

Big Data Analytics in Structural Health

Monitoring

By

Guowei Cai

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Civil Engineering

 September 30, 2017

 Nashville, Tennessee

 Approved:

 Sankaran Mahadevan, Ph.D.

 Douglas Adams, Ph.D.

 P. K. Basu, Ph.D.

 Daniel Fabbri, Ph.D.

i

To my dear family

ii

ACKNOWLEDGEMENTS

 First and foremost, I would like to express my deepest and sincere gratitude to my

advisor, Prof. Sankaran Mahadevan, who provided guidance, knowledge and encouragement

throughout my Ph.D. study at Vanderbilt University. He is a knowledgeable, kind and patient

mentor.

 I am also extremely grateful to my committee members: Prof. Douglas Adams, Prof. P.

K. Basu, and Prof. Daniel Fabbri, for their insightful comments and suggestions. I would

like to thank U.S. Department of Energy (DOE), for supporting the Light Water Reactor

Sustainability (LWRS) Program. Dr. Vivek Agarwal and Dr. Bruce Hallbert from Idaho

National Laboratory (INL) are very helpful. Also, Dr. Hai Huang from INL is a great mentor

and friend to me, from whom I learnt a lot in my summer internship in 2015. Dr. Liping

Wang and Dr. Arun Subramaniyan from GE Global Research Center were great mentors for

me in summer internships in 2013 and 2014.

 I am also grateful to work with so many brilliant people at Vanderbilt University. . In

particular, I am very lucky to have Dr. Zhen, who gave me detailed and even hands-on help.

I also thank my teammates from Prof. Mahadevan’s group, including Dr. Chenzhao Li, Dr.

You Ling, Dr. Chen Liang, Dr. Saideep Nannapaneni, Dr. Erin DeCarlo, Ghina Absi, Xiaoge

Zhang, Nath Paromita, Kyle Neal, Eric Vanderhorn, Yanqing Bao, Dan Ao and Sarah Miele,

for all the teamwork in coding, brainstorming in the whiteboard, and presentations in our

iii

group meeting. Also, I would like to thank Dr. Xiang Zhang, my best friend in Vanderbilt

University for his support in friendship. I would like to thank all friends I met during my

internships in INL and GE, who make that time precious and memorable.

 Finally, I would like express my gratitude to my parents and brother, for their endless

love and support as well as consistent encouragement in the tough time.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1 Overview .. 1

1.2 Research Objectives ... 5

1.3 Organization of the Dissertation ... 7

CHAPTER 2 ... 9

BACKGROUND CONCEPTS AND METHODS .. 9

2.1 Structural Health Monitoring ... 9

2.2 Image Processing .. 10

2.3 Uncertainty Quantification of Structural Diagnosis ... 11

2.3.1 Markov Chain Monte Carlo Sampling ... 12

2.3.2 Particle Filter .. 14

2.4 Uncertainty Quantification for Structural Prognosis .. 15

2.5 Surrogate Modeling .. 17

2.5.1 Gaussian Process Surrogate Model .. 18

2.5.2 Gaussian Mixture Model.. 19

2.6 Big Data Analytics ... 21

2.6.2 Spark .. 24

CHAPTER 3 ... 26

BIG DATA ANALYTICS IN DATA PROCESSING .. 26

3.1 Structure, Sensors and Data Acquisition .. 26

3.2 Data Processing .. 28

3.2.1 Baseline Removal .. 28

3.2.2 Cropping .. 29

3.2.3 Noise Cancellation ... 29

3.2.4 Feature Extraction .. 30

3.2.5 MapReduce for Data Processing .. 32

3.3 Numerical Example .. 35

v

3.3.1 Experiment Setup ... 37

3.3.2 Thermal Loading .. 38

3.3.3 Data Acquisition System.. 39

3.3.4 Data Transfer and Storage Mechanism .. 39

3.3.5 Data Processing .. 40

3.4 Summary ... 47

CHAPTER 4 ... 49

UNCERTAINTY QUANTIFICATION IN DIAGNOSIS AND PROGNOSIS 49

4.1 Background ... 49

4.2 MapReduce for Diagnosis under Uncertainty .. 51

4.3.1 MapReduce for Markov Chain Monte Carlo ... 52

4.3.2 MapReduce for Particle Filter .. 53

4.4 MapReduce for Prognosis Uncertainty Quantification .. 55

4.5 Numerical Example: ASR Diagnosis and Prognosis in Concrete 56

4.5.1 Background of ASR Degradation in Concrete... 56

4.5.1 ASR Description and Modeling ... 57

4.5.2 Experiment ... 60

4.5.3 Uncertainty Sources in Diagnosis and Prognosis .. 61

4.5.5 Diagnosis.. 66

4.5.5 Prognosis .. 68

4.6 Summary ... 74

CHAPTER 5 ... 76

BIG DATA ANALYTICS IN HIGH-DIMENSIONAL MODEL PARAMETERS

CALIBRATION ... 76

5.1 Background ... 76

5.2 Bayesian Calibration of High-Dimensional Model Parameters 79

5.2.1 Overview of Bayesian Calibration ... 79

5.2.2 Calibration of High-dimensional Model Parameters ... 80

5.3 Workflow of Model Calibration using MapReduce ... 82

5.4 Level 1 Parallelization: MapReduce for FEA Model Runs .. 83

5.5 Level 2 Parallelization: Surrogate Model Training .. 85

5.5.1 Gaussian Process Surrogate Model with Spatially Varying Parameters 85

5.5.1.1 Generate Training Points ... 86

5.5.1.2 Surrogate Modeling .. 88

vi

5.5.3 Gaussian Process Surrogate Model with Temporal Correlation 88

5.5.3 MapReduce for Surrogate Model Training .. 90

5.6 Level 3 Parallelization: MapReduce for High-dimensional Model Calibration......... 92

5.6.1 Bayesian Calibration of Spatially Varying Parameters 92

5.6.2 MapReduce for Data Processing .. 95

5.6.3 MapReduce for Likelihood Evaluation .. 96

5.6.4 MapReduce for MCMC ... 97

5.7 Numerical Example .. 98

5.7.1 Collection of Observation Data for Calibration ... 99

5.7.2 Finite Element Model .. 101

5.7.3 Surrogate Model Training .. 103

5.7.4 Calibration.. 106

5.7.5 MapReduce Performance ... 110

5.8 Summary ... 111

CHAPTER 6 ... 114

BIG DATA ANALYTICS IN DISTRIBUTON SURROGATE MODELING 114

6.1 Background ... 114

6.2 Challenges due to High-Dimensional Model Parameters .. 116

6.2.1 Spatially Varying Parameters .. 116

6.2.1.1 Generation of Training Points .. 117

6.2.1.2 Time History Output ... 118

6.2.2 Handling Temporal Correlation ... 118

6.3 Construction of Gaussian Mixture Model .. 120

6.4 Parallelization of GMM Construction .. 121

6.4.1 GMM Parallelization Scheme 1: MapReduce Implementation of GMM Model

Selection (external parallelization) ... 122

6.4.2 GMM Parallelization Scheme 2: MapReduce Implementation of EM by

Partitioning the Samples (Internal Parallelization) ... 123

6.4.3 GMM Parallelization Scheme 3: MapReduce Implementation of EM by

Partitioning the Components (Internal Parallelization) .. 126

6.5 MapReduce for FEA Model Runs .. 128

6.6 Parallelization of Data Processing .. 128

6.7 Numerical Example .. 129

6.8.1 Experiment Setup, Data Sampling and Processing .. 129

vii

6.8.2 FEA Model... 129

6.8.3 Surrogate Model Training .. 130

6.8.4 Model Selection ... 133

6.8.5 Calibration.. 134

6.8.6 MapReduce Performance ... 137

6.9 Summary ... 138

CHAPTER 7 ... 139

CONCLUSION .. 139

7.1 Summary of Contributions ... 139

7.2 Future Research Needs ... 141

REFERENCES ... 143

viii

LIST OF TABLES

Table Page

3.1 Time cost of traditional method and MapReduce method 46

3.2 Node used by traditional method and MapReduce method 46

3.3 Time cost of individual steps in data processing... .. 47

4.1 Configuration of specimens 61

4.2 Node comparison... .. 68

4.3 Time cost comparison for Bayesian updating 68

4.4 Parameters of the ASR model 70

4.5 Time cost comparison for prognosis 73

5.1 Concrete model parameters ... 102

5.2 Nodes comparison ... 110

5.3 Time cost of traditional method and MapReduce method .. 110

5.4 Time cost of individual steps on desktop .. 111

6.1 Nodes comparison ... 137

6.2 Time cost of traditional method and MapReduce method .. 137

6.3 Time cost of individual steps on desktop .. 138

ix

LIST OF FIGURES

Figure Page

2.1 General procedure for image processing 10

2.2 MapReduce process to handle lists 23

2.3 MapReduce execution overview 24

2.4 RDD in Spark.. .. 25

3.1 Scp syntax for data uploading 27

3.2 Uniform filtering example 30

3.3 Sobel filter kernels: (a) kernel for x direction, and (b) kernel for y direction 31

3.4 Split of Sobel filter kernel (x direction) into averaging and differencing 31

3.5 Pseudocode of MapReduce implementation for data processing 32

3.6 Schematic description of the MapReduce process for data processing 33

3.7 Thermography camera and the specimen to be monitored 36

3.8 Sketch of the specimen (a) top view (b) side view 37

3.9 Thermal loading time history (scaled values) 38

3.10 Thermal blanket and thermo couple 39

3.11 Example of raw image before cropping (𝑡 = 2835 s) 40

3.12 Cropped image (𝑡 = 2835 s) 41

3.13 Image after uniform filtering (𝑡 = 2835 𝑠; 22 × 22 kernel)............................ .. 42

3.14 Image after Sobel filtering (a) holes detection based on the upper and lower edges

(b) comparison between detected holes and ground truth; blue: detected holes, green:

ground truth... .. 44

3.15 Detection performance vs. sampling rate 45

3.16 Thermography camera and the specimen to be monitored 45

4.1 Schematic description of the MapReduce process 52

4.2 MapReduce implementation of MCMC 53

4.3 MapReduce implementation of Particle Filter 54

4.4 MapReduce implementation of MCS 55

4.5 Cropped images (a) specimen 𝐴1; (b) specimen 𝐶1; (c) specimen 𝐴2; (d) specimen

𝐶2 64

4.6 Images after baseline removal (a) specimen 𝐴; (b) specimen 𝐶 65

4.7 ASR damaged region after feature extraction. Red: ASR damage; Blue: healthy

concrete. (a): Inspection 1 (t = 30 days); (b): Inspection 2 (t = 40 days) 65

4.8 ASR damaged area at different inspection time points....................................... .. 66

4.9 Bayesian updating (@ T = 30 days) for (a): ASR damaged area 𝐴 and (b):

observation error standard deviation 𝜎 67

4.10 FEA model input and output (half model) 71

4.11 ASR damaged area prognosis and uncertainty quantification 72

4.12 Remaining useful life prediction... .. 74

4.13 Probability of failure 74

5.1 Probability of failure 80

5.2 Workflow of model calibration... .. 83

5.3 Distributed computing of data processing 85

x

5.4 21 × 21 calibration grid and 20 × 20 observation points 87

5.5 Distributed computing of surrogate model training 91

5.6 Distributed computing of data processing 96

5.7 Distributed computing of parameter calibration by MCMC 98

5.8 Experiment setting .. 101

5.9 FEA model for concrete slab .. 102

5.10 Example realization of 𝑘 values for one training point 103

5.11 Example result of FEA model (@ t = 1800s) ... 104

5.12 SVD decomposition example (@𝑑(0)) ... 105

5.13 Performance of surrogate model ... 106

5.14 Bayesian network for calibration at location 0 (See Fig. 5.4) 108

5.15 Calibration results ... 108

5.16 Correlation of 𝑘210 with the other nodes in the same row 109

5.17 Calibration result shown over the slab top surface (mean) 109

5.18 Computational nodes performance ... 111

6.1 10 × 10 calibration grid and 9 × 9 observation points 117

6.2 GMM parallelization scheme 1... 123

6.3 GMM parallelization scheme 2... 126

6.4 GMM parallelization scheme 3... 128

6.5 FEA model for concrete slab .. 129

6.6 Example realization of 𝑘 values for one training point 130

6.7 Example result of FEA model (@ t = 3000s) ... 131

6.8 SVD decomposition example (@𝑑(0)) ... 132

6.9 Performance of surrogate model ... 133

6.10 Plot of AIC .. 134

6.11 Bayesian network for calibration .. 135

6.12 Correlation of 𝑘50 with the other nodes in the same row 136

6.13 Calibration result (mean) shown over the slab top surface (a): by GMM; (b): by

GP + MCMC ... 136

1

CHAPTER 1

INTRODUCTION

1.1 Overview

 During the span of a structure’s service life, conditions such as wear, overload,

environmental degradation, and natural disasters may accelerate the degradation of the

material and the structure. Structural health monitoring (SHM) is a vital tool to ensure that

the structure is reliable within the design life, and also to potentially extend the service life

beyond the designed life (Naus, 2009). SHM techniques can be either data-driven or model-

based. In both cases, the data is often obtained using non-destructive evaluation (NDE)

techniques, which can be divided into active and passive techniques. Examples of active

NDE techniques are electromagnetic testing (ET) (Nagy, 2016) and ultrasonic guided wave

testing (UGWT) (Yan et al., 2010). Examples of passive NDE techniques are acoustic

emission (Nair and Cai, 2010), digital image correlation (DIC) (Roux et al., 2009), fiber-

optic sensing (FOS) (Lopez-Higuera et al., 2011). Some other NDE techniques can be used

in either active or passive modes, such as infrared thermography (IR) (Bagavathiappan et al.,

2013). From the data type point of view, these monitoring techniques acquire either wave

signals (ET, UGWT, AE), or images (DIC, IR). Data acquisition and analysis are crucial

elements in structural health monitoring.

2

 Structural health monitoring (SHM) aims to track the health state of a mechanical

system, detect and diagnose any damage, and perform prognosis of future states (Balageas

et al., 2006). Uncertainty occurs in all stages of SHM. In addition, due to modern

advancements in sensor technology and increased capabilities for data collection and storage,

the amount of acquired data is growing, which gradually increases the demands on data

acquisition and analysis techniques. For example, 26 sensor arrays were used on the Vincent

Thomas Bridge (VTB) in San Pedro, California generate 3 terabytes (TB) per year

(Kallinikidou et al., 2013); in the health monitoring of wind turbine blades, over 300 GB of

acoustic emission data were sampled during 6 months (Anastasopoulos et al., 2012); 7 GB

of data were sampled per day in the Confederation Bridge Monitoring Project in Canada

(Desjardins et al., 2006); and over 20 GB of data were obtained during automated railway

inspection in the city of Brockton, MA (Zhang et al., 2014). All these applications call for

the introduction of big data analytics into structural health monitoring. Mahadevan et al.

(2014) pointed out the need for big data analytics as one of the four elements in an effective

prognostics and health management framework for concrete structures. The big data issue

mainly affects two elements in structural health monitoring: data acquisition and data

analytics. For data acquisition, data synchronization is a critical problem to solve, especially

in a wireless sensor network. Several researchers such as Araujo et al. (2012), Gandhi et al.

(2007), and Yu (2012) have studied this problem.

 Structural health monitoring involves several activities, namely, diagnosis with

available data, design of experiments to facilitate effective diagnosis, and prognosis of future

state given the inference on the current state. Although big data techniques are growing in

number, effective big data analytics techniques in support of the above activities are yet to

3

be developed.

 For big data analytics in SHM diagnosis, Farrah et al. (2015) proposed an approach to

analyze large scale wireless sensor network data. In this research, MapReduce was used to

create the data tables and Hadoop was adopted to parallelize the detection method. Similar

research has been done by parallelizing the time series analyses in Hadoop (Yu & Lin, 2015),

and parallelizing the neural networks (NN)-based inference via MapReduce (Tran, 2015) in

order to accomplish structural damage detection. However, big data analytics in the context

of a Bayesian approach to SHM has not been reported. Therefore in this dissertation, the

MapReduce technique will be investigated to parallelize particle filtering (PF) (Chatzi &

Smyth, 2013), an effective Bayesian updating algorithm used in damage diagnosis and

prognosis.

 Big data analytics in damage prognosis is another challenge for SHM, and a few

attempts to apply MapReduce framework for this purpose have been reported. The

application of Hadoop in real-time bridge health monitoring was discussed by Roshandeh et

al. (2014), who proposed a layered big data and a real-time decision-making framework for

bridge data management as well as health monitoring. However, only a rough procedure was

presented, and no uncertainties were incorporated. Similarly a framework for flood

prediction has been studied by Kezia & Mary (2016). Challenges for reliability analysis in

the context of big data were discussed by Meeker and Hong (2013); some applications were

reviewed where field reliability data were used. This paper also explored opportunities to

use modern reliability data in order to develop stronger statistical methods to operate and

predict the performance of systems in the field. However, the focus was mainly on cost-

4

effective usage of System Operation/Environmental (or SOE) data.

 The above review shows that research has not yet been reported towards risk prognosis

of existing structures, in the context of big data. Risk estimation requires the quantification

of uncertainty arising from multiple sources – sensors, data analytics, and system models.

Therefore this dissertation utilizes big data techniques to analyze voluminous SHM data for

damage diagnosis, and to quantify the uncertainty in diagnosis and prognosis. Prognosis is

realized using a damage growth model coupled with FEA, and remaining useful life (RUL)

is predicted.

 Field data is sometimes available in SHM, which can be used to update the model

parameters for system identification (Park et al., 2006). Traditionally, data at only a few

locations are used in system identification. Compressive sensing is used to minimize the

number of points at which the field is measured (Di Ianni et al., 2015). This approach loses

significant amount of information and reduces the accuracy of diagnosis. Ideally, the use of

full field data is preferable, however, due to the expensiveness of computation, this hasn’t

been implemented and applied in SHM. This dissertation will explore this potential of

efficient usage of high volume field data for diagnosis.

 Uncertainty quantification methods require repeated evaluation of numerical models,

which is often computationally expensive. One approach to overcome this challenge is to

replace the original physics-based model with an inexpensive, efficient surrogate model.

There are different surrogate modeling techniques, which can be divided into two types:

response surrogate and distribution surrogate. A response surrogate aims to provide the

5

output value for a given set of inputs as opposed to a distribution surrogate, which provides

a distribution output for a given set of inputs. In other words, the distribution surrogate is

constructed in the probability space whereas the response surrogate is constructed in the

variable space. In this dissertation, one response surrogate model (Gaussian process

surrogate model) and one distribution surrogate model (Gaussian mixture model) are used to

illustrate the proposed methods.

1.2 Research Objectives

 The first objective investigates techniques to perform diagnosis with large volume field

data. Image processing techniques (such as uniform filtering and Sobel filtering) are used to

analyze infrared thermal images, from which damage inside the structure can be detected.

To handle the costly computation, big data techniques are employed to parallelize the

computation. The methodology is illustrated through the detection of damage in a concrete

slab, based on actual experimental data with induced damage.

 The second objective investigates techniques to parallelize structural diagnosis and

prognosis with uncertainty quantification. Both forward and inverse problems in uncertainty

quantification are investigated with this efficient computational approach. We use Bayesian

methods for the inverse problem of diagnosis, and parallelize sampling techniques such as

Markov chain Monte Carlo simulation and particle filter. To predict damage growth and the

structure’s remaining useful life (forward problem), Monte Carlo simulation is used to

propagate the uncertainties (both aleatory and epistemic) to the future state. The big data

technique MapReduce is applied to drive the parallelization of multiple FEA runs, thus

6

greatly saving the computational cost. The proposed techniques are illustrated for the

efficient diagnosis and prognosis of alkali-silica reaction in a concrete structure.

 The third objective investigates big data analytics for high-dimensional model

parameter calibration, in order to facilitate accurate prognosis. When the number of

calibration parameters is large, and the volume of computer simulation and observation data

are also large, it brings significant challenges to both surrogate modeling and the associated

Bayesian calibration. These challenges are addressed through three types of parallelization

using the MapReduce technique. The first type of parallelization is pursued to efficiently

collect simulation data at the training points for surrogate modeling. Next, the surrogate

model training is parallelized using MapReduce. In the third step, parallelization of Markov

Chain Monte Carlo (MCMC) technique is studied to efficiently perform Bayesian calibration

in the presence of high-volume observation data. The proposed framework is implemented

on the Spark platform. In addition to the parallelization of surrogate model training and

Bayesian calibration, the singular value decomposition method is also employed to reduce

the computational effort due to the high-volume data. The calibration of the thermal

conductivity of concrete with field temperature observed from infrared thermography (IR) is

used to demonstrate the proposed method.

 The fourth objective investigates big data analytics in distribution surrogate modeling.

In this objective, the training of a Gaussian mixture model (GMM) is parallelized via

MapReduce. This provides the ability to efficiently build a high-dimensional surrogate

model in the context of big data, which gives an analytical solution. This methodology will

be illustrated by a mathematical example, as well as a thermal conductivity calibration

7

example for a heterogeneous material.

1.3 Organization of the Dissertation

 The subsequent chapters of this dissertation will be devoted to the objectives mentioned

above.

 Chapter 2 provides an introduction to the tools and methods needed for big data

analytics in structural health monitoring. Structural health monitoring methods are reviewed

first, and followed by big data techniques used for paralleling the computation. With respect

to structural health monitoring, methods for data processing, diagnosis, and prognosis are

introduced. Two surrogate modeling techniques (Gaussian process surrogate model and

Gaussian mixture model) are reviewed. Among the big data techniques, MapReduce and

Spark are explained.

 Chapter 3 discusses the parallelization of data processing in structural health

monitoring. Data processing is mainly used for diagnosis; here we focus on thermal image

processing to draw inference about structural damage. However, the parallelization of

thermal image processing can be easily generalized to other types of SHM data.

 Chapter 4 extends the methodology in Chapter 3 to other steps in structural health

monitoring, namely diagnosis (inverse problem) and prognosis (forward problem).

Compared to Chapter 4, the diagnosis of structural damage status in Chapter 3 is

deterministic, while the methodology developed in Chapter 4 includes uncertainty

8

quantification.

 Chapter 5 focuses on handling the model updating step for structural health prognosis,

in the context of high-dimensional parameter space and large volume of data. By applying

the methodology in this chapter, heterogeneous model parameters can be calibrated. This can

reduce the spatial uncertainty in the model parameters, compared to considering

homogeneous model parameters.

 Chapter 6 addresses the distribution surrogate parallelization via MapReduce, which

can help to build a full-size surrogate model, with high-dimensional inputs and outputs.

Compared to the response surrogate used in Chapters 4 and 5, a distribution surrogate model

can give an analytical solution, which makes model calibration or updating very fast. The

parallelized distribution surrogate is implemented for the calibration of heterogeneous

material properties.

 Chapter 7 concludes the dissertation with a summary of accomplishments and directions

for future research.

9

CHAPTER 2

BACKGROUND CONCEPTS AND METHODS

 This chapter presents basic concepts and methods in structural health monitoring and

big data analytics related to this study. First, we review the main steps of structural health

monitoring, and focus particularly on image processing. Next, uncertainty quantification in

structural diagnosis is reviewed, including the Bayesian approach and associated sampling

methods such Markov chain Monte Carlo (MCMC) and Particle Filter (PF). The propagation

of various uncertainty sources through the damage prognosis model to quantify the

uncertainty in prognosis is reviewed next. In structural diagnosis and prognosis, repeated

evaluation of physics-based numerical model (e.g., finite element model) is often required,

which is expensive. Therefore surrogate modeling techniques are reviewed, which are

applied in this dissertation. Since the goal of this study is to alleviate the computational

burden in the above steps through big data techniques, the concept of MapReduce and its

implementation in Spark are introduced. All the parallelization methods proposed in the

subsequent chapters are realized in Spark using MapReduce.

2.1 Structural Health Monitoring

 The purpose of structural health monitoring is to detect and diagnose damage in the

structure, such that we can analyze future risk, predict the remaining useful life, and guide

maintenance/repair actions if needed. In the context of damage diagnosis (Farrar et al., 2001),

10

a four-step procedure is described: (1) Operational evaluation, (2) Data acquisition and

cleansing, (3) Feature selection, and (4) Statistical model development. Operational

evaluation defines what is to be monitored and how the monitoring process is to be

implemented. Data acquisition and cleansing defines what data will be sampled and

processed, and how the data will be sampled (i.e., in what frequency, how long it will be

recorded, and how it will be preprocessed). The feature selection step defines the features

that will be selected and the statistical distributions of the features. In the statistical model

development step, the model is developed to detect the damage, predict remaining useful

life, and quantify the uncertainty.

2.2 Image Processing

 Digital image is one type of data format acquired in several SHM techniques, such as

digital image correlation (DIC) and infra-red thermography. Damage is detected, located and

quantified by comparing the image of the damaged structure against that for the intact

structure, using image processing techniques. The general procedure described in (Baxes,

1994) is shown in Figure 2.1.

Figure 2.1 General procedure for image processing

 After obtaining the raw image, preprocessing techniques (e.g. cropping, baseline

removal and noise reduction) can be applied to prepare for edge detection, which can lead to

11

damage detection. Noise reduction and edge detection are computationally expensive, and

can benefit from the application of big data techniques.

2.3 Uncertainty Quantification of Structural Diagnosis

 Various sources of uncertainty such as physical variability, data uncertainty, and model

uncertainty affect structural diagnosis. The model inputs and parameters are physically

variable in nature. System responses are measured through sensors, and the data may be

noisy. Further, the sensors themselves may be damaged and wrongly imply deviation of

system response from nominal behavior; the health monitoring system must distinguish such

a scenario from the deviation caused due to actual damage in the system. These are the

different aspects of data uncertainty. The models used for diagnosis are not accurate and are

affected by model form assumptions and solution approximations. These different sources

of uncertainty lead to uncertainty in the detection, localization, and quantification of damage.

Therefore, the quantification of uncertainty in damage diagnosis is an essential step to guide

decision making with respect to operations, maintenance, and risk management.

