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CHAPTER I

INTRODUCTION

Scientific Discovery

In the world of basic biological investigation, scientists often take one of two

approaches to explore their research focus. They may choose to study a process and

attempt to unravel the intricacies of that process by understanding which molecules are

involved and how they behave. For example, they try to answer a question such as

“how does the heart develop?” as our laboratory has done in years past. To answer

such a question, one must address many topics, which brings about even more

questions. When does heart development begin and thus, when can you detect the

earliest traces of cardiogenic cells? Next, how and when do the necessary cell

progenitors arise to form the outer covering of the heart, the heart wall muscle, and the

endocardial lining? Importantly, how do the coronary vessels form during development

so they can sufficiently supply the thick myocardium with blood in the adult? Finally,

how does the heart make the proper connections to the lungs and the giant vessels so it

can function to supply a growing organism with oxygen? Thus, many avenues exist to

address the main question and as one might expect, there are hundreds if not

thousands of molecules intricately involved in the processes that ultimately result in a

fully functioning adult heart.

Contrarily, a researcher will examine an element or factor, without necessarily

knowing how or what biological processes to which it contributes. There exist a wide



range of genetic screens designed to isolate previously unidentified molecules.

Scientists can use the results of these screens to provide new direction to a study that is

already underway, but often the outcome initiates a new focus. The work encompassed

in this dissertation describes a molecule identified through a subtractive screen that we

named Bves, an acronym for blood vessel epicardial substance. We hoped that our

type of screen, originally performed to discover heart-enriched genes, would guide our

study of Bves and contribute to our research on heart development. However, the path

that has been taken to uncover its role proves quite the contrary. This investigation of

Bves rather involves a detailed examination and understanding of epithelial cell types,

epithelial interactions, and epithelial cell adhesion.  Here, I have not defined a

mechanism to answer a fundamental question such as “how does the heart develop?”

but I have contributed to our understanding of how Bves may function during heart

morphogenesis because of the extensive knowledge gained about Bves in, surprisingly,

epithelia.

Fundamental Functions of Epithelia

The word epithelium, introduced in 1670 by Frederik Ruysch, came from the

Greek epi (overlying) and thele (nipple) to describe the skin of the lips (George, 2003).

This archaic reference provides a description of just one epithelial cell type found at the

edge the human mouth, but does not begin to encompass the vast numbers of cell

layers qualified as epithelia.  Epithelia are tightly bound sheets of cells that cover or line

surfaces, cavities, and tubes and function to protect the cells or organs they overlay.

Epithelial tissues can be found in most, if not all multicellular organisms, and are widely
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diverse, but share significant similarities in function. Epithelia can be simple (single

layer) or stratified (multilayered) and the cells can be classified into squamous (flat),

cuboidal (square) or columnar (rectangular) shape, among others, by cellular

morphology.

Examples from across the biological kingdoms demonstrate the versatility of this

cell type. The tunicate, an evolutionarily primitive chordate, has two simple squamous

epithelial monolayers found internally, the peribranchial and branchial epithelia, which

form the blood compartment. The integrity of these two layers is essential to form the

tight protective barrier needed between the internal and external environment of this

organism (Georges, 1979). In higher chordates, many organisms such as the chick

begin as a single-layered epithelium that gives rise to every tissue in the embryo.  This

occurs through the process of gastrulation, which initiates the formation of the three

germ layers, the ectoderm, mesoderm and endoderm, which are all epithelial in nature

(Duband et al., 1987). The epithelial ectoderm protects the organism while the internal

structures develop following cell proliferation and differentiation.

In the adult, the columnar epithelium lining the intestinal wall provides an

example of a highly evolved and specialized cell layer. The gastric mucosa serves as

the primary interface between the outside world and our internal organs. This epithelium

secretes digestive enzymes and defense factors to ward off ingested antigens, and

regulates fluid uptake into the body (Gebbers and Laissue, 1989).  Importantly, the

gastrointestinal tract undergoes rapid self-renewal to supply the gut lining with healthy,

properly functioning cells, which is important in maintaining its barrier function (de Santa

Barbara et al., 2003). In another example, the cornea of the adult eye is a stratified
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squamous epithelium. Because this epithelium provides an important external barrier, it

also must demonstrate an efficient self-renewal system in order to maintain layers of

healthy, properly functioning cells (Sun and Lavker, 2004). Finally, in an example from

the plant kingdom, epidermal cells cover the entire stem, leaf and root of most if not all

plants. This epithelium provides protection, support, and reduces water loss.  As

demonstrated by this wide range of examples, epithelia are an essential tissue type and

serve specialized but similar functions in many different organisms.

Properties of Epithelial Cell Adhesion

Epithelial cells are maintained as structured sheets by cell junctions, which are

the multi-protein complexes found at cell-cell boundaries and function to attach

neighboring cells together.  These junctions provide two key features of this versatile

cell type: cell-cell adhesion and cell polarity. Epithelial cell-cell adhesion provides the

structural integrity that is critical for proper development of the embryo and for

maintenance of tissues in the adult, as well as the remodeling and differentiation of

many distinct tissue layers (Kobielak and Fuchs, 2004; Thiery et al., 1985; Tucker et al.,

1988). During embryonic development, the epithelial germ layers undergo dynamic

morphogenetic movements in order to complete the processes of gastrulation and

neurulation (Gerhart and Keller, 1986; Jamora and Fuchs, 2002; Marsden and

DeSimone, 2003; Wallingford et al., 2002). Throughout these processes, the adhesive

nature and integrity of the epithelia are regulated such that proper tissue

rearrangements occur. For example, in the chick, cell contacts of the epiblast are

dramatically loosened and then compromised entirely when specified mesoderm
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undergoes an epithelial-to-mesenchymal transition (EMT) during gastrulation (Duband

et al., 1987). Furthermore, the strength of cell-cell adhesion must be tightly controlled

during development. Upon subsequent reorganization of mesenchymal tissue into

epithelial somites, the expression of adhesion proteins such as N-CAM and N-cadherin

is again observed at the cell surface after being previously down-regulated upon EMT

(Bellairs et al., 1978; Cheney and Lash, 1984). In another example, a precise regulation

of cell adhesion proteins is essential for normal optic placode development in

Drosophila. In the absence of a specific adhesion protein DE-cadherin, the placode

undergoes apoptosis, but overexpression results in the failure of optic placode cells to

invaginate, suggesting that a titrated level of the cell adhesive forces is critical (Dumstrei

et al., 2002).

Adhesive interactions between cells are also regulated by various internal cellular

activities, including that of the cytoskeleton, different signaling pathways, as well as

external requirements like sorting of specific cell populations (Jamora and Fuchs, 2002;

Tepass, 2002; Wheelock and Johnson, 2003). The cytoskeleton establishes the cellular

architecture of the epithelial sheet and the mechanical forces generated by the actin

network influence cell shape and motility (Jamora and Fuchs, 2002). Filopodial

projections from epithelial cells have been reported to facilitate fusion of epithelial

sheets during development (Martin-Blanco et al., 2000; Raich et al., 1999; Tanaka-

Matakatsu et al., 1996). The importance of epithelial cell adhesion for cell signaling is

highlighted by involvement of the tightly regulated b-catenin/Wnt pathway in epithelial

morphogenesis and maintenance (Bienz, 2005). Wnt-1 is an extracellular matrix-

associated factor that binds the cell junction-associated protein b-catenin and stimulates
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cell growth upon activation (Cadigan and Nusse, 1997; Hinck et al., 1994). As

mentioned previously, EMT relies on a loosening of cell contacts, and thus a precise

control of adhesive interactions. This process is accomplished by Wnt-induced

uncoupling of b-catenin in the adhesive complex (Conacci-Sorrell et al., 2002; Wheelock

and Johnson, 2003). Dysregulation of this pathway can result in aberrant cell adhesion

and/or cancer (Birchmeier et al., 1995). In fact, the requirement for the regulation of cell

adhesion in the maintenance of tissue organization has been implicated in many types

of cancers, where cells have lost adhesive contacts within the tissue and become

metastatic (Guilford et al., 1998). Also, the types of adhesive contacts formed between

cells can establish distinct margins between morphologically homogeneous cell

populations (Kullander and Klein, 2002; Perez-Moreno et al., 2003). In the developing

Xenopus, zebrafish, and mouse embryos, an adhesion protein called PAPC is

expressed in a specific pattern that regulates the epithelial organization of cells at the

segmental borders between somites (Kim et al., 2000; Rhee et al., 2003; Yamamoto et

al., 1998). This suggests that cell adhesion can play a role in the establishment of

differential cell affinities that orchestrate the formation of tissue boundaries.

Another key feature of epithelial tissues is the establishment of apical-basal

polarity. The apical surface faces the lumen, the basal surface faces the basal lamina

and extracellular matrix, and the lateral surface of each cell opposes that of another cell.

Cell polarity establishes the orientation of the epithelial layer, which can be critical for

proper function of the tissue, and is maintained by the proper sorting of apical and

basolateral proteins, which is accomplished by proper targeting of membrane vesicles

from the Golgi (Wheelock and Johnson, 2003). Epithelial polarity is instituted in the

6



earliest stages of development. For example, in the Drosophila embryo, mutations in

polarity genes induce overproliferation in the cell layers and exhibit malignant-like

characteristics (Bilder, 2004). Similarly, when polarization is lost specifically in the

neuroepithelium of zebrafish mutants, severe defects in the developing retina occur,

resulting in disorganization and apoptosis of cells (Pujic and Malicki, 2001). The

importance of proper cell polarity in the function of a mature epithelium is also

demonstrated by studies of  human autosomal dominant polycystic kidney disease. This

disorder results from inappropriate membrane localization of two proteins, the NaK-

ATPase and the EGF receptor, in the kidney epithelium due to a mutation in the

junctional protein polycystin-1 that regulates cell polarity (Charron et al., 2000; Wilson,

1997).

Interestingly, the ultimate developmental fate of a cell may be determined by the

state of cell polarity. The cell junction proteins that provide cell-cell adhesion and

polarity depend on the cytoskeleton for mechanical support. The cytoskeletal network,

in turn, controls the internal architecture of the cell, including the orientation of the

mitotic spindle. Thus, a decrease in expression levels of cell adhesion molecules could

change current state of cell polarity and architecture and may favor, for example, an

asymmetric cell division. This may, in turn, result in the differentiation into a new cell

type (Bilder et al., 2003; Kraut et al., 1996; Lu et al., 2001; Schober et al., 1999). Thus,

state of cell polarity is a driving force in asymmetric cell divisions, which is critical for

controlling cell fate, such as stem cell determination (Jan and Jan, 2001).

Clearly, the proper function of epithelial tissues relies heavily on strong cell-cell

adhesion and establishment of polarity in all organisms. The players that regulate not
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only the strength of cell adhesion, but establish cell polarity are the molecular

components of the cellular junctional complexes. These complexes permit an epithelium

to alter its intercellular relationships to meet the functional requirements of the organism

as a whole (Garrod et al., 1996; Provost and Rimm, 1999; Runswick et al., 2001;

Schneeberger and Lynch, 2004). Understanding the role of each type of junctional

complex in the regulation of tissue integrity is critical to unraveling epithelial function,

since each complex carries out a specialized role to allow proper epithelial sheet

formation and to maintain the integrity of the cell layer. These cell junctions, which

localize to the basolateral compartment, are divided into two categories: cell-cell

junctions and cell-matrix junctions.  The discussion of junctions will be limited to cell-cell

junctions, which provide the adhesive interactions between neighboring cells.

Epithelial Junctional Complexes

In polarized epithelial cells, cell adhesion is mediated by junctional complexes

located within the terminal bar, an archaic term describing the dense structure of

proteins at an apical location within the lateral membrane. As described above, these

junctions help maintain the integrity of the epithelial tissue and regulate the strength of

adhesion between cells. The expression of junctional molecules often correlates with

the adhesive requirements of the epithelium. For example, adhesion proteins are

downregulated during developmental stages when dynamic epithelial movements are

required (Duband et al., 1987). Then, upon maturation and stabilization, epithelial

sheets highly express junction proteins in order to maintain a strong intercellular

interaction. Four types of cell-cell junctional complexes exist along the lateral membrane
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of polarized epithelia: the tight junction (TJ), the adherens junction (AJ), the

desmosome, and the gap junction (GJ) (Gumbiner, 1996).  The first three junctions are

referred to as the epithelial or apical junctional complex (AJC) and contribute to cell-cell

adhesion (Balda and Matter, 2000b; Garrod et al., 1996; Matter and Balda, 2003;

Vogelmann et al., 2004). A detailed discussion of these junctions follows. The primary

function of the GJ is to electrically couple cells, not cell-cell adhesion, and thus a

description of GJ will not be included in this chapter.

Proteins at the TJ - The TJ, or zonula occludens, is the apical-most junction

restricted to the lateral compartment of an epithelial cell layer. Under freeze-fracture

microscopy, the TJ appears as a belt-like network of “sealing strands” that

circumscribes the cell (Gonzalez-Mariscal et al., 2003).  The TJ serves two primary

functions to maintain the integrity of an epithelial sheet. First, proteins of the TJ

establish apical-basal polarity and restrict the passage of molecules between the apical

and basolateral lateral compartments. Second, the TJ provides a diffusion barrier, and

in some cases, a water-tight seal, to prevent the undesired passage of ions or fluid

across the cell layer (Balda and Matter, 2000b). For example, the TJ is critical for proper

functioning of the gut epithelium. Columnar intestinal cells are the standard prototype for

demonstrating the structure of these junctions, since their well-established polarization

exhibits a functional significance as a selectively permeable barrier. TJs permit the

gastric mucosa to retain contents in the lumen, but allow nutrients to pass through the

intestinal wall (Collins, 2002).  The primary transmembrane components of TJs are

occludin (Furuse et al., 1993), the claudins (Furuse et al., 1998), and junctional

adhesion molecule (JAM) (Martin-Padura et al., 1998).  Occludin is a 4-pass
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transmembrane protein and contributes to the barrier and fence functions of the TJ

(Balda et al., 1996; Furuse et al., 1993; McCarthy et al., 1996; Wong and Gumbiner,

1997). However, surprisingly, occludin-null ES cells formed fully functioning TJs (Saitou

et al., 2000), although the protein appeared to be a component of the TJ strands

(Fujimoto, 1995).  Recent data suggests that occludin may act through the Rho

signaling pathway (discussed in detail below) to reorganize the actin cytoskeleton (Yu et

al., 2005). The discovery of claudin proteins several years following was significant

since, to this point, the protein(s) responsible for TJ barrier function had not been

identified. Claudins were shown induce the formation of TJ strands, visible by freeze

fracture EM (Furuse et al., 1998; Morita et al., 1999). Thus, claudins were accepted as

the major structural and functional components forming the TJ barrier. Claudins are also

responsible for generating cell adhesion at the TJ, although not solely, via calcium-

independent adhesion properties interactions (Kubota et al., 1999). Alterations of

claudin proteins result in a defective permeability barrier (Hoevel et al., 2002; Simon et

al., 1999; Turksen and Troy, 2002). Currently, over 20 claudins have been discovered

(Gonzalez-Mariscal et al., 2003). The third transmembrane component of TJ, JAM, is a

glycoprotein with two extracellular Ig domains that exhibits roles in junction assembly

and adhesion, leukocyte transmigration, platelet activation (Bazzoni, 2003; Martin-

Padura et al., 1998).

In addition to the transmembrane components, a myriad of other proteins form

the cytoplasmic plaque of the TJ including the ZO (zonula occludens) family of

peripheral membrane proteins, ZO-1 (Stevenson et al., 1986), ZO-2 (Gumbiner et al.,

1991), and ZO-3 (Haskins et al., 1998), as well as various adaptor proteins including
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cingulin, symplekin, ZONAB, and Rab proteins (Balda et al., 2003; Citi et al., 1988;

Marzesco et al., 2002; Sunshine et al., 2000; Takagaki and Manley, 2000). The ZO

proteins have three PDZ protein-protein interaction domains, a SH3 domain, and a

MAGUK domain (Gonzalez-Mariscal et al., 2000).  ZO-1, the most well-characterized of

the three, is a ~220kD protein (Anderson et al., 1988) and is concentrated at TJ through

direct interaction with occludin (Fanning et al., 1998; Furuse et al., 1994), claudins (Itoh

et al., 1999) and JAM (Bazzoni et al., 2000; Itoh et al., 2001). ZO-1 also interacts with

ZO-2 and ZO-3 (Haskins et al., 1998; Wittchen et al., 1999), actin (Itoh et al., 1997;

Ryeom et al., 2000), among many other proteins whose interactions are not well

defined.

Although ZO-1 was the first molecule to be identified at the TJ complex

(Stevenson et al., 1986), its homology to other proteins and localization patterns

suggested a multifaceted role for the protein. Anderson and colleagues recognized its

homology to the Drosophila legal discs-large (dlg) gene and the PSD-95/SAP-90 protein

isolated from rat brain tissue (Willott et al., 1993) and added ZO-1 proteins to the family

of membrane-associated guanylate kinase proteins (MAGUK) (note: the guanylate

kinase domain in MAGUK proteins is thought to be inactive) (Haskins et al., 1998;

Kistner et al., 1995). MAGUK proteins have functions at epithelia TJ, septate junctions

in insects (Woods and Bryant, 1991) and neuronal synapses (Cho et al., 1992; Kistner

et al., 1993). Like other MAGUK proteins, ZO-1 is present in several cell types where TJ

are not formed and TJ proteins such as occludin are not expressed. In non-epithelial

fibroblast cells, ZO-1 functions as a cross-linker between the actin cytoskeleton and the

cadherin-based adhesion complex through its direct interaction with a-cat and actin
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filaments (Itoh et al., 1997; Mandai et al., 1999; Yamamoto et al., 1997). It has been

suggested that, in epithelial cells, a competition between TJ proteins and a-catenin

exists for binding of the ZO-1 amino tail (Gonzalez-Mariscal et al., 2000). Also, at the

cardiac intercalated disc, ZO-1 complexes with both N-cadherin and connexin-43, a gap

junction protein (Barker et al., 2002; Gutstein et al., 2003; Toyofuku et al., 1998).

Currently, ZO proteins are accepted to be scaffolding proteins within the junctional

regions, due to their interaction with so many molecules. The ZO-1 C-terminal tail

contains two nuclear sorting signals and interacts with a Y-box transcription factor

ZONAB through its SH3 domain at the TJ to modulate TJ barrier function and in the

nucleus where it may play a role in cell cycle progression (Balda and Matter, 2000a).

Thus, while ZO proteins exhibit functions to organize proteins at the TJ, they may serve

a dual role to transduce signals (Gonzalez-Mariscal et al., 2000).

Elucidating the endogenous function of ZO-1 has been challenging, although

intensive efforts have been put forth (Fanning et al., 1998; Itoh et al., 1997; Ryeom et

al., 2000). Recently, Umeda and colleages demonstrated that TJ formation was

significantly delayed following a calcium switch in mouse epithelial cell clones lacking

ZO-1 expression (Umeda et al., 2004). Functional redundancy between ZO family

members is thought to be a primary reason for the difficulties in assessing the role of

these proteins (Gonzalez-Mariscal et al., 2000).

In the past decade, the number of proteins identified that localize at or near the

TJ complex has grown considerably. The Pals1/PATJ/Crumbs ternary complex localizes

to the TJ and functions as an apical polarity determinant (Roh et al., 2002). The PAR-

3/PAR-6/aPKC complex also localizes to TJ where it interacts directly to JAM via the
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PAR-3 PDZ domain (Itoh et al., 2001). This complex also regulates cell polarity

(Bowerman et al., 1997; Ebnet et al., 2001; Guo and Kemphues, 1996). In addition,

MAGI/BAP-1 (Ide et al., 1999), MUPP-1(Hamazaki et al., 2002), and AF-6/Afadin

(Yamamoto et al., 1997), among many others have been localizes to the TJ (Gonzalez-

Mariscal et al., 2003). MAGI/BAP-1 is a tumor suppressor that co-localizes with ZO-1

and interacts with GEP, a GDP/GTP exchange protein (Mino et al., 2000). MUPP-1

interacts at TJ with PDZ claudins and JAM and has been shown to recruit Pals1 to the

TJ (Roh et al., 2002). AF-6/Afadin localizes to adherens junctions (Asakura et al., 1999),

but also binds JAM (Ebnet et al., 2001) and cingulin (Cordenonsi et al., 1999).

Unraveling how these TJ complexes cooperate will be critical to understanding TJ

biogenesis and maintenance.

Proteins at cadherin-based adhesive junctions- The AJ, also referred to as the

zonula adherens, is localized basal to the TJ along the lateral compartment. The

primary function of the adherens junction is the establishment of strong adhesive

interaction between neighbors by interconnecting the actin network (Nagafuchi, 2001).

E-cadherin, a transmembrane component of the AJ, maintains cell-cell adhesion

through calcium-dependent homophilic binding (Adams et al., 1998).  Intracellularly, E-

cadherin is complexed with a- and b-catenin, which in turn, connect E-cadherin to the

actin network (Provost and Rimm, 1999; Yap et al., 1998). Cadherin-mediated adhesion

stimulates rearrangement of the cortical actin, via catenins, p120 (Reynolds et al.,

1994), and other actin-binding proteins like vinculin, a-actinin, plakoglobin (Adams et al.,

1996; Vasioukhin and Fuchs, 2001).  In turn, cadherin-based adhesive events can also

trigger various signaling pathways (Gottardi and Gumbiner, 2001; Noren et al., 2001).
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This highly complex network of interactions suggests that cell adhesion is a finely tuned

process and is malleable, given the requirements of the epithelial cell layer.

Recently, a new set of proteins has been placed at cadherin-based cell-cell

adherens junctions called the nectin-afadin-ponsin (NAP) complex (Asakura et al.,

1999; Mandai et al., 1999; Takahashi et al., 1999). Nectin is a calcium-independent

immunoglobulin-like cell adhesion molecule and which binds to afadin, an actin-binding

protein (Tachibana et al., 2000; Takahashi et al., 1999). Ponsin binds afadin and

vinculin, and this complex localizes to forming junctions with AJ proteins (Asakura et al.,

1999). AF-6/Afadin possesses a PDZ domain and provides a link to the plasma

membrane of AJ (Mandai et al., 1999) through interaction with a-catenin, which also

recruits ZO-1 to nectin-based adhesion sites via afadin (Pokutta et al., 2002). The

importance of this adhesion system is underscored by the loss of neuroepithelial polarity

in AF-6/afadin mutants, suggesting this protein provides a critical junctional element to

apical/basolateral asymmetry (Zhadanov et al., 1999). Thus, nectin-based adhesion

participates in epithelial morphogenesis, independently but cooperatively with both the

TJ and AJ complexes (Miyoshi and Takai, 2005).

Desmosomes, a second type of adherent junction, reside more basally than the

TJ and AJ along the lateral surface. Desmosomes provide additional, and more robust,

mechanical strength to the cell structure by serving as anchoring sites for the

intermediate filament network spanning the epithelial sheet (Garrod et al., 1996). The

transmembrane linker proteins of desmosomes are desmocollin and desmoglein, which

belong to the cadherin family and exhibit calcium-dependent adherence (Koch and

Franke, 1994).  Desmoplakin and plakoglobin interact with the transmembrane proteins
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to link them to the intermediate filaments (North et al., 1999).  Understanding proper

desmosome formation is critical to the investigation of epithelial disease states.  For

example, in some forms of pemphigus, which results in blistering and epithelial edema,

antibodies attack desmosomes of skin that causes a loss in cell-cell adhesion (Amagai

et al., 1991).

Junction-related proteins- The Rho protein family of small GTPases, which

includes Rho, Rac, and Cdc42, regulate processes like cell shape change, cell motility

and cytokinesis and thus have the ability to modulate cell adhesion (Braga, 1999;

Takaishi et al., 1997; Vaezi et al., 2002). When inactive, these proteins exist in a GDP-

bound state and are found in the cytoplasm. Following GTP exchange, they translocate

to the membrane, a process regulated by GEF and GAP proteins (Moon and Zheng,

2003; Rossman et al., 2005; Siderovski and Willard, 2005). When activated by GTP,

these proteins interact with effector proteins at the membrane and trigger signaling

pathways that regulate cell adhesion, cell proliferation, and tumorigenesis (Hall, 1998;

Mackay and Hall, 1998; Van Aelst and D'Souza-Schorey, 1997; Yuan et al., 1998). The

Rho family of GTP-binding proteins preferentially regulates actin organization (Eaton,

1997; Vasiliev et al., 2004). Specifically, Rho activates stress fiber formation, Rac1

stimulates lamellipodial formation, and Cdc42 induces filopodial extensions (Ridley,

2001; Ridley and Hall, 1992). These proteins have been shown to be necessary for

formation and maintenance of cadherin cell contacts, potentially through mobilization of

the actin cytoskeleton (Braga, 2002). Activation of pathways involving these proteins

disrupts cadherin-mediated adhesion, altering a balance in cell-cell interaction. Also, the

Rho GTPases can influence TJ barrier function (Nusrat et al., 1995). Not surprisingly,
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dysregulation of these proteins has been implicated in steps of cellular transformation

and alterations of adhesion status. Rho proteins can cooperate with pathways linked to

EMT and even cancer, where cellular de-differentiation is accompanied by reduced cell-

cell adhesion (Lozano et al., 2003).

