order of the redundancy relation as defined in [102]. s
describes the ‘memory span’ of the redundancy relation. We define a performance,
index, J,, to quantify the robustness, as follows:

WSTGSGSTWS
W, H.HTw

S S 'S S

Js(xu) = 3)

wherews, from the parity space w_defined by w, ={w,:w. =[0]}, The matrices
I',,Gg, and H are defined in chapter Il and I11. The subscript s represents the order of
redundancy relation. We formulate the robust problem as follows: Find a w,from the
parity space such that J <K(x,) Vx,e U, for some predefined0< K(x,)<1 Vx,€U, .
The choice of K(x,) determines the sensitivity of residual to the actuator fault and

insensitivity to the error term. A smaller values of K implies more robustness. We

propose a constructive theorem to find aw,, under suitable condition. It was pointed out

in chapter 1l that an increase in the order of redundancy relation, s, increases the

robustness.

3. Robustness Theorem

We formulate the theorem that shows that increasing the order of redundancy

relations improves the system robustness in the sense of performance index J, where the

subscript s represents the order of the redundancy relation. This is the main contribution
of this paper. We state the theorem as follows:

Theorem :

Given the states xe R" and inputsue R, consider an open set U, € % ™ such that the
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states and the inputs are restricted in, U, i.e., X = (x,u)e U, . Let

o.=mnmaxJ.(X), a.,= min maxJ.,(X 4
S WeeW, XeU, s( ) s+l W, €W,y XeU, s+1( ) ()

then ¢y > o, 4 foral s>0.
Proof:

For agivens, let X € U, andw, € W, be the optimal choice such that

T T
_ Wes GsGs Wes

(5)

s T T
WCS HSHS WCS

To prove the inequalityar ¢ > a4, it is sufficient to show that there exists a vector

W,,; € W,,; such that

T T
Woip GgGgq Wein
s+THs+ Hs+ - stl o (6)
Ws+l s+1' "s+l Ws+l
for X€U,. Thatimplies
T T
W1 (Gs+les+l _asHs+lH;r+l>‘Ns+l <0 (7)

We can express Gy4 and Hsy in terms of G,andH, respectively. G,isa m(s+1)xns
matrix while the dimension of G, IS m(s+2)xn(s+1).G,,, has m more rows and n

more columns than that of G, which carries the information of ( s+1)™  order

differentiation of the output equation. Hence, we can express G, as follows:
e ol
_ | m(s¥ixns MSHLXN
C:"s+1 - A g A . (8)
nmxns m<n - _Im(s+2)xn(s+1)

where Agand A, contain the ( s+ 1)™ order differentiation of the output equation that is
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used with the error term. In a similar fashion, H

follows:

Hs+1 -

s+l

H. 0
| m(stiyas m(s+1)xq

A h A h

mxgs mxq

m(s+2)xq(s+1)

can be expressed in terms of H_as

(9)

where A,and A, contain the (s+ 1)™ order differentiation. Substituting (8) and (9) into

(7) gives
Gs
m(s+Lxns
Ag Ag
T mxns mxn
W1
Hs
_ m(s+L
% Ah Ah
mxgs mxq
GG/ GAj,
_ T | m(s+)xm(s+1) m(s+1xm B
I AGGL  AGAY +A A
mxm(s+1) mxm

s+1

We construct w,,

_ T GsGl_asHsHsT
A Gl —aAgH

as follows wm:{

cs

Ve

Ag

mxns

GoAy —agH A
AGAL +A AT — o (A AT + A AT

S

Ap

m<qs

HHS

o T G, 0
m(s+Lxn m(s+Lins m(s+Lxn

Ag

mxn

T

o TH o0
xgs m(stljxq m(s+1jxqgs m(s+ljxq

Ap

mxq

m(s+1xm(s+1)

AnH¢

mxm(s+1)

T

s+l

H AL
m(s+1xm
ApAL + A AL

s+l

nmxm

)J Ws+1 (10)

} where yisascalar constant and w,is a
m(s+2)1

mx1vector. We will construct w,such a way that (7) is satisfied andw, I, =0.

