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CHAPTER I 

 

INTRODUCTION 

 

 In this introductory chapter, I primarily focus on striatal excitatory 

glutamatergic synaptic transmission as well as the anatomy and molecular 

mechanisms underlying motor learning and the formation of goal-directed and 

habit based learning.  I further consider the role of dopamine in the modulation of 

glutamatergic transmission, including alterations in glutamatergic synaptic 

transmission, plasticity, and morphology following dopamine depletion and 

subsequent levodopa administration.  I further compare and contrast long lasting 

synaptic plasticity and its mechanisms in hippocampus with striatal plasticity.  

Furthermore, I introduce an important kinase, CaMKII, as well as the GluN2B 

subunit of the NMDAR and their role in synaptic plasticity.  Finally, I review 

medium spiny neuron excitability and its modulation by numerous players 

including a novel role for CaMKII.  The work in this area will not only improve the 

basic understanding of excitatory transmission in the striatum and the role of 

CaMKII in these processes including the formation of normal motor repertoires, 

but also will lend understanding to neurodegenerative disorders, addiction and 

other striatal-based disorders.   

 The basal ganglia are a collection of subcortical nuclei that subserve a 

variety of behaviors, including motor planning, procedural learning, and 

motivation state   Although there is no universal agreement on which nuclei 
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comprise the basal ganglia (early anatomists used basal ganglia to refer to all 

large subcortical masses, including the thalamus), the term today generally refers 

to the neostriatum (caudate nucleus and putamen) and its projection targets.   

 As knowledge has accrued concerning the anatomical organization of the 

striatum, including its characteristic cell types and efferent projections, the term 

neostriatum has reduced to the simpler term striatum.  The striatum 

encompasses a dorsal portion (with its pallidal and nigral targets) as well as the 

ventral striatum, including the nucleus accumbens and its targets in the ventral 

pallidum.  While anatomical studies have revealed an overarching theme for the 

dorsal and ventral striatum, subdivisions within each of these structures have 

become apparent, with corresponding functional specialization.  For example, 

within the dorsal striatum, the dorsomedial aspect appears to be associated with 

goal-directed learning in rodents, while the dorsolateral striatum is associated 

with habit learning (Yin and Knowlton, 2006). The ventral striatum includes the 

multi-compartment nucleus accumbens (shell, core, and septal pole) and the 

olfactory tubercle, and plays a critical role in translating motivational states into 

goal-directed behavior (Robbins et al., 2008).  

Given the diverse behavioral conditions in which striatal function appears 

critical, it is not surprising that there are a number of disorders that are 

associated with basal ganglia pathology.  Among these are Parkinson’s and 

Huntington’s diseases, dystonia, and Tourette’s syndrome.  Several psychiatric 

conditions, including obsessive-compulsive disorder, substance abuse, and 
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schizophrenia, also appear in part to be reflecting changes in basal ganglia 

function.  

 

Basal Ganglia Circuitry  

 As noted above, a formal definition of the basal ganglia is lacking.  Our 

current informal use of the term has evolved over the past century as advances 

in our understanding of the anatomy of the brain have grown.  Today most 

consider the basal ganglia to be a collection of subcortical structures with 

interconnected neurons.  Such a loose definition encompasses the striatum, 

containing both interneurons and medium spiny neurons, the latter type of cell 

projecting to several downstream sites.  Targets of the rodent dorsal striatum 

include the globus pallidus, subthalamic nucleus, and substantia nigra.  From 

these targets, projections are directed to thalamic relay nuclei, which in turn 

innervate various neocortical regions.  Finally, the cortex projects in a 

topographically-defined manner back onto the striatum.  Differences in the 

topographical organization of these projection systems are thought to relate to 

different functional attributes of the striatum (Figure 1).  
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Figure 1.  Simplified diagram of basal ganglia circuitry.  Excitatory 
glutamatergic connections are indicated by green arrows, inhibitory 
GABAergic connections by red arrows, and modulatory dopaminergic 
connections by black arrows.  Dotted arrows from the striatum to the GPi/SNR 
mark the direct and indirect pathways.  GPe, globus pallidus external segment; 
GPi, globus pallidus internal segment; SNR, substantia nigra pars reticulata; 
SNC, substantia nigra pars compacta; STN, subthalamic nucleus; PF, 
parafascicular nucleus; IL, intralaminar thalamic nucleus; MEA, midbrain 
extrapyramidal area; SC, superior colliculus    
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 The afferents that innervate the striatum are not typically included in the 

definition of basal ganglia.  This is a somewhat surprising omission, particularly 

because all parts of the cortex innervate the striatum, thus rendering the striatum 

a funnel through which cortical information is relayed back to the cortex to hone 

subsequent motor and cognitive acts.  Another major input to the dorsal striatum 

of the rodent originates in the thalamic central medial complex (including the 

central medial, centrolateral, and paracentral nuclei) and the parafascicular 

nucleus.  These thalamostriatal neurons, like their corticostriatal counterparts, 

are glutamatergic (Smith et al., 2004).  The third and final major input to the 

striatum originates in the ventral midbrain dopamine cell groups of the substantia 

nigra, retrorubral field, and ventral tegmental area.  There are a restricted 

number of other “minor” afferents, including those from the globus pallidus, 

ventral pallidum and contiguous basal forebrain, as well as the serotonin neurons 

of the dorsal and median raphe in the upper brainstem.  The ventral striatum, 

including the nucleus accumbens, which abuts both the septum and the striatum, 

receives inputs from sites adjacent to those that innervate the dorsal striatum, 

thus defining a parallel set of ventral basal ganglia structures.  Although one 

might guess that the connections of the various parts of the basal ganglia are 

fully known, it is becoming clear even after the advent of the modern era of 

neuroanatomical tract-tracing methods, that there are gaps in our knowledge.  

 The major type of striatal neuron is the medium spiny neuron (MSN).   

Approximately 95% of striatal neurons are MSNs, with a cell body of medium size 

(~9-17 µm in diameter) and radially extending dendrites that are densely studded 
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with dendritic spines.   These GABAergic MSNs are the projection neurons of the 

striatum (Tepper et al., 2007).    

 Different portions of the relatively long dendrites of MSNs, with their high 

density of dendritic spines, are targeted by various inputs to the neuron (Bolam et 

al., 2000). Recurrent collaterals of one MSN often terminate on the soma or 

proximal-most dendrite of another MSN (Taverna et al., 2008; Chuhma et al., 

2011).  Striatal interneurons similarly synapse onto the soma or most proximal 

dendritic segment of MSNs (Kita et al., 1990; Bennett and Bolam, 1994).    In 

contrast, cortical afferents synapse onto spines located more distally on the 

dendrite, as do the terminals of dopamine neurons in the substantia nigra (Kemp 

and Powell, 1971; Hersch et al., 1995).  A single cortical terminal generally 

synapses with a single dendritic spine (Kincaid et al., 1998).  Thus, even modest 

changes in the numbers of MSN dendritic spines, particularly those on distal 

portions of the dendrite, can have major effects on ability of afferent volleys to be 

propagated to the cell body and thence to projection targets of MSNs (Plotkin et 

al., 2011).  

 MSNs, despite their morphological similarities, are not a homogeneous 

population of cells. Indeed, subtle variations in the dendritic tree of MSNs have 

led one group to characterize five different types of MSNs on structural grounds, 

although the great majority of MSNs fall into one class (Chang et al., 1982).  

Medium spiny neurons can also be differentiated on the basis of their projection 

targets, the receptors they express, and the co-transmitters in addition to GABA 

that they possess; these three factors co-segregate to yield two major 
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populations of MSNs.   One type of MSN sends a dense projection to the globus 

pallidus (GP), with the other type densely innervating the substantia nigra (SN).  

Retrograde tract tracing studies from these sites have consistently revealed two 

non-overlapping populations of MSNs.  The MSNs that innervate the SN form the 

so-called direct pathway, while those that project to the GP, neurons of which in 

turn send their projections to the SN, form the indirect pathway.  These two 

populations of MSNs differ on the basis of the dopamine receptor they express, 

with the direct pathway cells expressing the D1 receptor and the striatopallidal 

indirect pathway cells expressing the D2 receptor. Expression of other dopamine 

receptors, including the D3 receptor of the D2 class of dopamine receptors 

follows the D1/D2 segregation to different MSNs under basal conditions but not in 

pathophysiological states.  Finally, MSNs can be differentiated on the basis of 

their co-transmitter.  Direct pathway D1-expressing MSNs uses tachykinin 

peptides such as substance P as a co-transmitter, while D2-expressing 

striatopallidal MSNs contain enkephalin.    

 The direct and indirect pathway MSNs have figured prominently in models 

of basal ganglia function, with these two striatofugal pathways contributing to 

opposing effects on thalamic output to the cortex.  Activation of the direct 

pathway disinhibits the thalamus, increasing output to the cortex and promoting 

intended movement, while activation of the indirect pathway further inhibits 

thalamocortical neurons preventing unintended movements.  These ideas have 

figured prominently in our approach to diseases of the basal ganglia.  For 

example, it is hypothesized that there is an imbalance of these two pathways in 
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Parkinson’s disease, tipping the balance in favor of the indirect pathway and 

therefore inhibiting voluntary movement.   

 While this model has been invaluable in guiding research into the 

pathophysiology of parkinsonism, over the years it has become clear that various 

aspects of the model are incorrect and that the model often lacks predictive 

validity (DeLong and Wichmann, 2009).  Moreover, the structural basis for the 

differences in MSNs now appears to reflect a limitation of the retrograde-tract 

tracing methods originally used to label the two types of cells.  Thus, more recent 

single cell labeling studies have revealed that essentially all MSNs project to both 

the GP and SN, but with markedly different axonal arbors (Wu et al., 2000).   The 

direct MSNs have a large axonal plexus in the SN, with a very small axon 

terminal array in the GP–so small that it is insufficient to accumulate significant 

amounts of the retrograde transporter.  Conversely, the axons of indirect pathway 

MSNs collateralize extensively in the GP but have a very small axonal arbor in 

the SN.  While strictly speaking these data belie the concept of the direct and 

indirect pathways, functional data indicate that striatal efferent projections do 

indeed segregate into two classes, with one type of MSN primarily modulating 

the SN and the other the GP (Squire, 2003).   The idea of the direct and indirect 

pathways having opposing effects on behavior has undergone a renaissance 

recently with the use of optogenetic approaches to exclusively stimulate the 

direct or indirect pathway in vivo (Kravitz et al., 2010).     

 A very different type of segregation of MSNs from the direct and indirect 

pathway distinction can be seen when examining the intra-striatal spatial 
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localization of MSNs. The striatum which seems uniform at first glance under a 

light microscope can be further divided into unique compartments based of 

immunohistochemical staining patterns and connectivity. The most commonly 

used marker to define these regions is the mu opioid receptor.  Mu opioid 

receptor-expressing clusters of cells have been called striosomes or patches, 

and occupy about 15% of the volume of the striatum, with the much larger diffuse 

compartment named the matrix (Gerfen, 1992a).  MSNs that contribute to the 

direct and indirect pathways are found in both compartments, yet direct pathway 

MSNs in the patch compartment project to the substantia nigra pars compacta 

(SNc), instead of the substantia nigra pars reticulata (SNr) (Gerfen, 1984).   In 

contrast to MSNs that contribute to the direct and indirect pathways, which are 

intermingled throughout the striatum, distinct compartments of MSNs that 

express the mu opioid receptor (Herkenham and Pert, 1981), substance P 

(Bolam et al., 1988), but lack cholinergic markers (Graybiel and Ragsdale, 1978) 

can be seen as patches throughout the striatum.  Superimposed and surrounding 

these patches is the larger matrix area containing MSNs that do not express the 

mu opioid receptor and is instead rich in acetylcholinesterase, choline 

acetyltransferase (ChAT), somatostatin and calbindin (Graybiel and Ragsdale, 

1978; Gerfen et al., 1985; Graybiel et al., 1986).  These neurochemical 

localizations suggest that ChAT and somatostatin positive low threshold spiking 

interneurons reside predominantly in the matrix.  Fast spiking interneurons axons 

however have been observed in both regions (Cowan et al., 1990).  The 

patch/matrix organization is particularly important during development (Johnston 
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et al., 1990; Gerfen, 1992b).  Although these two compartments were at one time 

thought to receive inputs from spatially segregated cortical cells, more recent 

data have suggested that one cannot define these compartments based strictly 

on the origin of their cortical innervations.  Nonetheless, important functional 

differences have emerged, with relative activity in MSNs across the two 

compartments suggested to be disturbed in several basal ganglia disorders, 

including those involving disturbances of habit, such as obsessive-compulsive 

disorder and Tourette’s syndrome (Graybiel, 2008). 

 

Dorsal Striatal Subregions: Dorsal Lateral Versus Dorsal Medial Striatum 

 In primates the dorsal striatum is divided by the internal capsule 

separating the medially located caudate nucleus from the laterally positioned 

putamen.  Yet in rodents there is no real clear division between dorsal medial 

(caudate-like) and dorsal lateral (putamen-like) striatum. Instead the internal 

capsule which is made up of descending motor axon bundles honeycombs the 

striatum (Voorn et al., 2004).  While these rodent striatal regions lack defined 

boundaries, there are distinct anatomical and functional differences.  First, inputs 

to the dorsal medial striatum are primarily from association cortices while the 

dorsal lateral striatum receives inputs from the sensorimotor cortex (McGeorge 

and Faull, 1989).  The ventral striatum receives inputs from limbic and frontal 

cortex (Brog et al., 1993).  Other differences between regions include cell type 

preference and gene expression differences.  Parvalbumin positive fast spiking 

interneurons are more readily seen in lateral versus medial striatum, while 
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somatostatin-positive low threshold spiking neurons are more prevalent in medial 

striatum (Gerfen et al., 1985; Kita et al., 1990).  Cannabinoid CB1R are highly 

expressed in the dorsal lateral and nucleus accumbens but show little expression 

in the dorsal medial striatum (Herkenham et al., 1991).  In contrast, calbindin is 

highly expressed in dorsal medial striatum with very minimal expression in the 

dorsal lateral region (Gerfen et al., 1985).  Expression of the dopamine 

transporter is also highly enriched in the dorsal lateral striatum and less so in 

medial and ventral regions where catechol-O-methyltransferase (COMT) instead 

dominates (Matsumoto et al., 2003; Arbuthnott and Wickens, 2007).  Additional 

differences in subregion plasticity and behavior control will be reviewed later. 

        

The Dendritic Spine: Gateway to the Medium Spiny Neuron 

 Dendritic spines on striatal MSNs receive excitatory drive from the cortex 

and thalamus, the former relaying the consequences of higher order processing 

and the latter of ascending reticular drive to the MSN.   The cortical influence 

over MSNs has been intensively studied over the past generation.  The heads of 

MSN dendritic spines receive a single excitatory input from a cortical neuron, with 

the neck of the spine often being the site at which dopamine axons from the 

substantia nigra synapse, forming a synaptic triad.  At the individual spine level, 

this close spatial arrangement allows dopamine to modulate incoming excitatory 

glutamatergic drive (Kemp and Powell, 1971; Freund et al., 1984; Smith and 

Kieval, 2000).  While reports suggest that the frequency of dopaminergic 

synapses onto MSN spines is lower than originally proposed (Freund et al., 1984; 
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Groves et al., 1994), even in those cases where dopamine axons do not synapse 

onto the spine one finds that dopamine terminals are located within 1.0 µm of a 

spine, allowing volume (paracrine) transmission and emphasizing temporal as 

well as spatial regulation of MSNs (Arbuthnott and Wickens, 2007).  

Dopaminergic boutons represent nearly 10% of all the synapses in the striatum 

(Groves et al., 1994) and there is evidence that the dopamine released from this 

dense matrix of en passant synapses is not able to be adequately limited by 

reuptake or metabolic mechanisms suggesting an important role of dopamine in 

volume transmission (Cragg and Rice, 2004).  The primarily extrasynaptic 

localization of dopamine receptors at glutamatergic synapses (Hersch et al., 

1995; Yung et al., 1995) further fits with this model where they are linked to 

modulation of dendritic conductances and integration of synaptic depolarization 

(Nicola et al., 2000). 

 In addition to dopaminergic modulation of cortical drive onto MSNs at the 

level of the MSN spine, D2 heteroceptors on glutamatergic corticostriatal 

terminals can also tonically inhibit glutamate release from these terminals 

(Bamford et al., 2004).  The cortical influence over striatal cells is critical because 

MSNs have spontaneous fluctuations in their membrane potential, ranging from a 

relatively hyperpolarized “downstate” around -80mV to a more depolarized 

“upstate” around -50mV (Wilson and Groves, 1981).  While the downstate is 

maintained by a rapidly activating inwardly rectifying potassium (Kir) current 

which limits membrane depolarization, transition to the upstate appears to be 

determined largely by strong, correlated release of glutamate from corticostriatal 
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glutamatergic terminals leading to sufficient depolarization to inactivate Kir 

(Wilson and Kawaguchi, 1996; Plenz and Kitai, 1998).  The closure of dendritic 

Kir channels increases the input resistance of the neuron and reduces the overall 

electrotonic length.  Spiking is only observed in the upstate, but not all upstate 

transitions lead to the firing of an action potential.  The upstate transition persists 

as long as there is sufficient excitatory drive to maintain depolarization, often for 

hundreds of milliseconds, and evidence suggests that the transitions are more 

prominent under anesthesia but far noisier in the waking state (Mahon et al., 

2006).  These different states of the MSN membrane dictate if an incoming volley 

to the MSN will depolarize the cell.  Simultaneous activation of many cortical 

afferents at various points on the MSN dendritic tree is needed to depolarize 

MSNs from a hyperpolarized potential to action potential firing (Wilson and 

Kawaguchi, 1996; Carter and Sabatini, 2004; Carter et al., 2007).  Upstate 

transition magnitude is determined by voltage-sensitive potassium conductances 

which are activated by depolarization and subsequently limit its extent (Wilson 

and Kawaguchi, 1996).  Upstates correlate amongst neighboring MSNs, 

consistent with the idea that convergent cortical inputs drive these transitions 

(Stern et al., 1998).  The different states determine properties underlying synaptic 

conductance.  In the down state, excitatory postsynaptic potentials are primarily 

AMPAR-mediated, while upstates recruit NMDARs.  This leads to prolonged 

excitatory potentials in the upstate which lead to a greater likelihood of temporal 

summation.  Additionally, in the upstate the main source of calcium entry is 

through NMDARs and L-type calcium channels that have been shown to be very 
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important in the induction of long-lasting synaptic plasticity (Choi and Lovinger, 

1997a; Carter and Sabatini, 2004; Adermark and Lovinger, 2007a).  Recently, it 

was shown that uncaging of glutamate on multiple dendritic spines on distal 

dendrites evoked somatic upstates lasting hundreds of milliseconds, while 

uncaging on more proximal sites only produced modest potential changes 

(Plotkin et al., 2011).  These state transitions were dependent on NMDAR and T- 

and R-type calcium channels.  This study shows that distally regenerative 

upstate transition can occur with the concerted stimulation of only tens of 

synapses.           

 

Role of Dopamine in Basal Ganglia Function 

 A unique feature of the striatum is the extraordinarily dense dopaminergic 

innervation that it receives.  A remarkable study employing a viral vector to target 

green fluorescent protein to the membranes of neurons has found that single 

dopamine neurons in the substantia nigra give rise to remarkably long intra-

striatal axons (up to 780,000 µm, i.e., 780 cm in length), and that the dense 

portion of the striatal axonal plexus derived from one nigral dopamine neuron can 

cover up to 5.7% of the total striatal volume (Matsuda et al., 2009).  As such, 

even one dopamine neuron can influence a very large number of striatal MSNs, 

and it is therefore not surprising that striatal dopamine plays a critical role in 

modulating motor behavior and learning.  

While the timing and magnitude of dopamine release is important for 

normal voluntary movement, the firing patterns of dopamine neurons do not 
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correlate with voluntary movements.  Instead dopamine neurons of the ventral 

tegmental area and substantia nigra play a central role in positive reinforcement 

learning (Mirenowicz and Schultz, 1994, 1996).  Midbrain DA neurons are 

spontaneously active, firing at low frequencies (1-8Hz) at rest in vivo (Schultz, 

2007).  This firing maintains a basal level of tonic dopamine that binds to high 

affinity D2Rs, maintaining normal striatal function (Richfield et al., 1989).  

Alternatively, dopamine neurons show phasic or burst-like firing patterns 

following unexpected reward.  These bursts of action potentials transiently 

elevate dopamine levels at the synapse activating lower affinity D1Rs.  However 

after repeated conditioning sessions with an environmental cue (e.g., a light or 

tone) preceding the reward, phasic firing of dopamine neurons can be induced by 

the cue alone, as a predictor of a reward (Schultz, 1998).  In the case of a 

predicted reward the actual delivery of reward does not lead to an increase firing.  

If reward is delayed a depression in firing rates occurs at the original time and 

instead activation occurs at the new time (Fiorillo et al., 2008; Zaghloul et al., 

2009).  Also the delay itself decreases the dopamine response to the same 

reward (Kobayashi and Schultz, 2008).  Aversive events such as air puffs, 

hypertonic saline and electric shock actually enhance firing in awake animals in a 

small proportion of dopamine neurons, but the majority of dopamine neurons 

show reductions or no change in firing (Mirenowicz and Schultz, 1996; Joshua et 

al., 2008; Matsumoto and Hikosaka, 2009).  Whether the small percentage of 

dopamine neurons activated by aversive events causes a functionally relevant 

release of dopamine is still controversial (Mirenowicz and Schultz, 1996; Young, 



16 

 

2004).  Overall, these findings have led to the hypothesis that dopamine acts as 

a mean reward prediction error signal, acting to gauge between subjective 

expected and actual reward (Schultz, 1997).  Natural rewards, as well as many 

drugs of abuse (Wise, 2004), elevate dopamine concentrations in the nucleus 

accumbens (Ahn and Phillips, 2007) and striatum (Nakazato, 2005).  Long lasting 

neuroadaptations in dopamine tone can be observed in response to behavioral 

states including stress, uncertainty, and protracted drug use (Schultz, 2007).  

Recent studies utilizing channelrhodopsin to stimulate firing of dopamine neurons 

induces Pavlovian place preference conditioning in mice (Tsai et al., 2009).       