While the broad functions of each of these three epithelial junctional complexes

and associated proteins are understood, questions do remain concerning the

relationships that the complexes share with one another. Also, the continual

identification of new molecules both simplifies and complicates what we know about

junctional formation, integrity and function. Clearly, additional investigation will be

required to elucidate the associations that orchestrate junction formation and regulate

epithelial development and maintenance in the adult.

Xenopus laevis as a Model for Examining Epithelial Function

Following the initial cleavage events of the fertilized egg, the cells of an embryo

quickly rearrange into an epithelium. This mass of cells continues to divide and undergo

significant morphogenetic movements ultimately resulting in gastrulation, the

developmental event from which the ectodermal, mesodermal and endodermal germ

layers arise (Leptin, 2005). The three germ layers are also epithelial in nature and give

rise to specific tissues and organs of varying types. Thus, animal model systems of

development offer excellent ways to examine epithelial behavior in an in vivo

environment. In particular, the South African clawed frog Xenopus laevis (X. laevis)

provides an important experimental tool in the work of this dissertation. X. laevis was

chosen for a variety of reasons. The large size and external development of the oocytes
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and embryos make this organism highly amenable to manipulation. The morphology of

the early embryo has been well-studied and stages of development have been precisely

defined by Nieuwkoop and Faber (Hubrecht-Laboratorium (Embryologisch Instituut) et

al., 1967). Typically, embryos are plentiful in number and very hardy and thus, present a

good model system for microinjection of tracer molecules or RNAs for loss or gain of

function studies. A detailed description of epithelial movements and morphogenesis is

provided in Chapter IV.

Discovery of Bves

To facilitate further investigation of heart development, which is the broad focus

of study in our laboratory, we performed a subtractive hybridization screen for genes

enriched in the developing chick heart at Hamburger-Hamilton (HH) stage 18 (Reese et

al., 1999).  bves (blood vessel epicardial substance) is a novel message identified

through this screen.  bves, a 1.8kb message detected by Northern blot, is expressed at

high levels in both the developing and adult heart and is first seen at stage 10 of the

chick embryo using this method (Reese et al., 1999). bves was identified independently

as one of three members of the popeye family (pop1a) (Andree et al., 2000). This gene

family is comprised of transmembrane proteins Pop1-3 (ranging from 292-359 a.a. in

chick) that possess a C-terminal Popeye domain, the function of which is currently

unknown (Figure 1) (Andree et al., 2000). bves shows no significant homology to any

other known gene families and is highly conserved across species in which it is

expressed.  At present, there have been three family members identified in chick,

human and mouse, and only one in X. laevis, Danio and Drosophila (Andree et al.,

17



Figure 1. Predicted structure of Bves.
Bves has three transmembrane domains. The
amino terminus is extracellular and has two N-
linked glycosylation sites. The intracellular C-
terminal tail possesses an oligomerization
domain and a Popeye domain, shared by other
members of the Bves/Pop family.
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2002b; Andree et al., 2000; Hitz et al., 2002; Reese and Bader, 1999; Reese et al.,

1999). Brand and colleagues have analyzed the mRNA expression patterns for

members of popeye gene family in a variety of species including mouse, chick and X.

laevis (Andree et al., 2002a; Andree et al., 2002b; Andree et al., 2000; Breher et al.,

2004; Hitz et al., 2002). Whole mount in situ and Northern blot data from their work

confirm bves/pop1a expression in the heart and identifies gene expression in other

tissues such as skeletal muscle. The function of this gene in muscle is unknown and a

null mutation in bves/pop1a does not result in embryonic lethality, although animals

appear to have impaired muscle regeneration (Andree et al., 2002a). Meanwhile, a third

group, Duncan and colleagues, independently identified Bves/Pop1a protein in heart

using a monoclonal antibody (DiAngelo et al., 2001). Publications from both laboratories

stressed that the transcript and protein were not expressed in the epicardium or any

other epithelia. Assessment of any function for this gene in epithelia is lacking prior to

the current studies.

Generation of two Bves-specific polyclonal antisera, D033 and B846, against the

C-terminus of chick Bves permitted the study of the cellular distribution of the protein

product (Reese et al., 1999; Wada et al., 2001). Immunohistochemical analysis of

embryonic chick hearts using D033 detected Bves in the proepicardial organ (PEO) and

several progenitor cell types (Figure 2A; Reese et al., 1999).  The PEO is a cluster of

cells that migrates as an epithelium around the heart, forming the epicardium.  Select

cells from the epicardium will undergo epithelial-to-mesenchymal transition and

delaminate, becoming mesenchymal in nature. These cells move through the

subepicardial space into the myocardial tissue and ultimately arrive at sites of coronary
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Figure 2. Initial characterization of Bves. Bves protein localization
studies were performed on 9.5 day chick heart sections. D033 antisera
detects Bves in the epithelial epicardium and delaminated mesenchymal
cells (A). Higher power shows Bves at cell-cell contacts of the epicardium
and at a perinuclear spot in cells undergoing EMT (B). Arrow represents
the direction of cellular EMT movements into the subepicardial space.
Transfection of Bves confers adhesive activity to non-adherent mouse L-
cells (C).
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vessel formation. Bves is expressed in both the PEO and epithelial epicardium, as well

as migrating mesenchymal cells derived from the epicardium, and the cells that also

express smooth muscle markers, indicating a forming vessel (Figure 2A, figures within

Reese et al., 1999; Wada et al., 2001).  This distribution pattern suggested a role for

Bves in the development of coronary vasculature. A detailed localization analysis

reveals a dynamic subcellular distribution of Bves from the epicardium to the single

mesenchymal cells.  Bves localizes to cell-cell borders in the epithelial epicardium, but

is internalized and appears as a perinuclear spot in the delaminated mesenchymal cells

(Figure 2B).  This trafficking pattern is suggestive of a role in cell adhesion, since it

resembles the characteristic expression patterns of several well-known adhesion

molecules, such as E-cadherin (Adams et al., 1998; Gumbiner et al., 1988).

The B846 antisera revealed a slightly different staining pattern in the heart. Not

only was Bves protein expression in the epicardium observed, the myocardium of the

heart was highly positive for Bves.  The finding that Bves was expressed in heart

muscle correlated with the findings from the Brand and Duncan groups (Andree et al.,

2002a; Andree et al., 2000; DiAngelo et al., 2001; Vasavada et al., 2004). Upon the

discovery that B846 reacted robustly with the epicardial-mesothelial cell (EMC) line, an

in vitro model of the epicardium (Eid et al., 1994), it became a tool widely used in our

laboratory for examination of epithelia.  Also, while D033 only reacts with chick, B846

reacts with all species tested thus far.

Computer-based modeling predicts that Bves possesses three hydrophobic

domains.  Immunocytochemical and biochemical data suggest that the N-linked

glycosylated N-terminus is extracellular and the C-terminus is intracellular (Knight et al.,
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2003). However, Bves lacks known motifs, such as a PDZ, SH3, or other protein-protein

interaction domains, that would suggest a function.  In vitro transcription/translation

reactions show that Bves can embed in microsomes and is post-translationally modified

(Wada et al., 2001), further supporting its existence as a transmembrane protein.

Functional assays suggest that Bves exhibits homophilic binding activity.  When non-

adherent mouse L-fibroblasts are transfected with a full-length wtBves construct and

subjected to a hanging-drop aggregation assay (Kubota et al., 1999), cells are then able

to adhere to one another (Figure 2C). These initial studies reveal that Bves is a novel

membrane protein that localizes to cell-cell borders in the epicardial epithelia and

confers adhesiveness in non-adherent cells.  These properties are suggestive of a role

in adhesion and led to the subsequent characterization of Bves in other epithelial cell

types. In early cell-cell interactions of sub-confluent EMCs, Bves is detected prior to E-

cadherin at points of cell-cell contact (Wada et al., 2001).  These findings strongly

suggest a role for Bves in the initial stages of cell-cell interaction and provide further

evidence that Bves may influence epithelial cell adhesion.

Preliminary data from our laboratory suggested a role in cell adhesion, a

phenomenon critical to epithelial cell types, and a corresponding localization pattern in

the epithelial epicardium. However, the Brand and Duncan groups disagreed that Bves

and related Popeye family members were expressed in epithelial cell types. Thus, a

difficult task lay ahead to prove that Bves was not only expressed in the epicardium and

additional epithelia but that its expression within this cell type correlated with a function.
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Summary

Although formation of adhesive contacts has been closely examined and the

known adhesion molecules fulfill many of the requirements to coordinate cell adhesion,

gaps in understanding of cell-cell adhesion are prevalent and cannot be addressed by

current roles attributed to known adhesion molecules such as E-cadherin.  Clearly, it is

highly possible that a molecule possessing adhesive properties and an appropriate

spatio-temporal distribution such as Bves could satisfy specific aspects of the remaining

uncertainties.  Thus, it is critical to determine the role of Bves during early cell-cell

interaction and throughout epithelial sheet formation.  My proposal attempts to integrate

the understanding of epithelial contact formation in vitro with the generation, movement

and maintenance of epithelia in the developing embryo.  The preliminary findings that

Bves is expressed in epithelia at early cell contacts leads to my central hypothesis that

Bves plays an integral role at cell junctions and in the fundamental processes of

epithelial cell-cell interaction. In Chapter II, I present an expression analysis of Bves

during chick gastrulation and germ layer formation.  The data show that Bves is

expressed in epithelia of all three germ layers early in development. Furthermore, Bves

protein is observed in epithelial tissues during organogenesis, specifically the

developing epidermis, the gut endoderm, and the epicardium of the heart.  These data

support the hypothesis that Bves may play a role in cell adhesion and movement of

epithelia during early embryogenesis. The work described in Chapter III is the first to

identify a function for Bves in epithelia and supports the hypothesis that Bves

contributes to establishment and/or maintenance of an epithelial integrity. I show that

Bves localizes to the TJ, interacts with the ZO-1 protein complex, and is essential for TJ
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integrity.  In Chapter IV, I present studies illustrating that Bves proteins are critical for

epithelial movements and morphogenesis in vivo. The amphibian X. laevis provides an

excellent model system for these studies. Using morpholino oligonucleotides to deplete

the X. laevis Bves homolog, we demonstrate the essential nature of this protein in the

large-scale epithelial rearrangements that occur during early development. Together,

the work I present in this dissertation provides a comprehensive examination of

Bves/Pop1a proteins. My work spans a stage when doubt still existed as to whether

Bves was expressed in epithelia to a point where Bves has been assigned to a specific

junction and clearly has functional roles in vitro and in vivo.  The implications of this

work are discussed in Chapter V.
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CHAPTER II

AN EXPRESSION ANALYSIS OF BVES
IN DEVELOPING AND MATURE EPITHELIA

Introduction

This chapter reports a broad expression analysis of Bves in epithelial cells and

tissues of varied origin and cell type. Following identification of bves by our laboratory,

the gene was independently discovered by the Brand group, who published that pop1a

(bves is the accepted nomenclature for this gene) is specifically expressed in cardiac

and skeletal muscle. Thus, although we demonstrated Bves protein expression in the

epicardium in our first publication describing Bves, controversy arose as to whether the

gene product Bves was expressed in epithelia, or whether that finding was incorrect.

Based on preliminary data, we hypothesized that Bves plays an integral role at cell

junctions and in the fundamental processes of epithelial cell-cell interaction. The data

presented in this chapter clearly establish that the bves/pop1a gene product is highly

expressed in epithelia derived from a wide range of tissues and cell lines. Also,

expression of both transcript and gene product are demonstrated in the early embryo

prior to the differentiation of cardiac or skeletal tissue. Thus, this work undoubtedly

clarifies any uncertainty that Bves message or protein may be restricted to striated

muscle types. Importantly, these findings have permitted the initiation of functional

studies of Bves in epithelia in order to further examine the central hypothesis. These

studies are discussed in Chapters III and VI.
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In the initial phases of Bves characterization, protein expression was observed in

the epicardium, the epithelial layer that surrounds the heart during development.

Throughout dynamic phases of growth and differentiation of the embryonic heart, cells

from this layer are thought to give rise to a variety of progenitors, including those with

vasculogenic potential. As heart development proceeds, cells of the epicardium

delaminate into the sub-epicardial space and migrate deep into the trabeculating

myocardium. These cells are thought to ultimately take up residence within the

endothelial lining of forming coronary vessels. To reiterate, epicardial cells begin as part

of an epithelium, break free to migrate as single cells through the developing myocardial

wall, and finally resume an identity as part of an epithelium. During this process Bves

undergoes dynamic changes in subcellular distribution. Bves is observed at the lateral

boundary between epicardial cells, but upon delamination into the sub-epicardial space,

Bves is translocated perinuclearly to the Golgi (Wada et al., 2001).  Upon arrival of

epicardial cells to primordial coronary vessels, Bves again localizes at cell boundaries.

A cell culture model of the epicardium was identified (Eid et al., 1994) and subsequently

used in our laboratory for study of Bves.  These cells, EMCs, are derived from a rat

mesothelioma and appear to possess both the epithelial and differentiative capacities as

its source (Wada et al., 2003). In a confluent monolayer of EMCs, antibodies label Bves

at the lateral compartment around the cell circumference.  In concert with the finding

that transfected Bves confers adhesion to fibroblast cells, we developed a hypothesis

that Bves not only played a role in epithelial integrity, but that its function could be cell

adhesive in nature. 
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Our original report on this protein in the developing chick embryo demonstrated

antibody reactivity to Bves in the epicardium, epicardium-derived cardiac mesenchyme,

and smooth muscle of coronary arteries (Reese et al., 1999). Andree et al. reported

high levels of bves/pop1a mRNA expression by RT-PCR and in situ hybridization in

developing mouse embryos in cardiac and skeletal muscle (2000), and thus introduced

the transcript as specific to striated muscle. Subsequent generation of mono- and

polyclonal antibodies in our laboratory detected mouse and chicken Bves in cardiac and

skeletal muscle as well as additional epithelial cells types (T. Smith, unpublished data,

Wada et al., 2003). In addition, close examination of data from this publication reveals

that the transcript is also present in the epithelium of the gut (Andree et al., 2000).

Furthermore, Andree and co-authors detected bves/pop1 mRNA by PCR analyses in

several tissue types during embryogenesis, which did not match the presented RNA in

situ hybridization analyses (Andree et al., 2000).  At this point, both our group and the

Brand laboratory had reported Bves message or protein expression in tissues in

addition to striated muscle. Finally, Duncan and colleges independently generated an

antibody to Bves/Pop1a. In their initial report, DiAngelo et al. showed high levels of

expression in cardiac muscle using a monoclonal antibody to chicken Bves, but could

not detect the protein in the epicardium (2001). However, in a second publication, the

Duncan group demonstrated expression of Bves/Pop1a in the epicardium of a mouse

(Vasavada et al., 2004). Clearly, a consensus as to the true expression pattern of this

gene and gene product had not been established. As a result, any progress toward

determination of its basic function was impaired. Thus, a comprehensive analysis of

Bves expression in epithelial was both warranted and necessary.
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Included in this chapter is a detailed investigation of Bves expression in epithelia.

The analysis was performed on a variety of cell lines and on early stages of embryonic

development of the chick.  It is important to note that development of the entire avian

embryo begins with the epithelial epiblast.  Thus, all cells within the organism, whether

they are adhesive or freely migratory at later stages, are derived from this epithelium

and each of the three germ layers, the ectoderm, mesoderm and endoderm, begin as

epithelia (Duband et al., 1988). Differentiated cardiac and skeletal muscle cells are not

present at these early stages. Thus, these studies show that Bves message and protein

are expressed during early development and, importantly, are present in cells other than

myocytes. The distribution of Bves at the lateral membrane is conserved in all epithelia

analyzed, which suggests a conserved function in this cell type. Taken together, the

distribution of Bves demonstrated in this investigation indicates that this gene product

not only has a function in striated muscle, but also in epithelial morphogenesis.

Materials and Methods

Antibodies and immunohistochemical analyses

Two antisera against chick Bves have been previously reported (Reese et al.,

1999; Wada et al., 2001; Wada et al., 2003). Antiserum DO33 reacts with only with

avian species (Reese et al., 1999).  Antiserum B846 reacts with avian and mammalian

Bves.  While the specificity of these antisera has been reported, further characterization

is given here to document their reactivities. We have recently developed a bank of

monoclonal antibodies against mouse Bves that do not cross-react with the chicken
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protein. These antibodies are currently being characterized (T. Smith, unpublished

data).  Other monoclonal antibodies used include:  ZO-1, 1:250  (Zymed), Desmin,

1:100 (Sigma); Flag 1:500, (Sigma); MF20 hybridoma supernatant, 1:4 (Hybridoma

Bank).  ZO-1, a well-characterized component of the TJ, is marker of epithelial junctions

to which the localization of Bves is compared. Secondary antibodies were conjugated to

Alexa 488 and Alexa 568, 1:3000 (Molecular Probes).  Samples were counter-stained

with DAPI (Roche) to visualize nuclei. Standard methods for mono- and polyclonal

antibodies were used for tissue sections and cultured cells (Bader et al., 1982; Reese et

al., 1999; Wada et al., 2003). Secondary antibodies (Alexa) were used at

manufacturer’s specifications. Negative controls included peptide competition, no

primary antibody application, and non-immune antibody treatment.  All of these

preparations revealed no reactivity and are not shown. Western blotting experiments

were conducted using standard protocols (Ausubel et al., 2002). a-mouse and a-rabbit

alkaline-phosphatase conjugated secondary antibodies were purchased from Sigma

and used at a 1:10,000 dilution. Tissue sections and cell culture slides were fixed 10

minutes in 70% methanol for a-Bves antibodies. Reactivity is reduced with PFA or

formalin fixation.

Embryos and tissue preparation

Fertilized white leghorn eggs were obtained from Spafus/Trelow Farms and all

animal protocols have been approved by Vanderbilt University. Chick embryos were

staged using the standard staging protocols (Hamburger, 1951). Whole embryo or

tissue samples (gut) for both chick and mouse were dissected, washed with PBS, and
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embedded in Tissue TEK OCT compound (Sakura). Tissue freezing molds were frozen

in a dry ice bath and stored at –80ºC. Blocks of frozen tissue were cryosectioned at

8mm thickness on a Jung CM 3000 cryostat (Leica) and placed on slides, which were

stored at –20ºC until processing. Immunostaining was performed as described above.

Cell culture

Epicardial-mesothelial cells (EMC) were obtained from Hoda Eid (Eid et al.,

1994) and grown as previously described (Wada et al., 2001; Wada et al., 2003). HCA-7

cells, a human intestinal carcinoma line, and Caco-2 colon epithelial cells were obtained

from Dr. Robert Coffey (Vanderbilt University) and HEK293, HeLa, and 4T-1 mammary

cells were a gift from Dr. L. Matrisian, (Vanderbilt University). Human corneal epithelial

(HCE) cells were kindly provided by Dr. K. Araki-Sasaki (Araki-Sasaki et al., 1995). NRK

cells were a gift from the Nephrology Department of Vanderbilt University. Madin-Darby

Canine Kidney (MDCK) epithelial cells, CHO cells, and COS cells were purchased from

ATCC. All cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM-

Biowhittaker) supplemented with 10% FBS and penicillin/streptomycin cocktail. Cell

lines were passaged upon reaching confluency as previously described.

Transient transfection of chick bves

Chick bves was previously cloned as a cDNA product of a subtractive library

screen (Reese et al., 1999).  A full-length chick bves with a 3’ Flag tag was generated

using PCR and cloned in frame into pCIneo at the SalI/NotI sites (Promega). Primer

sequences are as follows:
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5’SalI - AGAGCTAGCGTCGACTTCAAGATGGACACTACGGCA and 3’ NotI/flag

TACATATGCGGCCGCCTACTTGTCATCGTCGTCCTTGTAGTCAGGCAGCCGCTGC

AGCTC. COS fibroblast cells were transiently transfected with pCIneo/bves (or positive

and negative control plasmids) using the Fugene6 Transfection reagent (Roche).

Generation of chick epidermal cultures

Epidermal cultures were generated as follows:  skin (epidermis and dermis) was

removed from chick embryos staged to HH 30-32 and rinsed in PBS.  The skin was

incubated in Dispase II (Invitrogen) for 5 min. at 37ºC, and transferred to media for

recovery.  The epidermis was separated from the dermis, transferred to chamber slides

(Lab-Tek), and fragmented with forceps to create small clumps.  Epidermal patches

were grown for 24-48 hours in M199 media (Cellgro) with the following additives: 10%

Tryptose (Invitrogen), Penicillin/Streptomycin (Cellgro), 5% FBS, and 1% chick serum.

Epidermal patches were subsequently processed for immunofluorescence as described

below.

RT-PCR analyses

Human epithelial cells grown to confluency were washed 1x with serum-free

media and harvested in Trizol Reagent (Invitrogen) using 1 ml per 2 plates of cells.

RNA was extracted following the standard protocol (Invitrogen).  Whole chick embryos

and tissues were isolated under sterile conditions, and RNA was extracted with the

Trizol Reagent system.  Approximately 50ng of RNA template was used for each

reaction.  RT-PCR was performed using the Titanium One-Step kit (BD Biosciences
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Clontech).  The RT step was performed for 60 minutes at 50ºC.  PCR was performed

using the following conditions:  94ºC for 5 minutes, 40 cycles of 94ºC for 30 sec, an

annealing step for 30 sec at primer-specific temperatures (listed below), and 68ºC for 3

minutes.  Final extension was 68ºC for 2 minutes. Chick Bves primers are specific to the

bves/pop1a message and do not amplify other splice variants. The primer sets used for

RT-PCR reactions are listed as follows:

Gene product 5’ sequence 3’ sequence Size(bp) Topt (ºC)
Chick Bves TTTCAACGAGACTGCATGTG GCCTGTCATCAACTGATGTT 434 52.3
Chick GAPDH TATTGGCCGCCTGGTCACC CACGATGCATTGCTGACA 419 57.5
Chick Cytokeratin GTGCTCAGCATCTGCCTGCA TGTTTCCTTCTCGCCAGCCG 322 63.3
Human Bves TGTGAAAACTGGAGAGAGAT TTCTCTTGACCAGCATAAAA 600 58.0

Results

Characterization of a-Bves antisera

Two polyclonal antisera (DO33 and B846) were previously generated against the

C-terminus of chicken Bves but a detailed characterization of their binding activities has

not been performed. The following experiments establish the reactivity of these antisera

for Bves.  Recognition of chicken Bves protein by B846 was established using Western

Blot analysis of Flag-tagged chicken bves transfected into COS-7 cells (Figure 3A, lane

2). B846 binds a protein with the same mobility as a-Flag and does not react with non-

transfected cells. Previously, Bves was detected by D033 by Western Blot and

published by our laboratory (Reese et al., 1999).  Specificity of B846 and D033 was also

demonstrated by immunofluorescence microscopy as both antisera colocalize with a-

Flag in COS cells transfected with Flag-tagged bves (Figure 3B,C).  Peptide competition
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studies extinguish antiserum reactivity, further establishing the specificity of these

reagents (Reese et al., 1999). These results demonstrate that the B846 and D033

polyclonal antibodies identify the Bves protein and are useful tools for studying the

expression patterns of Bves.

The location of the antibody epitopes, D033 and B846, within the full-length chick

Bves protein sequence is shown in Figure 3D.  All experimental evidence thus far

suggests that these epitopes are specific to the Bves/Pop1a isoform.  Extensive blast

searches do not reveal these epitopes in other pop gene products. However, an

analysis of antisera reactivity with different vertebrates determined that D033 detects

Bves in the avian class, while B846 recognizes the protein in a variety of species

including avian, amphibian, and mammalian classes.

Differences in Bves localization with DO33 and B846

While the protein expression patterns of Bves revealed by DO33 and B846

predominantly overlap, specific variations in antigen labeling exist.  These differences

are best exemplified by the reaction of these two sera with sections through the

developing heart. As previously reported (Reese et al., 1999), DO33 labels Bves in the

proepicardial organ (PEO), epicardium, and delaminated mesenchyme of the heart at

stage 18 (Figure 4A,B).  Reaction of D033 antisera with the myocardium is minimal or

reduced.  In contrast, B846 detects Bves in the PEO, epicardium, and delaminated

mesenchyme but also stains myocardial cells, as visualized by colocalization with a-

desmin (Figure 4C).  A view at higher magnification demonstrates that Bves localizes to

cell-cell borders of the epicardial epithelium (Figure 4D, see arrow).
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Transverse sections of HH 31 embryos also reveal subtle differences between

the two antisera.  Both B846 and D033 label the epidermis (Figure 5A,C).  D033

strongly labels somites but is not reactive with the developing neural tube (Figure 5A,B),

whereas B846 selectively labels the ependyma (Figure 5C,D).  B846 does not label

somites at this stage, because at this point in development, somites are no longer

epithelial in nature, and have begun to migrate as individual cells (Duband et al., 1987).