 Classical statistics-based approaches for uncertainty quantification in damage diagnosis

are limited with respect to data fusion, therefore this chapter uses a Bayesian approach for

this purpose, which provides an efficient framework for updating the statistics as more data

becomes available. Sankararaman and Mahadevan (2013) developed a Bayesian approach

for uncertainty quantification in each of the three steps in damage or fault diagnosis, namely,

detection, localization and quantification. Consider the estimation of uncertainty in damage

quantification as an example. Bayesian updating is a statistical inference technique in which

12

Bayes’ theorem is used to update the probability of a hypothesis as more information

becomes available. Using Bayes’ rule, the parameter updating process in structural diagnosis

can be expressed as:

𝑓"(𝑞|𝑦) =
𝐿(𝑦,𝑞)𝑓′(𝑞|𝑦)

∫𝐿(𝑦,𝑞)𝑓′(𝑞|𝑦)𝑑𝑞
 (2.1)

In Eq. (2.1), 𝑞 is the true damage value, 𝑦 is the detected damage. 𝐿(𝑦, 𝑞) is the likelihood

function of 𝑞, and is proportional to 𝑃(𝑦| 𝑞), where 𝑃(⋅) means the probability density

function. 𝑓′(𝑞|𝑦) is the prior density function and represents the knowledge about 𝑞, while

𝑓"(𝑞|𝑦) denotes the posterior probabilities when observations are available. Note that this is

also the computation involved in Bayesian model calibration (i.e., estimation of model

parameters based on available input-output data), which is often an important step in

uncertainty quantification activities.

 Often the construction of the posterior probability density function (PDF) is not

analytically possible, thus sampling-based methods such as Monte Carlo Macro Chain

(MCMC) and particle filter (PF) are commonly used to overcome this challenge. This chapter

considers both techniques and discusses the methodology for fast computation later. The two

techniques are briefly summarized below.

2.3.1 Markov Chain Monte Carlo Sampling

 In Bayesian inference, where the objective is to compute the posterior distribution,

MCMC sampling can be used to draw samples from the posterior distribution of a parameter

13

of interest, and these samples can be used in conjunction with the kernel density estimation

procedure to construct the posterior distribution. There are several popular MCMC

algorithms, such as the Metropolis algorithm (Metropolis et al. 1953), Gibbs sampling

(Roberts and Rosenthal 2006), and slice sampling (Neal 2003). We choose Metropolis

algorithm in this dissertation as an example.

 Assume that a function that is proportional to the PDF is readily available, as 𝑓(𝑥). For

the purpose of illustration, consider the one-dimensional case, i.e. 𝑥 ∈ 𝑅. The following steps

constitute the algorithm in order to generate samples from the underlying PDF. Note that,

the function 𝑓(𝑥) is always evaluated at two points and only the ratio is considered; the

unknown proportionality constant is therefore cancelled.

Step 1. Set and select a starting value such that 𝑓(𝑥0) ≠ 0.

Step 2. Initialize the list of samples 𝑋 = 𝑥0.

Step 3. Repeat the following steps; each repetition yields a sample from the underlying PDF.

(a) Select a prospective candidate from the proposal density 𝑞(𝑥∗|𝑥𝑖). The probability

of accepting this sample is equal to
𝑓(𝑥∗)

𝑓(𝑥𝑖)
.

(b) Calculate acceptance ratio 𝛼 = min (𝑞,
𝑓(𝑥∗)

𝑓(𝑥𝑖)
).

(c) Select a random number 𝑢, uniformly distributed on [0, 1].

(d) If 𝑢 < 𝛼, then set 𝑥𝑖+1 = 𝑥∗, otherwise set 𝑥𝑖+1 = 𝑥𝑖.

(e) Augment the list of samples in 𝑋 by 𝑥𝑖+1.

(f) Increment 𝑖, i.e. 𝑖 = 𝑖 + 1.

 The Metropolis algorithm assumes that the proposal density is symmetric (to ensure the

14

state transition is reversible), i.e.𝑞(𝑥∗|𝑥𝑖) = 𝑞(𝑥𝑖|𝑥
∗), and a usual choice is to let 𝑞(𝑥∗|𝑥𝑖)

be a Gaussian distribution centered at 𝑥𝑖. After the Markov chain converges, the samples in

𝑋 can be used to construct the posterior PDF of 𝑋 using kernel density estimation. The

common practice is to generate hundreds of thousands of samples and discard the first few

thousand samples to ensure that the samples considered for the posterior distribution are only

those after the Markov chain has converged.

2.3.2 Particle Filter

 Particle Filter, also known as Sequential Monte Carlo (SMC), is a method used for

approximating the posterior distribution of the quantity of interest. The key idea is to

represent the required posterior density function by a set of random samples (particles) with

associated weights, and to compute the estimates based on these samples and weights. Let

𝑿0:𝑘𝑖
, 𝑖 = 0,⋯ ,𝑁 be particles with associated weights 𝑾𝑘

𝑖 , 𝑖 = 0,⋯ , 𝑁, where 𝑁 is the

number of particles, and 𝑘 is the state index. The posterior density at time 𝑡𝑘 can be expressed

as:

𝜋(𝑥0:𝑘|𝑧1:𝑘) ≈ ∑ 𝑤𝑘
𝑖 𝛿(𝑥0:𝑘 − 𝑥0:𝑘

𝑖)𝑁
𝑖=1 (2.2)

The main steps are summarized below (Orlande et al. 2011):

Step 1. For 𝑖 = 1,⋯ ,𝑁 draw new particles 𝑥𝑘
𝑖 from the prior density 𝜋(𝑥𝑘|𝑥𝑘−1

𝑖) and then

use the likelihood density to calculate the correspondent weights 𝑤𝑖
𝑘 = 𝜋(𝑧𝑘|𝑥𝑘

𝑖).

Step 2. Calculate the total weight 𝑇𝑤 = ∑ 𝑤𝑘
𝑖𝑁

𝑖=1 and then normalize the particle weights.

Step 3. Resample the particles as follows:

15

Step 3.1. Construct the cumulative sum of weights (CSW) by computing 𝑐𝑖 =

𝑐𝑖−1 + 𝑤𝑘
𝑖 for 𝑖 = 1,⋯ ,𝑁, with 𝑐0 = 0.

Step 3.2. Let 𝑖 = 1 and draw a starting point 𝑢1 from the uniform distribution

𝑈[0,𝑁−1].

Step 3.3. For 𝑗 = 1,⋯ , 𝑁

(a) Move along the CSW by making 𝑢𝑗 = 𝑢𝑖 + 𝑁−1(𝑗 − 1).

(b) While 𝑢𝑗 > 𝑐𝑖, make 𝑖 = 𝑖 + 1.

(c) Assign samples 𝑥𝑘
𝑗
= 𝑥𝑘

𝑖 .

(d) Assign weights 𝑤𝑘
𝑗
= 𝑁−1.

 Compared to MCMC, PF does not have the two disadvantages as: 1, correlated samples

which could be solved via thinning (pick one sample for every k samples); and 2, necessary

burn-in period (dropping first m samples) at the beginning. Both of those two problems lead

to a waste of samples in MCMC. Furthermore, PF has several other advantages such as: 1,

scaled well to high dimensional problem; 2, more efficient compared to MCMC; and 3,

easier to implement. On the other hand, there are drawbacks, and the most important one is

the problem of lacking of diversity, in other words, once a state loses particles, it cannot

regain them without motion. Techniques such as Rao-Blackwellization (Doucet et al. 2000)

can help to fix this issue.

2.4 Uncertainty Quantification for Structural Prognosis

 Similar to diagnosis, structural prognosis (forward problem) is also affected by both

aleatory and epistemic uncertainty sources. Due to insufficient information, epistemic

16

uncertainty may arise about the exact values of deterministic model inputs or the distribution

characteristics of stochastic model inputs. Another type of epistemic uncertainty is model

uncertainty. Model uncertainty represents the inability of the model to accurately represent

the true physical behavior of the system. Uncertainty due to a model may be due to three

sources: (1) lack of knowledge about the precise values of model parameters, due to limited

data; (2) numerical solution errors that arise from the methodology adopted in solving the

model equations; and (3) model form errors, which arise due to assumptions and

simplifications made in the development of the models. Calibration, verification and

validation are the activities that can be used to quantify the three sources of uncertainty. A

Bayesian approach for the aggregation of various uncertainty sources as well as the

aggregation of results of model calibration, verification and validation towards uncertainty

quantification in the system response prediction was developed by Sankararaman and

Mahadevan (2015), and was further extended to reliability analysis by Nannapaneni and

Mahadevan (2016).

 Consider a generic prognosis model 𝑌 = 𝐺(𝑿), which is used to represent the

degradation of an engineering system. The input is a vector and hence denoted in bold as 𝑿,

whereas the output 𝑌 is a scalar. The model 𝐺 is deterministic, i.e. for a given realization of

𝑿, there is a corresponding output, which is a realization of 𝑌. The inputs 𝑿 are uncertain,

and this leads to uncertainty in the output 𝑌. A generic realization of 𝑿 is denoted as 𝒙, and

a generic realization of 𝑌 is denoted as 𝑦. The goal in uncertainty propagation is to propagate

the input uncertainty through 𝐺, in order to the calculate the CDF 𝐹𝑌(𝑦). The CDF of 𝑌 can

be calculated as:

17

𝐹𝑌(𝑦) = ∫ 𝑓𝑿(𝒙)𝑑𝒙
𝐺(𝑥)<𝑦

 (2.3)

where 𝑓𝑿(𝒙) is the probability distribution of 𝑿. The PDF can be calculated by differentiating

the CDF, as:

𝑓𝑌(𝑦) =
𝑑𝐹𝑌(𝑦)

𝑑𝑦
 (2.4)

 Note that prognosis and reliability analysis have similar types of computation, namely

uncertainty propagation. The distinction between the two is that prognosis is for a particular

structure, thus its properties are unique; whereas in the case of reliability analysis we also

need to consider variability across multiple realizations of the structural properties (model

parameters). In both types of computation, if there is statistical uncertainty regarding the

distribution parameters of the input random variables, this creates a family of distributions

for the input and therefore the output. On the other hand, model errors can be included in the

uncertainty propagation as additive error terms, quantified using calibration, verification and

validation activities and represented using probability distributions. The aggregation of

various types of uncertainty in the uncertainty propagation analysis is effectively done

through Monte Carlo simulation. However, Monte Carlo simulation is expensive, thus the

next section explores the use of MapReduce to parallelize the uncertainty propagation in the

forward problem. Nannapaneni and Mahadevan (2016) also explored a FORM-based

strategy for faster computation, but found it to be of limited use in the presence of

nonlinearities and uncertainty regarding correlations.

2.5 Surrogate Modeling

 As mentioned in Sec. 1.1, there are two types of surrogate models: response surrogate

18

and distribution surrogate. Response surrogate modeling techniques have been extensively

investigated in the literature, such as polynomial chaos expansion (Ghanem & Spanos,

1990), polynomial response surface (Rajashekhar & Ellingwood, 1993), support vector

regression (Boser et al., 1992), relevance vector regression (Tipping, 2001), and Gaussian

process (GP) interpolation (Rasmussen, 2006; Santner et al. 2013; Bichon et al., 2008). On

the other hand, Bayesian network (Jensen, 1996; Heckerman, 1998) is a general form of

distribution surrogate, while there are some approximations such as multivariate Gaussian

(Rose and Smith, 1996), Gaussian copula (Nelsen, 1999; Liang and Mahadevan, 2016) and

Gaussian mixture model (Reynolds, 2015). All three approximate distribution surrogate

models give fast, analytical solutions; among these, the Gaussian mixture model is the most

accurate but also takes much longer time to train. In this dissertation, one response surrogate

model (Gaussian process) and one distribution surrogate model (Gaussian mixture) are used,

which are discussed in detail below.

2.5.1 Gaussian Process Surrogate Model

 Since Bayesian updating requires repeated runs of computer model, an inexpensive

surrogate model is often used in this analysis instead of the original model to reduce the

computational cost. Many types of surrogate modeling techniques are available; Gaussian

process surrogate model is chosen in this section for this the purpose of illustration

(Rasmussen 2006).

 A Gaussian process is specified by its mean function and covariance function and is a

generalization of the multivariate normal distribution. We define the mean function m(x) and

19

the covariance function 𝐾(𝑥, 𝑥′) of a random process 𝑓(𝑥) as 𝑚(𝑥) = 𝐸[𝑓(𝑥)] and

𝐾[(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′))] respectively. The process 𝑓(𝑥) can then be denoted as

𝑓(𝑥)~ 𝐺𝑃(𝑚(𝑥), 𝐾(𝑥, 𝑥′)). In prediction, the joint distribution of the training outputs 𝑦𝑇

and the prediction 𝑦𝑃 is:

[
𝑦𝑇

𝑦𝑃
] ~ ([

𝑚𝑇

𝑚𝑃
] , [

𝑘𝑇𝑇 𝑘𝑇𝑃

𝑘𝑃𝑇 𝑘𝑃𝑃
]) (2.5)

where 𝑇 indicates training and 𝑃 indicates prediction. The prediction conditioned on the

training points follows a Gaussian distribution 𝑦𝑃 |𝑦𝑇 ∼ 𝑁(𝑚, 𝑆), in which, 𝑚 =

𝐾𝑃𝑇𝐾𝑇𝑇
−1𝑦𝑇, and 𝑆 = 𝐾𝑃𝑃 − 𝐾𝑇𝑇

−1𝐾𝑃𝑇
𝑇 .

 A number of common functions can be used as kernels to construct the covariance

matrices. As an example, the commonly used squared exponential function is used here:

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜎2𝑒−
1

2
(
𝑥𝑖−𝑥𝑗

𝑙
)
2

 (2.6)

in which 𝑙 is the length scale (which controls the correlation decay with distance) and 𝜎2 is

the magnitude of variance. Based on the training data, these parameters can be estimated by

the maximum-likelihood estimation (MLE) method.

2.5.2 Gaussian Mixture Model

 The Gaussian mixture model (Bishop, 2006) is a simple linear combination of Gaussian

components, which can provide a richer class of density models than a single Gaussian. The

20

Gaussian mixture distribution can be written as

𝑝(𝒙) = ∑ 𝜋𝑘𝑁(𝒙|𝝁𝑘, 𝚺𝑘)
𝐾
𝑘=1 (2.7)

The weights and parameters of the component distributions can be obtained by maximizing

the likelihood. However, likelihood maximization requires the derivatives of the likelihood

function with respect to all the unknown values, the parameters and the latent variables, and

simultaneously solving the resulting equations. In statistical models with a large number of

unknown variables such as GMM, this is usually impossible. Expectation-Maximization

(EM) is a powerful algorithm for finding maximum likelihood solutions (Dempster et al.,

1977; McLachlan & Krishnan, 1997). The main steps of EM for GMM are listed below

(Bishop, 2006):

Step 1. Initialize the means 𝝁𝑘, covariance 𝚺𝑘 and mixing coefficients 𝜋𝑘, and evaluate the

initial value of the log likelihood.

Step 2. E-step. Evaluate the posterior distributions using the current parameter values

𝛾(𝑧𝑛,𝑘) =
𝜋𝑘𝒩(𝒙𝑛|𝝁𝑘,𝚺𝑘)

∑ 𝜋𝑗𝒩(𝒙𝑛|𝝁𝑗,𝚺𝑗)
𝐾
𝑗=1

 (2.8)

Step 3. M-step. Re-estimate the parameters using the current posterior

𝝁𝑘
𝑛𝑒𝑤 =

1

𝑁𝑘
∑ 𝛾(𝑧𝑛,𝑘)𝒙𝑛

𝑁
𝑛=1 (2.9)

𝚺𝑘
𝑛𝑒𝑤 =

1

𝑁𝑘
∑ 𝛾(𝑧𝑛,𝑘)(𝒙𝑛 − 𝝁𝑘

𝑛𝑒𝑤)(𝒙𝑛 − 𝝁𝑘
𝑛𝑒𝑤)𝑇 𝑁

𝑛=1 (2.10)

𝝅𝑘
𝑛𝑒𝑤 =

𝑁𝑘

𝑁
 (2.11)

where

𝑁𝑘 = ∑ 𝛾(𝑧𝑛,𝑘)
𝑁
𝑛=1 (2.12)

21

Step 4. Evaluate the log likelihood

ln 𝑝(𝑋|𝝁, 𝚺, 𝝅) = ∑ 𝑙𝑛{∑ 𝜋𝑘𝑁(𝑥𝑛|𝜇𝑘, Σ𝑘)
𝐾
𝑘=1 }𝑁

𝑛=1 (2.13)

and check for convergence of either the parameters or the log likelihood. If the convergence

criterion is not satisfied, return to step 2. An example threshold for the difference of the log

likelihood between this step and last step could be 1 × 10−3.

2.6 Big Data Analytics

 There are two different directions to pursue in solving the big data problem. First, when

the data is too large to process, in order to reduce the computational cost, it may sometimes

be desirable to compress the data before processing. Data compressed into feature vectors

can help to reduce the dimension of data, by exploiting statistical redundancy of the raw data

(Sohn et al., 2001). Additionally, another kind of reduction can be achieved via reducing the

data size using samples of the data, known as compressive sensing. One example is the

compressive sampling of accelerometer signals (Bao et al., 2010). While it seems to be a

reasonable way to handle the voluminous data, one of the issues in data compression is the

reduced accuracy of the detection, which sometimes leads to the low quality of the structural

health monitoring, resulting in unreliable decision making.

 In contrast to data compression, the second option, namely parallel and distributed

computing offer alternatives to reduce the time cost of data analytics, without causing any

precision loss. Parallel computing is more tightly connected to multi-threading, or how to

make full use of a single CPU; Distributed computing refers to the notion of divide and

conquer, executing subtasks on different machines and then merging the results.

22

Theoretically, distributed computing is much more powerful, since more memory and CPU

resources (from the cluster) are available, although the bandwidth among the connected

computers can sometimes become the main limitation. Message Passing Interface (MPI) is

one of the most popular distributed computing methods used for a long time, and applications

can be found in structural health monitoring (Kiepert & Loo, 2012, Chakraborty et al., 2009).

MPI’s goals are high performance, scalability, and portability. Another conceptually similar

approach in the context of big data is MapReduce. Utilizing a cluster of nodes, MapReduce

performs two essential functions – it assigns work to various nodes within the cluster, and

then organizes and reduces the results from each node into a cohesive answer to a query

(Dean & Ghemawat, 2008).

 Although the main purpose of both MPI and MapReduce is to improve the efficiency

via parallelization, there are several differences between them. First, MPI is designed to

handle large amounts of data exchange between computers, while MapReduce focuses on

embarrassingly parallel implementation (no much information exchange among computers).

Second, MPI is appropriate for iterative algorithms that are computationally expensive,

whereas MapReduce is fit for the case where the expense is mainly caused by the data itself.

Third, although MPI can also be built to be scalable and fault tolerant, it needs much effort

to ensure the performance and reliability of such a system, MapReduce on the other hand, is

created to be easily scalable and fault-tolerant. A detailed discussion about the relationship

between MPI and MapReduce can be found in (Chen et al., 2011).

2.6.1 MapReduce framework

23

 MapReduce is a framework designed for processing large datasets, by utilizing multiple

nodes (machines) for the computations. It takes key/value pairs as inputs and generates other

key/value pairs as outputs. As mentioned earlier, the MapReduce framework can be split into

two steps: map and reduce, both of which are created by the user. Before applying the

MapReduce model, the user will need to write the input as the key/value pair. The key/value

pair (k1, v1) will then be input to the map function, which will generate the intermediate

key/value pairs (k2, v2). Then the intermediate key/value pairs are passed to the reduce

function, which merges together these values to form a smaller set of values. This process

allows to handle lists with high memory requirements and is displayed in Fig. 2.2.

Figure 2.2 MapReduce process to handle lists

 A cluster of computers (nodes) are used to implement this framework (Figure 2.3). One

of them is the master node and the others are slave nodes. As shown in Figure 2.3, the master

node talks to the user program, and assigns the tasks to the slave nodes (workers). First, the

input files are parsed and split into smaller pieces (size 16MB to 64MB). The master will

select the idle workers and assign each a map task or reduce task. Then each worker will do

its own task and when all tasks are completed, the output files will be collected and

synthesized by the master node.

map(k1, v1) − > list(k2, v2)

reduce(k2, list(v2)) − > list(v3)

24

Figure 2.3 MapReduce execution overview

2.6.2 Spark

 While there are different implementations of MapReduce, Apache Spark (Zaharia et al.

2012) is the one chosen in this study. Spark is an open source cluster computing framework.

APIs (Application Program Interface) for Java, Scala and Python are available, which is

convenient for non-computer science programmers. Beside the basic capability of using the

MapReduce methodology, Spark employs Resilient Distributed Datasets (RDD) that enable

efficient data reuse in a broad range of applications. Furthermore, in contrast to other

systems, Spark applies coarse-grained transformations (e.g., map, filter and join) to allow for

the fault-tolerance feature. In contrast with fine-grained transformation, the coarse-grained

transformation is applied on the entire dataset, instead of on a single data point. Instead of

storing the actual data, the logging of the transformation can ensure that there is enough

25

information to redo the operation if an RDD is lost. Due to the adoption of RDD, iterations

in the computational algorithm do not need to repeatedly execute the reading and writing

operations on the file system; this greatly reduces the computational cost in iterative

algorithms (Fig. 2.4).

Figure 2.4 RDD in Spark

26

CHAPTER 3

BIG DATA ANALYTICS IN DATA PROCESSING

3.1 Structure, Sensors and Data Acquisition

 When numerous images (Gigabytes or Terabytes of data) are collected in structural

health monitoring, the data is too large and a traditional data processing framework (storage,

processing and manipulating) is not feasible; therefore a big data analytics framework needs

to be employed. The methodology to apply the big data technique in health monitoring will

be developed in detail in this section. Structural health monitoring systems have the

following elements: structure, sensors, data acquisition system, data transfer and storage

mechanisms, data processing, and data manipulation. Each element’s relation to big data are

discussed below. A large volume of data can be caused by the size of the structure being

monitored, or by the number of sensors. The structure gives the scope, and the sensors give

the resolution.

 In SHM, the engineering structure is the target to be monitored and regarding which the

decision needs to be made (whether to use, maintain, repair or retire the structure based on

the diagnosis result). For example, suppose instead of the piers of the bridge to be monitored,

the health of the whole bridge (deck, load-carrying elements, piers, and foundations) is being

evaluated, with the processing ability of big data. In this case, the resolution is not changing,

27

but the data volume is greatly enlarged.

 As mentioned earlier, another cause of big data in SHM is resolution. Similar to the

monitoring scope, the number of sensors can be increased with the data processing ability

provided by the big data techniques. With more sensors used in monitoring, more

information will be available for analysis.

 In the monitoring process, data will be generated by sensors, and then interpreted and

transferred to the data processing computer, via data acquisition system (DAQ). The

sampling rate is controlled by the DAQ device, which directly affects the resolution and data

size. After acquired by the DAQ device, the data is stored in the computer (either a laptop or

a desktop) connected with the DAQ device. The next step is to transfer the data to the cluster.

For the Linux or Mac operating system, the command for data uploading is ‘scp’. The syntax

of ‘scp’ is given in Fig. 3.1.

Figure 3.1 Scp syntax for data uploading

 In Fig. 3.1, the syntax /local/user/path/to/foo indicates the local folder, while

user@your.server.example.com:/cluster/path/to/foo indicates the target folder in the cluster,

and -r implies recursive copying of the files in the folder. ‘foo’ is commonly used as a

placeholder name. When the operating system for the client computer is Windows, a similar

scp -r /local/path/to/foo

user@your.server.example.com: /cluster/path/to/foo

28

command can be used after installing WinSCP or PuTTY. The transferring speed is limited

by the devices on both ends, and by the bandwidth of the connection between the client and

cluster.

 Normally the MapReduce application is automatically paired with the corresponding

file system, such as Hadoop with HDFS (Hadoop Distributed File System), Amazon EMR

with Amazon S3, and Windows Azure and WASB (Windows Azure Storage Blobs).

However, the user can also choose a different file system other than the default paired one,

when it is more applicable to do so. For example, here we use Spark, paired with GPFS

(General Parallel File System). Additionally, the distributed file system will divide the large

data file into blocks (normally 64 𝑀𝐵 to 128 𝑀𝐵, and normally the user is allowed to change

the block size in the actual application of MapReduce).

3.2 Data Processing

 As reviewed previously, there might be different data formats to be processed in

structural health monitoring. Here we consider thermal image processing as an example. The

common procedure for processing digital images is: cropping, baseline removal, noise

cancellation and feature extraction. Each image is composed by pixels (Fig. 3.10 for

example), where each pixel represents the temperature of the location.

3.2.1 Baseline Removal

 Baseline removal subtracts pixel values by the corresponding pixel from an image of

29

the control group. It happens when the control group is available. This can enhance signal

characteristics for diagnosis.

3.2.2 Cropping

 The cropping is realized by only storing and plotting the corresponding part of the target

structure we analyze. Compared with the raw image, the temperature contour of cropped

image is zoomed in (Fig. 3.11). Normally since in the observation procedure, of the locations

of the structure and camera do not change, the cropping pixel range for all the images is the

same.

3.2.3 Noise Cancellation

 Uniform filtering is used for the purpose of noise cancellation. The basic idea is to

average each pixel by the value of adjacent pixels. Notice that uniform filtering is different

from simple moving average (SMA), in that uniform filter is doing averaging by putting the

target point in the center while SMA is doing biased averaging. Mathematically, the uniform

filtering process is basically a 2D convolution operation. To illustrate the convolution

operation, the 1D convolution operator formula is defined in Eq. (3.1), in which 𝑓 is the

uniform kernel, and 𝑔 is the image matrix to be operated on. The kernel can be of different

sizes, and Fig. 3.2 shows how a kernel with size 3 × 3 works on a 5 × 5 target matrix. To

perform convolution, first align the center element of the kernel matrix with the element on

the target matrix, and then sum up the multiplication between all aligned element-pair. For

example, the convolution on the element (1, 1) is 7.67, as is shown in Fig. 3.2. Move the

30

kernel along x and y axis until convolution of all elements are carried out. Refer (Jain et al.,

1995) for detailed implementation. After the uniform filtering, the image is smoothed, i.e.,

more continuous everywhere (Fig. 3.12).