Canonically, D1 and D5 receptors normally enhance cAMP levels while 

D2, D3, and D4 receptors inhibit the production of cAMP.  Phasic bursts of 

dopamine are hypothesized to preferentially activate low affinity D1 receptors, 

while tonic release of dopamine would favor high affinity D2 receptor binding 

(Lovinger et al., 2003).  In addition to D1 and D2 receptor expressing cells in the 

dorsal striatum, expression of D3, D4 and D5 receptors are present at varying 

extents.  Striatal GABAergic interneurons express primarily D5 receptors, while 

cholinergic interneurons express both D2 and D5 receptors (Yan et al., 1997; 

Yan and Surmeier, 1997).  While the expression levels of these dopamine 

receptors are lower than D1 and D2 receptors they most likely have important 

functional roles.  While there is little expression of D4 and D5 receptor in MSNs 

(Bergson et al., 1995), the D3 receptor is expressed at significant levels in a 

subpopulation of D1 receptor-expressing cells.  In fact many drugs that are 

intended to be specific for D2 receptors actually bind to D3 receptors as well.   
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Interestingly, following dopamine depletion and subsequent levodopa 

administration D3 receptors are upregulated in the dorsal striatum (Bordet et al., 

1997).  Additionally, in dyskinetic monkeys D3 receptor binding is higher than in 

non-dyskinetic or control monkeys following dopamine depletion and levodopa 

administration.  Also D3 receptor binding levels in the striatum correlated with the 

severity of levodopa-induced dyskinesias (Guigoni et al., 2005).  Brain-derived 

neurotrophic factor (BDNF) is important in D3 receptor expression and the 

maintenance of its expression.  Moreover, the administration of a D3 receptor 

partial agonist strongly attenuates levodopa-induced dyskinesias (Guillin et al., 

2003).  These data exemplify the importance of examining other less 

characterized dopamine receptors in the striatum and their possible connection 

to basal ganglia related disorders. 

   

Role of Acetylcholine in Striatal Function 

Acetylcholine (ACh) represents another important neuromodulator class in 

the striatum.  Acetylcholine is released by cholinergic interneurons which are 

tonically active, releasing Ach locally and possibly via a volume transmission 

mechanism (Izzo and Bolam, 1988; Contant et al., 1996).  Even though 

cholinergic interneurons represent a small proportion of the total striatal neuron 

population, there dense and widespread release of Ach plays an important role 

modulating glutamatergic transmission, synaptic plasticity and ultimately action 

selection and decision-making.  In vivo, cholinergic neurons are tonically active 

(<10Hz) during rest, but during behaviorally salient stimuli the neurons show 
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bursting followed by a pause in firing lasting for up to a second (Aosaki et al., 

1995; Ding et al., 2010).  The pause seems to require coordinated inputs from 

SNc and intralaminar thalamic nuclei (Matsumoto et al., 2001).  When the 

burst/pause was recreated in a brain slice the pattern of stimulation initiates a 

brief presynaptic M2R modulation followed by a slow M1R modulation which may 

serve to reset the corticostriatal circuit allowing for possible reassessment and 

suppression of action selection (Ding et al., 2010).       

Both nicotinic and muscarinic receptors transduce ACh signals in the 

striatum.  Nicotinic receptors (nAChR) are ligand-gated ion channels that are 

expressed on DA terminals and on fast spiking interneurons (Koos and Tepper, 

2002; Zhou et al., 2002).  Muscarinic receptors are GPCRs widely expressed on 

axon terminals to the striatum and by all striatal neurons that have been 

examined.  The muscarinic receptors can be divided into the M1-class (M1, M3, 

M5), which is coupled to Gq/11 and activates PLC and M2-class (M2, M4), which 

couples to Gi/o and inhibits adenylyl cyclase (AC).  The M1 and M4 are the most 

abundant in the striatum at the tissue level.  M1Rs are found in both direct and 

indirect MSNs, while M4R are more highly expressed in direct-pathway MSNs 

(Bernard et al., 1992; Ince et al., 1997; Yan et al., 2001).  M2R are exclusively 

located in cholinergic interneurons where along with M4R they function as 

autoreceptors limiting ACh release (Bernard et al., 1992; Alcantara et al., 2001).  

Glutamatergic afferents to MSNs contain M2-class mAChRs and their activation 

reduces glutamatergic EPSCs (Pakhotin and Bracci, 2007; Higley et al., 2009).  

Yet postsynaptic activation of M1Rs potentiates the postsynaptic response to 
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glutamate without altering glutamate receptor number and/or function (Higley et 

al., 2009).  At first glance, M2R-mediated inhibition seems to oppose the M1R-

mediated potentiation, but under bursts of action potentials the M2-mediated 

presynaptic inhibition can be overcome tuning synapses to repetitive stimulation.           

    

Synaptic Triad 

Glutamatergic synapses on MSN dendritic spines are a major site of long-

lasting neuroadaptations and likely a key site underlying the neural correlates of 

motor learning.  Dopamine plays an important role in regulating plasticity in the 

striatum.  In addition to dopamine the striatum receives highly topographic 

glutamatergic thalamostriatal projections from intralaminar nuclei, such as the 

centromedian and parafascicular nuclei, and non-intralaminar nuclei (Smith et al., 

2004).  Thalamic inputs, unlike cortical inputs, target a higher percentage of 

dendritic shafts in both rats and monkeys (Smith and Bolam, 1990; Sadikot et al., 

1992; Smith et al., 1994; Sidibe and Smith, 1996).  In monkeys, centromedian 

projections preferentially synapse onto “direct” pathway neurons versus “indirect” 

pathway neurons (Sidibe and Smith, 1996).  In addition to innervating distinct 

targets, there is evidence that synaptic transmission is not similar between these 

inputs.  For example, the probability of release at cortical and thalamic 

glutamatergic synapses on MSNs appears to be different (Smeal et al., 2007; 

Ding et al., 2008). Further studies utilizing techniques to better separate these 

distinct inputs are necessary to characterize their properties.   
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While electron microscopy analysis of D2R immunohistochemical 

localization on glutamatergic synaptic terminals is controversial, revealing 

exceedingly rare or low levels of D2R (Fisher et al., 1994; Sesack et al., 1994; 

Hersch et al., 1995; Wang and Pickel, 2002), an elegant study by Sulzer’s group 

showed functional evidence of presynaptic dopamine acting to reduce glutamate 

release (Bamford et al., 2004).  Utilizing a dye (FM1-43) to load glutamatergic 

synaptic vesicles they were able to monitor release via destaining coupled with 

electrochemical recordings to directly measure the effects of dopamine at the 

level of individual presynaptic terminals.  Interestingly, another study showed that 

the inhibition of glutamate release by D2R stimulation was frequency dependent; 

resulting in inhibition of glutamate release at higher frequency stimulation (20Hz), 

but not at lower frequencies (1Hz) (Yin and Lovinger, 2006).  This inhibition was 

dependent on CB1R, mGluRs, and rises in internal calcium levels.  These data 

suggest a postsynaptic mechanism for D2R-mediated control of glutamatergic 

synaptic transmission, but they leave open the question of exactly where the 

D2Rs are localized that mediate this inhibition.  

 

GABAergic MSN Synapses 

Another component of the corticostriatal circuitry that needs consideration 

in order to understand synaptic transmission and MSNs firing is the influence of 

local inhibitory collaterals.  MSNs have local GABAergic connections to other 

neighboring MSNs.  This feedback may underlie lateral inhibition (Beiser et al., 

1997), but its functional significance has been controversial.  One reason for this 
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is that many of the recurrent inhibitory synapses are on distal dendrites (Wilson 

and Groves, 1980; Bolam et al., 1993) leading to space clamp issues and 

difficultly measuring these distal inhibitory currents with a somatic patch 

electrode.  In randomly selected MSN neighbors using dual-patch techniques the 

percentage of synaptically connected neighbors is small (10-15%) (Czubayko 

and Plenz, 2002; Guzman et al., 2003; Koos et al., 2004), yet optogenetic 

approaches suggest a much higher degree of connectivity (Chuhma et al., 2011).  

Using D1R and D2R BAC transgenic mice it was found that indirect pathway 

MSNs connect to both direct and other indirect pathway MSNs, but direct 

pathway MSNs only connect to other direct pathway MSNs (Taverna et al., 

2008).  Additional study will be needed to understand the functional significance 

of GABAergic recurrent connectivity.          

Other sources of GABAergic inhibition come from intrinsic GABAergic 

interneurons, which make up a very small percentage of the total striatal 

neuronal pool.  Fast spiking (FS) interneurons receive excitatory inputs from the 

cortex and thalamus and synapse on or near the soma of direct and indirect 

pathway MSNs (Koos and Tepper, 1999; Sidibe and Smith, 1999; Planert et al., 

2010).  A report suggested preferential connectivity of FS interneurons with direct 

pathway MSNs (Gittis et al., 2010).  Individual MSNs are estimated to receive 4-

27 FS interneuron synapses and a single FS interneuron can connect to 135-541 

MSNs allowing for bursts from single FS interneurons to significantly delay AP 

firing in numerous MSNs (Koos and Tepper, 1999).  FS interneuron activation is 

the primary mechanism for feed-forward inhibition, contributing to action selection 
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by inhibiting MSNs in circuits with competing inappropriate actions 

(Parthasarathy and Graybiel, 1997; Gage et al., 2010).  They are enriched in the 

dorsal lateral striatum, suggesting an important role in sensorimotor integration 

(Kita et al., 1990; Bennett and Bolam, 1994).  Indeed, mice with decreased 

numbers of striatal fast spiking interneurons exhibit procedural learning deficits 

(Marrone et al., 2006).  Another GABAergic interneuron subtype includes the 

somatostatin/ neuropeptide Y (SOM/NPY) expressing interneuron that forms 

another feed-forward circuit in the striatum (Tepper et al., 2010).  These 

interneurons are also referred to as low-threshold spiking (LTS) interneurons due 

to their firing properties.  LTS interneurons exhibit high input resistance, 

depolarized resting potentials, plateau potentials, and low threshold spiking 

(Kawaguchi, 1993).  LTS interneurons receive glutamatergic inputs from the 

cortex and the thalamus as well as a dopaminergic innervation (Vuillet et al., 

1989; Sidibe and Smith, 1999; Hidaka and Totterdell, 2001).  Little is known of 

their functional importance, but their innervation of distal MSN dendrites hampers 

their understanding (Gittis et al., 2010).  Even less is known about another LTS 

striatal interneuron that is immunopositive for calretinin (Tepper and Bolam, 

2004).    

 

The Glutamate Synapse 

Glutamate synapses in the striatum contains a presynaptic terminal that 

releases glutamate and a postsynaptic dendritic spine filled with receptors that 

bind glutamate.  These receptors come in two varieties: ionotropic and 
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metabotropic glutamate receptors.  Two major ionotropic glutamate receptors are 

the AMPA and NMDA receptor subtypes, which are defined by their specific 

pharmacological sensitivity to the respective agonists and are tethered to the 

postsynaptic density (PSD) by associated anchoring and scaffolding proteins.  

AMPA receptors (AMPARs), which mediate the majority of fast excitatory 

transmission in the brain, are tetramers that are made up of some combination of 

GluA1-GluA4 AMPAR subunits.  Most AMPARs respond to synaptic glutamate 

release by gating a monovalent cation current that helps depolarize the 

postsynaptic terminal.  Tetrameric NMDA receptors (NMDARs) are thought to 

contain two obligatory GluN1 subunits and some combination of GluN2A-2D 

subunit and GluN3A or 3B.  Binding of glutamate and glycine to GluN2 and 

GluN1 subunits, respectively, gates a cation channel that a) fluxes calcium and 

b) is blocked at hyperpolarized membrane potentials by a magnesium ion.  The 

magnesium block of NMDARs is relieved by a strong depolarization greater than 

what is achieved via upstate transitions.  Thus, NMDARs act as coincidence 

detectors allowing calcium influx following coincident presynaptic release of 

neurotransmitters coupled with AMPA-mediated postsynaptic depolarization.  

The consequential rise in intracellular calcium is a critical trigger for long-term 

changes in the efficacy of transmission at these synapses.     

 

 

 



24 

 

NMDAR-dependent Synaptic Plasticity: Hippocampal Long-term 

Potentiation and Depression 

Glutamatergic synapses have a unique ability to undergo long lasting 

changes in synaptic efficacy in response to very transient signals. The pioneering 

work of Bliss and Lomo in the perforant-pathway dentate gyrus synapse using 

high frequency stimulation to induce a long lasting potentiation of excitatory 

transmission set the stage for much of the subsequent work published on neural 

plasticity (Bliss and Lomo, 1973).  Two classic forms of synaptic plasticity, long-

term potentiation (LTP) and long-term depression (LTD) have been characterized 

initially in the hippocampus and involve long-lasting changes in glutamatergic 

transmission.  NMDAR -dependent LTP and LTD in the CA1 region of the 

hippocampus has been the most widely studied form of plasticity.  These activity 

dependent, long-lasting synaptic adaptations are hypothesized to play key roles 

in learning and memory.  High frequency stimulation or stimulation paired with 

postsynaptic depolarization leads to the induction of an NMDAR-dependent form 

of LTP in the CA1 region of the hippocampus.  Additionally, LTP has been shown 

to persist for at least hours in vitro and for months in vivo (Abraham et al., 2002).  

While late phases of LTP, like learning and memory, are dependent on gene 

transcription and new protein synthesis (Madison et al., 1991), a transient (2-3 

second) elevation of calcium via NMDARs seems to be sufficient for induction of 

this form of LTP  (Lynch et al., 1983; Malenka et al., 1988; Malenka et al., 1992).  

One important mediator of NMDAR-dependent LTP in the hippocampus, no 

matter the induction mechanism, is the postsynaptic calcium-activated kinase, 
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CaMKII (Lisman et al., 2002).  A major locus of potentiation is postsynaptic via an 

activity-dependent increase in function and/or number of AMPARs at the 

synapse (Malenka and Nicoll, 1999; Malinow and Malenka, 2002; Song and 

Huganir, 2002; Bredt and Nicoll, 2003).  Potentiation can proceed by the addition 

of new AMPARs at the synapse or by the recruitment of AMPARs to synapses 

that initially only contain NMDARs.  So-called “silent” synapses (synapses that 

only contain NMDAR) are thought to be key sites for NMDAR-dependent LTP.  

The unsilencing of synapses in adulthood is thought to be similar to LTP in that it 

shares its NMDAR- and CaMKII-dependence, and data suggest that LTP is 

induced in part by the unsilencing of synapses (Liao et al., 1992; Manabe et al., 

1992; Liao et al., 1995).  A decrease in synaptic failure rates following LTP 

induction supports the idea that CaMKII activation converts silent synapses into 

functional contacts (Lledo et al., 1995).  Lledo et al. showed that the addition of 

constitutively active CaMKII in the recording pipette leads to a decrease in the 

number of synaptic failures, an increase in the amplitude of the evoked 

responses and an increase in the spontaneous EPSC frequency and amplitude 

(Lledo et al., 1995).  These data in part can be interpreted as an increase in the 

number of silent synapses following the activation of CaMKII.   Wu et al. also 

presented data implicating CaMKII in the unsilencing of synapses: early during 

development retinotectal synapses of the frog are silent, lacking AMPARs, but 

upon transfection with a constitutively active CaMKII fragment (tCaMKII) the 

strength of AMPAR mediated transmission increases and the fraction of silent 

synapses decreases (Wu et al., 1996).   Additionally, LTP at hippocampal 
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synapses is also thought to involve enlargement of the postsynaptic dendritic 

spine (Lisman and Harris, 1993; Lisman and Zhabotinsky, 2001).  Indeed, 

induction of LTP at single dendritic spines by local uncaging of glutamate results 

in actin-dependent structural enlargement (Fukazawa et al., 2003; Matsuzaki et 

al., 2004).  Previous studies have shown that introduction of constitutively active 

CaMKII into hippocampal neurons is sufficient to induce spine growth (Jourdain 

et al., 2003). 

While NMDAR-dependent LTP in the CA1 region of the hippocampus is 

the most studied form of plasticity, another major form of potentiation is NMDAR-

independent LTP as found at the mossy fiber-CA3 synapses of the hippocampus 

(Harris and Cotman, 1986).  This form of LTP, dubbed mossy fiber LTP, is 

thought to be modulated by kainate receptors (Bortolotto et al., 1999; Contractor 

et al., 2001; More et al., 2004).  Moreover, in contrast to NMDAR-LTD, mossy 

fiber LTP is thought to be maintained presynaptically, involving an increase in the 

probability of synaptic vesicle release.  Other studies suggest that R-type calcium 

channels (Breustedt et al., 2003; Dietrich et al., 2003), calcium activated adenylyl 

cyclases (AC1/8)(Xia et al., 1991; Glatt and Snyder, 1993), cAMP-PKA signaling 

(Huang et al., 1994; Weisskopf et al., 1994; Huang et al., 1995; Lopez-Garcia et 

al., 1996; Tong et al., 1996), the synaptic vesicle protein Rab3a (Castillo et al., 

1997), and the active zone protein RIM1α are all important in mossy fiber LTP 

(Castillo et al., 2002).   

In addition to LTP, NMDAR activation can also produce long-term 

depression (LTD) at glutamate synapses in the hippocampus.  Typically, this LTD 
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is induced in the CA1 region of the hippocampus via prolonged low frequency 

stimulation (0.5-3Hz) (Dudek and Bear, 1992; Mulkey and Malenka, 1992).  This 

LTD is dependent on NMDARs, increases in postsynaptic calcium, and activation 

of serine-threonine protein phosphatases (Mulkey and Malenka, 1992; Mulkey et 

al., 1993; Mulkey et al., 1994), which are thought to drive internalization of 

AMPARs (Carroll et al., 1999; Beattie et al., 2000).  Dephosphorylation at GluA1 

Ser845, a site that seems to be constitutively phosphorylated under basal 

conditions, accompanies LTD induction (Lee et al., 1998).    

In addition to NMDA receptor-dependent LTD, an mGluR-dependent form 

of LTD (Bolshakov and Siegelbaum, 1994; Oliet et al., 1997) can be elicited in 

several brain regions by paired-pulse low frequency stimulation (PP-LFS) or bath 

application of the group 1 selective agonist (R,S)-3,5-dihydroxyphenylglycine 

(DHPG) (Ito et al., 1982; Kano and Kato, 1987; Huber et al., 2000).  Both forms 

of mGluR-LTD via PP-LFS or DHPG occlude each other suggesting similar 

expression mechanisms (Huber et al., 2001), but there are notable mechanistic 

differences from NMDAR-mediated LTD.  mGluR-LTD was first characterized at 

parallel fiber-Purkinje cell synapses of the cerebellum and is primarily dependent 

on mGluR1 activation and the resulting activation of PKC.  Within the cerebellum, 

PKC phosphorylates GluR2 at Ser880 leading to the clathrin-dependent removal 

of GluR2/3 containing AMPA receptors from the synapse (Wang and Linden, 

2000; Chung et al., 2003).  Induction of hippocampal mGluR-LTD is independent 

of NMDARs and does not occlude the induction of NMDAR-dependent LTD, 

suggesting it utilizes different mechanisms (Oliet et al., 1997).  Hippocampal 
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mGluR-LTD has been shown to be dependent on intracellular calcium 

concentration in certain experiments (Oliet et al., 1997) yet independent of 

intracellular calcium concentration in others (Fitzjohn et al., 1999).  In the 

hippocampus, mGluR-LTD seems to depend on both mGluR5 and mGluR1 

receptors: a combination of mGluR1 and mGluR5 antagonists is required to block 

its induction (Huber et al., 2001), but hippocampal mGluR-LTD is totally blocked 

in mGluR5-KO mice and only partially blocked in mGluR1KO mice (Volk et al., 

2006).  This suggests that activation of these two receptors produces synergistic 

responses to induce LTD.  Group 1 mGluRs, like mGluR1 or 5, couple to 

effectors via Gαq G proteins.  The addition of GDPβS to the patch pipette or 

recordings in Gαq (-,-) mice inhibited the induction of mGluR-LTD.  Activation of 

group 1 mGluRs leads to the activation of phospholipase C, increasing IP3 and 

DAG levels.  Activation of these two signaling molecules leads to the liberation of 

calcium from internal stores and in combination with DAG activates PKC.  In 

experiments where a PKC inhibitor was added to the patch pipette, the induction 

of mGluR-LTD in both the hippocampus and cerebellum was blocked (Linden 

and Connor, 1991; Wang et al., 2007).  Group I mGluR-LTD also involves the 

mitogen-activated protein kinase/extracellular signal regulated kinase 

(MAPK/ERK) pathway.  Indeed ERK inhibitors block the induction of mGluR-LTD 

in the hippocampus (Huber et al., 2000; Huber et al., 2001; Gallagher et al., 

2004; Volk et al., 2006; Ronesi and Huber, 2008) and cerebellum (Ahn et al., 

1999; Kawasaki et al., 1999).      
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ERK signaling can regulate translation machinery, which suggests that 

mGluR-LTD may regulate translation of new proteins.  There is much evidence 

suggesting that mGluR-LTD requires new protein synthesis (Huber et al., 2001), 

yet some reports suggest it may be independent of new protein synthesis (Huber 

et al., 2000; Moult et al., 2008).  The putative new protein synthesized and 

needed during mGluR-LTD is possibly the AMPA receptor GluA2 subunit, due to 

the fact that mGluR-LTD is blocked following pretreatment with siRNA and 

oligonucleotides blocking GluA2 translation (Mameli et al., 2007).  Group I 

mGluR-LTD induction is also thought to be dependent on activation of 

postsynaptic protein tyrosine phosphatases, specifically striatal-enriched tyrosine 

phosphatase (STEP), which dephosphorylates the GluA2 subunit of AMPARs 

triggering lateral diffusion and subsequent endocytosis (Moult et al., 2002; Huang 

and Hsu, 2006; Moult et al., 2006; Gladding et al., 2009).  However, conflicting 

results do not allow a conclusive statement about the primary locus for induction 

of mGluR-LTD (presynaptic, postsynaptic, or both).  Inconsistencies could be 

possibly explained by the use of different experimental bath temperatures and/or 

animal ages.  Additional work will be needed to delineate complex mechanisms 

underlying the induction and expression of mGluR-LTD. 

