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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

        During the span of a structure’s service life, conditions such as wear, overload, 

environmental degradation, and natural disasters may accelerate the degradation of the 

material and the structure. Structural health monitoring (SHM) is a vital tool to ensure that 

the structure is reliable within the design life, and also to potentially extend the service life 

beyond the designed life (Naus, 2009). SHM techniques can be either data-driven or model-

based. In both cases, the data is often obtained using non-destructive evaluation (NDE) 

techniques, which can be divided into active and passive techniques. Examples of active 

NDE techniques are electromagnetic testing (ET) (Nagy, 2016) and ultrasonic guided wave 

testing (UGWT) (Yan et al., 2010). Examples of passive NDE techniques are acoustic 

emission (Nair and Cai, 2010), digital image correlation (DIC) (Roux et al., 2009), fiber-

optic sensing (FOS) (Lopez-Higuera et al., 2011). Some other NDE techniques can be used 

in either active or passive modes, such as infrared thermography (IR) (Bagavathiappan et al., 

2013). From the data type point of view, these monitoring techniques acquire either wave 

signals (ET, UGWT, AE), or images (DIC, IR). Data acquisition and analysis are crucial 

elements in structural health monitoring. 
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        Structural health monitoring (SHM) aims to track the health state of a mechanical 

system, detect and diagnose any damage, and perform prognosis of future states (Balageas 

et al., 2006). Uncertainty occurs in all stages of SHM. In addition, due to modern 

advancements in sensor technology and increased capabilities for data collection and storage, 

the amount of acquired data is growing, which gradually increases the demands on data 

acquisition and analysis techniques. For example, 26 sensor arrays were used on the Vincent 

Thomas Bridge (VTB) in San Pedro, California generate 3 terabytes (TB) per year 

(Kallinikidou et al., 2013); in the health monitoring of wind turbine blades, over 300 GB of 

acoustic emission data were sampled during 6 months (Anastasopoulos et al., 2012); 7 GB 

of data were sampled per day in the Confederation Bridge Monitoring Project in Canada 

(Desjardins et al., 2006); and over 20 GB of data were obtained during automated railway 

inspection in the city of Brockton, MA (Zhang et al., 2014). All these applications call for 

the introduction of big data analytics into structural health monitoring. Mahadevan et al. 

(2014) pointed out the need for big data analytics as one of the four elements in an effective 

prognostics and health management framework for concrete structures. The big data issue 

mainly affects two elements in structural health monitoring: data acquisition and data 

analytics. For data acquisition, data synchronization is a critical problem to solve, especially 

in a wireless sensor network. Several researchers such as Araujo et al. (2012), Gandhi et al. 

(2007), and Yu (2012) have studied this problem. 

        Structural health monitoring involves several activities, namely, diagnosis with 

available data, design of experiments to facilitate effective diagnosis, and prognosis of future 

state given the inference on the current state. Although big data techniques are growing in 

number, effective big data analytics techniques in support of the above activities are yet to 
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be developed. 

        For big data analytics in SHM diagnosis, Farrah et al. (2015) proposed an approach to 

analyze large scale wireless sensor network data. In this research, MapReduce was used to 

create the data tables and Hadoop was adopted to parallelize the detection method. Similar 

research has been done by parallelizing the time series analyses in Hadoop (Yu & Lin, 2015), 

and parallelizing the neural networks (NN)-based inference via MapReduce (Tran, 2015) in 

order to accomplish structural damage detection. However, big data analytics in the context 

of a Bayesian approach to SHM has not been reported. Therefore in this dissertation, the 

MapReduce technique will be investigated to parallelize particle filtering (PF) (Chatzi & 

Smyth, 2013), an effective Bayesian updating algorithm used in damage diagnosis and 

prognosis. 

        Big data analytics in damage prognosis is another challenge for SHM, and a few 

attempts to apply MapReduce framework for this purpose have been reported. The 

application of Hadoop in real-time bridge health monitoring was discussed by Roshandeh et 

al. (2014), who proposed a layered big data and a real-time decision-making framework for 

bridge data management as well as health monitoring. However, only a rough procedure was 

presented, and no uncertainties were incorporated. Similarly a framework for flood 

prediction has been studied by Kezia & Mary (2016). Challenges for reliability analysis in 

the context of big data were discussed by Meeker and Hong (2013); some applications were 

reviewed where field reliability data were used. This paper also explored opportunities to 

use modern reliability data in order to develop stronger statistical methods to operate and 

predict the performance of systems in the field. However, the focus was mainly on cost-
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effective usage of System Operation/Environmental (or SOE) data.  

        The above review shows that research has not yet been reported towards risk prognosis 

of existing structures, in the context of big data. Risk estimation requires the quantification 

of uncertainty arising from multiple sources – sensors, data analytics, and system models. 

Therefore this dissertation utilizes big data techniques to analyze voluminous SHM data for 

damage diagnosis, and to quantify the uncertainty in diagnosis and prognosis. Prognosis is 

realized using a damage growth model coupled with FEA, and remaining useful life (RUL) 

is predicted. 

        Field data is sometimes available in SHM, which can be used to update the model 

parameters for system identification (Park et al., 2006). Traditionally, data at only a few 

locations are used in system identification. Compressive sensing is used to minimize the 

number of points at which the field is measured (Di Ianni et al., 2015). This approach loses 

significant amount of information and reduces the accuracy of diagnosis. Ideally, the use of 

full field data is preferable, however, due to the expensiveness of computation, this hasn’t 

been implemented and applied in SHM. This dissertation will explore this potential of 

efficient usage of high volume field data for diagnosis. 

        Uncertainty quantification methods require repeated evaluation of numerical models, 

which is often computationally expensive. One approach to overcome this challenge is to 

replace the original physics-based model with an inexpensive, efficient surrogate model. 

There are different surrogate modeling techniques, which can be divided into two types: 

response surrogate and distribution surrogate. A response surrogate aims to provide the 
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output value for a given set of inputs as opposed to a distribution surrogate, which provides 

a distribution output for a given set of inputs. In other words, the distribution surrogate is 

constructed in the probability space whereas the response surrogate is constructed in the 

variable space. In this dissertation, one response surrogate model (Gaussian process 

surrogate model) and one distribution surrogate model (Gaussian mixture model) are used to 

illustrate the proposed methods. 

1.2 Research Objectives 

        The first objective investigates techniques to perform diagnosis with large volume field 

data. Image processing techniques (such as uniform filtering and Sobel filtering) are used to 

analyze infrared thermal images, from which damage inside the structure can be detected. 

To handle the costly computation, big data techniques are employed to parallelize the 

computation. The methodology is illustrated through the detection of damage in a concrete 

slab, based on actual experimental data with induced damage. 

        The second objective investigates techniques to parallelize structural diagnosis and 

prognosis with uncertainty quantification. Both forward and inverse problems in uncertainty 

quantification are investigated with this efficient computational approach. We use Bayesian 

methods for the inverse problem of diagnosis, and parallelize sampling techniques such as 

Markov chain Monte Carlo simulation and particle filter. To predict damage growth and the 

structure’s remaining useful life (forward problem), Monte Carlo simulation is used to 

propagate the uncertainties (both aleatory and epistemic) to the future state. The big data 

technique MapReduce is applied to drive the parallelization of multiple FEA runs, thus 
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greatly saving the computational cost. The proposed techniques are illustrated for the 

efficient diagnosis and prognosis of alkali-silica reaction in a concrete structure. 

        The third objective investigates big data analytics for high-dimensional model 

parameter calibration, in order to facilitate accurate prognosis. When the number of 

calibration parameters is large, and the volume of computer simulation and observation data 

are also large, it brings significant challenges to both surrogate modeling and the associated 

Bayesian calibration. These challenges are addressed through three types of parallelization 

using the MapReduce technique. The first type of parallelization is pursued to efficiently 

collect simulation data at the training points for surrogate modeling. Next, the surrogate 

model training is parallelized using MapReduce. In the third step, parallelization of Markov 

Chain Monte Carlo (MCMC) technique is studied to efficiently perform Bayesian calibration 

in the presence of high-volume observation data. The proposed framework is implemented 

on the Spark platform. In addition to the parallelization of surrogate model training and 

Bayesian calibration, the singular value decomposition method is also employed to reduce 

the computational effort due to the high-volume data. The calibration of the thermal 

conductivity of concrete with field temperature observed from infrared thermography (IR) is 

used to demonstrate the proposed method.  

        The fourth objective investigates big data analytics in distribution surrogate modeling. 

In this objective, the training of a Gaussian mixture model (GMM) is parallelized via 

MapReduce. This provides the ability to efficiently build a high-dimensional surrogate 

model in the context of big data, which gives an analytical solution. This methodology will 

be illustrated by a mathematical example, as well as a thermal conductivity calibration 
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example for a heterogeneous material. 

1.3 Organization of the Dissertation 

        The subsequent chapters of this dissertation will be devoted to the objectives mentioned 

above. 

        Chapter 2 provides an introduction to the tools and methods needed for big data 

analytics in structural health monitoring. Structural health monitoring methods are reviewed 

first, and followed by big data techniques used for paralleling the computation. With respect 

to structural health monitoring, methods for data processing, diagnosis, and prognosis are 

introduced. Two surrogate modeling techniques (Gaussian process surrogate model and 

Gaussian mixture model) are reviewed. Among the big data techniques, MapReduce and 

Spark are explained.  

        Chapter 3 discusses the parallelization of data processing in structural health 

monitoring. Data processing is mainly used for diagnosis; here we focus on thermal image 

processing to draw inference about structural damage. However, the parallelization of 

thermal image processing can be easily generalized to other types of SHM data. 

        Chapter 4 extends the methodology in Chapter 3 to other steps in structural health 

monitoring, namely diagnosis (inverse problem) and prognosis (forward problem). 

Compared to Chapter 4, the diagnosis of structural damage status in Chapter 3 is 

deterministic, while the methodology developed in Chapter 4 includes uncertainty 
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quantification.  

        Chapter 5 focuses on handling the model updating step for structural health prognosis, 

in the context of high-dimensional parameter space and large volume of data. By applying 

the methodology in this chapter, heterogeneous model parameters can be calibrated. This can 

reduce the spatial uncertainty in the model parameters, compared to considering 

homogeneous model parameters. 

        Chapter 6 addresses the distribution surrogate parallelization via MapReduce, which 

can help to build a full-size surrogate model, with high-dimensional inputs and outputs. 

Compared to the response surrogate used in Chapters 4 and 5, a distribution surrogate model 

can give an analytical solution, which makes model calibration or updating very fast. The 

parallelized distribution surrogate is implemented for the calibration of heterogeneous 

material properties. 

        Chapter 7 concludes the dissertation with a summary of accomplishments and directions 

for future research. 
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CHAPTER 2 

BACKGROUND CONCEPTS AND METHODS 

 

        This chapter presents basic concepts and methods in structural health monitoring and 

big data analytics related to this study. First, we review the main steps of structural health 

monitoring, and focus particularly on image processing. Next, uncertainty quantification in 

structural diagnosis is reviewed, including the Bayesian approach and associated sampling 

methods such Markov chain Monte Carlo (MCMC) and Particle Filter (PF). The propagation 

of various uncertainty sources through the damage prognosis model to quantify the 

uncertainty in prognosis is reviewed next. In structural diagnosis and prognosis, repeated 

evaluation of physics-based numerical model (e.g., finite element model) is often required, 

which is expensive. Therefore surrogate modeling techniques are reviewed, which are 

applied in this dissertation. Since the goal of this study is to alleviate the computational 

burden in the above steps through big data techniques, the concept of MapReduce and its 

implementation in Spark are introduced. All the parallelization methods proposed in the 

subsequent chapters are realized in Spark using MapReduce. 

2.1 Structural Health Monitoring 

        The purpose of structural health monitoring is to detect and diagnose damage in the 

structure, such that we can analyze future risk, predict the remaining useful life, and guide 

maintenance/repair actions if needed. In the context of damage diagnosis (Farrar et al., 2001), 
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a four-step procedure is described: (1) Operational evaluation, (2) Data acquisition and 

cleansing, (3) Feature selection, and (4) Statistical model development. Operational 

evaluation defines what is to be monitored and how the monitoring process is to be 

implemented. Data acquisition and cleansing defines what data will be sampled and 

processed, and how the data will be sampled (i.e., in what frequency, how long it will be 

recorded, and how it will be preprocessed). The feature selection step defines the features 

that will be selected and the statistical distributions of the features. In the statistical model 

development step, the model is developed to detect the damage, predict remaining useful 

life, and quantify the uncertainty. 

2.2 Image Processing 

        Digital image is one type of data format acquired in several SHM techniques, such as 

digital image correlation (DIC) and infra-red thermography. Damage is detected, located and 

quantified by comparing the image of the damaged structure against that for the intact 

structure, using image processing techniques. The general procedure described in (Baxes, 

1994) is shown in Figure 2.1.  

 

Figure 2.1 General procedure for image processing 

        After obtaining the raw image, preprocessing techniques (e.g. cropping, baseline 

removal and noise reduction) can be applied to prepare for edge detection, which can lead to 
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damage detection. Noise reduction and edge detection are computationally expensive, and 

can benefit from the application of big data techniques. 

2.3 Uncertainty Quantification of Structural Diagnosis 

        Various sources of uncertainty such as physical variability, data uncertainty, and model 

uncertainty affect structural diagnosis. The model inputs and parameters are physically 

variable in nature. System responses are measured through sensors, and the data may be 

noisy. Further, the sensors themselves may be damaged and wrongly imply deviation of 

system response from nominal behavior; the health monitoring system must distinguish such 

a scenario from the deviation caused due to actual damage in the system. These are the 

different aspects of data uncertainty. The models used for diagnosis are not accurate and are 

affected by model form assumptions and solution approximations. These different sources 

of uncertainty lead to uncertainty in the detection, localization, and quantification of damage. 

Therefore, the quantification of uncertainty in damage diagnosis is an essential step to guide 

decision making with respect to operations, maintenance, and risk management.  

        Classical statistics-based approaches for uncertainty quantification in damage diagnosis 

are limited with respect to data fusion, therefore this chapter uses a Bayesian approach for 

this purpose, which provides an efficient framework for updating the statistics as more data 

becomes available. Sankararaman and Mahadevan (2013) developed a Bayesian approach 

for uncertainty quantification in each of the three steps in damage or fault diagnosis, namely, 

detection, localization and quantification. Consider the estimation of uncertainty in damage 

quantification as an example. Bayesian updating is a statistical inference technique in which 
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Bayes’ theorem is used to update the probability of a hypothesis as more information 

becomes available. Using Bayes’ rule, the parameter updating process in structural diagnosis 

can be expressed as: 

𝑓"(𝑞|𝑦) =
𝐿(𝑦,𝑞)𝑓′(𝑞|𝑦)

∫𝐿(𝑦,𝑞)𝑓′(𝑞|𝑦)𝑑𝑞
                                                    (2.1) 

In Eq. (2.1), 𝑞 is the true damage value, 𝑦 is the detected damage. 𝐿(𝑦, 𝑞) is the likelihood 

function of 𝑞, and is proportional to 𝑃(𝑦| 𝑞), where 𝑃(⋅) means the probability density 

function. 𝑓′(𝑞|𝑦) is the prior density function and represents the knowledge about 𝑞, while  

𝑓"(𝑞|𝑦) denotes the posterior probabilities when observations are available. Note that this is 

also the computation involved in Bayesian model calibration (i.e., estimation of model 

parameters based on available input-output data), which is often an important step in 

uncertainty quantification activities. 

        Often the construction of the posterior probability density function (PDF) is not 

analytically possible, thus sampling-based methods such as Monte Carlo Macro Chain 

(MCMC) and particle filter (PF) are commonly used to overcome this challenge. This chapter 

considers both techniques and discusses the methodology for fast computation later. The two 

techniques are briefly summarized below. 

2.3.1 Markov Chain Monte Carlo Sampling 

        In Bayesian inference, where the objective is to compute the posterior distribution, 

MCMC sampling can be used to draw samples from the posterior distribution of a parameter 
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of interest, and these samples can be used in conjunction with the kernel density estimation 

procedure to construct the posterior distribution. There are several popular MCMC 

algorithms, such as the Metropolis algorithm (Metropolis et al. 1953), Gibbs sampling 

(Roberts and Rosenthal 2006), and slice sampling (Neal 2003). We choose Metropolis 

algorithm in this dissertation as an example. 

        Assume that a function that is proportional to the PDF is readily available, as 𝑓(𝑥). For 

the purpose of illustration, consider the one-dimensional case, i.e. 𝑥 ∈ 𝑅. The following steps 

constitute the algorithm in order to generate samples from the underlying PDF. Note that, 

the function 𝑓(𝑥) is always evaluated at two points and only the ratio is considered; the 

unknown proportionality constant is therefore cancelled. 

Step 1. Set  and select a starting value  such that 𝑓(𝑥0) ≠ 0. 

Step 2. Initialize the list of samples 𝑋 = 𝑥0. 

Step 3. Repeat the following steps; each repetition yields a sample from the underlying PDF. 

(a) Select a prospective candidate from the proposal density 𝑞(𝑥∗|𝑥𝑖). The probability 

of accepting this sample is equal to 
𝑓(𝑥∗)

𝑓(𝑥𝑖)
. 

(b) Calculate acceptance ratio 𝛼 = min (𝑞,
𝑓(𝑥∗)

𝑓(𝑥𝑖)
). 

(c) Select a random number 𝑢, uniformly distributed on [0, 1]. 

(d) If 𝑢 < 𝛼, then set 𝑥𝑖+1 = 𝑥∗, otherwise set 𝑥𝑖+1 = 𝑥𝑖. 

(e) Augment the list of samples in 𝑋 by 𝑥𝑖+1. 

(f) Increment 𝑖, i.e. 𝑖 = 𝑖 + 1. 

        The Metropolis algorithm assumes that the proposal density is symmetric (to ensure the 
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state transition is reversible), i.e.𝑞(𝑥∗|𝑥𝑖) = 𝑞(𝑥𝑖|𝑥
∗), and a usual choice is to let 𝑞(𝑥∗|𝑥𝑖) 

be a Gaussian distribution centered at 𝑥𝑖. After the Markov chain converges, the samples in 

𝑋 can be used to construct the posterior PDF of 𝑋 using kernel density estimation. The 

common practice is to generate hundreds of thousands of samples and discard the first few 

thousand samples to ensure that the samples considered for the posterior distribution are only 

those after the Markov chain has converged. 

2.3.2 Particle Filter 

        Particle Filter, also known as Sequential Monte Carlo (SMC), is a method used for 

approximating the posterior distribution of the quantity of interest. The key idea is to 

represent the required posterior density function by a set of random samples (particles) with 

associated weights, and to compute the estimates based on these samples and weights. Let 

𝑿0:𝑘𝑖
, 𝑖 = 0,⋯ ,𝑁 be particles with associated weights 𝑾𝑘

𝑖 , 𝑖 = 0,⋯ , 𝑁, where 𝑁 is the 

number of particles, and 𝑘 is the state index. The posterior density at time 𝑡𝑘 can be expressed 

as: 

𝜋(𝑥0:𝑘|𝑧1:𝑘) ≈ ∑ 𝑤𝑘
𝑖 𝛿(𝑥0:𝑘 − 𝑥0:𝑘

𝑖 )𝑁
𝑖=1                                  (2.2) 

The main steps are summarized below (Orlande et al. 2011): 

Step 1. For 𝑖 = 1,⋯ ,𝑁 draw new particles 𝑥𝑘
𝑖  from the prior density 𝜋(𝑥𝑘|𝑥𝑘−1

𝑖 ) and then 

use the likelihood density to calculate the correspondent weights 𝑤𝑖
𝑘 = 𝜋(𝑧𝑘|𝑥𝑘

𝑖 ). 

Step 2. Calculate the total weight 𝑇𝑤 = ∑ 𝑤𝑘
𝑖𝑁

𝑖=1  and then normalize the particle weights. 

Step 3. Resample the particles as follows: 
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Step 3.1. Construct the cumulative sum of weights (CSW) by computing 𝑐𝑖 =

𝑐𝑖−1 + 𝑤𝑘
𝑖  for 𝑖 = 1,⋯ ,𝑁, with 𝑐0 = 0. 

Step 3.2. Let 𝑖 = 1 and draw a starting point 𝑢1 from the uniform distribution 

𝑈[0,𝑁−1]. 

Step 3.3. For 𝑗 = 1,⋯ , 𝑁 

(a) Move along the CSW by making 𝑢𝑗 = 𝑢𝑖 + 𝑁−1(𝑗 − 1). 

(b) While 𝑢𝑗 > 𝑐𝑖, make 𝑖 = 𝑖 + 1. 

(c) Assign samples 𝑥𝑘
𝑗
= 𝑥𝑘

𝑖  . 

(d) Assign weights 𝑤𝑘
𝑗
= 𝑁−1. 

        Compared to MCMC, PF does not have the two disadvantages as: 1, correlated samples 

which could be solved via thinning (pick one sample for every k samples); and 2, necessary 

burn-in period (dropping first m samples) at the beginning. Both of those two problems lead 

to a waste of samples in MCMC. Furthermore, PF has several other advantages such as: 1, 

scaled well to high dimensional problem; 2, more efficient compared to MCMC; and 3, 

easier to implement. On the other hand, there are drawbacks, and the most important one is 

the problem of lacking of diversity, in other words, once a state loses particles, it cannot 

regain them without motion. Techniques such as Rao-Blackwellization (Doucet et al. 2000) 

can help to fix this issue. 

2.4 Uncertainty Quantification for Structural Prognosis 

        Similar to diagnosis, structural prognosis (forward problem) is also affected by both 

aleatory and epistemic uncertainty sources. Due to insufficient information, epistemic 
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uncertainty may arise about the exact values of deterministic model inputs or the distribution 

characteristics of stochastic model inputs. Another type of epistemic uncertainty is model 

uncertainty. Model uncertainty represents the inability of the model to accurately represent 

the true physical behavior of the system. Uncertainty due to a model may be due to three 

sources: (1) lack of knowledge about the precise values of model parameters, due to limited 

data; (2) numerical solution errors that arise from the methodology adopted in solving the 

model equations; and (3) model form errors, which arise due to assumptions and 

simplifications made in the development of the models. Calibration, verification and 

validation are the activities that can be used to quantify the three sources of uncertainty. A 

Bayesian approach for the aggregation of various uncertainty sources as well as the 

aggregation of results of model calibration, verification and validation towards uncertainty 

quantification in the system response prediction was developed by Sankararaman and 

Mahadevan (2015), and was further extended to reliability analysis by Nannapaneni and 

Mahadevan (2016). 

