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Chapter 1

Introduction

In the era of Artificial Intelligence (AI), advanced robotics technology is playing a more

and more important role in our life. Simultaneous localization and mapping (SLAM), as

one of the important techniques for navigation, robotic mapping and odometry, has been

paid a lot of attention by both academia and industry. SLAM is a computational problem of

constructing or updating a map of an unknown environment while simultaneously keeping

track of an agent’s location within it [5, 6, 7]. Obviously, it requires accurate sensing

measurements of its environment. Visual SLAM, which depends on visual sensors such

as monocular cameras, stereo rigs, RGB-D cameras, may become the next trend of SLAM

due to its price advantage than traditional sensors.

One objective of Visual SLAM is to estimate the camera trajectory (localization) while

reconstructing the environment [8]. In order to achieve accurate results after long-term

error accumulation, our real-time SLAM algorithm uses Bundle Adjustment method [9,

10, 11] which constructs a least square problem for nonlinear optimization.

The other objective for SLAM is mapping. Mapping provides robots with the informa-

tion of their surrounding environment. Besides, map construction assists in other functions,

like path planning, navigation and obstacle avoidance. Research in SLAM usually focuses

on metric maps, which emphasizes accurate representation of the positional relationship

of objects in the map. Metric maps are classified into sparse maps, semi-dense maps, and

dense map. Sparse maps are somewhat abstract that do not need to identify all the objects

in the map. In contrast, dense maps focus on modeling everything the camera captures.

The sparse map is sufficient for localization. Semi-Dense maps and Dense maps are often

used for navigation because they have to recognize obstacles.

In this paper, we propose a visual SLAM algorithm based on RGB-D camera and deploy
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it on the real RC vehicle(F1/10).

1.1 Motivation

Robotics and computer vision market is exponentially growing. Many robotic products,

augmented reality and mixed reality apps/games, etc rely on visual SLAM algorithms.

Solutions to SLAM are of core importance in providing mobile robots with the ability

to operate with real autonomy. For robots in hostile environments like the deep ocean,

collapsed buildings or the surface of Mars, SLAM is a foundation technology since the

installation of infrastructure (e.g beacons) to aid navigation is inappropriate or impossible

[12]. Meanwhile, compared with other sensors, camera has the characteristics of informa-

tive, extremely low-size, lightweight, cheap and easy to use. Thus, visual SLAM system is

becoming more and more important.

SLAM has been researched for nearly 30 years and has challenged the robotics com-

munity for several decades. Even nowadays it is still receiving great research attention

world-wise. By modern methods, uncertain data from various types of sensors is adopted

and fused using probabilistic algorithms efficient enough to run in real-time on embed-

ded robot processors. Research in SLAM has been broadened into related fields such as

computer vision and AI [12].

Among various sensory modalities, camera is superior because it’s cheap and informa-

tive. We select camera as the only sensor to set up our SLAM system. The contribution is

that we deploy our SLAM system on real Racecar(F1/10) and make the source code public.

1.2 Outline

Our Visual SLAM system mainly contains the following modules:

• Sensor input: The sensor input is the camera input.

• Visual Odometry (VO): The VO module collects camera data and estimates the pose
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based on the difference between consecutive camera information. It also updates the

cached landmarks information to construct a local map.

• Back-end Optimization: The back-end optimization module receives the camera

poses of the visual odometer at different time steps, and then optimizes the estimation

of poses based on some cost function, and generates a globally consistent trajectory.

• Mapping: The mapping module combines the previously calculated local maps to

establish a global map based on trajectory.

Figure 1.1: Visual SLAM modules
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Chapter 2

Related Work

This chapter is organized as follows. We introduce SLAM background firstly. Subse-

quently, we discuss some state-of-the-art Visual SLAM system in section 2.2. In section

2.3, we introduce some relate work about SLAM on F1/10 race car. Finally, we introduce

our visual SLAM system briefly.

2.1 SLAM Background

SLAM stands for Simultaneous Localization and Mapping. The challenge is to place

a mobile robot at an unknown location in an unknown environment, and have the robot

incrementally build a map of the environment and determine its own location within that

map[13].

Researchers SLAM has studied SLAM for more than 30 years. A thorough historical

review of the first 20 years of the SLAM problem is given by DurrantWhyte, and Bailey

in two surveys[14, 15]. These mainly cover what we call the classical age(1986 - 2004);

the classical age saw the introduction of the main probabilistic formulations for SLAM,

including approaches based on extended Kalman filters (EKF), RaoBlackwellized particle

filters, and maximum likelihood estimation; moreover, it delineated the basic challenges

connected to efficiency and robust data association. Two other excellent references describ-

ing the three main SLAM formulations of the classical age are the book of Thrun, Burgard,

and Fox[16] and the chapter of Stachniss et al [17]. The subsequent period is what we call

the algorithmic-analysis age (2004-2015), and is partially covered by Dissanayake et al. in

[18]. The algorithmic analysis period saw the study of fundamental properties of SLAM,

including observability, convergence, and consistency. In this period, the key role of spar-

sity toward efficient SLAM solvers was also understood, and the main open-source SLAM
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libraries were developed. The popularity of SLAM in the last 30 years is not surprising if

one thinks about the manifold aspects that SLAM involves [19].

2.2 Mainstream Visual SLAM System

If according to the sensor as a category, the SLAM can be divided into radar-based

SLAM and visual SLAM. Because our SLAM system is based on camera which is visual

SLAM system, so we focus on some mainstream visual SLAM system and analyze their

advantage and disadvantage.

• MonoSLAM [20]: This was presented by Dr. A.J. Davison [20] in 2007. The

MonoSLAM [20] uses extended Kalman filtering as the back-end to track very sparse

feature points from the front.

• PTAM [21]: Parallel Tracking and Mapping (PTAM) was presented by Klein el,

al [21] on 2007. PTAM [21] proposes and implements parallelization of the track-

ing and mapping process. And also, PTAM [21] uses nonlinear optimization and no

longer uses traditional filters as back-end optimization. But there are obvious defects

in this system such as small scene and loss of tracking easily.