 

CaMKII and Plasticity 

CaMKII is a calcium/calmodulin-activated kinase that is highly expressed 

throughout the brain and is enriched in the postsynaptic density (PSD) of 

glutamatergic synapses (Lisman et al., 2002).  Recent, estimates of the 
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concentration of CaMKII in the dendritic spine is around 100µM (Feng et al., 

2011).  The predominant neuronal CaMKIIα and CaMKIIβ isoforms are enriched 

in the forebrain and cerebellum, respectively (Yamagata et al., 2009).  One or 

more CaMKII isoforms assemble to form a dodecameric holoenzyme and it has 

been estimated that around 80 CaMKII holoenzymes reside in the average 

dendritic spine (Chen et al., 2005; Shinohara et al., 2008).  Many lines of 

evidence show that CaMKII responds to changes in intracellular calcium levels to 

promote biochemical signaling cascades that lead to potentiated synaptic 

transmission (Figure 2).  While signaling via CaMKII is an important mechanism 

underlying synaptic potentiation, alternate signaling pathways like cAMP-PKA 

and MAPK signaling pathways may also be engaged depending the induction 

parameters, but this extensive literature will not be reviewed here (Thomas and 

Huganir, 2004).  CaMKII is activated during hippocampal LTP induction and its 

activation is necessary and sufficient for LTP (Malinow et al., 1989; Tokumitsu et 

al., 1990; Otmakhov et al., 1997; Lisman et al., 2002; Colbran, 2004; Sanhueza 

et al., 2007).  A recent study found that a knock-in mutation of CaMKIIα to 

inactivate the kinase disrupts LTP induction, the associated enlargement of 

spines, and spatial learning (Yamagata et al., 2009).  Following robust calcium 

entry into the postsynaptic neuron, CaMKII is rapidly autophosphorylated at 

threonine 286, converting the enzyme from a calcium-dependent into a calcium-

independent form (Miller and Kennedy, 1986; Fukunaga et al., 1993; Rich and 

Schulman, 1998; Lee et al., 2009).  Activation of CaMKII drives the translocation 

of the enzyme from the cytoplasm to the PSD, where it can bind to important 
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plasticity-associated proteins like NMDARs (Strack and Colbran, 1998; Leonard 

et al., 1999; Shen and Meyer, 1999).  CaMKII’s potential to remain active in the 

PSD/spine long after the postsynaptic calcium transient has subsided is why it is 

often thought of as a molecular switch capable of long-term memory storage.  

Indeed, increased threonine 286 phosphorylation of CaMKII can persist for at 

least sixty minutes (Barria et al., 1997b).  However, one study reported that 

autonomous CaMKII activity returned to basal levels within minutes of LTP 

induction (Lengyel et al., 2004), suggesting that mechanisms other than 

threonine 286 phosphorylation control autonomous CaMKII activity.  Although the 

Thr286 autophosphorylated CaMKII may have roles independent of autonomous 

kinase activity during LTP maintenance, this study also highlights an uncertain 

role for CaMKII activity during LTP maintenance.   Indeed, labs have reported 

that intracellular perfusion of CaMKII inhibitor peptides after LTP induction does 

not disrupt maintenance (Malenka et al., 1989).  In contrast, one recent study 

found that LTP maintenance can be disrupted by bath application of newly 

developed membrane-permeant CaMKII inhibitor following LTP induction 

(Sanhueza et al., 2007).  It is possible that membrane permeant peptides have 

better access to block CaMKII activity in the appropriate subcellular compartment 

(e.g., in the spines/PSD).  Alternatively, the requirement for CaMKII activity may 

depend on the induction mechanism, or be evident only during certain phases of 

LTP maintenance.  Interestingly, behavioral studies suggest that CaMKII activity 

in restricted time windows is required for memory consolidation (Wang et al., 

2003; Wan et al., 2010) 
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Figure 2.  Role of CaMKII in Synaptic Plasticity and LTP in Dendritic Spines.  
Calcium influx via NMDAR leads to the activation of CaMKII and the potentiation of 
synaptic transmission. Activated CaMKII translocates to the PSD where it can bind 
the GluN2B subunit of the NMDAR prolonging its activation.  Active CaMKII can 
potentiate excitatory synaptic transmission by driving new AMPAR to the synapse or 
phosphorylating existing AMPARs (at the GluR1 S831 site) enhancing the average 
conductance.  CaMKII’s phosphorylation of stargazin allows for the binding of 
AMPARs to PSD-95 increasing the dwell time of AMPAR in the synapse.  Active 
CaMKII also plays structural roles in dendritic spine and synapse enlargement.    
Image from (Lisman et al., 2012) 
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Despite uncertainties about the role of CaMKII activity during LTP 

maintenance, a critical role of Thr286 phosphorylation was elegantly 

demonstrated by the creation of knock-in transgenic mice with a non-

phosphorylated alanine residue replacing Thr286 in CaMKIIα.  The resulting 

disruption of CaMKII phosphorylation at Thr286 leads to profound disruption of 

hippocampal LTP (Giese et al., 1998).  Conversely, transgenic mice 

overexpressing CaMKIIα with a threonine 286 to aspartate mutation 

(CaMKIIαT286D), which mimics autophosphorylation, leads to a loss in LTP 

induction at lower frequencies and shifts the size and direction of synaptic 

change in favor of LTD induction (Mayford et al., 1995; Mayford et al., 1996).  

These data suggest that CaMKII serves as a sensor of the level of neuronal 

activity controlling the frequency-response function (Bienenstock et al., 1982).  

Additionally, overexpression of CaMKIIαT286D in the adult forebrain disrupts 

spatial memory and fear conditioned memory (Mayford et al., 1996). 

Another important phosphorylation site on CaMKII is the Thr305/306 site, 

in the calmodulin-binding domain.  Following T286 phosphorylation, T305/306 

sites are phosphorylated, strongly reducing calcium/calmodulin-dependent 

kinase activity (Hanson and Schulman, 1992; Jama et al., 2009; Coultrap et al., 

2010).  Phospho-T305/306 inhibits CaMKII from binding and/or prevents 

dissociation from the PSD which is associated with learning deficits (Elgersma et 

al., 2002).  Indeed, enhanced phosphorylation of T305/306 sites is linked to 

disrupted plasticity in a mouse model of Angelman’s disease (Weeber et al., 

2003).     
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CaMKII activation shares many similarities with the induction of LTP.  To 

determine if two forms of plasticity use a similar mechanism an occlusion test can 

be performed.  For example, LTP induction by HFS is prevented or occluded 

following potentiation induced by activated CaMKII, and vice-versa, suggesting a 

common downstream mechanism (Pettit et al., 1994; Lledo et al., 1995).  

Addition of activated CaMKII in the patch pipette can mimic LTP by enhancing 

the amplitude and frequency of spontaneous excitatory postsynaptic currents 

(sEPSCs, action potential dependent and independent currents that are recorded 

in a voltage clamped neuron in response to the release of synaptic glutamate) 

and decreasing the failure rate which is attributed with an increase in the 

probability of release (Lledo et al., 1995).  These results suggest that CaMKII 

alone is sufficient to enhance synaptic transmission and that this enhancement 

shares common features underlying the mechanism seen following LTP 

induction.   

The activation of CaMKII can strengthen synaptic transmission by multiple 

mechanisms.  Active CaMKII can phosphorylate AMPAR GluA1 subunits at 

serine 831 and increase the conductance state of AMPARs (Barria et al., 1997a; 

Mammen et al., 1997; Derkach et al., 1999; Lee et al., 2000).  The mechanism of 

the increase in conductance state was recently revealed.  A knock-in mutation 

encoding a S831 pseudo-phosphorylated GluR1 does not alter conductance 

state magnitude.  Instead, it increases the likelihood of high conductance state 

transitions (Kristensen et al., 2011).  At least for heteromeric GluR1/GluR2-

containing AMPARs this increase in conductance only occurred in the presence 
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of stargazin.  Phosphorylation of GluR1Ser831 is increased following LTP induction 

and inhibiting CaMKII blocks phosphorylation at this site (Barria et al., 1997b).  

However, LTP can still occur when phosphorylation at GluR1Ser831 is blocked.  

Only when GluR1Ser845 is also inhibited is LTP disrupted, suggesting that 

additional mechanisms as well as distinct interactions between these 

phosphorylation sites underlie synaptic potentiation (Hayashi et al., 2000; Lee et 

al., 2010).   

Another important postsynaptic mechanism is the activity-dependent, 

CaMKII-dependent trafficking of AMPARs to the synapse (Shi et al., 1999; Opazo 

and Choquet, 2011).  Hayashi et al. showed that constitutively activated CaMKII 

leads to the insertion of new AMPARs in the synapse; one potential mechanism 

driving the potentiation seen following LTP induction (Hayashi et al., 2000).  A 

more recent study showed by tagging AMPARs with a quantum dot that the 

molecular dynamics and trafficking of AMPARs could be observed (Opazo et al., 

2010).  Extrasynaptic AMPARs were trapped at the synapses by phosphorylation 

of an auxiliary protein stargazin by CaMKII.  Phosphorylation of stargazin allows 

AMPARs to bind to PSD-95 and increases the overall dwell time of AMPARs at 

the synapse.  Mutation of the putative CaMKII phosphorylation sites on stargazin 

did not affect surface expression, but prevented the enhancement in synaptic 

transmission seen following LTP induction (Tomita et al., 2005).  While CaMKII is 

involved in the trafficking of AMPARs from extrasynaptic sites to synapses by 

likely phosphorylating stargazin during LTP, the initial exocytosis of AMPARs is 

thought to depend on RAS-ERK pathway, RAB-GTPase proteins, kalirin-7, 
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SNARE proteins, certain syntaxin isoforms and myosin V, a molecular motor 

protein (Zhu et al., 2002; Park et al., 2004; Xie et al., 2007; Wang et al., 2008; 

Kennedy et al., 2010; Patterson et al., 2010).  Indeed, CaMKII inhibition only 

partially inhibits exocytosis, leaving room for additional calcium sensors to be 

identified (Patterson et al., 2010).  Inhibition of exocytosis or any of the above 

mentioned proteins does not affect the first 20 minutes of LTP, yet has a strong 

effect on subsequent LTP.  The initial potentiation is thought to be maintained by 

trafficking from extrasynaptic stores (Makino and Malinow, 2009).   However, 

despite the preponderance of data linking CaMKIIα to LTP induction in cortex 

and hippocampus, it is worth noting that CaMKIIα can also play a key role in the 

induction of LTD at parallel fiber-Purkinje cell synapses in the cerebellum (Hansel 

et al., 2006). 

More recent optical methods utilizing glutamate uncaging on single 

dendritic spines combined with high-resolution imaging of CaMKII activation with 

the Camui activity sensor has given more insight into the role CaMKII plays 

during the induction of LTP.  The Camui sensor is a modified CaMKII subunit 

with an enhanced monomeric green-fluorescent protein (mEGFP) and a 

resonance energy-accepting chromoprotein (REAch) attached to opposite ends 

(Takao et al., 2005).  During activation of CaMKII a conformational change 

occurs that moves the fluorescence resonance energy transfer (FRET) acceptor 

and donors farther apart thus reducing the FRET signal.  This FRET sensor with 

allows for monitoring of CaMKII at the single spine level with real-time two-

photon fluorescence lifetime imaging (2pFLIM).  In hippocampal pyramidal 
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neuron spines, glutamate uncaging activated CaMKII quickly and it remained 

localized exclusively to the activated spine.  The activation of wildtype CaMKII 

decayed within 1-2 minutes to baseline, but the T286 to alanine mutant reduced 

the duration of CaMKII activation to seconds (Lee et al., 2009).  The short lived 

activation of CaMKII combined with slow diffusion due binding to PSD partners 

along with a narrow dendritic spine neck limits the spread of plasticity to 

neighboring spines.          

Structural plasticity often is linked to synaptic plasticity.  LTP is often 

accompanied by a rapid and persistent increase in dendritic spine volume.  This 

increase is linked to CaMKII activation and can be mimicked by overexpression 

of active CaMKII (Lee et al., 2009; Pi et al., 2010b).  A slower process of synapse 

enlargement, dependent on protein synthesis, increases the pre and 

postsynaptic compartments size (Ostroff et al., 2002; Tanaka et al., 2008).  A 

study suggested that CaMKII phosphorylation of the guanine-nucleotide 

exchange factor (GEF) kalirin-7 may mediate activity-dependent spine 

enlargement and enhanced AMPAR-mediated synaptic transmission under some 

conditions (Xie et al., 2007). 

While an overwhelming majority of research on CaMKII is on its role in 

excitatory transmission, some recent work has begun to look at the role of 

CaMKII in inhibitory transmission.  Moderate increases in calcium levels lead to 

the translocation of CaMKII to GABAR synapses and the insertion of new 

GABAAR at the inhibitory synapse (Marsden et al., 2010).  Deeper investigation 

of the role of CaMKII in inhibitory synaptic transmission is needed.       
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GluN2B Subunit of the NMDAR and Plasticity 

The N-methyl-D-aspartate (NMDA) receptor is a heteromeric ligand-gated 

ion channel that passes sodium, potassium and calcium as well as interacts with 

multiple intracellular proteins.  It is comprised of a combination of four subunits 

from seven known subunits including obligatory GluN1 subunits (formerly NR1, 

ζ1), and some combination of GluN2A-2D (formerly NR2A-2D or ε1-4), and/or 

GluN3A-3B (formerly NR3A-3B).  The precise combination of subunits 

determines the functional properties of the NMDAR channels.   The NR1 subunit 

undergoes alternative splicing yielding eight unique functional splice forms.  

GluN2A-2D subunits arise from multiple, related genes whose specific 

expression profiles vary based on developmental and regional regulation (Cull-

Candy and Leszkiewicz, 2004).  GluN2A and GluN2B subunits exist in a di-

heteromer (GluN1/GluN2A or GluN1/GluN2B) or in a tri-heteromer 

(GluN1/GluN2A/GluN2B), with around one-third of the subunits in the tri-

heteromer form in the adult hippocampus - yielding unique functional properties 

(Al-Hallaq et al., 2007).   Importantly, the GluN2B subunit has received a lot of 

attention being implicated in learning and memory, pain perception, feeding 

behaviors and numerous human neurological disorders.  

Developmentally, GluN2B protein is expressed in the entire embryonic 

brain, yet is restricted to the forebrain in the adult (Watanabe et al., 1992).  

Expression levels of GluN2B in the forebrain are highest in the early postnatal 

brain and then declines while GluN2A levels increase as the animal ages 

(Hoffmann et al., 2000; Yashiro and Philpot, 2008; Stoneham et al., 2010).  
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Regionally, GluN2B and GluN2A are most abundant in the cortex, hippocampus, 

striatum, olfactory bulb and thalamus.  GluN2B-containing NMDAR have lower 

peak current densities and lower peak channel open probabilities than GluN2A-

containing receptors.  Additionally, deactivation is significantly slower for 

GluN2B-containing versus GluN2A-containing NMDARs.  These single channel 

kinetic differences lead to macroscopic kinetic differences including a slower rise 

and decay time of GluN2B - containing NMDAR versus GluN2A - containing  

NMDARs (Monyer et al., 1994; Vicini et al., 1998; Chen et al., 1999).  These 

differences allow GluN2B-containing receptors larger charge transfer and an 

increased time window for detecting synaptic coincidence which plays a role in 

the induction of synaptic plasticity (Erreger et al., 2005).  This suggests that 

GluN2B-containing NMDAR carry more calcium per unit of current than GluN2A-

containing NMDARs (Sobczyk et al., 2005).  Additionally, GluN2B is thought to 

be located more peri-synaptically, while GluN2A is thought to be centrally located 

at the synapse (Dalby and Mody, 2003; Townsend et al., 2003; Zhao and 

Constantine-Paton, 2007), yet these findings still remain controversial 

(Mohrmann et al., 2000; Harris and Pettit, 2007).  While reports have connected 

increases in synapse size with potentiated synaptic transmission, the density of 

synaptic GluN2B subunits in the CA1 region of the hippocampus is constant 

regardless of spine size (Shinohara et al., 2008).   

The affinity of activated CaMKII binding to GluN2B is far greater than for 

activated CaMKII binding GluN2A (Strack and Colbran, 1998; Mayadevi et al., 

2002) and this CaMKII-GluN2B complex has been shown to be important the 
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induction of LTP (Bayer et al., 2001; Barria and Malinow, 2005).  Indeed deletion 

of the GluN2B c-terminal tail disrupts LTP induction in hippocampal neurons, but 

does not affect NMDAR-mediated currents (Foster et al., 2010).  Overexpression 

of GluN2B in the forebrain of transgenic mice leads to the enhanced activation of 

NMDAR receptors and enhanced LTP.  Additionally, GluN2B overexpressing 

mice showed enhanced long term memory for a novel object in a retention test, 

enhanced fear memory (contextual and cued), and enhanced spatial memory in 

the Morris water maze (Tang et al., 1999).  Alternatively, overexpression of 

GluN2B c-terminal tails actually show reductions in LTP magnitude and exhibit 

learning deficits (Zhou et al., 2007).  While these deficits were suggested to arise 

from the disruption of the CaMKII-GluN2B complex, it seems likely that several 

other intracellular interactions would also be affected.     

Traditional GluN2B knock out animals die soon after birth (Kutsuwada et 

al., 1996), but can survive a few days with hand feeding.  Similarly, mice 

expressing a truncation of the C-terminal domain of the GluN2B subunit die 

perinatally (Sprengel et al., 1998).  Alternatively, GluN2A or GluN2C KOs are 

viable (Lu et al., 2001; Fagiolini et al., 2003; Logan et al., 2007; Zhao and 

Constantine-Paton, 2007; Zhang et al., 2012), suggesting an indispensable role 

for GluN2B in perinatal development, feeding and other physiological functions.  

Utilizing autaptic hippocampal cultures, voltage clamp recordings show that 

GluN2BKO animals express a NMDAR-mediated EPSC, but have faster 

deactivation kinetics and are less sensitive to glycine.  These neurons are more 

sensitive to blockade by zinc and less sensitive to the GluN2B-slective antagonist 



41 

 

ifenprodil (Tovar et al., 2000).  These data suggest that GluN2A can partially 

compensate for the loss of GluN2B subunits at the synapse.  In the first perinatal 

days, GluN2BKO mice show impaired whisker-related barrelette structure and 

primary afferent terminal clustering in the brain stem.  In the hippocampus of 

these mice NMDAR-meditated responses are absent as well as NMDAR-

dependent LTD (Kutsuwada et al., 1996). 

Differing studies have implicated GluN2B subunits in striatal plasticity and 

pathology.  In animal models of Parkinson’s disease dopamine depletion of the 

striatum leads to a reconfiguration of GluN subunits with a reduction particularly 

in GluN2B levels (Oh et al., 1999; Dunah et al., 2000; Hallett et al., 2005; 

Gardoni et al., 2006).  Antagonists of the GluN2B-containing receptor have 

shown antiparkinsonian actions in both rodents and monkeys (Nash et al., 2000; 

Steece-Collier et al., 2000; Nash et al., 2004).  Other studies suggest a 

therapeutic benefit for GluN2B antagonism reducing dyskinesias in animal 

models of Parkinson’s disease, while GluN2A antagonists may exacerbate 

dyskinesias (Hallett and Standaert, 2004; Morissette et al., 2006; Ouattara et al., 

2009; Rylander et al., 2009).  In Huntington’s disease models (HD) transgenic 

mice show potentiated GluN2B currents, suggesting the disease may involve 

abnormal GluN2B activity (Li et al., 2003).  HD mice show increased GluN2B 

surface expression, current and toxicity (Shehadeh et al., 2006; Fan et al., 2007) 

and GluN2B overexpression enhances MSN cell loss (Heng et al., 2009).  More 

recent studies suggest elevated extrasynaptic GluN2B subunit number in the 

striatum of transgenic mice expressing the full length version of human 
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huntington protein and that these alterations are seen prior to motor dysfunction 

and neuronal loss (Milnerwood et al., 2010).  Interestingly, the dorsal lateral 

striatum has a higher GluN2A to GluN2B ratio than the ventral medial striatum 

(Chapman et al., 2003), possibly playing a role in the shift in normal goal-directed 

to habit-based learning seen with repeated training (Yin et al., 2009).  Overall, 

GluN2B is important in synaptic plasticity and learning and memory, and some 

striatal-associated diseases show disrupted GluN2B signaling.                   

Lines of evidence support a role for GluN2B favoring the induction of LTP.  

Many experiments have used ifenprodil, a relatively GluN2B selective antagonist, 

to determine if GluN2B subunits play a role in LTP.  Ifenprodil blocks the 

induction of LTP using a pairing protocol in immature hippocampal slice cultures.  

Overexpression of GluN2A, leading to a replacement of GluN2B subunit 

containing NMDARs, also attenuates the induction of LTP (Barria and Malinow, 

2005).  Although other reports suggest GluN2A subunits mediate LTP (Liu et al., 

2004; Massey et al., 2004), these studies utilized the drug NVP-AAM077, which 

was thought to be selective for the GluN2A receptor over the GluN2B receptor.  

However, NVP-AAM077 can block approximately 20% of the NMDAR-mediated 

current in GluN2AKO mice indicating lower selectivity (Berberich et al., 2005).  

Ifenprodil also has pharmacological caveats due to its complex pharmacology.  

Ifenprodil selectively blocks GluN2B-containing receptors over GluN2A-

containing receptors at high levels of glutamate, while it actually potentiates 

NMDAR currents at low glutamate concentrations (Kew et al., 1996).  The role of 

GluN2A and GluN2B subunits in LTP will need further study with region and 
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developmental age drawing important consideration when interpreting results.  

With the advent of conditional GluN2BKO mice we should gain a better 

understanding of the role of these subunits in plasticity.  Indeed, conditional 

GluN2BKO in the whole forebrain or hippocampus leads to deficits in LTP and 

memory tasks (von Engelhardt et al., 2008). 

Hippocampal LTD has been shown by three independent labs to be 

insensitive to GluN2B blockade with ifenprodil (Morishita et al., 2007).  This 

suggests that hippocampal LTD induction does not require GluN2B receptors.  

Other studies suggest that the GluN2B antagonist blockade of LTD is state 

dependent, in that LTD is blocked by ifenprodil at a basal state, but not following 

depotentiation (Massey et al., 2004).  Recently, ifenprodil has been shown to 

block deficits in spatial working memory and the induction/expression of an in 

vivo LTD following acute exposure to endocannabinoids at CA3-CA1 synapses 

(Han et al., 2012).                   