Substituting the above choice of w,,,in (10) gives (11).
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[WT T ][ GSG;I- - asH sH ;I' GSATg - asH SA-IP—'I J|:Wcs

11
“ ) AQGsT_asAhH;r AgATg+AgATg_O’s(AhATh+AhATh) } (D

Let us define A= GSATQ, —aH A} ,BZAgGsT —a A H{ and

C=A Ay +A AY - as(AhATh + AhATh). Substituting the above definition we get

W ] GGl —aHH] A} W 12)
cs e B C er
=W (GBI — aH H T Mgt 20 Bwg +WT Agey, + 3! Cw, (13)
_ T T T
= Bw +wW_ A, + v Cov, (14)

because W' (GSGST —aSHSHST)\NCS =0 from (5). Now, form>2, we can adways select

w,such a way that pw!Bwg+w Ay, +p Cp, <O andwg, I, =0 as two
constraints can be satisfied with two free variables. With the above selection of w,,

finally we have
T T T T ( .7 H HT )\N 0
?)We BWcs + Wcs Aj)(Ne + er C?We <0 = Wsi1 Gs+1 st1 ~OsMg Mg Wiy <

T T
Ws+1 Gs+1Gs+1 Ws+1

<o (15)

T T
Ws+1 H s+l H s+1 Ws+1

Form=1, w,isascaar quantity. Hence we can write (14) as

P BW + oW A+ 72w, C (16)

We can choose the constant y such away that yw,Bw, + ;wewl A+ y*wW,w,C <0 when

both A and B are non zero, which is the case here. Then we can select w,such a way
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that wg,,I's,, = 0. With the above choices we get (15) for m=1 as well. This concludes

the proof of Theorem I.

Based on Theorem |, we give a step-by-step procedure for optimal search of parity
vector in the parity space for actuator fault detection.
Sep 1: Set the order of redundancy relation s and choose a desired value for K as defined
before.
Sep 2: Find the nature of eigenvalues of R based on the choice of K and s.

Step 3: If there are more then two distinct non-positive eigenvalues, then calculatews .

Sep 4: If the above condition does not satisfy, then increase the value of s and go to Step

2.

4. Experimental Results

A Unimation PUMA 560 is used to experimentally verify the claim of Theorem . We
use the first three joints of the manipulator for our experiments. We have replaced the
microcontroller board of the PUMA to develop an open architecture system. This allows
us to implement the controllers that are essential for this experiment. In addition, we have
interfaced the robot with Matlab and Real-time Workshop to allow fast and easy system
development. The joint angles of the robot are measured using encoders. The encoder
readings are acquired with a sample time of 0.001seconds from a Measurement
Computing PCI-QUADO4 card. The torgue output to the robot is given with a
Measurement Computing PCIM-DDAO06/16 card with the same sample time. The
encoder outputs are used for calculating the residuals in the experiment. Armstrong et al.

[20] experimentally determined the relevant parameters of the PUMA 560 and derived its
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dynamic model. The dynamic equation of the PUMA 560 is given in Chapter Ill. The

output of the system are the joint angles and is represented as
y=[6, 6, 6 (17)
We run the model in paralel to the Puma 560 and use the model to calculate the

terms, G, H ¢, andI'y while y, and ucomes from Puma 560.

4.1 Results

We design experiments to detect actuator faults using different residuals. one
RNLAR residual withs=2; and one RNLAR residua withs=3. In these experiments,
the PUMA was asked to track a straight-line trgjectory in the x direction with y and z
coordinates were kept constant at -.029m and -.034m, respectively. Thus Joint 1 did not
need to move in these experiments. The trgjectory for x direction starts after 5 seconds.
While it tracked the trajectory we introduced actuator faults and monitored the residuals.
The endpoint of PUMA was controlled by a PID controller with the following PID gains:
p=400, I=5 and D=15. We should mention that the residuals are independent of the
choice of controller. Since Joint 1 did not need to move in our experiments, we only
present the residuals for the Joints 2 and 3. For each actuator 2 and 3, we present four
results: one RNLAR residual output without any faults and three different residual
outputs as described before in the presence of fault.

