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CHAPTER 1 

1. INTRODUCTION 

1.1. DENSITY FUNCTIONAL THEORY (DFT) 

The properties of materials are ultimately determined by the arrangement of their 

constituent atoms. Crystallography provides information that identifies the lattice of a crystalline 

material, but one relies on atomic-resolution microscopies to provide structural information for 

complex nanostructures, e.g., the presence of interfaces, dislocations, even point defects and 

point-defect clusters. Density functional theory (DFT) is a great complement to these 

microscopies because, by minimizing the total energy with respect to atomic positions, it can 

provide candidate structures and candidate defects for comparison. Once the structure is 

established, DFT calculations can provide predictions for electronic, optical, and magnetic 

properties, the properties of interfaces and defects, etc. 

DFT addresses the question of solving Schrödinger's equation for a many-electron system, 

atoms, molecules, and solids. The first step in the process is to adopt the Born-Oppenheimer 

approximation, which allows for the separation of the motion of the electrons and the atomic 

nuclei. This separation is made possible by the difference in the masses of the two being several 

orders of magnitude. The Born-Oppenheimer approximation decouples the electronic and 

atomic motion of the particle, allowing each to be calculated separately, thus greatly reducing 

the number of interactions that need to be calculated. 

By allowing Schrödinger's equation to be solved using a fixed spatial configuration of the atomic 

nuclei, the Born-Oppenheimer approximation also lays the ground work for the iterative solving 
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of Schrödinger's equation. Even using the Born-Oppenheimer approximation, it is still not 

practical to solve directly the many-electron equation, which has the form  

�̂� = − ∑
ħ𝟐

𝟐𝒎
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𝑵
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𝑵𝒊
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𝜷=𝜶+𝟏

𝑵𝒊

𝜷=𝟏

 (1-1) 

Where 𝑟 are the electron coordinates and 𝑅 are the ion coordinates. Historically, the next 

important simplification was made by Hartree, who replaced the many-electron wave function 

by a product of single-electron functions: 

𝚿(𝒓𝟏, 𝒓𝟐, ⋯ , 𝒓𝟐) = 𝝍𝟏(𝒓𝟏)𝝍𝟐(𝒓𝟐) ⋯ , 𝝍𝑵(𝒓𝑵), ( 1-2 ) 

accompanied by a normalization constraint. The potential that appears in the resulting one-

electron Schrödinger equation depends on the one-electron wave functions themselves, calling 

for a self-consistent solution, i.e., the equation is solved by feeding a solution back into the 

original equation until the resulting solution does not change. The Hartree method was found to 

accurately represent the atomic orbitals but the energies were highly inaccurate. The difficulty 

arises because the Hartree method does not satisfy the Pauli exclusion principle. This difficult 

was eliminated by John C. Slater and Vladimir Fock in what is now called the Hartree-Fock method 

by approximating the wave function as a single Slater determinant of one-particle orthonormal  

orbitals:  

𝚿(𝒓𝟏, 𝒓𝟐, … . , 𝒓𝑵) = [
𝜳𝟏(𝒓𝟏) ⋯ 𝜳𝟏(𝒓𝑵)

⋮ ⋱ ⋮
𝜳𝑵(𝒓𝟏) ⋯ 𝜳𝑵(𝒓𝑵)

] ( 1-3 ) 
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This method still produces energy-level results that are relatively inaccurate, although more 

accurate than the Hartree method. 

In 1930 Paul Dirac presaged density functional theory (DFT) in a paper titled “Note to 

exchange phenomena in a Thomas Atom”[1] as follows: “Each three-dimensional wave function 

will give rise to a certain electric density. This electric density is really a matrix, like all dynamical 

variables in the quantum theory. By adding the electric densities from all the wave functions, we 

can obtain the total electric density for the atom. If we adopt the equations of the self-consistent 

field as amended for exchange, then this total electric density (the matrix) has one important 

property, namely, if the value of the total electric density at any time is given, then its value at 

any later time is determined by the equations of motion. This means that the whole state of the 

atom is completely determined by this electric density; it is not necessary to specify the individual 

three-dimensional wave functions that make up the total electric density. Thus one can deal with 

any number of electrons by working with just one matrix density function”. The key point is that 

“it is not necessary to specify the individual three-dimensional wave functions that make up the 

total electric density”, but he makes this assertion without proof.  

In 1964, Hohenberg and Kohn[2] proved the necessary ground-breaking theorem, 

showing that the ground-state total energy of a many-electron system is uniquely determined by 

the ground-state electron density. The total energy can then be written in the form 

𝐄[𝒏(𝒓)] = 𝑻𝒔[𝒓] +
𝒆𝟐

𝟐
∫

𝒏(𝒓)𝒏(𝒓′)

∣𝒏(𝒓)
𝒅𝒓𝒅𝒓′ + 𝐄𝒙𝒄[𝒏(𝒓)] + ∫ 𝒗(𝒓)𝒏(𝒓)𝒅𝒓 , (1-4) 
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where  

is the kinetic energy. The second term is known as the Hartree energy, EH. 𝐸𝑥𝑐 is referred to as 

the exchange-correlation energy functional. The electron density n(r) is then constructed from 

one-electron wave functions that satisfy a Schrödinger equation in which the effective one-

electron potential has a Hartree and an exchange-correlation term. DFT has since been 

established as the method of choice for electronic structure calculations and optimizations of 

atomic structures in solids and complex nanostructures. Walter Kohn was awarded a share of the 

Nobel Prize in Chemistry in 1998 for the development of DFT. In most cases, DFT is used in 

conjunction with pseudopotentials, whose purpose is to remove the core electrons from the 

calculation by replacing their effect by an effective potential. In this thesis we will use DFT 

calculations as a complement to algorithms that are developed for automated analysis of atomic-

microscopy images of materials, including defect identification.   

𝑇𝑠[𝑟] = ∑ ⟨𝜓𝑖|−
ħ2

2𝑚𝑒
∇2|𝜓𝑖⟩

𝑖

 (1-5) 
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Figure 1-1 shows how to solve the DFT Kohn and Sham equations using a plane wave basis set.  If 

E𝑥𝑐 was known exactly, then it would be possible to calculate the exact many-body total energies. 

However the exact form of E𝑥𝑐 is not known and instead approximations based on the exchange-

correlation energy of a homogeneous electron gas as a function of density are used. The simplest 

 

Figure 1-1: Diagram showing the process to calculate the total energy using DFT with a plane-

wave basis set. 

Generate trial density n(r)

Generate V(r) based on identity and positions of ions

Calculate new density n(r)

Calculate and 

Solve 

Set planewave cutoff, setting basis set {

is n(r) self consistent?

Calculate total energy Generate new n(r)

Yes No



 

6 
  

approximation is the Local-Density Approximation (LDA)[3], which adopts the expression for E𝑥𝑐 

for a homogeneous electron gas and evaluates it for the materials n(r) at each position r. A more 

elaborate approximation is the Generalized-Gradient Approximation (GGA) which depends not 

only on the local density but also on its local gradient [4], [5].  

DFT captures all interactions that lead to chemical bonding via overlapping wave 

functions. Atoms can, however, interact even with negligible wave function orbitals by inducing 

dipoles in each other, which then lead to dipole interactions. These are known as van der Waals 

(vdW) interactions. They are important in layered materials, e.g., graphite or MoS2, as they are 

responsible for holding the layers together. They are usually included as a semiempirical 

correction to the total energy 

𝐸𝑇 = 𝐸𝐷𝐹𝑇 + 𝐸𝑣𝑑𝑊 (1-6) 

where  𝐸𝑇 is the total energy, 𝐸𝐷𝐹𝑇 is the DFT total energy as in Eq. (1-4), and 𝐸𝑣𝑑𝑊 is the 

correction to the total energy. In one of the commonly used forms[6],  𝐸𝑣𝑑𝑊is defined by  

Here  𝑆6  is a scaling factor,  𝑁𝑎𝑡 is the number of atoms, 𝐶6
𝑖𝑗

 is the dispersion coefficient for a 

pair of atoms, 𝑅𝑖𝑗 is the interatomic distance between at a pair of atoms and 𝑓𝑑𝑚𝑝 is a dampening 

force defined by 

𝑓𝑑𝑚𝑝 (𝑅) =
1

1 +  𝑒−𝑖∝(𝑅/𝑅0−1)
. 

(1-8) 

𝐸𝑣𝑑𝑊 =  − 𝑆6 ∑ ∑
𝐶6

𝑖𝑗

𝑅𝑖𝑗
6 𝑓𝑑𝑚𝑝 (𝑅𝑖𝑗)

𝑁𝑎𝑡
𝑗=𝑖+1

𝑁𝑎𝑡−1
𝑖=1 . 

(1-7) 
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where 𝑅0 is the sum of atomic van der Waals radii. The reason this damping force is chosen is 

because for small R it approaches zero fast enough that non-van-der-Waals bonds are not 

effected significantly.  

1.2. SCANNING TRANSMISSION ELECTRON MICROCOPY (STEM) 

  Scanning Transmission Electron Microcopy (STEM) is an imaging technique that is capable 

of imaging a crystalline material’s atomic structure based on an intensity that is roughly 

proportional to the square of the total atomic number (Z) in each atomic column[7]. STEM has 

been used to provide sub-angstrom resolution of individual atoms [8]–[10].  STEM works by 

focusing an electron beam into a tiny probe and then scanning it across the material. As the 

electron beam passes through the sample, it interacts with atoms in the material, causing 

 

Figure 1-2: As the probe interacts with the sample, the electrons are scattered at different 

angles (based on the atoms the beam interacts with). The scattered elections are then 

collected by the detectors. Electrons scattered at low angles can be collected by either a 

detector or a spectrometer.  
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electrons to be scattered. These scattered electrons are collected by a series of detectors or a 

spectrometer and this information is then used to construct an image of the material (Figure 1-2).  

When then beam interacts with atomic columns it scatters at high angles and the electrons are 

collected by detectors. Images reconstructed with information from these detectors are referred 

to as annular dark field (ADF) and high annular dark field (HADF) images . The electrons that pass 

through the sample without interacting with atoms can also be collected by a separate removable 

detector. Images reconstructed with information from low angle scatter are referred to as bright 

field (BF) images. Instead of using the removable detector to capture the low-angle electrons, a 

spectrometer can be used, which registers electron-energy loss spectra (EELS). 

Bright field images tend to be hard to interpret as they depend on the sample thickness 

and the amount of defocus. Atoms can appear either darker or brighter than the background. 

The images formed from the dark field images are much easier to interpret, with bright atoms on 

a dark background. The intensity of the atoms is proportional to Z2, where Z is the total atomic 

number in the column of the atom (Figure 1-3).  The proportionality to 𝑍2 is due to electrons 

passing close to the nucleus of an atom to undergo Rutherford scattering.  As lower angles of 

scatter are added into the construction of the image, the intensity proportionality starts to move 

from 𝑍2 towards Z. The ease with which atoms or atomic columns can be identified and atomic 

composition compared makes dark field images the preferred imaging technique in many 

applications. 
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The electron beam begins with the acceleration of electrons from a source. The faster 

electrons are traveling, the smaller their wavelength is, according to the de Broglie equation, 

resulting in higher resolution images. Due to this effect, very high energy sources tend to be used 

and, in the days before aberration corrections, these could get into the megavolt. However, high-

energy electrons can damage the sample and cause the sample to undergo changes in the 

structure. Most modern STEMs operate between 60-300 kV. As mentioned, aberration correction 

has allowed for microscopes with higher resolution without requiring megavolt sources. Modern 

aberration-corrected STEMs (Figure 1-4) can achieve sub Angstrom resolution.  