        Consider a generic prognosis model 𝑌 = 𝐺(𝑿), which is used to represent the 

degradation of an engineering system. The input is a vector and hence denoted in bold as 𝑿, 

whereas the output 𝑌 is a scalar. The model 𝐺 is deterministic, i.e. for a given realization of 

𝑿, there is a corresponding output, which is a realization of 𝑌. The inputs 𝑿 are uncertain, 

and this leads to uncertainty in the output 𝑌. A generic realization of 𝑿 is denoted as 𝒙, and 

a generic realization of 𝑌 is denoted as 𝑦. The goal in uncertainty propagation is to propagate 

the input uncertainty through 𝐺, in order to the calculate the CDF 𝐹𝑌(𝑦). The CDF of 𝑌 can 

be calculated as: 
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𝐹𝑌(𝑦) = ∫ 𝑓𝑿(𝒙)𝑑𝒙
𝐺(𝑥)<𝑦

                                            (2.3) 

where 𝑓𝑿(𝒙) is the probability distribution of 𝑿. The PDF can be calculated by differentiating 

the CDF, as: 

𝑓𝑌(𝑦) =
𝑑𝐹𝑌(𝑦)

𝑑𝑦
                                                   (2.4) 

        Note that prognosis and reliability analysis have similar types of computation, namely 

uncertainty propagation. The distinction between the two is that prognosis is for a particular 

structure, thus its properties are unique; whereas in the case of reliability analysis we also 

need to consider variability across multiple realizations of the structural properties (model 

parameters). In both types of computation, if there is statistical uncertainty regarding the 

distribution parameters of the input random variables, this creates a family of distributions 

for the input and therefore the output. On the other hand, model errors can be included in the 

uncertainty propagation as additive error terms, quantified using calibration, verification and 

validation activities and represented using probability distributions. The aggregation of 

various types of uncertainty in the uncertainty propagation analysis is effectively done 

through Monte Carlo simulation. However, Monte Carlo simulation is expensive, thus the 

next section explores the use of MapReduce to parallelize the uncertainty propagation in the 

forward problem. Nannapaneni and Mahadevan (2016) also explored a FORM-based 

strategy for faster computation, but found it to be of limited use in the presence of 

nonlinearities and uncertainty regarding correlations. 

2.5 Surrogate Modeling 

        As mentioned in Sec. 1.1, there are two types of surrogate models: response surrogate 



 

18  

and distribution surrogate. Response surrogate modeling techniques have been extensively 

investigated in the literature, such as polynomial chaos expansion (Ghanem & Spanos, 

1990), polynomial response surface (Rajashekhar & Ellingwood, 1993), support vector 

regression (Boser et al., 1992), relevance vector regression (Tipping, 2001), and Gaussian 

process (GP) interpolation (Rasmussen, 2006; Santner et al. 2013; Bichon et al., 2008). On 

the other hand, Bayesian network (Jensen, 1996; Heckerman, 1998) is a general form of 

distribution surrogate, while there are some approximations such as multivariate Gaussian 

(Rose and Smith, 1996), Gaussian copula (Nelsen, 1999; Liang and Mahadevan, 2016) and 

Gaussian mixture model (Reynolds, 2015). All three approximate distribution surrogate 

models give fast, analytical solutions; among these, the Gaussian mixture model is the most 

accurate but also takes much longer time to train. In this dissertation, one response surrogate 

model (Gaussian process) and one distribution surrogate model (Gaussian mixture) are used, 

which are discussed in detail below.  

2.5.1 Gaussian Process Surrogate Model 

        Since Bayesian updating requires repeated runs of computer model, an inexpensive 

surrogate model is often used in this analysis instead of the original model to reduce the 

computational cost. Many types of surrogate modeling techniques are available; Gaussian 

process surrogate model is chosen in this section for this the purpose of illustration 

(Rasmussen 2006). 

        A Gaussian process is specified by its mean function and covariance function and is a 

generalization of the multivariate normal distribution. We define the mean function m(x) and 
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the covariance function 𝐾(𝑥, 𝑥′) of a random process 𝑓(𝑥) as 𝑚(𝑥) = 𝐸[𝑓(𝑥)] and 

𝐾[(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′))] respectively. The process 𝑓(𝑥) can then be denoted as 

𝑓(𝑥)~ 𝐺𝑃(𝑚(𝑥), 𝐾(𝑥, 𝑥′)). In prediction, the joint distribution of the training outputs 𝑦𝑇 

and the prediction 𝑦𝑃 is: 

[
𝑦𝑇

𝑦𝑃
] ~ ([

𝑚𝑇

𝑚𝑃
] , [

𝑘𝑇𝑇 𝑘𝑇𝑃

𝑘𝑃𝑇 𝑘𝑃𝑃
])                                            (2.5) 

where 𝑇 indicates training and 𝑃 indicates prediction. The prediction conditioned on the 

training points follows a Gaussian distribution 𝑦𝑃 |𝑦𝑇 ∼ 𝑁(𝑚, 𝑆), in which, 𝑚 =

𝐾𝑃𝑇𝐾𝑇𝑇
−1𝑦𝑇, and 𝑆 = 𝐾𝑃𝑃 − 𝐾𝑇𝑇

−1𝐾𝑃𝑇
𝑇 . 

        A number of common functions can be used as kernels to construct the covariance 

matrices. As an example, the commonly used squared exponential function is used here: 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜎2𝑒−
1

2
(
𝑥𝑖−𝑥𝑗

𝑙
)
2

                                    (2.6) 

in which 𝑙 is the length scale (which controls the correlation decay with distance) and 𝜎2 is 

the magnitude of variance. Based on the training data, these parameters can be estimated by 

the maximum-likelihood estimation (MLE) method. 

2.5.2 Gaussian Mixture Model  

        The Gaussian mixture model (Bishop, 2006) is a simple linear combination of Gaussian 

components, which can provide a richer class of density models than a single Gaussian. The 
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Gaussian mixture distribution can be written as 

𝑝(𝒙) = ∑ 𝜋𝑘𝑁(𝒙|𝝁𝑘, 𝚺𝑘)
𝐾
𝑘=1                                            (2.7) 

The weights and parameters of the component distributions can be obtained by maximizing 

the likelihood. However, likelihood maximization requires the derivatives of the likelihood 

function with respect to all the unknown values, the parameters and the latent variables, and 

simultaneously solving the resulting equations. In statistical models with a large number of 

unknown variables such as GMM, this is usually impossible. Expectation-Maximization 

(EM) is a powerful algorithm for finding maximum likelihood solutions (Dempster et al., 

1977; McLachlan & Krishnan, 1997). The main steps of EM for GMM are listed below 

(Bishop, 2006): 

Step 1. Initialize the means 𝝁𝑘, covariance 𝚺𝑘 and mixing coefficients 𝜋𝑘, and evaluate the 

initial value of the log likelihood. 

Step 2. E-step. Evaluate the posterior distributions using the current parameter values 

𝛾(𝑧𝑛,𝑘) =
𝜋𝑘𝒩(𝒙𝑛|𝝁𝑘,𝚺𝑘)

∑ 𝜋𝑗𝒩(𝒙𝑛|𝝁𝑗,𝚺𝑗)
𝐾
𝑗=1

                                       (2.8) 

Step 3. M-step. Re-estimate the parameters using the current posterior 

𝝁𝑘
𝑛𝑒𝑤 =

1

𝑁𝑘
∑ 𝛾(𝑧𝑛,𝑘)𝒙𝑛

𝑁
𝑛=1                                      (2.9) 

𝚺𝑘
𝑛𝑒𝑤 =

1

𝑁𝑘
∑ 𝛾(𝑧𝑛,𝑘)(𝒙𝑛 − 𝝁𝑘

𝑛𝑒𝑤)(𝒙𝑛 − 𝝁𝑘
𝑛𝑒𝑤)𝑇 𝑁

𝑛=1                (2.10) 

𝝅𝑘
𝑛𝑒𝑤 =

𝑁𝑘

𝑁
                                                    (2.11) 

where  

𝑁𝑘 = ∑ 𝛾(𝑧𝑛,𝑘)
𝑁
𝑛=1                                           (2.12) 
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Step 4. Evaluate the log likelihood 

ln 𝑝(𝑋|𝝁, 𝚺, 𝝅) = ∑ 𝑙𝑛{∑ 𝜋𝑘𝑁(𝑥𝑛|𝜇𝑘, Σ𝑘)
𝐾
𝑘=1 }𝑁

𝑛=1                      (2.13) 

and check for convergence of either the parameters or the log likelihood. If the convergence 

criterion is not satisfied, return to step 2. An example threshold for the difference of the log 

likelihood between this step and last step could be 1 × 10−3.  

2.6 Big Data Analytics 

        There are two different directions to pursue in solving the big data problem. First, when 

the data is too large to process, in order to reduce the computational cost, it may sometimes 

be desirable to compress the data before processing. Data compressed into feature vectors 

can help to reduce the dimension of data, by exploiting statistical redundancy of the raw data 

(Sohn et al., 2001). Additionally, another kind of reduction can be achieved via reducing the 

data size using samples of the data, known as compressive sensing. One example is the 

compressive sampling of accelerometer signals (Bao et al., 2010). While it seems to be a 

reasonable way to handle the voluminous data, one of the issues in data compression is the 

reduced accuracy of the detection, which sometimes leads to the low quality of the structural 

health monitoring, resulting in unreliable decision making. 

        In contrast to data compression, the second option, namely parallel and distributed 

computing offer alternatives to reduce the time cost of data analytics, without causing any 

precision loss. Parallel computing is more tightly connected to multi-threading, or how to 

make full use of a single CPU; Distributed computing refers to the notion of divide and 

conquer, executing subtasks on different machines and then merging the results. 
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Theoretically, distributed computing is much more powerful, since more memory and CPU 

resources (from the cluster) are available, although the bandwidth among the connected 

computers can sometimes become the main limitation. Message Passing Interface (MPI) is 

one of the most popular distributed computing methods used for a long time, and applications 

can be found in structural health monitoring (Kiepert & Loo, 2012, Chakraborty et al., 2009). 

MPI’s goals are high performance, scalability, and portability. Another conceptually similar 

approach in the context of big data is MapReduce. Utilizing a cluster of nodes, MapReduce 

performs two essential functions – it assigns work to various nodes within the cluster, and 

then organizes and reduces the results from each node into a cohesive answer to a query 

(Dean & Ghemawat, 2008). 

        Although the main purpose of both MPI and MapReduce is to improve the efficiency 

via parallelization, there are several differences between them. First, MPI is designed to 

handle large amounts of data exchange between computers, while MapReduce focuses on 

embarrassingly parallel implementation (no much information exchange among computers). 

Second, MPI is appropriate for iterative algorithms that are computationally expensive, 

whereas MapReduce is fit for the case where the expense is mainly caused by the data itself. 

Third, although MPI can also be built to be scalable and fault tolerant, it needs much effort 

to ensure the performance and reliability of such a system, MapReduce on the other hand, is 

created to be easily scalable and fault-tolerant. A detailed discussion about the relationship 

between MPI and MapReduce can be found in (Chen et al., 2011).     

2.6.1 MapReduce framework 
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        MapReduce is a framework designed for processing large datasets, by utilizing multiple 

nodes (machines) for the computations. It takes key/value pairs as inputs and generates other 

key/value pairs as outputs. As mentioned earlier, the MapReduce framework can be split into 

two steps: map and reduce, both of which are created by the user. Before applying the 

MapReduce model, the user will need to write the input as the key/value pair. The key/value 

pair (k1, v1) will then be input to the map function, which will generate the intermediate 

key/value pairs (k2, v2). Then the intermediate key/value pairs are passed to the reduce 

function, which merges together these values to form a smaller set of values. This process 

allows to handle lists with high memory requirements and is displayed in Fig. 2.2. 

 

Figure 2.2 MapReduce process to handle lists 

        A cluster of computers (nodes) are used to implement this framework (Figure 2.3). One 

of them is the master node and the others are slave nodes. As shown in Figure 2.3, the master 

node talks to the user program, and assigns the tasks to the slave nodes (workers). First, the 

input files are parsed and split into smaller pieces (size 16MB to 64MB). The master will 

select the idle workers and assign each a map task or reduce task. Then each worker will do 

its own task and when all tasks are completed, the output files will be collected and 

synthesized by the master node. 

map(k1, v1) − > list(k2, v2) 

reduce(k2, list(v2)) − > list(v3) 
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Figure 2.3 MapReduce execution overview 

2.6.2 Spark 

        While there are different implementations of MapReduce, Apache Spark (Zaharia et al. 

2012) is the one chosen in this study. Spark is an open source cluster computing framework. 

APIs (Application Program Interface) for Java, Scala and Python are available, which is 

convenient for non-computer science programmers. Beside the basic capability of using the 

MapReduce methodology, Spark employs Resilient Distributed Datasets (RDD) that enable 

efficient data reuse in a broad range of applications. Furthermore, in contrast to other 

systems, Spark applies coarse-grained transformations (e.g., map, filter and join) to allow for 

the fault-tolerance feature. In contrast with fine-grained transformation, the coarse-grained 

transformation is applied on the entire dataset, instead of on a single data point. Instead of 

storing the actual data, the logging of the transformation can ensure that there is enough 
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information to redo the operation if an RDD is lost. Due to the adoption of RDD, iterations 

in the computational algorithm do not need to repeatedly execute the reading and writing 

operations on the file system; this greatly reduces the computational cost in iterative 

algorithms (Fig. 2.4). 

 

Figure 2.4 RDD in Spark 
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CHAPTER 3 

BIG DATA ANALYTICS IN DATA PROCESSING 

 

3.1 Structure, Sensors and Data Acquisition 

        When numerous images (Gigabytes or Terabytes of data) are collected in structural 

health monitoring, the data is too large and a traditional data processing framework (storage, 

processing and manipulating) is not feasible; therefore a big data analytics framework needs 

to be employed. The methodology to apply the big data technique in health monitoring will 

be developed in detail in this section. Structural health monitoring systems have the 

following elements: structure, sensors, data acquisition system, data transfer and storage 

mechanisms, data processing, and data manipulation. Each element’s relation to big data are 

discussed below. A large volume of data can be caused by the size of the structure being 

monitored, or by the number of sensors. The structure gives the scope, and the sensors give 

the resolution. 

        In SHM, the engineering structure is the target to be monitored and regarding which the 

decision needs to be made (whether to use, maintain, repair or retire the structure based on 

the diagnosis result). For example, suppose instead of the piers of the bridge to be monitored, 

the health of the whole bridge (deck, load-carrying elements, piers, and foundations) is being 

evaluated, with the processing ability of big data. In this case, the resolution is not changing, 
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but the data volume is greatly enlarged. 

        As mentioned earlier, another cause of big data in SHM is resolution. Similar to the 

monitoring scope, the number of sensors can be increased with the data processing ability 

provided by the big data techniques. With more sensors used in monitoring, more 

information will be available for analysis.  

        In the monitoring process, data will be generated by sensors, and then interpreted and 

transferred to the data processing computer, via data acquisition system (DAQ). The 

sampling rate is controlled by the DAQ device, which directly affects the resolution and data 

size. After acquired by the DAQ device, the data is stored in the computer (either a laptop or 

a desktop) connected with the DAQ device. The next step is to transfer the data to the cluster. 

For the Linux or Mac operating system, the command for data uploading is ‘scp’. The syntax 

of ‘scp’ is given in Fig. 3.1. 

    

Figure 3.1 Scp syntax for data uploading 

        In Fig. 3.1, the syntax /local/user/path/to/foo indicates the local folder, while 

user@your.server.example.com:/cluster/path/to/foo indicates the target folder in the cluster, 

and -r implies recursive copying of the files in the folder. ‘foo’ is commonly used as a 

placeholder name. When the operating system for the client computer is Windows, a similar 

scp -r /local/path/to/foo 

user@your.server.example.com: /cluster/path/to/foo 
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command can be used after installing WinSCP or PuTTY. The transferring speed is limited 

by the devices on both ends, and by the bandwidth of the connection between the client and 

cluster. 

        Normally the MapReduce application is automatically paired with the corresponding 

file system, such as Hadoop with HDFS (Hadoop Distributed File System), Amazon EMR 

with Amazon S3, and Windows Azure and WASB (Windows Azure Storage Blobs). 

However, the user can also choose a different file system other than the default paired one, 

when it is more applicable to do so. For example, here we use Spark, paired with GPFS 

(General Parallel File System). Additionally, the distributed file system will divide the large 

data file into blocks (normally 64 𝑀𝐵 to 128 𝑀𝐵, and normally the user is allowed to change 

the block size in the actual application of MapReduce). 

3.2 Data Processing 

        As reviewed previously, there might be different data formats to be processed in 

structural health monitoring. Here we consider thermal image processing as an example. The 

common procedure for processing digital images is: cropping, baseline removal, noise 

cancellation and feature extraction. Each image is composed by pixels (Fig. 3.10 for 

example), where each pixel represents the temperature of the location. 

3.2.1 Baseline Removal 

        Baseline removal subtracts pixel values by the corresponding pixel from an image of 
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the control group. It happens when the control group is available. This can enhance signal 

characteristics for diagnosis.  

3.2.2 Cropping 

        The cropping is realized by only storing and plotting the corresponding part of the target 

structure we analyze. Compared with the raw image, the temperature contour of cropped 

image is zoomed in (Fig. 3.11). Normally since in the observation procedure, of the locations 

of the structure and camera do not change, the cropping pixel range for all the images is the 

same. 

3.2.3 Noise Cancellation 

        Uniform filtering is used for the purpose of noise cancellation. The basic idea is to 

average each pixel by the value of adjacent pixels. Notice that uniform filtering is different 

from simple moving average (SMA), in that uniform filter is doing averaging by putting the 

target point in the center while SMA is doing biased averaging. Mathematically, the uniform 

filtering process is basically a 2D convolution operation. To illustrate the convolution 

operation, the 1D convolution operator formula is defined in Eq. (3.1), in which 𝑓 is the 

uniform kernel, and 𝑔 is the image matrix to be operated on. The kernel can be of different 

sizes, and Fig. 3.2 shows how a kernel with size 3 × 3 works on a 5 × 5 target matrix. To 

perform convolution, first align the center element of the kernel matrix with the element on 

the target matrix, and then sum up the multiplication between all aligned element-pair. For 

example, the convolution on the element (1, 1) is 7.67, as is shown in Fig. 3.2. Move the 
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kernel along x and y axis until convolution of all elements are carried out. Refer (Jain et al., 

1995) for detailed implementation. After the uniform filtering, the image is smoothed, i.e., 

more continuous everywhere (Fig. 3.12). 

                    (3.1) 

 

Figure 3.2 Uniform filtering example 

3.2.4 Feature Extraction 

        The Sobel filter method (Jain et al., 1995) is used here for the feature extraction, based 

on the image obtained after uniform filtering. The other edge detection algorithms such as 

Canny, Prewitt, Robert, Laplacian and Laplacian of Gaussian filters were tried and found 
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that Sobel filtering performed best in our problem. The selection of algorithm would be 

problem-dependent and any desired algorithm can be plugged in the big data analytics 

framework in the same way as Sobel filter.  

        The basic idea behind Sobel filter is similar to the uniform filter, which is also a 2D 

convolution operation, where the only difference is the filter kernel. Similar to the uniform 

filter, Sobel filter can also be performed with different sizes. The difference is that for 

uniform filtering, there is only one kernel, which is a 𝑛 × 𝑛 matrix filled with the value 1/𝑛2. 

For Sobel filtering, the filters for 𝑥 and 𝑦 directions can be different (Fig. 3.3). Additionally, 

the kernel can be split into the product of two 1D kernels, for averaging and differencing in 

two directions (Fig. 3.4). To differentiate the damaged area, gradient ranges in both 𝑥 and 𝑦 

directions are needed, and thresholds is applied to detect the edges of damages. 

          

(a)                                              (b) 

Figure 3.3 Sobel filter kernels: (a) kernel for x direction, and (b) kernel for y direction 

 

Figure 3.4 Split of Sobel filter kernel (x direction) into averaging and differencing 
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3.2.5 MapReduce for Data Processing 

        The basic idea of the application of data processing in MapReduce is to divide the files 

into different partitions (each partition contains multiple files), and then perform the mapping 

and reducing operations separately. To fully use the resources, the number of partitions is 

always greater than the number of instances (i.e. cores, of which each node might contain a 

multiple). For example, if the number of files to be analyzed is 100, and the number of cores 

available is 20, the number of partitions should be at least 20. Otherwise some of the cores 

will be idle. 

        In structural health monitoring, the data is normally sampled as separate files (images 

or signals). For each image and signal, a separate processed result is obtained, without 

combination (Fig. 3.6). In that case, the Reduce function is omitted, and only the Map 

function remains. All the data processing functions on the assigned files are combined within 

a single Map function. The Map function is defined by the user, in which the reading, 

processing, and writing functions are all included, as shown by the pseudocode below: 

 

Figure 3.5 Pseudocode of MapReduce implementation for data processing 

Pseudocode 3.1: 
Map(x): 
     function InputData = ReadData(x) 
     function OutputData = Processing(InputData) 
     function WriteData(OutputData) 
     return (x, 0) 
SparkContext(appName=”myApp”).parallelize(Filelist, 
N).map(mapper).count() 
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        The pseudocode in Fig. 3.5 has two steps. First, a Map function is defined (mapper), 

within which all the actual data processing functions are defined (reading, filtering, writing). 

The argument 𝑥 is the file to be analyzed, which is assigned by the task manager. As 

discussed previously, since there is only the Map function, the input file can be mapped with 

any value (here we mapped 𝑥 to 0). The reason it can be any value is here we only use the 

Map function to trigger the parallelization, without caring for the output of the Map function. 

The second step, SparkContext, represents the connection to the cluster, which is the main 

class in Spark; parallelize is the method to split the input files into 𝑁 partitions; and ‘map’ is 

the method to call the Map function defined in the first step and to pass the input file to it. 

The count method is used to count the number of outputs. The number of outputs is not of 

interest, since the result has already been obtained in the Map function. However, it is needed 

since the transformations (parallelize, map) only created the RDD instance, which needs 

some actions to execute it. 

 

Figure 3.6 Schematic description of the MapReduce process for data processing 

        After the cluster finishes all the tasks, the results are stored in the designated directory 
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defined in the ‘WriteData’ function. Then the next step is to retrieve the data files from the 

cluster to the local computer, since normally it is not convenient to visualize the data 

remotely on the cluster. To transfer data back from the cluster, the user can use the ‘scp’ 

command similar to the one used for transferring the data to the cluster. 

        Operations for image processing (cropping, uniform filtering, and Sobel filtering) need 

to be applied on all the images, with all parameters (cropping range, uniform filtering kernel 

size, and Sobel filtering gradient cutoff) remaining unchanged. As defined earlier, the 

reading, writing and processing functions are all included within the Map function. There 

are three sub-functions: ‘Cropping’, ‘UniformFilter’ and ‘SobelFilter’. 

        Several remarks about the processing function are in order. First, the input data is no 

longer a key/value pair but is an actual image (pixel matrix). Second, the sub functions inside 

will be sequentially executed, since the outputs of each sub function will be fed into the next 

sub function as inputs. Third, the sub functions (‘Cropping’, ‘UniformFilter’, and 

‘SobelFilter’) can be replaced easily with other functions according to the actual data 

processing task. 

        In summary, the steps for the big data analytics of image processing in structural health 

monitoring are: (1) upload the acquired data from the local computer to clusters; (2) prepare 

the image processing functions, and substitute into the Map function shown in Fig. 3.5; and 

(3) run Spark to process and retrieve the data files from the cluster back to the local computer. 
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3.3 Numerical Example 

        This example illustrates the basic application of big data analytics in structural health 

monitoring. The purpose of the monitoring in this example is to detect holes drilled into a 

15.5 𝑖𝑛 × 15.5 𝑖𝑛 × 2 𝑖𝑛 concrete slab (Fig. 3.7) using infrared thermography imaging. 

