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CHAPTER 1: INTRODUCTION 

 

Paralysis or paresis induced by upper motor neuron damage often leaves the lower limbs 

dysfunctional for basic activities such as walking and climbing stairs. Nearly five and one half million 

people in the United States, or approximately one in fifty, have some degree of paralysis [4]. The sustained 

duration and high level of impairment attributed to paralysis motivates research and development for 

technologies that alleviate the associated deficiencies.  

The Indego exoskeleton (Parker-Hannifin, OH) and Chimera muscle stimulator are mechatronic 

devices developed for the reanimation of paretic limbs. Indego employs electric motors to actuate an 

orthosis for the restoration of controlled legged mobility, while the Chimera interfaces with the nervous 

system through transcutaneous electrical stimulation to administer functional electrical stimulation (FES). 

Described herein are rehabilitative intervention methods that: 1) enable paraplegics to ascend and 

descend stairs with a lower limb exoskeleton; 2) enhance exoskeleton assisted walking with supplemental 

FES to overcome moderate to severe spasticity; and 3) suppress clonus using FES during seated mobility. 

Chapter 2 describes the hardware developed for and/or employed in this research. 

Chapter 3 describes the development and assessment of a controller for the Indego that enables 

paraplegics to ascend and descend stairs. The stair controller expands on a previous implementation of 

predefined trajectory tracking with an emulated passive state that enables gravity to extend the leg until it 

meets the next stair tread, then a trajectory is calculated in real-time to perform the intended task of stair 

ascent independent of step height. The ascent and descent controllers were evaluated by three 

paraplegic users who traversed numerous size stairs safely within two hours of tuning and training. The 

resulting controller enabled stair climbing with light exertion despite complete paraplegia.  

Subjects with moderate to severe spasticity are typically ineligible for exoskeleton assisted gait due 

to pathological muscle activation that opposes exoskeleton mediated motion. A novel supplemental 

stimulation controller was implemented with the Indego exoskeleton and integrated Chimera stimulator in 

an effort to expand the inclusion criteria of exoskeletons to individuals with severe spasticity whereby FES 

enhances the synergy between muscles and motors. Chapter 4 explores the effects of spasticity and FES 

on robot mediated gait for paraplegics and describes the hybrid system’s controller that enabled two 

paraplegic individuals with moderate to severe spasticity to achieve substantially improved gait 

kinematics.  

Mobility impairment of paraplegia can also entail clonus, a self-exciting reflex that can manifest as 

involuntary shaking of the ankle, a common pathology experienced during wheelchair propulsion. Chapter 

5 expands the frontiers of clonus research with the first reported evaluation methods wheelchair clonus 
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and the efficacy of a novel FES intervention to treat pathological clonus during wheelchair propulsion over 

rough terrain. The clonus intervention was shown to robustly suppress clonus. The treatment may provide 

a noninvasive and economical alternative to invasive and commonplace pharmacological interventions.  

The remainder of the introduction serves to provide background information pertaining to the nervous 

system, neurological impairment and the state of the technologies used to restore deficiencies that arise 

from comorbidities of paralysis.  

1.1 The Brain and Injury 

The nervous system is an intricate network of neurons that enables life on Earth to intimately, 

consciously, and even logically interact with the ever-changing environments and thrive in otherwise less 

than ideal conditions. The human nervous system has an estimated 100 billion neurons, each capable of 

up to 15,000 connections to other neurons creating the complex network that makes thoughts, memories, 

movement, and intelligence possible [5], [6]. The development of these neuronal networks is largely done 

prior to birth where macrostructures of the brain are established, however neural plasticity and neural stem 

cells enable ongoing development and adaptation throughout life [7], [8].  Injury to the nervous system 

often causes devastating deprivations of function and may be caused by foundational developmental 

deformations on a cellular level such as neurogenetic disorder, or on a macro scale such as traumatic 

injury to brain structures.  

1.1.1 The Central Nervous System 

The human neuroanatomy consists of a complex network specialized cells, called neurons (see Fig. 

1-1), that communicate via action potentials, or the propagation of depolarization across a cell membrane. 

Action potentials mobilize along the cell membranes by way of voltage regulated protein channels that 

open when an adjacent depolarization occurs, letting ions diffuse across the cell membrane. These 

electrical impulses are capable of propagating long distances (on the order of meters) and provide means 

for neurons to interact with one another through special intercellular junctions called synapses.  
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Postsynaptic membranes, dendrites, often have a high concentration of receptor proteins that can 

modulate or depolarize the membranes electrical characteristics in response to chemicals secreted by 

the presynaptic membrane. The chemicals that enable communication through synapse are called 

neurotransmitters. Most often neurotransmitters are released from axons and diffuse across the synapse 

(20-40 nm) to react with the receptor proteins located on the dendrites ([9], pg.182). Pharmacological 

agents and foreign chemicals that enter the nervous system are often capable of modulating the receptor 

characteristics through weak chemical bonds. Chemicals are often categorized as depressants or 

stimulants whether they induce an excitatory or inhibitory effect on the central nervous system.  

Neurons also interact with other organs including hormonal glands, muscles, skin, etc. to intelligently 

maintain homeostasis and enable animals to interact with the environment. Muscles are of primary 

importance for enabling people to move. Neurons that interact with muscles are referred to as motor 

neurons (or motoneurons) because they convey information for coordinating movements. Motor neurons 

belong to the efferent group of neurons that project information from the central nervous system to the 

peripheral organs.  

The primary motor cortex, or precentral gyrus houses the cell bodies of the upper motor neurons 

(UMN) which are responsible for voluntary movements. These upper motor neurons are made up of 

special pyramidal cells called Betz cells, whose dendritic branches gather information from the sensory-

motor cortex to coordinate voluntary movement. Damage directly to the precentral gyrus or neighboring 

structures is commonly associated with cerebral vascular accidents (CVA, stroke) or traumatic brain injury 

(TBI). These supraspinal injuries often present as hemiplegia were a single side of the body presents 

symptoms of paralysis. Both TBI and CVA may cause motor deficiency through damage to associated 

Figure 1-1: Neuron cell structure (source: Wikimedia Commons) 
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cognitive centers that indirectly deprives the upper motor neurons of normal activation. In as much, CVA 

and TBI often have some capacity to restore functional motor control to an appropriate level to maintain 

activities of daily living (ADL) [10]. Structural integrity of the descending motor pathways, assessed with 

diffusion tensor imaging or comparable techniques, can be used to predict  recovery potential [11]. 

Training and the plasticity of the larger cerebral cortex provides means of recruitment of the intact upper 

motor neurons to restore function [12]. Conversely, damage directly compromising the Betz cells or other 

motor systems with descending motor pathways (e.g., vestibular) may cause an irreparable motor 

deficiency [11]. 

1.1.2 The Spinal Cord 

Axons of Betz cells collect in nerve bundles called corticospinal tracts that traverse the brain from 

the precentral gyrus and are split into two primary tracts: ventral and lateral corticospinal tracts. The ventral 

corticospinal tract is responsible for neck and back (axial) muscles that coordinate voluntary postural 

movements. The lateral corticospinal tract descending from the pyramidal gyrus cross to the contralateral 

side of the brainstem at the pyramidal decussation and descend through the anterior lateral white matter 

of the spinal cord to synapse with lower motor neurons (LMN) responsible for interaction with muscles. 

Other descending pathways from the midbrain and brain stem subconsciously mediate reflexes and 

balance components of motion. The additional descending pathways include the reticulospinal, 

vestibulospinal, tectospinal and rubrospinal tracts, see the spinal cord cross-section shown in Fig. 1-2. 

The tectospinal tract receives input from the visual and auditory systems and cause the upper limbs and 

head to react to loud noises, bright lights, and sudden movements. Essentially this is the network that 

makes it fun to spook people and watch them jump. The reticulospinal tracts is responsible for modulating 

the flexor reflexes. Cortical inputs utilize this pathway to make reflexes more sensitive, such as when one 

is worried about to touching a hot pot; alternatively, the reflexes can be inhibited, such as when one is 

holding the hot pot and does not want to drop it, rather rush to place it down. The rubrospinal tracts is an 

alternative pathway for voluntary flexor and extensor muscles, however, this tract plays a minor role in 

humans and great apes, and is thought to speed learned patterned motions such as running. The 

vestibulospinal tract conveys information from the inner ear (the vestibular system) to control head and 

limb movements for posture and balance. Together these pathways make up the subconscious 

descending motor tracts that traverse the white matter of the spinal cord.[13] 

The spinal cord also conveys afferent signals from sensory fibers of the peripheral nervous system 

(PNS). Afferent neurons reside in the dorsal root ganglions and use specialized dendrites, often with 

specialized sensors for pain, touch, proprioception, etc. to convey information about the body and its 

interactions with the environment. Ascending pathways include the spinocerebellar tracts, gracile and 
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cuneate fasciculus, and the spinothalamic tract; each tract coveys particular sensations enabling the brain 

to make informed decisions, when these pathways are intact.  

 

Figure 1-2: A cross-section of the spinal cord shows the ascending (blue) and descending (red) tracts 
that make up the white matter of the spinal cord. (source: Wikimedia Commons licensed under CC) 

 

The millions of axonal fibers that ascend and descend the spinal cord link the brain to the lower 

motor neurons of the ventral horns and sensory afferent neurons of the dorsal horn. The myelinated axons 

of these tracts make up the white matter of the spinal cord. Injury to the spinal cord results in deprivation 

of the affected networks, often leaving limbs and organs caudal the injury dysfunctional.  
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1.1.3 The Peripheral Nervous System 

Axons of the spinal segments branch out of the anterior and dorsal horns of the spinal cord into 

peripheral nerves. The nerves split throughout the musculature and sensate tissues transmitting both 

afferent and efferent signals. Lower motoneurons directly interface with muscles through specialized 

synapses, called neuromuscular junctions, which enable action potentials stemming from the central 

nervous system to depolarize muscle membranes and induce contractions in the muscle tissue. Tension 

created by the muscle activation often acts through tendons that connect skeletal muscles to bones 

resulting in joint torque. Typical motor neuron pools have upwards of 300 motor neurons for contracting a 

single muscle; recruitment follows the Henneman size principle such that these neurons are coordinated 

from smallest to largest as the commanded force increases [14], [15]. Coordinated movement is monitored 

by the cortex and spinal networks, using feedback from proprioceptors and exteroceptors, to activate and 

inhibit motor neurons.  

Proprioception is largely attributed to muscle spindle fibers, a specialized muscle unit innervated by 

afferent fibers and gamma motoneurons and lies parallel with other force producing muscle fibers as 

opposed to the typical alpha motoneurons. Primary muscle spindles are wrapped in type Ia afferents that 

sense the rate of change in length of muscles, and type Ib afferents called Golgi tendon organs that sense 

tension. Secondary muscle spindles interface with type II afferents that sense muscle length. Each of these 

muscle spindles are innervated by gamma motoneurons for tuning the tension of the sense organs during 

muscle contractions.  

Peripheral nerve damage is often repairable with surgical grafting techniques, as axons inherently 

sprout following damage and Wallerian degeneration [16]. The growing axons are capable of re-

establishing synapses provided the remaining Schwann cells provide mechanisms for guiding the axon 

growth [17]. Peripheral neuron regeneration contrasts the limited capacity of central neurons to regenerate 

due to both intrinsic and extracellular factors [18]. Although, similarly for both central and peripheral 

neurons, damage to the cell bodies of the spinal neurons is irreparable by natural means. Severe damage 

to the lower motoneurons causes atrophy of the entire motor unit (the neuron and all its innervating muscle 

fibers). If the motoneuron undergoes apoptosis or extensive degeneration, the endplate, where the 

muscle’s neurotransmitter receptors are concentrated, first upregulates the receptor concentration, then 

degrades if a connection is not established, leaving the muscle incapable of excitation thereafter ([9], pg. 

1099). 

1.1.4 Spinal Reflexes 

It has been long understood that animal nervous systems rely on reflexes; Rene Descartes describes 

them as a result of “[e]xternal objects, which by their presence alone, act upon the sense organs of this 

machine [the body], and by this means force it to move in several different ways…and cause without 
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thought the movements which are made in their presence [19] (circa 1632).” Ivan Pavlov then furthered 

understanding of the development and conditioning of reflexes in  the 20th century and describes “[t]he 

essential feature of the highest activity of the central nervous system, with which we are concerned and 

which in the higher animals most probably belongs entirely to the hemispheres [cortex], consists not in 

the fact that innumerable signaling stimuli do initiate reflex reactions in the animal, but in the fact that under 

different conditions these same stimuli may initiate quite different reflex reactions; and conversely the 

same reaction may be initiated by different stimuli [20].” The removal of many of the innumerable input 

signaling stimuli results in a variety of symptoms that are interdependent, globally modulated, adaptable 

and eventually summated to interact with the lower motoneurons to activate skeletal muscles. The core 

symptomatic pathological spasms that result from SCI include tone (e.g., postural reflexes), nocuous (e.g., 

withdrawal reflex), and phasic (e.g., Babinski, clonus). 

James Sherrington classified reflexive inputs as proprioceptive and exteroceptive inputs circa 1910 

[21]. Proprioception include the muscle spindle afferents and Golgi tendon organs that relay joint position 

information to the spinal cord. Action potentials of these organs relay information of tension, velocity and 

position of the joints, enabling spinal circuitry to control complex motions. Exteroceptors are skin receptors 

that respond to pressure enabling further modulation of subconscious motion (e.g. walking on non-uniform 

surfaces). Supraspinal inputs modulate reflex activity; abnormal reflex activity contributes to diagnostics 

of neurological impairment. Below are a few of the major reflexive and central physiologies that contribute 

to the neuronal circuits of the spinal cord.  

Stretch (myotatic) reflex is a monosynaptic reflex that causes contraction in response to the stretch within 

the muscle. The stretch reflex functions to reduce cognitive demand by encoding muscle activity in 

response to changes in length and velocity. The phasic component of the stretch reflex involves primary 

muscle spindles innervated by dynamic gamma motor neurons that sense rapid stretching of muscles. 

Furthermore, the phasic stretch reflex is self-regulating, the reflex modulates the muscle spindle tension 

to maintain quality signals of afferent neuron organs during movement. There is also a tonal stretch reflex 

resulting from the secondary muscle spindles; the muscle length is proportional to the action potential 

firing rate of the afferent static gamma motor neurons. Static gamma motor neurons are responsible for 

the maintenance of posture and slow movements. 

The phasic component of stretch reflex is responsible for clonus spasticity in the neurogenic spinal cord, 

while the tonal stretch reflex is the primary contributor to tonal spasticity (e.g., extensor tone) after 

neurological impairment. 

Golgi tendon (inverse myotatic) reflex functions to preserve the tendon integrity during excessive tension 

by inhibiting the agonist muscle group and activating the antagonist muscle group [22]. 
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Babinski reflex is normal in infants, this reflex is typically absent after voluntary control is established, and 

replaced with a plantar reflex. The reflex is observed when drawing a blunt instrument along the sole of 

the foot. The sign of the Babinski reflex is the large toe moving towards the top of the foot.  

Flexor Withdrawal Reflex is a polysynaptic nociceptive reflex initiated by nociceptive receptors (pain 

receptors typically in the skin) to preserve tissue integrity from the stimuli. This typically results in a 

concerted flexion motion of the limb, a result of excitation of ipsilateral flexors and inhibition of ipsilateral 

extensors.  

Central pattern generators (CPGs) have a rhythm generating neuronal network that coordinates joint 

extensor and flexor muscles. The excitatory state of a CPG is typically modulated by the supraspinal 

corticospinal and reticulospinal tracts. A typical central pattern generator is structured for cyclical motions 

like gait, swimming; an exemplary block diagram of the pattern generators role in locomotion can be seen 

in Fig. 1-3.  

 

Even completely decerebrated animals can exhibit primitive gait restoration under certain 

conditions. Recent efforts of exciting the CPGs through pharmacological and/or electrical (TENS, Russian) 

of the spinal cord stimulation (TSCS) have resulted in rhythmic stepping activation patterns of SCI 

individuals [23]–[25]. After SCI axonal sprouting enables plasticity of the CPGs can aid in restoring 

functional recovery by adapting to the incomplete supraspinal control or reinforce involuntary pathological 

behavior [18], [26], [27].  

Impairment of the interlaced spinal networks comprised of afferents, interneurons, supraspinal inputs 

and efferent neurons establish the basis of spasticity and other comorbidities of injury to the central 

nervous system. Just as spinal reflexes and pattern generators are the underlying mechanisms for 

locomotor function, consideration of these physiological networks is essential to restoring maximal function 

after injury. Neurological impairment can appear diverse and unique due to the complex and aggregated 

nature of the central nervous system.  

Figure 1-3: “Schematic of the locomotor central pattern generator in the mammalian nervous system” by 
Neuromechanics is licensed under CC BY-SA 4.0 
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1.2 Spinal Cord Injury 

Focusing on SCI is an attempt to narrow the scope of the technologies described here. Many 

symptoms of SCI are common to a variety of other causes of paralysis, however spinal cord injury typically 

leaves persons with para- or tetraplegia, where both legs are paretic. In the United States, there are an 

estimated 54 cases of SCI per million each year, or approximately 17,000; the prevalence ranges between 

243,000 to 347,000 persons. Average age of injury is increasing, currently at 42 years old, with males 

comprising 80% of new cases.  Vehicular and fall accidents are the leading causes of SCI. Average acute 

care is 11 days followed by 35 days of rehabilitation, however severe cases can range much longer. Less 

than 1% of SCI persons have had a complete neurological recovery by hospital discharge. Of the 

remaining majority, 45% incomplete tetraplegia, 21.3% incomplete paraplegia, 20% complete paraplegia, 

and 13.3% complete tetraplegia, where incomplete refers to retainment of either sensation or motor control 

below the level of injury [28]. SCI often leads to serious disability that adversely affects employment 

opportunities while increasing cost of living through medical related expenses. Improved rehabilitation 

techniques that promote preventative health and restore function are the motivation of the research and 

development of rehabilitation robotics. 

The level and extent of a SCI is often reported on the American Spinal Injury Association (ASIA) scale 

which reports the neurological level of the impairment and a letter score A-D, see Table 1.1. The 

neurological level refers to the most caudal spinal segment with normal function. Sensation is evaluated 

by pin prick and light touch at each dermatome, or area of skin innervated by a single spinal root; the 

evaluator scores each dermatome from 0-2 or not testable. The motor evaluation is graded at ten muscle 

groups ranging from 0-5 (total paralysis – normal active movement). [29] 
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Table 1-1: ASIA Scale 

Score Description 

A Complete. No sensory or motor function is preserved in the sacral segments S4-S5. 

B Incomplete. Sensory but not motor function is preserved below the neurological level 
and includes the sacral segments S4-S5. 

C Incomplete. Motor function is preserved below the neurological level, and more than half 
of key muscles below the neurological level have a muscle grade less than 3                
(Grades 0-2). 

D Incomplete. Motor function is preserved below the neurological level, and at least half of 
key muscles below the neurological level have a muscle grade greater than or equal to 
3 

E Normal. Sensory and motor function are normal. 

 

The ASIA impairment scale communicates level of impairment of motor and sensory deprivation, 

however it does evaluate spasticity or neuropathic pain which are other common comorbidities of SCI.  

1.2.1 Spasticity 

After impairment of the upper motor neurons, the distal neuromusculature may have unsupervised 

activity termed spasticity. Spasticity is a common comorbidity resulting from SCI, where approximately 68-

75% of individuals with SCI experience spasticity and 20-40% have problematic spasticity that restricts 

activities of daily living [30]. Spasticity can manifest as uncontrolled muscle activity, influenced by 

disinhibited reflex pathways and central pattern generators resulting from upper motor neuron damage. 