 

Figure 1-3: Dark field image of Re doped MoS2, this image contain atomic columns of three 

different intensities. Atomic columns containing S2 having the lowest followed by Mo and 

finally Re having the highest intensity 

Image courtesy of Shize Yang, Wu Zhou, and Matthew F. Chisholm 
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Figure and caption taken from: Varela, M., et al. "Materials characterization in the aberration-

corrected scanning transmission electron microscope." Annu. Rev. Mater. Res. 35 (2005): 539-

569. 

Figure 1-4: Simplified schematic of an aberration-corrected STEM; examples of electron 

trajectories are indicated. In the (quadrupole-octupole) aberration corrector, the different 

trajectories in the XZ and YZ planes are indicated with dotted and solid lines, respectively. The 

electrons are accelerated from the gun; condenser lenses are used to adjust the beam current 

and beam coherence and to couple to the aberration corrector. The objective lens focuses the 

probe, which is scanned across the sample by the scan coils. The high-angle detector collects 

electrons scattered to high angles. Removable bright field and Ronchigram detectors are shown 

as well as the important components of the spectrometer. 
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1.3. SCANNING TUNNELING MICROCOPY (STM) 

Scanning Tunneling Microcopy (STM) is a surface imaging technique that works by bringing a 

small metal tip close enough to the surface of a material that the vacuum tunneling resistance 

between surface and tip becomes measurable. The tip is then moved along the surface 

maintaining a uniform tunneling resistance by adjusting the height of the tip. By mapping the 

height of the tip across the surface a detailed map of the surface can be produced. This was first 

done in 1982 by Gerd Binnig and Heinrich Rohrer at IBM’s Zurich Research Laboratory. They 

successfully mapped the surface of both gold and CaIrSn4. The importance of this 

accomplishment was recognized in 1986 when the Nobel Prize in Physics was awarded to Binnig 

and Rohrer for the scanning tunneling microscope. 

One of the first major discoveries achieved using a STM was the determination of the 

structure of silicon (111) surfaces[11] (Figure 1-5). Images produced by Binnig and Rohrer showed 

that Si(111) has a rhombohedral unit cell with sixfold rotational symmetry.  Until 2001, STM was 

performed under ultrahigh vacuum. In 2001, Lars Österlund created an STM that operated at up 

to 1 bar of pressure. This feature allowed the STM to study the surfaces of materials undergoing 

a chemical reaction due to gas being inserted into the chamber.  Österland used this new STEM 

to study how a copper surface reacts with hydrogen gas.  

While the material of the tip seems to have little impact on the technique, with W, Mo, 

and stainless steel tips producing similar results. However the shape of the tip can greatly affect 

the image[12].  The shape of the tip was shown to not only affect the resolution but can also 

cause different shapes to be seen for the same object. This is important as the shape of the tip  
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Figure and caption taken from : Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. 7 × 7 Reconstruction on 

Si(111) Resolved in Real Space. Phys. Rev. Lett. 1983, 50, 120–123. 

Figure 1-5:  Modified adatom model. The underlying top layer atom positions are shown by dots, and 

the rest atoms with unsatisfied dangling bonds carry circles, whose thickness indicates the depth 

measured as discussed in the text. The adatoms are represented by large dots with corresponding 

bonding arms. The empty potential adatom position is indicated by an empty circle in the triangle of 

adjacent rest atoms. The grid indicates the 7x 7 unit cells. 
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can be changed by its interaction with the surface or if the force applied to the tip is too high.  

For materials with many ledges that can potentially damage the tip, a different method of 

imaging is used. Instead of directly sweeping the tip across the surface, the tip oscillates up and 

down on a cantilever. By measuring the resonant frequency of the tip at every point along the 

surface, it is possible to reconstruct an image of the surface. 

While it was designed to study the surface of materials, the STM has proven to be a very 

versatile tool. It has been used for many applications, including using the tip to arrange atoms 

into patterns on the surface of a material, to measure the lifetimes of surface electrons, and to 

image the electronic orbitals of molecules[13].  The STM has also been used to move atoms on a 

surface and form artificial structures. In theory, an STM can even be used to build a material atom 

by atom [14]. 

1.4. DEFECT IDENTIFICATION. 

In STEM images, defects within atomic columns change the intensity of the atomic 

column. This change is because the intensity of the atomic columns is roughly proportional to the 

square of the sum of the atomic numbers Z of all of the atoms in the atomic column. Any change 

in the type or number of atoms in the column changes the Z-squared and hence the intensity 

(Figure 1-6). This change can be detected by measuring the intensity at the center of all of the 

atomic columns. Any atomic columns with an intensity that differs from the rest potentially 

contains a defect. When an atomic column has multiple vacancies or dopants with a greatly 

different Z, the change in intensity is easy to detect.  This method suffers from the problem that 
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the intensity change from surface contamination and noise can be much greater than the  

intensity change caused by defects.  For a single defect, this intensity change might not be 

detectable due to the small percent change in the intensity of the atomic column.  

Honggyu Kim and Jie Feng [15], [16] showed that in an atomic column, defects cannot 

only be detected by the change in the intensity of the atomic column but also by the effect they 

cause on neighboring atomic columns (Figure 1-7). By very carefully measuring the distance 

between neighboring atomic columns in the lattice, it is possible to detect the presence of a single 

defect in an atomic column. Along with being able to detect the presence of the defect, it is 

possible to use the magnitude of the movement of neighboring atomic columns to determine the  

 

Figure 1-6 : STEM Image of Silicon (Z =14). Atomic columns with much higher intensity contain 

Bismuth (Z = 83) dopants.  The image also demonstrates that surface contamination can alter 

the intensity of atomic columns that do not contain any defects. 

Image courtesy of Andrew R. Lupini and Bethany M Hudak 
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Figure and caption taken from: Jie Feng, Alexander V. Kvit, Chenyu Zhang, Jason Hoffman, Anand 

Bhattacharya, Dane Morgan, P. M. V. Imaging of Single La Vacancies in LaMnO3. 

Figure 1-7 STEM image of LaMnO3 and simulations of visibility and atomic column displacements. (A) 

Relaxed crystal structure of LaMnO3 by DFT. (B) Experimental HAADF STEM image on a 6.5 nm thick 

specimen along [100], with matching simulated image (white box) and projected LaMnO3 unit cell. 

Displacements of the La-O columns due to a single La vacancy in the center are shown schematically 

by white arrows. (C) Simulated visibility of a single La vacancy in a 10 nm (solid) and 18 nm (dash) thick 

LaMnO3 specimen. (D) Simulated ∆S caused by a single La vacancy in a 10 nm thick specimen. 

Definitions of S1 and S2 are shown in the inserted HAADF image. (E) Simulated intensity of the electron 

probe as it propagates along a La-O [100] column. Yellow is higher intensity. 
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depth of the defect within the atomic column. These deviations from the ideal lattice can be 

easily measured and are not affected by surface contamination and noise. The largest downside 

of this method is that it can only detect defects relatively close to the surface of the imaging 

plane, in contrast to using the change in the intensity of the atomic column.  

Alex Belianinov [17] showed that by mapping the location of the neighboring atomic 

columns it is possible to detect defects. Unlike Honggyu Kim and Jie Feng, who measured the 

average distance between neighbors and looked at deviations from this to find defects,  

Belianinov took the relative positions of the neighboring atoms and then applied Principal 

Component Analysis (PCA) to map the ideal lattice and statistical deviations from the lattice. This 

method visualizes even tiny changes in the atomic column positions caused by defects, grain 

boundaries, and other perturbations that affect the lattice. This approach requires 

interpretations of the outputs to find and determine the source defect. This method requires the 

user to manually assign a number of neighbors beforehand (Figure 1-8). On top of this, multiple 

defects can be represented in the same output map, potentially hiding them. 

 Defects that can be detected with the human eye, such as defects in 2D materials, tend 

to be identified using a human user. As the human eye and mind are very well suited to this task, 

it is often easiest to rely on the user to identity and classify the defect in question. Some methods 

exist to automate this procedure. These include overlaying the ideal lattice onto the image. This 

ideal lattice can be manually generated, as was explained in atomic-column identification, or 

automatically by using the Fourier transform of the positions to find the lattice vectors. Another 

method is through tracing of the lattice vector as shown by Zheng Liu[18]. An initial atomic 
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column is chosen and a lattice vector is given. From the location of the first atomic column, the 

lattice vector is followed and an atomic column is searched for near the  predicted location. If an 

atomic column is found at this location then no defect is thought to exist (Figure 1-9). The lattice 

vector is updated to be the path between these two atomic columns, and the process is repeated.    

 

Figure and caption taken from : Belianinov, A. et al. Identification of phases, symmetries and 

defects through local crystallography. Nat. Commun. 6, (2015). 

Figure 1-8: (a) First eigenvector, in the upper left, and a corresponding loading map. (b) 

Second eigenvector, in the upper left, and a corresponding loading map. (c) Third eigenvector, 

in the upper left, and a corresponding loading map. (d) Fourth eigenvector, in the upper left, 

and a corresponding loading map. (e) Fifth eigenvector, in the upper left, and a corresponding 

loading map. (f) Sixth eigenvector, in the upper left, and a corresponding loading map. 
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Figure and caption taken from: Liu, Z. et al. Identification of active atomic defects in a 

monolayer tungsten disulphide nanoribbon. Nat. Commun. 2, (2011). 

Figure 1-9: (a, b) Dynamic process of the atomic defects created at S sites. (a) Edge-atom loss 

of S and (b) vacancy creation. (c) Simple W monovacancy and (d) W vacancy with a large 

distortion in the surrounding lattice. The open blue arrows indicate the loss of S atoms and 

the red open arrows indicate W vacancies. Scale bar, 0.2 nm 
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1.5.  ATOMIC COLUMN ISOLATION AND LOCALIZATION 

The simplest method, and most likely the first method used for the identification of 

atomic columns, is through the use of a human to manually identify and mark the positions of 

every atom in the image. This method relies on the ability of the human user to be able to identify 

and accurately mark the center of an atomic column. The problem with this method is that it is 

extremely slow, non-reproducible, and not particularly accurate in determining the centers of 

the atomic columns.  

The next simplest method to determine the centers of atomic columns is to overlay a grid 

onto the image and then refine the positions in the grid. This procedure works by selecting the 

edge atoms of the grid and figuring out how many atoms are along each edge of the lattice. A 

lattice is constructed and overlaid on to the image using this information. In general, the atomic 

column positions in this lattice are not perfectly set on top of the centers of the atomic columns 

and require some form of position refinement.  This refinement process can run into difficulties 

if the center of the atomic column is greatly different than what the lattice predicts.  

A more sophisticated method to identify atomic columns is through the use of cross-correlation 

with a 2D Gaussian, developed by James LeBeau[19]. This scheme utilizes a sliding window, which 

removes a small section of the image with a set width given by[20], [21] 

where A is the original image matrix and C is the submatrix of pixel values with a width w being 

extracted in relation to i, j from A . This window is then run through a 2D cross-correlation 

𝐶 = 𝐴𝑖:𝑖+𝑤,𝑗:𝑗+𝑤, (1-9) 
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𝑩𝒊,𝒋 =
∑ ∑ (𝐶𝑚𝑛−�̅�)(𝐺𝑚𝑛−�̅�)𝑛𝑚

√(∑ ∑ (𝐶𝑚𝑛−�̅�)2
𝑛𝑚 )(∑ ∑ (𝐺𝑚𝑛−𝐺)2

𝑛𝑚 )
, (1-10) 

where G is a 2D Gaussian. This procedure is repeated for every possible pixel in the image. It is 

combined with filtering techniques that remove noise such as the Wiener filter[22] to produce a 

de-noised image. This image is then used to find the atoms through methods such as intensity 

thresholding of the image [23].   

