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CHAPTER I

Introduction

The sphere packing problem asks for the densest packing of spheres into Euclidean space; i.e, what

fraction of Rn can be covered by non-overlapping congruent balls. To begin, equip Rn with the

standard norm ‖‖ and Lebesgue measure Vol(). Then for x ∈ Rn, r > 0 we denote Bn(x, r) as the

ball in Rn with center x and radius r. Let X ⊂ Rn be a discrete set of points such that ‖x−y‖ ≥ 2r

for any distinct x, y ∈ X. Then the union

P =
⋃
x∈X

Bn(x, r)

is a sphere packing. The finite density of a packing P is defined as

∆P(R) =
Vol(P ∩Bn(0, R))

Vol(Bn(0, R))
,

for R > 0. We define the density of a packing P as

∆P = lim sup
R→∞

∆P(R).

Then the n-dimensional sphere packing constant is the supremum over all possible packing densities

∆n = sup
P⊂Rn

∆P .

All of these definitions and ideas are discussed in greater detail in Section II.2. The goal of the

sphere packing problem is therefore to determine the value of ∆n for different values of n. In several

dimensions it is either known or conjectured that the optimal packing in Rn is a lattice, where we

reall the definitions

Definition I.0.0.1. A lattice is a set of the form Λ = T (Zn), where T : Rn → Rn is an invertible

linear transformation. The dual of a lattice Λ = T (Zn) is the set Λ∗ so that Λ∗ = (TT )−1(Zn).

For example, if we consider the one dimensional case, we get ∆1 = 1 for Λ = Z. If we consider

the same problem in R2, the hexagonal or A2 lattice is optimal here. This result was known for

lattice packings by Lagrange as early as 1773. In 1940 Fejes Töth proved that this was optimal
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amongst all packings, concluding that ∆2 = π√
12

, see [16]. Raising the dimension once more and

considering R3, we end up with a string of results:

• In 1611, Kepler conjectured that the face centered cubic (FCC) is optimal amongst all config-

urations, known as Kepler’s Conjecture, see [17].

• In 1831, Gauss proved that FCC and the hexagonal close packing (HCP) are optimal amongst

lattice packings, see [16].

• In 1998, Hales announced a proof of Kepler’s conjecture however it was not until 2014 that his

computer assisted proof was rigorously checked giving ∆3 = π√
18

, see [18].

Hales proof was a computer-assisted proof requiring more than one hundred thousand cases to be

checked. We also note that the lack of similarity between the proofs in the two and three dimensional

cases suggests that most dimensions will require their own ad hoc methods.

In 2003 Cohn and Elkies used linear programming methods and Fourier analysis (again discussed

in much greater detail in Section II.2) to attack the problem.

Definition I.0.0.2. A function f : Rn → R is admissible if there exists a constant δ > 0 such that

|f(x)| and |f̂(x)| are bounded above by a constant times (1 + |x|)−n−δ.

Proposition I.0.0.3. (Cohn Elkies) Suppose f : Rn → R is an admissible function, not identically

zero and satisfies the following conditions:

• f(0) = f̂(0) > 0

• f̂(y) ≥ 0 for all y ∈ Rn

• f(x) ≤ 0 for |x| ≥ r

Then the sphere packing density in Rn is at most Vol(Bn(0, r2 )).

A proof of this is given in Section II.2. As discussed in Section II.2, the proof of this proposition

implies in order to show that a lattice Λ packing is optimal using the proposition, we would addi-

tionally require f to vanish on Λ and f̂ to vanish on its dual Λ∗. For example, in the case n = 1,

Cohn and Elkies used the function

f(x) = (1− |x|)χ[−1,1](x)

with Fourier transform given by

f̂(x) =

(
sinπx

πx

)2

2



to give another proof that Z is the optimal packing in R.

The Paley-Weiner theorem however implies that it is generally difficult to control the zeros of

a function and its Fourier transform simultaneously. It would therefore make sense to consider

eigenfunctions of the Fourier transform. By first observing that all functions could be assumed

radial, Cohn and Elkies considered the functions

f+ = f + f̂ (I.1)

f− = f − f̂ . (I.2)

This reduced the problem to finding +1 and −1 eigenfunctions of the Fourier transform satisfying the

above extremal properties. Using lattices either known or conjectured to be optimal, Cohn and Elkies

did numerical experiments using linear combinations of the functions f(x) = e−π|x|
2

p(2π|x|2), for

appropriately chosen Laguerre polynomials p. These functions were chosen because they form a basis

for the radial eigenfunctions of the Fourier transform with eigenvalues +1 or −1. Their estimates

gave convincing evidence of ’magic functions’ in the cases of n = 2, 8, 24 that show optimality of the

A2, E8, and Leech lattices respectively. The authors would conjecture that these functions existed

and were unique.

It was not until 2016 that Viazovska would find such a magical function for the case n = 8 in

[2]. Motivated by the work of Cohn and Elkies, in particular equations (I.1) and (I.2), she would

consider functions of the form

V (x) = sin

(
π‖x‖2

2

)2 ∫ i∞

0

ψ(z)eiπ‖x‖
2z dz, (I.3)

for x ∈ R8 and appropriately defined functions ψ(z). She would find that a necessary condition

of V being an eigenfunction of the Fourier transform would imply that ψ would satisfy functional

equations involving the transformations z → z + 1 and z → − 1
z . This was suggestive of the

involvement of modular forms. The function she produced would demonstrate that ∆8 = π4

384 . These

ideas were subsequently applied to the case n = 24 in [3] by Cohn, Kumar, Miller, Radchenko, and

Viazovska to give that ∆24 = π12

12! . In terms of (I.3) these solutions were given by

ψ+ =
(E2E4 − E6)2

∆

ψ− =
5θ12

01θ
8
10 + 5θ16

01θ
4
10 + 2θ20

01

∆

3



for the 8 dimensional case (the + and − cases in the subscripts refer to the designations from f+

and f−). In the 24 dimensional case the solutions were

ψ+ =
25E4

4 − 49E2
6E4 + 48E6E

2
4E2 + 25E2

6E
2
2 − 49E3

4E
2
2

∆2

ψ− =
7θ20

01θ
8
10 + 7θ24

01θ
4
10 + 2θ28

01

∆2
.

The notation of both solutions is discussed in Section II.3.

From here, the idea of taking the Laplace transform of modular forms was applied to other

extremal problems including those in energy optimization, interpolation, and harmonic analysis. In

[8], Radchenko and Viazovska considered functions of the form

A(x) =

∫ 1

−1

g(z)eiπx
2zdz,

for again an appropriately defined modular form g and real values of x. These functions were used

as an interpolation basis for Schwartz functions on the real line, giving the authors the following

theorem.

Theorem I.0.0.4. There exists a collection of even Schwartz functions an : R→ R with the property

that for any even Schwartz function f : R→ R and any x ∈ R we have

f(x) =

∞∑
n=0

an(x)f(
√
n) +

∞∑
n=0

ân(x)f̂(
√
n),

where the right-hand side converges absolutely.

Similarly, for odd functions they showed

Theorem I.0.0.5. There exists a collection of odd Schwartz functions d+
n : R→ R and d−n : R→ R

with the property that for any odd Schwartz function f : R→ R and any x ∈ R we have

f(x) = d+
0 (x)

f ′(0) + if̂ ′(0)

2
+

∞∑
n=1

cn
f(
√
n)√
n
−
∞∑
n=1

ĉn
f̂(
√
n)√
n

,

where cn =
d+n (x)+d−n (x)

2 .

Since f(x) = f(x)+f(−x)
2 + f(x)−f(−x)

2 , we get a general interpolation formula for real Schwartz

functions. A generalization of this interpolation scheme was then applied in [14] by Cohn, Kumar,

Miller, Radchenko, and Viazovska to show universal optimality ( see [19] for appropriate definitions)

of the E8 and Leech Lattices in R8 and R24 respectively.
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Finally, in [15], Cohn and Gonçalves constructed a function of the type Viazovska initially consid-

ered to demonstrate a minimizing function in the sense of an uncertainty principle they considered.

More precisely, for f : Rd → R we say it is eventually nonnegative (respectively, eventually nonposi-

tive) if f(x) ≥ 0 (f(x) ≤ 0) for all sufficiently large |x|. Define

r(f) = inf{R ≥ 0 : f(x) has the same sign for |x| ≥ R},

let A+(d) denote the set of functions f : Rd → R such that

• f ∈ L1(Rd), f̂ ∈ L1(Rd), and f̂ is real valued

• f is eventually nonnegative while f̂(0) ≤ 0

• f̂ is eventually nonnegative while f(0) ≤ 0,

and let

A+(d) = inf
f∈A+(d)/{0}

√
r(f)r(f̂).

It is shown A+(12) =
√

2 by constructing a function f that is a +1 eigenfunction of the Fourier

transform such that r(f) =
√

2.

I.1 Statement of Results

This thesis will discuss functions and transforms of the type discussed in [2] and [8]. We give a

general framework for constructing +1 and −1 eigenfunctions of the Fourier transforms of the form

(I.3) in Rd for d divisible by 4. Specifically, we show the following propositions and theorems

Proposition I.1.0.1. Suppose ψ ∈ L1
loc(iR) is such that for some C > 0 and constants ak, bk ∈ C,

k = 0, 1, ..., n,

ψ(z) =

n∑
k=0

ake
−2πikz − iz

∑
k=0

bke
−2πikz +O(eiCz) as z → i∞. (I.4)

For Re(s) > 2n, let

W (s) = −i
∫ i∞

0

ψ(z)e−2πiszdz. (I.5)

Then

W (s) =

n∑
k=0

(
ak

π(s− 2k)
+

bk
π2(s− 2k)2

)
−i
∫ i∞

0

(
ψ(z)−

(
n∑
k=0

ake
−2πikz + z

n∑
k=0

bke
−2πikz

))
eπiszdz

(I.6)

gives an analytic continuation of W to the half-plane Re(s) > −Cπ .
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Proposition I.1.0.2. Let ψ : H → C be holomorphic on H and bounded on the angular region

Rα,ε := {reit : 0 < r < ε, α < t < π − α} for some ε > 0 and some 0 < α < π
4 . Further suppose the

restriction of ψ to iR+ and W are as in Proposition I.1.0.1 and for Re(s) > −Cπ let U(s) be defined

by

U(s) = −4 sin
(π

2
s
)2

W (s). (I.7)

Then U(s) is holomorphic for Re(s) > −Cπ and

iU(s) =

∫ i

−1

ψ(Tz)eiπsz dz +

∫ i

1

ψ(T−1z)eiπsz dz

− 2

∫ i

0

ψ(z)eiπsz dz +

∫ i∞

i

(
ψ(Tz)− 2ψ(z) + ψ(T−1z)

)
eiπsz dz,

(I.8)

where the integrals are along straight line segments joining the endpoints.

Proposition I.1.0.3. Let ψ be as in Proposition I.1.0.1 , U as in Proposition I.1.0.2 and let

F : Rd → C be defined by

F (x) := U(‖x‖2), (x ∈ Rd). (I.9)

If, in addition, ψ satisfies

ψ(z) = O(eiCSz) as z → 0 non-tangentially in H, (I.10)

then F is a Schwartz function and can be written in the form

F (x) = −i
[∫ i

−1

ψ(Tz)eiπ‖x‖
2z dz +

∫ i

1

ψ(T−1z)eiπ‖x‖
2z dz

−2

∫ i

0

ψ(z)eiπ‖x‖
2z dz +

∫ i∞

i

(
ψ(Tz)− 2ψ(z) + ψ(T−1z)

)
eiπ‖x‖

2z dz

]
.

(I.11)

Consequently, the Fourier transform of F is given by

F̂ (t) = −i(−1)d/4
[∫ i

−1

ψ(T−1Sz)eiπ‖t‖
2zzd/2−2 dz

+ 2

∫ i∞

i

ψ(Sz)eiπ‖t‖
2zzd/2−2 dz +

∫ i

1

ψ(TSz)eiπ‖t‖
2zzd/2−2 dz

−
∫ i

0

(ψ(T−1Sz)− 2ψ(Sz) + ψ(TSz))eiπ‖t‖
2zzd/2−2 dz

]
.

(I.12)

Proposition I.1.0.4. Let ψ be as in Proposition I.1.0.2 , F as in Proposition I.1.0.3 and ε ∈

6



{−1, 1}. Then F̂ = ε(−1)
d
4F if and only if

z
d
2−2ψ(T−1Sz) = εψ(Tz) (I.13)

2z
d
2−2ψ(Sz) = ε

(
ψ(Tz)− 2ψ(z) + ψ(T−1z)

)
, (I.14)

for all z ∈ H.

Proposition I.1.0.5. Let ψ be as in Proposition I.1.0.1. Then the corresponding function F given by

(I.9) is an eigenfunction for the Fourier transform with eigenvalue (−1)
d
4 , if and only if z

d
2−2ψ(Sz)

is a quasi-modular form of weight 4− d
2 and depth 2. More precisely, there are weakly holomorphic

modular forms ψ1, ψ2, ψ3 of respective weights 4− d
2 , 2− d

2 , and −d2 such that

z
d
2−2ψ(Sz) = ψ1(z)− 2E2(z)ψ2(z) + E2(z)2ψ3(z). (I.15)

This gives

ψ(z) = z2
(
ψ1(z)− 2E2(z)ψ2(z) + E2(z)2ψ3(z)

)
+ z

12i

π
(ψ2(z)− E2(z)ψ3(z))− 36

π2
ψ3(z).

(I.16)

Furthermore, ψ1, ψ2, and ψ3 have to satisfy

ψ1(z)− 2E2(z)ψ2(z) + E2(z)2ψ3(z) = O(e2πiz) (I.17)

for z → i∞ in order to fulfill (I.4) and (I.10).

Proposition I.1.0.6. Let ψ be as in Proposition I.1.0.2. Then the corresponding function F given

by (III.7) is an eigenfunction of the Fourier transform with eigenvalue (−1)
d
4 +1 if and only if there

exists a weakly holomorphic modular form f of weight 2 − d
2 for Γ and ω a weakly holomorphic

modular form of weight 2− d
2 for Γ(2) such that

ψ(z) = f(z) · L(z) + ω(z), (I.18)

ω(z) = z
d
2−2ω(Sz) + ω(Tz), (I.19)

where L is defined in (II.10).

Theorem I.1.0.7. In dimensions d divisible by 4, there exists an integer n+ and a radial Schwartz

7



function F+ : Rd → R such that

F+(x) = (−1)
d
4 F̂+(x) for all x ∈ Rd

F+(
√

2n+) = 0 and F ′+(
√

2n+) 6= 0

F+(
√

2m) = F ′+(
√

2m) = 0 for m > n+, m ∈ N

and

Theorem I.1.0.8. In dimensions, d divisible by 4, there exists an integer n− and a radial Schwartz

function F− : Rd → R such that

F−(x) = (−1)
d+1
4 F̂−(x) for all x ∈ Rd

F−(
√

2n−) = 0 and F ′−(
√

2n−) 6= 0

F−(
√

2m) = F ′−(
√

2m) = 0 for m > n−, m ∈ N.

We also explore their utilities within the sphere packing problem and the uncertainty principle

discussed above. We also generalize the result given in [8] by showing an extension to R2 and R3

Theorem I.1.0.9. Let d ∈ {2, 3}, there exists a collection of radial Schwartz functions an : Rd → R

with the property that for any radial Schwartz function f : Rd → R and any x ∈ Rd we have

f(x) =

∞∑
n=0

an(x)f(
√
n) +

∞∑
n=0

ân(x)f̂(
√
n),

where the right-hand side converges absolutely.

Throughout we would like to emphasize the natural connection between the transforms, modular

forms, and the underlying structures that they are meant to study. Moreover, where appropriate

we give discussion about the functions and the intuition behind them. This thesis will be organized

as follows. In Chapter II we give an overview of lattices, Fourier transforms, modular forms, and

Riemann surfaces. Chapter III gives a discussion of functions of the form

V (x) = sin

(
π‖x‖2

2

)2 ∫ i∞

0

ψ(z)eiπ‖x‖
2z dz.

This includes conditions for analytic continuity, being Schwartz class, and being eigenfunctions of

the Fourier transform. These will become functional equations for ψ and asymptotic conditions

as z → 0 and z → i∞. In Sections III.2.1 and III.3.1 we discuss the cases of being a +1 and

8



−1 eigenfunction of the Fourier transform respectively. For the former the solution will be weakly

holomorphic quasi-modular forms of weight 4− d
2 and depth 2. For the latter the solutions will be

weakly holomorphic modular forms for Γ(2) of weight 2− d
2 . In both cases we discuss applications to

the sphere packing problems. In Chapter IV we discuss a generalization of the interpolation formula

given in [8] for real Schwartz functions to radial Schwartz functions in R2 and R3. In Chapter V we

give tables of the polynomials discussed in Chapter III.
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CHAPTER II

Preliminary Materials

This section will be used to cover a broad spectrum of material that will assumed to be known

throughout the thesis. Where appropriate we will include references to this section throughout the

work.

II.1 Lattices

We equip Rn with its usual inner product, i.e, if x, y ∈ Rn, 〈x, y〉 = yTx. A lattice is a set of the

form Λ = T (Zn), where T : Rn → Rn is an invertible linear transformation. Equivilantly, we can

write Λ = {
∑n
k=1 ckvk : ck ∈ Z} and where the vk’s are the columns of T . We define a set Ω to be

a fundamental parallelepiped for Rn/Λ if the collection of sets {Ω + v : v ∈ Λ} consists of pairwise

disjoint sets whose union is Rn. The canonical choice of fundamental parallelepiped will be the set

ΩΛ = {
∑n
k=1 ckvk : ck ∈ [0, 1)}. Its dual lattice Λ∗ is defined to be the set of v ∈ Rn such that

〈v, w〉 ∈ Z for all w ∈ Λ. This is equivalent to Λ∗ = (TT )−1(Zn) just by using the definition of the

given inner product. With this in mind we define some standard terminology.

Definition II.1.0.1. Let Λ = T (Zn) be a lattice in Rn.

• Λ is integral if 〈v, w〉 is an integer for all v, w ∈ Λ or equivalently TTT ∈ GLn(Z).

• Λ is even if ‖v‖2 is an even integer for all v ∈ Λ.

• Λ is unimodular if Λ = T (Zn) and |detT | = 1.

• Λ is self-dual if Λ = Λ∗.