Various types of actuator fault are discussed in [21]. We chose two common actuator
faults for the experiments. First one is a partial actuator fault where one actuator
generates only a part of the desired torque. Thistype of fault represents degradation in the

actuator system (e.g., friction due to jamming, problems in transmission etc.). The
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second actuator fault that we consider is a constant torque output. This may occur due to
constant polarization of the actuator, called actuator bias. We apply the partial actuator
fault in the second joint and bias actuator fault in the third joint but not at the same time.
In the experimental set-up the partial actuator faults were introduced in the second
joint where the joint torque was reduced by 80% after 11 seconds of operation. Faults are
considered detected if the magnitudes of the residuals cross some pre-determined
threshold value. We use a standard threshold design as outlined in [16] where the
threshold value is considered twice the absolute maximum value achieved in a fault-free
run with the same parameters First, we present the output of RNLAR residua with
s=2and s= 3without any fault in the system to demonstrate the effect of the MPM and
process disturbance on the residuals. The residual output is shown is Figure 4-1 and
Figure 4-2. We can observe that the absolute maximum value of the residual under no-
fault condition with s=2is 3.15 and with s=3 is 11.63. We set the threshold value as
6.30 for residua with s=2 and 23.26 withs=3. RNLAR residuas withs=2, and
s=3 under partial second actuator fault are shown is Figure 4-3 and 4-4, respectively. In
Figure 4-3, the threshold value is shown in red dotted line. The peak value of the residual
output for s=2is 33.67, which is more than the threshold value. Hence the fault is
considered detected. Finally, the peak value for RNLAR residual with s=3 is 3612,
which is 100 times more than the threshold value. We conclude from the above results
that among the two residuals, the residual with s=3 is more sensitive to fault in the
presence of identical MPM and disturbance and hence more robust.. As can be seen, our
experimental results support the claim of Theorem | that increasing the redundancy order

increases the robustness in fault detection.
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Figure 4-1. First RNLAR residual for s=2 without any fault
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Figure 4-2. First RNLAR residual for s=2 under partial second actuator fault
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Figure 4-3. First RNLAR residual for s= 3 under partial second actuator fault

Next, we design another RNLAR residua to detect the fault in third actuator. We

introduce the bias fault in the third joint actuator. A constant z; = 0.1 isintroduced to the

third actuator at t=11s. The output of RNLAR residual with s=2without any fault is
shown in Figure 4-4. The absolute maximum value of the residual in no-fault condition is
4.68. Thus we set the threshold value to be 9.36. RNLAR residuals withs=2, and s=3
under partial second actuator are shown is Figure 4-5 and 4-6 respectively. The peak
value of the residual output for s=2is 42.19, which is more than the threshold value.
Hence the fault is detected. Findly, the peak value for RNLAR residual with s=3 is
274.94. Thus once again we notice that increasing the redundancy order increases the

robustness in fault detection.
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Figure 4-5. Second RNLAR residual for s=2 under bias third actuator fault
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Figure 4-6. Second RNLAR residual for s=3 under bias third actuator fault

5. Conclusion

In this paper, we have studied the relation between order of redundancy relation and
robustness of the system. We have presented the RNLAR residuals generation procedure
for multivariable input-affine nonlinear dynamic systems. The main contribution of this
paper has been to formulate and prove the theorem that increasing the order of
redundancy relation improves the system robustness. The proposed theorem is an
extension of the similar results obtained in linear systems. Based on the theorem, an
algorithm has been proposed to determine the optimal redundancy relation order. We
have experimentally verified the clam on a PUMA 560 robotic arm. A comparative

experimental study has been presented to demonstrate the effect of robust residuals.
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Abstract

Robust nonlinear analytical redundancy (RNLAR) technique is used to detect and
isolate actuator and sensor faults in a mobile robot. Both model-plant-mismatch (MPM)
and process disturbance are considered during fault detection. The RNLAR is used to
design primary residual vectors (PRV), which are highly sensitive to the faults and less
sensitive to MPM and process disturbance, for sensor and actuator fault detection. The
PRVs are transformed into set of structured residual vectors (SRV) for fault isolation.
Experimental results on a Pioneer 3-DX are presented to justify the effectiveness of the

RNLAR scheme.
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1. Introduction

The demand for automation in modern society is increasing steadily during the last
few decades. Mobile robots play an important role in automation industries that include
planetary exploration, search and rescue, mine mapping, demining and nuclear waste
cleanup to name a few. With this widespread applicability of mobile robots, a major
concern is the reliability of the system. Fault detection and identification (FDI) are
important problems in the development of reliable, robust mobile robots.

