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CHAPTER I

INTRODUCTION

Like many common diseases with a genetic basis, the etiology of late-onset
Alzheimer disease (LOAD) is complex. Evidence suggests that LOAD is a
heterogeneous trait with multiple susceptibility loci and possibly gene-gene interactions
involved. While there are existing methods that can address specific components of this
etiology, ultimately, the real power of these methods lies in our ability to marry them into
a comprehensive approach to genetic analysis, so that their relative strengths and
weaknesses can be balanced and a range of alternative hypotheses can be investigated.
Thus, I propose a two-stage, multi-pronged approach to the problem of genetic analysis
of LOAD in which heterogeneity is first addressed by dissecting-out more homogeneous
subsets of the data and then main effects and gene-gene interactions are investigated in
each of these subsets.

The theoretical basis for such an approach to the analysis of complex genetic
diseases is presented in Chapter II. Definitions and examples of heterogeneity and
interactions that complicate genetic analysis are presented. Existing methods for
detecting heterogeneity and interactions are reviewed, and gaps in methodology are
discussed.

Chapter III presents a simulation study in which the performance of three
clustering methods is compared in the task of uncovering trait heterogeneity in simulated

data. A novel data simulation algorithm is introduced. The best of the three clustering



methods—Bayesian Classification—is chosen and its applicability to real data (based on
its false positive and false negative rates) is investigated.

Chapter IV details an extension of this simulation study in which the
implementation of the Bayesian Classification method is modified to improve
performance under a wider range of conditions realistic for genetic studies. False
positive and false negative rates under these conditions are also investigated.

Chapter V presents an application of the proposed two-stage comprehensive
analysis to a late-onset Alzheimer disease dataset. Analysis of heterogeneity is
performed using the Bayesian Classification clustering method. Main effect analysis is
performed in cluster subsets. For the case-control dataset, the Pearson chi-square test of
independence is applied, and for the family-based dataset, two-point linkage analysis, the
Pedigree Disequilibrium Test and the Family-Based Association Test are utilized.
Interaction analysis is performed using the Multifactor Dimensionality Reduction
method. Logistic regression is used to explore the structure of predictive MDR models
found significant by permutation testing. Results of these integrated analyses are
interpreted, and limitations of the study design and analysis methods are discussed.

In Chapter VI, the entirety of the research comprising this dissertation is put into
perspective, discussing the lessons learned and the immediate future directions for this
work. New directions for future studies of neurogenetic diseases are also discussed and
suggestions are made as to the focus of future research efforts, given current and

forthcoming phenotyping technology, such as neuroimaging.



CHAPTER II

BACKGROUND

Adapted from:
Thornton-Wells TA, Moore JH, Haines JL. Genetics, statistics and human disease:

analytical retooling for complexity. Trends in Genetics 20: 640-647, 2004.

“If the only tool you have is a hammer, you tend to see every problem as a nail.”

Abraham Maslow, American psychologist, founder of humanistic psychology

“The difficulty lies, not in the new ideas, but in escaping the old ones.”

John Maynard Keynes, English economist

Complex Human Genetic Disease

Over the past few decades, most of the success in the field of statistical genetics
has come from identifying genes with substantial main (i.e., independent; non-
interactive) effects on the disease process. Most statistical tools enabling this success
were developed for and are primarily effective in the analysis of simple, Mendelian
diseases such as Huntington disease, cystic fibrosis, and early-onset Alzheimer disease.
Molecular biologists and geneticists alike now acknowledge that the most common
human diseases with a genetic component are likely to have very complex etiologies.

However, despite this belief, statistical geneticists continue using primarily traditional



methodologies to attack this complex problem. Traditional statistical methods of genetic
analysis, such as linkage and association, have failed to consistently replicate findings of
main effect genes, even though they may explain a majority of the genetic effect of a
complex disease. For example, over 115 late-onset Alzheimer disease candidate genes
have been tested and have generated a positive main effect, but all except apolipoprotein
E (APOE) have failed to be consistently replicated (Pericak-Vance MA and Haines JL,
2002). Among the possible reasons for this failure are false positives due to population
stratification and true differences in genetic etiology between study populations
(Hirschhorn JN et al., 2002). Advances in statistical and computational genetic
methodology simply have not kept pace with the advance of available sources of data.
There have been a few attempts to address complexity directly, including the
development of nonparametric tools, but these have generally limited application. One
example is the transmission disequilibrium test that led to the discovery of the insulin
receptor gene as a risk factor for diabetes (Spielman RS et al., 1993).

Going forward, statistical geneticists must not only acknowledge but also directly
confront the numerous complicating factors that can be involved in complex genetic
diseases and that present significant challenges for traditional statistical methods. Only a
small fraction of the human genetics literature specifically reports on investigations of
such complexity. It is, perhaps, daunting to consider multiple complicating factors, such
as locus heterogeneity, trait heterogeneity, and gene-gene interactions (see Figures 1 and
2). However, these must be addressed if we are to have any chance of understanding the

genetic legacy of disease left to us by our forebears.
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Categorization and Analytical Approaches

Each of the factors presented in Figures 1 and 2 complicate statistical analysis in
one of two ways—either by creating heterogeneous, or competing, disease models
(Figure 1), or else by creating a multifactorial, interacting disease model (Figure 2). The
challenge for modeling the relationship between genetic and environmental risk factors
(independent variables) and disease endpoints (dependent variables) is different for these
two categories. Of course, what exacerbates the complexity is that none of these
competing and interacting models are mutually exclusive. Various combinations of
(genetic and/or trait) heterogeneity and interactions might be important in any given
disease of interest. Thus, to dissect these factors, we must assemble a toolbox of both
tried-and-true and newly constructed genetic analysis methodologies, which together can
be used to discover the true underlying etiologies of complex traits.

Many complicating factors can be addressed proactively by a well-considered
study design. This is perhaps one of the best investments researchers can make to
maximize their ability to discover complex genetic disease models. Because the causally
complex relationship between the genotype and phenotype is the object of genetic
studies, it is important to collect accurate and abundant phenotypic data. In the absence
of phenotypic data, there is not even the option of looking for a mapping between
genotype and potential clinical subtypes, which could help identify a case of genetic
heterogeneity. Established guidelines or protocols concerning data collection should be
followed and such data should be made available to others in an accessible format, so as
to facilitate future meta-analysis. Information regarding the exposure to potential

environmental risk factors should be collected whenever logistically and economically



feasible. Even with the best study design with regard to data collection, an ill-advised or
incomplete analysis of the data can still yield disappointing, if not incorrect, results.
Thus, we advocate a comprehensive approach to account for both the heterogeneity and

the interaction models of disease.

Heterogeneity

For this category of factors, there are multiple independent (predictor) variables or
else multiple dependent (outcome) variables that complicate the analysis by creating a
heterogeneous model landscape. In the case of allelic or locus heterogeneity or
phenocopy, multiple predictor variables (e.g. multiple alleles, multiple loci and/or
environmental risk factors) are present, some of which might be unmeasured or
unobserved and, therefore, unavailable for inclusion in the disease model. In the case of
trait heterogeneity or phenotypic variability, multiple outcome variables are present,
which cannot or have not been distinguished based on the available phenotypic
information.

Perhaps the most straightforward of the methods for addressing heterogeneity is
sample stratification (Figure 3). This method subdivides subjects based on any number
of genetic, demographic, clinical or environmental factors to create more homogeneous
subsets of the data. The premise of this method is that there are two or more underlying
disease models, which are conditional on the factor on which the data are being stratified.
For example, one genetic model might be associated with disease in the absence of a
specific environmental risk factor; however, when that environmental factor is present, a

different set of genetic factors are involved. Using different levels of the stratifying
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factor (e.g. different degrees of environmental exposure), one could perform further
analyses, such as logistic regression (discussed in the following section). The main
limitation of sample stratification is a reduction in sample size within each stratum and
thus a reduction in power.

Some statistical methods that test the hypothesis of locus heterogeneity include
the M test (Morton, 1955), the [ test (Risch N, 1988) and the Admixture test (Figure 3)
(Ott, 1992; Smith CAB, 1963). Each of these methods is solely applicable to family-
based data on which linkage analysis is performed. The M test uses a priori stratification
of subjects based on discrete (or discretized) covariates, such as gender, ethnicity or
clinical subtype, and tests for a difference in recombination fractions across the different
subsets of families. The [ test is a similar but slightly more powerful statistical test than
the M test, owing to a difference in their null distributions used to determine statistical
significance. The admixture test does not require a priori stratification but instead
estimates (using maximum likelihood) the degree of admixture present in the sample
from two-point or multi-point lod scores between marker and disease loci. It then uses
these estimates to evaluate the relative probabilities of linkage with and without
heterogeneity. Thus, the M and B tests evaluate a more specific hypothesis, and as a
result, have more power than the admixture test. The admixture test also lacks sensitivity
and can only account for, not resolve, the underlying heterogeneity.

A more recently developed method to address heterogeneity is the ordered subset
analysis (OSA; Figure 3) (Hauser et al., 1998; Hauser et al., 2004). In OSA, a continuous
or ordinal covariate, such as blood lipid levels or disease age of onset, is used to rank

order families, and then a cumulative lod score is iteratively calculated after each family
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is added (in order) to the sample until the cumulative lod score begins to decrease. Thus,
those families included in the linkage analysis all provide support for linkage, and the
subset of chosen families is more homogeneous with respect to the covariate and,
therefore, hopefully, more genetically homogeneous than the whole dataset.

Other methods aimed at producing more homogeneous subsets of the data include
cluster analysis, latent class analysis and factor analysis (Figure 3). Unlike the
aforementioned statistical tests for heterogeneity that only incorporate linkage analysis,
the following methods can also be applied to case-control datasets because they are not
tied to any particular statistical analysis of the subsets. There are hundreds of different
cluster analysis methods, which operate based on different heuristics and fitness metrics,
making them appropriate for particular types of data (continuous versus discrete, low-
versus high-dimensional, and so on). They all attempt to produce clusters with high
intraclass similarity and/or low interclass similarity and have varying degrees of success.
Cluster analysis has been widely used for analyzing DNA and protein microarray data
(Slonim DK, 2002) and to find more homogeneous subgroups based on genetic
background (Mountain JL and Cavalli-Sforza LL, 1997).

Latent class analysis and factor analysis have a goal similar to cluster analysis but
instead of directly clustering or classifying data based on known covariates, such as the
scores of different items on a psychological or physical functioning test, these two
methods try to derive ‘latent’ or underlying variables, such as summary scores of various
test items, from relationships among the known covariates. These latent variables are
then used to classify or stratify the data. Latent class analysis has been applied to

phenotypic data for several diseases, including attention deficit hyperactivity disorder
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(Neuman R1J et al., 1999), Alzheimer’s disease (Neuman RJ et al., 2000), autism (Pickles
A et al., 1995) and schizophrenia (Sham PC et al., 1996).

It should be noted that all of the methods discussed previously, with the exception
of the admixture method, depend on covariate data, whether these be known genetic risk
factors, demographic data, phenotypic data or endophenotypes. Not only must such
information be available but also these covariates must actually be relevant to, or be
surrogates for, the existing heterogeneity. If the data are incomplete, the performance of
many of these methods for dissecting heterogeneity suffers and attempts to correct this
problem by imputing data can introduce spurious associations. In the absence of such
relevant, complete data, we are left with seemingly few options of how to proceed when
we suspect heterogeneity to have a role.

To overcome some of these problems it might be advantageous to adapt the same
basic principles of the aforementioned methods to the more complex data. For instance,
although clustering methods have been heavily utilized for microarray data, few studies
have looked into clustering genotypic data from association-based studies to identify
multilocus patterns that characterize particular subsets of the data. Some clustering
methodologies appropriate for such discrete data include hypergraph clustering (Han EH
et al., 1997a), Bayesian classification (Hanson R et al., 1991) and fuzzy k-modes

clustering (Huang Z and Ng MK, 1999).

Interactions

Gene—gene and gene—environment interactions are two complex genetic factors

(Figure 2) that create a rugged model landscape for statistical analysis. There is clear and
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convincing evidence that gene—gene interactions, whether synergistic or antagonistic, are
not only possible but also are probably ubiquitous (Moore JH, 2003; Tong AH et al.,
2004). Similarly, gene—environment interactions are likely to be discovered if properly
investigated. Thus, it is crucial that complex genetic datasets be properly interrogated for
possible underlying interactions.

Analytically it can be difficult to distinguish between heterogeneity and
interactions. Many of the methods that address heterogeneity might be equally applicable
to uncovering interactions. For instance, the discovery of linkage to a particular locus in
only one subset of data produced by sample stratification could be indicative of
heterogeneity, or it could be indicative of an interaction between the locus and the
covariate used to stratify the data. However, there is also an entirely different set of
methods that are particularly well suited to discovering interactions (but not
heterogeneity; Figure 4).

One traditional approach still widely used today is regression. In particular,
logistic regression is used when the outcome variable is discrete, for example, disease
status (i.e. you either have the disease or you do not) (Figure 4). Logistic regression
enables direct modeling of the mathematical relationship of genetic and other risk factors
to disease status. However, this ‘workhorse’ suffers from the curse of dimensionality,
meaning that as the distribution of data across numerous combinations of factors becomes
sparse, the parameter estimates become unreasonably biased, particularly when the ratio
of sample size to independent variables is below ten to one (Concato et al., 1993; Moore
JH and Williams SM, 2002; Peduzzi P et al., 1996). Thus, when considering a

combination of loci, one or more of which have low minor allele frequencies, the number

14



suonodedul 03 sayoeoidde [eonAfeue jo Arewung ‘4 31

(866T "l 10 d
399n7) 190] ZINAAI pPuUe TINAA] @Y) 1o} S2109s poj 1saybiy Buimoys sjnsal
pauodal Ajsnoinaid paosnpoudal erep snyjjaw sa1agelp T adA L Jo SIsAleuy

suonoe.aul
auab-auab ajdinw yum 3si aseasip Joy
s|apow puly 01 uoniubooal ulaned sazinn

SHIOM)ON
[eJNaN [e1onn

(9002 ‘e 10 Maipuy/
1aoued Jappe|q yum pajeldosse ag 01 YA Ag punoy sem sniels Bupjow
pue adx auab Jredal YNQ U1 Ul SANS OM] US8M)}a(g UOIRIBIUI Uy

suonoeialul aualb
-auab arebnsanul 0] uononpal eyep sazinn

(M4aw) uononpay
Ajjeuoisuawiq

J03oen Al

(002 ““Je 1@ d asnoylanin)d) suoneioosse uealiubis Aue Ajuapl
10U PIp INg WS|j0geIaW Uedaloull 0} paje|al sauab arepipued ul SdNS|
0T pue sainseaw aAleluenb QT 8zAfeue 0} pasn sem poylaw mau Siy |

suonoeIaUI
[9A3]-yBIy 10} yoseas au s1osal
A|[eansunay Yaiym NdD 0} UONEDIPOIN

(nd¥) pouley
uoljijed pajoLysay

(Z00Z “Te 19 HC 2100|A) S|9A3| T-IVd ewseld 10|
uonaipaid ayl ul ‘uoissalbal Jeaul| Ag punoy S199448 aAIIpPE 01 Uolippe Ul
‘sauab T-1Vd pue 3DV aYl JO S199448 SAIIppe-UOU 10} 8J2UBPIAS punoy INdD)

suonoeJalul 8uaf
-auafb ayelisanul 0] uononpal eyep saziinn

(ndo)
poyja Buluoniyied
|eliojeuiquo)

“le 18 £L1 0]|21500) 14D Aq paannisuod sdnoibgns 1ounsip-Ajeloineyaq
ul pauayiBuais sem sliel) 9SeasIp JejnaseAolpIed 0] abexul| J0 8ouspIA

[9pOW UoNeIISSE[D [edlydielaly
e p|ing 01 B1ep sapIAIpans AjaAne.s)|

(002 “1e 1@ 1r BuioH) Aloioads ajqeuoseal Yim 1adued [ediAlad 1oipald SuOfoBISIUI JO [BPOW [edlydJelaly HIOM)SN
0} puno} sem sauab ajepipued Ul Sal||8JeS0JdIW pue SINS JO YI0MIaU W © spjing Teyl walsAs Buluoseal onsljiqeqoid Joljog ueisaleg
(e00¢] (Lyv9)

soa.i] uoissaiboy
pue uonesyisse|)

(700Z ““Ie 19 "N >00D) 830.1S 21WaYIS|
Yum pajeloosse aq 01 SHYIN AQ punoy sem—sauab 4-unajiaiul puel
UI93I9s-d ayi—sauab parejai-uoiewure)jul OM} Uaamiag UonoeISIUI Uy

sa|qeleA Juapuadapul Auew yum swajqoid
[euoisuawip-ybiy Ioj pauns Apenored
uoissalbai reaul| asimdals Jo uonezijelausas

(S¥VIN)
sauljdg uoissaibay
aAndepy ajeleAnniy

(€002 ““Ie 18 N unueyunyoesoy|) sauab aseyjuAs auoialsope pue ‘dWAzud)
Buiuaauoa-uisualolbue ‘uaboulsualolbue ayl Buowe uonaeiaul ue Yyum
paleldosse aq 01 punoj sem adAlouayd uoisuauadAy Bunenpowuou ay |

snjels aseasip 01 SI0joe) sl anaual pue)
(s)a|geLieA awo2IN0 SNONUNUOD UBaMIa()
diysuone|al jo Buispow jeanewsayre |

uoissaiboay Jeaul|

(2o0Z “re 18 AY
997 ‘T00Z “"Ie 18 [ YoH) Aisejdoibue Jaye SISoualsal Yim pareidosse aq o)
punoy sem sauab arepipued g9 Huowe uonoeialul JNS-aulu JuedLIubIS

weoyubls Ajreansinels si onsiels Alewwns
9SOUM ‘SJNS 4O 185 1S90, 3} S109|9S

(sisAjeue uoneloossy|
}9g) onsnejs wng g

(5002 ““1e 18 [ uiLIs|IN) s1eserep uspuadapul ajdinw Ul BWYISe]
UM PaJRID0SSE 8( 0} punoy alom Aemyred SSa1s SAITBPIXO dY) Ul PAAJOAUI
sauab 1y pue OdIN ‘TOON 8yl Usamiad 19818 SNaojnNwW JUBdLIUBIS W

1591 1J-Jo-ssaupoob arenbs
-1y2 yum Buiuaaliosaid saye pawioyad
aJe uoideIalUI JO S1S3) Olrel pooyl|axI]

(4114)
yJomawel Buiysa
uoljoeluaju| pasnoo4

(rooz ‘e
19 TDU0)8Y) S199Jap g} [einau JO sl asealdul 0} uoissalbal onsibo| Aq
punoy a1am sauab pale|al-are|o) 9aly) Buowe suooeIslu| SNO0|-0M] 33y |

snjels aseasip
01 s1019e} 3sil Jay10 pue oiaual 91810sIp
jo diysuoneal jo Buispow [eairewayre

uoissaibay onsibo|

a|dwex3

uonduasaq|

15



of individuals with certain multilocus genotype combinations will be so small (or perhaps
equal to zero), that one cannot reasonably estimate, or generalize to the population, what
is the disease risk for that combination of genotypes. Missing or incomplete data can also
create or exacerbate the problem of sparse data. In addition, many standard approaches
to implementing logistic regression, such as forward stepwise regression, require
significant main effects to be modeled before including interaction effects between
factors. This is a major methodological limitation for situations where each locus has
relatively small main (non-interactive) effects but more substantial interactive effects
because none of those interactive effects would ever be considered.

A more recently developed statistical method for evaluating gene—gene
interactions is the focused interaction testing framework (FITF) (Millstein et al., 2006).
This method is applicable to case-control data and uses likelihood ratio tests on
increasingly greater orders of interaction between genes. To reduce the number of
interactions tested, a prescreening step is applied in which a goodness-of-fit chi-square
statistic is used to detect association among candidate genes in the pooled case-control
data. Multiple testing is addressed by controlling false discover rates. This method is
reported to have better power to detect interactions than Multifactor Dimensionality
Reduction (MDR, discussed below) when the genes involved have recessive, dominant or
additive effects (Millstein et al., 2006). However, the reported difference in power may
be attributable to the particular implementation of MDR, which differs from that
recommended by MDR’s authors, and to a disconnect between how the methods

determine the success of an analysis of simulated data.

16



Another recently developed method for gene-gene interactions is the S-sum
statistic, which is designed to overcome the curse of dimensionality and the multiple-
testing problems by reducing any number of independent variable statistics into one sum
statistic and then using permutation testing to correct for an experiment-wise Type I error
rate, which is the probability of concluding that there is an effect when one does not
actually exist (Hoh J et al., 2001; Ott J and Hoh J, 2003). ‘Set association’ analysis is the
authors’ term for the application of the S statistic to SNP marker data from candidate
genes or regions (Figure 4). This method selects the ‘best’ set of N number of single
nucleotide polymorphisms (SNPs), whose Sy, statistic is statistically significant, leading to
the inference that the entire set of SNPs might be interacting in some way to increase
disease risk, or else that they are all contributing independently to disease risk. However,
because the summed statistics are all single-marker statistics, set association analysis
does not look at any specific (non-additive) interactive effects among markers and would
be likely to miss nonlinear or antagonistic types of gene—gene interactions. This method
has successfully identified a set of seven SNPs, which together were associated with
restenosis incidence (P < 0.0001) and explained over 11% of the overall variance (Zee
RY et al., 2002). In theory the S statistic can be used with any number of test statistics on
discrete or continuous data, but its applications and limitations are still being evaluated
(Wille A et al., 2003).

When the outcome variable is continuous, as is the case for a quantitative trait
locus (QTL), such as serum prolactin levels, linear regression can be used to model the
relationship between risk factors and QTL status (Figure 4). However, linear regression

faces the same limitations logistic regression does regarding parameter estimation and
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modeling interactions. Cheverud and Routman (Cheverud JM and Routman EJ, 1995)
developed an alternative parameterization of gene—gene interactions based on its effects
on genetic variance components (additive, dominance and interaction); however, it is
limited to evaluating only two loci at a time and all possible genotypes must be present in
the sample.

Multivariate adaptive regression splines (MARS) (Cook NR et al., 2004;
Friedman J, 1991) is a generalization of stepwise linear regression that is particularly
suited for high-dimensional problems in which many independent variables might be
modeled. MARS is also similar to classification and regression trees (CART) (Cook NR
et al., 2004; Morgan JN and Sonquist JA, 1963; Province MA et al., 2001; Shannon WD
et al., 2001), which iteratively subdivide data to build a hierarchical classification model.
A Bayesian belief network (BBN) (Good 1J, 1961) is a probabilistic reasoning system
that builds a topological (but necessarily hierarchical) model of interactions (joint
probabilities) (Figure 4). BBN, CART and MARS all suffer from the same problem of
sequential conditioning that can plague many other regression-based methods, which
makes it difficult to discover interactions (especially higher-order interactions) among
predictor variables, depending on the strength of their individual (or lower-order
interaction) effects. The binary nature of CART further limits its ability to model any
additive interaction. Still, the most troubling limitation that plagues all these methods is
their inability to model, much less discover, nonlinear interactions.