 (3.1)

Figure 3.2 Uniform filtering example

3.2.4 Feature Extraction

 The Sobel filter method (Jain et al., 1995) is used here for the feature extraction, based

on the image obtained after uniform filtering. The other edge detection algorithms such as

Canny, Prewitt, Robert, Laplacian and Laplacian of Gaussian filters were tried and found

31

that Sobel filtering performed best in our problem. The selection of algorithm would be

problem-dependent and any desired algorithm can be plugged in the big data analytics

framework in the same way as Sobel filter.

 The basic idea behind Sobel filter is similar to the uniform filter, which is also a 2D

convolution operation, where the only difference is the filter kernel. Similar to the uniform

filter, Sobel filter can also be performed with different sizes. The difference is that for

uniform filtering, there is only one kernel, which is a 𝑛 × 𝑛 matrix filled with the value 1/𝑛2.

For Sobel filtering, the filters for 𝑥 and 𝑦 directions can be different (Fig. 3.3). Additionally,

the kernel can be split into the product of two 1D kernels, for averaging and differencing in

two directions (Fig. 3.4). To differentiate the damaged area, gradient ranges in both 𝑥 and 𝑦

directions are needed, and thresholds is applied to detect the edges of damages.

(a) (b)

Figure 3.3 Sobel filter kernels: (a) kernel for x direction, and (b) kernel for y direction

Figure 3.4 Split of Sobel filter kernel (x direction) into averaging and differencing

32

3.2.5 MapReduce for Data Processing

 The basic idea of the application of data processing in MapReduce is to divide the files

into different partitions (each partition contains multiple files), and then perform the mapping

and reducing operations separately. To fully use the resources, the number of partitions is

always greater than the number of instances (i.e. cores, of which each node might contain a

multiple). For example, if the number of files to be analyzed is 100, and the number of cores

available is 20, the number of partitions should be at least 20. Otherwise some of the cores

will be idle.

 In structural health monitoring, the data is normally sampled as separate files (images

or signals). For each image and signal, a separate processed result is obtained, without

combination (Fig. 3.6). In that case, the Reduce function is omitted, and only the Map

function remains. All the data processing functions on the assigned files are combined within

a single Map function. The Map function is defined by the user, in which the reading,

processing, and writing functions are all included, as shown by the pseudocode below:

Figure 3.5 Pseudocode of MapReduce implementation for data processing

Pseudocode 3.1:
Map(x):
 function InputData = ReadData(x)
 function OutputData = Processing(InputData)
 function WriteData(OutputData)
 return (x, 0)
SparkContext(appName=”myApp”).parallelize(Filelist,
N).map(mapper).count()

33

 The pseudocode in Fig. 3.5 has two steps. First, a Map function is defined (mapper),

within which all the actual data processing functions are defined (reading, filtering, writing).

The argument 𝑥 is the file to be analyzed, which is assigned by the task manager. As

discussed previously, since there is only the Map function, the input file can be mapped with

any value (here we mapped 𝑥 to 0). The reason it can be any value is here we only use the

Map function to trigger the parallelization, without caring for the output of the Map function.

The second step, SparkContext, represents the connection to the cluster, which is the main

class in Spark; parallelize is the method to split the input files into 𝑁 partitions; and ‘map’ is

the method to call the Map function defined in the first step and to pass the input file to it.

The count method is used to count the number of outputs. The number of outputs is not of

interest, since the result has already been obtained in the Map function. However, it is needed

since the transformations (parallelize, map) only created the RDD instance, which needs

some actions to execute it.

Figure 3.6 Schematic description of the MapReduce process for data processing

 After the cluster finishes all the tasks, the results are stored in the designated directory

34

defined in the ‘WriteData’ function. Then the next step is to retrieve the data files from the

cluster to the local computer, since normally it is not convenient to visualize the data

remotely on the cluster. To transfer data back from the cluster, the user can use the ‘scp’

command similar to the one used for transferring the data to the cluster.

 Operations for image processing (cropping, uniform filtering, and Sobel filtering) need

to be applied on all the images, with all parameters (cropping range, uniform filtering kernel

size, and Sobel filtering gradient cutoff) remaining unchanged. As defined earlier, the

reading, writing and processing functions are all included within the Map function. There

are three sub-functions: ‘Cropping’, ‘UniformFilter’ and ‘SobelFilter’.

 Several remarks about the processing function are in order. First, the input data is no

longer a key/value pair but is an actual image (pixel matrix). Second, the sub functions inside

will be sequentially executed, since the outputs of each sub function will be fed into the next

sub function as inputs. Third, the sub functions (‘Cropping’, ‘UniformFilter’, and

‘SobelFilter’) can be replaced easily with other functions according to the actual data

processing task.

 In summary, the steps for the big data analytics of image processing in structural health

monitoring are: (1) upload the acquired data from the local computer to clusters; (2) prepare

the image processing functions, and substitute into the Map function shown in Fig. 3.5; and

(3) run Spark to process and retrieve the data files from the cluster back to the local computer.

35

3.3 Numerical Example

 This example illustrates the basic application of big data analytics in structural health

monitoring. The purpose of the monitoring in this example is to detect holes drilled into a

15.5 𝑖𝑛 × 15.5 𝑖𝑛 × 2 𝑖𝑛 concrete slab (Fig. 3.7) using infrared thermography imaging.

Holes of 5/8 𝑖𝑛 , 1/2 𝑖𝑛, and 5/16 𝑖𝑛 diameter (all of them are 4.45 𝑖𝑛 deep) were drilled

into the side of the concrete slab, as shown in Fig. 3.8. The holes are required to be detected

by the monitoring technique in this example.

 Since the focus of this example is the application of big data technique to structural

diagnosis, we use the holes only to illustrate this capability. In this case, the ground truth is

known, which facilitates performance evaluation of the monitoring technique. In realistic

situations, concrete damage could be of many types (physical, chemical, and mechanical),

due to various causes such as freeze-thaw, chloride penetration, alkali-silica reaction etc.

Temperature, humidity, and the properties of the concrete constituents (cement, aggregates,

reinforcing steel, water content, and chemical admixtures) play a crucial role in the evolution

of various types of damage. Damage in concrete eventually manifests as cracks,

delamination, spalling etc., and the edge detection approach illustrated here could be applied

to different situations.

36

Figure 3.7 Thermography camera and the specimen to be monitored

(a)

37

(b)

Figure 3.8 Sketch of the specimen (a) top view (b) side view

3.3.1 Experiment Setup

 The mechanics of damage detection using infrared thermography is based on the

differences in heat transfer properties of different materials. The air in the drilled holes in the

structure has much lower thermal conductivity coefficient than concrete, which will lead to

a lagging phenomenon, i.e., the heating and cooling time of the hole are slower than the

surrounding solid region. The slab is placed on a HEATCON thermal blanket and uniformly

heated from below. The infrared thermography camera can detect the temperature of the

surface of the slab (Fig. 3.7, Fig. 3.8) and store the temperature values as images via the

DAQ system. We also place reflective material around the slab, in order to prevent direct

heat transfer from the thermal blanket to the air around the slab; thus the thermal camera

detects the temperature change on the top surface slab mainly caused by the heat transfer

38

from the blanket through the slab.

3.3.2 Thermal Loading

 Each thermal cycle has a total duration of 70 minutes. The heating profile is shown in

Fig. 3.9. A HEATCON composite system controller was connected to the thermal blanket

and used to program a defined thermal cycle that can be repeated as many times as needed

for a test. Two thermocouples were used to measure and monitor the heat applied by thermal

blanket. One thermocouple was placed beneath the blanket and the other thermocouple was

placed between the thermal blanket and the concrete sample (Fig. 3.10).

Figure 3.9 Thermal loading time history (scaled values)

 For thermographic imaging, a FLIR Infrared (IR) camera is used to detect the

temperature contours on the surface of the concrete slab. These contours can be analyzed to

detect flaws or defects inside the slab that cannot be easily detected by visual inspection. The

39

FLIR IR camera was setup to capture images of the concrete slab every 1 second.

Figure 3.10 Thermal blanket and thermo couple

3.3.3 Data Acquisition System

 The FLIR IR software is an integrated environment that allows the user to configure the

sampling rate, resolution, and storage. Also the software can visualize the current captured

image, and store the images in the designated path in the ‘.tls’ format, which is specially used

by this software.

3.3.4 Data Transfer and Storage Mechanism

 After the sampling is completed, the data stored in the file *.tls can be exported in

different format, such as .csv, .m, .txt, .jpeg. In this study, we used .csv to represent each

image. For the heat loading period considered, 4231 images were sampled, and the total size

is 19.4 𝐺𝐵. The ‘.tls’ file is stored in the computer connected with the DAQ system, and the

size is much smaller. The exported .csv files were stored in a portable drive, through which

they were transferred to the analysis computer client. In order to use MapReduce to analyze

the data, the data was uploaded to the cluster, which in this case was located within ACCRE

40

(Advanced Computing Center for Research and Education) at Vanderbilt University.

3.3.5 Data Processing

 The implementation of various steps in processing the thermal image data are discussed

in detail and the results are presented below.

3.3.5.1 Baseline Removal

 As reviewed previously, the common procedure for processing digital images consists

of: cropping, baseline removal, noise cancellation and feature extraction. In this example,

results can be obtained without control group. Thus there is no baseline removal needed here.

This can save almost half the cost of data storage. For each image, the resolution is 640 ×

512 pixels (Fig. 3.11).

Figure 3.11 Example of raw image before cropping (𝑡 = 2835 s)

41

3.3.5.2 Cropping

 Fig. 3.11 shows the raw thermography image of the top surface of the slab and reflective

material, 2835 seconds after start of the heating. Notice that the area corresponding to the

slab has much higher temperature compared to the surrounding reflective material. Thus the

image needs to be cropped in order to achieve greater resolution in analyzing the temperature

distribution within the slab. After several trials, the appropriate pixel range for cropping was

found to be [83: 518, 25: 460]. The cropped image is shown in Fig. 3.12.

Figure 3.12 Cropped image (𝑡 = 2835 s)

 The image shows boundary effects, where additional heat may be introduced from the

area around the slab, since the reflective material may not block all of the heat from the

thermal blanket, especially since there was a small gap between the slab and the reflective

material. It is also seen that there is a large area on the upper left quadrant, where the

temperature is low. It may be due to the non-uniformity of the heating setup (such as lack of

contact between slab and blanket), and heterogeneity of the concrete slab; the feature

42

extraction step will reveal whether these effects are significant. As explained in the

methodology section, the cropping pixel range for all the images are the same.

3.3.5.3 Noise Cancellation

 A 22 × 22 kernel uniform filtering is used for noise cancellation, as shown in Fig. 3.13.

It can be observed that after the uniform filtering, the image is smoother. By doing this, the

noise in the image is greatly reduced. Note that Fig. 3.13 roughly indicates the three holes in

the right hand side. There is also a large, low temperature area on the left, but this gets

eliminated in the subsequent feature extraction step.

Figure 3.13 Image after uniform filtering (𝑡 = 2835 𝑠; 22 × 22 kernel)

3.3.5.4 Feature Extraction

 Sobel filter is used for the feature extraction, based on the image obtained after uniform

filtering. After applying Sobel filtering, the image shows the detected holes in the slab (Fig.

43

3.14 (a)). The holes are detected by first obtaining the upper edges (yellow region on the

right hand side in Fig. 3.14 (a)) and lower edges (red region on the right hand side in Fig.

3.14 (a)), and then plot the region between. The thresholds for obtaining upper edges are

[−0.050, 0.050] for 𝑥 and [0.020, 0.050] for 𝑦, and the thresholds for obtaining lower edges

are [−0.050, 0.050] for 𝑥 and [−0.100, 0.013] for 𝑦. Notice that the thresholds for 𝑥 for

both cases are the same, this is due to the hole directions being horizontal so that only the

gradient in 𝑥 direction is enough for the detection. For a more complicated hole or damage

area, gradients in both 𝑥 and 𝑦 are needed for the detection of edges. Also notice that some

noise is found on the left side of the slab, as shown in Fig. 3.14 (a). This is mainly due to the

heterogeneity of concrete, and also uneven heating by the thermal blanket. The comparison

of detected region and actual holes is shown in Fig. 3.14 (b), and visual comparison shows

good agreement; a more quantitative comparison is discussed below.

(a)

44

(b)

Figure 3.14 Image after Sobel filtering (a) holes detection based on the upper and lower

edges (b) comparison between detected holes and ground truth; blue: detected holes,

green: ground truth

3.3.5.5 Performance Discussion

 Now we discuss the hole detection performance for different sample rates. In order to

evaluate the performance quantitatively, a score is defined as the ratio of correctly detected

area to the total detected area. As the sampling rate increases, the score grows accordingly

(Fig. 3.15). The score increases by almost 40% (i.e., 100% × (0.723 − 0.523)/0.523, as

the sampling interval decreases from 2 mins to 1 second. This indicates that by increasing

the sample rate, the damage detection performance can be greatly improved. However, this

increases the demand on the data analytics computation, which is resolved by the

MapReduce technique.

 Compared with the traditional single machine computation, the computational expense

45

(time cost) is greatly reduced as shown in Table 3.1. Notice that via distributed computation,

the time cost is only 10 of local computation. It can be seen that as the number of nodes

being used increases, the corresponding speedup increases almost linearly, which illustrates

the scalability of MapReduce. Also notice that as the number of nodes increases, the

computational time decays similar to exponential decay (Fig. 3.16).

Figure 3.15 Detection performance vs. sampling rate

Figure 3.16 Thermography camera and the specimen to be monitored

46

 However, the time spent by the traditional method is 1560 𝑠, while the MapReduce

method on a single node takes as much as 2971 𝑠. This is due to two reasons. First, the

operations related to MapReduce such as data transferring, data splitting, task managing, and

mapping cost additional time. Second, the CPU and memory of the cluster node is less

powerful (in this example) than the computer client used for local traditional computation

(Table 3.2).

Table 3.1 Time cost of traditional method and MapReduce method

Method Time (s)

Traditional 1560

MapReduce (20 nodes) 163

Table 3.2 Node used by traditional method and MapReduce method

Method CPU (GHZ) Memory (GB)

Traditional 3.4 × 8 12

MapReduce (20 nodes) 2.3 5

 The time cost of individual step in data processing (for one image) is shown in Table

3.3. For this simple case, data reading accounts for a large portion of the total time. However,

for more complicated data processing, actual processing is expected to occupy a much larger

portion.

47

Table 3.3 Time cost of individual steps in data processing

Step Time (s)

Data Reading 0.14

Cropping 0.08

Uniform filtering 0.08

Sobel filtering 0.07

3.4 Summary

 This chapter developed a framework for applying a big data technique to structural

health monitoring, in particular image processing. The popular MapReduce approach was

applied in the proposed framework, and realized via Apache Spark. Structural damage

detection was parallelized via MapReduce, by transforming inputs and outputs as key-value

pairs. Sobel filter was used for illustration of the image processing. It can be easily replaced

with other appropriate techniques for different scenarios. Results show that the processing

effort scaled well, in an almost linear trend. The approach was illustrated for the processing

of thermal images obtained for a concrete slab, and the data volume is less than 20 𝐺𝐵. For

practical structural health monitoring for the whole structure in the field, the data can be very

large, thus considerably increasing the advantage of MapReduce in realistic application.

 Note that this chapter only considered the application of big data techniques to

deterministic structural health monitoring; extension to uncertainty quantification in

diagnosis will be considered in future chapters. Second, this chapter did not consider the

48

complexity problem of parallelization in MapReduce, which can lead to different

parallelization options via splitting the task data-wise or function-wise. Third, fault-tolerance

is an important issue in big data analytics, which needs to be incorporated in future work.

49

CHAPTER 4

UNCERTAINTY QUANTIFICATION IN DIAGNOSIS AND PROGNOSIS

4.1 Background

 Two common problems encountered by engineers are prediction of system response to

different input conditions (in order to support decisions regarding system design, operational

conditions, and risk management activities such as inspection, maintenance and repair), and

inference of system state or system model parameters given observations regarding one or

more response variables. Prediction is a forward problem, and inference is an inverse

problem. Both types of problems are affected by many different sources of uncertainty,

which may be classified into two types: aleatory and epistemic. Aleatory uncertainty refers

to natural variability, which is irreducible (e.g. material parameters). On the other hand,

epistemic uncertainty is due to lack of knowledge, which could be reduced when new

information becomes available. Examples of epistemic uncertainty are information

uncertainty regarding the model inputs or model parameters (due to inadequate or imprecise

data) and model uncertainty (due to assumptions and approximations in modeling the

reality). Model errors, which include numerical solution errors and model form errors, can

be quantified through calibration, verification and validation activities and included in the

reliability analysis. Structural health monitoring consists of both the forward and inverse

problems, namely diagnosis (inverse problem) and prognosis (forward problem), both of

which are affected by aleatory and epistemic uncertainty sources. It is necessary to identify

50

the uncertainty sources and quantify their effects on diagnosis and prognosis, in order to

facilitate effective risk management. This chapter investigates efficient computational

approaches for uncertainty quantification in both forward and inverse problems, and

illustrates them for structural health monitoring.

 This chapter focuses on the following issues: 1. Investigation of techniques to

parallelize the Bayesian inference for diagnosis uncertainty. Popular numerical techniques

for Bayesian inference, namely Markov chain Monte Carlo (MCMC) and particle filter (PF)

will be parallelized, including strategies for fault tolerance. 2. Investigation of big data

techniques for efficient quantification of uncertainty in damage prognosis. The repeated FEA

model runs in Monte Carlo simulation will be parallelized to reduce the computational cost

of uncertainty propagation analysis. The prognosis objective is to quantify the probability

distribution of predicted damage growth and remaining useful life (RUL) (Farrar and

Worden, 2007) of the structure.

 This chapter utilizes big data techniques to analyze voluminous SHM data (i.e., image

files) for damage diagnosis, and to quantify the diagnosis uncertainty. Prognosis is realized

using a damage growth model coupled with FEA, and the remaining useful life (RUL) is

estimated. The uncertainty in the diagnosis of the structural state is then propagated to the

prognosis result, in addition to uncertainty sources in the structural properties, usage and

environment. The use of big data analysis techniques makes uncertainty quantification

feasible in terms of computational effort, by efficiently quantifying and aggregating the

uncertainty from multiple sources.

51

 Note that this chapter focuses on the MapReduce application of handling uncertainty

quantification in diagnosis and prognosis. The application of MapReduce to SHM data

processing (deterministic diagnosis) was already discussed in Chapter 3. The details of

MapReduce implementation for data processing have been explained in Sec. 3.3. The basic

steps in implementing MapReduce for image or signal processing in structural health

monitoring, as discussed in Chapter 3, are: (1) upload the acquired data from the local

computer to the cluster of computers; (2) prepare the data processing functions, and

substitute into the Map function shown in Pseudocode 3.1 (Fig. 3.5); and (3) run Spark to

process and retrieve the data files from the cluster back to the local computer.

4.2 MapReduce for Diagnosis under Uncertainty

 Since damage diagnosis under uncertainty is pursued using Bayesian methods in this

chapter, we first describe the general steps of parallelizing Bayesian updating methods. For

sample based Bayesian updating methods, the posterior distribution is approximated by

samples, which is gradually available. The main idea is to split the sampling tasks to cluster

nodes, and estimate the posterior after all tasks completed and with samples transferred to

the master node (Fig. 4.1). The main steps in the parallelization of Bayesian updating

methods are summarized as below:

Step 1. Set the parameters (number of samples, burn-in length etc.).

Step 2. Use MapReduce to assign the sampling task to cluster nodes.

Step 3. Re-assemble the samples and construct the posterior distribution.

52

Figure 4.1 Schematic description of the MapReduce process

 This basic approach is applied to two sampling-based Bayesian methods below, namely

Markov Chain Monte Carlo (MCMC) sampling, and Particle Filter (PF).

4.3.1 MapReduce for Markov Chain Monte Carlo

 The MCMC method was described in Chapter 2. The basic idea of MCMC

parallelization is to divide the observations into 𝑀 splits, with each node taking one partition

to provide samples of the posterior distribution. The prior distribution of the variable of

interest will be updated using the equation (Neiswanger et. al, 2013):

𝑝𝑚(𝜃) ∝ 𝑝(𝜃)
1

𝑀𝑝(𝑥𝑛𝑚|𝜃) (4.1)

 After all nodes complete their tasks, all the sub-posterior samples from each nodes will

be combined to produce samples for an estimate of the sub-posterior density product

𝑝1, ⋯ , 𝑝𝑀, which is proportional to the full data posterior, i.e. 𝑝1, ⋯ , 𝑝𝑀(𝜃) ∝ 𝑝(𝜃|𝑥𝑁).

Pseudocode 4.1 in Fig. 4.2 shows the implementation of MCMC use MapReduce.

53

Figure 4.2 MapReduce implementation of MCMC

 A Map function is defined (’mapper’), within which all the actual functions are defined

(Read Data(),MCMC_Sampling(), and SaveSamples()). As shown in Fig. 4.2, the sampling

process is executed on the slave nodes, while posterior integration is done after all particles

and weights are saved from the slave nodes. SparkContext and count() function are used the

same way as in Pseudocode 3.1 in Fig 3.5. ReadData() is the function used to read

observation data and parameters, and followed by MCMC_Sampling(), which is the function

to perform the sampling. SaveSamples() is the function used to save all subset of MCMC

chains. After all samples are saved, the function PosteriorEstimate() will be called to

construct the posterior distribution based on samples.

4.3.2 MapReduce for Particle Filter

 The particle filter method was described in Chapter 2. In order to reduce the

Pseudocode 4.1:

function ParameterSetting()

mapper(x):

 function ReadData()

 function MCMC_Sampling()

 function SaveSamples()

 return (x, 0)

SparkContext(appName="myApp").parallelize(Filelist,

N).map(mapper).count()

function PosteriorEstimate()

54

computational cost, particle filter is parallelized in this study using MapReduce, which is

implemented in Spark. Pseudocode 4.2 in Fig. 4.3 summarizes this approach.

Figure 4.3 MapReduce implementation of Particle Filter

 Similar to the MapReduce application of data processing, a Map function is defined

(‘mapper’), within which all the actual functions are defined (reading, sampling, and saving).

SparkContext and count() function are used the same way as in Pseudocode 3.1. As shown

in Pseudocode 4.2, the sampling process is executed on the slave nodes, while resampling is

done after all particles and weights are saved from the slave nodes. ReadData() is the function

used to read observation data and parameters, and followed by Sampling(), which is the

function to perform the sampling. Note that ReadData() occurs both inside and outside the

mapper function, which means that data reading happens both on slave nodes and the master

node. By doing this, there is no direct data transfer between nodes, which further saves

Pseudocode 4.2:

function ParameterSetting();

mapper(x):

 function ReadData()

 function Sampling()

 function SaveParticles()

 function SaveWeights()

return (x, 0)

SparkContext(appName="myApp").parallelize(Filelist,

N).map(mapper).count()

function ReadData()

function Sampling()

function SaveParticles()

function SaveWeights()

function PosteriorEstimate()

55

computational time, and avoids faults that might happen during the communication (such as

loss of data and miscommunication). After particles and weights are saved, the posterior

distribution can be approximated by function PosteriorEstimate().

4.4 MapReduce for Prognosis Uncertainty Quantification

 Damage prognosis needs to propagate uncertainties, which applies Monte Carlo

sampling to repeatedly run FEA simulations and damage growth models. MapReduce can

be used to parallelize those runs efficiently.

Figure 4.4 MapReduce implementation of MCS

 Since MCS needs repeated FEA runs with different inputs, parallelization can be

realized by using MapReduce. Fig. 4.4 shows the implementation in Spark. Similar to the

MapReduce application in data processing, a Map function is defined (‘mapper’), within

which all the actual functions are defined (reading, processing, and saving). ReadData() is

Pseudocode 4.3:

function ParameterSetting()

mapper(x):

 function InputData = ReadData()

 function OutputData = FEA_Processing()

 function WriteData(OutputData)

return (x, 0)

SparkContext(appName="myApp").parallelize(Filelist,

N).map(mapper).count()

56

the function used to read FEA configurations (realizations of control variables from Monte

Carlo Simulation), followed by FEAProcessing(), which is the function to perform the

sampling.

 In summary, to reduce the computational effort in uncertainty quantification of

structural diagnosis and prognosis in the context of big data, we proposed the methodology

of parallelization of SHM data processing, diagnosis UQ and prognosis UQ. Note that the

MapReduce procedure can be easily extended to the general inverse and forward problems

encountered in uncertainty quantification analyses, although it is explored here within the

context of structural health monitoring.

4.5 Numerical Example: ASR Diagnosis and Prognosis in Concrete

4.5.1 Background of ASR Degradation in Concrete

 Alkali-silica reaction is a reaction between the alkali in the cement and reactive silica

in the aggregate in concrete structures. The reaction product is a gel which expands in the

presence of moisture, eventually causing cracking. The chemical reaction can be described

in two steps: alkali-silica gel formation and alkali-silica gel expansion (Saouma and Perotti,

2006). The gel formation can be represented using the chemical equation below:

[𝑥𝑆𝑖𝑂2] + [𝑦𝑁𝑎(𝐾)𝑂𝐻] → [𝑁𝑎(𝐾)𝑦𝑆𝑖𝑥𝑂𝑧𝑎𝑞] (4.2)

And the expansion of the alkali-silica gel in the presence of moisture is represented as:

[𝑁𝑎(𝐾)𝑦𝑆𝑖𝑥𝑂𝑧𝑎𝑞] + [𝐻2𝑂] → [𝑁𝑎(𝐾)𝑦𝑆𝑖𝑥𝑂𝑧𝐻2𝑂] (4.3)

The expansive stress results in micro- to macro- cracking. The cracking increases the

57

permeability of the concrete, causing increased moisture ingress and therefore further gel

expansion and cracking.