• ORB-SLAM [22]: ORB-SLAM [22] was proposed in 2015 and is the most complete

modern SLAM system. ORB-SLAM [22] innovatively uses three threads to complete

SLAM: tracking threads are for real-time tracking feature points; optimized threads

are for local Bundle Adjustment, and looping detection and optimization threads for

global pose graph. Since the whole system used feature points for calculation, orb

features must be calculated for each frame, which is cost a lot of time-consuming.

In addition, this system’s three-thread structure puts a burden on CPU, making it
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portable to embedded devices.

• LSD-SLAM [23]: Large Scale Direct monocular SLAM (LSD-SLAM) [23] was

proposed by J. Engel et, al [23] in 2014. Apply direct method to semi-dense monoc-

ular SLAM without bundle adjustment over features. Nevertheless they still need

features for loop detection and their camera localization accuracy is significantly

lower than ORB-SLAM [22] and PTAM [21].

• SVO [24]: Semi-direct Visual Odometry (SVO) [24]. It was presented by Forster et,

al [24] in 2014. This is a semi-direct based visual odometry. The biggest advantage of

this system is that the calculation speed is extremely fast. It can reach a speed of over

400 frames per second on the PC platform. It is very suitable for an embedded device

like a drone. However, SVO [24] system has abandoned the back-end optimization

and looping closing detection for speed and lightweight reason and also it abandoned

the mapping function.

2.3 SLAM on F1/10 Race car

F1/10 race car is an open-source, affordable, and high-performance 1/10 scale au-

tonomous vehicle testbed [25]. In our project, we choose F1/10 race car, because it carries

a full suite of sensors, perception, planning, control, and networking software.

The F1/10 vehicle enables a novel mode of research relative to perception tasks in two

solution. First solution is computer vision by Deep Learning method. Second solution is

SLAM.

Ability for a robot to create a map of a new environment without knowing its precise

location (SLAM) is a primary enabler for the use of the F1/10 platform in a variety of

locations and environments [25]. In order to allow the F1/10 race car to drive in a new

environment, current SLAM solution on F1/10 is a LIDAR-based SLAM package which
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provides loop-closures, namely Google Cartographer [26].

2.4 Our Visual SLAM System

Visual SLAM can be performed by using just a monocular camera, which is the cheap-

est and smallest sensor setup. However as the depth is not observable from just one camera,

the scale of the map and estimated trajectory is unknown [22]. Therefore, in this project,

we will use an RGB-D camera and build our own visual SLAM system follow by four

core steps that I mentioned above. Our visual SLAM system also includes four core parts:

Camera input: Visual Odometry, Back-end Optimization, and Mapping.

How does our visual SLAM system work? Visual Odometry is able to estimate the

position of the camera through adjacent images and restore the spatial structure of the

scene. Then Back-end is focussing on pose optimization during system processing.

RGB-D SLAM method fused all depth data from the sensor into a volumetric dense

model that is used to track the camera pose using ICP [27]. But instead of the ICP [27]

method, we will use the PnP [28] method for camera pose estimation.

Perspective n Points (PnP) [28] method is that a robot has the number of 3D points and

their projections and then it calculates the camera pose. This is the most common situation

for robot. Thus, we chose the PnP [28] method for pose estimation calculation. We will

introduce our SLAM system in detail in Chapter 4.

In the commercial domain, the Visual SLAM is still in its infancy. But it already im-

plemented on augmented reality (AR) applications and a wide variety of field robots, such

as DJI company’s drone.
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Chapter 3

Visual SLAM Algorithm

Since in visual SLAM, we calculate poses through the camera’s pinhole model, we

want to briefly introduce camera’s pinhole model firstly.

The remainder of this chapter is organized as follows. We first discuss camera pinhole

model. Subsequently, in section 3.2 and section 3.3, we introduce camera pose estimation

methods. In section 3.4, we characterize the graph optimization problems that are addressed

by nonlinear least-squares algorithms such as Gauss-Neton, Levenberg-Marquardt(LM).

Finally, in section 3.5, we discuss mapping methods.

3.1 Camera Pinhole Model

Camera pinhole model — This model is a transformation process from the world co-

ordinate system to the camera coordinate system then to the image physical coordinate

system, and finally to the image pixel coordinate system.

Figure 3.1: CAMERA PINHOLE MODE

We assume point P in world coordinates is [X ,Y,Z]T and its camera coordinates P′ is

[X ′,Y ′,Z′]T , f is camera’s focal length. According to the principle of triangle similarity,

Z
f
=− X

X ′
=− Y

Y ′

The negative sign indicates that the image is inverted. To simplify the model, the imaging
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plane can be symmetrical to the front of the camera. Then it will be,

Z
f
=

X
X ′

=
Y
Y ′

Therefore:

X ′ = f
X
Z

X ′ = f
X
Z

We assume P coordinate in image pixel coordinate is [u,v]T . The pixel coordinate system

differs from the imaging physical plane by a scaling and an shift. So we assume that in

pixel coordinate system, u axis scale α and v axis scale β , meanwhile, the origin point is

translated by [cx,cy]
T .

Then, the relationship between the coordinates of P′ and the pixel coordinates is

u = αX ′+ cx

v = βY ′+ cy

⇓

u = fx
X
Z
+ cx

v = fy
Y
Z
+ cy


u

v

1

=
1
Z


fx 0 cx

0 fy cy

0 0 1




X

Y

Z

,
1
Z

KP (3.1)
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ZPuv = Z


u

v

1

= K(RPw + t) = KT Pw

3.2 Feature Detection

In computer vision and image processing, feature detection includes methods for com-

puting abstractions of image information and making local decisions at every image point

whether there is an image feature of a given type at that point or not. The resulting features

will be subsets of the image domain, often in the form of isolated points, continuous curves

or connected regions.

Feature point include Key-point and Descriptor. Key-point is the position of feature

point in image, and Descriptor is to describe the information about the pixels around the

feature point. There are many method of feature detection: SIFT, SURF, ORB etc.

In this project, we will use SURF[29] feature method, because SURF[29] method trade

off a balance between speed and accuracy.
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3.3 Camera Pose Estimation

Now, how to use a set of matching points to calculate the camera’s pose?