In contrast, lower motor neuron damage is typically characterized by flaccidity and eventually muscle 

atrophy. SCI may result in the deprivation of a wide range of components involved in the comprehensive 

spinal networks that control the activity of lower motor neurons. The variety of manifestations of spasticity 

require a slew of evaluation techniques.  

Spasticity has been categorized as intrinsic tonic, intrinsic phasic, or extrinsic nocuous [30], [31]. 

Tonic spasticity may manifest as either flexor or extensor rigidity and is largely dependent on joint position. 

Phasic spasticity, chiefly caused by the hyperactive stretch reflex circuits after central neurologic 

impairment of the corticospinal inhibitory pathways, causes muscle activity proportional to joint angular 

velocity. Extrinsic nocuous spasms are evoked by external stimuli that trigger cutaneous afferents (i.e., 

the withdrawal reflex). Nocuous spasms often appear spontaneous for persons with sensory deficit 

however there is typically underlying tissue damage (e.g., pebble in the shoe, decubitus ulcer). The 

various components of spasticity require that each symptom have an independent evaluation, for which 

there are numerous clinical tests. Some common spasticity evaluation procedures include:  

The Ashworth or Modified Ashworth Scale (MAS) involves a trained assessor rapidly advancing a joint 

through its range of motion and evaluating the stiffness of the joint on a scale from zero to four [2], [32].  
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Spinal Cord Assessment Tool for Spastic reflexes (SCATS) is used to assess a subject's spasticity in three 

subfields: clonus, flexor spasms, and extensor spasms [3], [33].  

The Drop Test is used to examine a subject’s ankle clonus by raising the subject’s leg above a platform 

(approximately 5 cm) and dropping it such that the heel is hanging off the edge of a platform to dorsiflex 

the ankle while the subject is sitting. The Drop Test may excite clonus and elicit an oscillatory response. 

Both number of oscillations and duration of the sustained clonus are valid points of measuring the 

response to the Drop Test [34]. 

Electrophysiology has inherent limitations as far as electrode placement and equipment measurement 

resolution but provides definitive measurements for muscle activation and reflex activity. The Hoffman 

reflex is a monosynaptic reflex that results in an action potential as a result of stimulation to the tibial nerve; 

stimulation of the tibial nerve simultaneous activates motoneurons. The H wave is the action potential 

measure resulting from the reflex while the M wave is that of the direct muscle stimulation. Together the 

H/M ratio describes the excitability of the Hoffman reflex informing experimental or pathological influences 

[35].  

These clinical measures are used to evaluate reflex health and inform the diagnosis of a neurological 

impairment or treatment thereof. Treating spasticity is not straight forward as there are beneficial outcomes 

of spasticity induced muscle activity, such as: reduced muscle atrophy, improved blood circulation and 

withdrawal from harmful stimuli. Hence, spasticity reduces predisposition to other comorbidities that 

commonly result from frequent wheelchair use [30], [36]. Therefore, spasticity must be managed to 

achieve a balance between useful and detrimental effects by progressing from physical rehabilitation, 

pharmacological intervention, injection, intrathecal baclofen, and surgery [30]. Discussions between 

healthcare professionals and patients are necessary to achieve an optimal management level that 

maximizes quality of life (QOL). 

1.2.2 Neurorehabilitation  

Physical rehabilitation for neurological impairments varies vastly depending on the pathological 

conditions that present themselves. Active movement exercises (subject voluntarily commands motion) 

are typical for cases of motor incomplete paralysis where subjects are capable of strengthening the 

recruitment of voluntary activation. Passive movement exercises, such as range of motion exercises (e.g., 

stretching) are commonplace for managing spasticity, and fundamental in therapy for call cases of 

paralysis. Other practices are encouraged for preventative measures, such as pressure relief and daily 

load bearing exercises. Rather than explore the broad range of specialized therapies that have been 

developed, this section will focus on functional electrical stimulation and exoskeletons.  
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Functional Electrical Stimulation 

Functional electrical stimulation (FES) has been prescribed for paraplegics to restore motor activity 

to paretic lower limbs since the 1960s. It is estimated 5.4 million people suffer from paralysis in the United 

States [4], and far more people suffer from muscle atrophy or other injuries that can be treated with an 

electrical stimulation system. Merits of electrical stimulation to treat paralysis and combat predisposition 

to numerous comorbidities are well established in the literature: improving locomotion performance and 

recovery [10], [37]–[41], maintaining bone health[42]–[45], combating muscle atrophy [39], [46]–[48], 

deep vascular thrombosis [49],  and decubitus ulcers [50]–[52] (A.K.A. “pressure ulcers” or ”bedsores”), 

and many more [53]–[57]. FES can treat numerous predispositions to comorbidities that otherwise can be 

extremely debilitating; for example, pressure ulcers lead to 60,000 deaths annually and cost anywhere 

from $9.1-11.6 billion per year in the United States according to the Agency for Healthcare Research and 

Quality. Meanwhile studies have shown electrical stimulation both prevents and accelerates healing of 

decubitus ulcers, and maintains general tissue health by increasing blood flow and oxygenation through 

the paretic limb [58], [59]. Artificial activation of muscles and nerves is typically not as efficient as natural 

recruitment of muscles, but it is effective in preserving tissue health in addition to achieving some intended 

functional outcomes.  

Artificial electrical stimulation can induce action potentials in neurons by depolarizing the neuronal 

membrane that is gated by protein-based voltage-dependent ion channels. Typical nerves targeted for 

transcutaneous electrical stimulation contain hundreds to thousands of axons from motor neurons and 

sensory dendrites. Stimulation activation of these fibers depends largely on two variables: the diameter of 

the neuron fiber and the field strength of the stimulation current. Because larger fibers have reduced 

intracellular resistance they draw more current and reach threshold prior to smaller neurons. Hence, motor 

neurons can be activated prior to sensory neurons, see Fig. 1-4. This is opposite the natural pattern of 

motor neuron recruitment that targets smaller neurons first, the Hennemen size principle. 

The field of the induced current is dependent on the artificial stimulation, and controlled by the 

system (stimulator parameters, electrodes, and electrode position). The electronic field strength decays 

in proportion to the square of the distance to the electrodes, so neurons closest to the surface of the skin 

are recruited before similar fibers farther from the electrodes. The electric field is controlled by the system, 

either by varying the amplitude of the pulse or the pulse-width to proportionally activate the number of 

motor units. Typical pulse-widths are on the order of 100-500 μs. Pulse amplitudes are either current 

controlled or voltage controlled depending on the stimulator hardware architecture. Stimulators typically 

use a transformer to control current or store a high-voltage potential on a capacitor and administer the 

charge via an H-bridge. Typical non-invasive gel electrode applications utilize pulse amplitudes of 10-120 

mA, or 0-120 V.  
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Figure 1-4: Illustration of the factors that affect neuron recruitment during functional electrical stimulation: 
cross sectional area, strength of induced electric field and distance from electrodes. Reproduced from 
Goldfarb 1994 [60]. 

Liberson’s foot drop stimulator was the first FES device designed to treat foot drop, a common 

symptom of paresis, most commonly caused by stroke. Liberson’s device relied on a heel-switch to detect 

heel-off, indicating the initiation of swing, then applying transcutaneous electrical stimulation of the 

common peroneal nerve to activate the flexor withdrawal reflex, improving toe clearance during swing 

[61]. In the 1990’s accelerometer sensors enabled foot drop stimulators to use the acceleration of the tibia 

to indicate swing initiation to trigger stimulation [62].  

Current devices that treat foot drop include the L300 (Bioness), Walkaide (Innovative Neurotronics) 

and Odstock (Salisbury, UK) with out of pocket price range of $4500-5900 [63], [64]. These devices are 

only reimbursable in the United States under code E0770 for SCI, leaving them inaccessible for majority 

of the customers who could benefit from the FES orthosis over the standard ankle foot orthosis in the long 

run [38], [65]. It is difficult to rationalize the current products price point; however, it is possible they used 

value-based pricing with the nearest comparable product being custom molded ankle-foot-orthoses that 

have substantial labor cost involved. Recent publications of a randomized clinical trial found equivalence 

in performance when comparing ankle foot orthosis to FES foot-drop orthosis; however, a long term follow-

up found patients had greater satisfaction with an FES orthosis [38], [65]. 

FES is commonly used to combat muscle atrophy in paraplegic and tetraplegic subjects; but also 

has proven instrumental in restoring critical bodily functions such as bowel, bladder and respiratory 

systems [66]. As the intended function varies in importance, FES systems vary in invasiveness, from 
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transcutaneous to implanted. Typical commercially available non-invasive devices each enable a single 

function. Common functions for paraplegia are stationary cycling, assistive walking and intermittent 

stimulation for pressure ulcer prevention or muscle strengthening.  

The Parastep system is a gait restoration device for paraplegia that uses a push-button interface for 

an FES system whereby stimulation of the flexor withdrawal is responsible for swing and stimulation of 

extensors provide stance stability [67]. The Parastep is the only gait training FES system reimbursable 

under HCPCS Code # E0764. Parastep is sold by a nonprofit; therapists are often unaware of the Parastep 

device despite the proven merits of FES for the SCI community [68]. Cost for the Parastep FES system is 

$12000 (6 channels), 80% of which is covered by Medicare [69]. Besides cost, the FES system for 

complete paralysis was deemed too fatiguing for community ambulation [70]. Orthoses are well suited for 

offloading effort towards weight bearing and balance during FES assisted ambulation. Systems that offer 

orthotic support and FES are called hybrid- orthoses. 

Exoskeletons 

Many orthoses have been available to provide individuals with SCI some degree of legged mobility. 

Orthoses can be categorized as passive or active. Active orthoses provide power to assist movement, 

whereas passive orthoses rely on the user to input the energy necessary for movement. Of passive 

orthoses, the knee-ankle-foot orthosis (KAFO) is the most basic. A KAFO operates by fixing the ankle 

position and having a lock mechanism at the knee, such that the knee can be locked in full extension. 

Likewise, the hip guided orthosis (HGO) stabilizes the hip, preventing abduction or adduction. 

Reciprocating gait orthoses (RGOs) employ a reciprocal coupling mechanism at the hip, which permits 

the user to induce extension in one hip by means of weight shifting, inducing flexion in the contralateral 

hip. For these passive devices all motion is initiated by the user’s upper body with aid of a walker or 

forearm crutches for stability. 

Powered exoskeletons have been developed by several researchers to improve the functionality of 

orthoses and reduce the physical exertion of the user, with the aim of enabling community ambulation. 

The state-of-the-art motors, batteries and integrated circuits have enabled powered robotic orthosis, 

coined exoskeletons or exos, for the rehabilitation setting. The Rewalk (Rewalk Robotics, Isreal) was the 

first exoskeleton to be approved for sale in the US by the Food and Drug Administration (FDA).  Exos 

typically strap around the legs and waist and use electric motors to actuate the hip and knee joints as to 

restore mobility to stand-up and walk over ground. A recent review of various exoskeletons is reported in 

[71], [72].  These systems have been shown to reduce energy expenditure during assisted walking, 

relative to passive orthoses [73]. Further, powered exoskeletons are capable of adapting to the presence 

of obstacles or varied terrain such as stairs and slopes.  
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The portability of exoskeletons enables over ground gait which can be contrasted to body weight 

support systems that offload the weight of the lower limbs with a harness and requires a robot or multiple 

therapists to assist as needed in the progression of gait (often on a treadmill). Exoskeleton technology 

restores the capability of locomotor control while preserving loading of the limbs.  

Similarly to FES, the price points of exoskeletons are out of reach for most customers to use at home, 

with the cheapest at $50k[74]; furthered by non-natural controls, substantial weight, and top speed ⅓ that 

of needed for community ambulation, it is not likely this technology will be reimbursed by insurances until 

greater evidence of efficacy or health merits are presented. Recent reviews identify the following limitations 

of exoskeletons: 

“One of the largest hurdles to be overcome in exoskeleton research is the user interface and control. 

More intuitive and flexible user interfaces are needed to increase the success of robotic exoskeletons.“[75] 

“Future research should: 1) develop criteria for optimal selection and training of patients most likely 

to benefit from this technology, 2) design multimodal gait intention detection systems that engage and 

empower the user, 3) develop real-time monitoring and diagnostic capabilities, and 4) adopt 

comprehensive metrics for assessing safety, benefits, and usability.”[71]  

The structural stability of exoskeletons enables upright rehabilitation for even the most severely 

affected subjects. Hybrid FES-exoskeletons systems are mutually beneficial whereby exoskeletons add 

support for safety and endurance while the FES amplifies the physiological benefits of an upright posture 

and synergy between motors and muscles. Although the Food and Drug Administration (FDA) has not 

approved any hybrid robotic exoskeleton, the Indego exoskeleton team has an integrated FES system in 

development and Ekso Bionics’ EksoGT has recently partnered with Hasomed’s Rehastim2 [76] to deliver 

a hybrid FES system that is CE marked and available in the US for research.  

1.3 Summary of Contributions 

The devices and methods developed herein aim to enable paraplegics to climb stairs, overcome 

significant spasticity with functional electrical stimulation (FES) during exoskeleton gait training, and quell 

clonus with FES. The research described here incorporates two devices for exploring new modalities of 

rehabilitation for paraplegics: the Indego exoskeleton and the Chimera stimulation device. The Indego is 

previously developed hardware, while the Chimera device was developed for this research. Both these 

devices can communicate via a controller area network (CAN) that allows them to be controlled 

simultaneously or individually, with a high-level controller in Simulink (Mathworks). More detail on the 

hardware is given in Chapter 2. 

https://ieeexplore.ieee.org/abstract/document/7393837/
https://ieeexplore.ieee.org/abstract/document/7393837/
http://iopscience.iop.org/article/10.1088/1741-2560/13/3/031001/meta
http://iopscience.iop.org/article/10.1088/1741-2560/13/3/031001/meta
http://iopscience.iop.org/article/10.1088/1741-2560/13/3/031001/meta
http://iopscience.iop.org/article/10.1088/1741-2560/13/3/031001/meta


16 
 

1.3.1 Stair Climbing 

The stair section describes a control approach for a lower limb exoskeleton intended to enable stair 

ascent and descent of variable geometry staircases for individuals with paraplegia resulting from SCI. This 

work expands on the demonstration of stair climbing for a single subject and single stair geometry. 

Assessment of novel the controller was implemented in a lower limb exoskeleton and tested in 

experimental trials on three subjects with motor-complete spinal cord injury on numerous staircases of 

varying geometry. Results from the assessment indicate a high-degree of movement consistency within 

each subject; a high-degree of consistency in average ascent and descent rates between subjects; the 

ability to accommodate variable step heights without changing controller parameters; and a 

corresponding low degree of physical effort required during the stair ascent and descent activity. 

1.3.2 Exoskeleton Gait Training and Spasticity 

Robotic exoskeletons have recently emerged to facilitate legged mobility in people with motor 

complete SCI, however, involuntary muscle activity attributed to spasticity can prevent such individuals 

from using an exoskeleton. Specifically, although most exoskeleton technologies can accommodate low 

to moderate spasticity, the presence of moderate to severe spasticity can significantly impair gait 

kinematics when using an exoskeleton. This study investigates the use of common peroneal stimulation in 

conjunction with exoskeleton gait assistance to potentially enable individuals with moderate to severe 

spasticity to use exoskeletons more effectively. The stimulation was timed with the exoskeleton swing 

phase and is intended to mitigate extensor spasticity through recruitment of the flexion withdrawal reflex. 

To examine the potential efficacy of this approach, two SCI subjects with severe extensor spasticity (i.e., 

modified Ashworth ratings of three to four) walked in an exoskeleton with and without supplemental 

stimulation. These experiments indicated that common peroneal stimulation on average increased peak 

hip flexion during the swing phase of walking by 15.8 deg (151%) and peak knee flexion by 14.3 deg 

(58.8%). Additionally, use of the stimulation decreased the swing phase RMS motor current by 249 mA 

(15.3%) at the hip motors and 581 mA (29.8%) at the knee motors. This preliminary data indicates that 

such supplemental stimulation may be used to improve the quality of movement provided by exoskeletons 

for persons with severe extensor spasticity in the lower limb. 

1.3.3 Wheelchair Propulsion and Spasticity 

The phasic component of spasticity can manifest as clonus, or a self-activating stretch reflex arc 

that may have a central component [77], [78]. Clonus of the ankle can manifest during wheelchair 

propulsion, when terrain causes afferent activation either through proprioceptors or exteroceptors. Typical 

ankle clonus is initiated with a stretch to the calf muscles that activates muscle spindle fibers which 

contributes to the stretch reflex, a monosynaptic reflex whereby a stretch to a muscle induces self-



17 
 

activation. Self-activation of the stretched extensors then raises the heel, only to relax, enabling gravity to 

the heel back down, causing the calf to stretch, thus repeating the reflex. Clonus occurs at 3-8 Hz, 

continuously shaking the leg and the user until the cycle is physically disrupted, often requiring the use of 

arms to manipulate the shaking leg(s), thereby interfering with propelling the wheelchair. Furthermore, 

shaking may cause feet to fall off the footplate, exposing them to injury.  

The explored method for treating clonus employs a bandpass filtered accelerometer signal used to 

classify clonus activity and appropriately stimulate the afferent nerves of the ankle to disturb the reflexive 

cycle. The performance was advanced further by detecting inertial activity indicative of traversing rough 

terrain and applying a preventative stimulation to the afferents to preempt clonus activity. The methods 

were evaluated in a real-world setting where subjects traversed rough terrain and the controller adapted 

to reduce clonus. Experiments were conducted on four subjects with SCI; overall results of eleven trials 

show the devices reduce wheelchair spasticity by 86% (median). 
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CHAPTER 2: HARDWARE 

 

The Indego and Chimera are mechatronic devices developed for the reanimation of paretic limbs. 

Each provide different means of actuation that can independently or complementarily restore legged 

mobility after spinal cord injury (SCI). Indego implements electronic motors, while the Chimera interfaces 

with the nervous system through transcutaneous electrical stimulation. Control of the devices is typically 

done with low-level actuator controllers and a high-level hierarchical finite state machine (HFSM) controller.  

HSFM enable complex systems to be represented in simple charts where states and sub-states 

define the discrete characteristics of the system [79]. HFSM conventions enable rapid prototyping of novel 

functions for the devices through visualization of the controller in Simulink/Stateflow (Mathworks). The 

HFSM integrates system data (i.e., sensors, timers) to make informed state transitions that determine the 

behavior of the actuators. Once validated, HFSMs charts are easily translated to computer code (e.g., C) 

and flashed into the firmware of the devices. The developments described here are largely composition 

and additions to prior developments. One of the greatest challenges for adoption and implementation by 

new developers is the familiarization with the system organization and naming conventions of the many 

parameters. Compilers often reveal fatal system errors before implementation and validation.  

The development of novel functions in software requires reliable hardware for implementation. 

Stateflow enabled real-time validation of HFSM enabling rapid turnaround from concept, to software 

prototypes and implementation. Here the Indego and Chimera systems are described in detail to give 

context for the implementation of controllers described in the following chapters.  

 

2.1 Indego Exoskeleton 

The Indego exoskeleton is a medical device that restores motion to the lower limbs for people with 

paralysis or paresis. The exoskeleton straps around the lower limbs and waist of the user to actuate the 

hip and knee joints using feedback from kinematic measurements, see Fig. 2-1. The Indego was 

developed at Vanderbilt University and has since been commercialized by Parker-Hannifin Corp. 

(Cleveland, Oh).  