Holes of  5/8 𝑖𝑛 , 1/2 𝑖𝑛, and 5/16 𝑖𝑛 diameter (all of them are 4.45 𝑖𝑛 deep) were drilled 

into the side of the concrete slab, as shown in Fig. 3.8. The holes are required to be detected 

by the monitoring technique in this example.  

        Since the focus of this example is the application of big data technique to structural 

diagnosis, we use the holes only to illustrate this capability. In this case, the ground truth is 

known, which facilitates performance evaluation of the monitoring technique. In realistic 

situations, concrete damage could be of many types (physical, chemical, and mechanical), 

due to various causes such as freeze-thaw, chloride penetration, alkali-silica reaction etc. 

Temperature, humidity, and the properties of the concrete constituents (cement, aggregates, 

reinforcing steel, water content, and chemical admixtures) play a crucial role in the evolution 

of various types of damage. Damage in concrete eventually manifests as cracks, 

delamination, spalling etc., and the edge detection approach illustrated here could be applied 

to different situations. 
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Figure 3.7 Thermography camera and the specimen to be monitored 

 

(a) 
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(b) 

Figure 3.8 Sketch of the specimen (a) top view (b) side view 

3.3.1 Experiment Setup 

        The mechanics of damage detection using infrared thermography is based on the 

differences in heat transfer properties of different materials. The air in the drilled holes in the 

structure has much lower thermal conductivity coefficient than concrete, which will lead to 

a lagging phenomenon, i.e., the heating and cooling time of the hole are slower than the 

surrounding solid region. The slab is placed on a HEATCON thermal blanket and uniformly 

heated from below. The infrared thermography camera can detect the temperature of the 

surface of the slab (Fig. 3.7, Fig. 3.8) and store the temperature values as images via the 

DAQ system. We also place reflective material around the slab, in order to prevent direct 

heat transfer from the thermal blanket to the air around the slab; thus the thermal camera 

detects the temperature change on the top surface slab mainly caused by the heat transfer 
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from the blanket through the slab. 

3.3.2 Thermal Loading 

        Each thermal cycle has a total duration of 70 minutes. The heating profile is shown in 

Fig. 3.9. A HEATCON composite system controller was connected to the thermal blanket 

and used to program a defined thermal cycle that can be repeated as many times as needed 

for a test. Two thermocouples were used to measure and monitor the heat applied by thermal 

blanket. One thermocouple was placed beneath the blanket and the other thermocouple was 

placed between the thermal blanket and the concrete sample (Fig. 3.10). 

 

Figure 3.9 Thermal loading time history (scaled values) 

        For thermographic imaging, a FLIR Infrared (IR) camera is used to detect the 

temperature contours on the surface of the concrete slab. These contours can be analyzed to 

detect flaws or defects inside the slab that cannot be easily detected by visual inspection. The 
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FLIR IR camera was setup to capture images of the concrete slab every 1 second.  

 

Figure 3.10 Thermal blanket and thermo couple 

3.3.3 Data Acquisition System 

        The FLIR IR software is an integrated environment that allows the user to configure the 

sampling rate, resolution, and storage. Also the software can visualize the current captured 

image, and store the images in the designated path in the ‘.tls’ format, which is specially used 

by this software.  

3.3.4 Data Transfer and Storage Mechanism 

        After the sampling is completed, the data stored in the file *.tls can be exported in 

different format, such as .csv, .m, .txt, .jpeg. In this study, we used .csv to represent each 

image. For the heat loading period considered, 4231 images were sampled, and the total size 

is 19.4 𝐺𝐵. The ‘.tls’ file is stored in the computer connected with the DAQ system, and the 

size is much smaller. The exported .csv files were stored in a portable drive, through which 

they were transferred to the analysis computer client. In order to use MapReduce to analyze 

the data, the data was uploaded to the cluster, which in this case was located within ACCRE 
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(Advanced Computing Center for Research and Education) at Vanderbilt University. 

3.3.5 Data Processing 

        The implementation of various steps in processing the thermal image data are discussed 

in detail and the results are presented below. 

3.3.5.1 Baseline Removal 

        As reviewed previously, the common procedure for processing digital images consists 

of: cropping, baseline removal, noise cancellation and feature extraction. In this example, 

results can be obtained without control group. Thus there is no baseline removal needed here. 

This can save almost half the cost of data storage. For each image, the resolution is 640 ×

512 pixels (Fig. 3.11). 

 

Figure 3.11 Example of raw image before cropping (𝑡 =  2835 s) 
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3.3.5.2 Cropping 

        Fig. 3.11 shows the raw thermography image of the top surface of the slab and reflective 

material, 2835 seconds after start of the heating. Notice that the area corresponding to the 

slab has much higher temperature compared to the surrounding reflective material. Thus the 

image needs to be cropped in order to achieve greater resolution in analyzing the temperature 

distribution within the slab. After several trials, the appropriate pixel range for cropping was 

found to be [83: 518, 25: 460]. The cropped image is shown in Fig. 3.12. 

 

Figure 3.12 Cropped image (𝑡 =  2835 s) 

        The image shows boundary effects, where additional heat may be introduced from the 

area around the slab, since the reflective material may not block all of the heat from the 

thermal blanket, especially since there was a small gap between the slab and the reflective 

material. It is also seen that there is a large area on the upper left quadrant, where the 

temperature is low. It may be due to the non-uniformity of the heating setup (such as lack of 

contact between slab and blanket), and heterogeneity of the concrete slab; the feature 



 

42  

extraction step will reveal whether these effects are significant. As explained in the 

methodology section, the cropping pixel range for all the images are the same. 

3.3.5.3 Noise Cancellation 

        A 22 × 22 kernel uniform filtering is used for noise cancellation, as shown in Fig. 3.13. 

It can be observed that after the uniform filtering, the image is smoother. By doing this, the 

noise in the image is greatly reduced. Note that Fig. 3.13 roughly indicates the three holes in 

the right hand side. There is also a large, low temperature area on the left, but this gets 

eliminated in the subsequent feature extraction step.  

 

Figure 3.13 Image after uniform filtering (𝑡 = 2835 𝑠; 22 × 22 kernel) 

3.3.5.4 Feature Extraction 

        Sobel filter is used for the feature extraction, based on the image obtained after uniform 

filtering. After applying Sobel filtering, the image shows the detected holes in the slab (Fig. 
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3.14 (a)). The holes are detected by first obtaining the upper edges (yellow region on the 

right hand side in Fig. 3.14 (a)) and lower edges (red region on the right hand side in Fig. 

3.14 (a)), and then plot the region between. The thresholds for obtaining upper edges are 

[−0.050, 0.050] for 𝑥 and [0.020, 0.050] for 𝑦, and the thresholds for obtaining lower edges 

are [−0.050, 0.050] for 𝑥 and [−0.100, 0.013] for 𝑦. Notice that the thresholds for 𝑥 for 

both cases are the same, this is due to the hole directions being horizontal so that only the 

gradient in 𝑥 direction is enough for the detection. For a more complicated hole or damage 

area, gradients in both 𝑥 and 𝑦 are needed for the detection of edges. Also notice that some 

noise is found on the left side of the slab, as shown in Fig. 3.14 (a). This is mainly due to the 

heterogeneity of concrete, and also uneven heating by the thermal blanket. The comparison 

of detected region and actual holes is shown in Fig. 3.14 (b), and visual comparison shows 

good agreement; a more quantitative comparison is discussed below. 

 

(a) 
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(b) 

Figure 3.14 Image after Sobel filtering (a) holes detection based on the upper and lower 

edges (b) comparison between detected holes and ground truth; blue: detected holes, 

green: ground truth 

3.3.5.5 Performance Discussion 

        Now we discuss the hole detection performance for different sample rates. In order to 

evaluate the performance quantitatively, a score is defined as the ratio of correctly detected 

area to the total detected area. As the sampling rate increases, the score grows accordingly 

(Fig. 3.15). The score increases by almost 40% (i.e., 100% × (0.723 − 0.523)/0.523, as 

the sampling interval decreases from 2 mins to 1 second. This indicates that by increasing 

the sample rate, the damage detection performance can be greatly improved. However, this 

increases the demand on the data analytics computation, which is resolved by the 

MapReduce technique. 

        Compared with the traditional single machine computation, the computational expense 
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(time cost) is greatly reduced as shown in Table 3.1. Notice that via distributed computation, 

the time cost is only 10 of local computation. It can be seen that as the number of nodes 

being used increases, the corresponding speedup increases almost linearly, which illustrates 

the scalability of MapReduce. Also notice that as the number of nodes increases, the 

computational time decays similar to exponential decay (Fig. 3.16). 

 

Figure 3.15 Detection performance vs. sampling rate 

 

Figure 3.16 Thermography camera and the specimen to be monitored 
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        However, the time spent by the traditional method is 1560 𝑠, while the MapReduce 

method on a single node takes as much as 2971 𝑠. This is due to two reasons. First, the 

operations related to MapReduce such as data transferring, data splitting, task managing, and 

mapping cost additional time. Second, the CPU and memory of the cluster node is less 

powerful (in this example) than the computer client used for local traditional computation 

(Table 3.2).  

Table 3.1 Time cost of traditional method and MapReduce method 

Method Time (s) 

Traditional 1560 

MapReduce (20 nodes) 163 

         

Table 3.2 Node used by traditional method and MapReduce method 

Method CPU (GHZ) Memory (GB) 

Traditional 3.4 ×  8 12 

MapReduce (20 nodes) 2.3 5 

         

        The time cost of individual step in data processing (for one image) is shown in Table 

3.3. For this simple case, data reading accounts for a large portion of the total time. However, 

for more complicated data processing, actual processing is expected to occupy a much larger 

portion. 
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Table 3.3 Time cost of individual steps in data processing 

Step Time (s) 

Data Reading 0.14 

Cropping 0.08 

Uniform filtering 0.08 

Sobel filtering 0.07 

 

3.4 Summary 

        This chapter developed a framework for applying a big data technique to structural 

health monitoring, in particular image processing. The popular MapReduce approach was 

applied in the proposed framework, and realized via Apache Spark. Structural damage 

detection was parallelized via MapReduce, by transforming inputs and outputs as key-value 

pairs. Sobel filter was used for illustration of the image processing. It can be easily replaced 

with other appropriate techniques for different scenarios. Results show that the processing 

effort scaled well, in an almost linear trend. The approach was illustrated for the processing 

of thermal images obtained for a concrete slab, and the data volume is less than 20 𝐺𝐵. For 

practical structural health monitoring for the whole structure in the field, the data can be very 

large, thus considerably increasing the advantage of MapReduce in realistic application.  

        Note that this chapter only considered the application of big data techniques to 

deterministic structural health monitoring; extension to uncertainty quantification in 

diagnosis will be considered in future chapters. Second, this chapter did not consider the 
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complexity problem of parallelization in MapReduce, which can lead to different 

parallelization options via splitting the task data-wise or function-wise. Third, fault-tolerance 

is an important issue in big data analytics, which needs to be incorporated in future work. 
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CHAPTER 4 

UNCERTAINTY QUANTIFICATION IN DIAGNOSIS AND PROGNOSIS 

4.1 Background 

        Two common problems encountered by engineers are prediction of system response to 

different input conditions (in order to support decisions regarding system design, operational 

conditions, and risk management activities such as inspection, maintenance and repair), and 

inference of system state or system model parameters given observations regarding one or 

more response variables. Prediction is a forward problem, and inference is an inverse 

problem. Both types of problems are affected by many different sources of uncertainty, 

which may be classified into two types: aleatory and epistemic. Aleatory uncertainty refers 

to natural variability, which is irreducible (e.g. material parameters). On the other hand, 

epistemic uncertainty is due to lack of knowledge, which could be reduced when new 

information becomes available. Examples of epistemic uncertainty are information 

uncertainty regarding the model inputs or model parameters (due to inadequate or imprecise 

data) and model uncertainty (due to assumptions and approximations in modeling the 

reality). Model errors, which include numerical solution errors and model form errors, can 

be quantified through calibration, verification and validation activities and included in the 

reliability analysis. Structural health monitoring consists of both the forward and inverse 

problems, namely diagnosis (inverse problem) and prognosis (forward problem), both of 

which are affected by aleatory and epistemic uncertainty sources. It is necessary to identify 
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the uncertainty sources and quantify their effects on diagnosis and prognosis, in order to 

facilitate effective risk management. This chapter investigates efficient computational 

approaches for uncertainty quantification in both forward and inverse problems, and 

illustrates them for structural health monitoring. 

         This chapter focuses on the following issues: 1. Investigation of techniques to 

parallelize the Bayesian inference for diagnosis uncertainty. Popular numerical techniques 

for Bayesian inference, namely Markov chain Monte Carlo (MCMC) and particle filter (PF) 

will be parallelized, including strategies for fault tolerance. 2. Investigation of big data 

techniques for efficient quantification of uncertainty in damage prognosis. The repeated FEA 

model runs in Monte Carlo simulation will be parallelized to reduce the computational cost 

of uncertainty propagation analysis. The prognosis objective is to quantify the probability 

distribution of predicted damage growth and remaining useful life (RUL) (Farrar and 

Worden, 2007) of the structure. 

        This chapter utilizes big data techniques to analyze voluminous SHM data (i.e., image 

files) for damage diagnosis, and to quantify the diagnosis uncertainty. Prognosis is realized 

using a damage growth model coupled with FEA, and the remaining useful life (RUL) is 

estimated. The uncertainty in the diagnosis of the structural state is then propagated to the 

prognosis result, in addition to uncertainty sources in the structural properties, usage and 

environment. The use of big data analysis techniques makes uncertainty quantification 

feasible in terms of computational effort, by efficiently quantifying and aggregating the 

uncertainty from multiple sources.  
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        Note that this chapter focuses on the MapReduce application of handling uncertainty 

quantification in diagnosis and prognosis. The application of MapReduce to SHM data 

processing (deterministic diagnosis) was already discussed in Chapter 3. The details of 

MapReduce implementation for data processing have been explained in Sec. 3.3. The basic 

steps in implementing MapReduce for image or signal processing in structural health 

monitoring, as discussed in Chapter 3, are: (1) upload the acquired data from the local 

computer to the cluster of computers; (2) prepare the data processing functions, and 

substitute into the Map function shown in Pseudocode 3.1 (Fig. 3.5); and (3) run Spark to 

process and retrieve the data files from the cluster back to the local computer. 

4.2 MapReduce for Diagnosis under Uncertainty 

        Since damage diagnosis under uncertainty is pursued using Bayesian methods in this 

chapter, we first describe the general steps of parallelizing Bayesian updating methods. For 

sample based Bayesian updating methods, the posterior distribution is approximated by 

samples, which is gradually available. The main idea is to split the sampling tasks to cluster 

nodes, and estimate the posterior after all tasks completed and with samples transferred to 

the master node (Fig. 4.1). The main steps in the parallelization of Bayesian updating 

methods are summarized as below: 

Step 1. Set the parameters (number of samples, burn-in length etc.). 

Step 2. Use MapReduce to assign the sampling task to cluster nodes. 

Step 3. Re-assemble the samples and construct the posterior distribution. 
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Figure 4.1 Schematic description of the MapReduce process 

        This basic approach is applied to two sampling-based Bayesian methods below, namely 

Markov Chain Monte Carlo (MCMC) sampling, and Particle Filter (PF).  

4.3.1 MapReduce for Markov Chain Monte Carlo 

 

        The MCMC method was described in Chapter 2. The basic idea of MCMC 

parallelization is to divide the observations into 𝑀 splits, with each node taking one partition 

to provide samples of the posterior distribution. The prior distribution of the variable of 

interest will be updated using the equation (Neiswanger et. al, 2013): 

𝑝𝑚(𝜃) ∝ 𝑝(𝜃)
1

𝑀𝑝(𝑥𝑛𝑚|𝜃)                                            (4.1) 

        After all nodes complete their tasks, all the sub-posterior samples from each nodes will 

be combined to produce samples for an estimate of the sub-posterior density product 

𝑝1, ⋯ , 𝑝𝑀, which is proportional to the full data posterior, i.e. 𝑝1, ⋯ , 𝑝𝑀(𝜃) ∝ 𝑝(𝜃|𝑥𝑁). 

Pseudocode 4.1 in Fig. 4.2 shows the implementation of MCMC use MapReduce. 
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Figure 4.2 MapReduce implementation of MCMC 

        A Map function is defined (’mapper’), within which all the actual functions are defined 

(Read Data(),MCMC_Sampling(), and SaveSamples()). As shown in Fig. 4.2, the sampling 

process is executed on the slave nodes, while posterior integration is done after all particles 

and weights are saved from the slave nodes. SparkContext and count() function are used the 

same way as in Pseudocode 3.1 in Fig 3.5. ReadData() is the function used to read 

observation data and parameters, and followed by MCMC_Sampling(), which is the function 

to perform the sampling. SaveSamples() is the function used to save all subset of MCMC 

chains. After all samples are saved, the function PosteriorEstimate() will be called to 

construct the posterior distribution based on samples. 

4.3.2 MapReduce for Particle Filter 

 

        The particle filter method was described in Chapter 2. In order to reduce the 

Pseudocode 4.1: 

 

function ParameterSetting() 

 

mapper(x): 

    function ReadData() 

    function MCMC_Sampling() 

    function SaveSamples() 

    return (x, 0) 

 

SparkContext(appName="myApp").parallelize(Filelist, 

N).map(mapper).count() 

 

function PosteriorEstimate() 
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computational cost, particle filter is parallelized in this study using MapReduce, which is 

implemented in Spark. Pseudocode 4.2 in Fig. 4.3 summarizes this approach.  

                         

Figure 4.3 MapReduce implementation of Particle Filter 

        Similar to the MapReduce application of data processing, a Map function is defined 

(‘mapper’), within which all the actual functions are defined (reading, sampling, and saving). 

SparkContext and count() function are used the same way as in Pseudocode 3.1. As shown 

in Pseudocode 4.2, the sampling process is executed on the slave nodes, while resampling is 

done after all particles and weights are saved from the slave nodes. ReadData() is the function 

used to read observation data and parameters, and followed by Sampling(), which is the 

function to perform the sampling. Note that ReadData() occurs both inside and outside the 

mapper function, which means that data reading happens both on slave nodes and the master 

node. By doing this, there is no direct data transfer between nodes, which further saves 

Pseudocode 4.2: 

 

function ParameterSetting(); 

 

mapper(x): 

     function ReadData() 

     function Sampling() 

     function SaveParticles() 

     function SaveWeights() 

return (x, 0) 

 

SparkContext(appName="myApp").parallelize(Filelist, 

N).map(mapper).count() 

 

function ReadData() 

function Sampling() 

function SaveParticles() 

function SaveWeights() 

function PosteriorEstimate() 
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computational time, and avoids faults that might happen during the communication (such as 

loss of data and miscommunication). After particles and weights are saved, the posterior 

distribution can be approximated by function PosteriorEstimate(). 

4.4 MapReduce for Prognosis Uncertainty Quantification 

 

        Damage prognosis needs to propagate uncertainties, which applies Monte Carlo 

sampling to repeatedly run FEA simulations and damage growth models. MapReduce can 

be used to parallelize those runs efficiently. 

 

Figure 4.4 MapReduce implementation of MCS 

        Since MCS needs repeated FEA runs with different inputs, parallelization can be 

realized by using MapReduce. Fig. 4.4 shows the implementation in Spark. Similar to the 

MapReduce application in data processing, a Map function is defined (‘mapper’), within 

which all the actual functions are defined (reading, processing, and saving). ReadData() is 

Pseudocode 4.3: 

 

function ParameterSetting() 

 

mapper(x): 

    function InputData = ReadData() 

    function OutputData = FEA_Processing() 

    function WriteData(OutputData) 

return (x, 0) 

 

SparkContext(appName="myApp").parallelize(Filelist, 

N).map(mapper).count() 



 

56  

the function used to read FEA configurations (realizations of control variables from Monte 

Carlo Simulation), followed by FEAProcessing(), which is the function to perform the 

sampling. 

        In summary, to reduce the computational effort in uncertainty quantification of 

structural diagnosis and prognosis in the context of big data, we proposed the methodology 

of parallelization of SHM data processing, diagnosis UQ and prognosis UQ. Note that the 

MapReduce procedure can be easily extended to the general inverse and forward problems 

encountered in uncertainty quantification analyses, although it is explored here within the 

context of structural health monitoring. 

4.5 Numerical Example: ASR Diagnosis and Prognosis in Concrete 

4.5.1 Background of ASR Degradation in Concrete 

 

        Alkali-silica reaction is a reaction between the alkali in the cement and reactive silica 

in the aggregate in concrete structures. The reaction product is a gel which expands in the 

presence of moisture, eventually causing cracking. The chemical reaction can be described 

in two steps: alkali-silica gel formation and alkali-silica gel expansion (Saouma and Perotti, 

2006). The gel formation can be represented using the chemical equation below: 

[𝑥𝑆𝑖𝑂2] + [𝑦𝑁𝑎(𝐾)𝑂𝐻] → [𝑁𝑎(𝐾)𝑦𝑆𝑖𝑥𝑂𝑧𝑎𝑞]                   (4.2) 

And the expansion of the alkali-silica gel in the presence of moisture is represented as: 

[𝑁𝑎(𝐾)𝑦𝑆𝑖𝑥𝑂𝑧𝑎𝑞] + [𝐻2𝑂] → [𝑁𝑎(𝐾)𝑦𝑆𝑖𝑥𝑂𝑧𝐻2𝑂]                      (4.3) 

The expansive stress results in micro- to macro- cracking. The cracking increases the 
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permeability of the concrete, causing increased moisture ingress and therefore further gel 

expansion and cracking. 

4.5.1 ASR Description and Modeling 

 

        Saouma and Perotti (2006) presented a comprehensive coupled thermo-hydro-

mechanical chemical (THMC) model for ASR gel expansion based on Ulm et al. (2000), and 

considered the effects of stress on the reaction kinetics and anisotropic volumetric expansion 

induced by ASR. We applied this model using the Abaqus FEA software, by programming 

the constitutive model in a user-defined material (UMAT) code. By choosing the appropriate 

parameters, this model can simulate ASR expansion in a realistic manner, based on several 

advanced features: 1. ASR expansion strain is treated as a full strain tensor, not calculated 

separately and independently for each principal direction; 2. ASR reaction rate is temperature 

dependent; 3. ASR reaction can be retarded by compressive stress within concrete; 4. ASR 

expansion is constrained by compression, and is redirected into other less-constrained 

principal directions; 5. both high compressive or tensile stress states inhibit ASR expansion 

due to the formation of micro- and macro-cracks that absorb the expanding gel; 6. triaxial 

compressive stress state reduces expansion; and 7. reduction in tensile strength and elastic 

modulus are included in the model. 