Additionally, in chick epithelial cells that are reactive with both antisera, such as the

epicardium (Figure 4) and the epidermis (see Figure 10), B846 has a more distinct

labeling pattern at cell membranes while D033 has a more diffuse signal.  There are

several explanations for this variation.  First, it is possible that antigen presentation in

different cell types varies slightly for the two sera.  This could be the result of the

interaction of Bves with accessory proteins in a tissue-specific manner.  In addition,

multiple splice variations of these genes have been identified. Thus, it is possible that

immunochemical reagents, whether they are mono- or polyclonal antibodies, recognize

variant isoforms of a gene family to different degrees. For example, we have generated

monoclonal antibodies for mouse Bves that recognize variant subcellular distribution

patterns.  Also, we are currently screening antibodies to related family members, Bves-2

(Pop2) and Bves-3 (Pop3) (T. Smith, unpublished data). While the present study has

clearly demonstrated the expression during the early phases of embryogenesis and

suggest a possible function at this time, further analyses with these additional tools will

aid in delineating the expression of all gene family members.
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Bves membrane localization pattern in various epithelial cells

At present, the expression of bves in epithelial cells is controversial. Here,

antibody labeling with the B846 reagent, which recognizes Bves in a wide range of

species, demonstrates a-Bves reactivity in various epithelial cell lines.  Not only are

many clonal epithelial cell lines widely available, clonal lines permit analysis of pure cell

populations without contaminating cells from primary tissue sources. To determine

whether Bves is a conserved component of epithelia, we analyzed its expression in

several epithelial cell lines of varying origin, including several cancer lines. We detected

Bves in many epithelial cell types and observed a pattern that paralleled what was seen

in the EMCs, an epicardially-derived rat cell line (Figure 6A). Labeling of Bves at the cell

membrane was observed in epithelial lines including MDCK, a simple cuboidal kidney

epithelium (Figure 6B), columnar Caco-2 human colon adenocarcinoma and HCA-7

cells (Figure 6C, G), cuboidal 4T-1 mouse mammary tumor cells (Figure 6D), and

human corneal cells (HCE), a stratified squamous cell line (Figure 6E). Expression was

not restricted exclusively to heart tissue or a specific type of epithelia unlike, for

example, TJ protein JEAP, which is only endogenously expressed in various exocrine

cells (Nishimura et al., 2002). While Bves appears to be expressed at cell-cell contacts

in fibroblastic NRK cells (Figure 6H), it is not expressed in all fibroblast cell lines, as

shown in CHO cells and HEK cells (Figure 6F,I). These data demonstrate that Bves is a

conserved component of divergent epithelial cell types. It is important to note that

several new monoclonal antibodies directed against mouse Bves react with mouse

epithelial tissue and various mammalian cell lines, yielding a similar localization pattern
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at cell borders (T. Smith, unpublished data). Detection of the Bves/Pop1a protein in

epithelia has been confirmed by Vasavada et al. (2004).

 bves mRNA expression developing and mature epithelia

RT-PCR analyses confirmed the presence of bves mRNA in epithelial cell lines

and tissues. Human epithelial lines HCA-7 (Figure 7A), Caco-2, and HCE express bves,

while HEK cells are negative (not shown), which correlates with the results of B846

immunostaining (Figure 6). In embryos, bves is most highly expressed in cardiac

myocytes after the formation of a definitive heart tube has fully developed (Andree et al.,

2000; Reese and Bader, 1999). In a recent study, Andree et al. (2000) generated RT-

PCR products from several epithelia in addition to the heart, and numerous ESTs from

non-muscle sources were previously reported in a variety of organisms (NCBI).

However, bves mRNA was not detected at high levels in developing chick embryos (HH

11-18) using whole mount in situ hybridization (Andree et al., 2000). Therefore, we used

RT-PCR analysis to determine whether bves mRNA is detectable in the early chick

embryo prior to heart tube formation. As seen in Figure 7B, a bves RT-PCR product

was observed in HH 6 whole embryo preparations at the predicted mobility. At this time,

germ layer differentiation is occurring anteriorly while gastrulation continues posteriorly.

As expected, the Bves transcript was also detected in HH 24 embryos that have

developed a primordial heart tube (Figure 7B).

Additional RT-PCR analyses were conducted to determine whether bves could

also be detected in extracardiac cell types after the heart is formed, specifically in the

ectoderm/skin and gut, as we were particularly interested in the development of
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epithelial structures in these two organ systems. Expression of a bves transcript was

observed in the ectoderm/skin and the developing gut (small intestine) at HH 31 (Figure

7C). As expected, bves was detected in the developing heart (Figure 7C).  These data

indicate that bves message is present in a variety of embryonic cell types, in addition to

the heart, and that investigation of the protein expression at the cell and tissue levels is

warranted.

Localization of Bves protein during gastrulation

The gastrulating embryo is a complex structure comprised of both epithelial and

mesenchymal elements.  Following initial cleavage stages, the avian embryo becomes

a two-layered blastoderm with a dorsal epiblast and a ventral hypoblast.  The embryo

proper is derived entirely from the epithelial epiblast/definitive ectoderm.  Primitive

streak formation occurs upon the thickening of the epiblast, marking the initial

ingression of mesendodermal precursors.  The cells migrating into the blastocoel

undergo an epithelial-to-mesenchymal transition.  A specific population of these

ingressing cells is programmed to become endoderm and revert to an epithelial

phenotype as they intercalate with hypoblast cells (Lawson and Schoenwolf, 2003).

Some of the remaining mesodermal precursors will remain mesenchymal, while others

will revert to epithelia upon formation of specific structures, such as somites (Pourquie

et al., 1995). Immunocytochemical methods using both antisera were employed to

localize Bves protein in the gastrulating embryo at stage 4. At this time, Bves is

detected in the epiblast/forming ectoderm (Figure 8A, B, see arrows).  At higher

magnification, Bves is seen at the cell membrane in the epithelium of the
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epiblast/ectoderm (Figure 8C). Colocalization with ZO-1, a TJ marker, demonstrated cell

membrane deposition of Bves in the epithelial epiblast/ectoderm in these specimens.

Bves is also detected at cell-cell borders in the ventral region of the gastrulating chick

embryo (Figure 8D, see arrow).  At present, we cannot determine whether this staining

is hypoblast or newly forming endoderm.  Interestingly, Bves protein is distributed

apically/laterally in cells of the primitive streak and it colocalizes with ZO-1 (a section

posterior to Henson’s node in a stage 6 embryo is shown, Figure 8E).  As cells ingress

either as individuals or as groups to form endoderm and mesoderm, Bves protein is

eliminated or greatly reduced at the cell surface (Figure 8E, see arrow). The reactivity

seen in these cells is above background staining.  Still, it should be noted that newly

gastrulated cells do not traffic Bves protein to their cell surface when they are in a

mesenchymal state. This reduction of membrane staining of Bves is similar to that

observed during epithelial/mesenchymal transition in vivo (Reese et al., 1999; Wada et

al., 2001) or in vitro (Wada et al., 2003).

Localization of Bves during early germ layer differentiation

Development of the chick continues with the differentiation of the three definitive

germ layers.  Ectoderm and endoderm primarily remain epithelia throughout

development with specific exceptions, such as neural crest cells (Selleck and Bronner-

Fraser, 1996).  The mesoderm can, however, undergo various epithelial and

mesenchymal phases depending on the structure to be generated. Because one of our

central hypotheses is that Bves plays a general role in cell/cell adhesion in epithelia, we

sought to determine whether Bves is present in epithelial elements of the three germ
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layers.  As seen in Figure 9, Bves is clearly present at membranes in cells of the

definitive ectoderm (A and B) of a HH 8 embryo.  After gastrulation is initiated, the

formation and closure of the neural tube proceeds.  Bves is expressed at the luminal

surface of the developing neural tube, which was once continuous with the apical

surface of the ectoderm. It is also interesting to note that the connection between the

surface ectoderm and the developing neural tube remains positive for Bves and ZO-1

for a brief period before complete loss of contact between these structures (Figure 9B,

see arrow).  Bves staining is also observed in the endoderm of the open foregut (not

shown).  As previously noted, Bves protein was not detected at high levels in newly

gastrulated mesoderm, especially at the cell membrane (Figure 9E, see arrow). Since

avian cells gastrulate individually or in small groups, elimination of Bves from the cell

surface was not unexpected.

We next examined the expression of Bves protein in a HH 11 embryo as

mesodermal cells form various epithelial structures.  Findings in Figure 8 exemplify a

recurring pattern of Bves deposition observed during the differentiation of mesoderm.

Specifically, Bves is present at the apical/lateral regions of mesodermally-derived

epithelia, similar to the ZO-1 pattern.  After neurulation is underway, the paraxial

mesoderm begins to organize into epithelial somites.  During this process of

mesodermal epithelialization, B846 detects Bves along the inner margin of the somites

(Figure 9D,E), which is the apical surface of this epithelium.  Also, the epithelial cells of

the somites become attached by TJ (Bellairs, 1979), which can be observed by ZO-1

staining (Figure 9D).  D033 labels Bves in the somite also, but the distribution within the

epithelium is not as highly localized (Figure 9C).  The intermediate and lateral plate
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mesoderm are also formed at this time by the clustering of cells into epithelial

structures.  Interestingly, when these mesodermal structures were examined with a-

Bves antisera, the protein was observed at the apical/lateral regions (facing inward

toward the coelomic cavity) (Figure 9E).  Bves shares the same labeling pattern as TJ

protein ZO-1 in the intermediate and lateral plate mesoderm (Figure 9E).  Additionally,

the notochord is positive for Bves (data not shown).  Thus, the initial epithelial structures

formed by the partitioning of mesoderm are positive for Bves.  However, B846 antisera

do not detect Bves protein at high levels in mesodermally-derived mesenchyme.  As

development proceeds, mesodermal derivatives such as cardiac, smooth, and skeletal

muscle cells are positive for a-Bves antisera.

Bves is expressed in the epithelia of the developing skin and gut

From the data presented above, it is apparent that Bves, like other adhesive

proteins, is expressed in epithelial structures of the developing organism. Because Bves

is initially detected in both ectoderm and endoderm, we wished to determine the pattern

of Bves expression in differentiating skin, an ectodermal derivative, and gut epithelium,

which is originates as endoderm. The outermost surface cell layer of the developing

embryo, the periderm, arises from an initial single layer of ectoderm.  This one cell layer

quickly becomes two layers, the outer being the temporary periderm, and the inner

being the cuboidal germinal layer that gives rise to the stratified epidermis.  The cells of

the periderm die, keratinize, and are eventually exfoliated from the underlying stratified

epidermis several days prior to hatching (Isokawa et al., 1996).   In the developing skin,

the epidermis that surrounds the embryo expresses Bves and the protein appears to be
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restricted to cell-cell borders (Figure 10A-C).  The developing dermis is negative when

labeled with a-Bves antibodies and remains so throughout development.   

We have established an epidermal in vitro culture system in order to study Bves

protein expression and function in more detail.  After growing patches of epidermis for

several days in culture, antibodies to Bves detect the protein at the cell membranes,

similar to the observed pattern in vivo (Figure 10D).  These data suggest that Bves

protein retains its expression in the ectoderm as it differentiates to form the epidermis.

The endoderm of the chick embryo forms the mucosa/epithelium of the gut tube

and undergoes dynamic changes throughout gut morphogenesis (Roberts, 2000).

Since Bves expression in the early stage endoderm was pronounced, we sought to

determine whether Bves protein could be detected in the gut epithelium. As shown in

Figure 11, Bves is expressed throughout gut development. Closure of the gut tube

occurs around HH 20-22 and at this stage, the gut epithelium forms a simple tube

(Figure 11A).  The developing gut of the chick embryo undergoes rapid proliferation and

morphogenesis.  As the primordial villi are begin to take shape, the resulting gut

epithelium is more undulated and the epithelial surface area is enlarged (Figure 11B-D).

Protein expression analysis of Bves in a HH 41 gut reveals that Bves is restricted to the

gut epithelial cells, specifically to the apical/lateral region of cell-cell borders (Figure

11E).  Mesenchyme derived from lateral splanchnic mesoderm that surrounds the

gastric mucosa is negative.  Sections through adult mouse gut demonstrate Bves

distribution in a mature and developed intestine (Figure 11F,G). Bves is highly

expressed epithelium in the crypts and villi, and localizes to an apical-lateral spot

between neighboring columnar cells, reminiscent of a cell junction protein (Figure 11G,
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arrow). Bves is expressed in the smooth muscle layer surrounding the gut tube (Figure

11F) In addition, Bves is expressed in the serosal epithelium (Figure 11A,F, see

arrows), the mesothelial covering of the gut. This layer is similar to the epicardium that

surrounds the developing heart. D033 staining of the gut is much weaker and not

shown.

Discussion

bves is a novel message identified through a subtractive hybridization screen for

genes enriched in the heart (Reese et al., 1999).  bves encodes a transmembrane

protein that localizes to cell borders of the epicardium and is postulated to play a role in

cell adhesion.  While it is clear that Bves and related gene products are also expressed

in adult striated and smooth muscle cells, the distribution of these proteins in epithelia

had not been critically examined.  This chapter presents a broad expression analysis of

Bves in a variety of epithelial cells and tissues. We demonstrate that Bves is expressed

in epithelia of various type and origin, and that the distribution at cell borders is

conserved. A specific focus is placed on Bves expression during stages of chick

gastrulation and germ layer formation, since these processes involve dynamic

movements and morphogenesis of epithelial layers. Taken together, these data clearly

demonstrate that Bves protein is a component of epithelial cell types and support the

hypothesis that Bves may play a role in cell adhesion and movement of epithelia during

early embryogenesis.

Previous studies have demonstrated that members of the popeye gene family

are highly expressed in cardiac and skeletal myocytes during embryogenesis (Andree et
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al., 2000; Breher et al., 2004; DiAngelo et al., 2001; Vasavada et al., 2004).  While our

initial findings were consistent with these publications, we detected Bves in epicardial

cells in vivo and in vitro in contrast to what was reported by the other two laboratories

(Reese et al., 1999; Wada et al., 2001; Wada et al., 2003). Over the next few years,

however, several pieces of evidence emerged, suggesting that Bves was more widely

expressed than we had expected (Andree et al., 2000; Breher et al., 2004; Vasavada et

al., 2004; Wada et al., 2001). We detected bves transcripts in many mammalian

epithelial cell lines and during early chick embryogenesis (Wada et al., 2003; Osler and

Bader, 2004; Ripley et al., 2004). In addition, EST database analyses reveal that

transcripts of the popeye gene family are widely distributed in various cell types at

different stages of vertebrate development. Interestingly, the whole mount studies of

Andree et al. also demonstrate popeye gene expression in the gut epithelium, a cell

type highly reactive with our antisera (2000). However, the group stressed that

bves/pop1a expression in the epicardium was never observed. Thus, a consensus of

Bves expression in epithelia was still lacking. Discrepancy in expression patterns

between data from Andree et al. (2000) and the findings from our laboratory (Wada et

al., 2003) could be due to a low level of bves gene expression in those epithelia that

produce the transcripts. In addition, the lifetime of the mRNA message in epithelia is

unknown and could potentially be short-lived, impairing its detection. Thus, variable

sensitivity of assay systems may account for the apparent variation in mRNA. The

present analysis demonstrates that Bves message and protein are indeed present in a

wide range of epithelial cell lines and tissues. Importantly, Bves is spatio-temporally
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localized during early embryogenesis when epithelial movements are critical for the

initial differentiative events.

Assessment of the Bves expression pattern from published work along with the

present study suggests important roles during development and in the adult. Since the

observation that Bves is an epithelial component (Vasavada et al., 2004; Wada et al.,

2001), we have demonstrated that Bves is expressed in a wide range of epithelial cell

lines, various other tissues, the epicardium of the developing heart, the primordial

endoderm, mesoderm and ectoderm in chick (Osler and Bader, 2004) and frog embryos

as well as the epithelial components of the developing eye (Ripley et al., 2004) and gut

(Osler and Bader, 2004). Given the broad distribution of Bves in developing and mature

epithelia, the present data suggest a conserved, significant and wide-ranging function of

this novel gene family. The presence of Bves in the early embryo suggests that this

protein may have a conserved function in epithelial structures, specifically during

gastrulation and germ layer differentiation.  Our expression studies demonstrate that

Bves is present in epithelia undergoing dynamic rearrangements such as migration of

epicardium, movement of the epiblast, cavitation of the lateral plate, formation of the

epithelial somite, and tubulogenesis in the neuroectoderm and intermediate mesoderm.

Later, after gross movements and reshaping of these embryonic structures is

completed, Bves expression may be downregulated in epithelia but remain highly

expressed in the heart and skeletal muscles.  If Bves indeed functions as an adhesion

molecule between actively moving cells, its expression in embryonic epithelia and

contracting muscle supports a common role in two different and highly specialized cell

types. Also, Bves is localized to the lateral regions of epithelial cells in culture as well as
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epithelial components of the developing embryo, including the epiblast, neural tube,

somites, and newly formed intermediate, somatic, and splanchnic mesoderms.  Bves in

these regions suggests that the protein plays a role in the generation or maintenance of

cell polarity. For example, while these embryonic epithelial structures are highly

dynamic during development, the necessity of cell adhesion during morphogenesis is

critical for proper shaping of these layers.  This is consistent with previous data

suggesting an adhesive role for this protein (Wada et al., 2001).  From this analysis, it is

not possible to determine whether Bves is restricted to a certain type of epithelia or is

universally expressed. Clearly, Bves expression was explored in a wide range of

epithelia and the present data is consistent with the hypothesis that Bves is involved in

cell-cell adhesion in various types of epithelia. Also, the spatio-temporal localization of

Bves mimics the pattern of proteins with roles in cell interaction and cell polarity.

Furthermore, this work, which is published (Osler and Bader, 2004), has generated a

foundation for future investigation, which will be geared toward unraveling the molecular

mechanism of Bves during development.

54



CHAPTER III

BVES MODULATES EPITHELIAL INTEGRITY
THROUGH AN INTERACTION AT THE TIGHT JUNCTION

Introduction

We first identified Bves as a transmembrane protein that localized to the lateral

compartment of the epithelial epicardium. Bves traffics to sites of cell-cell contact in

cultured epicardial cells and promotes adhesion following transfection into non-adherent

fibroblastic L-cells, reminiscent of a cell adhesion molecule. Currently, no function for

Bves in relation to epithelial cell adhesion has been identified. We hypothesize that

Bves plays a role at cell junctions to establish and/or modulate cell adhesion or cell-cell

interactions in epithelial cell types.  In this study, we establish that Bves regulates

epithelial integrity and that this function may be associated with a role at the TJ. We

report that Bves localizes with ZO-1 and occludin, markers of the TJ, in polarized

epithelial cell lines and in vivo. We find that the behavior of Bves following low calcium

challenge or TPA treatment mimics that observed for ZO-1 and is distinct from AJ

proteins such as E-cadherin. Furthermore, GST pull-down experiments show an

interaction between ZO-1 and the intracellular C-terminal tail of Bves. Finally, we

demonstrate that Bves modulates TJ integrity, as indicated by the loss of transepithelial

resistance and junction protein localization at the membrane following Bves knock-down

in cultured cells. This study is the first to identify a function for Bves in epithelia and

supports the hypothesis that Bves contributes to the establishment and/or maintenance

of epithelial cell interaction.
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As discussed in Chapter I, epithelial cells are defined by cell-cell adhesion and

polarity, which are established by the AJC found on the lateral surface between

neighboring cells (Gumbiner, 1996). TJ, AJ, and desmosomes provide structural

support via a connection to the internal cytoskeletal networks (Garrod et al., 1996;

Gonzalez-Mariscal et al., 2003; Nagafuchi, 2001). The two key functions of the TJ are

the establishment of the apical-basal polarity to retain complexes and/or receptors

within the proper membrane domain, and the creation of a water-tight seal to prevent

the undesired passage of ions or fluid through the cell layer (Balda and Matter, 2000b).

Primary components of TJs are transmembrane elements such as occludin (Furuse et

al., 1993) and the claudins (Furuse et al., 1998) and peripheral membrane proteins ZO-

1 (Stevenson et al., 1986), ZO-2 (Gumbiner et al., 1991), and ZO-3 (Haskins et al.,

1998).  The AJ, found immediately below the TJ, provides the core adhesive interaction

between neighbors by interconnecting the actin network (Nagafuchi, 2001).  E-cadherin,

a transmembrane component of the AJ, maintains cell-cell adhesion through calcium-

dependent homophilic binding (Adams et al., 1998).  Desmosomes provide additional

mechanical strength to the cell structure by serving as anchoring sites for the

intermediate filament network spanning the epithelial sheet (Getsios et al., 2004). These

three junctional networks regulate the strength of adhesion between cells, thus allowing

epithelia to modulate their integrity depending on the functional requirements of the cell

layer (Garrod et al., 1996; Provost and Rimm, 1999; Runswick et al., 2001;

Schneeberger and Lynch, 2004). For example, during embryonic development, the

epithelial germ layers undergo dynamic morphogenetic movements in order to complete

the processes of gastrulation and neurulation (Gerhart and Keller, 1986; Marsden and
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DeSimone, 2003; Wallingford et al., 2002). During these processes, the adhesive nature

and integrity of the epithelia are regulated such that proper tissue rearrangements

occur. Understanding the contributory role of each junctional complex in the regulation

of tissue integrity is critical to unraveling the intricacies of epithelial cell-cell interactions.

The function of each junctional complex is generally understood and numerous

components have been identified (Balda and Matter, 2000b; Garrod et al., 1996;

Gonzalez-Mariscal et al., 2003; Gumbiner, 1996). However, additional roles for and

interactions between junctional proteins are continuously revealed and thus, the

discovery of novel regulators and components of cell junctions is essential for gaining

insight into the mechanism by which junctions are established during formation and

establishment of epithelial integrity. Chapter II localizes Bves to the lateral border of

epithelial cells where the cell junctions reside. Because the current literature fails to

demonstrate any function for Bves in epithelia, a critical step toward a comprehensive

understanding of Bves is assignment to a specific junction complex within the lateral

compartment. Since each junction is known for a particular role, the placement of Bves

at a certain junction will drive the direction of future experiments and will facilitate in

narrowing the potential function of the protein. For example, if Bves were found to be a

desmosomal component, a next experiment might involve a determination of how Bves

might influence the binding strength of the complex. Likewise, if Bves were found to be

a TJ component, subsequent investigations would assess potential roles in barrier

function or establishment of polarity. Clearly, identification of Bves within a specific

junction is necessary to the forward progress of its characterization as a whole.  The
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current chapter describes work that designates Bves as a functional component of the

TJ.

Localizing a putative junction protein to a distinct molecular complex can be

accomplished through several means, including co-localization microscopy studies, cell

culture challenges to junction integrity, and interaction screens. The use of available

immunoreagents and microscopy can quickly and easily colocalize a protein of interest

with known junctional markers. Ultrastructural analysis can be used to confirm light and

confocal microscopic data. Secondly, a wide variety of cell culture methods and

treatments have been used to identify components of certain junctions and/or draw

similarities between proteins. For example, performing assays in calcium-depleted

media can address the calcium dependency of a protein’s function. Alternatively,

treatment with pharmacological agents or detergents can be used to assess the

membrane properties of the protein in question as compared with defined junctional

markers. Experiments such as these are useful in assigning proteins to a particular

junction based on the response to various treatments. Finally, a most convincing

method to assign a protein at a specific junction is demonstrating a physical interaction

with a known junctional component. Yeast two-hybrid analysis, co-

immunoprecipitations, and GST pull-down experiments are among the variety of

methods commonly used to identify or verify protein-protein interactions. Identifying

interactions provides a pathway for further experimentation, such as isolating the exact

binding sequences, and allows the generation of additional tools, such as deletion

constructs, for the next phase of discovery.
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Following these analyses, functional studies can then be a means to address

whether a protein is critical in the overall role of the junction complex in epithelial

integrity. The methods used to explore the functional nature of the protein will clearly be

dependent on the role of the particular junction. A common method to assay function is

the elimination of the endogenous protein from an experimental system. This can be

accomplished in cell culture models by commercially available reagents such as siRNA

or antisense oligonucleotides. Overexpression studies are also widely used as

functional determinants.  Next, readouts to assess potential phenotypes must also be

selected. For example, uncovering the changes in junction protein distribution or cell

morphology can indicate a loss of proper epithelial and cell junction function.

Furthermore, a critical readout is an assay that challenges the overall function of the

junctional complex within the context of the epithelial layer. For example, the TJ exhibits

a barrier function by regulating passage of solutes and molecules across the monolayer.

The transepithelial resistance (TER) is a quantitative readout of TJ integrity. Should the

molecular interactions of the TJ be manipulated following knockdown of a putative

component, the distribution of TJ components ZO-1 and occludin, as well as the TER

value, may be altered.

Work from this chapter demonstrates that Bves localizes closely with TJ

components such as ZO-1 and occludin in mature epithelia in vitro and in vivo.

Additionally, the timeframe of junction formation/maturation during which Bves is

trafficked to the membrane has been defined. Striking similarities to ZO-1 were

observed following physiological challenges to cell adhesion. Also, GST pull-down

experiments demonstrate an interaction with ZO-1. Thus, we predict that Bves function

59



is coupled to its localization of the TJ. Finally, using an antisense morpholino

oligonucleotide (MO) knock-down/rescue approach, we reveal that Bves is essential in

the regulation of epithelial integrity of an intact monolayer, as indicated by decrease of

TER, disruption of the epithelial sheet, and a loss of membrane-localized ZO-1 protein.

Taken together, our results demonstrate that Bves is a fundamental component of TJs

and exhibit a pivotal role for Bves in the maintenance of epithelial cell integrity.