Two types of computational methods—data reduction and pattern recognition—
that come from the computer science field offer the potential for uncovering such

nonlinear interactions, with increased tolerance for missing or incomplete data (Figure 4).
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Nelson et al. (Nelson MR et al., 2001) developed a combinatorial partitioning method
(CPM) that utilizes data reduction to investigate gene—gene interactions. CPM has shown
success in building multilocus models with nonlinear interactions to explain and predict
variability in plasma triglyceride (Nelson MR et al., 2001) and plasma plasminogen
activator inhibitor 1 levels (Moore JH et al., 2002). Culverhouse et al. (Culverhouse R et
al., 2004) developed a modification of the CPM method, the restricted partition method
(RPM), which heuristically restricts the exhaustive search used in CPM and thereby
reduces its computational load for evaluating interactions. Multifactor dimensionality
reduction (MDR) is one data reduction method developed specifically for genotypic data
that has been successful at finding gene—gene interactions in both simulated data (Hahn
LW and Moore JH, 2004; Hahn et al., 2003; Ritchie MD et al., 2001; Ritchie MD et al.,
2003) and real data (Ashley-Koch et al., 2006; Cho YM et al., 2004; Ma et al., 2005; Qin
et al., 2005; Ritchie et al., 2001; Tsai CT et al., 2004; Williams SM et al., 2004).
Artificial neural networks perform pattern recognition and have been applied to
genotypic data with varied success (Lucek P et al., 1998; Marinov M and Weeks D, 2001;
McCulloch W and Pitts W, 1943; Sherriff A and Ott J, 2001). However, recent work has
improved the reliability of artificial neural networks through their optimization by
evolutionary computation (EC) algorithms (Fogel GB and Corne DW, 2002), which use a
computational search methodology uniquely suited for rugged model landscapes (Ritchie
et al., 2003b). One limitation of these computational methods is the potential difficulty
of interpreting the biological implications of the resulting predictive models (Moore JH

and Ritchie MD, 2004; Moore and Williams, 2002).

19



Retooling for the Future

None of the aforementioned methodologies is superior in all respects for the range
of complicating factors that might be present in any given dataset. Given the relative
shortcomings of our current analyses in complex diseases, we need to extend greatly the
range of available analytical tools. There is a crucial need for extensive reevaluation of
existing methodologies for complex diseases, as well as for massive efforts in new
method development. It is important that empirical studies be conducted to compare and
contrast the relative strengths and weaknesses of methods on specific types of problems.
For example, although cluster analysis has shown promise in numerous other scientific
and mathematical fields, its use with genetic, particularly discrete genotypic data, has not
been adequately explored. Similarly, artificial neural networks modified with
evolutionary computation have great potential for discovering nonlinear interactions
among genes and environmental factors. However, work is still ongoing to evaluate its
limitations with regard to the heritability and effect sizes that can be detected.

Ultimately, the real power of existing and yet-to-be-developed methods lies in our
ability to marry them into a comprehensive approach to genetic analysis, so that their
relative strengths and weaknesses can be balanced and few alternative hypotheses are left
uninvestigated. We propose routinely taking a two-step approach to analysis because no
single method adequately investigates heterogeneity and interaction issues
simultaneously. For example, clustering or ordered subset analysis can be used first to
uncover genotypic and/or phenotypic heterogeneity and to subdivide the data into more
homogeneous groups. Then in a second step, specific tests of interactions, such as the S

sum statistic approach or the multifactor dimensionality reduction method can be used to
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investigate gene—gene or gene—environment interactions within each of the homogenized
subgroups. This is still not a perfect approach, but it is an important improvement over
the more common alternative of a single-pronged approach to analysis.

Such a combined strategy must be the future of genetic statistical analysis. We
must harness our knowledge and experience of existing methods even as we open our
minds to newly fashioned techniques and approaches. By thus ‘retooling’ our analyses,
we provide the best opportunity for uncovering the genetic basis of common human

disease.

21



CHAPTER III

A COMPARISON OF CLUSTERING METHODS

Adapted and expanded from previous work completed for
Masters Thesis in Biomedical Informatics (2005) and published as follows:
Thornton-Wells TA, Moore JH, Haines JL. Dissecting trait heterogeneity: a comparison

of three clustering methods applied to genotypic data. BMC Bioinformatics 7:204, 2006.

Background
For over 30 years, cluster analysis has been used as a method of data exploration

(Anderberg MR, 1973). Clustering is an unsupervised classification methodology, which
attempts to uncover ‘natural’ clusters or partitions of data. It involves data encoding and
choosing a similarity measure, which will be used in determining the relative ‘goodness’
of a clustering of data. No one clustering method has been shown universally effective
when applied to the wide variety of structures present in multidimensional datasets.
Instead, the choice of suitable methods is dependent on the type of target data to be
analyzed. Clustering has been utilized widely for the analysis of gene expression (e.g.,
DNA microarray) data; however, its application to genotypic data has been limited
(Slonim DK, 2002).

Most traditional clustering algorithms use a similarity metric based on distance that
may be inappropriate for categorical data such as genotypes. Newer methods have been

developed with categorical data in mind and include extensions of traditional methods
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and application of probabilistic theory. Three such methods were chosen (as discussed in
a subsequent section) to compare in the task of discovering trait heterogeneity using
multilocus genotypes—Bayesian Classification (Hanson R et al., 1991), Hypergraph-
Based Clustering (Han EH et al., 1997a), and Fuzzy k-Modes Clustering (Huang Z and

Ng MK, 1999)—all of which are appropriate for categorical data.

Methods

Data Simulation

To compare the performance of clustering methodologies in the task of uncovering
trait heterogeneity in genotypic data, datasets were needed in which such heterogeneity
was known to exist. Since there are no well-characterized real datasets available that fit
this description, a simulation study was needed. Genetic models that contained two
binary disease-associated traits, such that there is trait heterogeneity among ‘affected’
individuals, were used. In addition, some of the models incorporate locus heterogeneity,
a gene-gene interaction, or both. Figure 5 depicts the structure of the four genetic models
used to simulate the genotypic data.

Four prevalence levels were simulated for each genetic model: (1) fifteen

percent, which is characteristic of a common disease phenotype such as obesity (Flegal
KM et al., 1998), (2) five percent, which is characteristic of a relatively common disease

such as prostate cancer (Narod SA et al., 1995), (3) one percent, which is
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Model 1 — Trait Heterogeneity Only

Allelic Variant i of Locus A —> DiseaseX-Associated Trait |
\

Disease X
Allelic Variant ii of Locus B — DiseaseX-Associated Trait Il —
Model 2 - Trait Heterogeneity with Locus Heterogeneity
Allelic Variant i of Locus A
T DiseaseX-Associated Trait |
Allelic Variant ii of Locus B / Disease X

Allelic Variant iii of Locus C —» DiseaseX-Associated Trait Il

Model 3 - Trait Heterogeneity with Gene-Gene Interaction

Allelic Variant i of Locus A
> » DiseaseX-Associated Trait |
Allelic Variant ii of Locus B T Disease X

Allelic Variant iii of Locus C —» DiseaseX-Associated Trait Il

Model 4 — Trait Heterogeneity with Locus Heterogeneity and
Gene-Gene Interaction

Allelic Variant i of Locus A
T DiseaseX-Associated Trait |
Allelic Variant ii of Locus B /

Disease X
Allelic Variant iii of Locus C /
> » DiseaseX-Associated Trait Il
Allelic Variant iv of Locus D

Figure 5. Structure of Genetic Models Used for Data Simulation

characteristic of a less common disease such as schizophrenia (Schultz S and Andreasen
N, 1999), and (4) one tenth of one percent, which is characteristic of a more uncommon

disease such as multiple sclerosis (Kurtzke JF, 1991). Three realistic levels of sample
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size were simulated for each model: 200, 500 and 1000 affected individuals. Finally,
four levels of non-functional loci were simulated: 0, 10, 50 and 100. The inclusion of
non-functional loci adds a random noise effect that is present in real candidate gene
studies in which the functional locus or loci are among many more suspected but actually
non-functional loci. All loci, including the functional loci, were simulated to have equal
biallelic frequencies of 0.5.

Although the above parameter settings are by no means exhaustive of the
biologically plausible situations, the outlined conditions are reasonable and specify 192
different sets of data specifications due to the combinatorial nature of the study design.
To have adequate power to detect a difference in performance among clustering
methodologies, 100 datasets per set of parameters were simulated, resulting in a total of
19,200 simulated datasets.

For the purposes of simulating these data, a novel data simulation algorithm
capable of incorporating these complex genetic factors in an epidemiologically-sound
manner was designed and developed (Figure 6). Penetrance is the probability of having a
particular phenotype given a specific genotype (single or multilocus). Prevalence, on the
other hand, is the percentage of individuals in a population that have a particular
phenotype. The penetrance levels of the two simulated disease-associated traits are
constrained by the overall prevalence level of the simulated disease. The two traits were
simulated to contribute equally to the prevalence of the associated disease (fifty percent
trait heterogeneity), such that a small but naturally occurring degree of overlap would be
present, representing individuals having both disease-associated traits, instead of just one

or the other. These penetrance tables are inputs for the new data simulation algorithm.
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Penetrance Function Array: each cell value represents the probability of having the disease-
associated trait, given the (multilocus) genotype

Unaffecteds Probability Array: each cell value represents the probability of having the multilocus
genotype given that the disease status is unaffected, which is the probability of being negative
for all traits, or the joint probability of being negative for each trait, given the genotype
frequency (prior probability)

Affecteds Probability Array: each cell value represents the probability of having the multilocus
genotype given that the disease status is affected, which is the probability of being positive for
at least one trait, which is the same as 1 — probability of being negative for all traits, or 1- joint
probability of being negative for each trait, given the genotype frequency (prior probability)

Pseudocode:

1. Allocate two probability arrays, one for Affecteds and one for Unaffecteds, each of size
L A

I I Z J where L is the total number of loci and A is the number of alleles for locus i.
i=1 j=I

2. For each penetrance function p(Status=Affected | Multilocus Genotype)
==>Distribute 1-p across relevant cells of Unaffecteds probability array

3. Populate cells of the Affecteds probability array with 1-(cell probability) of corresponding cells of
the Unaffecteds probability array

4. For each locus
==>Distribute allele frequencies across appropriate cells of both probability arrays

5. Generate the specified number of unaffected individuals from the Unaffecteds probability array
6. Generate the specified number of affected individuals from the Affecteds probability array

7. Determine the status of each disease-associated trait for each affected individual thus.... If the
affected individual has a high-risk genotype combination for that disease-associated trait, then
that individual is affected for that trait. Otherwise, the individual is unaffected for that disease-
associated trait. (By design, each affected individual will be affected at one or more disease-
associated traits.)

Figure 6. Novel Data Simulation Algorithm. Simulates trait heterogeneity, locus
heterogeneity and gene-gene interactions in an epidemiologically-sound manner. The
inputs are penetrance function arrays, which are translated into probability arrays for
affecteds and unaffecteds, separately. Then affected and unaffected individuals (with
multilocus genotypes) are simulated from those respective arrays.
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For one fourth of the models, trait heterogeneity only is involved (not locus
heterogeneity or gene-gene interactions), and there is one genetic risk factor for each of
the two traits. Each locus acts in a recessive manner, such that affected individuals have
both copies of the high-risk allele at the disease-associated “functional” locus (Figure 7).
A naturally occurring degree of overlap between the two traits can result, such that some

affected individuals have the high-risk genotypes for both traits.

(a)

1A1A | 1A1B | 1B1B

(b)

2A2A | 2A2B | 2B2B

Figure 7. Genetic Model THO (Trait Heterogeneity Only)

The penetrance tables for Trait I (a) and Trait II (b) are presented. Cell values indicate
penetrance level, or the probability of having the trait, given the corresponding multilocus
genotype. For each of the two traits, a Mendelian recessive genetic model is used, in
which the trait is penetrant only when two copies of the high risk (B) allele are present.
The penetrance (x) is constrained by the desired overall disease prevalence to be
simulated (0.001, 0.01, 0.05 or 0.15).

In the second quarter of the datasets, a locus heterogeneity model described by Li
and Reich (L1 WT and Reich J, 2000) was also simulated (Figure 8b) so that for one of
the traits, there are two associated loci, each of which is responsible for roughly half of

the individuals affected with the trait. In that locus heterogeneity model, each of the
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functional loci acts in a recessive manner, such that the disease-associated genotype for
the locus consists of two copies of one high-risk allele. For the other trait, a recessive
model was implemented, as described above (Figure 8a). By chance, there might be some
affected individuals who have the high-risk genotype from the first trait as well as one of

the high-risk genotypes from the second trait.

(a)
1A1A | 1AIB | 1B1B
0 0 X
(b)
2A2A | 2A2B | 2B2B
3A3A | 0 0 X
3A3B | 0 0 X
3B3B | x X X

Figure 8. Genetic Model THL (Trait Heterogeneity with Locus Heterogeneity)

The penetrance tables for Trait I (a) and Trait II (b) are presented. Cell values indicate
penetrance level, or the probability of having the trait, given the corresponding multilocus
genotype. For Trait [, a Mendelian recessive genetic model is used, in which the trait is
penetrant only when two copies of the high risk (B) allele are present. For Trait II, a
locus heterogeneity model described by Li and Reich (Li WT and Reich J, 2000) is used,
in which the trait is penetrant only when two copies of the high risk allele at one or both
loci are present (in this case the B alleles for locus 2 and 3 are high risk).

In the third quarter of the datasets, a gene-gene interaction was simulated for one of
the two traits. The “diagonal” gene-gene interaction model, first described by Frankel

and Schork (Frankel WN and Schork NJ, 1996) and later by Li and Reich (Li WT and
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Reich J, 2000), which is nonlinear and nonadditive in nature, was used (Figure 9b).
Under this model, a multilocus genotype is high-risk if it has exactly two high-risk alleles
from either of the two associated loci. A multilocus genotype with fewer than or greater
than two high-risk alleles is not associated with disease. For the other trait, a recessive
model was implemented, as described above (Figure 9a). By chance, there might be
some affected individuals who have the high-risk genotype from the first trait as well as

one of the high-risk genotypes from the second trait.

(a)
1A1A | 1A1B | IBIB
0 0 X
(b)
2A2A | 2A2B | 2B2B
3A3A 0 0 X
3A3B 0 0.5x 0
3B3B X 0 0

Figure 9. Genetic Model THG (Trait Heterogeneity with Gene-Gene Interaction)

The penetrance tables for Trait I (a) and Trait II (b) are presented. Cell values indicate
penetrance level, or the probability of having the trait, given the corresponding multilocus
genotype. For Trait I, a Mendelian recessive genetic model is used, in which the trait is
penetrant only when two copies of the high risk (B) allele are present. For Trait II, the
“diagonal” genetic model first described by Frankel & Schork (Frankel WN and Schork
NJ, 1996) and later by Li and Reich (Li WT and Reich J, 2000) is used. Two loci (2 and
3) are involved, each with two alleles (A and B), and the trait is penetrant only when
exactly two copies of the high risk allele from either locus are present.

In the fourth quarter of the datasets, one trait is simulated to involve locus

heterogeneity (Figure 10a), while the other is simulated to involve the “diagonal” gene-
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gene interaction, as described above (Figure 10b). Thus, there are some affected
individuals who, by chance, will have one high-risk genotype from the first trait as well

as one high-risk genotype from the second trait.

(a)
1A1A | 1AIB | 1B1B
2A2A 0 0 X
2A2B 0 0 X
2B2B X X X
(b)
3A3A | 3A3A | 3A3A
4A4A 0 0 X
4A4B 0 0.5x 0
4B4B X 0 0

Figure 10. Genetic Model THB (Trait Heterogeneity with Both Locus Heterogeneity and
Gene-Gene Interaction). The penetrance tables for Trait I (a) and Trait II (b) are
presented. Cell values indicate penetrance level, or the probability of having the trait,
given the corresponding multilocus genotype. For Trait I, a locus heterogeneity model
described by Li and Reich (Li WT and Reich J, 2000) is used, in which the trait is
penetrant only when two copies of the high risk allele at one or both loci are present (in
this case the B alleles for locus 2 and 3 are high risk). For Trait II, the “diagonal”
genetic model first described by Frankel & Schork (Frankel WN and Schork NJ, 1996)
and later by Li and Reich (Li WT and Reich J, 2000) is used. Two loci (2 and 3) are
involved, each with two alleles (A and B), and the trait is penetrant only when exactly
two copies of the high risk allele from either locus are present.

The input file for each of the clustering methods, which are described below,
includes genotype and trait status information. Each row is a single individual. Column

headings include unique individual number, trait status (affected for Trait 1, Trait 2, or
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both), and all simulated loci. Genotypes for each locus are encoded nominally (not
ordinally), such that no genetic model assumptions are incorporated. Loci are numbered,
and alleles are lettered. Thus, for a given locus ‘3’ that has two alleles ‘A’ and ‘B’, the
three possible genotypes are ‘3A3A’, ‘3A3B’, and ‘3B3B’. A different nomenclature
could easily be used, however, since the methods simply treat each genotype as a
character string for labeling purposes only and do not attribute any meaning or order to

them.

Clustering Methods

There exists a very large number of clustering algorithms and even more
implementations of those algorithms. The choice of which clustering methodology to use
should be determined by the kind of data being clustered and the purpose of the
clustering (Kaufman L and Rousseeuw PJ, 1990). Genotypic data are categorical, which
immediately narrows the field of appropriate methods for this study to only a few. Three
different clustering methodologies were chosen that are suitable for categorical data and
are appealing due to their speed or theoretical underpinnings.

The goal of this cluster analysis is to find a partitioning of the affected individuals
based on multilocus genotypic combinations that maps onto the trait heterogeneity
simulated in the data. For example, consider a dataset with 10 loci (numbered 1 to 10),
each of which has two alleles (A and B), such that at each locus there are three possible
genotypes (AA, AB and BB). It is likely that among affected individuals in the dataset,
subsets of individuals will share specific genotypes or multilocus combinations of

genotypes (such as 2B2B; or 3A3B and 9A9B together), either by chance or because such
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combinations are related to genetic background, phenotypic variability, or trait
heterogeneity in some way. Thus, a successful clustering would be one in which all the
individuals who were simulated to have Trait I end up in one or more clusters that do not
have any individuals unaffected for Trait I and all individuals who were simulated to
have Trait II end up in one or more distinct clusters that do not have any individuals
unaffected for Trait II (Figure 11). (Those individuals, who by chance have both Trait I
and Trait I, could be ‘correctly’ placed in any cluster.) Such a clustering would
effectively eliminate the noise present among affected individuals due to trait
heterogeneity. In the case where locus heterogeneity is also simulated, an even more
successful clustering would be one in which there are two or more Trait II clusters, each
of which has only those individuals who have a specific high-risk genotype (e.g., 2B2B

from Figure 12) and none that do not.

Bayesian Classification

The first clustering method is Bayesian Classification (Cheeseman P and Stutz J,
1996; Hanson R et al., 1991). The corresponding AutoClass software is freely available
from Peter Cheeseman at the NASA Ames Research Center. Bayesian Classification
(BC) aims to find the most probable clustering of data given the data and the prior
probabilities. In the case of genotypic data, prior probabilities are based on genotype
frequencies, which for the purpose of the proposed data simulations are set in accordance
with Hardy-Weinberg equilibrium and equal biallelic frequencies of 0.5. The most
probable clustering of data is determined from two posterior probabilities. The first

involves the probability that a particular individual belongs to its ‘assigned’ cluster, or
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(a)

Locus Trait
Indiv 1 2 3 4 5 6 7 8 9 10 1 2
1 BB | AB | AB | AB AB AA | AB | BB | AB | BB X
2 AB | BB | BB | AB BB BB | AB | AB | BB | AB X
3 BB | BB | AA | AA AB AB | A A | AB | BB | AB X X
4 AB | BB | AB | AB AB AB | BB | AB | AA | AB X
5 BB | AB | AA | AB AA AB | A A | AB | AA | BB X
6 BB | AB | AB | AB BB BB | AB | AA | AB | AB X
7 BB | BB | BB | BB AB AB | AA| AB | BB | AB X X
8 AB | BB | AB | AB AA AA | AB | BB | AB | BB X
9 BB | A A | AB | AB BB AB | AB | A A | AB | AB X
10 AB | BB | AB | BB AB AB | BB | AB | AB | AA X
11 AA | BB | AA | AA AA AB | A A | AB | AB | AB X
12 BB | AB BB | BB AB BB | AB | BB | AA | AB
13 AB | BB | AB | AA AB AB | BB | AB | AA | AA X
14 BB | A A | AB | AB BB BB | AB | AA | AB | AB X
15 AB | BB | BB | BB AB AA | AB | BB | AB | AA X
(b)
Locus Trait
Indiv 1 2 3 4 5 6 7 8 9 10 1 2
1 BB | AB | AB | AB AB AA | AB | BB | AB | BB X
3 BB | BB | AA | AA AB AB | AA| AB | BB | AB X X
5 BB | AB | AA | AB AA AB | A A | AB | AA | BB X
6 BB | AB | AB | AB BB BB | AB | AA | AB | AB X
9 BB | A A | AB | AB BB AB | AB | AA | AB | AB X
12 BB | AB BB | BB AB BB | AB | BB | AA | AB X
14 BB | A A | AB | AB BB BB | AB | AA | AB | AB X
(c)
Locus Trait
Indiv 1 2 3 4 5 6 7 8 9 10 1 2
2 AB | BB | BB | AB BB BB | AB | AB | BB | AB X
4 AB | BB | AB | AB AB AB | BB | AB | AA | AB X
7 BB | BB | BB | BB AB AB | A A | AB | BB | AB X X
8 AB | BB | AB | AB AA AA | AB | BB | AB | BB X
10 AB | BB | AB | BB AB AB | BB | AB | AB | AA X
11 AA | BB | AA | AA AA AB | A A | AB | AB | AB X
13 AB | BB | AB | AA AB AB | BB | AB | AA | AA X
15 AB | BB | BB | BB AB AA | AB | BB | AB | AA X

Figurell. Hypothetical Clustering of a THO Dataset

(a) A small dataset consistent with the Trait Heterogeneity Only (THO) genetic model
(see Figure 7) is presented. All individuals with the high risk genotype (BB) at locus 1
have Trait I, and all individuals with the high risk genotype (BB) at locus 2 have Trait II.
Some individuals have both high risk genotypes and, therefore, both traits.

A successful clustering of this dataset might be one in which there are two clusters (b)
and (c), such that one cluster contains only individuals who have Trait I (b) and the other
cluster contains only individuals who have Trait II (c).
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otherwise stated as the probability of the individual’s multilocus genotype, conditional on
it belonging to that cluster, with its characteristic genotypes. The second posterior
probability involves the probability of a cluster given its assigned individuals, or
otherwise stated as the probability of the cluster’s characteristic genotypes, conditional on
the multilocus genotypes of the individuals assigned to that cluster.

In actuality, individuals are not ‘assigned’ to clusters in the hard classification
sense but instead in the fuzzy sense they are temporarily assigned to the cluster to which
they have the greatest probability of belonging. Thus, each individual has its own vector
of probabilities of belonging to each of the clusters. The assignment of individuals is also
not considered the most important result of the clustering method. A ranked listing is
produced of all loci in the dataset with their corresponding normalized “attribute
influence” values (ranging between 0 and 1), which provide a rough heuristic measure of
relative influence of each locus in differentiating the classes from the overall dataset.
Thus, emphasis is placed on the identification of which attributes, or loci, are most
important in producing the clustering. This information that can then be used to more
directly stratify affected (and/or unaffected) individuals, for instance, by using the top n
most influential loci identified, and to enable meaningful interpretation of the clustering

result.

Hypergraph Clustering
The second method is Hypergraph Clustering (Han EH et al., 1997a). It has been
implemented in the hMETIS software, which is freely available from George Karypis at

the University of Minnesota. Hypergraph clustering seeks a partitioning of vertices, such
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that intracluster relatedness meets a specified threshold, while the weight of hyperedges
cut by the partitioning is minimized. In this case, vertices represent single locus
genotypes, hyperedges represent association rules, and hyperedge weights represent the
strength of the association rules. For instance, if a specific genotype at one locus co-
occurs with a specific genotype at another locus, an association rule linking those two
genotypes would be created, and that rule would have a weight equivalent to the
proportion of individuals in the dataset that had both of those genotypes. Thus, for our
purposes, association rules are multilocus genotype combinations that are found in the
dataset. The freely available LPminer program was used to generate the association rules
(Seno M and Karypis G, 2001). LPminer searches the database for multilocus genotype
combinations that appear together with substantial frequency (above a prespecified
“support” percentage) and outputs this info as a list of association rules. hMETIS takes
these association rules and uses them to create a hypergraph in which single locus
genotypes are vertices and association rules dictate the presence and weight of
hyperedges. hMETIS creates a partition of the hypergraph such that the weight of the
removed hyperedges is minimized. It achieves this by using a series of phases, somewhat
analogous to the stages of a simulated annealing algorithm, in an attempt to avoid making
decisions which are only locally (not globally) optimal.