Table 3.1: Argument Explanation

P1 The 3D position of a certain landmark (P) in first frame coordinate

P2 The 3D position of a certain landmark (P) in second frame coordinate

p1 Landmark P’s corresponding pixel in first frame

p2 Landmark P’s corresponding pixel in second frame

s1 Landmark P’s depth information in first frame coordinate

s2 Landmark P’s depth information in second frame coordinate

K The intrinsic matrix of camera

R Rotation matrix from the first frame to the second frame

t the translation vector from first frame to second frame

According to camera pinhole model, we can get following equation.

s1 p1 = KP1 (3.2)

s2 p2 = KP2 (3.3)

P2 = RP1 + t (3.4)

s2 p2 = K(RP1 + t) (3.5)

Our goal is to calculate the R and t. Here, depending on the type of the cameras, there
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are three different methods to calculate the pose.

• Epipolar Geometry [30] (2D-2D): Used in a monocular camera.

• ICP [27] (3D-3D): Used in an RGB-D or stereo camera.

• PnP [28] (3D-2D): Used in 3D information in one image and 2D information in

another image.

We will introduce in detail how these three methods calculate the camera’s pose.

3.3.1 Epipolar Geometry (2D-2D)

In 2D-2D situation, we assume the spatial position of point P in first frame is [X ,Y,Z]T .

According to equation 3.2 and equation 3.5, the relationship with p1, p2 and P are:

s1 p1 = KP,s2 p2 = K(RP+ t).

K is the camera intrinsic matrix, R and t are rotation matrix and translation vector respec-

tively.

Now, x1, x2 are the coordinate of two pixels on the normalized plane. Therefore, x1 =

K−1 p1, x2 = K−1 p2, and we can get

x2 = Rx1 + t

⇓

t× x2 = t×Rx1

⇓

x2
T t× x2 = x2

T t×Rx1
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And we know t× x2 is a vector which is vertical to t and x2. Thus:

x2
T t×Rx1 = 0

⇓

p2
T K−T t×RK−1 p1 = 0

We know that fundamental matrix(F) is F = K−T EK−1, essential matrix(E) is E =

t×R. In addition, we use eight-point-algorithm to estimate the E by SVD decomposition.

E =UΣV T

Meanwhile,

t =URZΣUT ,R =URZ
TV T

In a 2D-2D situation which has scale ambiguity, we can not get depth information from the

image. Therefore, we need to use a triangulation method to estimate the depth. However,

due to the influence of noise, we have to use the least squares method to satisfy the polar

geometry constraint which is [s1x1 = s2Rx2 + t].

3.3.2 ICP (3D-3D)

ICP [27] is abbreviated by iterative closest point. There is two way to use ICP [27] al-

gorithm to estimate R and t. One way is using linear method which is SVD decomposition,

the other way is non-linear method which is Bundle Adjustment.
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3.3.2.1 Linear method

We suppose that we have a set of matched 3D points:

P = {p1, p2, p3, ....pn},P′ = {p′1, p′2, p′3..., p′n}

Now, we want to find European transformation to make:

∀i, pi = Rp′i + t

We defined the error term of point i firstly:

ei = pi− (Rp′i + t)

Then, we construct the least squares problem:

min
R,t

J =
1
2

n

∑
i=1
||(pi− (Rp′i + t))||22

Then, we define two centroid(p, p′) of 3D points:

p =
1
n ∑(pi), p′ =

1
n ∑(p′i).

1
2

n

∑
i=1
||pi− (Rp′i + t)||2 = 1

2

n

∑
i=1
||pi− p−R(p′i− p′)||2 + ||p−Rp′− t||2 +N.

N = 2(pi− p−R(p′i− p′))T (p−Rp′− t)).

And we now N is equal to zero, thus the optimization objective function can be simplified

as:

min
R,t

J =
1
2

n

∑
i=1
||pi− p−R(p′i− p′)||2 + ||p−Rp′− t||2
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Looking closely at the left and right terms, we found that the left term is only related to the

rotation matrix R. As long as we get R, we can get t if we set the second term is zero.

qi = pi− p,q′i = p′i− p′

Now, we expand the error term for R

1
2

n

∑
i=1
‖qi−Rq′i‖2 =

1
2

n

∑
i=1

qT
i qi +q′Ti RT Rq′i−2qT

i Rq′i

Note that the first term has nothing to do with R, and the second term RT R = I is also

nothing to do with R. Thus, the optimization function beacomes:

n

∑
i=1
−qT

i Rq′i =
n

∑
i=1
−tr(Rq′iq

T
i ) =−tr(R

n

∑
i=1

q′iq
T
i )

We define matrix c

W =
n

∑
i=1

qiq′
T
i .

Then, we SVD the W matrix:

W = UΣVT .

R = UVT .

After we get the R, we can get the t according to p−Rp′− t = 0.

3.3.2.2 Non-linear method

To find the optimal solution in an iterative way. Essentially, the algorithm steps are:

• For each point (from the whole set of vertices usually referred to as dense or a se-

lection of pairs of vertices from each model) in the source point cloud, Match the

closest point in the reference point cloud (or a selected set) [31].
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• Estimate the combination of rotation and translation using a root mean square point

to point distance metric minimization technique which will best align each source

point to its match found in the previous step. This step may also involve weighting

points and rejecting outliers prior to alignment [31].

• Transform the source points using the obtained transformation [31].

• Iterate (re-associate the points, and so on) [31].

3.3.3 PnP (3D-2D)

In Wikipedia definition, perspective-n-point is the problem of estimating the pose of

a calibrated camera given a set of n 3D points in the world and their corresponding 2D

projections in the image. Meanwhile, 3D-2D is most common situation in situation. We

get pixel u′i in the current frame(k) and 3D position of pi in the world coordinate, then

computer Tk,k−1.