Hardware, Firmware and Network 

The Indego exoskeleton hardware platform incorporates four motors for powered movement of 

bilateral hip and knee joints in the sagittal plane, in addition to built-in ankle-foot-orthoses (AFOs) at both 

ankle joints to provide ankle stability and transfer the weight of the exoskeleton to the ground. Onboard 

electronic sensors include encoders at each joint that provide the respective joint angles and angular 
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velocities, and a six-axis inertial measurement units (IMU) in each thigh link, which provide the left and 

right thigh angles with respect to the vertical. The total mass of the exoskeleton including the battery is 

approximately 12 kg (26 lbs); the device can be dissembled into five segments: two shanks, two thighs, 

and the hip for portability and fitting (each segment has three sizes).  

 

Figure 2-1: Indego Exoskeleton (Photograph courtesy of Parker) and kinematic measurements 

During the works presented here, the exoskeleton hardware evolved from research prototypes that 

were prone to malfunction, to a reliable medical device approved by the Food Drug Administration (FDA). 

The firmware remained largely the same throughout the transition and enabled a near seamless transition 

of controller implementation from the various revisions of the hardware. The firmware is written in C and 

flashed to the PIC microcontrollers (Microchip, Chandler, AZ). There are two microcontrollers in each leg 

of the Indego that communicate with each other via a serial peripheral interface (SPI). One microcontroller, 

the PIC32 is tasked with the processing the state machine controllers, parsing sensors and networking. 

The other microcontroller, the dsPIC, manages the brushless motor drivers that consist of six hall effect 

sensors and six half-bridges for driving two brushless DC motors (EC 90 – Maxon Motor, Switzerland). The 

Indego commercial hardware has an additional microcontroller in the hip segment that manages the start-

up and shut-off processes that are mediated by momentary push-buttons on the front of the device. The 

three segments with embedded electronics have connectors such that when assembled power and a 

controller area network (CAN) unify the segments. 

The experimental high-level control software was implemented in MATLAB Simulink/Stateflow 

through a CAN serial cable which was plugged into a CAN port in the exoskeleton. Typical development 

using the exoskeleton utilized real-time controls via CAN to Simulink. CAN relayed data from the robot to 
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the HFSM controller in Simulink’s Stateflow. Typical data rates were 200 Hz although controllers that 

integrated EMG systems were typically 1000 Hz. This design environment enabled efficient iteration of 

controllers and convenient visualization of sensor data, output commands, and outputted actuation. The 

design process progressed from testing controllers with the motors unplugged, then plugged while 

hanging, then active with an able-body (non-SCI) subject, then finally evaluated on SCI pilots.  

Prior Efforts and Contributions 

Prior to the works described herein, numerous talented engineers had laid a wealthy foundation of 

technological developments; the Indego has demonstrated walking, sitting, standing, stair climbing and 

hybrid-FES assisted [73], [80]–[82]. Here the capabilities, limitations and contributions are discussed for 

the Indego exoskeleton.  

Inertial ques detected by the robot enable autonomous control by the paraplegic to locomote the 

exoskeleton. For example, the Indego sit-to-stand protocol enables users to safely trigger the standing 

state were the motors extend abruptly by requiring the user to lift both legs with the robot donned. Lifting 

is detected by the inertial sensor and the change in robot joints angle measurement. Once given indication 

of intent, the robot then progresses to a pre-standing state where the motors vibrate when the hip flexes; 

the robot is ready to. Once a que in the thigh inertial sensors is detected, the user has initiated the standing 

process and the controller advances to the standing state where the exoskeleton rapidly extends the legs 

[80]. Fault detection monitors the success of the standing state, whereby if the thighs remain more 

horizontal than normal the robot will return to the sitting state.  

The Indego standing controller was adapted to the Chimera stimulator device (described below), 

whereby the user triple-taps the device to indicate intent to stand and the controller progresses to pre-

stand, then waits for the user to initiate standing, or times out and returns to sitting. This contribution 

demonstrated parallels between the neural prosthetic and exoskeleton control methodology for human 

robot interactions involved in limb reanimation. 

Kinematic measurements (orientation and joint parameters) gate many of the Indego’s HFSM state 

transitions. For example, users must advance the center of pressure (lean forward) to indicate intention to 

take a step in the Indego [80]. Leaning is a natural process of gait, so this method improves intuitive 

control over other methods, such as pushbuttons; however, the users typically relies on the stability aid 

and upper limbs to achieve the needed weight advancement. A case study described in Appendix B 

describes an electromyography (EMG) interface that has demonstrated a motor complete paraplegic 

reliably varying commanded step effort. Although implemented with the Chimera, the interface could 

potentially enable exoskeleton and hybrid implementation of intuitive gait for paraplegics.   

The prior SCI controller of the Indego implements motor control by following predefined joint angle 

trajectories. Although this method is advantageous for enhancing repeatability and reliability, it is also 
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limited in the rigidity of the trajectory control and does not permit controlled step size variability. The works 

described in Chapter 3 aim to expand the flexibility of a stair-ascent controller with a state that is free of a 

predefined position trajectory and enables variable step sizes to be accommodated. The novel stair 

controller also requires a state that calculates trajectories upon state entry to transition smoothly from non-

controlled position to a trajectory. This contribution builds on the prior work for a stair ascent and descent 

controller that was demonstrated on a single stair geometry on a single subject [81].  

Hybrid FES exoskeletons are experimental only, i.e. currently there are no FDA approved systems 

for the rehabilitation modality. Efforts have demonstrated that FES can supplement the exoskeleton motors 

for stance and extension [82]. Stimulation hardware was developed to be compatible with the Vanderbilt 

Exoskeleton (Indego research prototype) and integrated via CAN cable. The works here, specifically in 

Chapter 4 expand the hybrid capabilities with the Chimera and additionally by demonstration of peroneal 

stimulation to enhancing the kinematic performance, while reducing effort demanded from the Indego 

motors during gait with persons who have moderate to severe spasticity due to SCI.  

The Indego hardware has enabled rapid development of novel functions to restore mobility to 

paralyzed legs and has demonstrated hybrid exoskeleton-FES capabiilities to enhance the therapeutic 

effects for the many beneficiaries. The CAN cable and Simulink provides a flexible work environment 

portable enough for over-ground or up-stairs research and development. Although the Vanderbilt 

Exoskeleton had breaks, burns, electrocutions, etc., the Indego research prototypes have proven robust, 

dependable, and capable exoskeletons.   

 

2.2 Chimera Stimulation Board 

The Chimera stimulation board was developed with the intention of providing FES to enhance gait 

for incomplete spinal cord injuries (iSCI). Specifically, an undergraduate C5-6 ASIA C (ASIA section 1.2) 

needed additional assistance with hip flexion that current off-the-shelf rehabilitation devices could not 

provide; during outpatient therapy this individual would use a WalkAide (Ness, CA), a wearable single-

channel transcutaneous foot-drop stimulator device. The WalkAide coordinates common peroneal nerve 

stimulation with shank rotation indicative of swing initiation. The timed stimulation of the common peroneal 

nerve activates dorsiflexion that assist the user with toe clearance during swing. The nocuous withdrawal 

reflex (section 1.1.4) can be triggered if the stimulation amplitude is great enough, and results in a 

concerted flexion of the hip, knee and ankle. Hesitation for his method arises as it is uncomfortable for 

persons with preserved sensation. Rather than increasing the stimulation amplitude, a therapist used a 

manual switch trigger to coordinate the peroneal stimulation with supplemental stimulation of the hip flexor 

muscles using a second device. Hence, the undergraduate proposed the research project to build a 

custom device that could infer inertial ques and coordinate two channels of electrical stimulation per leg. 
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This proposed project then combined with Ekelem’s research aspirations to explore an electromyography-

based swing intent detection method. 

The name Chimera comes from a mythological creature that has the body of a goat, a tail of snake, 

and a fire-breathing head of a lion. The name is fitting because majority of the components, code, and 

circuit schematics were sourced from previous developments at the Center for Intelligent Mechatronics. 

The inertial measurement unit (Invensense - MPU6020) was sourced from the Vanderbilt Powered Leg; 

the differential amplifier (TI ADS1298) was sourced from the Vanderbilt Upper Limb Prosthetic; and the 

electrical stimulation and Bluetooth Low Energy (BLE) were sourced from the Vanderbilt Lower Limb 

Exoskeleton. The design objective may have been implemented using the multiple available PCBs and a 

serial communication protocol, however, the bulk of hardware and conglomerate of source files would 

have made such a method too cumbersome for the proposed wearable device. Hence, the key advantage 

of designing a custom embedded system for the Chimera was to have a compact form factor with a lot of 

functionality, providing a basis for numerous controller prototypes. Furthermore, sourcing example code 

and PCB layout techniques from proven hardware is an ideal introduction for a novice at mechatronics.  

2.2.1 Hardware Development 

Development began in Altium PCB designer with layout of selected of components, which are 

primarily surface mount technology (SMT) integrated circuits (IC). These components enable millions of 

transistors to operate specific functions millions of cycles per second with very low energy consumption 

and cost. The PIC32 microcontroller is the processing unit for the device that runs the custom firmware for 

interacting with the peripheral hardware. The PIC32MX575F512H-80I/PT was chosen for available 

repository of firmware and peripheral component layouts. Identifying available pins on the PIC32 and 

assigning them to new functions was a significant challenge in integrating the numerous embedded 

peripherals. The resulting system enables EMG capable of sensing microvolts while the stimulator can 

amplify the 7.4 V battery to 180 V; such breadth in electrical characteristics necessitated layout 

consideration for managing analog noise and electrical separation of the differential amplifier for 

electromyography (EMG) and a powered muscle stimulator. Strategic PCB layout and bypass capacitors 

were employed to stabilize the ground plane and minimize interference between the various peripheral 

subsystems.  

The resulting Chimera system enables EMG (6-channels), inertial sensing (6-axis), analog inputs (2 

for force sensing resistor, or pushbutton), controller area network (CAN), Bluetooth low energy (BLE), and 

electrical stimulation (6-channels), see Fig 2-2. 
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Figure 2-2: Chimera PCB and Package 

 

Stimulator Architecture 

The Chimera uses an audio transformer to amplify the 7.4v supply to the high voltage stimulation 

waveform needed for FES. Transformers are an electrical component that transfers energy from one coil 

(i.e, the primary coil) to at least one other coil (i.e., secondary coil). The transformer uses the principles of 

inductance described by Faraday’s law which describes the proportionality between the rate of change 

of magnetic flux (𝑑𝜙𝐵

𝑑𝑡
), number of coil turns (N) and an electromotive force (Ԑ), see Equation 2.1.   

     Ԑ = -N
dϕB

dt
       (2.1) 

Ideal transformers conserve energy to yield an input to output voltage ratio that is equivalent to the 

turns ratio, and inverse the current ratio, as in Equation 2.2. 

                                                 VP

VS
 = 

IS

IP
 = 

NP

NS
= n = turn ratio     (2.2)  

The subscripts “P” in Equation 2.2 denote the primary coil and “S” denote the secondary coil. Hence, by 

controlling the current through one of the coils you control the current on the output coil, and the two 

electrical systems are electrically isolated. An electrical representation of the stimulation circuit is shown 

in Fig. 2-3.  

 The first step to design the circuit was select the desired output current,120 mA was chosen. Next, 

we found a rechargeable battery with excellent capacity at 7.4 V, in a traditional “9-volt” PP3 size (720mAH 
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– HiTECH 9V). To select a transformer, consideration to the maximum power is essential for preventing 

the coils from overheating and leading to a shorted coil. For each FES channel the power is equal to: 

                                          F * PW*IP*VP = F * PW*
Is

n
*VP = Ppeak    (2.3)  

where F is the stimulation frequency, PW is the pulse-width, IS is the secondary (the stimulation) current, 

and Ppeak is the peak power. An example of typical peak stimulation power would be a pulse-width of 200 

us at 50 Hz, and the peak primary-side current (120 mA divided by the turns ratio) and the supply the 

maximum energy. The selected transformer is a PICO 76460 (PICO Electronics, NY) configured for a turns 

ratio of 1:22.4 and maximum power 0.6 W, which can be purchased for $56.54 at the time of writing. Using 

the turns ratio selected, the peak power of operation for a single channel is calculated as 0.194 W. 

Therefore, three channels can safely operate at full stimulation. For simultaneous operation of four to six 

channels it is advised to run the stimulators at 25 Hz rather than 50 Hz.  

 A few factors limit the number of channels a single transformer can provide stimulation waveforms 

for: the stimulation duty cycle (i.e., 1% in the above example), and the primary side current controller. The 

current control employed uses pulse-width modulated (PWM) digital output that is lowpass filtered (fc=55 

Hz) to establish a reference voltage. The reference voltage can selectively be amplified to open the low-

side bipolar junction transistor such that the amplification is proportional to the difference between the 

reference voltage and the voltage sensed at the sense resistor. Note, detailed schematics are included in 

Appendix C.  The 55 Hz lowpass filter limits the rate at which channels reference voltage can be generated 

independent from the preceding channel. The rise/fall time of the lowpass filter is 6.6 ms, suggesting the 

current controller can change current amplitude approximately 150 times per second, or control three 

separate channels independently at 50 Hz, six channels at 25 Hz, or ten channels at 15 Hz.  

 The secondary side uses one optical double pole double throw switches (Omoron G3VM-202J) 

per stimulation channel to create a demultiplexer from the transformer. Outputs of the optical switches are 

connected to the headers for the electrode leads. At most, a single channel switch is open at any given 

time, ensuring the current is controlled rather than split between two or more channels.  

Safety Concerns  

Harm from FES can cause injury, cardiac interference, electrocution, and skin irritation. Risk are 

mitigated by proper use and hardware design. Care is needed for persons with epilepsy, heart conditions 

or who use a pacemaker. Electricity across the pacemaker can cause a malfunction leading to cardiac 

arrest. Stimulation of the lower limbs is far enough from the heart, so long as the electrodes are secured 

and placed appropriately, the electrical stimulation safe. Electrode selection, amplitude settings and 

proper electrode adhesion are critical variables for mitigating harmful current densities that can burn the 

skin when using current controlled stimulator. Other misuse concerns are function dependent. For 
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example, if stance is dependent on FES, a fall prevention mechanism, such as a walker, spotter, harness, 

exoskeleton, etc., will mitigate risk.   

There are numerous safety considerations implemented in design of the hardware. Isolation is one 

consideration to protect the input or draw of excessive electricity between the user and device. Even if the 

circuit is battery powered and has no 110v AC connection, there must be protection against the possibility 

of Earthing the patient through the stimulator. Functional isolation is enough to make a circuit work. Safety 

isolation is much more robust, typically able to withstand a few thousand volts and longer insulation 

distances, to protect the patient against potential hazards. International safety standards such as IEC 

60601-1 (medical electronics) and IEC 60601-2-10 (stimulators) set out the minimum insulation thickness, 

dielectric strength, gaps (creepage and clearance) to provide a means of patient protection. The optical 

switches used provide a dielectric strength of 1500 VRMS, however the dielectric strength between the 

transformer coils is only rated to 200 VRMS, hence the Chimera is functionally isolated, but not to the safety 

isolation standards of IEC 60601-2-10 that requires at least two means of patient protection [83]. A custom 

transformer with triple dielectric layers may resolve this, albeit may increase the weight, cost and size of 

the transformer. Rather the device was used with caution to not operate near high-voltage hazards that 

would put users at risk of Earthing electrocution.  

Another potential hazard is implementing an imbalanced charge to the patient that can ensue 

electrolysis of the tissue. The implementation of a bipolar waveform that uses the current-sense feedback 

to ensure adequate current is achieved each pulse is the method employed to enforce current-balancing. 

This is evaluated through observation with an oscilloscope using either a current probe (capable of 

reading the current passing through an electrode lead), an isolated voltage probe, or the difference 

between two grounded voltage probes, as the lead to the electrodes are electrically “floating” or isolated 

from the oscilloscope’s reference. Additionally, skin irritation or discoloration is a symptom of imbalance 

charge, although this has yet to be observed from using the Chimera.  

One last safety concern is direct current leakage. This is less of a concern for transformer (current 

controlled) stimulators and more of a concern for boost converter stimulators that store a high-voltage 

charge on a capacitor and use an H-bridge to selectively apply stimulation pulses. The reverse impedance 

of the H-bridge MOSFETs is not infinite and MOSFETs are not identical, therefore there is a leakage current 

that can accumulate electrolysis of the tissue. In this case blocking capacitors can be employed to reduce 

leakage current. Blocking capacitors have not been employed in the Chimera because DC is not an issue 

with transformers, as the induced EMF occurs in proportion to the time derivative of magnetic flux. 

While standards are in place to prevent tissue damage and electrocution, electrical stimulation is 

generally harmless; transcutaneous FES is a low-risk option for reanimating paralyzed limbs.  
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2.2.2 Firmware 

Firmware for the Chimera is implemented on a PIC32 and incorporates functions from other projects 

to provide functionality through a novel HFSM controller. The high-level user-defined mode state 

determines the function that the Chimera device will perform. Currently the Chimera has the following 

modes: prototype (rely on Simulink CAN inputs), push-button walking, intuitive EMG walking, inertial swing 

assist walking, clonus treatment, intermittent stimulation, and cycling. Each mode has a sub-HFSM to 

coordinate FES based on sensor data and user-defined FES parameters. The control loop operates at 500 

Hz; the HFSM, sensors, and communications all occur at this rate unless independently triggered by an 

interrupt, such as for the BLE and FES controller. An excerpt of the code can be found in Appendix C.  

Communication Protocols 

Controller Area Network (CAN) 

CAN permits the high-level controller to be prototyped in Matlab Simulink/Stateflow, in addition to 

enabling simultaneous control of multiple Chimeras and/or Indego through a network cable. One 

advantage of CAN over serial communication is the CAN bus isolates the system from the device; hence, 

the various robots and laptop computer do not need to share a common ground reference to operate. 

CAN requires two signals, a high and low, resulting in two wires connecting multiple devices in series. 

Typical CAN cables were constructed twisted pair (multi-stranded copper had better durability than solid 

wire); for long wires, four wires enable multiple devices to be daisy-chained. Ends of cables were 

reinforced with shrink wrap and epoxy for stress relief at connector-heading junctions. Long cables were 

typically desired for an assistant to hold the laptop and follow the subject with the experimental device.   

BLE and Android Development 

Bluetooth Low Energy (BLE) has become a common wireless protocol with mobile devices (e.g., 

smartphones). The BlueGecko112 (Silicon Labs) microcontroller provides means for the Chimera to 

connect to other BLE enabled devices and communicates with the PIC32 via a serial peripheral interface 

(SPI) protocol. An Android application, ChimeraBLE, was developed in Android Studio to enable the user 

to input parameters such as parameters that define mode, FES settings, and controller operation 

characteristics. The application enabled wireless interfacing with the device, unlocking the expansive 

potential of the Chimera hardware for portable use.  

2.2.3 Devices Conclusion 

The flexible CAN hardware enabled rapid prototyping and data acquisition for the numerous 

exploratory studies for treating lower limb paralysis. The Indego and Chimera hardware enabled first-order 
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demonstrations of novel functions and in the process proved robust to significant malfunction. Combining 

the Chimera with the Indego compounded the functionality. This data intensive operation required a cut-

back on CAN signals as it initially overloaded the CAN buses. After streamlining the controller the hybrid 

FES exoskeleton system was used for the exoskeleton spasticity study (Chapter 4). The flexibility of CAN 

is exemplified when the simple construction of a new cable enabled simultaneous control of multiple 

Chimera boards, such as in the clonus study described in Chapter 5 that uses three Chimeras 

simultaneously for over-ground demonstrations. CAN and Simulink have provided an expansive 

environment for creativity that has proven invaluable during the iterative process of research and 

development of rehabilitation robotics. 