 

Long-term Synaptic Depression in the Striatum 

Long-lasting neuroadaptations at glutamatergic synapses are not limited 

to the hippocampus, but include brain regions like the striatum as well (Figure 3, 

Table 1).  Indeed, plasticity at excitatory synapses on MSNs in the striatum has 

been clearly demonstrated.  While plasticity in the striatum shares similarities 

with plasticity seen in the hippocampus there are some notable exceptions, 

including a much more prominent neuromodulatory role for dopamine.  Long-

lasting changes in the strength of synaptic connections in the dorsal lateral 
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striatum are likely to influence striatal control over motor activity.  Induction of 

LTP or LTD is dependent on the age of the animal and subregion within the 

dorsal striatum examined (Partridge et al., 2000).  Unlike the hippocampus and 

cerebral cortex, ex vivo studies in adult rodent brain slices using high frequency 

stimulation (HFS) with or without concurrent depolarization typically leads to the 

induction of LTD rather than LTP at glutamatergic synapses in the dorsal lateral 

striatum (Calabresi et al., 1992c; Calabresi et al., 1996; Kerr and Wickens, 2001; 

Bonsi et al., 2003) and this form of LTD is independent of NMDAR activation 

(Calabresi et al., 1992c).  Instead, induction of striatal HFS-LTD is dependent on 

membrane depolarization, activation of voltage-gated calcium channels, 

increases in postsynaptic calcium, coactivation of D1R and D2R signaling and 

metabotropic glutamate receptors (mGluRs)(Calabresi et al., 1992c; Calabresi et 

al., 1996; Choi and Lovinger, 1997a; Sung et al., 2001).    Indeed, either D1R or 

D2R antagonists are able to block HFS-LTD and mGluR antagonist significantly 

attenuate LTD magnitude (Calabresi et al., 1992c).    Additionally, this form of 

LTD is absent in mice that lack the D2 receptor (Calabresi et al., 1997; Choi and 

Lovinger, 1997a) or the dopamine-regulated phosphatase regulator DARPP-32 

(Calabresi et al., 2000).  Alternatively, muscarinic acetylcholine receptor 

antagonists enhance the magnitude of LTD (Bonsi et al., 2008), while nicotinic 

acetylcholine receptor antagonists prevent LTD induction (Partridge et al., 2002). 
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Figure 3.  Striatal LTP/LTD. (left) Schematic diagram of mechanisms thought 
to be involved in striatal LTP.  LTP is thought to involve the activation of 
NMDARs, along with either A2aR or D1R activation in indirect or direct 
pathway neurons, respectively. Increases in calcium may activate CaMKII and 
drive new AMPARs to the synapse. (right) Schematic diagram of the 
mechanisms thought to be involved in striatal LTD.  Postsynaptic 
depolarization activates Cav1.3 voltage-gated calcium channels (VGCC) while 
metabotropic glutamate signaling converges to activate endocannabinoid 
(eCB) release.  eCB act on CB1Rs to decrease the probability of release (via 
VGCC or vesicle fusion). 
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Striatal LTP 

(Modulators or Mediators) 

Striatal LTD 

(Modulators or Mediators) 

NMDAR activation (No Mg2+ ACSF) 

D1R activation 

A2aR activation 

mACh (M1R signaling) 

BDNF 

PKA/PKC 

DARRP-32 

Animal age 

Subregion of dorsal striatum 

 

Depolarization 

Increases in intracellular calcium levels 

Group 1 mGluR1s activation 

L-type VGCC activation (Cav1.3) 

Endocannabinoids (eCB) 

D2R activation 

CB1R activation 

DARPP-32 

mACh (M1R signaling) 

nACh 

Animal age 

Subregion of dorsal striatum 

 

 

 

 

 

 

 

 

 

Table 1.  Known Mediators and Modulators of Dorsal Striatal LTP/LTD 
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At least some of these receptors/signaling molecules likely modulate, 

rather than mediate LTD in striatum (Table 1).  For example, Lovinger’s group 

found that L-type calcium channel activation with modest depolarization and 

synaptic activity is sufficient for LTD, bypassing both D2Rs and mGluRs 

(Adermark and Lovinger, 2007b).   Studies from this group further revealed that 

the mechanism underlying expression of striatal LTD is a reduction in the 

probability of release as indicated by increases in the paired-pulse ratio (PPR, a 

measure of short-term plasticity where a second EPSC is triggered shortly after 

the first leading to increases or decreases in the second response compared to 

the first) and coefficient of variation (CV, the SD of the EPSC amplitude 

normalized to the mean amplitude where the inverse square of CV is directly 

proportional to quantal content) of evoked excitatory responses following LTD 

induction (Choi and Lovinger, 1997a, b).  Also supporting a presynaptic site of 

expression, LTD is associated with a decrease in mEPSC frequency, but not 

amplitude.  This form of LTD is thought to be induced postsynaptically yet 

expressed presynaptically, evoking the need for a retrograde messenger.   

Common retrograde messengers include endocannabinoids (eCB) such 

as anandamide and 2-arachidonyl glycerol.  Retrograde signaling via eCBs has 

become a prominent theme in synaptic plasticity throughout the brain.  In the 

striatum, unlike other brain regions, depolarization alone is not sufficient to 

release eCBs to modulate glutamatergic transmission.  Rather, there is an 

additional requirement for mGluR activation to induce eCB release (Kreitzer and 

Malenka, 2005).   Additionally, striatal D2 receptor activation is known to mobilize 
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endocannabinoid release as well (Giuffrida et al., 1999).  The release of eCB 

postsynaptically can activate presynaptic CB1 receptors, which are Gi/o-coupled 

G-protein coupled receptors that suppress release at excitatory and inhibitory 

synapses (Szabo et al., 1998; Gerdeman and Lovinger, 2001; Huang et al., 

2001).  Studies using cannabinoid receptor (CB1R) agonists and antagonists and 

CB1R knockout mice support a role for postsynaptic endocannabinoids acting on 

presynaptic CB1Rs in a retrograde manner to induce LTD (Gerdeman et al., 

2002; Kreitzer and Malenka, 2005).  However, activation of CB1R alone is not 

enough to generate LTD, additional presynaptic stimulation is needed (Adermark 

and Lovinger, 2007a; Singla et al., 2007).  This suggests that downstream 

signaling from CB1Rs synergize with depolarization-induced mechanisms, like 

calcium entry, to produce LTD.  Indeed the striatum is enriched with CB1Rs.  

Within the striatum CB1R mRNA is expressed with a gradient in the striatum with 

expression levels higher in the lateral striatum with a gradual decrease moving to 

the medial striatum with little expression in the ventral striatum (Matyas et al., 

2006; Martin et al., 2008).  CB1R mRNA is expressed in cortical pyramidal 

neurons that project to the striatum (Tsou et al., 1998).  While there is convincing 

functional data supporting the ability of CB1 receptors to suppress glutamatergic 

release (Gerdeman and Lovinger, 2001; Huang et al., 2001; Kofalvi et al., 2005), 

controversy exists over the ability of antibodies to recognize the expression of 

CB1 receptors on presynaptic glutamatergic receptor terminals (Matyas et al., 

2006).  Additional work and better antibodies are needed for a clearer 

understanding of eCB signaling in the striatum.       
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It is also unclear whether endocannabinoid-mediated LTD (eCB-LTD) 

exists on both direct and indirect populations of neurons or if eCB-LTD can only 

exist on indirect, D2R containing MSNs.  Lovinger’s and Surmeier’s groups 

provided data consistent with a model in which both direct and indirect pathway 

MSNs support eCB-LTD via a cholinergic interneuron D2 receptor-dependent 

reduction in M1 receptor tone (Wang et al., 2006).  The resulting reduction in M1 

receptor tone promotes the opening of Cav1.3 calcium channels, which then 

enhances endocannabinoid production and CB1 receptor activation.  More 

recently the idea that a reduction in both ACh release and M1R signaling is 

critical for the induction of eCB-LTD in both direct and indirect pathway MSNs 

has been shown (Tozzi et al., 2011).  However data from the Malenka lab 

suggests that only indirect pathway MSNs can elicit eCB-LTD (Kreitzer and 

Malenka, 2007).  These discrepancies could possibly be explained by the use of 

D1R-EGFP versus M4R-EGFP mice to label direct pathway MSNs.  Another 

possibility for the role of D2 signaling in eCB-LTD might be the need to inhibit 

A2a adenosine receptor signaling impeding efficient EC synthesis and therefore 

eCB-LTD (Fuxe et al., 2007).  More recently, evidence agreeing with this idea 

that antagonism of A2a receptors promotes eCB-LTD in indirect pathway MSNs 

(Lerner et al., 2010).  Additional conflicting data is reported by Calabresi’s group 

showing that stimulation of M1 receptors can facilitate the induction of striatal 

LTP in ACSF lacking magnesium (Calabresi et al., 1999).  A recent publication 

showed that following repeated administration of ∆9-Tetrahydrocannabinol 

(THC), eCB-LTD was abolished for 3-4 days following treatment.  This loss of 
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LTD was associated with the development of THC tolerance with repeated 

administration, because a single injection of THC did not alter eCB-LTD.  

Functional tolerance in this model is reflected by a loss of available CB1R or an 

uncoupling of downstream G-protein signaling.  Indeed, reduced field EPSCs 

following CB1R agonist application and reduced CB1R radioligand binding were 

observed in the THC tolerant group.  Using a negative spike-timing dependent 

plasticity (STDP) protocol they were able to induce LTD of EPSPs with layer 5 

cortical stimulation in D2R-expressing MSNs, but not in D1R-expressing MSNs.  

The STDP-LTD was lost in chronically treated THC mice.  Additionally, these 

effects were specific to the dorsal lateral striatum, because LTD in the dorsal 

medial striatum, which was mediated by a different signaling mechanism, was 

not affected by repeated THC.  It was found that the induction of eCB-LTD 

depended on the activation of L-type VGCC, but not NMDARs.  Furthermore SK 

channel inhibition rescued eCB-LTD in tolerant mice (Nazzaro et al., 2012).  

Additional studies will be needed to better understand the reasons for the 

discrepancies in the literature for eCB-LTD in D1R-expressing and D2R-

expressing MSNs.                     

An additional form of LTD induced via low frequency stimulation (LFS, 5-

10min, 10-13Hz) can also be detected in the dorsolateral striatum (Kreitzer and 

Malenka, 2005; Ronesi and Lovinger, 2005).  Like HFS-LTD, LFS-LTD is blocked 

by D2R and CB1R antagonists or blunted by blockers of L-type calcium 

channels.  However, LFS-LTD differs from HFS-LTD in that it unaffected by 

postsynaptic depolarization, postsynaptic calcium chelation, mGluR antagonists, 
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and an intracellular anandamide membrane transport inhibitor.  The induction of 

LFS-LTD does not occlude the induction of HFS-LTD suggesting both forms of 

LTD can occur at the same synapses.  This presents a scenario where HFS-LTD 

is favored under strong bouts of cortical stimulation along with correlated 

postsynaptic depolarization, while LFS-LTD would be favored under moderate 

frequency cortical stimulation uncorrelated with postsynaptic depolarization.     

LTD is also the major form of plasticity observed in the ventral striatum.  

Typical stimulation protocols consist of 10-13Hz stimulation applied for several 

minutes in the presence of GABAA receptor antagonists, leading to induction of a 

robust LTD of evoked excitatory transmission (Robbe et al., 2002b; Hoffman et 

al., 2003; Mato et al., 2004).  This form of LTD, which is blocked by CB1R 

antagonists and in CB1RKO mice, is mediated by the postsynaptic release of 

eCB, which activate presynaptic CB1Rs on glutamatergic terminal afferents to 

the NAc (Robbe et al., 2001).  The activation of Gi/o-coupled CB1Rs leads to the 

decrease in probability of glutamate release (Robbe et al., 2001).  Consistent 

with this finding, eCB-mediated LTD is associated with a decrease in the sEPSC 

frequency, but not amplitude.  Additionally, intracellular calcium-chelation and 

antagonism of mGluR5 receptors blocks the induction of eCB-LTD, but NMDAR 

antagonists do not affect this form of LTD.  The group1 mGluR agonist, DHPG, 

elicits LTD in the nucleus accumbens and 13Hz eCB-LTD is occluded following 

DHPG-LTD suggesting a similar shared mechanism.  Interestingly, this form of 

LTD is blocked by prior chronic cocaine administration (Fourgeaud et al., 2004).   
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A second form of LTD is observed in the nucleus accumbens, mediated by 

presynaptic mGluR2/3 receptors and inhibition of P/Q-type calcium channels by 

the cAMP/PKA pathway (Robbe et al., 2002c).  Both mGluR2/3 agonists and 

tetanic stimulation (three times for 1 sec at 100Hz, 20sec intervals) leads to 

mGluR2/3LTD in a majority of experiments.  mGluR2/3 LTD, like eCB-LTD, leads 

to an increase in the paired pulse ratio indicative of a decrease in the probability 

of release of glutamate.  mGluR2/3 LTD induced by tetanic stimulation is also 

independent of NMDARs, postsynaptic intercellular calcium concentrations and 

was occluded by prior mGluR2/3 agonist-induced chemical LTD.  

Finally, a third form of LTD is observed in the nucleus accumbens.  This 

form of LTD can be induced by three bursts of 5Hz stimulation for 3min paired 

with depolarization to -50mV or 1Hz for three minutes (Thomas et al., 2000; 

Thomas et al., 2001).  This low frequency stimulation paired with depolarization 

induces LTD, which unlike other forms is dependent on NMDARs (Thomas et al., 

2001).  This form of LTD is dependent on internal calcium, but independent of 

mGluRs and D1 and D2 receptor activation (Thomas et al., 2000).       

  

Long-term Potentiation in the Striatum 

In addition to LTD, LTP can also occur at glutamate synapses on MSNs, 

but it is in general less well characterized.  Interestingly, induction of striatal 

plasticity depends on the postnatal age of the animal and subregion of the dorsal 

striatum.  In the dorsal lateral striatum HFS stimulation in young animals (P12-

14) leads to the induction of LTP, while in older animals (P15-34) it leads to LTD.  
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Conversely, in dorsal medial striatum LTP is induced across both age ranges 

(Partridge et al., 2000).  While the story is currently far from complete, striatal 

LTP may share some features with CA1 hippocampal LTP described above 

(Bliss and Collingridge, 1993), in particular that it is dependent on NMDARs for 

induction (Calabresi et al., 1997; Yamamoto et al., 1999; Partridge et al., 2000; 

Kerr and Wickens, 2001; Dang et al., 2006; Popescu et al., 2007), and has been 

observed both in vitro and in vivo (Charpier and Deniau, 1997; Charpier et al., 

1999; Dos Santos Villar and Walsh, 1999).  Interestingly, high frequency 

stimulation and depolarization concurrently with pulsatile application (Wickens et 

al., 1996), but not bath application (Arbuthnott et al., 2000), of dopamine in 

normal aCSF (perhaps mimicking the natural pulsatile release of dopamine) 

leads to the induction of LTP instead of LTD in the dorsal striatum.   

As mentioned above, less is known about striatal LTP relative to LTD, 

largely because of difficulty in identifying consistent means by which to induce 

and record the LTP at a single cell level.  For example in many striatal LTP 

studies, aCSF lacking magnesium is used to both unblock the NMDA receptor 

and likely increase release probability (Calabresi et al., 1992a; Centonze et al., 

1999; Calabresi et al., 2000; Nazzaro et al., 2012).  Potassium channel blockers 

have also been used as a means of facilitating striatal LTP (Wickens et al., 1998; 

Norman et al., 2005).  Like LTD, striatal LTP appears to be heavily modulated by 

dopamine, apparently in a receptor-specific manner.  D2 receptor knockout mice 

are reported to exhibit LTP with high frequency stimulation in normal aCSF 

(Calabresi et al., 1997).  Moreover, application of a D2 receptor antagonist can 
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enhance LTP induced in magnesium-free aCSF in wildtype mice, suggesting D2 

receptors exert negative control on LTP induction (Calabresi et al., 1997).  

Pharmacological inhibition of D1 receptors, genetic knockout of D1 receptors or 

postsynaptic inhibition of PKA/PKC activity blocks the induction of LTP (Akopian 

et al., 2000; Calabresi et al., 2000; Centonze et al., 2001; Kerr and Wickens, 

2001; Centonze et al., 2003; Ding and Perkel, 2004; Fino et al., 2005). DARRP-

32 knockout mice, presumably via loss of PP1 inhibition, also prevent the 

induction of LTP in magnesium-free aCSF (Calabresi et al., 2000).  Striatal LTP 

may also depend on the activation of M1 acetylcholine (Calabresi et al., 1999; 

Lovinger et al., 2003) and mGluRs (Gubellini et al., 2003).  In agreement with a 

role for M1 acetylcholine receptors in striatal LTP, blockade of M2 acetylcholine 

receptors enhances LTP (Calabresi et al., 1998).  Another player in striatal LTP 

has been identified recently, the activation of TrkB receptors by its ligand BDNF 

(Jia et al., 2010).  BDNF is released by corticostriatal terminals and TrkB 

receptors are found on both direct and indirect pathway MSNs (Lobo et al., 

2010).  Recently, repeated administration of THC was shown not to have an 

effect on LTP induction, but blocks subsequent depotentiation (Nazzaro et al., 

2012), a process dependent on NMDAR and protein phosphatase-mediated 

signaling (Picconi et al., 2003).   

With D1 receptor stimulation necessary for LTP induction and D2 

stimulation necessary for LTD induction, how can distinct populations of MSNs 

expressing only D1 or D2 receptors elicit both LTP and LTD?  This question was 

addressed by Shen et al. using spike-timing dependent plasticity (STDP) in D1- 
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and D2-EGFP BAC transgenic mice (Shen et al., 2008).  STDP involves the 

precise timing of converging synaptic activity and back-propagating action 

potentials and has been studied in many systems after its initial discovery 

(Magee and Johnston, 1997; Markram et al., 1997).  If an evoked excitatory 

postsynaptic potential (EPSP, a depolarization of a neuron induced by 

presynaptic stimulation increasing the likelihood of generating an action potential) 

precedes postsynaptic spiking by a few milliseconds then this continued pairing 

leads to LTP, whereas reversing the order induces LTD.  Shen et al. report that 

disruption of adenosine A2a receptors - not D1R - blocked the induction of LTP 

on D2R MSNs.  LTD in D2R MSNs induced with STDP, like conventional HFS-

LTD, can be blocked by the single addition of either D2R antagonists, CB1R 

antagonists or mGluR5 antagonists.  In D1R MSNs LTD was only induced in the 

presence of D1R antagonists, while D2R antagonists had no effect on LTD.  So it 

seems that in D1 MSNs D1 receptors and mGluR5 receptors have antagonistic 

actions while in D2 MSNs it seems that adenosine A2a receptors substitute for 

D1 receptors to antagonize mGluR5.  Thus, although this study showed that 

dopamine plays a key role in determining the directionality of plasticity, dopamine 

is not essential for the induction of striatal LTP/LTD under these conditions.  

Another study using STDP concluded that both LTP and LTD induction in the 

striatum is D1R-dependent and NMDAR-dependent with directionality 

determined by timing and order of EPSPs and backpropagating action potentials 

(Pawlak and Kerr, 2008; Pawlak et al., 2010).  Like the hippocampus, this study 

also suggested LTP involved a postsynaptic insertion of AMPA receptors via the 
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unsilencing of synapses, but additional work is needed to confirm if a similar 

mechanism functions in the striatum. 

As in the dorsal striatum, LTP is observed in the ventral striatum, but with 

some notable differences.  High frequency stimulation (100Hz), in physiologically 

normal magnesium concentrations, elicits LTP in field recordings in the NAc 

(Pennartz et al., 1993; Kombian and Malenka, 1994; Mazzucchelli et al., 2002; 

Schramm et al., 2002; Li and Kauer, 2004; Yao et al., 2004).  This form of LTP is 

blocked by acute amphetamine, dopamine, or by dopamine receptor agonists (Li 

and Kauer, 2004).  However after chronic administration of amphetamine the 

attenuation of LTP is lost.   Another induction protocol uses pairings of 

depolarization via an intracellular patch pipette with low frequency stimulation to 

induce LTP (Kombian and Malenka, 1994).  Induction of LTP using this pairing 

approach, while sensitive to intracellular calcium concentration, is not blocked by 

acute amphetamine treatment (Li and Kauer, 2004).  These results suggest that 

dopamine receptor activation normally decreases responses to high frequency 

stimulation without disrupting excitatory synaptic transmission at low frequency.  

Indeed D1R stimulation decreases glutamatergic transmission in the NAc 

response to both single and multiple stimuli (Pennartz et al., 1993; Harvey and 

Lacey, 1996; Nicola et al., 1996; Beurrier and Malenka, 2002).  Additionally, 

NMDARs are required for this form of LTP induction in the NAc (Kombian and 

Malenka, 1994).  Interestingly, the activation of glutamatergic basolateral 

amygdala afferents that innervate ventral striatum enhances LTP at cortical 

glutamatergic synapses on MSNs (Popescu et al., 2007).  
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In summary, it seems that repetitive stimulation of corticostriatal afferents 

can lead to the development of LTP or LTD depending on conditions.  Therefore 

it will be crucial to better understand and identify the factors that control the 

directionality, induction and maintenance of plasticity in the striatum.  Separating 

the direct and indirect projection neurons role in plasticity as well as determining 

effects of local interneurons and local networks as well determining how differing 

methodologies affect plasticity in the striatum will all be important in better 

understanding the mechanisms underlying motor function and disease.   

 

Glutamatergic Plasticity and Motor Skill Learning 

Long lasting changes in synaptic efficacy at synapses leads to long lasting 

changes on the cellular and network levels, which correlate with modifications in 

animal behavior and performance.  Deletion of the obligatory GluN1 subunit of 

the NMDAR in the striatum leads to a disruption of motor learning on the 

accelerating rotarod and a disruption in dorsal striatum LTP and ventral striatum 

LTD (Dang et al., 2006).  Yin et al. were able to correlate the acquisition and 

consolidation of a long-lasting motor skill to alterations in plasticity in the dorsal 

striatum.  Differing regions of the dorsal striatum subserve different forms of 

motor and procedural learning.  The dorsal medial region of the striatum, or 

associative striatum, is preferentially involved in the rapid acquisition of action-

outcome contingencies while the dorsal lateral, or sensorimotor striatum, is 

involved in the gradual acquisition of habit based learning (Hilario and Costa, 

2008).  Experiments recording activity of MSNs in both in the dorsal medial and 
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dorsal lateral striatum in vivo in freely moving mice during a motor learning task 

found regional differences in neural activity at differing time points during learning 

(Yin et al., 2009).  During early time points on the rotarod the dorsal medial 

striatum showed the largest increase in activity, while at later time points when 

learning had reached a plateau dorsal lateral striatum activity peaked.  In 

agreement with these data, excitotoxic lesions in the dorsal medial striatum only 

affected early motor skill learning, while dorsal lateral striatum excitotoxic lesions 

only affected late learning.  To determine if these changes corresponded to 

changes in synaptic strength, saturation experiments were performed by inducing 

LTD.  Yin et al. found that it was more difficult to saturate LTD in the dorsal 

medial striatum at early time points and found it more difficult to saturate LTD in 

the dorsal lateral striatum at late time points in motor skill acquisition.  These 

data suggest that early in motor skill acquisition the dorsal medial striatum 

undergoes synaptic potentiation while at later time points in acquisition the dorsal 

lateral striatum undergoes potentiation.  Additionally, using whole cell voltage 

clamp they saw an increase in the sEPSC amplitude in the dorsal lateral striatum 

following extended training suggesting a postsynaptic increase in 

function/number of AMPARs which is reflective of synaptic potentiation.  