4.5.1 ASR Description and Modeling

 Saouma and Perotti (2006) presented a comprehensive coupled thermo-hydro-

mechanical chemical (THMC) model for ASR gel expansion based on Ulm et al. (2000), and

considered the effects of stress on the reaction kinetics and anisotropic volumetric expansion

induced by ASR. We applied this model using the Abaqus FEA software, by programming

the constitutive model in a user-defined material (UMAT) code. By choosing the appropriate

parameters, this model can simulate ASR expansion in a realistic manner, based on several

advanced features: 1. ASR expansion strain is treated as a full strain tensor, not calculated

separately and independently for each principal direction; 2. ASR reaction rate is temperature

dependent; 3. ASR reaction can be retarded by compressive stress within concrete; 4. ASR

expansion is constrained by compression, and is redirected into other less-constrained

principal directions; 5. both high compressive or tensile stress states inhibit ASR expansion

due to the formation of micro- and macro-cracks that absorb the expanding gel; 6. triaxial

compressive stress state reduces expansion; and 7. reduction in tensile strength and elastic

modulus are included in the model.

4.5.1.1 ASR Reaction Kinetics

 Based on Ulm et. al (2000)’s stress-independent reaction model, Saouma and Perotti

(2006) proposed a first order ASR reaction kinetics model that is dependent on both the

58

temperature and the first invariant of the stress tensor as:

𝑡𝐶(𝜃, 𝜉) ⋅
𝑑𝜉

𝑑𝑡
= 𝜏𝐶(𝜃) ⋅

1+exp[−
𝜏𝐿(𝜃,𝐼𝜎,𝑓𝑐

′)

𝜏𝐶(𝜃)
]

𝜉+exp[−
𝜏𝐿(𝜃,𝐼𝜎,𝑓𝑐

′)

𝜏𝐶(𝜃)
]
⋅

𝑑𝜉

𝑑𝑡
= 1 − 𝜉 (4.4)

in which 𝜉 is the ASR reaction extent ranging from 0 (not reacted) to 1 (fully reacted); 𝜃 is

the temperature; 𝜏𝐶 is characteristic time constant, while 𝜏𝐿 is latency time constant; 𝐼𝜃 is the

first invariant of the stress tensor; 𝑓𝑐
′ is the uniaxial compressive strength of concrete. See

(Ulm et. al, 2000) for detailed discussion of these variables.

4.5.1.2 Stress-dependent ASR Volumetric Strain

 Once the increment of ASR reaction extent Δ𝜉 is obtained, the ASR volumetric strain

increment Δ𝜖𝑣𝑜𝑙
𝐴𝑆𝑅 can be evaluated as:

Δ𝜖𝑣𝑜𝑙
𝐴𝑆𝑅 = Γ𝑡(𝑓𝑡

′, 𝜎𝐼|𝐶𝑂𝐷)Γ𝑐(�̅�, 𝑓𝑐
′)𝑔(𝐻)Δ𝜉𝜖∞|𝜃 = 𝜃0 (4.5)

where 𝑓𝑡
′ is the tensile strength of the concrete; 𝐼 is the maximum principal stress (> 0 under

tensile stress); 𝐶𝑂𝐷 is the crack opening displacement; 𝜎 is the ratio between the hydrostatic

stress and compressive strength of concrete, and 𝜖∞ is the laboratory-determined maximum

free volumetric expansion at the reference temperature 𝜃0. Γ𝑡 accounts for ASR reduction

due to tensile cracking, while Γ𝑐 accounts for the reduction in ASR volumetric expansion

under compressive stresses (in which case gel is absorbed by diffused microcracks). See

Saouma and Perotti (2006) for detailed discussion of the above variables and functions.

4.5.1.3 Anisotropic ASR Strains and Weights in Principal Directions

 The incremental ASR volumetric strain Δ𝑣𝑜𝑙
𝐴𝑆𝑅 needs to be redistributed along three

59

principal directions according to their relative propensity to expand. Saouma and Perotti

(2006) presented a method to calculate the relative weights along the three principal

directions based on the principal stresses under either uniaxial, biaxial or triaxial

confinement conditions. Given the full stress tensor (in Cartesian coordinates) on a

quadrature point within an element, an eigen-solver is used to obtain the three principal

stresses, 𝑘, 𝑙 and 𝑚, and associated eigen-vectors along the directions of principal stresses,

𝑅𝑘, 𝑅𝑙 and 𝑅𝑚. These eigen-vectors form a stress/strain rotational matrix 𝑅 = 𝑅(𝑅𝑘, 𝑅𝑙, 𝑅𝑚)

that will be used later to rotate the incremental ASR strain tensor expressed in principal

stress/strain coordinates back into Cartesian coordinates. ASR expansion weights 𝑊𝑘, 𝑊𝑙,

𝑊𝑚 along the principal directions can be obtained following the procedure described in

Saouma and Perotti (2006), given concrete tensile strength 𝑓𝑡
′, compressive strength 𝑓𝑐

′, and

a gel expansion inhibiting compressive strength 𝜎𝑢. After obtaining the weights, the

individual incremental ASR strains along the principal directions are then obtained using

these weights by the following formula

Δ𝜖𝑖
𝐴𝑆𝑅 = 𝑊𝑖Δ𝜖𝑣

𝐴𝑆𝑅 , 𝑖 = 1, 2, 3 (4.5)

Finally the full ASR expansion-induced incremental strain tensor ΔϵASR can be obtained by

rotating Δ𝜖𝑖
𝐴𝑆𝑅 on quadrature points via

Δ𝜖𝐴𝑆𝑅 = 𝑅Δ𝜖𝑖
𝐴𝑆𝑅𝑅𝑇 (4.6)

4.5.1.4 Reduction of Elastic Modulus and Tensile Strength

 The ASR-induced deterioration of concrete mechanical properties is simply modeled as

a time-dependent function of ASR reaction extent Δ𝜉(𝑡, 𝜃) following Saouma and Perotti

60

(2006):

𝐸(𝑡, 𝜃) = 𝐸0[1 − (1 − 𝛽𝐸)𝜉(𝑡, 𝜃)] (4.7)

𝑓𝑡(𝑡, 𝜃) = 𝑓𝑡,0[1 − (1 − 𝛽𝐸)𝜉(𝑡, 𝜃)] (4.8)

where 𝐸0 and 𝑓𝑡,0 are the original elastic modulus and tensile strength, respectively; and 𝛽𝐸

and 𝛽𝑓 are the corresponding residual fractional values when the concrete has fully reacted.

Both 𝛽𝐸 and 𝛽𝑓 are input parameters chosen by user.

4.5.2 Experiment

 The objective in this example is to diagnose the ASR damage in a cement slab which is

cast and cured in the laboratory, and to predict future damage. Using sodium hydroxide,

𝑁𝑎𝑂𝐻, in the mix water or placing the cured concrete in a 𝑁𝑎𝑂𝐻 solution causes an increase

in pH, thus accelerating the chemical reaction and ASR gel formation. Glass slides are placed

inside the cement slab (𝐶1 and 𝐶2) to provide the silica for the reaction. For the purpose of

baseline removal, another set of specimens are cured in 𝐻2𝑂 (𝐴1 and 𝐶1). For each group, a

specimen without glass (𝐴1 and 𝐴2) is also prepared to serve as the control group. The

specimen configurations are shown in Table 4.1. The dimensions of the slabs are 5 𝑖𝑛 ×

9 𝑖𝑛 × 2 𝑖𝑛.

 The mechanics of damage detection using infrared thermography is based on the

differences in heat transfer properties of different materials. The ASR gel in the structure has

a lower thermal conductivity coefficient than cement, which will lead to a ‘lagging‘

phenomenon, i.e., the heating and cooling time of the gel are slower than the surrounding

cement. The slab is placed on a HEATCON ® thermal blanket and uniformly heated from

61

below. Each thermal cycle has a total duration of 70 minutes. The heating profile is shown

in Fig. 3.9; the temperature values are scaled to the range (0, 1) due to export control reasons.

The camera was setup to capture images of the concrete slab every 0.5 minute.

Table 4.1 Configuration of specimens

Specimen Solution Glass

𝐴1 𝐻2𝑂 No

𝐶1 𝐻2𝑂 Yes

𝐴2 𝑁𝑎𝑂𝐻 No

𝐶2 𝑁𝑎𝑂𝐻 Yes

4.5.3 Uncertainty Sources in Diagnosis and Prognosis

 First, let us consider the aleatory and epistemic sources specific to ASR diagnosis and

prognosis. For diagnosis, specimen variability (e.g. specimen dimensions and material

properties) is aleatory uncertainty, when considering variation across multiple specimens.

However, for a single specimen, these quantities are unique, and the uncertainty related to

them is epistemic, i.e., not knowing their actual values. Measurement error (from sensors) is

aleatory uncertainty. However, the data processing steps (e.g., cropping, filtering,

smoothing, feature selection etc.) incorporate several assumptions and parameter selections

by the analyst, which will cause epistemic uncertainty. Assumptions in Bayesian updating

(prior distribution) as well as the choice of tuning parameters in numerical algorithms such

as MCMC and PF create epistemic uncertainty. In prognosis, aleatory uncertainty is

62

introduced by loading loading variability. On the other hand, epistemic uncertainty is

propagated from diagnosis uncertainty, in addition to model errors in FEA (e.g.,

discretization error) and the ASR expansion model (model form error). In this example, we

only considered diagnosis uncertainty, which is caused by measurement error. Since we are

performing diagnosis and prognosis for this single specimen, there is no aleatory uncertainty

regarding its properties (i.e., no variability across multiple specimens since we are only

considering a single specimen).

4.5.4 Data Processing

 Damage in concrete due to alkali-silica reaction is detected through image processing

of infrared thermal images. In this application, image processing is simply a subtraction

between the image of the control specimen (healthy structure) and the image of the test

specimen (damaged structure). Since multiple images are obtained for a single test, the image

pair that has the largest difference is chosen. Then by setting an appropriate threshold for the

temperature difference, the magnitude of area under ASR damage can be estimated. The

implementation of various steps in processing the thermal image data are discussed in detail

and the results are presented below.

4.5.4.1 Cropping

 The raw image needs to be cropped in order to achieve greater resolution in analyzing

the temperature distribution within the slab. After several trials, the appropriate pixel range

for cropping was found to be [123: 381, 443: 586] for 𝐴1, [132: 390, 47, 190] for 𝐶1,

 for 𝐴2, and [138: 396, 28: 171] for 𝐶2. The cropped images are

63

shown in Fig. 4.5. For each image, the resolution is 258 × 143 pixels.

4.5.4.2 Baseline Removal

 Specimens 𝐴1 and 𝐶1 are cured in 𝐻2𝑂, while 𝐴2 and 𝐶2 are cured in 𝑁𝑎𝑂𝐻. Baseline

removal is realized by subtracting the cropped thermal image 𝐴2 from 𝐴1, and 𝐶2 from 𝐶1.

The images after baseline removal are shown in Fig. 4.6. This is based on the hypothesis that

the formation of ASR should change the heat conductivity within the slab. Therefore,

temperature difference between the 𝐻2𝑂-cured and 𝑁𝑎𝑂𝐻-cured slabs at each time point is

expected.

4.5.4.3 Feature Extraction

 Based on the baseline slab 𝐴, we selected upper bound and lower bound values (at each

time instant) for the temperature difference between 𝐻2𝑂-cured data and 𝑁𝑎𝑂𝐻-cured data.

If the temperature difference between slab 𝐶1 and 𝐶2 is outside the bounds we treat it as

indicating a change in heat conductivity, thus implying the formation of ASR. Otherwise,

we treat it as normal, i.e., no ASR has formed. To set boundaries, we selected the maximum

and minimum values of the temperature difference among all pixels between the 𝐻2𝑂-cured

data and 𝑁𝑎𝑂𝐻-cured data for slab 𝐴, at each time point. Fig. 4.7 shows one example of

ASR damaged region. Seven inspections (with time interval of 10 days) are obtained, which

is plotted in Fig. 4.8.

64

(a) (b)

(c) (d)

Figure 4.5 Cropped images (a) specimen 𝑨𝟏; (b) specimen 𝑪𝟏; (c) specimen 𝑨𝟐; (d)

specimen 𝑪𝟐

65

(a) (b)

Figure 4.6 Images after baseline removal (a) specimen 𝑨; (b) specimen 𝑪

(a) (b)

Figure 4.7 ASR damaged region after feature extraction. Red: ASR damage; Blue:

healthy concrete. (a): Inspection 1 (t = 𝟑𝟎 days); (b): Inspection 2 (t = 𝟒𝟎 days)

66

Figure 4.8 ASR damaged area at different inspection time points

4.5.5 Diagnosis

 For each inspection point, Bayesian updating is used to obtain the posterior distribution

of the true ASR area based on the detected ASR area value. The Particle Filter method

implemented in MapReduce (as described in the previous section) is used to perform this

computation. A non-informative uniform prior (~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 20)) is assumed for ASR

damaged area A, and a normal distribution (~𝑁(0, 𝜎)) is used to represent the measurement

error, where a uniform prior (~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.1, 1)) is assumed for 𝜎. The posterior

distribution is shown in Fig. 4.9. In this example, 50, 000 particles for PF and 50, 000

samples for MCMC were used.

67

(a) (b)

Figure 4.9 Bayesian updating (@ T = 𝟑𝟎 days) for (a): ASR damaged area 𝑨 and (b):

observation error standard deviation 𝝈

 In diagnosis, 20 cluster nodes were used for parallelization. For the purpose of

comparison, computation using the traditional method (single processor) was also

performed. The computational power of desktop and cluster nodes are compared in Table

4.2. It is worth noting that the CPU clock speed and memory size of the local machine where

the traditional methods were running are larger than that of the cluster nodes. The comparison

between the time cost of traditional method and MapReduce method for this study is shown

in Table 4.3. In both PF and MCMC Bayesian updating, MapReduce does not show a

significant advantage. This is mainly due to two reasons. First, the power of the cluster node

is lower than the local computer. Second, which is more important, the computational cost

for each split of PF and MCMC chain is low, which led to dominance of the communication

time between master node and slave nodes. The MapReduce method will show its advantage

as the observation data size becomes larger and when the problem is high-dimensional, i.e.,

when the PF and MCMC sampling demands are larger than the communication demands.

68

Table 4.2 Node comparison

Method CPU (GHZ) Memory (GB)

Desktop 3.4 × 8 12

Cluster Nodes 2.3 5

Table 4.3 Time cost comparison for Bayesian updating

Method PF (s) MCMC (s)

Traditional 3.2 2.4

20 cluster nodes 4.5 4.1

4.5.5 Prognosis

 To predict the ASR damaged area growth, two steps are needed. First, the current ASR

damaged area is sampled from the posterior distribution obtained by Bayesian updating, to

account for the uncertainty in the diagnosis. Since the Bayesian updating is performed using

Particle Filter, the posterior samples generated by the Particle Filter can be directly used,

instead of constructing an approximate posterior distribution (typically done using kernel

density functions) and then sampling from that. Second, ASR gel expansion model

(implemented in combination with FEA analysis) is utilized to predict the growth of ASR.

69

4.5.5.1 ASR Gel Expansion Modeling

 We implemented Saouma and Perotti’s ASR gel expansion model (Saouma and Perotti,

2006) using Abaqus. The ASR region identified from the previous diagnosis is considered

as the initial condition in the FEA model. To be realistic, isotropic expansion or shrinkage

will be made based on the original detected damaged area from image processing. For

example, if the diagnosed damaged area from Bayesian updating is greater on the detected

area from image processing, the outer surroundings of the current area will be considered as

damaged also. When the number of elements to be added cannot occupy the whole

surrounding layer, part of the surrounding layer will be chosen randomly. It is the similar

case when the diagnosed damaged area by Bayesian updating is smaller than the detected

area from image processing techniques. This can guarantee that the adjusted area is closest

to the diagnosed area from Bayesian updating. Temperature, humidity and mechanical

constraints are considered as boundary conditions. By running the FEA model, the future

status of the ASR damage area is predicted. Note that the diagnosed ASR region from image

processing is represented by pixels. However, the structure is represented using elements in

FEA. Therefore an approximation was made to convert the ASR detection result to the FEA

model. In detail, the element is considered to be occupied by ASR gel (𝜉 = 1) if more than

half of the pixels within it are positive in detection. Furthermore, to be more realistic, a linear

function is defined at the boundary of the ASR region to allow a gradual decrease in ASR

reactive extent. Fig. 4.10 (a) shows an example of the initial condition of the FEA model.

70

Table 4.4 Parameters of the ASR model

 Each sample of the diagnosed ASR damaged area posterior is treated as an individual

initial condition to the FEA model. The room temperature (298.15°𝐾), humidity (40%) and

free boundary are considered as boundary conditions. Fig. 4.10 (a) gives an example of how

the diagnosis result of ASR is incorporated within the FEA model at any time step. The

parameters used in this study are listed in Table 4.4. Note that 𝜏𝐶 is treated as an unknown

model parameter, which needs to be calibrated in each inspection step. Eq. (21b) in Ulm et

al. (2000) shows the effect of 𝜏𝐶 in ASR development.

71

Figure 4.10 FEA model input and output (half model)

4.5.5.2 ASR Damaged Area Prognosis

 Fig. 4.10 (b) gives an example of FEA model prediction of ASR growth starting from

the diagnosis in Fig. 4.10 (a). Note that the prediction can only expand the ASR area, but not

add new ASR affected regions that are not connected to the input area; however, new

inspection data may indicate new unconnected damaged regions and can be incorporated in

the FEA model for subsequent predictions. Each element will be considered as fully

occupied by ASR when the ASR extent (𝜉) is greater than 0.99. Thus the ASR damaged area

can be predicted by the model. The ASR damaged area prognosis with 95% probability

bounds is shown in Fig. 4.11. The 95% bounds are formed based on Monte Carlo samples

from the Bayesian updating posterior. As shown in Fig. 4.11, a generally increasing trend is

found for the ASR damaged area. The inspection data is given every 10 days (marked with

arrows). Note that the prediction variance (as indicated by the 95% prediction bounds)

increases from the beginning to the end of each time period (10 days) as expected, and

72

decreases at inspection since the area has been measured. Thus the prognosis for each time

period starts from the measured area, and the variance at the beginning of each time period

is only due to measurement error. It is also worth noting that the variance at the end of each

time period reduces as we move from one time period to next, thus indicating reduction in

model uncertainty over multiple inspections.

Figure 4.11 ASR damaged area prognosis and uncertainty quantification

 The computational power of the desktop (single node) and cluster nodes are compared

in Table 4.5. Abaqus FEA runs were parallelized using 5 desktop cores (due to limited

number of available licenses), which reduced the computational cost down to around one

fifth. Compared to the MapReduce for Bayesian updating (Table 4.5), the efficiency is

greater due to much smaller communication time spent when performing parallelization

locally.

73

Table 4.5 Time cost comparison for prognosis

Method MCS (s)

Traditional 1506.7

5 desktop cores 307.2

4.5.5.3 Remaining Useful Life

 The threshold for ASR damaged area is assumed as 𝐴𝑡ℎ = 27 𝑖𝑛2, beyond which the

structure will be considered as failure. The remaining useful life prediction with 95% bounds

is shown in Fig. 4.12. A decreasing trend of the RUL along time is observed. The

corresponding failure probability is shown in Fig. 4.13. Until 𝑇 = 98 days, the failure

probability is almost zero, since the threshold damage (27 𝑖𝑛2) is several standard deviations

away from the mean prediction. (This is also seen from Fig. 4.12, where the RUL is far away

from zero). At 𝑇 = 100 days, the inspection indicates a higher probability of failure, which

is consistent with ASR damaged area in Fig. 4.11 and RUL in Fig. 4.12. Note that the

variance within each time period (10 days) is constant because the prediction of RUL is only

at the beginning of the time period (thus there is only one value of variance), but in the plot,

the RUL is continuously reduced by the number of days within each time period. It is worth

noting that the variance in the RUL prediction decreases over multiple time periods,

indicating reduction in model uncertainty over time.

74

Figure 4.12 Remaining useful life prediction

Figure 4.13 Probability of failure

4.6 Summary

 This chapter developed a framework for applying big data analytics to uncertainty

quantification in structural damage diagnosis and prognosis. The popular MapReduce

approach was applied in the proposed framework for both the inverse and forward problems

of UQ, and realized via Apache Spark. An ASR gel expansion model combined with FEA

was used to perform prognosis, resulting in the prediction of ASR damaged area and

remaining useful life along with probability bounds. Since this laboratory study did not

75

generate very large amounts of data, MapReduce did not show the advantage in image

processing. For practical concrete structures risk analysis, the big data issue will be more

obvious and MapReduce will show greater benefits in scalability.

 Future research needs to address several extensions. A major advantage of MapReduce

will be in parallelizing FEA, since FEA is the most computationally expensive element in

the aforementioned ASR prognosis. However, multiple commercial licenses are required to

parallelize the FEA software via MapReduce; therefore methods to share license among

slave nodes are worth exploring. Second, this chapter only considered diagnosis uncertainty

and propagation of this uncertainty through prognosis (forward computation). In future

research, other sources of uncertainties (both aleatory and epistemic) should be considered

for comprehensive UQ analysis (e.g., epistemic uncertainty in the model parameters,

uncertainty regarding the future loading, and the uncertainty in the prognosis model).

Variance-based sensitivity analysis (Saltelli et al. 2008) is valuable in this regard; it can help

to identify the dominant uncertainty sources affecting prognosis uncertainty and retain only

those sources in the uncertainty quantification, thus significantly reducing the computational

effort.

76

CHAPTER 5

BIG DATA ANALYTICS IN HIGH-DIMENSIONAL MODEL PARAMETERS

CALIBRATION

5.1 Background

 Chapter 4 developed a big data analytics approach for uncertainty quantification in

structural diagnosis and prognosis, in which the structure’s current state is diagnosed by data

processing and Bayesian updating, and the structure’s future state is predicted by the

uncertainty propagation through the structural analysis model and damage growth model.

The model which is used for prediction is important, and needs to be updated with the latest

information; however, such updating is challenging when the observation data is large and

the dimensionality of model parameters to be updated is high. The high dimensionality of

model parameters often arises when their variability over space needs to be considered.

Therefore the use of big data analytics in high-dimensional model parameters calibration is

developed in this chapter.

 Model calibration refers to the adjustment of model parameters so that the model output

matches well with the field data. When full field observations are available (spatially or

temporarily), different options are available for calibration. The most common approach is

to consider the material properties are homogeneous, and to calibrate the parameters using

observations at only a few locations. For example, Karabinis and Rousakis (2002) calibrated

77

material parameters of carbon fiber-reinforced polymer (FRP) confined concrete by running

only several experimental tests. Madsen (2003) estimated parameters of hydrological

catchment model using observations from multiple locations. Lefèvre et al. (2003) calibrated

thermal conductivity for a hot wire based on dc scanning thermal microscopy by

measurements of different tip temperatures. Some researchers perform model calibration

using dimension reduction methods. For example, Higdon et al. (2008a) used basis

representations (e.g., principal components) to reduce the dimensionality of the problem and

speed up the computations required for exploring the posterior distribution. Higdon et al.

(2008b) also used singular value decomposition (SVD) to reduce the dimension. On the other

hand, some researchers applied full field measurements to update the model parameters. For

example, Roux and Bouchard (2015) calibrated a ductile damage model using measurements

from the full displacement field. Nath et al. (2017) considered both methods mentioned

above. First, random fields were utilized to account for the variability of model parameters

over space and across the specimens, and SVD is applied for the purpose of dimension

reduction. Then several observation spots were selected as optimum sensor locations by

using the Kullback-Leibler (KL) divergence metric (Huang et al., 2007) to maximize the

information gain. All the above approaches increase the computational efficiency, at the cost

of accuracy.

 Take finite element analysis as an example; traditionally we create a model with as

small a number of parameters as possible, in order to save the computational effort. One

example is that we consider the material’s property to be homogeneous in the whole model

(of course different properties will be used when the model has parts of different materials).

However, sometimes this cannot meet the researcher’s needs, when the object of interest

78

consists of a heterogeneous material like concrete. Concrete is a composite material that is

composed of coarse aggregate bonded together cement. Therefore, if we want to model

structures built with concrete more accurately, material properties should be considered

heterogeneous.

 Only a few studies on the application of big data techniques to model calibration can be

found in the literature. Humphrey et al. (2012) parallelized the calibration of parameters in

watershed models, which was realized on a Windows Azure cloud computing platform.

Zhang et al. (2014) realized cloud-based calibration of a hydrologic model on a Hadoop

platform. These studies only parallelized the calibration process to particular applications

(hydrological model), and did not handle large volumes of observations. In this chapter, a

novel application of MapReduce to model calibration is presented. Here we focus on

handling the big data issue in model calibration.

 It is known that numerical models are sometimes too expensive to be repeatedly run

during the calibration process, which calls for the construction and use of surrogate models.

The training data collection and the training of the surrogate model are also parallelized in

this chapter using MapReduce. The proposed methodology is general, and applies to

variations over both space and time.

 It can be observed that the main reason that researchers choose not to use full field

observations to calibrate the spatially varying parameters of heterogeneous materials is due

to computational cost. However, the price is loss of information and accuracy, since such a

strategy implies that the model parameters do not vary over space and time. For the general,

79

heterogeneous case where model parameters vary over space and time (e.g., material

properties), full-field calibration would be high dimensional. Since calibration using full

field observations is time consuming, parallel and distributed computing can help to reduce

the time cost of data analytics, without causing any accuracy loss.