A further method for the identification of atomic columns in STEM images can be seen in 

the work of Suhas Somnath[24]. This again works through a sliding window as shown in equation 

(1-9). However, these sliding windows are collected together and then run through a Singular-

Value Decomposition (SVD) [25].  The results of the SVD are then run through the K-means 

clustering algorithm [26]. The results of K-means clustering are then again clustered together to 

find the locations of the atomic columns (Figure 1-10).  
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Figure and caption taken from: S. Somnath et al., “Feature extraction via similarity search: 
application to atom finding and denoising in electron and scanning probe microscopy 
imaging,” Adv. Struct. Chem. Imaging, vol. 4, no. 1, p. 3, 2018. 
 
Figure 1-10: Schematic illustrating the fundamentals of the singular value decomposition 

(SVD)-based image denoising technique and the pattern matching-based techniques for 

identifying atoms in images. (a) The denoising process starts with sliding a small window 

across the given image column-by-column and then row-by-row. (b) A stack of (N − m) 2 

windows, each with m × m pixels, is built by copying the contents of the window at each 

location. (c) This 3D stack of windows is fattened to a 2D matrix by fattening the m × m pixel 

windows to 1D arrays with m2 elements. SVD is performed on this 2D matrix to decompose 

the data into the most correlated and least uncorrelated (noise) components. The image is                         

_ 
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1.6. IMAGE FILTERING 

1.6.1. Gaussian filtering   

The most common form of image filtering used in STEM imaging is Gaussian filtering. In 

STEM, Gaussian filtering refers to a matrix convolution between the image and a 2D Gaussian 

defined by 

The Gaussian matrix tends to be a square matrix and is centered at 0 and extended to ±S with S 

typically being a multiple of σ. A matrix convolution is the process of multiplying two matrices of 

same dimensionality but of vastly different size.  Matrix convolution works by aligning the smaller 

matrix in the corner of the larger matrix then sweeping the smaller matrix in each dimension, 

𝑮(𝒙, 𝒚) =
𝟏

𝟐𝝅𝝈𝟐 𝒆
−

𝒙𝟐+𝒚𝟐

𝟐𝝈𝟐 . 
(1-11) 

  

denoised by reconstructing the 2D matrix in c with only the most correlated SVD components 

and reversing the steps from c to a. (d) K-means clustering on the SVD results groups pixels 

exhibiting similar trends together in a cluster label map. Representative examples of repeating 

patterns or motifs in the label map are selected for pattern matching. (e) Each motif is 

compared to every section in the label map to generate a pattern matching scores’ map. Each 

continuous-valued scores map is thresholded to generate binary maps with segments and the 

centroids of these segments provide the coordinates of the repeating patterns such as atoms 
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multiplying at each possible step. For the purposes of Gaussian filtering, this operation is defined 

by  

𝑩(𝑴′, 𝑵′) = ∑ ∑ 𝑨(𝑴′ + 𝒊, 𝑵′ + 𝒋)𝑮(𝒊, 𝒋)

𝒏

𝒋=𝟏

𝒎

𝒊=𝟏

 (1-12) 

where A is the original-image matrix and B is the filtered-image matrix. Due to the nature of the 

matrix convolution, the size of B is smaller than A by 2S in each dimension. 

1.6.2. Density-based clustering  

Density-based clustering uses a simple iteration between neighbors or “handshake” to 

cluster pixels together. In this method, a seed pixel (any pixel of value one) is chosen randomly 

and this pixel then “shakes hands” with all pixels of value one within its reach and they in turn 

attempt to “shake hands” with any pixels of value one within their reach; this process continues 

until no more “handshakes” are possible. At this point, all pixels that are “shaking hands” are 

grouped together to form an atomic column and are removed from the image, after which a new 

seed pixel is chosen. This procedure is then combined with a simple criterion that any cluster 

smaller than a few pixels is assumed to be a false positive. The use of density-based clustering 

and a minimum requirement for the number of pixels that would be considered an atomic 

column allows for the exclusion of noise and false positive pixels.  

1.6.3. Hough transform  

The Hough transform is a useful algorithm that was originally introduced to help identify 

lines in an image and has since been extended to circles, ellipses, etc.   The Hough transform was 

first used to identify lines in images and works by defining any straight line as  
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𝒚 = (−
𝐜𝐨𝐬 𝜽

𝐬𝐢𝐧 𝜽
) ∙ 𝒙 + (

𝒓

𝐬𝐢𝐧 𝜽
). 

 (1-13) 

This equation defines any possible line using a unique (r,θ). The Hough transform works by 

creating a parameter space that spans all r and θ (Hough space). It then fills this parameter space 

by using the inverse of the function of a line.  To find the inverse of (1-13), we simply rearrange 

the equation to find r as a function of θ at fixed values of x and y  

𝒓𝑯 = 𝒙𝒊 ∙ 𝐜𝐨𝐬 𝜽𝑯 + 𝒚𝒊 ∙ 𝐬𝐢𝐧 𝜽𝑯. (1-14) 

Equation (1-14) transforms any point (𝒙𝒊, 𝒚𝒊) in real space into a curve r() in Hough space. The 

curve represents all possible lines that could contain the point (𝒙𝒊, 𝒚𝒊) in real space. Two curves 

overlap in Hough space at the values of (r,θ) for the line that connects them. If three or more 

curves overlap at a single point this means that all these points in real space lie on the same line. 

To find a line, we simply take all the points in the image and overlap their curves into Hough 

space looking for areas of overlap. These areas of overlap in Hough space indicate that a line is 

present in the image with the (r,θ) where the overlap happens. Equations (1-13) and (1-14) both 

assume a binary image, i.e., all pixels have a value of 1 or 0. To extend these equations to work 

on images with continuous intensity, we simply multiply the binary line/curve by the intensity. 

Now instead of looking for areas where many curves overlap we are looking for areas with the 

highest intensity. The advantages of this method for line detection include its speed, simplicity, 

and repeatability. Although initially developed for a line, the Hough transform has been adapted 

to be able to identify other geometric shapes such as circles[27]. Many commercial circle finders 

such as MATLAB utilize the Hough transform to detect features in the image.  
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 To make the Hough transform work for circles we simply define a circle centered at a,b 

with a radius R using 

(
𝒙−𝒂

𝑹
)

𝟐

+ (
𝒚−𝒃

𝑹
)

𝟐

= 𝟏. (1-15) 

Taking the inverse of equation (1-15) produces  

(
𝒙𝑯−𝒙𝒊

𝑹𝑯
)

𝟐

+ (
𝒚𝑯−𝒚𝒊

𝑹𝑯
)

𝟐

= 𝟏, (1-16) 

which is a circle but centered at xi, yi (points along the circle in real space) instead of a, b. In 

Hough space, a circle is transformed into multiple circles that overlap at the center of the original 

circle when the correct radius is chosen RH =R, as illustrated in Fig. 1-11 (again, equations (1-15) 

and (1-16) assume a binary image, but can be similarly extended for non-binary images by 

multiplying the circles by the intensity in question). 

A large difference between the line Hough and the circle Hough is the increase of 

dimensionality in Hough space from 2 to 3. This increase in dimensionality is accompanied by an 

increase of computational time and an even larger increase in memory usage. It is possible to 

extend the Hough transform for a circle to a cylinder by taking the integral of multiple circles, 
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sum in finite element systems, over the range 0 to Rmax . This finite sum transforms equation 

(1-15) into  

∑ (
𝒙 − 𝒂

𝒓
)

𝟐

+ (
𝒚 − 𝒃

𝒓
)𝟐

𝑹

𝒓=𝟎

= 𝟏 (1-17) 

 and equation(1-16) into  

∑ (
𝒙𝑯−𝒙𝒊

𝒓𝑯
)

𝟐

+ (
𝒚𝑯−𝒚𝒊

𝒓𝑯
)𝟐𝑹𝑯

𝒓𝑯=𝟎 = 𝟏. (1-18) 

Since calculating Hough space for a circle stores the previous parts of the sum, not much more 

computation is needed to generate the Hough space of a cylinder than that of a simple circle. 

However, since a cylinder contains smaller solid circles inside of it, the Hough transform does not 

return a single point for the center but rather a large central area of the cylinder.  The solid circles 

 

Figure 1-11: (a) 7 points are placed along the circumference of a circle with radius R in real 

space. (b) In Hough space, these 7 points from real space become 7 circles with RH < R. (c) the 

Hough-space circles of the 7 points from real space all overlap at the center of the real space 

circle when  RH = R . 
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method can be modified to account for any radially symmetric Point Spread Function (PSF) by 

adding a weighting factor to each circle of different radius, i.e., equation (1-18) becomes  

∑ 𝑾(𝒓𝑯) ((
𝒙𝑯−𝒙𝒊

𝒓𝑯
)

𝟐

+ (
𝒚𝑯−𝒚𝒊

𝒓𝑯
)𝟐)

𝑹𝑯
𝒓𝑯=𝟎 = 𝟏. (1-19) 

The Gaussian Hough is approximated by  

∑ 𝑹𝑯√𝟐𝝅𝒆

𝒓𝑯
𝟐

𝟐𝑹𝑯
𝟐

((
𝒙𝑯−𝒙𝒊

𝒓𝑯
)

𝟐

+ (
𝒚𝑯−𝒚𝒊

𝒓𝑯
)𝟐)

𝑹𝑯
𝒓𝑯=𝟎 = 𝟏. (1-20) 

This is accomplished through using a weighting solid circle sum in which the width of the Gaussian 

is RH. While not a true Gaussian Hough, it is a simple approximation that meets the need to 

demonstrate the potential of different PSF’s while not requiring the use of a higher-dimensional 

Hough space. 

1.6.4. Principal component analysis   

Principal Component Analysis (PCA) is a type of a data analysis operation that is used to 

decompose noisy data into orthogonal components in the order of decreasing statistical 

significance. This is a subtype of an orthogonalizing transformation, the purpose of which is to 

take a data matrix A and return a matrix of uncorrelated elements B,  

𝐓𝐀 = 𝐁. (1-21) 

The transformation matrix is usually denoted as V. These V matrices are not unique and can be 

found by a variety of methods. The approach specific to PCA involves finding V by setting the first 

component of V to be the one with the highest variance, second as the one with next highest 

variance and so on. Due to using variance, the first few components contain most of the 
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information of interest while later components contain mostly noise. The form of the transform 

is  

𝐀𝐕 = 𝑼𝐄 ⇒ 𝑨 = 𝑼𝑬𝑽′  ⇒ 𝑼′𝑨 = (𝑬𝑽′)  , (1-22) 

where U is the basis transform while EV’ represents the information in the new basis. PCA 

separates data into 3 parts, eigenvectors (U), loadings (V), and eigenvalues (E).  By using the first 

few loadings that correspond to the eigenvectors of greatest importance (and thus contain the 

majority of data), the parameter space is transformed into {x, y, l} with l being only loadings of 

significantly high variance and as such much smaller dimensionally, offering a path to statistically-

weighed data compression and denoising. The number of loading values needed is determined 

by looking at the eigenvalues as a function of the component number (so-called “scree plot”) to 

choose the upper cutoff above which the rest of the data is most likely noise. 

1.7. THESIS OVERVIEW  

Chapter 2 describes the development of a method for the detection of atomic columns 

based on Hough transforms combined with PCA and K-means clustering.  This method was 

developed as a near-real-time method for the detection of atomic columns in STEM images.  The 

strength of the method lies in that is requires no training and has low computational cost.  

Chapter 3 demonstrates how information can be deduced by combining limited 

information from a STEM image with DFT. In this chapter a STEM image of bi-layer graphene is 

analyzed and a limited amount of atomic columns could be isolated. Combining these atomic 

columns with prior knowledge about the nature of graphene allow for the construction of an 
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idealized lattice. This lattice is then optimized using DFT and the relaxed structured used to 

simulate an ideal STEM image that is compared to the original. Any discrepancies in the 

comparison can be isolated and then possible reasons tested to identify defects in the lattice. 