A substantial research effort has been invested in model-based FDI during the last
few decades. Some important survey papers in this area are given in [1-3]. The
fundamental concept of model-based fault detection is analytical redundancy (AR). The
basic idea of AR is the comparison of the actual behavior of the monitored plant with the
behavior of a mathematical plant. Implementation methods of AR can be classified into
two groups: 1) indirect implementation, based on diagnostic observers, and 2) direct
implementation based on parity relation technique [4].

The original idea of observer-based fault detection came from [5]. A survey paper [6]
and the book [7] give the details about this method. Most of the methods were proposed
for linear systems. Also, early FDI methods assumed the existence of an accurate model
of the monitored system. However, model-plant-mismatch (MPM) and process
disturbances almost always exist in practical systems. A model dependent fault detection

scheme may not be useful under considerable MPM and process disturbances. Recently,
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various methods are used to design the observer for nonlinear system to accommodate the
MPM and process disturbances [8-9].

Conceptually, the direct implementation based on parity relation is more
straightforward than the observer based approach. Most research results on parity based
fault detection techniques are for linear systems [9-14]. In [15] the authors proposed a
nonlinear analytic redundancy scheme based on parity relation method. A robust fault
detection method for nonlinear systems using a mathematical technique, called algebra of
functions, was presented in [16]. It is assumed in this work that modeling uncertainty can
be specified in the form of unknown constant or slowly varying system parameters.

Recently, a new robust nonlinear analytic redundancy (RNLAR) technique for fault
detection was developed [17], which accommodates both the MPM and process
disturbances for nonlinear multivariable dynamic systems. In this paper, RNLAR method
is further developed to generate robust PRV, which is fault-accentuated signal, for fault
detection in a mobile robot. In addition, we present results on fault isolation by
generating a set of robust SRVs from these PRVs. We also verify the theoretical results

by conducting experiments on a Pioneer 3-DX mobile robot.

2. Mobile Robot Model

The three-wheeled robot, Pioneer 3-DX (Figure 5-1), is used for experiments. The
front two wheels are actuated independently by high-speed, high-torque, reversible-DC
motors, which enable differential steering. The rear wheel is a passive caster. The Pioneer
3-DX has both holonomic and nonholonomic constraints. The kinematics of the Pioneer

3-DX is characterized by three constraints on the coordinates. The first one is the knife-
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edge constraint, i.e., the mobile robot cannot move in a lateral direction. We can

represent this constraint as follows:

Y. cosg— X sing—¢@-d=0 (1)

Figure 5-1. Pioneer 3-DX mobile robot

The other two constraints are that the two driving wheels satisfy pure rolling and do not
slip, which implies:
X.cosg+ Y, sing+bd=ro, (2)
X. cosg+ Y, sing—bg=r6 3)
where, (X.,Y.)is the center of mass of mobile robot,¢ is the heading angle measured

from the x-axis, d =46mm is the distance from the center of mass of the mobile robot to

the intersection of the axis of symmetry with the driving wheel axis, 6, and §, are angular

positions of the two driving wheels, r =97.5mm is the radius of the wheel, b =190mm is
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the distance between the driving wheel and the axis of symmetry. Each DC motor is
equipped with a high-resolution optical quadrature shaft encoder for precise position and
speed sensing. The total linear speed,v, and the angular velocity, @=¢, are two
kinematic inputs to the Pioneer 3-DX.

The dynamic model of Pioneer 3-DX mobile robot is formulated using Lagrangian

formulation. From the Lagrangian method we get the following

d(aK 8KJ+ P _o @

dt\ 06, 06,) 06,
where K is the kinematic energy of the system, 6, is the Sth generalized coordinate of
the system, P is the potential energy and Q, is the corresponding generalized force.