5.2 Bayesian Calibration of High-Dimensional Model Parameters

5.2.1 Overview of Bayesian Calibration

 Consider a model 𝐺 with inputs 𝒂 = [𝑎1, 𝑎2, ⋯ , 𝑎𝑛], where n is the number of inputs,

with known deterministic values or probability distributions and parameters 𝜽 =

[𝜃1, 𝜃2, ⋯ , 𝜃𝑝] that need to be calibrated, where 𝑝 is the number of parameters. The model

output 𝒚𝑚, which is the prediction of the actual physical quantity 𝒚, is given by

𝒚𝑚 = 𝐺(𝒂, 𝜽) (5.1)

An observed output value from the experiment is denoted as 𝒚𝑜𝑏𝑠 with an observation error

𝜀𝑜𝑏𝑠~𝑁(0, 𝜎𝑜𝑏𝑠
2) where 𝑁(⋅,⋅) stands for normal distribution. The experimental represented

by observation 𝒚𝑜𝑏𝑠 , model output 𝒚𝑚 and true value of the true physical quantity 𝒚 are

related as

𝒚𝑜𝑏𝑠 = 𝒚 + 𝜀𝑜𝑏𝑠 (5.2)

𝒚 = 𝒚𝑚 + 𝜹(𝒂) (5.3)

where 𝜹(𝒂) is the model discrepancy term which is a function of the model inputs and needs

to be calibrated. Different prior formulations of model discrepancy function were compared

and evaluated by Ling et al. (2014). Combining Eq. (5.2) and Eq. (5.3), we have

𝒚𝑜𝑏𝑠 = 𝒚𝒎 + 𝜹(𝒂) + 𝜀𝑜𝑏𝑠 (5.4)

80

Using Bayes’ theorem, the joint posterior distribution of the calibration parameters is

obtained as

𝑓(𝜽, 𝜎𝑜𝑏𝑠, 𝜹|𝒚𝑜𝑏𝑠) ∝ 𝑓(𝒚𝑜𝑏𝑠|𝜽, 𝜎𝑜𝑏𝑠, 𝜹)𝑓(𝜽, 𝜎𝑜𝑏𝑠, 𝜹) (5.5)

where 𝑓(𝜽, 𝜎𝑜𝑏𝑠, 𝜹|𝒚𝑜𝑏𝑠) is the joint probability density of 𝜽, 𝜎𝑜𝑏𝑠 and 𝜹, 𝑓(𝒚𝑜𝑏𝑠|𝜽, 𝜎𝑜𝑏𝑠, 𝜹)

is the likelihood function, and 𝑓(𝜽, 𝜎𝑜𝑏𝑠, 𝜹) is the prior probability density.

5.2.2 Calibration of High-dimensional Model Parameters

 As mentioned in Sec. 5.1, high-dimensional model parameter calibration may be

preferred for heterogeneous materials. In addition to variation in space, these parameters

may also have variation across different specimens or realizations. For example, a slab might

have a spatially varying parameter as shown in Fig. 5.1(a). Due to the inherent variability of

the parameter, similar specimens may show different realization of the spatial variability in

Fig. 5.1(b) and Fig. 5.1(c).

Figure 5.1 Probability of failure

 Due to material variability, 𝜽 may be defined as a function of locations 𝒅. Since 𝒅 is a

large vector, the number of parameters 𝜽(𝒅) is very large. Therefore, the calibration process

81

is unaffordable using the conventional model calibration method, if it is impossible to

develop a parametric representation of the model parameter over the spatial domain.

Furthermore, full field observations (such as optical or thermal images) collected over a long

time period will bring a in the big data issue. Thus in this chapter, we proposed big data

techniques to solve the high-dimensional model parameter calibration in the presence of big

data. The challenges in this problem can be summarized as follows:

 Due to the high-dimensional calibration parameter space, current Bayesian

calibration techniques such as Markov Chain Monte Carlo (MCMC) simulation or

particle filter (PF) require a large number of iterations or particles to converge. This

will evaluate the likelihood function which is a function of the prediction model

millions of times. Directly using the computer simulation model in the calibration

process is computationally impossible. Even if the computational model is replaced

with cheaper surrogate models, the required computational effort is still prohibitive

for a single computer. The first challenge is therefore how to handle the

computational effort issue in Bayesian calibration.

 Surrogate models are usually built to replace the original computer simulation model

in Bayesian calibration. In order to compute the likelihood based on the surrogate

modeling, surrogate models need to be functions of calibration parameters. When the

dimension of calibration parameters is very high, current surrogate modeling

methods will suffer from the curse of dimensionality. The second challenge is how

to build surrogate models to replace the original computer simulation model in

Bayesian calibration of high-dimensional model parameters.

 For problems with high-dimensional calibration parameters, the observations are also

82

high-dimensional. The third challenge is how to effectively utilize the high-

dimensional observations in Bayesian calibration with the consideration of the

correlations of observations over space and time.

5.3 Workflow of Model Calibration using MapReduce

 In this section, we first provide a brief review of the MapReduce framework and Spark.

Following that, we discuss how to address the challenges summarized in Sec.5.2 using the

MapReduce framework and Spark.

 In order to deal with all the three challenges discussed in Sec. 5.2.2, three levels of

parallelization using MapReduce technique to Bayesian calibration. Fig. 4 shows the general

procedure of the proposed model calibration framework. In order to save the computational

cost, a surrogate model will be applied in the process of calibration. Thus first, the original

simulation model is an FEA model, for which the design of experiment (DOE) will be

performed. Then, using inputs and outputs for FEA, a surrogate model can be trained. Third,

the observation data needs to be processed. Measurements from experiment or sensing data

cannot be used directly, so preprocessing operations such as noise cancellation are always

necessary. With the trained surrogate model and processed observations, the likelihood of

the observation can be evaluated. Based on the likelihood function, a Bayesian calibration

technique such as MCMC can be used to estimate the posterior distribution of calibration

model parameters.

83

Figure 5.2 Workflow of model calibration

 The three levels of parallelization can be summarized as: (1) Parallelization of FEA

model runs (colored in blue): this level is used to generate training points for surrogate

modeling; (2) Parallelization of surrogate model training (colored in green), and (3) high

dimensional model calibration (colored in red). Since all three levels are potentially

computationally expensive, application of MapReduce will be studied for each level. In the

subsequent sections, we explain these three levels of parallelization in detail.

5.4 Level 1 Parallelization: MapReduce for FEA Model Runs

 As mentioned previously, the surrogate model preparation has three steps: DOE

generation, FEA model inputs preparation, and FEA model runs. Compare to all other steps,

FEA model runs often consume most of the computational time. Thus a MapReduce

parallelization methodology is developed for the evaluations of the FEA simulation model.

Suppose 𝑛𝑠 training points are needed, and therefore ns sets of parameter values will be

generated, which are noted as 𝜃𝑖 , 𝑖 = 1, ⋯ , 𝑛𝑠. Note here the number of variables depends

on the number of parameters, and also depends on the spatial and temporal dimensions if the

heterogeneity is considered.

 Fig. 5.3 (a) presents the pseudocode of the proposed parallelization procedure. The FEA

84

input files are first divided into different partitions (each partition contains multiple files),

and the FEA running command is then called inside the mapper function. For each FEA job,

a separately processed result is obtained, without combination (Fig. 5.3). There are two steps

in this pseudocode. First, a Map function is defined (‘mapper’), within which all the actual

processing functions are defined. The argument ‘x’ is the data file id corresponding to the

assigned tasks (FEA input files here) to be analyzed, which is assigned by the task manager.

As discussed previously, since there is only the Map function, the input file can be mapped

with any value (here we mapped ‘x’ to 0). In the second step, SparkContext, represents the

connection to the cluster, which is the main class in Spark; ‘parallelize’ is the method to split

the input files into 𝑁 partitions; and ‘map’ is the method to call the Map function defined in

the first step and to pass the input file to it. The ‘count’ method is used to count the number

of outputs, which is used to trigger the parallelization.

(a) MapReduce pseudocode

Pseudocode 5.1:

function mapper(x);

 InputData = ReadData(x)

 OutputData = FEA(InputData)

 WriteData(OutputData)

 return (x, 0)

SparkContext(appName="myApp").parallelize(range(N),

N).map(mapper).count()

85

 (b) Schematic description

Figure 5.3 Distributed computing of data processing

5.5 Level 2 Parallelization: Surrogate Model Training

5.5.1 Gaussian Process Surrogate Model with Spatially Varying Parameters

 In order to build a surrogate model for the high-dimensional spatially varying response

as a function of the calibration parameters, we first classify the calibration parameters into

two categories: spatially constant calibration parameters (𝜽𝑐) and spatially varying

calibration parameters (𝜽𝑠(𝒅)). The spatially constant calibration parameters are used

directly as the inputs of the surrogate model. Since the high-dimensional spatially varying

parameters bring challenges to the surrogate model training due to the curse of

dimensionality, 𝜽𝑠(𝒅) is not directly used as input. Considering the fact that the response 𝒚

at a spatial coordinate 𝒅 is mainly affected by the responses and input parameters near this

coordinate, we only use the 𝜽𝑠(𝒅) in the neighboring locations of d as the input of 𝒚 at 𝒅.

86

Theoretically, for each spatial point, the parameters over the entire spatial domain should be

used, since all the parameters will have contribution. However, it may not be necessary to

consider parameters from all spatial points, depending on how fast the effects decrease with

distance. Thus, we assume that for each spatial point, the response is only affected by its

immediate neighbors. For instance, for the response at the location indicated with the blue

star in Fig. 5.4, the parameters highlighted as red squares will be used as the inputs. Based

on this assumption, the response at location 𝒅(𝑖) is approximated as

𝒚(𝒅(𝑖)) ≈ �̂�𝑖(𝜽
𝑐 , 𝜽𝑠(�̂�(𝒊))) (5.6)

where 𝒅(𝑖) is the 𝑖-th spatial coordinate, �̂�(𝑖) stands for the neighboring locations of 𝒅(𝑖),

and �̂�𝑖(⋅) is the approximation model for the 𝑖-th location. In this chapter, we use the

Gaussian process model reviewed in Sec. 2.6 to construct the approximation model

�̂�𝑖(⋅), ∀𝑖 = 1, 2,⋯ ,𝑚, where 𝑚 is the total number of spatial locations. Next, we discuss

how to build these approximation models.

5.5.1.1 Generate Training Points

 Defining 𝜷 = [𝜽𝑐 , 𝜽𝑠(𝒅(1)), 𝜽𝑠(𝒅(2)),⋯ , , 𝜽𝑠(𝒅(𝑚))], we first generate 𝑛𝑠 training

points for 𝜷. For each training point 𝜷(𝑖), the response field is obtained using the original

simulation model 𝐺 as below:

[𝒚(𝒅(1), 𝜷(𝑖)), 𝒚(𝒅(2), 𝜷(𝑖)),⋯ , , 𝒚(𝒅(𝑚), 𝜷(𝑖))] = 𝐺(𝜷(𝑖)) (5.7)

where 𝒚(𝒅(𝒋), 𝜷(𝒊)) denotes the response at the 𝑗-th spatial location of the 𝑖-th training point

𝜷(𝑖). It should be noted that the output is a field response (as indicated in Eq. (5.7)) for given

87

training point 𝜷(𝒊).

Figure 5.4 𝟐𝟏 × 𝟐𝟏 calibration grid and 𝟐𝟎 × 𝟐𝟎 observation points

 After performing simulations at all the training points, a data matrix is obtained as

𝒚𝑡𝑜𝑡𝑎𝑙 = {𝒚(𝒅(𝑖), 𝜷(𝑗)), 𝑖 = 1,⋯ ,𝑚; 𝑗 = 1, ⋯ , 𝑛𝑠}. Note that the above matrix is obtained

by reorganizing the spatial response into a one-dimensional array (i.e., 𝒚(𝒅, 𝜷(𝑗)) =

[𝒚(𝒅(1), 𝜷(𝑗)), 𝒚(𝒅(2), 𝜷(𝑗)),⋯ , 𝒚(𝒅(𝑚), 𝜷(𝑗))] denotes the responses at all the spatial

88

locations).

5.5.1.2 Surrogate Modeling

 With the training data matrix 𝒚𝑡𝑜𝑡𝑎𝑙, we then build surrogate models for response at

different locations based on the assumption made in Eq. (5.6). For the 𝑖-th spatial location,

we extract the training input values as �̂�𝑖𝑛
(𝑖) = [�̂�1

(𝑖), �̂�2
(𝑖), ⋯ , �̂�𝑠

(𝑖)], where �̂�𝑗
(𝑖) =

 [𝜽𝑐 , 𝜽𝑠(�̂�(𝑖))] is the 𝑗-th training point for the 𝑖-th location. The corresponding training

output values are 𝒚𝑜𝑢𝑡
(𝑖) = [𝒚(𝒅(𝑖), 𝜷(1)), 𝒚(𝒅(𝑖), 𝜷(2)),⋯ , 𝒚(𝒅(𝑖), 𝜷(𝑠))]. Based on the

training points [�̂�𝑚
(𝑖), 𝒚𝑜𝑢𝑡

(𝑖)], the approximated model �̂�𝑖(⋅) can be built using the Gaussian

process surrogate modeling technique. However, when the simulation model is executed

over time, 𝒚(𝒅(𝑖), 𝜷(𝑗)) is a time-dependent trajectory even for a specific spatial location 𝒅(𝑖)

and we have 𝒚(𝒅(𝑖), 𝜷(𝑗)) = [𝒚(𝒅(𝑖), 𝜷(𝑗), 𝑡1), 𝒚(𝒅(𝑖), 𝜷(𝑗), 𝑡2),⋯ , 𝒚(𝒅(𝑖), 𝜷(𝑗), 𝑡𝑛𝑡
)], where

𝑛𝑡 is the number of time instants. This introduces extra challenge to the surrogate modeling.

Next, we investigate how to address this issue using singular value decomposition (SVD).

5.5.3 Gaussian Process Surrogate Model with Temporal Correlation

 Singular value decomposition (SVD) is a multivariate statistical method to describe a

large amount of high-dimensional data by mapping to a low-dimensional space (Chatterjee

2000). SVD can be used for handling the temporal correlation of the response. Given 𝑚 data

points over the spatial domain 𝜴 for 𝑛𝑡 time domain realizations, a data matrix can be

collected as follows:

89

𝝎 = [𝝎(𝜉1),𝝎(𝜉2),⋯ ,𝝎(𝜉𝑠)]
𝑇 =

[

𝜔(𝑡1, 𝜉1) 𝜔(𝑡1, 𝜉2) ⋯ 𝜔(𝑡1, 𝜉𝑛𝑡

)

𝜔(𝑡2, 𝜉1) 𝜔(𝑡2, 𝜉2) ⋯ 𝜔(𝑡2, 𝜉𝑛𝑡
)

⋮
𝜔(𝑡𝑛𝑡

, 𝜉1)
⋮

𝜔(𝑡𝑛𝑡
, 𝜉2)

⋱
⋯

⋮
𝜔(𝑡𝑛𝑡

, 𝜉𝑛𝑡
)]

𝑇

 (5.7)

where 𝝎(𝜉𝑖) = [𝜔(𝑡1, 𝜉𝑖), 𝜔(𝑡2, 𝜉𝑖),⋯ ,𝜔(𝑡𝑛𝑡
, 𝜉𝑖)] is the 𝑖-th realization..

 This large amount of high-dimensional data can be mapped to a low-dimensional space

by using SVD as 𝝎 = 𝑽𝑴𝑼𝑇, where 𝑽 is a 𝑠 × 𝑛𝑡 matrix, 𝑼 is a 𝑛𝑡 × 𝑛𝑡 orthogonal matrix

and 𝑴 is a 𝑛𝑡 × 𝑛𝑡 rectangular diagonal matrix with non-negative real numbers 𝝀 =

[𝜆1, 𝜆2, ⋯ , 𝜆𝑚] on the diagonal. Here we donate 𝜸 = 𝑽𝑴, the matrix can be constructed as

𝝎(⋅, 𝜉𝑖)
𝑇 ≈ ∑ 𝛾𝑖𝑗𝑼𝑗

𝑟
𝑗=1 (5.8)

where 𝝎(⋅, 𝜉𝑖)
𝑇 is the 𝑖-th row of 𝝎, 𝛾𝑖𝑗 is the element of 𝜸 at 𝑖-th row and 𝑗-th column, 𝑼𝑗

is the 𝑗-th important feature vector used to approximate 𝝎, and 𝑟 is the number of important

features used. The number of features 𝑟 is determined based on the magnitudes of the

singular values 𝝀 (Xu, 1998).

 Based on SVD, the response at spatial location 𝒚𝑎𝑙𝑙
(𝑖) = {𝒚(𝒅(𝑖), 𝜷(𝑗), 𝑡𝑘), 𝑗 =

1, 2,⋯ , 𝑠, 𝑘 = 1, 2,⋯ , 𝑛𝑡} is reconstructed as

𝒚(𝒅(𝑖), 𝜷(𝑗), 𝑡𝑘) ≈ 𝝁𝒊(𝑡𝑘) + ∑ 𝛾𝑞(𝒅
(𝑖), 𝜷(𝑗))𝑈𝑞(𝒅

(𝒊), 𝒕𝑘), ∀𝑗 = 1, 2,⋯ , 𝑠; 𝑘 =𝑟
𝑞=1

1, 2,⋯ , 𝑛𝑡 (5.9)

where 𝝁𝑖(𝑡𝑘) is the mean value at location 𝒅(𝒊) at time instant 𝑡𝑘, 𝛾𝑞(𝒅
(𝑖), 𝜷(𝑗)) is the 𝑞-th

latent response of spatial location 𝒅(𝑖) for the 𝑗-th training point, and 𝑼𝑞(𝒅
(𝒊), 𝑡𝑘) is the value

of the 𝑞-th important feature 𝑼𝑞 of 𝒅(𝑖) at time instant 𝑡𝑘.

 Eq. (5.9) shows that the variation in the high-dimensional response mainly comes from

the variation in 𝜸(𝒅(𝑖), 𝜷(𝑗)) = [𝛾1(𝒅
(𝒊), 𝜷(𝑖)), 𝛾2(𝒅

(𝒊), 𝜷(𝑖)),⋯ , 𝛾𝑟(𝒅
(𝒊), 𝜷(𝑖))], which

denotes the value of 𝜸 of the response at 𝒅(𝑖) for the 𝑗-th training point. The dimension of

90

𝜸(𝒅(𝑖), 𝜷(𝑗)) is usually much smaller than that of the response 𝒚(𝒅(𝑖), 𝜷(𝑗)) =

 [𝒚(𝒅(𝑖), 𝑡1), 𝒚(𝒅(𝑖), 𝑡2),⋯ , 𝒚(𝒅(𝑖), 𝑡𝑛𝑡
)].

 With the training points 𝜸𝑞(𝒅
(𝑖), 𝜷(𝑗)), ∀𝑞 = 1, 2,⋯ , 𝑟; 𝑗 = 1, 2,⋯ , 𝑠 and �̂�𝑖𝑛

(𝑖) =

[�̂�1
(𝑖), �̂�2

(𝑖), ⋯ , �̂�𝑠
(𝑖)], we construct surrogate model for 𝜸𝑞(𝒅

(𝑖), 𝜷(𝑗)), ∀𝑞 = 1, 2,⋯ , 𝑟. After

substituting 𝜸𝑞(𝒅
(𝑖), 𝜷(𝑗)) with surrogate model 𝜸𝑞(𝒅

(𝑖), 𝜷(𝑗)), Eq. (5.9) becomes:

𝒚(𝒅(𝒊), 𝜷(𝑗), 𝑡𝑘) ≈ 𝝁𝒊(𝑡𝑘) + ∑ 𝛾𝑞(𝒅
(𝑖), 𝜷(𝑗))𝑈𝑞(𝒅

(𝒊), 𝑡𝑘), ∀𝑗 = 1, 2,⋯ , 𝑠; 𝑘 =𝑟
𝑞=1

1, 2,⋯ , 𝑛𝑡 (5.10)

where �̂�𝑞(𝒅
(𝒊), 𝜷(𝑗)) stands for the 𝑞-th surrogate model associated with the spatial location

𝒅(𝑖). Note that 𝛾1, 𝛾2, ⋯ , 𝛾𝑟 are not the original responses but latent responses obtained

through SVD.

5.5.3 MapReduce for Surrogate Model Training

 The MapReduce implementation of surrogate model training is shown in the

pseudocode in Fig. 5.5. Here ‘x’ is the id of the file which is assigned to a particular slave

node that the code is running on. Suppose there are n pairs of inputs and outputs, and

surrogate models will be obtained after the parallel runs on slave nodes. The actual surrogate

model training function will be called inside the mapper function. Each mapper will read one

set of inputs and outputs, and save the trained model on to the disk. Note here that for each

surrogate model, the inputs and outputs could be a vector, depending on the problem.

91

(a) MapReduce pseudocode

(b) Schematic description

Figure 5.5 Distributed computing of surrogate model training

Pseudocode 5.2:

function mapper(x):

 InputData = ReadData(x)

 SurrogateModes = SurrogateTrain(InputData)

 WriteData(SurrogateModel)

 return (x, 0)

SparkContext(appName="myApp").parallelize(Filelist,

N).map(mapper).count()

92

5.6 Level 3 Parallelization: MapReduce for High-dimensional Model Calibration

5.6.1 Bayesian Calibration of Spatially Varying Parameters

 We will now discuss how to perform Bayesian calibration for the spatially

heterogeneous model parameters based on the above developed surrogate model. As

mentioned in Sec. 5.5.1, we define the calibration parameters 𝜷 =

[𝜽𝒄, 𝜽𝒔(𝒅(1)), 𝜽𝒔(𝒅(2)),⋯ , 𝜽𝒔(𝒅(𝑚))]. We also define 𝒚𝑜𝑏𝑠
𝑎𝑙𝑙 =

[𝒚𝑜𝑏𝑠(𝒅
(1)), 𝒚𝑜𝑏𝑠(𝒅

(2)),⋯ , 𝒚𝑜𝑏𝑠(𝒅
(𝑚))] where 𝒚𝑜𝑏𝑠(𝒅

(𝑖)) =

[𝒚𝑜𝑏𝑠(𝒅
(𝑖), 𝑡1), 𝒚𝑜𝑏𝑠(𝒅

(𝑖), 𝑡2),⋯ , 𝒚𝑜𝑏𝑠(𝒅
(𝑖), 𝑡𝑛𝑡

)]
𝑇
is the observation at the 𝑖-th spatial

location. A critical step is obtaining the posterior distributions 𝑓(𝜷|𝒚𝑜𝑏𝑠
𝑎𝑙𝑙) is the evaluation

of the likelihood function 𝑳(𝒚𝑜𝑏𝑠
𝑎𝑙𝑙 |𝜷), which is computed based on the assumption made in

Eq. (5.6) as follows

𝑳(𝒚𝑜𝑏𝑠
𝑎𝑙𝑙 |𝜷) = ∏ 𝑳(𝒚𝑜𝑏𝑠(𝒅

(𝑖))|𝜷)𝑚
𝑖=1 (5.11)

in which 𝑳(𝒚𝑜𝑏𝑠(𝒅
(𝑖))|𝜷) is the probability of observing 𝒚𝑜𝑏𝑠(𝒅

(𝑖)) for given 𝜷.

 For given 𝜷 and time instants 𝒕, the observation 𝒚𝑜𝑏𝑠(𝒅
(𝑖), 𝑡) at spatial location 𝒅(𝑖) can

be expressed as

𝒚𝑜𝑏𝑠(𝒅
(𝑖), 𝒕) = 𝒚(𝒅(𝑖), 𝜷, 𝒕) + 𝜹(𝒅(𝑖), 𝜷, 𝒕) + 𝜀𝑜𝑏𝑠(𝒅

(𝑖), 𝒕) (5.12)

in which 𝒚(𝒅(𝑖), 𝜷, 𝒕) is the model prediction at spatial location 𝒅(𝑖) and time instant 𝒕,

𝜹(𝒅(𝑖), 𝜷, 𝒕) is the model discrepancy term due to numerical approximation and underlying

missing physics, and 𝜀𝑜𝑏𝑠(𝒅
(𝑖), 𝒕) is observation error which is usually assumed to be a

Gaussian random variable.

 Since the prediction model 𝒚(𝒅(𝑖), 𝜷, 𝑡) is approximated by surrogate models in Sec.

93

5.5.1.1, we can rewrite Eq. (5.12) as

𝒚𝑜𝑏𝑠(𝒅
(𝑖), 𝒕) ≈ �̂�(𝒅(𝑖), 𝜷, 𝒕) + 𝜹(𝒅(𝑖), 𝜷, 𝒕) + 𝜀𝑜𝑏𝑠(𝒅

(𝑖), 𝒕) (5.13)

where �̂�(𝒅(𝑖), 𝜷, 𝒕) is the approximate model (i.e. surrogate model) of 𝒚(𝒅(𝑖), 𝜷, 𝑡) is given

by

�̂�(𝒅(𝑖), 𝜷, 𝒕) ≈ 𝜇𝑖(𝒕) + ∑ 𝛾𝑞(𝒅
(𝑖), �̂�)𝑈𝑞(𝒅

(𝑖), 𝒕)𝑟
𝑞=1 (5.14)

Eq. (5.14) implies that �̂�(𝒅(𝑖), 𝜷, 𝒕) is a linear combination of surrogate

model 𝛾𝑞(𝒅
(𝑖), �̂�), 𝑞 = 1, 2,⋯ , 𝑟. Since the prediction of �̂�(𝒅(𝑖), 𝜷) for given �̂� follows a

normal distribution, the prediction of �̂�(𝒅(𝑖), 𝜷, 𝑡) also follows a normal distribution.