Chapter 4 describes the development of a method for the detection and grouping of 

defects in STEM images using previously found positions of atomic-column centers. This method 

works through the use of graph theory and requires no prior information about the material. The 

method is tested on both 2D and bulk materials. 
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2. HOUGH ATOMIC-COLUMN FINDER 1 

2.1. INTRODUCTION 

The implementation of aberration correction for Scanning-Transmission-Electron-

Microscopy (STEM) in the last two decades has transformed the method from a qualitative 

imaging tool into a quantitative structural tool capable of locating atomic columns with 

picometer-level precision. This development complements the intrinsic ability of STEM to collect 

large quantities of data in the form of images, time-resolved movies, and focal series. In the last 

decade, the value of such data in revealing the local atomic structure, which in turn can 

determine the properties of thin films, superlattices, and nanoparticles, has been repeatedly 

demonstrated[28]–[32]. 

  Most of the reported experimental STEM studies of complex structures (e.g. references 

1-5 above), involve extensive analysis of just a few hand-picked images, locating atomic columns 

with subsequent refinement of their positions, intensities, and shapes.  Automated refinement 

processes based on methods such as center-of-mass and function fitting are routinely used[28], 

achieving sub-pixel localization of the center of an atomic column much more accurately and 

consistently than any human can achieve. On the other hand, no generic, fully-automated 

method exists to reliably detect atomic columns in complex structures. Currently, many of the 

available automated methods rely on some user input, e.g. manually overlaying a lattice onto an 

image[33]–[35] These methods are viable options for analysis of small batches of images, but are 

                                                      
1  This chapter is based on a paper under review: O. Ovchinnikov, Y. Puzyrev, S. Jesse, A. Borisevich, S.T. Pantelides 
and S.V. Kalinin, 2018. Fast, fully automated detection of atomic columns in atomic-resolution microscopy images 
(under review at Microscopy and Microanalysis) 
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not capable of dealing with the entirety of the data generated by a modern STEM system.  

Fourier-based methods offer a fully-automated alternative[36], but they are more complex and 

implicitly rely on the presence of unbroken lattice periodicity, excluding multiphase systems, 

heterostructures, or systems with grain boundaries or other structural defects. 

An alternative approach is offered by local-analysis methods, the simplest of which rely 

solely on the intensity of the individual pixel and neighboring pixels to detect atomic columns, 

allowing for easy full automation.  These methods include the direct application of K-means [37], 

Markov chains[38], and neural networks[39]. To further improve the performance of these 

methods, pre-filtering can be used, which helps eliminate white noise and impose a uniform 

background. Such a process usually requires multiple steps, often along with asking for additional 

user input and approval of each step, rendering the approaches no longer fully-automated. In 

order to overcome this limitation, more complex methods have been developed to detect atomic 

columns in STEM images. Examples include the use of 2D correlation with the a reference atomic 

column; an image is then created where high correlation represents an atomic column and low 

correlation represents background; clustering of the resulting intensities completes the atom 

finding process[17], [33], [36]. 

Current automated methods focus on accuracy and precision over speed for the detection 

of atomic column locations. However, even the slowest program is much faster than any human 

user could do manually. To achieve higher degrees of accuracy and precision many of these 

methods[17], [33] choose to rely on user input. Even without user input these current 

methods[17], [33] do not come close to the speed of data collection and are, therefore, relegated 
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to post-collection analysis of data. This limitation of methods that rely on local area operations 

such as 2D correlation is  the necessary consequence for such a complex operation to be 

performed for each individual pixel[17], resulting in a large computational cost. As a result, a 

bottleneck is created, causing the need to select by hand which data to analyze. This need for 

human interaction causes many unintended consequences, including the introduction of 

inherent bias into the process of data analysis along with the accumulation of large amounts of 

un-analyzed data, which highlights the need for an acquisition-speed, fully-automated solution.   

In this Chapter we describe the development of a method that eschews the 

computationally expensive pixel-level operations, replacing them with a quick, whole-image 

Hough transform[40], [41]  coupled with K-means clustering[26]. The Hough transform projects 

an image into a parameter space that reveals the prevalence of a certain shape in the image 

(Figure 2-1). K-means clustering treats inputs as positions in space and minimizes the average 

variation in distance within an individual cluster while maximizing the difference between 

 

Figure 2-1: (a) Circle in real space with radius R contenting 7 points in real space. (b) Hough 

space circles of the 7 points from real space with a RH < R . (c) Hough space circles of the 7 

points from real space with a RH = R . 
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clusters. The two algorithms have great synergy, with the Hough transform mapping the areas of 

high function prevalence, allowing K-means to cluster pixels into objects within the image space. 

The resulting method proves to be highly tunable for the detection of atomic columns in STEM 

images: By adjusting the function chosen for the Hough transform, it is possible to tune the 

method for different types of materials, allowing for the detection of atomic columns under any 

conditions.  The new method is computationally inexpensive and has the potential to keep pace 

with image collection. 

2.2. METHODS  

Many current atomic column detection methods use some type of pixel-level 

enhancement operation that has the ability to produce excellent contrast at the price of 

computational cost.  These methods often tend to trade speed for precision and accuracy, making 

them ideal for post-collection analysis. To allow for on-instrument, real-time atomic-column 

detection, a whole-image transform will be used here, leading to low computational cost, but 

higher memory usage. The Hough transform[40], [41] is a whole-image transform that has been 

extensively used for the detection of straight lines, but it can be extended to any functionalizable 

object.The Hough transform is widely implemented in commercial software such as Matlab, 

which utilizes the Hough transform for circle detection.   

 In STEM images of zone-axis axis-aligned crystals, atomic columns can be represented as 

delta functions convoluted with a Point Spread Function (PSF) of the electron beam. It is this PSF 

that we will be trying to encapsulate in the Hough transform approach.  Here, we approximate 

the PSF with a parameterized function that captures the essential features of the PSF, i.e. 
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centered at an atomic column and well-localized.  As a simple approximation of the true atomic 

column PSF, we chose to use a cylinder/ Gaussian in the Hough transform. The Hough transform 

changes the parameter space of the image from {x, y} to {x, y, r}, where r represents the radius 

of the PSF. The r component of this space can be referred to as the Hough response and is a 

representation of how well the PSF of that radius matches the surrounding space. The intensity 

and shape of the Hough response distinguishes a pixel that is part of an atomic column from one 

that is part of the background. One effective method of improving atomic-column detection is 

through pre-filtering. We found that multiplying the initial image by the local gradient is a 

computationally inexpensive pre-filtering method that improved the atom finding results via 

Hough transform (see Appendix B).  

To untangle the information stored in the components and reduce the number of 

parameters that K-means clustering is performed on, Principal Component Analysis (PCA) is 

applied to the output of the Hough transform. PCA remaps the components to a new basis set, 

allowing for the un-mixing of information and greatly enhancing the effectiveness of K-means 

clustering (see appendix B).  By using only the first few loadings corresponding to the 

eigenvectors of greatest variance (and thus containing the majority of the information), the 

parameter space is greatly reduced. K-means clustering groups the chosen loadings into a 

specified number of clusters, returning the {x, y, r} parameter space back to the original 

parameter space of {x, y}. However, now the values at {x(i), y(j)} are cluster assignments for each 

pixel. 
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The clusters with the highest average intensity are chosen to represent atomic columns 

while the rest are assumed to contain mainly background.  This choice allows for the creation of 

a binary image where pixels are either part of an atomic column and have the value of 1 or are 

background and have a value of 0, representing a conversion of the original STEM image into a 

binary image of atomic columns and background. Density-based clustering[42] is then used to 

ensure that a critical minimum size of an atomic column is achieved before the group of pixels is 

deemed to represent an atomic column This step eliminates columns containing only a single 

pixel or small numbers of pixels (which may be the result of noise) from being labelled as an 

atomic column. 

The above method can be further optimized for the detection of atomic columns in any 

image via the modification of the PSF.  In this paper we have only used a simple zeroth- and first-

order approximation of the PSF, but by better approximating the PSF, it may be possible to 

further improve the whole image transform to distinguish between atomic columns and 

background. By finding a PSF that more closely resembles the atomic columns, the performance 

would improve.  

2.3. RESULTS 

In order to test the method, a synthetic image was generated containing 9 by 9 atomic 

columns modelled by symmetric Gaussian distributions (Figure 2-2a).  The size of 9 by 9 was 

selected to have enough atomic columns to be statistically significant, while still being small 

enough to allow for the method to be run many times at the same conditions for reproducibility 

testing. To establish the performance of the algorithm, we explored the effects of random noise, 
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variation in radius, deviation from a perfect lattice, and more These tests were performed using 

both a circle and a Gaussian as the PSF.  In all cases, the performance of the algorithm was 

ascertained by defining the number of atomic columns detected correctly, atomic columns not 

found, and false positives. Once the performance was tested on a model test case. It was then 

run on real data to show its ability to detect atomic columns in a real world environment.  

2.3.1. How the method handles image noise: 

To test the effect of the image noise on the atom finding, various degrees of random 

(Gaussian?) noise were added to the test image, in the range of 0 to 300% of the maximum value 

in the original image, which is the amplitude at the center of a Gaussian (Figure 2-2). Using a 

circle as the Hough transform kernel allowed us to detect all atomic columns at up to 100% noise. 

With the Gaussian PSF, performed better at noise greater than 150% but worse between 100 and 

 

Figure 2-2: Examples of test data with different levels of noise ranging from 0% to 250% of the 

max amplitude of the atomic column intensity. 

0% 50%

150% 250%
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150%. The corresponding images are shown in Figure 2-3, suggesting that the algorithm performs 

at a level comparable to human perception sensitivity. 

 

Figure 2-3 : Performance of atom finder on test data with different levels of noise, (a)(b) 

graphs show the percentage of atomic columns identified (red line) and missed (blue line) 

along with false positives (black line); (c)(d) graphs show the accuracy of the found atomic 

column positions with algorithm error defined as the average deviation from the perfect 

lattice. 
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2.3.2. How the method handles atomic columns of different size:   

To test the effect of different atom sizes, the minimum radius was adjusted with respect 

to the maximum (Figure 2-4). In this test, it was seen that the method performed perfectly up to 

a difference of five times for the Gaussian PSF (Figure 2-5).  This amount of size difference is much 

larger than anything that would be seen in most real imaging and is always larger than any 

variation in a single type of atomic column. As such, these methods can be thought of as able to 

handle any real data when it comes to difference in size of atomic columns.  

2.3.3. How the method handles atomic columns of different intensities:   

To test how well this algorithm handles variations in amplitude of the atomic columns, 

the amplitude was adjusted randomly from a minimum of 1 to a maximum of 1+x (Figure 2-6). 

The circle PSF method showed a decrease in accuracy starting from x=.5, while the Gaussian PSF 

 

Figure 2-4: Examples of test data with different atomic column width, where N is the ratio of 

largest width divided by smallest width in test image.  
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showed a decrease in accuracy starting from x=1.7 (Figure 2-7). The use of a Gaussian Hough 

kernel usually yields better results, with the ability to perfectly detect atomic columns with half 

the amplitude as it better matches the shape of the atomic columns. This method would be very 

capable of handling multiple atom types in an image. It should be noted that intensity variation 

as implemented in this test approximates multiple atom types, namely abrupt changes in 

 

Figure 2-5: Performance of atom finder on test data with different atomic column width, (a)(b) 

graphs show the percentage of atomic columns identified (red line) and missed (blue line) 

along with false positives (black line); (c)(d) graphs show the accuracy of the found atomic 

column positions with algorithm error defined as the average deviation from the perfect 

lattice. 
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intensity from column to column. The detection performance might be different if the change in 

intensity is more gradual as related to e.g. thickness variation. 