4.5.1.1 ASR Reaction Kinetics 

 

        Based on Ulm et. al (2000)’s stress-independent reaction model, Saouma and Perotti 

(2006) proposed a first order ASR reaction kinetics model that is dependent on both the 
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temperature and the first invariant of the stress tensor as: 

𝑡𝐶(𝜃, 𝜉) ⋅
𝑑𝜉

𝑑𝑡
= 𝜏𝐶(𝜃) ⋅

1+exp[−
𝜏𝐿(𝜃,𝐼𝜎,𝑓𝑐

′ )

𝜏𝐶(𝜃)
]

𝜉+exp[−
𝜏𝐿(𝜃,𝐼𝜎,𝑓𝑐

′ )

𝜏𝐶(𝜃)
]
⋅

𝑑𝜉

𝑑𝑡
= 1 − 𝜉          (4.4) 

in which 𝜉 is the ASR reaction extent ranging from 0 (not reacted) to 1 (fully reacted);  𝜃 is 

the temperature; 𝜏𝐶 is characteristic time constant, while 𝜏𝐿 is latency time constant; 𝐼𝜃 is the 

first invariant of the stress tensor; 𝑓𝑐
′ is the uniaxial compressive strength of concrete. See 

(Ulm et. al, 2000) for detailed discussion of these variables. 

4.5.1.2 Stress-dependent ASR Volumetric Strain 

 

        Once the increment of ASR reaction extent Δ𝜉 is obtained, the ASR volumetric strain 

increment Δ𝜖𝑣𝑜𝑙
𝐴𝑆𝑅 can be evaluated as: 

Δ𝜖𝑣𝑜𝑙
𝐴𝑆𝑅 = Γ𝑡(𝑓𝑡

′, 𝜎𝐼|𝐶𝑂𝐷)Γ𝑐(�̅�, 𝑓𝑐
′)𝑔(𝐻)Δ𝜉𝜖∞|𝜃 = 𝜃0                       (4.5) 

where 𝑓𝑡
′ is the tensile strength of the concrete; 𝐼 is the maximum principal stress (> 0 under 

tensile stress); 𝐶𝑂𝐷 is the crack opening displacement;  𝜎 is the ratio between the hydrostatic 

stress and compressive strength of concrete, and 𝜖∞ is the laboratory-determined maximum 

free volumetric expansion at the reference temperature 𝜃0. Γ𝑡 accounts for ASR reduction 

due to tensile cracking, while Γ𝑐 accounts for the reduction in ASR volumetric expansion 

under compressive stresses (in which case gel is absorbed by diffused microcracks). See 

Saouma and Perotti (2006) for detailed discussion of the above variables and functions. 

4.5.1.3 Anisotropic ASR Strains and Weights in Principal Directions 

 

        The incremental ASR volumetric strain  Δ𝑣𝑜𝑙
𝐴𝑆𝑅 needs to be redistributed along three 
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principal directions according to their relative propensity to expand. Saouma and Perotti 

(2006) presented a method to calculate the relative weights along the three principal 

directions based on the principal stresses under either uniaxial, biaxial or triaxial 

confinement conditions. Given the full stress tensor (in Cartesian coordinates) on a 

quadrature point within an element, an eigen-solver is used to obtain the three principal 

stresses, 𝑘, 𝑙 and 𝑚, and associated eigen-vectors along the directions of principal stresses, 

𝑅𝑘, 𝑅𝑙 and 𝑅𝑚. These eigen-vectors form a stress/strain rotational matrix 𝑅 = 𝑅(𝑅𝑘, 𝑅𝑙, 𝑅𝑚 ) 

that will be used later to rotate the incremental ASR strain tensor expressed in principal 

stress/strain coordinates back into Cartesian coordinates. ASR expansion weights 𝑊𝑘, 𝑊𝑙, 

𝑊𝑚 along the principal directions can be obtained following the procedure described in 

Saouma and Perotti (2006), given concrete tensile strength 𝑓𝑡
′, compressive strength 𝑓𝑐

′, and 

a gel expansion inhibiting compressive strength 𝜎𝑢. After obtaining the weights, the 

individual incremental ASR strains along the principal directions are then obtained using 

these weights by the following formula 

Δ𝜖𝑖
𝐴𝑆𝑅 = 𝑊𝑖Δ𝜖𝑣

𝐴𝑆𝑅 , 𝑖 = 1, 2, 3                                          (4.5) 

Finally the full ASR expansion-induced incremental strain tensor ΔϵASR can be obtained by 

rotating Δ𝜖𝑖
𝐴𝑆𝑅 on quadrature points via 

Δ𝜖𝐴𝑆𝑅 = 𝑅Δ𝜖𝑖
𝐴𝑆𝑅𝑅𝑇                                               (4.6) 

4.5.1.4 Reduction of Elastic Modulus and Tensile Strength 

 

        The ASR-induced deterioration of concrete mechanical properties is simply modeled as 

a time-dependent function of ASR reaction extent Δ𝜉(𝑡, 𝜃) following Saouma and Perotti 
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(2006): 

𝐸(𝑡, 𝜃) = 𝐸0[1 − (1 − 𝛽𝐸)𝜉(𝑡, 𝜃)]                                      (4.7) 

𝑓𝑡(𝑡, 𝜃) = 𝑓𝑡,0[1 − (1 − 𝛽𝐸)𝜉(𝑡, 𝜃)]                                      (4.8) 

where 𝐸0 and 𝑓𝑡,0  are the original elastic modulus and tensile strength, respectively; and 𝛽𝐸 

and 𝛽𝑓 are the corresponding residual fractional values when the concrete has fully reacted. 

Both 𝛽𝐸   and  𝛽𝑓 are input parameters chosen by user. 

4.5.2 Experiment 

 

        The objective in this example is to diagnose the ASR damage in a cement slab which is 

cast and cured in the laboratory, and to predict future damage. Using sodium hydroxide, 

𝑁𝑎𝑂𝐻, in the mix water or placing the cured concrete in a 𝑁𝑎𝑂𝐻 solution causes an increase 

in pH, thus accelerating the chemical reaction and ASR gel formation. Glass slides are placed 

inside the cement slab (𝐶1 and 𝐶2) to provide the silica for the reaction. For the purpose of 

baseline removal, another set of specimens are cured in 𝐻2𝑂 (𝐴1 and 𝐶1). For each group, a 

specimen without glass (𝐴1 and 𝐴2) is also prepared to serve as the control group. The 

specimen configurations are shown in Table 4.1. The dimensions of the slabs are 5 𝑖𝑛 ×

9 𝑖𝑛 × 2 𝑖𝑛. 

        The mechanics of damage detection using infrared thermography is based on the 

differences in heat transfer properties of different materials. The ASR gel in the structure has 

a lower thermal conductivity coefficient than cement, which will lead to a ‘lagging‘ 

phenomenon, i.e., the heating and cooling time of the gel are slower than the surrounding 

cement. The slab is placed on a HEATCON ® thermal blanket and uniformly heated from 
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below. Each thermal cycle has a total duration of 70 minutes. The heating profile is shown 

in Fig. 3.9; the temperature values are scaled to the range (0, 1) due to export control reasons. 

The camera was setup to capture images of the concrete slab every 0.5 minute.  

Table 4.1 Configuration of specimens 

Specimen Solution Glass 

𝐴1 𝐻2𝑂 No 

𝐶1 𝐻2𝑂 Yes 

𝐴2 𝑁𝑎𝑂𝐻 No 

𝐶2 𝑁𝑎𝑂𝐻 Yes 

 

4.5.3 Uncertainty Sources in Diagnosis and Prognosis 

 

        First, let us consider the aleatory and epistemic sources specific to ASR diagnosis and 

prognosis. For diagnosis, specimen variability (e.g. specimen dimensions and material 

properties) is aleatory uncertainty, when considering variation across multiple specimens. 

However, for a single specimen, these quantities are unique, and the uncertainty related to 

them is epistemic, i.e., not knowing their actual values. Measurement error (from sensors) is 

aleatory uncertainty. However, the data processing steps (e.g., cropping, filtering, 

smoothing, feature selection etc.) incorporate several assumptions and parameter selections 

by the analyst, which will cause epistemic uncertainty. Assumptions in Bayesian updating 

(prior distribution) as well as the choice of tuning parameters in numerical algorithms such 

as MCMC and PF create epistemic uncertainty. In prognosis, aleatory uncertainty is 
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introduced by loading loading variability. On the other hand, epistemic uncertainty is 

propagated from diagnosis uncertainty, in addition to model errors in FEA (e.g., 

discretization error) and the ASR expansion model (model form error). In this example, we 

only considered diagnosis uncertainty, which is caused by measurement error. Since we are 

performing diagnosis and prognosis for this single specimen, there is no aleatory uncertainty 

regarding its properties (i.e., no variability across multiple specimens since we are only 

considering a single specimen). 

4.5.4 Data Processing 

        Damage in concrete due to alkali-silica reaction is detected through image processing 

of infrared thermal images. In this application, image processing is simply a subtraction 

between the image of the control specimen (healthy structure) and the image of the test 

specimen (damaged structure). Since multiple images are obtained for a single test, the image 

pair that has the largest difference is chosen. Then by setting an appropriate threshold for the 

temperature difference, the magnitude of area under ASR damage can be estimated. The 

implementation of various steps in processing the thermal image data are discussed in detail 

and the results are presented below. 

4.5.4.1 Cropping 

        The raw image needs to be cropped in order to achieve greater resolution in analyzing 

the temperature distribution within the slab. After several trials, the appropriate pixel range 

for cropping was found to be [123: 381, 443: 586] for 𝐴1, [132: 390, 47, 190] for 𝐶1, 

 for 𝐴2, and [138: 396, 28: 171] for 𝐶2. The cropped images are 
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shown in Fig. 4.5. For each image, the resolution is 258 × 143 pixels. 

4.5.4.2 Baseline Removal 

        Specimens 𝐴1 and 𝐶1 are cured in 𝐻2𝑂, while 𝐴2 and 𝐶2 are cured in 𝑁𝑎𝑂𝐻. Baseline 

removal is realized by subtracting the cropped thermal image 𝐴2 from 𝐴1, and 𝐶2 from 𝐶1. 

The images after baseline removal are shown in Fig. 4.6. This is based on the hypothesis that 

the formation of ASR should change the heat conductivity within the slab. Therefore, 

temperature difference between the 𝐻2𝑂-cured and 𝑁𝑎𝑂𝐻-cured slabs at each time point is 

expected. 

4.5.4.3 Feature Extraction 

        Based on the baseline slab 𝐴, we selected upper bound and lower bound values (at each 

time instant) for the temperature difference between 𝐻2𝑂-cured data and 𝑁𝑎𝑂𝐻-cured data. 

If the temperature difference between slab 𝐶1 and 𝐶2 is outside the bounds we treat it as 

indicating a change in heat conductivity, thus implying the formation of ASR. Otherwise, 

we treat it as normal, i.e., no ASR has formed. To set boundaries, we selected the maximum 

and minimum values of the temperature difference among all pixels between the 𝐻2𝑂-cured 

data and 𝑁𝑎𝑂𝐻-cured data for slab 𝐴, at each time point. Fig. 4.7 shows one example of 

ASR damaged region. Seven inspections (with time interval of 10 days) are obtained, which 

is plotted in Fig. 4.8. 
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(a)                                                          (b) 

                            

(c)                                                                    (d) 

 

Figure 4.5 Cropped images (a) specimen 𝑨𝟏; (b) specimen 𝑪𝟏; (c) specimen 𝑨𝟐; (d) 

specimen 𝑪𝟐 
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(a)                                                                 (b) 

Figure 4.6 Images after baseline removal (a) specimen 𝑨; (b) specimen 𝑪 

                                 

(a)                                                            (b) 

Figure 4.7 ASR damaged region after feature extraction. Red: ASR damage; Blue: 

healthy concrete. (a): Inspection 1 (t = 𝟑𝟎 days); (b): Inspection 2 (t = 𝟒𝟎 days) 
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Figure 4.8 ASR damaged area at different inspection time points 

4.5.5 Diagnosis 

 

        For each inspection point, Bayesian updating is used to obtain the posterior distribution 

of the true ASR area based on the detected ASR area value. The Particle Filter method 

implemented in MapReduce (as described in the previous section) is used to perform this 

computation. A non-informative uniform prior (~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 20)) is assumed for ASR 

damaged area A, and a normal distribution (~𝑁(0, 𝜎)) is used to represent the measurement 

error, where a uniform prior (~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.1, 1)) is assumed for 𝜎. The posterior 

distribution is shown in Fig. 4.9. In this example, 50, 000 particles for PF and 50, 000 

samples for MCMC were used. 
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(a)                                                            (b) 

Figure 4.9 Bayesian updating (@ T = 𝟑𝟎 days) for (a): ASR damaged area 𝑨 and (b): 

observation error standard deviation 𝝈 

 

        In diagnosis, 20 cluster nodes were used for parallelization. For the purpose of 

comparison, computation using the traditional method (single processor) was also 

performed. The computational power of desktop and cluster nodes are compared in Table 

4.2. It is worth noting that the CPU clock speed and memory size of the local machine where 

the traditional methods were running are larger than that of the cluster nodes. The comparison 

between the time cost of traditional method and MapReduce method for this study is shown 

in Table 4.3. In both PF and MCMC Bayesian updating, MapReduce does not show a 

significant advantage. This is mainly due to two reasons. First, the power of the cluster node 

is lower than the local computer. Second, which is more important, the computational cost 

for each split of PF and MCMC chain is low, which led to dominance of the communication 

time between master node and slave nodes. The MapReduce method will show its advantage 

as the observation data size becomes larger and when the problem is high-dimensional, i.e., 

when the PF and MCMC sampling demands are larger than the communication demands. 
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Table 4.2 Node comparison 

Method CPU (GHZ) Memory (GB) 

Desktop 3.4 × 8 12 

Cluster Nodes 2.3 5 

 

Table 4.3 Time cost comparison for Bayesian updating 

Method PF (s) MCMC (s) 

Traditional 3.2 2.4 

20 cluster nodes 4.5 4.1 

4.5.5 Prognosis 

 

        To predict the ASR damaged area growth, two steps are needed. First, the current ASR 

damaged area is sampled from the posterior distribution obtained by Bayesian updating, to 

account for the uncertainty in the diagnosis. Since the Bayesian updating is performed using 

Particle Filter, the posterior samples generated by the Particle Filter can be directly used, 

instead of constructing an approximate posterior distribution (typically done using kernel 

density functions) and then sampling from that. Second, ASR gel expansion model 

(implemented in combination with FEA analysis) is utilized to predict the growth of ASR. 
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4.5.5.1 ASR Gel Expansion Modeling 

        We implemented Saouma and Perotti’s ASR gel expansion model (Saouma and Perotti, 

2006) using Abaqus. The ASR region identified from the previous diagnosis is considered 

as the initial condition in the FEA model. To be realistic, isotropic expansion or shrinkage 

will be made based on the original detected damaged area from image processing. For 

example, if the diagnosed damaged area from Bayesian updating is greater on the detected 

area from image processing, the outer surroundings of the current area will be considered as 

damaged also. When the number of elements to be added cannot occupy the whole 

surrounding layer, part of the surrounding layer will be chosen randomly. It is the similar 

case when the diagnosed damaged area by Bayesian updating is smaller than the detected 

area from image processing techniques. This can guarantee that the adjusted area is closest 

to the diagnosed area from Bayesian updating. Temperature, humidity and mechanical 

constraints are considered as boundary conditions. By running the FEA model, the future 

status of the ASR damage area is predicted. Note that the diagnosed ASR region from image 

processing is represented by pixels. However, the structure is represented using elements in 

FEA. Therefore an approximation was made to convert the ASR detection result to the FEA 

model. In detail, the element is considered to be occupied by ASR gel (𝜉 = 1) if more than 

half of the pixels within it are positive in detection. Furthermore, to be more realistic, a linear 

function is defined at the boundary of the ASR region to allow a gradual decrease in ASR 

reactive extent. Fig. 4.10 (a) shows an example of the initial condition of the FEA model. 
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Table 4.4 Parameters of the ASR model 

 

        Each sample of the diagnosed ASR damaged area posterior is treated as an individual 

initial condition to the FEA model. The room temperature (298.15°𝐾), humidity (40%) and 

free boundary are considered as boundary conditions. Fig. 4.10 (a) gives an example of how 

the diagnosis result of ASR is incorporated within the FEA model at any time step. The 

parameters used in this study are listed in Table 4.4. Note that 𝜏𝐶 is treated as an unknown 

model parameter, which needs to be calibrated in each inspection step. Eq. (21b) in Ulm et 

al. (2000) shows the effect of 𝜏𝐶 in ASR development. 
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Figure 4.10 FEA model input and output (half model) 

4.5.5.2 ASR Damaged Area Prognosis 

        Fig. 4.10 (b) gives an example of FEA model prediction of ASR growth starting from 

the diagnosis in Fig. 4.10 (a). Note that the prediction can only expand the ASR area, but not 

add new ASR affected regions that are not connected to the input area; however, new 

inspection data may indicate new unconnected damaged regions and can be incorporated in 

the FEA model for subsequent predictions. Each element will be considered as fully 

occupied by ASR when the ASR extent (𝜉) is greater than 0.99. Thus the ASR damaged area 

can be predicted by the model. The ASR damaged area prognosis with 95% probability 

bounds is shown in Fig. 4.11. The 95% bounds are formed based on Monte Carlo samples 

from the Bayesian updating posterior. As shown in Fig. 4.11, a generally increasing trend is 

found for the ASR damaged area. The inspection data is given every 10 days (marked with 

arrows). Note that the prediction variance (as indicated by the 95% prediction bounds) 

increases from the beginning to the end of each time period (10 days) as expected, and 
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decreases at inspection since the area has been measured. Thus the prognosis for each time 

period starts from the measured area, and the variance at the beginning of each time period 

is only due to measurement error. It is also worth noting that the variance at the end of each 

time period reduces as we move from one time period to next, thus indicating reduction in 

model uncertainty over multiple inspections. 

 

Figure 4.11 ASR damaged area prognosis and uncertainty quantification 

        The computational power of the desktop (single node) and cluster nodes are compared 

in Table 4.5. Abaqus FEA runs were parallelized using 5 desktop cores (due to limited 

number of available licenses), which reduced the computational cost down to around one 

fifth. Compared to the MapReduce for Bayesian updating (Table 4.5), the efficiency is 

greater due to much smaller communication time spent when performing parallelization 

locally. 
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Table 4.5 Time cost comparison for prognosis 

Method MCS (s) 

Traditional 1506.7 

5 desktop cores 307.2 

4.5.5.3 Remaining Useful Life 

        The threshold for ASR damaged area is assumed as 𝐴𝑡ℎ = 27 𝑖𝑛2, beyond which the 

structure will be considered as failure. The remaining useful life prediction with 95% bounds 

is shown in Fig. 4.12. A decreasing trend of the RUL along time is observed. The 

corresponding failure probability is shown in Fig. 4.13. Until 𝑇 = 98 days, the failure 

probability is almost zero, since the threshold damage (27 𝑖𝑛2) is several standard deviations 

away from the mean prediction. (This is also seen from Fig. 4.12, where the RUL is far away 

from zero). At 𝑇 = 100 days, the inspection indicates a higher probability of failure, which 

is consistent with ASR damaged area in Fig. 4.11 and RUL in Fig. 4.12. Note that the 

variance within each time period (10 days) is constant because the prediction of RUL is only 

at the beginning of the time period (thus there is only one value of variance), but in the plot, 

the RUL is continuously reduced by the number of days within each time period. It is worth 

noting that the variance in the RUL prediction decreases over multiple time periods, 

indicating reduction in model uncertainty over time. 
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Figure 4.12 Remaining useful life prediction 

 

Figure 4.13 Probability of failure 

4.6 Summary 

        This chapter developed a framework for applying big data analytics to uncertainty 

quantification in structural damage diagnosis and prognosis. The popular MapReduce 

approach was applied in the proposed framework for both the inverse and forward problems 

of UQ, and realized via Apache Spark. An ASR gel expansion model combined with FEA 

was used to perform prognosis, resulting in the prediction of ASR damaged area and 

remaining useful life along with probability bounds. Since this laboratory study did not 
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generate very large amounts of data, MapReduce did not show the advantage in image 

processing. For practical concrete structures risk analysis, the big data issue will be more 

obvious and MapReduce will show greater benefits in scalability. 

        Future research needs to address several extensions. A major advantage of MapReduce 

will be in parallelizing FEA, since FEA is the most computationally expensive element in 

the aforementioned ASR prognosis. However, multiple commercial licenses are required to 

parallelize the FEA software via MapReduce; therefore methods to share license among 

slave nodes are worth exploring. Second, this chapter only considered diagnosis uncertainty 

and propagation of this uncertainty through prognosis (forward computation). In future 

research, other sources of uncertainties (both aleatory and epistemic) should be considered 

for comprehensive UQ analysis (e.g., epistemic uncertainty in the model parameters, 

uncertainty regarding the future loading, and the uncertainty in the prognosis model). 

Variance-based sensitivity analysis (Saltelli et al. 2008) is valuable in this regard; it can help 

to identify the dominant uncertainty sources affecting prognosis uncertainty and retain only 

those sources in the uncertainty quantification, thus significantly reducing the computational 

effort. 
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CHAPTER 5 

BIG DATA ANALYTICS IN HIGH-DIMENSIONAL MODEL PARAMETERS 

CALIBRATION 

 

5.1 Background 

        Chapter 4 developed a big data analytics approach for uncertainty quantification in 

structural diagnosis and prognosis, in which the structure’s current state is diagnosed by data 

processing and Bayesian updating, and the structure’s future state is predicted by the 

uncertainty propagation through the structural analysis model and damage growth model. 

The model which is used for prediction is important, and needs to be updated with the latest 

information; however, such updating is challenging when the observation data is large and 

the dimensionality of model parameters to be updated is high. The high dimensionality of 

model parameters often arises when their variability over space needs to be considered. 

Therefore the use of big data analytics in high-dimensional model parameters calibration is 

developed in this chapter. 

        Model calibration refers to the adjustment of model parameters so that the model output 

matches well with the field data. When full field observations are available (spatially or 

temporarily), different options are available for calibration. The most common approach is 

to consider the material properties are homogeneous, and to calibrate the parameters using 

observations at only a few locations. For example, Karabinis and Rousakis (2002) calibrated 
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material parameters of carbon fiber-reinforced polymer (FRP) confined concrete by running 

only several experimental tests. Madsen (2003) estimated parameters of hydrological 

catchment model using observations from multiple locations. Lefèvre et al. (2003) calibrated 

thermal conductivity for a hot wire based on dc scanning thermal microscopy by 

measurements of different tip temperatures. Some researchers perform model calibration 

using dimension reduction methods. For example, Higdon et al. (2008a) used basis 

representations (e.g., principal components) to reduce the dimensionality of the problem and 

speed up the computations required for exploring the posterior distribution. Higdon et al. 

(2008b) also used singular value decomposition (SVD) to reduce the dimension. On the other 

hand, some researchers applied full field measurements to update the model parameters. For 

example, Roux and Bouchard (2015) calibrated a ductile damage model using measurements 

from the full displacement field. Nath et al. (2017) considered both methods mentioned 

above. First, random fields were utilized to account for the variability of model parameters 

over space and across the specimens, and SVD is applied for the purpose of dimension 

reduction. Then several observation spots were selected as optimum sensor locations by 

using the Kullback-Leibler (KL) divergence metric (Huang et al., 2007) to maximize the 

information gain. All the above approaches increase the computational efficiency, at the cost 

of accuracy. 

        Take finite element analysis as an example; traditionally we create a model with as 

small a number of parameters as possible, in order to save the computational effort. One 

example is that we consider the material’s property to be homogeneous in the whole model 

(of course different properties will be used when the model has parts of different materials). 