Note �̂� = [𝜽𝑐 , 𝜽𝑠(�̂�)] is a subset of 𝜷. The mean and variance of �̂�(𝒅(𝑖), 𝜷, 𝒕) are given by

𝝁𝑦(𝒅(𝑖), 𝜷, 𝒕) ≈ 𝝁𝑖(𝒕) + ∑ 𝜇�̂�𝑞
(𝒅(𝑖), �̂�)𝑈𝑞(𝒅

(𝑖), 𝒕)𝑟
𝑞=1 (5.15)

𝝈𝑦
2(𝒅(𝑖), 𝜷, 𝒕) ≈ ∑ 𝜎�̂�𝑞

2 (𝒅(𝑖), �̂�)𝑈𝑞
2(𝒅(𝑖), 𝑡)𝑟

𝑞=1 (5.16)

 When the discrepancy term 𝜹(𝒅(𝒊), 𝜷, 𝑡) is modeled as a Gaussian process model, the

discrepancy term also follows normal distribution for given 𝜷 and 𝒕. Since 𝒚𝑜𝑏𝑠(𝒅
(𝑖), 𝒕) is a

linear function of �̂�(𝒅(𝒊), 𝜷, 𝒕), 𝜹(𝒅(𝒊), 𝜷, 𝒕) and 𝜀𝑜𝑏𝑠(𝒅
(𝒊), 𝑡), 𝒚𝑜𝑏𝑠(𝒅

(𝑖), 𝒕) also follows a

normal distribution. Then mean and variance of 𝒚𝑜𝑏𝑠(𝒅
(𝑖), 𝒕) is given by

𝝁𝒚𝑜𝑏𝑠
(𝒅(𝑖), 𝜷, 𝒕) ≈ 𝝁𝑖(𝒕) + ∑ 𝜇�̂�𝑞

(𝒅(𝑖), �̂�)𝑈𝑞(𝒅
(𝑖), 𝒕)𝑟

𝑞=1 + 𝝁𝜹(𝒅
(𝑖), 𝜷, 𝒕) (5.17)

𝝈𝒚𝑜𝑏𝑠
2 (𝒅(𝑖), 𝜷, 𝒕) ≈ ∑ 𝜎�̂�𝑞

2 (𝒅(𝑖), �̂�)𝑈𝑞
2(𝒅(𝑖), 𝑡) + 𝜎𝛿

2(𝒅(𝑖), 𝜷, 𝒕) + 𝜎𝑜𝑏𝑠
2 (𝒅(𝑖), 𝒕) 𝑟

𝑞=1 (5.18)

The above equations imply that the uncertainty in the surrogate models 𝛾𝑞(𝒅
(𝑖), 𝜷), 𝑞 =

1, 2,⋯ , 𝑟 will propagate to the uncertainty of 𝒚𝑜𝑏𝑠(𝒅
(𝑖), 𝒕). In addition, the covariance

between 𝒚𝑜𝑏𝑠(𝒅
(𝑖), 𝒕) at time instants 𝑡𝑗 and 𝑡𝑘 is computed by

94

𝚺𝑖(𝑗, 𝑘) = 𝐸([�̂�(𝒅(𝑖), 𝜷, 𝑡𝑗) + 𝜹(𝒅(𝑖), 𝜷, 𝑡𝑗) + 𝜀𝑜𝑏𝑠(𝒅
(𝑖), 𝑡𝑗)][�̂�(𝒅(𝑖), 𝜷, 𝑡𝑘) +

𝜹(𝒅(𝑖), 𝜷, 𝑡𝑘) + 𝜀𝑜𝑏𝑠(𝒅
(𝑖), 𝑡𝑘)]) − 𝐸([�̂�(𝒅(𝑖), 𝜷, 𝑡𝑗) + 𝜹(𝒅(𝑖), 𝜷, 𝑡𝑗) +

𝜀𝑜𝑏𝑠(𝒅
(𝑖), 𝑡𝑗)])𝐸([�̂�(𝒅(𝑖), 𝜷, 𝑡𝑘) + 𝜹(𝒅(𝑖), 𝜷, 𝑡𝑘) + 𝜀𝑜𝑏𝑠(𝒅

(𝑖), 𝑡𝑘)]) (5.19)

in which 𝐸(⋅) stands for “expectation”.

 After simplification, we have

𝚺𝑖(𝑗, 𝑘) = 𝐸 (�̂�(𝒅(𝑖), 𝜷, 𝑡𝑗)�̂�(𝒅(𝑖), 𝜷, 𝑡𝑘)) − 𝐸 (�̂�(𝒅(𝑖), 𝜷, 𝑡𝑗))𝐸 (�̂�(𝒅(𝑖), 𝜷, 𝑡𝑘)) +

𝐸(𝛿(𝒅(𝑖), 𝜷, 𝑡𝑗)𝛿(𝒅(𝑖), 𝜷, 𝑡𝑘) − 𝐸 (𝛿(𝒅(𝑖), 𝜷, 𝑡𝑗)) 𝐸(𝛿(𝒅(𝑖), 𝜷, 𝑡𝑘)) (5.20)

In the above equation, 𝐸 (𝜹(𝒅(𝑖), 𝜷, 𝑡𝑗)𝜹(𝒅(𝑖), 𝜷, 𝑡𝑘)) − 𝐸 (𝜹(𝒅(𝑖), 𝜷, 𝑡𝑗))𝐸 (𝜹(𝒅(𝑖), 𝜷, 𝑡𝑘))

is the covariance of the model discrepancy at different time instants. If the model discrepancy

terms are assumed to be independent of time, we have

𝚺𝑖(𝑗, 𝑘) = 𝐸 (�̂�(𝒅(𝑖), 𝜷, 𝑡𝑗)�̂�(𝒅(𝑖), 𝜷, 𝑡𝑘)) − 𝐸 (�̂�(𝒅(𝑖), 𝜷, 𝑡𝑗))𝐸 (�̂�(𝒅(𝑖), 𝜷, 𝑡𝑘)) (5.21)

Substituting Eq. (5.14) into Eq. (5.21) yields

 𝚺𝑖(𝑗, 𝑘) = ∑ 𝜎�̂�𝑞

2 (𝒅(𝑖), �̂�)𝑈𝑞(𝒅
(𝑖), 𝑡𝑗)𝑈𝑞(𝒅

(𝑖), 𝑡𝑘), ∀𝑗, 𝑘 = 1, 2,⋯ , 𝑛𝑡
𝑟
𝑞=1 (5.22)

Based on Eqs. (5.17), (5.18) and (5.22), 𝐿(𝒚𝑜𝑏𝑠(𝒅
(𝑖))|𝜷) is then computed by

𝐿(𝒚𝑜𝑏𝑠(𝒅
(𝑖))|𝜷) = 𝐿([𝒚𝑜𝑏𝑠(𝒅

(𝑖), 𝑡1), 𝒚𝑜𝑏𝑠(𝒅
(𝑖), 𝑡2),⋯ , 𝒚𝑜𝑏𝑠(𝒅

(𝑖), 𝑡𝑛𝑡
)]|𝜷) =

1

(2𝜋)
𝑛𝑡
2 √|𝚺𝑖|

exp (−
1

2
(𝒚𝑜𝑏𝑠(𝒅

(𝑖)) − 𝝁𝑖)
𝑇
𝝈𝑖

−1(𝒅(𝑖) − 𝝁𝑖)) (5.23)

where 𝝁𝑖 = [𝝁𝒚𝑜𝑏𝑠
(𝒅(𝑖), 𝜷, 𝑡1), 𝝁𝒚𝑜𝑏𝑠

(𝒅(𝑖), 𝜷, 𝑡2),⋯ , 𝝁𝒚𝑜𝑏𝑠
(𝒅(𝑖), 𝜷, 𝑡𝑛𝑡

)] and 𝚺i is the

covariance matrix with 𝚺i(𝑗, 𝑘) is given by Eq. (5.22) and diagonal elements given by Eq.

(5.18).

 With Eqs. (5.23) and (5.17), 𝐿(𝒚𝑜𝑏𝑠
𝑎𝑙𝑙 |𝜷) can be computed for given 𝜷. The posterior

distribution 𝑓(𝜷|𝒚𝑜𝑏𝑠
𝑎𝑙𝑙) can then be estimated using Bayesian inference as

95

𝑓(𝜷|𝒚𝑜𝑏𝑠
𝑎𝑙𝑙) ∝ 𝐿(𝒚𝑜𝑏𝑠

𝑎𝑙𝑙 |𝜷)𝑓(𝜷) (5.24)

5.6.2 MapReduce for Data Processing

 The field data being observed can be of different formats, e.g. images, time histories,

and other recorded measurements. Usually those raw data cannot be used for calibration

directly because of noice, thus data processing is needed before feeding into the model. Here

we consider image processing as an example for the purpose of illustration. Note that the

general parallelization procedure of image can be applied similarly to other data formats. In

the case of thermal image processing, the common procedure is: cropping, baseline removal,

and noise cancellation. The mapper function and the schematic description are shown in Fig.

5.6. In the mapper function, ‘x’ is the id of the file assigned to the slave node on which this

function is running on. Note that in the mapper, all the processing steps will be executed

sequentially. ‘ReadData’ function in Pseudocode 5.3 is used for reading of inputs, and the

data is stored in variable ‘InputData’. ‘Cropping’ is a function for cropping the images,

which stores the cropped image pixel values into the variable ‘CroppedImage’. Finally the

‘NoiseCancel’ function will be called to cancel the noise in the image and save the output

onto disk.

96

(a) MapReduce pseudocode

 (b) Schematic description

Figure 5.6 Distributed computing of data processing

5.6.3 MapReduce for Likelihood Evaluation

 The likelihood evaluation step is the most expensive step in Bayesian calibration. The

parallelization of the likelihood evaluation is realized inside the MCMC MapReduce

algorithm (Fig. 5.7).

Pseudocode 5.3:

function mapper(x):

 InputData = ReadData(x)

 CroppedImage = Cropping(InputData)

 NoiseCancelledImage = NoiseCancel(CroppedImage)

 WriteData(NoiseCancelledImage)

 return (x, 0)

SparkContext(appName="myApp").parallelize(Filelist,

N).map(mapper).count()

SparkContext(appName="myApp").parallelize(Filelist,

N).map(mapper).count()

97

5.6.4 MapReduce for MCMC

 The basic idea of MCMC parallelization is to divide the observations into 𝑀 splits, with

each node taking one partition to provide samples of the posterior distribution. The prior

distribution of the variable of interest will be updated using the equation:

𝑝𝑚(𝜽) ∝ 𝑝(𝜽)
1

𝑀𝑝(𝒙𝑛𝑚|𝜽) (5.17)

After all nodes complete their tasks, all the sub-posterior samples from each nodes will be

combined to produce samples for an estimate of the sub-posterior density product

𝑝1𝑝2 ⋯𝑝𝑀(𝜽), which is proportional to the full data posterior, i.e., 𝑝1𝑝2 ⋯𝑝𝑀(𝜽) ∝

𝑝(𝜽|𝒙𝑁).

(a) MapReduce pseudocode

Pseudocode 5.4:

function mapper(x):

 InputData = ReadData(x)

 OutputData = MCMC_Sampling(InputData)

 SaveSamples(OutputData)

 return (x, 0)

SparkContext(appName="myApp").parallelize(Filelist,

N).map(mapper).count()

98

 (b) Schematic description

Figure 5.7 Distributed computing of parameter calibration by MCMC

 A Map function is defined (’mapper’), within which all the actual functions are defined

(ReadData(), MCMC_Sampling(), and SaveSamples()). As shown in Fig. 5.5, the sampling

process is executed on the slave nodes, while posterior integration is done after all particles

and weights are saved from the slave nodes. SparkContext and count() function are used the

same way as in Fig. 5.3. ReadData() is the function used to read observation data and

parameters, and followed by MCMC_Sampling(), which is the function to perform the

sampling. SaveSamples() is the function used to save all subset of MCMC chains.

 In summary, the steps for calibration of high-dimensional model parameters using big

data analytics are: (1) parallelize FEA model runs; (2) parallelize the training of surrogate

models; (3) parallelize model calibration.

5.7 Numerical Example

 The proposed methodology for big data analytics in model calibration with

99

heterogeneous materials is illustrated for the calibration of thermal conductivity in a concrete

structure. A concrete structure with damage is considered, where the damage is simulated by

drilled holes (Fig. 5.8 (a)) thus introducing heterogeneity. We need to use different

conductivity coefficient values at different locations in order to use in future prognosis of

the structure. In a realistic structure, the damaged area could be quite irregular; thus an

averaged value or a parametric random field representation of property variation may not be

feasible. As a result, we may need to discretize the entire domain into many sub-domains

(consistent with the FEA model) and calibrate the property for each sub-domain. In that case,

calibration becomes a high-dimensional problem if many sub-domains need to be

considered.

5.7.1 Collection of Observation Data for Calibration

5.7.1.1 Experimental Setup

 The concrete slab is placed on a thermal blanket which is heated according to a

predefined profile (Fig. 5.8). The top surface temperature is obtained after processing

thermography images captured by an infrared camera. Note that since the material is highly

heterogeneous, we are calibrating the thermal conductivity in different locations on the top

surface. Since we can only observe the thermography image on the top surface, and also the

thickness is small compared to its length and width, it is reasonable to assume the thermal

conductivity does not vary along the thickness.

 To mimic damage and introduce heterogeneity, holes of 1/2 inch, 3/8 inch, and 5/16

inch diameter (all of them 4.45 inch deep) were drilled into the side of the concrete slab, as

100

shown in Fig. 5.8 (a). The thermal loading history is shown in Fig. 5.8 (b), with heating,

stable, and cooling periods. In realistic situations, concrete damage could be of many types

(physical, chemical, and mechanical), due to various causes such as freeze-thaw, chloride

penetration, alkali-silica reaction etc. Temperature, humidity, and the properties of the

concrete constituents (cement, aggregates, reinforcing steel, water content, and chemical

admixtures) play a crucial role in the evolution of various types of damage. Under such

damage (of unknown geometry), it is only appropriate to model the material as

heterogeneous.

(a) The specimen to be monitored with thermal blanket below

101

(b) The thermal loading history being applied (scaled values)

Figure 5.8 Experiment setting

5.7.2 Finite Element Model

 Fig. 5.9 shows the meshed FEA model implemented in commercial software Abaqus,

with 3009 nodes and 7038 thermal-coupled elements (994 linear hexahedral elements and

6044 linear tetrahedral elements). The thermal conductivity coefficients at different spatial

locations on the top surface need to be calibrated. In the FEA model, the spatial locations are

represented as a 21 × 21 grid as shown in Fig. 5.4. For each calibration block location, the

thermal conductivity is considered to be constant. We use 400 (= 20 × 20) observation

points on the top surface, and assume that the temperature value at each observation point is

affected by only the four neighboring blocks. For example, observation point 189 is affected

by blocks 168, 169, 188 and 189 (Fig. 5.4).

102

Figure 5.9 FEA model for concrete slab

Table 5.1 Concrete model parameters

Parameter Unit Value

Elasticity 𝑃𝑎 40 × 109

Poisson’s ratio − 0.15

Thermal expansion 1/𝐾 7.4 × 10−6

Specific heat 𝐽/𝐾𝑔 ⋅ 𝐾 880

 Table 5.1 shows the concrete model parameters except thermal conductivity 𝑘. Thermal

conductivity is considered to be in the range of [0.8, 2.5] 𝑊 ⋅ 𝑚−1 ⋅ 𝐾−1. Since the FEA

model is too expensive for Bayesian calibration, we use a surrogate model to replace it.

Training points of the surrogate model are obtained using a Latin-hypercube design, with 5

conductivity values in each block. Thus for each observation point, the number of DOE

points are 625 = 5 × 5 × 5 × 5, since 𝑘 values at four neighboring blocks are used as

inputs to the surrogate model for each spatial location. One example realization of training

inputs is shown in Fig. 5.10 (the axis values are block indices in 𝑥 and 𝑦 direction). Since in

103

each FEA run, the temperature at all locations can be obtained at the same time, the total

number of FEA runs will be 625. These 625 runs can be parallelized via MapReduce as

described in Sec. 5.3.

Figure 5.10 Example realization of 𝒌 values for one training point

5.7.3 Surrogate Model Training

 Based on the inputs (conductivity values) and outputs (nodal temperature values in each

run), the Gaussian process surrogate model can be obtained. One example output is shown

in Fig. 5.11. For each FEA output, we will have a series of output for 70 time steps (70

mins). For each spatial location 𝑖, if we create a surrogate model for each time step, we will

104

lose the correlation between each time step. In order to capture the correlation over time, and

also to reduce the dimension, singular value decomposition (SVD) is applied. Following Eq.

(5.8), where 𝝎 is the temperature output at each location for all 625 training points (625 ×

70), 𝑽 is the left singular vectors (70 × 70), 𝑴 is the matrix of singular values (70 × 70),

and 𝑼 is the matrix of right singular vectors (70 × 70). Here we choose only the first two

components, which means we will use the first two columns of 𝑽𝑴, and the first two rows

of 𝑼. Thus we have two bases 𝑼0 and 𝑼1 are used here as an example (Fig. 5.12(a)), and the

corresponding coefficient for each DOE output will have a dimension of 1 × 2 (Fig. 5.12

(b)). Fig. 5.12 (c) shows that the 2-components SVD captures the temporal history very well.

Figure 5.11 Example result of FEA model (@ t = 1800s)

105

(a) principal components (b) coefficients

(c) fitting by SVD

Figure 5.12 SVD decomposition example (@𝒅(0))

 We build surrogate models for each of the 2 coefficients, 𝛾0(𝒅
(𝑖) , �̂�), 𝛾2(𝒅

(𝑖) , �̂�), 𝑖 =

0, 1,⋯ ,399, and the inputs are the 4 neighboring 𝑘s. Thus the total number of surrogate

models will be 800 = 2 × 400. The training of those surrogate models can be parallelized

by following the procedure in Sec. 5.5.3. Fig. 5.12 shows the performance of the trained

106

surrogate model. Here 80% of the data (500 data points) are used for training, while 20%

of the data are used for validation.

Figure 5.13 Performance of surrogate model

5.7.4 Calibration

 After all the surrogate models are trained for each spatial location, the calibration

variables, model outputs, and observations can be represented using a Bayesian network.

Fig. 5.14 sows the network for one location (4 blocks), in which ellipses are random

variables, and squares are observations. Red ellipses denote the random variables that

represent the conductivity coefficients 𝑘𝑗 , 𝑗 = 0, 1,⋯ , 440 to be calibrated, while the yellow

ellipses denote random variables that represent the SVD coefficients of model outputs for

107

each spatial location 𝛾0(𝒅
(𝑖) , �̂�), 𝛾2(𝒅

(𝑖) , �̂�), 𝑖 = 0, 1,⋯ ,399, which can be obtained from

the corresponding surrogate model. Each blue ellipse represents the temperature random

variable 𝑇𝑖 for a spatial location 𝑖, where 𝑖 = 0, 1,⋯ ,399. Note here that each 𝑇𝑖 follows a

multivariate normal distribution 𝑁(𝝁,𝜮), where 𝝁 = 𝐸[𝑇𝑖,𝑙], 𝑙 = 0, 1,⋯ , 69 and 𝜮 =

𝐶𝑜𝑣[𝑇𝑖,𝑙 , 𝑇𝑖,𝑚], 𝑙 = 0, 1,⋯ , 69; 𝑚 = 0, 1,⋯ , 69. Here 𝐸 refers to the expectation function

and 𝐶𝑜𝑣 refers to the covariance function. In our case,

𝝁𝒚𝑜𝑏𝑠
(𝒅(𝑖), 𝜷, 𝑡) ≈ 𝝁𝑖(𝑡) + 𝝁�̂�0

(𝒅(𝑖), �̂�)𝑼0(𝒅
(𝑖), 𝑡) + 𝝁�̂�1

(𝒅(𝑖), �̂�)𝑼1(𝒅
(𝑖), 𝑡) +

𝜇𝛿(𝒅
(𝑖), 𝜷, 𝒕) (5.18)

𝚺𝑖(𝑗, 𝑘) = 𝜎�̂�0

2 (𝒅(𝑖), �̂�)𝑼0(𝒅
(𝑖), 𝑡𝑗)𝑼0(𝒅

(𝑖), 𝑡𝑘) +

𝜎�̂�1

2 (𝒅(𝑖), �̂�)𝑼1(𝒅
(𝑖), 𝑡𝑗)𝑼1(𝒅

(𝑖), 𝑡𝑘), ∀𝑗, 𝑘 = 0, 1,⋯ , 69 (5.19)

Given the observation {𝑇𝑖,𝑙}, where 𝑖 = 0, 1,⋯ , 399, and 𝑙 = 0, 1,⋯ , 69, the likelihood

function computation is parallelized following the procedure in Sec.5.6.4. Finally, thermal

conductivity coefficients at each spatial location are updated via the parallelization of

MCMC.

 Fig. 5.15 shows two examples of the calibration results, where the prior and posterior

of parameters and are plotted. It is observed reduction of variance happens for both. Similar

performance was observed for all the other parameters. Fig. 5.17 shows an overview of all

the 441 calibrated parameters, where mean values are plotted. Besides this, it will be useful

to check the correlations among the calibrated parameters. For example, the correlations

between parameter 𝑘210 and the other parameters in the same row 𝑘211, 𝑘212, ⋯ , 𝑘230 (Fig.

5.4) are calculated and plotted in Fig. 5.16. A general decreasing trend can be observed

except one outlier (marked in red).

108

Figure 5.14 Bayesian network for calibration at location 0 (See Fig. 5.4)

(a) 𝑘0 (b) 𝑘32

Figure 5.15 Calibration results

109

Figure 5.16 Correlation of 𝒌𝟐𝟏𝟎 with the other nodes in the same row

Figure 5.17 Calibration result shown over the slab top surface (mean)

110

5.7.5 MapReduce Performance

 Now we discuss the performance of MapReduce in FEA parallelization. In this study,

50 nodes were used for parallelization. For the purpose of comparison, computation using

the traditional sequential method at a single node was also performed. The configurations of

computers are shown in Table 5.2.

Table 5.2 Nodes comparison

Method CPU (GHZ) Memory (GB)

Desktop 3.4 × 8 12

Cluster node 2.3 10

Table 5.3 Time cost of traditional method and MapReduce method

Method Time (hr.)

Desktop 363

Cluster node (50 nodes) 42

 It is worth noting that the CPU clock speed and memory size of the local machine where

the traditional methods were running are larger than that of the cluster nodes. The

comparison between the time cost of the traditional method and MapReduce method is

shown in Table 5.3. MapReduce showed significant computational efficiency (almost 9

times faster). It can be expected that as the number of nodes increases, the time cost could

reduce further, but may not be in a linear trend. The reason is that the communication

between the master node and slave node also consumes time. The individual time cost shows

111

that model calibration consumes most of the computational resources (Table 5.4). Also the

heterogeneity of performance of the cluster nodes is shown through a scatter plot and a

histogram in Fig. 5.18.

Table 5.4 Time cost of individual steps on desktop

Method Time (hr.)

FEA model 6

Surrogate model training 1

Calibration 363

(a) scatter plot (b) histogram

Figure 5.18 Computational nodes performance

5.8 Summary

 This chapter investigated the MapReduce technique to parallelize the model calibration

process in a high-dimensional parameter space and in the presence of big data, in order to

112

make the computation efficient without lowering the accuracy. MapReduce is investigated

in three steps of the model calibration process: (1) multiple runs of the original physics model

to generate training points to build an inexpensive surrogate model, (2) training of the

surrogate model to be used in calibration, (3) construction of likelihood functions for large

volume observations, and Bayesian posterior construction (via the MCMC algorithm) using

the surrogate model and likelihood function. The methodology is illustrated for the

estimation of heterogeneous thermal conductivity at different locations in a damaged

concrete structure, using data from infrared thermography (IR).

 Future research needs to address several extensions. First of all, a single surrogate

model could be created, instead of multiple small-size surrogate models. This will be

investigated in next Chapter. In that case, spatial correlation can be handled with no

approximation. However, since there would be only one model, the training process will be

parallelized internally, instead of doing the parallelization file-wise. Furthermore, since the

single surrogate model will have large number of parameters, due to high dimensionality,

much more training points are needed. Thus there is tradeoff between multiple small-size

surrogate models and a single large surrogate model, which is accuracy vs. effort. On the

other hand, when preparing the surrogate model training points, repeated FEA model runs

are needed, which were also parallelized externally (file-wise). The FEA node can be

parallelized internally, since external parallelization is limited by the number of available

licenses of the commercial software. The internal parallelization of FEA model runs may

already be available in existing commercial software, which may be taken advantage to save

licenses cost. Compared with the random field approach (Nath et al. (2017)), the proposed

113

method is more expensive, but necessary when the material is highly heterogeneous and the

structure is damaged, where a random field approach may not be applicable.

114

CHAPTER 6

BIG DATA ANALYTICS IN DISTRIBUTON SURROGATE MODELING

6.1 Background

 As reviewed in Sec. 2.5, there are two types of surrogate models: response surrogate

and distribution surrogate. As a response surrogate, the Gaussian process surrogate model is

used in Chapter 4 and Chapter 5. For a high dimensional problem, when using response

surrogate, multiple surrogate models are required for a field output. In contrast, a single

evaluation of the distribution surrogate provides the entire output distribution considering all

the uncertain variables at a given value of the input variable (Liang, 2015). In this chapter,

we will address the big data analytics in distribution surrogate modeling.

 A significant benefit of the distribution surrogate is the ability to consider spatial

variability of heterogeneous properties in one single model, instead of multiple smaller-

dimensional models as was considered in Chapter 5. In addition, inference with approximate

distribution surrogates such as a Gaussian mixture model (McLachlan, 2000; Bishop, 2006)

is much faster, since analytical solutions are available, which can be directly used to obtain

the conditional distribution (in model calibration or prediction).

 However, when the data size is large and parameter dimension is high, the training of

the Gaussian mixture model (GMM) becomes expensive, thus posing a challenge to

traditional computing (sequential computing). Therefore this chapter focuses on the

parallelization of GMM training, including the data processing (which is used for the

115

observation) and model training (parallelize the training process). Since after surrogate

model is trained, analytical solutions can be obtained for the posterior distributions, there is

no need for the calibration calculations to be parallelized.

 Different schemes of scalable GMM have been investigated by researchers. Feldman et

al. (2011) proposed a way of constructing core-sets (i.e., weighted subsets of the data) for

mixtures of Gaussians to allow the GMM to be applicable for a massive data set. It was found

that Gaussian mixtures admit core-sets whose size is independent of data size. Jin et al.

(2005) proposed scalable GMM based on data summarization. Parsimonious GMM

(McNicholas et al., 2009) is another data reduction method combined with parallelization,

which accelerates model training and selection. Both of the three methods above are

achieved by approximations. On the other hand, researchers studied the parallelization

without data reduction. For example, Kumar et al. (2009) proposed parallelization of GMM

via CUDA (Compute Unified Device Architecture) on GPUs. However, this will face the

limitations of GPU parallelization discussed earlier (Sec. 5.1). Kwedlo (2014) implemented

GMM parallelization using MPI, which is a shared memory parallelization based on data

decomposition. This will inherit the limitations of MPI (Sec. 3.1).