Neglecting the wheel dynamics, which is small, compared to the dynamics of the body of

the robot, we write the kinematic energy of the Pioneer mobile robot.
K =Mcd(6, —6,)(%, cos— Y, sin ) +%Jccz 6, +6)° (5)

The detail of each term of (5) is given in Appendix I. Substituting the kinetic energy to
(4), we obtain

M (9)d+V(a,4) = E(@Qu® - A" (a)4 (6)
where q, =[x, y. 6, 6], u%= [Trg 7° ]T are the given torques applied to the two
wheels, A is the Lagrangian multiplier M(q, )e R*is the symmetric, positive definite
inertia matrix and V(q,, §, )is the vector of centrifugal and Coriolis forces.

Equation (6) can be represented into the state space as follows:

x=f"(x)+g"(X)u (7)
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where X= [XC y. 6, 6, 6. 6 ]T is the state vector. The details of each term of (7)

are given in Appendix II. Equation (6) represents the nominal model of the Pioneer 3-DX
mobile robot. We use the nominal model as in (7) to calculate the fault detection and
isolation residuals.

It is worth to mention that (7) represent the nominal model of mobile robot. In the
presence of faults, the actual actuator input and the observed sensor output can be

represented in general form by

u=u+u’; y°=Cx+y' +o0 (8)
where u9 e R?represents the fault-free input vector, u' e R? represents the actuator
fault vector, y°e R* represents the observed output vector, y' € R*® represents the
sensor fault vector and 0 represents a Gaussian-distributed white noise vector and C is the
output matrix. It is assumed that u? and y° are available for computation butu®, yf ,
and 0 are not. Magnitude of the noise is assumed to be significantly smaller then the

magnitude of faults. Under the nominal fault-free condition, u’and y'are zero vectors.
However, when either a sensor and/or an actuator fault occur in the system, u'and
y " will become non-zero. Model-plant-mismatch is represented by

f(x)=£"(x)+ f(x). g(x)=g"(x)+g"(x) ©)
where f "(x), f “(x),g"(x), and g“(x) represent the nominal and uncertain part of the

mappings f and g, respectively. Combining (7), (8) and (9), the overall system with faults

is represented by

x=g"(x)u? +e(x,u)+g"(x)uf (10)
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where e(x,u)= f(x)+g(x) (ug +u' )+ d(x,u). The vector e(xu) is called an error

vector, which contains both the uncertainty of the model and the disturbances.

3. Robust Fault Detection

We use robust nonlinear analytic redundancy (RNLAR) method to design the primary
residual vectors (PRV) to detect sensor and actuator faults in mobile robot. The detail of
this method is given in Chapter II and III. Here we mention the important steps and

equations that would be used for fault isolation as well.
We take the derivative of y° for s times and stack them together, where S is the order
of the redundancy relation.

o] [Cx+y'+o
yo | |Cx+y'+o

¥o | | Cx+y" +6

= ' (11)

LY ] [ex®+y¥ +0° ]
The right-hand side of (11) is grouped into three major components: collection of the

error terms, collection of the input terms, and collection of the states. This leads to the

following compact form:

ys=Hu +T +y! +Ge +Hu! +0o, (12)
where G, and H jare the coefficient of error terms and input terms respectively. For the
detail expression of Hg, Iy, and G, please refer to Chapter II and III. We defined

Onpp for RNLAR as follows:

Ownpp = ¥s —HsUs (13)
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First we only consider the sensor fault, this simplifies (12) into
Onpp =Ty + Vi +Gge + 0, (14)
We select a transformation matrix,W, , which is located in the left null space of T, i.e.,
WT, = [0] Pre-multiplying both sides of (14) with W, results:
R =W,0\pp =W, ! +W.G.e, +W, 0, (15)
R, is defined as the PRV for sensor fault detection.
Under the actuator fault (12) can be simplifies as
Onpp =TIy + G + Hau! +0g (16)
We select a transformation matrix,W,, which is located in the left null space of T, i.c.,
W, T, =[0]. Pre-multiplying both sides of (16) with W, results:
Rd:Wa(ys—Hsus):Wa(GSes+Hsusf +os) (17)
R, is defined as the PRV for actuator fault detection.