Furthermore, recordings from D1 and D2-EGFP BAC mice during motor skill 

acquisition suggested that late in training the potentiation of excitatory 

transmission in the dorsal lateral striatum occurs predominantly in D2 receptor 

expressing MSNs while becoming less dependent on the activation of D1 

receptors (Yin et al., 2009).  In all these data show that LTP of glutamatergic 
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transmission in the dorsal striatum is necessary for the acquisition of motor skill 

learning.   

Exciting new research has dissected the learning of new action sequences 

and its disruption in nigrostriatal disorders.  In operant tasks where mice learn to 

press a lever to obtain a food reward, researchers have found striatal neural 

activity corresponding to the initiation or termination of an action sequence.  

About one third of MSNs showed lever-press related activity as well as an 

increase or decrease on initiation or completion of the action sequence, which 

actually increased over repeated training.  Using a striatal-specific NMDAR1 

knockout mouse they were able to show that start/stop activity and sequence 

learning were both disrupted (Jin and Costa, 2010).                             

 

Role of the Striatum in Habit Learning 

The neural circuits underlying the acquisition of goal-directed actions 

(action-outcome learning) or actions sensitive to value of the outcome have been 

shown to be different than the circuitry underlying the formation of habits 

(stimulus-response learning).  The dorsal striatum has been shown to play a 

critical role in both (Yin and Knowlton, 2006).  Extended training, different 

reinforcement schedules and drugs of abuse can shift goal-directed behaviors to 

habitual responding.  While habits can be beneficial, losses in voluntary control 

and compulsive drug seeking highlight a maladaptive form of habit learning – 

addiction. 
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To study whether instrumental behavior is being performed because of its 

outcome or not, researchers developed experimental tools to parse out goal-

directed actions from habits.  Initially animals are trained on a fixed ratio (FR) 

schedule, where a certain number of lever presses equate to reward delivery, to 

acquire operant responding for food.  Following initial training the animals can be 

switched to differing training schedules.  Random ratio (RR) schedules have 

been shown to lead to goal-directed schedules, while random interval schedules 

promote habitual behavior (Balleine and Dickinson, 1998). Additionally, 

overtraining helps to transition goal-directed to habit-based learning.  To 

determine whether an action is habitual, a devaluation procedure can be used 

(Hilario et al., 2007).  If an action is habitual, then it should not be dependent on 

the outcome of the reward.  First an animal is trained to press a lever for a 

specific food reward that is different than the food given under restriction 

conditions.  Following acquisition the animals are given free access to the reward 

prior to a session leading to sensory-specific satiety.  If the behavior is goal-

directed then the animals responding under extinction conditions will fall off 

compared to control, but if responding is not sensitive to pre-feeding then it is 

thought that the behavior is habitual (Figure 4).  While behaviors that are 

impervious to devaluation may be suggestive of habit learning additional tests 

are used to confirm this initial assessment.  Contingency degradation or 

disrupting the contingency between the performance of the action and the 

outcome is another way of determining if behavior is habit based (Hammond, 

1980; Dickinson et al., 1996; Corbit et al., 2002).  Under contingency conditions 
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animals are given “free rewards” or rewards that are delivered without an operant 

response.  Like before if operant responding is maintained following contingency 

degradation then the behavior is thought to be habitual.  Another task used to 

look at goal-directed versus habit learning is omission (Davis and Bitterman, 

1971; Yin et al., 2006).  Initially animals are trained that pressing a level equals 

food reward.  Following training during omission in order to obtain the reward 

animals must omit from pressing the lever that was initially paired with reward.  

Omission is one of the most rapid ways for reducing the performance of goal-

directed actions. 
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Goal-directed actions have been shown to be controlled by dorsal medial 

striatum and its pre-limbic cortex and medial dorsal thalamic inputs (Corbit and 

Balleine, 2003; Corbit et al., 2003; Yin et al., 2005a; Yin et al., 2005b; Shiflett et 

al., 2010).  In contrast, habit learning involves the dorsal lateral striatum and 

infralimbic cortex and associated inputs (Killcross and Coutureau, 2003; Yin et 

al., 2004).  Interestingly, a lesion of the nigrostriatal input to the dorsal lateral 

Figure 4.  Parsing Goal-directed and Habit-based Learning in Rodents.  
Devaluation and Contingency Degradation are two assays to determine if an 
animal’s behavior is goal-directed or habit based.  Following acquisition of operant 
training with a distinct reinforcer (Ensure) animals are given free 1 hour access to 
either Ensure or another generalized reinforcer chow in the home cage.  In 
contingency degradation the animal is offered “free” rewards which are delivered 
non-contingently.  In a five minute extinction test following devaluation or 
contingency degradation if the behavior is goal directed, then lever press 
responding should decrease, but if the behavior is habitual then responding should 
remain the same.  Adapted from (Hilario and Costa, 2008) 
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striatum seems to disrupt habit learning and instead support goal-directed 

behaviors (Faure et al., 2005).  Also repeated administration drugs of abuse like 

cocaine and amphetamine can increase activity in the dorsal lateral striatum and 

favor a shift to habitual behavior (Nelson and Killcross, 2006; Nordquist et al., 

2007; Takahashi et al., 2007).  Evidence suggests that goal-directed learning and 

habit learning compete with each other, with lesions of dorsal medial striatum 

turning instrumental responding habitual (Yin et al., 2005b).  Work in freely 

moving rodents analyzing task-related oscillations in field potential activities 

recently suggested that during early instrumental learning in vivo spiking in the 

ventromedial striatum is associated with gamma-band (70-90Hz) bursts, however 

after repeated training when behavior becomes habitual there is an increase in 

global beta-band bursts (15-28Hz) with gamma-band bursts waning (Howe et al., 

2011).                      

Studies have tried to better understand the molecular players and 

signaling cascades involved in habit learning.  Data suggests that signaling 

through CB1R is necessary for habit formation (Hilario et al., 2007).  Additionally, 

A2a adenosine receptor knock-out mice show disrupted habit learning (Yu et al., 

2009).  Recently, a study examined the effects of prolonged THC exposure on 

striatal plasticity and behavior.  Behaviorally, the chronically treated THC mice 

exhibited greater habitual responding compared to controls during devaluation 

and omission tests.  Infusions of apamin, a SK channel antagonist, rescued goal-

directed behavior in the THC tolerant mice (Nazzaro et al., 2012).  Another 

recent study using selective lesioning has suggested that the anterior portion of 
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the central amygdala is involved in the acquisition of habits (Lingawi and 

Balleine, 2012).  Without a direct projection from the central amygdala (CeA) to 

the dorsal lateral striatum it seems plausible that an indirect route via the 

thalamus or substantia nigra pars compacta underlies the CeA role in habit 

learning.  Overall, the concerted interplay of molecules and circuits underlying 

the formation of goal-directed and habits are just beginning to be understood 

making it an exciting area of research in coming years.         

 

Alterations in Striatal Glutamatergic Synapses Following Dopamine 

Depletion 

Lesions of the nigrostriatal dopamine neurons that innervate the striatum 

lead to a disruption in habit based learning.  The hallmark of PD is the loss of the 

majority of dopamine neurons.  It will be interesting to understand the potential 

mechanistic overlap in habit learning and the maladaptive alterations that occur 

in PD.   With the known interplay of dopamine and glutamate in the striatum it is 

important to understand how the loss of dopamine in the striatum alters 

glutamatergic synaptic transmission to better understand PD.  I review some of 

the literature below.   

Unilateral lesion of the nigrostriatal dopaminergic pathway with 6-OHDA is 

one of the most widely used animal models of PD leading to profound 

biochemical, morphological, electrophysiological and behavioral changes that in 

many cases mimic alterations described in patients with Parkinson’s disease.  

Behaviorally, unilateral dopamine depletion leads to deficits in rotarod 
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performance, locomotor performance and increased limb-use asymmetry 

(Picconi et al., 2004a).  Morphologically, the loss of dendritic spines from MSNs 

also is seen in both dopamine depletion models (Ingham et al., 1989; Ingham et 

al., 1993) and in patients with Parkinson’s disease (Anglade et al., 1996).  While 

spine loss is occurring following dopamine depletion the remaining spines 

undergo changes as well.  For example, an increase in the number of perforated 

synapses or synapses with bifurcated active zones - often seen after 

manipulations that enhance excitatory transmission (Edwards, 1995)- is 

observed following dopamine depletion (Ingham et al., 1998) and in PD patients 

(Anglade et al., 1996).  Additional studies also point to dopamine depletion 

leading to an increase in glutamatergic transmission.  Indeed, increased 

glutamate release from corticostriatal synapses (Lindefors and Ungerstedt, 1990) 

and increases in spontaneous glutamatergic transmission are seen following 

dopamine depletion (Galarraga et al., 1987; Calabresi et al., 1993; Tang et al., 

2001; Gubellini et al., 2002; Picconi et al., 2004a).  This increased sEPSC 

frequency following dopamine depletion can be renormalized by the addition of a 

D2 receptor agonist (Picconi et al., 2004a).  This would suggest that dopamine 

tone normally exerts negative modulation on glutamatergic transmission.  

Conversely, work out of Surmeier’s lab demonstrated that decreases, rather than 

increases, in spontaneous glutamatergic transmission - coinciding with spine loss 

- were only seen following dopamine depletion in indirect pathway MSNs (Day et 

al., 2006).  These differences could be due to differing experimental methodology 

like the inclusion of cesium in the patch pipette which blocks potassium channels 
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and improves space clamp and voltage control at distal synapses.  Another point 

for comparison was that this study only looked at sEPSC frequency following 

reserpine treatment, a drug known to reversibly deplete all monoamines without 

dopamine cell and terminal loss. Yet, another more recent study examining the 

effects of 6-OHDA dopamine depletion in the mouse found the opposite results 

where D1R-expressing MSNs showed reductions in sEPSC frequency about a 

month following lesion (Warre et al., 2011).  Time after lesion, methodical 

considerations and compensatory mechanisms following dopamine loss may 

underlie these discrepancies.      

Calabresi’s group amongst others has suggested that dopamine depletion 

leads to a global inability to induce striatal LTP in magnesium-free aCSF 

(Centonze et al., 1999; Kerr and Wickens, 2001; Picconi et al., 2003; Picconi et 

al., 2004b) and prevents the induction of LTD ex vivo (Calabresi et al., 1992c).  

Alternatively, Malenka and colleges have shown that LTD is absent only in 

indirect pathway MSNs in reserpine and 6-OHDA treated animals.  This eCB-

LTD, in addition to locomotor activity and catalepsy, could be rescued by a D2 

receptor agonist or inhibitors of endocannabinoid degradation (Kreitzer and 

Malenka, 2007).  This finding is intriguing since D2R-dependent expression of 

LTD has been reported in both D1R and D2R-containing MSNs (Wang et al., 

2006).  Recently, Shen et al. showed that in animals lesioned with 6-OHDA, 

STDP leads to a flip in the polarity of plasticity so that LTP induction protocols 

induce LTD now in D1 MSNs (Shen et al., 2008).  While in D2 MSNs LTP 

remained following dopamine depletion and could be rescued with a D2R 
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agonist.  However, ex vivo slice data contrasts with in vivo LTD where alpha-

methyl-para-tyrosine-induced dopamine depletion (Reynolds and Wickens, 2000) 

or blockade with D1R antagonists (Floresco et al., 2001) does not block LTD 

induction.   

 

Alterations in Glutamatergic Synapses Following Subsequent Levodopa 

Administration 

Administration of levodopa plus a peripheral dopa-decarboxylase inhibitor 

like benserazide is currently one of the most effective therapeutic options in 

Parkinson’s disease.   The therapeutic efficacy of levodopa is presumed to be 

due to its ability to counteract neuroadaptations that occur in the absence of 

dopamine innervation (Obeso et al., 2000).  Experimentally, levodopa 

administration renormalizes many behavioral, biochemical, and 

electrophysiological deficits seen following dopamine depletion.  However after 

chronic administration with dopamine replacement therapies the formation of 

abnormal involuntary movements or dyskinesias appears.  Independent of the 

degree of dopamine denervation, dyskinesias are surprisingly observed only in a 

subpopulation of rats and monkeys that undergo unilateral dopamine depletion 

followed by levodopa administration.  Data suggests that early administration of 

levodopa (4 weeks post lesion) decreases the percentage of animals that 

eventually develop dyskinesias (Marin et al., 2009).  Normal animals and patients 

that are given levodopa do not develop dyskinesias, suggesting that changes 

that take place following dopamine depletion are important in revealing 
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dyskinesias.   Behaviorally in nondyskinetic rats chronic levodopa administration 

rescues rotarod performance and limb-use asymmetry (Picconi et al., 2003; 

Picconi et al., 2004b).  The loss of striatal LTD seen following dopamine 

depletion can be rescued by application of dopamine or a combination of D1 and 

D2 receptor agonists (Calabresi et al., 1992b; Calabresi et al., 1992c).  Also the 

ex vivo induction of striatal LTP is rescued following levodopa administration at 

dopamine depleted synapses whether or not the rats exhibit dyskinesias (Picconi 

et al., 2003).  However, in animals that showed dyskinetic behaviors, 

depotentiation – a reversal of LTP induced by low frequency stimulation and 

mediated by phosphatases - could not be produced (Picconi et al., 2003).  This 

same study showed that levodopa increased the phosphorylation of DARPP-32 

at Thr34, to presumably inhibit PP1, in dyskinetic rats versus non-dyskinetic rats.   

Additionally, in 6-OHDA lesioned rats levodopa reverses hypersensitivity of D2 

receptors and renormalizes glutamatergic spontaneous EPSC frequency (Picconi 

et al., 2004a).  Biochemical data implicate abnormalities in the subcellular 

localization, levels and phosphorylation state of the NMDAR GluN2B subunit in 

animals eliciting levodopa-induced dyskinesias (Oh et al., 1999; Dunah et al., 

2000; Hallett et al., 2005; Gardoni et al., 2006).  Moreover, GluN2B antagonists 

have shown efficacy in the reduction of dyskinesias (Hallett and Standaert, 

2004). With these data it is conceivable that pharmacological modulation of 

striatal glutamatergic synaptic plasticity might prove useful in the treatment of 

motor symptoms observed in PD. 
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CaMKII Inhibition as a Therapeutic Target in Parkinson’s Disease 

As mentioned above, CaMKII is a key signaling molecule in synaptic 

plasticity.  Both the Colbran and Calabresi labs found increases in the 

phosphorylation state of threonine 286 in CaMKIIα following dopamine depletion 

(Picconi et al., 2004b; Brown et al., 2005).  In both studies, levodopa 

administration was able to restore levels of phosphorylated CaMKIIα to normal.  

The increased Thr286 phosphorylation of CaMKIIα persisted for up to 20 months 

post lesion, but increased phosphorylation of GluR1Ser831, a CaMKII substrate, 

was only detected 9-20 months after dopamine depletion.  Additionally Picconi et 

al. showed that intra-striatal injection of CaMKII inhibitors (KN93 or a membrane-

permeant CaMKII inhibitor peptide) rescued LTP deficits following dopamine 

depletion, as well as limb-use asymmetry and rotarod performance.  Together 

these data suggest an important role for downstream signaling molecules like 

CaMKII in the aberrant plasticity and disrupted motor output following dopamine 

depletion.   

 

Effects of Drugs of Abuse on Plasticity in the Striatum 
 

Psychostimulants like cocaine and amphetamine, as well as other drugs of 

abuse, increase dopamine levels by blocking dopamine re-uptake in the nucleus 

accumbens and in the dorsal striatum (Everitt et al., 2008).  Animals chronically 

treated with drugs of abuse show long-lasting modifications in excitatory 

transmission in the striatum.  In the nucleus accumbens shell chronic 

administration of cocaine leads to the depression of glutamatergic synaptic 
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strength reflected by decreases in the AMPAR/NMDAR current ratio (an index of 

the relative AMPA-and NMDA-mediated currents contribution to EPSCs), the 

amplitude of miniature EPSCs, and the magnitude of LTD (Thomas et al., 2001).  

This suggests the cocaine administration leads to the induction of LTD in vivo.  

Indeed, this form of NAc LTD was blocked by a peptide that disrupts clathrin-

mediated endocytosis or by a GluA2-derived peptide that blocks regulated AMPA 

receptor endocytosis a major mechanism underlying LTD.  This GluA2-derived 

peptide also disrupted the development of behavioral sensitization, an 

enhancement in the locomotor activating effects of cocaine with repeated 

administration, which has been shown to correlate with LTD (Brebner et al., 

2005).  eCB-LTD is abolished following single injection of cocaine and this effect 

is blocked in D1 receptor KO mice and when D1 receptor antagonist are 

administered with cocaine (Fourgeaud et al., 2004).  Additionally this form of LTD 

is blocked in morphine withdrawn animals (Robbe et al., 2002a), during cocaine 

self-administration (Martin et al., 2006), and after the chronic treatment with 

cannabis derivatives (Hoffman et al., 2003).  These data suggest that LTD is 

induced in vivo following chronic drug administration, therefore occluding 

subsequent LTD ex vivo.  In addition to electrophysiological changes following 

psychostimulant exposure long lasting increases in spine density are observed 

following cocaine or amphetamine administration in the nucleus accumbens 

(Robinson and Kolb, 2004).   

Recently, it has been demonstrated that extended withdrawal following 

chronic cocaine administration leads to synaptic potentiation in the NAc shell 
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region and that subsequent re-exposure to cocaine reverses a synaptic 

potentiation to a synaptic depression (Kourrich et al., 2007).  These data suggest 

that drug history determines the directionality of the plasticity in the NAc shell.  

Additionally, exposure to cocaine leads to the development of silent synapses in 

adulthood, accompanied by the insertion of new GluN2B subunits of the NMDA 

receptor (Huang et al., 2009).  Along with changes in synaptic transmission, 

drugs of abuse like cocaine and amphetamine can impart long lasting changes in 

the intrinsic excitability of NAc MSNs.  Chronic cocaine or amphetamine 

exposure leads to decreases in excitability in the nucleus accumbens shell region 

that starts within 1-3 days and persists for at least 2 weeks.  The same drug 

regimen leads to an increase in intrinsic excitability in the NAc core region during 

early withdrawal (1-3 days), but returns to baseline after protracted withdrawal (2 

weeks).  These bidirectional changes in intrinsic excitability seem to be mediated 

by changes in the A-type potassium current (Kourrich and Thomas, 2009).   

Interestingly, chronic cocaine administration leads to a downregulation of 

the postsynaptic density scaffolding protein PSD-95.  Downregulation of PSD-95 

correlates with synaptic potentiation and a PSD-95 targeted deletion enhances 

LTP and augments the locomotor activating effects of cocaine (Yao et al., 2004).  

Cyclin-dependent kinase 5 (CDK5) is a downstream target gene of the 

transcription factor deltaFosB, which accumulates in striatal neurons following 

cocaine administration.  Enhanced cyclin-dependent kinase 5 (CDK5) expression 

in the NAc occurs following short access to self-administered cocaine (Seiwell et 

al., 2007), while inhibition of CDK5 augments both the development and 
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expression of cocaine sensitization and enhances the incentive-motivational 

effects of cocaine (Taylor et al., 2007).   

In all, drugs of abuse have been shown to modulate both the induction 

and directionality of plasticity in the nucleus accumbens.  Like in the dorsal 

striatum the interactions between glutamatergic and dopaminergic systems are 

important for plasticity in this region.  While many drugs have a common end 

point of elevating dopamine acutely in nucleus accumbens, chronic drug 

administration often leads to long lasting modification of synapses, emphasizing 

the importance of drug history, including withdrawal, when interpreting whether 

LTP or LTD is expressed.    

 

Striatal MSN Intrinsic Excitability 

MSNs are known for a hyperpolarized resting membrane potential (-80mV 

or lesser), low input resistance, and a prolonged delay for first action potential 

firing (Kita et al., 1984; Kawaguchi et al., 1989).  Several types of potassium 

conductances shape the firing patterns of MSNs and underlie their 

hyperpolarized basal resting membrane potential (Nisenbaum and Wilson, 1995).  

One prominent player, the inwardly rectifying potassium channel (Kir), is a 

voltage sensitive potassium channel that is permeable to potassium at 

hyperpolarized potentials, but blocked by intracellular polyamines at depolarized 

potentials.  Inwardly rectifying potassium conductances, predominately Kir2, are 

open at rest contributing to a hyperpolarized resting membrane potential, rapid 

membrane time constants, and low input resistance (Uchimura et al., 1989; Jiang 
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and North, 1991; Nisenbaum et al., 1996; Mermelstein et al., 1998).  Upon 

depolarization or upstate transition, inwardly rectifying potassium channels 

inactivate and both A-type potassium currents, KV4.2 (fast inactivating) and 

KV1.2 (slow inactivating), as well as a persistent Kv7 conductance activates and 

generates a  slow depolarization and long delay to first AP (Surmeier et al., 1989; 

Surmeier et al., 1991; Nisenbaum et al., 1996; Tkatch et al., 2000; Shen et al., 

2004; Shen et al., 2005).  The voltage ramp to first AP is shaped by Kv1 and Kv7 

(KCNQ) potassium channels, as well as Nav1 sodium channels and Kv4 

potassium channels (Tkatch et al., 2000; Shen et al., 2004; Shen et al., 2005; 

Carrillo-Reid et al., 2009).  Additionally, depolarization activates both small (SK) 

and large (BK) calcium-activated potassium channels along with Kv1 and Kv7 

channels which together act to counter depolarization and slow action potential 

firing (Bargas et al., 1999; Galarraga et al., 2007).  More recently it has been 

found that spatially convergent synaptic inputs can recruit Cav3 calcium channels 

and NMDARs to produce a regenerative event (Plotkin et al., 2011).   

Alterations in CaMKII activity is linked to alterations in intrinsic excitability. 

Autonomously active CaMKII suppresses neuronal excitability by increasing cell-

surface expression of an A-type K+ channel, Kv4.2, via phosphorylation (Roeper 

et al., 1997; Park et al., 2002; Varga et al., 2004).  In addition, CaMKII inhibition 

in medial vestibular nucleus neurons increases intrinsic excitability via a 

reduction in BK-type calcium activated potassium currents (Nelson et al., 2005).  

In dissociated cortical neurons, CaMKII inhibition induces hyperexcitability and 
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neurotoxicity via dysregulated glutamate/calcium signaling (Ashpole et al., 

2012b).    