2.3.4. Testing the method for STEM images  

  We demonstrate this method on Mo–V–M–O (M=Nb, Ta, Te and/or Sb), a 3D material 

which has been studied as a promising catalyst for industrially reactions[17], [43]. This material 

was chosen for having atomic columns with good uniformity in intensity and size, while having 

many large-scale defects, which makes atomic column-detection through simple methods such 

as overlaying a grid all but impossible. A small section of a few STEM images was used which 

highlights these properties and allows for human check of the method performance. The method 

was able to detect every atomic column in this set of images and had no problem with defects as 

it does not rely on detecting any pattern in the configuration of atomic columns (Figure 2-8). 

 

Figure 2-6: Examples of test data with different atomic column intensity, where N is 1 minus 

the ratio of strongest intensity atomic column divided by weakest intensity atomic column in 

the test image. 
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2.4. DISCUSSION 

 The method presented in this chapter represents a step in the direction of fully-

automated image segmentation and feature identification towards data acquisition speeds.  This 

is accomplished by moving away from costly operations such as 2D correlation to more 

 

Figure 2-7: Performance of atom finder on test data with different atomic column intensity, 

(a)(b) graphs show the percentage of atomic columns identified (red line) and missed (blue 

line) along with false positives (black line); (c)(d) graphs show the accuracy of the found atomic 

column positions with algorithm error defined as the average deviation from the perfect 

lattice. 

(a)

(c)

(b)

(d)

Circle PSF Gaussian PSF

0 1 2 3 4 5

0.02

0.025

0.03

Atomic column intensity

A
lg

o
ri
th

m
 e

rr
o

r

0 1 2 3 4 5
0

20

40

60

80

100

P
e

rc
e

n
t 

fo
u

n
d

Atomic column intensity

0 1 2 3 4 5

0.025

0.03

0.035

0.04

0.045

Atomic column intensity

A
lg

o
ri
th

m
 e

rr
o

r

0 1 2 3 4 5
0

20

40

60

80

100
P

e
rc

e
n

t

Atomic column intensity



 

42 
  

computationally efficient whole-image transforms. Matching analysis and acquisition speeds in 

the finding of atomic columns is the first step in STEM imaging for further, more complex analysis 

methods such as image segmentation and feature identification. It has been shown that this 

method is capable of detecting atomic columns under a wide range of conditions in a short 

amount of time.  

While the performance of the algorithms developed here remains to be evaluated on a 

wider variety of real data, the results with respect to noise and intensity variance are 

encouraging. The detection accuracy can additionally be boosted by adding a pre-filtering step 

and tailoring the PSF for the atom type. The strength of the algorithm lies in the ability of the 

Hough transform to create a highly distinguishing characteristic between pixels, combined with 

the ability of PCA to transform this into just a few orthogonal parameters for fast clustering 

 

Figure 2-8: (a) STEM Image of Mo–V–M–O and  (b) binary image of atomic columns and 

background generated by the algorithm using Gaussian PSF. 
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through K-means. Due to rapid operation and high accuracy, this method can be deployed to 

analyze big batches of data without human input.  

Testing has shown that this method features an improvement in speed of ~5 times over 

2D correlation using a Gaussian as the PSF with the same radius. When compared to the speed 

of data acquisition, it still lags behind. However, through optimizations, it might be able to 

approach the speed of data collection. On top of optimization, it is also possible to pre-generate 

eigenvectors, saving a large percentage of the time by replacing the PCA step with a simple matrix 

multiplication. Eigenvectors can be reused from the first image in a collection or taken from a 

library of pre-generated Eigenvectors.  With a combination of optimization and substitution of 

the PCA with a matrix multiplication step, it is likely to be possible to approach the speed of data 

collection.  

2.5. CONCLUSIONS 

 The detection of atomic columns in STEM is an important task that is needed to extract 

physical information from data. Many scientists employ methods that require a large amount of 

human interaction, which creates a bottleneck and introduces human bias into the process. 

While many automated methods exist, none are capable of accomplishing the task under all 

conditions. The present algorithm is a flexible method for the detection of atomic columns in 

STEM images. While the algorithm does have its limitations, it also has the benefit of being 

relatively quick and, with suitable PSF, it is possible to tune the method to analyze almost any set 

of data. By having the potential to allow for real-time feedback to microscopists, the approach 
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can help optimize how and in what areas the data is collected, therefore changing the data 

collection from serendipitous to directed approach and greatly improving efficiency. 
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3. ATOMIC-COLUMN RECOVERY AND DEFECT IDENTIFICATION AIDED BY DFT2 

3.1. INTRODUCTION 

Graphene has been hailed and studied for its wide range of potential electronic and 

mechanical applications. Rippling has been seen at a variety of length scales in graphene systems 

[44]–[49], changes their electronic, magnetic, and other properties [44] and can induce a 

pseudo–magnetic field [45]. Bilayer graphene has also been extensively studied for a multitude 

of applications such as diodes, transistors, optoelectronics, and superconductivity [50]–[57]. For 

some of these applications, the tunability of its band gap is a valuable feature. Angle-mismatch 

between the layers of bilayer materials is common and leads to the formation of a moiré pattern. 

Moiré patterns in two-dimensional (2D) materials often obscure vital information when imaged, 

such as the underlying layer in Scanning Tunneling Microscopy (STM) and the localization of 

individual atomic “columns” in Scanning Transmission Electron Microscopy (STEM). Yet, obscured 

information can play a major role in determining the properties of the material, especially the 

presence of defects, interstitial dopants between the layers, and rippling, which affect both 

electronic and magnetic properties [44], [45]. 

Aberration-corrected STEM is a quantitative tool that is capable of locating atomic 

columns in crystals with picometer-level precision. The ability to achieve sub-pixel precision in 

the location of the center of an atom or atomic column in STEM images has been demonstrated 

through the use of center-of-mass and 2D function fitting, which in turn has been used to help 

                                                      
2 This chapter is based on a published paper: O. Ovchinnikov, A. O'Hara, R.J. Nicholl, J.A. Hachtel, K. Bolotin, A. Lupini, 
S. Jesse, A.P. Baddorf, S.V. Kalinin, A. Borisevich and S.T. Pantelides,. “Theory-assisted determination of nano-rippling 
and impurities in atomic resolution images of angle-mismatched bilayer graphene”, 2D Materials vol. 5, no. 4, p. 
041008, (2018). 
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determine the properties of complex structures such as thin films, superlattices, and 

nanoparticles [29]–[32], [58]. While STEM possesses picometer-scale resolution in the in-image-

plane (xy plane), the resolution perpendicular to the image-plane (z direction) is approximately a 

nanometer, which limits the instrument’s ability to study rippling in 2D materials. In many 

important cases, precise determination of the xy coordinates of all atoms or atomic “columns” is 

not possible, e.g., in bilayers in which an angle mismatch between the layers exists and leads to 

moiré patterns. In such cases, due to apparent overlaps of atoms in the projected image, it is 

impossible to determine where one atom ends and another begins. Nevertheless, even in these 

materials systems, isolated areas exist that have clear and discernible atomic columns where it is 

possible to locate a subset of atomic coordinates with high precision.  

In this chapter, we focus on nanoscale rippling in angle-mismatched bilayer graphene (the 

two layers are rotated with respect to each other) and demonstrate a reconstructive approach 

that allows us to determine the xyz coordinates of all atoms by using the xy coordinates of only 

the limited number of discernible atoms in the bilayer image and performing suitable density-

functional-theory (DFT) calculations. By combining the information obtained from the distances 

between moiré nodes (from here on referred to simply as nodes) and those atomic positions that 

can be accurately extracted from the STEM image, a defect-free reference patch is constructed. 

DFT is then used to optimize the atomic coordinates in the reference patch under the constraint 

of the known xy atomic coordinates. By simulating the STEM image using the optimized reference 

patch, a local-area correlation is done with the experimental image. Areas of low correlation are 

then attributed to the presence of defects. The atom(s) in areas of low correlation can then be 

replaced by likely defect candidates and the local-area correlation is repeated until the defect 
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causing the low correlation is identified. In the present case, only a single atomic site exhibits low 

correlation and we are able to identify it as substitutional nitrogen. The z information for each 

layer can further be used to quantify the rippling in the sample. In the case at hand, the 

predominant source of rippling is determined to be caused by strain in the sample. Furthermore, 

the distance between the two layers can be used to determine the moiré-pattern-induced 

undulations, which are in agreement with those previously predicted by theory [59]. The 

reconstructive analysis of bilayers, which is accomplished by combining STEM with DFT to 

determine atomic coordinates in three dimensions, while potentially computationally expensive, 

allows for a complete characterization of nano-rippling in a way that is impossible from imaging 

alone.  

3.2. METHODS AND MATERIALS 

3.2.1. Sample preparation and data collection  

High-quality graphene was grown on copper foils using atmospheric-pressure chemical 

vapor deposition (CVD)  [60]. The graphene was subsequently transferred to TEM grids [61] 

following a direct transfer procedure [56]. A TEM grid was placed upside down directly on top of 

a copper foil coated with CVD graphene forming a stack. A drop of isopropyl alcohol (IPA) was 

applied to the stack. Upon evaporation of the IPA, graphene was pulled from the copper surface 

and adhered strongly to the TEM grid. Excess copper was removed with CE-100 copper etchant. 

The remaining TEM grid with graphene was rinsed in three baths of deionized water and IPA. This 

procedure resulted in large coverage of residue-free monolayer graphene and, critically, some 

regions of bilayer graphene originating from monolayer graphene that folded during transfer. 
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The bilayer graphene was experimentally analyzed using annular dark field (ADF) imaging 

on a Nion aberration-corrected UltraSTEM 100, operated at an accelerating voltage of 60 kV [62]. 

Figure 3-1(a) shows an atomic-resolution ADF image (1024 x 1024 pixels) of angle-mismatched 

bilayer graphene. To reduce noise in the image, Figure 3-1(a) was filtered with a Gaussian blur 

[63] with a standard deviation of two pixels, producing Figure 3-1(b). Figure 3-1(b) shows both 

the atomic columns of individual carbon atoms and the moiré pattern caused by the 

incommensurate rotation angle.  

3.2.2. Determining the angle of relative rotation 

To determine the angle of relative rotation between the two layers of graphene (figure 

1a-1b), a Gaussian blur with a sigma of 10 pixels was applied to the original image (figure 1c-d). 

From this image, it is clear that there are two different types of moiré nodes in the moiré pattern: 

brighter nodes that correspond to areas of highest lattice correlation (primary nodes, AA 

stacking) and dimmer nodes that correspond to areas of highest anti-correlation (secondary 

nodes, AB stacking) of the two lattices. In order to determine the angle of relative rotation 

between the graphene layers, the distance between the moiré nodes must be determined. The 

moiré nodes were isolated by first using an image threshold of 75% of the maximum intensity 

followed by density-based clustering [42]. Once the moiré nodes where isolated, a center-of-

mass algorithm was used to find the center of each node while the average intensity of the node 

was used to determine if a node is primary or secondary. Using the center point of each moiré 

node, the distance between a primary node and its surrounding secondary nodes (Figure 3-1c), 
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the distance between the secondary nodes around the primary node (Figure 3-1d), and the angle  

separating the secondary nodes around the primary node (Figure 3-1c) were calculated. These 

distances and angles are not uniform, implying the presence of strain in the sample. 