Materials and Methods

Cells and Antibodies

EMCs were obtained from Dr. H. Eid and have been described previously (Eid et

al., 1994; Wada et al., 2003). MDCK epithelial cells (ATCC) were maintained in

Dulbecco’s Modified Eagle Medium (DMEM-Biowhittaker) supplemented with 10% FBS

and penicillin-streptomycin cocktail. The SV40-transformed human corneal epithelial

(HCE) cells, kindly provided by Dr. K. Araki-Sasaki (Araki-Sasaki et al., 1995) were

grown in the serum-free keratinocyte growth medium (Invitrogen-Gibco). Protocols used

for cell culture and tissue sections were standard (Osler and Bader, 2004; Wada et al.,

2001). The rabbit a-Bves antisera (B846 at 1:200) used in this study has been

described previously (Wada et al., 2001) and detects an intracellular C-terminal epitope

of Bves in all species tested. Antibodies were used according to published methods and

manufacturer’s recommendations and were purchased as follows: E-cadherin

monoclonal (Transduction Labs), ZO-1 and occludin monoclonal antibodies (Zymed),

desmosome monoclonal (Sigma), Alexa 488 and Alexa 568-conjugated secondary
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antibodies, Phalloidin and DAPI (Molecular Probes). Antibody concentrations used for

Western Blot analysis are as follows: B846 at 1:200, monoclonal b-actin at 1:5000

(Sigma), and ZO-1 at 1:200. HRP-conjugated secondary antibodies were used per

manufacturers suggestions.

Immunofluorescent and Electron Microscopy

Confocal image capture using a Zeiss LM-410 or LM-510 was performed in part

through the use of the VUMC Cell Imaging Shared Resource, and processed using

MetaMorph 6.1 (Universal Imaging Corp.)  To generate electron micrographic samples,

an adult mouse was starved overnight, the small intestine was dissected, washed with

PBS, and perfused with 4% PFA in PBS for 30 minutes at RT. Following fixation, the

intestine was dehydrated through a graded series of alcohols and embedded in Lowicryl

Resin. Nickel grids with thin sections were blocked in 1% BSA in PBS, incubated with

B846 antisera at 1:100 at 4°C overnight, and bathed with a-rabbit 5 nm immunogold

conjugate secondary antibody (Sigma) for 1 hour at RT. Grids were fixed with 2.5%

gluteraldehyde for 15 minutes and counterstained with 2% uranyl acetate for 5 minutes.

PBS washes were performed between each step. It is important to note that a post-

fixation antibody labeling technique, as used here, may result in less reactivity when

compared to pre-fixation antibody incubations (Dr. W. Gray Jerome, personal

communication). Quantification of colloidal gold bead binding was performed on

sections perpendicular to the cell surface. The distance of each bead from the cell

surface was determined and grouped in increments of 100 nm. Controls using no
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primary antibody were performed and no bead labeling was detected. Experiments were

performed in part through the use of the VUMC Research EM Resource.

Immunoblotting

Western blotting on HCE cell lysate were performed using standard techniques

as previously reported (Knight et al., 2003). Briefly, cells were harvested by trypsin

treatment and resuspended in 1 ml TBS with protein inhibitor (0.5%, Roche Diagnostics,

Catalog # 1836170). Cells were disrupted by sonciation and followed by centrifugation

to collect the pellet. The pellet was resuspended in sample buffer (60 mM Tris, 10 mM

glycine, 2% SDS, pH 6.8) with 0.5% protein inhibitors and further sonicated followed by

centrifugation. The supernatant was collected, and 20 µg total protein separated by

polyacrylamide gel electrophoresis. The samples were transferred to a polyvinylidene

fluoride membrane (Immobilon-P membrane, Millipore). The membranes were probed

with antibodies against Bves, b-actin, and ZO-1, followed by appropriate species HRP-

conjugated secondary antibodies (Pierce, Rockford, IL).

Glutathione bead preparation

GST fusion proteins were generated by PCR from the C-terminal tail of Bves

(a.a.115-347) and the N-terminal tail (a.a.1-36) by A. Wada and cloned into the pGEX

bacterial expression vector. GST-N terminal Bves, a 34kD protein, consists of the GST

tag 5’ of the extracellular N-terminal region of Bves. GST-C terminal Bves, which

migrates at 66kD, contains the GST tag followed by the intracellular C-terminal tail.

Constructs were transformed into BL21 E. coli bacterial strain and protein was induced
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with IPTG, per standard methods (Amersham). Bacterial lysate was stored at –80ºC

until use. Preparation of GST beads for pull-down was performed as follows. A 50%

slurry of Glutathione Sepharose 4B was prepared from a commercially available 75%

slurry (Amersham). An aliquot of 1 ml of bacterial lysate expressing the GST fusion

proteins was cleared by centrifugation (14,000g) prior to the addition of 40 ml of 50%

slurry. Cleared lysate was incubated with beads for at least 2 hours or overnight, beads

were washed 3 times with 100 ml of PBS, and resuspended in 100 ml of PBS. Samples

from all three fractions were subject to PAGE and colloidal blue staining and amount of

GST-bound protein used for pull-downs was equilibrated.

GST pull-down

MDCK cell lysate used for GST pull-down experiments were performed using the

methods of Fanning et al. (1998).  Briefly, cells were grown on 60 mm plates to

confluency, placed on ice, and washed twice with PBS. Protein was extracted with 1ml

of extraction buffer (20 mM Tris pH 8.0, 150 mM NaCl, 2 mM EDTA, 1% Triton-X,

0.05% SDS, 1 mg/ml BSA, 1 mM DTT) and 100 ml of protease inhibitor (Sigma, P8340).

Cells were incubated on ice for 30 minutes, scraped off the plate and centrifuged for 30

minutes at 18,000 g at 4ºC. Cell lysate was removed from the pellet and retained.

Lysate was precleared by incubation with 20 ml bed volume of beads for 2 hours at 4°C

after which beads were spun down and lysate was removed. Glutathione beads bound

with GST constructs were added to the lysate and incubated overnight at 4°C. Beads

were washed 5 times with 100 ml PBS and bound protein was eluted with 20 ml of 1x

SDS sample buffer, boiled for 3 minutes, and loaded onto a 8-10% polyacrylamide gel.
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Western blotting was performed using standard methods and antibody concentrations

were used as listed above.

Cell culture treatments

Low calcium culture conditions were achieved by growing EMCs in MEM (Sigma)

with 8% serum (Atlanta Biosciences) and penicillin-streptomycin cocktail.  A small

volume of CaCl2 is added, in addition to the calcium contributed by the serum, giving a

final calcium concentration in the culture medium of <10 mM. We have determined that

the EMC line can support the development of a primordial monolayer even in the

persistent absence of exogenous calcium. Cells continue to grow, although more slowly,

when maintained for several weeks in calcium-depleted media. Experiments were

performed following passages three or four in low calcium media. For TPA treatment of

cells, MDCK or EMC cells were plated at high density (5 x105 cells/well) on 4-well

chamber slides (Lab-Tek) in complete DMEM. The following day, cells were incubated

in serum-free DMEM for 1 hour. Cells were switched to serum-free DMEM with 5 mM

EGTA for 2 hours.  Control wells were switched back to serum-free DMEM with normal

calcium levels.  Experimental wells were treated with 100 nM TPA in DMEM for 1 hour.

Cells were fixed and processed by standard methods (as referenced above). For the

actin-depolymerizing studies, cells were treated with 2 mM cytochalasin D (Sigma) for

varying times upon which cells are fixed and processed. The a-bves MO used in this

study has been previously described (Ripley et al., 2004). HCE cells were treated with

nonspecific control or a-human bves MOs at 3 and 5 days after cells reached full

confluence, at which TER measurements were recorded.
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Measure of transepithelial resistance

HCE lines were seeded onto clear polycarbonate (0.4 mm) membrane cell culture

inserts (Falcon, #35-3090) at a density of 104 cells/cm2. The TER was measured at 14

days using an epithelial voltometer (EVOMX-A, World Precision Instruments, Sarasota,

FL).  After the TER was obtained, polycarbonate membranes were cut away from the

plastic insert and immunofluorescence staining was performed.

Generation of chicken Bves HCE cells for rescue experiments

In order to assign specific phenotypes to the MO knock-down of Bves, a rescue

strategy was applied. A “rescue” plasmid was generated as follows: chick Bves cDNA

(Reese et al., 1999), which encodes the full length Bves protein (358 a.a.) and does not

contain the MO target sequence, was cloned in frame into a neomycin-resistant

expression plasmid with CMV promoter and FLAG epitope. HCE cells were transfected

using Lipofectamine 2000 (Invitrogen) and selected in 20 mg/ml G418 antibiotic (Sigma).

Five clones were selected based on FLAG labeling at the cell surface. The HCE cell line

reported here, which stably expresses the MO-resistant chicken Bves rescue construct,

is referred to as HCE-R. Two-tailed Student’s t-test statistical analyses were performed

to determine p values (Microsoft Excel).
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Results

Bves colocalization with TJ markers in epithelial monolayers

We have defined Bves as an integral membrane protein distributed at cell

borders, potentially regulating cell adhesion (Wada et al., 2001). However, it is not

known whether Bves localizes to a particular junction complex within the lateral

compartment. In order to assign Bves to a specific domain at the cell membrane, Bves

subcellular distribution was compared to that of defined components of the TJ, AJ, and

desmosome. For this confocal microscopic investigation, we used the MDCK cell line,

since it has been extensively studied and because a wide range of marker antibodies is

available for analysis. Findings revealed that Bves is highly colocalized with TJ proteins

occludin and ZO-1 in an apical-lateral position within the Z axis (Figure 12A, B, arrows).

Bves did not exhibit marked overlap with AJ-associated proteins E-cadherin (Figure

12C, arrows) and b-catenin (12D, arrows), or with desmosomal proteins (Figure 12E,

arrows). A similar pattern of colocalization between Bves and TJ proteins was observed

in other epithelial lines including squamous HCE cells (Figure 20A) and EMCs, as well

as Caco-2 and HCA-7 cells, which both form a columnar epithelium (data not shown).

To extend these findings, we next determined the distribution of Bves in vivo at the

cellular and ultrastructural levels using the murine intestinal absorptive epithelium as a

model. This highly polarized columnar cell layer is ideal for localizing potential epithelial

junction proteins because the TJ and AJ are well separated (Itoh et al., 1993). Cross

sections through intestinal villi revealed a precise overlap of Bves, occludin, and ZO-1

that was not observed with E-cadherin (Figure 13A). Ultrastructural analysis using
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immunogold labeling of Bves on the gastric epithelium correlates with this finding

(Figure 13B,C). TJ strands are primarily located in the region from the base of the

microvilli to 300 nm below the apical surface (Bloom and Fawcett, 1975). In images of

perpendicular sections, gold beads were clustered in the apical TJ region (Figure 13Ca-

c). An en face view of TJ strands also demonstrates the concentration of gold bead

labeling at or very near the TJ domain (Figure 13Cd). Graphical representation of

colloidal gold distribution demonstrates that the majority of beads (64%) are located

within the TJ domain (Figure 13B, red line). Still, Bves is not entirely restricted to the TJ,

as suggested by detection of Bves outside of the predicted domain (Figure 13Cc,

arrow).  Taken together, both in vitro and in vivo localization studies described here

predict a role for Bves at the TJ.

Bves localizes early to points of cell-cell contact

Trafficking of proteins during early contact development has been critical in

establishing the function of adhesive proteins in epithelial sheet formation. If Bves were

involved in establishing cell contacts and/or epithelial integrity, we postulate that Bves

will behave like known junctional components (Adams et al., 1998; Adams et al., 1996;

McNeill et al., 1993; Vasioukhin et al., 2000). Thus, in an effort to determine how Bves

is mobilized during epithelial maturation, we assessed how Bves protein localization

changes during the formation, expansion, and compaction of contacts, relative to the

dynamic remodeling of the actin network. The EMC line was used for this study

because it is a representative epithelial model of epicardial development where Bves

was first identified.  We determined that Bves is confined to an intracellular
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compartment in single cells (Figure 14A, arrow), that colocalized with markers of the

Golgi (Wada et al., 2001), while the actin network existed as a cortical ring at the cell

periphery (Figure 14A, arrowhead). Upon apposition of neighboring cells, Bves traffics

to positions outside of the cortical actin network (Figure 14B, arrow), similar to the

pattern observed with E-cadherin at forming contacts (Adams et al., 1998; Ando-

Akatsuka et al., 1999). As contacts expand, the cortical actin network collapses and

increased Bves labeling is observed between apposing cells (Figure 14C, D, arrows).

Finally, as contacts compact and adhesions with additional cells are generated, Bves

labeling is confined to regions of cell-cell contact and ultimately will encompass the

entire cell circumference (Figure 12). Bves was never observed at the free surface of

cells (Figure 14, arrowheads).

Bves incorporates into the cell membrane coincidently with AJ proteins

Investigation of the dynamic processes of cell-cell interaction with regards to

specific junctional proteins is critical to the understanding of epithelial formation.  Past

studies have proposed a specific sequence in which junction proteins translocate to

points of cell-cell contact (Adams et al., 1998; Adams et al., 1996; Vasioukhin et al.,

2000). Within the first ten minutes of initial cell-cell contact, actin filaments and actin

binding proteins extend from the membrane in an exploratory manner but a stable

contact is not made (Adams et al., 1996). In a second phase of contact formation, E-

cadherin-containing “puncta” localize to forming contacts in Triton-X insoluble

structures. The distribution of other proteins such as the catenins and ZO-1 mirrors this

early translocation to developing contacts (Adams et al., 1998) and precedes assembly
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of the AJ (Yonemura et al., 1995).  Finally, condensation of adhesive plaques result

from reorganization of the actin network as neighboring cells connect together to

ultimately form a polarized monolayer.  During this process following the establishment

of contacts, desmosomes assemble (Getsios et al., 2004; Vasioukhin et al., 2000) and

TJ proteins like occludin and claudins translocate to flanking membranes contributing to

polarization (Ando-Akatsuka et al., 1999). Importantly, ZO-1 specifically concentrated at

TJ in polarized cells with occludin and claudins (Itoh et al., 1993; Stevenson et al.,

1986). To understand the dynamic redistribution of Bves during cell-cell contact, we

expanded our analysis of Bves in relation to this spatio-temporal framework of junction

assembly. Cells have been co-labeled with antibodies to Bves and junctional proteins to

correlate Bves appearance at the membrane with the established time course. MDCK

cells have served as a model in previous studies and were used in this examination of

Bves. The extension of actin filaments and localization of cytoskeletal binding proteins

at cell contacts define exploratory/immediate events of cell adhesion (McNeill et al.,

1993; Vasioukhin et al., 2000). Bves arrives at membrane contact points following actin

and vinculin, as demonstrated by the absence of Bves at points of contact (Figure

15A,B, arrows). Arrival of Bves at cell contacts is concurrent with E-cadherin, ZO-1,

(Figure 15C,D, arrows) and b-catenin (not shown), proteins that localize to contacts at

an early stage soon after an initial contact is formed (Adams et al., 1998; Ando-

Akatsuka et al., 1999; McNeill et al., 1993; Rajasekaran et al., 1996; Vasioukhin et al.,

2000). Bves arrives at points of cell-cell contact before desmosomal components

(Figure 15E) and occludin (not shown) were translocated to the cell contact site.

Subsequently, segregation of junctional molecules into discrete junctional subdomains
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occurs (Ando-Akatsuka et al., 1999; Farshori and Kachar, 1999; Vasioukhin et al.,

2000). Thus, Bves is recruited to membrane protrusions at an early stage and localizes

to forming contacts with ZO-1 and AJ components, but ultimately segregates with the TJ

components ZO-1 and occludin as contacts mature (Figure 12A,B) (Ando-Akatsuka et

al., 1999; Rajasekaran et al., 1996). This dynamic distribution parallels the pattern

observed with ZO-1. Furthermore, our findings demonstrate that Bves traffics to cell-cell

contact points in a spatio-temporal manner appropriate for a protein involved in cell

adhesion and/or maintenance of junctional complexes (Adams et al., 1996; Ando-

Akatsuka et al., 1999; McNeill et al., 1993).

Bves response following challenges to epithelial integrity

 Low calcium and phorbol ester challenges to cell-cell adhesion and monolayer

integrity have been used to explore junctional protein behavior and, in some cases,

assign proteins to specific junctional complexes (Farshori and Kachar, 1999; Nishimura

et al., 2002; Stevenson and Begg, 1994; Yamada et al., 2004). These culture

manipulations were performed to elucidate Bves membrane properties.

Calcium switch assays challenge the integrity of an epithelial monolayer because

many adhesion proteins, such as cadherin, rely on calcium for their function. When

calcium is transiently depleted from a confluent, polarized monolayer of cells, the

adhesive junctions disassemble and the cohesive nature of the epithelial sheet is

compromised. This is represented by the loss of membrane-localized junctional proteins

(Gumbiner et al., 1988; Nagafuchi et al., 1987).   We found that EMCs can form a

monolayer with primordial adhesive contacts following persistent absence of exogenous
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calcium, as has been observed with various other cells (Chaproniere and McKeehan,

1986; Ochieng et al., 1990; Shirakawa et al., 1986). Under these conditions, Bves was

observed at contact points between the cortical actin networks of apposing cells (Figure

16A, arrows) and was distributed around the cell circumference at confluence (Figure

16B, arrows). This demonstrates that Bves localization and function at the membrane is

calcium-independent, which correlates with our previous finding that exogenously

expressed Bves induces L-cell aggregation in a calcium-independent manner (Wada et

al., 2001). Interestingly, ZO-1 mimicked this pattern at the cell surface after persistent

calcium depletion, and colocalized precisely with Bves (Figure 16B, merge).

Conversely, E-cadherin was absent from the cell membrane, as expected, (Figure 16C,

middle panel arrow) and was only observed at the cell periphery in the presence of

calcium (Figure 16C, middle panel insert).

While many studies have shown TJ assembly to be dependent on AJ assembly

(Rothen-Rutishauser et al., 2002) and exogenous calcium (Wilson, 1997), others have

reported that ZO-1 is retained at the membrane of specific epithelial lines under various

low calcium culture manipulations (Fukuhara et al., 2002; Ide et al., 1999; Kartenbeck et

al., 1991; Nishimura et al., 2002). Occludin was also absent from the cell membrane

(data not shown) signifying that, although ZO-1 is retained at the membrane, intact TJ

cannot form under these conditions. These findings reiterate the fact that Bves and ZO-

1 are regulated differently than E-cadherin and the well-established calcium-dependent

cadherin protein complex. These findings highlight the similarity of Bves and ZO-1

action under these conditions as well as underscore the calcium-independent nature of

Bves function in epithelia. We demonstrate that Bves resides at the TJ with ZO-1 and
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occludin (Figures 12,13). Here, we again find a striking similarity between Bves and ZO-

1 response, further suggesting a role for Bves at the TJ.

The phorbol ester TPA activates protein kinase C, which regulates both TJ

biogenesis and calcium-induced polarization of epithelia (Balda et al., 1993; Stuart and

Nigam, 1995).  The addition of TPA to confluent epithelial cells following a calcium

switch is thought to bypass calcium-dependent cell-cell adhesion and initiate the

formation of “TJ-like” structures at the cell periphery (Balda et al., 1993; Farshori and

Kachar, 1999; Nishimura et al., 2002; Ohsugi et al., 1997). Proteins such as JEAP and

MAGI have been designated as TJ components because they localize to TPA-induced

structures with ZO-1 and occludin (Ide et al., 1999; Nishimura et al., 2002). Therefore,

we used this method to determine whether Bves would also aggregate at the membrane

with known TJ components.  This study was performed on MDCK (Figure 17) and EMC

(not shown) lines, which both produced similar results. In untreated cells, Bves, ZO-1,

occludin, and E-cadherin localize around the cell circumference (Figure 17A,C,E).

Following TPA treatment, Bves membrane localization was redistributed with TJ

components, occludin (Figure 17B, arrows) and ZO-1 (Figure 17D, arrows), in “TJ-like”

structures. This localization occurred in the absence of cadherin trafficking (Figure 17F,

arrow). Again, Bves behaves in a manner predicted for a TJ protein, providing

accumulating evidence for its involvement at the TJ.

Bves localization following actin disruption

Cytochalasin-D (CytD) is a pharmacological agent used to disrupt F-actin. To

determine how Bves responds to actin disruption, EMCs were grown in CytD containing
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media. Bves and E-cadherin label the entire cell periphery of untreated cells, while actin

filaments form a network from cell to cell (Figure 18A). As shown in Figure 18B, Bves

and E-cadherin are still deposited at points of membrane contact after 10 minutes of

exposure to CytD.  As time of treatment increases, the cytoskeleton is further

dismantled. As a result, less Bves and E-cadherin staining is observed at the cell

membrane, but remaining punctate spots appear to colocalize with clusters of actin

(Figure 18C,D).  This finding suggests that Bves localization is directly or indirectly

dependent on the actin network for stabilization at the lateral membrane.

Bves C-terminus interaction with a ZO-1 protein complex

To show that Bves is a component of an epithelial junction, providing evidence of

physical association of Bves and known components is critical. The present data

suggest that Bves functions at the TJ and thus, could interact with TJ proteins. A GST

pull-down assay was performed to determine whether Bves binds, either directly or

indirectly to components of the TJ. GST, GST N-terminal Bves, and GST C-terminal

Bves constructs were used to probe for interaction with candidate TJ proteins (Figure

19A). ZO-1 is detected in the complex retained on beads bound with GST-C terminal

Bves (Figure 19B). Precipitated ZO-1 was not detected in the GST control fraction or,

importantly, in the GST N-terminal Bves fraction, as this portion of the molecule has an

extracellular distribution (Knight et al., 2003). However, an interaction between occludin

and GST-Bves was not detected (Figure 19C). This indicates that Bves may interact

with the TJ directly or indirectly through the peripheral membrane protein ZO-1 and not

membrane-bound occludin.  This finding provides additional strength to the hypothesis

79



80



81



that Bves is a functional component of the TJ, as these GST pull-down experiments

demonstrate an association between Bves and the multimolecular complex containing

ZO-1.

Knock-down of Bves function disrupts TJ integrity

To analyze Bves function, a method to eliminate and rescue Bves activity in an

epithelial cell system was generated. We accomplished this by treating HCE cells with

a-human bves MO and rescuing with transfected exogenous chicken Bves. HCE cells

were used in this assay for several reasons. HCE parental cells are of human origin and

display the same membrane distribution of Bves and TJ proteins (Figure 20A) as

observed with other cells, like MDCK (Figure 12). In addition, the cells more readily took

up transfected DNA and MO than other lines tested, making HCE cells ideal for this

study. Importantly, after examining numerous cell lines, HCE-R cells that stably express

a “MO-rescuing” chicken Bves construct appropriately traffic the FLAG-tagged Bves to

the membrane (Figure 20B). This is highly significant, as this is the first cell culture

system where expression and trafficking of exogenous Bves mirrors the endogenous

pattern. Previously, we and others (Andree et al., 2000) have made several attempts to

generate stable cell lines expressing Bves constructs and found that other cells did not

properly traffic to the cell membrane upon transfection. However, this cell line affords,

for the first time, an opportunity to identify Bves function and manipulate Bves in an in

vitro environment. Furthermore, MO treatment of HCE cells results in a decrease of

detectable membrane-localized Bves (Figure 20C).
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TER and localization of TJ markers provided readouts for epithelial integrity.

Previously reported TER measurements for polarized HCE cells are typically between

200-800 W•cm2 (Toropainen et al., 2001; Wang et al., 2004; Yi et al., 2000). Our culture

conditions used in this study were designed to promote monolayer growth and the

average measured resistance of the parental line was ~ 390 W•cm2.  As demonstrated

in Figure 20D, bves MO-treated HCE cells exhibit a significant loss of TER (asterisk, p <

0.05) as compared with untreated or control MO-treated cells. HCE-R cells display

nearly a 100% increase in TER over the parental control cell line. The TER of the HCE-

R cell line overexpressing FLAG-tagged chicken Bves is only slightly decreased by bves

MO treatment (Figure 20D, double asterisk), indicating that exogenous Bves rescues

the MO-induced drop in TER observed in the parental line. Immunolabeling of ZO-1 in

MO-treated HCE cells demonstrates a visual compromise of epithelial integrity, which

correlates with the TER data. The MO-induced phenotype is characterized by loss ZO-1

staining around the entire cell periphery and gaps in the epithelial sheet, while untreated

and control MO cells show circumferential ZO-1 labeling (Figure 20E). HCE-R cells

exhibit retention of ZO-1 at the surface following bves MO treatment similar to controls

(Figure 20E, lower panel). As demonstrated by Western Blot analysis, MO treatment of

HCE cells results in a decrease of Bves and ZO-1 (Figure 20F) while transfection of

chicken Bves into HCE cells results in an increase of Bves, as expected, as well as an

increase of membrane-associated ZO-1.  In addition, occludin, E-cadherin, and b-

catenin localization at the membrane is disrupted by MO treatment, although the

disturbance of membrane labeling of the AJ proteins appears less severe than ZO-1

and occludin (Figure 20G).
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Discussion

 The current study was initiated to investigate the putative involvement of Bves in

cell adhesion and to test the hypothesis that Bves functions endogenously to regulate

epithelial integrity. Given the broad distribution of Bves in a variety of epithelial types,

the present data predict a conserved, significant and wide-ranging function of this novel

gene family. In addition, the dynamic distribution pattern during contact formation

correlates with a proposed involvement in cell-cell adhesion. Immunolocalization and

physiological challenge studies suggest Bves resides at or near the TJ. Thus, Bves is

spatio-temporally regulated in a manner necessary to fulfill requirements of a

junction/adhesion protein. GST pull-down assays demonstrate a physical link to an

established TJ component, ZO-1. Furthermore, functional MO knock-down and rescue

experiments reveal that Bves is necessary for the stability of an epithelial monolayer in

vitro. Taken together, our data establish that Bves exhibits properties in accordance

with a role in the maintenance of epithelial integrity and are the first to show that Bves

could be an important molecular element at the TJ.