 In this chapter, MapReduce parallelization of GMM will be investigated. Since GMM

relies on the Expectation-Maximization (EM) algorithm (described in Chapter 2), the

parallelization of E-step and M-step can be realized either by partitioning the samples or by

partitioning the components. Furthermore, in order to perform model selection, GMMs with

different configurations can also be parallelized. Thus this chapter proposes three different

options for parallelization. Since the parallelization of E-step and M-step is performed inside

a single GMM, we denote this form as ‘internal’ GMM parallelization; on the other hand,

116

the parallelization at the model selection level is termed ‘external’ GMM parallelization in

the discussion below.

6.2 Challenges due to High-Dimensional Model Parameters

 Due to material variability, the material parameters to be calibrated, 𝜽, may be defined

as functions of locations 𝒅. Since 𝒅 is a large vector, the number of parameters 𝜽(𝒅) is very

large. Therefore, the calibration process is unaffordable using the conventional model

calibration method, if it is impossible to develop a parametric representation of the model

parameter over the spatial domain. Furthermore, full field observations (such as optical or

thermal images) collected over a long time period will bring in the big data issue. Thus this

section discusses our approach to handle the spatially varying parameters and temporal

correlation.

6.2.1 Spatially Varying Parameters

 As explained in Sec. 5.5.1, to build a surrogate model for the high-dimensional spatially

varying response as a function of the calibration parameters, we first classify the calibration

parameters into two categories: spatially constant calibration parameters (𝜽𝑐) and spatially

varying calibration parameters (𝜽𝑠(𝒅)). In this chapter, in order to build a full-scale surrogate

model, 𝜽𝑠(𝒅) is directly used as inputs, instead of only using the 𝜽𝑠(𝒅) in the neighboring

locations of d as the inputs of 𝒚 at 𝒅. The response at location 𝒅(𝑖) is represented as

𝒚(𝒅(𝑖)) = �̂�(𝜽𝑐, 𝜽𝑠(𝒅)) (6.1)

where 𝒅(𝑖) is the 𝑖-th spatial coordinate, and �̂�(⋅) is the surrogate model. As mentioned

earlier, GMM is used as the surrogate model in this chapter.

117

6.2.1.1 Generation of Training Points

 Defining 𝜷 = [𝜽𝑐 , 𝜽𝑠(𝒅(1)), 𝜽𝑠(𝒅(2)),⋯ , , 𝜽𝑠(𝒅(𝑚))], we first generate 𝑛𝑠 training

points for 𝜷. For each training point 𝜷(𝑖), the response field is obtained using the original

simulation model 𝐺 as below:

𝒚(𝒅(𝑗), 𝜷(𝑖)) = 𝐺(𝜷(𝑖)) (6.2)

where 𝒚(𝒅(𝒋), 𝜷(𝒊)) denotes the response at the 𝑗-th spatial location of the 𝑖-th training point

𝜷(𝑖). It should be noted that the output is a field response (as indicated in Eq. (6.2)) for given

training point 𝜷(𝒊).

Figure 6.1 𝟏𝟎 × 𝟏𝟎 calibration grid and 𝟗 × 𝟗 observation points

118

 After performing simulations at all the training points, a data matrix is obtained as

𝒚𝑡𝑜𝑡𝑎𝑙 = {𝒚(𝒅(𝑖), 𝜷(𝑗)), 𝑖 = 1,⋯ ,𝑚; 𝑗 = 1, ⋯ , 𝑛𝑠}. Note that the above matrix is obtained

by reorganizing the spatial response into a one-dimensional array (i.e., 𝒚(𝒅, 𝜷(𝑗)) =

{𝒚(𝒅(1), 𝜷(𝑗)), 𝒚(𝒅(2), 𝜷(𝑗)),⋯ , 𝒚(𝒅(𝑚), 𝜷(𝑗))} denotes the responses at all the spatial

locations).

6.2.1.2 Time History Output

 With the training data matrix 𝒚𝑡𝑜𝑡𝑎𝑙, we try to build the surrogate model. We extract the

input training points as �̂�𝑖𝑛 = �̂�, and the corresponding output training points as 𝒚𝑜𝑢𝑡 =

𝒚(𝒅, �̂�). However, when the simulation model is performed over time, 𝒚(𝒅(𝑖), 𝜷(𝑗)) is a

time-dependent trajectory even for a specific spatial location 𝒅(𝑖) and we have

𝒚(𝒅(𝑖), 𝜷(𝑗)) = [𝒚(𝒅(𝑖), 𝜷(𝑗), 𝑡1), 𝒚(𝒅(𝑖), 𝜷(𝑗), 𝑡2),⋯ , 𝒚(𝒅(𝑖), 𝜷(𝑗), 𝑡𝑛𝑡
)], where 𝑛𝑡 is the

number of time instants. This introduces extra challenge to the surrogate model construction.

Next, we investigate how to address this issue using singular value decomposition (SVD).

6.2.2 Handling Temporal Correlation

 Singular value decomposition (SVD) is a multivariate statistical method to describe a

large amount of high-dimensional data be mapping to a low-dimensional space (Chatterjee

2000). SVD can be used for handling the temporal correlation of the response. Given 𝑚 data

points over the spatial domain 𝜴 for 𝑛𝑡 time domain realizations, a data matrix can be

collected as follows:

119

𝝎 = [𝝎(𝜉1),𝝎(𝜉2),⋯ ,𝝎(𝜉𝑠)]
𝑇 =

[

𝜔(𝑡1, 𝜉1) 𝜔(𝑡1, 𝜉2) ⋯ 𝜔(𝑡1, 𝜉𝑛𝑡

)

𝜔(𝑡2, 𝜉1) 𝜔(𝑡2, 𝜉2) ⋯ 𝜔(𝑡2, 𝜉𝑛𝑡
)

⋮
𝜔(𝑡𝑛𝑡

, 𝜉1)
⋮

𝜔(𝑡𝑛𝑡
, 𝜉2)

⋱
⋯

⋮
𝜔(𝑡𝑛𝑡

, 𝜉𝑛𝑡
)]

𝑇

 (6.3)

where 𝝎(𝜉𝑖) = [𝜔(𝑡1, 𝜉𝑖), 𝜔(𝑡2, 𝜉𝑖),⋯ ,𝜔(𝑡𝑛𝑡
, 𝜉𝑖)] is the 𝑖-th realization.

 This large amount of high-dimensional data can be mapped to a low-dimensional

representation by using SVD as 𝝎 = 𝑽𝑴𝑼𝑇, where 𝑽 is a 𝑠 × 𝑛𝑡 matrix, 𝑼 is a 𝑛𝑡 × 𝑛𝑡

orthogonal matrix and 𝑴 is a 𝑛𝑡 × 𝑛𝑡 rectangular diagonal matrix with non-negative real

numbers 𝝀 = [𝜆1, 𝜆2, ⋯ , 𝜆𝑚] on the diagonal. Here we donate 𝜸 = 𝑽𝑴, and the matrix can

be constructed as

𝝎(⋅, 𝜉𝑖)
𝑇 ≈ ∑ 𝛾𝑖𝑗𝑼𝑗

𝑟
𝑗=1 (6.4)

where 𝝎(⋅, 𝜉𝑖)
𝑇 is the 𝑖-th row of 𝝎, 𝛾𝑖𝑗 is the element of 𝜸 at 𝑖-th row and 𝑗-th column, 𝑼𝑗

is the 𝑗-th important feature vector used to approximate 𝝎, and 𝑟 is the number of important

features used. The number of features 𝑟 is determined based on the magnitudes of the

singular values 𝝀 (Xu, 1998).

 Based on SVD, the response at spatial location 𝒚𝑎𝑙𝑙
(𝑖) = {𝒚(𝒅(𝑖), 𝜷(𝑗), 𝑡𝑘), 𝑗 =

1, 2,⋯ , 𝑠, 𝑘 = 1, 2,⋯ , 𝑛𝑡} is re-constructed as

𝒚(𝒅(𝑖), 𝜷(𝑗), 𝑡𝑘) ≈ 𝝁𝒊(𝑡𝑘) + ∑ 𝛾𝑞(𝒅
(𝑖), 𝜷(𝑗))𝑈𝑞(𝒅

(𝒊), 𝒕𝑘), ∀𝑗 = 1, 2,⋯ , 𝑠; 𝑘 =𝑟
𝑞=1

1, 2,⋯ , 𝑛𝑡 (6.5)

where 𝝁𝑖(𝑡𝑘) is the mean value at location 𝒅(𝒊) at time instant 𝑡𝑘, 𝛾𝑞(𝒅
(𝑖), 𝜷(𝑗)) is the 𝑞-th

latent response of spatial location 𝒅(𝑖) for the 𝑗-th training point, and 𝑼𝑞(𝒅
(𝒊), 𝑡𝑘) is the value

of the 𝑞-th important feature 𝑼𝑞 of 𝒅(𝑖) at time instant 𝑡𝑘.

 Eq. (6.5) shows that the variation in the high-dimensional response mainly comes from

the variation in 𝜸(𝒅(𝑖), 𝜷(𝑗)) = [𝛾1(𝒅
(𝒊), 𝜷(𝑖)), 𝛾2(𝒅

(𝒊), 𝜷(𝑖)),⋯ , 𝛾𝑟(𝒅
(𝒊), 𝜷(𝑖))], which

120

denotes the value of 𝜸 of the response at 𝒅(𝑖) for the 𝑗-th training point. The dimension of

𝜸(𝒅(𝑖), 𝜷(𝑗)) is usually much smaller than that of the response 𝒚(𝒅(𝑖), 𝜷(𝑗)) =

 [𝒚(𝒅(𝑖), 𝑡1), 𝒚(𝒅(𝑖), 𝑡2),⋯ , 𝒚(𝒅(𝑖), 𝑡𝑛𝑡
)].

 With the training points 𝜸𝑞(𝒅
(𝑖), 𝜷(𝑗)), ∀𝑞 = 1, 2,⋯ , 𝑟; 𝑗 = 1, 2,⋯ , 𝑠 and �̂�𝑖𝑛

(𝑖) =

[�̂�1
(𝑖), �̂�2

(𝑖), ⋯ , �̂�𝑠
(𝑖)], we construct surrogate model for 𝜸𝑞(𝒅

(𝑖), 𝜷(𝑗)), ∀𝑞 = 1, 2,⋯ , 𝑟. After

substitute 𝜸𝑞(𝒅
(𝑖), 𝜷(𝑗)) with surrogate model 𝜸𝑞(𝒅

(𝑖), 𝜷(𝑗)), Eq. (6.5) becomes:

𝒚(𝒅(𝒊), 𝜷(𝑗), 𝑡𝑘) ≈ 𝝁𝒊(𝑡𝑘) + ∑ 𝛾𝑞(𝒅
(𝑖), 𝜷(𝑗))𝑈𝑞(𝒅

(𝒊), 𝑡𝑘), ∀𝑗 = 1, 2,⋯ , 𝑠; 𝑘 =𝑟
𝑞=1

1, 2,⋯ , 𝑛𝑡 (6.6)

in which �̂�𝑞(𝒅
(𝒊), 𝜷(𝑗)) stands for the 𝑞-th surrogate model associated with the spatial

location 𝒅(𝑖). Note that 𝛾1, 𝛾2, ⋯ , 𝛾𝑟 are not the original response but latent response obtained

through SVD.

6.3 Construction of Gaussian Mixture Model

 From the discuss above, after repeated runs of FEA models with different parameters,

training points of {(𝜷(𝑗), 𝒚(𝑗)), ∀ 𝑗 = 1, 2, … , 𝑛𝑠} can be obtained, where

𝒚(𝒅, 𝜷(𝑗)) = {𝒚(𝒅(1), 𝜷(𝑗)), 𝒚(𝒅(2), 𝜷(𝑗)),⋯ , 𝒚(𝒅(𝑚), 𝜷(𝑗))} is the output for parameter

𝜷(𝑗). Note the 𝒚(𝒅, 𝜷(𝑗)) above is a function of time and space, thus to handle the spatial

correlation, SVD method will be used (Eq. (6.6)) to obtain 𝑟 set of basis 𝑈𝑞, and coefficients

𝛾𝑞(𝒅
(𝑖), 𝜷(𝑗)). Now GMM can be trained via the details discussed in Sec. 2.5.2. Note that

the number of components (𝐾 in Eq. (2.7)) of a GMM is undetermined. Determine the

number of components is a very important step, which will be discussed below.

 Selecting the number of components in a GMM is a process of selecting the model with

121

the least information loss. There are two commonly used criteria in model selection – the

Akaike information criterion (Akaike, 1974) and the Bayesian information criterion

(Schwarz, 1978). In this chapter, Akaike information criterion is applied for model selection.

The AIC is defined as

𝐴𝐼𝐶 = 2𝑘 − 2ln (𝐿) (6.7)

where 𝐿 is the maximized value of the likelihood function of the model 𝐺, i.e., 𝐿 =

𝑝(𝒙|𝜽, 𝐺), where 𝜽 are the parameter values that maximize the likelihood function; 𝒙 is the

observed data; 𝑛 is the number of data points in 𝒙; and 𝑘 is the number of free parameters to

be estimated.

 In order to find the model with the lowest AIC score, a global optimization method

(such as genetic algorithm) could be applied. However, if the potential model numbers is not

large, we can enumerate all the model configurations (number of components, i.e., 𝑁 in Eq.

(6.2)).

6.4 Parallelization of GMM Construction

 As mentioned in Sec. 6.1, three options for parallelization of GMM construction are

developed here. The first option is to solve all the candidate GMM models (i.e., with different

numbers of components) in parallel, but within each model solving process (i.e., E-step and

M-step), it is sequential (scheme 1). We refer to this type of parallelization as “external”.

The second option is to parallelize the E-step and M-step for each of the GMM model. Inside

each model, the E-step and M-step are solved in parallel, but different models are solved

sequentially (scheme 2 and scheme 3). We refer to this type of parallelization as “internal”.

Since potentially both big data property (large sample size 𝑁) and high-dimension property

122

(large number of components required 𝐾) are present, the parallelization can be done either

by partitioning the training samples (scheme 2) or by partitioning the components (scheme

3).

6.4.1 GMM Parallelization Scheme 1: MapReduce Implementation of GMM Model

Selection (external parallelization)

 It is straightforward to parallelize the GMM model selection, since each individual

model training is independent of the others; therefore it is naturally reasonable to split all the

𝑛 model training tasks into 𝑀 partitions, which will be sent to 𝑚 nodes (Fig. 6.1 (b)). Similar

to the parallelization of data processing, 𝑀 should be greater than or equal to 𝑚 to avoid

waste of resources, since otherwise there would be idle workers.

 Pseudocode 6.1 in Fig. 6.2 (a) is the MapReduce pseudocode and the schematic

description is shown in Fig. 6.2 (b). ‘GMMs’ refers to the GMM training tasks, which is

composed by GMM models with different component numbers. ‘M’ is the number of

partitions as explained above. ‘count()’ is used for triggering the parallelization, as usual.

The ‘mapper’ function is the function to be executed by workers. The argument ‘x’ is the

task id received by a worker, which will be used for reading the input data (realized by

‘ReadData(x)’ function). ‘EM’ is the function of performing the training process, with the

trained model (‘GMM_x’) saved on to the disk via ‘WriteData(GMM_x)’ function.

123

(a) MapReduce pseudocode

 (b) Schematic description

Figure 6.2 GMM parallelization scheme 1

6.4.2 GMM Parallelization Scheme 2: MapReduce Implementation of EM by

Partitioning the Samples (Internal Parallelization)

 For this parallelization scheme, in the E-step, 𝑁 training points (samples) are split into

𝑀 partitions; and for each sub-group of training points (𝒙𝑖), log likelihood will be calculated,

which will be combined and used for the calculation of posterior distributions (Eq. (6.8)). In

Pseudocode 6.1:

function mapper(x):

 InputData = ReadData(x)

 GMM_x = EM(InputData)

 WriteData(GMM_x)

 return (x, 0)

SparkContext(appName="myApp").parallelize(GMMs,

M).map(mapper).count()

124

M-step, similarly, each node will process the subset 𝒙𝑖 and after combination, 𝝁𝑗, 𝚺𝑗 and 𝝅𝑗

can be obtained (Eqs. (2.9) – (2.12)). However, since in the M-step, the most computationally

intense part is the calculation of covariance matrix, it is practical to only parallelize the

computation of 𝚺j.

 Pseudocode 6.2 in Fig. 6.3 (a) is the MapReduce pseudocode of GMM parallelization

scheme 2. Similar to Pseudocode 6.1, ‘GMMs’ refers to the GMM training tasks (total

number is 𝑛), which is composed by GMM models with different component numbers. The

outer loop ‘for GMM in GMMs’ indicates that each GMM with a certain configuration

(number of components) will be trained one by one (sequentially). For the GMM being

trained, ‘ReadData’ function will read training samples (stored in variable ‘samples’), as

well as configurations (stored in variable ‘num_of_components’). Then,

‘InitializeComponents’ is used for initialization of components (𝝁𝑗, 𝚺𝑗 and 𝝅𝑗). The second

loop ‘for component in components’ indicates the iteration over components, for each

component which is being worked on, E-step and M-step will be parallelized inside ‘function

E_step and function M_step’. Inside ‘function E_step’, as usual, ‘count()’ is the function to

trigger the parallelization, which splits ‘samples’ into 𝑀 parts, and sends to the available

workers (slave nodes). After likelihood is calculated for the assigned samples partition, it is

save onto disk by ‘WriteData’. ‘CombineLikelihood’ is used to merge all calculated

likelihood values by adding the log likelihood values. ‘ComputePosterior’ will compute the

posterior following Eq. (2.8). Similar procedure is in ‘function M_step’, inside which

covariance matrix is solved in parallel due to the reason explained in the previous paragraph.

125

(a) MapReduce pseudocode

Pseudocode 6.2:

for GMM in GMMs:

 samples, num_of_components = ReadData(GMM)

 components = InitializeComponents (num_of_components)

 for component in components:

 function E_step (samples):

 function mapper(x):

 Likelihood_x = LikelihoodCal(x)

 WriteData(Likelihood_x)

 return (x, 0)

 SparkContext(appName="myApp").parallelize(samples, M).map(mapper).count()

 CombineLikelihoods()

 posterior = ComputePosterior()

 function M_step (samples, posterior):

 pi = ComputeMixingcoefficients(samples)

 mean = ComputeMean(Samples)

 function mapper(x):

 cov_x = ComputeCov(x, mean)

 WriteData(pi, mean, cov)

 return (x, 0)

 SparkContext(appName="myApp").parallelize(samples, M).map(mapper).count()

 cov = CombineCov()

126

(b) Schematic description (red boxes are map tasks)

Figure 6.3 GMM parallelization scheme 2

6.4.3 GMM Parallelization Scheme 3: MapReduce Implementation of EM by

Partitioning the Components (Internal Parallelization)

 For this parallelization scheme, in the E-step, 𝐾 components are split into 𝑀 partitions,

for each sub-group of components (𝒌𝑖), log likelihood will be calculated, which will be

combined and to be used for the calculation of posterior distributions (Eq. (2.8)). In the M-

step, similarly, each node will process the subset 𝒌𝑖 and after combination, 𝝁𝑗, 𝚺𝑗 and 𝝅𝑗 can

be obtained (Eqs. (2.9) – (2.12)).

 Pseudocode 6.3 in Fig. 6.4 (a) is the MapReduce pseudocode of GMM parallelization

scheme 3. As the same as Pseudocode 6.2, for each GMM, ‘samples’ and ‘components’ will

be read and initialized. Then within ‘function E_step’, likelihood values are calculated in

parallel and combined by ‘CombineLikelihoods()’, and posterior can be obtained based on

the combined likelihood. Within ‘function M_step’, after directly compute 𝝁𝑗 by

127

‘ComputeMixingcoefficients’ and 𝝅𝑗 by ‘ComputeMean’, 𝚺j is computed by splitting

components, sending to slave nodes by ‘SparkContext’, and combining the partial results by

‘CombineCov()’.

(a) MapReduce pseudocode

Pseudocode 6.3:

for GMM in GMMs:

 samples, num_of_components = ReadData(GMM)

 components = InitializeComponents (num_of_components)

 function E_step (samples, components):

 function mapper(x):

 Likelihood_x = LikelihoodCal(x);

 WriteData(Likelihood_x);

 return (x, 0)

 SparkContext(appName="myApp").parallelize(components, M).map(mapper).count()

 CombineLikelihoods()

 posterior = ComputePosterior()

 function M_step (samples, components, posterior):

 pi = ComputeMixingcoefficients(samples)

 mean = ComputeMean(samples)

 function mapper(x):

 cov_x = ComputeCov(x, mean)

 WriteData(pi, mean, cov)

 return (x, 0)

 SparkContext(appName="myApp").parallelize(components, M).map(mapper).count()

 cov = CombineCov()

128

(b) Schematic description (red boxes are map tasks)

Figure 6.4 GMM parallelization scheme 3

6.5 MapReduce for FEA Model Runs

 To prepare the training data for GMM models, a large number of FEA model runs is

required, which is time consuming. Thus MapReduce implementation of FEA model runs

can be used to parallelize the FEA runs, following the procedure described in Sec. 5.4.

6.6 Parallelization of Data Processing

 To prepare the observation data for model calibration, data processing can be

parallelized using MapReduce following the procedure described in Sec. 3.3.5.

 In summary, the steps for the calibration of high-dimensional model parameters using big

data analytics are: (1) parallelization of FEA model runs; (2) parallelization of GMM

surrogate model training using scheme 1, 2, or 3; (3) parallelization of observation data

processing; and (4) model calibration using the GMM surrogate and observation data.

129

6.7 Numerical Example

6.8.1 Experiment Setup, Data Sampling and Processing

 The proposed parallelized Bayesian surrogate modeling for model calibration will be

applied on the same concrete slab as in Chapter 5. The experiment setup is explained in Sec.

5.7.1.1, and the data sampling and processing procedures follow the descriptions in Sec.

3.4.2-3.4.5. The same 70 images are used for calibration.

6.8.2 FEA Model

 Fig. 6.5 shows the meshed FEA model implemented in commercial software Abaqus,

with 7255 nodes and 4078 thermal-coupled elements (128 quadratic brick element and

3950 quadratic tetrahedral elements). The thermal conductivity coefficients at different

spatial locations on the top surface need to be calibrated. In the FEA model, the spatial

locations are represented as a 10 × 10 grid as shown in Fig. 6.5. For each calibration block

location, the thermal conductivity is considered to be constant. We use 81 (= 9 × 9)

observation points on the top surface.

Figure 6.5 FEA model for concrete slab

130

 Except the thermal conductivities which are to be calibrated, the other concrete

properties used in this model are the same as in Chapter 5 (Table 5.1). Thermal conductivity

is considered to be in the range of [0.8, 2.5] 𝑊 ⋅ 𝑚−1 ⋅ 𝐾−1. Training points of the surrogate

model are obtained using a Latin-hypercube design, and the number of DOE points is set to

be 10,000. One example realization of training inputs is shown in Fig. 6.6 (the axis values

are block indices in 𝑥 and 𝑦 direction). Since in each FEA run, the temperature at all locations

can be obtained at the same time, the total number of FEA runs will be 10,000. These 10,000

runs are parallelized via MapReduce as described in Sec. 6.6.

Figure 6.6 Example realization of 𝒌 values for one training point

6.8.3 Surrogate Model Training

 Based on the inputs (conductivity values) and outputs (nodal temperature values in each

run), the GMM surrogate model can be obtained. One example output is shown in Fig. 6.7.

131

For each FEA output, we will have a time series output for 70 time steps (70 mins). For each

spatial location 𝑖, if we create a surrogate model for each time step, we will lose the

correlation between each time step. In order to capture the correlation over time, and also to

reduce the dimension, singular value decomposition (SVD) is applied. Following Eq. (6.4),

where 𝝎 is the temperature output at each location for all 10000 training points (10,000 ×

70), 𝑽 is the left singular vectors (70 × 70), 𝑴 is the matrix of singular values (70 × 70),

and 𝑼 is the matrix of right singular vectors (70 × 70). Here we choose only the first two

components, which means we will use the first two columns of 𝑽𝑴, and the first two rows

of 𝑼. Thus we have two bases 𝑼0 and 𝑼1 are used here as an example (Fig. 6.8 (a)), and the

corresponding coefficient for each DOE output will have a dimension of 1 × 2 (Fig. 6.8 (b)).

Fig. 6.8 (c) shows that the 2-components SVD captures the temporal history very well.

Figure 6.7 Example result of FEA model (@ t = 3000s)

132

(a) principal components (b) coefficients

(c) fitting by SVD

Figure 6.8 SVD decomposition example (@𝒅(0))

 We build a GMM surrogate model for all coefficients, {𝛾0(𝒅
(𝑖) , �̂�), 𝛾2(𝒅

(𝑖) , �̂�), 𝑖 =

0, 1,⋯ ,80}, and the inputs are the 100 𝑘s. Thus the total number of parameters is 282 =

 100 + 2 × 81. The training of the GMM surrogate model can be parallelized by following

133

the procedure in Sec. 6.5. Fig. 6.9 shows the performance of the trained surrogate model

(153 components). Here 80% of the data (8,000 data points) are used for training, while

20% of the data (2,000 data points) are used for validation.

Figure 6.9 Performance of surrogate model

6.8.4 Model Selection

 In order to select the optimized model (i.e., the number of GMM components), AIC

score is compared among all models with component numbers ranging from 𝐾 = 1 to 𝐾 =

500. The AIC score is plotted in Fig. 6.10, and the GMM model with 153 components is

selected.