Despite performing without adverse events, the Chimera prototype is insufficient for meeting the 

strictest of medical device safety standards. Furthermore, the limited bandwidth of BLE and the 

cumbersome cable routing of CAN has motivated the development of a modular discrete wireless 

stimulation device for future commercialization of the novel control methods. The multi-faceted, sensor 

packed Chimera stimulation board is a powerful research device that has demonstrated numerous 

prototypes with commercial potential, see the anti-clonus application (Chapter 5), and two SCI FES 

assisted gait case-studies (Appendices A and B). The Chimera met and exceeded the design objectives 

with densely packed functionality and expansive networking modalities.  

The Indego exoskeleton is capable medical device. Despite the commercial success, Parker has 

been very supportive of the research and development of novel functions, such as the stair controller 

described in Chapter 3. The FDA-approved hardware proved more durable than the research prototypes, 

while the electronic hardware and firmware remained largely unchanged. The hardware and firmware 

architecture described for Indego and adopted by the Chimera is an intelligent design platform that 

promotes innovation and will continue to fuel major impact in the rehabilitation industry. 
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CHAPTER 3: MANUSCRIPT 1 - VARIABLE GEOMETRY STAIR ASCENT AND 

DESCENT CONTROLLER FOR A POWERED LOWER LIMB EXOSKELETON 
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3.1 Abstract 

The prior SCI stair controller of the Indego (Vanderbilt Exoskeleton) implements motor control by 

following predefined joint angle trajectories. The prior work established hardware capabilities meets the 

kinetic demands of stair climbing and the initial controller demonstrated capabilities [84]. Further 

development was essential to develop the controller to be suitable for a range of users, safe, and robust 

to various step sizes. The research presented here began with an exploratory study that achieved 

repeatable ascent and descent of a single stair geometry with a single subject [85]. The rigidity of the 

trajectory control and does not permit controlled step size variability. The works described here describes 

methods that expand the flexibility of a stair-ascent controller with a state that is free of a predefined 

position trajectory and enables variable step sizes to be accommodated. The novel stair controller also 

requires a state that calculates trajectories upon state entry to transition smoothly from non-controlled 

position to a trajectory. This contribution builds on the prior work for a stair ascent and descent and 

evaluates the novel controller on three subjects who quickly learned the controls and surmounted a variety 

of stair geometries. The following manuscript is published. 

3.2 Introduction 

One of the potential impairments resulting from SCI is the loss of legged mobility. Recently, powered 

lower limb orthoses, or lower limb exoskeletons, capable of providing legged mobility to individuals with 

lower limb paralysis have started to emerge (see, for example, the recent review [86]). These devices 

incorporate motors at various joints, typically a combination of hip, knee, or ankle joints, to provide assisted 

movement of the lower limbs during walking, and in most cases, require that the user use a stability aid 

(e.g., a rolling walker or forearm crutches) to maintain balance. Since these are (nearly) uniformly robotic 

devices, they require a control method that enables an SCI user to autonomously control the basic 

movements associated with legged mobility (i.e., sitting, standing, and walking). Specifically, a controller 

should: 1) allow a user to command various movements, ideally without extraneous instrumentation; 2) 
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provide movement that is safe and well-coordinated with the user’s upper body movement; and 3) provide 

movement that is adaptable to varying environment geometry. A recent paper provides a thorough review 

of various control methodologies for lower limb exoskeletons in general, and for individuals with complete 

SCI in particular [72]. Among the control approaches described for individuals with complete SCI are the 

methods described in [73], [80], [87], [88], all of which use some form of trajectory control, governed by 

either impedance or computed-torque control methods.  

The intent of lower limb exoskeletons for individuals with SCI is to enable individuals with lower limb 

paralysis the ability to independently sit, stand, walk, and transition between these activities. In addition 

to potentially alleviating some of the secondary health effects caused by paralysis, the legged mobility 

enabled by these devices promises to enhance accessibility in the home and community, particularly by 

enabling access to spaces that are not amenable to wheelchairs. In order to deliver their full promise in 

this regard, such devices need to provide the ability to ascend and descend stairs, which are one of the 

primary impediments to wheelchair accessibility.  

Despite the importance of stair ascent and descent functionality, very few publications exist that 

describe control methodologies that enable exoskeleton stair ascent and descent for individuals with lower 

limb paralysis, or that characterize the mobility associated with such functionality. The authors note that 

two commercially-available lower limb exoskeletons, ReWalk (Argo Medical Technologies) and Rex (Rex 

Bionics), have both demonstrated stair ascent and descent functionality, although no technical information 

has been published in the medical, engineering, or scientific literature regarding either control 

methodology or functionality in this regard. According to two recent reviews of lower limb exoskeleton 

control methodologies [72], [89], only one (conference) paper [81] describes and validates a control 

methodology that enables exoskeletal-based stair ascent and descent for individuals with complete lower 

limb paralysis. That paper, which is a precursor to this one, describes a control methodology for a powered 

hip and knee exoskeleton intended to provide stair ascent and descent functionality to individuals with 

paraplegia, and presents representative of stair ascent and descent data for a single subject traversing a 

single stair geometry. The work presented here is an extension of that work that enables an improved 

ability to accommodate variable stair geometry without reconfiguring the controller, and also better 

leverages the combined efforts of the hip and knee joints during the stance phase of stair ascent. This 

paper further presents experimental data corresponding to stair ascent and descent of three SCI subjects 

with motor-complete injuries, and specifically assesses their ability to traverse three staircases of differing 

stair geometries. A preliminary version of this work was presented in [90], which presented some 

preliminary results on a single subject.  

The work presented here specifically describes a stair ascent and descent controller to enable 

variable-geometry stair ascent and descent with a lower limb exoskeleton, and experimentally 

characterizes the functionality of the exoskeleton in doing so on three subjects with motor-complete 
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paraplegia. The experimental characterization includes measurement of exoskeleton joint angles, torques, 

and power, and comparison of those measurements to similar measures from healthy subjects. 

 

3.3 Controller 

This stair ascent and descent controller described here was developed on a single subject 

(poster/paper EMBC 2015), and then evaluated on three SCI individuals (submitted ASME 2017). 

Development initially began on the Vanderbilt exoskeleton (prototype hardware), then transferred to the 

Indego (commercial hardware) when it became available. The evaluation of three subjects was performed 

with the Indego. The hardware, consisting of four brushless motors, joint encoders and inertial position 

sensors, and control electronics did not change significantly, enabling the development of the stairs 

controller to span from the research prototype to the commercial version of the device (courtesy of Parker). 

Controller methods for the device were developed in Simulink (Mathworks). Walking, sit-to-stand, and 

stand-to-sit controllers were established controllers. 

The method for the controller is to give the user control of the exoskeleton via inertial ques, which 

the user can manipulate with the use of balance aid, such as crutches and or a hand rail. Via the inertial 

information the exoskeleton can consistently make predictable transitions from state to state. Furthermore, 

haptic feedback in the form of vibration gives the user indication of particular impending state transitions. 

The work presented here aims to define a robust controller that is intuitive to new users, tunable for various 

skill levels, and accommodates a range of stair geometries.  

3.3.1 Joint-level Controllers 

The control architecture consists of a set of joint-level controllers that govern the behavior of each 

actuated joint, and a high-level finite state machine that provides commands to the joint-level controllers 

based on movement queues from the user and other configuration-based measures. Each joint-level 

controller consists of a full-state-feedback servo (FSFS) controller, which incorporates the following local 

control law: 

iiieqiii bk  +−= )(      (3.1) 

where i , i , and i
  are the joint torque, angle, and angular velocity, respectively, of the ith joint, and 

where the joint behavior is determined by the vector of control parameters eqi , ik , and ib , which are the 

commanded joint equilibrium angle, commanded stiffness, and commanded damping, respectively. This 

type of control structure emulates a position controller when used with relatively high values of ik  and ib
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, and emulates controllable passive impedances of  ik  and/or ib  when used with an invariant joint 

equilibrium angle (and assuming the joints are sufficiently backdrivable). The column vector of controller 

parameters that determines the behavior of each joint can therefore be defined as: 

       T

iieqii bk =       (3.2) 

For the exoskeleton considered here, with four actuated DOFs, the behavior of the entire exoskeleton 

will be determined completely by the matrix consisting of the collected controller parameter vectors: 

       lkrklhrh =       (3.3) 

where the subscripts of each column vector correspond to the right hip, left hip, right knee, and left knee 

joints, respectively. Given this localized control structure, the role of the supervisory controller is to define 

the matrix (3) in response to user input, such that the exoskeleton will perform the desired stair ascent and 

descent function as intended.  

 

3.3.2 Ascent Supervisory Controller 

Ascent mode is entered and exited from the standing (1) position; the state machine and state 

transition conditions are shown in Fig. 3-1 below. When forward thigh lean, detected by the IMUs is 

sustained for a predetermined amount of time, the user indicates intention to step up a step. The step up 

(2) state consist of the right leg advancing through a predetermined trajectory. This predetermined 

trajectory was calculated with inverse kinematics, such that the right leg is an inverted double pendulum, 

and the ankle raises to a maximum height (a vertical path), which is limited by the maximum knee flexion 

(105°). Then the hip continues to flex to position the foot over the step. During the drop (3) state, a virtual 

link between the thigh and the knee ankle was developed such that as the thigh drops due to gravity, the 

knee extends proportionally to maintain a near vertical orientation. This virtual link required one joint torque 

to be commanded by current as opposed to an equilibrium position and PD controller, to avoid error in 

one joint culminating error in the other, which caused a jerk at foot contact when PD was used at both 

joints.  The controller then checks (4) for foot contact as indicated by the right thigh angular velocity 

approach to zero. There is also a lean check that enables the user to stop if desired but was found users 

were comfortable with a minimal check time of 0.1s. The final state is the lift state (6), where, upon entry, 

a trajectory is calculated such that the current position is driven to the standing position such that the right 

leg lifts the user while the left leg steps to avoid the step and possible lip.  
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Figure 3-1: Ascent Supervisory Controller 

 

 

3.3.3 Descent Supervisory Controller 

The stair descent controller consists of four states, as illustrated in Fig. 3-2. The basic description of 

operation is as follows. The descent of each stair starts in State 1, which is a standing state, in which the 

exoskeleton provides standing support at both hips and knees. In order to initiate the stair descent 

movement, the user must shift his or her posture forward, presumably using the handrail and/or stability 

aid(s), such that the average thigh angle with respect to the vertical exceeds a predetermined threshold 

for a predetermined period of time (e.g., one second). Doing so will move the state machine into State 2, 

which is the step-out state, in which the right leg, and more specifically the right hip and knee joint angles, 

will follow a predetermined trajectory to extend the right foot out over the next stair tread, while the left leg 

maintains postural support. After the predetermined (time-based) trajectory has completed, the state 

machine enters State 3, in which the left (stance leg) hip and knee joints undergo a predetermined flexion 

trajectory, which produces stance knee yielding (i.e., lowering), which enables the body center of mass 

and right foot to settle smoothly to the next lower stair tread. The flexion trajectory is sufficient for the 

maximum stair height, and thus provides accommodation of variable step height, since continuing knee 

flexion following foot strike serves only to transfer load to the forward foot and unload and lift the rearward 

foot. Once the timed flexion trajectory is complete and the user shifts his or her posture over the right 

stance leg, as indicated by the right thigh angle with respect to vertical surpasses a second predetermined 

threshold, the controller will transition into State 4, in which the flexed left leg will follow a predetermined 
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trajectory to return the exoskeleton to the standing position of State 1 (although positioned one step below 

the preceding cycle). Each successive stair is descended via a similar process.  

 

 

Figure 3-2: Stair descent supervisory controller 

 

3.4 Assessment Method 

In order to provide an assessment of the efficacy of the controller with respect to enabling variable-

geometry stair ascent and descent, the exoskeleton controller was experimentally assessed on three 

subjects with motor-complete spinal cord injuries ranging from levels T10 to L1, who used the exoskeleton 

to ascend and descend three staircases of differing geometry ranging from 3-6.5” tread height, shown in 

Fig. 3-3.  



34 
 

 

Figure 3-3: Stair geometries used in controller assessment 

 

3.5 Results 

3.5.1 Stair Ascent Results 

Kinematic data of the left and right hip and knee joint angles corresponding to a total of 153 total 

strides from all subjects are shown in Fig. 3-4. The left and right hip and knee joint angles correspond to 

a total of 153 total strides from all subjects, including 90 stair ascent strides on Stair 1 (i.e., 22 strides from 

S1, 35 from S2, and 33 from S3), shown in black, and 63 stair ascent strides on Stair 2 (i.e., 21 strides from 

each subject), shown in red.  Note that this stride data is synchronized at two points (which correspond to 

the first and second user-supplied lean thresholds), rather than one point (i.e., heel strike), as is more 

typical in analyzing stride data. This is due to the fact that the ascent “stride” is comprised of two 

consecutive movements, each independently triggered by the user, rather than a single continuous 

movement. As such, the data shown in Fig. 7 is synchronized at zero percent stride cycle, which 

corresponds to the user meeting the first forward lean threshold (i.e., entry into State 2), and also at 45% 

stride cycle, which corresponds to the user meeting the second forward lean threshold (i.e., entry into 

State 5).  Note that the vertical lines on the plot separate states, and that zero percent corresponds to 

entry into State 2 (and exit from State 1). Specifically, the start of the stride cycle begins upon entering the 
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step-up state (State 2) where the right leg undergoes flexion such that the right foot is raised above the 

next stair tread, as indicated in the rise of the measured right joint angles. 

 

Figure 3-4: Joint angle trajectories corresponding to stair ascent for 90 steps from three subjects on Stair 
1 (black), and 63 steps on Stair 3 (red). The trajectories start from state 2 and the vertical lines mark the 
state transitions. 

The motor current and kinematic data were processed to determine the joint torques and powers 

during the strides; kinetic data were normalized by body-mass and plotted in Fig. 3-5 and 3-6. Figure 3-5 

shows the mean body-mass-normalized joint torques for stair ascent for the three subjects for Stair 1, 

which includes a total of 90 strides (i.e., 22 strides for subject S1, 35 for S2, and 33 for S3), along with plus 

and minus one standard deviation about the mean. Figure 3-6 shows the corresponding mean body-mass-

normalized joint power, along with plus and minus one standard deviation about the mean.  
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Figure 3-5: Average ascent joint torques are shown for three subjects over 90 steps on Stair 1. Dashed 
lines are plus and minus one standard deviation. The plots begin in State 2 and vertical lines mark state 
transitions 
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Figure 3-6: Average ascent joint powers are shown for three subjects over 90 steps on Stair 1. Dashed 
lines are plus and minus one standard deviation. The plots begin in State 2 and vertical lines mark state 
transitions 

 

3.5.2 Stair Descent Results 

Figure 3-7 shows the left and right hip and knee joint angles corresponding to 152 total strides, which 

are 89 strides (22 strides for subject S1, 34 for S2, 33 for S3) on Stair 1, shown in black, and 63 strides 

(21 each) on Stair 2, shown in red. Like the ascent stride, the descent stride has two user dependent state 

transitions, and therefore is parsed (i.e., synchronized) twice per stride, at zero percent stride and at 54% 

stride, which corresponds to the user-provided lean triggers (i.e., entry into State 2 and entry into State 4). 

Specifically, the stride begins with the predetermined step-out trajectory (State 2) where the right leg 

undergoes hip flexion, and the right knee flexes and extends, such that the right foot is above the next 

stair tread and the user is supported by the left leg in a stance configuration. After the step out is complete, 

the controller enters the damped lowering trajectory (State 3) where the left joints flex to accommodate 

the maximum step height, while the right hip extends to a stance position, which enables the user to 

transfer weight from the left leg to the right leg on the next step. The controller exits State 3 when the 

trajectory is complete and the right thigh angle with respect to vertical surpasses a threshold for a 

predetermined period of time. Once exited, the step-to trajectory (State 4) is executed to return to the 
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stance configuration. When the predefined trajectory is complete, the user remains in stance (State 1) until 

voluntarily exited.  

 

 

Figure 3-7: Joint angle trajectories corresponding to stair descent for 89 steps from three subjects on Stair 
1 (black), and 63 steps on Stair 3 (red). The trajectories start from state 2 and the vertical lines mark the 
state transitions. 

 

 

The motor current and kinematic data were processed to determine the joint torques and powers 

during the strides; kinetic data were normalized by body-mass and plotted in Fig. 3-8 and 3-9. Figure 3-8 

shows the mean body-mass-normalized joint torques for stair ascent for the three subjects for Stair 1, 

which includes a total of 89 strides (i.e., 22 strides for subject S1, 34 for S2, and 33 for S3), along with plus 

and minus one standard deviation about the mean. Figure 4.9 shows the corresponding mean body-mass-

normalized joint power, along with plus and minus one standard deviation about the mean.  
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Figure 3-8: Average descent joint torques are shown for three subjects over 90 steps on Stair 1. Dashed 
lines are plus and minus one standard deviation. The plots begin in State 2 and vertical lines mark state 
transitions. Positive torques correspond to extensive moments 
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Figure 3-9: Average descent joint powers are shown for three subjects over 89 steps on Stair 1. Dashed 
lines are plus and minus one standard deviation. The plots begin in State 2 and vertical lines mark state 
transitions 

3.5.3 Other Results 

Step time (i.e., the time required to ascend or descend a single stair) is a determined by the trajectory 

speed and the user’s ability to trigger the step sequence. Figure 3-10 shows the average step time (i.e., 

the time required to ascend or descend a single stair) for each subject for three consecutive ascents and 

descents of the staircase depicted in Fig. 5(a), along with the average across all subjects, along with plus 

and minus one standard deviation for each. The average ascent time per step across users was 7.8±0.64s, 

while the average descent time per step across users was 9.2±1.1s.  
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Figure 3-10: Average time per step of each user for 36 steps, and the average of the group with plus/minus 
one standard deviation bars. 

Variable step height accommodation is observed in ascent State 3 as the controller only progresses 

to the following state after tread contact is detected. Figure 3-11 shows the hip and knee joint angles of 

the right leg at the exit of the damped lowering state of ascent (i.e., State 3, when the exoskeleton senses 

foot contact with the next stair tread). For taller steps the damped lowering is exited in a more flexed 

position (i.e., greater angles) than the shorter steps. The percent difference of joint angles is 32% at the 

hip and 30% at the knee when comparing Stair 2 to Stair 3, for which the percent difference in step height 

is 66%. Stair 1 is omitted from this evaluation because of the similarity in height to Stair 3, with a percent 

difference in step height of 8%. Note that the similar differences in joint angles are not observed in stair 

descent because the lowering state has a predetermined trajectory component that flexes the leg to a 

maximum desired flexion, thereby achieving contact on the stance leg regardless of variation in step 

height.   
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Figure 3-11: Average angle measurements and plus/minus one standard deviation bars for the right hip 
(RH) and right knee (RK) at the transition point from the state 3 of ascent where stair tread contact is made 
for stair 2 and stair 3, corresponding to step heights of 7.62 cm and 15.24 cm respectively. 