• The covolume ‖Λ‖ = Vol(Rn/Λ) = |detT | is the volume of any fundamental parallelotope. It

satisfies ‖Λ‖‖Λ∗‖ = 1.

• The Gram Matrix of a lattice is defined to be TTT .

Proposition II.1.0.2. If Λ is integral and unimodular, then Λ is self dual

Proof. Since Λ is integral it must be the case that Λ ⊂ Λ∗. So it must be the case that there exists

a W ∈ GLn(Z) so that TW = T ′, where T ′ = (TT )−1. Unimodularity gives |detW | = 1 and using

the adjugate, we see that W−1 ∈ GLn(Z) too so it must be the case that T = T ′W−1. So, Λ∗ ⊂ Λ

, Λ∗ = Λ

10



II.1.1 Fourier Transforms and Series

Given an L1 function f : Rn → R, we define the Fourier Transform of f to be

f̂(t) =

∫
Rn
f(x)e−2πi〈x,t〉dx

Also, for each integrable, periodic f and Λ we associate a Fourier Series

∑
t∈Λ∗

cte
2πi〈v,t〉, ct =

1

|Λ|

∫
Rn/Λ

f(v)e−2πi〈v,t〉dv

Here, integrability refers to the fundamental parallelepiped and we do not imply convergence to f

in any sense. This is equivalent to the standard definition of the Fourier Series on a n-dimensional

torus via a change of variable.

Definition II.1.1.1. We say a function f : Rn → R is admissible if there is a constant δ > 0

such that |f(x)| and |f̂(x)| are bounded above by a constant times (1 + |x|)−n−δ.

Remark: The Riemann-Lebesgue lemma implies that for an L1 function f , its Fourier transform

f̂ ∈ C0. If we add in the additional hypothesis of f being admissible then the Fourier Inversion

Formula implies that there is a function f ′ ∈ L1 ∩ C0 that is equal to f almost everywhere with

respect to the Lebesgue measure. With this is in mind we can without loss of generality assume f is

continuous by just taking its continuous representative.

With this definition in mind we present a result that will come up throughout the course of this

paper.

Theorem II.1.1.2 (Poisson Summation). Suppose f is an admissible function then for each v ∈ Rn

the following holds ∑
x∈Λ

f(x+ v) =
1

|Λ|
∑
t∈Λ∗

e2πi〈v,t〉f̂(t) (II.1)

Proof. We first show the result when Λ ≡ Zn. In this case we first observe that given a fixed

v ∈ Rn the number of lattice points, x ∈ Zn satisfying N < |x + v| < N + 1 is bounded above by

cn((N + 1)n− (N)n), where cn is the volume of the unit n-ball, and hence O(Nn−1), for sufficiently

large N , since the fundamental region for this lattice has volume 1. Combining this with our

assumptions about f ’s decay we have

∑
x∈Zn
|f(x+ v)| ≤

∑
x∈Zn

(1 + |x+ v|)−n−δ ≤M
∞∑
N=1

N−δ−1

11



where M is a positive constant and the last sum is a convergent p-series. This implies that if we

put F (v) =
∑
x∈Zn f(x + v), F is absolutely and uniformly continuous by the Weierstrass M-Test.

Also, we note that F is periodic with respect to the lattice and we have the following

∫
Rn/Zn

|F (v)|dv =

∫
Rn/Zn

|
∑
x∈Zn

f(x+ v)|dx

≤
∫
Rn/Zn

∑
x∈Zn

|f(x+ v)|dx

=
∑
x∈Zn

∫
Rn/Zn

|f(x+ v)|dx

=

∫
Rn
|f(y)|dy <∞

Here, we used a change of variables and exchanged the sum and integral by Fubini, since the sum

is absolutely convergent. Then, F is integrable with respect to the fundamental parallelepiped and

therefore has a well defined Fourier Series as well. We next compute the t-th Fourier coefficient of

F and observe that∫
Rn/Zn

F (v)e−2πi〈v,t〉dv =

∫
Rn/Zn

∑
x∈Λ

f(x+ v)e−2πi〈v,t〉dv

=
∑
x∈Zn

∫
Rn/Zn

f(x+ v)e−2πi〈v,t〉dv

=
∑
x∈Zn

∫
Rn/Zn+x

f(u)e−2πi〈u−x,t〉du

=
∑
x∈Zn

∫
Rn/Zn+x

f(u)e−2πi〈u,t〉−2πi〈x,t〉du

=

∫
Rn
f(u)e−2πi〈u,t〉du

= f̂(t)

We justify the interchange of the integral and sum in line 2 by the absolute summability of the

series. Now, we note that our first observation again with the fact that f is admissible implies the

absolute convergence of the sum of the Fourier coefficients of F . Together with F ’s continuity this

implies point wise convergence to its Fourier Series, that is to say,

F (v) =
∑
x∈Zn

f(x+ v) =
∑
t∈Zn

cte
2πi〈v,t〉 =

∑
t∈Zn

f̂(t)e2πi〈v,t〉

as desired. In the case of the general lattice Λ we note that by definition we must have Λ =

W (Zn) for some non-singular matrix W . In this case if we define g(x) = f(Wx) then ĝ(x) =
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1
| det(W )| f̂(W−Tx) = 1

|Λ| f̂(W−Tx) and we have the following by what we proved above

∑
x∈Λ

f(x+ v) =
∑
k∈Zn

f(x+Wk)

=
∑
k∈Zn

g(W−1x+ k)

=
∑
k∈Zn

ĝ(k)e2πik〈(W−T k),x〉

=
1

|Λ|
∑
t∈Λ∗

e2πi〈v,t〉f̂(t),

as desired

II.2 Sphere Packing

In this section we present information and definitions relevant to our understanding of the sphere

packing problem. Although some of this information was presented in the introduction, we present

it in greater depth and formality.

Equip Rn with the standard norm ‖‖ and Lebesgue measure Vol(). Then for x ∈ Rn, r > 0 we

denote Bn(x, r) as the ball in Rn with center x and radius r. Let X ⊂ Rn be a discrete set of points

such that ‖x− y‖ ≥ 2r for any distinct x, y ∈ X. Then the union

P =
⋃
x∈X

Bn(x, r)

is a sphere packing. If X is a lattice in Rn then we say that P is a lattice sphere packing. We take

the finite density of a packing P, given p ∈ Rn, to be

∆P(R) =
Vol(P ∩Bn(p,R))

Vol(Bn(p,R))
, (II.2)

for R > 0. We define the density of a packing P (if the limit exists) as

∆P = lim
R→∞

∆P(R).

It is known that when this limit exists for one p, then it exists for all p ∈ Rn and the limit is equal

for all such points, [20]. If the limit exists for all p uniformly then we say P has uniform density. In

this case it shown in [20] that for every compact set S that is the closure of its interior and every

13



point p,

∆P = lim
R→∞

Vol ((RS + p) ∩ P)

Vol(RS)
. (II.3)

On the other hand, if only

∆P = lim sup
R→∞

sup
p∈Rn

Vol(P ∩Bn(p,R))

Vol(Bn(p,R))
(II.4)

exits, we refer to it as the upper density. It was shown in [20] that (II.4) always exists, the supremum

of all upper densities always exists, and the supremum is achieved by a uniformly dense packing. We

take the supremum over all upper densities to be ∆n, the n-dimensional sphere packing constant.

These definitions are designed to measure the fraction of space covered by the packing by taking

increasingly large subsets of n-dimensional space in the form of balls and then letting the radius

become increasingly large. Equation (II.2) corresponds to our intuitive notion of packing density

in the case of lattice packings and simplifies to
Vol(Bn(0, r

∗
2 ))

|Λ| (where r∗ is the length of the minimal

vector in Λ), that is to say, the ratio of space covered by a ball of the prescribed radius to the

volume of the fundamental parallelepiped. Here, Vol(Bn(0, r
∗

2 )) refers to the volume of the solid

n-dimensional ball given by ( r
∗

2 )n πn/2

Γ(n/2+1) .

Not every sphere packing is a lattice packing and we can instead opt for a more general notion

of packings known as periodic packings. In such packings, we still want the packing to be periodic

under translations by Λ, however, spheres can occur anywhere in a fundamental parallelepiped of Λ

not just at corners as in the case of lattice packings. Our definitions given above still carry over for

such configurations. In particular for such packings we suppose that we have a collection of vectors

v1, v2, ..., vN within the canonical fundamental domain of Λ, our packing will then be

P =
⋃
v∈Λ

N⋃
i=1

Bn(v + vi,
r∗

2
),

where r∗ > 0 is the distance in the packing. Similar to the case of the lattice packing, the periodic

packing’s density also simplifies to an intuitive definition as well:
N Vol(Bn(0, r

∗
2 ))

|Λ| . We also have the

following lemma

Lemma II.2.0.1. There exists a sequence of periodic packings whose densities converge to ∆n

Proof. Let P be a uniformly dense packing of density ∆n and ΩΛ be the fundamental parallelotope
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of any lattice Λ ⊂ Rn. Then, by (II.3)

∆n = lim
r→∞

Vol(rΩΛ ∩ P)

Vol(rΩΛ)
.

Choose ε > 0 and observe that if we choose r sufficiently large that the volume of the spheres in P

that lie entirely within rΩΛ is within εVol(rΩΛ) of ∆n Vol(rΩΛ). Now define a periodic packing P ′

by taking all the spheres of P that lie entirely within rΩΛ and then including all translations of them

by rΛ. Then this periodic packing has density at least ∆n − ε. The conclusion then follows.

Using Lemma II.2.0.1, it suffices to consider these cases when trying to draw general conclusions

about n-dimensional packing densities.

We can further define the center density δn to be the number of sphere centers per unit volume.

If we scale our packing so that unit spheres are used we have ∆n = πn/2

(n/2)!δn since the unit sphere

has volume πn/2

(n/2)! , here we interpret (n/2)! = Γ(n/2 + 1) for odd n. We next continue with a strong

result from Cohn and Elkies from [1] that will use our new terminology and tie in some earlier ones.

Proposition II.2.0.2. (Cohn and Elkies) Suppose f : Rn → R is an admissible function, not

identically zero and satisfies the following conditions:

• f(0) = f̂(0) > 0

• f̂(y) ≥ 0 for all y ∈ Rn

• f(x) ≤ 0 for |x| ≥ r

Then the sphere packing density in Rn is at most Vol(Bn(0, r2 )).

Proof. Lemma II.2.0.1 implies that we may without loss of generality only consider periodic packings.

To this end, suppose that X is a periodic packing in Rn using balls of radius r
2 and lattice Λ. In

this case our packing is

PX =
⋃
v∈Λ

N⋃
i=1

Bn(v + vi,
r

2
),

where the vectors v1, v2, ..., vN are within the canonical fundamental domain of Λ. Our packing

density is then

δX =
N Vol(Bn(0, r2 ))

|Λ|
.

We will show that |Λ| ≥ N , then, since periodic packings can be made arbitrarily close to general
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packings our conclusion will follow for all packings. Next, by II.1.1.2

∑
x∈Λ

f(x+ v) =
1

|Λ|
∑
t∈Λ∗

e−2πi〈v,t〉f̂(t)

for all v ∈ Rn. It follows that

∑
1≤j,k≤N

∑
x∈Λ

f(x+ vj − vk) =
1

|Λ|
∑

1≤j,k≤N

∑
t∈Λ∗

e−2πi〈vj−vk,t〉f̂(t)

=
1

|Λ|
∑

1≤j,k≤N

∑
t∈Λ∗

e−2πi〈vj ,t〉e2πi〈vk,t〉f̂(t)

=
1

|Λ|
∑
t∈Λ∗

f̂(t)
∑

1≤j,k≤N

e−2πi〈vj ,t〉e2πi〈vk,t〉

=
1

|Λ|
∑
t∈Λ∗

f̂(t)(

N∑
j=1

e−2πi〈vj ,t〉)(

N∑
j=1

e−2πi〈vj ,t〉)

=
1

|Λ|
∑
t∈Λ∗

f̂(t)|
N∑
j=1

e−2πi〈vj ,t〉|2

First, note that |x + vj − vk| < r iff x = 0 and i = j since that difference represents the distance

between two sphere centers in the configuration X. Therefore, the left hand side is bounded above

by Nf(0). On the other hand, the non-negativity of the right hand side implies that it is bounded

below by N2

|Λ| f̂(0). Altogether,

Nf(0) ≥ N2

|Λ|
f̂(0)

Rearranging by using the fact that f(0) = f̂(0) > 0 we get the desired result.

II.2.1 Remarks

We first observe that our second assumption about the Fourier transform of f in Proposition II.2.0.2

is actually too strong; in the case of a periodic configutation X we only require that f̂(y) ≥ 0 for

y ∈ Λ∗ instead of for y ∈ Rn. Moreover, we can also note that we lose no generality in assuming

that f is radial because if f satisfies the desired conditions, then so does its radial part given by

g(x) =

∫
Sn−1

f(‖x‖ξ)dω(ξ),

where dω(ξ) is the normalized Lebesgue surface measure on Sn−1. Noting that the Fourier Transform

as well as its inverse will map radial functions to radial functions via the Hankel Transform and Bessel

functions, we have no problems assuming all functions to be discussed are radial.
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Next, observe that Proposition II.2.0.2 makes no mention of a lattice or periodic packing. While

the theorem was used in the context of lattices in [2] and [3], the full generality of the theorem

implies that we only need a function satisfying its hypotheses for some r > 0 to get an upper bound

on the sphere packing density. On the other hand, in cases where we do have an underlying periodic

configuration X, for a tight bound or sharp estimate, the proof of Proposition II.2.0.2 implies that

f vanishes on all non-zero distances in X and f̂ vanishes on all non-zero distances in Λ∗.

For example, in the case n = 8, the densest known packing of R8 is the E8 lattice. To prove E8

has the optimal packing using Proposition II.2.0.2 we would need to find a function f that satisfies

the hypotheses of Proposition II.2.0.2 and such that f and f̂ vanish on the distances in E8 (since

E8 is self-dual). The distances in E8 are all of the form
√

2k for k ≥ 1, explaining why the functions

considered in [2] would be of the form

V (x) = sin

(
π‖x‖2

2

)2 ∫ i∞

0

ψ(z)eiπ‖x‖
2z dz.

This similarly holds for R24 where the densest packing known was given by the self-dual Leech

lattice, whose distances are given by
√

2k for k ≥ 2.

To add further regularity to this problem, the authors in [1] supposed that we had radial functions

f and f̂ that satisfy Proposition II.2.0.2 and considered the functions f+ = f+f̂ , f− = f−f̂ . Notice

that f+ and f− are 1 and -1 eigenfunctions of the Fourier Transform respectively, that vanish on the

distances in the lattice. Uncertainty principles imply that it is difficult to simultaneously control the

behavior of a function and its Fourier transform; e.g, controlling the roots of both. This implies that

we can gain traction by limiting our search to radial eigenfunctions of the Fourier Transform with

eigenvalues 1 or -1, that vanish on a discrete set of values. This idea will be the primary inspiration

for our later work in Chapter III.

II.3 Modular Forms

We will present two approaches to understanding these functions. While equivalent, the first will

emphasize their relationship with lattices, which is important because their natural connection with

the things our transform seeks to deal with.

Suppose X ⊂ R2 is a lattice, then as in Section II.1 we can write X = {
∑2
k=1 ckvk : ck ∈ Z}

for some v1, v2 ∈ R2 or equivalently X = Zω1 + Zω2, for some ω1, ω2 ∈ C. We see that we can

choose representatives ω1, ω2 so that τ = ω1

ω2
∈ H. This allows us to without loss of generality write

X = Zτ + Z, for some τ ∈ H. If we let L denote the set of all 2-dimensional lattices, suppose we
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define a function

F : L → C, F (Zτ + Z) = f(τ),

where for now f is just a function meant to denote the sole dependence on τ . In order to extend F

to all lattices we suppose that F (λX) = λ−kF (X), where λ ∈ C and k ∈ Z. This implies that in

general we have

F (Zω1 + Zω2) = ω−k2 F

((
Z
ω1

ω2

)
+ Z

)
= ω−k2 f

(
ω1

ω2

)
.

Furthermore, for F to be well-defined we require F (X) = F (X ′) when X and X ′ are homothetic,

i.e, there exists a γ ∈ SL2(Z) so that X ′ = γX. In this way, suppose that X ∼= X ′, X = Zω1 +Zω2,

and X ′ = Zω′1 + Zω′2 for representatives ω1, ω2, ω
′
1, and ω′2 such that τ = ω1

ω2
∈ H and τ ′ =

ω′1
ω′2
∈ H.