We can observe from (15) and (17) that both the sensor and actuator residuals are

sensitive to the faults and the uncertainty of the system. It is desirable that R, andR,

should be highly sensitive to the sensor and actuator faults respectively and mostly
insensitive to the error terms in order to be able to detect actuator fault in the presence of

modeling uncertainty. The above desired property can be translated mathematically into

the following statement: |W,Gq| is less than|W,H | for actuator residuals and W, G|
is less than ||Wr || for sensor residuals. Both G and H are system dependent matrices.

However, W, can be chosen independently from the feasible options to satisfy the above

requirement. Hence the problem becomes, select W, in such a way that |W,Gg| is less
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than |W,H| for actuator residuals and |W, G| is less than ||Wr || for sensor residuals. We

proposed a constructive theorem for designing the residuals in Chapter II and III. We

define two performance functions,

TeeT
J= w for actuator fault residual, R, and
W HH' W
T T
3 =W CCW g sensor fault residual, R , where | is the identity matrix.

S wTiTw
Based on the theorem we can state the following algorithm to findw :
Step 1. Choose a small value for K, such thatJ < K .
Step 2. Using the theorem check there exists any W that satisfy the conditions for the
choice of K.
Step 3. If there exists any W that satisfy J < K, then calculate W using the method given
in the theorem.
Step 4. If the above condition is not satisfied, then increase the value of K and go to Step
2.

We design five PRVs for sensor faults, Rf' , and five PRVs for actuator faults, R;, for

Pioneer 3-DX using the nominal model as given in (7). We stack the RPVs into a vector

as follows:
R =[R R R R R (18)
R™ =R, R R R RJ (19)

We use the PRVs in the next step for fault isolation.
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4. Robust Fault Isolation

Once faults were detected, we need to isolate the faults. This is achieved by
transforming the set of PRV into a set of structured residual vector (SRV). The SRVs are
designed such that each SRV is insensitive to a subset of faults but most sensitive to the
other faults. We discuss the sensor fault isolation first.

We select an incidence matrix to characterize the SRVs. It is pointed out in [13] that
the selection of incidence matrix is dependent on the number of faults to be isolated, the
system order n, and the number of outputs m, and is not unique. For faults, we assume
that only one is present in the system at a time. The occurrence of faults, in general, is not
very frequent, and also we assume that any fault gets repaired before another one appears.
The Pioneer mobile robot is represented using six states as in (7) and has two inputs. For
Pioneer sensor fault detection we chose an incidence matrix as given in Table 5-1. A
“0”at an intersection in the incidence matrix indicates that one SRV is insensitive to a
specific sensor fault, while “1” indicates that the SRV is most sensitive. The number of
rows corresponding to the SRVs is selected to be three, because there are three sensors in
the Pioneer mobile robot. It is pointed out in [14] that for the isolation of a single faulty
sensor the number of SRVs is usually selected to be equal to be the number of total
sensors. If the former is less than the latter, each faulty sensor may not be isolated. With
such an incidence matrix, a faulty sensor can be isolated by observing how the three
SRVs respond to the fault. For instance, if SRV1 is unaffected but SRV2 and SRV3 are

affected by the fault, then it can be inferred that the first sensor is faulty.
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Table 5-1: Incidence matrix for sensor fault isolation

Sensor 1 Sensor 2 Sensor 3
SRV 1 0 1 1
SRV2 1 0 1
SRV3 1 1 0

The SRVs are calculated by pre-multiplying a transformation matrix, S, with (18)
rsi = Sls RrPRV = S:iiWrPR'VONDD = SisWrPRV ysf + SisWrPRV Gees + SisWrPRV Os (20)
where V\/rPRV is the stacked vector and the indices i indicates the i"™ SRV. Designing a set

of SRVs is equivalent to selecting a transformation matrix, S, such that i SRV is

unaffected by the i™ sensor fault, highly sensitive to the rest of the sensor faults and
mostly insensitive to the error terms. For a general system define,

W, =[\Nr(:,i) W, (:,i +m) Wr(:,i+ms)] Vi=[1,m] where W, (;, j) for 1< j<msis the j™

column of W, . Also, Wrﬁ represent the W, matrix without W, ; columns. Mathematically,

we can write the SRV design conditions as follows:

1) SW =0,i.e.,i" SRV is unaffected by the i sensor fault

2) [SIWPRVG

SIW;;

is less than

, 1.e., transformation matrix, S is more sensitive

to the rest of the sensor faults and mostly insensitive to the error terms.
The condition (2) is the robustness problem in SRV design. We define a performance

index, Jg given as below, to characterize this robust problem.
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SISWI‘ PRY G S
SIW

S=

We need to find a suitable Sithat minimizesJ and satisfy the condition (1). The
algorithm of calculating W, can be directly applied here to the calculation of a suitable
SiS with W, G, and | replaced with SiS , VVrPRVGS, and V\/,LI respectively.