This process results in a partitioning (or clustering) of the genotypes in a dataset.
If a single dataset were being analyzed, this information by itself could be sufficiently
helpful since it would provide information about which multilocus genotypes appear with
such frequency that they characterize groups of individuals. Individuals could be directly

stratified using such multilocus combinations (similar to the way attribute influence

35



values in the Bayesian Classification method could be used). However, for the purpose
of comparing the results of Hypergraph Partitioning to those of the other two methods,
which produce clusters, or partitions, of individuals (not genotypes), such a partitioning
of individuals still needed to be created. Since a given individual could have more than
one of the multilocus genotypes specified by different hyperedges in the final
partitioning, the partitioning of individuals was not entirely straightforward. Thus, a
heuristic was devised such that each individual would be assigned to the partition, or
cluster, for which it had the highest percentage of matching genotypes (Figure 12). More
specifically, for each cluster, the number of loci represented by one or more genotypes in
that cluster was determined (L.). Then, for each individual, for each cluster, the number
of matching genotypes between the cluster and the individual (M;.) was divided by L.,
producing a vector of similarity percentages per individual, similar to the vector of
probabilities used by the Bayesian Classification and Fuzzy k-Modes Clustering methods.

Each individual was then assigned to the cluster with which it had the greatest similarity.

Fuzzy k-Modes Clustering

The third clustering method is Fuzzy k-Modes Clustering (Huang Z and Ng MK,
1999). k-Modes is a trivial extension to categorical data of the popular k-means
algorithm. In both methods, cluster centroids can be initialized at random or by one of
many seeding strategies (Duda RO and Hart PE, 1973), and individuals are assigned to
their nearest cluster centroids. Then, cluster centroids are reevaluated based on their
newly assigned individuals. For the k-means algorithm, the centroid is calculated as the

mean vector of genotypes across individuals. However, for nominal data, such means are
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(a)

Cluster 1 Cluster 2 Cluster 3

1B1B 2B2B TATB
3A3B 9A9%A
(b)
Percentage
of Matching
Genotypes
Locus by Cluster
Indiv | 1 2 3 4 5 6 7 8 9 |10 1 2 3

BB | AB | AB|AB| AB |AA | AB BB | AB | BB | 100 0 50

AB |BB |BB|AB| BB |BB|AB|AB|BB|AB| O 100 50

BB | BB| AA|AA| AB |[AB|AA|AB|BB|AB| 50 100 0

AB |BB| AB|AB| AB |AB|BB|AB|AA | AB| 50 100 50

BB | AB | AB|AB| BB |BB|AB | AA | AB | AB | 100 0 50

BB | BB | BB|BB| AB |[AB|AA|AB|BB|AB| 50 100 0

AB |BB|AB|AB| AA |AA|AB|BB|AB |BB| 50 100 50

1
2
3
4
5 BB | AB | AA | AB AA AB | AA| AB | AA| BB | 50* 0 50
6
7
8
9

BB|AA|AB | AB| BB |AB|AB | AA | AB | AB | 100 0 50

10 |AB| BB|AB|BB| AB |AB|BB|AB|AB | AA| 50 100 0

11 |AA|BB|AA|AA| AA |AB|AA|AB|AB|AB| O 100 0

12 |BB|AB | BB |BB| AB |BB|AB | BB | AA | AB| 50 0 100**

13 |AB|BB|AB|AA| AB |AB|BB|AB|AA | AA| 50 100 0

14 |BB|AA|AB|AB| BB |BB|AB|AA | AB | AB | 100 0 50

15 |AB|BB|BB|BB| AB |AA|AB|BB|AB|AA| O 100 50

Figure 12. Example of Post-processing of Hypergraph Clustering Result

Hypergraph clustering produces a clustering of genotypes, instead of individuals. Thus, a
clustering of individuals must be induced from this clustering of genotypes. As described
in the text, an individual in assigned to the cluster for which it has the highest percentage
of matching genotypes. Given the dataset presented in Figure 11(a) and a clustering of
genotypes that is presented here (a), a clustering of individuals can be induced (b). For
each individual (row), the percentage of matching genotypes that is highlighted indicates
to which cluster the individual becomes assigned. Notice that for individual 5, there is a
tie between the percentage of matching genotypes for clusters 1 and 3. In such cases, we
arbitrarily assign the individual to the lower numbered cluster. Since cluster 3 does not
contain any high-risk genotypes, it does not facilitate the goal of creating a clustering that
maps to the simulated trait heterogeneity, and in the case of individual 12, it ends up
capturing an individual who would preferably be clustered in cluster 1.
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not necessarily meaningful, and the k-modes algorithm instead determines the centroid as
the mode vector of genotypes across individuals. Genotypes are encoded nominally (not
ordinally), such that no two genotypes are considered ‘closer’ than another two, and the
‘distance’ between an individual and a centroid is calculated as the cumulative number of
non-matching genotypes across all loci. After cluster centroids are reevaluated,
individuals are again assigned to their nearest centroids, and this process is repeated until
the assignment of individuals to clusters does not change. Figure 13 demonstrates the
first steps of the k-modes clustering, using the same dataset presented in Figures 11 and
12. The straightforward algorithm was developed in the C++ language. The number of
clusters (k) was prespecified to be 2, 3, 4, 5 or 6. All five possible k were run for each
dataset. Each cluster centroid was initially set to the values of a randomly selected
individual in the dataset being analyzed. Both a ‘fuzzy’ and a ‘hard’ version of the k-
modes algorithm were implemented and tested, and while their results on test datasets
were comparable, the fuzzy version did perform slightly better and provided more
information, which could be used for interpretation of results. Thus, the fuzzy version

was chosen for use in these analyses.

Statistical Analysis

Comparison of Clustering Methods

Each clustering method has its own metric(s) for evaluating the “goodness” of a

clustering of data. Since these methods are being tested on simulated data, classification

error of a given clustering can be calculated as the number of misclassified individuals
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(a)
Locus

Cluster | 1 2 3 4 5 6 7 8 9 10

1(1) BB | AB | AB| AB| AB | AA| AB | BB | AB | BB

2 (5) BB | AB | AA|AB| AA | AB| AA| AB | AA | BB

3(12) BB | AB | BB | BB | AB BB | AB | BB | AA | AB

4 (15) AB | BB | BB | BB | AB | AA| AB | BB | AB | AA

(b)
Cluster
Locus Distance
Indiv 1 2 3 4 5 6 7 8 9 10 1 2 3 4

1 BB AB | AB AB AB | AA| AB BB | AB BB 0 6 5 5
2 AB BB | BB AB BB | BB AB AB | BB AB 8 8 6 6
3 BB BB | AA| AA | AB | AB AA | AB | BB AB 8 5 7 8
4 AB BB | AB AB AB | AB BB AB | AA| AB 7 6 7 7
5 BB AB | AA| AB AA | AB AA | AB | AA BB 6 0 5 10
6 BB AB | AB AB BB | BB AB AA | AB AB 4 7 5 8
7 BB BB | BB BB AB | AB AA | AB | BB AB 8 6 5 6
8 AB BB | AB AB AA | AA| AB BB | AB BB 4 7 8 4
9 BB AA | AB AB BB | AB AB AA | AB AB 5 7 8 8
10 AB BB | AB BB AB | AB BB AB | AB AA 7 8 8 4
11 AA BB | AA| AA | AA| AB AA | AB | AB AB 9 5 9 8
12 BB AB | BB BB AB | BB AB BB | AA| AB 5 7 0 5
13 AB BB | AB AA | AB | AB BB AB | AA | AA 8 7 8 6
14 BB AA | AB AB BB | BB AB AA | AB AB 5 7 6 8
15 AB BB | BB BB AB | AA| AB BB | AB AA 5 10 5 0

()

Locus

Cluster | 1 2 3 4 5 6 7 8 9 10

1 BB | AA| AB| AB| BB | AA| AB | AA| AB | AB

2 BB | BB | AA|AA | AA | AB| AA| AB | AA | AB

3 BB | BB | BB | BB | AB BB | AB | AB | BB | AB

4 AB | BB | AB | BB | AB | AB | BB | AB | AB | AA

Figure 13. Example of k-Modes Clustering

In this example, the same dataset presented in Figure 11 is used to demonstrate the
different steps involved the k-modes clustering algorithm, and k was chosen to be 4, such
that four clusters will initially be formed. (a) The cluster centroids are seeded by
randomly selecting the genotypes of actual individuals in the dataset. The number in
parentheses beside the cluster number is the individual used to seed that cluster. (b)
Individuals are then compared to each of the cluster centroids, and the number of
nonmatching genotypes between each cluster centroid and that individual are recorded.
The individual is then assigned to the cluster for which it had the fewest number of
nonmatching genotypes (in bold). (c) The next step is to update the cluster centroids
based on the individuals now assigned to the clusters. The mode genotype among
individuals assigned to a cluster becomes the centroid genotype at that locus. Genotypes
that changed from the initialization to the update are shown in bold.
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Cluster
Locus Distance

Indiv 1 2 3 4 5 6 7 8 9 10 1 2 3 4
1 BB AB | AB AB AB | AA| AB BB | AB BB 4 9 7 7
2 AB BB | BB AB BB | BB AB AB | BB AB 6 7 3 7
3 BB BB | AA| AA | AB | AB AA | AB | BB AB 8 3 4 6
4 AB BB | AB AB AB | AB BB AB | AA| AB 7 6 6 3
5 BB AB | AA| AB AA | AB AA | AB | AA BB 8 3 8 8
6 BB AB | AB AB BB | BB AB AA | AB AB 2 8 6 8
7 BB BB | BB BB AB | AB AA | AB | BB AB 8 4 2 5
8 AB BB | AB AB AA | AA| AB BB | AB BB 5 8 8 6
9 BB AA | AB AB BB | AB AB AA | AB AB 1 7 7 7
10 AB BB | AB BB AB | AB BB AB | AB AA 8 7 6 0
11 AA BB | AA| AA | AA | AB AA | AB | AB AB 8 2 7 6
12 BB AB | BB BB AB | BB AB BB | AA| AB 7 7 3 8
13 AB BB | AB AA | AB | AB BB AB | AA | AA 9 5 7 2
14 BB AA | AB AB BB | BB AB AA | AB AB 1 8 6 8
15 AB BB | BB BB AB | AA| AB BB | AB AA 7 9 5 4

Figure 13, continued. Example of k-Modes Clustering

(d) After the centroids are updated, the individuals are reevaluated as to which cluster
they most closely resemble and are assigned to that cluster. Only individual 4 was
assigned to a different cluster than it was previously. Steps (¢) and (d) are repeated until
no genotypes are changed in any cluster centroid and no individuals’ cluster assignments
are changed.

divided by the total number of individuals. However, simple classification error has its
disadvantages. Firstly, in cases such as this where there is overlap between the known
classes, the researcher must make an arbitrary decision as to when individuals who have
been simulated to have both traits, not just one or the other, are considered to be
misclassified. The decision about error is equally arbitrary when the number of resulting
clusters is greater than the number of known classes. For instance, if the individuals
belonging to one class were divided into two classes by the clustering algorithm,
calculating classification error would require either (1) that none of those individuals be
considered incorrectly classified, since they are all in homogenous clusters, or else (2)

that all individuals from one of those clusters be considered misclassified. Neither choice
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seems to satisfactorily capture the “goodness” of the clustering result. Subsequently, it is
not advisable to compare the classification error of two clustering results for which the
number of clusters differs.

It is for these reasons alternative cluster recovery metrics were investigated. The
Hubert-Arabie Adjusted Rand Index (ARIya) addresses the concerns raised by
classification error and was, therefore, chosen to evaluate the goodness of clustering
results from the three clustering methods being compared (Hubert L and Arabie P, 1985).
Calculation of the ARIya involves determining (1) whether pairs of individuals, who
were simulated to have the same trait, are clustered together or apart and (2) whether
pairs of individuals, who do not have the same trait, are clustered together or apart. The
ARIj4 is robust with regard to the number of individuals being clustered, the number of
resulting clusters, and the relative size of those clusters (Steinley D, 2004). It is also
sensitive to the degree of class overlap, which is desirable since it will penalize more for
good clusterings that occur by chance than classification error would. When interpreting
ARIya values, 0.90 and greater can be considered excellent cluster recovery, 0.80 and
greater is good cluster recovery, 0.65 and greater reflects moderate cluster recovery, and
less than 0.65 indicates poor cluster recovery. These values were derived from empirical
studies showing observations cut at the 95th, 90th, 85th and 80th percentiles
corresponded to ARIya values of 0.86, 0.77, 0.67 and 0.60 respectively (Steinley D,
2004).

The ARIga was used as the gold standard measure to compare the performance of
the three clustering methods. Three categorical variables were created that could be

tested using the nonparametric chi-square test of independence. The ARIy, values were
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discretized into a 1 or 0 depending on whether they met or exceeded the cutoff values for
excellent, good and moderate cluster recovery, as described above. A chi-square test of
independence was performed testing the null hypothesis that the number of clusterings
achieving a certain ARIya value was independent of the clustering method, thereby
evaluating whether one method significantly outperformed the others. Five percent was

chosen as the significance level (alpha).

Applicability to Real Data

As a reminder, the ultimate goal of this research is to find a clustering method that
works well at uncovering trait heterogeneity in real genotypic data. Unlike for the
current simulation study, for real data it is not known a priori to which clusters
individuals belong, otherwise the clustering would not be necessary. Indeed, it is the goal
of clustering to uncover natural clusters or partitions of data using the method-specific
“goodness” metric as a guide. In preparation for application of a clustering method to
real data, after choosing the superior method, that method’s internal clustering metrics
were analyzed using permutation testing to determine how good a proxy they are for
ARIjya.

One hundred permuted datasets per simulated dataset was chosen, which should
result in a reasonable approximation of the null distribution but would not put
unreasonable strain on resources and time (Good P, 2000). Genotypes were permuted
within loci across individuals, such that the overall frequency of genotypes at any one
locus was unchanged, but the frequency of multilocus genotypes was altered at random.

This created a null sample in which the frequency of multilocus genotypes was no longer

42



associated with trait status except by chance. The empirically-determined superior
clustering method was applied to each permuted dataset and both the internal clustering
metric values and the ARIys were determined. For each set of 100 permuted datasets, the
significance of each of the simulated dataset results was determined based on whether
they exceeded the values at the significance level in the corresponding null distribution.
Ten percent was chosen as the acceptable Type I error rate since these methods serve as a
means of data exploration to be followed by more rigorous, supervised analyses on
individual clusters of the data. However, the more conventional levels of 0.05 and 0.01
were also evaluated. Finally, the ability of permutation testing to preserve acceptable
Type I (false positive) and Type II (false negative) error rates was evaluated at the three

specified significance levels.

Results

Descriptive statistics and plots for the Hubert-Arabie Adjusted Rand Index results
were produced. Mean ARIy, values for Bayesian Classification, Hypergraph Clustering
and Fuzzy k-Modes Clustering were 0.666, 0.354 and 0.556, respectively. Confidence
intervals around the means were also produced to demonstrate the preciseness of the
ARIya measurements. The results for each method across all datasets are presented in
Table 1. Mean ARIya values differed by genetic model type, with higher scores achieved
on Trait Heterogeneity Only (THO) datasets for the Bayesian Classification and

Hypergraph Clustering methods (Figure 14).
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Table 1. Confidence Intervals around ARIza Means by Method

95% Confidence Interval
Method Mean Standard Error | Lower End Upper End
Bayesian 0.666 0.001 0.664 0.667
Hypergraph 0.354 0.001 0.352 0.355
Fuzzy k-Modes 0.556 0.001 0.555 0.558
1.000
0.900 Model
Bl tHO
0.800 B THL
O ™He
0.650 0.659 Lme

AdjRandindexHA

Bayesian

Figure 14. Comparison of ARIys Means by Method and Model. Bars represent means,

Hypergraph
Method

Kmodes

and error bars, which are very short and may be difficult to see, represent 95%

confidence intervals. Horizontal lines represent thresholds for quality of cluster recovery:
0.90 for excellent recovery, 0.80 for good recovery and 0.65 for moderate recovery.

Results are displayed as percentages by clustering method (Figure 15) and by

clustering method and genetic model (Figure 16). A chi-square test of independence was

performed testing the null hypothesis that the number of clusterings achieving the

44




specified ARIy4 cutoff value was independent of the clustering method. The three
methods performed significantly differently on each of the ARIya cutoff statistics (Table
2). Bayesian Classification outperformed the other two methods. However, across all the

dataset parameters, Bayesian Classification achieved moderate or better recovery on only

48% of the datasets (Figure 15).

Recovery Level
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Figure 15. Percentage of Clustering Results Achieving Cluster Recovery Levels by
Method

Table 2. Overall Results of Chi-Square Test of Independence. The null hypothesis that

the percentage of clustering results achieving the specified cluster recovery level does not
differ across clustering methods was tested.

Cluster Recovery Statistic x? df o]

%Results achieving Excellent cluster recovery (ARl > 0.90) 1787 2 <0.001
%Results achieving Good cluster recovery (ARIya > 0.80) 1614 2 <0.001
%Results achieving Moderate cluster recovery (ARIya > 0.65) 8565 2 <0.001
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The performance of the three clustering methods across different dataset parameters
was evaluated to find particular conditions under which one method consistently
achieved good or excellent recovery (not just better recovery than the other two
methods). For those datasets simulated under the THO model, Bayesian Classification
performed well, with over 73 percent of its resulting clusterings achieving an ARIya
value of 0.90 or greater, indicating excellent recovery (Figure 16). For this subset of the
datasets, Bayesian Classification outperformed the other two methods, and again there
was a significant difference in performance across the three methods, as measured by a
chi-square test of independence on each of the three new ARIya cutoff statistics (Table
3). Analysis of the other simulation parameters failed to show as great a difference
among methods where the ‘winning’ method performed as well as the Bayesian
Classification performed in the THO datasets (data not shown). Thus, this subset of data
was chosen for further investigation into the efficacy of using the Bayesian Classification
method to uncover trait heterogeneity in real data.

The Bayesian Classification method produces two internal clustering metrics for
each resulting cluster, or class: (1) class strength, and (2) cross-class entropy. Class
strength is a heuristic measure of how strongly each class predicts “its” instances and is
reported as the log of class strength. Cross-class entropy is a measure of how strongly
the class probability distribution function differs from that of the dataset as a whole.
Because each metric is reported per resulting cluster, or class, the average metric value
across clusters was calculated and utilized for evaluating cluster fitness.  To evaluate
the validity of using the Bayesian Classification internal clustering metrics—class

strength and cross-class entropy—as a proxy for the ARIy4 (since ARl is unknown for
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Figure 16. Percentage of Clustering Results Achieving Cluster Recovery Levels by

Method and Model

Table 3. Results of Chi-Square Test of Independence for THO Datasets.
The null hypothesis that the percentage of clustering results achieving the specified

cluster recovery level does not differ across clustering methods was tested.

Cluster Recovery Statistic Model X2 df o]

%Results achieving Excellent cluster recovery (ARIya > 0.90) THO 3713 | 2 <0.001
%Results achieving Good cluster recovery (ARIya > 0.80) THO 3107 | 2 <0.001
%Results achieving Moderate cluster recovery (ARIya > 0.65) THO 2609 | 2 <0.001
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real data), permutation testing was performed. Resulting p-values for ARIja, average log
of class strength and average cross class entropy were used to calculate false positive and
false negative rates at three significance levels of 0.01, 0.05 and 0.10. A clustering result
was considered a false positive if it was considered significant according to either
average log of class strength or average cross class entropy but was not considered
significant according to our ARIya standard. A clustering result was considered a false
negative if it was called not-significant according to both average log of class strength
and average cross class entropy but was considered significant according to ARIja.

Figures 17 and 18 show the false positive and false negative rates, respectively, by alpha

level.
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Figure 17. False Positive Rate by Significance Level (Alpha).
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Figure 18. False Negative Rate by Significance Level (Alpha)

The false positive, or Type I, error rate was controlled very well at three percent
or less for all three significance levels. The false negative, or Type II, error rate was not
controlled as well, however. At the least stringent significance level (a = 0.10), the Type
IT error rate was 18 percent, and at the most stringent level (o = 0.01), the rate was 47
percent. Other simulation parameters were examined for their impact on the false
negative rate, and Figures 19 and 20 show the false negative rate by alpha level paneled
by number of nonfunctional loci and number of affecteds (sample size), respectively. As
might be expected, the lowest false negative rates were achieved for datasets with the

lowest number of nonfunctional loci (10) and the greatest sample size (1000).
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Figure 19. False Negative Rate by Significance Level (Alpha), Paneled by Number of
Nonfunctional Loci. These rates are across all genetic models (THO, THL, THG and
THB).
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Figure 20. False Negative Rate by Significance Level (Alpha), Paneled by Number of
Affecteds (Sample Size). These rates are across all genetic models (THO, THL, THG
and THB)
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Discussion

Data Simulation

The new data simulation algorithm produced complex genotypic datasets that
included trait heterogeneity, locus heterogeneity and gene-gene interactions. Most
existing simulation software that attempt to simulate heterogeneity do so by allowing the
user to specify what portion of the dataset is to be simulated under one model versus
another, and the resulting individuals are simply combined into one dataset. In the new
algorithm, however, the disease penetrance models, which were used to simulate the data,
were constructed so that overall prevalence levels were controlled, allowing naturally
occurring overlaps, in which some individuals would have both traits (and their
associated multilocus genotypes) by chance. This is important because it more closely
simulates the natural variation one would expect under the “common disease, common
variant” hypothesis in which there is very little if any selective pressure against alleles
that increase disease risk only slightly or only in combination with other susceptibility
alleles at the same or distinct loci (Cargill et al., 1999; Chakravarti, 1999; Reich and
Lander, 2001; Risch and Merikangas, 1996). This novel data simulation algorithm
should prove very useful for future studies of other proposed genetic analysis methods for

complex diseases.

Comparison of Clustering Methods

The Bayesian Classification method outperformed the other two methods across

most dataset parameter combinations, with the exception of the most complex
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model (THB) on which Fuzzy k-Modes Clustering performed best. When the results
were further examined to find a set of parameters for which one or more methods
performed well, Bayesian Classification achieved excellent recovery for 73% of the
datasets with the THO model (Figure 16) and achieved moderate recovery for 56% of
datasets with 500 or more affecteds and for 86% of datasets with 10 or fewer
nonfunctional loci (Figures 21 and 22). Neither Hypergraph Clustering nor Fuzzy k-
Modes Clustering achieved good or excellent cluster recovery even under a restricted set
of conditions (data not shown).

Bayesian Classification was obtained as closed-source software, for which there
are numerous parameters that can be optimized, as discussed in Chapter IV. Initial
parameter settings were chosen as recommended by the authors based on the type of data
being analyzed. However, it is possible that alternative settings may yield better results.
For example, for datasets with the more complex genetic models, greater numbers of
nonfunctional loci and smaller sample sizes, the maximum number of classification trials
and/or the maximum number of classification cycles per trial may need to be longer, and
those parameters concerned with convergence rate and stopping criteria may need to be
changed to delay convergence. If improvements in performance could be achieved with
reasonable time and resource tradeoffs, such changes would certainly be desirable.
Further investigation of this matter is discussed in Chapter I'V.