Significant to this study is the placement of Bves into a definitive junction within

the terminal bar of epithelial cells. While previous findings determined that Bves

localizes to the cell membrane and confers adhesion to L-cells after transfection, the

protein had not been assigned to a subcellular domain prior to these studies. Our

current immunohistochemical, confocal, and immuno-EM analyses of cell lines and the

gastric epithelium indicate that Bves colocalizes with occludin and ZO-1. Also, Bves

responds like both TJ markers following TPA challenge, an assay used to identify

components of the TJ, such as JEAP and MAGI/BAP1 (Ide et al., 1999; Nishimura et
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al., 2002). Localization studies on confluent and mature epithelia support a function for

Bves at the TJ with occludin and ZO-1.

Thus, while we establish that Bves is concentrated at the TJ, we find that Bves

parallels the behavior of ZO-1 more closely that that of occludin. For example, the

pattern that Bves localizes to primordial cell-cell adhesions mimics what is observed

with ZO-1 during contact formation. ZO-1 can be detected at contact points with E-

cadherin and catenin proteins, well before occludin, claudin, and other TJ components

translocate to the cell periphery (Ando-Akatsuka et al., 1999). Moreover, in non-

epithelial cells such as NRK fibroblast cells where TJ are not formed and occludin is not

expressed, ZO-1 and Bves colocalize at the cell periphery. In these cells, ZO-1 is

thought to function as a crosslinker between the cadherin complex and actin network

through interaction with AJ protein a-catenin (Itoh et al., 1993) and the nectin-afadin

complex (Yokoyama et al., 2001). Interestingly, persistent culture of EMCs in low

calcium permitted the localization of ZO-1 and Bves at the cell periphery, even when E-

cadherin and occludin failed to localize to the membrane. Bves.

Importantly, of the two TJ proteins ZO-1 and occludin, only a complex containing

ZO-1 was shown to interact with Bves C-terminus. We postulate that we detect an

interaction with ZO-1 and not occludin due to the relative strengths of interaction

between Bves and these proteins. It is possible occludin could be a member of this

complex in its native state, but due to the detergent-induced disruption, some of the

protein-protein interactions could be disrupted. It is critical to point out that while ZO-1

binds both occludin and claudin proteins, the two proteins do not co-immunoprecipitate

(Chen et al., 2002). While it is unclear whether the interaction is direct or indirect, the
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fact that the C-terminus can pull down ZO-1 suggests that Bves is tightly associated

with ZO-1. Alternatively, Bves and ZO-1 interact via other proteins not contained in the

TJ. Although we believe that the ZO-1/Bves interaction occurs at the membrane, it is not

out of question that the association we detected occurs elsewhere in the cell. Also, it is

interesting to note that although ZO-1 and occludin both localize and interact at the TJ,

ZO-1 clearly has roles outside of the TJ, and its behavior is often different than occludin

(Fanning et al., 1998; Gottardi et al., 1996; Itoh et al., 1997; Schneeberger and Lynch,

2004). Likewise, while Bves clearly has a role at the TJ, a high possibility exists that

Bves’s functional niche encompasses more than just the TJ. For instance, Bves was

occasionally detected outside of the predicted TJ domain in ultrastructural studies. The

literature agrees that ZO-1 is a scaffolding protein that interacts with occludin, claudins,

and ZO proteins at the TJ in epithelial cells but also possesses an increasing number of

other binding partners (Balda and Matter, 2000b; Gonzalez-Mariscal et al., 2003; Matter

and Balda, 2003). ZO-1 provides an example of a TJ-related protein that may have

functions beyond those at the TJ in epithelia as well as in other cell types. An

explanation for this dynamic distribution has not been proposed, although it is likely that

the spatio-temporal recruitment of ZO-1 and Bves can be correlated with a common

function. However, with these observations, it is now possible to more carefully probe

the function of Bves.

To probe Bves function in epithelia, we established the SV40-t HCE cell model

system where Bves function can be disabled following morpholino treatment and

rescued with exogenous protein expression. We combined these MO experiments with

TER analysis, a method used to confirm a functional role for proteins at the TJ
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(Cereijido et al., 1978; Gonzalez-Mariscal et al., 2003; Gumbiner and Simons, 1986;

Sonoda et al., 1999). Recently, proteins CLMP and MLCK have been established as TJ

components using this assay (Clayburgh et al., 2004; Raschperger et al., 2004). Bves

knock-down by MO in HCE cells results in the rapid loss of TER, epithelial polarization,

and the disassembly of cell junctions. Similarly, RNAi suppression of JAM-1 or Par-3

disrupted TJ integrity, caused a mislocalization of related proteins, and caused a drop in

TER values (Chen and Macara, 2005; Mandell et al., 2005).  In addition, Chen et al.

rescued the alterations by expression of human Par-3 (Chen and Macara, 2005). It is

important to note that the transfection of chicken Bves into HCE cells not only rescues

the MO knock-down effects as demonstrated by retention of ZO-1 at the membrane, but

drastically increases the TER of both control and MO-treated HCE-R cells. This signifies

that Bves could be required for integrity of the epithelial sheet by its influence at the TJ.

We postulate that the overexpression of Bves strengthens the TJ seal, thus generating

a significantly higher TER value, as has been shown with overexpression of other TJ

proteins (Cohen et al., 2001; McCarthy et al., 1996; Raschperger et al., 2004). It is

possible that through its interaction with the ZO-1 molecular complex, Bves can

modulate the integrity of the TJ paracellular seal.  Furthermore, this increase in TER

and rescue demonstrates that the observed phenotype is Bves-dependent and

suggests a conservation of Bves function between species.  Taken together, the

present study is the first to assign a function for Bves in epithelial maintenance and

integrity and establishes that Bves may be an important molecular component of the TJ.

The mechanisms that control the sealing capabilities of the TJ are poorly

understood. However, a measure of the transepithelial electrical resistance has become
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the gold standard for assessing whether proteins influence TJ integrity. We show that

depletion of Bves in human corneal cell lines results in a breach of barrier function, as

indicated by a drop in the TER.  Furthermore, we have shown previously that similar

treatment of these cells shows a faster migration of cells in a wound-healing assay.

This finding suggests that without Bves, cells are more motile due to a decrease in the

adhesive nature of the cells, potentially due compromised cell junctions. Currently,

occludin and the claudins are the only known membrane-spanning proteins forming the

backbone of the TJ strands. The finding that occludin-null mice can form functional

junctions further suggests that other molecules must contribute to TJ integrity (Saitou et

al., 2000). Sufficient evidence is lacking as to the exact mechanism of Bves action at

the TJ. However, this study is the first demonstration that Bves localizes to a specific

junction and is a critical step in affixing a specific function to Bves during epithelial cell-

cell adhesion.

In conclusion, we find Bves to be a functional component of the TJ complex.

However, this finding is merely reveals the “tip of the iceberg” of how Bves could be

involved in cell-cell interactions in epithelia. Clearly the investigation of Bves in epithelial

cell types is not complete. However, this study has advanced our knowledge on Bves

significantly. Prior to this analysis, the expression and distribution of Bves in epithelia

was not defined, and a function in epithelia had only been a speculation. Now, both the

localization and a function at a specific cell junction have been assigned. Future studies

will be directed at determining the protein domain responsible for interaction with the

ZO-1 protein complex in order to unravel how Bves is important for TJ function. Taken

together, the functional insight provided by this study gives a new meaning to the
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expression pattern observed during embryogenesis. At present, this work is in press

(Osler et al., 2005).
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CHAPTER IV

XBVES IS NECESSARY FOR EPITHELIAL MORPHOGENESIS AND INTEGRITY
DURING XENOPUS LAEVIS DEVELOPMENT

Introduction

The work in this chapter focuses on elucidating how the Xenopus homolog of

Bves, Xbves, functions in epithelial development and morphogenesis in vivo. The

ultimate goal is to connect an in vivo function with a role of Bves/Xbves at epithelial cell

junctions, in accordance with our central hypothesis that Bves proteins are essential for

epithelial cell-cell interactions and integrity. Upon the isolation of Xbves from a cDNA

library, a detailed study of mRNA and protein expression was initiated (Ripley et al.,

submitted). These early studies from our laboratory demonstrate the presence of Xbves

in epithelia during the earliest phases of frog development and the conservation of its

adhesive function. To explore the function of Xbves, global disruption of Xbves using a

MO-based knock-down approach was performed. Xbves depletion was found to arrest

development at gastrulation, a stage of development where epithelial tissues are

undergoing dynamic morphogenetic movements. This first demonstration of Xbves

function underscored the essential nature of Xbves during epithelial morphogenesis and

warranted a further and more comprehensive look at the fundamental role of Xbves in

X. laevis development. To expand this investigation, Xbves was knocked down using

MO at various concentrations and developmental stages. Xbves depletion in a clonal

population of cells inhibits proper movements and alters the ultimate fate of the affected

progeny. Disruption of Xbves in one half of an embryo yields defects in epithelia of the
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eye, epidermis, and other structures. While a thorough analysis of our findings from

these two methods is far from complete, taken together, the outcomes of these

experiments are consistent with a role for Xbves in epithelial morphogenesis and

regulation of cell adhesiveness.

 Movement and reshaping of epithelia are essential during embryogenesis. In

vertebrate embryos, some of the first and most fundamental examples of epithelial

morphogenesis are those that drive epiboly and gastrulation (Berditchevski, 2001;

D'Urso et al., 1990; Heasman et al., 1994a; Keller, 1980; Nieuwkoop, 1973). In X.

laevis, these movements are governed, in part, by rearrangements of cells within

epithelia (Keller et al., 2003; Wallingford et al., 2002). Epiboly in X. laevis is regulated by

the epithelial movements, which include the intercalation of deep cells and thinning of

surface cells that affect spreading of the animal cap tissue towards the vegetal pole

(Keller, 1991). These morphogenetic movements are governed by convergence and

extension, which ultimately contribute to the closure of the yolk plug and neurulation.

The activity of different signaling and adhesive systems permit repositioning and

reorientation of cells within epithelial sheets that occur during gastrulation and epiboly

(Keller, 1991; Wallingford et al., 2002). A dynamic expression of cell adhesion

molecules is correlated with these embryonic movements. For example, EP/C and XB/U

cadherins are expressed in cells at the marginal zone undergoing convergent extension

(Kuhl et al., 1996; Lee and Gumbiner, 1995; Zhong et al., 1999). During involution,

integrin and fibronectin interactions are required for the migration of cells along the

blastocoel roof (Beddington and Smith, 1993; Winklbauer, 1990).  While many critical

players involved in these processes have been identified, there is still far from a
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complete understanding of the cell biology and biochemical mechanisms/processes that

balance plasticity with structural integrity in epithelial sheets during tissue elongation,

and involution (Bradley et al., 1998; Brieher and Gumbiner, 1994; Broders and Thiery,

1995; Cordenonsi et al., 1997; Fagotto and Gumbiner, 1994; Heasman et al., 1994a;

Heasman et al., 2000; Marsden and DeSimone, 2001; Wallingford et al., 2001b).

Following gastrulation, epithelial movements and rearrangements are also

critically involved during later stages of development for proper formation of specific

organs or tissues. Of specific interest are the epithelial interactions involved in

epidermal and eye development. The ectoderm/primordial epidermis surrounds and

protects the developing embryo throughout development. The embryonic skin

differentiates to become a two-layered structure, with a columnar epithelial outer layer

of tightly adherent cells over an inner, sensorial layer of less adherent epithelial cells

(Deblandre et al., 1999). However, in addition to its protective function, it exhibits a high

degree of proliferation and differentiation at specific sites where it contributes to the

formation of other organs, for example, in the head region where the neural tube and

eye will develop. The ectoderm exhibits a high expression of adhesive molecules,

including desmosomes (Ohga et al., 2004) and a variety of cadherins. Specifically, the

spatio-temporal expression of cadherin proteins suggests that cell adhesion/interactions

are essential to the structure, integrity, and fate of the epidermis (Angres et al., 1991;

Izutsu et al., 2000; Kintner, 1988). For example, the specific expression patterns of N-

cadherin and E-cadherin help drive the process of neurulation.  N-cadherin is expressed

in the region of the ectoderm fated to become the neural tube, while E-cadherin is

expressed in the flanking areas (Kintner, 1992). The N-cadherin-positive neural plate
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epithelium undergoes dynamic cellular rearrangements and shape changes in order to

fold and involute, forming the neural tube. This example underscores the requirement of

cell adhesion molecules in organogenesis and illustrates how a molecule like Xbves

may function to regulate epithelial interactions during embryogenesis.

The formation of the vertebrate eye is as an ideal model system for epithelial

differentiation and cell adhesion processes (Jeffery, 2001; Pichaud and Desplan, 2002;

Tripathi et al., 1991). The eye is derived from three embryonic sources: neuroectoderm

of the diencephalon, head mesoderm (product of neural crest), and surface ectoderm.

During neurulation the ectoderm invaginates and pinches off, forming the

neuroectoderm/neural tube (Colas and Schoenwolf, 2001). Next the neuroectoderm of

the diencephalon expands to form the optic vesicle, which will ultimately give rise to the

retina. The optic vesicle comes into proximity with the surface ectoderm and induces it

to form the lens placode (Baker and Bronner-Fraser, 2001; Faber et al., 2001). This

epithelial placode quickly thickens, forms an invaginating cup and loses contact with the

surface to form the lens vesicle. Meanwhile, the head mesoderm contributes to the iris

and other supporting cells.  Subsequently, the newly formed lens sends reciprocal

signals back to the surface ectoderm and induces the formation of the cornea (Beebe

and Coats, 2000). At this time, all the elements needed to form the eye are present and,

thereafter, these embryonic structures will be modified and reshaped to form the adult

eye. Following lens induction, retinal development begins as the epithelial optic vesicle

invaginates to form a double-walled optic cup. This causes the apical surfaces of the

inner and outer retinal progenitor layers to be apposed. The outer epithelial layer of the

retina will become a simple, cuboidal retinal pigmented epithelium (RPE), while the
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inner layer will differentiate into a multilayered and synaptically-competent neural retina

(Cepko, 1993; Livesey and Cepko, 2001).

Cell adhesion plays a critical role in the induction, growth, movement, and

stability of epithelia during formation of the eye (Erdmann et al., 2003; Xu et al., 2002;

Zelenka, 2004). Interactions between these epithelial structures as well as adjacent

mesenchymal cells are critical for eye development and disruption of any one

component can lead to major defects in the entire structure. For example, cell adhesion

is required for lens development, detachment of the lens, and the morphogenetic

movement of cells in the lens vesicle.  The cells of the lens express proteins of the tight,

adherens and gap junction (Leong et al., 2000; Lo et al., 2000; Zampighi et al., 2000),

and lens differentiation is blocked by antibodies to N-cadherin (Erdmann et al., 2003;

Ferreira-Cornwell et al., 2000).  Also, contact between the optic vesicle and lens via the

ECM is thought to be important during early eye development to “cement” the two layers

together (Webster et al., 1984). Regulation of cell adhesion plays an essential role in

the production of the cornea (Meier, 1977; Xu et al., 2002). Adhesion of corneal

epithelium is essential for formation and maintenance of barrier function and also to

allow stem cells to migrate in as a sheet in the event of corneal wounding.  TJs,

desmosomes, AJs and gap junctions are present between these cells and contribute to

the integrity of the corneal epithelium (Suzuki et al., 2003; Wang et al., 2004). Cell

adhesion plays a critical role in the intimate association of the epithelial layers of the

retina and is essential to both the establishment of the RPE as an effective blood-retinal

barrier and the proper lamination of the mature neural retina (Bora et al., 1999;

Erdmann et al., 2003; Jablonski and Ervin, 2000; Jensen and Westerfield, 2004; Kojima
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et al., 2002; Raymond and Jackson, 1995). Also, without N-CAM, retinal morphogenesis

is impaired (Buskirk et al., 1980; Gundersen et al., 1993), and the loss of TJ function

leads to deleterious effects in the development of the RPE (Jensen et al., 2001; Jensen

and Westerfield, 2004). Consequently, the eye is a unique developmental system to

study epithelial movement, morphogenesis and function. The formation of each layer

relies on proper interaction within the epithelial layer itself, but also with the other layers

of the eye and, thus, it serves as an excellent model to analyze epithelial cell adhesion.

Because epithelial movements are important to so many processes and stages

of development, identification of new classes of molecules that regulate these

movements is critical for a meaningful understanding of early development as well as

epithelial morphogenesis. No studies have, to date, demonstrated a function for any pop

family gene in epithelia in vivo, particularly during early development. Because early

epithelial morphogenesis in the amphibian embryo is well characterized and yields

predictable defects in epiboly and gastrulation with experimental intervention, X. laevis

embryos provide an excellent model to test Bves function. Furthermore, epithelial

movements involved in later stages of development such as those involved in eye

maturation provide an opportunity to study the role that Bves in organ formation.

The X. laevis homolog of Bves was identified in 2003 by A. N. Ripley, who

performed the initial characterization studies (Ripley et al., submitted). Sequence data

obtained from cDNA clones predicted a 338 amino acid protein that was termed X.

laevis bves (Xbves). The predicted sequence contained the canonical Bves/Pop protein

family structure, including a short N-terminus with two invariant N-linked glycosylation

sites, three hydrophobic domains separated by two intervening loops and a long C-
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terminus (Knight et al., 2003). Xbves protein shared over 90% amino acid similarity with

mouse and chick Bves, with significant variation in the N-terminus (2-28) and in the

extreme C-terminus (316-338). Like chick bves, Xbves confers adhesiveness to

fibroblast cells following transfection, as we observed with other Bves homologues, and

traffics to cell contact points of A6 X. laevis kidney epithelial cells, demonstrating a

conserved function across species (Ripley et al., submitted).

The distribution of Xbves mRNA and protein during early embryogenesis was

determined (Ripley et al., submitted). Whole mount in situ hybridization clearly detected

Xbves transcripts throughout the unfertilized egg (data not shown), but as cleavage

initiates, the distribution of Xbves mRNA was restricted to the animal pole (Figure

21A,B). During gastrulation (stages 10-12), epithelial surface cells expressed Xbves,

while yolk plug cells remained negative (Figure 21C). From stages 12.5 to 35, Xbves

expression persisted in the dorsal regions of the embryo and Xbves became

progressively restricted to specific structures, including the heart, somites, cement

gland, and eyes (Figure 21D-E). Regions of immunoreactivity with an antibody to Xbves

corresponded to those that expressing Xbves mRNA. Xbves protein is detected in all, or

nearly all, epithelia in the gastrulating embryo and is predominantly localized to the

interface between epithelial cells (Figure 21F,G). The broad pattern of Xbves

expression in the early frog embryo is consistent with our previous studies that find this

protein in epithelia undergoing significant shape changes during a myriad of

morphogenetic processes in the embryo (Osler and Bader, 2004; Ripley et al., 2004;

Wada et al., 2001). This distribution along with its demonstrated adhesive properties

predicts a broad role for Xbves in X. laevis gastrulation. Throughout neurulation and
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tadpole stages, Xbves protein expression persisted in the dorsal ectoderm/epidermis,

the underlying neural tube and optic vesicle. Other epithelial structures derived from

mesoderm such as the notochord and somites were also positive for a-Xbves. Later,

epithelial elements such as the epidermis (Figure 21H), velar plate, pronephros,

somatically-derived striated muscle, epithelial layers of the eye (Figure 21I), and heart

expressed Xbves protein. Clearly, this characterization of Xbves message and protein

distribution demonstrates high expression in epithelia, suggesting a conserved role of

Xbves during frog development. Thus, these findings support the use of X. laevis as an

in vivo model system to study the function of Bves/Xbves during development and in

epithelia.

In the absence of recognizable functional protein motifs, known interacting

protein partners, or linkage to any established molecular pathway, a broad-based

approach to ascertain the function of Bves proteins in development was necessitated.

Global MO knock-down of Xbves during early development leads to a general arrest of

gastrulation characterized by the failure of epiboly, yolk plug closure, involution and

mesodermal patterning. When a 40 ng dose of Xbves or control MOs was injected into

both cells of the two-cell embryo, Xbves MO-injected embryos appeared to undergo

normal cleavage and are indistinguishable from control MO-injected and non-injected

embryos until stage 9+ (Figure 22A,F). At stage 10, slight differences in the size of the

yolk plug and position of the advancing ectoderm suggested retardation or inhibition of

the cell movements of epiboly. Xbves MO-injected embryos began to form a dorsal

blastopore lip, but by stage 11, movement of the epithelial layers was greatly inhibited

(Figure 22G).  Xbves MO-injected embryos had a large yolk plug, did not form a neural
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plate and became necrotic soon thereafter (Figure 22H). Control MO had no effect,

except a slight delay in development, completing gastrulation and forming a neural plate

along the dorsal axis (Figure 22B,C). Disruption of Xbves function also affected

mesoderm formation and patterning, as the expression of two mesodermal markers,

goosecoid and Xbra, (Cho et al., 1991; Smith et al., 1991), was altered in Xbves MO

injected embryos (Figure 22I,J). These data demonstrated that mesoderm formation

was not inhibited with loss of Xbves function, but that the proper movement and

positioning of mesendoderm was severely disrupted. The specificity of the morphant

phenotype was verified by co-injection of MO-resistant Xbves RNA with Xbves MO. In

those embryos, the gastrulation defect was rescued (Figure 23). Importantly, the

efficacy of MO in Xbves elimination is demonstrated by assessment of the loss of

protein, and rescue experiments show the nearly complete reversal of the morphant

phenotype with reinstatement of Xbves function. The Xbves message and protein

expression profile in X. laevis embryonic epithelia coupled with the MO knockdown

studies reveal an important role for this protein in epithelial morphogenesis.

All of these anomalies in Xbves morphant embryos have been previously

attributed to defects in epithelial movement influenced by the essential roles of cell-cell

and cell-matrix adhesion molecules in X. laevis gastrulation (Brieher and Gumbiner,

1994; Heasman et al., 1994a; Heasman et al., 1994b; Levine et al., 1994; Marsden and

DeSimone, 2001). While these phenotypes vary, global inhibition of any of these

molecules results in a cessation of epithelial movement and a failure of embryos to

rearrange cell sheets during gastrulation. For example, inhibition of EP/C-cadherin

decreases intercellular adhesion and disrupts blastocoel integrity (Heasman et al.,
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1994b) while disruption of XB/U-, C-, or E-cadherin prevents embryos from completing

gastrulation (Kuhl et al., 1996; Lee and Gumbiner, 1995; Levine et al., 1994).

Furthermore, disruption of the integrin/fibronectin interaction with a-fibronectin

antibodies inhibits gastrulation by affecting radial intercalation movements and cell

polarity (Longo et al., 2004). Thus, it is reasonable that depletion of a component such

as Xbves from epithelial adhesion complexes may result in a similar phenotype.

Initial studies from our laboratory have demonstrated the presence of Xbves in

epithelia during the earliest phases of frog development and the conservation of its

adhesive function. To further investigate Xbves function during embryo morphogenesis,

we expand these studies by disrupting Xbves with MO using two distinct methodologies.

First, Xbves knockdown in a select clone of cells was achieved by injecting one of 32

cells. Clonal inhibition of Xbves activity within a specific blastomere and its derivatives

completely randomizes the movement of progeny within otherwise normally

differentiating embryos. The resulting data demonstrate that Xbves plays a critical role

in epithelial morphogenesis and specifically in the cell movements essential for the

large-scale epithelial rearrangements that occur during early X. laevis development. In a

second experiment, half of the embryo was depleted of Xbves by injecting one of two

cells following the initial cleavage event. The major finding from this analysis is a

significant disruption in epithelial cell types following neurulation. Initially, we chose to

focus on analysis of the epidermis and the eye, both of which are severely affected by

Xbves depletion. Importantly, Xbves is present during critical periods of eye and

epidermal development and is in a position to mediate cell/cell interaction events. The

present study of the “eyeless” embryos is a work in progress, with full analysis currently
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underway. However, to this point, the findings clearly demonstrate the importance of

Xbves in epithelial development in the early X. laevis embryo.

Materials and Methods

Animal and embryo care

Adult X. laevis were obtained from commercial sources (Xenopus Express). X.

laevis eggs were harvested and fertilized by standard methods (Danilchick et al., 1991)

and staged according to Nieuwkoop and Faber (1967).

mRNA constructs for injection

An Xbves cDNA that lacks 5’UTR and begins with the start ATG codon was

constructed and used to test the rescue capacity of cloned Xbves mRNA with MO

treatment. This transcript excludes the most of the MO target sequence found solely in

the 5’UTR (i.e. the first 17 bp of the MO). This construct successfully rescued Xbves-

MO induced developmental abnormalities. Nuclear lacZ mRNA was synthesized by

mMESSAGE mMACHINE (Ambion) and co-injected into developing X. laevis embryos.