A similar idea is used for actuator fault isolation. There are two inputs to the Pioneer
mobile robot. Hence, two SRVs will be sufficient to isolate two actuator faults. The
incidence matrix we chose for actuator fault isolation is given in Table 5-2. The SRVs for

actuator fault isolation are calculated by pre-multiplying a transformation matrix, S, of
(19)

rail = Sia R;DRV = Sfi:IWaF’RVONDD = SiaWaPRV H susf + S;WaPRV Gses + S;WaPRVO 21)

S

where W™ is the stacked vector and the indices i indicates the i" SRV.

Table 5-2: Incidence matrix for actuator fault isolation

Actuator 1 | Actuator 2

SRV1 0 1

SRV2 1 0

We Define, WH, =Q, Q™ =[Q(,,i) Q(,i+m) Q(,i+ms) Vi=[l,m], and
Qi represent the Q matrix without Q,; columns. The SRV design conditions for actuator

fault isolation are as follows:
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1) S.Q™ =0 i.e.,i"™ SRV is unaffected by the i actuator fault

SW, ™G,

<

1AL : . . .
SQ H i.e., transformation matrix S, is more sensitive to the

2) |
rest of the actuator faults and mostly insensitive to the error terms.
We define the following performance index for actuator fault isolation
SWPR G,
iL
S:Q'|

J =

a

The algorithm of calculating SiS can be directly applied here to the calculation of a

suitable S, with S., WG, and V\/rlI replaced with S, Q™ and Q" respectively.

5. Experimental Results

We perform experiments on Pioneer 3-DX mobile robot to detect both the sensor and
actuator faults. We make the following remarks before presenting the results:

1) We assume only one fault happen at a time, be it sensor or actuator fault.

2) We developed the dynamic model of the mobile robot in Section 2 as given in (7).
We use (7) to calculate the PRV and SRV for fault detection and isolation
respectively. The imprecise calculation of kinematic value of mobile robot, and the
mismatch dynamics contribute to the error term and the friction in the system
contributes to the disturbances.

3) To calculate the residuals as in (15) and (17) we run the model (7) in parallel with
the Pioneer mobile robot. We use the nominal model (7) to calculate the

terms, G, Hg, and r_ while the input and the output are obtained directly from

the experimental data. The input to the mobile robot is velocity but we need the
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torque input for the residual calculation. The controller in the mobile robot server
calculates the error velocity based on the desired and actual velocity and multiple
with constant for PID controller to generate the input to the driving motors. We
select the following PID gains: P=20, =15 and D=7 for the experiments. Based
on this PID gains and the velocity error term we calculate the input torque to the
mobile robot and use that value for residual calculation.
4) Player [18] is used to control Pioneer 3-DX mobile robot.
5) In the experiments, the mobile robot performed a straight-line trajectory-tracking
task.
6) In the experiments the mobile robot tracks a straight line trajectory using a
kinematic level PID controller with the following PID gains: P=12, =0 and D=0.
We should mention that the residuals are independent of the choice of the

controller.

5.1 Sensor Fault Isolation Results

There can be different kind of faults in the sensor. In [13] some of the common sensor
faults are mentioned. We consider partial sensor faults, which is very common in
practical situation, to demonstrate the fault detection and isolation methods describe in
this paper. A partial sensor fault is the one where encoder reflects only a fraction of the
actual value. This type of fault occurs when there is an offset or bias in the sensor
reading.