It was disappointing that Hypergraph Clustering did not perform very well under
most conditions, despite its intuitive appeal as a method that would find frequently-
occurring multilocus genotypic patterns. The Hypergraph Clustering method has been

reported to work well with very large variable sets (on the order of thousands), which
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Figure 21. Percentage of Bayesian Classification Clustering Results Achieving Cluster
Recovery Levels by Number of Affecteds (Sample Size)
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Figure 22. Percentage of Bayesian Classification Clustering Results Achieving Cluster
Recovery Levels by Number of Nonfunctional Loci
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have complex patterns for which large numbers of clusters (10-20+) were relevant (Han
EH et al., 1997b). However, there has been no examination of the method’s performance
on smaller variable sets. Thus, it is possible that the restricted patterns present in our
multilocus genotypic data were too simple and sparse and that the method is simply tuned
to search for more complex patterns. Also, we were required to devise a translation of
the resulting partitioning of genotypes into a clustering of individuals. We tested several
such translations and implemented the best process out of several tested. Oftentimes,
even when the method correctly chose the functional genotypes to be in different
partitions, too many other nonfunctional genotypes were also chosen, which meant that
the difference between an individual’s likelihood of belonging to one cluster versus
another was too small, making the choice of cluster assignment almost arbitrary.

The Fuzzy k-Modes Clustering method performed comparably to Bayesian
Classification for the more complex datasets and was much less computationally
intensive. It has been widely reported that the performance of k-means algorithms is
highly variable depending on the method of seeding the initial cluster centroids (Duda
RO and Hart PE, 1973). While we used the recommended method of selecting
individuals from the dataset to serve as the initial cluster modes, we perhaps could have
achieved better results if we implemented an additional step to ensure that the initial
centroids were substantially dissimilar to each other. This is supported by evidence that
when the Fuzzy k-Modes Clustering resulted in only one cluster (effectively no
partitioning of the data), the initial centroids were very similar and the method had

converged early so that individuals had equal probability of belonging to any of the
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clusters. In such cases, the individual was arbitrarily assigned to the first cluster, thereby
leading to all other clusters being empty.

As expected, the simpler the model, the better the performance of the three
clustering algorithms, with the exception that the Hypergraph Clustering and Fuzzy k-
Modes Clustering methods performed somewhat better on the THB (Trait Heterogeneity
with Both locus heterogeneity and gene-gene interaction) datasets than they did on the
THL (Trait Heterogeneity with Locus heterogeneity) and THG (Trait Heterogeneity with
Gene-gene interaction) datasets. Likewise, in general, the fewer the nonfunctional loci

and the larger the sample size, the better the performance.

Applicability to Real Data

To determine the efficacy of using the Bayesian Classification method on real
data, the reliability of its internal clustering metrics at finding good clusterings was
evaluated. Using the combination of the average log of class strength and the average
cross class entropy to determine significance, the false positive rate was controlled very
well, at three percent or less for all three significance levels. The false negative rate was
acceptably low (18 percent) for the less stringent significance levels of 0.10. However, it
was high (47 percent) for the most stringent significance level of 0.01. Thus, if a
clustering of data were called significant according to permutation testing using either the
average log of class strength or the average cross class entropy, one could be quite
confident that the result were real. Typically geneticists prefer to accept a higher false
positive rate to increase power; however, there is indeed a trade-off between these two

types of error. Valuable time and resources can be spent on follow-up studies, and it can
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be very detrimental to pursue leads that do not have a good chance of yielding new
information about the disease under study. Therefore, we would recommend the
Bayesian Classification method for use in the first stage of a comprehensive analysis
strategy to detect heterogeneity and then main effects and interactions, with the caveat
that a negative result should be interpreted carefully and may indicate that other methods

for detecting heterogeneity should be considered as well.
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CHAPTER IV

FURTHER EVALUATION OF BAYESIAN CLASSIFICATION

Background

The Bayesian Classification method is effective at uncovering trait heterogeneity
in simulated genotypic data while preserving very low false positive rates and reasonably
low false negative rates. However, these results were for the simplest of simulated
genetic models and may not generalize to more complicated models. This chapter will
present an extension of the previous work in which the Bayesian Classification method is
modified to improve its performance under a wider set of simulation conditions. As
discussed in Chapter 111, it is possible that the parameter settings used in the initial data
simulation study were not appropriate for the more complex genetic models. The goal of
this study is to test different parameter settings to make improvements in performance for

the more complex models without compromising performance for the simplest ones.

In addition, false positive and false negative rates will be determined for a wider
range of simulation conditions. It is possible that even though the method performance
decreases for these more complex models, the false positive rate will remain well-
controlled, such that positive results are very trustworthy, in which case the method
would still be useful. Conversely, along with decreased performance, an increased false
positive rate (decrease in power) would prevent reasonable conclusions from being drawn
about its results and thus render the method’s use inadvisable. Thus, determining how

the method behaves under these wider set of conditions will allow us to have more
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confidence in our inferences about results from application of Bayesian Classification to

real data.

Methods

Modification of Parameter Settings

The Bayesian Classification method software has over 30 different parameter
settings that can be modified by the user to tweak the method’s application. Six
parameters were chosen as being likely to affect method performance on more complex
data patterns since they affect how and what kind of search is performed in looking for
the best clustering of the data. They determine initial search conditions, the type of
search performed (i.e., what types of stopping criteria are used), and what values those
stopping criteria impose. The six chosen parameters include: (1) start j list, (2)
max_n_tries, (3) try_fn_type, (4) halt range, (5) halt factor, and (6) max_cycles.

Table 4 shows the settings for each of these six parameters used in the initial
simulation study and in the current extension to that study. Only one parameter setting
was modified at a time, so that the effect of that particular setting change could be
evaluated in comparison to the initial settings. For each of the new modified parameter
settings, Bayesian Classification was applied to all 19,200 datasets that were simulated
according to specifications detailed in Chapter III.

One decision the search algorithm must make is what the optimal number of
clusters is for the data. The start j list parameter specifies a list of numbers that are the

initial quantity of clusters the search algorithm tries when optimizing this value. This list
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guides the search but does not restrict the algorithm, since it will also try other values that
it deems likely to produce more optimal results. For the problem of detecting
heterogeneity, we are primarily interested in clustering results where the number of
classes is ten or less; therefore, the default start j list was modified accordingly (see

Table 4).

Table 4. Bayesian Classification Parameter Settings in Simulation Studies. Note that

try _fn type is listed twice since all three search strategies were tried—

‘converge search 3’ initially and both ‘converge’ and ‘converge search 4’ in the current
simulation study.

Parameter Initial Setting Modified Setting |
start_j_list 2,3,5,7,10,15,25 10,9,8,7,6,5,4,3,2,1
max_n_tries 50 100

try fn_type converge _search 3 converge

try fn_type converge search 3 | converge search 4
halt range 0.5 0.75
halt_factor 0.0001 0.001
max_cycles 200 500

The max_n_tries parameter specifies a limit on the number of times the algorithm
will produce a clustering of the data. Thus, the higher the value of this parameter, the
longer the search will last and, in theory, the better the likelihood that the algorithm will
find a globally optimal solution. The max n_tries parameter was increased from 50 to
100, thereby doubling the maximum number of attempts at finding the optimal solution.
Larger values were tested on a few datasets, but the computation time was not feasible,

given the large volume of simulated datasets to be evaluated. Ideally, on a real dataset,

60



one would set this parameter to the default of 0, allowing unlimited numbers of tries at
reaching the optimal solution, within the constraints of other search parameter settings.

The try_fn_type parameter specifies one of three search strategies (‘converge’,
‘converge search 3’ and ‘converge search 4) the algorithm may use in searching for an
optimal solution. The three strategies use different types of stopping criteria based on
convergence measures. The default setting is the ‘converge’ algorithm, which is thought
to perform better on a wide variety of problems than the other two algorithms (Taylor W
et al., 2002). The authors indicate that the two alternative search algorithms may perform
better on some problems but will perform substantially worse on others. Since this was
one of the most critical parameters, we tried both alternative algorithms.

The halt range and halt factor parameters affect the convergence rate and,
conversely, the number of cycles the search strategy will use. Increasing these values
decreases the convergence rate. Therefore, we increased each of them, in turn. The
halt_range parameter was increased from 0.5 to 0.75. The halt_factor was increased by a
factor of ten from 0.0001 to 0.001. Higher values were also tested but were found to be
cost-prohibitive in run time.

The max_cycles parameter specifies an upper limit on the number of cycles the
search will perform while the convergence criteria have not been met. The default value
of 200 was increased to 300. Higher values were tested on a small number of datasets but
were found to increase computation time beyond reasonable limits, given the large

volume of datasets being evaluated.
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Applicability to Real Data

Using the best group of parameter settings, as determined by the aforementioned
simulations, permutation testing to determine false positive and false negative rates was
performed on datasets under a wider set of data simulation conditions. Data simulated
under the Trait Heterogeneity with Locus Heterogeneity (THL) and Trait Heterogeneity
with Gene-Gene Interaction (THG) models, as described in Chapter III, were evaluated,
where the prevalence was 15 percent, the number of nonfunctional loci was either 10 or
100 and the sample size was either 500 or 1000. In the interest of time and computational
resources, only the first 50 (out of 100) replicates of each set of conditions were used, and
for each of the replicates, 500 permutated datasets were created, resulting in 200,000

datasets that were analyzed.

Results

Figures 23-25 show how method performance differed with each parameter
setting modification, as measured by the percentage of clustered datasets achieving
moderate (Figure 23), good (Figure 24) or excellent (Figure 25) cluster recovery
according to the Hubert-Arabie Adjusted Rand Index. There was essentially no
improvement in method performance for either model for each of the modified parameter
settings, and in fact, modifications in two parameters (start j list and try fn_type) led to
decreases in performance. Thus, we concluded that the initial parameter settings were the
best we had discovered and that those settings should be used going forward.

False positive and false negative rates were calculated based on permutation

testing results on the THL and THG genetic model datasets, as specified above. Overall,

62



"$9'() =< JO anjeA Xopu] puey paisnpy d1qery
-119qnH € SulARY AQ PAUTULIAIAP SB ‘AIOA0031 J9)ISN[D 91BIOPOW FUIAJIYIL SJOSEIEp PaIdIsn[d Jo a3ejuadiad oy se
paInseaw st 9duewIojIod poyld 'SSuIeg I9jowWeIed PAJIPOIA SSOIOR AIDA0DY I19ISN])) AJBIPOIN €7 oInJ1

[474 [474
eV eV €V €V 19174 o v SV S bb o cp

aHl OHL THL OHL
- O
0 0

- OT

- OC
- 0€ \.VI
€ A
Ve VE VE YE Ve pe T
>
Ty x
o
(o2}
o

S9|0AD Xe\ pasealou O
Jlojoed JeH pasealou| |
abuey 1eH pasealou O
yoreas yobianuo) |
yoleas ablaauod O E
S[el | Xe pasealou] |
M Bunrers weisyia O
oS oatl m G, G, 5. S S SL o

K1aA023Y J3)SN|) d)esdpolp Buiaaiyoy 9,

63



'08°0 =<JO dn[eA xopu] puey pasnlpy
J1qery-1oqny e SurAey AQ POUIULIdAP Sk ‘AIOA0I3T IISN[O POOT SUIASIYIE SIASBIRP PAIAISN]D JO 93eIudd1d o
Se painseau 1 oouewLIofIod poyloj "S3uIog IojoweIR POIPOJA SSOIdR AIDA00Y 1IN POon) ‘+7 2Ingig

aHl OHL HL OHL

0 | 0
00 0O 0 00 It t1 1107

s s ss ¥g Vg

- 0T 2
>
S
| ON m-
<.
3
0g \W @
I ®
Ao
I
>
v O
In <
o &
S9|0AD XeN pasealou O % m
Jojoe- JjeH pasealou| | = W
abuey 11eH pasealou| O 25 m
yoteas yyablonuo) m m
yoreas abisnuod O m <
S[ell] Xe pasealou] |
M Buners waieyig O vevL vL €L v wL

sBbumas [eniu @ 08

64



"06'0 =< JO anJeA Xopu] puey paisnpy d1qery
-19qNH ® SulABY AQ POUIILIANAP SE ‘AIOA0IAI JOJSN]O JUI[[IIX SUIAJIYIE SJASEIEP PaIdlsn[d Jo a3ejuadiad ayp se
paInseaw s1 oouewIofIod poyjoj SSuIneg Iojowered pOIPOJA SSOIOB AI9A00Y 19ISN])) JUI[[OXH G 9INJI

aHLl OHL THL OHL
-0
o000 %000 000000GO00O 00000GO0O OO
- OT
Y4
- 0

(06°0 =< VHINYV)
K1daA0923Y J13)SN|D JUd||99X] BUuIAaIyDY %,

S9|0AD XeN pasealou| O
Jojoe JjeH pasealou| |
abuey JeH pasealou| O
yoteas abienuod m
yoreas abisnuod O
S[eLl] Xe pasealou] |
M Bunels waseyia O eLeLeL 8L e €L
sbumes fenu m 08

65



false positive rates were still well-controlled, although less so for the THG datasets,
where ten percent of the clustering results determined significant by the Bayesian
Classification internal clustering metrics (alpha = 0.01) were actually not significant
according to the Hubert-Arabie Adjusted Rand Index (ARIy,) (Figure 26). Conversely,
false negative rates were better for THG datasets than they were for the THL or the
previously-evaluated THO datasets. At the most liberal alpha of 0.10, only sixteen
percent of the clustering results deemed not significant by the internal clustering metrics
were actually significant by the ARIya (Figure 26).

A more detailed breakdown of this same data is presented in Figure 27 showing
how false positive and false negative rates track with the number of significant results by
internal clustering metric and by ARIya, for each set of simulation conditions, where
alpha is ten percent. Note that the vast majority of clustering results are significant by
ARIy4 across all sets of conditions and that high error rates are very specific to certain
sets of simulation conditions. False positive rates were at or below five percent for all
sets of simulation conditions. Even in the worst case, for datasets simulated under the
more complex THG model, with 10 (versus 100) nonfunctional loci, clusterings results
still yielded false positive rates between 11 and 12 percent, very close to alpha of ten
percent. False negative rates were near zero for most sets of conditions. However, for
datasets containing 100 (versus 10) non-functional loci, the false positive rates ranged
from two to 94 percent, with the highest rates for datasets with 500 (versus 1000)

affecteds.

66



THG THG

0.50 0.50
@ 0.401 @ 0.40 1
[ [
1 o
0 0307 2 0.301
:E E i 0.20
& 020 = 0.20- . o
{ @ :
= 0.10 =
[ b =]
. 0.08
B 1D 0.07 w
0.00-
THL THL
0.50 0.50 T
0.401 i
1]
" =
1 o
L 0307 _g
= ®
g m
o, 0.20- E
brd @
An I
~ ™
L. 010+ i
0.02 0.02 0.02
g oo e— N
0010 0.040 0.100 0.010 0.050 o100
Alpha Alpha

Figure 26. Error Rates for THG and THL Genetic Model Results. False positive rates
are shown in the first column and false negative results are shown in the second column.
Row one shows results for the Trait Heterogeneity with Gene-Gene Interaction genetic
model datasets. Row two shows results for the Trait Heterogeneity with Locus
Heterogeneity genetic model datasets. The three bars represents results at the
significance levels (alpha) of one percent, five percent and ten percent.
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Discussion

Attempts to improve upon the performance of the Bayesian Classification method
at the task of detecting heterogeneity in genotypic datasets were unsuccessful. The
parameter settings chosen in the initial simulation study detailed in Chapter 111, which
were based on the methods’ authors’ recommendations and the characteristics of the
simulated data, turned out to be as good as or better than any setting modifications
applied in the current study.

Extended permutation testing of a wider set of simulation conditions provided
insight into how the method’s two internal clustering metrics—class strength and cross
class entropy—compare to the gold standard of the Hubert-Arabie Adjusted Rand Index.
The internal clustering metrics were biased based on the dataset characteristics of sample
size and, especially, number of non-functional loci. This is important to keep in mind
when the Bayesian Classification method is applied to real data, in which the underlying
pattern of inheritance and presence (or degree) of heterogeneity and gene-gene
interactions are unknown. These results suggest that one can place a high degree of
confidence in a positive (significant) result based on permutation testing of the method’s
internal clustering metrics, but less so when the number of nonfunctional loci in the
dataset is fairly low, since a dataset containing a gene-gene interaction may have a
slightly inflated false positive rate under these conditions.

Interpretation of a negative (not significant) result is more difficult. Under the
majority of conditions simulated, the false negative rate is very well controlled and the
power to detect the underlying heterogeneity present in the data is high. However, there

are large fluctuations in false negative rates due primarily to differences in the number of
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results considered significant by the internal clustering metrics (Figure 27). For a dataset
with a high number of non-functional loci (100) and a moderate sample size (500), the
false negative rate may approach 100 percent, eliminating all power to detect
heterogeneity when it exists, which is of course discouraging. Further simulation studies
exploring the “breakpoint” or slope of the false negative rates between the two extremes
of the current simulation conditions may further aid in interpretation of negative results.
Even though the current simulation study found that most results were significant
by permutation testing (using ARIy,), recall that performance as measured by the
percentage of results achieving ‘excellent’, ‘good’ or ‘moderate’ cluster recovery was
low (less than 45 percent of datasets achieving moderate cluster recovery) for the more
complex datasets (Chapter III). One aspect of this issue is that the internal clustering
metrics used by Bayesian Classification are biased under certain dataset conditions
(discussed above). It is also possible that the null distribution we created, in which the
relationship within multilocus genotypes was disrupted, was not the most appropriate
choice for the question we were asking and was, therefore, leading to erroneous
conclusions. The goal of the permutation testing is to test whether the clustering results,
with their corresponding average class strength and average cross-class entropy values,
have uncovered structure unlikely to be present (by chance) in data that has no real
(functional) underlying structure. Perhaps we should permute only the genotypes of the
known functional loci or of the loci with the highest influence values. In real data, since
the functional loci are unknown as such, we would only be able to use influence values as
a guide to choosing which loci to permute. This would disrupt the relationship(s) among

loci already identified by the clustering algorithm as being the strongest, but it would
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leave any other, presumably weaker multilocus genotype patterns in tact. Thus, if those
patterns are sufficiently strong, that the clustering (on the original, unpermuted data)
would not stand out as being significantly different from what could be found in the
permuted data. However, this would shift the bias even more in a conservative direction,
increasing the false negative rate, which we are interested in reducing.

There is also the question of how good we need the clustering results to be. Is
moderate cluster recovery (ARIga >= 0.65) good enough to enable our statistical methods
to find main effects and/or gene-gene interactions that were previously masked by
heterogeneity? Is an ARIya of only 0.50 or even 0.35 good enough? To answer that
question, we would need to perform main effect and gene-gene interaction tests on the
simulated data before and after clustering and determine the power to detect the effect in
the before and after datasets. If a clustering result with a certain ARIya leads to a
substantial increase in the power to detect an effect in the data, then the method is
working well, for our purposes. If, instead, only a clustering result achieving good
cluster recovery (ARIga >= 0.80) aids in the detection of effects obscured by
heterogeneity, then it is indeed very important that the relationship between ARIys and
statistical significance based on permutation testing be well-understood and, if necessary,
that the permutation testing procedure be modified to enable clearer interpretation of

results.
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CHAPTER V

APPLICATION OF TWO-STAGE ANALYSIS APPROACH TO
LATE-ONSET ALZHEIMER DISEASE DATA
Background

Alzheimer’s disease (AD; MIM: 104300) is a neurodegenerative disorder
characterized clinically by a decline in two or more areas of cognition, one of which is
usually episodic memory, in the absence of acute causes (Pericak-Vance MA and Haines
JL, 2002). Presenting symptoms range from memory impairment to visuospatial
disorientation, language impairment, depression and psychotic episodes. This range of
symptoms suggests extensive cortical damage largely in the hippocampus but also in
posterior-parietal areas, temporal-parietal systems or even frontal lobe areas (Fox NC and
Rossor MN, 2000; Perry and Hodges, 2000; Roses, 1997; Small et al., 2000). While
gross sensory and motor abnormalities generally rule out AD, some moderate
disturbances similar to those seen with Parkinson Disease (PD), such as tremor, rigidity
and bradykinesia, may instead suggest a distinct subtype—AD with Parkinson Disease
(Brown et al., 1998; Chen et al., 1991; Mayeux et al., 1985; Molsa et al., 1984; Perry et
al., 1997). While AD can occur as early as the third decade of life (Cruts et al., 1995), it
most commonly occurs after the sixth decade. The age of onset for late-onset Alzheimer
disease (LOAD) is generally defined to be after age 60 or 65 but extends into the ninth
decade (Pericak-Vance MA and Haines JL, 2002). The prevalence of AD was estimated

to be 13.5 million worldwide and 4.5 million in the United States in 2000, with
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projections for 2005 up to 21.2 million worldwide (Hebert et al., 2003; Katzman R and
Fox P, 1999).

AD is defined pathologically by the presence of two abnormalities in the cerebral
cortex. The first is senile plaques that have an amyloid beta (AB) protein core, and the
second is neurofibrillary tangles, which contain the microtubule-associated protein tau
(Goedert M, 1999; Wisniewski et al., 1993). It remains controversial whether the plaques
and tangles are themselves pathogenic or whether they are merely “tombstones” of other
pathogenic processes (Glabe C, 2000). Only a weak link between plaque load and
severity of illness has been found, while the load of neurofibrillary tangles may be more
strongly correlated with severity (Guillozet et al., 2003; Mufson et al., 1999). Also, both
plaques and tangles have been found in normal older adults, leading many to suggest that
these abnormalities are secondary effects arising from the true pathological mechanisms
underlying AD. In addition, Lewy bodies, which contain fibrils of aggregated, insoluble
alpha-synuclein (McKeith et al., 2004), have been observed in up to 20% of AD cases in
the substantia nigra (which is characteristic of PD) and elsewhere in the brain (Ditter and
Mirra, 1987; Growden, 1995; McKeith et al., 1996). A growing body of literature
suggests substantial overlap among AD, dementia with Lewy bodies, and Parkinson
Disease (Pericak-Vance MA and Haines JL, 2002). It is possible that the developments
of AP plaques, neurofibrillary tangles and Lewy bodies have common physiological
pathways. However, it is also possible each one of these features (plaques, tangles and
Lewy bodies) is a distinct trait, with its own etiology, which would mean that AD is a
heterogeneous trait that would be better defined as the coincident state of having the trait

for plaques and the trait for tangles. Likewise, AD with PD could then be better
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described as the concomitance of the three traits for plaques, tangles and Lewy bodies.
Such dissection and categorization of AD is speculative and controversial but not without
support.

AD has a strong, albeit complex, genetic component, as evidenced by recent
family-based studies reporting sibling recurrence risk ratios between 4 and 5, indicating
that a sibling of a person with LOAD is 4-5 times more likely to develop LOAD than
someone in the general population (Breitner et al., 1988; Hirst et al., 1994; Sadovnick et
al., 1989). Also, twin studies show a concordance rate of 0.49 for monozygotic twins
versus 0.18 for dizygotic twins (Bergem, 1994). This demonstrates that there is an
almost 3 fold increased risk of developing AD for siblings that share all, versus (on
average) half, of their genes with their affected twin. Still, the fact that the monozygotic
concordance rate is far from 100 percent suggests that other factors, including
environment, are likely involved. In addition, segregation analyses of LOAD show a
complex genetic etiology with multiple genes and environmental factors involved (Daw
et al., 1999; Daw et al., 2000; Pericak-Vance MA and Haines JL, 2002; Rao et al., 1994;
van Duijn et al., 1993). Some environmental risk factors under investigation include
head trauma, plasma homocysteine levels and non-steroidal anti-inflammatory drugs, the
last of which is purported to have a protective effect (Andersen et al., 1995; Breitner et
al., 1995; Mayeux et al., 1995; Roberts et al., 1994; Seshadri et al., 2002).