Morpholino treatment

A series of antisense MO had been synthesized previously (Gene Tools). The

most efficacious morpholino in terms of eliminating protein synthesis in developing

embryos was: ATCTTTCTTATACCTGGATGTGCAG that contains the reverse

complement to the AT of the start codon and sequences immediately 5’. Control and
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experimental MO was dissolved in water and diluted in water to appropriate

concentrations based on the experimental design. The sense complement had no

influence on development up to 80 ngs/blastomere.

In one set of experiments, 5 or 10 ng of control and Xbves MO plus 1 ng of lacZ

tracer RNA were injected into the A1 blastomere of the 32-cell embryo. Animals were

maintained for selected periods of time up to stage 35 and b-gal expressing cells were

identified according to published protocols (Morasso et al., 1995). Staining of control

and experimental groups were measured and the average dimensions determined using

the Student’s t-test. In a second set of experiments, control or Xbves MO was injected

into one cell of the 2-cell embryo (20 ng/cell), with 1.5ng of lacZ tracer RNA in a 5 nl

volume. Xbves MO or control MO (20 ng) was injected into 1 of 2 cells of a 2-cell

embryo.   Embryos were allowed to develop to 2 days (stg 35-38). This experiment was

designed to eliminate Xbves in one half of the embryo. The uninjected half of the

embryo develops normally and serves as an internal control (this experiment was

initially designed by A.N. Ripley). Whole mount, lacZ-stained embryos were

photographed and captured by Magnafire (NIH).

In situ and histological analyses

Processing of embryos was performed as described (Sive et al., 2000). Embryos

for whole mount analysis were fixed in MEMFA for 20 minutes to overnight and

subsequently washed in PBS and transferred to MeOH for long-term storage at -20°C.

Embryos selected for sectioning were paraffin embedded and stained with hematoxylin
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and eosin. LacZ injected embryos were processed for b-gal staining and refixed with

MEMFA prior to storage in MeOH.

Whole mount in situ hybridization analysis was conducted according to published

methods (Harland, 1991). Xbves, Xbra (Smith et al., 1991), goosecoid (Cho et al., 1991)

probes were DIG labeled and hybridized with experimental or control embryos.

Following substrate color reaction, embryos were post-fixed in Bouin’s fixative, bleached

for 1-2 hours, and stored in methanol.

For clonal analysis of lacZ-labeled A1 progeny, images of cross-sectioned stage

12 embryos were analyzed to determine the location of labeled nuclei relative to the

embryo surface. Randomly selected blue nuclei (>250) were counted for each group

and were scored as 0-20, 20-40, 40-60 and >60 mm from the surface. The statistical

significance was determined by Chi square analysis.

Electron microscopic analysis

Embryos were fixed in 2.5% glutaradehyde in cacodylate buffer for 2 hours at

room temperature, washed in PBS, and stored in cacodylate buffer. Further processing

and generation of thick and thin sections were performed by standard methods in

collaboration with the Vanderbilt Research EM resource laboratory. Statistical analysis

of epidermal cell size was performed using Microsoft Excel and the Student’s T-test.

BrdU analysis

Cell proliferation was assessed using a BrdU incorporation kit by (Roche). BrdU

is incorporated into DNA and provides a measure of DNA synthesis, and thus cell
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proliferation. Cells that have incorporated BrdU into dividing cells can be detected using

an antibody to BrdU and a fluorochrome-conjugated secondary antibody. Briefly,

embryos at 1 day post fertilization were immersed in BrdU containing media (40ul of

1000x BrdU diluted in 0.1x Steinberg’s solution) for 24 hours. BrdU-exposed animals

were collected at ~stage 35. Embryos were flash frozen in OCT and sectioned. Sections

were incubated with a-BrdU antibody (1:10) and fluorescence of the fluorescein-coupled

secondary antibody was evaluated.

Results

Progeny of the Xbves-depleted A1 cell display rogue cell movements

The initial MO-injection experiment, performed by A.N. Ripley, focused on a

global depletion of Xbves and was accomplished by injecting both cells of a two-cell

embryo after the first cleavage event (Ripley et al., submitted). This treatment led to a

general inhibition or altered regulation of epithelial movement and an overall failure in

development. After confirming the results of A.N. Ripley, I expanded these studies by

determining whether Xbves knockdown within a clone of cells would alter their

movement relative to normally developing cells. The A1 blastomere of the 32-cell

embryo was injected with control and experimental MO along with a nuclear-targeted

lineage tracer. We selected the A1 blastomere (note: there are two A1 blastomeres at

the 32-cell stage) as the target cell for this experiment because the progeny of A1, the

dorsal animal clone, are thought to undergo significant morphogenetic movements of

convergence, extension, and intercalation during gastrulation (Bauer et al., 1994),
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(Figure 24). Extensive fate mapping studies have been published that determine the

developmental program of all cells at the 16- and 32-cell stages. These studies have

defined that the descendants of the A1 cell ultimately reside in cranial regions and

somites. Thus, the cell derivatives of the A1 blastomere exhibit dynamic movements

and predictably assume a specified identity as organ structures begin to form (Figure

24), making this an appropriate target cell to assess the role of Xbves in cell movement

and cell determination.

To examine the role of Xbves in the controlled movement of epithelial cells

towards the blastopore, we used MO to disrupt the expression of Xbves in the A1 cell at

the 32-cell stage. Successfully injected cells were identified by a b-gal expression.

Gross morphology was indistinguishable in groups of Xbves and control MO-injected

embryos over the period of development studied but striking differences were observed

in the distribution of A1 progeny between control and experimental groups. In the

controls (uninjected or control MO-injected), labeled A1 descendents formed a tightly

compacted continuous strip of cells at stage 12 (Figure 25A,D, Figure 26A). This

configuration of cells has been observed previously and results from convergent

extension movements in the gastrulating embryo (Bauer et al., 1994). This strip was

narrowest at the blastopore where cells had begun involution and broadest near its

anterior margin. The tightly packed array of cells was observed in 73% (117/161) of

control embryos (Figure 25I). The remaining 27% embryos display a pattern of cell

movement that is more irregular. In contrast, progeny of Xbves MO-injected A1

blastomeres had a completely different distribution (Figures 25B,E, 26B). Most clones

had a highly irregular shape and did not extend to the blastopore. Some clones were
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located on the pole opposite the blastopore and did not possess a discernable narrowed

leading edge orientated toward the blastopore. Other Xbves MO-injected clones had a

diffuse appearance with many interspersed non-labeled cells (Figure 25C,F). A small

subset exhibited a narrowed leading edge but this did not reach the blastopore lip.

Morphometric analysis of these clones determined that 73% (55/72 embryos with 5 ng

of Xbves MO) and 82% (29/35 embryos with 10 ng of Xbves MO) had an irregular

shape that did not extend to the blastopore (Figure 25I). The remaining 27% (5 ng MO)

and 18% (10 ng MO) of embryos show a pattern similar to controls, demonstrating a

slight dose-dependency of the MO-induced defect. Also, the average width of the

labeled patch of cells from 34 randomly selected Xbves MO-injected clones was 855

mm, compared to 585 mm in control embryos (p<0.0001; Student’s t-test).

To quantify the extent of dysregulation, the stage 12 embryos were fixed and

sectioned. Histological analysis of sections through control and Xbves MO-injected

embryos revealed that lacZ-labeled cells had differing distributions relative to the

embryo surface. Sections were divided into four equivalent zones with the uppermost

epithelial cell layer classified as zone 1. Zones 2, 3, and 4 represent the layer of cells

penetrated by the random migration of b-gal stained cells.  As seen in Figure 25G,

labeled cells of the control group were closely compacted near the outer surface of the

blastocoel roof. In contrast, a substantial number of Xbves MO-injected cells were

located in deeper layers of the animal cap (Figure 25H, arrows). To quantify the result,

the location of labeled nuclei relative to the surface was measured in 20 mm increments.

The number of cells within each increment (0-20 mm, 20-40 mm, 40-60 mm, 60+ mm) of

control embryos was compared to that of Xbves MO-injected embryos. As seen in
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graphical form (Figure 25J), the distribution of cells from Xbves MO-injected

blastomeres shifted away from the embryo surface indicating a repositioning within

those epithelial structures. Embryos injected with Xbves MO demonstrated a significant

number of cells in zones 2, 3, and 4 as compared to embryos injected with control MO

(p<0.001, by ANOVA with Bonferroni test for multiple comparions).

Fate maps have established that A1 progeny contribute to anteriorly located

tissues in the head region including the skin, connective tissue, and neural components,

as well as to the head and trunk somites (Moody, 1987). To determine whether cell fate

and location was altered by Xbves depletion, control and experimental embryos were

allowed to develop to stage 37 (two days post fertilization). During this timeframe, the

gross morphology and behavior of control and experimental embryos were

indistinguishable. As seen in Figure 27A, control injected cells faithfully differentiated

into predicted structures (as diagrammed in Figure 24) with little “scatter” of labeled

cells. Note that b-gal staining in the head totally obscured visualization of the eye and

that somites were labeled (Figure 27A).  Section analysis demonstrated the extensive

incorporation of lacZ-labeled cells in the eye, skin, brain, connective tissue of the head

(Figure 27D) and anterior somites (data not shown). b-gal-positive cells within the

deepest portions of the embryos indicated the lacZ staining could penetrate throughout

the embryo.

In contrast, the progeny of Xbves MO-injected A1 cells were found to have a

wide and inconsistent range of distributions throughout the embryo. In most cases, b-

gal-positive cells were dispersed throughout the embryo without concentration in any

particular structure and, notably, with no enrichment in the head or somites (Figure
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27B,C). Additionally, a subset of embryos had labeled cells located exclusively in the

caudal region, a position normally devoid of A1 progeny (compare to Figure 27A). In

sections, the b-gal-stained nuclei were scattered primarily in surface structures including

the epidermis and adjacent connective tissue space. Cells were almost always absent

from deep structures such as the brain, spinal cord and digestive system (Figure 27E-

G). Importantly, viable cells were always observed in experimental animals

demonstrating that Xbves inactivation was not generally toxic to cells. These data

suggest that inhibition of Xbves function resulted in loss of regulated cell movement and

an apparently random distribution of progeny throughout the embryo. Furthermore, we

postulate that this outcome results from a dysregulation of cell adhesion and/or cell-cell

interaction, which supports a function for Xbves in epithelial junction integrity.

Depletion of Xbves results in epithelial defects

The X. laevis embryo is distinct in that, following cleavage into two cells, each

cell gives rise to either the left of right half of the embryo (Hirose and Jacobson, 1979).

This property provides a unique opportunity to challenge the developmental potential of

one side of the embryo, while the other side serves as an internal control. In the

previous “global” knockdown study, a high dose of Xbves MO (40 ng) injected into both

cells of a two-cell embryo results in a block in early epithelial movements. To explore

how developing embryos respond to selective inhibition of Xbves function in one half of

the embryo, one of two cells of a two-cell embryo was injected with 20 ng of Xbves MO.

This is a lower dose than used for previous studies. Following the titration of MO

injection into one of two cells, 20 ng was sufficient to generate the “eyeless” defect and
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was used for the remainder of our studies.  Control embryos are either uninjected or

treated with 20 ng of control MO in one of two cells. Xbves MO-injected embryos are

able to undergo gastrulation and demonstrate no overt developmental inhibitions up to

tadpole stages (Figure 28A-C). Occasionally, MO-injected embryos are slightly delayed

in development as compared with controls. However, as the embryos continue to grow,

the resultant phenotype is striking (Figure 28D,E). While the embryos are able to

generate head, trunk, and tail structures, their development is significantly disturbed.

MO-injected embryos are much shorter and exhibit a severe body curvature at stage 42

(Figure 28D). Often the embryos curve inward on the affected side. Uninjected or

control MO-injected embryos are longer and develop a straight tail structure with dorsal

fin that the experimental embryos appear to lack. By five days of development, a

distinction is easily made between the MO-injected tadpoles and the control embryos

(Figure 28E). The animals are severely deformed and are even shorter and more curled

than even those at two days of development. Furthermore, the state of the body

curvature causes the animals to swim in circles. Pigmentation also appears to be

increased in Xbves MO-injected embryos. Clearly, the depletion of Xbves in one of two

cells after the first cleavage event results in severe defects in epithelial tissues which

appear restricted to one side of the embryo. This finding again highlights the importance

of Xbves for epithelial development and suggests an important function in regulation

and maintenance of this cell type. Co-injection with MO-resistant Xbves mRNA rescues

these embryos and allows development to proceed normally, as observed in Figure 23.
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Eye development is inhibited following Xbves MO injection

Depletion of Xbves protein in one of two cells at the two-cell stage, and its

progeny, resulted in severe malformations on one side of the embryo. A detailed close-

up external examination of Xbves MO-injected embryos at stages 34-37 reveals that

embryos are unsuccessful in the formation of an eye on one side (Figure 29A4, arrow,

A5, asterisk), as compared to controls (Figure 29A1-3). This is most readily apparent by

the lack of the dark round eye structure on one side of the head, which is given its

pigmented color from the RPE (Figure 29A4,6, arrowheads). Histological analysis of

transverse sections through Xbves MO-injected embryos reveals striking internal

differences (Figure 29B). While the formation of ectodermal, mesodermal, and

endodermal layers appears to proceed without obstruction on both sides of the embryo,

the disruption of epithelial structures, including severe eye defects, was a hallmark of

this phenotype. One side of the embryo exhibits a developing eye, in which a retina and

lens structure can be clearly distinguished (Figure 29B1, box2). Higher power images

allow the visualization of the RPE, the dark, pigmented cell layer around the retina

(Figure 29B2,4, arrowheads). In addition, the epidermis covering the inner structures is

thin and smooth (Figure 29B4, arrow). The other half of the embryo, presumably the

Xbves-MO injected side, appears highly disorganized. Eye structures can be resolved,

although highly undeveloped, and there is an overall loss of tissue integrity throughout

the entire side (Figure 29B1). A close examination of the eye region reveals that the

RPE surrounding the defective eye is lacking (Figure 29B3). As seen in Figure 29B5,

the lens is not clearly separated from either the retina or overlying epithelium. Normally,

the covering epidermal layer over the lens is fated to form the cornea. On the disrupted
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half of the embryo, this layer is much thicker, and ruffled, as compared with the smooth,

ordered epithelium on the control side (Figure 29B5, arrow). In addition to clear defects

in eye formation, the entire outer epidermis appears to be affected, and the detached

clumps of cells within the body (neural, pharangeal and cardiac) cavities suggest that

internal tissue integrity is disrupted (Figure 29B1, arrows). Also, note that both whole

embryos and transverse sections show a body curvature, an outcome characteristic of

this Xbves-MO injection experimental protocol. Internal structures such as the heart and

liver diverticulum and lateral mesoderm tissue can also be distinguished and do not

appear to be as developmentally delayed or inhibited as the eye.

Coinjection with lacZ tracer confirms specificity of MO-induced defects

To establish the specificity of Xbves MO-treatment and to confirm that the

“eyeless” side correlates with the half of the embryo receiving the MO, co-injection of

lacZ mRNA and Xbves MO into one cell of a two-cell embryo was performed (Figure

30A). In early tadpole stage whole embryos, b-gal staining can be detected in nearly all

cells on the injected half of embryos throughout varying stages of development, ranging

from stage 18 to stage 27-28 (Figure 30B-E). Also demonstrated in Figure 28A-C, no

overt external defects due to MO-injection are observed at these stages. Although some

crossover of cells from one half to the other does occur infrequently (see Figure 30D,

arrow), b-gal expressing cells are primarily restricted to one side of the embryo.  This

system is ideal since the MO-injected cells, marked in blue, provide a high contrast from

the uninjected side, which serves as an internal control. As with other injection
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A

B

C

D

E

Figure 30. LacZ mRNA injection analysis.
LacZ tracer mRNA injection into 1 of 2 cells labels half of a
developing Xenopus embryo. Injected cells can be detected by
labeling for b-galactosidase. Embryos of various stages received
lacZ in 1 of 2 cells following the first cleavage event (A). Half of a
stage 18 (B), stage 22 (C), stage 25 (D) and stage 28 (E) embryo
has been labeled blue after fixation and processing for b-gal.

121



protocols, morphological aberrations were not observed in uninjected control embryos,

control MO-injected embryos, or embryos co-injected with rescue RNA.

Embryos lacking Xbves consistently demonstrate one-sided epithelial defects

To probe further into the defects observed with Xbves depletion in one half of an

embryo, a detailed histological examination of stage 35 MO/lacZ-injected embryos was

performed following paraffin embedding and eosin staining (Figure 31). Co-injection with

lacZ provides a confirmation of which cells are Xbves-depleted and allow a confident

assessment of cellular defects that is not possible with unlabeled embryos (Figures

30,31). Three whole mount embryos were examined to demonstrate the consistency of

the developmental aberrations. Transverse sections through these embryos reveal that

one half of the embryo contains b-gal expressing cells, while the other side is nearly

free of any blue cells. The labeled side of the embryo exhibits external and internal

defects, indicating that MO-induced Xbves depletion is responsible for the alterations.

Specifically, as shown in Figure 31D-F, b-gal positive cells were located on the half of

the embryo lacking a developed eye and several disrupted cell layers and tissues. On

the b-gal expressing MO-injected side, the outer epithelial layer is highly irregular, much

thicker, and often has a ruffled appearance (Figure 31E4). Contrarily, the epidermis

found on the unlabeled, control side is a thin, smooth, cell layer, as observed in Figure

29. Note the sharp contrast in cell morphology from the uninjected, unlabeled side to the

b-gal expressing/MO-injected half of the embryos (Figure 31F1, arrow). In several

cases, the labeled epidermis has lost integrity and has separated from internal cell
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Figure 31.  Xbves MO induces global epithelial defects on injected side of embryo.
b-gal positive cells signify MO-injected progeny in three stage 35 whole mount embryos
(A-C) and sections labeled with eosin (D-F). Gray lines indicate approximate location of
cross sections (A-C). The uninjected side of embryos exhibits a fully developed eye (D2-
5, E1, F2-4), with a single layer retinal pigmented epithelium around the retina, a circular
lens structure and a smooth corneal epithelial layer covering the lens (D4, E1,F3). All
three embryos lack a fully developed eye on the side co-injected with LacZ mRNA and
Xbves MO, as indicated by the absence of the RPE on the side with blue cells (D-F,
green arrows). The epithelial layer on the ‘blue’ side is also thicker, often bubbled, and
occasionally even separated from the internal layers of the embryo (D-F, arrowheads).
Note the abrupt change of cell morphology of the outer epithelium from the uninjected to
injected side, most apparent in F1 (arrow).
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layers (Figure 31D4,E6,F6, arrowheads). However, despite these defects, the overall

structure of the embryo is maintained and intact.

As a gross morphological assessment of whole embryos and preliminary

sectioning had predicted (Figure 29), this inspection revealed that the arrest of eye

development occurs to some degree in all of the three stage 35 embryos examined.

Retinal development is initiated but the stage of optic cup maturation is highly variant

when compared to the contralateral control. At present, it is unclear whether retinal cell

types are completely blocked in their differentiation or if they have emerged but are

incapable of proper alignment and significant differentiation. In some embryos, the

pigmented retina does appear to form, but does not have significant accumulation of

granules (Figure 31D3,5). Further analysis is necessary to determine the degree to

which RPE differentiation has taken place. Furthermore, formation of the lens and the

cornea is affected also. While a rudimentary invagination of surface ectoderm is

observed, lens development appears to be inhibited beyond that point. Delamination of

the vesicle from the surface is variable but formation of a hollow vesicle and subsequent

alignment of lens fibers are never detected. Finally, surface ectoderm that would

presumably differentiate into cornea is highly unpatterned. This epithelium is very

disorganized and appears ruffled and unpolarized (see Figure 29B5). Strikingly, this

epithelium is significantly thicker than the contralateral control side (see Figure 29B4).

This result is also observed within the epithelia of the lens and retina. Formation of the

otic vesicle on the MO-injected/labeled half is also not complete (Figure 31D6, E3, F5).

The defects observed in the epidermis and eye correlate with a high expression of

Xbves message and protein. Thus, we have determined that inactivation of Xbves
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activity leads to an inhibition of retinal differentiation, lens delamination, corneal

formation, and otic vesicle formation. Taken together, inhibition of Xbves function

produced a phenotype consistent with our central hypothesis that this protein plays an

essential role in the morphogenesis of epithelia, specifically in eye development.

However, the exact mechanism underlying this phenotype is unknown. Other structures

expressing Xbves such as the heart and somites appear to be present in all embryos

examined, however a detailed investigation to determine the nature of defects in these

tissues has yet to be performed.

Ultrastructural analysis underscores severity of epidermal defects

In order to closely examine the nature of the MO-induced cellular defects at the

ultrastructural level, we performed an EM study of treated and control embryos.

Histology of fixed embryos in thick sections reflects what has been observed with

paraffin-sectioned embryos (see Figures 29, 31). At the light microscopic level, a

developed eye and a smooth, thin epidermis on the uninjected, control side provide a

striking contrast with the Xbves-depleted half of the embryo, which contains large,

bubbled epidermal cells covering an underdeveloped eye structure (Figure 32A). For

this preliminary ultrastructural study we have focused on the outer epidermal epithelium.

The striking defects caused by depletion of Xbves are demonstrated by the extreme

differences in cellular arrangement/structure. Electron microscopic images of the

control, uninjected half of the embryo (Figure 32B) reveal an ordered two-layer

structure. The epidermis at this stage is composed of an outer layer and an inner

sensorial layer (Deblandre et al., 1999). Cells on the MO-injected half of the embryo are
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larger, more bubbled, and contain intercellular spaces (Figure 32C-D, arrowheads), and

also lack the ordered structure possessed by control cells in Figure 32B. MO-injected

cells appear to have more and larger pigment granules and, in some cases, show more

cell junctions (Figure 32E, arrows). However, it is unclear how the loss of Xbves leads

to these changes in cellular structure. A comparison of average cell size between

epidermal cells of control and MO-treated halves demonstrates also a significant

difference. Cells composing the epidermal layer on the Xbves MO-treated side are, on

average, over 300% larger than epidermal cells on the control side (Figure 32F). This

finding supports our hypothesis that Xbves is essential for proper epithelial maintenance

and integrity during development and suggests that Xbves is necessary for the

generation of an ordered two-layer epidermal structure.

Xbves depletion results in excess cell proliferation

Our histological and ultrastructural analyses have demonstrated a dysregulation

of the ordered epithelial epidermis and eye development, among additional unexplored

defects. In many cases, the alterations in the epithelia following Xbves knockdown were

defined by thicker, bubbling cell layers, which could have been generated through an

increase in cell proliferation. To investigate whether an overproliferation of cells

occurred, incorporation of BrdU (5-Bromo-2’-deoxy-uridine) was determined. Sections

through the head region of stage 35 control and MO-treated embryos bathed in BrdU for

24 hours were closely examined. Control embryos showed a uniform basal level of

incorporation throughout (Figure 33A). Analysis of sections through embryos injected

with Xbves-MO on one side revealed an increase in BrdU labeling was detected in the
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“eyeless” half (Figure 33B). Note that punctate spots indicating high BrdU incorporation

are clustered at the epidermis (Figure 33B, circles). For reference, inverse phase

contrast of the pigmented epithelium has been used to determine the location of the eye

(Figure 33, asterisks). This finding allows the speculation that Xbves could be regulating

the proliferative nature of epithelia during epidermis and eye development.

Epidermal defects can be detected post-neurulation

Clearly, a MO-induced decrease of Xbves expression in one half of a X. laevis

embryo yields a striking phenotype. Stage 35 embryos exhibit a severe defect in eye

formation and a highly irregular epidermis on the injected side. However, eye

development begins much earlier with the branching of the diencephalon, the epithelial

structure that gives rise to the optic cup and the brain. To determine how early the

developmental defects can be detected, one cell of 2-cell-stage embryos were co-

injected with MO/lacZ and processed for b-gal labeling at a range of timepoints after

neurulation is complete (Figure 34A). At stage 20, the diencephalon outgrowth has

begun and appears to be unaffected (data not shown). Sections through an embryo

later in development, at approximately stage 24-25, do not suggest that eye

development is impeded at the phases of epithelial outgrowth but clearly, further

examination is needed (Figure 34B). However, it is obvious, even at this early stage that

labeled blue cells in the outer epithelial epidermis do appear to be thicker (Figure

34D,E, arrows) and separated from the inner layers (Figure 34F,G, arrows), in contrast

with the intact epithelium on the control uninjected side of the embryo.  These results

show that developmental defects due to Xbves depletion are already detectable by this
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A

B              C                D

E               F              G

Figure 34. Epithelial defects can be detected during day 1 of
embryo development. At stage 25, an embryo co-injected with
lacZ mRNA and Xbves MO appears developmentally unaffected
externally (A). Sections through the embryo show that the
epidermis on the injected side, marked by blue cells, is thicker,
ruffled, and separated from the internal tissues, most noticeably in
the trunk region (B-G, arrows).
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point of embryo formation. Furthermore, loss of Xbves results in a separation of cells

from their neighboring cells and tissues, even at early stages. This investigation is

obviously at preliminary stages and analysis of additional embryos and varying

timepoints is necessary to determine the timeframe in which defects are detected. Still,

this finding clearly demonstrates that the effects of Xbves depletion arise well before the

obstruction in eye formation is apparent. Thus, even at early stages, the loss of Xbves

results in a recurring phenotype that can be characterized by loosely associating cells

and epithelial layers that fail to arrange and/or move properly.