Then for some γ =

a b

c d

 ∈ SL2(Z) we have

f(γτ) = f(τ ′) = f

(
ω′1
ω′2

)
= F

(
Z
ω1

ω2
+ Z

)
= F

(
Zγ
(
ω1

ω2

)
+ Z

)
= (cω1 + dω2)kF (Z(aω1 + bω2) + Z(cω1 + dω2))

= (cω1 + dω2)kF (Zω1 + Zω2)

=

(
c
ω1

ω2
+ d

)k
F

(
Z
ω1

ω2
+ Z

)
=

(
c
ω1

ω2
+ d

)k
f

(
ω1

ω2

)
= (cτ + d)kf(τ)

This shows that we can go back and forth between between homogeneous functions defined on

lattices and functions defined on H that satisfy automorphic properties with respect to SL2(Z). In a

slightly different way, we can think about the group SL2(Z) and its action on the upper half-plane H

exclusively without ever mentioning lattices. Specifically, for γ ∈ SL2(Z) define its action on z ∈ H

to be

γz =
az + b

cz + d
γ =

a b

c d


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We note that SL2(Z) is generated by the two matrices:

T =

1 1

0 1

 S =

0 −1

1 0


We see that the action of γ,−γ ∈ SL2(Z) have the same affect on the upper half-plane so it makes

sense to consider PSL2(Z) = SL2(Z)/ {±I}. Define the principal congruence subgroup of level N ,

Γ(N) ⊂ SL2(Z)

Γ(N) =

A ∈ SL2(Z)

∣∣∣∣∣∣∣ A ≡
1 0

0 1

 (mod N)

 ,

where we consider each of the entries modulo N . We can further define a congruence subgroup, Γ,

to be any subgroup of SL2(Z) such that there exists an N such that Γ(N) ⊂ Γ. The minimal such

N is defined to be the level of the subgroup Γ. Every such subgroup Γ has finite index due to the

group isomorphism

SL2(Z)/Γ(N) ∼= SL2(Z/NZ)

Furthermore, we can compute explicitly that

[SL2(Z) : Γ(N)] = |SL2(Z/NZ)| = N3
∏
p|N

(
1− 1

p2

)
,

where p here is prime. We also observe that given a subgroup Γ, it partitions the set Q ∪ {i∞}

into equivalence classes referred to as cusps. We now consider functions on H with respect to such

subgroups Γ but we first define some preliminaries. Given a function f, γ ∈ SL2(Z), τ ∈ H we define

the factor of automorphy

j(γ, τ) = cτ + d,where γ =

a b

c d


and the weight-k slash operator to be

f [γ]k(τ) = j(γ, τ)−kf(γ(τ)),

for an integer k. A function on the upper-half plane will said to be weight-k invariant for Γ if

f [γ]k(τ) = f(τ) for each τ ∈ H and γ ∈ Γ. Next, observe that since Γ is a congruence subgroup

there exists a minimal positive integer h so that

1 h

0 1

 ∈ Γ. Therefore, if f is weight-k invariant
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for Γ and meromorphic at i∞ and there exists a c > 0 so that f has no poles on {τ ∈ H : Im > c}

it has a Fourier series given by

f(τ) =

∞∑
n=−∞

anq
n
h , if Im(c) > 0,where qh = e2πiτ/h

We say f is meromorphic at i∞ if this series truncates from the left. This definition makes sense for

every cusp sense if s ∈ Q∪{i∞} then there is some α ∈ SL2(Z) so that α(i∞) = s. Moreover, f [α]k

is invariant under α−1Γα, a congruence subgroup, so by the same logic as before we get a Laurent

series for f [α]k. We can now define a special class of functions on H

Definition II.3.0.1. Let Γ be congruence subgroup of SL2(Z) and k be an integer. A function

f : H→ C∗ is an automorphic form of weight k with respect to Γ if:

1. f is meromorphic on H

2. f is weight-k invariant under Γ

3. f [α]k is meromorphic for all α ∈ SL2(Z), i.e, f is meromorphic at the cusps

We denote such functions by Ak(Γ) and can further refine this by considering classes of functions

such that we require f to be holomorphic on H and at the cusps, and that f to be holomorphic on H,

holomorphic at the cusps, and that for each α ∈ SL2(Z) we have f [α]k vanishes at infinity. These are

call called modular forms of weight-k with respect to Γ (denotedMk(Γ)) and cusps forms of weight-

k with respect to Γ (denoted Sk(Γ)) respectively. Finally, we can identify the action of Γ on the

extended upper-half plane to get a compact Riemann surface. In our case we will will be concerned

with Γ = SL2(Z) and Γ = Γ(2). We will denote the surfaces as X(1) and X(2) respectively. A

fundamental domain for Γ is given by

FΓ =

{
z ∈ H : |Re(z)| ≤ 1

2
, |z| ≥ 1

}
. (II.5)

We can similarly write down a fundamental domain for Γ(2) by looking at the action the coset

representatives of Γ/Γ(2) have on the fundamental for Γ. The given fundamental domain for Γ is

shown in Figure II.1.

For the sake of completion we present some well known modular forms for SL2(Z). We can define
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Eisenstein series E2k for each even integer k.

E4(τ) =
1

2ζ(4)

∑
(c,d)∈Z2

(c,d)6=(0,0)

1

(cτ + d)4

E6(τ) =
1

2ζ(6)

∑
(c,d)∈Z2

(c,d)6=(0,0)

1

(cτ + d)6

We can also define a cusp form

∆(τ) =
E3

4(τ)− E2
6(τ)

1728
.

These are forms of weight 4, 6, and 12 respectively and ζ is the Riemann zeta function. ∆ has the

special property that it vanishes only at i∞ (and hence the cusps) and nowhere else on H. We also

define an automorphic form on A0(SL2(Z)), the Klein j-invariant

j(τ) =
E3

4(τ)

∆(τ)
. (II.6)

We note j is Hauptmodul for SL2(Z), i.e, it is an isomorphism from X(1) to C∗, a proof of this will

be given in Section II.4.1. Using this we can note that for any even k, Ak(Γ) is non-empty because

j′(τ) ∈ A2(Γ), so, we therefore have (j′(τ))
k
2 ∈ Ak(Γ).

Continuing we define the following Jacobi Theta functions

θ01(τ) =
∑
n∈Z

(−1)neπin
2τ

θ10(τ) =
∑
n∈Z

(−1)neπi(n+ 1
2 )

2
τ

θ00(τ) =
∑
n∈Z

eπin
2τ
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Re(z)

Im(z)

Figure II.1: A fundamental domain for Γ, FΓ

These satisfy the following identities

τ−2θ4
00(−1

τ
) = −θ4

00(τ)

τ−2θ4
01(−1

τ
) = −θ4

10(τ)

τ−2θ4
10(−1

τ
) = −θ4

01(τ)

and

θ4
00(τ + 1) = θ4

01(τ)

θ4
01(τ + 1) = θ4

00(τ)

θ4
10(τ + 1) = −θ4

10(τ)

and finally

θ4
01 + θ4

10 = θ4
00

We finally define an automorphic form for A0(Γ(2)), the modular lambda function

λ(τ) =
θ4

10(τ)

θ4
00(τ)

, (II.7)

which is Hauptmodul for Γ(2), a proof of which is contained in Section II.4.1. It also satisfies the
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following identities

λ(τ + 1) =
λ(τ)

λ(τ)− 1
(II.8)

λ

(
−1

τ

)
= 1− λ(τ). (II.9)

It is holomorphic on H, attains the value 1 at the origin, and has no zeros in H (this is all shown in

Section II.4.1). Hence, we may define a holomorphic logarithm of λ, L, by

L(τ) = 2πi

∫ τ

0

λ′(w)

λ(w)
dw = πi

∫ τ

0

θ4
01(w) dw, (II.10)

where the second equation follows from (II.7). We observe via direct computation with the contour

integral and the properties of λ that:

L(T 2τ) = L(τ) + 2πi (II.11)

2L(Sτ) = L(T−1τ)− 2L(τ) + L(Tτ). (II.12)

Notice that these equations imply

L(τ) = L(Tτ) + L(Sτ) + πi, (II.13)

which we will need later.

Using the second equality of (II.10) we obtain the following expansion of L at the cusp i∞:

L(τ) = πiτ + 4 log(2) +

∞∑
k=1

(−1)k
v4(k)

k
q
k
2 , (II.14)

where v4 is given by

v4(k) = |{x ∈ Z4 | ‖x‖2 = k}|.

Then (II.12) and (II.14) give the expansion

L(Sτ) = −16

∞∑
k=0

σ1(2k + 1)

2k + 1
qk+ 1

2 , (II.15)

where σk is given by

σk(n) =
∑
d|n

dk.
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Re(z)

Im(z)

Figure II.2: A fundamental domain for Γθ, D

We can further consider the Hecke subgroup Γθ that is generated by S and T 2 (we have Γ(2) ⊂

Γθ ⊂ SL2(Z)). This is equivalent to the following matrix description

Γθ =

A ∈ SL2(Z)

∣∣∣∣∣∣∣A ≡
1 0

0 1

 or

0 1

0 1

 (mod 2)

 .

This matrix description allows us to quickly compute the index of Γθ in SL2(Z) to be 3 with explicit

coset representatives given by


1 0

0 1

 ,

1 0

1 1

 ,

1 1

0 1


 and two cusps given by 1 and i∞.

We further note that a fundamental domain for Γθ to be

D = {τ ∈ H : |τ | > 1,Re(τ) ∈ (−1, 1)} .

This is shown in Figure II.2.

Finally, we define what we’ll call the θ-automorphy factor on the group Γθ defined for γ ∈ Γθ

and z ∈ H

jθ(z, γ) =
θ(γz)

θ(z)
.

The Poisson summation formula gives us jθ(z, T
2) = 1 and jθ(z, S) = (−iz)−1/2, so in general we’ll

have that jθ

z,
a b

c d


 = ζ(cz + d)−1/2 for some appropriate eighth root of unity ζ, an exact

formula is given [21]. Using this automorphy factor we can define the following slash operator in
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weight k/2 that acts on holomorphic functions on the upper half-plane

(f |k/2A) = jθ(z, γ)−kf

(
az + b

cz + d

)

for z ∈ H and A =

a b

c d

 ∈ Γθ. Then we can more generally define a slash operator for each

choice of ε, |εk/2 given by

f |εk/2A = χε(A)f |k/2A = χε(A)ζk(cz + d)−k/2f(Az)

where χε : Γθ → {±1} is homomorphism given by χε(S) = λε and χε(T
2) = 1. Finally, define

J(z) =
1

16
λ(z)(1− λ(z)), (II.16)

which is Hauptmodul for Γθ. A proof of this is contained in Section II.4.1.

Next, we define another class of functions.

Definition II.3.0.2. A quasi-modular form of weight k and depth at most r for the group Γ to be

a holomorphic function f : H→ C such that for each γ =

a b

c d

 ∈ Γ

f [γ]k(τ) =

r∑
m=0

fm(τ)

(
c

cτ + d

)m
,

for some holomorphic functions fm(τ).

For our purposes we will only be concerned with Γ = SL2(Z). Here the canonical example is

given by

E2(τ) =
1

2ζ(2)

∑
c∈Z

∑
d∈Z
d6=0

1

(cτ + d)2

which satisfies

E2[γ]2(τ) = E2(τ) +
6i

π

(
c

cτ + d

)
,
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for γ =

a b

c d

 and in particular we have

τ−2E2

(
−1

τ

)
= E2(τ) +

6i

π
· 1

τ

The Structure Theorem for Quasi-Modular Forms states that a quasi-modular form f of weight 2k

can be written as

f(z) =

k∑
`=0

E`2(z)f2k−2`(z), (II.17)

where f2k−2` is a modular form of weight 2k − 2`; the term for ` = k − 1 is of course trivial.

II.4 Riemann Surfaces

II.4.1 Definitions and Topology

This section will used to give brief overview of Riemann Surfaces, notably in the context of modular

forms. We first give some definitions.

Definition II.4.1.1. An n-dimensional manifold is a Hausdorff topological space X such that

every point a ∈ X has an open neighborhood that is homeomorphic to an open subset of Rn

Definition II.4.1.2. Let X be a two-dimensional manifold. A complex chart on X is a homeo-

morphism ϕ : U → V of an open subset U ⊂ X onto an open subset V ⊂ C. Two complex charts

ϕi : Ui → Vi,= 1, 2 are said to be holomorphically compatible if the map

ϕ2 ◦ ϕ−1
1 : ϕ1(U1 ∩ U2)→ ϕ2(U1 ∩ U2)

is biholomorphic.

Definition II.4.1.3. A complex atlas is a system U = {ϕi : Ui → Vi, i ∈ I} of charts that are

holomorphically compatible and satisfy ∪i∈IUi = X

Definition II.4.1.4. A complex structure on a two-dimensional manifold X is an equivalence

class of analytically equivalent atlases on X

Definition II.4.1.5. A Riemann Surface is a pair (X,Σ), where X is a connected two-dimensional

manifold and Σ is a complex structure on X.

We will almost always refer to the manifolds in question by X (or some other equivalent term

when applicable) and neglect to include its complex structure. Also, for our purposes we will be
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concerned with Riemann Surfaces of the compact variety. Momentarily eschewing formality, we may

think of such a surface as topologically a sphere with a number of punctures in it. We refer to

the number of such punctures as the genus, given by g ∈ N, for the manifold X. Now, given a

nonconstant analytic map f : X → Y between compact Riemann surfaces, for each x ∈ X we can

define ex ∈ N to be the ramification index or the multiplicity at which f takes 0 to 0 in local

coordinates. In other words f is locally an ex to 1 map about x. Moreover, there is a positive integer

d, the degree of the map f , such that

∑
x∈f−1(y)

ex = d (II.18)

holds for all y ∈ Y . Using this terminology we can state the following

Theorem II.4.1.6. (Riemann-Hurwitz formula) Let f : X → Y be a nonconstant analytic map

between compact Riemann Surfaces of degree d. Let gX and gY denote the genera of X and Y

respectively. Then the following formula holds

2gx − 2 = d(2gY − 2) +
∑
x∈X

(ex − 1)

We also show the following general lemma

Lemma II.4.1.7. Suppose f : X → Y is a non-constant analytic map between compact Riemann

surfaces, then f is surjective.

Proof. We observe that since since f is a continuous map, the image f(X) must be connected,

compact, and hence closed since Y is a Hausdorff. Then, since f is an analytic map it is an open

map and so f(X) is open as well. Combining the fact that Y is connected we have that f(X) is

either the empty set or the entirety of Y . The former is impossible giving us the desired result.

As stated previously, given any subgroup Γ ⊂ SL2(Z) of finite index, by considering the group

action of Γ on H ∪ {∞} ∪ {Q}, i.e, the extended upper half-plane and the rational numbers, we get

a compact Riemann surface that we will denote by X(Γ). Using this, if we let f : X(Γ) → X(1)

denote the projection map (an analytical map) and d be its degree, we see that

d = [SL2(Z) : {±I}Γ]

and moreover if we let ε2, ε3, and ε∞ denote the number of elliptic points (points with non-trivial
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stabilizer group in Γ) of order 2, order 3, and the number of cusps respectively, a short computation

with the Riemann-Hurwitz formula shows that

g = 1 +
d

12
− ε2

4
− ε3

3
− ε∞

2
, (II.19)

where g here is the genus of the surface of X(Γ). Using Equation (II.19) we can compute the genus

of X(1) and X(2) to both be 0. While it is general fact that such modular surfaces are isomorphic

to C∗, since used heavily in this, we present proofs in both cases.

Lemma II.4.1.8. j is a biholomorphism from X(1)→ C∗

To show this we are required to show that j is analytic map between the surfaces, j is bijective,

and that it has a holomorphic inverse. We observe that from [12], the second condition gives the third,

so, it remains to prove the the first two conditions. For holomorphy, we see that the representation

given Equation (II.6) gives that j is holomorphic on X(1) except possibly when ∆ = 0. We know

however that ∆ vanishes only at the cusps so j is holomorphic on Γ/H. We then observe that the

Fourier representation

j(τ) =
1

q
+ 744 + 196884q + 21493760q2 +O(q3), (II.20)

where q = e2πiτ , shows that f is holomorphic at i∞ as well. Next, we see that Equation (II.20)

shows that the degree of the map j is 1 because it has a ’pole’ of order 1 at i∞ and so Equation

(II.18) implies that j must be injective. Combining this with Lemma II.4.1.7 we get we get that j

is bijective as claimed.

Lemma II.4.1.9. λ is a biholmorphism from X(2)→ C∗.

Proof. We again are required to show that λ is an analytic map between the surfaces, λ is bijective,

and that it has a holomorphic inverse. Again it suffices to show the first two conditions. For the

first we observe that Equation (II.7) gives that λ is holomorphic on X(2) except possibly if θ00 is 0.

To this end, it’s not difficult to verify that 00(τ) will have non-zero real and imaginary parts for any

τ ∈ Γ(2)/H. It then just remains to verify the behavior at the cusps of Γ(2). We note that cusps of

Γ(2) are i∞, 0, and 1. For the first, we observe that the Fourier expansion of λ at i∞ is given by

λ(τ) = 16q
1
2 − 128q + 704q

3
2 +O(q2), (II.21)
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which shows that it vanishes at i∞. On the other hand, the identities given by Equations (II.8) and

(II.9) give λ(0) = 1 and λ(1) = ∞. So, it is a well defined holomorphic map as claimed. We then

have Equation (II.21) shows that the degree of the map λ is 1 since it has a zero of order 1 at i∞.

Hence, Equation (II.18) gives that λ is injective. Combining this with Lemma II.4.1.7 we get we get

that λ is bijective as claimed.

Corollary II.4.1.10. A0(Γ) = C(j), the set of rational functions in j

Proof. We first note the inclusion C(j) ⊂ A0(Γ) by definition. On the other hand, suppose that

f ∈ A0(Γ) and is non-constant. Then f has a finite number of zeros and poles given by z1, z2, .., zm

and p1, p2, ..., pn respectively. Such an f must only have a discrete set of each because X(1) is

compact so and hence any infinite sequence would lead to a limit point of zeros or poles and hence

f would be constant. We moreover have m 6= 0 6= n because f must be surjective. Next, consider

the function given by

g(τ) =

∏m
i=1(j(τ)− j(zi))∏n
i=1(j(τ)− j(pi))

.

We observe that f
g then has no zeros or poles and by Lemma II.4.1.7 must therefore be a constant.

This gives f ∈ C(j) and A0(Γ) ⊂ C(j). Both inclusions give the desired result.

We can analogously show

Corollary II.4.1.11. A0(Γ(2)) = C(λ), the set of rational functions in λ.

Corollary II.4.1.12. A0(Γθ) = C(J), the set of rational functions in J .

We now present lemmas that will be consequential to Sections III.2.1 and III.3.1.

Lemma II.4.1.13. Suppose f is a weakly holomorphic modular form of weight 2k > 0, that is to

say, f ∈ A2k(Γ) with the restriction that f is holomorphic on Γ/H but meromorphic at i∞. Then

we have that

f = g · P (j),

for some g ∈M2k(Γ) and where P is a polynomial.

Proof. We first note that the set M2k(Γ) is non-empty because for example the 2k-th Eisenstein

series is a member. On the other hand, given that such a function g exists we have by Corollary

II.4.1.10 that f
g ⊂ C(j). Therefore, f = g · P (j) for some rational function P . Next, suppose that

the denominator of P (j) has the form (j−α1)(j−α2)...(j−αn) for some numbers α1, α2, ..., αn ∈ C.

On the other hand Lemma II.4.1.8 tells us that if αi ∈ C then j−α1 = 0 will have a unique solution
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in Γ/H and therefore introduce a pole somewhere other than the cusps, a contradiction. Hence, P

has at most a constant denominator and is a polynomial as claimed.

We also have the analogous result for Γ(2)

Lemma II.4.1.14. Suppose f is a weakly holomorphic modular form of weight 2k > 0 for Γ(2),

that is to say, f ∈ A2k(Γ(2)) with the restriction that f is holomorphic on Γ(2)/H but meromorphic

at the cusps. Then we have that

f = g ·R(λ),

for some g ∈M2k(Γ) and where R is a rational function.