 

Finally, the average Borg perceived exertion rating for ascent and descent were both 9.7±1.5, where 

a rating of 9 corresponds to “very light” exertion, and a rating of 11 corresponds to “light” exertion. The 

reported perceived exertion indicates that the robot is supplying and dissipating energy to significantly 

reduce the effort required by the wearer. The energy generated and dissipated by the exoskeleton motors 

is found by integrating the power data shown in Figs. 3-6 and 3-9. Positive power occurs when the 

exoskeleton adds energy to the system, such as lifting the total mass during State 3 of ascent or increasing 

a joints velocity. Negative power occurs when the exoskeleton dissipates energy from the system (e.g. 

lowering the total mass, reducing joint velocity). The energy generated or dissipated by the exoskeleton 

during ascent and descent was normalized by the potential energy of one step, i.e., by the amount of 

energy required to ideally raise or lower the combined human and exoskeleton mass through the height 

of one step under gravity. As such, the energy delivered or dissipated is described as a “normalized 

energy,” where the energy is normalized by the change in system potential energy associated with ascent 

or descent of a single stair (i.e., by the center-of-mass work).  Integration of motor power for stair descent 

across all stairs and subjects indicates a mean normalized energy per step dissipated by the exoskeleton 

during stair descent of 57±6% (of the center-of-mass work). Integration of motor power for stair ascent 

across all stairs and subjects indicates a mean normalized energy per step provided by the exoskeleton 

during stair ascent of 140 ± 14% (of the center-of-mass work). Note that in both cases, the power and 

energy is measured at the motors, not at the joints; as such, inefficiencies in the drive trains will result in 

increased energy dissipation at the joints during stair descent relative to that reported, and decreased 

energy contribution during stair ascent. Further, it is important to recognize the distinction between center-

of-mass work and joint-level work. The former accounts strictly for center-of-mass motion relative to gravity, 

while the latter entails components of movement that are associated with changing body configuration 
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and horizontal progression, in addition to components of movement associated with center-of-mass 

relative to gravity. Therefore, although the energy dissipated or generated by the motors provides some 

indication of energy contributions relative to center-of-mass work, motor contributions should be 

interpreted with appropriate limitations. In order to more clearly account of the energetic contribution of 

the exoskeleton in stair ascent and descent would require force plates in the stair treads that measure 

vertical forces under the exoskeleton, and a motion capture system that measures vertical center-of-mass 

motion, which were not available during the studies described here. Nonetheless, the numbers presented 

here at least indicate that the exoskeleton motors provide substantive energy dissipation and contribution 

relative to the energy requirements of stair descent and ascent, respectively. 

3.6 Discussion 

The three subjects were able to capably ascend and descend stairs of heights varying from 7.6 to 

16.5 cm, without any stair-specific adjustments in the controller. Further, the same controller parameters 

were employed for all three subjects, with the exception of the lean thresholds, which were adjusted to 

suit each subject, although subsequently left to remain invariant between stair geometries. Note that the 

lean thresholds used in the walking controller (as described in  [80]) are also adjusted to suit each subject. 

Doing so is necessary, since each subject has a unique posture, and the exoskeleton generally fits each 

subject somewhat differently. Nonetheless, the results suggest the proposed control structure is able to 

accommodate different subjects with minimal customization (i.e., lean thresholds), and subsequently 

different stair geometries without controller adjustment. Table 1 provides a comparison between some 

characteristics of exoskeleton stair ascent and descent on Stair 1 and data from healthy subjects 

presented in [1] on a comparable stair geometry, which are referenced in the discussion below. It should 

be noted that the healthy stair ascent and descent data corresponds to a step-over gait, while the 

exoskeleton provides a step-to gait. Despite this limitation, in the absence of a more appropriate 

benchmark, the step-over healthy data provides some context with which the exoskeleton ascent and 

descent performance can be compared. The following discussion considers each row of Table 1 

sequentially. 

Table 3-1: Exoskeleton and healthy stair ascent and descent characteristics. Healthy data from  [1] 

 Exoskeleton Healthy 

 Ascent Descent Ascent Descent 

Step Time (s) 7.8±0.6 9.2±1 1.4±0.1 1.2±0.1 
Max Hip Flexion (°) 78±1 58±1 70 45 
Max Knee Flexion (°) 103±1 97±2 95 90 
Mean Joint Std (°) 1.5 0.8 8 8 
Peak Hip Moment (Nm/kg) 0.9±0.2 0.7±0.2 0.5 0.6 
Peak Knee Moment (Nm/kg) 0.9±0.1 0.6±0.1 1.1 1.3 
Peak Hip Power (W/kg) 0.9±0.2 -0.3±0.1 1 -0.4 
Peak Knee Power (W/kg) 1.4±0.3 -1.3±0.2 2.5 -4 
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 As observed in the first row of the table, ascent and descent with the exoskeleton is considerably 

slower than healthy gait. Despite this, the consistency of step time is quite similar. Specifically, the 

standard deviation in ascent and descent for the three subjects using the exoskeleton was 7.6% and 

10.8%, respectively, while the corresponding standard deviation for a cohort of healthy subjects was 

reported to be 7.1% and 8.3%, respectively [1]. As shown in the second and third rows, the maximum hip 

and knee joint angles during ascent and descent are also quite similar. Specifically, the maximum knee 

joint flexion is 103 and 97 deg for stair ascent and descent, respectively, with the exoskeleton, and 95 and 

90, respectively, for healthy. The maximum hip joint flexion angles are 78 and 58 deg (ascent and descent) 

for the exoskeleton, and 70 and 45 (ascent and descent) for healthy. The exoskeleton provides larger hip 

and knee movements than typical of healthy subjects in part to compensate for a lack of ankle dorsiflexion, 

and also to accommodate variable stair geometry in ascent. 

 The fourth row of Table 3-1 provides the standard deviation of joint movement, relative to the mean, 

over a stride, for a single stair geometry. In this case, each joint is considered separately, but the resulting 

standard deviation between joints averaged together to provide a single measure to characterize 

consistency of joint motion. As seen in the table, the exoskeleton data indicates an average standard 

deviation of 1.5 and 0.8 deg, respectively, for the exoskeleton, while [1] reports 8 deg for both. As such, 

the exoskeleton provides more consistent motion between subjects, relative to healthy data. This may be 

expected, however, since the exoskeleton employs the same trajectories between subjects, while healthy 

subjects are not similarly controlled. 

The fifth row of Table 3-1 lists the peak hip and knee joint torques (corresponding to Stair 1). 

Specifically, the mean peak torques at the stance hip and knee during State 5, the step-to motion (i.e., 

when the exoskeleton lifts the body mass up to the next step) are 0.89±0.2 Nm/kg at the hip and 0.86±0.07 

Nm/kg at the knee. These body-mass-normalized peak torques are 176% and 78%, respectively, of the 

corresponding peak hip and knee joint torque during the same phase of healthy ascent. Averaged 

between joints, the exoskeleton provides an average peak joint torque of 0.88 Nm/kg, while the 

corresponding torque for healthy ascent is 0.8 Nm/kg. As such, the averaged system-level torque 

provided by the exoskeleton is approximately 110% of healthy, indicating that the exoskeleton is providing 

a similar level of “lifting effort” to that observed in healthy ascent. The corresponding data for descent 

indicates peak torque of 0.62±0.07Nm/kg at the knee and 0.72±0.18 Nm/kg at the hip during State 3 

where the exoskeleton lowers the body mass of the subject. The corresponding torques for healthy 

subjects are 0.6 and 1.3 Nm/kg, respectively. Considering the joint-averaged “torque effort,” the 

exoskeleton provides 0.67 Nm/kg while healthy subjects are characterized by 0.9 Nm/kg. As such, the 

exoskeleton is providing approximately 74% of the healthy effort during descent, while the remaining effort 

is presumably provided by the upper body (using handrails and/or crutches).  
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The last two rows of Table 3-1 show peak power (corresponding to Stair 1 and Figs. 9 and 13). The 

peak power at the stance hip during State 5, the step-to motion (i.e., when the exoskeleton lifts the body 

mass up to the next step) is 0.88±0.2 W/kg, and at the knee is 1.4±0.3W/kg. By comparison, the 

corresponding values for healthy ascent are 1.0 and 2.5 W/kg, respectively. Employing a joint-averaged 

power, the exoskeleton provides 1.14 W/kg, while healthy are characterized by 1.75 W/kg. As such, the 

exoskeleton provides approximately 63% of the peak power of healthy ascent.  

The peak power during descent during State 3 (i.e., the lowering state) is -0.3±0.1 and -1.3±0.2 

W/kg for hip and knee, respectively, while the corresponding values for healthy gait are -0.4 and -4.0 W/kg. 

Averaged across the two joints, the exoskeleton provides -0.8 W/kg peak power dissipation, while healthy 

provides -2.2 W/kg. Therefore, the exoskeleton provides approximately 36% of peak healthy power 

dissipation.  

 

3.7 Conclusion 

A variable-stair-height exoskeleton controller was presented to enable stair ascent and descent in 

an exoskeleton employing powered hip and knee joints. The controller was implemented in a lower limb 

exoskeleton, and its efficacy in providing stair ascent and descent functionality was assessed in trials 

involving three motor-complete SCI subjects, who performed stair ascent and descent on three stair 

geometries. All subjects were able to capably ascend and descend all staircases. Data from these trials 

support the ability of the controller to accommodate staircases of variable geometry, without altering 

control parameters. Data recorded from these trials further indicate movement that is considerably slower 

relative to healthy subject stair ascent and descent, but with otherwise similar motion characteristics. 

Specifically, the exoskeleton provides peak joint torques on average 110% and 74% of the corresponding 

healthy peak joint torques during ascent and descent respectively, and peak joint powers on average 63% 

and 36% of healthy data during ascent and descent, respectively, with differences provided by upper-

body effort. Finally, despite data indicating effort required of the upper body, ratings of perceived exertion 

by the users rated the effort required to perform the activity between “very light” and “light.” 
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CHAPTER 4: MANUSCRIPT 2 - SUPPLEMENTAL STIMULATION IMPROVES SWING 

PHASE KINEMATICS DURING EXOSKELETON ASSISTED GAIT OF SCI SUBJECTS 

WITH SEVERE SPASTICITY 

 

By Andrew Ekelem and Michael Goldfarb 

Published in Frontiers in Neuroscience, vol. 12, June 2018.  

DOI: 10.3389/fnins.2018.00374 

4.1 Abstract 

A hybrid FES-exoskeleton system comprehensively address SCI by providing structural stability with 

the exoskeleton and muscle activation with the FES. The Indego and Chimera enabled a hybrid system to 

be explored when combined with a cable network and unifying controller. Up to this study, most 

exosksleton controllers for SCI had been demonstrated on complete motor paralyzed individuals with mild 

spasticity. It was apparent through empirical observation that spastic individuals had difficulty making 

meaningful strides when using the exoskeleton alone. The lack of synergy between the spastic muscles 

and the exoskeleton motors not only detrimental to the performance but fails the fundamental objective of 

rehabilitation as the muscles are activating in opposition to the user’s intention.  

Strong extensor spasticity resists the exoskeleton movements sufficiently to expose dramatic 

misalignment between the exoskeleton joints and the user’s. A lack of synergy between the anatomical 

and robotic actuators causes excessive deformation of straps and soft tissue when using orthotic or 

wearable devices. Modeling strap dynamics and inferring device limitations and possible control 

compensators is the objective of other studies [91]–[93]. Here, pathological muscle activity due to 

spasticity is treated with FES to improve physiological and robot synergism. 

 

4.2 Introduction 

Spasticity is a common comorbidity resulting from spinal cord injury (SCI), where approximately 68-

75% of individuals with SCI experience spasticity and 20-40% have problematic spasticity that restricts 

activities of daily living [30]. Spasticity is commonly defined as involuntary muscle activity initiated by 

uninhibited reflex circuits, and can be categorized as intrinsic tonic, intrinsic phasic, or extrinsic nocuous 

[30], [31]. Tonic and phasic spasticity are thought to be caused by the hyperactive stretch reflex circuits 

after central neurologic impairment of the corticospinal inhibitory pathways. Symptoms of spasticity 

include a counter torque proportional to the angular velocity about the joint and an increase in muscle 

tone. Spasticity is ordinarily evaluated through the Modified Ashworth Scale (MAS) which involves a trained 
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assessor rapidly advancing a joint through its range of motion and evaluating the stiffness of the joint on 

a scale from zero to four, see Table 1 [2], [32]. Significant tonic and/or phasic spasticity can be 

problematic for attempts to restore mobility to a paretic or paralyzed limb.  

Spasticity may be managed to achieve a balance between useful and detrimental effects by 

progressing from physical rehabilitation, pharmacological intervention, injection, intrathecal baclofen, and 

surgery [30]. Useful effects of spasticity induced muscle activity include: reduced muscle atrophy and 

improved blood circulation, which can reduce predispositions to other comorbidities that commonly result 

from frequent wheelchair use [30], [36]. Therefore, spasticity is typically managed to a level that best 

balances comfort and quality of life (QOL). 

Recently, lower limb exoskeletons have begun to emerge onto the commercial marketplace. Such 

devices can facilitate legged mobility for individuals with SCI. These devices have the potential to improve 

the QOL of people with lower limb paralysis by enabling them to walk, generally via actuated knee and 

hip joints [86]. Exoskeletons have been shown to enable safe over-ground weighted walking and gait 

training for the mobility impaired, particularly for individuals with SCI [86]. The presence of severe 

spasticity, however, can severely impair the ability of an exoskeleton to provide a viable walking movement 

[94]–[96]. Severe extensor spasticity, in particular, can preclude hip and knee flexion during the swing 

phase of walking, thereby largely nullifying the ability of the exoskeleton to provide effective legged 

mobility.  

Functional electrical stimulation (FES) applies artificial electrical impulses to initiate action potentials 

in muscle and nerves for a functional response. FES has proven effective in enabling ambulation in the 

SCI population when used alone, but when used alone can be metabolically taxing, is prone to rapid 

fatigue, and may lack limb control and stability. A few studies have proposed the use of FES with orthotic 

devices, generally called hybrid FES systems, which can provide several advantages relative to using FES 

alone [97]–[100], and one prior study investigated a hybrid FES system that couples FES with a robotic 

exoskeleton [101]. That study specifically coupled a lower limb exoskeleton with FES of the quadriceps 

and hamstrings muscle groups of each leg, and demonstrated reduced exoskeleton motor torque and 

power when used in a hybrid FES manner.  

The intent of this research is to investigate the potential of supplementing a lower limb exoskeleton 

with FES for the purpose of enabling individuals with severe extensor spasticity to effectively walk in a 

lower limb exoskeleton when those individuals would otherwise have difficulty to do so. Preliminary studies 

indicate that exoskeleton walking may have beneficial effects with respect to mitigating spasticity [86], 

[94], [96], and as such, making this technology available for individuals with moderate to severe spasticity 

may have particular value for this sub-population. In order to do so, the authors propose here to 

supplement an exoskeleton with stimulation of the common peroneal nerve with the intent of exciting the 

flexion withdrawal reflex. Common peroneal nerve stimulation has been shown to assist in swing by 
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initiating a concerted flexion of the hip, knee, and ankle [102]–[104]. Stimulation of the common peroneal 

nerve activates the flexor withdrawal reflex, which comprises afferent neurons activating motor units 

responsible for flexion, as well as inhibitory interneurons that inhibit ipsilateral extensors while activating 

contralateral extensors [21]. As such, the hypothesis behind peroneal stimulation is twofold: first, the reflex 

is hypothesized to temporarily inhibit the extensor tone resulting from severe extensor spasticity, and 

second, the reflex is expected to recruit the lower limb flexors, and therefore supplement the exoskeleton 

motors during swing. In order to evaluate this hypothesis, a lower limb exoskeleton system was configured 

to incorporate supplemental FES of the common peroneal nerve, and experiments were conducted on two 

SCI subjects with severe extensor spasticity to evaluate the effect of supplemental peroneal stimulation 

on exoskeleton-generated swing phase movement.  

4.3 Methods 

4.3.1 Clinical Status 

Two subjects were recruited for these experiments. The subjects had thoracic-level motor-complete 

SCI (i.e., ASIA A or B) to exclude voluntary motor control of the lower limbs; had right and left leg extensor 

spasticity rated on the Modified Ashworth Scale (MAS) of three or greater (see, Table 4-1); and were 

responsive to stimulation of the flexor withdrawal reflex. Subject characteristics relevant to the experiments 

are given in Table 4-2, and respective MAS scores given in Table 4-3. This study was conducted with the 

informed consent of each subject and with the approval of the Vanderbilt University Internal Review Board. 
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Table 4-1: Modified Ashworth Scale description [2] 

Modified 
Ashworth 
Scale 

Description 

0 No increase in muscle tone 

1 Slight increase in muscle tone, manifested by a catch and release or by minimal 
resistance at the end range of motion when the affected parties moved in flexion 
or extension 

1+ Slight increase in muscle tone, manifested by a catch, followed by minimal 
resistance throughout the remainder (less than half) of the range of motion 

2 More marked increase in muscle tone through most of the range of motion, but 
the affect part is easily moved 

3 Considerable increase in muscle tone, passive movement is difficult 

4 Affected part is rigid in flexion or extension 

 

Table 4-2 Subject characteristics 

Subject ID S1 S2 

ASIA T11 B T4 B 

Level T11 T4-5 

DOI Mar 2010 Dec 2013 

Body Mass (kg) 66 88 

Height (m) 1.83 1.73 
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Table 4-3: Modified Ashworth Scale ratings for each subject. 

Muscle Group S1 R/L S2 R/L 

Hip flexors 1+/1 0/1 

Hip extensors 2/1 0/0 

Knee flexors 2/2 2/2 

Knee extensors 3/3 3/3 

Hip adductors 3/3 3/3 

Hip abductors 0/0 0/0 

Ankle dorsiflexors 0/0 0/0 

Ankle plantarflexors 3/3 4/3 

 

4.3.2 Stimulator 

A custom stimulator was developed on an embedded system, which was controlled in the same 

MATLAB Simulink/Stateflow environment used to control the exoskeleton, and connected via the same 

CAN cable. As such, the sensor information and control associated with the exoskeleton and stimulator 

were fully synchronized. The custom stimulator employed a bipolar stimulation waveform with 200 μs pulse 

widths at a frequency of 50 hz. The device controls the peak current output with a maximum amplitude of 

80 mA. Square sticky-gel 3.8 x 3.8 cm (1.5 x 1.5 in) electrodes were placed over the common peroneal 

nerve on each leg, see Fig. 4-1. A total of two stimulator channels were used, one for each leg. The 

stimulation amplitude was set prior to donning the exoskeleton to a level that elicited strong ankle 

dorsiflexion, but not so high as to raise the heel off the ground while in a seated position.   
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Figure 4-1: Typical electrode placement for stimulation of the common peroneal nerve. 

 

4.3.3 Hybrid Controller 

The state machine for the Indego walking controller is shown in Fig. 4-2 with state transition 

conditions described in Table 4-4. To account for the latency of the stimulation to produce movement, the 

stimulation was activated during the lean check state, which identifies the user’s intent to take a step by 

maintaining a forward lean (i.e., forward movement of the estimated center of pressure), as measured by 

inertial sensors in the exoskeleton, for 200 ms. Once swing is initiated, the stimulation remains on for 40% 

of the swing phase, during which the majority of flexion occurs.  

 

Figure 4-2: Walking state machine with corresponding transition conditions in Table Table 4-4 
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Table 4-4: State machine transition conditions 

Transition Condition 

R0 to R1 or L0 to L1 Rear thigh angle exceeds lean threshold 

R1 to R0 or L1 to L0 Rear thigh angle less than lean threshold 

R1 to R2 or L1 to L2 State timer exceeds 200 ms 

R2 to L0 or L2 to R0 State timer exceeds 1.1 s 

 

Figure 4-3 shows the desired joint trajectories commanded by the exoskeleton controller as the 

state machine cycles through a right and left step, along with the corresponding timing of the 

stimulation pulse. When the stimulation is off, the stimulation amplitude is maintained at zero.   