The only known gene conferring risk for LOAD is apolipoprotein E (APOE). It is
estimated that at least fifty percent of the genetic effect of LOAD remains unexplained
(Daw et al., 2000; Roses AD et al., 1995; Slooter et al., 1998). Over 115 LOAD

candidate genes have been tested and have generated a positive main effect, but all except
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APOE have failed to be consistently replicated (Pericak-Vance MA and Haines JL, 2002)
(Figure 28). While the initial reports may have been false positive findings, alternatively,
these inconsistencies could be indicative of heterogeneity and/or environmental
interactions across the entire phenotype. Reported differences of incidence and
prevalence between ethnic and gender groups are also indicative of interactions with
environment and/or genetic background. The possibility of gene-gene interactions has
been explored only superficially (Pericak-Vance MA and Haines JL, 2002).

Late Onset Alzheimer Disease is just one example of a complex disease, in which
traditional statistical methods of analysis such as linkage and association have failed to
identify main effect genes. Among the possible reasons for this failure are false positives
due to population stratification and true differences in genetic etiology between study
populations (Hirschhorn JN et al., 2002). In addition, while a small number of supervised
computational methods exist for discovering gene-gene interactions, the power of these
methods drops dramatically when locus or trait heterogeneity is present (Ritchie et al.,
2003a). Current statistical approaches for detecting heterogeneity, such as the admixture
test (Ott J and Hoh J, 2003; Smith, 1963), are neither sensitive nor powerful and can
merely account for, not resolve, any underlying heterogeneity (see Chapter II).

It is possible that phenotypic data could be utilized to improve the performance of
these methods in the face of locus or trait heterogeneity by facilitating heuristic
stratification of data. For instance, age of onset data was used to stratify AD patients,
leading to the detection of association with the apolipoprotein E4 allele in late-onset and
sporadic cases (Saunders et al., 1993; Strittmatter et al., 1993). However, for most

diseases, particularly neurological diseases, little detailed phenotypic data has been
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consistently collected in combination with genotypic data. Postmortem histological data
are rare for cases, even rarer for controls, and neuroimaging can be expensive and
challenging with mentally ill patients. It is for these reasons that an unsupervised
method, such as the Bayesian Classification method investigated in Chapters I1I and IV,
which does not rely on phenotypic data, would be valuable to mine potentially
heterogeneous genotypic data as a means of data stratification and hypothesis generation.
In Chapter II, a comprehensive two-step approach to analysis was proposed in
which heterogeneity is first addressed and then main effects and interactions are
subsequently investigated in the more homogeneous subsets discovered in the first stage.
In this chapter, an application of this two-stage approach to a LOAD dataset is presented
in which cluster analysis is first used to uncover heterogeneity and to subdivide the data
into more homogeneous groups. Then in the second stage, traditional linkage and
association tests are used to detect main effects and a computational data reduction

method is used to investigate gene—gene interactions within each of the subgroups.

Methods

Specifics of Late-Onset Alzheimer Disease Dataset

The late-onset Alzheimer Disease dataset includes samples obtained by (1) Dr.
Jonathan L. Haines at Vanderbilt University, Dr. Pericak-Vance at Duke University and
Dr. Gary Small at UCLA of the Collaborative Alzheimer Project (the CAP dataset), (2)
the Indiana Alzheimer Disease Center National Cell Repository (the IU dataset), and (3)

the National Institute of Mental Health Alzheimer Disease Genetics Initiative dataset (the
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NIMH dataset). Although the NIMH and IU datasets represent a rich resource for
generating hypotheses, they are in use by multiple groups (including CAP). In contrast,
the CAP dataset represents an independent set of families that can, therefore, be used to
confirm and extend initial findings.

All subjects are Caucasian Americans. Written consent was obtained from all
participants in agreement with protocols approved by the institutional review board at
each contributing institution. Alzheimer Disease was diagnosed according to the
NINCDS-ADRDA criteria (McKhann et al., 1984). Age of onset was recorded as the age
at which the first symptoms were noted by the participant or family member. Only
subjects with an age of onset of 65 or greater were included in this late-onset dataset.

Markers previously genotyped in over 25 candidate genes and a region of interest
(ROI) on chromosome 10 were included in the dataset. The data were then ‘cleaned’ to
remove markers and subjects with high percentages of missing data. This was an
iterative process that resulted in a dataset with 148 markers in the chromosome 10 ROI
and in 22 candidate genes residing on eight different chromosomes. All chosen markers
were genotyped in at least 90 percent of included subjects (Figures 29 and 30), and all
chosen subjects were genotyped for greater than 85 percent of the included markers
(Figures 31 and 32).

Most of the functional candidate genes chosen here are purported to have some
role in LOAD through their involvement in the processing of amyloid precursor protein
(APP; MIM: 104760), the secretion of its product, AP, and/or the phosphorylation of tau

or regulation of microtubules within neurons. Table 5 lists alphabetically the 22 genes
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genotyped in one or both of the samples, along with their full names and identification
numbers in the Mendelian Inheritance in Man (MIM) and Entrez Genome databases of
the National Center for Biotechnology Information (NCBI).

The family-based dataset, derived from all three ascertainment sources, consists
of 654 families with 1422 subjects with possible, probable or definite LOAD and 744
cognitively normal elderly individuals. Of these families, 328 contain a total of 1279
discordant sibling pairs (DSPs), in which one sibling is affected with LOAD and the
other is unaffected. For this sample, there are 138 markers genotyped in 22 genes on 8
chromosomes, plus the ROI on chromosome 10. The CAP dataset also includes a clinic-
based unrelated case-control sample of 451 cases with possible, probable or definite
LOAD and 699 cognitively normal elderly controls who were either spouses of AD
patients or subjects recruited from outpatient clinics at the participating institutions. For
this case-control sample, there are 93 markers genotyped in 19 genes on eight
chromosomes. Across the family-based and case-control samples, there are 82 markers
in common, covering 18 genes on 8§ chromosomes and the ROI on chromosome 10.
Table 6 lists all markers genotyped, giving their chromosomal location and noting
whether they are genotyped in the family-based dataset and/or the case-control dataset.
One marker, labeled 1920, is actually a combination of two adjacent single nucleotide
polymorphisms—rs2456777 and rs2456778—that could not be distinguished by the

Tagman probe used for genotyping (Liang X et al., 2006).
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Table 5. Genes Covered by Markers Genotyped in One or Both Samples

: MIM Gene
Symbol Location Name D ID
A2M lljg 133 3 Alpha-2-macroglobulin 103950 2
A2MP ;‘i‘g 133 3 Alpha-2-macroglobulin pseudogene - 3
Angiotensin 1 converting enzyme
ACE 17923.3 (petidyl-dipeptidase A) 106180 1636
AGT 1g42-g43 | angiotensinogen 106150 183
APOE 19q13.2 Apolipoprotein E 107741 348
CDC2 10g21.1 Cell division cycle 2 116940 983
COG2 1q42.2 gomponent of oligomeric Golgi complex 606974 | 22796
GAPDH 12p13 Glyceraldehydes-3-phosphate 138400 2597
dehydrogenase
GAPDHS | 19q13.1 | Glyceraldehydes-3-phosphate 609169 | 26330
dehydrogenase, spermatogenic
IDE 10g23-g25 | Insulin degrading enzyme 146680 3416
LIPC 15921-g23 | Lipase, hepatic 151670 3990
LRPI 12q13-q14 Low-@ensﬁy lipoprotein receptor-related 107770 4035
protein 1
LRRTM3 10q21.3 Leucine-rich repgat transmembrane i 347731
neuronal 3 protein
LTA 6p21.3 Lymphotoxin alpha (TNF superfamily, 153440 4049
member 1)
OLR1 12p13.2- Qx1dlzed density lipoprotein (lectin- 602601 4973
pl2.3 like) receptor 1
PLAU 10g24 Urokinase-type plasminogen activator 191840 5328
PPMIH 12q14.1- Protel'n 'phosphotase 1H (PP2C domain i 57460
ql4.2 containing)
12p13- .
PzZp p122 Pregnancy-zone protein 176420 5858
TNF 6p21.3 Tumor necrosis factor (TNF 191160 7124
superfamily, member 2)
TNFRSF6 / Necrosis factor receptor superfamily
FAS 10g24.1 member 6 134637 355
9q21.2- N
UBQLNI1 @213 Ubiquilin 1 605046 | 29979
VR22/ Catenin (cadherin-associated protein),
CTNNA3 10g22.2 alpha 3 607667 | 29119
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Table 6. Markers Genotyped in Family-Based and Case-Control Samples. Chromosomal
location is given according to NCBI dbSNP Human Build 126. Markers with no gene
listed were chosen to cover the region of interest on chromosome 10.

Chrom |Gene Marker NCBI Location | Presentin Fam | Presentin CC
1 [COG2 |rs3789662 227135608 X X
1 |AGT rs7536290 227143437 X X
1 |AGT rs3789670 227150449 X X
1 |AGT rs2478545 227150856 X X
1 |AGT rs4762 227152712 X X
1 |AGT rs2148582 227156534 X X
1 |AGT rs5051 227156607 X X
1 |AGT rs1326886 227166495 X X
6 |[LTA rs1799724 31650461 X X
6 |TNF rs1800750 31650942 X X
6 |[LTA rs1800629 31651010 X X
6 |[LTA rs361525 31651080 X X
6 |TNF rs4645843 31652541 X X
9 |UBQLNL1 [rs7866234 83508371 X
9 |UBQLN1 [rs2781003 83508569 X X
9 |UBQLN1 [rs2781002 83508579 X
9 [UBQLN1 |rs12344615 83510749 X
9 |UBQLN1 [rs2780995 83520722 X
9 [UBQLN1 |rs10868038 83521233 X X
9 [UBQLN1 |rs11140213 83531038 X X
10 rs10826594 29623140 X
10 rs1023207 32134896 X
10 rs1319013 33583935 X
10 rs1148247 35536952 X
10 rs6482044 37892393 X
10 rs6593491 42585568 X
10 rs1890739 45074179 X
10 rs1806797 48357923 X
10 rs7097397 49695402 X
10 rs14327 51735896 X
10 rs1904018 53523252 X
10 rs4998401 55575412 X
10 rs4935648 57804443 X
10 rs10763551 59943904 X
10 |CDC2 1920 61896492 X X
10 |CDC2 rs7919724 62165848 X X
10 |CDC2 rs2448341 62205963 X X
10 |CDC2 rs2448347 62215148 X X
10 rs7090884 63632032 X
10 rs1935 64597829 X
10 rs7089698 65054573 X
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Table 6, continued. Markers Genotyped in Family-Based and Case-Control Samples.

Chrom [Gene Marker NCBI Location Present in Fam | Presentin CC
10 |VR22 4783 67208785 X X
10 [VR22 rs1786927 67352267 X X
10 [VR22 rs2126750 67507709 X
10 |VR22 rs4745886 67530329 X X
10 |VR22 rs7911820 67534145 X X
10 |VR22 rs7070570 67534610 X
10 |VR22 rs7074454 67534965 X
10 |VR22 rs10822719 67535076 X X
10 |VR22 rs6480140 67538887 X
10 |VR22 rs922347 67652964 X X
10 [VR22 rs4463744 67778486 X X
10 [VR22 rs2441718 67806967 X X
10 |VR22 rs2939947 67808364 X X
10 |VR22 rs2456737 67825340 X X
10 |VR22 rs4746606 68061108 X X
10 |VR22 rs7909676 68104803 X X
10 |LRRTMS3 |rs1001016 68347044 X X
10 |LRRTM3 |rs12769870 68347401 X X
10 |LRRTMS3 |rs1925583 68349950 X X
10 [LRRTMS3 [rs2394314 68350254 X X
10 [LRRTM3 [rs1925577 68358439 X
10 |LRRTM3 [rs10762122 68386380 X X
10 |LRRTM3 [rs942780 68406547 X X
10 |LRRTM3 [rs1925617 68434823 X X
10 |LRRTMS3 [rs1925622 68439644 X X
10 |LRRTMS3 [rs1925632 68469620 X X
10 |LRRTM3 [rs1952060 68472940 X X
10 |LRRTMS3 |[rs2147886 68488649 X X
10 [LRRTMS3 [rs2251000 68494777 X X
10 [LRRTM3 [rs2764807 68498938 X X
10 |LRRTM3 [rs10762136 68513538 X X
10 |VR22 rs11593235 68546044 X X
10 |VR22 rs10997591 68671884 X X
10 |VR22 rs7903421 68951738 X X
10 |VR22 rs3096244 69080192 X X
10 rs870801 71599752 X
10 rs1227047 73104105 X
10 |[PLAU rs1916341 75341168 X X
10 |[PLAU 1s2227564 75343107 X X
10 |[PLAU 1s2227566 75343737 X X
10 |PLAU rs2227568 75343885 X X
10 |PLAU rs4065 75346470 X X
10 rs1898071 77477033 X
10 rs1439042 80374264 X
10 rs1336439 82822237 X
10 rs11816558 84709583 X
10 rs3750686 87198514 X

84




Table 6, continued. Markers Genotyped in Family-Based and Case-Control Samples.

Chrom |Gene Marker NCBI Location Presentin Fam | Presentin CC
10 |TNFRSF6 [rs1800682 90739943 X X
10 [TNFRSF6 |rs1324551 90741496 X X
10 [TNFRSF6 |rs2031612 90756960 X X
10 |TNFRSF6 [rs2296600 90760419 X X
10 rs4933194 92501347 X
10 |IDE rs2251101 94201284 X X
10 |IDE rs1832196 94258314 X X
10 |IDE rs7076966 94315491 X X
10 |IDE rs4646954 94323807 X X
10 |IDE rs3758505 94324758 X X
10 |IDE rs7099761 94325779 X X
10 |IDE rs1544210 94477781 X X
10 rs701865 95371763 X
10 rs4372378 97234998 X
10 rs2039826 99516658 X
10 rs2255901 101629786 X
10 rs3127242 103303589 X
10 rs7084783 105314160 X
10 rs2058980 107379174 X
10 rs10509859 109803462 X
12 [GAPD rs7307229 6513864 X
12 |GAPD rs3741916 6514252 X
12  |GAPD rs3741918 6514517 X
12 |GAPD rs1060621 6514957 X
12 |GAPD rs1060620 6514983 X
12 |GAPD rs1060619 6515042 X
12 |A2M rs1800433 9123618 X
12 |A2M rs3832852 9137444 X
12 |PzP rs10842971 9194563 X X
12 |PzP rs3213831 9208040 X X
12 |PZP rs2277413 9209051 X X
12 |PZP rs3213832 9212768 X X
12 |PZP rs12230214 9238059 X X
12 |A2MP rs16918212 9276225 X X
12 |A2MP rs34362 9276692 X X
12 |A2MP rs17804080 9279277 X X
12 |OLR1 rs1050283 10203556 X
12 [LRP1 rs1799986 55821533 X
12 [LRP1 rs1800127 55825349 X
12 |LRP1 rs1800174 55846076 X
12 |LRP1 rs1800181 55864555 X
12 |LRP1 rs2075699 55871411 X
12 |LRP1 rs1800154 55875926 X
12 |LRP1 rs1800165 55877493 X
12 |LRP1 rs11172124 55881222 X
12 |LRP1 rs9669595 55881333 X
12 [LRP1 rs7956957 55889082 X
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Table 6, continued. Markers Genotyped in Family-Based and Case-Control Samples.

Chrom |Gene Marker NCBI Location Present in Fam | Presentin CC
12 |PPM1H (rs2029721 61435611 X X
15 LIPC rs6078 56621285 X X
15 |LIPC rs6083 56625302 X X
17 |ACE rs4291 58907926 X X
17 |ACE rs4295 58910030 X
17 |ACE rs4311 58914495 X
17 |ACE rs4329 58917190 X
17 |ACE rs4646994 58919636 X X
17 |ACE rs4343 58919763 X X
17 |ACE rs4353 58924154 X
17 |ACE rs4978 58927493 X
19 |GAPDS |rs4806173 40716765 X X
19 |GAPDS [rs12984928 40721692 X
19 |APOE [rs440446 50101007 X X

Statistical Analysis

A comprehensive, two-stage approach to analysis was performed in which
heterogeneity was first investigated in the dataset and then main effects and gene-gene
interactions were investigated among the resulting subsets or clusters of data. Although
all of the markers in the dataset had been previously tested for main effects and some
even for interactions, this testing was performed at different time points over the past 10
years and, therefore, the samples on which they were tested vary to different degrees
from the sample being analyzed in the current study. It is for this reason that a
preliminary analysis of the complete datasets was performed prior to the two-stage
analysis, using all the main effect and interaction-detection methods proposed for the
subsets of data.

Analysis of deviations from Hardy-Weinberg equilibrium (HWE) and linkage
equilibrium were tested using the Haploview program (Barrett et al., 2005) on the

complete case-control and family-based datasets. Hardy-Weinberg Equilibrium
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stipulates the expected ratio of individuals in a population who have each of a marker’s
possible genotypes, based solely on that marker’s allele frequencies. Deviations from
HWE in a sample could be indicative of genotyping error or a violation of one HWE’s
assumptions—random mating, no selection, no mutation, no migration and infinite or
large sample size. Alternatively, it could be evidence for association. Linkage
disequilibrium (LD) is the statistically observed (population) phenomenon of two or more
segments of DNA being observed together more often that would be expected by chance.
When LD exists between two or more markers, there is essentially one signal or effect
coming from those markers. If one or more of the markers in LD exhibit an association
with disease, it could be any one of those markers (or another variant not genotyped in
the dataset that is also in LD with one or more of these markers) that is the functionally
relevant one.

The Bayesian Classification method (Cheeseman P and Stutz J, 1996; Hanson R
et al., 1991), previously investigated in simulation studies described in Chapters III and
IV, was used to detect heterogeneity. For the family-based and case-control data,
separately, the affected individuals in the dataset were subjected to cluster analysis, and
the resulting clustering created subsets, which were more homogeneous than the
complete dataset. Each cluster subset was then recombined with the entire group of
unaffected individuals from the respective dataset for subsequent analysis of main effects
and interactions.

For the family-based data, two-point heterogeneity lod score (HLOD) linkage
analysis using FASTLINK and HOMOG (Ott, 1999) and two methods for detecting main

effect association—the family-based association test (FBAT) (Horvath et al., 2001) and
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the pedigree disequilibrium test (PDT) (Martin et al., 2000; Martin et al., 2001)—were
performed. Linkage analysis tests whether a marker and a disease locus co-segregate
within families (according to a specific genetic model), in violation of Mendel’s laws,
which would suggest that the disease susceptibility allele is at or near the marker in
question. Both recessive and dominant disease models are tested, and the maximum
heterogeneity lod score, which is the highest lod score found for either model under the
range of full range of possible theta values, is reported. Tests for allelic association are
nonparametric and detect deviations in the expected frequency of a marker allele with
respect to disease status, which would suggest that the disease susceptibility allele is, or is
in linkage disequilibrium with, the marker in question. The FBAT for allelic association
uses data from discordant sibpairs and from nuclear families (decomposing extended
pedigrees, if present, into nuclear families), whereas the PDT can use data from
discordant sibpairs, from nuclear families, and from intact extended pedigrees (without
decomposition and accounting for intrafamilial correlation). For the case-control data, a
chi-square test of independence was used to detect main effect associations. In each case,
a genotype-based model was tested in which the distribution of cases to controls at each
of the possible genotypes was compared.

For both the family-based and the case-control datasets, the multifactor
dimensionality reduction (MDR) method was used to detect gene-gene interactions (Hahn
et al., 2003; Ritchie et al., 2001). MDR is a nonparametric data reduction computational
method that performs an exhaustive search of the data space, looking for combinations of
genetic markers and/or environmental factors whose genotypes or levels, when reduced

to a single risk variable with two levels—high- and low-risk—predict disease status.
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Using 5-fold cross validation, we measured the average balanced prediction accuracy
(across the five cross-validation intervals) of every possible combination the best one-,
two- and three-way MDR models. Accuracy is a function of the percentage of true
positives (TP) and true negatives (TN), defined as TP/(TP+FN) (Moore et al., 2006).
Because each of the datasets tested were unbalanced to some degree—meaning that the
number of affecteds differed substantially from the number of unaffecteds—the metric
‘balanced accuracy’ was actually used, along with an adjusted threshold for determining
risk status. The adjusted threshold further corrects for the imbalance in the data by
comparing the ratio of affecteds to unaffecteds with the particular multilocus genotype
being considered to the ratio in the overall dataset. For each of the one-locus, two-locus
and three-locus combinations, the ‘best’ MDR model was chosen as the one with the best
average balanced prediction accuracy. All ‘best” MDR models were evaluated for
statistical significance using permutation testing with 1000 permutations.

For each of the ‘best’ two- and three-marker MDR models achieving prediction
accuracy of 55 percent or greater, the markers in those MDR models were used in logistic
regression analyses to further characterize the underlying statistical models. Logistic
regression can determine the structure of the model, in terms of whether markers are
influencing or predicting disease status primarily through independent (main) effects or
through interactions with each other. One can also obtain odds ratios from logistic
regression, which are helpful in interpreting these models. For the case-control data, a
logistic regression analysis was performed in SPSS, and for the family-based data, a

multivariate logistic regression method, which controls for intrafamily correlation, was
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implemented in SAS (Martin ER et al., 2005; Siegmund et al., 2000) and applied to all

discordant sibpairs.

Results

Analysis of Complete Datasets

Linkage analysis of the complete family-based dataset detected the known effect
of APOE (HetLOD = 7.963) and other marginal linkage scores (HetLOD between 1 and
1.5) for one marker in AGT and four markers in VR22. The FBAT detected the known
association of APOE (3°=86.989, df=2, p<0.001) as well as two substantial effects
(x*=13.876, df=1, p<0.001 and %*=9.085, df=1 p=0.003) and one marginal effect
(X2=4.343, df=1, p=0.037) in ACE, and five other marginal effects (X2>4.2, p<0.05) in
LRRTM3, PLAU and A2MP. The PDT detected the known association with APOE
(1*=98.388, df=2, p<0.001), two other substantial effects—one in A2M (x*=6.772, df=1,
p=0.009) and one in ACE (3*=7.104, df=1, p=0.008)—and 10 other marginal effects (y*>
4.5, p<0.05). Table 7 presents results from all three tests on all markers showing
statistically significant effects (p<0.05) according to at least one test. Analysis using the
chi-square test of independence on the complete case-control dataset detected the known
association with APOE (x*=171.62, df=5, p<0.001) and seven other marginal effects in
CDC2, VR22, LRRTM3 and GAPDH (3°>6.2, p<0.05) (Table 8).

MDR gene-gene interaction analysis was performed on both the complete family-
based and complete case-control datasets. Since MDR works by comparing the ratio of

affected to unaffected individuals but does not account for intrafamilial correlations, for
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Table 7. Main Effect Analysis Results for Complete Family-Based Dataset. Significant
results are highlighted in pale (p<0.05) or fluorescent (p<0.01) yellow.