The solution of P3P starts from the cosine theorem. Let the camera coordinate center be

the point O, A, B, and C be three 3D points that are not collinear, and D is the verification

3D point. According to the cosine theorem, the following formula is used:

OA2 +OB2−2OA ·OB · cos< a,b >= AB2

OB2 +OC2−2OB ·OC · cos< b,c >= BC2

OA2 +OC2−2OA ·OC · cos< a,c >= AC2

⇓

Make three formula divide by OC2, and x = OA/OC, y = OB/OC

x2 + y2−2xycos< a,b >= AB2/OC2
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y2 +12−2ycos< b,c >= BC2/OC2

x2 +12−2xcos< a,c >= AC2/OC2

Then denote v = AB2/OC2, uv=BC2/OC2, wv = AC2/OC2,

x2 + y2−2xycos< a,b >− v = 0

y2 +12−2ycos< b,c >−uv = 0

x2 +12−2xcos< a,c >−wv = 0

Then we make v = x2 + y2−2xycos< a,b >, and substitute v in second and third formula.

(1−u)y2−ux2− cos< b,c >y+2uxycos< a,b >+1 = 0

(1−w)x2−wy2− cos< a,c >x+2wxycos< a,b >+1 = 0

The next process is how to solve the coordinates of A, B, C in the current camera coordinate

system by the above two equations. The first thing to be clear is that which quantity is the

known quantity. In our situation, u = BC2/AB2, w = AC2/AB2, cos< a,b >, cos< b,c >,

cos< a,c > are known.

Because the distances of AB, BC, and AC can be obtained from the 3D points of the

input, and the input 2D points can solve the three cosine values. I will explain it in detail.

The first is to solve the cosine worth process according to 2D coordinates. The first

is the transformation from pixel coordinates to normalized image coordinates. we assume

the point A’s pixel is [Au,Av]
T , its normalized coordinates is [Ax,Ay,Az]

T and based on the

camera pinhole model, we get

Ax =
Au− cx

fx

Ay =
Av− cy

fy

17



Az = 1

The we denote NA =
√

(Ax
2 +Ay

2 +Az
2), A′x =

Ax
NA

, A′y =
Ay
NA

, A′z =
Az
Na

similarlywe can get

point B, pint C.

Bx =
Bu− cx

fx

By =
Bv− cy

fy

Bz = 1

NB =
√
(Bx

2 +By
2 +Bz

2), B′x =
Bx
NB

, B′y =
By
NB

, B′z =
Bz
NB

.

Cx =
Cu− cx

fx

Cy =
Cv− cy

fy

Cz = 1

NC =
√

(Cx
2 +Cy

2 +Cz
2), C′x =

Cx
NC

, C′y =
Cy
NC

, C′z =
Cz
NC

.

With the above values, the cosine value can be solved.

cos< a,b >= A′x ·B′x +A′y ·B′y +A′z ·B′z

cos< b,c >= B′x ·C′x +B′y ·C′y +B′z ·C′z

cos< a,c >= A′x ·C′x +A′y ·C′y +A′z ·C′z

Then, u = BC2

AB2 , w = AC2

AB2 , we can calculate them by 3D points of A, B and C in world

coordinate system. Therefore, there are only x and y are unknown.

The next step is to solve a binary quadratic equation, which is difficult to solve, but this

can be solved mathematically.
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(1−u)y2−ux2− cos< b,c >y+2uxycos< a,b >+1 = 0

(1−w)x2−wy2− cos< a,c >x+2wxycos< a,b >+1 = 0

We need to use Wenjun Wu’s method[]. After Wu’s method, we will get 4 solution, and

then we use the fourth point to validate which solution is most possible. After this, we can

get A, B, C of their 3D coordinate in their camera coordinate system. Then, we use the

ICP [27] method(3D-3D method) which we discussed in chapter 3 to calculate R and t.

3.4 Non-linear Optimization

In SLAM system model, we can describe it in mathematical way which include a move-

ment equation and an observation equation:

 xk = f (xk−1,uk)+wk

zk = h(yk,xk)+ vk

(3.6)

Here, xk is a vector of robot’s pose at time k, uk represents the sensor input and wk represents

the noise of measurement. In our project, we set camera’s pose to be robot’s pose. yk

represents a set of landmarks observed at pose xk, vk represents the noise of observation

and zk represents the position of landmarks in image.

P(x|z,u) = P(z|x)P(x)
P(z)

∝ P(z|x)P(x)

According to Bayes formula above, we can know that solving the maximum posterior prob-

ability is equal to the product of the maximum likelihood estimate and the prior. Because

we know calculate the posterior probability directly is hard.

Thus, we can transfer problem of calculating maximum posterior probability of x to

calculate the maximum likelihood estimate of x.
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We denote Maximize a Posterior(MAP) of x is x∗MAP:

x∗MAP = argmaxP(x|z) = argmaxP(z|x)P(x)

Next step is to calculate the maximum likelihood estimate. There is a mode of a certain

observation:

zk, j = h(yi,xk)+ vk, j

P(z j,k|xk,y j) = N(h(y j,xk),Qk, j)

According to Gaussian distribution x ∼ N(µ,Σ))

P(x) =
1√

(2πN)det(Σ)
exp(−1

2
(x−µ)T

Σ
−1(x−µ))

⇓

−In(P(x)) =
1
2

In((2π
N)det(Σ))+

1
2
(x−µ)T

Σ
−1(x−µ)

Thus, we get

x∗ = argmin((zk, j−h(xk,y j))
T Q−1

k, j (zk, j−h(xk,y j)))

In our SLAM system, we get

F(x) = x∗ = min(
n

∑
k=1

(zk, j−h(xk,y j))
T Q−1

k, j (zk, j−h(xk,y j)))

This is a Bundle Adjustment (BA) problem. In the SLAM back-end algorithm, we use

Gauss Newton method to get the optimized pose.

We assume the Error function f(x) and current poses matrix are x. The Gauss Newton

method’s idea use first-order Taylor expansion on function f(x).

f (x+∆x)≈ f (x)+ J(x)∆x

20



. Here, J(x) is the derivative of f(x), which is a Jacobian matrix. Our goal is to find the

decent ∆x, so that || f (x+∆x)||2 is minimized.