 

Figure 4-3: Trajectories for the four exoskeleton joints and the stimulation amplitude for the right and left 
legs as the state machine progresses through two steps. 

 

4.3.4 Experimental Procedure 

Participants were fit with the exoskeleton and given practice sessions (< 4 hours per day) walking 

with FES on and off, until they could comfortably walk and advance the balance aid (i.e., the walker), see 

Fig. 5.4, for one hour taking breaks as needed. After sufficient training sessions, each subject had a data 

session where they donned the FES system, Indego, and XSens MVN Awinda system (Xsens Technologies 

B.V., Netherlands) motion capture system and walked for approximately one hour, taking rest breaks as 

needed. The Xsens wireless sensor based motion tracking system was used to capture the kinematic data 

of the lower limbs during each session. This system includes seven sensors, one sensor for each limb 

segment (feet, shanks, thighs, and hip). The trajectories measured by Xsens Motion tracker were then 

processed in MATLAB to identify the peak flexion angle of each joint for each step. For these experiments, 
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the stimulation was programmed to alternate on and off every 10 steps to assess the relative value of 

stimulation on exoskeleton motion.  Gait data was recorded during the data session, totaling 232 steps for 

S1, and 260 steps for S2. MAS were evaluation prior to donning the equipment and after doffing the 

equipment.  

 

Figure 4-4: Subject walking with the exoskeleton and stimulator, using a walker for balance. The physical 
therapist monitors the gait as a precaution in accordance with the Vanderbilt IRB. The subject has 
consented to the use of this photograph. 

4.4 Results 

Common peroneal stimulation increased the step length for both subjects, which was reflected in 

the kinematic data. The hip and knee angles of a representative walking session is plotted in Fig. 4-5. The 

colored dots/hashes indicate the peaks found with a MATLAB algorithm, and does not include half steps, 

which are the steps in and out of neutral stance (when both hip equilibrium positions are equivalent). The 

grey bands indicate periods where FES is off. As seen in the data, the subject was able to achieve 

significantly greater hip and knee flexion with FES, which is indicative of larger steps and greater toe 

clearance.  



54 
 

 

Figure 4-5: Representative joint angles from walking trial with subject S2. The gray bars indicate periods 
with FES off and the white bars indicate steps taken with FES on. Flexion peaks are identified by hash 
marks; blue for steps with FES assistance, red for steps without FES assistance.  

The peak flexion found for each step was averaged for the hip and knee joints of each subject and 

plotted in Fig. 4-6, with error bars denoting the standard deviation. Stimulation assistance increased the 

mean hip peak flexion angles by 15.8 deg (151%) and the mean peak knee angle by 14.3 deg (58.8%). 

Significance in differences in the means were assessed using paired t-tests for the intra-participant peaks, 

which indicated that the differences in average knee and hip joint flexion between the FES-on and FES-off 

cases was significant with greater than a 1% confidence level. 
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Figure 4-6: Median peak joint angle across all steps for each subject plotted for FES assistance on and 
FES assistance off. Error bars mark plus and minus half of the interquartile range. Wilcoxon analysis 
determines FES on and off had significantly different medians for each joint of each subject, p < 0.01. 

Motor current data from the exoskeleton was logged and analyzed to evaluate the effects of FES 

assistance on motor torques. The RMS motor current for the swing leg was averaged for all steps for each 

subject and grouped into FES on and FES off, see Fig. 4-7. Across subjects FES decreased the swing 

RMS current by 249 mA (15.3%) at the hip motors and 581 mA (29.8%) at the knee motors. Additionally, 

the intra-participant mean swing RMS currents with FES-on and FES-off were significantly different within 

1% confidence level for both subjects. 

 

Figure 4-7: Median of the RMS current of the swing leg for all steps plotted for FES assistance on and FES 
assistance off. Error bars mark plus and minus half of the interquartile range. Wilcoxon analysis determines 
FES on and off are significantly different for each joint of each subject, p < 0.01. 

 

4.5 Discussion 

 Stimulation the flexion withdrawal reflex improved the flexion kinematics significantly during 

exoskeleton assisted gait for participants with severe extensor spasticity. Qualitatively, both subjects had 

difficulty achieving toe clearance while walking with the exoskeleton without stimulation (i.e., toes 

consistently dragged on the ground). Adding stimulation greatly improved the gait kinematics and enabled 

these participants to take significantly larger strides.  
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Additionally, FES has been shown to provide therapeutic value for persons with SCI by activating 

the dormant neuromuscular tissue of the paralyzed limbs. The improved blood flow furthermore may 

reduce the likelihood of some comorbidities associated with SCI. For these reasons the addition of flexor 

withdrawal stimulation may be beneficial to all SCI, including individuals with minimal spasticity.  

Although some prior studies indicate a possible reduction in spasticity resulting from the use of 

exoskeletons, in this research, the MAS scores did not change significantly from before to after the walking 

session.  

A greater number of subjects should be evaluated to make generalized claims regarding the use of 

supplemental FES for subjects with severe extensor spasticity. Furthermore, the rehabilitation community 

would benefit from studies that explore the broader impact of exoskeletal walking in the SCI population. 

4.6 Conclusion 

In two thoracic-level SCI subjects with severe lower limb extensor spasticity, supplemental 

stimulation of the common peroneal nerve was shown to significantly enhances walking movement 

generated by the exoskeleton, and to significantly reduce the current demand on the exoskeleton motors. 

Results of more subjects would strengthen the conclusion of this work. The authors hope that employing 

supplemental FES as described here will make exoskeletal walking a viable option for individuals with SCI 

and severe extensor spasticity, who otherwise would not be candidates for viable exoskeleton walking. 
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CHAPTER 5: CLONUS ATTENUATOR EVALUATION 

 

5.1 Abstract 

This chapter describes a FES controller for the treatment of clonus. Clonus is caused by disinhibited 

self-exciting reflexes from both proprioceptors and exteroceptors, along with mediation from central 

pattern generators. Pathological clonus is often evoked by perturbations from the terrain during wheelchair 

propulsion. As such, clonus interrupts wheeled mobility by displacing the limbs once excited. An anti-

clonus model using FES was presented in 1967; however, data presented is limited to a single subject in 

a controlled environment [105]. To evaluate the adaptive anti-clonus FES controller presented here, inertial 

and video data acquired from wheelchair users traversing rough terrain was analyzed. Visual review of 

clonus and clonus-attributed foot displacement enabled quantitative evaluation of the clonus treatment. 

The treatment uses inertial sensors to classify clonus activity and terrain perturbations likely to evoke 

clonus, and intelligently administers electrical stimulation to suppress the spasticity.  

5.2 Introduction 

Injury to the descending neurons interrupts supraspinal communication with the affected spinal 

neurological circuits. Void of supraspinal inhibition, spinal networks may exhibit involuntary reflexive 

muscle activity referred to as spasticity. Spasticity is a symptom of many neurological conditions. Clonus 

is one manifestation of spasticity that consists of cyclical muscle activation due to hyperactive stretch 

reflexes. 65-78% of people with SCI have spasticity, 40-60% of which is described to affect activities of 

daily living (ADL); 50% of whom are prescribed pharmacological intervention [30], [106]–[108].  

Wheelchair propulsion is critical to activities of daily living (ADL) for the majority of persons with 

spinal cord injury (SCI). Shaking caused by ankle clonus often interferes with propelling a wheelchair; the 

movement can involuntarily remove the feet from the footrest. The resulting dislodged appendage is 

exposed to injury and often necessitates wheelchair users to stop to reposition. Such effort and discomfort 

caused by clonus may deter SCI individuals from traversing bumpy terrain, even sidewalks, thereby 

negatively impacting ADL Other symptoms of spasticity may aid with ADLs and tissue health, however 

clonus has little benefit and should be managed to eliminate detrimental effects with interventions ranging 

from physical rehabilitation, pharmacological agents, botulinum toxin injection, intrathecal baclofen, to 

rhizotomy [30]. As the treatments progress, the associated costs, risks, and effectiveness increase. This 

work describes an effort to evaluate the efficacy of a noninvasive naturopathic therapy for treating clonus 

with functional electrical stimulation (FES). 
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5.2.1 Mechanisms of Clonus  

The rhythmic muscle contractions of ankle clonus occur consistently in the range of 3-8 Hz and are 

typically initiated with a dorsiflexion stretch of the ankle. The contingency on joint position suggests that 

the stretch reflex is a key contributor to the condition [30], [77]. Additionally, clonus frequency has been 

shown to correlate with external load and neural pathway length, suggesting the proprioceptive afferent 

feedback loop is important for the mechanism of clonus [109], [110]. The stretch reflex is a monosynaptic 

reflex where muscle spindle type Ia afferents (proprioception afferent types: Ia - velocity, Ib – tension, II - 

length) synapse with motor units. Percutaneous electromyography has confirmed that stretch does 

correspondingly activate single motor units, and likely needs continuous excitation to sustain clonus [111], 

[112]. Such continuous excitation may arise from extrinsic perturbations to the joint or intrinsic activity of 

pattern generators.  

In the case of wheelchair propulsion there is no shortage of extrinsic perturbations from vibrations 

or bumps to elicit afferent activity, however, the diverse degree of excitability among persons with 

paralysis and the inter- and intra-day variability is likely due to the complex interaction of central 

mechanisms with the paralyzed muscles. Three elements suggest the involvement of central mechanisms 

for maintaining clonus: electrophysiological evidence of simultaneous antagonist muscle activation, 

contralateral muscle activity modulation of clonus, and inputs other than stretch may evoke clonus [78], 

[113]–[115]. Hence, there are at least two contributing factors to the manifestation of clonus after upper 

neuron damage: disinhibited reflexes (stretch and vibration) and afferent excitation of central pattern 

generators.  

5.2.2 Therapeutic Interventions 

Identifying the outcome measures are critical for prescribing and evaluating an intervention for 

spasticity. Although numerous tests exist for quantifying various components of spasticity (Ashworth, 

pendulum, Tardieu, SCATS), other outcomes such as risk, cost, and patient expectation must all be 

considered when prescribing an intervention [116].  The preliminary treatment is physical intervention. 

Physical therapy for managing spasticity includes appropriate positioning, weight bearing and 

stretching [30], [117], [118]. These lower the excitability of the stretch reflex with effects that may range 

from ineffective to effects carrying over a day [119]. Therefore, the benefits of physical therapy require 

frequent repetition.  

The market leading pharmacological agent for anti-spasticity is oral Baclofen taken by about half of 

people with SCI. Baclofen has been established as the most effective treatment for spasticity although its 

exact mechanisms is still unknown. Literature suggest that Baclofen acts by on interneurons to selectively 

inhibit reflex activity, enabling voluntary muscle activity to be unaffected [120], [121]. Baclofen is often 
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covered by insurance, however has been attributed to general side-effects; transient drowsiness is the 

most common side-effect (63% of Baclofen users) [122]. The total cost per year before insurance is 

$3,500. 

Botulinum toxin (Botox) is another option for those with spasticity and is a treatment where the patient 

receives a shot injected once a month into the spastic muscle. This focal treatment acts on the axon 

endings of the neuromuscular junction, preventing acetylcholine neurotransmitter from activating the 

muscle. Botox costs $300 to $500 per treatment (often not covered by insurance). 

The other two options for severe cases of spasticity are surgical procedures: rhizotomy and 

intrathecal baclofen pump implantation.  These are highly invasive and have upfront costs of 

approximately $16,000 and $19,000 respectively [123]. The high cost of pharmacological interventions 

necessitates the development of naturopathic interventions for treating paralysis cost effectively. 

5.2.3 Electrotherapy for Reducing Clonus 

Many efforts have demonstrated some form of electrical stimulation to effectively reduce some 

aspects of spasticity [23], [124]–[129]. The neural activation from the artificial stimulation modulates the 

spinal networks, and if properly applied, stimulation has been shown to have short-term and long-term 

merits for treating spasticity. FES of the peroneal nerve has been attributed to long-term reduction in tone 

and phasic spasticity for hemiparesis [126], [130]. Recent applications of epidural or transcutaneous 

spinal cord stimulation (SCS) has also demonstrated promise for treating spasticity and restoring volitional 

control by inhibiting the hyperexcited reflexes [24], [131]–[135]. Nonetheless, widespread adoption of 

noninvasive neurostimulation for treating spasticity has not occurred despite growing evidence supporting 

that the efficacy of such therapeutics is equal to or better than baclofen [136], [137].  

While many studies have evaluated transcutaneous electrical nerve stimulation (TENS) and 

transcutaneous SCS for treating general symptoms of spasticity (hyperactive reflexes), just a single model 

first described in 1967 has explored using FES  to suppress clonus, specifically presented as the 

“anticlonus model” credited to Milan Dimitrijevic [105], [138], [139, pp. 217–218]. The anti-clonus model 

treats clonic triceps surea via stimulation of the peroneal nerve for the monosynaptic reflex that results in 

a slight tonic contraction of the tibialis anterior and reciprocal inhibition of the tricep surea [21].  Dimitrijevic 

expresses that although efficacy is dependent on frequency of the stimulation pulses, the method is robust 

to temporal variability of excitability, and has potential beneficial long-term potentiation of clonus 

suppression. Although Dimitrijevic suggests this model is suitable for a device that uses myoelectrical or 

electromechanical sensor to detect clonus and the stimulation to suppress clonus, no literature, sale or 

publication of such a device has been found to validate the efficacy of the anti-clonus model.  

https://books.google.com/books?hl=en&lr=&id=Acz8DAAAQBAJ&oi=fnd&pg=PA209&dq=Dimitrijevic+anti-clonus+stimulation&ots=eBw3gJFXD-&sig=hYHT4iYDCbCQ5Q0cx2hf1epAnqs#v=onepage&q=clonus&f=false
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The two objectives of this research are to develop a controller to intelligently administer anti-clonus 

stimulation, then evaluate functional outcomes of the system with wheelchair users who experience clonus 

when traversing real-world terrain. One evaluation method, the Benchtop Clonus Study (described below), 

repeatedly initiates clonus using triceps surea stimulation while the anti-clonus device suppresses clonus. 

This method provides a controlled study paradigm for repeatedly initiating clonus in an effort to observe 

the temporal response to repeated anti-clonus stimulation for a sample of the heterogeneous user 

population. The second method, the Over-ground Study, uses instrumentation to observe wheelchair 

propulsion over rough terrain, enabling a comparison between traversing the terrain with FES and without 

FES.  

 

5.3 Methods 

5.3.1 Overview 

Subjects were recruited to explore the real-world efficacy of the proposed FES intervention for clonus 

treatment. The experimental protocol began and ended with a spasticity evaluation using the Spinal Cord 

Assessment Tool for Spinal Reflexes (SCATS) and Drop Test (DT) [34], [140], [140]. Three Chimera boards 

were donned: one on each of the subject’s legs (just below the knees), and one on the subject’s 

wheelchair. Minimum and maximum peroneal stimulation amplitudes were established and input to the 

state-machine controller to limit stimulation to a comfortable range. The intervention was evaluated on real-

world terrain by alternating the controller off then on for each trial while collecting data: video, three 

accelerometers, real-time wheelchair speed (SmartDrive encoder), and stimulation parameters. The over-

ground study was intended to characterize real-world clonus through data collection while the subjects 

traversed bumpy terrain with and without FES intervention. To supplement the over-ground study, a 

benchtop evaluation was also performed to examine the temporal nature of FES for activating clonus 

consistently and suppressing the potential resulting clonus. 

5.3.2 Controller  

The Chimera stimulation devices of each leg were controlled by a hierarchical finite state machine 

(HFSM) for administering anti-clonus peroneal stimulation for the ipsilateral leg. State transitions are 

dependent on timers and the filtered accelerometer signals that construct the terrain and clonus signals. 

Both signals are linear functions of the accelerometer signal with the axis aligned with that of the tibia.  

To derive the clonus signal, the raw accelerometer signal is bandpass filtered from 3-8 Hz, rectified 

and enveloped with a low-pass filter (0.5 Hz), see Fig. 5-1. The clonus measure gives an indication of the 

magnitude of shaking within the bandwidth indicative of clonus. 
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Figure 5-1: Clonus signal processing 

The anti-clonus controller for over-ground was developed to not only detect clonus but additionally 

detect bumpy terrain. To detect rough terrain, the accelerometer signal was high-pass filtered to eliminate 

the steady state gravity acceleration, rectified and lowpass filtered to create an enveloping signal of 

acceleration magnitude, see Fig 5-2. 

 

 

Figure 5-2: Terrain signal processing 

The clonus and terrain signal from each leg is then used in the HFSM controller, such that if the 

terrain or clonus signals exceeds a threshold the controller leaves the resting state for the rough terrain or 

clonus state, where anti-clonus stimulation is applied. Within the clonus state the stimulation amplitude 

adapts to limit the duration of clonus to a predetermined time (e.g., 3 seconds for SCATS mild clonus 

[140]). When the clonus signal is reduced below 50% the threshold, indicating clonus is no longer present, 

the stimulation ramps down to 0 ma and returns to rest state. The four sates of the state machine controller 

are shown in the Fig. 5-3, with state transitions in Table 5-1.  
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Figure 5-3: The anti-clonus controller hierarchical finite state machine. Refer to Table 5-1 for state transition 
conditions. 

 

Table 5-1: State transition conditions for the anti-clonus controller 

Transition Condition 

T1 Terrain signal > terrain threshold (e.g. ~0.1) 

T2 Terrain signal < 0.7*(terrain threshold) 

T3 clonus signal > clonus threshold (e.g. ~0.25) 

T4 clonus signal < 0.5*(clonus threshold) 

T5 Stimulation amplitude is zero 

 

Thresholds for the state transitions were found empirically by traversing a smooth terrain and rough 

terrain. The threshold for the terrain was set slightly greater than the maximum measured terrain signal of 

smooth terrain; the clonus threshold was set slightly greater than the maximum clonus signal of the rough 

terrain (aged asphalt). 

One limitation of a threshold detection method is the clonus signal includes interference introduced 

by the terrain that resembles clonus (3-8 Hz) (e.g., traversing 15 cm cobble stones at 1 m/s). While false 

positives may erroneously adapt the stimulation amplitudes, this is predicted to have non-substantial 

negative consequences in practice as the stimulation is limited to non-disruptive amplitudes. Furthermore, 

terrain of this nature is likely to excite clonus and the stimulation may prevent excitation. A supplemental 

accelerometer fixed to the wheelchair may be used to detect terrain interference and use differential 

analysis to distinguish the ground reaction accelerations from clonus detected at the leg accelerometers. 

A Chimera board was mounted to the wheelchair to explore this limitation further, although, a differential 

leg-chair signal has yet to be implemented. 
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The adapt sub-state-machine (Fig. 5-3) of the clonus state adapts both the anti-clonus and the 

preventative stimulation amplitudes. If the clonus state is re-entered within a predefined time (e.g., 6 s) 

the preventative stimulation is incremented (e.g., 2 mA); alternatively, if an extended period goes by 

without clonus, the preventative stimulation can be decremented. Rather than decrementing the 

preventative stimulation upon entry to the clonus state, however, it may be advantageous to decrement 

the preventative stimulation in the rough terrain state such that the effect occurs immediately. All 

incrementing, and decrementing is followed by a maximum and minimum saturation as to prevent an 

ineffective or uncomfortable stimulation amplitude setting.  

The anti-clonus stimulation amplitude is set by the FES_Amplitude_Ch1 parameter of Fig. 5-4. This 

parameter is incremented if clonus lasts in excess of 3 seconds. Saturation at the maximum was 

implemented. A method for decrementing the anti-clonus stimulation has yet to be implemented.  

 

Figure 5-4: Anti-clonus controller adapt sub-state machine as implemented in Stateflow. 