While the D1R-containing and D2R-containing MSN subclasses have 

many similar properties, notable differences have arisen.  Initial hints of these 

differences were observed using post hoc reverse-transcriptase polymerase 

chain reaction (RT-PCR) to identify direct and indirect pathway MSNs 

(Mermelstein et al., 1998).  More recently, a novel translational profiling approach 

using BAC transgenic mice allows for the affinity purification of polysomal 

mRNAs from direct or indirect pathway MSNs assisting in the identification of 

molecular changes (Heiman et al., 2008).  Indirect pathway neurons had Kir 

channels that inactivated at more hyperpolarized potentials and had smaller 

amplitudes than direct pathway MSN.  Further studies confirmed that D2R-

containing MSNs fire at nearly twice the rate of D1R-containing MSNs in 

response to depolarizing current injection (Kreitzer and Malenka, 2007).  Other 

differences include indirect pathway MSNs exhibit greater inhibition by 

muscarinic M1 receptors activation than directly pathway MSNs (Shen et al., 

2007).  Additionally, indirect pathway MSNs showed increased input resistance 

and a more depolarized resting membrane potential and these differences persist 

throughout development (Gertler et al., 2008).  MSNs also differ in their activity 

level during cortically driven up state transitions (Wickens and Wilson, 1998).  

While indirect pathway MSN Kir channel expression contributes to enhanced 

excitability, differences still persist following inactivation with substantial 

depolarization suggesting other players are involved.  More recent observations 
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using bacterial artificial chromosome (BAC) mice suggest that the underlying 

reason for enhanced excitability in indirect pathway MSNs is smaller dendritic 

trees than direct pathway MSNs (Gertler et al., 2008).    

Neuromodulators like dopamine and acetylcholine shape the firing 

properties of MSNs through alterations in sodium, potassium and calcium 

channels.  Activation of D1R on direct pathway MSNs reduces sodium currents 

(Schiffmann et al., 1995) and enhances Kir (Pacheco-Cano et al., 1996) together 

reducing MSN excitability.  Yet in the upstate D1R activation can enhance L-type 

calcium currents and block slowly inactivating potassium current which should 

enhance spiking (Surmeier et al., 1995; Nisenbaum et al., 1998; Carter and 

Sabatini, 2004).  These seemingly contradictory findings allow D1R signaling in 

the downstate to act as a filter opposing up state transitions, however once in the 

up state D1R can enhance MSN firing.  D2R activation on indirect pathway 

MSNs leads to opposing effects.  D2R stimulation reduces up state transitions 

and reduces spiking in the upstate by inhibiting L-type calcium channels 

(Hernandez-Lopez et al., 2000).  M1R activation in MSNs inhibits Kir channels 

via phospholipase C activation, blocks persistent potassium currents mediated by 

Kv7 channels, and inhibits N- and P/Q- type calcium channels which couple to 

SK and BK channels (Shen et al., 2005; Shen et al., 2007).  In all M1R activation 

increases MSN excitability and increases the likelihood of up state transitions.               
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Conclusions 

The striatum represents a major site of plasticity in the basal ganglia.  

Interactions between fast excitatory glutamatergic synaptic transmission and 

slower dopaminergic and cholinergic modulation are critical for plasticity in this 

region.  This is a region of complex anatomy that exhibits a wealth of long-lasting 

synaptic modifications.  Dopamine’s importance is reflected by altered plasticity 

seen following dopamine depletion, subsequent dopamine replacement therapies 

and chronic administration of drugs of abuse.  We are just beginning to 

understand how plasticity in the striatum influences normal behaviors and its role 

in disease.  The advent of BAC D1-EGFP and D2-EGFP transgenic mice to 

separate direct and indirect pathway MSNs along with targeted whole cell 

recordings of specific interneuron populations will continue to aid our 

understanding. New techniques utilizing channelrhodopsin or halorhodopsin, 

which can control firing rate of transfected cells with light in vitro or in vivo, will 

accelerate our knowledge of basal ganglia function and open the possibility of 

specific neural circuit control (Gradinaru et al., 2009).  Gaining a more complete 

understanding of mechanisms underlying synaptic plasticity in the basal ganglia 

will hopefully allow for basic understanding of basal ganglia associated behaviors 

as well as open new avenues for therapeutic intervention in disease.   
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Hypothesis 

Inhibition of striatal CaMKII alters glutamatergic synaptic transmission and 

intrinsic excitability 

 

Specific Aims 

1. Test the hypothesis that genetic inhibition of CaMKII regulates synapse 

number in medium spiny neurons 

2. Test the hypothesis that genetic inhibition of striatal CaMKII alters MSN 

intrinsic excitability 

3. Test the hypothesis that inhibition of CaMKII alters striatal-related 

behaviors     
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Chapter II 

 

MATERIALS AND METHODS 

 

Generation of EAC3I-4 Transgenic Mice 

For generation of double transgenic EAC3I-4 X tTA animals, heterozygous 

transgenic mice carrying the tTA gene driven by an alpha CaMKII promoter 

fragment were bred to heterozygous mice carrying the EAC3I transgene fused to 

EGFP driven by the tetO promoter.  The CaMKIIα-tTA mice were obtained from 

Dr. Eric Kandel’s lab and are maintained at Vanderbilt University.  The 

autocamtide-3 derived inhibitory peptide (EAC3I) sequence (KKALHRQEAVDAL) 

mimics the autoinhibitory region of the CaMKII regulatory domain (residues 278-

290) and acts by competitively binding to the catalytic site.  In in vitro biochemical 

assays AC3-I blocks the phosphorylation of an autocamtide-2 substrate by 

purified rat CaM kinase with an IC50 of 3µM (Braun and Schulman, 1995; Wu et 

al., 2002), with a ≥100-fold reduced potency toward protein kinase C, CaM 

kinase I or CaM kinase IV (Braun and Schulman, 1995; Patel et al., 1999; Vest et 

al., 2007).  EAC3-I is made up of the AC3-I peptide fused N-terminal to enhanced 

green fluorescent protein (EGFP) to stabilize and mark cellular and tissue 

distribution.  In a previous study, EAC3I was transgenically expressed in the 

heart and total CaMKII activity in extracts was reduced by ≈40% (Zhang et al., 

2005).  This level of inhibition is likely to be a substantial underestimate of in vivo 



79 

 

inhibition, because proteins were diluted upon homogenization due to mosaic 

transgene expression.   

I quantified the level of mosaicism in our EAC3-I mouse by staining with a 

NeuN antibody (1:1000, Millipore) to label all neurons (See supplemental for 

detailed immunohistochemical labeling).  Manual counts of the number of EGFP 

positive neurons versus total number of NeuN stained neurons in z-stacks in the 

dorsal lateral striatum were made in Metamorph (Molecular Devices; Sunny Vale, 

CA), providing an estimate of the percent of cells expressing the transgene.  

TetO-linked transgene expression is controlled using mouse chow containing 

200mg/kg Doxycycline (DOX) (Bio-Serv; Frenchtown, NJ).  For DOX rescue 

experiments pregnant dams were fed DOX and weaned pups continued with the 

same food.  At 6 weeks DOX was removed and the transgene was allowed to be 

expressed for 4-5 weeks.  All DOX recordings were made between 10-11 weeks.   

All mice had been inbred onto a C57BL/6 background for more than seven 

generations.  GluA1 knockout mice and wildtype littermates 8-16 weeks of age 

were utilized.  

 

Brain Slice Preparation 

All procedures were performed according to Vanderbilt University 

Institutional Animal Care and Use Committee approved procedures.  Male and 

female EAC3I-4 transgenic mice or littermate controls (9-13 weeks or 3-4 weeks 
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animals when indicated) were decapitated under anesthesia (Isoflurane). The 

brains were quickly removed and placed in ice-cold sucrose-artificial 

cerebrospinal fluid (ACSF): (in mM) 194 sucrose, 20 NaCl, 4.4 KCl, 2 CaCl2, 1 

MgCl2, 1.2 NaH2PO4, 10.0 glucose, and 26.0 NaHCO3 saturated with 95% 

O2/5% CO2.  Hemisected coronal slices 300 µm in thickness were prepared using 

a Tissue Slicer (Leica).  Slices containing dorsal lateral striatum were collected 

rostral to the crossing of the anterior commissure (Bregma 1.10–0.2 mm) 

(Franklin and Paxinos 1997).  Slices were then stored in a heated (approximately 

28°C), oxygenated (95% O2-5% CO2) holding chamber containing ‘normal’ ACSF 

[ACSF: (in mM) 124 NaCl, 4.4 KCl, 2 CaCl2, 1.2 MgSO4, 1 NaH2PO4, 10.0 

glucose, and 26.0 NaHCO3] for 1 hour and then transferred to a submersion-type 

recording chamber (Warner Instruments) where they were superfused with 

heated (28°C) oxygenated ACSF at a rate of about 2-3 ml/min.  Preparation of 

GluA1KO animals and controls brain slices used very similar methodology except 

the high sucrose ACSF contained (in mM): 194 sucrose, 30 NaCl, 4.5 KCl, 1 

MgCl2, 26 NaHCO3, 1.2 NaH2PO4, and 10 glucose and 250 µm thick brain slices 

were placed in 30°C oxygenated ACSF containing (in mM): 124 NaCl, 4.5 KCl, 2 

CaCl2, 1 MgCl2, 26 NaHCO3, 1.2 NaH2PO4, and 10 glucose for 30 minutes 

followed by 30 minutes at room temperature before moving hemisections to the 

recording chamber.  
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Whole-Cell Voltage Clamp Recordings 

MSNs of the dorsal lateral striatum were directly visualized with infrared 

video microscopy (Olympus BX51WI with QImaging Rolera-XP Camera).  Only 

highly expressing EGFP-containing MSNs were selected for study and compared 

to neighboring MSNs visually devoid of EGFP expression.  Recording electrodes 

(3-6 MΩ) were pulled on Flaming-Brown Micropipette Puller (Sutter Instruments) 

using thin-walled borosilicate glass capillaries (WPI).  EPSCs were evoked by 

local fiber stimulation with bipolar nichrome electrodes.  Stimulating electrodes 

were placed on the border of the corpus callosum and dorsal lateral striatum 100-

300 µm dorsal to the recorded neuron, and electrical stimulation (5-20 V with a 

100-150 µs duration, Grass Instruments) were applied at 0.05Hz unless 

otherwise noted.  This location most likely stimulates both cortical and thalamic 

glutamatergic axons onto MSNs.  Recording electrodes (3-6 MΩ) were filled with 

(in mM) Cs+ gluconate (117), HEPES (20), EGTA (0.4), TEA (5), MgCl2 (2), ATP 

(4), GTP (0.3) pH 7.35, 285-290 mOsm.  Series resistance averaging 16 MΩ 

(ranging 8-30 MΩ) was monitored and experiments with changes greater than 

20% were omitted.   AMPAR EPSCs and sEPSCs were isolated by adding 25µM 

picrotoxin and recording at a holding potential of -70mV in normal ACSF.  To 

isolate mEPSCs 1uM TTX was added in addition to sEPSCs recording 

conditions.  In all experiments a time period of at least 5 minutes post break in 

was allowed for internal solution exchange and stabilization of membrane 

properties.  GluA1KO sEPSC recordings were conducted similarly except 



82 

 

recording ACSF contained 50 µM picrotoxin and internal solution contained (in 

mM) 120 CsMeSO3, 5 NaCl, 10 TEA-Cl, 10 HEPES, 5 QX-314, 1.1 EGTA, 0.3 

Na-GTP, and 4 Mg-ATP, 295-300 mOsm.  GluA1 WT and KO littermate mice 

were 8-16 weeks of age at time of recording.  In PPR experiments evoked 100-

200 pA responses were elicited with the interstimulus interval set at 40 ms, 50 ms 

and 60 ms. For MK-801 experiments NMDAR currents were pharmacologically 

isolated (25 µM picrotoxin, 10 µM NBQX) and held at +40 mV while a stable ten 

minute baseline (0.05 Hz) was acquired.  After a stable baseline was acquired 

the stimulator was switched off and 10 µM MK-801 was washed on for seven 

minutes.  Following the wash-in period the stimulator was turned on (0.1 Hz) and 

the time constant for decay of the integral of the NMDAR current was calculated 

using nonlinear regression one-phase decay.  For baclofen modulation of PPR, 

20 sweeps of approximately 200pA EPSCs (0.05 Hz) were collected to establish 

a baseline.  Following a wash-in of 10uM baclofen for 8 minutes, an additional 20 

sweeps were collected.  Additional 20 sweeps were taken at 10 minutes and 20 

minutes post washout.  CV was calculated by dividing the SD of the amplitude of 

the evoked EPSCs by the mean.  For rectification experiments evoked AMPAR-

mediated EPSCs were isolated in 25 µm picrotoxin and 100 µm DL-APV 

containing aCSF while the voltage was stepped from -70mV to +40mV in 10mV 

steps.  0.1mM spermine was included in the standard cesium internal solution to 

avoid dialysis of endogenous polyamines.  The rectification index (RI) was 

calculated as the ratio of the amplitude of AMPAR-mediated currents evoked at -

70mV over +40mV.  All signals were acquired via a Multiclamp 700B amplifier 
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(Axon Instruments), digitized at 10 kHz, filtered at 2 kHz and analyzed via 

pClamp 10.2 software (Axon Instruments).  Holding current and series resistance 

were all monitored continuously throughout the duration of experiments.  

Experiments in which changes in series resistance were greater than 20% were 

not included in the data analysis.  

Statistical analyses were performed using Graphpad Prism 5.04.  Two-

tailed unpaired Student’s t-test (t) were used unless variance differed significantly 

(Bartlett’s test for equal variances) then non-parametric Mann-Whitney (U) tests 

were used.  One or Two-way analysis of variance (ANOVA) (F) were used when 

indicated with Neuman-Keuls Multiple Comparison post hoc test.  Non-

parametric Kruskal-Wallis tests (H) were used with Dunn’s Multiple Comparison 

post hoc test when variances differed significantly (Bartlett’s test for equal 

variances).  All values given are presented as average ± SEM.  Cumulative 

probability plots were analyzed with Kolmogorov-Smirnov (KS) test. 

 

Whole-Cell Current Clamp Recordings 

Slices were prepared as before, but perfused with ACSF containing (in 

mM):  NaCl (124), NaH2PO4 (1.25), KCl (2.5), CaCl2 (2.5), MgSO4 (2), NaHCO3 

(26), Glucose (11) pH=7.35, 300-305mOsm.  Recording electrodes were filled 

with in (mM): K+ gluconate (120), NaCl (4), HEPES (10), Mg-ATP (4), Na-GTP 

(0.3), KCl (20), Na+ Phosphocreatine (10) pH= 7.3, 285-290 mOsm.   MSNs 
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were identified by their intrinsic membrane properties (i.e. resting membrane 

typically more negative than -80 mV, inward and outward rectification in response 

to somatic positive and negative current injections, and a long depolarizing ramp 

to delayed first spike discharge (Kawaguchi et al., 1989).  Recordings were 

rejected if the initial Vm was more positive than -75 mV.  Resting membrane 

potential or zero current potential was determined right upon break-in.  

Spontaneous excitatory postsynaptic potentials after 5 minutes post break in 

were recorded for 4 minutes with the cell dynamically current clamped at -85mV.   

Resting membrane potential was monitored and current was injected to maintain 

the resting potential at -85 mV.  For current-voltage (IV) relationships positive or 

negative current injections were given in 20 pA steps until the cell reached 

threshold and fired a single AP.  Five additional current injections steps (20 pA 

each) were given above threshold.  Input resistance was monitored throughout 

the experiment and the cell was rejected if the input resistance changed by more 

than 20%.  Healthy cells showed APs that crossed +30 mV and stable resting 

membrane potentials.     

 

Lucifer Yellow Intracellular Fills, Confocal Imaging and Measurement of 

Dendritic Structure 

Transgenic EAC3I mice (3-4 months) were perfused with 10 ml room 

temperature phosphate buffered saline (PBS) followed by 100 ml of 4% 

paraformaldehyde solution delivered over 10-20 minutes.  Brains were post-fixed 
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in ice cold paraformaldehyde solution for an additional hour before 200 µm thick 

coronal sections of the precommissural striatum were prepared on a vibrating 

microtome (Leica; Buffalo Grove, IL).  MSN cell bodies in dorsolateral striatum 

were visualized at 40X.  Randomly selected EAC3I-expressing (EGFP-positive) 

MSNs and non-fluorescent (EGFP-negative) MSNs in the dorsal lateral striatum 

were iontophoretically filled with an 8% solution of Lucifer yellow (LY; Sigma-

Aldrich, in 50 mM Tris-HCl, pH 7.4) using hyperpolarizing current (3-5 nA for 8-10 

minutes).   Slices were fixed in 4% paraformaldehyde/PBS overnight at 4°C and 

then coverslipped using Prolong Gold mounting solution (Invitrogen; Grand 

Island, NY).  

Digital images of MSN dendritic segments located 80-100 µm distal to the 

cell soma were captured using a Zeiss LSM 710 confocal microscope with x63 oil 

immersion objective and x2.5 digital zoom.  Spine density of three to four 

dendritic segments emanating from different primary dendrites was averaged to 

yield a mean spine density value per MSN.  A total of 17 EAC3I-negative MSNs 

and 16 EAC3I-positive MSNs were analyzed; these were obtained from four 

different mice of each genotype.  After the confocal images were coded by 

someone not involved in the study, another person unaware of the animal or 

genotype of the MSN being examined used Imaris (Version 5.5; Bitplane) to 

quantify dendritic spine density.  A three-dimensional perspective in “surpass” 

mode of the software package was generated and images were processed with 

background subtraction thresholding and smoothed with a Gaussian filter.  
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Dendritic segments were modeled with the largest and smallest diameters set at 

2 µm and 1 µm, respectively.  Florescence in each dendritic segment was 

thresholded manually to capture all dendritic spines.  The minimum terminal point 

spine diameter was set at 0.143 µm and the fluorescence contrast threshold was 

set at 1.  Identified spines were counted and marked in 3D on a rotating version 

of the image.  Finally, each structure identified as a spine by the Imaris software 

was visually verified.  In order to determine total dendritic length and generate a 

Sholl analysis (number of dendritic branches intersecting circular rings drawn 

around the soma every 20 µm distal to the soma), we used Neurolucida Explorer 

(MicroBrightField; Willington, VT). 

     

Immunohistochemistry 

Mice were perfused with 10mL of ice cold 0.1M PBS followed by 20 mL of 

ice cold 4% paraformaldehyde /0.1M PBS.  Brains were postfixed in the same 

fixative overnight at 4°C and then cyroprotected with 30% sucrose/0.1M PBS 

until the brain equilibrated.  Parasagittal sections (100µm thick) or coronal slices 

(40µm) were taken on a Leica cryostat.  The slices were counterstained with nissl 

stain (Neurotrace 530/615, Life Technologies).  Free-floating, coronal slices were 

washed in 4X PBS and then permeabilized in 0.5% TritonX/PBS for 30 minutes.  

The slices were then blocked in 10% normal donkey serum/0.1% TritonX/PBS for 

1 hour at room temperature.  Some slices were stained with a primary antibody 

to NeuN (mouse clone A60; 1:2000, Chemicon/Millipore), a neuronal marker in 
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10%/NDS/0.1% TritonX/PBS and placed on a rocker at 4°C for 48 hours.  Slices 

were then washed 4X10mins in PBS.  A secondary antibody conjugated to CY5 

(Jackson ImmunoResearch) and raised against the primary antibody host was 

added to the slices and incubated for two hours at room temperature.  Slices 

were then washed 4X10 minutes and mounted on Fisher Superfrost Plus slides 

(Fisher Scientific).  Slices were allowed to dry for 5-20 minutes and coverslipped 

with Aqua Poly/mount (Polysciences, Inc).  EGFP and fluorescent probes were 

imaged with Zeiss 510 or 710 confocal microscopes.  

          

Sample Collection and Quantification of Biogenic Amine Levels 

Mice were anesthetized with isofurane and quickly decapitated.  Brains 

were quickly dissected (less than a minute) and slices 1mm thick were made of 

the striatum and quickly frozen on dry ice.  1mm tissue punches were collected 

and placed at -80C.  Detection and quantification of monoamine levels and 

metabolites was performed by the Vanderbilt Neurochemistry Core.  

Determinations are achieved using two dedicated waters high performance liquid 

chromatography systems equipped with autosamplers and either a Decade II 

electrochemical (monoamines) or 474 scanning fluorescence (amino acids) 

detector(Hnasko et al., 2006). 
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Pharmacology 

Picrotoxin, (+)Mk-801 maleate ((5S,10R)-(+)-5-Methyl-10,11-dihydro-5H-

dibenzo[a,dicyclohepten-5,10-imine maleate), NBQX (2,3-Dioxo-6-nitro-1,2,3,4-

tetrahydrobenzo[f]quinoxaline -7-sulfonamide), (R)-Baclofen ((R)-4-Amino-3-(4-

chlorophenyl)butanoic acid), and DL-APV (DL-2-Amino-5-phosphonopentanoic 

acid) were purchased from Tocris (Ellisville, Missouri).  DMSO (0.05%) (Sigma) 

was used as a vehicle for picrotoxin. 

  

Rotarod 

All animals were handled for three days prior to starting behavioral testing.  

Animals were placed on an accelerating rotarod (4-40rpm) for up to 5 minutes.  

Latency to fall was measured.  Three trials with a 30 minute ITI were given on 

day 1 followed by five trials on day 7. 

  

Locomotor Sensitization 

Mice were habituated to handling and injection for three days prior to the 

beginning of the experiment.  Sessions were performed using automated 

experimental chambers (27.9×27.9 cm; MED-OFA-510; MED Associates, 

Georgia, VT) under constant illumination within a sound-attenuated room. 

Analysis of locomotor activity was performed using Activity Monitor v5.10 (MED 
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Associates).  For each of 5 days, mice were first injected with saline (10 ml/kg), 

and then placed in open field chambers for 30 min and activity was recorded.  

Immediately after the 30 min session, each mouse was injected with cocaine (10 

mg/kg; 10 ml/kg) and placed back into the same chamber and activity was 

recorded for 30 min. Two weeks following the 5th day, mice underwent a 

challenge session that was identical to the other sessions.   

 

Operant Testing 

Operant training chambers were as described (Olsen and Winder 

Neuropsychopharmacology (2009)), with levers mounted 2.2 cm above the grid 

floor and cue lamps (yellow LEDs) mounted 2 cm above them.  Mice were food 

restricted where chow was available 2 hours per day.  Subjects first underwent a 

single day of magazine training (50 non-contingent reinforcers of 25% Ensure 

given on a VI-30 interval) where neither lever was available.  In subsequent daily 

sessions, mice underwent operant conditioning in a food self-administration task.  