Discussion

This chapter investigates the function of Bves/Xbves in an in vivo system of

development, the X. laevis embryo.  X. laevis proved to be an excellent model system to

study the role of the putative adhesion/junction protein Bves/Xbves because the earliest

morphogenetic movements of the embryo involve epithelial tissue layers. Furthermore,

the simplicity and the bilateral symmetric cell lineages of the X. laevis embryo were

ideal for probing the development of epithelial structures such as the epidermis and the

eye at later stages. The studies described here follow our initial MO knock-down

experiment, which demonstrated that global inhibition of Xbves function is incompatible

with successful gastrulation.   This chapter describes how disruption of Xbves within a

small population of cells affects the movement and/or fate of those cells specifically, as

well as embryo development as a whole. Overall, growth of the animal was unaffected

using this method but the clonal disruption of Xbves randomized cell positioning and/or

movement of the injected cell’s derivatives. Taken together, these two studies that
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probe Xbves function during the early stages of development reveal that Xbves is

essential for gastrulation and suggest that Bves proteins represent a new class of

molecules essential for regulation of epithelial movements. Using a different method

that takes advantage of the bilateral development of X. laevis, Xbves was disrupted on

only one half of the embryo, such that the contralateral side could serve as an internal

control.  Xbves MO-injected embryos exhibited prominent defects that became most

obvious at two days post-fertilization. The affected half of the embryo lacks a fully

developed eye, the covering epidermis is highly disorganized, and in many cases, the

integrity of internal tissues appears to be lost.  Findings from this experimental method

certainly correlate with the global and clonal MO knockdown studies in that Xbves plays

a role in epithelial cell homeostasis. In addition, all three protocols demonstrate an

epithelial function for Xbves, which supports the central hypothesis that Bves proteins

maintain the integrity of epithelial tissues during dynamic developmental processes.

Through extensive cell rearrangements, gastrulation transforms a sphere of

epithelial and yolk cells into an elongated tadpole with well-defined differentiated

structures. Epithelial movement in X. laevis gastrulation is driven by convergence and

extension (Keller, 1991; Keller and Danilchik, 1988; Wallingford et al., 2001a;

Wallingford et al., 2002). The convergence of epithelial cells along one axis results in

the concomitant extension of cells along the perpendicular axis resulting in the net

movement or expansion of the surface cells over the yolk plug and the ingression of

cells to form mesendoderm (Keller, 1991; Keller and Danilchik, 1988; Marsden and

DeSimone, 2001; Wallingford et al., 2002). Cell adhesion is a crucial contributor to

many events in this process, such as the convergence of cells toward midline, the
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epibolic movements forming the blastopore, and involution of cells to form mesoderm.

This rearrangement of cells within the epithelial sheet is typified by the pyramidal shape

of superficial epithelial cells labeled in control lacZ injections of the A1 blastomere

(Figures 25,26). When Xbves function is inhibited within the same population of cells,

this precise rearrangement or reorganization of cells is severely disrupted suggesting

that the process of convergence and extension has been inhibited. Further, the

displacement of Xbves MO-treated cells from the embryo surface indicates that these

cells do not properly intercalate into the advancing epithelium. Our findings are

reminiscent of those observed by Broders and Thiery (1995), who examined the

adhesive nature of cadherins using a similar method. Clonal overexpression of

dominant-negative E- or EP-cadherin in one of 32 cells caused a dispersion of injected

cells at early blastula and gastrula stages, a perturbation in convergent-extension

movements, and a lack in coherent directional migration. Furthermore, the distribution of

proteins is often correlated with their specific function during gastrulation. In other

words, defects in cell movements are easily explained when a protein is  “in the right

place at the right time” to exhibit a role. For example, Disheveled is found at the

membrane in cells specifically undergoing convergence and extension, but is

cytoplasmic in cells not actively participating in these dynamic movements (Wallingford

et al., 2000).  Similarly, Xbves protein is expressed on the cell surface between

epithelial cells of the cleaving and gastrulating embryo. Thus Xbves is spatio-temporally

regulated such that it can function in epithelial cell associations during these processes.

Taken together, these data suggest that Xbves is essential for the appropriate

interaction and movement of neighboring epithelial cells during X. laevis gastrulation.   
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Clonal disruption of Xbves function leads to randomization of cell movement.

These results suggest that this in turn may lead to alterations in cell differentiation. The

production of mesendoderm in the frog is dependent on the involution of epithelial cells

from the embryo surface (Keller, 1991; Kwan and Kirschner, 2003). In the absence of

Xbves function in our clonal analysis studies, cells are apparently incapable of

producing mesendoderm in significant amounts. We postulate that this is due to the

disruption of coordinated cell movement within epithelial sheets leaving the cells unable

to reach deeper positions in the embryo. We propose that Xbves depletion alters the

adhesive properties of cells and inhibits the ordered assembly and/or necessary cell

interactions that otherwise would occur with the non-perturbed cells. While global

inactivation of Xbves function is not incompatible with mesoderm production (Figure 22),

we cannot exclude the regulative capacity of morphant cells within a normally

differentiating embryo. Therefore it is possible that Xbves-depleted morphant cells

normally fated to mesendodermal lineages may regulate and assume an ectodermal

phenotype or alternatively undergo apoptosis in the absence of proper differentiative

signals. In either case, surviving cells appear to favor epidermal over neural fates within

derivatives of the ectoderm. Thus, while its influence may be direct or indirect, proper

Xbves function is critical for the morphogenetic movement, differentiation, and/or

survival of cells fated to mesendodermal lineages.

When administered at a high dose into both of two cells, Xbves MO inhibits

gastrulation. Injecting a lower MO concentration into only one cell permits a progression

to neurulation and continued development. However, defects arise and are externally

apparent at two days post-fertilization.  The most obvious defects are found in the
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epidermis and in the eye, two epithelial structures that exhibit a high degree of Xbves

expression. In the tadpole stage embryo, Xbves protein is observed at the borders

between epidermal cells (Figure 21F,H) and in the epithelial components of the retina,

lens and cornea (Figure 21I). Work discussed in Chapters II and III define Bves as

transmembrane protein that is highly expressed in a variety of epithelial cell types and

functions at the TJ complex through interaction with the ZO-1 protein complex. It is not

surprising that depletion of a molecule regulating cell junctions/cell adhesion could give

rise to such developmental defects in epithelia as observed in the present in vivo study.

Examination of cell-cell adhesion/association in the X. laevis has been ongoing

since the beginning of the last decade, with a concentration on cadherin proteins.

Several cadherins are expressed in the developing embryo. XB/U-cadherin and EP/C-

cadherin are maternally-expressed adhesion proteins while expression of E-cadherin

and N-cadherin begins at midblastula transition just before gastrulation initiates.

Disruption of cadherins during the early phases of development results in decrease of

intercellular adhesion, ectodermal lesions, and a failure to undergo gastrulation (Detrick

et al., 1990; Heasman et al., 1994a; Levine et al., 1994). However, several studies

explore the role of cadherins at later stages of development, and while the methods are

varied, both find defects in eye development (Dufour et al., 1994; Kuhl et al., 1996).

Specifically, a study by Kuhl et al. directed DN expression of XB/U-cadherin to post-

MBT stages avoiding disruption of early cleavage stages (1996). In one experimental

protocol, injection of a DN XB/U-cadherin construct lacking the “adhesion” domain in the

dorsal two blastomeres of a four-cell embryo produces embryos with reduced eye

anlagen or complete lack of eye formation, among other posterior defects. Interestingly,
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this group noticed a dose-dependency with their method and found that injection of a

higher dose yields developmental defects in gastrulation. Injection of high doses into

two cells out of four, gastrulation movements were severely distorted and mesoderm

involution was hindered. The injection of the DN construct at lower doses resulted in the

“eyeless” embryos. XB/U-cadherin is ubiquitously expressed at cell membranes up to

gastrula stage, expressed in all three germ layers during gastrulation, declines during

neurulation, and is restricted to specific epithelia (Dufour et al., 1994) and is thought to

mediate interblastomere adhesion. Thus, not surprisingly, its function could be important

to the movements of the neuroepithelium that gives rise to the layers of the eye.

Importantly, we also find that a global depletion of Xbves with a high dose of MO yields

a gastrulation block, but lower doses of Xbves MO permit gastrulation to occur with

epithelial defects emerging at later stages. Thus, the studies involving XB/U cadherin

manipulation provide a parallel example of a molecule with adhesive function that

contributes to proper development (Dufour et al., 1994; Kuhl et al., 1996).

The level of Xbves MO that induces the “eyeless” embryos is much lower than

the concentration of MO that blocks gastrulation. Interestingly, the interference of XB/U

cadherin with varying doses of a dominant negative construct results in a gastrulation

block at high dose, but causes a disorganization of neural structures at lower doses.

This parallels what we observed in our Xbves studies and we interpret our results in a

similar manner. As described in Kuhl et al, a large decrease of cellular adhesion during

gastrulation would inhibit or severely hinder the involution of cells and, thus, the

formation of mesoderm (1996). Upon injection of a high dose of Xbves MO, we

observed a gastrulation block. Contrarily, a slight decrease in cell adhesion would
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impair cellular intercalations and epibolic movements to a lesser extent. This may allow

more cells to involute, potentially shifting the major defects to later in development when

the embryo is undergoing elongation.  In our experiments, a lower dose of Xbves MO

allows development to proceed past gastrulation, but defects are apparent soon

thereafter.

The mechanism by which Xbves promotes cell movements is currently

undefined. A homophilic binding property has been shown for chick Bves, and the

amino acids responsible for this interaction have been determined (Wada et al., 2001).

With the finding that Bves physically interacts with the ZO-1 protein complex (Chapter

II), a peripheral TJ protein that functions as a molecular scaffold, it remains highly

possible that junctional integrity is disrupted upon Xbves depletion. During epithelial

morphogenesis, whether it is gastrulation or eye formation, cell-cell interactions within

the epithelial layers rely on intact cell junctions to maintain integrity and allow

movements to occur. The distribution analysis of early X. laevis (current chapter) and

chick embryos (Chapter II) highlighted Bves expression in epithelia during embryonic

stages. High expression of Xbves in regions undergoing active morphogenetic

movements (marginal zone of gastrulae, epithelial structures like the eye and epidermis)

suggests that the protein is involved in dynamic adhesion events, such as gastrulation

and germ layer development. Our findings are supported by reports where other cell

junction/cell adhesion proteins expressed at these stages are important for gastrulation

movements and epithelial morphogenesis (Bradley et al., 1998; Brieher and Gumbiner,

1994; Broders and Thiery, 1995; Cordenonsi et al., 1997; Fagotto and Gumbiner, 1994;

Heasman et al., 1994a; Heasman et al., 2000; Marsden and DeSimone, 2001;
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Wallingford et al., 2001b). While the cellular basis of Xbves function is unknown,

inactivation of Xbves leads to severe disruption of gastrulation as well as the epithelial

primordia of the eye. We postulate that depletion of Xbves results in the inability of cells

to interact with one another or form functional cell junctions. Future studies will focus on

unraveling the cellular nature of Xbves in epithelial morphogenesis.

Current analysis

We have demonstrated a function for Xbves in the developing X. laevis embryo

using several protocols to deplete Xbves at various stages. We have defined that

epithelial movements during gastrulation and the integrity of epithelial tissues, including

the epidermis and the eye, are disrupted following Xbves knock-down. However, we are

continuing to perform experiments to elucidate Xbves function. While we are confident

that Xbves is essential for epithelial development, we do not currently understand the

nature of its functional role and thus, it is critical to continue our examination of Xbves

during X. laevis development. At present, our investigation of Xbves role in gastrulation

includes several key experiments: animal cap extension assays, which specifically

examine the movements of convergence and extension, assessment of junction protein

distribution, and an EM analysis of junctional integrity. Also, considerably more analysis

is required to clarify how Xbves depletion results in an “eyeless” morphant embryo. We

plan to determine not only when earliest defects can be observed, but also if other

tissues are altered, and whether the patterning of the embryo is affected. In the

following discussion, I outline ongoing and future experiments to further examine the

role of Xbves during development.
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Clearly, gastrulation movements of Xbves-depleted cells are disrupted. This is

demonstrated by both the global elimination of Xbves (injection of MO into two of two

cells) as well as clonal knock-down of Xbves (injection of MO into one of 32 cells).

However, the mechanism or pathway in which Xbves functions to regulate these

movements is unclear. In light of findings that Bves/Xbves proteins exhibit adhesive

properties, we are continuing this investigation using several techniques. First,

immunochemical analysis of cell adhesion and cell junction proteins in gastrulation-

stage embryos is underway to determine whether expression or distribution changes

could provide an explanation for the MO-induced epithelial disruption. If Xbves affects

the adhesive properties of epithelial cells during convergent extension and epibolic

movements, a disruption in adhesion/junction markers within epithelial layers involved is

highly probable. To this point, the autofluorescent properties of the yolky endoderm has

posed some problems, but we hope that in collaboration with experts in this field,

including Dr. Doug DeSimone, we can circumvent that issue. Another method is

currently being employed to assess epidermal integrity, which will be used in concert

with EM studies. Ruthenium Red (RuR) is an inorganic dye that is excluded by plasma

membranes with intact TJs (Luft, 1971). Xbves-depleted embryos (one of 32 cells or two

of two cells), co-injected with the lineage tracer horseradish peroxidase (HRP), will be

fixed for ultrastructural study in the presence of RuR. Should the TJ integrity be

breached, the dye will permeate between the lateral membranes of HRP-marked

epidermal cells, signifying that Xbves functions to maintain the TJ integrity in the

epithelia of developing embryos. Finally, animal cap assays are a technique used to

confirm the role of a protein in convergent extension movements. The blastula animal
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cap is composed of pluripotent epithelial cells that can be induced to form endoderm,

mesoderm and ectoderm cell types in response to exogenous signals.  In this assay,

the animal cap tissue is dissected from a stage 8.5-9 embryo and incubated in the

presence of the mesoderm inducer, activin-A. Activin-A triggers gastrulation movements

of convergence and extension. Thus, if the cap is competent to undergo convergent

extension movements and form mesoderm, the cap cells will literally grow and extend

over the course of 12 hours, converting the ball of cap cells to a rod. From work

described here, we would expect to observe a lack of convergence and extension

movements and therefore, no extension of the mass of cells dissected from embryos

where Xbves has been globally depleted. However, preliminary animal cap studies

where Xbves has been knocked down by MO-injection into two cells of a two-cell

embryo show that, not only does extension occur, it may be even more pronounced.

While this experiment must be repeated and the data quantified, if this preliminary

finding holds true, additional examination will be required to clarify the role that Xbves

plays during gastrulation movements. Potentially Xbves depletion results in a

gastrulation block by an alternative mechanism, rather than interfering with convergent

extension movements.   

The analysis of Xbves MO embryos with the “eyeless” developmental defect is in

the early stages and far from complete.  As shown with lacZ co-injection and rescue

experiments, Xbves depletion is responsible for the observed alterations in epithelial

and other cell types. To this point, we have chosen to more closely examine the

malformations in the epidermis and eye, as they are the most apparent and the

disrupted layers are epithelial in origin. Still, the nature of the developmental

140



malformations in epithelial structures is not understood. An assessment of cell adhesion

molecule distribution in eye and epidermis of Xbves-depleted embryos could provide

important clues about the state of junction integrity. While it is readily apparent that

certain stages of epithelial morphogenesis in the eye, for example, are inhibited, we do

not know whether inactivation of Xbves alters the expression and/or distribution of

adhesion molecules such as cadherin, b-catenin and ZO-1. Furthermore, potential

changes in the cytoskeleton are likely to be observed given the interaction of these

structures and cell junctions. Any changes in polarity of epidermal cells could be

addressed by labeling with tubulin. Also, the epidermis exhibits a bubbled appearance,

suggesting a dysregulation in the adhesive capacity of this epithelial layer.

Concurrently, ongoing experiments are focused on identifying the nature of the

“eyeless” defect. The failure of Xbves-depleted embryos to form a fully developed eye is

not only a striking malformation, but provides an example of impaired epithelial function.

The eye provides a complex, but ideal model of development in which the integrity of

the epithelial layers themselves is as important as the signaling between the layers that

will become the retina, the lens, and the cornea. Interestingly, the retina, lens, and

cornea are derived from embryonic epithelia that undergo dynamic changes in shape

and differentiation during development. Interactions between these epithelial structures

as well as adjacent mesenchymal cells are critical for eye development and disruption

of any one component can lead to major defects in the entire structure. Importantly, cell

adhesion plays a critical role in the induction, growth, movement, and stability of

epithelia during formation of the eye. Preliminary analysis to determine how early the

“eyeless” phenotype is detectable has begun, as demonstrated in Figure 34, but

141



examination of additional embryos between stages 20-28 is necessary to determine

when eye development is disrupted. Also, closer examination of the components of the

eye is essential to unravel the function of Xbves in the developing embryo. For example,

a disruption of the adhesion system may underlie the changes in retinal differentiation.

From the preliminary studies, we observed that the neural retina does not undergo

lamination to become a mature ten-layered structure and has a “disorganized”

appearance. It is possible that certain cell types do not form, leading to failure in retinal

development. Immunolabeling of sections through “eyeless” embryos at later stages

(two to five days post fertilization) using antibodies to the distinct neural and glial cells

that reside within this highly organized structure may indicate whether these cell types

are just disorganized or misaligned, or are completely absent.  Likewise, while initiation

of lens differentiation occurs after Xbves inactivation, detachment of the lens vesicle,

alignment of lens fibers and maturation of the substructures of the lens appear to be

inhibited. Also, as corneal differentiation is dependent on lens development (Henry et

al., 2002), it is not surprising that defects in this epithelium are seen. Our preliminary

analyses show very little patterning in the stratification of presumptive cornea/surface

ectoderm and a clear increase in the number of cells in this epithelium (Figure 29, 31).

Histological, immunochemical and ultrastructural analyses are underway to determine

how Xbves inactivation changes the formation of these structures. Again, we postulate

that changes in localization of adherence proteins will be evident and result in abnormal

morphogenetic movements of lens epithelium.

Furthermore, specification of the eye anlagen is an early event that occurs

shortly after neurulation is complete (Jeffery, 2001; Tripathi et al., 1991). Following the
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outgrowth of the optic vesicle from the diencephalon at early tailbud stages (stage 23),

additional eye-specific proteins including crystalline are formed. Whole mount in situ

analysis of neural and presumptive eye specification markers may also suggest which

processes of eye development are affected by Xbves depletion. Preliminary data show

that the expression of Pax 6 is not altered (Pichaud and Desplan, 2002), suggesting that

eye specification may be unaffected. The potential relationship between Xbves,

generation of cell junctions and regulation of cell division may be analyzed in this

setting. Using immunochemistry and TEM, we are particularly interested to determine

whether junctional complexes form properly in eye epithelial layers. BrdU staining and

cell counts will determine whether alteration of Xbves function results in increased DNA

synthesis and mitosis in epithelial progenitors. Taken together, these analyses should

determine which developmental events proceed normally in the eye or are inhibited in

the absence of Xbves.
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CHAPTER V

CONCLUSIONS AND FUTURE DIRECTIONS

Conclusions

Summary

Bves was independently discovered by our laboratory and by Thomas Brand’s

group in 1997. Both groups found that Bves was expressed in cardiac and skeletal

muscle. However, our initial studies using Bves-specific antibodies demonstrated

expression of the protein not only in the myocardium, but in the epicardial epithelium

surrounding the heart and other cell progenitors found in the coronary vascular lineage.

Nevertheless, while Brand and colleagues stressed that expression was restricted to

heart and skeletal muscle, their published Northern blot and in situ data detected mRNA

in brain, stomach, kidney, lung, and spleen. After performing an extensive protein

expression and distribution analysis in three organisms, it became clear that Bves was

not a muscle-specific molecule, but was widely expressed in developing and mature

epithelia across species. We also determined that Bves was a transmembrane protein

that could confer adhesion to fibroblast cells and, therefore, we postulated that Bves

functions to regulate epithelial cell adhesion. The results from my dissertation present

major and critical findings that will impact the direction of future studies on Bves. The

first finding (discussed in Chapters II and III) is that Bves is a functional component of

epithelia and interacts with the protein complex containing ZO-1 at the TJ in epithelial
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cells. Chapter II outlines Bves expression the developing chick embryo. This work

highlights the expression and localization of Bves in epithelial layers throughout early

stages of embryo morphogenesis that is, importantly, a timeframe before heart and

muscle development has been initiated. Chapter III subsequently addresses the central

hypothesis that Bves plays a role in epithelial cell-cell interaction and integrity.  Here,

Bves is assigned to the tight junction complex through localization, interaction, and

functional assays.  The second major contribution of my work demonstrates that

depletion of Bves from developing embryos disrupts epithelial integrity, suggesting that

Bves provides an essential function in vivo. Chapter IV describes in vivo experiments

showing that Bves is important for epithelial morphogenesis during X. laevis

development. While a mechanism for Bves proteins at the TJ has not been determined,

a correlation exists between the results from in vitro studies in cell lines (Chapter III) and

the in vivo investigation in the frog (Chapter IV).  Future studies will be designed to

elucidate a connection between the function of Bves at the TJ in vitro and in the

regulation of epithelial morphogenesis during embryonic development. The following

discussion addresses several points and presents ideas about potential regulatory

mechanisms in which Bves could participate in the control of epithelial integrity.

Bves function at the AJC

Initially, we focused our investigation of Bves on elucidating the structure of the

protein, hoping that this effort would direct future studies. Bves has three hydrophobic

regions, thus spanning the membrane three times, two N-linked glycosylation sites at

the N terminus, and an intracellular C-terminal tail (Knight et al., 2003). Identification of
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an interaction domain in the investigation of an uncharacterized molecule such as Bves,

can provide a starting point for functional studies (M. Kawaguchi, in preparation). As

discussed in the Introduction, many TJ proteins have interaction domains, including

PDZ, SH3, and MAGUK protein motifs. Outside the putative transmembrane regions,

the primary sequence of Bves lacks these and other known protein-protein interaction

domains, functional motifs, or consensus regions. Although the sequence and overall

structure of Bves are highly conserved between species, computer modeling and

database searches revealed no structural homology with other proteins. Therefore,

predictions of Bves function from proposed protein structure were purely speculative

and failed to provide a significant direction to our investigation.

Due to the lack of any identifiable domains, we used our initial antibody

localization studies to generate a hypothesis about Bves function and to guide the

direction of our future experiments. We observed a dynamic change in protein

distribution of Bves in cells undergoing EMT during heart development. Cells in the

epicardial epithelium localized Bves to cell borders whereas delaminated, single cells

show an intracellular localization of the protein. Also, L-cell assays (“hanging-drop” and

DiO-DiI segregation assays (Kubota et al., 1999; Thoreson et al., 2000)) demonstrated

that Bves exhibits adhesive properties. Although we have not resolved the exact

mechanism by which adhesiveness is conferred to L-cells, several in vitro studies

demonstrate a Bves-Bves interaction through the intracellular tail of the protein. Using

both GST pull-down assays and a SPOTS blot assay (Sigma-Genosys), we have

identified a homophilic interaction domain within the internal C-terminus (Knight et al.,

2003; Wada et al., 2001). Our results suggests that this interaction is mediated by two
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lysine residues found within this domain (M. Kawaguchi, in preparation). We also predict

that this domain is responsible for the oligomerization of Bves (Knight et al., 2003).

However, these early efforts failed to identify a function or suggest a mechanism for

Bves. Comprehensive studies of other proteins in the Popeye gene family are lacking,

but existing expression data provides evidence that other Bves/Pop proteins have

similar functions.  Furthermore, global inactivation of bves/pop1a in mice lacks an

epithelial phenotype, suggesting a redundant function of family members.  Still, based

on protein localization and topology, we postulated that Bves was a member of a new

class of junctional/adhesion molecules involved in EMT and/or epithelial regulation.

Significant to the work discussed in this dissertation is the placement of Bves into

a definitive junction within the AJC. Our localization and functional studies in cell lines

demonstrate that Bves is a functional component of the TJ and that Bves interacts with

a ZO-1-containing protein complex. This supports our initial postulation that Bves may

play a role in adhesion/epithelial regulation. It is now possible to more carefully probe

the function of Bves, since early structural analysis failed to suggest a role for Bves.