5.3.1 Over-ground Study 

Each trial consisted of two sub-trials where the subject traversed a course for approximately 5 

minutes while acquiring inertial and video data. During the first sub-trial, the control sub-trial, the stimulator 

was turned off while the sensors collected data and the controller ran; during the second sub-trial, the 

intervention sub-trial, the stimulator was activated allowing the controller to administer anti-clonus 

stimulation.  The data was then used to evaluate the performance of the anti-clonus intervention in 

comparison to the control sub-trial.  
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Three of the Chimera boards where daisy chained via a CAN cable to synchronously communicate 

with Simulink. One Chimera board was strapped to each lower leg just below the knee. The third board 

was placed under the seat cushion, on top of the upholstery, or fixed to the bottom of the footrest using 

cable-ties and foam on the underside of the device, such that the cable-ties affixed the top of the 3D 

printed case rigidly to the underside of the footrest, see Fig. 5-5. 

 

Figure 5-5: Three Chimera devices mounted on the wheelchair frame for the footrest inertia and on the 
lower legs for the over-ground clonus study 

The Chimera boards sampled the MPU6000 IMU at 200 Hz and transferred the data to Simulink at a 

sampling rate of 100 Hz. This rate was suitable as to not overload the computer with long data collection 

sessions, and fast enough to ensure capture of the 5-8 Hz clonus signals, which would need sampling 

greater than 16 Hz to avoid aliasing. The bandwidth of the system is limited to the Nyquist frequency of 

50 Hz at the sampling rate of 100 Hz. 

Terrain 

A variety of rough terrains were used to excite clonus: aggregate (5/8 pea gravel mixed with 

concrete), aged asphalt and large gravel (#4 limestone) were explored (Ground A-C, see Fig. 5-6). Each 

session consisted of multiple trials and possibly multiple terrains; although, each trial consisted of a pair 

of sub-trials with a control trial with anti-clonus stimulation off followed by an intervention trial with the anti-

clonus stimulation turned on. The subjects were instructed to traverse at a self-selected speed. Each trial’s 

sub-trials had the same number of laps of the same course.  
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Course A – Aggregate  Course B – Age Asphalt  Course C – Large Gravel 

 

 

Figure 5-6: Three rough terrains were traversed during the over-ground study. The fast Fourier transform 
(FFT) of vertical acceleration from the footrest frame inertial sensor is plotted for 3 separate terrains. The 
FFT characterizes the terrain perturbations. Note, these example FFT are not intended to compare 
different terrains as they are from different wheelchairs and conditions.  
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Instrumented SmartDrive 

A SmartDrive was programmed and provided by Permobil (Antioch, TN) to stream serial data to 

monitor velocity. The data includes: speed (mph), cumulative distance traveled, motor speed (mph), 

cumulative motor propelled distance, roll, yaw, and pitch at transfer rate of 10 Hz. A “Stream Input” block 

in Simulink enabled the data from the SmartDrive to be sampled at 100 Hz and logged synchronously with 

the Chimera CAN system. Subjects were given a tutorial on how to use the SmartDrive device for 

propulsion and allowed to use the device as desired to supplement manual propulsion. 

One concern of adding the SmartDrive was the omni-wheel could introduce an interference due to 

the evenly spaced tangential wheels along the circumference of the drive wheel. To test the SmartDrive 

induced inertial interference, a test run was taken with a Chimera device fixed to a wheelchair, while the 

subject traversed a flat ground with and without the SmartDrive. The results indicate SmartDrive adds a 

power value of ~0.01 vertical acceleration interference to the wheelchair sensor, primarily at 14-17 Hz 

when moving approximately 2 mph shown in Fig. 5-7. Since the clonus signal of interest is between 3-8 

Hz, the SmartDrive’s minute interference was determined insignificant to the study of clonus.  

 

Fig 5-7: Shows traversing a flat ground in a wheelchair with and without a SmartDrive attached to the 

device. 
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Other considerations to explore further are the impact of pushing on clonus. Proprioception impacts 

the central pattern generators, thus the movement associated with pushing may alter clonus. For this 

experiment the subjects were not instructed to traverse the terrain in any specific manor, however they 

were given instructions on how to use the SmartDrive for propulsion assistance should they elect to use it.  

Wheelchair-mounted Camera 

Video footage of the ankles was taken with a camera (Samsung S7, Seoul, SK) mounted to a “selfie 

stick” that was secured (cable-tied) to the wheelchair frame. Footage of the trials was used quantify the 

duration of clonus and foot-off during of each trial. Raters subjectively evaluated the video for clonus, while 

the foot was on the footrest and separately for foot-off which is defined as the ball of the foot off the footrest 

and positioned such that that the foot points down abnormally, see Fig. 5-8. The videos were stabilized 

and watched at x0.5-1 speed in Youtube Creator Studio. A stopwatch was used to evaluate the percentage 

of each trial video footage with clonus while the foot was on the footrest, and separately evaluated when 

each foot was misplaced from the footrest. Hence, there are three exclusive conditions for each foot during 

the trials: normal, clonus, and foot-off. Visual analysis was used to evaluate the ability of the Chimera to 

prevent clonus and the foot from being displaced from the footrest. 

  

Figure 5-8: Foot-off is shown in the exemplary frame of the video from the wheelchair mounted camera. 

Foot-off and foot-on conditions illustrated with the foot in relation to the footrest (denoted by the black bar). 

The red X depicts that the foot is off the footrest, and the green check depicts the foot on the footrest. Foot 

images adapted from http://www.militarydisabilitymadeeasy.com/images/muscles%20of%20the%20foot/ 
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5.3.2 Benchtop Study 

Characterization of the short-term response to anti-clonus controller was performed by repeatedly 

initiating clonus and quelling it with the anti-clonus controller and device. The state machine controller 

autonomously initiated clonus by implementing a disturbance stimulus to the plantar flexors for 0.5 s after 

ten seconds of rest state. The disturbance evoked clonus by raising the ankle off the wheelchair footrest 

and allowing it to drop with gravity upon relaxation. Anti-clonus stimulation was applied to the common 

peroneal. This method was performed for a duration of 30 minutes unless no clonus was observed within 

ten-minutes. This test was conducted after the over-ground protocol and before the final clinical subject 

evaluation described below. The disturbance stimulation only initiated clonus in two of five of the sessions. 

Results from this portion of the protocol are still under review. Preliminary results from a pilot study are 

shown in Appendix D.  

5.3.3 Subject Evaluation 

Subjects with clonus were recruited through the Pi Beta Phi Rehabilitation Center at Vanderbilt 

University. The subjects were informed and consented in accordance with the Declaration of Helsinki and 

the Vanderbilt Internal Review Board. Inclusion criteria indicated that the subject have clonus as a 

symptom of SCI and not have taken Baclofen or other pharmacological spasticity treatment for eight hours 

prior to the experiment; general information is shown below in Table 5-2. 

Table 5-2: Subject information. 

SUBJECT ID S1 S2 S3 S4 
ASIA T11 B T4 B T6 A C5 B 
MASS (KG) 66 88 59 65 
HEIGHT (M) 1.83 1.73 1.88 1.53 
LEVEL T11 T4-5 T6 C5-6 
DOI Mar 2010 Dec 2013 Oct 2004 Jul 2008 
 

The maximum and minimum stimulation amplitudes were found before and after over-ground trials 

by incrementing the stimulation amplitude over the peroneal nerve by 4 mA approximately every two 

seconds while the subject sat on a padded therapy table with feet flat on the ground (hip, knee, and ankle 

all at approximately right angles). The evaluation was done prior to the trials to set the boundaries for the 

controller, and after the trials to evaluate electrophysiological change over the period of the experiment. 

The minimum stimulation amplitude is defined as the minimal stimulation amplitude that elicits a visible 

muscle twitch or joint motion. The maximum stimulation amplitude is defined as the stimulation amplitude 

that elicits a visible hip flexion (heel off the platform or trunk flexion) or subject-reported discomfort. The 

controller was set to saturate 2 mA lower than the found maximum.  
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The Spinal Cord Assessment Tool for Spastic reflexes (SCATS) clonus evaluation and Drop Test (DT) 

exams were used to assess each subject’s sensitivity to external stimuli and the intensity of their clonus 

reaction. The evaluations were conducted before and after the experimental protocol to inform any change 

in spasticity that might occur over the course of the experiment. Additionally, the established exams were 

employed to inform the observation and extent of clonus during the experimental protocol. 

SCATS exam consisted of three tests to assess spasticity in three subfields: clonus, flexor spasms, 

and extensor spasms [3], [33]. This study utilized just the SCATS clonus test protocol to assess clonus. 

The test was adapted to observe the proprioceptive variability of the assessment by rating clonus in three 

positions from full extension, then flexed at 90°, and fully flexed; SCATS clonus protocol does not specify 

position of the leg [3]. It was observed that leg position did affect the outcome measure within each 

subject, however no pattern was established between subjects. For simplicity the mean score from the 

three positions and both legs is reported in the results. The SCATS clonus assessment was done by an 

assessor and scored on a scale of 0-3, see Table 5-3 

Table 5-3: Spinal Cord Assessment Tool for Spastic reflexes clonus examination scores adapted from 
Benz et al 2005 [3].  

Rating Description 
0 No Reaction 
1 Mild; Lasting: < 3 Seconds 
2 Moderate; Lasting: 3-10 Seconds 
3 Severe; Lasting: > 10 Seconds 

 

The Drop Test was used to examine a subject’s ankle clonus by raising the subject’s leg above a 

platform (approximately 5 cm) and dropping it. The setup requires that the heel is hanging off the edge of 

a platform to dorsiflex the ankle while the subject is sitting. DT may excite clonus and illicit the oscillatory 

response. Both number of oscillations and duration of the sustained clonus are valid points of measuring 

the response to the DT [34]. For this experiment, subjects donned the Chimera system on each leg prior 

to the DT, and the system recorded the inertial response. Figure 5-9 below shows an exemplary data of a 

DT (pre- and post- experiment). 
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Figure 5-9: Observation of the drop-test on the left and right legs, before and after the experiment. Raw 
vertical acceleration data from the leg Chimera boards plotted in Gs over time.  

5.4 Results 

5.4.1 Over-ground Results 

The over-ground study was conducted on four subjects over five sessions (repeated S2 after 10 

days), each session with multiple trials that tested the efficacy of the anti-clonus intervention on various 

terrains. A total of eleven trials were evaluated. Data from each trial was parsed using Matlab and video 

footage was evaluated by a human evaluator using Youtube Creator Studio stabilization and slow-motion. 

Each trial consisted of two sub-trials where the subject traversed a course for approximately 5 minutes 

while acquiring inertial and video data. During the first sub-trial the stimulator was turned off while the 

sensors collected data; during the second sub-trial the stimulator was activated allowing the controller to 

administer anti-clonus stimulation.  

Data from video was analyzed for the following metrics: percentage of clonus, percentage of foot 

off, and instances of clonus normalized by trail time (clonus rate). Key metrics per trial and experimental 

medians are shown in Table 5-4. Video data validates the FES controller substantially reduced the foot 

from slipping off the foot rest with median of 28.6±18% without FES and 3.0±3.4% with the FES controller 

on. Furthermore, the FES reduced the presence of clonus by nearly a factor of seven, from 20±6% (mean 

and std, normal dataset) to 2.9±2.1%. The pathologies of clonus, foot-off, and clonus rate were 

significantly reduced with the intervention to a within a 95% confidence interval using the Wilcoxon signed 

rank test. The data further indicates the FES controller retained 71±7.6% of the trials in the prevent state 
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and reduced the clonus rate from 1.2±0.45 episodes per minute to 0.4±0.18 episodes per minute. Median 

plus and minus half of the interquartile range were used as the data fails the Lilliefors test for normality.  

The percent pathology difference is the percent difference of the sums of clonus and foot-off 

(pathologies) of the control and intervention sub-trials. This metric summarizes the efficacy of the anti-

clonus intervention for treating pathological clonus during wheelchair mobility over rough terrain. Ten of 

the eleven trials saw a decrease in spasticity as a result of activating the FES controller. The median 

percent pathology difference is 86%, suggesting the treatment has meaningful benefits for wheelchair 

users with clonus. 

Parsed controller data also provides stimulations metrics and state prevalence. The mean clonus 

and preventative stimulation amplitudes were normalized to the maximum set at the beginning of the 

experimental session. The prevent and clonus prevalence (%) are the percentage of the sub-trial spent in 

the corresponding state.  

Table 5-4: Over-ground clonus evaluation results showing the average of both legs for the control and 
intervention sub-trials. Metrics reported include: rater evaluated prevalence of clonus and foot off (% Video 
Cl and % Video FO), the SmartDrive measure of speed, the clonus rate in instances (n) per minute. 
Additionally mean FES metrics for both legs are reported for the intervention sub-trial: mean active 
stimulation amplitude during the clonus and rough terrain states (AC amplitude and Preventative Amp.) 
and the prevalence of the rough terrain and clonus states. Median and interquartile range (IQR) for the 
eleven trials is reported below. Lastly the percent pathology is the difference in video evaluated 
prevalence of foot off and clonus between the control and intervention sub-trials.  
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1 1 B 44.6 47.4 2.5 1.65 0.6 0.0 2.5 0.40 47.2 49.4 74.0 1.3 99% 
2 1 A 35.9 59.8 3.1 1.41 4.3 0.0 3.5 0.47 72.3 62.3 87.4 5.0 96% 
3 2 A 12.0 28.6 1.5 1.30 32.2 13.3 1.6 1.08 64.6 85.1 45.2 37.1 -12% 
4 2 A 18.5 42.7 1.1 2.15 5.4 0.0 1.7 0.64 55.5 77.5 78.2 8.4 91% 
5 3 B 22.4 29.3 3.1 1.86 2.9 0.2 3.4 0.45 82.3 79.8 67.9 13.5 94% 
6 3 B 25.4 40.4 3.7 0.64 5.9 3.0 3.3 0.87 69.5 65.4 68.2 11.9 86% 
7 2 B 16.5 1.6 1.7 0.35 5.3 6.7 1.3 0.36 43.8 34.5 64.7 3.5 33% 
8 2 A 28.2 7.1 1.7 0.87 1.8 11.2 1.9 0.28 44.5 25.0 81.4 0.1 63% 
9 2 A 20.0 10.0 1.9 1.02 2.2 0.0 2.1 0.22 44.8 NA 91.5 0.0 93% 

10 4 C 15.0 3.2 0.9 1.23 1.0 6.8 1.3 0.21 72.0 86.8 23.5 45.5 57% 
11 4 B 1.7 5.3 2.4 0.10 0.0 4.4 2.3 0.00 66.3 72.3 71.1 11.6 37% 
Median   20.0 28.6 1.9 1.2 2.9 3.0 2.1 0.4 64.6 68.8 71.1 8.4 86% 
IQR   12.1 36.4 1.4 0.89 4.2 6.8 1.5 0.36 25.9 66.9 15.1 10.7 51.8 
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The prevalence of foot-off and clonus of each foot for each sub-trial is displayed in the Fig. 5-10 bar 

plot below. The data shows correlation between video evaluated clonus prevalence and controller clonus 

state prevalence, however, large discrepancies suggest the controller is limited in detecting clonus 

accurately. For example, Trial 10 is likely to have numerous false positives as the gravel terrain likely 

causes sufficient interference to resulting in the controller to remain in the clonus state; such may arise 

due to insufficient tuning of the clonus threshold for the rougher terrain. Other sub-trials, such as the control 

for 6 and 7, had substantial video detected clonus, however the subthreshold nature of the clonus did not 

result in the controller detecting the clonus.  

 

Figure 5-10: Detailed evaluation metrics for each leg during each sub-trial. White bands are control sub-
trials and grey bands are intervention sub-trials.  

Below exemplary data from Trial 6 is plotted in Fig. 5-11 and 5-12; first with FES off, then with FES 

on. These exemplary sessions show the anti-clonus stimulation adapts to prevent and suppress clonus. 

The preventative stimulation was incremented as clonus state was triggered within six seconds of the 

preceding clonus state indicating the terrain is triggering clonus. Longer clonus episodes influenced the 

Trial:   1             2  3  4  5    6    7      8       9       10        11 
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controller to increment the clonus stimulation amplitude until the clonus is suppressed within the 

prescribed time (i.e., 3 s). After the FES stimulation is incremented the value is stored to rapidly reduce 

future instances of clonus rather than restarting from the minimum amplitude. The stimulation amplitude 

represented in the plots are normalized to the predetermined maximum amplitude. 

 

 

Figure 5-11: Exemplary clonus signal data from the left leg during Trial 6. 
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The terrain measurement is tasked to identify traversing of rough terrain that is likely to evoke clonus. 

The measure gates transitions T1 and T2 of the state machine (Fig. 5-3 above) whereby the controller 

transitions to or from rest state to the rough terrain state. Within the rough terrain state the anti-clonus 

stimulation ramps up to a preventative stimulation if the terrain measurement exceeds a threshold (e.g., 

0.28). The preventative stimulation begins at the prescribed minimum stimulation amplitude. Each leg has 

a separate IMU, hence a unique terrain measurement and unique stimulation amplitude. Figure 5-12 

shows rough terrain is detected for majority of the sub-trials. 

 

Figure 5-12: Exemplary terrain signal data from the left leg of Trial 6.  
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5.4.2 Subject Evaluation Results  

Results from the subject evaluations, shown in Table 5-5, describe some physiological changes that 

may be a result of the intervention or over-ground propulsion. Subjects’ clonus evaluations were mixed. 

There is no clear indication that the intervention affects the general clonus spasticity level, although on 

average the measures of clonus (drop test and SCATS clonus test) showed a slight decline in excitability 

after the experimental protocol. The pre- and post-intervention physiological measures each fail the 

Wilcoxon signed rank test for significance; a greater sample size is needed to determine the effect of the 

intervention on responsiveness to stimulation and excitability with confidence. 

The data shows the maximum FES amplitudes, or withdrawal threshold, consistently increased after 

the intervention except for Session 1. Some subjects did not reach an uncomfortable level or elicit the 

flexion withdrawal reflex by the device maximum of 80 mA. Increased tolerance of the withdrawal reflex 

may be due to accommodation or habituation (see discussion). The minimum threshold, muscle twitch 

threshold, also increase after the experiment, indicative of fatigue.   

Table 5-5: Summary of subject physiological evaluations pre and post experimental protocol.  

 Drop Test (s) SCATS Min (mA) Max (mA) 
Session Pre Post Pre Post Pre Post Pre Post 

1 31.6 39.4 2.8 2.5 8 8 18 14 
2 14.3 6.6 2.7 2.7 20 24 32 56 
3 3.1 1.3 2.7 1 18 24 40 60 
4 1.2 2.1 0.7 1.2 12 16 32 38 
5 2.8 1 2 1.5 12 16 16 28 
Mean % Increase -14  -5  24  39 

 

5.5 Discussion  

Fatigue, Accommodation and Habituation 

The minimum twitch stimulation threshold evaluated before and after the experimental session 

increased by an average of 24% for each subject. This measure is likely due to fatigue of the muscle. 

Motor axons of the underlying nerve have a larger cross-sectional diameter than sensory neurons and are 

recruited first by electrical stimulation. Furthermore, the artificial stimulation activates motor fibers 

synchronously, as opposed to the natural asynchronous recruitment, causing fatigue more quickly than 

normal. FES conditioning of muscles improves resistance to fatigue. 

The mean increase of 39% of the maximum stimulation threshold that activates the flexor withdrawal 

reflex at is an indication of habituation or accommodation. Accommodation is a short-term loss of 

responsiveness that occurs when a constant stimulus, such as the preventative stimulus, acts on the 
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sensory system. One subject, S2, a single leg accommodate the stimulator maximum of 80 mA after each 

session had. One possibility is the withdrawal reflex is had been stimulated significantly to undergo 

habituation whereby synapses undergo physiological change to become less sensitive to a stimulus. 