Operant sessions were conducted between 0900-1400 h. During operant 

training, mice were trained to lever press for access to a liquid reinforcer (25% 

Ensure) delivered by a liquid dipper (ENV-302W). The dipper was available for 

10 s after head entry into the dispenser, and the cue lights remained illuminated 

until the end of the 10-s access.   
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At the beginning of each session, the house light was illuminated, the 

exhaust fan was turned on, and an initial noncontingent reinforcer was available 

concurrent with illumination of the cue lights.  After retrieving the initial reinforcer, 

both levers were extended.  Each mouse was assigned either the left or right 

lever to be the active lever, and the side of the active lever was counterbalanced 

between mice within each genotype.   

Completion of the required ratio on the active lever resulted in illumination 

of the cue lights and elevation of a dipper cup containing ~40 ul of liquid food 

reinforcer (25% Vanilla Ensure®).  The dipper was available for 10 seconds after 

head entry into the dispenser, and the cue lights remained illuminated until the 

end of the 10-second access.  The experiment began with 6 30-min sessions 

where each active lever press was reinforced (Fixed Ratio-1, FR-1).  Next, mice 

were advanced to a random-ratio 5 (RR-5) schedule of reinforcement, where 

each lever press had a 20% chance of being reinforced (30-min sessions, 50 

reinforcers maximum).  Mice underwent 4 days of RR-5 testing, then 4 days each 

of RR-10 (10% chance of reinforcement per lever press; 50 reinforcers 

maximum) and RR-20 (5% chance of reinforcement per lever press; 25 

reinforcers maximum) testing.  Following RR-20 testing, mice were tested using a 

devaluation procedure, where mice were prefed either the reinforcer (25% 

Ensure) or standard lab chow on one day, with pre-feeding of the alternate food 

type on the subsequent day (order counterbalanced within genotype).  

Prefeeding lasted one hour and occurred immediately prior to testing in the 
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operant chamber under extinction conditions.  Next, mice had 4 days of RR-20 

under standard food restriction schedule (2 hour/day access), and then mice 

were tested under conditions of contingency degradation for 3 sessions.  Under 

these conditions, 25 reinforcers were given in a non-contingent manner at a rate 

that the group (genotype) had previously earned under RR-20 conditions and 

lever pressing was recorded (although there was no consequence of lever 

pressing).   
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CHAPTER III 

 

GENETIC INHIBITION OF CAMKII IN DORSAL STRIATAL MEDIUM SPINY 
NEURONS REDUCES FUNCTIONAL EXCITATORY SYNAPSES AND 

ENHANCES INTRINSIC EXCITABILITY 
 

Introduction 

The striatum is the major input nucleus of the basal ganglia (Yin and 

Knowlton, 2006).  Dysfunction in this region is associated with drug addiction, 

Parkinson’s disease and other disorders (Jenner, 2008; Kreitzer and Malenka, 

2008; Milnerwood and Raymond, 2010; Redgrave et al., 2010; Luscher and 

Malenka, 2011; Wan et al., 2011; Yang and Lu, 2011).  The striatum is primarily 

composed of projection GABAergic medium spiny neurons (MSNs) that integrate 

glutamatergic excitatory transmission with modulatory dopaminergic 

transmission.  Since MSN firing is thought to be driven primarily by excitatory 

drive, understanding the basic mechanisms of glutamatergic transmission onto 

MSNs is necessary to understand how the striatum functions in health and 

disease. 

Calcium-calmodulin-dependent kinase II (CaMKII) is a Ser/Thr kinase that 

is highly expressed in the striatum, constituting ~0.7% of total striatal protein 

(Erondu and Kennedy, 1985).  CaMKII assembles into dodecameric complexes 

that in the striatum predominantly contain CaMKIIα and CaMKIIβ isoforms 

(Lisman et al., 2002).  As a major constituent of the postsynaptic density (PSD) in 

the dorsal striatum (Fukunaga et al., 1988) as well as other forebrain regions 
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(Cheng et al., 2006; Baucum et al., 2012), CaMKII is activated by N-methyl-D-

aspartate-receptor (NMDAR)-mediated calcium influx (Silva et al., 1992; Giese et 

al., 1998; Hinds et al., 1998).  CaMKII is a key modulator of hippocampal and 

cortical pyramidal cell glutamate synapse function (Wayman et al., 2008; Lee et 

al., 2009; Lucchesi et al., 2011).  CaMKII can phosphorylate many downstream 

substrates including the ionotropic glutamate receptors NMDARs and α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) (Barria et al., 

1997a; Mammen et al., 1997; Benke et al., 1998; Derkach et al., 1999; Lee et al., 

2000; Strack et al., 2000).  Indeed, in hippocampal pyramidal cells, CaMKII 

activation enhances synaptic trafficking of AMPARs and channel function (Lledo 

et al., 1998; Shi et al., 1999; Hayashi et al., 2000; Shi et al., 2001).  In addition, a 

constitutively active form of CaMKII can decrease intrinsic excitability of 

hippocampal neurons as well as MSNs in the nucleus accumbens shell (Varga et 

al., 2004; Kourrich et al., 2012).  While much is known about the role of CaMKII 

at glutamate synapses on glutamatergic projection neurons such as hippocampal 

and cortical pyramidal neurons, relatively little is known for GABAergic cells.  

Indeed, little CaMKII is expressed in GABAergic interneurons (Jones et al., 1994; 

Liu and Jones, 1996; Sik et al., 1998), making GABAergic projection cells such 

as MSNs, which are highly enriched in CaMKII, unique targets for studying the 

role of CaMKII in synaptic transmission and intrinsic excitability.   

Previous studies have implicated striatal CaMKII in Parkinson’s disease 

(PD) and addiction.  CaMKII is hyperactivated after striatal dopamine depletion, 



94 

 

and CaMKII inhibition rescued striatal synaptic plasticity and motor deficits found 

in animal models of Parkinson’s disease (Picconi et al., 2004b).  Striatal CaMKII 

is also essential for the motivational effects of reward cues on goal-directed 

behaviors (Wiltgen et al., 2007) as well as curbing D1R-mediated cocaine 

hyperlocomotion (Stein and Hell, 2010) and modulating excitability following 

chronic cocaine administration(Kourrich et al., 2012).  Thus, a better 

understanding of CaMKII’s role in striatal glutamatergic synaptic transmission 

may suggest new approaches to treat PD and addiction.  

In addition to its postsynaptic roles, CaMKII modulates a variety of 

presynaptic functions, including trafficking of synaptic vesicles (Llinas et al., 

1985; Lin et al., 1990; Waxham et al., 1993; Stefani et al., 1997; Chi et al., 2001), 

P/Q type calcium channels (Elgersma et al., 2002; Hojjati et al., 2007; Jiang et 

al., 2008), voltage-gated sodium channels (Carlier et al., 2000; Wagner et al., 

2006), catecholamine synthesis (Yamauchi et al., 1981; Atkinson et al., 1987) 

and dopamine transporter function (Fog et al., 2006; Binda et al., 2008).  Thus, 

an investigation of the role of CaMKII within striatal MSNs requires a cell-specific 

approach.  To accomplish this, we generated a transgenic mouse line that 

expresses a CaMKII inhibitory peptide selectively within dorsal striatal MSNs.  

Using this line, we found that CaMKII inhibition in dorsal striatal MSNs leads to a 

loss of functional glutamatergic synapses and an increase in intrinsic excitability.  

These findings shed light on the neural mechanisms underlying the development 

of striatal neural circuits, learning and memory, and motor behavior.         
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Results 

Characterization and in vivo localization/expression of CaMKII inhibitory (EAC3I) 

peptide   

 To determine the role CaMKII plays in modulating glutamatergic 

transmission onto MSNs in the dorsal lateral striatum, we generated a transgenic 

mouse model with striatally enriched expression of a CaMKII inhibitory peptide 

fused to enhanced green fluorescent protein (EGFP) referred to hereafter as 

EAC3I (Braun and Schulman, 1995).  The EAC3I peptide inhibits all isoforms of 

CaMKII, as well as both calcium-dependent and independent forms of the kinase, 

and the fusion with EGFP allows for visualization of the regional and cellular 

distribution of the transgenically expressed protein.  EAC3I was previously 

utilized in another transgenic line to examine the role of CaMKII in the heart 

(Zhang et al., 2005).  To spatially and temporally regulate EAC3I expression, the 

tetracycline transactivator (tTA) is driven by a CaMKIIα promoter fragment with 

the tTA gene product driving expression of EAC3I (Figure 5A).  Constitutive 

expression of the EAC3I transgene has no overt effect on viability or on gross 

brain morphology, and is silenced by including doxycycline (DOX, 200 mg/kg) in 

the animals’ chow for two weeks (Figure 5B).  The alpha CaMKII promoter 

normally restricts transgene expression to the forebrain, but this founder line 

exhibits enrichment of EAC3I expression in the MSNs of the dorsal striatum 

(Figure 5C, 5D), presumably due to integration-site dependent effects.  Little to 

no expression of the inhibitor was seen in cortex and thalamus (Figure 5C, 5D). 
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The EAC3I peptide is expressed in a mosaic pattern throughout the dorsal 

striatum, with 34±4% of neurons containing the inhibitory peptide (Figure 5D). 

The mosaicism observed is common in transgenic animals and different founder 

lines utilizing the alpha CaMKII promoter fragment to drive transgene expression 

show differing expression patterns throughout the forebrain (Mayford et al., 1996; 

Kaufman et al., 2008).  However, we observed no overlap of signal between 

EGFP positive neurons and striatal cholinergic and GABAergic interneuron 

markers such as ChaT, parvalbumin, NPY, and calretinin (Figure 6).  At higher 

magnification the EAC3I inhibitory peptide was observed in the MSN cell soma, 

dendrites and dendritic spines (Figure 5E).  Dense expression of EAC3I was 

detected in both the globus pallidus and in the substantia nigra pars reticulata 

(Figure 5C, 5F, 5H), but higher magnification images revealed the staining was 

localized to axons (Figure 5F), demonstrating that both indirect and direct 

pathway MSNs contain the inhibitory peptide (Figure 5C, 5F, 5H). 
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Figure 5. Characterization and in vivo localization/expression of CaMKII 
inhibitory (EAC3I) peptide in EAC3I mice. (A) Schematic of breeding strategy for 
production of EAC3I mice.  CaMKIIalpha promoter drives expression of tTA which 
binds to the tetO promoter and drives expression of EAC3I peptide fused to EGFP.  
(B) (Top) Brain slice of EAC3I under brightfield (left) and EGFP epifluorescence 
(right).  (Bottom) Brain slice of EAC3I as above following 3 weeks of doxycycline 
feeding (200 mg/kg).  Note lack of EAC3I-EGFP expression.  (C) Sagittal section of 
EAC3I mouse brain showing restricted endogenous EAC3I-EGFP expression (green) 
and nissl stain (red, neuronal marker).  Scale bar 500µm.  (D) Coronal image of 
mosaic expression of endogenous EAC3I-EGFP expression (green) in dorsal lateral 
striatum with a NeuN stain (blue, neuronal marker). Note little to no expression of 
EAC3I peptide in cortex. CC=corpus callosum, Scale bar 100 µm.  (E) 63X image of 
unstained EAC3I-EGFP expressing MSN (green=endogenous EGFP signal).  Note 
expression in soma, dendrites and dendritic spines (arrows).  Scale bar 10 µm.  (F) 
Images of globus pallidus (GP) (left) and substantia nigra pars reticulata (SNR) (right) 
showing MSN axon terminals (green) and nissl stain (red).  GP and SNR cell somas 
(red, nissl stain) are devoid of EGFP signal.  CP=cerebral peduncle.  Scale bars 20 
µm.  (G) (left) DIC image of patch pipette on a MSN in whole cell mode, (right) 
epifluorescence image of left panel confirming EAC3I-EGFP expression.  Scale bar 
20 µm.  (H) Overlaid coronal images showing EAC3I-EGFP MSN axon terminal field 
expression in globus pallidus (left) and substania nigra pars reticulata (right) 
confirming indirect and direct pathway expression, respectively. Scale bar 0.5 mm. 
 



99 

 

 

 

 

 

 

 

 

 

Figure 6. Striatal Interneuron Markers Do Not Colocalize with EAC3I 
Peptide. (A) 20X confocal image of dorsal lateral striatum from an EAC3I 
mouse of endogenous EGFP expression (green) and striatal ChAT 
immunopositive interneurons (red, 0/70 ChAT positive neurons contained 
EGFP).  Scale bar 100µm, inset 50µm. (B) Like A, but striatal parvalbumin 
immunopositive interneurons labeled (red, 0/37 parvalbumin positive neurons 
contained EGFP). Scale bar 100µm, inset 50µm. (C) Like A, but striatal NPY 
immunopositive interneurons labeled (red, 0/22 NPY positive neurons 
contained EGFP).  Scale bar 100µm, inset 50µm.  (D) Like A, but striatal 
calretinin immunopositive interneurons labeled (red, 0/15 calretinin positive 
neurons contained EGFP). Scale bar 100µm, inset 50µm.   
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Effects of CaMKII inhibition on MSN glutamatergic inputs in dorsal lateral 

striatum 

We initially recorded spontaneous excitatory postsynaptic currents 

(sEPSCs) from MSNs using whole-cell voltage clamp in the presence of 

picrotoxin to isolate excitatory transmission.  In this and subsequent 

electrophysiological analyses, we compared three control groups of MSNs with 

one experimental group: Control 1) MSNs from tTA- /tetO-EAC3I- mice (Wt), 

Control 2) MSNs from tTA+ /tetO-EAC3I- mice (tTA), Control 3) EGFP negative 

MSNs from tTA+/tetO-EAC3I+ mice (NON EGFP) and  Experimental 4) EGFP 

positive MSNs from tTA+/tetO-EAC3I+ mice (referred to as EAC3I MSNs 

(EGFP)).   

In adult mice no differences in sEPSC amplitudes were observed between 

MSNs from the four groups described above (in pA, Wt 13.39±0.81; tTA 

11.98±1.27; NON EGFP 14.97±1.38; EGFP 14.78±0.67) [F (3, 33) =1.46; p=NS; 

Figure 8A, 8G].  However, sEPSC frequency was markedly reduced in EAC3I 

MSNs relative to all control MSN groups (in Hz, Wt 3.20±0.24; tTA 2.85±0.17; 

NON EGFP 2.99±0.63; EGFP 1.07±0.15) [H (3, 33) =19.85; p=0.0002]; Figure 

8A, 8D].  Similar results were observed in sEPSC frequency in 3-4 week old mice 

(in Hz, NON EGFP 3.94±1.05; EGFP 1.08±0.23) [U (9) =3.000; p=0.0341; data 

not shown].  Additionally, we did not observe any differences in AMPAR-

mediated current voltage relationship between EAC3-I containing and lacking 

MSNs (Rectification Index (RI) = -70mV/+40mV, NON EGFP 1.97±0.18; EGFP 
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1.75±0.24) [t (8) =0.575; p=0.58; Figure 7A, 7B].  To determine if the decrease in 

sEPSC frequency was due to a change in the intrinsic electrical activity in the 

slice, we also examined activity-independent miniature EPSCs (mEPSCs) in the 

presence of TTX.  Similar to the results with sEPSCs, mEPSC frequency was 

also reduced in EAC3I MSNs (in Hz, Wt 3.62±0.32; tTA 4.88±0.67; NON EGFP 

3.89±0.41; EGFP 0.97±0.40) [F (3, 22) =9.688; p=0.0008]; Figure 8B, 8E], 

suggesting that this effect is independent of presynaptic excitability.   

 

 

 

 

 

Figure 7. AMPA Current Voltage (IV) Relationships are Not Altered 
Between EAC3I-Containing and EAC3I-Lacking MSNs. (A) Averaged 
normalized whole-cell IV relationships (-70mV to +40mV, 10mV steps) 
from EAC3I-containing (EGFP) and neighboring EAC3I-lacking 
(NONEGFP) MSNs (NON EGFP: n=5; EGFP: n=6; p=0.1751).  (B) 
Pooled data showing no change in rectification index (RI) (+40mV/-
70mV) (NON EGFP: n=5; EGFP: n=6; p=0.4775).  Error bars denote 
SEM, N.S. = not significant.    
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Figure 8.  In vivo expression of EAC3I decreases s/mEPSC frequency in dorsal 
lateral striatum MSNs.  (A) Representative sEPSC traces for NON EGFP (black) and 
EGFP (CaMKII-inhibited, green).  Scale bars 50 ms and 10 pA.  (B) Representative 
mEPSC traces for NON EGFP (black) and EGFP (CaMKII-inhibited, green).  Scale bars 
50 ms and 10 pA.  (C) Representative sEPSC traces for NON EGFP (black) and EGFP 
(CaMKII-inhibited, green) MSNs from animals that were fed DOX from birth to six weeks 
and then removed to allow EAC3I transgene expression.  Recordings were made 4-5 
weeks following DOX removal at a similar age to previous.  The scale bars are 50 ms and 
10 pA.   (D) (Left) Average sEPSC frequencies from EAC3I-containing MSNs compared 
to controls, (right) Cumulative probability distributions of sEPSC inter-event intervals (Wt: 
n=7, p=0.0001; tTA: n=5, p=0.0001; Non EGFP: n=9, p=0.0009; versus EGFP: n=13).  
(E) (left) Average mEPSC frequency from EAC3I MSNs compared to controls, (right) 
cumulative probability distributions of mEPSC frequency (Wt: n=5, p=0.0022; tTA: n=6, 
p<0.0001; Non EGFP: n=6, p=0.0019; versus EGFP: n=6).  (F) (Left) Average sEPSC 
frequencies from EAC3I-containing MSNs versus controls, (right) cumulative probability 
distributions of sEPSC inter-event intervals (Wt: n=8, p=0.99; tTA: n=7, p=0.99; Non 
EGFP: n=8, p=0.99; versus EGFP: n=10).  (G) (left) Average sEPSC amplitudes, (right) 
cumulative probability distributions of sEPSC amplitude (Wt: n=7, p=0.91; tTA: n=5, 
p=0.26; Non EGFP: n=9, p=0.99; versus EGFP: n=13).  (H) (left) Average mEPSC 
amplitude, (right) cumulative probability distributions of mEPSC amplitude (Wt: n=5, 
p=0.90; tTA: n=6, p=0.71; Non EGFP: n=6, p=0.96; versus EGFP: n=6).  (I) (left) Average 
sEPSC amplitudes, (right) cumulative probability distributions of sEPSC amplitude from 
animals that were fed DOX from birth to six weeks and then removed to allow EAC3I 
transgene expression  (Wt: n=8, p=0.99; tTA: n=7, p=0.34; Non EGFP: n=8, p=0.99; 
versus EGFP: n=10).   * P <0.05; ** P <0.01; *** P < 0.001; error bars represent SEM, 
N.S. = not significant.  Note: All neurons in panels A-I are held at -70mV during 
recordings.     
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The use of the tTA expression system provides DOX-dependent control of 

EAC3I expression (Figure 5B).  We suppressed expression of the transgene by 

supplementation of food with DOX (200 mg/kg) for both the dam and her litter 

until 6 weeks of age, and then recorded from EAC3I-expressing MSNs 4 weeks 

after removal of DOX.  Under these conditions, the global expression of EAC3I 

was markedly lower than in non-DOX exposed mice, as has been previously 

noted with the tTA expression system (Bejar et al., 2002).  Notably, sEPSC 

frequency in the EAC3I MSNs was not significantly different from controls (in Hz, 

Wt 2.91±0.46; tTA 2.65±0.48; NON EGFP 2.55±0.39; EGFP 2.42±0.39) [F (3, 32) 

=0.2434; p=NS]; Figure 8C, 8F].  These data indicate that the sEPSC frequency 

phenotype observed in no-DOX EAC3I MSNs is not likely due to an insertion site 

artifact.   