In order to find ∆, we need to solve a linear least squares problem:

∆x∗ = argmin
1
2
|| f (x)+ J(x)∆x||2

Firstly, we expand the square term of the objective function:

1
2
|| f (x)+ J(x)∆x||2 = 1

2
( f (x)+ J(x)∆x)T ( f (x)+ J(x)∆x)

=
1
2
(|| f (x)||22 +2 f (x)T J(x)∆x+∆xT J(x)T J(x)∆x)

(3.7)

Find the derivative of the above formula of ∆x and make it:

2J(x)T f (x)+2J(x)T J(x)∆x = 0

J(x)T J(x)∆x =−J(x)T f (x)

3.4.1 Graph optimization

In our SLAM system, we used graph optimization which use a graph to represent the

non-linear optimizing problem. Every node in the graph corresponds to a pose of the robot

during mapping, meanwhile, every edge between two nodes corresponds to a spatial con-

straint between them. Therefore, Build the graph and find a node configuration that mini-

mize the error introduced by the constraints.

Firstly, We define the error function(ek). Error is typically the difference between the

predicted and actual measurement.

ek = zk−h(xk)
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The squared error of a measurement depends only on the state and is a scalar which we talk

above

(zk, j−h(xk,y j))
T Q−1

k, j (zk, j−h(xk,y j))

In our SLAM system, the F(x) is always non- linear, so our goal is to figure out dF
dx = 0.

However, in the slam system, the form of F(x) is too complicated, so that we can not write

form of its derivative or it is hard to calculate the the equation(dF
dx = 0).Therefore, we have

to use iterative method. The iterative stratagem is to find gradient descent direction and

step size of gradient descent(∆x)by Gaussian-Newton Method and Levenberg-Marquardt

method.

The Graph optimization step is following:

• we initialize ∆x.

• In each iteration, we calculate the current Jacobian matrix and Hessian matrix.

• Solving sparse linear equations to get gradient descent direction

Hk∆x =−bx

• Use Gaussian-Newton Method or Levenberg-Marquardt method to get iteration until

iteration end.

3.5 Mapping

The Mapping module combines the previously calculated local maps, a set of land-

marks, to construct a global map based on trajectory. The figure 3.2 shows the 3D recon-

struction of global map when our SLAM system running on the TUM dataset [1]. We can

easily see the 3D landmark such as computer, plants.
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(a) Left: Mapping Result (b) Middle: Mapping Result (c) Right: Mapping Result

Figure 3.2: Our Dense Mapping Result of TUM Dataset [1]
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Chapter 4

Implementation

In this Chapter, we introduce the detail of our visual SLAM system implementation

based on Chapter 3 and hardware setup. Our RGB-D visual SLAM system architecture,

see Figure 4.1, incorporates running on Nvidia Jetson TX2 and ZED Stereo Camera. We

called this architecture as two-frame architecture (Ref-Cur frame architecture). System

extract SURF [29] key-point from the reference frame and current frame firstly, and then

computer their corresponding descriptors. Thirdly, system deal with feature matching for

pose estimation. Fourthly, we create a local Bundle adjustment for pose estimation opti-

mization and add a new keyframe to the local map.

This Chapter is structed as follows. In section 4.1, we introduce the Hardware equip-

ment setup. We give overview of the software environment and discuss the details in each

model of our visual SLAM architecture in sub-section of section 4.2.

4.1 Hardware Setup

Our hardware equipment includes ZED Stereo camera, Nvidia Jetson TX2 board with

Ubuntu 16.04, Traxxas 1/10 scale rally car, etc.

The ZED Stereo camera supports depth perception and colour perception.

Figure 4.1: ZED Stereo Camera [2]

Nvidia Jetson TX2 is the fastest, most power-efficient embedded AI computing device.

This 7.5-watt supercomputer on a module brings true AI computing at the edge. It’s built

24



around an NVIDIA Pascal-family GPU and loaded with 8GB of memory and 59.7GB/s of

memory bandwidth. It features a variety of standard hardware interfaces that make it easy

to integrate it into a wide range of products and form factors[32].

Figure 4.2: Nvidia Jetson TX2 Board [3]

Then, we need to tune our VESC parameters to match them to our car. The VESC

(which stands for Vedder Electronic Speed Controller) is a more advanced ESC which

allows for features such as better motor and battery protection, regenerative braking, pro-

gramming options like acceleration and deceleration curves, and other advanced features[33].

To control the car with keyboard, we developed a node called keyboard controller to

connect the VESC driver node in ROS after tunning the VESC parameter.

4.2 Software and Algorithm

Our system is a c++ project. These are the things that need to be installed on the Jetson

TX2:

• Ubuntu 16.04: A free and open-source Linux distribution based on Debian [34].

• ROS Kinetic: Robot Operating System.
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(a) Front View (b) End View (c) Vertical View

Figure 4.3: Hardware Setup

• ZED SDK: SDK for NVIDIA Jetson TX2.

• OpenCV 3.3.1: A library of programming functions mainly aimed at real-time com-

puter vision [35].

• Eigen3: A high-level C++ library of template headers for linear algebra, matrix and

vector operations, geometrical transformations, numerical solvers and related algo-

rithms [36].

• CUDA 9.1: A parallel computing platform and programming model developed by

NVIDIA for general computing on graphical processing units (GPUs) [37].

• Sophus: A c++ implementation of Lie groups commonly used for 2d and 3d geo-

metric problems [38].

• g2o: A c++ implementation of non-linear optimization library for graph optimiza-

tion.
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Figure 4.4: Our RGB-D Visual SLAM Architecture

Previously, we chose ORB, which are oriented multi-scale FAST corners with a 256 bits

descriptor associated. We chose it because they are extremely fast to compute and match,

but ORB detection has some limitations on accuracy. Thus, we choose SURF [29], which

is a patented local feature detector and descriptor. SURF [29] uses square-shaped filters as

an approximation of Gaussian smoothing. The first step consists of fixing a reproducible

orientation based on information from a circular region around the interest point. Then

we construct a square region aligned to the selected orientation and extract the SURF [29]

descriptor from it. Our visual SLAM algorithm showed below.

4.2.1 SURF Keypoint Extraction

In our SLAM system, we choose SURF method[29] to extract the feature point. We

will take detail in SURF keypoint extraction and implement in our SLAM system. In 2006,

three people, Bay, H., Tuytelaars, T., and Van Gool, L [29], published another paper, SURF:

Speeded Up Robust Features which introduced a new algorithm called SURF [29]. As the

paper suggests, it is a speeded-up version of SIFT.