Remark : Observe that if Γ is congruence subgroup, the same method used to prove Corollary

II.4.1.10 can be used to show that

Ak(Γ) = f · C(X(Γ)),

where f ∈ Ak, C(X(Γ)) denotes the set of meromorphic functions on the surface X(Γ), and we

implicitly assume that Ak(Γ) is non-empty.
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CHAPTER III

Laplace Transform of Modular Forms

In this section we will study functions of the form

U(s) = 4i sin
(π

2
s
)2
∫ i∞

0

ψ(z)eiπsz dz, (III.1)

for real s. We analyze these functions and present an analytic continuation of these functions to a

left half-plane. We then present conditions so that U(s) has a well defined Fourier transform (in

a classical not distributional sense), compute this transform, and then present conditions for such

functions to be eigenfunctions of the Fourier transform. Throughout the course of this Chapter and

the remaining ones we take the ambient dimension to be d, i.e, we are considering functions in Rd

when we take Fourier transforms and assume that 4|d.

III.1 Fourier Transforms and Eigenfunctions

We begin by introducing the prototypical function that we will be interested throughout this chapter.

Denote the imaginary axis by iR and let L1
loc(iR) denote the complex valued functions that are

absolutely integrable with respect to Lebesgue measure on any bounded interval i(0, b].

Proposition III.1.0.1. Suppose ψ ∈ L1
loc(iR) is such that for some C > 0 and constants ak, bk ∈ C,

k = 0, 1, ..., n,

ψ(z) =

n∑
k=0

ake
−2πikz − iz

∑
k=0

bke
−2πikz +O(eiCz) as z → i∞. (III.2)

For Re(s) > 2n, let

W (s) = −i
∫ i∞

0

ψ(z)e−2πiszdz. (III.3)

Then

W (s) =

n∑
k=0

(
ak

π(s− 2k)
+

bk
π2(s− 2k)2

)
−i
∫ i∞

0

(
ψ(z)−

(
n∑
k=0

ake
−2πikz + z

n∑
k=0

bke
−2πikz

))
eπiszdz

(III.4)

gives an analytic continuation of W to the half-plane Re(s) > −Cπ .

Proof. Let W̃ (s) be given by the right-hand side of (III.4). Then the local integrability of ψ and

the condition (III.2) imply that W̃ (s) is a well-defined meromorphic function on the half plane

Re(s) > −Cπ with (at most) double poles at s = 2k, k = 0, . . . , n. For an integer k and Re(s) > 2k,
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elementary computations show

−i
∫ i∞

0

e−2πikzeiπsz dz =
1

π(s− 2k)
,

and

−i
∫ i∞

0

ze−2πikzeiπsz dz =
1

π2(s− 2k)2
,

and hence that W̃ (s) agrees with W (s) for Re(s) > 2n.

We next assume that ψ is holomorphic on the upper half-plane.

Proposition III.1.0.2. Let ψ : H → C be holomorphic on H and bounded on the angular region

Rα,ε := {reit : 0 < r < ε, α < t < π − α} for some ε > 0 and some 0 < α < π
4 . Further suppose

the restriction of ψ to iR+ and W are as in Proposition III.1.0.1 and for Re(s) > −Cπ let U(s) be

defined by

U(s) = −4 sin
(π

2
s
)2

W (s). (III.5)

Then U(s) is holomorphic for Re(s) > −Cπ and

iU(s) =

∫ i

−1

ψ(Tz)eiπsz dz +

∫ i

1

ψ(T−1z)eiπsz dz

− 2

∫ i

0

ψ(z)eiπsz dz +

∫ i∞

i

(
ψ(Tz)− 2ψ(z) + ψ(T−1z)

)
eiπsz dz,

(III.6)

where the integrals are along straight line segments joining the endpoints.

Proof. Starting from (III.3) we derive a second form of the analytic continuation of −4 sin(π2 s)
2W (s),

which is more suitable for the proof and will also be used later. We write

iU(s) =

∫ i∞

0

ψ(z)
(
eiπs(z−1) − 2eiπsz + eiπs(z+1)

)
dz

=

∫ −1+i∞

−1

ψ(Tz)eiπsz dz − 2

∫ i∞

0

ψ(z)eiπsz dz

+

∫ 1+i∞

1

ψ(T−1z)eiπsz dz,

which follows by expressing the sine in terms of the exponential, expanding the square and sub-

stituting in the integral. This expression is valid for Re(s) > 2n. Since ψ is holomorphic on H

and bounded on Rα,ε, we may deform the contours of integration as follows: the path from −1 to

−1 + i∞ is deformed into a straight line from −1 to i and then along the imaginary axis from i to
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Re(z)

Im(z)

1−1

i

Figure III.1: Deforming the path of Integration

i∞; similarly, the contour from 1 to 1 + i∞ is deformed into a straight line from 1 to i and then

again along the imaginary axis. This path is show in Figure III.1.

Collecting terms with matching paths of integration gives (III.6) valid for Re(s) > 2n. Since the

exponential terms in the asymptotic expansion (III.2) for z → i∞ cancel in the last integral, the new

expression is also valid for Re(s) > −Cπ providing an alternative form for expressing the analytic

continuation of U(s). The integrals are all absolutely and uniformly convergent for Re(s) ≥ 0.

Proposition III.1.0.3. Let ψ be as in Proposition III.1.0.1, U as in Proposition III.1.0.2 and let

F : Rd → C be defined by

F (x) := U(‖x‖2), (x ∈ Rd). (III.7)

If, in addition, ψ satisfies

ψ(z) = O(eiCSz) as z → 0 non-tangentially in H, (III.8)

then F is a Schwartz function and can be written in the form

F (x) = −i
[∫ i

−1

ψ(Tz)eiπ‖x‖
2z dz +

∫ i

1

ψ(T−1z)eiπ‖x‖
2z dz

−2

∫ i

0

ψ(z)eiπ‖x‖
2z dz +

∫ i∞

i

(
ψ(Tz)− 2ψ(z) + ψ(T−1z)

)
eiπ‖x‖

2z dz

]
.

(III.9)
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Consequently, the Fourier transform of F is given by

F̂ (t) = −i(−1)d/4
[∫ i

−1

ψ(T−1Sz)eiπ‖t‖
2zzd/2−2 dz

+ 2

∫ i∞

i

ψ(Sz)eiπ‖t‖
2zzd/2−2 dz +

∫ i

1

ψ(TSz)eiπ‖t‖
2zzd/2−2 dz

−
∫ i

0

(ψ(T−1Sz)− 2ψ(Sz) + ψ(TSz))eiπ‖t‖
2zzd/2−2 dz

]
.

(III.10)

Proof. The representation (III.9) follows immediately from the definition (III.7) and the relation

(III.6) of Proposition III.1.0.2. The condition (III.8) implies that ψ vanishes to arbitrary order at

z = 0. Hence, using (III.3) it follows using well known properties of the Laplace transform that F

and its derivatives all decay faster than any negative power of ‖x‖. Since U is analytic, it follows

that F is a Schwartz function. Thus we can compute the Fourier transform of F by Fubini’s theorem

F̂ (t) =− i
[∫ i

−1

ψ(Tz)eiπ‖t‖
2Sz(−iz)− d2 dz

+

∫ i

1

ψ(T−1z)eiπ‖t‖
2Sz(−iz)− d2 dz − 2

∫ i

0

ψ(z)eiπ‖t‖
2Sz(−iz)− d2 dz

+

∫ i∞

i

(
ψ(Tz)− 2ψ(z) + ψ(T−1z)

)
eiπ‖t‖

2Sz(−iz)− d2 dz
]
.

Substituting Sz in this expression and collecting signs gives (III.10).

Proposition III.1.0.4. Let ψ be as in Proposition III.1.0.1, F as in Proposition III.1.0.3 and

ε ∈ {−1, 1}. Then F̂ = ε(−1)
d
4F if and only if

z
d
2−2ψ(T−1Sz) = εψ(Tz) (III.11)

2z
d
2−2ψ(Sz) = ε

(
ψ(Tz)− 2ψ(z) + ψ(T−1z)

)
, (III.12)

for all z ∈ H.

Proof. The function F is an eigenfunction of the Fourier transform for the eigenvalue ε(−1)
d
4 , if and

only if the expressions (III.10) (with t replaced by x) and (III.10) are equal up to a factor of ε. By

the uniqueness property of the Laplace transform this is equivalent to the fact that the integrands
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agree on corresponding segments of integration. This yields the equations

z
d
2−2ψ(T−1Sz) = εψ(Tz) (III.13)

z
d
2−2ψ(TSz) = εψ(T−1z) (III.14)

2ψ(z) = εz
d
2−2

(
ψ(T−1Sz)− 2ψ(Sz) + ψ(TSz)

)
(III.15)

2z
d
2−2ψ(Sz) = ε

(
ψ(Tz)− 2ψ(z) + ψ(T−1z)

)
, (III.16)

which have to hold for all z ∈ H by the holomorphy of ψ. It is immediate that (III.13) and (III.14),

and (III.15) and (III.16) are equivalent by substituting z 7→ Sz.

III.2 ‘Positive’ Eigenfunction

By ’positive’ here we refer to the case ε = 1 of Proposition III.1.0.4. We show that in this case ψ

has to be a quasi-modular form and discuss what these solutions must look like.

Proposition III.2.0.1. Let ψ be as in Proposition III.1.0.1. Then the corresponding function F

given by (III.7) is an eigenfunction for the Fourier transform with eigenvalue (−1)
d
4 , if and only if

z
d
2−2ψ(Sz) is a quasi-modular form of weight 4 − d

2 and depth 2. More precisely, there are weakly

holomorphic modular forms ψ1, ψ2, ψ3 of respective weights 4− d
2 , 2− d

2 , and −d2 such that

z
d
2−2ψ(Sz) = ψ1(z)− 2E2(z)ψ2(z) + E2(z)2ψ3(z). (III.17)

This gives

ψ(z) = z2
(
ψ1(z)− 2E2(z)ψ2(z) + E2(z)2ψ3(z)

)
+ z

12i

π
(ψ2(z)− E2(z)ψ3(z))− 36

π2
ψ3(z).

(III.18)

Furthermore, ψ1, ψ2, and ψ3 have to satisfy

ψ1(z)− 2E2(z)ψ2(z) + E2(z)2ψ3(z) = O(e2πiz) (III.19)

for z → i∞ in order to fulfill (III.2) and (III.8).

Proof. By Proposition III.1.0.4 a function F given in the form (III.5) is an eigenfunction of the

Fourier transform for the eigenvalue (−1)
d
4 (this is ε = 1) if and only if (III.11) and (III.12) hold.

From (III.11) we obtain

ψ(z) = (z + 1)
d
2−2ψ(TSTz)
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and then

(z + 1)
d
2−2ψ(STz) = z

d
2−2ψ(TSTSTz) = z

d
2−2ψ(Sz),

where we have used that (TS)3 = Id. Thus the function

φ(z) = z
d
2−2ψ(Sz)

is periodic with period 1.

Now we write (III.12) as

ψ(Tz)− 2ψ(z) + ψ(T−1z) = 2φ(z) (III.20)

and set

f(z) = ψ(Tz)− ψ(z)− (2z + 1)φ(z). (III.21)

Then we have

f(z)− f(T−1z) = ψ(Tz)− 2ψ(z) + ψ(T−1z)− (2z + 1)φ(z) + (2z − 1)φ(T−1z).

Using the periodicity of φ and (III.20) gives the periodicity of f . Now we set

g(z) = ψ(z)− z2φ(z)− zf(z). (III.22)

We compute

g(Tz)− g(z) = ψ(Tz)− ψ(z)− ((z + 1)2 − z2)φ(z)− ((z + 1)− z)f(z) = 0,

where we have used the periodicity of φ and f as well as the definition of f . This shows that also g

is periodic.

Thus ψ satisfies the relation

ψ(z) = z
d
2ψ(Sz) + zf(z) + g(z) (III.23)

for two (yet unknown) periodic functions f and g. We now use the definitions (III.21) and (III.22)
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to express g in terms of ψ

g(z) = (z + 1)ψ(z)− zψ(Tz) + z(z + 1)z
d
2−2ψ(Sz). (III.24)

Substituting STz and multiplying through the denominator yields

(z + 1)
d
2 g(STz) = z(z + 1)(z + 1)

d
2−2ψ(STz)

+ (z + 1)(z + 1)
d
2−2ψ(ST−1Sz)− zψ(Tz),

(III.25)

where we have used TST = ST−1S. We have already established the periodicity of φ(z) =

z
d
2−2ψ(Sz). This allows to replace the first and the second term to yield

g(STz) = (z + 1)z
d
2−1ψ(Sz) + (z + 1)ψ(z)− zψ(Tz) = g(z).

Using the already established periodicity of g this gives

z
d
2 g(Sz) = g(z); (III.26)

g is a modular form of weight −d2 .

Applying z 7→ Sz to (III.23) and adding this to (III.23) (divided by z
d
2 ) yields

z
d
2−2f(Sz) = f(z) +

2

z
g(z); (III.27)

f is quasi-modular of weight 2− d
2 and depth 1.

We set

h(z) = f(z)− πi

3
E2(z)g(z)

and use z−2E2(z) = E2(z)− 6i
πz to obtain

z
d
2−2h(Sz) = h(z),

which together with the obvious periodicity yields that h is a modular form of weight 2− d
2 . Inserting

this into (III.23) gives the quasi-modularity of z
d
2−2ψ(Sz) with weight 4 − d

2 and depth 2. By the

Structure Theorem of Quasi-Modular Forms, Equation (II.17), z
d
2−2ψ(Sz) can then be written as
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(III.17), where we have set

ψ1(z) = z
d
2−2ψ(Sz)− E2(z)h(z)− E2(z)2g(z)

ψ2(z) = −πi
12
h(z)

ψ3(z) = −π
2

36
g(z).

In order to satisfy condition (III.2), the term multiplied by z2 in (III.18) has to tend to 0 for

z → i∞, which gives (III.19). By (III.17) this implies that (III.2) and (III.8) are satisfied for any

0 < C < 2π.

III.2.1 Explicit Representations for the Sphere Packing Problem

In a next step we want to determine ψ (or equivalently ψ1, ψ2, ψ3) to satisfy (III.19). Since ψ1, ψ2,

and ψ3 are weakly holomorphic modular forms of respective weights −4− d
2 , 2− d

2 , and −d2 , we use

Lemma II.4.1.13 to express these forms as

ψ1 =
1

∆`
ωk+2P

(k)
n (j)

ψ2 =
1

∆`
ωk+1Q

(k)
n (j)

ψ3 =
1

∆`
ωkR

(k)
n (j),

(III.28)

for ` ∈ N chosen so that ψm∆` (m = 1, 2, 3) are weakly holomorphic modular forms of positive

weight; P
(k)
n , Q

(k)
n , and R

(k)
n are polynomials, which have to be determined. The minimal possible

choice of ` is then

` =

⌈
d

24

⌉
.

Furthermore, we set

k = 6`− d

4
,

which gives 0 ≤ k ≤ 5. The forms ωm in (III.28) are modular forms of weight 2m (m = 0, . . . , 7),

which are given in Table III.1; these forms are uniquely determined by the requirement to be

holomorphic, or to have a pole of minimal order at i∞. The parameter n refers to the order of

the pole of ωk+2P
(k)
n (j), ωk+1Q

(k)
n (j), or ωkR

(k)
n (j). Notice that for m = 1 the form ωm has a simple

pole at i∞, whereas for m = 6, 7 it has a simple zero there. This affects the possible degrees of the

polynomials P
(k)
n , Q

(k)
n , and R

(k)
n , see Table III.2. This table also gives the dimension of the space

Q(2k+2)
n of weakly holomorphic quasi-modular forms of weight 2k + 2 and depth 2, which have a
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pole of order at most n at i∞. The table also gives the definition of the quantity a(k), which will

be needed in the sequel.

m ωm
0 1

1 −j′ =
E2

4E6

∆ = E6

E4
j

2 E4

3 E6

4 E2
4

5 E4E6

6 ∆ = ∆ω0

7 E2
4E6 = ∆ω1

Table III.1: The choices of ωm

k degP
(k)
n degQ

(k)
n degR

(k)
n dimQ(2k+2)

n a(k)
0 n n− 1 n 3n+ 2 1
1 n n n− 1 3n+ 2 1
2 n n n 3n+ 3 2
3 n n n 3n+ 3 2
4 n+ 1 n n 3n+ 4 3
5 n n+ 1 n 3n+ 4 3

Table III.2: Degrees of the polynomials P
(k)
n , Q

(k)
n , and R

(k)
n

In light of (III.18) and the asymptotic behaviour of ψ (III.2) used in Proposition III.1.0.1 we

require that the polar order of ψ2(z) − E2(z)ψ3(z) (the term multiplied by z in (III.18)) is 1 less

than the polar order of ψ3(z). This ensures by (III.4) that the largest real second order pole of W (s)

is 2 less than the largest real first order pole. Notice that condition (III.19) ensures that W (s) has

no third order poles in the right half plane. Together this ensures that the polar order of ψ at i∞

corresponds to the desired sign change of the function F given by (III.7).

In order to achieve the behaviour of ψ described in the last paragraph, we use the degrees of

freedom given by dimQ(2k+2)
n to first ensure that

ωk+1Q
(k)
n (j)− E2ωkR

(k)
n (j) = O(q−n+1) (III.29)

and second to eliminate as many Laurent series coefficients of

ωk+2P
(k)
n (j)− 2E2ωk+1Q

(k)
n (j) + E2

2ωkR
(k)
n (j)
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as possible. By solving the according linear equations we can achieve

ωk+2P
(k)
n (j)− 2E2ωk+1Q

(k)
n (j) + E2

2ωkR
(k)
n (j) = O(q2n+a(k)−1). (III.30)

Examples of such polynomials are given in Chapter V. In order for ψ to satisfy (III.19) we have to

choose n so that

2n+ a(k)− 1 > `;

the minimal possible choice for n is then

n =

⌈
`− a(k) + 2

2

⌉
. (III.31)

The condition (III.29) ensures that there is a sign change of F (x) at ‖x‖2 = 2n+2` and F (x) 6= 0

for ‖x‖2 = 2n+ 2`− 2. Expressing `, k, and n in terms of d yields 2n+ 2` = 2bd+4
16 c+ 2.