Short-term and long term habituation are dependent on the interval of the stimuli application and likely act 

on interneurons involved in the flexion reflex ([9] p. 1250).  

Habituation may limit the feasibility of long term use of the device and motivates maintaining the 

saturation levels further below the maximum stimulation threshold. Addition of the SCATS withdrawal test 

in a larger study is recommended to further explore plasticity in reflex related electrophysiology and 

eliminate changes intrinsic to the Chimera (e.g., low-battery, worn electrodes). Extended trials and regular-

use experiments will further inform the physiological changes observed.  

Terrain Detection 

The SmartDrive enabled real-time velocity measurements from the encoder to be synchronously 

parsed with the Chimera sensors. The terrain signal data from the chair mounted Chimera has minimal 

clonus interference and was found to correlate greatest with a Pearson correlation coefficient of 0.85 while 

the terrain signal and clonus signal from an exemplary leg (right) had a correlation coefficient of 0.5 and 

0.43 respectively. see Fig. 5-13. P-values of zero indicates there is positive correlation between the filtered 

vertical acceleration from both legs and the chair. The significance of this finding is that the vertical 

accelerometer signal feasibly indicates movement over a rough terrain. It is evident that the legs absorb 

vibrations from the ground damping the terrain signals measured from the footrest. While the terrain signal 

from a chair mounted IMU provides the greatest correlation to velocity, any of IMUs correlate sufficiently 

to detect binary motion (moving or not moving). 
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Figure 5-13: Velocity measure from the SmartDrive correlates to processed Chimera data from the leg and 
chair.  

The terrain measurement is prone to interference from clonus. In a practical sense this is a nonissue 

for this application, since if clonus is present, it is desirable the state machine to advance from the rough 

terrain state to clonus. Alternatively, clonus of one leg causes mild interference with terrain measurement 

of the contralateral leg and chair since these units are physically interfaced through the chair frame which 

is vertically bound by the ground. A notch filter could potentially remove the interference caused by the 

clonus signal, although this would simultaneously eliminate terrain signals that resonate in the clonus 

bandwidth.  

Bandpass Filter Improves Signal to Noise Ratio of Clonus Signal  

Similar acceleration amplitudes caused by movements other than clonus are unusual but may 

include high frequency impulses such as when traversing door jams or curb ramp lips. The clonus signal 

filters the raw vertical acceleration between 3-8 Hz, then rectifies the signal and envelopes the resulting 

signal with a 0.5 Hz lowpass filter. This narrow bandpass substantially attenuates the amplitude of the 

signals caused by traversing bumpy terrain; the chair clonus signal (shown in Fig. 5-11 and 5-12) remains 

well within the clonus threshold while traversing a bumpy terrain. The clonus and terrain signals can be 

compared using signal to noise ratio (SNR), where the signal is the root mean square of the signal value 

during the clonus state, while the noise is the root-mean-square of signal value in the rough-terrain state. 

The clonus signal had a median SNR of 2.3 while the terrain signal had a median SNR of 2.0. These results 

validate the value of the bandpass filter for processing the clonus signal, from leg data from all the trials. 
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 Raw Signal Spectral Analysis 

The anti-clonus controller successfully determined instances of clonus that exceeded the threshold 

set empirically above the noise in the measurement caused by terrain A. The controller is limited to 

identifying clonus that exceeds the threshold.  Sub-threshold clonus activity is shown in Fig. 5-14 in the 

“Not Detected” column; hence the activity in the clonus frequency of 5 Hz, however this disturbance has 

much less significant power, approximately one-fifth the power of the clonus-detected spectral analysis. 

Other techniques such as spike feature extraction, principle component analysis, or wavelet extraction 

may be employed for more rapid clonus detection without sacrificing specificity [141].  

 

Figure 5-14: FFT analysis shows clonus presents prominently in the 5 Hz frequency range on the legs. 
Clonus from the wheelchair inertia is about a fourth the power of clonus inertia at the legs. Old-asphalt 
has no significant peak frequency within the bandwidth sampled. 

Subjects evaluated had a range of clonus intensity. Fast-Fourier transform (FFT) of the legs’ raw IMU 

data during the controller-detected clonus state reveals the power of the characteristic clonus frequency 

in acceleration data from the legs, see Fig. 5-15 below. S1 and S2 had pronounced clonus with power 

greater than 0.1, however S2 had very mild clonus upon returning for another experimental session ten 

days after the first. This particular reduction in clonus intensity is not believed to be caused by the 

intervention; a urinary tract infection that was reported a few days post-session, in addition to other 

uncontrolled variables such as caffeine ingestion the morning of the second session, and extra stretching 

the night before. S3 and S4 have mild to moderate levels of pathological clonus.  
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Figure 5-15: Varying degrees of clonus activity were observed between and within subjects. 

5.6 Conclusion 

Analysis of video data enabled validation that the developed anti-clonus method reduced 

pathological spasticity during wheelchair propulsion of rough-terrain. The median reduction of 

pathological symptoms, including clonus and foot-off, was found to be 86% for the eleven trials conducted. 

The evaluated technology has potential to provide a non-invasive solution for an industry dependent on 

pharmaceuticals or surgical procedures. Further testing should be done to assess how the anti-clonus 

FES method endures habituation, fatigue, and accommodation.  
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CONCLUDING STATEMENTS 

Novel rehabilitation techniques were explored with the state-of-the-art mechatronic devices. The 

controllers presented are all intended to enhance the condition of lower limb paralysis and each have 

been validated on a few persons with spinal cord injury (SCI). SCI is an underrepresented population 

(<1% of the US population), however, the severe level of impairment and the long-term prognosis warrant 

advancing the technology for restoring function whenever possible. The exoskeleton, functional electrical 

stimulation, and applications with both have proven capable of enabling people to exceed limitations 

imposed by neurological impairment. The application of assistive technology is expansive as neurological 

impairment leads to a broad heterogenous scope of pathological symptoms. The controllers described 

successfully demonstrated means for assisting paraplegic individuals with climbing stairs, walking despite 

extensor tone and treating clonus when traversing rough terrain in a wheelchair.   

The devices described in Chapter 2 include the Indego exoskeleton and the Chimera multi-functional 

electrical stimulation device. Simulink provided means for real-time control of the devices which expedited 

exploration of numerous interventions. Clinical testing with a variety of subjects with spinal cord injury 

enabled evaluation of the prototyped interventions. The Indego commercial venture is in the process of 

incorporating FES into the FDA-approved device. The controllers described in Chapters 3 and 4 are well 

suited for integration with the commercial hardware. Expanded validation studies should be conducted to 

ensure optimal control strategies and rigorous failure analysis promotes user safety. Chapter 3 details the 

contributions towards the expansion of the Indego exoskeleton controller for stair ascent and descent and 

the successful demonstration of robust accommodation of variable stair height for three users with SCI. 

Chapter 4 quantifies the kinematic improvement awarded by supplemental stimulation of the common 

peroneal nerve during exoskeleton assisted gait for two individuals with sever extensor spasticity as a 

result of SCI.  

Chapter 5 details a novel method developed for evaluating clonus evoked by natural means during 

wheelchair propulsion for four individuals with SCI. Further studies should evaluate the long-term 

implications of an anti-clonus FES device. Provided the method’s acute efficacy is prolonged, the method 

could be a significant enhancement to conventional spasticity treatments; with potential to reduce both 

financial burden and risks of adverse effects. 

The Appendices contain additional information on exploratory case studies and technical 

documentation resulting from the doctoral program tenure. Together these efforts have demonstrated 

promising restoration of function after SCI and establish a foundation for translating the novel functions to 

the intended population.  
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APPENDIX A – MOTOR INCOMPLETE GAIT PHASE DETECTION CASE STUDY 

Abstract 

Functional electrical stimulation (FES) devices recognize gait-phase intent and stimulate weakened 

muscle groups to treat gait abnormalities. A unique controller mechanism and a multi-channel stimulator 

were developed to improve upon the gait-phase intent detection ability and overall applicability of FES 

devices. The controller was evaluated on a single subject with a motor incomplete spinal cord injury (C5 

ASIA-C)  by comparing the onset of swing as estimated by the controller to swing initiation by means of a 

push-button FES system. The controller was found to predict swing intention 0.212±0.xxx s prior to the 

push-button which is 20-100% more accurate than other controllers modeled after industry standards.  

The novel stimulator was then used and evaluated by comparing walking with and without FES stimulation. 

During FES intervention, gait distance and cadence increased from an average of 19.1±0.3 m and 15.3 

steps/min to 42.9±0.3 m and 22.0 steps/min and several kinematic aspects of gait also improved. Although 

the results of the present study are encouraging, the single-subject experimental design prevents 

generalization. Further testing with a larger sample size is required to validate this study and the efficacy 

of the FES system. 
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APPENDIX B – MOTOR COMPLETE GAIT PHASE DETECTION CASE STUDY 

Introduction 

Spinal cord injury (SCI) often inhibits the ability to voluntarily initiate gait due to lower limb paralysis. 

Technology, including motorized exoskeletons and functional electrical stimulation (FES), can return 

movement to paralyzed limbs. Such systems, however, require a means by which a user can indicate 

intent to step. This study explores the use of electromyography (EMG) from muscles above the paretic 

injury level to indicate user’s intention to initiate steps. 

Other efforts towards intuitive robot interaction have explored using electroencepholography (EEG) 

to interface robotic gait. EEG relies on similar differential amplifier technology as EMG, however, EEG 

targets signals on the surface of the brain, through the skull. This method has been repeatedly 

demonstrated ineffective for feasibility of functional gait that resembles normal walking recruitment. Other 

invasive brain computer interface techniques such as cortical probes, neural dust and 

electrocorticography (ECoG) have promise, but will not be feasible nor affordable in the near future. 

However, percutaneous EMG is minimally invasive (needle electrodes) and may be explored to examine 

the feasibility of implantable EMG sensors for targeting muscles inaccessible to surface EMG.  

EMG results in a signal to noise ratio over two orders of magnitude better than EEG because the 

electrical activity of muscles is inherently more pronounced and the target sites for surface EMG are 

typically closer to the noninvasive electrodes on the surface of the skin. 

An intuitive controller was prototyped to infer step intent via compensatory muscle activation; the 

controller monitors trunk muscle activity with EMG from muscles above the paretic injury level to identify 

patterns that indicate the user’s intention to initiate steps. The controller was further developed to utilize 

the EMG signals to proportionally modulate the stimulation amplitude during each step, enabling the user 

to intuitively appropriate assistance.  

Materials and Methods 

An exploratory study was conducted using a single subject with a T11 ASIA B SCI. The subject was 

tested for EMG trunk muscle sites that coincided with swing intention. Once promising sites were located, 

initial experiments were conducted using push buttons to indicate step intent, while recorded EMG from 

the external oblique muscles. EMG features were then correlated with step intent, and subsequently used 

in place of the push buttons to initiate stepping. Validation experiments were then conducted, still using 

both EMG and push button inputs, but using EMG to command steps and push buttons as an indication 

of volitional intent. 
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The results for the EMG identifier that targeted the external obliques for the subject had strong 

correlation, so the controller was further developed to enable an open loop proportional modulation of the 

stimulation amplitude. Hence a separate preliminary experiment was designed to evaluate if effort can 

successfully be mapped to from the oblique compensatory activation to peroneal stimulation. To evaluate 

the efficacy a random color was illuminated on a screen indicating the user take a small, medium or large 

step. The root-mean-square of the EMG and proportional FES were reviewed to evaluate the user’s ability 

to control FES amplitude during each step. 

Results 

For the T11 subject, the EMG activity from the external obliques strongly correlated with step 

intention, as measured by the push button input. A sensitivity of 100% was found for both right (n=96) and 

left (n=93) steps. The specificity of 100% was found for the right and 96.9% for the left. 

The integrated EMG over the swing state had significantly different means when commanding a 

small, medium, or large step with greater than 95% confidence. Hence, the controller was successful in 

enabling users to control step effort within three tiers (small, medium and large). 

Discussion 

Although healthy walking does not have a strong correlation between oblique activity and swing 

initiation, the oblique activity may be a form of compensation in SCI individuals, or may result from use of 

a stability aid, enabling an intuitive input for swing initiation. 

Implementation with an exoskeleton will maximize the potential suitable subjects. Expanding the 

controls for exoskeleton can be done in numerous ways. A flow controller may be used to accommodate 

a breath of users with varying gait capabilities. A phase plane controller would enable forward and 

backwards control, possibly taking advantage of the variability of the EMG signal. These control topologies 

will exceed the limited movement patterns dictated by trajectory-based impedance controllers. Such 

controllers would thus allow real-time use more fluid movements where the user may alter intra-step 

characteristics in real-time using the EMG interface.  

Conclusion 

An intuitive and reliable swing intent indicator was developed from external oblique EMG signals, 

enabling a SCI subject to voluntarily control step commands during FES-aided ambulation. 
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APPENDIX C – CHIMERA TECHNICAL SHEETS 

PCB Component Layout: 
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Sample Code: 

void task_control(void) 
{ 
/* task control runs every main loop 
 control determines function depending on mode selected*/ 
    switch (gCON.mode) { 
        case 99: //sleep 
            asm volatile( "wait" );// put device in selected Power-Saving mode (did not work) 
            break; 
        case 5: //EMG stand and walk 
            emg_walk_control(); 
            break; 
        case 1: //Clonus Attenuator 
            ch = 0; 
            //Bang-Bang Controller         
            if (gDSS.clonus_x > gCON.threshold||timers[FES3]>0) { //Clonus detected 
                for (ch = 0; ch <= 1; ch++) { 
                    amp[ch] = max[ch];}     
                if (poststim==5){ 
                    timers[FES3]=1500;} 
                if (gDSS.clonus_x < gCON.threshold) poststim=0; //turn off poststim flag when clonus 

stops 
                timers[FES2]=1500; //set this timer to "x"/500 (seconds) to  
                //see if clonus reappears instantly 
            }    
            else { //no clonus detected 
                for (ch = 0; ch <= 1; ch++) { 
                    amp[ch] = 0;} 
                if (timers[FES2]>0){//address clonus reappearing quickly 
                    poststim=5;} 
               if(timers[FES2]==0) { 
                    poststim=0;}               
            } 
                /*Proportional Controller*/ 
                //amp[ch] = gDSS.clonus_x/12; //12 is an arbitrary number that works well AE, should be 

replaced with a PID controller 
 
            for (ch = 0; ch <= chMAX; ch++) { 
                if (amp[ch] > max[ch]) //SATURATION 
                { 
                    amp[ch] = max[ch];} 
            } 
            UpdateFES(); 
            break;          
        case 3 : //individual board simple button control 
            ///////// FES BUTTON CONTROLLER 
            if (ON_SIGNAL==1){ 
                for (ch = 0; ch <= 1; ch++) { 
                    amp[ch] = max[ch];} 
            } 
            else{ 
                for (ch = 0; ch <= 1; ch++) { 
                    amp[ch] = 0; } 
            } 
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            break; 
             
        case 4: //CAN Simulink control 
            
            UpdateFES(); 
            break; 
 
        case 2: //BLE INTERMITTENT 
    
            if (timers[FES1] ==0){// 0&&timers[FES1] < offperiod-501) { 
                for (ch=0;ch<=chMAX;ch++)  
                { 
                    amp[ch]=gCON.threshold2*1000; 
                    state[ch]=1; 
                    tics[ch]=1;} 
                //UpdateFES and set on timer 
                UpdateFES(); 
                timers[FES2] = onperiod; 
                timers[FES1] = onperiod +500;}                   
            if (timers[FES2] == 0){//> 0&&timers[FES2] < onperiod-501) { 
                for (ch=0;ch<=chMAX;ch++)  
                {   amp[ch]=0; 
                    state[ch]=0; 
                    tics[ch]=1;} 
                //UpdateFES and set on timer 
                UpdateFES(); 
                timers[FES1] = offperiod; 
                timers[FES2] = offperiod + 500;} 
            break; 
        default: 
            break;} 
} 
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APPENDIX D -CLONUS BENCHTOP PILOT STUDY DATA 

 

Benchtop Study Results 

Clonus was artificially stimulated in two of the four subjects, S1 and S2; albeit, S2 only responded to 

the disturbance stimulus on during the first session, and not on the session 10 days later when substantially 

less clonus was present. The data on subject one (S1) is shown here as an exemplary data set for repetitive 

FES activation and suppression.  

Four six-minute sessions were taken sequentially on one subject, data shown in Fig. 6.2. This data 

shows two trends, an inverse relationship between anti-clonus stimulation amplitude and settling time, and 

the self-excitatory behavior of clonus. The first seventeen disturbances did not elicit continuous clonus, 

then clonus occurred until an anti-clonus stimulus of 15 mA suppressed it, the next five disturbances 

required 20 mA, and the last four required 25 mA to suppress the clonus within five seconds.  

 

Fig. 6.1 Four six-minute data sessions of clonus compiled  

 

The second six-minute session continuous clonus happened after the first disturbance to which 15 

mA quelled. The next two disturbances were suppressed with 20 mA, then 5 disturbances at 25 mA, and 

the remaining fifteen disturbances required 30 mA. The third six-minute session had one disturbance at 

15 mA, one at 20 mA, two at 25 mA, then nineteen at 30 mA. The fourth six-minute session had one 20 

mA, two 25 mA, and fourteen at 30 mA. 
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One off the disturbance response that did not result in continuous clonus can be seen in Fig. 6.3. A 

pulse like this may be used to set the clonus threshold, although during this set up this was above the 

threshold, but due to it being in the beginning of the session the FES amplitude was set to zero, allowing 

the leg to calm without anti-clonus stimulation.  

 

Figure 6.2 Disturbance response without clonus 

The instance that clonus becomes continuous, the oscillatory amplitude ramps up, as seen in Fig. 

6.4 at 205 s. The clonus continues for greater than 15 seconds as the anti-clonus stimulation is ramped 

up to 15 mA.  
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Fig. 6.3 Continuous clonus is self-exciting and continued until the anti-clonus stimulation reached 15 mA 

The anti-clonus evaluation shows the accelerometer successfully identifies clonus and anti-clonus 

stimulation successfully quells the ankle. Figure 6.5 shows the raw accelerometer data, specifically that 

the disturbance stimulus initiates the oscillatory behavior. When the clonus signal exceeds a threshold, 

the anti-clonus stimulation is activated until the clonus signal is below one-tenth the threshold.  
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Figure 6.4 Clonus was detected and suppressed with 30 mA within 1.5s 

An anti-clonus stimulation of 30 mA suppressed clonus in 2.1±0.7 s. Figure 6.6 shows 46 

disturbances suppressed by 30 mA. Note a clear upward trend shows the self-exciting nature of clonus.  

 

Fig. 6.5: Self-excitatory behavior of clonus shows clonus becomes more resistant to suppression with 

increase disturbances 

A method for evaluating means of clonus suppression was evaluated on a single subject. A total of 

92 disturbances were observed in 24 minutes of four successive trials. The amplitude was self-

incrementing to maintain the settling time of the clonus within five seconds. Two trends were observed: 

settling time was inversely affected by suppression stimulation amplitude, and the clonus response 

became excited as more disturbances had occurred.  
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The controller autonomously identifies a suitable stimulation amplitude to reduce clonus. A 

disturbance stimulus to the ankle plantar flexors enables clonus to be repeatedly initiated. Stimulation of 

the common peroneal nerve with a stimulation amplitude of 30 mA settled clonus in 2.1±0.7 s. 

 