SURF [29] uses square-shaped filters as an approximation of Gaussian smoothing firstly
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(a) Left Side in Lab (b) Middle in Lab (c) Right Side in Lab

Figure 4.5: SURF Extraction Result in FGH Lab 434

and then used hessian matrix determinant as an approximation value of image in each pixel.

We implement SURF [29] Keypoint Extraction in our SLAM system by using xfeatures2d

module via the OpenCV library.

Figure 4.6: SURF Extraction Result in Car perspective

4.2.2 SURF Descriptors Compute

After the step of the SURF [29] keypoints extraction, we will enter step of descriptor

computing according to figure 4.4. The descriptors are used for feature matching in our

SLAM system.

The goal of a descriptor is to provide a unique and robust description of an image
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feature, e.g., by describing the intensity distribution of the pixels within the neighborhood

of the point of interest. Most descriptors are thus computed in a local manner, hence the

description is obtained for every point of interest identified previously.

The dimensionality of the descriptor has a direct impact on both its computational com-

plexity and point-matching robustness/accuracy. A short descriptor may be more robust

against appearance variations, but may not offer sufficient discrimination and thus give too

many false positives.

The first step consists of fixing a reproducible orientation based on information from a

circular region around the interest point. Then we construct a square region aligned to the

selected orientation, and extract the SURF [29] descriptor from it.

4.2.3 Feature Matching

The feature matching is used to estimate the camera’s pose. In our SLAM system,

SURF[29] feature descriptors are usually compared and matched using the Euclidean distance(L2-

norm),since SURF [29] descriptors represent the histogram of oriented gradient (of the

Haar wavelet response for SURF [29]) in a neighborhood, alternatives of the Euclidean

distance are histogram-based metrics. Instead of brute-force matching, we use Flann-based

matcher for SURF [29] feature matching in our system. FLANN is a library for perform-

ing fast approximate nearest neighbor searches in high dimensional spaces. It contains a

collection of algorithms we found to work best for nearest neighbor search and a system

for automatically choosing the best algorithm and optimum parameters depending on the

dataset.Meanwhile, in order to eliminate the invalid matching, we set a empirical bound to

filter out the invalid matching.

4.2.4 Pose Estimation

As we introduced on Chapter 3, there are three ways to estimate camera’s pose. In

our SLAM system, we chose P3P Method. P3P algorithm does not directly determine the
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camera pose matrix based on the 3D-2D point. Algorithm calculate the 3D coordinates

of the corresponding 2D point in the current camera coordinate system firstly. Secondly,

algorithm combine the point of the 3D coordinates in the world coordinate and 3D point

of the current camera coordinate system to solve the camera pose which transfer 3D-2D

problem to 3D-3D problem.

In our system, we find an object pose from 3D-2D point correspondences using the

RANSAC [39] scheme in OpenCV module. The function estimates an object pose given

a set of object points, their corresponding image projections, as well as the camera matrix

and the distortion coefficients. This function finds such a pose that minimizes reprojection

error, that is, the sum of squared distances between the observed projections imagePoints

and the projected (using projectPoints() ) objectPoints. The use of RANSAC [39] makes

the function resistant to outliers. The function is parallelized with the TBB library.

4.2.5 Local Bundle Adjustment Optimization on Pose Estimation

This module aims to optimize the pose estimation using Bundle Adjustment method vis

the third party library g2o.

Table 4.1: Argument Explanation

Pk The 3D position of a certain landmark in kth frame coordinate

uk Landmark Pk’s corresponding pixel in kth frame

sk Landmark P’s depth information in kth frame coordinate

K The intrinsic matrix of camera

xk The pose of camera in kth frame

In our SLAM system, we define the error of reprojection point(Pk) is

e(xk) = ||uk−
1
sk

K exp(xk∧)Pk||2
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Here, u This optimization problem can be easily constructed as an unconstrained optimiza-

tion problem using Lie algebra, meanwhile, it also easily solved by optimization algorithms

such as the Gauss-Newton method[40] and Levinberg-Makua’s method[41]. In our system,

we chose the Gauss-Newton optimization method. However, before using Gauss-Newton

method, we need to know the derivative of each error term with respect to the perturbed

variable in our SLAM system:

e(xk +∆xk)≈ e(xk)+ J∆xk

, where J is a Jacobian matrix of our SLAM system.

J =

 fx
Z 0 − fxX

Z2 fx +
fxX2

Z2 − fxY
Z − fxY

Z

0 fy
Z − fyY

Z2 fy +
fyY 2

Z2
fxXY
Z2

fyX
Z


Then using Gauss-Newton method J(xk)

T J(xk)∆xk = −J(xk)
T e(xk) to solve ∆xk which is

optimized pose.

Finally, we listed the algorithm in our RGB-D visual SLAM system below. Each func-

tion in our SLAM algorithm has been introduced above in detail.
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Algorithm 1 RGB-D Visual SLAM Algorithm
Input: Optical center cx,cy, Focal length fx, fy, State: Initializing
while true do

if Camera Capture Images then
color = Read RGB Image & depth = Read Depth image

frame = createFrame();
frame.color = color;
frame.depth = depth;
if State == Initializing then

State = OK;
curr = ref = frame;
extractKeyPoints();
computeDescriptors();
setRef3DPoints();

end
else

curr = frame;
extractKeyPoints();
computeDescriptors();
featureMatching();
poseEstimationPnP();

end
return rotation matrix R & translation vector t

end
end
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Chapter 5

Evaluation

We evaluated our SLAM system on TUM datasets [1] and real race car separately. We

run our SLAM system with a ZED Stereo camera in an Interl Core i5-3317U desktop with

8 Gb RAM with NVIDIA GEFORCE 740 and also embedding system platform Nvidia

Jetson TX2 respectively.

Figure 5.1: Experimental Setup

All dataset contains the color and depth images and also the groud-truth trajectory of

the sensor for the evaluation of visual odometry systems.