However, sometimes this cannot meet the researcher’s needs, when the object of interest 
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consists of a heterogeneous material like concrete. Concrete is a composite material that is 

composed of coarse aggregate bonded together cement. Therefore, if we want to model 

structures built with concrete more accurately, material properties should be considered 

heterogeneous. 

        Only a few studies on the application of big data techniques to model calibration can be 

found in the literature. Humphrey et al. (2012) parallelized the calibration of parameters in 

watershed models, which was realized on a Windows Azure cloud computing platform. 

Zhang et al. (2014) realized cloud-based calibration of a hydrologic model on a Hadoop 

platform. These studies only parallelized the calibration process to particular applications 

(hydrological model), and did not handle large volumes of observations. In this chapter, a 

novel application of MapReduce to model calibration is presented. Here we focus on 

handling the big data issue in model calibration. 

        It is known that numerical models are sometimes too expensive to be repeatedly run 

during the calibration process, which calls for the construction and use of surrogate models. 

The training data collection and the training of the surrogate model are also parallelized in 

this chapter using MapReduce. The proposed methodology is general, and applies to 

variations over both space and time. 

        It can be observed that the main reason that researchers choose not to use full field 

observations to calibrate the spatially varying parameters of heterogeneous materials is due 

to computational cost. However, the price is loss of information and accuracy, since such a 

strategy implies that the model parameters do not vary over space and time. For the general, 



 

79  

heterogeneous case where model parameters vary over space and time (e.g., material 

properties), full-field calibration would be high dimensional. Since calibration using full 

field observations is time consuming, parallel and distributed computing can help to reduce 

the time cost of data analytics, without causing any accuracy loss. 

5.2 Bayesian Calibration of High-Dimensional Model Parameters 

5.2.1 Overview of Bayesian Calibration 

        Consider a model 𝐺 with inputs 𝒂 = [𝑎1, 𝑎2, ⋯ , 𝑎𝑛], where n is the number of inputs, 

with known deterministic values or probability distributions and parameters 𝜽 =

[𝜃1, 𝜃2, ⋯ , 𝜃𝑝] that need to be calibrated, where 𝑝 is the number of parameters. The model 

output 𝒚𝑚, which is the prediction of the actual physical quantity 𝒚, is given by 

𝒚𝑚 = 𝐺(𝒂, 𝜽)                                              (5.1) 

An observed output value from the experiment is denoted as 𝒚𝑜𝑏𝑠 with an observation error 

𝜀𝑜𝑏𝑠~𝑁(0, 𝜎𝑜𝑏𝑠
2 ) where 𝑁(⋅,⋅) stands for normal distribution. The experimental represented 

by observation 𝒚𝑜𝑏𝑠 , model output 𝒚𝑚 and true value of the true physical quantity 𝒚 are 

related as 

𝒚𝑜𝑏𝑠 = 𝒚 + 𝜀𝑜𝑏𝑠                                         (5.2) 

𝒚 = 𝒚𝑚 + 𝜹(𝒂)                                       (5.3) 

where 𝜹(𝒂) is the model discrepancy term which is a function of the model inputs and needs 

to be calibrated. Different prior formulations of model discrepancy function were compared 

and evaluated by Ling et al. (2014). Combining Eq. (5.2) and Eq. (5.3), we have 

𝒚𝑜𝑏𝑠 = 𝒚𝒎 + 𝜹(𝒂) + 𝜀𝑜𝑏𝑠                                    (5.4) 
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Using Bayes’ theorem, the joint posterior distribution of the calibration parameters is 

obtained as 

𝑓(𝜽, 𝜎𝑜𝑏𝑠, 𝜹|𝒚𝑜𝑏𝑠) ∝ 𝑓(𝒚𝑜𝑏𝑠|𝜽, 𝜎𝑜𝑏𝑠, 𝜹)𝑓(𝜽, 𝜎𝑜𝑏𝑠, 𝜹)            (5.5) 

where 𝑓(𝜽, 𝜎𝑜𝑏𝑠, 𝜹|𝒚𝑜𝑏𝑠) is the joint probability density of 𝜽, 𝜎𝑜𝑏𝑠 and 𝜹, 𝑓(𝒚𝑜𝑏𝑠|𝜽, 𝜎𝑜𝑏𝑠, 𝜹) 

is the likelihood function, and 𝑓(𝜽, 𝜎𝑜𝑏𝑠, 𝜹) is the prior probability density.     

5.2.2 Calibration of High-dimensional Model Parameters 

        As mentioned in Sec. 5.1, high-dimensional model parameter calibration may be 

preferred for heterogeneous materials. In addition to variation in space, these parameters 

may also have variation across different specimens or realizations. For example, a slab might 

have a spatially varying parameter as shown in Fig. 5.1(a). Due to the inherent variability of 

the parameter, similar specimens may show different realization of the spatial variability in 

Fig. 5.1(b) and Fig. 5.1(c). 

 

Figure 5.1 Probability of failure 

        Due to material variability, 𝜽 may be defined as a function of locations 𝒅. Since 𝒅 is a 

large vector, the number of parameters 𝜽(𝒅) is very large. Therefore, the calibration process 
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is unaffordable using the conventional model calibration method, if it is impossible to 

develop a parametric representation of the model parameter over the spatial domain. 

Furthermore, full field observations (such as optical or thermal images) collected over a long 

time period will bring a in the big data issue. Thus in this chapter, we proposed big data 

techniques to solve the high-dimensional model parameter calibration in the presence of big 

data. The challenges in this problem can be summarized as follows: 

 Due to the high-dimensional calibration parameter space, current Bayesian 

calibration techniques such as Markov Chain Monte Carlo (MCMC) simulation or 

particle filter (PF) require a large number of iterations or particles to converge. This 

will evaluate the likelihood function which is a function of the prediction model 

millions of times. Directly using the computer simulation model in the calibration 

process is computationally impossible. Even if the computational model is replaced 

with cheaper surrogate models, the required computational effort is still prohibitive 

for a single computer. The first challenge is therefore how to handle the 

computational effort issue in Bayesian calibration. 

 Surrogate models are usually built to replace the original computer simulation model 

in Bayesian calibration. In order to compute the likelihood based on the surrogate 

modeling, surrogate models need to be functions of calibration parameters. When the 

dimension of calibration parameters is very high, current surrogate modeling 

methods will suffer from the curse of dimensionality. The second challenge is how 

to build surrogate models to replace the original computer simulation model in 

Bayesian calibration of high-dimensional model parameters. 

 For problems with high-dimensional calibration parameters, the observations are also 
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high-dimensional. The third challenge is how to effectively utilize the high-

dimensional observations in Bayesian calibration with the consideration of the 

correlations of observations over space and time. 

5.3 Workflow of Model Calibration using MapReduce 

        In this section, we first provide a brief review of the MapReduce framework and Spark. 

Following that, we discuss how to address the challenges summarized in Sec.5.2 using the 

MapReduce framework and Spark. 

        In order to deal with all the three challenges discussed in Sec. 5.2.2, three levels of 

parallelization using MapReduce technique to Bayesian calibration. Fig. 4 shows the general 

procedure of the proposed model calibration framework.  In order to save the computational 

cost, a surrogate model will be applied in the process of calibration. Thus first, the original 

simulation model is an FEA model, for which the design of experiment (DOE) will be 

performed. Then, using inputs and outputs for FEA, a surrogate model can be trained. Third, 

the observation data needs to be processed. Measurements from experiment or sensing data 

cannot be used directly, so preprocessing operations such as noise cancellation are always 

necessary. With the trained surrogate model and processed observations, the likelihood of 

the observation can be evaluated. Based on the likelihood function, a Bayesian calibration 

technique such as MCMC can be used to estimate the posterior distribution of calibration 

model parameters. 
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Figure 5.2 Workflow of model calibration 

        The three levels of parallelization can be summarized as: (1) Parallelization of FEA 

model runs (colored in blue): this level is used to generate training points for surrogate 

modeling; (2) Parallelization of surrogate model training (colored in green), and (3) high 

dimensional model calibration (colored in red). Since all three levels are potentially 

computationally expensive, application of MapReduce will be studied for each level. In the 

subsequent sections, we explain these three levels of parallelization in detail. 

5.4 Level 1 Parallelization: MapReduce for FEA Model Runs 

        As mentioned previously, the surrogate model preparation has three steps: DOE 

generation, FEA model inputs preparation, and FEA model runs. Compare to all other steps, 

FEA model runs often consume most of the computational time. Thus a MapReduce 

parallelization methodology is developed for the evaluations of the FEA simulation model. 

Suppose 𝑛𝑠 training points are needed, and therefore ns sets of parameter values will be 

generated, which are noted as 𝜃𝑖  , 𝑖 =  1, ⋯ , 𝑛𝑠. Note here the number of variables depends 

on the number of parameters, and also depends on the spatial and temporal dimensions if the 

heterogeneity is considered. 

        Fig. 5.3 (a) presents the pseudocode of the proposed parallelization procedure. The FEA 
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input files are first divided into different partitions (each partition contains multiple files), 

and the FEA running command is then called inside the mapper function. For each FEA job, 

a separately processed result is obtained, without combination (Fig. 5.3). There are two steps 

in this pseudocode. First, a Map function is defined (‘mapper’), within which all the actual 

processing functions are defined. The argument ‘x’ is the data file id corresponding to the 

assigned tasks (FEA input files here) to be analyzed, which is assigned by the task manager. 

As discussed previously, since there is only the Map function, the input file can be mapped 

with any value (here we mapped ‘x’ to 0). In the second step, SparkContext, represents the 

connection to the cluster, which is the main class in Spark; ‘parallelize’ is the method to split 

the input files into 𝑁 partitions; and ‘map’ is the method to call the Map function defined in 

the first step and to pass the input file to it. The ‘count’ method is used to count the number 

of outputs, which is used to trigger the parallelization. 

       

(a) MapReduce pseudocode 

Pseudocode 5.1: 

 

function mapper(x); 

    InputData = ReadData(x) 

    OutputData = FEA(InputData) 

    WriteData(OutputData) 

    return (x, 0) 

 

SparkContext(appName="myApp").parallelize(range(N), 

N).map(mapper).count() 
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                (b) Schematic description 

Figure 5.3 Distributed computing of data processing 

5.5 Level 2 Parallelization: Surrogate Model Training 

5.5.1 Gaussian Process Surrogate Model with Spatially Varying Parameters 

        In order to build a surrogate model for the high-dimensional spatially varying response 

as a function of the calibration parameters, we first classify the calibration parameters into 

two categories: spatially constant calibration parameters (𝜽𝑐) and spatially varying 

calibration parameters (𝜽𝑠(𝒅)). The spatially constant calibration parameters are used 

directly as the inputs of the surrogate model. Since the high-dimensional spatially varying 

parameters bring challenges to the surrogate model training due to the curse of 

dimensionality, 𝜽𝑠(𝒅) is not directly used as input. Considering the fact that the response 𝒚 

at a spatial coordinate 𝒅 is mainly affected by the responses and input parameters near this 

coordinate, we only use the 𝜽𝑠(𝒅) in the neighboring locations of d as the input of 𝒚 at 𝒅. 
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Theoretically, for each spatial point, the parameters over the entire spatial domain should be 

used, since all the parameters will have contribution. However, it may not be necessary to 

consider parameters from all spatial points, depending on how fast the effects decrease with 

distance. Thus, we assume that for each spatial point, the response is only affected by its 

immediate neighbors. For instance, for the response at the location indicated with the blue 

star in Fig. 5.4, the parameters highlighted as red squares will be used as the inputs. Based 

on this assumption, the response at location 𝒅(𝑖) is approximated as 

𝒚(𝒅(𝑖)) ≈ �̂�𝑖(𝜽
𝑐 , 𝜽𝑠(�̂�(𝒊)))                                        (5.6) 

where 𝒅(𝑖) is the 𝑖-th spatial coordinate,  �̂�(𝑖) stands for the neighboring locations of 𝒅(𝑖), 

and  �̂�𝑖(⋅) is the approximation model for the 𝑖-th location. In this chapter, we use the 

Gaussian process model reviewed in Sec. 2.6 to construct the approximation model 

�̂�𝑖(⋅), ∀𝑖 = 1, 2,⋯ ,𝑚, where 𝑚 is the total number of spatial locations. Next, we discuss 

how to build these approximation models. 

5.5.1.1 Generate Training Points 

 

         Defining 𝜷 = [𝜽𝑐 , 𝜽𝑠(𝒅(1)), 𝜽𝑠(𝒅(2)),⋯ , , 𝜽𝑠(𝒅(𝑚))], we first generate 𝑛𝑠 training 

points for 𝜷. For each training point 𝜷(𝑖), the response field is obtained using the original 

simulation model 𝐺 as below: 

[𝒚(𝒅(1), 𝜷(𝑖)), 𝒚(𝒅(2), 𝜷(𝑖)),⋯ , , 𝒚(𝒅(𝑚), 𝜷(𝑖))] = 𝐺(𝜷(𝑖))           (5.7) 

where 𝒚(𝒅(𝒋), 𝜷(𝒊)) denotes the response at the 𝑗-th spatial location of the 𝑖-th training point 

𝜷(𝑖). It should be noted that the output is a field response (as indicated in Eq. (5.7)) for given 
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training point 𝜷(𝒊). 

 

 

Figure 5.4 𝟐𝟏 × 𝟐𝟏 calibration grid and 𝟐𝟎 × 𝟐𝟎 observation points 

        After performing simulations at all the training points, a data matrix is obtained as 

𝒚𝑡𝑜𝑡𝑎𝑙 = {𝒚(𝒅(𝑖), 𝜷(𝑗)), 𝑖 = 1,⋯ ,𝑚; 𝑗 = 1, ⋯ , 𝑛𝑠}. Note that the above matrix is obtained 

by reorganizing the spatial response into a one-dimensional array (i.e., 𝒚(𝒅, 𝜷(𝑗)) =

[𝒚(𝒅(1), 𝜷(𝑗)), 𝒚(𝒅(2), 𝜷(𝑗)),⋯ , 𝒚(𝒅(𝑚), 𝜷(𝑗))] denotes the responses at all the spatial 
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locations).  

5.5.1.2 Surrogate Modeling 

        With the training data matrix 𝒚𝑡𝑜𝑡𝑎𝑙, we then build surrogate models for response at 

different locations based on the assumption made in Eq. (5.6). For the 𝑖-th spatial location, 

we extract the training input values as �̂�𝑖𝑛
(𝑖) = [�̂�1

(𝑖), �̂�2
(𝑖), ⋯ , �̂�𝑠

(𝑖)], where  �̂�𝑗
(𝑖)  =

 [𝜽𝑐 , 𝜽𝑠(�̂�(𝑖))] is the 𝑗-th training point for the 𝑖-th location. The corresponding training 

output values are 𝒚𝑜𝑢𝑡
(𝑖) = [𝒚(𝒅(𝑖), 𝜷(1)), 𝒚(𝒅(𝑖), 𝜷(2)),⋯ , 𝒚(𝒅(𝑖), 𝜷(𝑠))]. Based on the 

training points  [�̂�𝑚
(𝑖), 𝒚𝑜𝑢𝑡

(𝑖) ], the approximated model  �̂�𝑖(⋅) can be built using the Gaussian 

process surrogate modeling technique. However, when the simulation model is executed 

over time, 𝒚(𝒅(𝑖), 𝜷(𝑗)) is a time-dependent trajectory even for a specific spatial location 𝒅(𝑖) 

and we have 𝒚(𝒅(𝑖), 𝜷(𝑗))  =  [𝒚(𝒅(𝑖), 𝜷(𝑗), 𝑡1), 𝒚(𝒅(𝑖), 𝜷(𝑗), 𝑡2),⋯ , 𝒚(𝒅(𝑖), 𝜷(𝑗), 𝑡𝑛𝑡
)], where 

𝑛𝑡 is the number of time instants. This introduces extra challenge to the surrogate modeling. 

Next, we investigate how to address this issue using singular value decomposition (SVD). 

5.5.3 Gaussian Process Surrogate Model with Temporal Correlation 

        Singular value decomposition (SVD) is a multivariate statistical method to describe a 

large amount of high-dimensional data by mapping to a low-dimensional space (Chatterjee 

2000). SVD can be used for handling the temporal correlation of the response. Given 𝑚 data 

points over the spatial domain 𝜴 for 𝑛𝑡 time domain realizations, a data matrix can be 

collected as follows: 
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𝝎 = [𝝎(𝜉1),𝝎(𝜉2),⋯ ,𝝎(𝜉𝑠)]
𝑇 =

[
 
 
 
𝜔(𝑡1, 𝜉1) 𝜔(𝑡1, 𝜉2) ⋯ 𝜔(𝑡1, 𝜉𝑛𝑡

)

𝜔(𝑡2, 𝜉1) 𝜔(𝑡2, 𝜉2) ⋯ 𝜔(𝑡2, 𝜉𝑛𝑡
)

⋮
𝜔(𝑡𝑛𝑡

, 𝜉1)
⋮

𝜔(𝑡𝑛𝑡
, 𝜉2)

⋱
⋯

⋮
𝜔(𝑡𝑛𝑡

, 𝜉𝑛𝑡
)]
 
 
 
𝑇

 (5.7) 

where 𝝎(𝜉𝑖)  =  [𝜔(𝑡1, 𝜉𝑖), 𝜔(𝑡2, 𝜉𝑖),⋯ ,𝜔(𝑡𝑛𝑡
, 𝜉𝑖)] is the 𝑖-th realization.. 

        This large amount of high-dimensional data can be mapped to a low-dimensional space 

by using SVD as 𝝎 =  𝑽𝑴𝑼𝑇, where 𝑽 is a 𝑠 × 𝑛𝑡 matrix, 𝑼 is a 𝑛𝑡 × 𝑛𝑡 orthogonal matrix 

and 𝑴 is a 𝑛𝑡 × 𝑛𝑡 rectangular diagonal matrix with non-negative real numbers 𝝀 =

[𝜆1, 𝜆2, ⋯ , 𝜆𝑚] on the diagonal. Here we donate 𝜸 = 𝑽𝑴, the matrix can be constructed as 

𝝎(⋅, 𝜉𝑖)
𝑇 ≈ ∑ 𝛾𝑖𝑗𝑼𝑗

𝑟
𝑗=1                                        (5.8) 

where 𝝎(⋅, 𝜉𝑖)
𝑇 is the 𝑖-th row of 𝝎, 𝛾𝑖𝑗 is the element of 𝜸 at 𝑖-th row and 𝑗-th column, 𝑼𝑗 

is the 𝑗-th important feature vector used to approximate 𝝎, and 𝑟 is the number of important 

features used. The number of features 𝑟 is determined based on the magnitudes of the 

singular values 𝝀 (Xu, 1998). 

        Based on SVD, the response at spatial location 𝒚𝑎𝑙𝑙
(𝑖) = {𝒚(𝒅(𝑖), 𝜷(𝑗), 𝑡𝑘), 𝑗 =

1, 2,⋯ , 𝑠, 𝑘 = 1, 2,⋯ , 𝑛𝑡} is reconstructed as 

𝒚(𝒅(𝑖), 𝜷(𝑗), 𝑡𝑘) ≈ 𝝁𝒊(𝑡𝑘) + ∑ 𝛾𝑞(𝒅
(𝑖), 𝜷(𝑗))𝑈𝑞(𝒅

(𝒊), 𝒕𝑘), ∀𝑗 = 1, 2,⋯ , 𝑠; 𝑘 =𝑟
𝑞=1

1, 2,⋯ , 𝑛𝑡         (5.9) 

where 𝝁𝑖(𝑡𝑘) is the mean value at location 𝒅(𝒊) at time instant 𝑡𝑘, 𝛾𝑞(𝒅
(𝑖), 𝜷(𝑗)) is the 𝑞-th 

latent response of spatial location 𝒅(𝑖) for the 𝑗-th training point, and 𝑼𝑞(𝒅
(𝒊), 𝑡𝑘) is the value 

of the 𝑞-th important feature 𝑼𝑞 of 𝒅(𝑖) at time instant 𝑡𝑘. 

        Eq. (5.9) shows that the variation in the high-dimensional response mainly comes from 

the variation in 𝜸(𝒅(𝑖), 𝜷(𝑗)) = [𝛾1(𝒅
(𝒊), 𝜷(𝑖)), 𝛾2(𝒅

(𝒊), 𝜷(𝑖)),⋯ , 𝛾𝑟(𝒅
(𝒊), 𝜷(𝑖))], which 

denotes the value of 𝜸 of the response at 𝒅(𝑖) for the 𝑗-th training point. The dimension of 
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𝜸(𝒅(𝑖), 𝜷(𝑗)) is usually much smaller than that of the response 𝒚(𝒅(𝑖), 𝜷(𝑗))  =

 [𝒚(𝒅(𝑖), 𝑡1), 𝒚(𝒅(𝑖), 𝑡2),⋯ , 𝒚(𝒅(𝑖), 𝑡𝑛𝑡
)]. 

        With the training points 𝜸𝑞(𝒅
(𝑖), 𝜷(𝑗)), ∀𝑞 =  1, 2,⋯ , 𝑟;  𝑗 = 1, 2,⋯ , 𝑠 and �̂�𝑖𝑛

(𝑖) =

[�̂�1
(𝑖), �̂�2

(𝑖), ⋯ , �̂�𝑠
(𝑖)], we construct surrogate model for 𝜸𝑞(𝒅

(𝑖), 𝜷(𝑗)), ∀𝑞 =  1, 2,⋯ , 𝑟. After 

substituting 𝜸𝑞(𝒅
(𝑖), 𝜷(𝑗)) with surrogate model 𝜸𝑞(𝒅

(𝑖), 𝜷(𝑗)), Eq. (5.9) becomes: 

𝒚(𝒅(𝒊), 𝜷(𝑗), 𝑡𝑘) ≈ 𝝁𝒊(𝑡𝑘) + ∑ 𝛾𝑞(𝒅
(𝑖), 𝜷(𝑗))𝑈𝑞(𝒅

(𝒊), 𝑡𝑘), ∀𝑗 = 1, 2,⋯ , 𝑠; 𝑘 =𝑟
𝑞=1

1, 2,⋯ , 𝑛𝑡         (5.10) 

where �̂�𝑞(𝒅
(𝒊), 𝜷(𝑗)) stands for the 𝑞-th surrogate model associated with the spatial location 

𝒅(𝑖). Note that 𝛾1, 𝛾2, ⋯ , 𝛾𝑟 are not the original responses but latent responses obtained 

through SVD. 