There are three sensor outputs, X., Y., and ¢. We introduce partial sensor faults in

each of them but not at the same time. The partial sensor faults were introduced by
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multiplying the sensor outputs with 0.75 after 11 seconds of operation. We design five
different fault detection residuals for sensor faults using the dynamic model of the mobile
robot. Based on the fault detection residual we design three different SRVs. We present
the SRV outputs under each sensor faults. A threshold value is assigned for each SRV.
First we introduce partial fault in the X_output at 11 seconds. The three SRV outputs
are shown in Figure 5-2. The response of the three SRVs to the first sensor fault can be
characterized by the [O 1 1], where “0” indicates SRV values are under the threshold

value, and “1” indicates that the SRV values are above the threshold value. Using Table

5-1, we can conclude that the first sensor is faulty.

100 — 1 1
Z 0
m 1 1 1 1 1 1 1 1
N S T A N S N A N
0 2 4 6 8 10 12 14 16 18
x 10°
5 : T 1 1 1 1 1 1
0 : |\
% ; |
£ i | | | | | | |
0 2 4 6 8 10 12 14 16 18
x 10°
1 1 T 1 1 1 1 1 1
U -
p i i i i i i i i
0 2 4 6 8 10 12 14 16 18
Time (sec)

Figure 5-2. SRV outputs with first sensor fault
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Next, we introduce the fault at 11 seconds in second sensor, i.e.Yy,. We run the
experiments under the same condition as before and register the output from the three
SRVs. The SRV outputs are given in Figure 5-3. We characterize the response of the
three SRVs to the second sensor fault by [1 0 1], where “0” and “1” indicate that the

SRV values are under and above the threshold value respectively. Based on Table 5-1, we

can conclude that the fault in second sensor is isolated correctly.

1o S

ol
0

2 4 B 8 10 12 14 16 18
ol | | | | | | | |
E 100
wl 0
100 i i i i i i i i
0 2 4 B a 10 12 14 16 18
Time (sec)

Figure 5-3. SRV outputs with second sensor fault

Finally, we introduce the fault in third sensor, ¢. The three SRV outputs for third
sensor fault are shown in Figure 5-4. The response of the three SRVs to the third sensor

fault can be characterized by the [1 1 0].In this case as well we isolate the third sensor

119



fault correctly. The above results successfully demonstrate the effectiveness of the fault

1solation method in a mobile robot.
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0 2 4 B 8 10 12 14 16 18
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Figure 5-4. SRV outputs with third sensor fault

5.2 Actuator Fault Isolation Results

In [19] various types of actuator faults are discussed that are relevant for a mobile
robot operation. We choose partial actuator fault where one actuator generates only a part
of the desired torque to demonstrate the proposed fault isolation method. This type of
fault represents degradation in the actuator system (e.g., friction due to jamming,
problems in transmission etc.). Two DC motors are used to actuate the Pioneer mobile
robot. We introduce partial actuator faults both in right and left motors but not at the

same time. In the experimental set-up the partial actuator faults were introduced by

120



changing the velocity inputs by 0.85% after 11 seconds of operation. We design two
SRVs to isolate two actuator faults.

We introduce the fault at 11 seconds in the first actuator, which is the right side
motor. The two SRV outputs are shown in Figure 5-5. We characterize the SRV outputs

as[0 1]. Based on the SRV outputs and Table 5-2 we can observe that the first actuator

fault is clearly isolated.

20 : : : : : : : :

SR
=

50 | | | |
0
100 : : : : : : : :
0
o
= -100
w
-200
300 i i i i i i i i
0 2 4 6 8 0 12 14 16 18
Time (sec)

Figure 5-5. SRV outputs with first actuator fault
Finally, we introduce the fault in second actuator at 11 seconds. The SRV outputs
under second actuator fault are given in Figure 5-6. Under the second actuator fault the

SRV outputs is characterized as[0 1]. The results demonstrate that the second actuator
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fault is isolated clearly. We conclude that the presented fault detection and isolation

method is effective under MPM and disturbance and applicable to the mobile robot.
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Figure 5-6. SRV outputs with second actuator fault

6. Conclusion
A robust method for the detection and isolation of sensor and actuator faults is
presented in this paper. The proposed robust nonlinear analytic redundancy method was
experimentally verified on a Pioneer 3-DX mobile robot. The results show that both
sensor and actuator fault detection and isolation are possible in the presence of MPM and
disturbances. Future work includes detection and isolation of multiple and incipient

faults.
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