Summing up, we have proved the following theorem. For the sake of simplicity, we abuse notation

by writing f(x) = f(‖x‖), whenever f is a radial function and the context is clear.

Theorem III.2.1.1. For d ≡ 0 (mod 4) set n+ = bd+4
16 c + 1. Then there exists a radial Schwartz

function F+ : Rd → R satisfying

F+(x) = (−1)
d
4 F̂+(x) for all x ∈ Rd

F+(
√

2n+) = 0 and F ′+(
√

2n+) 6= 0

F+(
√

2m) = F ′+(
√

2m) = 0 for m > n+, m ∈ N.

(III.32)

III.2.2 Examples

• d = 8

In this case we have ` = 1, k = 4, and n = 0. This gives us

ψ =
z2((j − 1728)∆− 2E2E4E6 + E2

2E4) + z 12i
π (E4E6 − E2E4)− 36

π2E4

∆
,

which is the same as the +1 eigenfunction given in [2] up to scaling.

• d = 24
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In this case we have ` = 1, k = 0, and n = 2. This gives us

ψ =
z2(E4(175j2 − 1840683j − 475793136)− 2E2

E14

∆2 (175j + 497922) + E2
2(175j2 + 2534082j + 111078000))

∆

+
z 12i
π (E14

∆2 (175j + 497922)− E2(175j2 + 2534082j + 111078000))

∆

−
36
π2 (175j2 + 2534082j + 111078000)

∆
,

which is the same as the +1 Eigenfunction given [3] up to scaling.

III.3 ‘Negative’ Eigenfunction

By ’negative’ here we refer to the case ε = −1 of Proposition III.1.0.4. We show that in this case ψ

to be a weakly holomorphic modular form for Γ(2) and discuss what these solutions must look like.

Proposition III.3.0.1. Let ψ be as in Proposition III.1.0.1. Then the corresponding function F

given by (III.7) is an eigenfunction of the Fourier transform with eigenvalue (−1)
d
4 +1 if and only if

there exists a weakly holomorphic modular form f of weight 2− d
2 for Γ and ω a weakly holomorphic

modular form of weight 2− d
2 for Γ(2) such that

ψ(z) = f(z) · L(z) + ω(z), (III.33)

ω(z) = z
d
2−2ω(Sz) + ω(Tz), (III.34)

where L is defined in (II.10).

Proof. By Proposition III.1.0.4 with ε = −1, F is an eigenfunction of the Fourier transform with

eigenvalue (−1)
d
4 +1 iff ψ satisfies the two equations:

z
d
2−2ψ(TSz) = −ψ(T−1z), (III.35)

2z
d
2−2ψ(Sz) = −(ψ(Tz)− 2ψ(z) + ψ(T−1z)). (III.36)
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To solve these we first consider H(z) = z
d
2−2ψ(Sz) which by (III.35) gives

H(Tz) = (Tz)
d
2−2ψ(STz)

= (Tz)
d
2−2ψ(T−1TSTz)

= −(Tz)
d
2−2(TSTz)

d
2−2ψ(TSTSTz)

= −z d2−2ψ(Sz)

= −H(z),

(III.37)

Where we used the property (TS)3 = Id in the second to last line. Iterating this property once gives

that H(z + 2) = H(z) and unraveling this statement in terms of ψ gives

(2z − 1)
d
2−2ψ(ST 2Sz) = ψ(z). (III.38)

Substituting z → STz in (III.36) and applying (III.35) repeatedly to get

2ψ(Tz) = −(Tz)
d
2−2

(
ψ(T−1STz)− 2ψ(STz) + ψ(TSTz)

)
= ψ(T 2z) + 2(Tz)

d
2−2ψ(STz) + ψ(z)

= ψ(T 2z)− 2z
d
2−2ψ(Sz) + ψ(z)

= ψ(T 2z) + ψ(Tz)− ψ(z) + ψ(T−1z).

(III.39)

So, altogether we have that ψ(T 2z)−ψ(Tz)−ψ(z)+ψ(T−1z) = 0. Defining G(z) = ψ(Tz)−ψ(T−1z)

implies G(z + 1) = G(z). Furthermore using (III.35) we obtain

z
d
2−2G(Sz) = z

d
2−2(ψ(TSz)− ψ(T−1Sz))

= −ψ(T−1z) + ψ(Tz)

= G(z).

(III.40)

Therefore, G is modular of weight 2− d
2 for the full modular group. Using this we define

ω(z) = ψ(z)− 1

πi
G(z) · L(z) (III.41)

and from (II.13) given we see that ω is a modular form of weight 2− d
2 for Γ(2). Moreover, plugging
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this relationship into (III.35) gives

ω(z) = z
d
2−2ω(Sz) + ω(Tz). (III.42)

Finally, setting f := 1
πi ·G we get the desired conclusions.

III.3.1 Explicit Representations for the Sphere Packing Problem

In this step our goal will be determining ψ given its representation in terms of f and ω. We use

the fact that C(λ) is a field extension of C(j) to characterize the solutions of (III.42). Then using

linear algebra, we ensure that conditions (III.2) and (III.8) hold. We will show that due to (III.42),

achieving the former condition will give the latter.

To begin, we recall f and ω are weakly holomorphic modular forms of weight 2 − d
2 for the

groups Γ and Γ(2) respectively. This is because there are no modular forms of negative weight

because such forms must have poles on either H or at the cusps. The contour integration arguments

from Proposition III.1.0.2 rule out the former and so f and ω must and can only have poles at the

cusps. To continue, define

` =

⌈
d− 4

24

⌉
k = 6`− d− 4

4
,

which gives 0 ≤ k ≤ 5. From this we set

f =
ωk
∆`

P (k)(j) (III.43)

ω =
ωk
∆`

R(k)(λ), (III.44)

where we have that ωk is a weakly holomorphic modular form for the full modular group of weight

2k, P (k) is a polynomial associated with each k, and R(k) is a rational function depending on our

choice of k. The values of the ωk are detailed in Table III.1. These each follow from Lemmas II.4.1.13

and II.4.1.14. Although Lemma II.4.1.14 only gives that R is a rational function, from our contour

integration argument in Proposition III.1.0.2 we see that we cannot have a pole at the origin (in fact

(III.8) implies we must have a zero here), we can (in fact must) have a pole at i∞, and we may have

unprescribed behavior at ±1. This implies that the most we can conclude is that the denominator

of such a rational function, say R(x), can only have factors of the form xa(1−x)b because λ(0) = 1,
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λ(1) =∞, and λ(i∞) = 0.

To continue, we will use (III.42) to analyze the possible choices for R(k). Combining (III.42) and

(III.44) yields

R(k)(λ(z)) = R(k)(λ(Sz)) +R(k)(λ(Tz)) (III.45)

We note that the field of meromorphic functions C(λ) is a degree 6 field extension over the field of

meromorphic functions C(j) with the minimal polynomial of λ over C(j) given by:

λ6 − 3λ5 + (6− j)λ4 − (7− 2j)λ3 + (6− j)λ2 − 3λ+ 1 = 0 (III.46)

Therefore, R(k) can be expressed in a unique way as

R(k)(λ) =

5∑
m=0

R(k)
m (j)λm (III.47)

for rational functions R
(k)
m . Inserting this into (III.45) we get

5∑
m=0

((1− λ)5λm − (1− λ)5+m + (−1)mλm(1− λ)5−m)R(k)
m (j) = 0 (III.48)

We can use the minimal polynomial (III.46) to write all powers of λ larger than 5 by linear combi-

nations of {1, λ, . . . , λ5}. This gives a linear system of 6 equations for the 6 unknown functions R
(k)
m ,

k = 0, . . . , 5. It can be checked directly that this system has rank 4 and hence has a 2 dimensional

kernel. This supports an ansatz of the form

ωkR
(k)(λ) = χ

(k)
1 Y (k)(j) + χ

(k)
2 Z(k)(j) (III.49)

where the Y (k) and Z(k) are polynomials and χ
(k)
1 and χ

(k)
2 are two linearly independent solutions

of

χ(z) = z−2kχ(Sz) + χ(Tz). (III.50)

Table III.3 gives solutions of minimal orders at z = 0 and z = i∞.

Putting all this information together we get that ψ has the form

ψ =
1

∆`

(
X(k)(j)ωkL+ χ

(k)
1 Y (k)(j) + χ

(k)
2 Z(k)(j)

)
(III.51)

for polynomials X(k), Y (k), Z(k) that depend on the value of k. Our next step will be to choose
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k χ
(k)
1 χ

(k)
2

0 (1+λ)(1−λ)(1−λ+λ2)
λ2

(1+λ)(1−λ+λ2)
λ(1−λ)

1 θ4
00(1− λ) θ4

00
(1−λ)3(2+3λ+2λ2)

λ2

2 θ8
00(1− λ2) θ8

00
(1+λ)(1+3λ−7λ2+3λ3+λ4)

λ(1−λ)

3 θ12
00(1− λ)(1− λ+ λ2) θ12

00
(1−λ+λ2)(1+3λ−10λ2+3λ3+λ4)

λ(1−λ)

4 θ16
00λ(1 + λ)(1− λ) θ16

00
(1+λ)(1−λ+λ2−λ3+λ4−λ5+λ6)

λ(1−λ)

5 θ20
00λ(1− λ)(1− 4λ+ λ2) θ20

00
1−32λ3+60λ4−32λ5+λ8

λ(1−λ)

Table III.3: The choices for the forms χ
(k)
1 and χ

(k)
2

the degrees of X(k), Y (k), and Z(k) and use the degrees of freedom given by the coefficients so that

(III.51) satisfies (III.8). In particular this implies that we need to choose their degrees so that ψ

vanishes to sufficiently large order. In particular, we want

ϕ(z) := z−2k(X(k)(j)ωk(Sz)L(Sz)

+ χ
(k)
1 (Sz)Y (k)(j(z)) + χ

(k)
2 (Sz)Z(k)(j(z))) = O(q`+

1
2 ).

(III.52)

Before continuing in this direction however, we show two short lemmas.

Lemma III.3.1.1. Suppose ϕ(z) is as in (III.52). Then it has only half integer exponents in its

Fourier expansion.

Proof. Let

χ(z) = χ
(k)
1 (z)Y (k)(j(z)) + χ

(k)
2 (z)Z(k)(j(z))),

denote sum of the last two terms on the right side of (III.52). Then χ satisfies (III.50) and so

z−2kχ(Sz) = χ(Tz)− χ(z),

which implies that all terms in the Fourier expansion of z−2kχ(Sz) with integer exponents vanish.

Moreover, we see from (II.15) that the expression z−2kX(k)(j)ωk(Sz)L(Sz) has only half integer

exponents in its Fourier expansion, giving the claim.

Lemma III.3.1.2. Let ψ be given by (III.51) with polynomials X, Y , Z such that (III.8) holds.

Then the principal part of ψ at i∞ has only integer exponents of q.
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Proof. By our assumption z
d
2−2ψ(Sz) = O(q

1
2 ). Since ψ can be written as

ψ(z) =

∞∑
k=−m

akq
k
2 − iz

∞∑
k=−n

bkq
k = ψ1 + zψ2,

(III.36) implies that ψ1 satisfies

ψ(Tz)− 2ψ(z) + ψ(T−1z) = ψ1(Tz)− 2ψ1(z) + ψ1(T−1z)

= 2ψ1(Tz)− 2ψ1(z)

= O(q
1
2 ),

which gives the assertion of the lemma.

In light of Lemmas III.3.1.1 and III.3.1.2, we first assume that (III.8) holds and define the

subscript n for the polynomial X
(k)
n so that the following polar order is achieved.

X(k)
n (j)ωk = O(q−n), (III.53)

We note that this implies that for each k 6= 1 the degree of the polynomial X
(k)
n is at most n and

for k = 1 that it has degree at most n− 1. We similarly adopt the notations Y
(k)
n and Z

(k)
n to refer

to the polynomials that give us:

χ
(k)
1 (z)Y (k)

n (j(z)) + χ
(k)
2 (z)Z(k)

n (j(z)) = O(q−n−1) (III.54)

z−2k(χ
(k)
1 (Sz)Y (k)

n (j(z))) = O(q−n+ 1
2 ) (III.55)

z−2k(χ
(k)
2 (Sz)Z(k)

n (j(z))) = O(q−n+ 1
2 ). (III.56)

We observe that (III.54), (III.55), and (III.56) are sufficient to put upper bounds on the degrees of

polynomials Y
(k)
n and Z

(k)
n . With b(k) as in Table III.4 we can use the degrees of freedom gained

from the coefficients of X
(k)
n , Y

(k)
n , and Z

(k)
n so that

z−2k(X(k)
n (j)ωk(Sz)L(Sz) + χ

(k)
1 (Sz)Y (k)

n (j(z))

+ χ
(k)
2 (Sz)Z(k)

n (j(z))) = O(q2n+
b(k)
2 ),

(III.57)

which is a strengthening of our hypothesis that (III.8) is satisfied. We then observe that (III.53) and

(III.54) ensure by (III.4) that the largest real second order pole of W (s) is 2 less than the largest
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real first order pole. Altogether, this will give us the desired sign change of the function F given by

(III.7). The degrees of these polynomials are also detailed in Table III.4. Lists of these polynomials

in each case are given in Chapter V.

k degX
(k)
n deg Y

(k)
n degZ

(k)
n b(k)

0 n n n− 1 3
1 n− 1 n n 3
2 n n+ 1 n 5
3 n n+ 1 n 5
4 n n+ 2 n+ 1 7
5 n n+ 2 n+ 1 7

Table III.4: Degrees of the polynomials X
(k)
n , Y

(k)
n , and Z

(k)
n

We now need to choose n so that

2n+
b(k)

2
> ` (III.58)

so that (III.8) is satisfied. This then gives that the minimal choice of n is then

n =

⌈
2`− b(k)

4

⌉
. (III.59)

Then conditions (III.53) and (III.54) ensure that there is a sign change of F (x) at ‖x‖2 = 2n+2`+2

and F (x) 6= 0 for ‖x‖2 = 2n+ 2`. Expressing `, k, and n in terms of d yields 2n+ 2` = 2b d16c

Summing up, we have proved the following theorem. The theorem is formulated with some abuse

of notation, which is justified by the fact that it discusses radial functions: we write F−(x) = F−(‖x‖)

and consider F− as multivariate and univariate function as appropriate.

Theorem III.3.1.3. For d ≡ 0 (mod 4) set n− = b d16c + 1. Then there exists a radial Schwartz

function F− : Rd → R satisfying

F−(x) = (−1)
d
4 +1F̂−(x) for all x ∈ Rd

F−(
√

2n−) = 0 and F ′−(
√

2n−) 6= 0

F−(
√

2m) = F ′−(
√

2m) = 0 for m > n−, m ∈ N.

(III.60)

III.3.2 Examples

• d = 8

In this case we have ` = 1, k = 5, and n = −1 giving

ψ =
(j + 1408)χ

(5)
1 − 256χ

(5)
2

∆
.
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This is the −1 eigenfunction used in [2].

• d = 24

In this case ` = 24, k = 1, and n = 0 giving

ψ =
χ

(1)
2

∆

This is the −1 eigenfunction used in [3].

III.3.3 Remarks

Here we would like to make some observations about Equation (III.51) in particular dimensions d. In

particular, while the constructions we made were done specifically with the sphere packing problem

in mind, the functions are interesting on their own and can also be used to study other extremal

problems. To begin, we observe that the the term L is missing in exactly 3 cases, when d = 8, 12, 24,

which follows from Equation (III.59). Other phenomenon includes

• d = 4

Here, ` = 0, k = 0, and n = 0. This implies that such solutions are given by a two-dimensional

subspace of the form

ψ = C1L+ C2χ
(0)
1 ,

for complex constants C1 and C2. In particular, if we choose C1 = 0 and C2 = 1, χ
(0)
1 is a

radial Fourier eigenfunction in dimension 4 with its last sign change at distance
√

2. In the

language of [15], this implies that A+(4) ≤
√

2. This follows from the following facts

Proposition III.3.3.1. λ is real valued on the positive imaginary axis and satisfies 0 <

λ(iy) < 1 for y > 0.

Proof. From Equation (II.7) we have

λ(iy) =
θ4

10(iy)

θ4
00(iy)

=

∑
n∈Z(−1)ne−π(n+ 1

2 )
2
y∑

n∈Z e
−πn2y

,

which of course converges to a real value for y > 0. On the other hand we have

1− λ = 1− θ4
10

θ4
00

=
θ4

01

θ4
00

> 0,

by Equation (II.7). The conclusion then follows.
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Proposition III.3.3.2. χ
(0)
1 is positive on the positive imaginary axis

Proof. We have

χ
(0)
1 =

(1 + λ)(1− λ)(1− λ+ λ2)

λ2
=

(1− λ3)(1− λ)

λ2
> 0,

by the above.

d = 12

In this case ` = 1, k = 4, and n = −1, giving

ψ =
(j + 768)χ

(4)
1 − 256χ

(4)
2

∆
.

This was the function studied in [15].
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CHAPTER IV

Interpolation Theorems

IV.1 General Hypothesis

We first consider a collection of holomorphic functions, {g+
n (z)}n≥0, {g−n (z)}n≥1 on the upper

half-plane, H, that satisfy the following conditions:

1. gεn(z + 2) = gεn(z)

2. gεn(− 1
z ) = λε(−iz)kgεn(z)

3. g+
n (z) = q−

n
2 +O(q

1
2 ), z → i∞

4. g−n (z) = q−
n
2 +O(1), z → i∞

5. gεn(1 + i
t )→ 0, t→∞

Here q = e2πiz, k is a weight to be determined later, ε ∈ {+,−} is a formal symbol, and take

λε =

 1 ε = +

−1 ε = −

Our weight here will be determined via the Fourier transform, more specifically we write

bεm(x) =
1

2

∫ 1

−1

gεm(z)eiπ‖x‖
2zdz,

for x ∈ Rd. Here our contour is the circular arc from −1 to 1 in the upper half plane. More

generally, we can consider a path from −1 to 1 in the upper half plane that is orthogonal to the

real line at the two end points. Taking Fourier transforms (here just as a formal computation

without regards to convergence) yields:

b̂εm(ξ) =
1

2

∫ 1

−1

gεm(z)e−
iπ‖ξ‖2
z (−iz) d2 dz
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Making the change of variables u = − 1
z gives us

b̂εm(ξ) = −1

2

∫ 1

−1

gεm(−1

z
)z−2eiπ‖ξ‖

2z(−iz)− d2 dz

= −1

2

∫ 1

−1

λεg
ε
m(z)z−2eiπ‖ξ‖

2z(−iz)k+ d
2 dz

We seek an eigenfunction with eigenvalue λε so this implies precisely that k+ d
2 = 2, which in

the d = 1 case gives the value k = 3
2 as used in [8].