 

Figure 3-1: (a) ADF STEM image of a graphene bilayer with relative rotation between the layers 

(mismatched or twisted graphene bilayer), as acquired. (b) The same image with a small 

Gaussian blur more clearly shows the presence of two types of moiré nodes in the moiré 

pattern (primary – higher intensity, secondary – lower intensity). (c-d) The same image with a 

heavy Gaussian blur used to indicate the deviations from a perfect moiré pattern due to strain. 

(c) Distances between secondary and primary nodes (in nm: black) and angle between 

secondary nodes around a central primary node (in degrees: red). (d) Distances between 

secondary nodes (in nm: black). 



 

50 
  

The angle 𝜽 of relative rotation between the two layers can then be determined from the 

primary-to-primary moiré-node distance via [64]: 

 

where a and b represent the lattice constants of the two layers. For bilayer graphene, both are 

2.46Å. By substituting these values into Eq. (3-1, we obtain: 

Due to the variance in the moiré node distances, an average node-to-node distance was used to 

find the angle of relative rotation. To improve the average, not only were the primary-to-primary 

moiré node distances (𝑳𝒑𝒑) used, but secondary-to-primary moiré-node distances (𝑳𝒑𝒔) where 

converted into related primary-to-primary moiré-node distances using simple trigonometry: 

𝑳𝒑𝒑 = 𝟐 𝒄𝒐𝒔(𝟑𝟎°) 𝑳𝒑𝒔 = √𝟑𝑳𝒑𝒔. (3-3) 

Using the average node-to-node distance, the angle of relative rotation was found to be 4.45° in 

the present case. 

3.2.3.  Filtering image and identification of individual atomic columns 

In order to identify individual atomic positions, the original image was filtered to remove 

unwanted image collection phenomena such as noise and surface contamination. Due to the 

nature of the moiré interference, atomic columns can only be distinguished around the center of 

𝑳(𝜽) =
𝒂𝒃

√𝒂𝟐 + 𝒃𝟐 − 𝟐𝒂𝒃 𝐜𝐨𝐬 𝜽
 (3-1) 

𝑳(𝜽) =
𝟐. 𝟒𝟔

𝟐 𝐬𝐢𝐧 𝜽
𝟐⁄

 (3-2) 
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a moiré node, whereby it is only necessary to filter these areas. Using the center of each moiré 

node, a box 201x201 pixels was removed from the image for filtering.  A similar box area 

extraction (Figure 3-2) was used throughout this chapter and is referred to as “local area 

extraction”. 

The extracted areas around moiré nodes were filtered using a previously reported 

filtering technique that utilizes principal component analysis (PCA) to remove noise and surface 

contamination from the image[24]. This filtering technique requires slicing the image into smaller 

sub-images, each of which is then filtered separately using statistical correlations to remove noise 

and surface contamination. The full image is then reconstructed from these filtered sub-images. 

  For the secondary moiré nodes, this level of filtering is adequate. However, for primary 

moiré nodes where distinguishable atomic columns are closer together, an additional filtering 

step was necessary. This filtering step consists of a 2D correlation with an ideal atomic column (a 

 

Figure 3-2: Example of local area extraction of a 11x11 area (red and yellow areas) around a 

center pixel (yellow area) from a 29x29 pixel image. 
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2D Gaussian). At each pixel, a local area (Figure 3-2) of 21x21 pixels was extracted. These areas 

where passed through a 2D cross-correlation [65] defined by 

with A being the extracted area and B a 2D Gaussian with a sigma of 13 pixels. In each node, the 

atomic columns were identified using two common image analysis techniques, intensity 

thresholding followed by density-based clustering [42]. 

3.2.4. Creating the initial unit cell and DFT calculations  

DFT simulations of the entire image is computationally prohibitive due to the number of 

atoms required to make a periodic image with a small relative rotation angle. Instead, a patch 

was used. We considered an area of the image that encompasses two primary and two secondary 

nodes and constructed a corresponding idealized patch by taking two pristine graphene lattices 

overlaid in an AA-stacking configuration and a separation of 3.5 Å. The top lattice was then 

rotated to the desired angle of relative rotation (4.45°) using the center of a hexagon as the 

rotation point. The atomic coordinates in this idealized bilayer graphene patch are then replaced 

by the coordinates of the atomic columns that where determined from the experimental image. 

Protruding atoms that contain only a single carbon-carbon bond were removed from the edge of 

the patch. Edge atoms with fewer than three neighbors were passivated with hydrogen atoms. 

The constructed bilayer patch consists of 899 carbon atoms and 111 hydrogen atoms, 

with the patch spanning 45.64 x 39.31x 3.5 Å. The patch was placed into a unit cell spanning 

55x55x25 Å. DFT calculations were performed using the Vienna ab initio Simulation Package 

𝒓(𝑨, 𝑩) =
∑ ∑ (𝑨𝒎𝒏 − �̅�)(𝑩𝒎𝒏 − �̅�)𝒏𝒎

√(∑ ∑ (𝑨𝒎𝒏 − �̅�)𝟐
𝒏𝒎 )(∑ ∑ (𝑩𝒎𝒏 − 𝑩)𝟐

𝒏𝒎 )
, (3-4) 
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(VASP) [66] with the Brillouin zone sampled at the Γ point only. The exchange-correlation 

functional was described via the Perdew-Burke-Ernzerhof parametrization [67] of the generalized 

gradient approximation. A van der Waals dispersion correction was included via Grimme’s DFT-

D3 method [68] and the DFT-D3 plus Becke-Jonson damping method [69]. The DFT-D3(BJ) 

correction produced results in better agreement with the experimental data as in a previous 

study of bilayer graphene by Lebedeva et al. [70]. The projector-augmented wave (PAW) method 

[71], [72] was used to describe the interaction between core and valence electrons and the plane-

wave basis-set cutoff energy was set as 400 eV. During structural optimization, the x- and y-

coordinates of atoms that could be determined from the experimental data were held fixed while 

the x- and y-coordinates of the rest of the atoms and the z-coordinates of all atoms were allowed 

to move until all residual forces were less than 0.01 eV/Å. 

3.3. RESULTS AND DISCUSSION 

To test how well theory recovered the atomic coordinates of all the atoms, the patch 

described above was removed from the original image and filtered in its entirety using the PCA 

filtering as in Section 2.3. The DFT-optimized patch (Figure 3-3a) was used to simulate the STEM 

image using the QSTEM simulation software [73] (Figure 3-3b). The beam parameters for the 

simulation were taken from those used during the experimental image acquisition, with the focus 

varied until the simulation was visually similar to that in the filtered patch (Figure 3-4c). To 

compare the simulated and experimental images, a local-area 2D cross-correlation (Eq. (3-4)) was 

employed between the filtered and simulated STEM images. This procedure necessitated the 

interpolation of the simulated image on to the same coordinate system as the experimental 

image. Once the two images were in the same coordinate system, a local area (Figure 3-2) of 
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27x27 pixels was extracted from both images at each pixel. The correlation between simulation 

and experiment is very good, over 0.8 in most places, with 1.0 indicating perfect correlation 

(Figure 3-3d), providing confidence that the deduced atomic positions are correct or extremely 

close to the actual positions. Any defects in the experimental lattice should appear as areas of 

low correlation.  

While edge effects cause areas of low correlation to occur near the edge of the patch, one 

significant area of low correlation just above the center of the patch stands out (Figure 3-4a). In 

order to determine if this area of low correlation is caused by a defect or is a limitation of the 

present reconstructive-analysis method, the most probable defects can be inserted into the 

optimized DFT patch and the patch re-optimized. First, however, the coordinates of the atom(s) 

that cause the low correlation must be determined by separating the 2D cross-correlation map 

into a cross-correlation map for each layer (Figure 3-4 b-c). This separation is done by extracting 

 

Figure 3-3: (a) Atomistic model showing the optimized positions of all carbon atoms with the 

two layers in different colors (b) PCA filtered simulated image of the post-DFT-optimized 

locations. (c) PCA filtered patch from the original image. (d) Map of local 2d correlation 

coefficients between the filtered simulated image and the filtered experimental image. 
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local areas (Figure 3-2) from the 2D cross-correlation image at every atom in the lattice using a 

box 21x21 pixels. These local areas are then averaged and the results are interpolated onto the 

coordinate system of the 2D cross-correlation image. We find that the observed area of low 

correlation is centered in each layer on a single atom. The xy coordinates of these atoms are 

extremely close together, making it impossible to determine which layer contains the defect. 

Although it is impossible to determine which layer the potential defect is in, it is possible to 

narrow it to a single atom in each layer (Figure 3-4 b-c)  

With the possible location of the defect causing the low correlation narrowed down to 

two potential atomic sites determination of the defect type was performed. A set of the most 

likely defects was analyzed including a carbon monovacancy and substitional boron, nitrogen, 

and oxygen atoms. The previously optimized DFT patch was modified and re-optimized, with each 

defect type tested at each of the two candidate sites. A simulated STEM image was then 

 

Figure 3-4: (a) 2D cross-correlation map with area of interest highlighted and separated into 

(b) layer 1 with atom of interest highlighted and (c) layer 2 with atom of interest highlighted. 



 

56 
  

generated for each patch and new 2D cross-correlation maps were calculated to determine if any 

of these defects improved the overall correlation (Figure 3-5a). These new 2D cross-correlation 

maps were compared with the original defect-free scenario visually and statistically using the 

percent change in cross-correlation around the area of low correlation (Figure 3-5). Based on 

both the visual and statistical comparisons, the low correlation is most likely caused by a 

substitutional nitrogen defect in layer 2. 

The z information from the optimized DFT positions was interpolated onto a square 

lattice. The optimized z displacements show two clear ripples in both layers (Figure 3-6) in the 

primary-primary node direction. These ripples have a height of ~0.75 Å (using the distance of 

highest to lowest atom in each layer’s graphene lattice) and the peak-to-peak distance of the two 

 

Figure 3-5:  (a) Plot of the effect on the local 2D cross correlation when atoms are substituted, 

(b) zoomed in area of cross-correlation map for pristine bi layer graphene, (c) Carbon in layer 

2 is replaced by oxygen, (d) Carbon in layer 2 is replaced by nitrogen (e) Carbon in layer 1 is 

replaced by nitrogen, (f) Carbon in layer 2 is replace by boron, and (g) Carbon in layer 1 is 

replaced by boron.     
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ripples is ~1.5 nm. When comparing the rippling predicted by the optimized reference patch with 

the experimental image, a correlation between the rippling and the background intensity can be 

visually observed. To determine the exact wavelength and amplitude of the rippling, the positions 

of the atoms were treated as a grid of points with coordinates (x,y,z). The atomic positions were 

then interpolated onto a square grid with a tight spacing between points, ~0.1 Å (Figure 6a-6b). 

Once the two layers were interpolated onto a square grid (Figure 3-6 a-b), line profiles were taken 

across the images. The line profiles were taken left to right along the x axis through the center of 

mass of the image in Figure 3-6 a and b, with 100 line profiles spread along an area between ±5 

Å from the center of mass. The images were then rotated by increments of 2 degrees around the 

center of mass of all the image was then rotated  and the line profiles again extracted until the 

 

Figure 3-6. Displacement of the atoms perpendicular to the imaging-plane from the 

optimized positions produced by DFT for (a) the bottom layer, and (b) the top layer. (c) 

Atomistic model of the rippling relative to the layer separation. 



 

58 
  

average wavelength extracted from the top and bottom layer matched. Using this method the 

wavelength and amplitude for the layers where found to be 𝝀𝟏 = 𝟏𝟒. 𝟔𝟒 ± 0. 𝟔𝟏Å, 𝑨𝟏 =

𝟎. 𝟕𝟑 ± 𝟎. 𝟎𝟖 Å, and 𝝀𝟐 = 𝟏𝟒. 𝟔𝟒 ± 𝟎. 𝟓𝟒 Å, 𝑨𝟐 = 𝟎. 𝟕𝟕 ± 𝟎. 𝟎𝟔Å, giving an average wavelength 

and amplitude of 𝝀 = 𝟏𝟒. 𝟔𝟒 ± 𝟎. 𝟓𝟕 Å and 𝑨 = 𝟎. 𝟕𝟓 ± 𝟎. 𝟎𝟕 Å.  