5.1 TUM Sequence Dataset

For the TUM [1] dataset evaluation, our RGB-D SLAM system generates a trajec-

tory (TSLAM) consisting of a sequence of poses (Pk=1,...,K ∈ SE(3)). The ground-truth trajec-

tory is (Tgt)consisting of a sequence of poses (Qk=1,...,K ∈ SE(3)). SE(3) is a matrix which

contains not only position vector of camera (Euclidean-based coordinate position x,y,z),

but only rotation of camera. We define the relative pose error (RPE) which measures the

local accuracy of the trajectory over a fixed time interval. Therefore, the relative pose error

33



corresponds to the drift of the trajectory which is in particular useful for the evaluation of

visual odometry systems [1]. We define the relative pose error at time step k as

ek = ||log(Q−1
k Pk)||2

From these errors above, we propose to compute the root mean squared error (RMSE) over

all time from a sequence of K camera poses as

RMSE(e1:K,∆) =

√√√√ 1
K

K

∑
k=1

ek
2

5.1.1 TUM Sequence Freiburg1 xyz Dataset

For this sequence, the Kinect is pointed at a typical desk in an office environment. This

sequence contains only translatory motions along the principal axes of the Kinect, while

the orientation was kept (mostly) fixed.

The figure 5.2 shows the evaluation result for TUM freiburg1 xyz dataset, the red

color represents the trajectory we get by running our RGB-D SLAM algorithm, and the

blue color represents the ground-truth trajetory. It is clear that the two trajectories match

very well, indicating the correctness of our method.

Duration: 30.09s

Duration with ground-truth: 30.00s

Ground-truth trajectory length: 7.112m

Avg. translational velocity: 0.244m/s

Avg. angular velocity: 8.920deg/s

Trajectory dim.: 0.46m x 0.70m x 0.44m

RMSE: 0.013347m
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Figure 5.2: Result of Sequence Freiburg1 xyz Dataset

5.1.2 TUM Sequence Freiburg2 xyz Dataset

This sequence contains very clean data for debugging translations. The Kinect was

moved along the principal axes in x-, y- and z-direction very slowly. The slow camera

motion basically ensures that there is (almost) no motion blur and rolling shutter effects in

the data.

The figure 5.3 shows the evaluation result for TUM freiburg2 xyz dataset, the red

color represents the trajectory we get by running our RGB-D SLAM algorithm, and the

blue color represents the ground-truth trajetory. It is also clear that the two trajectories

match very well, indicating the correctness of our method.

Duration: 122.74s

Duration with ground-truth: 121.48s

Ground-truth trajectory length: 7.029m

Avg. translational velocity: 0.058m/s

Avg. angular velocity: 1.716deg/s

Trajectory dim.: 1.30m x 0.96m x 0.72m
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RMSE: 0.010593m

Figure 5.3: Result of Sequence Freiburg2 xyz Dataset

5.1.3 TUM Sequence Freiburg2 rpy Dataset

This sequence contains very clean data for debugging rotations. The Kinect was turned

around the principal axes very slowly on the spot (RPY stands for roll-pitch-yaw). The slow

camera motion basically ensures that there is (almost) no motion blur and rolling shutter

effects in the data.

The figure 5.4 shows the evaluation result for TUM freiburg2 rpy dataset, the red

color represents the trajectory we get by running our RGB-D SLAM algorithm, and the

blue color represents the ground-truth trajetory. It is clear that the two trajectories match

very well, indicating the correctness of our method.

Duration: 109.97s

Duration with ground-truth: 108.86s

Ground-truth trajectory length: 1.506m

Avg. translational velocity: 0.014m/s

Avg. angular velocity: 5.774deg/s
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Trajectory dim.: 0.21m x 0.22m x 0.11m

RMSE: 0.014127m

Figure 5.4: Result of Sequence Freiburg2 rpy Dataset

5.2 Real-World Test on F1/10 Race Car

In this section we test and visualize our SLAM system on the F1/10 race car, meanwhile

we compare our trajectory with the ground truth and the CUWB(Ciholas Ultra-Wideband)

Server. The CUWB Server is a graphical user interface (GUI) and UWB network manager

application[42]. CUWB Server provides users with a GUI and a 2D visualization of the

location data.
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Figure 5.5: Real Route For Test

5.2.1 Visualization of Straight Route Test

In this section, we test our RGB-D SLAM system on a straight section of the track.

For Figure 5.7, 5.9, and 5.11, the blue square represents the trace of the race car in the

previous time steps. The green square at the end of the blue trace is the current position of

the race car. The black points represent feature points generated by the blue trace. And the

red points represent feature points generated by the current position. The figures (5.8, 5.10

and 5.12) on the right is car’s perspective to extract feature points. The green squares in the

figure 5.8, figure 5.10, figure 5.12 are SURF feature points.
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Figure 5.6: Localization at Beginning Figure 5.7: Car’s perspective at Beginning

Figure 5.8: Localization at Middle Figure 5.9: Car’s perspective at Middle

Figure 5.10: Localization at End Figure 5.11: Car’s perspective at End
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5.2.2 Visualization of Curve Route Test

In this section, we visualize the localization estimation result on the curve route.

For Figure 5.13 and 5.15, the blue square represents the trace of the race car in the

previous time steps. The green square at the end of the blue trace is the current position

of the race car. The black points represent feature points generated by the blue trace. And

the red points represent feature points generated by the current position. The figures (5.14

and 5.16) on the right is car’s perspective to extract feature points. The green squares in the

figure 5.14 and figure 5.16 are SURF feature points.

Figure 5.12: Localization at Curve Figure 5.13: Car’s Perspective at Curve

Figure 5.14: Localization at Curve Figure 5.15: Car’s Perspective at Curve
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5.2.3 Visualization of Total Route Test

In this section, we use the entire track to test our SLAM system.

For Figure 5.17, 5.19 and 5.21, the blue square represents the trace of the race car in

the previous time steps. The green square at the end of the blue trace is the current position

of the race car. The black points represent feature points generated by the blue trace. And

the red points represent feature points generated by the current position. The figures (5.18

and 5.20) on the right is car’s perspective to extract feature points. The green squares in the

figure 5.18 and figure 5.20 are SURF feature points. The figure 5.22 shows shape of real

track.