IV.2 Initial General Constructions

We make general claims about functions of the form

g+
n (z) = θ4−d(z)P+

n (J−1(z))

g−n (z) = θ4−d(z)(1− 2λ(z))(P−n (J−1(z)))

where here θ(z) is the Theta function of the integer lattice (i.e, θ00) and the P εn are a sequence

of polynomials suitably chosen to meet the demands of the third and fourth constraints (we

additionally require that P−n (0) = 0 for all n as an additional regularity). Defined in this way

we have that the first two constraints will follow from the properties of the J and λ functions

however the last desired constraint is in general not true for all values of d, we will study this

shortly. We also show that such polynomials exist and are well defined in all such cases. We’ll

first formulate a general framework for such a problem and then as a corollary conclude that

our situation follows

Lemma IV.2.0.1. Given a function Q(z) such that it possesses a Fourier series with no

negative powers and leading constant term 1, then there always exists a polynomial Pn of

degree n such that Q(z)Pn(J−1(z)) = q−n/2 +O(q1/2)

Proof. We first observe that if such a polynomial is to exist it has to be monic because J−1(z) =

q−1/2 +O(1). Next, we suppose that

Pn(z) = zn +An−1z
n−1 + ...+A0

from which it’s clear that our constraints amount to solving an (n+1)×(n+1) linear system. It

would therefore suffice to show that the determinant obtained from such a system is invertible.
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This however is clear simply by expanding Pn(J−1(z)) and getting a system of the form


1 . . . 0

...
. . .

a(N+1)1 . . . 1




1

...

A0

 =


1

...

0

 .

That is to say, we are necessarily interested in inverting an upper triangle matrix with all

diagonal entries being 1. It’s clear that such a matrix is invertible because the determinant is

easily seen to be 1, from which the conclusion follows.

Corollary IV.2.0.2. For d ≥ 0 we have that θ4−d(z) meets the criteria of Q(z) in the above

lemma.

Proof. For d ≤ 4 this is clear from the definition of θ(z). On the other hand, for d > 4 this

follows readily from the fact that θ(z) has neither zeros in the upper half plane nor at i∞ (we

can see this from the representation θ(z) = η5(z)
η2(z/2)η2(2z) , where η(z) = q1/24

∏
n≥1(1 − qn) is

the classical Dedekind eta function). This implies that the Fourier expansion of θ−1(z) has

only non-negative powers of q and moreover an explicit computation yields that the constant

term of θ−1 is 1 so the conclusion follows.

The lemma generalizes for the case of g−n and can be given an analogous proof. We now study

the analytical properties of the Theta function for the integers

Lemma IV.2.0.3. We have that

θ

(
1 +

i

t

)
→ 0

as t→∞

Proof. First, we fix t > 0 and note by direct substitution that

θ

(
1 +

i

t

)
=
∑
n∈Z

(−1)ne−
πn2

t (IV.1)

Observe that (IV.1) is absolutely convergent since we have the following

∑
n∈Z

(−1)ne−
πn2

t ≤
∑
n∈Z

e−
πn2

t ≤ 1 + 2
∑
n≥1

t

πn2
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where the second inequality follows from the estimate e−x ≤ x−1 for x ≥ 0 and the last sum

of (IV.2) is convergent as a p-series. This implies that we can rearrange (IV.1) and consider

it as a difference of two sums

∑
n∈Z

e−
4πn2

t −
∑
n∈Z

e−
π(2n+1)2

t

We then have the following by the Poisson summation formula

∑
n∈Z

e−
4πn2

t =

√
t

2

∑
n∈Z

e−
tπn2

4

and ∑
n∈Z

e−
π(2n+1)2

t =

√
t

2

∑
n∈Z

(−1)ne−
tπn2

4

This implies that

∑
n∈Z

e−
4πn2

t −
∑
n∈Z

e−
π(2n+1)2

t =

√
t

2

∑
n∈Z

e−
tπn2

4 −
√
t

2

∑
n∈Z

(−1)ne−
tπn2

4 =
√
t
∑
n∈Z

e−
tπ(2n+1)2

4

which further gives that (IV.1) is actually non-negative. Next, we note that Gaussian is

a monotonically decreasing function on the positive real axis hence we have the following

estimate
√
t
∑
n∈Z

e−
tπ(2n+1)2

4 ≤ 2
√
t

∫ ∞
0

e
−tπ(2x+1)2

4 dx (IV.2)

A change of variables, u =
√
t(2x+ 1)/2, allows us to rewrite (IV.2) as

2
√
t

∫ ∞
0

e
−tπ(2x+1)2

4 dx = 2

∫ ∞
√
t

2

e−πu
2

du

Allowing t→∞, applying the fact that (IV.1) is non-negative, and using the Lebesgue domi-

nated convergence theorem shows that

0 ≤ lim
t→∞

θ

(
1 +

i

t

)
≤ 0

With this, our desired conclusion follows.

Corollary IV.2.0.4. For d < 4 we have that gεn satisfies our fifth hypothesis for each fixed n

Proof. By Lemma IV.2.0.3 it suffices to show that P+
n (J−1(1+ i

t )) and (1−2λ(1+ i
t ))(P

−
n (J−1(1+
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i
t ))) to converge to a constant for each fixed n. For the former this follows from asymptotic

J−1

(
1− 1

z

)
= −4096q − 98304q2 +O(q3)

implying that it vanishes at 1 so so we just get the constant term of the polynomial P+
n , as

desired. For the latter case it remains to study the behavior of the lambda invariant. We make

use of the identities

– λ(− 1
z ) = 1− λ(z)

– λ(z + 1) = λ(z)
λ(z)−1

– λ(z) =
θ410(τ)

θ400(τ)
,

These in turn give us the following

1− 2λ

(
1− 1

z

)
=

1

8
q−1/2 +

5

2
q1/2 +O(q3/2),

implying that this term is O(eπt). On the other hand, by our normalization assumption

chosen for the polynomial P−n we have P−n (0) = 0 for all n. This implies that the overall term

(1− 2λ(1 + i
t ))(P

−
n (J−1(1 + i

t ))) is O(e−πt), a positive function that decreases monotonically

to 0 as t→ 0, as needed.

IV.3 Interpolation Baseis

Returning to what was discussed in Section IV.1 we consider the functions

bεm(x) =
1

2

∫ 1

−1

gεm(z)eiπ‖x‖
2zdz,

where the contour being integrated over a semi-circle in the upper half plane connecting −1

and 1. For the rest of this Chapter we assume that d ∈ {2, 3}. We now show some properties

of this function:

Proposition IV.3.0.1. For x ∈ Rd we have that bεm is a convergent real valued function.
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Proof. Since our path of integration has finite length, to show our integral is well defined it

would suffice to show boundedness of the integrand on the path of integration by this follows

directly from Corollary IV.2.0.2. To show our integral is real valued we observe that it suffices

to show that each integral of the form

ϕn(x) =
1

2

∫ 1

−1

θ4−d(z)J−n(z)eiπ‖x‖
2zdz

is real valued for each n ∈ N. Combining the well definedness on the integrand with Corollary

IV.2.0.4 we see it is enough to show that

∫ 1

−1

J−n(z)eiπmzeiπ‖x‖
2zdz

is real valued for each m ∈ N0. To this end we have the following computations, where we

parameterize by z = eit for t ∈ [0, π]

∫ 1

−1

J−n(z)eiπmzeiπ‖x‖
2zdz =

∫ i

−1

J−n(z)eiπmzeiπ‖x‖
2zdz +

∫ 1

i

J−n(z)eiπmzeiπ‖x‖
2zdz

= i

∫ π
2

π

J−n(eit)eiπme
it

eiπ‖x‖
2eiteitdt+ i

∫ 0

π
2

J−n(eit)eiπme
it

eiπ‖x‖
2eiteitdt

= i

∫ π
2

0

J−n(eit)eiπme
−it
eiπ‖x‖

2e−ite−itdt− i
∫ π

2

0

J−n(eit)eiπme
it

eiπ‖x‖
2eiteitdt

Here we performed a change of variables in the first integral, t′ = π− t and used the fact that

J(− 1
z ) = J(z). Furthermore, using the fact that J−1 is a real number between 0 and 64 on

the arc from −1 to 1 we observe the integrals are the conjugates of one another. Therefore

their difference is purely imaginary and multiplying by i gives that our integral is precisely

real valued as desired.

We now verify assertions made about bεm in Section IV.1

Proposition IV.3.0.2. The function bεm : Rd → R is an even Schwartz class function that

satisfies

b̂εm(x) = εbεm(x) (IV.3)

and

bεm(‖x‖) = δn,m, n ≥ 1,m ≥ 0, x ∈ Rd, ‖x‖ =
√
n (IV.4)
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Proof. First, it’s clear that bεm is an even function and moreover to verify (IV.3) it suffices to

verify that bεm is Schwartz class. This is because we can just exchange the integral that defines

bεm and the integral of the Fourier transform and apply our computation from Section IV.1.

We’ll focus on the ε = + case because the ε = − case is analogous. It’s enough to show that

for each n ∈ N we have that the integral given by

ϕn(x) =
1

2

∫ 1

−1

θ4−d(z)J−n(z)eiπ‖x‖
2zdz

is Schwartz class because P+
n is a polynomial for each n. We again use the fact that on the circle

arc −1 and 1 the function J−1(z) takes real values between 0 and 64. Uniform convergence

(due to the fat that our contour of integration is finite) implies that

∂kϕn
∂xα

(x) =
1

2

∫ 1

−1

θ4−d(z)J−n(z)Pα(x, z)eiπ‖x‖
2zdz,

where α here is a multi-index such that |α| = k and Pα(x, z) is a polynomial obtained form

the differentiation of the term eiπ‖x‖
2z. The triangle inequality and Arithmetic-Geometric

inequality implies that there is a constant Cα such that

|Pα(x, z)| ≤ Cα(1 + ‖x‖2)k(1 + |z|2)k (IV.5)

Parametrizing z = e2πit for t ∈ (0, 1
2 ) and estimating using (IV.5) gives us

∣∣∣∣∂kϕn∂xα
(x)

∣∣∣∣ =

∣∣∣∣∣πCα
∫ 1/2

0

θ4−d(e2πit)J−n(e2πit)Pα(x, e2πit)eiπ‖x‖
2e2πite2πitdt

∣∣∣∣∣
≤ 2kCαπ(1 + ‖x‖2)k

∫ 1/2

0

J−n(e2πit)
∣∣θ4−d(e2πit)

∣∣ e−π‖x‖2 sin(2πt)dt

= 2k+1Cαπ(1 + ‖x‖2)k
∫ 1/4

0

J−n(e2πit)
∣∣θ4−d(e2πit)

∣∣ e−π‖x‖2 sin(2πt)dt

< 2k+5−dCαπ(1 + ‖x‖2)k
∫ 1/4

0

J−n(e2πit)e−π‖x‖
2 sin(2πt)dt

here we used the facts that J−1 is a real number between 0 and 64 on the circle arc, J(− 1
z ) =

J(z), and
∣∣θ(e2πit)

∣∣ < 2 for t ∈ (0, 1
4 ). We now finish in an approach that is exactly the same

as the one-dimensional approach. Using the facts that 4t < sin(2πt) for t ∈ (0, 1
4 ) and and
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that J−1(1− 1
z ) = O(e−2πt) as t→∞ gives

∫ 1/4

0

J−n(e2πit)e−π‖x‖
2 sin(2πt)dt =

∫ δ

0

J−n(e2πit)e−π‖x‖
2 sin(2πt)dt+

∫ 1/4

δ

J−n(e2πit)e−π‖x‖
2 sin(2πt)dt

≤ Cδe−4/δ + 64ne−4π‖x‖2δ(
1

4
− δ)

≤ Cδe−4/δ + 64ne−4π‖x‖2δ

Here δ ∈ (0, 1
4 ) was chosen to homogenize the exponentials in last line. We can take δ = 1

‖x‖
√
π

which is of course a valid choice for each x ∈ Rd such that ‖x‖ > 4√
π

. This gives that the last

line is bounded above by e−4
√
π‖x‖(C/(‖x‖) + 64n). Altogether, we have that this implies

sup
x∈Rd

∣∣∣∣xβ ∂kϕn∂xα
(x)

∣∣∣∣ <∞
for each multi-index α, β as required. With this the conclusion for (IV.3) follows. For (IV.4)

we have

bεm(‖x‖) =
1

2

∫ 1

−1

gεm(z)eiπnzdz,

when ‖x‖ =
√
n, is just the coefficient of q−n/2 in the q-expansion of gεm. This gives precisely

that bεm(‖x‖) = δn,m, n ≥ 1,m ≥ 0, x ∈ Rd, ‖x‖ =
√
n as claimed.

IV.3.1 Remarks

We note by Poisson summation that for any lattice Λ ⊂ Rd we have

∑
v∈Λ

b−m(v) =
1

‖Λ‖
∑
v∈Λ∗

b̂−m(v) = − 1

‖Λ‖
∑
v∈Λ∗

b−m(v)

In the one-dimensional case this is can be used to show that

b−m(0) =


−2, m ≥ 1 is a square

0, otherwise

by taking the only feasible selection of Λ = Z ⊂ R. For Rd we can also take the natural choice

of Λ = Zd giving us

b−m(0) = −vd(m),
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where vd(m) id the number of solutions to the equation ‖x‖2 = m for x ∈ Zd. However,

in other dimensions it is not immediately obvious what other lattices would provide useful

information or side conditions about our bεm. In particular what can be said about isodual,

integral lattices in Rd?

Proposition IV.3.1.1. In R2 there is up to orthogonal trandformation only one isodual lattice

with the property that the square of its distances are always integers, namely Z2.

Proof. Suppose we have a lattice given by Λ = AZ2 for some non-singular 2 × 2 matrix A.

Then its Gram matrix, G will be given by G = ATA and the Gram matrix, G∗, of the dual of

Λ, Λ∗, will then be given by G∗ = G−1. Then let the quadratic forms generated by G and G−1

be Q1(x) = xTGx and Q2(x) = xTG−1x respectively, where x ∈ Z2. Our hypothesis is that

our lattice be isodual, hence, the quadratic forms generated by G and G−1 being equivalent

over Z, i.e, there exists some φ ∈ GL2(Z) so that Q2(x) = Q1(φ(x)). This condition can then

be rewritten as

G−1 = φTGφ

This yields the fact that we must have G ∈ GL2(Z). Additionally, we get the equivalent

relationship using the fact that G is symmetric

(φG)−1 = (Gφ)T

Putting φ =

w x

y z

 and G =

a b

b c

 gives us the system of equations

aw = cz

−c(x+ y) = b(y + w)

−a(x+ y) = 2bz

We can solve this system in the integers primarily using the fact that Det(φ) = Det(G) = ±1.

This gives 6 solutions for G

1 0

0 1

 ,

−1 0

0 −1

 ,

−1 0

0 1

 ,

1 0

0 −1

 ,

 0 −1

−1 0

 ,

0 1

1 0

 ,
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all of which are orthogonally equivalent to Z2 as claimed.

We can further ask what about R3?

Proposition IV.3.1.2. In R3 there is up to orthogonal trandformation only one isodual lattice

with the property that the square of its distances are always integers, namely Z3.

Proof. Suppose our lattice Λ is isodual, then it is known from [11] that its Gram matrix must

be similar via orthogonal transforamation to one of two matrices


1 0 0

0 α −h

0 −h β

 (IV.6)

where αβ − h2 = 1 and 0 ≤ 2h ≤ α ≤ β or

1

2− αβ


2α
β −αβ −α(2− β)

−αβ 2β
α

2β(1−α)
α

−α(2− β) 2β(1−α)
α

α2β+2α+2β−4αβ
α

 (IV.7)

for 0 < α ≤ β < 1. In either case, since we require our lattice to integral we therefore require

integral entries of each matrix. In the case of (IV.6), the inequalities provided imply that

1 ≥ 3h2, hence h = 0 and αβ = 1. This gives either α = β = 1 or α = β = −1. The

former represents the situation Z3 while the latter can be ruled out for violating the second

set of inequalities for (IV.6). For (IV.7) we have that 2 − αβ divides −α(2 − β) so that

|α(2− β)| ≥ |2− αβ|. Using the inequalities given in this case we can rewrite that inequality

as α ≥ 1, a contradiction. Hence, no integral isodual lattice exists in this case and with this

the conclusion follows.

59



IV.4 Generating Functions

Proposition IV.4.0.1. The generating functions for {g+
n (z)}n≥0 and {g−n (z)}n≥1 are given

by

∞∑
n=0

g+
n (z)eiπnτ =

θd(τ)(1− 2λ(τ))θ4−d(z)J(z)

J(z)− J(τ)
= K+(τ, z)

∞∑
n=0

g−n (z)eiπnτ =
θd(τ)J(τ)θ4−d(z)(1− 2λ(z))

J(z)− J(τ)
= K−(τ, z)

Proof. We show the proof only for K+ because the proof for K− is analogous. Our argument

will follow along the lines of Lemma 2 in [10], where we will show that the Fourier series of

both sides are the same. To begin, observe that by Cauchy’s theorem we have

P+
n (ζ) =

1

2πi

∮
C

P+
n (J−1)

J−1 − ζ
dJ−1,

where C is a sufficiently small (counterclockwise) circle around 0 in the J−1-plane and J−1

here is implicitly a function of τ . Recalling that g+
n (z) = q

−n/2
z + O(q

1/2
z ) and g+

n (z) =

θ4−d(z)P+
n (J−1(z)) we have

P+
n (ζ) =

1

2πi

∮
C

P+
n (J−1)

J−1 − ζ
dJ−1

=
1

2πi

∮
C

g+
n (τ)

θ4−d(τ)(J−1 − ζ)
dJ−1

=
1

2πi

∮
C

q
−n/2
τ

θ4−d(τ)(J−1 − ζ)
dJ−1

Combining the identity

−q1/2
τ J2 dJ

−1

dqτ1/2

= q1/2
τ

dJ

dqτ1/2

=
J ′(τ)

πi
= θ4(τ)(1− 2λ(τ))J(τ)

with the fact that J is Hauptmodul for Γθ gives a well defined change of variables. In particular

P+
n (ζ) =

1

2πi

∮
C

q
−n/2
τ

θ4−d(τ)(J−1 − ζ)
dJ−1

= − 1

2πi

∮
C̃

q
−n/2−1/2
τ θd(τ)(1− 2λ(τ))

(J−1 − ζ)
dqτ1/2
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where C̃ is a clockwise circle (the orientation is reversed because J(τ) = O( 1
qτ

)). We conclude

by then writing

P+
n (J−1(z)) = − 1

2πi

∮
C̃

q
−n/2−1/2
τ θd(τ)(1− 2λ(τ))

(J−1 − J−1(z))
dqτ1/2

and rearranging gives the desired expression.