To estimate the amount of strain, the primary-to-primary node distance and the 

secondary-to-secondary node distance in the patch were compared to the ideal distance based 

on the average angle of relative rotation in the whole image. The patch was chosen so that the 

primary-to-primary node distance and the secondary-to-secondary node distance are at 

approximately 90° to each other in the patch, allowing the strain in each direction to be directly 

related to the compressive and tensile strain: 

In Eq. 5 [74], L is the predicted node-to-node distance based on the average angle of relative 

rotation (4.45°) and ∆L is the difference between L and the measured node-to-node distance. 

Using Eq. (3-5), a tensile strain of 𝜺𝒙 = 𝟔. 𝟕𝟖% and a compressive strain of 𝜺𝒚 =1.23% were 

calculated. Then, using Eq. (3-6), an estimate of the in-plane Poisson’s ratio (𝝂) can be determined 

as 0.18 for the patch. Using well-converged DFT calculations, we find that for both AA- and AB-

stacked bilayers, as well as monolayer graphene, the in-plane Poisson ratio (𝝂) is 0.19, in 

agreement with experimental measurements on graphene and graphite [75], indicating that 

𝜺 =
∆𝑳

𝑳
 (3-5) 

𝝂 = |
 𝜺𝒚

 𝜺𝒙
| (3-6) 
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there is practically no sensitivity to the number of layers for the in-plane Poisson’s ratio in both 

theory and experiment. 

Given the presence of strain-induced rippling in our sample, the question arises whether 

the observed rippling obeys continuum mechanics. For example, monolayer graphene appears 

to satisfy [47], [48], [76] or violate continuum mechanics [77], [78], depending on the particular 

geometric setup conditions [79]. The continuum mechanics model of strained elastic sheets can 

be written either in terms of an applied tensile strain or in terms of a compressive strain. When 

uniaxial tensile strain is applied to an elastic sheet of length 𝑳 and thickness 𝒕, the wavelength 

(𝝀) and amplitude (𝑨) of rippling are given by [80]: 

where 𝝂 is the in-plane Poisson’s ratio and 𝜺 is the applied strain along the length. Likewise, for 

compressive strain of magnitude 𝜺𝒚, the relevant equations are [76]: 

Equations (3-7), (3-8) and (3-9), (3-10) are fundamentally related through the in-plane Poisson’s 

ratio for the magnitude of tensile and compressive strains (𝜺𝒚 = 𝝂𝜺𝒙). In the current 

experimental setup, it is difficult to concretely define 𝑳. Furthermore, there is an ambiguity in 

𝝀 = (𝟐𝝅𝑳𝒕)𝟏 𝟐⁄ [𝟑(𝟏 − 𝝂𝟐)𝜺𝒙]−𝟏 𝟒⁄  (3-7) 

𝑨 = (𝝂𝑳𝒕)𝟏/𝟐 [𝟏𝟔𝜺𝒙 (𝟑𝝅𝟐(𝟏 − 𝝂𝟐))⁄ ]
𝟏/𝟒

, (3-8) 

𝝀 = (𝟐𝝅𝑳𝒕)𝟏/𝟐𝝂𝟏/𝟒[𝟑(𝟏 − 𝝂𝟐)𝜺𝒚]
−𝟏/𝟒

 (3-9) 

𝑨 = (𝝂𝑳𝒕)𝟏/𝟐 [𝟏𝟔𝜺𝒚 (𝟑𝝅𝟐(𝟏 − 𝝂𝟐))⁄ ]
𝟏/𝟒

. (3-10)  
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how to define the thickness of atomically thin materials. Therefore, we can use Eqs. (3-7) and 

(3-8) to derive a relationship between 𝝀 and 𝑨 in terms of 𝜺𝒙: 

or Eqs. (3-9) and (3-10) to derive such a relationship in terms of 𝜺𝒚: 

Using the average extracted wavelength of 𝝀 = 𝟏𝟒. 𝟔𝟒 ± 𝟎. 𝟓𝟕 Å with a Poisson’s ratio of 0.19 

in Eq. (3-12) gives an expected amplitude of 𝑨 = 𝟎. 𝟕𝟑 ± 𝟎. 𝟎𝟑 Å. This expected amplitude and 

our extracted amplitude of 𝑨 = 𝟎. 𝟕𝟓 ± 𝟎. 𝟎𝟕 Å agree within uncertainty, implying that the 

observed rippling in bilayer graphene is consistent with the continuum theory of elasticity. 

Previous works have sparked the controversy as to whether rippling in graphene does obey [81] 

𝑨 =
𝝀

𝝅
(𝟐𝝂𝜺𝒙)𝟏/𝟐, (3-11) 

𝑨 =
𝝀

𝝅
(𝟐𝜺𝒚)

𝟏/𝟐
. (3-12) 

 

 

Figure 3-7:. (a) Layer-separation between the two layers from the optimized positions. (b) 

Layer-separation (black solid line) and z rippling for the top layer (red dotted line) across the 

line profile shown in (a). 
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or does not obey [77] the continuum theory model; while in the present case for bilayer 

graphene, the rippling does obey the continuum theory. 

Undulations in the z direction in bilayer graphene with a low angle of relative rotation 

result in a change in the separation between the layers that coincides with the intensity change 

of the moiré pattern [82]. To study the z undulations caused by the angle of relative rotation 

between the two layers of bilayer graphene, the distance between the layers (Figure 3-6 a-b) is 

used (Figure 3-7 a). To measure these undulations in the current data, a series of line profiles 

were taken along a path between the centers of the primary moiré nodes in the patch. These line 

profiles show undulations with a wavelength that matches the primary-to-primary node distance 

and an amplitude of 0.07Å (Figure 3-7 b). Semiclassical theory [82] predicts these undulations to 

have an amplitude of ~0.1 Å, which is slightly larger than what is observed in our optimized unit 

cell. An interesting note is that the strain-based rippling along the same line profiles (Figure 7b) 

appears to have the same wavelength and orientation as the moiré rippling; however, the strain 

rippling amplitude is an order of magnitude larger. Due to the moiré undulations and the strain 

rippling being aligned, the moiré-induced undulations would be undetectable without the aid of 

DFT. This orientation match between the moiré-induced undulations and strain-based rippling 

might simply be a coincidence or an actual correlation. 

3.4. OUTLOOK 

We have introduced a reconstructive analysis methodology to deduce the coordinates in 

all three spatial dimensions of the atoms that cannot resolved from one another in an 

experimental STEM image. The approach is not only able to deduce the xy information that is lost 
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in the STEM image, but also provides information in the z direction for which STEM provides little 

information. The z information clearly shows rippling in the direction of strain as would be 

expected and in line with the continuum model. The method relies on the assumption of a defect-

free lattice, but, using local-area correlation, it is possible to identify the location of potential 

defect areas. By inserting defects into the lattice computation and then re-optimizing the lattice, 

it is possible to identify the defect by optimizing the local correlation map in a self-consistent 

manner.  

While we have demonstrated success using a STEM image, the same approach can be 

performed using other atomic-resolution imaging techniques. Scanning tunneling microscopy 

(STM) could be an ideal candidate. STM can resolve individual atoms, but, like STEM, has a “blind 

spot” preventing full three-dimensional measurement of positions in bilayer or multi-layer 

systems. STM has very high resolution in the z-direction normal to the surface and good 

resolution in the xy plane of the surface, but is predominantly sensitive only to the outermost 

layer of atoms. STM provides little information about the lower layer in a bi-layer system. A 

number of atomically-resolved STM studies have identified rippling in both mono- and multi-

layer graphene [83]–[85]. The details of the subsurface structure influences the surface layer at 

a level that can be observed by STM, i.e. changes in the vertical positions of atoms located above 

or between atoms below. The present reconstructive-analysis approach, combining data analysis 

of measured atomic positions with DFT modeling should identify the missing subsurface atomic 

structures and could resolve outstanding questions on friction and the origins of rippling. 



 

63 
  

3.5. CONCLUSIONS 

We have demonstrated an approach for the recovery of atomic positions in three 

dimensions that cannot be determined from the raw data alone. Using a STEM image of bilayer 

graphene as the test case, the xy positions of all atoms were recovered and the z positions 

deduced. The z positions were validated through the 2D cross-correlation of the simulated STEM 

image with a filtered raw-data image. Defects in the bi-layer graphene sample were detected by 

the presence of areas of low correlation in the 2D cross-correlation map. It is then possible to use 

the correlation maps to identify the type of defects in a self-constant manner. In the present 

case, a defect was found and identified as a substitutional nitrogen. The z positions show the 

presence of nanometer-scale rippling consistent with the continuum elastic model. Furthermore, 

we find that the angle of relative rotation in the bilayer causes additional moiré-induced 

undulations in the atomic positions. It should be possible to further extend this methodology to 

other types of atomically-resolved microscopy, such as STM. 
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4. DEFECT DETECTION AND GROUPING 3 

4.1. INTRODUCTION 

Defects can vastly alter the performance of materials so that control of defect distribution 

and density is an important tool in engineering materials with novel functionality. Even small 

concentrations of defects can often change the properties of materials so that it is important to 

quantify the type and concentration of defects[86]–[88]. Over the last two decades, aberration-

corrected Scanning-Transmission-Electron-Microscopy (STEM) has become a quantitative 

structural tool capable of locating atomic columns with picometer-level precision. The ability to 

achieve sub-pixel precision on the location of the center of an atomic column in STEM images has 

been demonstrated through image analysis techniques such as finding the center of mass and 2D 

function fitting with a Gaussian, allowing for accurate, consistent, and repeatable determination 

of the centers of atomic columns in STEM images[28]–[30], [89], [90]. Within a STEM image it is 

possible to visually identify many defects such as impurities, interstitials, stacking faults, and a 

plethora of other complex defects.  

Several methods exist to detect and identify defects in STEM images, each having unique 

benefits and limitations. Defects within atomic columns can be detected by examining deviations 

in the contrast , looking for deviations in the local lattice[15], [16], overlaying an ideal lattice on 

the image[17], and by using vector tracing[18]. These methods include measuring the distance 

between neighboring atoms in the lattice and then using statistics and modeling to detect the 

                                                      
3 This chapter is based on a to-be-submitted paper: O. Ovchinnikov, A. O'Hara, S. Jesse, B. Hudak, S. Yang, A. Lupini, 
M. Chisholm, Zhou, W., A. Borisevich, S.V. Kalinin, and S.T. Pantelides, 2018. Automated defect detection in images 
of materials using graph theory   (in preparation)  
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presence and depth of a single defect in atomic columns[15], [16]; measuring the relative 

positions of neighboring atoms and then applying Principal Component Analysis (PCA) followed 

by K-means clustering to map the idea lattice and statistical deviations from the lattice[17]; using 

the Fourier transform of the image to determine the lattice parameter and then overlaying the 

lattice on the atomic coordinates. Using cross-correlation between the STEM image and a 

simulated STEM image based on coordinates obtained by relaxing a model structure by density-

functional-theory (DFT) calculations and then detecting defects through areas of low 

correlation[91]. These methods have achieved detection of defects that would not be possible or 

would be extremely time-intensive with the human eye. 