2-Pt Linkage |PDT FBAT
Chrom Gene Marker Max HetLOD |Chi-Square p-value |ChiSquare p-value
1 AGT rs5051 1.033 0.114 0.736 0.010 0.921
10 VR22 rs7070570 1.366 1.416 0.702 0.248 0.619
10 VR22 rs2441718 1.407 0.312 0.577 1.771 0.183
10 VR22 rs2456737 1.038 1.143 0.285 2.835 0.092
10 VR22 rs7909676 1.068 4.540 0.033 2.682 0.101
10 LRRTM3 rs1925622 0.302 2.849 0.091 4.285 0.038
10 LRRTM3 rs1925632 0.140 2.052 0.152 5.283 0.022
10 LRRTM3 rs2764807 0.097 3.556 0.059 4.462 0.035
10 PLAU rs2227568 0.000 5.170 0.023 3.446 0.063
10 PLAU rs4065 0.000 3.152 0.076 4.987 0.026
10 rs4933194 0.052 4.676 0.031 0.886 0.347
12 A2M rs3832852 0.011 6.772 0.009 1.587 0.208
12 A2MP  rs34362 0.047 0.904 0.342 4.673 0.031
12 LRP1 rs1800154 0.000 4.017 0.045 2.145 0.143
12 LRP1 rs9669595 0.003 4.599 0.032 1.939 0.164
12 LRP1 rs7956957 0.000 4.059 0.044 2.343 0.126
17 ACE rs4291 0.000 7.104 0.008 13.876 < 0.001
17 ACE rs4295 0.000 3.23 0.072 9.085 0.003
17 ACE rs4646994 0.000 5.481 0.019 3.056 0.080
17 ACE rs4343 0.000 4516 0.034 3.689 0.055
17 ACE rs4353 0.000 4.887 0.027 3.405 0.065
17 ACE rs4978 0.000 6.503 0.011 4.343 0.037
19 APOE rs440446 7.963 98.388 < 0.001 86.989 < 0.001

Table 8. Main Effect Analysis Results for Complete Case-Control Dataset. Significant
results are highlighted in pale (p<0.05) or fluorescent (p<0.01) yellow.

Pearson's
Chrom Gene Marker ChiSquare p-value
10 CDC2 rs2448347 6.581 0.037
10 VR22 rs1786927 7.035 0.030
10 VR22 rs2441718 8.553 0.014
10 VR22 rs2456737 6.222 0.045
10 LRRTM3 rs942780 7.586 0.023
10 LRRTM3 rs1925617 6.465 0.039
12 GAPD rs1060621 7.188 0.027
19 APOE rs440446 171.62 <0.001
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family-based data, only discordant sibpairs (DSPs) are used in the analysis. Two datasets
were created—the first with only one randomly chosen DSP per family (designated
‘1DSP’) and the second with all individuals who are part of one or more DSPs in a family
(designated ‘AlIDSPs’). MDR detected the main effect of APOE in all three datasets
(Case-Control, 1DSP and AlIDSPs) by choosing APOE as the best one-locus models with
perfect (5 of 5) cross-validation consistency and by including APOE in the best two- and
three-locus models as well, all of which were statistically significant (p < 0.05) (Table 9).
To give MDR the opportunity to detect other effects without interference of the APOE

effect, we excluded APOE from the datasets

Table 9. MDR Analysis Results for Complete Datasets

Avg Bal
Number Marker Genes Prediction cv
of Loci (Markers) Accuracy | p-value| Consist
Case- 1 APOE (rs440446) 68.32| <0.001| 5
Control
APOE (rs440446)
2 AGT (rs5051) 67.18| < 0.001 2
APOE (rs440446)
3 PLAU (rs1916341) 66.18| < 0.001 2
LRRTM3 (rs10762136)
1DSP 1 APOE (rs440446) 59.52| 0.01 5
APOE (rs440446)
2 VR22 (rs7909676) 60.23/ <0.001f 3
APOE (rs440446)
3 OLR1 (rs1050283) 57.27| 0.04 1
Chr.10 (rs1916341)
AlIDSPs 1 APOE (rs440446) 62.50| < 0.001 5
APOE (rs440446)
2 AGT (rs7536290) 60.47| < 0.001 2
APOE (rs440446)
3 OLR1 (rs1050283) 60.27| < 0.001 3
LRRTM3 (rs12769870)
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and re-ran the analysis. In these subsequent analyses, none of the best one-, two- or
three-locus models achieved average balanced prediction accuracies of greater than 53
percent or cross-validation consistency values of more than 2, and none were statistically

significant (p > 0.20; see Table 10).

Table 10. MDR Analysis Results for Complete Datasets with APOE Excluded.

Avg Bal
Number Prediction cv
of Loci | Marker Genes (Markers)| Accuracy | p-value | Consist
Case- 1 A2MP (rs34362) 48.13| 0.93 2
Control
VR22 (rs10997591)
2 LRRTM3 (rs10762136) 50971 047 1
UBQLN1 (rs2781002)
3 VR22 (rs10997591) 52.37] 0.21 2
IDE (rs1544210)
1DSP 1 VR22 (rs7909676) 48.91] 0.86 1
OLR1 (rs1050283)
2 Chr.10 (rs1898071) 4847 0.90 !
OLR1 (rs1050283)
3 Chr.10 (rs1898071) 46.99| 0.97 1
LRRTM3 (rs10762122)
AlIDSPs 1 Chr.10 (rs6482044) 50.55] 0.57 2
OLR1 (rs1050283)
2 LRRTM3 (rs2147886) 48.24) 0.5 1
OLR1 (rs1050283)
3 Chr.10 (rs1898071) 48.97| 0.88 1
AGT (rs5051)

Detection of Heterogeneity
Bayesian Classification was applied to each of the complete case-control and
family-based datasets. Only affected individuals are used in the cluster analysis. The

family-based dataset produced twelve clusters, and the case-control dataset produced four
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clusters. To reduce the number of clusters produced by the family-based dataset and to
focus on heterogeneity that might be present in both datasets, we took the top 30 markers
from each dataset with the highest influence values and selected those markers present in
both datasets (31 markers) (Table 11). Recall that a marker’s influence value provides a
rough heuristic measure of relative influence that marker had in differentiating the

clusters from the overall dataset. Then, we performed the cluster analysis again using

Table 11. Top 30 Highest-Influence Markers Common to Both Datasets

Chrom Gene Marker FaminfluValue | CCInfluValue
1 AGT rs2148582 0.016 0.161
1 AGT rs5051 0.020 0.178
9 UBQLN1 rs2781003 0.118 0.065
9 UBQLN1 rs10868038 0.116 0.024
9 UBQLN1 rs11140213 0.131 0.042
10 VR22 rs922347 0.019 0.118
10 VR22 rs4463744 0.016 0.115
10 VR22 rs2939947 0.027 0.108
10 LRRTM3 rs1001016 0.009 0.089
10 LRRTM3 rs1925617 0.417 0.359
10 LRRTM3 rs1925622 0.393 0.404
10 LRRTM3 rs1925632 0.799 0.940
10 LRRTM3 rs1952060 0.562 0.521
10 LRRTM3 rs2147886 0.840 1.000
10 LRRTM3 rs2251000 0.818 0.932
10 LRRTM3 rs2764807 0.542 0.615
10 LRRTM3 rs10762136 0.441 0.503
10 VR22 rs11593235 0.307 0.279
10 VR22 rs10997591 0.015 0.294
10 VR22 rs3096244 0.024 0.291
10 TNFRSF6 rs1800682 0.033 0.091
10 TNFRSF6 rs1324551 0.023 0.083
10 IDE rs7076966 0.018 0.073
10 IDE rs4646954 0.016 0.078
10 IDE rs3758505 0.017 0.101
10 IDE rs1544210 0.015 0.078
12 PzP rs3213832 0.023 0.071
15 LIPC rs6083 0.019 0.072
17 ACE rs4291 0.369 0.007
17 ACE rs4646994 0.597 0.015
17 ACE rs4343 0.759 0.080
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only those 31 markers. This second analysis produced 15 clusters in the family-based
dataset and 6 clusters in the case-control dataset. After again ranking the markers by
their influence values, it was discovered that the top 5 markers were the same in both
datasets (Table 12). Therefore, in one final attempt to produce a clustering that was
similar across both datasets and produced a more reasonable number of clusters, which
could be subsequently investigated for main effects and interactions, we performed the
cluster analysis again using only these top 5 markers. This third and final round of
clustering produced 5 clusters in the family-based dataset and 3 clusters in the case-
control dataset (Table 13). Upon closer inspection, two of the five clusters in the family-
based dataset contained only seven and five affected subjects, respectively, making
subsequent analysis of those clusters inadvisable due to almost no power to detect an
effect. Thus, for all intensive purposes, there were only three resulting clusters for each
of the datasets.

Permutation testing was performed to determine whether the final clustering
based on the top five high-influence markers was statistically significant. In the family-
based data, the clustering results produced an average class strength value of -4.34
(p<0.002) and an average cross-class entropy value of 4.00 (p<0.002). In the case-
control data, the clustering results produced an average class strength value of -2.71
(p<0.002) and an average cross-class entropy value of 4.43 (p<0.012). Thus, for each of
the datasets, the clustering results were significant at our predetermined alpha of ten

percent (as suggested by our simulation studies in Chapters III and IV).
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Table 12. Top Five Highest-Influence Markers from Second-Round of Cluster Analysis

Chrom| Gene Marker FaminfluValue | CCInfluValue
10 |LRRTM3| rs1925632 0.938 0.792
10 |LRRTM3] rs1952060 0.623 0.944
10 |LRRTM3| rs2147886 1.000 1.000
10 |LRRTM3] rs2251000 0.940 0.834
10 |LRRTM3| rs2764807 0.673 0.890

Table 13. Distribution of Affected Individuals in Final Clustering Results

Number of Affecteds
Cluster | Family-Based Data | Case-Control Data
0 673 215
1 480 157
2 257 79
3 7 -
4 5 -

Since the top 5 markers were all in the same gene (LRRTM3), we investigated
whether they were in linkage disequilibrium (LD) with each other and thus were
encoding a single haplotype block. LD analysis using Haploview indeed showed that the
five markers and four additional flanking markers were all in high LD with each other,
and it showed the first four markers to be in a haplotype block (Figures 33 and 34).
Furthermore, inspection of the multi-locus genotypes at the top 5 markers across the three
clusters in each dataset showed that one multi-locus genotype was predominant in each of
the three clusters and that these three multi-locus genotypes were the same across the

case-control and family-based datasets (Table 14).
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Figure 33. Linkage Disequilibrium Plot of Top 5 High-Influence Markers in Family-
Based Dataset. The top five markers are: rs1925632, rs1952060, rs2147886, 2251000,
and rs2764807. Numbers in each square represent pair-wise R* values (e.g., the number
95 in the second square from the left on the top line of the plot indicates an R* value of
0.95 for markers rs1925617 and rs1925622). The markers in bold are those in a
haplotype block, as defined by the Haploview software program.
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Figure 34. Linkage Disequilibrium Plot of Top 5 High-Influence Markers in Case-

Control Dataset. The top five markers are: rs1925632, rs1952060, rs2147886, 2251000,
and rs2764807. Numbers in each square represent pair-wise R” values (e.g., the number

92 in the second square from the left on the top line of the plot indicates an R* value of

0.92 for markers rs1925617 and rs1925622). The markers in bold are those in a
haplotype block, as defined by the Haploview software program.

Table 14. Predominant Genotypes for the Top Five High-Influence Markers by Cluster

Cluster
Marker 0 1 2
rs1925632 | A/C| C/C |A/A
rs1952060 ([ C/T| C/C | T/T
rs2147886 | C/T| C/C | TI/T
rs2251000 | A/G| A/G |A/G
rs2764807 l Cc/Tl Cc/C I T/T
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Detection of Main Effects in Subsets of Data

For each of the three clusters (0,1,2) in the family-based dataset, linkage analysis
and association analysis by FBAT and PDT were conducted. For each of the three
clusters (0, 1, 2) in the case-control dataset, the chi-square test of independence was
performed. Since the three clusters in each dataset correspond exactly, due to their
definition by the same multilocus genotypes at the top 5 high-influence markers, analysis

results are presented in the following subsections by cluster number.

Cluster 0 Results

Table 15 presents results for cluster 0 for all markers with significant scores on at
least one of the three statistical tests performed (two-point linkage, FBAT and PDT). For
cluster 0, linkage analysis found large HetLOD scores (greater than 10) for all five of the
top high-influence markers plus three flanking markers in the LRRTM3 gene. Seven
additional markers in the VR22 gene, which contains the LRRTM3 gene, produced
HetLOD scores greater than 3. APOE produced a HetLOD score of 3.75 (reduced from
7.963 in the complete family-based dataset). For cluster 0, the FBAT found very strong
associations with one marker in UBQLN1 (x2=6.864, df=1, p=0.009), two markers in
ACE (%*=13.494, df=1, p<0.001 and %*=10.875, df=1, p<0.001) and with the APOE
marker (x2=59.407, df=2, p<0.001). Ten other markers in LTA, VR22, LRP1, ACE and
the ROI on chromosome 10 showed marginal association (x>>3.9, p<0.05). For cluster 0,
the PDT found very strong association with APOE (x*=59.407, df=2, p<0.001) and
marginal association with 15 other markers in VR22, LRP1, ACE and the ROI on

chromosome 10 (3>>3.9, p<0.05).
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Table 15. Main Effect Analysis Results for Cluster 0 Family-Based Dataset. Significant
results are highlighted in pale (p<0.05) or fluorescent (p<0.01) yellow.

2-Pt Linkage |PDT FBAT
Chrom Gene Marker Max HetLOD |Chi-Square p-value JChi-Square p-value
6 LTA rs1799724 1.0995 0.467 0.494 0.069 0.793
6 LTA rs1800629 0.1523 0.711  0.399 4175 0.041
9 UBQLN1 rs2781003 0 3.046  0.081 6.864  0.009
10 rs6482044 0.6086 4.898 0.027 4781 0.029
10 rs1904018 1.7161 1519 0.218 2.566 0.109
10 rs10763551 1.4194 0.863  0.353 142 0.233
10 CDC2 rs7919724 1.1955 0.534  0.465 1.603  0.206
10 CDC2 rs2448341 1.1791 0.249 0.618 2.427  0.119
10 rs7089698 0.1562 4902 0.027 0.854  0.356
10 VR22 rs1786927 1.4381 0.337 0.561 0.017 0.895
10 VR22 rs2126750 1.9445 0.067 0.796 0.227 0.633
10 VR22 rs4745886 4.7019 0.004  0.948 0.002  0.967
10 VR22 rs7911820 4.0837 0.085 0.771 0.086 0.770
10 VR22 rs7070570 2.5327 0.339  0.953 0.08 0.777
10 VR22 rs7074454 4.9523 0.017 0.897 0.141 0.707
10 VR22 rs6480140 1.125 1.114 0.291 0.536  0.464
10 VR22 rs922347 1.619 2.028 0.154 1.049  0.306
10 VR22 rs4463744 1.7541 0.183  0.669 0.785 0.376
10 VR22 rs2441718 4.0431 2.469 0.116 5.021 0.025
10 VR22 rs2939947 3.9423 0.205 0.651 0 0.987
10 VR22 rs2456737 1.1742 3.462  0.063 5.388 0.020
10 VR22 rs4746606 1.2506 0.183  0.669 0.229 0.633
10 VR22 rs7909676 3.1293 5.431  0.020 446  0.035
10 LRRTM3 rs1001016 1.0904 0.502 0.479 0.003  0.959
10 LRRTM3 rs12769870 1.8426 1.24  0.266 0.333 0.564
10 LRRTM3 rs2394314 1.6074 0.454  0.501 0 0.99
10 LRRTM3 rs1925577 2.2237 0.453 0.501 0.027 0.869
10 LRRTM3 rs942780 1.8796 0.794  0.373 1.78 0.182
10 LRRTM3 rs1925617 11.1942 0.329 0.566 0.602 0.438
10 LRRTM3 rs1925622 11.2218 0.111  0.740 0.596  0.440
10 LRRTM3 rs1925632 20.2925 0.113  0.737 0.319 0.572
10 LRRTM3 rs1952060 12.638 2.367 0.124 2.107  0.147
10 LRRTM3 rs2147886 20.147 1.076  0.300 1.293  0.256
10 LRRTM3 rs2251000 20.4094 0.221  0.638 0.447 0.504
10 LRRTM3 rs2764807 13.0929 0.159  0.690 0.557 0.455
10 LRRTM3 rs10762136 10.2544 0.159  0.690 2.013 0.156
10 VR22 rs11593235 4.8028 0.677 0.411 1.978 0.160
10 VR22 rs10997591 2.5524 0.053 0.818 0.007 0.932
10 VR22 rs7903421 0.6966 457  0.033 1.064  0.302
10 VR22 rs3096244 2.5206 2.081 0.149 0 0.992
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Table 15, continued. Main Effect Analysis Results for Cluster 0 Family-Based Dataset.
Significant results are highlighted in pale (p<0.05) or fluorescent (p<<0.01) yellow.

2-Pt Linkage |PDT FBAT
Chrom Gene |Marker Max HetLOD|Chi-Square p-value |ChiSquare p-value
10 rs870801 1.6058 1.214 0.271 2.132 0.144
10 PLAU rs2227564 1.07 0.134 0.714 0.199 0.655
10 |PLAU rs2227566 1.0844 0.027  0.869 0.054 0.816
10 PLAU rs2227568 1.5063] 0.6 0.439 0.127 0.721
10 PLAU rs4065 1.0192 0.414 0.520 0.401 0.527
10 rs1439042 1.9356 0.082  0.775 0.638  0.424
10 rs1336439 1.194 1.004  0.316 0.905 0.341
10 IDE rs7076966 1.0434 0.051 0.821 0.102  0.750
10 |IDE rs7099761 1.1965 0.509  0.475 1.019] 0.313
10 rs225590 0 4.447 0.035 3.471 0.062
12 LRP1 rs1800181 0.0002 5433 0.020 3.001 0.083
12 |LRP1 rs1800154 0.0154 4.306 0.038 2.354 0.125
12 LRP1 rs1800165 0.0141 4976 0.026 3.077 0.079
12 LRP1 rs9669595 0.0914 5.371 0.021 3.954 0.047
12 |LRP1 rs7956957 0 3.918 0.048 2.328| 0.127
17 ACE rs4291 0 6.339 0.012 13.494 < 0.001
17 ACE rs4295 0 4831 0.028 10.875 0.001
17 |ACE rs4311 0 2.683  0.102 6.534 0.011
17 ACE rs4646994 0 5.236  0.022 4.38 0.036
17 ACE rs4343 0 4.67 0.031 4766 0.029
17 ACE rs4978 0 5.657 0.017 5.099 0.024
19 APOE rs440446 3.7521 66.373 < 0.001 59.407 < 0.001

In the case-control dataset, very strong associations were found for the top 5 high-
influence values in LRRTM3 and three flanking markers, plus one marker in IDE and the
APOE marker (x*>38, p<0.001). Four other markers in the PLAU, A2MP and ACE
genes showed marginal association (y>>8, p<0.05). Table 16 presents results chi-square
results for all markers showing significant association (p < 0.05) for the cluster 0 case-

control dataset.
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Table 16. Main Effect Analysis Results for Cluster 0 Case-Control Dataset. Significant
results are highlighted in pale (p<0.05) or fluorescent (p<0.01) yellow.

Pearson's
Chrom Gene Marker Chi-Square p-value
10 LRRTM3 rs1925617 47.383 <0.001
10 LRRTM3 rs1925622 45252 <0.001
10 LRRTM3 rs1925632 185.361 < 0.001
10 LRRTM3 rs1952060 80.66 < 0.001
10 LRRTM3 rs2147886 197.482 <0.001
10 LRRTM3 rs2251000 17191 <0.001
10 LRRTM3 rs2764807 101.962 <0.001
10 LRRTM3 rs10762136 105.74 <0.001
10 VR22 rs11593235 38.462 <0.001
10 PLAU rs2227568 9.118 0.028
10 IDE rs7099761 10.815 0.013
10 IDE rs1544210 19.355 <0.001
12 A2MP rs34362 8.182 0.042
17 ACE rs4291 8.414 0.038
19 APOE rs440446 118.292 < 0.001

When comparing results across the family-based and case-control datasets for
cluster 0, thirteen markers were found significant (p < 0.05) by the chi-square test in the
case-control dataset and by at least one test (linkage, FBAT or PDT) in the family-based
dataset. These markers include the top 5 high-influence markers in LRRTM3 and four
flanking markers, plus one marker each in the PLAU, IDE, ACE and APOE genes—

1s2227568, 1s7099761, rs4291 and rs440446, respectively.

Cluster 1 Results
In the cluster 1 family-based dataset, linkage analysis showed very high HetLOD
scores (greater than 5) for all five of the top high-influence markers plus four flanking

markers in the LRRTM3 gene. Five additional markers in VR22 produced HetLOD

102



scores greater than 3. Marginal HetLOD scores (greater than 1) were found in another 31
markers in VR22, LRRTM3, PLAU, IDE, APOE and the ROI on chromosome 10. Both
the FBAT and the PDT found very strong association (3*>39, p < 0.001) with the top 5
high-influence markers in LRRTM3 and four flanking markers, plus APOE. The PDT
found 13 additional markers in CDC2, VR22, PLAU, IDE, A2M, ACE, GAPDHS and
the ROI on chromosome 10 that showed marginal association (3*>3.8, p<0.05). The
FBAT found marginal association (x>>4.3, p<0.05) with four of the same markers PDT
found (in PLAU, IDE and the ROI on chromosome 10).

In the cluster 1 case-control dataset, the chi-square test of independence found
very strong association (>>15, p<0.001) with the top 5 high-influence markers in
LRRTM3 and six flanking markers, plus one marker in GAPDH and APOE. In addition,
22 other markers in AGT, UBQLNI1, VR22, CDC2, PLAU, IDE, GAPDH, A2MP, LIPC
and ACE showed marginal association (3*>6, p<0.05). Table 18 presents chi-square
results for all markers showing significant association (p < 0.05) for the cluster 1 case-
control dataset.

When comparing across the family-based and case-control datasets for cluster 1,
17 markers were found significant (p < 0.05) by the chi-square test in the case-control
dataset and by at least one test (linkage, FBAT or PDT) in the family-based dataset.
These markers include the top 5 high-influence markers in LRRTM3 and four flanking
markers, plus three additional markers in VR22 (rs4463744, rs10997591 and rs3096244),
three markers in CDC2 (1920, rs2448341 and rs2448347), three markers in PLAU
(rs1916341, 152227566 and rs4065), and one marker in IDE (rs1832196) and APOE

(rs440446). Worth noting, there are two markers in ACE (rs4353 and rs4978) that were
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Table 17. Main Effect Analysis Results for Cluster 1 Family-Based Dataset. Significant
results are highlighted in pale (p<0.05) or fluorescent (p<0.01) yellow.