5.5.3 MapReduce for Surrogate Model Training 

        The MapReduce implementation of surrogate model training is shown in the 

pseudocode in Fig. 5.5. Here ‘x’ is the id of the file which is assigned to a particular slave 

node that the code is running on. Suppose there are n pairs of inputs and outputs, and 

surrogate models will be obtained after the parallel runs on slave nodes. The actual surrogate 

model training function will be called inside the mapper function. Each mapper will read one 

set of inputs and outputs, and save the trained model on to the disk. Note here that for each 

surrogate model, the inputs and outputs could be a vector, depending on the problem.  
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(a) MapReduce pseudocode 

 

(b) Schematic description 

Figure 5.5 Distributed computing of surrogate model training 

 

Pseudocode 5.2: 

 

function mapper(x): 

     InputData = ReadData(x) 

     SurrogateModes = SurrogateTrain(InputData) 

     WriteData(SurrogateModel) 

     return (x, 0) 

 

SparkContext(appName="myApp").parallelize(Filelist, 

N).map(mapper).count() 
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5.6 Level 3 Parallelization: MapReduce for High-dimensional Model Calibration 

5.6.1 Bayesian Calibration of Spatially Varying Parameters 

        We will now discuss how to perform Bayesian calibration for the spatially 

heterogeneous model parameters based on the above developed surrogate model. As 

mentioned in Sec. 5.5.1, we define the calibration parameters 𝜷 =

[𝜽𝒄, 𝜽𝒔(𝒅(1)), 𝜽𝒔(𝒅(2)),⋯ , 𝜽𝒔(𝒅(𝑚))]. We also define 𝒚𝑜𝑏𝑠
𝑎𝑙𝑙 =

[𝒚𝑜𝑏𝑠(𝒅
(1)), 𝒚𝑜𝑏𝑠(𝒅

(2)),⋯ , 𝒚𝑜𝑏𝑠(𝒅
(𝑚))] where 𝒚𝑜𝑏𝑠(𝒅

(𝑖)) =

[𝒚𝑜𝑏𝑠(𝒅
(𝑖), 𝑡1), 𝒚𝑜𝑏𝑠(𝒅

(𝑖), 𝑡2),⋯ , 𝒚𝑜𝑏𝑠(𝒅
(𝑖), 𝑡𝑛𝑡

)]
𝑇
is the observation at the 𝑖-th spatial 

location. A critical step is obtaining the posterior distributions 𝑓(𝜷|𝒚𝑜𝑏𝑠
𝑎𝑙𝑙 ) is the evaluation 

of the likelihood function 𝑳(𝒚𝑜𝑏𝑠
𝑎𝑙𝑙 |𝜷), which is computed based on the assumption made in 

Eq. (5.6) as follows 

𝑳(𝒚𝑜𝑏𝑠
𝑎𝑙𝑙 |𝜷) = ∏ 𝑳(𝒚𝑜𝑏𝑠(𝒅

(𝑖))|𝜷)𝑚
𝑖=1                      (5.11) 

in which 𝑳(𝒚𝑜𝑏𝑠(𝒅
(𝑖))|𝜷) is the probability of observing 𝒚𝑜𝑏𝑠(𝒅

(𝑖)) for given 𝜷. 

        For given 𝜷 and time instants 𝒕, the observation 𝒚𝑜𝑏𝑠(𝒅
(𝑖), 𝑡) at spatial location 𝒅(𝑖) can 

be expressed as 

𝒚𝑜𝑏𝑠(𝒅
(𝑖), 𝒕) = 𝒚(𝒅(𝑖), 𝜷, 𝒕) + 𝜹(𝒅(𝑖), 𝜷, 𝒕) + 𝜀𝑜𝑏𝑠(𝒅

(𝑖), 𝒕)      (5.12) 

in which 𝒚(𝒅(𝑖), 𝜷, 𝒕) is the model prediction at spatial location 𝒅(𝑖) and time instant 𝒕, 

𝜹(𝒅(𝑖), 𝜷, 𝒕) is the model discrepancy term due to numerical approximation and underlying 

missing physics, and 𝜀𝑜𝑏𝑠(𝒅
(𝑖), 𝒕) is observation error which is usually assumed to be a 

Gaussian random variable. 

        Since the prediction model 𝒚(𝒅(𝑖), 𝜷, 𝑡) is approximated by surrogate models in Sec. 
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5.5.1.1, we can rewrite Eq. (5.12) as 

𝒚𝑜𝑏𝑠(𝒅
(𝑖), 𝒕) ≈ �̂�(𝒅(𝑖), 𝜷, 𝒕) + 𝜹(𝒅(𝑖), 𝜷, 𝒕) + 𝜀𝑜𝑏𝑠(𝒅

(𝑖), 𝒕)        (5.13) 

where  �̂�(𝒅(𝑖), 𝜷, 𝒕) is the approximate model (i.e. surrogate model) of 𝒚(𝒅(𝑖), 𝜷, 𝑡) is given 

by 

�̂�(𝒅(𝑖), 𝜷, 𝒕) ≈ 𝜇𝑖(𝒕) + ∑ 𝛾𝑞(𝒅
(𝑖), �̂�)𝑈𝑞(𝒅

(𝑖), 𝒕)𝑟
𝑞=1              (5.14) 

Eq. (5.14) implies that  �̂�(𝒅(𝑖), 𝜷, 𝒕) is a linear combination of surrogate 

model  𝛾𝑞(𝒅
(𝑖), �̂�), 𝑞 = 1, 2,⋯ , 𝑟. Since the prediction of  �̂�(𝒅(𝑖), 𝜷) for given  �̂� follows a 

normal distribution, the prediction of  �̂�(𝒅(𝑖), 𝜷, 𝑡) also follows a normal distribution. 

Note  �̂� = [𝜽𝑐 , 𝜽𝑠(�̂�)] is a subset of 𝜷. The mean and variance of  �̂�(𝒅(𝑖), 𝜷, 𝒕) are given by 

𝝁𝑦(𝒅(𝑖), 𝜷, 𝒕) ≈ 𝝁𝑖(𝒕) + ∑ 𝜇�̂�𝑞
(𝒅(𝑖), �̂�)𝑈𝑞(𝒅

(𝑖), 𝒕)𝑟
𝑞=1       (5.15) 

𝝈𝑦
2(𝒅(𝑖), 𝜷, 𝒕) ≈ ∑ 𝜎�̂�𝑞

2 (𝒅(𝑖), �̂�)𝑈𝑞
2(𝒅(𝑖), 𝑡)𝑟

𝑞=1             (5.16) 

        When the discrepancy term 𝜹(𝒅(𝒊), 𝜷, 𝑡) is modeled as a Gaussian process model, the 

discrepancy term also follows normal distribution for given 𝜷 and 𝒕. Since 𝒚𝑜𝑏𝑠(𝒅
(𝑖), 𝒕) is a 

linear function of  �̂�(𝒅(𝒊), 𝜷, 𝒕), 𝜹(𝒅(𝒊), 𝜷, 𝒕) and 𝜀𝑜𝑏𝑠(𝒅
(𝒊), 𝑡), 𝒚𝑜𝑏𝑠(𝒅

(𝑖), 𝒕) also follows a 

normal distribution. Then mean and variance of 𝒚𝑜𝑏𝑠(𝒅
(𝑖), 𝒕) is given by 

𝝁𝒚𝑜𝑏𝑠
(𝒅(𝑖), 𝜷, 𝒕) ≈ 𝝁𝑖(𝒕) + ∑ 𝜇�̂�𝑞

(𝒅(𝑖), �̂�)𝑈𝑞(𝒅
(𝑖), 𝒕)𝑟

𝑞=1 + 𝝁𝜹(𝒅
(𝑖), 𝜷, 𝒕)    (5.17) 

𝝈𝒚𝑜𝑏𝑠
2 (𝒅(𝑖), 𝜷, 𝒕) ≈ ∑ 𝜎�̂�𝑞

2 (𝒅(𝑖), �̂�)𝑈𝑞
2(𝒅(𝑖), 𝑡) + 𝜎𝛿

2(𝒅(𝑖), 𝜷, 𝒕) + 𝜎𝑜𝑏𝑠
2 (𝒅(𝑖), 𝒕) 𝑟

𝑞=1  (5.18) 

The above equations imply that the uncertainty in the surrogate models  𝛾𝑞(𝒅
(𝑖), 𝜷), 𝑞 =

1, 2,⋯ , 𝑟 will propagate to the uncertainty of 𝒚𝑜𝑏𝑠(𝒅
(𝑖), 𝒕). In addition, the covariance 

between 𝒚𝑜𝑏𝑠(𝒅
(𝑖), 𝒕) at time instants 𝑡𝑗 and 𝑡𝑘 is computed by 
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𝚺𝑖(𝑗, 𝑘) = 𝐸([�̂�(𝒅(𝑖), 𝜷, 𝑡𝑗) + 𝜹(𝒅(𝑖), 𝜷, 𝑡𝑗) + 𝜀𝑜𝑏𝑠(𝒅
(𝑖), 𝑡𝑗)][�̂�(𝒅(𝑖), 𝜷, 𝑡𝑘) +

𝜹(𝒅(𝑖), 𝜷, 𝑡𝑘) + 𝜀𝑜𝑏𝑠(𝒅
(𝑖), 𝑡𝑘)]) − 𝐸([�̂�(𝒅(𝑖), 𝜷, 𝑡𝑗) + 𝜹(𝒅(𝑖), 𝜷, 𝑡𝑗) +

𝜀𝑜𝑏𝑠(𝒅
(𝑖), 𝑡𝑗)])𝐸([�̂�(𝒅(𝑖), 𝜷, 𝑡𝑘) + 𝜹(𝒅(𝑖), 𝜷, 𝑡𝑘) + 𝜀𝑜𝑏𝑠(𝒅

(𝑖), 𝑡𝑘)]) (5.19) 

in which 𝐸(⋅) stands for “expectation”. 

        After simplification, we have 

𝚺𝑖(𝑗, 𝑘) = 𝐸 (�̂�(𝒅(𝑖), 𝜷, 𝑡𝑗)�̂�(𝒅(𝑖), 𝜷, 𝑡𝑘)) − 𝐸 (�̂�(𝒅(𝑖), 𝜷, 𝑡𝑗))𝐸 (�̂�(𝒅(𝑖), 𝜷, 𝑡𝑘)) +

𝐸(𝛿(𝒅(𝑖), 𝜷, 𝑡𝑗)𝛿(𝒅(𝑖), 𝜷, 𝑡𝑘) − 𝐸 (𝛿(𝒅(𝑖), 𝜷, 𝑡𝑗)) 𝐸(𝛿(𝒅(𝑖), 𝜷, 𝑡𝑘))    (5.20) 

In the above equation, 𝐸 (𝜹(𝒅(𝑖), 𝜷, 𝑡𝑗)𝜹(𝒅(𝑖), 𝜷, 𝑡𝑘)) − 𝐸 (𝜹(𝒅(𝑖), 𝜷, 𝑡𝑗))𝐸 (𝜹(𝒅(𝑖), 𝜷, 𝑡𝑘)) 

is the covariance of the model discrepancy at different time instants. If the model discrepancy 

terms are assumed to be independent of time, we have 

𝚺𝑖(𝑗, 𝑘) = 𝐸 (�̂�(𝒅(𝑖), 𝜷, 𝑡𝑗)�̂�(𝒅(𝑖), 𝜷, 𝑡𝑘)) − 𝐸 (�̂�(𝒅(𝑖), 𝜷, 𝑡𝑗))𝐸 (�̂�(𝒅(𝑖), 𝜷, 𝑡𝑘)) (5.21) 

Substituting Eq. (5.14) into Eq. (5.21) yields 

    𝚺𝑖(𝑗, 𝑘) = ∑ 𝜎�̂�𝑞

2 (𝒅(𝑖), �̂�)𝑈𝑞(𝒅
(𝑖), 𝑡𝑗)𝑈𝑞(𝒅

(𝑖), 𝑡𝑘), ∀𝑗, 𝑘 = 1, 2,⋯ , 𝑛𝑡
𝑟
𝑞=1    (5.22) 

Based on Eqs. (5.17), (5.18) and (5.22), 𝐿(𝒚𝑜𝑏𝑠(𝒅
(𝑖))|𝜷) is then computed by 

𝐿(𝒚𝑜𝑏𝑠(𝒅
(𝑖))|𝜷) = 𝐿([𝒚𝑜𝑏𝑠(𝒅

(𝑖), 𝑡1), 𝒚𝑜𝑏𝑠(𝒅
(𝑖), 𝑡2),⋯ , 𝒚𝑜𝑏𝑠(𝒅

(𝑖), 𝑡𝑛𝑡
)]|𝜷) =

1

(2𝜋)
𝑛𝑡
2 √|𝚺𝑖|

exp (−
1

2
(𝒚𝑜𝑏𝑠(𝒅

(𝑖)) − 𝝁𝑖)
𝑇
𝝈𝑖

−1(𝒅(𝑖) − 𝝁𝑖)) (5.23) 

where 𝝁𝑖 = [𝝁𝒚𝑜𝑏𝑠
(𝒅(𝑖), 𝜷, 𝑡1), 𝝁𝒚𝑜𝑏𝑠

(𝒅(𝑖), 𝜷, 𝑡2),⋯ , 𝝁𝒚𝑜𝑏𝑠
(𝒅(𝑖), 𝜷, 𝑡𝑛𝑡

)] and 𝚺i is the 

covariance matrix with 𝚺i(𝑗, 𝑘) is given by Eq. (5.22) and diagonal elements given by Eq. 

(5.18).  

        With Eqs. (5.23) and (5.17), 𝐿(𝒚𝑜𝑏𝑠
𝑎𝑙𝑙 |𝜷) can be computed for given 𝜷. The posterior 

distribution 𝑓(𝜷|𝒚𝑜𝑏𝑠
𝑎𝑙𝑙 ) can then be estimated using Bayesian inference as 
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𝑓(𝜷|𝒚𝑜𝑏𝑠
𝑎𝑙𝑙 ) ∝ 𝐿(𝒚𝑜𝑏𝑠

𝑎𝑙𝑙 |𝜷)𝑓(𝜷)                                     (5.24) 

5.6.2 MapReduce for Data Processing 

        The field data being observed can be of different formats, e.g. images, time histories, 

and other recorded measurements. Usually those raw data cannot be used for calibration 

directly because of noice, thus data processing is needed before feeding into the model. Here 

we consider image processing as an example for the purpose of illustration. Note that the 

general parallelization procedure of image can be applied similarly to other data formats. In 

the case of thermal image processing, the common procedure is: cropping, baseline removal, 

and noise cancellation. The mapper function and the schematic description are shown in Fig. 

5.6. In the mapper function, ‘x’ is the id of the file assigned to the slave node on which this 

function is running on. Note that in the mapper, all the processing steps will be executed 

sequentially. ‘ReadData’ function in Pseudocode 5.3 is used for reading of inputs, and the 

data is stored in variable ‘InputData’. ‘Cropping’ is a function for cropping the images, 

which stores the cropped image pixel values into the variable ‘CroppedImage’.  Finally the 

‘NoiseCancel’ function will be called to cancel the noise in the image and save the output 

onto disk. 
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(a) MapReduce pseudocode 

 

                (b) Schematic description 

Figure 5.6 Distributed computing of data processing 

5.6.3 MapReduce for Likelihood Evaluation 

        The likelihood evaluation step is the most expensive step in Bayesian calibration. The 

parallelization of the likelihood evaluation is realized inside the MCMC MapReduce 

algorithm (Fig. 5.7). 

Pseudocode 5.3: 

 

function mapper(x): 

     InputData = ReadData(x) 

     CroppedImage = Cropping(InputData) 

     NoiseCancelledImage = NoiseCancel(CroppedImage) 

     WriteData(NoiseCancelledImage) 

     return (x, 0) 

 

SparkContext(appName="myApp").parallelize(Filelist, 

N).map(mapper).count() 

 

SparkContext(appName="myApp").parallelize(Filelist, 

N).map(mapper).count() 
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5.6.4 MapReduce for MCMC 

        The basic idea of MCMC parallelization is to divide the observations into 𝑀 splits, with 

each node taking one partition to provide samples of the posterior distribution. The prior 

distribution of the variable of interest will be updated using the equation: 

𝑝𝑚(𝜽) ∝ 𝑝(𝜽)
1

𝑀𝑝(𝒙𝑛𝑚|𝜽)                                   (5.17) 

After all nodes complete their tasks, all the sub-posterior samples from each nodes will be 

combined to produce samples for an estimate of the sub-posterior density product 

𝑝1𝑝2 ⋯𝑝𝑀(𝜽), which is proportional to the full data posterior, i.e., 𝑝1𝑝2 ⋯𝑝𝑀(𝜽) ∝

𝑝(𝜽|𝒙𝑁). 

                   

(a) MapReduce pseudocode 

Pseudocode 5.4: 

 

function mapper(x): 

     InputData = ReadData(x) 

     OutputData = MCMC_Sampling(InputData) 

     SaveSamples(OutputData) 

     return (x, 0) 

 

SparkContext(appName="myApp").parallelize(Filelist, 

N).map(mapper).count() 
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                (b) Schematic description 

Figure 5.7 Distributed computing of parameter calibration by MCMC 

        A Map function is defined (’mapper’), within which all the actual functions are defined 

(ReadData(), MCMC_Sampling(), and SaveSamples()). As shown in Fig. 5.5, the sampling 

process is executed on the slave nodes, while posterior integration is done after all particles 

and weights are saved from the slave nodes. SparkContext and count() function are used the 

same way as in Fig. 5.3. ReadData() is the function used to read observation data and 

parameters, and followed by MCMC_Sampling(), which is the function to perform the 

sampling. SaveSamples() is the function used to save all subset of MCMC chains. 

        In summary, the steps for calibration of high-dimensional model parameters using big 

data analytics are:  (1) parallelize FEA model runs; (2) parallelize the training of surrogate 

models; (3) parallelize model calibration. 

5.7 Numerical Example 

        The proposed methodology for big data analytics in model calibration with 
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heterogeneous materials is illustrated for the calibration of thermal conductivity in a concrete 

structure. A concrete structure with damage is considered, where the damage is simulated by 

drilled holes (Fig. 5.8 (a)) thus introducing heterogeneity. We need to use different 

conductivity coefficient values at different locations in order to use in future prognosis of 

the structure. In a realistic structure, the damaged area could be quite irregular; thus an 

averaged value or a parametric random field representation of property variation may not be 

feasible. As a result, we may need to discretize the entire domain into many sub-domains 

(consistent with the FEA model) and calibrate the property for each sub-domain. In that case, 

calibration becomes a high-dimensional problem if many sub-domains need to be 

considered. 

5.7.1 Collection of Observation Data for Calibration 

5.7.1.1 Experimental Setup 

        The concrete slab is placed on a thermal blanket which is heated according to a 

predefined profile (Fig. 5.8). The top surface temperature is obtained after processing 

thermography images captured by an infrared camera. Note that since the material is highly 

heterogeneous, we are calibrating the thermal conductivity in different locations on the top 

surface. Since we can only observe the thermography image on the top surface, and also the 

thickness is small compared to its length and width, it is reasonable to assume the thermal 

conductivity does not vary along the thickness. 

        To mimic damage and introduce heterogeneity, holes of 1/2 inch, 3/8 inch, and 5/16 

inch diameter (all of them 4.45 inch deep) were drilled into the side of the concrete slab, as 
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shown in Fig. 5.8 (a). The thermal loading history is shown in Fig. 5.8 (b), with heating, 

stable, and cooling periods. In realistic situations, concrete damage could be of many types 

(physical, chemical, and mechanical), due to various causes such as freeze-thaw, chloride 

penetration, alkali-silica reaction etc. Temperature, humidity, and the properties of the 

concrete constituents (cement, aggregates, reinforcing steel, water content, and chemical 

admixtures) play a crucial role in the evolution of various types of damage. Under such 

damage (of unknown geometry), it is only appropriate to model the material as 

heterogeneous. 

 

              

(a) The specimen to be monitored with thermal blanket below  
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(b) The thermal loading history being applied (scaled values) 

Figure 5.8 Experiment setting 

5.7.2 Finite Element Model 

        Fig. 5.9 shows the meshed FEA model implemented in commercial software Abaqus, 

with 3009 nodes and 7038 thermal-coupled elements (994 linear hexahedral elements and 

6044 linear tetrahedral elements). The thermal conductivity coefficients at different spatial 

locations on the top surface need to be calibrated. In the FEA model, the spatial locations are 

represented as a 21 × 21 grid as shown in Fig. 5.4. For each calibration block location, the 

thermal conductivity is considered to be constant. We use 400 (= 20 × 20) observation 

points on the top surface, and assume that the temperature value at each observation point is 

affected by only the four neighboring blocks. For example, observation point 189 is affected 

by blocks 168, 169, 188 and 189 (Fig. 5.4). 
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Figure 5.9 FEA model for concrete slab 

Table 5.1 Concrete model parameters 

Parameter Unit Value 

Elasticity 𝑃𝑎 40 × 109 

Poisson’s ratio − 0.15 

Thermal expansion 1/𝐾 7.4 × 10−6  

Specific heat 𝐽/𝐾𝑔 ⋅ 𝐾 880 

         

        Table 5.1 shows the concrete model parameters except thermal conductivity 𝑘. Thermal 

conductivity is considered to be in the range of [0.8, 2.5] 𝑊 ⋅ 𝑚−1 ⋅ 𝐾−1. Since the FEA 

model is too expensive for Bayesian calibration, we use a surrogate model to replace it. 

Training points of the surrogate model are obtained using a Latin-hypercube design, with 5 

conductivity values in each block. Thus for each observation point, the number of DOE 

points are 625 =  5 × 5 × 5 × 5, since 𝑘 values at four neighboring blocks are used as 

inputs to the surrogate model for each spatial location. One example realization of training 

inputs is shown in Fig. 5.10 (the axis values are block indices in 𝑥 and 𝑦 direction). Since in 
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each FEA run, the temperature at all locations can be obtained at the same time, the total 

number of FEA runs will be 625. These 625 runs can be parallelized via MapReduce as 

described in Sec. 5.3. 

 

 

Figure 5.10 Example realization of 𝒌 values for one training point 

5.7.3 Surrogate Model Training 

        Based on the inputs (conductivity values) and outputs (nodal temperature values in each 

run), the Gaussian process surrogate model can be obtained. One example output is shown 

in Fig. 5.11. For each FEA output, we will have a series of output for 70 time steps (70 

mins). For each spatial location 𝑖, if we create a surrogate model for each time step, we will 



 

104  

lose the correlation between each time step. In order to capture the correlation over time, and 

also to reduce the dimension, singular value decomposition (SVD) is applied. Following Eq. 

(5.8), where 𝝎 is the temperature output at each location for all 625 training points (625 ×

70), 𝑽 is the left singular vectors (70 × 70), 𝑴 is the matrix of singular values (70 × 70), 

and 𝑼 is the matrix of right singular vectors (70 × 70). Here we choose only the first two 

components, which means we will use the first two columns of 𝑽𝑴, and the first two rows 

of 𝑼. Thus we have two bases 𝑼0 and 𝑼1 are used here as an example (Fig. 5.12(a)), and the 

corresponding coefficient for each DOE output will have a dimension of 1 × 2 (Fig. 5.12 

(b)). Fig. 5.12 (c) shows that the 2-components SVD captures the temporal history very well. 

 

Figure 5.11 Example result of FEA model (@ t = 1800s) 
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(a) principal components                           (b) coefficients 

 

(c) fitting by SVD 

Figure 5.12 SVD decomposition example (@𝒅(0)) 

        We build surrogate models for each of the 2 coefficients, 𝛾0(𝒅
(𝑖) , �̂�), 𝛾2(𝒅

(𝑖) , �̂�), 𝑖 =

0, 1,⋯ ,399, and the inputs are the 4 neighboring 𝑘s. Thus the total number of surrogate 

models will be 800 =  2 ×  400. The training of those surrogate models can be parallelized 

by following the procedure in Sec. 5.5.3. Fig. 5.12 shows the performance of the trained 
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surrogate model. Here 80% of the data (500 data points) are used for training, while 20% 

of the data are used for validation. 