Next, we outline some identities for Kε(x, τ) that will be used in the next proposition:

Kε(τ,−
1

z
) = λε(−iz)(4−d)/2Kε(τ, z)

Kε(−
1

τ
, z) = −λε(−iτ)d/2Kε(τ, z)

Resz=τKε(τ, z) =
1

πi

While the first two are clear from the definitions of Kε(τ, z) the last follows from the identity

1

πi
=
θ4(τ)(1− 2λ(τ))J(τ)

J ′(τ)

This gives

Res K+(τ, z)

∣∣∣∣∣
z=τ

= lim
z→τ

(z − τ)
θd(τ)(1− 2λ(τ))(θ4−d(z))(J(z))

J(z)− J(τ)

= lim
z→τ

θd(τ)(1− 2λ(τ))(θ4−d(z))(J(z))

J ′(τ)

=
θd(τ)(1− 2λ(τ))(θ4−d(τ))(J(z))

J ′(τ)

=
1

πi
,

where the second line follows from L’Hopital’s rule and the proof for K−(τ, z) is exactly the

same. We next define a function Fε(τ, x) on the set

S = {τ ∈ H : ∀k ∈ Z, |τ − 2k| > 1}

given by

Fε(τ, x) =
1

2

∫ 1

−1

Kε(τ, x)eiπ‖x‖
2zdz

where the contour of integration here is over the arc of the circle going from −1 to 1. Observe
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that because S consists of all integer translates of D (where Fε(τ, x) is well defined) along

the real axis, it’s clear that the translation invariance of Kε(τ, z) gives the well definedness of

Fε(τ, x) in S. We further note that when Im(τ) > 1 we have

Fε(τ, x) =

∞∑
n=0

bεn(x)eiπnτ (IV.8)

and moreover that this series converges absolutely. We will now show that this identity holds

for all τ ∈ H.

Proposition IV.4.0.2. For any ε and x ∈ Rd, the function Fε(τ, x) admits an analytic

continuation to H. These continuations satisfy the functional equations:

Fε(τ, x)− Fε(τ + 2, x) = 0 (IV.9)

Fε(τ, x) + λε(−iτ)−d/2Fε

(
−1

τ
, x

)
= eiπτ‖x‖

2

+ λε(−iτ)−d/2eiπ(−1/τ)‖x‖2 (IV.10)

Proof. We observe that is enough to show that there exists an analytic continuation to some

open set Ω containing the boundary of D on which equations (IV.9) and (IV.10) hold. Then

choosing Ω such that

D ⊂ Ω ⊂ D ∪ SD ∪ T 2D ∪ T−2D,

from which since ∪g∈ΓθgΩ = H (D is a fundamental domain) we can construct a continuation

by repeatedly using equations (IV.9) and (IV.10). Then by the Monodromy theorem, since

H is simply connected, this would give a well defined extension to all of H. Next, we observe

that equation (IV.9) will always be satisfied since the integrand that defines Fε is a two-

periodic function on S, which contains the boundary of D. In this case it remains only to

deal with equation (IV.10). We have an analytic continuation of Fε to some neighborhood of

{z ∈ H : |z| = 1, z 6= i} by the following computations

2Fε(τ, x) =

∫ i

−1

Kε(τ, z)e
iπ‖x‖2zdz +

∫ 1

i

Kε(τ, z)e
iπ‖x‖2zdz

=

∫ i

−1

Kε(τ, z)e
iπ‖x‖2zdz −

∫ i

−1

Kε(τ,−
1

z
)eiπ‖x‖

2(− 1
z )z−2dz

=

∫ i

−1

Kε(τ, z)(e
iπ‖x‖2z + λε(−iz)−d/2eiπ‖x‖

2(−1/z))dz

(IV.11)

Observe that if τ ∈ D ∪ SD then the only poles of Kε(τ, z) inside D ∪ SD are z = τ and

z = − 1
τ . Let γ1 denote the circle arc from −1 to i and let γ2 be a smooth simple path from
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−1 to i that lies inside SD and strictly below γ1. Denote by F the region enclosed between

γ1 and γ2. We can build a continuation of Fε(x, τ) to F and show that it satisfies equation

(IV.9). We take

F̃ε(τ, x) =
1

2

∫
γ2

Kε(τ, z)(e
iπ‖x‖2z + λε(−iz)−d/2eiπ‖x‖

2(−1/z))dz

For τ with sufficiently large imaginary part, it is clear by construction that Fε = F̃ε. So then

for τ ∈ F we have

F̃ε(τ, x) +
λε

(−iz)d/2
Fε

(
−1

τ
, x

)
= F̃ε(τ, x)− 1

2

∫
γ1

Kε(τ, z)(e
iπ‖x‖2z + λε(−iz)d/2eiπ‖x‖

2(−1/z))dz

=
1

2

∫
∂F

Kε(τ, z)(e
iπ‖x‖2z + λε(−iz)d/2eiπ‖x‖

2(−1/z))dz

= iπ
∑
z∈F

Resz=τKε(τ, z)(e
iπ‖x‖2z + λε(−iz)d/2eiπ‖x‖

2(−1/z))

= eiπτ‖x‖
2

+ λε(−iτ)−d/2eiπ(−1/τ)‖x‖2

which is exactly the equation we desired. We can do the exact same computation on the

arc from i to 1 as well. We need only now check that τ = i is not a pole. For ε = +

this follows directly from equation (IV.10) and for ε = − we again have that eiπz‖x‖
2

+

λε(−iz)−d/2eiπ(−1/z)‖x‖2 and 1− 2λ(z) both vanish at z = i so they cancel the double pole at

i coming from J(z)− J(i) so equation (IV.11) converges at τ = i.

This result then implies that (IV.8) converges for all τ ∈ H, as desired. For the remainder

of this, we note that we will occasionally use the notation Fε(τ) = Fε(τ, x) when it simplifies

notation. The context will generally be clear.

We now present two ideas that will prove crucial to proving the polynomial growth of the bεn:

Proposition IV.4.0.3. Let λ > 0 and α ≥ 0. Suppose f : H→ C is a holomorphic function

such that it possesses the Fourier series given by:

f(τ) =

∞∑
n=0

ane
2πinτ/λ

Further, suppose that f(τ) = O(y−α) uniformly for all x ∈ R as y → 0+, where x and y are
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the real and the imaginary parts of τ respectively. Then we have that

an = O((
nπe

α
)α)

as n→∞.

Proof. We present a proof adapted from [9]. We have the following computation for any τ0 ∈ H

an =
1

λ

∫ τ0+λ

τ0

f(τ)e−2πinτ/λdτ

=
1

λ

∫ Re(τ0)+λ

Re(τ0)

f(t+ iIm(τ0))e−
2πin
τ te

2πn
τ Im(τ0)dt

Hence,

|an| ≤
1

λ

∫ Re(τ0)+λ

Re(τ0)

|f(t+ iIm(τ0))|e 2πn
τ Im(τ0)dt

≤ 1

λ
e

2πn
τ Im(τ0)

∫ Re(τ0)+λ

Re(τ0)

Cnαdt

= Ce
2πn
τ Im(τ0)nα

Letting Im(τ0) = α
neπ and allowing n→∞ gives the desired result.

We also have the following

Proposition IV.4.0.4. For each multi-index α, β there exists an absolute constant Cα,β > 0

such that the inequality

∣∣∣∣xα ∂Fn∂xβ
(τ, x)

∣∣∣∣ ≤ Cα,β(1 + Im(τ)−m−n−
1
2 ),

where |α| = m and |β| = n.

Proof. Suppose τ ∈ D is arbitrary. From equation (IV.8) and Proposition IV.3.0.1 we have

that Fε(it) is real valued for t > 0 and furthermore the Schwartz reflection principle gives that

Fε(τ) = Fε(−τ)

This symmetric property enables us to only have to consider when τ ∈ D1 = {τ ∈ D : Re(τ) <

0}. Moreover, this combined with the facts that Im(J(τ)) < 0 for τ ∈ D1 for τ with sufficiently
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large imaginary part (this can be observed by looking at its Fourier series) and J : D → C is

Hauptmodul we have that Im(J(τ)) < 0 for all τ ∈ D1. We define

L = {w ∈ C : Re(w) = J(i) = 1/64, Im(w) > 0}

and let L be the preimage of L under J . Then by the above L is a smooth path in D/D1

from i to 1. Let γ = SL ∪ L, a path from −1 to 1 in D. We observe that |z| and |z|−1 are

bounded on γ, this follows from the fact that γ is a smooth path that avoids the origin. As

in Proposition IV.3.0.2 we let Pβ(x, z) be the polynomial obtained by differentiating the term

eiı‖x‖
2z, where here β is a multi-index and |β| = n. Again, as in Proposition IV.3.0.2 we have

xα
∂kFε
∂xβ

(τ, x) =
1

2

∫ 1

−1

Kε(τ, z)x
αPβ(x, z)eiπ‖x‖

2zdz

=
1

2

∫ 1

i

Kε(τ, z)x
α

(
Pβ(x, z)eiπ‖x‖

2z + λε(−iz)−d/2Pβ(x,−1

z
)eiπ‖x‖

2(− 1
z )

)
dz,

where we used our established properties of Kε(τ, z). Next, using the fact that |z| is bounded

for all z ∈ γ we have that zsxδ, with |δ| < |β|, satisfies zsxδ = O(1 + ‖x‖2n). This gives us

∣∣∣∣xα ∂kFε∂xβ
(τ, x)

∣∣∣∣ = O
(∫
L
|Kε(τ, z)x

α|
∣∣∣∣Pβ(x, z)eiπ‖x‖

2z + λε(−iz)−d/2Pβ(x,−1

z
)eiπ‖x‖

2(− 1
z )

∣∣∣∣ |dz|)
= O

(∫
L
|Kε(τ, z)|(1 + ‖x‖2n+2m)

(
e−π‖x‖

2Im(z) + |z|−d/2e−π‖x‖
2Im(− 1

z )
)
|dz|

)

Note that since the Gaussian is in the Schwartz class there is a constant Cn,m > 0 so that

(1 + ‖x‖2n+2m)e−π‖x‖
2Im(z) ≤ Cn,m(1 + Im(z)−m−n)

Altogether, this then gives

∣∣∣∣xα ∂kFε∂xβ
(τ, x)

∣∣∣∣ = O
(∫
L
|Kε(τ, z)|(1 + Im(z)−m−n + |z|− d2−2Im(−1

z
)−m−n)|dz|

)
= O

(∫
L
|Kε(τ, z)|(1 + Im(z)−m−n + |z|− d2−2+2m+2nIm(z)−m−n)|dz|

)
= O

(∫
L
|Kε(τ, z)|(1 + Im(z)−m−n)|dz|

)
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At this point we can finish with the same estimates as in [8].

IV.5 Cocycle Relations

We now define a Γθ relation, {φA(τ)}A∈Γθ , by writing

φT 2(τ) = 0

φS(τ) = eiπτ‖x‖
2

+ λε(−iτ)−d/2eiπ(−1/τ)‖x‖2

We define φAB = φB + φA|B, where | refers to the notation |−εd/2 given in Section II.3, and

observe that φS +φS |S = 0. This implies that for any A ∈ Γθ it uniquely has a representative

φA. Moreover we have from Proposition IV.4.0.2 that

Fε(τ)− (Fε|−εd/2A)(τ) = φA(τ). (IV.12)

We then have the following lemma from [8]

Lemma IV.5.0.1. Suppose we have a Γθ relation {φA}A∈Γθ satisfying

φT (τ) = 0

|φS(τ)| ≤ |τ |α + Im(τ)−β

for some α, β ≥ 0. Let τ ′ ∈ D, A ∈ Γθ, τ = Aτ ′, and suppose Im(τ) ≤ 1. then we have that

|φA(τ ′)| ≤ |τ |α + Im(τ)−α−1 + 2Im(τ)−β−1

We now finally prove our polynomial bound for bεn

Proposition IV.5.0.2. We have bεn(x) = O(n
3d+5

4 )

Proof. First, let τ ∈ H be an arbitrary point satisfying Im(τ) ≤ 1 that doesn’t lie on the

boundary of D or any of the elements of its orbit in Γθ. Let τ = aτ ′+b
cτ ′+d , where τ ∈ D and
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A =

a b

c d

 ∈ Γθ. Observe that

|φS(τ)| = |eiπτ‖x‖
2

+ λε(−iτ)−d/2eiπ(−1/τ)‖x‖2 |

≤ 1 + Im(τ)−d/2.

Recall that equation (IV.12) gives

χ−ε(A)jdθ (τ ′, A)Fε(τ) = Fε(τ
′)− φA(τ ′).

Combining this with Lemma IV.5.0.1 (α = 0, β = d
2 ) with Propostion IV.4.0.4, give us

|Fε(τ)| ≤ Im(τ ′)d/4

Im(τ)d/4
|Fε(τ ′)|+

Im(τ ′)d/4

Im(τ)d/4
|φA(τ ′)|

≤ C0,0
Im(τ ′)1/4 + Im(τ ′)(d−2)/4

Im(τ)d/4
+ Im(τ ′)d/4(1 + Im(τ)(−d−4)/4 + Im(τ)(−2d−5)/4),

where C0,0 is the constant from Proposition IV.4.0.4. We also used the facts that jθ

z,
a b

c d


 =

ζ(cz + d)−1/2 for some appropriate eighth root of unity ζ and |cτ ′ + d|2Im(τ) = Im(τ ′).

If c = 0 then we have Im(τ ′) = Im(τ) thus giving

|Fε(τ)| ≤ C0,0(Im(τ)(1−d)/4 + Im(τ)−1/2) + Im(τ)1/4 + Im(τ)−1 + 2Im(τ)(−d−5)/4.

In the other case c > 0 then we have Im(τ) < Im(τ ′) and therefore

Im(τ)Im(τ ′) =
Im(τ ′)2

|cτ ′ + d|2
≤ 1.

This gives

|Fε(τ)| ≤ C0,0(Im(τ)(−d−1)/4 + Im(τ)(−d+1)/4) + Im(τ)−d/4 + Im(τ)(−d−2)/2 + Im(τ)(−3d−5)/4.

So Proposition IV.4.0.3 gives

bεn(x) = O(n
3d+5

4 ),

as claimed.
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IV.6 Summation Formulae

Define the following

an(x) =
b+n (x) + b−n (x)

2

and by construction this gives

ân(x) =
b+n (x)− b−n (x)

2
.

Polynomial growth of the bεn(x) uniformly in n implies that

∞∑
n=0

an(x)f(
√
n) +

∞∑
n=0

ân(x)f̂(
√
n) (IV.13)

converges absolutely for all radial Schwartz class functions, here f(
√
n) refers to the value of

f(v) at any v ∈ Rd such that ‖v‖2 = n. We can defne the linear functional ωx on radial

Schwartz functions

ωx(f) = f(x)−
∞∑
n=0

an(x)f(
√
n)−

∞∑
n=0

ân(x)f̂(
√
n). (IV.14)

Polynomial growth of the bεn again implies that ωx is a tempered distribution and Proposition

IV.4.0.2 implies that (IV.14) is 0 when f(x) = eiπ‖x‖
2τ for any τ ∈ H so it must be the case that

ωx vanishes on the linear span of
{
eiπ‖x‖

2τ
}
τ∈H

. An approximation of the identity argument

shows that the space of compactly supported radial smooth functions is dense in the radial

Schwartz class functions so it therefore suffices to show that ωx vanishes for all compactly

supported, radial smooth functions.

Proposition IV.6.0.1. We have that the space of compactly supported radial functions are

in the kernel of the tempered distribution given by

ωx(f) = f(x)−
∞∑
n=0

an(x)f(
√
n)−

∞∑
n=0

ân(x)f̂(
√
n)

Proof. Suppose f is such a function, define eτ (x) = eiπ‖x‖
2τ , and observe that we can assume

that

f(x) = F (‖x‖2)ei(x)

for some F ∈ C∞(R) with compact support. Observe that we have F̂ is a Schwartz class
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function so we can apply the Fourier inversion formula to give

f(x) = F (‖x‖2)ei(x) =

∫ ∞
−∞

F̂ (ξ)ei+2ξ(x)dξ,

where here we treat F as a one-dimensional function and considered its one-dimensional trans-

form. If we define

pT =

∫ T

−T
F̂ (ξ)ei+2ξ(x)dξ

it’s clear by Lebesgue dominated convergence that

‖f − pT ‖α,β → 0

for all fixed multi-indices α, β defining a seminorm with respect to the Schwartz class as

T →∞. Hence,

ωx(f − pT )→ 0,

T → ∞. Combining this with the fact that ωx(pT ) = 0 we have that ωx(f) = 0 for all

compactly supported, radial smooth functions f as desired.

We now state the above as a theorem

Theorem. Let d ∈ {2, 3}, there exists a collection of radial Schwartz functions an : Rd → R

with the property that for any radial Schwartz function f : Rd → R and any x ∈ Rd we have

f(x) =

∞∑
n=0

an(x)f(
√
n) +

∞∑
n=0

ân(x)f̂(
√
n),

where the right-hand side converges absolutely.

Let S denote the vector space of all rapidly decaying sequences of real numbers; i.e, sequences

{xn}n≥.0 such that for all k ≥ 0 we have nkxn → 0 as n → ∞ and we can let SR denote the

space of radial Schwartz class functions on Rd. In the spirit of [8] we can also define the linear

functional L : S
⊕
S → R

L({xn}n≥0 , {yn}n≥0) =
∑
m≥0

vd(m)xm −
∑
m≥0

vd(m)ym
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and the linear functional Ψ : SR → S
⊕
S given by

Ψ(f) =
((
f(
√
n)
)
n≥0

)⊕((
f̂(
√
n)
)
n≥0

)

From the Poisson Summation formula, valid for all f ∈ SR, we have

∑
v∈Zd

f(v) =
∑
v∈Zd

f̂(v)

or equivalently, ∑
m≥0

vd(m)f(
√
m) =

∑
m≥0

vd(m)f̂(
√
m),

which implies L ◦Ψ(f) = 0.