2-Pt Linkage |PDT FBAT
Chrom Gene Marker Max HetLOD |Chi-Square p-value |Chi-Square p-value
10 rs10826594 1.2548 0.714 0.398 0.333 0.564
10 rs1023207 1.0589 0.126 0.722 0.21 0.647
10 rs1319013 0.3697 4.306 0.038 1.345 0.246
10 rs6593491 1.5791 0.035 0.851 1.603  0.205
10 rs4998401 1.9603 0.795 0.373 0.948 0.330
10 rs4935648 2.6603 0.088 0.766 0.098 0.754
10 rs10763551 1.2115 0.124 0.725 0.964 0.326
10 CDC2 1920 2.0918 0.405 0.524 14 0.496
10 CDcC2 rs2448341 0.4463 4.469 0.035 1.071 0.301
10 CDC2 rs2448347 1.2699 0.540 0.463 0.045 0.833
10 rs7090884 1.6566 0.045 0.831 0.024 0.878
10 rs1935 1.644 0.837 0.360 0.497 0.481
10 rs7089698 1.1446 0.168 0.682 0.053 0.818
10 VR22 rs1786927 0.3379 3.882 0.049 3.799  0.051
10 VR22 rs2126750 1.3995 2.579 0.108 0.73  0.393
10 VR22 rs4745886 1.8666 1.927 0.165 1.13  0.288
10 VR22 rs7911820 0.4904 4.311 0.038 4311 0.038
10 VR22 rs7070570 3.1473 2.359 0.307 0.682  0.409
10 VR22 rs6480140 0.3839 4.953 0.026 4,953  0.026
10 VR22 rs922347 4.5899 0.129 0.720 0.223  0.637
10 VR22 rs4463744 2.1485 0.220 0.639 0.708  0.400
10 VR22 rs2441718 2.1851 0.841 0.359 1.68 0.195
10 VR22 rs2939947 3.6337 0.008 0.929 0.955 0.329
10 VR22 rs2456737 3.2556 1.485 0.223 1.796 0.180
10 VR22 rs4746606 1.4451 0.116 0.733 0.323  0.570
10 VR22 rs7909676 1.7719 1.735 0.188 1.689 0.194
10 LRRTM3 rs12769870 2.6682 0.333 0.564 0.788  0.375
10 LRRTM3 rs1925583 2.6807 1.189 0.276 0.482 0.488
10 LRRTM3 rs2394314 2.8638 0.919 0.338 0.684  0.408
10 LRRTM3 rs1925577 2.3376 0.113 0.737 0.005 0.944
10 LRRTM3 rs1925617 8.2048 45.075 <0.001 55.866 < 0.001
10 LRRTM3 rs1925622 9.3456 46.140 <0.001 57.161 <0.001
10 LRRTM3 rs1925632 14.638 55.764 <0.001 70.219 <0.001
10 LRRTM3 rs1952060 7.8202 54554 <0.001 67.365 <0.001
10 LRRTM3 rs2147886 16.7244 53.720 <0.001 66.162 < 0.001
10 LRRTM3 rs2251000 15.4586 55.748 < 0.001 68.044 <0.001
10 LRRTM3 rs2764807 10.721 50.449 <0.001 58.393 < 0.001
10 LRRTM3 rs10762136 10.2257 46.537 <0.001 57.414 <0.001
10 VR22 rs11593235 5.976 39.195 <0.001 45584 <0.001
10 VR22 rs10997591 2.55 1.186 0.276 0.277  0.599
10 VR22 rs3096244 1.4214 0.162 0.688 0.603 0.438
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Table 17, continued. Main Effect Analysis Results for Cluster 1 Family-Based Dataset.
Significant results are highlighted in pale (p<0.05) or fluorescent (p<<0.01) yellow.

2-Pt Linkage |PDT FBAT
Chrom Gene Marker Max HetLOD |Chi-Square p-value |Chi-Square p-value
10 PLAU rs1916341 1.0987 1.801 0.180 1598 0.206
10 PLAU rs2227564 1.5754 0.025 0.874 0.373 0.541
10 PLAU rs2227566 1.3058 1.848 0.174 1982 0.159
10 PLAU rs2227568 0.2907 6.470 0.011 5.032 0.025
10 PLAU rs4065 1.2024 1.594 0.207 3.203 0.074
10 rs1439042 1.5462 0.601 0.438 0.424  0.515
10 rs11816558 1.073 0.000 1.000 0.065 0.798
10 IDE rs2251101 0 7.388 0.007 4.788  0.029
10 IDE rs1832196 0.2703 5.028 0.025 6.31 0.012
10 IDE rs4646954 1.1098 1.817 0.178 2.64 0.104
10 rs4372378 0.4067 5.704 0.017 4,995  0.025
12 A2M rs3832852 0.0837 6.674 0.010 1.357 0.244
17 ACE rs4353 0 4.265 0.039 2.425 0.119
17 ACE rs4978 0 3.991 0.046 2.254  0.133
19 GAPDS rs4806173 0.25 4.464 0.035 3.6 0.058
19 APOE rs440446 2.1577 40.994 <0.001 43.475 <0.001

significant by the FBAT and PDT in the family-based dataset but are not present in the
case-control dataset. In the family-based dataset, these markers are in linkage
disequilibrium with two other markers (rs4646994 and rs4343) that are were found

significant by the Pearson chi-square test of independence in the case-control dataset.

Cluster 2 Results

In the cluster 2 family-based dataset, linkage analysis produced HetLOD scores
greater than 3 for the top 5 high-influence markers in LRRTM3 and four flanking
markers, plus one additional marker in VR22. Marginal HetLOD scores (greater than 1)

were found in another 18 markers in AGT, VR22, ACE and the ROI on chromosome 10.
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Table 18. Main Effect Analysis Results for Cluster 1 Case-Control Dataset. Significant

results are highlighted in pale (p<0.05) or fluorescent (p<0.01) yellow.

Pearson's
Chrom Gene Marker Chi-Square p-value
1 AGT rs2148582 11.144 0.004
1 AGT rs5051 12.809 0.002
1 AGT rs1326886 8.652 0.013
9 UBQLN1 rs2781003 6.305 0.043
9 UBQLN1 rs2780995 6.794 0.033
9 UBQLN1 rs12344615 7.624 0.022
9 UBQLN1 rs11140213 8.023 0.018
10 CDC2 1920 11.509 0.021
10 CDC2 rs2448341 6.269 0.044
10 CDC2 rs2448347 7.161 0.028
10 VR22 rs4463744 11.652 0.003
10 LRRTM3 rs1925617 73.726 <0.001
10 LRRTM3 rs1925622 56.225 <0.001
10 LRRTM3 rs1925632 225.507 <0.001
10 LRRTM3 rs1952060 92.221 <0.001
10 LRRTM3 rs2147886 241.493 <0.001
10 LRRTM3 rs2251000 226.643 <0.001
10 LRRTM3 rs2764807 138.128 < 0.001
10 LRRTM3 rs10762136 119.639 < 0.001
10 VR22 rs11593235 39.889 < 0.001
10 VR22 rs10997591 26.598 < 0.001
10 VR22 rs3096244 23.893 <0.001
10 PLAU rs1916341 6.591 0.037
10 PLAU rs2227566 6.866 0.032
10 PLAU rs4065 7.26 0.027
10 IDE rs1832196 7.803 0.020
10 IDE rs7076966 9.976 0.007
12 GAPD rs7307229 8.618 0.013
12 GAPD rs1060620 15.79 <0.001
12 GAPD rs1060619 14.489 0.001
12 A2MP rs16918212 6.051 0.049
12 A2MP rs17804080 8.722 0.013
15 LIPC rs6083 8.748 0.013
17 ACE rs4646994 6.004 0.050
17 ACE rs4343 8.903 0.012
19 APOE rs440446 91.857 <0.001
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Both the FBAT and the PDT found very strong association (x*>11, p < 0.001) with the
top 5 high-influence markers in LRRTM3 and four flanking markers, plus APOE. The
FBAT found five additional markers in LTA, LRRTM3, PLAU and ACE that showed
marginal association (>4, p<0.05). The PDT found one more LRRTM3-flanking
marker with a very significant association (y>=12.255, df=2, p < 0.001) and three other
markers in CDC2, PLAU and LRP1 that showed marginal association (x*>4.9, p < 0.05).
Table 19 presents results for cluster 2 for all markers with significant scores (p<0.05) on
at least one of the three statistical tests performed (two-pt linkage, FBAT and PDT).

In cluster 2 case-control dataset, the chi-square test of independence found very
strong association (x*>67, p<0.001) with the top 5 high-influence markers in LRRTM3
and four flanking markers, plus APOE. In addition, three other markers in VR22 and
A2MP showed marginal association (y>>7, p<0.05). Table 20 presents chi-square results
for all markers showing significant association (p < 0.05) for the cluster 2 case-control
dataset.

When comparing across the family-based and case-control datasets for cluster 2,
10 markers were found significant (p < 0.05) by the chi-square test in the case-control
dataset and by at least one test (linkage, FBAT or PDT) in the family-based dataset.
These markers include the top 5 high-influence markers in LRRTM3 and four flanking

markers, plus APOE.
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Table 19. Main Effect Analysis Results for Cluster 2 Family-Based Dataset. Significant
results are highlighted in pale (p<0.05) or fluorescent (p<0.01) yellow.

2-Pt Linkage |PDT FBAT
Chrom Gene Marker Max HetLOD |Chi-Square p-value |Chi-Square p-value
1 AGT rs5051 1.7146 0.155 0.694 0.819 0.365
1 AGT rs2148582 1.7798 0.003 0.953 0.38 0.538
6 LTA rs1800629 0 1.573 0.210 4.594 0.032
10 rs10826594 1.0955 0.268 0.605 0.096 0.757
10 rs1319013 1.3621 1.613 0.204 1.747 0.186
10 rs1148247 1.0737 0.109 0.741 1.053 0.305
10 rs6482044 1.3444 0.822 0.365 0.142 0.706
10 rs6593491 1.1512 0.297 0.586 0.985 0.321
10 rs1890739 2.627 0.261 0.610 0.064 0.800
10 rs14327 1.0027 0.43 0.512 0.852 0.356
10 rs10763551 2.3693 0.166 0.684 0.014 0.905
10 CDcC2 rs7919724 0.6497 4.955 0.026 2.602 0.107
10 VR22 rs2126750 1.6167 1.152 0.283 1.716 0.190
10 VR22 rs7074454 1.1114 0.674 0.412 0.557 0.456
10 VR22 rs6480140 1.8565 0.653 0.419 0.01 0.920
10 VR22 rs2441718 3.5833 0.576 0.448 0.041 0.839
10 VR22 rs2939947 1.2757 0.272 0.602 0.573 0.449
10 VR22 rs2456737 1.4679 0.052 0.820 0.17 0.681
10 VR22 rs4746606 1.4457 0.193 0.661 0.081 0.776
10 LRRTM3 rs942780 0.1022 12.255 <0.001 9.648 0.002
10 LRRTM3 rs1925617 3.7431 11.904 0.001 19.368 < 0.001
10 LRRTM3 rs1925622 3.9166 11.062 0.001 18.319 <0.001
10 LRRTM3 rs1925632 8.2935 23.69 <0.001 27.201 <0.001
10 LRRTM3 rs1952060 6.8637 21.041 <0.001 22.93 <0.001
10 LRRTM3 rs2147886 9.664 28.35 <0.001 33.476 <0.001
10 LRRTM3 rs2251000 9.1483 26.098 <0.001 33.166 <0.001
10 LRRTM3 rs2764807 8.4098 21.525 <0.001 29.282 <0.001
10 LRRTM3 rs10762136 8.3662 21.407 <0.001 31.142 <0.001
10 VR22 rs11593235 6.5029 19.458 <0.001 20.156 < 0.001
10 PLAU rs2227568 1 7.042 0.008 7.36 0.007
10 rs4933194 1.0466 0.428 0.513 0.039 0.843
12 LRP1 rs1800154 0 5.141 0.023 2.807 0.094
17 ACE rs4291 0.001 1.373 0.241 4.729 0.030
17 ACE rs4343 0.0855 2.33 0.127 4.077 0.043
19 APOE rs440446 0.5671 36.984 <0.001 25.785 <0.001

108



Table 20. Main Effect Analysis Results for Cluster 2 Case-Control Dataset. Significant

results are highlighted in pale (p<0.05) or fluorescent (p<0.01) yellow.

Pearson's
Chrom Gene Marker Chi-Square p-value
10 LRRTM3 rs1925617 96.408 < 0.001
10 LRRTM3 rs1925622 93.924 <0.001
10 LRRTM3 rs1925632 182.472 < 0.001
10 LRRTM3 rs1952060 134.996 < 0.001
10 LRRTM3 rs2147886 202.584 < 0.001
10 LRRTM3 rs2251000 195.167 <0.001
10 LRRTM3 rs2764807 146.342 < 0.001
10 LRRTM3 rs10762136 101.079 < 0.001
10 VR22 rs11593235 72.618 <0.001
10 VR22 rs10997591 11.588 0.003
12 A2MP rs16918212 7.025 0.030
12 A2MP rs17804080 10.425 0.005
19 APOE rs440446 67.132 <0.001

Detection of Gene-Gene Interactions in Subsets of Data

For each of the three clusters in both the family-based and case-control datasets,
an MDR gene-gene interaction analysis was conducted. APOE and the top 5 high-
influence markers, plus the four flanking markers in linkage disequilibrium with those
top markers, dominated the best MDR models (data not shown). To allow other effects
to be detected over these known effects, these ten markers were excluded and the MDR
analyses were repeated. Tables 21, 23 and 25 present the best MDR models for clusters
0, 1 and 2, respectively. Cross-validation (CV) consistency is provided as the number of
times (out of 5) that the reported best model was the best in the fold, or split, of the data.
The average (across all five cross-validation intervals) of the balanced prediction

accuracy and its corresponding significance level (p-value) is also reported.
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Cluster 0 Results

For cluster 0, in the family-based 1DSP dataset, the best one-locus MDR model
was 154291 in ACE (p = 0.10) and the best two-locus model was rs4291 in ACE and
r$7909676 in VR22 (p = 0.17), which is not in LD (r* £0.01) with any LRRTM3 marker
in the dataset (Table 21). These two models were the only MDR models for cluster 0 that
achieved a prediction accuracy of approximately 55 percent or greater. It is worth noting
that the best one-locus MDR model in the case-control dataset, which had a lower
prediction accuracy of 48.5 (p = 0.86), was also rs4291 in ACE. A statistically
significant full factorial model was fit to the cluster 0 family-based dataset using rs4291
and rs7909676 (y° = 19.264, df=3, p = 0.0002), but the individual parameter estimates
indicate that the significant effect in the model is primarily coming from marker rs 4291
(Table 22). The heterozygote and the A/A homozygote for rs4291 increased risk for

disease by 2.066 (p = 0.0106).

Cluster 1 Results

For cluster 1, in the case-control dataset, the best one-locus model was rs3096244
in VR22 (p = 0.11), which is not in LD (r* < 0.04) with any LRRTM3 marker in the
dataset, and the best two-locus MDR model involved rs3096244 in VR22 and rs4343 in
ACE (p =0.08). Inthe 1DSP family-based dataset, the best two locus model was
r$2255901 in the chromosome 10 ROI and rs 922347 in VR22 (p = 0.13), which is not in
LD with any LRRTM3 marker in the dataset,. These three models were the only MDR
models for cluster 1 that achieved a prediction accuracy of greater than 55 percent (Table

23).
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Table 21. MDR Analysis Results for Cluster 0

Avg Bal
Num Marker Genes Prediction cv
Loci (Markers) Accuracy | p-value| Consist
Case- 1 ACE (rs4291) 4850| 0.86 2
Control
A2MP (rs34362)
2 | pLau (rs1916341) 52.15| 0.34 2
VR22 (rs1786927)
3 IDE (rs1544210) 49.301 0.76 1
AGT (rs5051)
1DSP 1 ACE (rs4291) 56.48] 0.10 4
ACE (rs4291)
2 VR22 (rs7909676) 54.99| 0.17 3
ACE (rs4646994)
3 | OLR1 (rs1050283) 48.62| 0.87 1
VR22 (rs4745886)
AlIDSPs| 1 Chr.10 (rs6482044) 54.37( 0.12 3
OLR1 (rs1050283)
2 | vr22 (rs7909676) 49.42 0.80 1
OLR1 (rs1050283)
3 | cDC2 (rs7919724) 50.54| 0.62 1
AGT (rs2148582)

Table 22. Logistic Regression Results for Cluster 0 Family-Based Data Using Markers
from Significant Two-Locus MDR Model

95% Hazard Ratio
Confidence Limits
Factor X df | p Value | Hazard Lower Upper
Ratio
VR22(rs7909676) | 3.6832 | 1 | 0.0550 1.916 0.986 3.723
ACE(rs4291) 6.5254 | 1 | 0.0106 2.066 1.184 3.606
rs7909676 * 0.3573 | 1 | 0.5500 0.881 0.582 1.335
rs4291

111



Table 23. MDR Analysis Results for Cluster 1

Avg Bal
Num Marker Genes Prediction cv
Loci (Markers) Accuracy | p-value | Consist
Case- 1 | VR22 (rs3096244) 55.74| 0.11 3
Control
VR22 (rs3096244)
2 ACE (rs4343) 56.73] 0.08 2
VR22 (rs3096244)
3 VR22 (rs922347) 53.73] 0.24 2
PZP (rs3213831)
1DSP 1 Chr.10 (rs2255901) 52.61] 0.41 3
Chr.10 (rs2255901)
2 | VR22 (1s922347) 56.29] 0.13 3
ACE (rs4646994)
3 LRP1 (rs1800154) 48.39] 0.86 1
OLR1 (rs1050283)
AlIDSPs| 1 | GAPDS (rs4806173) 52.74] 0.31 4
GAPDS (rs4806173)
2 VR22 (rs7074454) 50.68) 059 2
GAPDS (rs4806173)
3 | VR22 (rs4745886) 50.51| 0.62 1
Chr.10 (rs6482044)

A statistically significant full factorial model was fit to the cluster 1 case-control
dataset using rs3096244 in VR22 and rs4343 in ACE from the best two-locus MDR
model (x> = 20.646, df=3, p < 0.001) (Table 24). Both markers displayed significant
main effects, and the interaction effect, which had the opposite effect on risk, was also
significant (Table 24). At marker rs3096244 in VR22, the heterozygote and T/T
homozygote decreased risk by 0.464, and at marker rs4343 in ACE, the heterozygote and
G/G homozygote decreased risk by 0.425. However, in reference to any genotype
combination that included the A/A homozygote for rs3096244 or the A/A homozygote
for rs4343, those same genotypes when considered together actually increased risk by

1.696.
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Table 24. Logistic Regression Results for Cluster 1 Case-Control Data Using Markers
from Significant Two-Locus MDR Model

95% Odds Ratio

Confidence Limits
Factor x> df p Value Odds Lower Upper
Ratio
VR22(rs3096244) | 14.498 1 < 0.001 0.464 0.309 0.694
ACE(rs4343) 14.363 1 < 0.001 0.425 0.270 0.671
rs3096244 * 9.072 1 0.003 1.696 1.199 2.400
rs4343

Using the two markers included in the best two-locus MDR model for the 1DSP
family-based dataset, logistic regression was used to fit a full factorial model to the data.
However, the full model was not statistically significant (Xz =1.4917, df=3, p > 0.68) ;
nor were any of its factors (data not shown).

It is perhaps worth noting that in the AIIDSPs dataset, rs7074454 and rs4745886
in VR22 were each in the best two- and three-locus MDR models, respectively. These
markers are in linkage disequilibrium with each other in the complete family-based
dataset but are not in LD with the VR22 markers found in the best case-control MDR
models. Marker rs4745886 in VR22 was out of Hardy-Weinberg equilibrium in the
complete family-based dataset. None of these family-based models in cluster 1 achieved

prediction accuracy greater than 55 percent.

Cluster 2 Results
For cluster 2, the best one-locus MDR model in the case-control dataset was
rs10997591 in VR22 (p < 0.04), which is not in LD (r* < 0.12) with any LRRTM3 marker

in the dataset, and the best one-locus MDR model in the 1DSP family-based dataset was
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rs11816558 in the ROI on chromosome 10 (p = 0.08). These two models were the only

MDR models in cluster 2 that achieved a prediction accuracy of greater than 55 percent

(Table 25).
Table 25. MDR Analysis Results for Cluster 2
Avg Bal
Num Marker Genes Prediction cv
Loci (Markers) Accuracy | p-value| Consist
Case- 1 | VR22 (rs10997591) 60.09| 0.04 5
Control
VR22 (rs10997591)
2 CDC2 (1920) 49.49( 0.72 1
VR22 (rs10997591)
3 IDE (rs1544210) 44731 0.98 1
COG2 (rs3789662)
1DSP 1 |[Chr.10 (rs11816558) 59.32] 0.08 5
OLR1 (rs1050283)
2 CDC?2 (1920) 51.60] 0.58 1
OLR1 (rs1050283)
3 ACE (rs4646994) 50.15| 0.73 1
Chr.10 (rs1916341)
AlIDSPs| 1 PZP (rs12230214) 48.03| 0.89 1
ACE (rs4646994)
2 | chrao (rs870801) 51.98) 0.46 1
OLR1 (rs1050283)
3 ACE (rs4646994) 47.30[ 0.93 2
CDC2 (rs1920)

It is worth noting that rs10997591 in VR22 was also present in the best two- and
three-locus MDR models for the case-control dataset, although their corresponding
prediction accuracy was below 50 percent. The marker rs1050283 in OLRI1 appeared in
the best two- and three-locus MDR models for the IDSP dataset and in the best three-

locus MDR model for the AIIDSPs dataset. In addition, the best two-locus MDR models
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in both the case-control and the family-based 1DSP datasets and the best three-locus
model in the family-based AIIDSPs dataset, all included marker 1920 in CDC2. Finally,
the marker rs4646994 in ACE was included in the best three-locus model for the 1DSP

dataset and in the best two- and three-locus models for the AIIDSPs dataset.

Discussion

Simulation studies of the Bayesian Classification method presented in Chapters
IIT and IV were performed using simulated case-control data. The current application of
the clustering method involves both family-based and case-control data. Family-based
data naturally have intrafamily correlations among markers, which may not be relevant to
the disease in question. Large families with particular multilocus genotype patterns may
bias the choice of high influence markers more so than smaller families, leading to
choices that may not generalize to a large family-based dataset or case-control dataset.
No attempt was made to control for such intrafamily correlations directly. However, our
decision to perform multiple rounds of clustering, choosing only those markers common
to both datasets, may have averted some of this potential bias. It is encouraging that, at
least in this particular application, the same five markers were selected in both the
family-based and case-control datasets as being the highest influence markers.

Another issue created by family-based data involves the way in which the
clustered affected individuals are recombined with the set of unaffected individuals.
Since the main effect analysis methods for family-based data use pedigree information
and leverage family structure and intrafamily correlation, any splitting of families

threatens to reduce the informativeness of such families and to subsequently reduce the
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power of the analyses. For this reason, it might have been ideal to have all affected
individuals from a family always be clustered together, thereby avoiding any disruption
of family structure. However, there was no way to implement such constraints within the
existing (closed source) clustering software, and as it turned out, the clustering method
did not choose to cluster together all individuals of the same family. Thus, the power of
main effect analyses on family-based cluster subsets was likely reduced to some degree.

The power of our analyses on the cluster subsets may also have been lowered (in
comparison to the complete datasets) because the number of affected subjects in each
subset is only a fraction of what is present in the complete dataset. Since clustering is
performed only on the affected individuals in the dataset, for the purpose of subset
analysis, the resulting clusters of affected individuals are recombined with the full set of
unaffected individuals. Therefore, this also means that the data in most of the subsets is
substantially unbalanced. The complete case-control dataset was already somewhat
unbalanced, with a ratio of cases to controls of 0.65. Thus, the ratios in the cluster
subsets for the case-control data were even more unbalanced—0.31, 0.22 and 0.11—for
clusters 0, 1 and 2, respectively. The complete family-based dataset was unbalanced but
in the opposite direction, with a ratio of cases to controls of 1.91. Thus, the ratios in the
cluster subsets for the family-based data were not as badly affected as those in the case-
control dataset—0.90, 0.65, 0.35—for clusters 0, 1 and 2, respectively.

Another difference between our simulation studies and the current application is
that the simulation studies used markers which had no linkage disequilibrium (LD) with
each other, while the current application involved markers with considerable LD,

comprising multiple haplotype blocks. The clustering method chose to focus on a set of
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markers in LRRTM3 that were in high LD with each other to cluster affected subjects
into more homogeneous subsets. The fact that the Bayesian Classification method
essentially used (a readily discoverable) haplotype block to cluster the datasets may not
be a particularly interesting result. Afterall, one could have used the results from the
linkage disequilibrium analysis directly to choose haplotype blocks upon which to stratify
the data, although the choice among haplotype blocks would have been arbitrary.
Perhaps the fact that the clustering method could have found other multilocus genotype
patterns but did not means that there were no other interesting patterns to be found.
Alternatively, it is possible that there were other multi-locus genotype patterns in the
datasets but that these patterns simply were not as strong or as consistent as those in the
haplotype block of LRRTM3 and hence were not chosen to highly influence cluster
assignment. One could try to select tag SNPs prior to clustering, with the goal of
reducing the strength or dominance of such LD in the dataset, thereby allowing other
weaker, perhaps more interesting, multilocus genotype patterns to be selected for use in
clustering the dataset. However, initial attempts at implementing this approach on the
current datasets indicate that the process of choosing the tag SNPs would be iterative,
adhoc and somewhat arbitrary—in short, not at all a straight-forward solution to the
situation. Additionally, eliminating markers by choosing tag SNPs could also dilute any
multilocus genotype effects that are present, which the clustering method could have used
to stratify the data.