Figure 5.16: Localization Estimation of To-
tal Route

Figure 5.17: Car’s Perspective
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Figure 5.18: Localization Estimation of To-
tal Route

Figure 5.19: Car’s Perspective

Figure 5.20: Total Trajectory By Our
RGBD-SLAM

Figure 5.21: Real Track

5.2.4 Comparison with Ground-Truth Measurement

In this section, we show the comparison between our trajectory, CUWB location mea-

surement system and ground-truth measurement.

CUWB location measurement is a CUWB Server which performs Real Time Location

System (RTLS) calculations producing location data that is broadcast over ethernet for

use by external applications [42]. The CUWB Server contain several devices and assign

devices in three different roles.

First role is called master. Master is responsible for configuring the network, collecting
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data from UWB based backhaul devices, and maintaining a global time reference for the

system[42]. The Master is connected directly to our PC which is close the track. In our

ground-truth measurement system, we use the Master position as a world coordinate.

Second role is called Anchor. Anchor is capable of collecting transmissions from other

devices[42]. In our measurement system, we put five Anchor devices on the wall which are

assumed to be stationary in position.

Third role is called Tag. Tag emits periodic transmissions that are received and times-

tamped by the Anchors[42]. Tags are usually mobile devices in the ground-truth measure-

ment system, therefore, Tag device is connected directly to our Race car.

Figure 5.22: CUWB Server Dashboard

The figure 5.22 shows the pink point is a position of Master device, green points are

positions of Anchor devices, and the blue point is the Tag(Race car).

The coordinate in ZED camera is quite different with our CUWB location measurement

system(World Coordinate). In our world coordinate, the positive direction of Y axis is

toward to # 01F3 Anchor device, however, in our ZED Camera coordinate, the positive

direction of Z axis is the same direction as Y axis in our CUWB location measurement

system. Therefore, we have to calculate rotation matrix between two coordinates.
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Figure 5.23: World Coordinate System Figure 5.24: ZED Camera Coordinate Sys-
tem [4]

Figure 5.23 and 5.24 shows the difference of two coordinates. The positive direction

of Z axis(Blue axis in figure 5.24) is the same direction as Y axis(Blue axis in figure 5.23)

in our CUWB location Measurement system. We will ignore the vertical axis, because our

race car is running in the 2D plane. The rotation matrix (R) which transfer ZED coordinate

to World coordinate as following.

R =


−1 0 0

0 0 1

0 −1 0


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Figure 5.25: Comparison Results With Ground-truth Trajectory

We run the race car along the track deployed in Featheringill Hall 343. We define the

starting point in the track where the car begins moving by the green cross marker. And the

car runs along the track for one lap and goes back to the starting point.

Figure 5.25 shows the comparison between the trajectory obtained by RGBD-SLAM

algorithm(red color), CUWB location measurement system(blue color), and ground-truth

trajectory (green color). The ground-truth trajectory is a line depicted on the floor. We

make the race car move following this line. One can find from the figure that the CUWB

trajectories do not agree with others very well, because the CUWB location measurement

system has drifts. And in fact, the trajectory obtained by running our RGBD-SLAM algo-

rithm fits to the ground-truth track better than the CUWB locaiton measurement obtained

from CUWB server.

For the real-world evaluation, since CUWB location measurement and ground-truth

only contain position information (x,y,z) in the Euclidean-based coordinate, we use Haus-
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dorff distance [43] to measure the distance between two trajectories.

The Hausdorff distance (dH) measures how far two trajectories in a metric space are

from each other [43]. Informally, two trajectories are close in the Hausdorff distance if

every point of either trajectory is close to some point of the other trajectory. The Hausdorff

distance is the greatest of all the distances from a point in one trajectory to the closest point

in the other trajectory.

dH(X ,Y ) = maxsup
x∈X

inf
y∈Y

d(x,y),sup
y∈Y

inf
x∈X

d(x,y)

Here, X and Y are two non-empty subsets of a metric space (M,d). sup represents the

supremum and inf the infimum [43].

Table 5.1: Comparison of Hausdorff Distance

Y

dH(X ,Y ) X
RGB-D SLAM CUWB Location Measurement

Ground-truth 0.634 m 1.057 m
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Chapter 6

Conclusion

In this work, we present a SLAM system for RGB-D sensor that is able to perform

localization and mapping in real-time on standard CPUs and embedded devices. We show

that our SLAM system can successfully process images from various scenarios and can

work on either standard PC platforms and embedded devices. We have released the source

code of our system on Github 1.

Feature detection is used in landmark extraction and data association. It checks each

pixel in an image to find a specific point that differs the other pixels. In this project, we used

the SURF feature detection method and then used PnP method based on these points and

3D points of landmark to estimate the camera pose. We also implemented a local bundle

adjustment for pose optimization. The map is generated by combining the cloud points of

landmarks from different camera poses at different time steps. Once the 3D location of the

landmark is determined, the mapping part is completed simultaneously.

Finally, we demonstrated that our SLAM system using feature detection based visual

SLAM algorithm has the ability to realize place recognition from severe viewpoint changes.

The system also keeps a balance between real-time and accuracy. Further, it can be acel-

erated by GPU. Moreover, another contribution of our work is that we deploy and test our

SLAM system on a race car.

6.1 Discussion

There is still much room for improvement in this system. Firstly, although the method

can achieve high accuracy when the noise level is low, the method is not robust to high-level

noise.
1https://github.com/wwtx9/RGBD-SLAM
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Secondly, the architecture of our system relies on the previous image (frame) for pose

estimation. Therefore, if we lose the previous frame or the previous frame does not contain

any information (e.g., a white wall), then the pose estimation will not be accurate.

Thirdly, since we need a pose estimation for every image, it is time-consuming.

Moreover, our system is very sensitive to input size and illumination, rendering it not

applicable to our-door environment.

6.2 Future Work

In the future, in order to make the system more robust to noise and feature-lacking

scenarios, we aim to include a loop-closing technique [22] that helps find the best-matching

reference found by far when the reference image contains large noise or does not contain

useful information.

Besides, we aim to reduce the calculation time by a direct method that does not calculate

descriptors of the pixels but only calculate the feature points directly from the images. This

will greatly reduce the time by matching the descriptors and feature points extraction.

Finally, it is worth investigating if adding other sensors such as IMU (Inertial Measure-

ment Unit) can improve the accuracy/robustness of the SLAM system.
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