 

Figure 5.13 Performance of surrogate model 

5.7.4 Calibration 

        After all the surrogate models are trained for each spatial location, the calibration 

variables, model outputs, and observations can be represented using a Bayesian network. 

Fig. 5.14 sows the network for one location (4 blocks), in which ellipses are random 

variables, and squares are observations. Red ellipses denote the random variables that 

represent the conductivity coefficients 𝑘𝑗 , 𝑗 = 0, 1,⋯ , 440 to be calibrated, while the yellow 

ellipses denote random variables that represent the SVD coefficients of model outputs for 
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each spatial location 𝛾0(𝒅
(𝑖) , �̂�), 𝛾2(𝒅

(𝑖) , �̂�), 𝑖 = 0, 1,⋯ ,399, which can be obtained from 

the corresponding surrogate model. Each blue ellipse represents the temperature random 

variable 𝑇𝑖 for a spatial location 𝑖, where 𝑖 = 0, 1,⋯ ,399. Note here that each 𝑇𝑖 follows a 

multivariate normal distribution 𝑁(𝝁,𝜮), where 𝝁 = 𝐸[𝑇𝑖,𝑙], 𝑙 = 0, 1,⋯ , 69 and 𝜮 =

𝐶𝑜𝑣[𝑇𝑖,𝑙 , 𝑇𝑖,𝑚], 𝑙 = 0, 1,⋯ , 69;  𝑚 = 0, 1,⋯ , 69. Here 𝐸 refers to the expectation function 

and 𝐶𝑜𝑣 refers to the covariance function. In our case, 

𝝁𝒚𝑜𝑏𝑠
(𝒅(𝑖), 𝜷, 𝑡 ) ≈ 𝝁𝑖(𝑡) + 𝝁�̂�0

(𝒅(𝑖), �̂�)𝑼0(𝒅
(𝑖), 𝑡) + 𝝁�̂�1

(𝒅(𝑖), �̂�)𝑼1(𝒅
(𝑖), 𝑡) +

𝜇𝛿(𝒅
(𝑖), 𝜷, 𝒕) (5.18) 

𝚺𝑖(𝑗, 𝑘) = 𝜎�̂�0

2 (𝒅(𝑖), �̂�)𝑼0(𝒅
(𝑖), 𝑡𝑗)𝑼0(𝒅

(𝑖), 𝑡𝑘) +

𝜎�̂�1

2 (𝒅(𝑖), �̂�)𝑼1(𝒅
(𝑖), 𝑡𝑗)𝑼1(𝒅

(𝑖), 𝑡𝑘), ∀𝑗, 𝑘 = 0, 1,⋯ , 69 (5.19) 

Given the observation {𝑇𝑖,𝑙}, where 𝑖 = 0, 1,⋯ , 399, and 𝑙 = 0, 1,⋯ , 69, the likelihood 

function computation is parallelized following the procedure in Sec.5.6.4. Finally, thermal 

conductivity coefficients at each spatial location are updated via the parallelization of 

MCMC. 

        Fig. 5.15 shows two examples of the calibration results, where the prior and posterior 

of parameters and are plotted. It is observed reduction of variance happens for both. Similar 

performance was observed for all the other parameters. Fig. 5.17 shows an overview of all 

the 441 calibrated parameters, where mean values are plotted. Besides this, it will be useful 

to check the correlations among the calibrated parameters. For example, the correlations 

between parameter 𝑘210 and the other parameters in the same row 𝑘211, 𝑘212, ⋯ , 𝑘230 (Fig. 

5.4) are calculated and plotted in Fig. 5.16. A general decreasing trend can be observed 

except one outlier (marked in red). 
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Figure 5.14 Bayesian network for calibration at location 0 (See Fig. 5.4) 

 

(a) 𝑘0                                               (b) 𝑘32 

Figure 5.15 Calibration results 
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Figure 5.16 Correlation of 𝒌𝟐𝟏𝟎 with the other nodes in the same row 

 

Figure 5.17 Calibration result shown over the slab top surface (mean) 
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5.7.5 MapReduce Performance 

        Now we discuss the performance of MapReduce in FEA parallelization. In this study, 

50 nodes were used for parallelization. For the purpose of comparison, computation using 

the traditional sequential method at a single node was also performed. The configurations of 

computers are shown in Table 5.2.  

Table 5.2 Nodes comparison 

Method CPU (GHZ) Memory (GB) 

Desktop 3.4 × 8 12 

Cluster node 2.3 10 

 

Table 5.3 Time cost of traditional method and MapReduce method 

Method Time (hr.) 

Desktop 363 

Cluster node (50 nodes) 42 

         

        It is worth noting that the CPU clock speed and memory size of the local machine where 

the traditional methods were running are larger than that of the cluster nodes. The 

comparison between the time cost of the traditional method and MapReduce method is 

shown in Table 5.3. MapReduce showed significant computational efficiency (almost 9 

times faster). It can be expected that as the number of nodes increases, the time cost could 

reduce further, but may not be in a linear trend. The reason is that the communication 

between the master node and slave node also consumes time. The individual time cost shows 
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that model calibration consumes most of the computational resources (Table 5.4). Also the 

heterogeneity of performance of the cluster nodes is shown through a scatter plot and a 

histogram in Fig. 5.18. 

 

Table 5.4 Time cost of individual steps on desktop 

Method Time (hr.) 

FEA model 6 

Surrogate model training 1 

Calibration 363 

 

 

(a) scatter plot                                           (b) histogram 

Figure 5.18 Computational nodes performance 

5.8 Summary 

        This chapter investigated the MapReduce technique to parallelize the model calibration 

process in a high-dimensional parameter space and in the presence of big data, in order to 
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make the computation efficient without lowering the accuracy. MapReduce is investigated 

in three steps of the model calibration process: (1) multiple runs of the original physics model 

to generate training points to build an inexpensive surrogate model, (2) training of the 

surrogate model to be used in calibration, (3) construction of likelihood functions for large 

volume observations, and Bayesian posterior construction (via the MCMC algorithm) using 

the surrogate model and likelihood function. The methodology is illustrated for the 

estimation of heterogeneous thermal conductivity at different locations in a damaged 

concrete structure, using data from infrared thermography (IR).  

 

        Future research needs to address several extensions. First of all, a single surrogate 

model could be created, instead of multiple small-size surrogate models. This will be 

investigated in next Chapter. In that case, spatial correlation can be handled with no 

approximation. However, since there would be only one model, the training process will be 

parallelized internally, instead of doing the parallelization file-wise. Furthermore, since the 

single surrogate model will have large number of parameters, due to high dimensionality, 

much more training points are needed. Thus there is tradeoff between multiple small-size 

surrogate models and a single large surrogate model, which is accuracy vs. effort. On the 

other hand, when preparing the surrogate model training points, repeated FEA model runs 

are needed, which were also parallelized externally (file-wise). The FEA node can be 

parallelized internally, since external parallelization is limited by the number of available 

licenses of the commercial software. The internal parallelization of FEA model runs may 

already be available in existing commercial software, which may be taken advantage to save 

licenses cost. Compared with the random field approach (Nath et al. (2017)), the proposed 
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method is more expensive, but necessary when the material is highly heterogeneous and the 

structure is damaged, where a random field approach may not be applicable.  
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CHAPTER 6 

BIG DATA ANALYTICS IN DISTRIBUTON SURROGATE MODELING 

 

6.1 Background 

        As reviewed in Sec. 2.5, there are two types of surrogate models: response surrogate 

and distribution surrogate. As a response surrogate, the Gaussian process surrogate model is 

used in Chapter 4 and Chapter 5. For a high dimensional problem, when using response 

surrogate, multiple surrogate models are required for a field output. In contrast, a single 

evaluation of the distribution surrogate provides the entire output distribution considering all 

the uncertain variables at a given value of the input variable (Liang, 2015). In this chapter, 

we will address the big data analytics in distribution surrogate modeling. 

        A significant benefit of the distribution surrogate is the ability to consider spatial 

variability of heterogeneous properties in one single model, instead of multiple smaller-

dimensional models as was considered in Chapter 5. In addition, inference with approximate 

distribution surrogates such as a Gaussian mixture model (McLachlan, 2000; Bishop, 2006) 

is much faster, since analytical solutions are available, which can be directly used to obtain 

the conditional distribution (in model calibration or prediction). 

        However, when the data size is large and parameter dimension is high, the training of 

the Gaussian mixture model (GMM) becomes expensive, thus posing a challenge to 

traditional computing (sequential computing). Therefore this chapter focuses on the 

parallelization of GMM training, including the data processing (which is used for the 
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observation) and model training (parallelize the training process). Since after surrogate 

model is trained, analytical solutions can be obtained for the posterior distributions, there is 

no need for the calibration calculations to be parallelized. 

        Different schemes of scalable GMM have been investigated by researchers. Feldman et 

al. (2011) proposed a way of constructing core-sets (i.e., weighted subsets of the data) for 

mixtures of Gaussians to allow the GMM to be applicable for a massive data set. It was found 

that Gaussian mixtures admit core-sets whose size is independent of data size. Jin et al. 

(2005) proposed scalable GMM based on data summarization. Parsimonious GMM 

(McNicholas et al., 2009) is another data reduction method combined with parallelization, 

which accelerates model training and selection. Both of the three methods above are 

achieved by approximations. On the other hand, researchers studied the parallelization 

without data reduction. For example, Kumar et al. (2009) proposed parallelization of GMM 

via CUDA (Compute Unified Device Architecture) on GPUs. However, this will face the 

limitations of GPU parallelization discussed earlier (Sec. 5.1). Kwedlo (2014) implemented 

GMM parallelization using MPI, which is a shared memory parallelization based on data 

decomposition. This will inherit the limitations of MPI (Sec. 3.1).  

        In this chapter, MapReduce parallelization of GMM will be investigated. Since GMM 

relies on the Expectation-Maximization (EM) algorithm (described in Chapter 2), the 

parallelization of E-step and M-step can be realized either by partitioning the samples or by 

partitioning the components. Furthermore, in order to perform model selection, GMMs with 

different configurations can also be parallelized. Thus this chapter proposes three different 

options for parallelization. Since the parallelization of E-step and M-step is performed inside 

a single GMM, we denote this form as ‘internal’ GMM parallelization; on the other hand, 
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the parallelization at the model selection level is termed ‘external’ GMM parallelization in 

the discussion below. 

6.2 Challenges due to High-Dimensional Model Parameters 

        Due to material variability, the material parameters to be calibrated, 𝜽, may be defined 

as functions of locations 𝒅. Since 𝒅 is a large vector, the number of parameters 𝜽(𝒅) is very 

large. Therefore, the calibration process is unaffordable using the conventional model 

calibration method, if it is impossible to develop a parametric representation of the model 

parameter over the spatial domain. Furthermore, full field observations (such as optical or 

thermal images) collected over a long time period will bring in the big data issue. Thus this 

section discusses our approach to handle the spatially varying parameters and temporal 

correlation. 

6.2.1 Spatially Varying Parameters 

        As explained in Sec. 5.5.1, to build a surrogate model for the high-dimensional spatially 

varying response as a function of the calibration parameters, we first classify the calibration 

parameters into two categories: spatially constant calibration parameters (𝜽𝑐) and spatially 

varying calibration parameters (𝜽𝑠(𝒅)). In this chapter, in order to build a full-scale surrogate 

model, 𝜽𝑠(𝒅) is directly used as inputs, instead of only using the 𝜽𝑠(𝒅) in the neighboring 

locations of d as the inputs of 𝒚 at 𝒅. The response at location 𝒅(𝑖) is represented as 

𝒚(𝒅(𝑖)) = �̂�(𝜽𝑐, 𝜽𝑠(𝒅))                                        (6.1) 

where 𝒅(𝑖) is the 𝑖-th spatial coordinate,  and  �̂�(⋅) is the surrogate model. As mentioned 

earlier, GMM is used as the surrogate model in this chapter. 
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6.2.1.1 Generation of Training Points 

        Defining 𝜷 = [𝜽𝑐 , 𝜽𝑠(𝒅(1)), 𝜽𝑠(𝒅(2)),⋯ , , 𝜽𝑠(𝒅(𝑚))], we first generate 𝑛𝑠 training 

points for 𝜷. For each training point 𝜷(𝑖), the response field is obtained using the original 

simulation model 𝐺 as below: 

𝒚(𝒅(𝑗), 𝜷(𝑖)) = 𝐺(𝜷(𝑖))                                             (6.2) 

where 𝒚(𝒅(𝒋), 𝜷(𝒊)) denotes the response at the 𝑗-th spatial location of the 𝑖-th training point 

𝜷(𝑖). It should be noted that the output is a field response (as indicated in Eq. (6.2)) for given 

training point 𝜷(𝒊). 

 

Figure 6.1 𝟏𝟎 × 𝟏𝟎 calibration grid and 𝟗 × 𝟗 observation points 
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        After performing simulations at all the training points, a data matrix is obtained as 

𝒚𝑡𝑜𝑡𝑎𝑙 = {𝒚(𝒅(𝑖), 𝜷(𝑗)), 𝑖 = 1,⋯ ,𝑚; 𝑗 = 1, ⋯ , 𝑛𝑠}. Note that the above matrix is obtained 

by reorganizing the spatial response into a one-dimensional array (i.e., 𝒚(𝒅, 𝜷(𝑗)) =

{𝒚(𝒅(1), 𝜷(𝑗)), 𝒚(𝒅(2), 𝜷(𝑗)),⋯ , 𝒚(𝒅(𝑚), 𝜷(𝑗))} denotes the responses at all the spatial 

locations).  

6.2.1.2 Time History Output 

        With the training data matrix 𝒚𝑡𝑜𝑡𝑎𝑙, we try to build the surrogate model. We extract the 

input training points as  �̂�𝑖𝑛 = �̂�, and the corresponding output training points as 𝒚𝑜𝑢𝑡 =

𝒚(𝒅, �̂�). However, when the simulation model is performed over time, 𝒚(𝒅(𝑖), 𝜷(𝑗)) is a 

time-dependent trajectory even for a specific spatial location 𝒅(𝑖) and we have 

𝒚(𝒅(𝑖), 𝜷(𝑗))  =  [𝒚(𝒅(𝑖), 𝜷(𝑗), 𝑡1), 𝒚(𝒅(𝑖), 𝜷(𝑗), 𝑡2),⋯ , 𝒚(𝒅(𝑖), 𝜷(𝑗), 𝑡𝑛𝑡
)], where 𝑛𝑡 is the 

number of time instants. This introduces extra challenge to the surrogate model construction. 

Next, we investigate how to address this issue using singular value decomposition (SVD). 

6.2.2 Handling Temporal Correlation 

        Singular value decomposition (SVD) is a multivariate statistical method to describe a 

large amount of high-dimensional data be mapping to a low-dimensional space (Chatterjee 

2000). SVD can be used for handling the temporal correlation of the response. Given 𝑚 data 

points over the spatial domain 𝜴 for 𝑛𝑡 time domain realizations, a data matrix can be 

collected as follows: 
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𝝎 = [𝝎(𝜉1),𝝎(𝜉2),⋯ ,𝝎(𝜉𝑠)]
𝑇 =

[
 
 
 
𝜔(𝑡1, 𝜉1) 𝜔(𝑡1, 𝜉2) ⋯ 𝜔(𝑡1, 𝜉𝑛𝑡

)

𝜔(𝑡2, 𝜉1) 𝜔(𝑡2, 𝜉2) ⋯ 𝜔(𝑡2, 𝜉𝑛𝑡
)

⋮
𝜔(𝑡𝑛𝑡

, 𝜉1)
⋮

𝜔(𝑡𝑛𝑡
, 𝜉2)

⋱
⋯

⋮
𝜔(𝑡𝑛𝑡

, 𝜉𝑛𝑡
)]
 
 
 
𝑇

 (6.3) 

where 𝝎(𝜉𝑖)  =  [𝜔(𝑡1, 𝜉𝑖), 𝜔(𝑡2, 𝜉𝑖),⋯ ,𝜔(𝑡𝑛𝑡
, 𝜉𝑖)] is the 𝑖-th realization. 

        This large amount of high-dimensional data can be mapped to a low-dimensional 

representation by using SVD as 𝝎 =  𝑽𝑴𝑼𝑇, where 𝑽 is a 𝑠 × 𝑛𝑡 matrix, 𝑼 is a 𝑛𝑡 × 𝑛𝑡 

orthogonal matrix and 𝑴 is a 𝑛𝑡 × 𝑛𝑡 rectangular diagonal matrix with non-negative real 

numbers 𝝀 = [𝜆1, 𝜆2, ⋯ , 𝜆𝑚] on the diagonal. Here we donate 𝜸 = 𝑽𝑴, and the matrix can 

be constructed as 

𝝎(⋅, 𝜉𝑖)
𝑇 ≈ ∑ 𝛾𝑖𝑗𝑼𝑗

𝑟
𝑗=1                                        (6.4) 

where 𝝎(⋅, 𝜉𝑖)
𝑇 is the 𝑖-th row of 𝝎, 𝛾𝑖𝑗 is the element of 𝜸 at 𝑖-th row and 𝑗-th column, 𝑼𝑗 

is the 𝑗-th important feature vector used to approximate 𝝎, and 𝑟 is the number of important 

features used. The number of features 𝑟 is determined based on the magnitudes of the 

singular values 𝝀 (Xu, 1998). 

        Based on SVD, the response at spatial location 𝒚𝑎𝑙𝑙
(𝑖) = {𝒚(𝒅(𝑖), 𝜷(𝑗), 𝑡𝑘), 𝑗 =

1, 2,⋯ , 𝑠, 𝑘 = 1, 2,⋯ , 𝑛𝑡} is re-constructed as 

𝒚(𝒅(𝑖), 𝜷(𝑗), 𝑡𝑘) ≈ 𝝁𝒊(𝑡𝑘) + ∑ 𝛾𝑞(𝒅
(𝑖), 𝜷(𝑗))𝑈𝑞(𝒅

(𝒊), 𝒕𝑘), ∀𝑗 = 1, 2,⋯ , 𝑠; 𝑘 =𝑟
𝑞=1

1, 2,⋯ , 𝑛𝑡         (6.5) 

where 𝝁𝑖(𝑡𝑘) is the mean value at location 𝒅(𝒊) at time instant 𝑡𝑘, 𝛾𝑞(𝒅
(𝑖), 𝜷(𝑗)) is the 𝑞-th 

latent response of spatial location 𝒅(𝑖) for the 𝑗-th training point, and 𝑼𝑞(𝒅
(𝒊), 𝑡𝑘) is the value 

of the 𝑞-th important feature 𝑼𝑞 of 𝒅(𝑖) at time instant 𝑡𝑘. 

        Eq. (6.5) shows that the variation in the high-dimensional response mainly comes from 

the variation in 𝜸(𝒅(𝑖), 𝜷(𝑗)) = [𝛾1(𝒅
(𝒊), 𝜷(𝑖)), 𝛾2(𝒅

(𝒊), 𝜷(𝑖)),⋯ , 𝛾𝑟(𝒅
(𝒊), 𝜷(𝑖))], which 
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denotes the value of 𝜸 of the response at 𝒅(𝑖) for the 𝑗-th training point. The dimension of 

𝜸(𝒅(𝑖), 𝜷(𝑗)) is usually much smaller than that of the response 𝒚(𝒅(𝑖), 𝜷(𝑗))  =

 [𝒚(𝒅(𝑖), 𝑡1), 𝒚(𝒅(𝑖), 𝑡2),⋯ , 𝒚(𝒅(𝑖), 𝑡𝑛𝑡
)]. 

        With the training points 𝜸𝑞(𝒅
(𝑖), 𝜷(𝑗)), ∀𝑞 =  1, 2,⋯ , 𝑟;  𝑗 = 1, 2,⋯ , 𝑠 and �̂�𝑖𝑛

(𝑖) =

[�̂�1
(𝑖), �̂�2

(𝑖), ⋯ , �̂�𝑠
(𝑖)], we construct surrogate model for 𝜸𝑞(𝒅

(𝑖), 𝜷(𝑗)), ∀𝑞 =  1, 2,⋯ , 𝑟. After 

substitute 𝜸𝑞(𝒅
(𝑖), 𝜷(𝑗)) with surrogate model 𝜸𝑞(𝒅

(𝑖), 𝜷(𝑗)), Eq. (6.5) becomes: 

𝒚(𝒅(𝒊), 𝜷(𝑗), 𝑡𝑘) ≈ 𝝁𝒊(𝑡𝑘) + ∑ 𝛾𝑞(𝒅
(𝑖), 𝜷(𝑗))𝑈𝑞(𝒅

(𝒊), 𝑡𝑘), ∀𝑗 = 1, 2,⋯ , 𝑠; 𝑘 =𝑟
𝑞=1

1, 2,⋯ , 𝑛𝑡         (6.6) 

in which �̂�𝑞(𝒅
(𝒊), 𝜷(𝑗)) stands for the 𝑞-th surrogate model associated with the spatial 

location 𝒅(𝑖). Note that 𝛾1, 𝛾2, ⋯ , 𝛾𝑟 are not the original response but latent response obtained 

through SVD. 

6.3 Construction of Gaussian Mixture Model  

        From the discuss above, after repeated runs of FEA models with different parameters, 

training points of {(𝜷(𝑗), 𝒚(𝑗)), ∀ 𝑗 = 1, 2, … , 𝑛𝑠} can be obtained, where 

𝒚(𝒅, 𝜷(𝑗)) = {𝒚(𝒅(1), 𝜷(𝑗)), 𝒚(𝒅(2), 𝜷(𝑗)),⋯ , 𝒚(𝒅(𝑚), 𝜷(𝑗))} is the output for parameter 

𝜷(𝑗). Note the 𝒚(𝒅, 𝜷(𝑗)) above is a function of time and space, thus to handle the spatial 

correlation, SVD method will be used (Eq. (6.6)) to obtain 𝑟 set of basis 𝑈𝑞, and coefficients 

𝛾𝑞(𝒅
(𝑖), 𝜷(𝑗)). Now GMM can be trained via the details discussed in Sec. 2.5.2. Note that 

the number of components (𝐾 in Eq. (2.7)) of a GMM is undetermined. Determine the 

number of components is  a very important step, which will be discussed below. 

        Selecting the number of components in a GMM is a process of selecting the model with 
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the least information loss. There are two commonly used criteria in model selection – the 

Akaike information criterion (Akaike, 1974) and the Bayesian information criterion 

(Schwarz, 1978). In this chapter, Akaike information criterion is applied for model selection. 

The AIC is defined as 

𝐴𝐼𝐶 = 2𝑘 − 2ln (𝐿)                                         (6.7) 

where 𝐿 is the maximized value of the likelihood function of the model 𝐺, i.e., 𝐿 =

𝑝(𝒙|𝜽, 𝐺), where 𝜽 are the parameter values that maximize the likelihood function; 𝒙 is the 

observed data; 𝑛 is the number of data points in 𝒙; and 𝑘 is the number of free parameters to 

be estimated.  

        In order to find the model with the lowest AIC score, a global optimization method 

(such as genetic algorithm) could be applied. However, if the potential model numbers is not 

large, we can enumerate all the model configurations (number of components, i.e., 𝑁 in Eq. 

(6.2)).  