IV.6.1 Remarks

We discuss the relationship between the transforms discussed in Chapter III and Chapter IV.

More precisely between

V (x) = sin

(
π‖x‖2

2

)2 ∫ i∞

0

ψ(z)eiπ‖x‖
2zdz (IV.15)

and

f(x) =
1

2

∫ 1

−1

g(z)eiπ‖x‖
2zdz (IV.16)

for appropriate weakly holomorphic modular forms ψ and g. As discussed in [8] we can obtain

an alternate form for f with contour integration shown in Figure IV.1. We can make T > 0

as large as we like because g has no poles on H. Cauchy’s theorem then gives

f(x) =
1

2

∫ −1+iT

−1

g(z)eiπ‖x‖
2zdz +

1

2

∫ 1+iT

−1+iT

g(z)eiπ‖x‖
2zdz +

1

2

∫ 1

1+iT

g(z)eiπ‖x‖
2zdz

=
i

2

∫ T

0

g(−1 + is)eiπ‖x‖
2(−1+is)ds+

1

2

∫ 1

−1

g(s+ iT )eiπ‖x‖
2(s+iT )ds+

i

2

∫ 0

T

g(1 + is)eiπ‖x‖
2(1+is)ds

= sin
(
π‖x‖2

) ∫ T

0

g(1 + is)e−π‖x‖
2sds+

e−π‖x‖
2T

2

∫ 1

−1

g(s+ iT )eiπs‖x‖
2

ds.

Allowing T →∞ we see that for all ‖x‖2 larger than the order of the pole of g at i∞ we have

f(x) = sin
(
π‖x‖2

) ∫ ∞
0

g(1 + is)e−π‖x‖
2sds. (IV.17)
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1−1

−1 + iT 1 + iT

Re(z)

Im(z)

Figure IV.1: Shifting the contour for f

Using the Fourier expansion of g at i∞, we can perform an argument similar to Proposition

III.1.0.1 to analytically extend f to an entire function. Similar results exist for real analogues,

for example the following proposition.

Proposition IV.6.1.1. Suppose g ∈ C[−1, 1] and define

f(z) =

∫ 1

−1

g(t)eitzdt.

We then have that

– f is an entire function

– f has infinitely many zeros

Proof. For the first statement we need to to show holomorphy at any point z0 ∈ C. Since g is

continuous on the compact set [−1, 1], there is a number M such that |g(x)| ≤M for all x on
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[−1, 1]. We have

∣∣∣∣ limh→0

f(z0 + h)− f(z0)

h

∣∣∣∣ =

∣∣∣∣∣ limh→0

∫ 1

−1
g(t)eit(z0+h)dt−

∫ 1

−1
g(t)eitz0dt

h

∣∣∣∣∣
=

∣∣∣∣∣ limh→0

∫ 1

−1
g(t)eitz0(eith − 1)dt

h

∣∣∣∣∣
≤M lim

h→0

∫ 1

−1

e−tIm(z0) |eith − 1|
h

dt

= 2M lim
h→0

∫ 1

−1

e−tIm(z0) | sin( th2 )|
h

dt

= M

∫ 1

−1

e−tIm(z0)|t|dt.

For z0 with non-zero imaginary part the last integral is bounded above by

M

(
−e−Im(z0) + eIm(z0)

Im(z0)

)
,

which is finite. When z0 is real, the last integral is seen to be finite too. With this we conclude

f is entire. For the second assertion assume by contradiction that f has finitely many zeros.

We then have the following estimate for z ∈ C with sufficiently large modulus

|f(z)| ≤M
∫ 1

−1

e−tIm(z)dt

= M
e|Im(z)| − e−|Im(z)|

|Im(z)|

≤Me|z|.

This implies that f has order at most 1. Combining our assumption that f has finitely many

zeros with Hadamard’s theorem implies that

f(z) = CzMep(z)
N∏
k=1

(
1− z

ak

)
= ep(z)g(z), (IV.18)

where C is a non-zero complex number, the ak are the non-zero zeros of f listed according

to multiplicity and p(z) is a polynomial of degree at most 1. Observe also that the Riemann

Lebesgue lemma implies that limz→±∞ f(z) = 0. We now consider two cases

Case 1 p is a constant

In this case (IV.18) implies that limz→±∞ f(z) 6= 0 because limz→±∞ |g(z)| = ∞ for any

non-zero polynomial g.
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Case 2 p is linear

Suppose p(z) = az + b for complex numbers a and b. In this case (IV.18) gives

lim
z→±∞

|f(z)| = CeRe(b) lim
z→±∞

eRe(a)z|g(z)|. (IV.19)

If Re(a) > 0 then (IV.19) gives

lim
z→∞

|f(z)| =∞,

a contradiction. On the other hand, if Re(a) < 0 we similarly have

lim
z→−∞

|f(z)| =∞,

a contradiction.

With both of these cases done, we conclude that f has infinitely many roots as claimed.
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CHAPTER V

Polynomials

In this chapter we present examples of the polynomials in Chapter III. We begin with those

mentioned Section III.2.1 first and then those in Section III.3.1.

n P
(0)
n (w) Q

(0)
n (w) R

(0)
n (w)

1 w − 3528 1 w + 1800

2 175w2 − 1840638w − 475793136 175w + 497922 175w2 + 2534082w + 111078000

3 28028w3 − 529158959w2−
743163984060w − 36431480423520 28028w2 + 313867225w + 64418011860 28028w3 + 1108461025w2+

543950742180w + 5541859144800

4

1524237w4−
42145350931w3−

152149668189990w2−
44927306881285200w−
786633729801847200

1524237w3 + 39704513165w2+
32461802436810w + 1951924212447600

1524237w4+
118920495725w3+

170487912830970w2+
22905812156084400w+

88841543950288800

Table V.1: Choices for P
(0)
n (w), Q

(0)
n (w), R

(0)
n (w)

n P
(1)
n (w) Q

(1)
n (w) R

(1)
n (w)

1 w − 1008 w − 1368 1

2 25w2 − 167286w − 10456992 25w2 − 18966w − 41044752 25w + 172554

3 308w3 − 4466219w2−
3475841460w − 42141677760

308w3 + 1438141w2−
3248268900w − 269661057120 308w2 + 7874725w + 1924882860

4

401115w4−
9290647703w3−

22763759548386w2−
3803898729081360w−
16560710101091520

401115w4+
6483236137w3−

8811218303346w2−
6117821433048720w−
146625660982251360

401115w3 + 22950246697w2+
21877018488510w + 1467229443673200

Table V.2: Choices for P
(1)
n (w), Q

(1)
n (w), R

(1)
n (w)

n P
(2)
n (w) Q

(2)
n (w) R

(2)
n (w)

0 1 1 1

1 w − 5628 w + 420 w + 4740

2 21w2 − 277373w − 147949620 21w2 + 104155w + 2942940 21w2 + 449395w + 62398380

3 6435w3 − 140254351w2−
282318350967w − 30019840201260

6435w3 + 99024689w2+
35786965905w + 274637022660

6435w3 + 327184049w2+
245151611865w + 8521836402420

4

2032316w4−
62069814983w3−

286418906608260w2−
122843458826869680w − 4

811816447479782000

2032316w4+
66185583145w3+

74093275280940w2+
8042313072870000w+
25260590226128400

2032316w4+
190929139225w3+

355109361032220w2+
74992208896198800w+
1031257846302829200

Table V.3: Choices for P
(2)
n (w), Q

(2)
n (w), R

(2)
n (w)
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n P
(3)
n (w) Q

(3)
n (w) R

(3)
n (w)

0 1 1 1

1 w − 2548 w − 1588 w + 1100

2 7w2 − 63953w − 13216476 7w2 + 3079w − 26138316 7w2 + 82207w + 2838660

3 9009w3 − 156206287w2−
190598031705w − 8023599855180

9009w3 + 70099793w2−
133001882625w − 25965745982460

9009w3 + 311973425w2+
133133324055w + 1154553988500

4

18290844w4−
477240504257w3−

1552265260337700w2−
412158967113855600w−
6424175460048418800

18290844w4+
393037853263w3−

422667127582740w2−
520978390810425360w−
28742819105243026800

18290844w4+
1294922789215w3+

1681874776577340w2+
202659994747486800w+

695925427610595600

Table V.4: Choices for P
(3)
n (w), Q

(3)
n (w), R

(3)
n (w)

n P
(4)
n (w) Q

(4)
n (w) R

(4)
n (w)

0 w − 1728 1 1

1 5w2 − 39879w − 3302208 5w + 6741 5w + 44721

2 539w3 − 8627782w2−
7880390700w − 114190352640 539w2 + 4167770w + 396226740 539w2 + 16031930w + 4608398100

3

364650w4−
9016810139w3−

24757015920428w2−
4655529290734140w−
23107967582918400

364650w3 + 7413443701w2+
4189697279620w + 112988498908740

364650w3 + 23213582341w2+
24687385132660w + 1870654853648580

4

151915621w5−
5071000280643w4−

29247957518248095w3−
17244571366685860020w2−
1223043935443094430900w−

2775243798740916921600

151915621w4+
6062124318525w3+

8919878506072545w2+
1544144937621803100w+
17500353569626344300

151915621w4+
16932738724605w3+

39664347599006625w2+
12164471420869968300w+

37555037971521990030

Table V.5: Choices for P
(4)
n (w), Q

(4)
n (w), R

(4)
n (w)

n P
(5)
n (w) Q

(5)
n (w) R

(5)
n (w)

0 1 w − 864 1

1 w − 4473 w2 − 1413w − 453600 w + 3375

2 49w2 − 575942w − 254965620 49w3 + 109498w2−
330901140w − 7628100480 49w2 + 879610w + 100694220

3 21450w3 − 434056333w2−
770521453516w − 71729320315380

21450w4+
248877347w3−

404044911676w2−
155029475117940w−
1028241012839040

21450w3 + 968876627w2+
642106262420w + 19426107195660

4

600457w4−
17413947261w3−

72970303098615w2−
28414747354211820w−
1002557443945508100

600457w5+
16573766499w4−

12583512934935w3−
29100262763915100w2−
3006413385227590500w−

8432444300940316800

600457w4+
51599069955w3+

87712885387785w2+
16790085749805300w+
207128509258621500

Table V.6: Choices for P
(5)
n (w), Q

(5)
n (w), R

(5)
n (w)

n X
(0)
n (w) Y

(0)
n (w) Z

(0)
n (w)

1 120(7w + 384) 63w + 171776 91392

2 2520(143w2 + 84480w + 983040) 10725w2 + 120772096w + 23220584448 256(169455w + 62000384)

3 360360(323w3 + 548352w2

+82575360w + 352321536)
1851759w3 + 49401907328w2+

38926309097472w + 2213781090336768
256(56346381w2 + 75292332160w

+6573528121344)

4
15315302185w4 + 7383552w3+

3451650048w2 + 210386288640w
+425201762304)

33096195w4 + 1644933485408w3

+3009329278672896w2 + 738847600435789824w
+18179994719864487936

512(820050165w3 + 2384500618256w2

+838993381785600w
+28645861563039744)

5

465585120(310155w5+
1748073600w4+

1697439744000w3+
337979113472000w2

+10382718365859840w+
11556416963739648)

973308260925w5+
78719422877414656w4+

262263121441528086528w3+
154187768864184886886400w2+
17019494697241218880897024w+
219611165287835282272419840

256(71228468185875w4+
361358305202975744w3+

291993337330975309824w2+
42681295639960998641664w+
718996664772793320079360)

Table V.7: Choices for X
(0)
n (w), Y

(0)
n (w), Z

(0)
n (w)
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n X
(1)
n (w) Y

(1)
n (w) Z

(1)
n (w)

0 0 0 1

1 840 −840w + 514304 63w + 131584

2 110880(13w + 3840) −32(45045w2 − 18526200w−
5341896704)

32175w2 + 371685632w + 39092682752

3 180180(323w2 + 365568w+
27525120)

−4(14549535w3 + 5879887104w2−
8326334765056w − 370066358009856)

617253w3 + 18360757472w2+
11306427441152w + 324717024116736

4 232792560(115w3 + 291456w2+
90832896w + 2768240640)

,

−16(1673196525w4 + 3009763070160w3−
1421847294355456w2−
605234559377473536w−
9565139321682395136)

165480975w4 + 9518793732992w3+
15132309418754048w2+
2766389035294261248w+
32846675840140836864

5

10708457760(13485w4+
60802560w3+

44281036800w2+
5877897625600w+
90284507529216)

−32(4512611027925w5 + 17010213344003880w4+
999578362657896448w3−

6562315960254172495872w2−
795944042384647939686400w−
5957334388285995388764160)

583984956555w5 + 55770750508732928w4+
169660656868984487936w3+

83631477837620305723392w2+
6681822444597248471859200w+
40367431146967037221273600

Table V.8: Choices for X
(1)
n (w), Y

(1)
n (w), Z

(1)
n (w)

n X
(2)
n (w) Y

(2)
n (w) Z

(2)
n (w)

0 6144 5w + 8192 −1280

1 53760(3w + 512) 33w2 + 202688w + 117014528 −256(33w + 88256)

2 14192640(13w2 + 11648w + 458752), 7017w3 + 287157760w2+
318152900608w + 47113022996480

−256(17017w2 + 177480192w+
36305240064)

3 46126080(2261w3 + 4961280w2+
1169817600w + 17616076800)

5460315w4 + 189789291328w3+
367295135350784w2 + 157796929026129920w+

8319769568776028160

−256× (5460315w3 + 132052395328w2+
107242597384192w + 6452654238597120)

4

119189790720(1035w4+
4209920w3+

2586574848w2+
251909898240w+
1842540969984)

4159088505w5+
251393130327552w4+

798055211699077120w3+
632914387743732137984w2+

120787993383067707244544w+
2909757417631140575969280

−256(4159088505w4+
185453507000832w3+

344647665809293312w2+
87554788870491996160w+
2263020941437160128512)

Table V.9: Choices for X
(2)
n (w), Y

(2)
n (w), Z

(2)
n (w)

n X
(3)
n (w) Y

(3)
n (w) Z

(3)
n (w)

0 1536 5w − 9856 640

1 215040(3w + 128) 231w2 − 26752w − 1267400704 128(231w + 1002752)

2 7096320(13w2 + 6656w + 65536) 12155w3 + 89270912w2−
271330017280w − 53238862708736 128(12155w2 + 201748992w + 45519863808)

3 92252160(323w3 + 496128w2+
66846720w + 251658240)

2028117w4 + 43705241600w3−
83647820742656w2 − 87515623734640640w−

4918832488186380288

128(2028117w3 + 76877475968w2+
68261619335168w + 4356410519322624)

4
7449361920(1035w4 + 3238400w3+

1392771072w2+
77510737920w+
141733920768)

319929885w5+
13839620317152w4−

10573527793258496w3−
56722420190471520256w2−

14725403947015333740544w−
357151402541346522660864

128(319929885w4+
22082073232992w3+

44611573053693952w2+
11964779238296387584w+
322815711309402734592)

Table V.10: Choices for X
(3)
n (w), Y

(3)
n (w), Z

(3)
n (w)

76



n X
(4)
n (w) Y

(4)
n (w) Z

(4)
n (w)

−1 0 w + 768 256

0 7864320 −7w2 − 14080w − 3670016 256(7w + 8704)

1 660602880(11w + 3840) −2145w3 − 18151424w2−
10765860864w − 513701576704 256(2145w2 + 16504064w + 1442906112)

2 11808276480(17w2+
21504w + 1835008)

−29393w4−
631750304w3−

700880797696w2−
170140507308032w−
2724018046107648

256(29393w3+
609176480w2+

329551011840w+
8310294052864)

3
802962800640(437w3+

1203840w2+
410910720w+
13841203200)

−30644625w5−
1284428619904w4−

2602053588762624w3−
1289000609952825344w2−
137186753819160084480w−
1003585773474781593600

256(30644625w4+
1260893547904w3+

1805118063624192w2+
299979977879715840w+
3216411012303421440)

4

30512586424320(10005w4+
48222720w3+

37720883200w2+
5407665815552w+
90284507529216)

−17696513835w6−
1244402571623168w5−

4215555713699020800w4−
3542821624051128074240w3−

904667406337659165999104w2−
48655357241931748717101056w−
193311568802774178842279936

256(17696513835w5+
1230811648997888w4+

3420612063394922496w3+
1560023852214403465216w2+
115291143987952747544576w+
640226338100622957477888)

Table V.11: Choices for X
(4)
n (w), Y

(4)
n (w), Z

(4)
n (w)

n X
(5)
n (w) Y

(5)
n (w) Z

(5)
n (w)

−1 0 w + 1408 −256

0 55050240 −35w2 − 19456w + 89587712 256(35w − 29824)

1 289013760(11w + 1536) −429w3 − 1764160w2+
1176043520w + 2334566383616 256(429w2 + 1160128w − 973922304)

2 330631741440(17w2 + 13440w+
458752)

−323323w4−
4435796480w3−

605044539392w2+
7780900527931392w+
1333999196264464384

256(323323w3+
3980557696w2−

2003804553216w−
569750497263616)

3
1405184901120× (437w3+

875520w2+
186777600w+
2516582400)

−19501125w5−
591920574272w4−

567799302914048w3+
1087844837081743360w2+
822610678048163364864w+
43532789077489389404160

256(19501125w4+
564462990272w3+

91251038625792w2−
299092243346620416w−
18730093313481768960)

4

213588104970240(10005w4+
37889280w3+

21554790400w2+
1931309219840w+
12897786789888)

−42977247885w6−
2350682955705856w5−

5039996005091246080w4+
3076582372212857634816w3+

8045890888911094963765248w2+
1865875989614579138904981504w+
43576512251424940595693486080

256(42977247885w5+
2290170990683776w4+

2908554618349289472w3−
1901567036589334331392w2−
738869329451114326654976w−
18809903968817949242818560)

Table V.12: Choices for X
(5)
n (w), Y

(5)
n (w), Z

(5)
n (w)
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