134

Figure 6.10 Plot of AIC

6.8.5 Calibration

 After the GMM surrogate model is trained, the model parameters and observations can

be connected using a Bayesian network in Fig 6.11 (ellipses are random variables, and

squares are observations). Red ellipses denote the random variables that represent the

thermal conductivity coefficients 𝑘𝑗 , 𝑗 = 0, 1,⋯ , 99 to be calibrated, while the yellow

ellipses denote random variables that represent the SVD coefficients of model outputs for

each spatial location 𝛾0(𝒅
(𝑖) , �̂�), 𝛾2(𝒅

(𝑖) , �̂�), 𝑖 = 0, 1,⋯ ,80, which can be obtained from

the corresponding surrogate model. Each blue ellipse represents the temperature random

variable 𝑇𝑖 for a spatial location 𝑖, where 𝑖 = 0, 1,⋯ ,80. Note here that each 𝑇𝑖 follows a

multivariate normal distribution 𝑁(𝝁,𝜮), where 𝝁 = 𝐸[𝑇𝑖,𝑙], 𝑙 = 0, 1,⋯ , 69 and 𝜮 =

𝐶𝑜𝑣[𝑇𝑖,𝑙 , 𝑇𝑖,𝑚], 𝑙 = 0, 1,⋯ , 69; 𝑚 = 0, 1,⋯ , 69. Here 𝐸 refers to the expectation function

135

and 𝐶𝑜𝑣 refers to the covariance function. In our case,

𝝁𝒚𝑜𝑏𝑠
(𝒅(𝑖), 𝜷, 𝑡) ≈ 𝝁𝑖(𝑡) + 𝝁�̂�0

(𝒅(𝑖), �̂�)𝑼0(𝒅
(𝑖), 𝑡) + 𝝁�̂�1

(𝒅(𝑖), �̂�)𝑼1(𝒅
(𝑖), 𝑡) +

𝜇𝛿(𝒅
(𝑖), 𝜷, 𝒕) (6.8)

𝚺𝑖(𝑗, 𝑘) = 𝜎�̂�0

2 (𝒅(𝑖), �̂�)𝑼0(𝒅
(𝑖), 𝑡𝑗)𝑼0(𝒅

(𝑖), 𝑡𝑘) +

𝜎�̂�1

2 (𝒅(𝑖), �̂�)𝑼1(𝒅
(𝑖), 𝑡𝑗)𝑼1(𝒅

(𝑖), 𝑡𝑘), ∀𝑗, 𝑘 = 0, 1, ⋯ , 69 (6.9)

Given the observation {𝑇𝑖,𝑙}, where 𝑖 = 0, 1,⋯ , 399, and 𝑙 = 0, 1,⋯ , 69, the thermal

conductivity coefficients at each spatial location are updated via trained GMMs.

 Fig. 6.13 (a) shows an overview of all the 100 calibrated parameters, where mean

values are plotted. Besides this, it will be useful to check the correlations among the

calibrated parameters. For example, the correlations between parameter 𝑘50 and the other

parameters in the same row 𝑘51, ⋯ , 𝑘59 (Fig. 6.1) are calculated and plotted in Fig. 6.12. To

compare with the calibration result by GP + MCMC from Chapter 5, the calibration is re-

plotted in Fig. 6.13 (b). Similar pattern can be found in Fig. 6.13 (a) and (b).

Figure 6.11 Bayesian network for calibration

136

Figure 6.12 Correlation of 𝒌𝟓𝟎 with the other nodes in the same row

(a) (b)

Figure 6.13 Calibration result (mean) shown over the slab top surface (a): by GMM;

(b): by GP + MCMC

137

6.8.6 MapReduce Performance

 In this study, 50 nodes were used for parallelization. For the purpose of comparison,

computation using the traditional sequential method at a single node was also performed.

The configurations of computers are shown in Table 6.1. The comparison between the time

cost of the traditional method and MapReduce method is shown in Table 6.2.

Table 6.1 Nodes comparison

Method CPU (GHZ) Memory (GB)

Desktop 2.8 × 2 4

Cluster node 2.3 5

Table 6.2 Time cost of traditional method and MapReduce method

Method Time (hr.)

Desktop 25.2

Cluster node (scheme 1) 1.64

Cluster node (scheme 2) 10.27

Cluster node (scheme 3) 5.69

 MapReduce showed significant computational efficiency (almost 15 times faster). It

can be expected that as the number of nodes increases, the time cost could reduce further,

but may not be in a linear trend. The reason is that the communication between the master

node and slave node also consumes time. The individual time cost shows that surrogate

model training points preparation consumes most of the computational resources (Table 6.3).

138

Compared to the performance of using methodology developed in Chapter 5 (GP surrogate

model + MCMC), although the training points preparation spent more time (36.67 ℎ𝑟𝑠 vs.

6 ℎ𝑟𝑠), the calibration process greatly save time due to analytical solution is available here

(almost no cost vs. 363 ℎ𝑟𝑠).

Table 6.3 Time cost of individual steps on desktop

Method Time (hr.)

FEA model (5 nodes) 36.67

Surrogate model training

(50 nodes)
1.64

6.9 Summary

 This chapter investigated the MapReduce technique to parallelize the distribution

surrogate model, which can be used in model calibration considering a high-dimensional

parameter space and in the presence of big data. Three schemes of parallelization were

proposed and compared with traditional method (running on a local desktop). It shows that

the efficiency is greatly increased due to parallelization. As being a distribution surrogate,

GMMs can save a great amount of time in model calibration, since analytical solution can

be obtained, compared to response surrogate such as Gaussian process surrogate model used

in Chapter 5. It can also be expected after being trained, distribution surrogate model can

also outperforms in tasks such as diagnosis and prognosis.

139

CHAPTER 7

CONCLUSION

 This chapter provides the summary of contributions in this study, followed by a

discussion of future research needs.

7.1 Summary of Contributions

 This dissertation proposed methods to implement big data analytics in structural health

monitoring. Four accomplishments are achieved: (1) big data analytics in data processing;

(2) big data analytics in structural diagnosis and prognosis uncertainty quantification; (3) big

data analytics in high-dimension model parameter calibration; and (4) big data analytics in

distribution surrogate model training.

 First, a methodology was developed to handle the various steps of data processing in

structural health monitoring. MapReduce implementation was proposed to process sensor

data of high volume, high velocity, and high variety. Data processing tasks were wrapped in

‘mappers’ to allow the nodes in cluster to works on the partitions of data set. As an example,

image processing for the purpose of structural damage detection was parallelized. However,

the developed methodology is applicable for any type of high-volume data in structural

health monitoring.

 Then, techniques to parallelize structural diagnosis and prognosis with uncertainty

quantification were developed. Both forward and inverse problems in uncertainty

140

quantification were investigated with this efficient computational approach. Bayesian

methods for the inverse problem of diagnosis, and numerical integration techniques such as

Markov chain Monte Carlo (MCMC) simulation and Particle Filter (PF) were parallelized

via MapReduce. For the forward problem of prognosis, Monte Carlo sampling on FEA

modeling is used to propagate the uncertainties (both aleatory and epistemic) to the future

state. Repeated runs of FEA under Monte Carlo sampling were parallelized use MapReduce,

thus greatly saving the computational cost.

 The system model needs to be updated with latest data in order to perform accurate

prognosis of future state. However, the updating is computationally demanding when a

model to be calibrated is heterogeneous in its structure or material. A large number of model

parameters and large volume of observation data make the computation unaffordable for

both surrogate model training and Bayesian calibration. These challenges were addressed

through three types of parallelization using the MapReduce technique. The first type of

parallelization was to efficiently collect simulation data at the training points for surrogate

modeling. Next, the Gaussian process surrogate model training was parallelized using

MapReduce. In the third step, parallelization of Markov Chain Monte Carlo (MCMC)

technique was studied to efficiently perform Bayesian calibration in the presence of high-

volume observation data. In addition to the parallelization of surrogate model training and

Bayesian calibration, the singular value decomposition (SVD) method is also employed to

reduce the computational effort due to the high-volume data. Furthermore, SVD handled the

temporal correlation of the output.

 The last accomplishment of this dissertation is big data analytics in distribution

141

surrogate model training. Being a distribution surrogate, a Gaussian mixture model is able

to give analytical solutions for prediction and inference, which greatly reduces the cost of

calibration of a high-dimensional model with large data. Three parallelization schemes were

proposed for GMM training in MapReduce, applicable for different situations (large number

of samples or large number of components).

7.2 Future Research Needs

 Future research needs to address several extensions. First of all, internal parallelization

is preferred to be developed, although some of the accomplishments already contain the

internal parallelization such as PF and GMM training. There are two reasons for this point.

First, commercial software such as Abqus (which implements FEA) has limitations of license

usage. Instead of parallelizing the computation externally (file-wise/data-wise), function-

wise decomposition and internal parallelization can be helpful. By doing this, for each input,

the model running can be accelerated. Second, in the case of sparse observation data, the

running cannot be parallelized by partitioning the data. Instead, internal parallelization by

decomposing the functions (such as matrix multiplication) can help.

 In addition to the scope of this dissertation (big data analytics in data processing,

uncertainty quantification in structural diagnosis and prognosis, high-dimensional model

parameters calibration and distribution surrogate model training), there are some related

topics which are important in structural health monitoring, which are also time consuming.

For example, with respect to the prognosis model, model verification checks how close the

model output is to the true solution of the mathematical equation (Szabó and Babuška, 2011).

142

It is desirable to perform verification before calibration and validation so that the solution

approximation errors are accounted for during calibration and validation. Big data analytics

techniques in model verification and validation could be investigated in the future.

 Diagnosis and model updating are based on the comparison of model prediction against

observed data from experiments. Due to limited resources, it is desirable to design the

experiments in a way that most information can be obtained from a few experiments (Winer

et. al. 1971; Chaloner and Verdinelli, 1995). Bayesian experimental design is one popular

method. However, normally this is very computationally expensive, since it needs a double

loop of iterative calculations. Furthermore, under limited resources, the performance of a

Bayesian update depends significantly on the location of data acquisition. Big data analytics

implementation of Bayesian experimental design is another potential research topic to pursue

in the future.

143

REFERENCES

1. Akaike, H. (1974). A new look at the statistical model identification. IEEE

Transactions on Automatic Control, 19(6), pp. 716-723.

2. Anastasopoulos, A., Lekou, D. J., & Mouzakis, F. (2012, September). Health

monitoring of a neg-micon NM48/750 wind turbine blades with acoustic emission.

Proceedings, European Conference on Acoustic Emission Testing & 7th

International Conference on Acoustic Emission, University of Granada. Granada,

Spain, pp. 12-15.

3. Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on

particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE

Transactions on Signal Processing, 50(2), pp. 174-188.

4. Araujo, A., Garca-Palacios, J., Blesa, J., Tirado, F., Romero, E., Samartn, A., &

Nieto-Taladriz, O. (2012). Wireless measurement system for structural health

monitoring with high time-synchronization accuracy. IEEE Transactions on

instrumentation and measurement, 61(3), pp. 801-810.

5. Bagavathiappan, S., Lahiri, B. B., Saravanan, T., Philip, J., & Jayakumar, T. (2013).

Infrared thermography for condition monitoring: A review. Infrared Physics &

Technology, 60, pp. 35-55.

6. Bao, Y., Beck, J. L., & Li, H. (2010). Compressive sampling for accelerometer

signals in structural health monitoring. Structural Health Monitoring, 10(3), pp. 235-

144

246.

7. Baxes, G. A. (Ed.). (1994). Digital image processing: principles and applications.

John Wiley & Sons, Hoboken, New Jersey

8. Bichon, B. J., Eldred, M. S., Swiler, L. P., Mahadevan, S., & McFarland, J. M.

(2008). Efficient global reliability analysis for nonlinear implicit performance

functions. AIAA J, 46(10), pp. 2459-2468.

9. Bishop, C. M. (2006). Pattern recognition and machine learning. Springer, New

York, NY.

10. Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992, July). A training algorithm for

optimal margin classifiers. Proceedings, Fifth Annual Workshop on Computational

Learning Theory, ACM, pp. pp. 144-152.

11. Cai, G., & Mahadevan, S. (2016). Big data analytics in structural health monitoring.

International Journal of Prognostics and Health Management, 7, 2016.

12. Chakraborty, D., Kovvali, N., Wei, J., PapandreouSuppappola, A., Cochran, D., &

Chattopadhyay, A. (2009). Damage classification structural health monitoring in

bolted structures using time-frequency techniques. Journal of Intelligent Material

Systems and Structures, 20(11), pp. 289-305.

13. Chaloner, K., & Verdinelli, I. (1995). Bayesian experimental design: A review.

Statistical Science, pp. 273-304.

14. Chatzi, E. N., & Smyth, A. W. (2013). Particle filter scheme with mutation for the

estimation of time‐invariant parameters in structural health monitoring applications.

145

Structural Control and Health Monitoring, 20(7), 1081-1095.

15. Chen, W. Y., Song, Y., Bai, H., & Lin, E. Y., C. J.and Chang. (2011). Parallel spectral

clustering in distributed systems. IEEE transactions on pattern analysis and machine

intelligence, 33(3), pp. 568-586.

16. Dean, J., & Ghemawat, S. (2008). Mapreduce: simplified data processing on large

clusters. Communications of the ACM, 5(1), pp. 107-113.

17. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series

B (methodological), pp. 1-38.

18. Desjardins, S. L., Londono, N. A., Lau, D. T., & Khoo, H. (2006). Real-time data

processing, analysis and visualization for structural monitoring of the confederation

bridge. Advances in Structural Engineering, 9(1), pp. 141-157.

19. Di Ianni, T., De Marchi, L., Perelli, A., & Marzani, A. (2015). Compressive sensing

of full wave field data for structural health monitoring applications. IEEE

Transactions on Ultrasonics, Ferroelectrics, and Frequency control, 62(7), 1373-

1383.

20. Doucet, A., De Freitas, N., Murphy, K., & Russell, S. (2000). Rao-blackwellised

particle filtering for dynamic bayesian networks. Proceedings of the Sixteenth

Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers

Inc., pp. 176-183.

21. Farrah, S., Ziyati, H. E. M. E. H., & Ouzzif, M. (2015). An approach to analyze large

146

scale wireless sensors network data. Measurements, 2(5), pp. 7-12.

22. Farrar, C. R., Doebling, W., S., & Nix, D. A. (2001). Vibration-based structural

damage identification. Philosophical Transactions of the Royal Society of London

A: Mathematical, Physical and Engineering Sciences, 359(1778), pp. 131-149.

23. Farrar, C. R., & Worden, K. (2007). An introduction to structural health monitoring.

Philosophical Transactions of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences, 365(1851), pp. 303-315.

24. Feldman, D., Faulkner, M., & Krause, A. (2011). Scalable training of mixture models

via coresets. In Advances in Neural Information Processing Systems, pp. 2142-2150.

25. Gandhi, T., Chang, R., & Trivedi, M. M. (2007). Video and seismic sensor-based

structural health monitoring: Framework, algorithms, and implementation. IEEE

Transactions on Intelligent Transportation Systems, 8(2), pp. 169-180.

26. Ghanem, R., & Spanos, P. D. (1990). Polynomial chaos in stochastic finite elements.

Journal of Applied Mechanics, 57(1), pp. 197-202.

27. Gilks,W.R.(2005). Markovchainmontecarlo. EncyclopediaofBiostatistics.

28. Haldar, A. & Mahadevan, S. (2000). Probability, reliability, and statistical methods

in engineering design, Vol. 1. Wiley New York.

29. Heckerman, D. (1998). A tutorial on learning with Bayesian networks. Nato Asi

Series D Behavioural And Social Sciences, 89, pp. 301-354.

30. Humphrey, M., Beekwilder,N., Goodall,J.L., & Ercan, M.B. (2012). Calibration of

147

water shed models using cloud computing. E-science (eScience), 2012 IEEE 8th

International Conference On, IEEE, pp. 1-8.

31. Huang, S., Mahadevan, S., & Rebba, R. (2007). Collocation-based stochastic finite

element analysis for random field problems. Probabilistic engineering mechanics,

22(2), 194-205.

32. Jain, R., Kasturi, R., & Schunck, B. G. (1995). Machine vision. McGraw-Hill, New

York, 5.

33. Jensen, F. V. (1996). An introduction to Bayesian networks. UCL press, London,

210, pp. 1-178

34. Jin, H., Wong, M. L., & Leung, K. S. (2005). Scalable model-based clustering for

large databases based on data summarization. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 27(11), pp. 1710-1719.

35. Kallinikidou, E., Yun, H. B., Masri, S. F., Caffrey, J. P., & Sheng, L. H. (2013).

Application of orthogonal decomposition approaches to long-term monitoring of

infrastructure systems. Journal of Engineering Mechanics, 139(6), pp. 678-690.

36. Karabinis,A. & Rousakis, T. (2002). Concrete confined by frp material: a plasticity

approach. Engineering Structures, 24(7), pp. 923-932.

37. Kezia, S. P. & Mary, A. V. A. (2016). “Prediction of rapid floods from big data using

mapreduce technique.” Global Journal of Pure and Applied Mathematics, 12(1), pp.

369-373.

38. Kiepert, J., & Loo, S. M. (2012). A unified wireless sensor network framework. In

148

Systems conference (syscon), IEEE International, pp. 1-6.

39. Kumar, N. P., Satoor, S., & Buck, I. (2009, June). Fast parallel expectation

maximization for Gaussian mixture models on GPUs using CUDA. In High

Performance Computing and Communications, 2009. HPCC'09. 11th IEEE

International Conference, pp. 103-109.

40. Kwedlo, W. (2014, February). A parallel EM algorithm for Gaussian mixture models

implemented on a NUMA system using OpenMP. In Parallel, Distributed and

Network-Based Processing (PDP), 2014 22nd IEEE Euromicro International

Conference, pp. 292-298

41. Landau, W. & Niemi, J. (2016). A fully Bayesian strategy for high-dimensional

hierarchical modeling using massively parallel computing. arXiv preprint

arXiv:1606.06659.

42. Lefèvre, S., Volz, S., Saulnier, J.-B., Fuentes, C., & Trannoy, N. (2003). Thermal

conductivity calibration for hot wire based dc scanning thermal microscopy. Review

of Scientific Instruments, 74(4), pp. 2418-2423.

43. Liang, C. (2016). Multidisciplinary Analysis and Optimization under Uncertainty,

Doctoral dissertation, Vanderbilt University.

44. Liang, C., & Mahadevan, S. (2016). Stochastic multidisciplinary analysis with high-

dimensional coupling. AIAA Journal.

45. Ling, Y., Mullins, J., & Mahadevan, S. (2014). Selection of model discrepancy priors

in Bayesian calibration. Journal of Computational Physics, 276, pp. 665-680.

149

46. Lopez-Higuera, J. M., Cobo, L. R., Incera, A. Q., & Cobo, A. (2011). Fiber optic

sensors in structural health monitoring. Journal of Lightwave Technology, 29(4), pp.

587-608.

47. McLachlan, G., & Peel, D. (2000). Mixtures of factor analyzers. Finite Mixture

Models, pp. 238-256.

48. Madsen, H. (2003). Parameter estimation in distributed hydrological catchment

modelling using automatic calibration with multiple objectives. Advances in Water

Resources, 26(2), pp. 205-216.

49. Mahadevan, S., Adams, D., & Kosson, D. (2014). Challenges in concrete structures

health monitoring. In In proceedings, annual conference of the prognostics and health

management society.

50. McLachlan, G. J., & Krishnan, T. (1997). Wiley series in probability and statistics.

The EM Algorithm and Extensions, Second Edition, pp. 361-369.

51. Mcnicholas, P. D., & Murphy, T. B. (2008). Parsimonious Gaussian mixture models.

Statistics and Computing, 18(3), pp. 285-296.

52. Meeker, W. Q. & Hong, Y. (2014). Reliability meets big data: opportunities and

challenges. Quality Engineering, 26(1), pp. 102-116.

53. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E.

(1953). Equation of state calculations by fast computing machines. The Journal of

Chemical Physics, 21(6), pp. 1087-1092.

54. Nagy, P. B. (2016). Electromagnetic nondestructive evaluation. Ultrasonic and

150

Electromagnetic NDE for Structure and Material Characterization: Engineering and

Biomedical Applications, 169.

55. Nair, A., & Cai, C. S. (2010). Acoustic emission monitoring of bridges: Review and

case studies. Engineering Structures, 32(6), pp. 1704-1714.

56. Nannapaneni, S. & Mahadevan, S. (2016). Reliability analysis under epistemic

uncertainty. Reliability Engineering & System Safety, 155, pp. 9-20.

57. Nath, P., Hu, Z., & Mahadevan, S. (2017). “Bayesian calibration of spatially varying

model parameters with high-dimensional response.” 19th AIAA Non-Deterministic

Approaches Conference, 1775.

58. Neal, R. M. (2003). Slice sampling. Annals of statistics, pp. 705-741.

59. Neiswanger, W., Wang, C., & Xing, E. (2013). Asymptotically exact, embarrassingly

parallel MCMC. arXiv preprint arXiv:1311.4780.

60. Nelsen, R. B., An introduction to copulas, Springer, New York, 1999.

61. Naus, D. J. (2009). The management of aging in nuclear power plant concrete

structures. Journal of Metals, 61(7), pp. 35-41.

62. Orlande, H., Colaço, M., Dulikravich, G., Vianna, F., da Silva, W., da Fonseca, H.,

& Fudym, O. (2011). Tutorial 10 kalman and particle filters. Advanced Spring

School: Thermal Measurements & Inverse Techniques 5 (Mesures en Thermiques et

Techniques Inverses, Roscoff, FR), pp. 1-39.

63. Papasalouros, D., Tsopelas, N., Ladis, I., Kourousis, D., Anastasopoulos, A., Lekou,

151

D., & Mouzakis, F. (2012). Health monitoring of a neg-micon nm48/750 wind

turbine blade with acoustic emission. Proceedings of the 30th European Conference

on Acoustic Emission (EWGAE) & 7th International Conference on Acoustic

Emission, Granada, Spain, pp. 12-15.

64. Park, S., Ahmad, S., Yun, C. B., & Roh, Y. (2006). Multiple crack detection of

concrete structures using impedance-based structural health monitoring techniques.

Experimental Mechanics, 46(5), pp. 609-618.

65. Rajashekhar, M. R., & Ellingwood, B. R. (1993). A new look at the response surface

approach for reliability analysis. Structural Safety, 12(3), pp. 205-220.

66. Rasmussen, C. E., & Williams, C. K. (2006). Gaussian processes for machine

learning. MIT press, Cambridge, Massachusetts.

67. Reynolds, D. (2015). Gaussian mixture models. Encyclopedia of biometrics, pp. 827-

832.

68. Roberts, G. O. & Rosenthal, J. S. (2006). Harris recurrence of metropolis-within-

Gibbs and trans-dimensional Markov chains. The Annals of Applied Probability,

16(4), pp. 2123-2139.

69. Rose, C., & Smith, M. D. (1996). The multivariate normal distribution. Mathematica

Journal, 6(1).

70. Roshandeh, A. M., Poormirzaee, R., & Ansari, F. S. (2014). Systematic data

management for real-time bridge health monitoring using layered big data and cloud

computing. International Journal of Innovation and Scientific Research, 2(1), pp. 29-

152

39.

71. Roux, E., & Bouchard, P. O. (2015). On the interest of using full field measurements

in ductile damage model calibration. International Journal of Solids and Structures,

72, pp. 50-62.

72. Roux, S., Réthoré, J., & Hild, F. (2009). Digital image correlation and fracture: an

advanced technique for estimating stress intensity factors of 2D and 3D cracks.

Journal of Physics D: Applied Physics, 42(21), 214004.

73. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana,

M., & Tarantola, S. (2008). Global sensitivity analysis: the primer. John Wiley &

Sons.

74. Sankararaman, S. & Mahadevan, S. (2015). Integration of model verification,

validation, and calibration for uncertainty quantification in engineering systems.

Reliability Engineering & System Safety, 138, pp. 194-209.

75. Santner, T. J., Williams, B. J., & Notz, W. I. (2013). The design and analysis of

computer experiments. Springer Science & Business Media.

76. Saouma, V. & Perotti, L. (2006). Constitutive model for alkali-aggregate reactions.

ACI Materials Journal, 103(3), pp. 194.

77. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics,

6(2), pp. 461-464.

78. Sohn, H., Farrar, C., Hunter, N., & Worden, K. (2001, Jan.). Applying the lanl

statistical pattern recognition paradigm for structural health monitoring to data from

153

a surface-effect fast patrol boat (Tech. Rep.).

79. Szabó, B., & Babuška, I. (2011). Introduction to finite element analysis: formulation,

verification and validation (Vol. 35). John Wiley & Sons.

80. Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine.

Journal of Machine Learning Research, 1(Jun), pp. 211-244.

81. Tran, C. (1868). “Structural-damage detection with big data using parallel computing

based on mpsoc.” International Journal of Machine Learning and Cybernetics, pp. 1-

11.

82. Ulm, F.-J., Coussy, O., Kefei, L., & Larive, C. (2000). Thermo-chemo-mechanics of

asr expansion in concrete structures. Journal of Engineering Mechanics, 126(3), pp.

233-242.

83. Winer, B. J., Brown, D. R., & Michels, K. M. (1971). Statistical principles in

experimental design (Vol. 2). McGraw-Hill, New York.

84. Xu, P. (1998). Truncated svd methods for discrete linear ill-posed problems.

Geophysical Journal International, 135(2), pp. 505-514.

85. Yan, F., Royer, R. L., & Rose, J. L. (2010). Ultrasonic guided wave imaging

techniques in structural health monitoring. Journal of Intelligent Material Systems

and Structures, 21(3), pp. 377-384.

86. Yu, L. (2012). Acoustic Emission Source Localization on Concrete Structures with

Focusing Array Imaging. In 6th European Workshop on Structural Health

Monitoring.

154

87. Yu, L. & Lin, J.-C. (2015). Cloud computing-based time series analysis for structural

damage detection. Journal of Engineering Mechanics, C4015002.

88. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.

J., Shenker, S., & Stoica, I. (2012). Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing. Proceedings of the 9th USENIX

conference on Networked Systems Design and Implementation, USENIX

Association, 2-2.

89. Zhang, J., Qiu, H., Shamsabadi, S. S., Birken, R., & Schirner, G. (2014, Jul.).

Sirom3–a scalable intelligent roaming multi-modal multi-sensor framework. In 38th

IEEE International Conference on Computers, Software and Applications, pp. 446-

455.

90. Zhong, L., Tang, K., Li, L., Yang, G., & Ye, J. (2014). An improved clustering

algorithm of tunnel monitoring data for cloud computing. The Scientific World

Journal, 2014.