With the finding that Bves is a functional TJ component, we can propose ideas for how

Bves may facilitate this intercellular interaction seen in L-cells. This cell-cell adhesion

could occur in several ways. Bves may generate/establish a multiprotein junctional

network that facilitates intercellular adhesion through ZO-1 or another protein. Currently,

we have not explored how this may occur. This phenomenon, however, is of interest

since L-cells lack cadherins and many other epithelial adhesion proteins with which

Bves could interact, if indeed Bves solely responsible for providing the intercellular

adhesion. Also, Bves may cluster internally via homophilic interaction and create an
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adhesive extracellular “sugar tree” via N-linked glycosylation. Interestingly, a similar

type of cell adhesion occurs during the extravasation of leukocytes through cell-surface

proteins called selectins (Ebnet and Vestweber, 1999). Selectins are found on the apical

surface of endothelial cells and, with only three members, comprise the smallest family

of cell adhesion molecules, known as the sialomucin adhesion family (Cambi and

Figdor, 2003; Lasky, 1994). Selectins mediate cell contact through mucin-like

carbohydrate ligand structures at the amino terminus and predominantly function as cell

adhesion receptors that direct the homing leukocytes across the endothelial linings of

blood vessels as part of the inflammatory response (Lasky, 1995). Of particular interest,

the binding interactions mediated by the selectins appear to be of lower avidity than

those of the integrin-immunogobulin superfamily (Lasky, 1995), which also participate in

leukocyte-endothelial interactions (Zen and Parkos, 2003). If Bves mediates adhesion

through a similar method, it might explain the spatio-temporal regulation of Bves in

epithelia undergoing dynamic movements during early embryogenesis. While cadherin-

mediated adhesion is necessary during these events as well, it is possible that Bves can

contribute to transient and less robust interactions to achieve the proper level of cell

adhesion to permit the cell rearrangements that must occur. This idea is supported by

data showing that Bves-expressing L-cells aggregate into clumps, but not as robustly as

E-cadherin-expressing L-cells (A. Wada, unpublished data).

Taken together, we have shown that Bves mediates cell adhesion and influences

the TJ, but the physiological roles of this family of proteins are unresolved.  How could a

depletion of Bves affect TJ integrity? To review, the two primary functions of the TJ are

to maintain the transepithelial barrier and to establish apical-basal polarity of the
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epithelial sheet. It is unclear whether Bves contributes to TJ integrity by regulating the

paracellular seal via cell adhesion or has a role in polarity. While the mechanisms that

control the sealing capabilities of the TJ are poorly understood, a measure of the

transepithelial electrical resistance has become the gold standard for assessing whether

proteins influence tight junction integrity. We show that depletion of Bves in human

corneal cell lines results in a breach of barrier function, as indicated by a drop in the

TER and a mislocalization of junction markers, but did not investigate whether the

polarity was altered. Previously, we have shown that similar treatment of these cells

shows a faster migration of cells in a wound-healing assay. This finding suggests that

without Bves, cells are more motile potentially due to compromised cell junctions (Ripley

et al., 2004). Furthermore, these studies provide another example supporting the

hypothesis that Bves plays a role in regulating epithelial interactions in some way. With

the current studies, we can say only that Bves does influence the TJ in some way, and

that the interaction with a ZO-1 containing complex supports that finding. Clearly, future

studies are necessary to unravel the precise role of Bves and family members at

junctional complexes.

Bves and ZO-1 at the Tight Junction

Bves localization at the TJ and the interaction with the ZO-1 complex provides a

significant advancement for the Bves/Pop field. Unfortunately, the finding fails to

sufficiently narrow the potential function of the protein family.  Along with Bves, over 40

proteins have been localized to the mature TJ complex and these proteins exhibit a

wide range of roles in paracellular barrier and polarity establishment, signal
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transduction, and structural support (Gonzalez-Mariscal et al., 2003). For example, PAR

proteins (partitioning-defective proteins), which interact with PKC and JAM, primarily

function to establish polarity (Itoh et al., 2001). The PAR protein complex also

influences TJ assembly and interacts with several Rho GTPase family members, and

thus has additional functions at the TJ (Gao et al., 2002; Johansson et al., 2000).

Another TJ protein, cingulin interacts with ZO proteins, afadin, JAM, F-actin and myosin,

and is thought to function as a cross-linker between TJ proteins and the actomyosin

cytoskeletal network (Bazzoni et al., 2000; Cordenonsi et al., 1999; D'Atri and Citi,

2001). Also, cases exist where membrane-spanning proteins that co-localize with TJ in

epithelia have unique rolls in specific tissues (Gonzalez-Mariscal et al., 2003). For

example, a peripheral membrane protein PMP22/gas-3 is observed at TJ but may play

a role in compaction of myelin sheaths by heterophilic adhesion with a myelin protein,

Protein 0 (Berditchevski, 2001; D'Urso et al., 1990). This suggests that proteins found at

the TJ in epithelia may have undergone an evolution of function in a tissue-specific

manner.  As described, proteins that have been defined as TJ components exhibit a

vast array of different functions and, based on our limited data thus far, it is possible that

Bves could play a role in many TJ-associated functions.

The question of how Bves functions at the TJ could be more easily addressed if

we understood the relationship between Bves and ZO-1. Analysis of Bves localization,

compared with TJ proteins, particularly ZO-1, reveals intriguing similarities throughout

stages of epithelial cell-cell adhesion. For example, the pattern that Bves localizes to

cell-cell contacts mimics what is observed with ZO-1 during contact formation. ZO-1 can

be detected at contact points with E-cadherin and catenin proteins, well before occludin,
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claudins, and other TJ components translocate to the cell periphery (Ando-Akatsuka et

al., 1999). Likewise, Bves mimics ZO-1 and localizes to forming junctions with E-

cadherin and catenins. Also, in non-epithelial cells that lack TJ, ZO-1 is recruited to

cadherin-based AJ via its interaction with a-catenin (Itoh et al., 1997; Itoh et al., 1993).

Bves colocalizes at these junctions with ZO-1 in non-epithelial cells, such as NRK cells.

These localization findings have led us to postulate that the parallels observed between

Bves and ZO-1 localization could be important. Then, we discovered that the Bves C-

terminal tail co-precipitates a protein complex containing ZO-1. Currently, ZO-1 is

considered a scaffolding protein that binds occludin and claudins at the TJ in epithelial

cells. It is possible that Bves localization at the cell membrane is modulated by ZO-1, or

rather ZO-1 is tethered at the membrane by Bves. With the exact function of ZO-1 being

unknown, further studies will be necessary to explore the function of Bves at the TJ and

the nature of the Bves/ZO-1 interaction.

It is possible that ZO-1 coordinates recruitment of other junction molecules,

including Bves, to form fully-functional TJs. The ZO proteins are members of the

MAGUK family, which has been implicated in the formation of membrane microdomains

by serving as a scaffold/cross-linking protein for cytoplasmic domains of integral

membrane proteins. In neurons, PSD-95, a MAGUK family member, cross-links the

NMDA receptor, K channel and neuroligin, and organizes the postsynaptic membrane

domain in neurons (Irie et al., 1997; Kim et al., 1995; Kornau et al., 1995; Niethammer

et al., 1996). Thus, ZO-1 could aid in establishing and/or sorting proteins into respective

junction, either AJ or TJ, within the lateral compartment (Ando-Akatsuka et al., 1999).

An explanation for the dynamic distribution of Bves has not been proposed, although it
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is likely that the spatio-temporal recruitment of ZO-1 and Bves can be correlated with a

function. It is possible that Bves is a component of the membrane microdomain

organized by ZO-1 at early adhesive contacts, and is subsequently sorted into the TJ.

Furthermore, this dynamic localization could suggest an early role during the formation

of adhesive contacts, and then a later role in established polarized epithelia. Also, the

finding that occludin-null mice still form tight junctions suggests that other proteins can

contribute to TJ integrity (Saitou et al., 2000). Our studies show that Bves appears to be

an additional transmembrane constituent of the TJ. This provides an example where

Bves could fill a gap in the understanding of TJ biogenesis and maintenance.

To reiterate, the localization/interaction data does not provide many clues to

Bves function within the molecular context of the TJ. However, we can speculate as to

its role at the AJC based on our findings. Bves depletion in cultured epithelial cells

causes a decrease in transepithelial resistance (Chapter IV). This suggests that Bves

influences the barrier function of the TJ. However, as with PAR proteins, it is possible

that Bves has a primary and/or additional function in cell signaling or structural support,

and this result is purely a secondary effect. It is important to note that in addition to

epithelial TJs, Bves proteins are highly expressed in cardiac and skeletal muscle

(Andree et al., 2002a; Andree et al., 2000; DiAngelo et al., 2001; Reese et al., 1999;

Vasavada et al., 2004). Like epithelia, cell adhesion is also an important property of

striated muscle (Forbes and Sperelakis, 1985). Bves localizes to the intercalated disc,

an adhesive structure in muscle. At this time, it is unclear whether Bves is a functional

component of this structure and/or what other known adhesive proteins with which Bves

interacts in this setting. Thus, since both cell types require intimate cell associations for
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function, it is possible that Bves participates in the generation of adhesion in both cell

types. In any case, this study is the first demonstration that Bves localizes to a specific

adhesive junction and is a critical step in affixing a specific function to Bves during

epithelial cell-cell adhesion.

Bves and epithelial integrity of embryos

Based on our early findings, we postulated that Xbves expression/localization

during the early embryogenesis correlates with a function during X. laevis gastrulation.

A global depletion of Xbves resulted in a gastrulation block and demonstrated that our

hypothesis was correct. Clonal depletion studies again highlight the importance of

Xbves in epithelial integrity, since epithelial movements of Xbves-depleted progeny are

impaired. Likewise, the distribution pattern observed during neurulation and

organogenesis suggest a tissue-specific function at later stages. Thus, it is not

surprising that the elimination of Xbves disrupts the development of epithelia including

the epidermis and the eye, where Xbves is highly expressed. Together, we show that a

knock-down of Xbves results in epithelial perturbations in both injection protocols

described in these studies, strongly suggesting that Xbves is essential for epithelial

integrity during morphogenesis.

Tight control of junctional integrity is critical as the cell layers undergo significant

cell movements and shape changes during gastrulation and epiboly, and organogenesis

at later stages (Keller et al., 2003; Marsden and DeSimone, 2001; Marsden and

DeSimone, 2003). In the literature, manipulation of other cell adhesion and/or junctional

proteins demonstrates a dysregulation of epithelial integrity. Molecules that generate
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adhesion structures like cadherins and integrins allow embryos undergo fundamental

tissue rearrangements that may require cells to vary adhesiveness within an epithelium

(Jamora and Fuchs, 2002). With the findings from Chapter III that Bves exhibits a

function at the TJ, it remains possible that the defects we observed in epithelial

development can be correlated with Bves’s function at the apical junctional complex.

The strength of cell adhesion also regulates the migratory ability of epithelial

sheets (Brieher and Gumbiner, 1994; Winklbauer, 1998). For example, several different

cadherin proteins are important in X.laevis development. Ectopic expression of N-

cadherin causes a thickening and fusion of cell layers (Detrick et al., 1990; Fujimori et

al., 1990). Depletion of maternal EP/C cadherin disrupts inter-blastomere adhesion and

knockdown of zygotically-expressed E-cadherin causes ectodermal lesions and a

gastrulation block (Broders and Thiery, 1995; Heasman et al., 1994b; Levine et al.,

1994).   For optimal cell movements, the strength of cell-cell adhesions must be at an

intermediate level (Huttenlocher et al., 1995; Palecek and Ubbels, 1997). In hanging-

drop adhesion assays, transfection of Bves into L-cells causes the cells to cluster into

adhesive clumps (Ripley et al., submitted; Wada et al., 2001). Parallel experiments

using E-cadherin-transfected L-cells yield large aggregates of cells, signifying robust

cell adhesion (Chen et al., 1997). Because fewer Bves-transfected cells comprise each

aggregate than clumps formed by E-cadherin-transfected cells, we can speculate that

cell adhesion generated by Bves may be weaker than E-cadherin. At this time, no

quantitative experiments to determine strength of cell-cell adhesion mediated by Bves

have been performed. Still, a potential role for proteins like Bves may be to modulate

the TJ and/or regulate adhesion between cells to hold the sheet together when other
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proteins like cadherins may not have the same capability at a given developmental

timepoint. Alternatively, Bves could function in concert with other adhesion forces to

contribute to cell sorting efforts during early development (Kim et al., 2000).

Investigation of junction proteins other than cadherins in the frog is not abundant,

but does exist. Overexpression of X. laevis claudin (Xcla) causes cells to disperse as

adherent clumps in gastrulating embryos, demonstrating that Xcla plays a role in cell

adhesion of the epithelial layers during this dynamic process (Brizuela et al., 2001).

Overexpression of Xcla at the four-cell stage results in bilateral XNR-1 expression and

left-right randomization of organs at stage 45. GJ have also been implicated in the

control LR asymmetry (Levin and Mercola, 1998). Interestingly, very little is known

about ZO-1 in X. laevis beyond the expression pattern in the cleaving embryo (Fesenko

et al., 2000; Merzdorf and Goodenough, 1997). Thus the work on Xbves in X. laevis

contributes not only to the field of Bves/pop proteins, but to the X. laevis cell adhesion

field as well. The developmental defects that we observed in our studies on X. laevis

parallel others in which adhesion proteins have been manipulated (Broders and Thiery,

1995; Dufour et al., 1994; Kuhl et al., 1996). Our interpretation of a role for Xbves in

epithelial integrity in the embryo correlates with our in vitro findings in which Bves

exhibits a function at the TJ. Thus, the potential involvement of Xbves in epithelial

morphogenesis could be due to an influence on cell-cell adhesion, potentially through

an interaction with ZO-1.
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Bves and Rho signaling pathway

Currently, results are being analyzed from a yeast two-hybrid interaction screen

designed to detect interactions between Bves and proteins from an embryonic mouse

heart library (screen performed by T. Smith). Although the analysis is far from complete,

we identified the RhoGTPase exchange factor GEFT as a Bves-interacting partner (T.

Smith, unpublished data). This is intriguing since, as previously discussed in Chapter I,

the Rho family of proteins function as molecular switches involved in the regulation of

junctions that participate in cell proliferation and differentiation, cytoskeletal regulation,

and signal transduction in response to external cellular stimuli (Carlier et al., 1999;

Matter and Balda, 2003; Rossman et al., 2005). Guanine nucleotide-exchange factors

(GEFs) activate Rho-family GTPases, specifically by controlling the rate at which GDP

dissociates from the Rho GTPase (Erickson and Cerione, 2004). GEFT is a Rac/Cdc42-

specific GEF protein that regulates cell morphology, proliferation, and migration (Guo et

al., 2003). GEFT is highly expressed in excitable tissues such as the brain, heart, and

muscle, as is Bves, suggesting that they may function together in these tissues.  GEFT

expression has also been observed in the small intestine, liver, lung and placenta by

Northern blot, but the specific regions of these organs have not been determined so the

possibility of an epithelial localization for this protein remains. Overexpression of GEFT

leads to alterations in cytoskeletal rearrangements and cell morphology, and cell

proliferation (Guo et al., 2003). Although no reports of GEFT action have been reported

in epithelial cells, Bves may interact with another epithelial-specific GEF protein and

support a similar function as the GEFT/Bves interaction during heart morphogenesis.
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When epithelial cells reach confluence, Rho proteins are downregulated, which

leads to an inhibition of the signaling pathways that stimulate proliferation (Braga, 2002;

Fukata et al., 2001; Noren et al., 2001). Not surprisingly, examples of interactions

between epithelial junction proteins and GEFs exist in the literature. For example, RhoA

regulation is mediated by an interaction between a TJ protein, cingulin, and a GEF

protein, GEF-H1/Lfc (Aijaz et al., 2005). GEF-H1/Lfc associates with the TJ and

regulates the permeability of the TJ (Benais-Pont et al., 2003). A direct interaction has

been demonstrated between GEF-H1/Lfc and cingulin, which also binds ZO-1 at the TJ

as well as actin (D'Atri and Citi, 2001; D'Atri and Citi, 2002).  When cells become

confluent, an increase in cingulin expression results in an interaction with GEF-H1/Lfc,

which in turn, leads to an inhibition of RhoA function. If a connection can be made

between the Bves/GEFT and Bves/ZO-1 interactions, it is possible that Bves may

function to regulate epithelial integrity through the Rho family at the TJ.

Evidence also exists that Rho family proteins are important regulators in X. laevis

development. The X. laevis homolog of Rho GTPase Cdc42 (XCdc42) is expressed in

tissues undergoing extensive morphogenetic changes, such as the deep layers of

involuting mesoderm and posterior neuroectoderm during gastrulation, and somitic

mesoderm at neurula stages. Overexpression of either wild-type or dominant-negative

XCdc42 interferes with convergent extension movements and alters the adhesive

properties of cells. Interestingly, these effects occur without affecting mesodermal

specification, as we see following Xbves depletion (Choi and Han, 2002). It is possible

that Xbves participates in the Rho pathway during X. laevis development, especially in

light of the Bves/GEFT interaction.
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Finally, an interaction with the Rho pathway could provide an explanation for

several results that we have obtained in different experimental systems. The Brand

group reported a delay in muscle regeneration in pop1a-null mice following cardiotoxin

injection. In X. laevis, an increase in BrdU incorporation on the Xbves-MO injected side

of the embryos suggests a dysregulation of cell proliferation. An involvement of Bves

with the Rho signaling pathway via a GEF would provide a parallel connecting

molecular and cellular events of muscle regeneration and the proliferatory nature of X.

laevis epithelial cells. Perhaps Bves controls or maintains the proliferative activity via its

interaction with a GEF protein. It is interesting to postulate that this complex could be

tethered at the TJ via ZO-1, and thus can quickly respond to the state of the epithelial

cell layer.

Future Directions

Importantly, this dissertation presents findings that have shown Bves to be a

necessary component of epithelial tissues and provides an important demonstration of

functional significance for Bves in epithelia. Our earliest studies of Bves investigated its

potential role in coronary vasculogenesis, since we originally discovered Bves as a

transcript enriched in the heart, in agreement with the Brand group. Thus, the question

of how the dynamic distribution of Bves at the cell membrane of the epicardium impacts

development of the coronary vessels is one of interest. The current work clearly

demonstrates a role for Bves in the regulation of cell adhesion and/or epithelial integrity

through its localization at the TJ. However, how Bves is involved in heart development

is unresolved. Is Bves permitting dynamic movement via transient adhesions generated
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through the TJ as the epicardium moves over the heart? How can Bves be an important

factor when other adhesion molecules like cadherins are also spatio-temporally

regulated to play a role in this process? How might Bves regulate EMT? In light of the

data connecting Bves to the TJ, it is now possible to speculate that Bves exhibits a

direct or modulatory role in this and other processes through its interactions with ZO-1

at cell junctions. Although this work investigates Bves function in epithelia, Bves is

clearly expressed in cardiac and skeletal muscle types that lack a TJ, although adhesive

structures do exist. Do Bves family members have a similar role to regulate the integrity

of cell-cell adhesive complexes in muscle cell types? Currently, a basis for speculation

on this topic is lacking and a parallel examination of Bves in heart and muscle tissue will

hopefully address the mechanism of Bves activity.

Our discovery that Bves/Xbves family members exhibit a functional role at the TJ

and are essential for integrity in X. laevis embryos supports our original central

hypothesis stating that Bves plays an integral role at cell junctions and in the

fundamental processes of epithelial cell-cell interaction. Findings from the work

discussed in this document have elevated what we know about Bves and laid

groundwork for future studies. Several simple but key questions, alluded to in the

discussions above, must be addressed in these studies. First, what is the nature of the

Bves/ZO-1 protein interaction and how does it influence the TJ? Second, if this

interaction exists in the developing embryo, how is embryogenesis affected by Xbves

MO treatment in order to produce the defects we observed at both high and low doses,

and in the clonal depletion studies? Finally, how does Bves function in epithelial cells

correlate with its function in muscle types?
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Clearly, we have much to learn about how Bves interacts with and influences the

TJ. The nature of the Bves/ZO-1 interaction is left to be resolved. From our studies thus

far, we can only say that an association with Bves and a protein complex containing ZO-

1 exists. We are uncertain whether this interaction is direct or indirect. We can resolve

this issue by performing a yeast two-hybrid screen or by using purified proteins to

identify a direct interaction. Also, the domain of Bves that interacts with the ZO-1 protein

complex is unknown. Pull-down experiments using Bves truncation mutants can be

performed to elucidate the critical regions of Bves responsible for protein-protein binding

with junction components. Identifying the exact region that Bves binds to ZO-1 and/or

GEFT is essential to the forward progress of research in epithelial regulation. Currently,

results from a split-ubiquitin screen for Bves-interacting proteins are under analysis.

Characterization of binding partners and the nature of these interactions is necessary to

understand and make further speculations about how Bves could be influencing cell-cell

adhesion and interaction in both epithelial sheets and well as striated muscle during

embryogenesis and maintenance of adult tissues.

To understand how our molecular findings may be important in vivo, we used X.

laevis to study how Bves influences epithelial movements, a critical component of early

embryonic development. We depleted Xbves with MO to block translation of the

endogenous protein. Analysis of the embryological defects from these experiments is

highly intriguing but far from complete. In one method, we examined the behavior of

Xbves depleted progeny of one blastomere of a 32-cell embryo. With the recent finding

that Bves modulates TJ integrity through a physical interaction with the ZO-1 protein

complex warrants an assessment of cell junctions in the disturbed tissue layers. Thus,
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an assessment of the cell junctions in embryos where Bves levels are significantly

reduced in a clone of cells may reveal why they do not migrate properly during

gastrulation, and why they fail to become anything but ectoderm. To explore this, an

electron microscopic analysis using RuR is underway. Also, immunostaining must be

performed to explore whether the distribution of junction proteins has changed between

two affected cells. These experiments are currently underway and were discussed in

Chapter IV.

The “eyeless” embryos also present an interesting developmental defect that

requires further examination. Determining when and how eye formation is blocked

and/or severely delayed is critical and distribution of eye and head markers will be

assessed as described in Chapter IV. Also, future studies will focus on how inactivation

of Xbves within individual cells affects their ability to incorporate into the epithelia of the

eye. This will address the autonomous nature of Xbves function and also investigate

how cell junctions respond to Xbves depletion. This will be accomplished by targeting

the eye (Moody, 1987) with a single blastomere injection of the 32-cell embryo and

following the fate of its progeny. Specific targeting of head structures has been

performed previously (Dufour et al., 1994). Our prediction is that inactivation of Xbves

within a single cell will result in its inability to interact with normal cells or form junctions.

Changes in the expression and distribution of adhesive proteins such as the catenins,

cadherins, and ZO-1 will be monitored and indicate that disruption of

adhesion/interaction at specified stages of development. Potential alterations in the

cytoskeleton are likely to be observed given the interaction of these structures and cell

junctions. Here the alignment of cells in the developing retina, cornea and lens will be
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monitored along with these immunochemical reagents. In addition, the GFP-Xdsh tracer

will be used in conjunction with antibodies against the cytoskeleton to determine

whether changes in cell shape are concurrent with changes in cytoskeleton (Wallingford

et al., 2000). We predict that the cytoskeleton and overall cell shape will be greatly

altered in this model.  Finally, addressing how these defects are related to the Bves/ZO-

1 relationship at the TJ may provide a link between the in vivo and in vitro studies. Also,

it is unclear whether Bves/Xbves is a component of a well-defined signaling pathway.

Thus, directing future efforts to elucidate a molecular signaling cascade in which Bves

participates would present new avenues to investigate Bves/Xbves function.

Thus far, we have identified a homophilic interaction domain within the Bves C-

terminal tail, but no other domains, including those that mediate ZO-1 or GEFT

interactions, have been identified. Clearly, this is also a critical component of future

study on the Bves family of proteins. We plan to use the X. laevis system we have

established to identify functional domains within Xbves. Endogenous Xbves function will

be inhibited in one half of an embryo with MO to generate the “eyeless” embryos

described in Chapter IV. Modified Xbves mRNAs with deleted or modified sequences

will be used to “rescue” eye development. Embryos with mutated Xbves will be

analyzed to determine whether rescue has been inhibited. If eye development is not

rescued, it would signify that important sequences have been lost or modified. Using

eye development as a “read-out”, we will identify essential elements of molecular

function and pinpoint specific aspects of eye development that are regulated by Xbves.

Another important factor in choosing the frog model for these analyses is that Xbves

appears to be the only major isoform expressed at this stage of development (EST
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database, Ripley et al., submitted). Thus, problems with redundancy of protein function

observed with the mouse model are eliminated. Third, mutation of rescue mRNAs is a

much faster and economical way of analyzing a multitude of protein modifications when

compared to mouse knockout and transgenic studies. Scores of embryos can be

produced in a single day. Thus, multiple mutations of the protein can be rapidly

analyzed.

Finally, after we determine the nature of Bves protein-protein interactions, the

functional domains of the protein, and how these findings play into embryonic

development, we can hopefully approach the third question of how Bves function in

epithelial cells correlate with its function in muscle types. The expression of Bves/Pop1a

proteins in cardiac and skeletal muscle is indeed very robust, suggesting a critical

function.  Although redundancy of Pop family members has complicated strategies to

generate knockout mice, the Brand group continues their efforts to identify roles for

these proteins in myocytes. Currently, contributions from both laboratories have begun

to piece the molecular puzzle of this novel protein family together, but clearly, a

complete understanding of the regulation of these proteins is far from complete.

In conclusion, this dissertation provides an important contribution to the body of

literature on the Bves/Pop family of proteins. First, my work demonstrates that Bves is a

component of epithelial cell types and exhibits a protein distribution in both cells and

tissues that would suggest a function in cell junction regulation and cell interaction. My

studies also establish that Bves plays an important role in TJ integrity, supported by

functional knock-down experiments and an interaction with a molecular complex

containing ZO-1. These findings provide the groundwork for further examination of how
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Bves participates in cell adhesion and cell interaction, as our earliest studies had

implied. Finally, I present evidence that Bves/Xbves plays a critical role in embryo

morphogenesis, which establishes an excellent model system to perform future studies.

In sum, my work demonstrates the importance of Bves at the TJ in epithelia and during

embryo development, and defines the essential nature of Bves/Xbves in epithelial

integrity.
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