In this Chapter, we describe the development of a method that applies graph theory to 

the positions of atomic-column centers and is capable of detecting a wide range of defects in 

STEM images with no prior knowledge of the material. A cycle in graph theory is a path between 

points that connects a point back to itself. Multiple types of cycles exist such as the simple-walk 

cycle that does not allow any point or connection to be repeated.  For this work, a particular type 

of cycle is created with the following conditions: no vertices may be repeated, no connecting line 

may intersect another connecting line, the cycle must enclose a reference atomic column, the 

cycle must not enclose any other atomic columns, and, finally, the cycle must be the shortest 

path connecting the vertices.  For every atomic column in an image, a single cycle is found to 

represent it. Based on the number of vertices and the area of the cycles, it is possible to detect 

and categorize defects in the STEM image.  The approach is applied to STEM images of both 2D 

and bulk materials.  In 2D MoS2 doped with Re, sulfur vacancies are detected using two different 
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cycle metrics. In bulk silicon doped with bismuth we demonstrate the ability of cycles to detect 

the Bi dopants in the atomic columns and compare with Z contrast.  

4.2. METHODS AND MATERIALS 

4.2.1. Image filtering, finding centers of atomic columns  

All the raw STEM data are first processed to identify the centers of atomic columns as 

follows. At each pixel, a subimage is defined, centered at the pixel and encompassing an area 

roughly equal to the area per atomic column. These subimages are filtered using Principal 

Component Analysis (PCA) to remove noise and surface contamination[24]. The subimages are 

then passed through a 2D correlation[65] with an ideal atomic column (a 2D Gaussian) defined 

by  

which returns a single normalized intensity. From the filtered image, the centers of atomic 

columns are then found using a simple intensity threshold followed by density-based clustering 

[42]. Any clusters that do not meet a minimum size requirement are rejected.  The center of mass 

of each cluster is treated as the center of an atomic column. Further refinement of the positions 

of the atomic-column centers is preformed using nonlinear least-squares curve fitting between 

the raw data and a 2D Gaussian. The center of the fitted Gaussian is then treated as the refined 

center of the atomic column.  

𝒓(𝑨, 𝑩) =
∑ ∑ (𝐴𝑚𝑛 − �̅�)(𝐵𝑚𝑛 − �̅�)𝒏𝒎

√(∑ ∑ (𝐴𝑚𝑛 − �̅�)2
𝑛𝑚 )(∑ ∑ (𝐵𝑚𝑛 − 𝐵)2

𝑛𝑚 )
 (4-1) 
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4.2.2. Finding cycles for each atomic column 

A cycle is a path that connects atomic-column centers or “points” in such a way that it 

forms a closed loop to the original point. For our purposes, paths that define cycles are restricted 

further as follows. To find the cycles around an atomic column we remove the m nearest points 

and operate on them separately to save time. At each point, each of the m nearest points is 

connected to its n nearest neighbors. Typically, m=40 and n=10. Then, using the nearest neighbor 

(or one of equidistant nearest neighbors) as a starting point and all possible connections are 

followed to neighboring points without repeating a point. This process is repeated until we return 

to the starting point. If such a return is not possible, we conclude that no more cycles can be 

defined. 

4.2.3. Filtering cycles  

Once the cycles are found as described above, they must be filtered to find a single cycle 

to represent each atomic column.  This filtering is done by checking every cycle to see if it meets 

a series of rules. These rules are that no point may be repeated in the cycle, no connecting line 

may intersect another connecting line, the cycle must enclose the reference atomic column, the 

cycle must not enclose any other atomic column, the cycle must have no smaller angle then x 

degrees (x was set at 45o), and finally the cycle must be the shortest path connecting the points 

within a small fudge factor (within 1% of shortest path) (Figure 4-1).  Once all the cycles that do 

not meet these criteria are removed, the cycles with the largest number of points are selected. 
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From these cycles the one with the largest area is chosen as the cycle to represent an atomic 

column.  The reason the largest cycle is used for repeatability. To insure that we choose  the same 

cycle each time, it must have a unique feature. Since the smallest cycle would always be a triangle 

and provide little information, the largest cycle is used instead.  

4.2.4. Constructing cycles using Delaunay triangulation 

Finding all the possible cycles and checking them is a time consuming process. A faster 

way of finding a good guess of the best cycle was found using Delaunay triangulation [92]. For an 

atomic column, the positions of nearest m (typically m=40) neighbors are put into a Delaunay 

triangulation algorithm. Using the triangle that encloses the atomic column as the starting cycle, 

triangles from the Delaunay triangulation are combined with the cycle, testing at each step to 

make sure that the cycle meets the selection criteria, until no further triangles can be added that 

meet the criteria. This method of finding the cycle for an atomic column was found to be over an 

 

Figure 4-1: (a) Rejected cycle due to cycle lines crossing each other (b) rejected cycle due to 

an atom enclosed in the cycle (c) rejected cycle due to cycle is not the shortest path 

(b)(a) (c)

(d)(e)(d)
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order of magnitude faster than searching all possible cycles. However, it does not always find the 

true correct cycle, though it gets close. Even so, it works well because it fails only around defects 

that change the lattice, which is what we are looking for. (Figure 4-2 a-b).  

4.2.5. Pre-filtering of cycles  

To further improve the speed of the algorithm, pre-filtering of cycles was tested.  As all 

crystals are constructed from a combination of limited types of lattices, it is often possible to 

know what the correct cycle is before searching. To take advantage of this, we created a small 

library of possible cycles. We can overlay a library cycle onto the points by aligning it to the 

reference point and its nearest neighbor (or one of equidistant nearest neighbors), scaling it to 

fit the distance between the two points. Starting with the largest cycles in the library, the cycles 

are overlayed onto the points. If every point in the cycle coincides, within some uncertainty, with 

a point in the image, it is selected as the correct cycle. This process sometimes yields too small a 

cycle, but it has no effect on defect detection (Figure 4-2c).  The speed improvement of pre-

 

Figure 4-2:: The centers of atomic columns for MoS2 colored based on the number of points 

in an the cycles associated with them for (a) searching all cycles (b) using Delaunay 

triangulation (c) and using Delaunay triangulation plus pre-filtering. 

(a) (b) (c)
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filtering is based on the size of the library to test and the percent of defect atomic columns, as 

this is an additional operation that must be performed on defect atomic columns. 

4.2.6. Clustering cycles into defects using number of points in cycle. 

The first method of detecting defects is by looking at deviations in the number of points 

in the cycles. In 2D materials, atomic columns near defects that cause changes in the lattice such 

as vacancies, interstitials, or stacking faults have cycles that contain a different number of points 

than in the perfect crystal.  To detect a defect, we mark as acceptable any atomic column that 

has a cycle with the same number of points in it as a cycle in the perfect crystal. The remaining 

cycles are clustered together using a density-based clustering algorithm[93]. This algorithm 

randomly selects a point as the start of a cluster and then adds every point that is with a specified 

radius into the cluster. This procedure is repeated until no point can be added to the cluster. 

These clusters are then grouped based on the number of atomic columns in the cluster. This 

procedure allows for the automatic detection and defect clustering in STEM data.  

4.2.7. Using cycle area to find defects  

Another method of using cycles to find defects is by looking at changes in the cycle’s area. 

Using the cycle’s area to look for defects allows for the detection of defects that do not change 

the lattice, such as interstitials and vacancies in bulk materials.  Any cycle area that is much larger 

or smaller than the average cycle area represents the presence of a defect near that cycle.  This 

works on a similar idea to previous works where single cation vacancies where detected by 

measuring changes in the distance to nearest neighbor atomic columns[16], [94]. 
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4.3. RESULTS  

Here we demonstrate how the above methods work for the detection of defects in 2D and 3D 

materials.  

4.3.1. 2D materials  

For 2D materials, we have selected Re doped MoS2 (Figure 4-3 a). This material was 

selected due to the nature of available defects, namely Re dopants at Mo sites along with single 

and double S vacancies. We filtered this image and found all the atomic columns using the 

procedure described in the methods sections 4.2.1. Using the centers of the atomic columns, the 

cycles are found for each atomic column more than 2.5 times the average nearest neighbor 

distance from the edge. The number of points in each cycle are analyzed and the defects are 

 

Figure 4-3: (a) STEM image of Re doped MoS2 (b) atomic columns identified to be near defect 

using number of points in cycles (c) area of the cycles smaller areas are due to S vacancies  
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categorized (Figure 4-3 b).  Using the number of points in the cycle, all the missing S columns 

were detected and categorized into single missing columns, two adjacent missing columns and 

three adjacent missing columns. To find the single S vacancies, the areas of the cycles were used 

(Figure 4-3 c). S vacancies cause noticeable decrease in the area of cycles.  No method was found 

to identify the Re dopants using cycles because the presence of S vacancies near the Re makes 

 

Figure 4-4: (a) raw HAADF STEM image of  Mo–V–M oxide (b) interpolated map of local 

intensity around every atomic column in figure d with the location of atomic columns shown 

(c) interpolated map of size of cycle associated with every atomic column in figure d with the 

location of atomic columns shown (d) raw HAADF STEM image of Bi doped Si (e) location of 

every atomic column in figure a colored based on the  local intensity around every atomic 

column (f) location of every atomic column in figure a colored based size of cycle associated 

every atomic column 

(a) (b)

(d)

(c)

(e) (f)
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the use of cycle area unreliable. A possible explanation for the presence of S vacancies near Re 

could be due to the nature of the defects. Re dopants are N-type defect[95], [96] while sulfur 

vacancies act as deep acceptor sites[97], [98].  S vacancies act as electron traps for the excess 

electron of the Re atom making them complementary defects.  

4.3.2. 3D materials  

This ability to look at defects under the surface is demonstrated in Mo–V–M–O, where 

the M can be one of a number of atoms[43], with Te the most likely in this sample. Mo–V–M–O 

is a material that has been studied as a potential catalyst and can display a variety of interesting 

phases and defects. In Mo–V–M–O, we can see the pooling of vacancies or Nb atoms under the 

surface of the material (Figure 4-4 c).  The potential for large-scale vacancy clusters in this 

material and large stacking faults can be seen in Figure 4-5 which show an area with whole atomic 

columns missing. These areas are not visible in the Z-contrast image due to the presence of 

surface contamination on the sample masking the slight changes that might be present in the 

intensity of the atomic columns.  

The ability of using cycle area to detect defects within an atomic column was tested using 

Bi-doped Si (Figure 4-4 d). This material was used for demonstration of the principle because the 

Z-squared difference between Bi and Si makes identifying the Bi locations very simple. The ability 

of cycle size to identify Bi within an atomic column was found to be worse than the reference of 

Z squared intensity. Using cycle size, it was only possible to identify the approximate location of 

roughly 80% of the Bi dopants (figure 4-5 e-f).  In areas with more than one Bi dopant in close 

proximity, it is difficult to identify the number and exact location of the dopant. However, for 
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isolated Bi, it is much easier. The 80% identification is due to the depth of the defects in the 

material, as intensity can help identity defects at a greater depth than using the distortion in the 

local lattice that cycle area relies on. This result is in line with previous works that have used 

distortions in the local lattice to identify defects.  

 

Figure 4-5: (a) Original  HAADF image of Mo–V–M–O (b) atom column location colored based 

on number of atoms in associated cycles (c) atomic columns whose cycles are not the part of 

the perfect crystal (d) no perfect crystal atomic columns grouped into defects and colored 

based on the number of atoms in a defect (single missing column/ yellow , 2 adjoining missing 

atomic columns/purple, large staking fault /black) 

(b)(a)

(d)(c)
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4.4. CONCLUSIONS 

We test the method on STEM data for 2D and 3D materials. The method is best suited to finding 

defects in 2D materials. Nevetheless, it can supply useful information about the presence of 

defects in 3D materials as well. In 2D materials we demonstrated the ability of the method to 

distinguish a number of common defects including interstitials and vacancies.   
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