Regardless of whether the clustering method’s use of a haplotype block is novel
or interesting, the question remains as to whether stratification or clustering based in this

specific dataset using this particular LD block in LRRTM3 is meaningful. It is, indeed,
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possible that there are main effects and/or interactions among other genes that are only
present on certain LRRTM3 haplotype backgrounds. It is also possible that there are
direct or indirect interactions between LRRTM3 and these other genes and that clustering
on the LRRTM3 haplotype block allows those effects to be detected. It is also possible
that the pertinent interactions involve VR22, which is the larger gene in whose intron
LRRTM3 resides. Ultimately, whether these results are meaningful will be determined
by whether the statistical results reported here can be replicated, and, more importantly,
whether functional molecular studies can demonstrate the biological plausibility of such
interactions.

VR22 or CTNNA3 (catenin, alpha 3; MIM#607667) is a binding partner of beta-
catenin (Janssens et al., 2001), which interacts with presenilin 1. Presenilin 1 interacts
with the gamma-secretase involved in processing the amyloid precursor protein (APP),
and its mutations have been associated with increased levels of amyloid beta 42 (Citron et
al., 1997; Duff et al., 1996; Qian et al., 1998), the primary component of senile plaques
found in Alzheimer disease.

Leucine-rich containing proteins, like LRRTM3, are involved in protein-protein
interactions, and the family of leucine-rich repeat transmembrane proteins (LRRTMs) are
involved in many cellular events during nervous system development and disease
(Lauren et al., 2003). Of particular relevance to Alzheimer disease pathology, LRRTM3
is highly expressed in the adult mouse hippocampus, in the granular layer of the dentate
gyrus (Lauren et al., 2003). Tau-mediated neurodegeneration in this area is thought to

play a role in Alzheimer disease progression (Shahani et al., 2006).
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Recent evidence is mounting in support of an alternative hypothesis for
Alzheimer disease pathology, which implicates cell cycle reactivation as a key early
event that precedes and possibly is causally related to tau and APP phosphorylation and
apoptotic cell death (Andorfer et al., 2005; McPhie et al., 2003; Yang et al., 2006).
Amyloid precursor protein has been purported to regulate activation of neuronal cell
cycle proteins (McPhie et al., 2003); therefore, hypothetically, mutations in VR22 could
indirectly affect cell cycle activation, through interactions with APP (by way of beta-
catenin and presenilin 1). Additionally, since LRRTM3 is thought to be involved in
neuronal development in some of the key areas that are later targets of neuronal cell death
in Alzheimer disease, perhaps LRRTM3 is being re-activated in some way that facilitates
the cell cycle re-entry of neurons. Thus, it would be interesting to learn whether VR22
and/or LRRTM3 are differentially expressed in the brains of AD patients versus controls.

For every cluster, the main effect and interaction subset analyses showed
LRRTM3 markers exhibiting strong effects. This is an expected result since almost all
(affected) individuals in a cluster had the same genotypes at those markers and in
comparison to the unaffecteds in the datasets, it would appear that those genotypes were
associated with disease status. Likewise, flanking or nearby markers in LRRTM3 and the
larger gene, VR22, within which LRRTM3 resides, might demonstrate effects that could
be attributed to the LRRTM3 haplotype block effect. Table 26 shows the NCBI map
locations of all genotyped markers in the VR22 and LRRTM3 genes, along with their
HetLOD scores in the complete family-based dataset and its three clusters. Figure 35
shows a plot of these HetLOD scores starting with the most distal markers that achieved a

HetLOD of at least 2.
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Looking across all the main effect and interaction analyses, there are a few genes
for each cluster that deserve further investigation in relation to their LRRTM3 haplotype
(Table 14). In some cases where there are two or more markers in LD with each other, in
the case-control dataset, one of the markers is significant but in the family-based dataset,
the other one is. This can be a simple case of sampling differences, since the two datasets
are independent samples drawn from different populations and by chance the distribution
of alleles or genotypes between affecteds and unaffecteds can be different between those

samples at any given marker.

Complete Dataset Discussion

The preliminary analysis of the complete family-based and case-control datasets
found three markers that were significant in both the case-control and family-based
datasets—VR22 markers rs2441718 and rs2456737 and APOE marker rs440446.
LRRTM3 marker rs1925617 was significant in the case-control dataset and was in LD
with three other LRRTM3 markers—i1s1925622, rs1925632 and rs2764807—which were
significant in the family-based dataset by their PDT chi-square statistics. None of the
MDR interaction analyses that excluded the known effect of APOE produced significant
models.

Many of the markers that were found significant by at least one main effect
statistical test in either the complete case-control or complete family-based datasets were

also significant in the analysis of specific subsets produced by the Bayesian Classification
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Table 26. Chromosomal Location and Linkage Analysis Results for Markers in VR22
and LRRTM3. Highlighted markers were the top five high-influence markers used in the
final cluster analysis.

HetLOD in Family- Based Dataset
Chrom Gene Marker Location (kb) |[Complete Cluster 0 Cluster 1 Cluster 2
10 VR22 4783 67,209 0.000 0.900 0.962 0.241
10 VR22 rs1786927 67,352 0.000 1.438 0.338 0.110
10 VR22 rs2126750 67,508 0.036 1.945 1.400 1.617
10 VR22 rs4745886 67,530 0.768 4.702 1.867 0.913
10 VR22 rs7911820 67,534 0.165 4.084 0.490 0.711
10 VR22 rs7070570 67,535 1.366 2.533 3.147 0.241
10 VR22 rs7074454 67,535 0.643 4,952 0.777 1.111
10 VR22 rs10822719 67,535 0.008 0.816 0.380 0.600
10 VR22 rs6480140 67,539 0.000 1.125 0.384 1.857
10 VR22 rs922347 67,653 0.119 1.619 4.590 0.468
10 VR22 rs4463744 67,778 0.551 1.754 2.149 0.413
10 VR22 rs2441718 67,807 1.407 4.043 2.185 3.583
10 VR22 rs2939947 67,808 0.560 3.942 3.634 1.276
10 VR22 rs2456737 67,825 1.038 1.174 3.256 1.468
10 VR22 rs4746606 68,061 0.201 1.251 1.445 1.446
10 VR22 rs7909676 68,105 1.068 3.129 1.772 0.510
10 LRRTM3 rs1001016 68,347 0.000 1.090 0.336 0.000
10 LRRTM3 rs12769870 68,347 0.000 1.843 2.668 0.933
10 LRRTM3 rs1925583 68,350 0.001 0.824 2.681 0.856
10 LRRTM3 rs2394314 68,350 0.015 1.607 2.864 0.852
10 LRRTM3 rs1925577 68,358 0.079 2.224 2.338 0.986
10 LRRTM3 rs10762122 68,386 0.001 0.864 0.820 0.249
10 LRRTM3 rs942780 68,407 0.000 1.880 0.692 0.102
10 LRRTMS3 rs1925617 68,435 0.343 11.194 8.205 3.743
10 LRRTM3 rs1925622 68,440 0.302 11.222 9.346 3.917
10 LRRTM3 rs1925632 68,470 0.140 20.293 14.638 8.294
10 LRRTM3 rs1952060 68,473 0.260 12.638 7.820 6.864
10 LRRTM3 rs2147886 68,489 0.066 20.147 16.724 9.664
10 LRRTM3 rs2251000 68,495 0.073 20.409 15.459 9.148
10 LRRTM3 rs2764807 68,499 0.097 13.093 10.721 8.410
10 LRRTM3 rs10762136 68,514 0.492 10.254 10.226 8.366
10 VR22 rs11593235 68,546 0.636 4.803 5.976 6.503
10 VR22 rs10997591 68,672 0.379 2.552 2.550 0.394
10 VR22 rs7903421 68,952 0.000 0.697 0.136 0.812
10 VR22 rs3096244 69,080 0.000 2.521 1.421 0.671
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analysis. However, there was not complete consistency across the clusters, and some
markers were not significant in any of the subsequent main effect analyses of the cluster
subsets. Tables 27 and 28 indicate which of the markers initially found significant in the
complete datasets were also found significant in one or more of the cluster subsets. Eight
markers were found significant across all three clusters as well as in their respective
complete dataset—APOE marker rs440446, two markers from VR22 (rs2441718 and
1s2456737), four markers from LRRTM3 (rs1925617, rs1925622, rs1925632 and
1s2764807) and one marker from PLAU (rs2227568). Interestingly, the effect of APOE
was less in each of the cluster subsets than it was in the complete datasets, perhaps
simply due to smaller sample sizes and more unbalanced data. In contrast, the VR22,
LRRTM3 and PLAU marker effects were all enhanced in the cluster subsets. Since the
clusters were produced basically by stratifying on an LRRTM3 haplotype block, it is not
surprising that the VR22 and LRRTM3 marker effects are strengthened.

The PLAU marker rs2227568 is approximately 6.26 Mb away from the nearest
genotyped VR22 marker and it exhibits no LD (r*=0) with any of the VR22 or LRRTM3
markers. Therefore, it is unlikely that the consistency of the PLAU marker’s results can
be attributed to the LRRTM3 effect. PLAU (urokinase-type plasminogen activator;
MIM#5328) converts plasminogen to plasmin, and plasmin is involved in the processing
of the amyloid precursor protein and in the degradation of amyloid-beta (Finckh et al.,
2003). The PLAU marker rs2227564 is a C/T missense polymorphism that has been
associated with plasma amyloid-beta-42 levels and with LOAD in a German sample
(Finckh et al., 2003) and in a United States Caucasian sample (Ertekin-Taner et al.,

2005). However, at least two subsequent studies have failed to replicate these results—in
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Table 27. Cluster Subset Results for Markers Found Significant in Complete Family-
Based Dataset (HetLOD > 1, or FBAT or PDT p < 0.05). Marks in a cluster column
indicate that the marker was found significant by at least one main effect family-based
test (linkage, FBAT or PDT) in that cluster subset.

Cluster
Chrom | Gene Marker 0 1 2
1 AGT rs5051 X

10 VR22 rs7070570 X X

10 VR22 rs2441718 X X X

10 VR22 rs2456737 X X X

10 VR22 rs7909676 X X

10 LRRTM3 rs1925622 X X X

10 LRRTM3 rs1925632 X X X

10 LRRTM3 rs2764807 X X X

10 PLAU rs2227568 X X X

10 PLAU rs4065 X X

10 rs4933194 X

12 A2M rs3832852 X

12 A2MP rs34362

12 LRP1 rs1800154 X X

12 LRP1 rs9669595 X

12 LRP1 rs7956957 X

17 ACE rs4291 X X

17 ACE rs4295 X

17 ACE rs4646994 X

17 ACE rs4343 X X

17 ACE rs4353 X

17 ACE rs4978 X X

19 APOE rs440446 X X X

Table 28. Cluster Subset Results for Markers Found Significant in Complete Case-
Control Dataset. Marks in a cluster column indicate that the marker was found
significant by at least one main effect family-based test (linkage, FBAT or PDT) in that

cluster subset.

Cluster

Chrom | Gene Marker 0 1 2

10 CDC2 rs2448347 X

10 VR22 rs1786927

10 VR22 rs2441718

10 VR22 rs2456737

10 LRRTM3 rs942780

10 LRRTM3 rs1925617 X X X

12 GAPD rs1060621

19 APOE rs440446 X X X
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an Italian sample (Bagnoli et al., 2005) and in a Scottish and Swedish sample (Blomqvist

et al., 2004).

Cluster 0 Discussion

For cluster 0, three genes (PLAU, IDE and ACE) showed interesting results for
main effect and/or interaction analyses. In PLAU, the marker rs2227568 was significant
according to both its two-point HetLOD score and its Pearson chi-square statistic. The
PLAU markers rs2227564 and rs2227566, which are in LD with the former marker, were
also significant by their HetLOD scores.

IDE (insulin degrading enzyme; MIM#146680) is a metallopeptidase that can
degrade peptides such as amyloid beta and may be responsible for the removal of
extracellular amyloid beta (Selkoe, 2001) and the clearance of the cytoplasmic fragment
of amyloid precursor protein following liberation of the amyloid-beta protein (Edbauer et
al., 2002). In IDE, the marker rs7099761 was significant by its HetLOD score and its
Pearson chi-square statistic. The IDE marker rs1544210, which is in LD with the former
marker, was also significant by its Pearson chi-square statistic.

Perhaps the most interesting results were for the ACE gene. ACE (angiotensin 1
converting enzyme; MIM#106180) has been shown to inhibit the aggregation of amyloid
beta by degrading amyloid beta 40 into less toxic products (Hu et al., 1999; Hu et al.,
2001). The marker rs4291 was significant by its PDT, FBAT and Pearson chi-square
statistics and appeared in the best one- and two-locus MDR models for the IDSP family-
based dataset. This two-locus MDR model was confirmed by logistic regression to be

largely a main effect of rs4291. Five other ACE markers—is4295, rs4311, rs4646994,
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rs4343 and rs4978—which were all in LD with the former marker and/or each other,

were also significant by their PDT and FBAT statistics.

Cluster 1 Discussion

For cluster 1, four genes (PLAU, IDE, CDC2 and ACE) showed interesting
results for main effect and/or interaction analyses. In PLAU, markers rs1916341,
152227566 and rs4065, which are in LD with each other, were all significant by their
HetLOD scores and Pearson chi-square statistics. In IDE, marker rs1832186 was
significant by its FBAT, PDT and Pearson chi-square statistics. In addition, IDE markers
152251101 and rs4646954, which are in LD with rs1832186, were also significant by
their FBAT and PDT chi-square statistics.

CDC2 (cell division cycle 2; MIM#116940) is a kinase involved in the abnormal
phosphorylation of tau and the aggregation of tau into paired helical filaments (Pei et al.,
2006), which are present in the neurofibrillary tangles of Alzheimer disease. In CDC2,
markers 152448347 and 1920 were significant by their HetLOD scores and their Pearson
chi-square statistics. Another CDC2 marker, rs2448341, which is in LD with rs2448347,
was also significant by its Pearson chi-square statistics and its PDT chi-square statistic.

Finally, in ACE, markers rs4646994 and rs4343, which are in LD with each other,
were significant by their Pearson chi-square statistics, and rs4343 appeared in the best
two-locus MDR model in the case-control dataset, which was confirmed by logistic
regression to have both a main and interactive effect involving rs4343. In addition, ACE
markers rs4353 and rs4978, which are in LD with rs4646994, were found significant by

their PDT chi-square statistics.
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Cluster 2 Discussion

In cluster 2, there were no genes, other than the expected LRRTM3, VR22 and
APOE, which showed evidence for association in both the case-control and family-based
datasets. This subset was the smallest and most unbalanced from each of the case-control
and family-based clusters, and it is possible that its overall size and/or the extent of the
imbalance between affecteds and unaffecteds made these analyses too underpowered to
detect an effect, if it were there. It is also possible that no interactions exist with the

cluster 2 LRRTM3 haplotype and the other markers included in the datasets.

Other Discussion

No discussion about a large data analysis project such as this would be complete
without mention of the multiple-testing problem. As one increases the number of tests
performed, the likelihood of generating false positive results also increases, beyond the
per-comparison significance level (alpha) established at the beginning of the study.
There are a number of different strategies for correcting for this inflation of the false
positive rate. However, most are quite conservative, and in light of the fact that the
current study is exploratory in nature, such caution at the expense of power would be
imprudent. For example, if we were to use a simple Bonferoni correction (Dunn OJ,
1961), we would have to divide our per-comparison alpha by the total number of markers
being tested (93 for the case-control dataset and 138 for the family-based dataset),
resulting in a family-wise alpha of about 0.0005. In the overall datasets, only APOE
marker rs440446 would have been considered statistically significant, and in the cluster

subsets, only a few other LRRTM3 markers would have reached significance also. A
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more liberal correction strategy such as False Discovery Rate could be employed instead
(Benjamini and Hochberg, 1995; Storey, 2002). However, since our predominant goal is
to not miss any real effects, which we could subsequently investigate further, even a
slightly more liberal correction strategy is not desired. In addition, since we know there
is considerable LD among our markers, the assumption that all the tests are independent
is not valid. We would, in fact, expect that two markers in LD with each other would
frequently produce similar results, in excess of how often two independent markers
should do so. Furthermore, since all of the markers tested were chosen because they are
functional and/or positional candidates for late-onset Alzheimer disease, the likelihood
that a positive result is true is higher than it would be if the markers were chosen at
random, for example in the case of a genomic screen. Finally and perhaps most
importantly, it should be noted that we have tested two independent datasets, which serve
as one test and one replication dataset, and are focusing only on those effects that were
found significant (at the per-comparison level of 0.05) in both datasets. Thus, we have

further reduced the chance that such a statistically significant result is a false positive.
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CHAPTER VI

CONCLUSIONS AND FUTURE DIRECTIONS

Summary, Conclusions and Future Studies

Common diseases with a genetic basis are likely to have a very complex etiology,
in which the mapping between genotype and phenotype is far from straightforward. A
new comprehensive statistical and computational strategy for identifying the missing link
between genotype and phenotype has been proposed. Numerous examples of
heterogeneity and gene-gene or gene-environment interactions support the theoretical
basis for such an approach, which emphasizes the need to address heterogeneity in the
first stage of any analysis (Chapter II). Uncovering any heterogeneity that may exist in a
dataset removes a formidable source of noise, affording main effect and interaction
analysis methods the best opportunity to detect effects that may be present only on
particular genetic backgrounds or in individuals with particular environmental
exposure(s).

It is a reality that currently a majority of genetic studies, particularly those
involving neurological diseases, do not have substantial phenotypic data available, even
though the quality and volume of genotypic data may be excellent. Many factors,
including cost, feasibility (invasiveness), and technical limitations (reliability and
interpretation) of phenotyping technologies, make the collection of rich phenotypic data
more challenging. Given the lack of methods for dissecting heterogeneity that do not rely

on substantial phenotypic data, a comparison of three ‘unsupervised’ clustering methods
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was conducted (Chapter III). Bayesian Classification was chosen as the best of these
methods, which allow detection of multilocus genotype patterns that may underlie or be a
proxy for genetic or trait heterogeneity. It performed very well under a simple genetic
model of trait heterogeneity, and it had very good control of its false positive rate and
acceptably low false negative rates under specific simulation conditions.

Since it is unknown how complex the genetic models in real data are, a further
evaluation was conducted of Bayesian Classification’s performance and applicability
under a wider range of simulation conditions was performed (Chapter IV). False positive
rates were well-controlled under all conditions simulated. However, false negative rates
varied dramatically between conditions. Under the specific condition of having a
relatively high number of nonfunctional loci (100) and a moderate sample size (500
affected individuals), the false negative rates were unacceptably high (at or above 60
percent). However, for all other conditions, the false negative rates were at or below 20
percent, with most below five percent (at an alpha of ten percent). The other number of
nonfunctional loci tested was an order of magnitude lower (10), and the other value for
sample size was double (1000). Thus, further simulation studies exploring the
“breakpoint” or slope of the false negative rates between the two extremes of the current
simulation conditions may further aid in interpretation of negative results. For example,
there may be a critical ratio of independent variables (genotypes) to instances
(individuals) above 5 affecteds per marker genotyped that must be maintained in order to
keep false negative rates under control, and this would be an important to know when

designing a study or interpreting results from a Bayesian Classification analysis.
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The application to late-onset Alzheimer disease presented in Chapter V involves a
family-based dataset with 138 markers genotyped and 1422 affected individuals (yielding
a ratio of over 10 affecteds per marker genotyped) and a case-control dataset with 93
markers genotyped and 451 affected individuals (yielding a ratio of just under 5 affecteds
per marker genotyped). Thus, based on the simulation studies, the case-control dataset
may have been underpowered to allow detection of heterogeneity by the Bayesian
Classification method. However, this concern was perhaps mitigated by taking a
consensus approach, looking for commonality of high-influence markers between the two
datasets.

Bayesian Classification found statistically significant clusterings for both the
family-based and case-control datasets, which used the same five markers as their most
influential in determining cluster assignment. These markers were all in LRRTM3 and
were in high linkage disequilibrium with each other. Each of the three resulting clusters
could be characterized by their haplotypes at these five markers, and the same haplotypes
defined the clusters in both the family-based and case-control data. In subsequent
analyses to detect main effects and gene-gene interactions, markers in four genes—
PLAU, IDE, CDC2 and ACE—were found to be associated with late-onset Alzheimer
disease in particular subsets of the data based on their LRRTM3 haplotype. While all of
these genes are viable candidates for LOAD based on their known biological function,
further studies are needed to replicate these statistical findings and to elucidate possible

biological interaction mechanisms between LRRTM3 and these genes.
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Future Directions for Research

Molecular biologists and geneticists alike now acknowledge that the most
common human diseases with a genetic component are likely to have complex etiologies.
Similarly, there has been increasing appreciation for the phenotypic complexity of
disease traits and for the need to collect rich phenotypic data to facilitate the elucidation
of the even more complex relationships between genotypes and phenotypes. Investigation
of such complexity requires well-informed study design, meticulous data collection and
innovative strategies for data analysis.

Over the past twenty years, advances in genotyping technology have far outpaced
those in statistical and computational methods for analyzing genetic data. Likewise,
geneticists have given much less attention to phenotyping technologies. To most
effectively leverage the massive amounts of genotypic data being produced, we must
have comparably rich datasets of phenotypic information available for mapping
genotypes to phenotypes. Thus, going forward, genetic studies will need to increasingly
focus time and resources to collecting phenotypic data that can refine definitions or
subcategories of traits or diseases and can serve as endophenotypes, which are more
likely to have simple etiologies and to directly map to specific genetic markers.

In the case of neurological diseases, one collection of phenotyping technologies
which has matured considerably over the past five to ten years is neuroimaging.
Magnetic resonance imaging (MRI) and positron emission tomography (PET) have been
used successfully to detect signs of disease, sometimes in advance of clinical symptoms,
in such neurological diseases as Alzheimer disease (Masters et al., 2006; Small et al.,

2000) schizophrenia (Ho et al., 2003; Velakoulis et al., 2006) and Tourette syndrome
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(Gerard and Peterson, 2003). The more recently developed diffusion tensor imaging
(DTI) method might come even closer to measuring a biologically relevant proxy for
neuronal dysfunction, and it has already been applied to such neurological diseases as
Alzheimer disease (Nierenberg et al., 2005), schizophrenia (Buchsbaum et al., 2006) and
Turner syndrome (Holzapfel et al., 2006). Neuroimaging methods are minimally
invasive and can produce data with good spatial or temporal resolution. Voxel-based
morphometry methods are being developed and applied for associating differences in
activation of particular brain regions with genetic markers of disease.

In addition to these neuroimaging technologies, an emphasis on possible
biological mechanisms of disease has positively influenced the design of behavioral
assessment tools, increasing their utility for phenotyping and producing endophenotypes
that can be mapped to genotypic data. Overall, careful planning of study designs will be
essential, making best use of existing resources and keeping in mind what statistical and
computational analyses will be possible based on the types of data to be collected. Future
genetic studies of neurological diseases will require collaboration among geneticists,
behavioral neuroscientists and neuroimaging experts, particularly in the short-term.
Methodologies enabling the integration of disparate data sources (genotyping and
neuroimaging or behavioral) must be investigated in order to harness the power inherit in

their complexity.
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