6.4 Parallelization of GMM Construction 

        As mentioned in Sec. 6.1, three options for parallelization of GMM construction are 

developed here. The first option is to solve all the candidate GMM models (i.e., with different 

numbers of components) in parallel, but within each model solving process (i.e., E-step and 

M-step), it is sequential (scheme 1). We refer to this type of parallelization as “external”. 

The second option is to parallelize the E-step and M-step for each of the GMM model. Inside 

each model, the E-step and M-step are solved in parallel, but different models are solved 

sequentially (scheme 2 and scheme 3). We refer to this type of parallelization as “internal”. 

Since potentially both big data property (large sample size 𝑁) and high-dimension property 
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(large number of components required 𝐾) are present, the parallelization can be done either 

by partitioning the training samples (scheme 2) or by partitioning the components (scheme 

3). 

6.4.1 GMM Parallelization Scheme 1: MapReduce Implementation of GMM Model 

Selection (external parallelization) 

 

        It is straightforward to parallelize the GMM model selection, since each individual 

model training is independent of the others; therefore it is naturally reasonable to split all the 

𝑛 model training tasks into 𝑀 partitions, which will be sent to 𝑚 nodes (Fig. 6.1 (b)). Similar 

to the parallelization of data processing, 𝑀 should be greater than or equal to 𝑚 to avoid 

waste of resources, since otherwise there would be idle workers. 

        Pseudocode 6.1 in Fig. 6.2 (a) is the MapReduce pseudocode and the schematic 

description is shown in Fig. 6.2 (b). ‘GMMs’ refers to the GMM training tasks, which is 

composed by GMM models with different component numbers. ‘M’ is the number of 

partitions as explained above. ‘count()’ is used for triggering the parallelization, as usual. 

The ‘mapper’ function is the function to be executed by workers. The argument ‘x’ is the 

task id received by a worker, which will be used for reading the input data (realized by 

‘ReadData(x)’ function). ‘EM’ is the function of performing the training process, with the 

trained model (‘GMM_x’) saved on to the disk via ‘WriteData(GMM_x)’ function. 
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(a) MapReduce pseudocode 

                           

               (b) Schematic description 

Figure 6.2 GMM parallelization scheme 1 

6.4.2 GMM Parallelization Scheme 2: MapReduce Implementation of EM by 

Partitioning the Samples (Internal Parallelization) 

 

        For this parallelization scheme, in  the E-step, 𝑁 training points (samples) are split into 

𝑀 partitions; and for each sub-group of training points (𝒙𝑖), log likelihood will be calculated, 

which will be combined and used for the calculation of posterior distributions (Eq. (6.8)). In 

Pseudocode 6.1: 

 

function mapper(x): 

     InputData = ReadData(x) 

     GMM_x = EM(InputData) 

     WriteData(GMM_x) 

     return (x, 0) 

 

SparkContext(appName="myApp").parallelize(GMMs, 

M).map(mapper).count() 
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M-step, similarly, each node will process the subset 𝒙𝑖 and after combination, 𝝁𝑗, 𝚺𝑗 and 𝝅𝑗 

can be obtained (Eqs. (2.9) – (2.12)). However, since in the M-step, the most computationally 

intense part is the calculation of covariance matrix, it is practical to only parallelize the 

computation of 𝚺j. 

        Pseudocode 6.2 in Fig. 6.3 (a) is the MapReduce pseudocode of GMM parallelization 

scheme 2. Similar to Pseudocode 6.1, ‘GMMs’ refers to the GMM training tasks (total 

number is 𝑛), which is composed by GMM models with different component numbers. The 

outer loop ‘for GMM in GMMs’ indicates that each GMM with a certain configuration 

(number of components) will be trained one by one (sequentially). For the GMM being 

trained, ‘ReadData’ function will read training samples (stored in variable ‘samples’), as 

well as configurations (stored in variable ‘num_of_components’). Then, 

‘InitializeComponents’ is used for initialization of components (𝝁𝑗, 𝚺𝑗 and 𝝅𝑗). The second 

loop ‘for component in components’ indicates the iteration over components, for each 

component which is being worked on, E-step and M-step will be parallelized inside ‘function 

E_step and function M_step’. Inside ‘function E_step’, as usual, ‘count()’ is the function to 

trigger the parallelization, which splits ‘samples’ into 𝑀 parts, and sends to the available 

workers (slave nodes). After likelihood is calculated for the assigned samples partition, it is 

save onto disk by ‘WriteData’. ‘CombineLikelihood’ is used to merge all calculated 

likelihood values by adding the log likelihood values. ‘ComputePosterior’ will compute the 

posterior following Eq. (2.8). Similar procedure is in ‘function M_step’, inside which 

covariance matrix is solved in parallel due to the reason explained in the previous paragraph. 
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(a) MapReduce pseudocode 

 

 

Pseudocode 6.2: 

 

for GMM in GMMs: 

     samples, num_of_components = ReadData(GMM) 

     components = InitializeComponents (num_of_components) 

 

     for component in components: 

          function E_step (samples): 

               function mapper(x): 

                    Likelihood_x = LikelihoodCal(x) 

                    WriteData(Likelihood_x) 

                    return (x, 0)  

               SparkContext(appName="myApp").parallelize(samples, M).map(mapper).count() 

               CombineLikelihoods() 

               posterior = ComputePosterior() 

 

          function M_step (samples, posterior): 

               pi = ComputeMixingcoefficients(samples) 

               mean = ComputeMean(Samples) 

               function mapper(x): 

                    cov_x = ComputeCov(x, mean) 

                    WriteData(pi, mean, cov) 

                    return (x, 0)  

          SparkContext(appName="myApp").parallelize(samples, M).map(mapper).count() 

          cov = CombineCov()  
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(b) Schematic description (red boxes are map tasks) 

Figure 6.3 GMM parallelization scheme 2 

6.4.3 GMM Parallelization Scheme 3: MapReduce Implementation of EM by 

Partitioning the Components (Internal Parallelization) 

 

        For this parallelization scheme, in the E-step, 𝐾 components are split into 𝑀 partitions, 

for each sub-group of components (𝒌𝑖), log likelihood will be calculated, which will be 

combined and to be used for the calculation of posterior distributions (Eq. (2.8)). In the M-

step, similarly, each node will process the subset 𝒌𝑖 and after combination, 𝝁𝑗, 𝚺𝑗 and 𝝅𝑗 can 

be obtained (Eqs. (2.9) – (2.12)).  

        Pseudocode 6.3 in Fig. 6.4 (a) is the MapReduce pseudocode of GMM parallelization 

scheme 3. As the same as Pseudocode 6.2, for each GMM, ‘samples’ and ‘components’ will 

be read and initialized. Then within ‘function E_step’, likelihood values are calculated in 

parallel and combined by ‘CombineLikelihoods()’, and posterior can be obtained based on 

the combined likelihood. Within ‘function M_step’, after directly compute 𝝁𝑗 by 
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‘ComputeMixingcoefficients’ and 𝝅𝑗 by ‘ComputeMean’, 𝚺j is computed by splitting 

components, sending to slave nodes by ‘SparkContext’, and combining the partial results by 

‘CombineCov()’.  

 

(a) MapReduce pseudocode 

 

 

Pseudocode 6.3: 

 

for GMM in GMMs: 

     samples, num_of_components = ReadData(GMM) 

     components = InitializeComponents (num_of_components) 

     function E_step (samples, components): 

           function mapper(x): 

               Likelihood_x = LikelihoodCal(x); 

               WriteData(Likelihood_x); 

               return (x, 0)  

           SparkContext(appName="myApp").parallelize(components, M).map(mapper).count() 

           CombineLikelihoods() 

           posterior = ComputePosterior() 

 

     function M_step (samples, components, posterior): 

          pi = ComputeMixingcoefficients(samples)  

          mean = ComputeMean(samples)  

          function mapper(x): 

               cov_x = ComputeCov(x, mean) 

               WriteData(pi, mean, cov) 

               return (x, 0)  

          SparkContext(appName="myApp").parallelize(components, M).map(mapper).count() 

          cov = CombineCov() 
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(b) Schematic description (red boxes are map tasks) 

Figure 6.4 GMM parallelization scheme 3 

6.5 MapReduce for FEA Model Runs 

        To prepare the training data for GMM models, a large number of FEA model runs is 

required, which is time consuming. Thus MapReduce implementation of FEA model runs 

can be used to parallelize the FEA runs, following the procedure described in Sec. 5.4. 

6.6 Parallelization of Data Processing 

        To prepare the observation data for model calibration, data processing can be 

parallelized using MapReduce following the procedure described in Sec. 3.3.5. 

 In summary, the steps for the calibration of high-dimensional model parameters using big 

data analytics are:  (1) parallelization of FEA model runs; (2) parallelization of GMM 

surrogate model training using scheme 1, 2, or 3; (3) parallelization of observation data 

processing; and (4) model calibration using the GMM surrogate and observation data.   
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6.7 Numerical Example 

6.8.1 Experiment Setup, Data Sampling and Processing 

        The proposed parallelized Bayesian surrogate modeling for model calibration will be 

applied on the same concrete slab as in Chapter 5. The experiment setup is explained in Sec. 

5.7.1.1, and the data sampling and processing procedures follow the descriptions in Sec. 

3.4.2-3.4.5. The same 70 images are used for calibration. 

6.8.2 FEA Model  

        Fig. 6.5 shows the meshed FEA model implemented in commercial software Abaqus, 

with 7255 nodes and 4078 thermal-coupled elements (128 quadratic brick element and 

3950 quadratic tetrahedral elements). The thermal conductivity coefficients at different 

spatial locations on the top surface need to be calibrated. In the FEA model, the spatial 

locations are represented as a 10 × 10 grid as shown in Fig. 6.5. For each calibration block 

location, the thermal conductivity is considered to be constant. We use 81 (= 9 × 9) 

observation points on the top surface. 

 

Figure 6.5 FEA model for concrete slab 
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        Except the thermal conductivities which are to be calibrated, the other concrete 

properties used in this model are the same as in Chapter 5 (Table 5.1). Thermal conductivity 

is considered to be in the range of [0.8, 2.5] 𝑊 ⋅ 𝑚−1 ⋅ 𝐾−1. Training points of the surrogate 

model are obtained using a Latin-hypercube design, and the number of DOE points is set to 

be 10,000. One example realization of training inputs is shown in Fig. 6.6 (the axis values 

are block indices in 𝑥 and 𝑦 direction). Since in each FEA run, the temperature at all locations 

can be obtained at the same time, the total number of FEA runs will be 10,000. These 10,000 

runs are parallelized via MapReduce as described in Sec. 6.6. 

 

Figure 6.6 Example realization of 𝒌 values for one training point 

6.8.3 Surrogate Model Training 

        Based on the inputs (conductivity values) and outputs (nodal temperature values in each 

run), the GMM surrogate model can be obtained. One example output is shown in Fig. 6.7. 
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For each FEA output, we will have a time series output for 70 time steps (70 mins). For each 

spatial location 𝑖, if we create a surrogate model for each time step, we will lose the 

correlation between each time step. In order to capture the correlation over time, and also to 

reduce the dimension, singular value decomposition (SVD) is applied. Following Eq. (6.4), 

where 𝝎 is the temperature output at each location for all 10000 training points (10,000 ×

70), 𝑽 is the left singular vectors (70 × 70), 𝑴 is the matrix of singular values (70 × 70), 

and 𝑼 is the matrix of right singular vectors (70 × 70). Here we choose only the first two 

components, which means we will use the first two columns of 𝑽𝑴, and the first two rows 

of 𝑼. Thus we have two bases 𝑼0 and 𝑼1 are used here as an example (Fig. 6.8 (a)), and the 

corresponding coefficient for each DOE output will have a dimension of 1 × 2 (Fig. 6.8 (b)). 

Fig. 6.8 (c) shows that the 2-components SVD captures the temporal history very well. 

 

Figure 6.7 Example result of FEA model (@ t = 3000s) 



 

132  

 

(a) principal components                           (b) coefficients 

 

(c) fitting by SVD 

Figure 6.8 SVD decomposition example (@𝒅(0)) 

        We build a GMM surrogate model for all coefficients, {𝛾0(𝒅
(𝑖) , �̂�), 𝛾2(𝒅

(𝑖) , �̂�), 𝑖 =

0, 1,⋯ ,80}, and the inputs are the 100 𝑘s. Thus the total number of parameters is 282 =

 100 + 2 × 81. The training of the GMM surrogate model can be parallelized by following 
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the procedure in Sec. 6.5. Fig. 6.9 shows the performance of the trained surrogate model 

(153 components). Here 80% of the data (8,000 data points) are used for training, while 

20% of the data (2,000 data points)  are used for validation. 

 

Figure 6.9 Performance of surrogate model 

6.8.4 Model Selection 

        In order to select the optimized model (i.e., the number of GMM components), AIC 

score is compared among all models with component numbers ranging from 𝐾 = 1 to 𝐾 =

500. The AIC score is plotted in Fig. 6.10, and the GMM model with 153 components is 

selected. 
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Figure 6.10 Plot of AIC 

6.8.5 Calibration 

        After the GMM surrogate model is trained, the model parameters and observations can 

be connected using a Bayesian network in Fig 6.11 (ellipses are random variables, and 

squares are observations). Red ellipses denote the random variables that represent the 

thermal conductivity coefficients 𝑘𝑗 , 𝑗 = 0, 1,⋯ , 99 to be calibrated, while the yellow 

ellipses denote random variables that represent the SVD coefficients of model outputs for 

each spatial location 𝛾0(𝒅
(𝑖) , �̂�), 𝛾2(𝒅

(𝑖) , �̂�), 𝑖 = 0, 1,⋯ ,80, which can be obtained from 

the corresponding surrogate model. Each blue ellipse represents the temperature random 

variable 𝑇𝑖 for a spatial location 𝑖, where 𝑖 = 0, 1,⋯ ,80. Note here that each 𝑇𝑖 follows a 

multivariate normal distribution 𝑁(𝝁,𝜮), where 𝝁 = 𝐸[𝑇𝑖,𝑙], 𝑙 = 0, 1,⋯ , 69 and 𝜮 =

𝐶𝑜𝑣[𝑇𝑖,𝑙 , 𝑇𝑖,𝑚], 𝑙 = 0, 1,⋯ , 69;  𝑚 = 0, 1,⋯ , 69. Here 𝐸 refers to the expectation function 
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and 𝐶𝑜𝑣 refers to the covariance function. In our case, 

𝝁𝒚𝑜𝑏𝑠
(𝒅(𝑖), 𝜷, 𝑡 ) ≈ 𝝁𝑖(𝑡) + 𝝁�̂�0

(𝒅(𝑖), �̂�)𝑼0(𝒅
(𝑖), 𝑡) + 𝝁�̂�1

(𝒅(𝑖), �̂�)𝑼1(𝒅
(𝑖), 𝑡) +

𝜇𝛿(𝒅
(𝑖), 𝜷, 𝒕) (6.8) 

𝚺𝑖(𝑗, 𝑘) = 𝜎�̂�0

2 (𝒅(𝑖), �̂�)𝑼0(𝒅
(𝑖), 𝑡𝑗)𝑼0(𝒅

(𝑖), 𝑡𝑘) +

𝜎�̂�1

2 (𝒅(𝑖), �̂�)𝑼1(𝒅
(𝑖), 𝑡𝑗)𝑼1(𝒅

(𝑖), 𝑡𝑘), ∀𝑗, 𝑘 = 0, 1, ⋯ , 69 (6.9) 

Given the observation {𝑇𝑖,𝑙}, where 𝑖 = 0, 1,⋯ , 399, and 𝑙 = 0, 1,⋯ , 69, the thermal 

conductivity coefficients at each spatial location are updated via trained GMMs. 

        Fig. 6.13 (a) shows an overview of all the 100 calibrated parameters, where mean 

values are plotted. Besides this, it will be useful to check the correlations among the 

calibrated parameters. For example, the correlations between parameter 𝑘50 and the other 

parameters in the same row 𝑘51, ⋯ , 𝑘59 (Fig. 6.1) are calculated and plotted in Fig. 6.12. To 

compare with the calibration result by GP + MCMC from Chapter 5, the calibration is re-

plotted in Fig. 6.13 (b). Similar pattern can be found in Fig. 6.13 (a) and (b). 

 

Figure 6.11 Bayesian network for calibration 
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Figure 6.12 Correlation of 𝒌𝟓𝟎 with the other nodes in the same row 

 

(a)                                                              (b) 

Figure 6.13 Calibration result (mean) shown over the slab top surface (a): by GMM; 

(b): by GP + MCMC 
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6.8.6 MapReduce Performance 

        In this study, 50 nodes were used for parallelization. For the purpose of comparison, 

computation using the traditional sequential method at a single node was also performed. 

The configurations of computers are shown in Table 6.1. The comparison between the time 

cost of the traditional method and MapReduce method is shown in Table 6.2.  

 

Table 6.1 Nodes comparison 

Method CPU (GHZ) Memory (GB) 

Desktop 2.8 × 2 4 

Cluster node 2.3 5 

Table 6.2 Time cost of traditional method and MapReduce method 

Method Time (hr.) 

Desktop 25.2 

Cluster node (scheme 1) 1.64 

Cluster node (scheme 2) 10.27 

Cluster node (scheme 3) 5.69 

         

        MapReduce showed significant computational efficiency (almost 15 times faster). It 

can be expected that as the number of nodes increases, the time cost could reduce further, 

but may not be in a linear trend. The reason is that the communication between the master 

node and slave node also consumes time. The individual time cost shows that surrogate 

model training points preparation consumes most of the computational resources (Table 6.3). 
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Compared to the performance of using methodology developed in Chapter 5 (GP surrogate 

model + MCMC), although the training points preparation spent more time (36.67 ℎ𝑟𝑠 vs. 

6 ℎ𝑟𝑠), the calibration process greatly save time due to analytical solution is available here 

(almost no cost vs. 363 ℎ𝑟𝑠). 

Table 6.3 Time cost of individual steps on desktop 

Method Time (hr.) 

FEA model (5 nodes) 36.67 

Surrogate model training 

(50 nodes) 
1.64 

6.9 Summary 

        This chapter investigated the MapReduce technique to parallelize the distribution 

surrogate model, which can be used in model calibration considering a high-dimensional 

parameter space and in the presence of big data. Three schemes of parallelization were 

proposed and compared with traditional method (running on a local desktop). It shows that 

the efficiency is greatly increased due to parallelization. As being a distribution surrogate, 

GMMs can save a great amount of time in model calibration, since analytical solution can 

be obtained, compared to response surrogate such as Gaussian process surrogate model used 

in Chapter 5. It can also be expected after being trained, distribution surrogate model can 

also outperforms in tasks such as diagnosis and prognosis.  
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CHAPTER 7 

CONCLUSION 

 

        This chapter provides the summary of contributions in this study, followed by a 

discussion of future research needs. 

7.1 Summary of Contributions 

        This dissertation proposed methods to implement big data analytics in structural health 

monitoring. Four accomplishments are achieved: (1) big data analytics in data processing; 

(2) big data analytics in structural diagnosis and prognosis uncertainty quantification; (3) big 

data analytics in high-dimension model parameter calibration; and (4) big data analytics in 

distribution surrogate model training. 

        First, a methodology was developed to handle the various steps of data processing in 

structural health monitoring. MapReduce implementation was proposed to process sensor 

data of high volume, high velocity, and high variety. Data processing tasks were wrapped in 

‘mappers’ to allow the nodes in cluster to works on the partitions of data set. As an example, 

image processing for the purpose of structural damage detection was parallelized. However, 

the developed methodology is applicable for any type of high-volume data in structural 

health monitoring. 

        Then, techniques to parallelize structural diagnosis and prognosis with uncertainty 

quantification were developed. Both forward and inverse problems in uncertainty 
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quantification were investigated with this efficient computational approach. Bayesian 

methods for the inverse problem of diagnosis, and numerical integration techniques such as 

Markov chain Monte Carlo (MCMC) simulation and Particle Filter (PF) were parallelized 

via MapReduce. For the forward problem of prognosis, Monte Carlo sampling on FEA 

modeling is used to propagate the uncertainties (both aleatory and epistemic) to the future 

state. Repeated runs of FEA under Monte Carlo sampling were parallelized use MapReduce, 

thus greatly saving the computational cost.  

        The system model needs to be updated with latest data in order to perform accurate 

prognosis of future state. However, the updating is computationally demanding when a 

model to be calibrated is heterogeneous in its structure or material. A large number of model 

parameters and large volume of observation data make the computation unaffordable for 

both surrogate model training and Bayesian calibration. These challenges were addressed 

through three types of parallelization using the MapReduce technique. The first type of 

parallelization was to efficiently collect simulation data at the training points for surrogate 

modeling. Next, the Gaussian process surrogate model training was parallelized using 

MapReduce. In the third step, parallelization of Markov Chain Monte Carlo (MCMC) 

technique was studied to efficiently perform Bayesian calibration in the presence of high-

volume observation data. In addition to the parallelization of surrogate model training and 

Bayesian calibration, the singular value decomposition (SVD) method is also employed to 

reduce the computational effort due to the high-volume data. Furthermore, SVD handled the 

temporal correlation of the output.  

        The last accomplishment of this dissertation is big data analytics in distribution 
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surrogate model training. Being a distribution surrogate, a Gaussian mixture model is able 

to give analytical solutions for prediction and inference, which greatly reduces the cost of 

calibration of a high-dimensional model with large data. Three parallelization schemes were 

proposed for GMM training in MapReduce, applicable for different situations (large number 

of samples or large number of components). 

7.2 Future Research Needs 

        Future research needs to address several extensions. First of all, internal parallelization 

is preferred to be developed, although some of the accomplishments already contain the 

internal parallelization such as PF and GMM training. There are two reasons for this point. 

First, commercial software such as Abqus (which implements FEA) has limitations of license 

usage. Instead of parallelizing the computation externally (file-wise/data-wise), function-

wise decomposition and internal parallelization can be helpful. By doing this, for each input, 

the model running can be accelerated. Second, in the case of sparse observation data, the 

running cannot be parallelized by partitioning the data. Instead, internal parallelization by 

decomposing the functions (such as matrix multiplication) can help. 

        In addition to the scope of this dissertation (big data analytics in data processing, 

uncertainty quantification in structural diagnosis and prognosis, high-dimensional model 

parameters calibration and distribution surrogate model training), there are some related 

topics which are important in structural health monitoring, which are also time consuming. 

For example, with respect to the prognosis model, model verification checks how close the 

model output is to the true solution of the mathematical equation (Szabó and Babuška, 2011). 
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It is desirable to perform verification before calibration and validation so that the solution 

approximation errors are accounted for during calibration and validation. Big data analytics 

techniques in model verification and validation could be investigated in the future.  

        Diagnosis and model updating are based on the comparison of model prediction against 

observed data from experiments. Due to limited resources, it is desirable to design the 

experiments in a way that most information can be obtained from a few experiments (Winer 

et. al. 1971; Chaloner and Verdinelli, 1995). Bayesian experimental design is one popular 

method. However, normally this is very computationally expensive, since it needs a double 

loop of iterative calculations. Furthermore, under limited resources, the performance of a 

Bayesian update depends significantly on the location of data acquisition. Big data analytics 

implementation of Bayesian experimental design is another potential research topic to pursue 

in the future. 
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