 

MSN CaMKII inhibition reduces excitatory transmission independently of 

changes in release probability 

The canonical interpretation of a reduction in s/mEPSC frequency is via a 

reduction in the probability of glutamate release or the number of release sites/ 

number of synapses.  In order to better understand the mechanism(s) underlying 

the reduction in s/mEPSC frequency in EAC3I MSNs we first examined paired-

pulse ratios (PPR) of evoked EPSCs, a measurement that inversely correlates 

with neurotransmitter release probability (Zucker and Regehr, 2002).  The PPR 
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of evoked EPSCs on control MSNs did not differ from that observed on EAC3I 

MSNs [PPR 40ms ISI: (Wt 1.10±0.03; tTA 1.16±0.15; NON EGFP 1.20±0.10; 

EGFP 1.01±0.07) H (3, 33) =2.436; p=NS; PPR 60ms ISI: (Wt 1.12±0.07; tTA 

1.17±0.16; NON EGFP 1.01±0.07; EGFP 0.94±0.06) F (3, 33) =1.377; p=NS; 

Figure 9A, 9B, 9C].  To show that we could predictably manipulate PPR we used 

the GABABR agonist baclofen (10 µM).  Baclofen acts presynaptically to reduce 

the probability of release and therefore increase PPR at a number of CNS 

synapses (Zucker and Regehr, 2002; Lei and McBain, 2003).  Baclofen 

increased the PPR in EAC3I MSNs to a similar extent as in control MSNs 

suggesting that release probability was modifiable in the CaMKII-inhibited cells 

and not at a floor (NON EGFP baseline 1.13±0.11, 10 µM baclofen 2.29±0.28, 20 

min washout 1.38±0.14; EGFP baseline 1.04±0.11, 10 µM baclofen 1.94±0.43, 

20 min washout 1.30±0.14) [F (1, 9) =0.5403; p=NS; Figure 9E].  Similar results 

were observed with coefficient of variation (CV) measures of evoked EPSCs, 

where baclofen application enhanced CV to the same degree in EAC3I MSNs 

and controls (NON EGFP baseline 0.21±0.05, 10µM baclofen 0.56±0.07, 20 min 

washout 0.24±0.07; EGFP baseline 0.23±0.05, 10µM baclofen 0.52±0.11, 20 min 

washout 0.31±0.06) [F (1, 9) =0.0047; p=NS; Figure 9D].  Additionally, we found 

that baclofen significantly decreased the sEPSC frequency to a similar extent in 

both EAC3I MSNs and controls (NON EGFP baseline 100±22.4%, 10 µM 

baclofen 37.8±11.1%; EGFP baseline 100±33.2%, 10µM baclofen 40.4±10.2%) 

[F (1, 9) =0.0025; p=NS; Figure 9F].  
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Figure 9.  Dorsal lateral striatum MSN CaMKII inhibition reduces excitatory 
transmission independently of changes in release probability.  (A) (Upper 
trace, black) NON EGFP (EAC3I-lacking) MSN PPR (50 ms ISI) example trace 
baseline (average of 20 sweeps, 0.05 Hz).  (Middle trace, black) EAC3I-lacking 
MSN PPR (50 ms ISI) example trace post 10 µM Baclofen wash in (average of 20 
sweeps, 0.05 Hz).  (Bottom trace, black) EAC3I-lacking MSN PPR (50 ms ISI) 
example trace 20 minutes post wash out of drug (average of 50 sweeps, 0.05 
Hz).  (B) Same as in (A), but for an EGFP (EAC3I-containing) MSN.  (C) Average 
PPR recorded by paired-pulse stimulation eliciting EPSCs with two different 
interstimulus intervals (40 and 60 ms) for EAC3I-containing MSNs versus all 
controls. (Wt: n=9; tTA: n=6; NON EGFP: n=9; EGFP: n=10; 40 ISI p=0.38, 60 ISI 
p=0.27).  (D) Baclofen increases the CV of EPSCs. Coefficient of variation 
(CV=SD/Mean) change of EPSCs from before, during and after application of 
baclofen for EAC3I-containing and EAC3I-lacking MSNs (NON EGFP: n=6; 
EGFP: n=5; p=0.95).  (E) Baclofen increases the PPR. PPR (50ms ISI) for 
EAC3I-containing and EAC3I-lacking MSNs before, during and after application of 
baclofen (NON EGFP: n=6; EGFP: n=5; p=0.48).  (F) Baclofen decreases sEPSC 
frequency.  Plot of normalized sEPSC frequency post 10 µM Baclofen compared 
to baseline for EAC3I-containing and EAC3I-lacking MSNs (NON EGFP: n=6; 
EGFP: n=5; p=0.96).  Note:  All MSNs held at   -70mV during recordings.    
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Changes in s/mEPSC frequency could also theoretically be produced by 

changes in synaptic glutamate concentration.  To address this possibility, we 

utilized MK-801, an uncompetitive, activity-dependent and irreversible antagonist 

of NMDARs (Huettner and Bean, 1988).  After obtaining a stable baseline of 

evoked NMDAR-mediated EPSCs at +40mV in the presence of picrotoxin and 

NBQX, the stimulator was switched off and 10µM MK-801 was applied to the 

slice.  After eight to ten minutes to allow the drug to equilibrate in the bath the 

stimulator was turned back on and the subsequent rate of inhibition of the 

NMDAR-mediated EPSC was calculated.  The rate of inhibition was not 

significantly different between non-EGFP and EAC3I MSNs (tau in seconds, 

NON EGFP 80.82±9.65; EGFP 87.07±8.59) [t (9) =0.6469; p=NS; Figure 10A, 

10B], suggesting that the levels of glutamate at both synapses is not significantly 

different.  Together, the lack of effect of CaMKII inhibition on PPR, baclofen 

modulation or MK-801 rate of blockade point to a postsynaptic mechanism for the 

decreased sEPSC frequency in the CaMKII-inhibited cells, which we interpret as 

a decrease in the number of functional synapses.  
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Figure 10. Dorsal lateral striatum MSN CaMKII inhibition does not 
alter the level of glutamate at the cleft.  (A) Normalized average 
NMDAR-mediated EPSC Charge (AUC) measured with 0.1 Hz 
stimulation in the presence of 10 µM Mk-801 over time for EAC3I-
containing and EAC3I-lacking MSNs.  (B) The rate of NMDA-mediated 
EPSC decay is best fit with a single exponential decay function.  The time 
constant (tau) in seconds was not significantly different between groups 
(NON EGFP: n=6; EGFP: n=5; p=0.65).  All neurons held at +40mV to 
relieve NMDAR-dependent voltage blockade by magnesium. 
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CaMKII inhibition does not alter dendritic spine density, but reduces dendritic 

length and complexity 

We next examined dendritic spine density, dendritic length and branching 

complexity in CaMKII-inhibited versus neighboring non-inhibited cells.  Previous 

work has suggested a correlation between changes in mEPSC frequency and 

dendritic spine density (Day et al., 2006; Fu et al., 2007; Lu et al., 2011b; Verpelli 

et al., 2011), although this is not always the case (Ding et al., 2012).  

Additionally, CaMKII has been shown to modulate dendritic length in the 

hippocampus (Fink et al., 2003).  There was no difference in spine density 

related to expression of the transgene (NON EGFP 18.03 ± 0.52 spines per 10 

µm vs.; EGFP 17.95 ± 0.85) [t (31) =0.087; p=NS; Figure 11A, 11B].  However, 

we observed a significant reduction in total dendritic length (NON EGFP 1538 ± 

99 µm vs.; EGFP 1134 ± 78) [t (31) =3.158; p=0.0035; Figure 11C, 11D].  Sholl 

analysis revealed a significant overall decrease in dendritic branching (F (1,31) 

=28.55; p<0.0001), with Bonferroni post-hoc analyses revealing specific 

significant decreases at  40 and 60 µm distal to the cell soma (Figure 11E).  
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Figure 11.  CaMKII Inhibition Does Not Alter Dendritic Spine 
Density, but Decreases Dendritic Length and Complexity.  
Rendering and quantification of a confocal image of a Lucifer yellow 
filled dendritic segment (80-100 µm from the cell soma) from a MSN 
from the dorsal lateral striatum.  (A) (top) Confocal image of EAC3I-
lacking MSN (NON EGFP) and the Imaris dendrite and spine model 
overlaid from segment above.  (below) Same as above, but for an 
EAC3I-containg MSN segment.  Scale bars 1.5 µm.  Fluorescent 
signal (green) pertains to Lucifer yellow fill.   (B) Average dendritic 
spine density (number of spines/10 µm) scatter plot for each neuron. 
NON EGFP n=17, EGFP n=16; p=0.93. (C) Neuronal reconstructions 
of representative EAC3I-lacking (NONEGFP) and EAC3I-containing 
(EGFP) dorsal striatal MSNs.  Scale bar 50µm.  (D)  Average total 
dendritic length in EAC3I-lacking (black) and EAC3I-containing 
(green) MSNs.  (E)  Sholl analysis of dendritic complexity in EAC3I-
lacking (black) and EAC3I-containing MSNs (green).  **p <0.01, *p 
<0.05; error bars represent SEM. Thank you to Hui-dong Wang for 
data collection.    
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GluA1 KO mimics EAC3I decrease in sEPSC frequency 

The AMPAR GluA1 subunit is critical for activity-dependent postsynaptic 

strengthening of excitatory synapses, and is inserted into the synaptic membrane 

in a CaMKII-dependent process in hippocampal neurons (Hayashi et al., 2000).  

Mice lacking the GluA1 subunit of the AMPAR have deficits in CA1 LTP 

(Zamanillo et al., 1999) (but see (Mack et al., 2001) ) and deficits in learning and 

memory (Reisel et al., 2002; Bannerman et al., 2004; Schmitt et al., 2005; 

Wiedholz et al., 2008).  Additionally, reductions in CaMKIIα mRNA and protein 

levels are seen in the hippocampus of GluA1 KO animals (Zhou et al., 2009).  If 

the CaMKII inhibition-dependent reduction in functional glutamatergic synapses 

on striatal MSNs is due to defects in synaptic GluA1 insertion, then we predicted 

that GluA1 knockout mice should mimic EAC3I mice in terms of sEPSC 

frequency and amplitude.  Thus, we measured sEPSC frequency and amplitude 

in adult GluA1 KO versus control mice in the dorsal lateral striatum.  We found 

that the loss of the GluA1 receptor also led to a significant reduction in sEPSC 

frequency (in Hz, control 3.2±0.8; GluA1KO 1.4±0.3) [U (31) =66; p=0.0133; 

Figure 12A, 12B], but not sEPSC amplitude (in pA, control 18.3±0.5; GluA1KO 

18.1±0.4) [t (31) =0.3576; p=N.S.; Figure 12A, 12C].  The similarity in synaptic 

outcomes of the GluA1 KO and EAC3I expression reinforces the idea that a 

common pathway has been affected.  
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Figure 12.  GluA1KO Mice Mimic the EAC3I Mice Decrease in sEPSC 
Frequency.  (A) Example traces of sEPSCs collected from dorsal lateral 
striatum MSNs in Wt (top) and GluA1KO (bottom).  Scale bars 0.5 sec, 30 pA 
(Control: n=15; GluA1KO: n=18; p=0.013).  (B) (left) Average sEPSC 
frequency in GluA1KO versus controls. (right) Cumulative probability graph of 
inter-event interval.  (C) (left) Average sEPSC amplitude in GluA1KO versus 
controls.  (right) Cumulative probability graph of amplitude (Control: n=15; 
GluA1KO: n=18; p=0.72).  * P <0.05 ; error bars represent SEM.  All MSNs 
were held at -70mV. Thank you to Brian Mather for data collection.     
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MSN CaMKII inhibition leads to enhanced intrinsic excitability 

To further examine the impact of CaMKII inhibition on physiological 

responses of dorsal striatal MSNs, we next examined excitatory drive and 

excitability of these cells under current clamp conditions.  As expected from our 

voltage clamp experiments with sEPSCs, we also observed a robust decrease in 

the frequency of sEPSPs in the CaMKII inhibited cells versus control neurons in 

current clamp (in Hz, Wt 3.18±0.29; tTA 3.09±0.06; NON EGFP 3.04±0.33; 

EGFP 1.78±0.18) [F (3, 19) =4.704; p=0.0154; Figure 13A, 13C].  Surprisingly, 

however, we also observed a significant increase in sEPSP amplitude in the 

CaMKII-inhibited cells versus controls (in mV, Wt 0.48±0.05; tTA 0.47±0.10; NON 

EGFP 0.55±0.05; EGFP 0.77±0.09) [F (3, 19) =3.605; p=0.0367; Figure 13A, 

12D].  As similar effects were not observed with sEPSC amplitudes, this 

suggested a change in excitability of EAC3I neurons.  In order to further test this 

idea we measured basal intrinsic excitability.  EGFP cells possessed a 

significantly more depolarized resting membrane potential (in mV, Wt -

86.30±0.50; tTA -85.61±0.50; NON EGFP -85.52±0.38; EGFP -83.61±0.68) [H 

(3, 78) =8.588; p=0.0353; Figure 13E] and had significantly increased input 

resistance compared to control cells (in MΩ, Wt 75.85±9.90; tTA 91.98±6.22; 

NON EGFP 70.48±5.54; EGFP 122.65±13.81) [H (3, 79) =19.89; p=0.0002; 

Figure 13F].  This suggests that CaMKII inhibition moves the resting membrane 

potential closer to firing threshold and increases membrane resistance to 

enhance the propagation of depolarizing current from distal MSN dendrites.  Next 
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we examined the voltage responses to differing current injections.  While 

injecting minimal current to maintain resting membrane potential at -85 mV, a 

series of hyperpolarizing and depolarizing current injections were given in 20 pA 

steps.  The threshold for 1st AP or rheobase current injection was significantly 

lower in the CaMKII inhibited MSNs versus control (in pA, Wt 357±32; tTA 

285±28; NON EGFP 357±30; EGFP 194±17) [F (3, 78) =9.393; p<0.0001; Figure 

13G].  The firing threshold was not significantly different amongst groups (in mV, 

Wt -36.4±1.3; tTA -35.3±1.5; NON EGFP -33.4±0.8; EGFP -37.0±0.9) [F (3, 78) 

=2.516; p=0.0649], suggesting that input resistance changes are a major 

contributor to changes in rheobase.  Also CaMKII inhibited cells exhibited 

increased spiking over a range of suprathreshold current injections [F (3,60) 

=5.425; p=0.0023; Figure 13H] versus control, reflecting a decrease in the 

interspike interval.  Taken together, these data show that CaMKII inhibition 

enhances the intrinsic excitability of MSNs. 
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Figure 13.  CaMKII inhibition enhances MSN intrinsic excitability.  (A) 
Traces of EAC3I-lacking (NON EGFP, black) and EAC3I-containing MSNs 
(EGFP, green) sEPSPs recorded at -85 mV.  Scale bars 0.6 mV, 200 ms.  (B) 
Traces of EAC3I-lacking (black) and EAC3I-containing MSNs (green) with 20pA 
hyperpolarizing and depolarizing current injections (-120 pA to +100 pA above 
AP threshold, 20 pA steps).  Scale bars 200 ms, 20 mV.  (C) Average sEPSP 
frequency in EAC3I-containing MSNs versus controls (Wt: n=4; tTA: n=4; NON 
EGFP: n=9; versus EGFP: n=6; p=0.015).  (D) Average sEPSP amplitude 
(current clamped at -85 mV) in EAC3I-containing MSNs versus controls (Wt: 
n=4; tTA: n=4; NON EGFP: n=9; versus EGFP: n=6; p=0.037). (E) Resting 
membrane potential (RMP) (mV) of EAC3I-containing and control MSNs (Wt: 
n=18; tTA: n=15; NON EGFP: n=22; versus EGFP: n=24; p=0.0043).  (F) Input 
resistance of EAC3I-containing and control MSNs (Wt: n=18; tTA: n=15; NON 
EGFP: n=22; versus EGFP: n=24; p=0.0002).  (G) Rheobase current injection or 
current injection to reach 1st AP in EAC3I-containing and control MSNs (Wt: 
n=18; tTA: n=15; NON EGFP: n=22; versus EGFP: n=24; p<0.0001).  (H) Firing 
frequency (Hz) after 4 sweeps (20 pA steps) following threshold firing in EAC3I-
containing and control MSNs (Wt: n=18; tTA: n=15; NON EGFP: n=22; versus 
EGFP: n=24; p=0.0023).   * P <0.05; ** P <0.01; *** P < 0.001; error bars 
represent SEM. 
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Discussion 

We present converging lines of evidence that dorsal striatal MSN CaMKII 

inhibition decreases functional synapse number and increases intrinsic 

excitability.  Inhibition of CaMKII in MSNs leads to a decrease in sEPSC 

frequency, without a change in release probability, glutamate levels at the 

synaptic cleft or dendritic spine density.  These observations are consistent with 

a decrease in the number of functional synapses.  In addition to changes in 

excitatory transmission, inhibition of CaMKII leads to an enhancement of MSN 

intrinsic excitability.  These data suggest that CaMKII coordinates opposing 

regulation of excitatory transmission and intrinsic excitability in MSNs, serving as 

a cellular rheostat.  

CaMKII inhibitors such as KN62 and KN93 have been useful tools in 

probing CaMKII functions, but these drugs also inhibit voltage-gated K+ and Ca2+ 

channels (Li et al., 1992; Ledoux et al., 1999), and do not inhibit the autonomous 

activity of Thr286-autophosphorylated  CaMKII (Tokumitsu et al., 1990; Sumi et 

al., 1991).  In addition, in dendritic spines where the concentration of calmodulin 

and CaMKII are extremely high (~100µM) (Faas et al., 2011; Feng et al., 2011), 

KN-62 (10 µm) only partially decreases CaMKII activity (Lee et al., 2009).  The 

EAC3I peptide we used inhibits all isoforms of CaMKII, including CaM-stimulated 

and autonomous activity, with low micromolar potency (Braun and Schulman, 

1995; Chen et al., 2001; Zhang et al., 2005).  EAC3-I is ≥100-fold selective for 

CaMKII over protein kinase C, CaM Kinase I or CaM kinase IV (Braun and 
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Schulman, 1995; Patel et al., 1999).  The AC3-I peptide sequence differs from 

another highly selective CaMKII-inhibitor, AIP, by only one amino acid residue 

(Vest et al., 2007).  It is also important to consider the localization of CaMKII 

inhibition when interpreting these results.  CaMKII is highly expressed in 

dopamine terminals, which densely innervate the striatum, where it stimulates 

dopamine efflux via the dopamine transporter in the presence of amphetamine 

(Fog et al., 2006).  In addition, CaMKII is present in glutamatergic projections, 

which form the presynaptic terminal onto MSN spines and dendrites (Liu and 

Jones, 1996; Fog et al., 2006), where it may modulate release events (Chi et al., 

2001; Elgersma et al., 2002; Hojjati et al., 2007; Jiang et al., 2008).  Our 

transgenic strategy resulted in the selective expression of the CaMKII inhibitor in 

the postsynaptic MSN, where it cannot directly affect the function of the 

glutamatergic and dopaminergic terminals, consistent with the lack of change in 

glutamate release parameters in EAC3I MSNs (Figures 9, 10).    

We demonstrated that CaMKII inhibition decreases s/mEPSC frequency 

with no changes in presynaptic function.  The lack of a bimodal distribution in the 

s/mEPSC frequency data suggests that CaMKII inhibition similarly affect both 

direct and indirect pathway MSNs.  Changes in s/mEPSC frequency are 

traditionally interpreted as alterations in presynaptic quantal content; the product 

of changes in release probability or synapse number.  However, multiple lines of 

evidence suggest that presynaptic function is unaltered.  Together these data 

suggest that CaMKII inhibition decreases functional synapse number.  One 
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possibility is that CaMKII inhibition produces a loss of functional synaptic 

connections.  Alternatively, there could be an increase in the number of silent 

synapses which contain NMDARs but no AMPARs and are typically abundant 

early in development (Liao et al., 1992; Isaac et al., 1995; Liao et al., 1995; 

Durand et al., 1996; Wu et al., 1996; Kerchner and Nicoll, 2008).  A further 

possibility is that CaMKII inhibition could increase the numbers of silent modules 

of synapses or increase the number of AMPAR-lacking subregions of the 

synapse due to local nature of basal synaptic transmission (Raghavachari and 

Lisman, 2004; Lisman and Raghavachari, 2006).  In the hippocampus, silent 

synapses can be unsilenced following NMDAR activation by the introduction of 

new AMPAR to the synapse, underlying a common mechanism of LTP of 

synaptic glutamatergic transmission (Shi et al., 1999; Hayashi et al., 2000; Park 

et al., 2004; Adesnik et al., 2005).  Previous research has suggested a direct role 

for CaMKII in the unsilencing of synapses in the hippocampus (Pettit et al., 1994; 

Lledo et al., 1995; Shirke and Malinow, 1997; Pi et al., 2010a).  Additionally, 

CaMKII is required for the formation of new synapses and/or morphological 

growth following hippocampal LTP induction (Toni et al., 1999; Jourdain et al., 

2003; Lee et al., 2009; Ciani et al., 2011a).    

Striatal CaMKII inhibition did not alter dendritic spine density, suggesting 

that the decrease in s/mEPSC frequency could best be explained by some 

spines lacking active presynaptic terminals or increased numbers of silent 

synapses.  However, the significant increase in the input resistance of EAC3I-



118 

 

positive MSNs should enhance sampling of mEPSCs from more distal dendritic 

sites, potentially increasing s/mEPSC frequency.  These data together suggest 

that decreases in s/mEPSC frequency in EAC3-I MSNs are potentially 

underestimated.  Alternatively, some of these effects may be due to decreased 

dendritic length and complexity seen in EAC3I-positive MSNs.  However, it is not 

clear whether distal MSN synapses are sampled in our s/mEPSC analyses due 

to cable filtering effects previously reported (Williams and Mitchell, 2008) .  

Hippocampal βCaMKII has been shown to modulate dendritic length and 

branching as well as synapse number (Fink et al., 2003).  These results suggest 

that CaMKII plays important roles in modeling MSN dendritic morphology.  The 

alpha CaMKII promoter fragment that drives EAC3I expression reportedly turns 

on around P5 (Kelly et al., 1987; Sugiura and Yamauchi, 1992, 1994a, b).  This 

would lead to inhibition of CaMKII in early postnatal development and continuing 

into adulthood.  The effects of this longer term genetic CaMKII inhibition 

contrasts with the typically minimal effects of acute, short term application of a 

related CaMKII inhibitor peptide, AIP, on basal glutamatergic transmission in the 

CA1 and CA3 region of the hippocampus (Sharma et al., 2008; Buard et al., 

2010; Shen et al., 2010; Ciani et al., 2011b).  Conversely, expression of CaMKII 

inhibitor peptides CaMKIIN or AIP over 2-6 days reduced hippocampal CA1 

AMPAR-mediated, but not NMDAR-mediated EPSCs (Goold and Nicoll, 2010).  

Another report suggests a CaMKII inhibitor peptide, CN19, persistently 

decreased hippocampal CA1 field EPSPs or EPSCs amplitudes at higher 

concentrations disrupting the CaMKII/NMDAR complex (Sanhueza et al., 2011).  
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These data suggest that disruption of the CaMKII/NMDAR complex, a complex 

that increases following strong synaptic stimulation (Leonard et al., 1999) and is 

necessary for LTP (Barria and Malinow, 2005; Zhou et al., 2007), may offer an 

alternative mechanism underlying our observed effects.    

Endogenous CaMKIIα levels peak around 3 weeks postnatally, which is a 

crucial time for synaptogenesis and synapse maturation (Hanley et al., 1987; 

Kelly et al., 1987; Sugiura and Yamauchi, 1992).  The apparent decrease in 

functional synaptic connections in CaMKII inhibited MSNs in adulthood may have 

four possible explanations:  1) CaMKII activity is necessary for the normal 

unsilencing of synapses in the adult; 2) Ongoing CaMKII activity is required to 

maintain functional synapses; or 3) CaMKII is needed early in synaptogenesis to 

turn initially silent synapses into functional ones; or 4) the CaMKII-mediated 

decrease in dendritic length may underlie the reduction in total synapse number.  

The decrease in sEPSC frequency in EAC3I MSNs was detected as early as 

three weeks postnatally, suggesting a large proportion of synapses were never 

unsilenced or perhaps never formed.  In the hippocampus both 

electrophysiological and anatomical studies at light and electron microscopic 

levels suggest that in the first few weeks of life many synapses start as NMDAR-

only synapses or silent synapses (Rao and Craig, 1997; Gomperts et al., 1998; 

Nusser et al., 1998; Petralia et al., 1999; Takumi et al., 1999).  Synapse 

unsilencing involving the trafficking of new AMPARs (GluA4-containing) to the 

synapse in early postnatal development is dependent on activity, but is 
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independent of CaMKII (Zhu et al., 2000; Esteban et al., 2003).  Instead, PKA 

plays an important role early in postnatal development (<P9) in plasticity in the 

hippocampus being necessary and sufficient for GluA4 incorporation, but 

requiring additional CaMKII activity for GluA1 receptor incorporation (Esteban et 

al., 2003; Yasuda et al., 2003; Man et al., 2007).  These data suggest that the 

similar synaptic phenotypes of GluA1KO and EAC3I mice arise from disruption of 

a common mechanism.  However, it is interesting that the phenotype of the 

EAC3I cells is also virtually identical to that recently reported for MSNs in 

SAPAP3 knockout mice (Chen et al., 2011b; Wan et al., 2011).  Intriguingly, 

SAPAP3 may be phosphorylated by CaMKII, possibly assisting in synaptic 

targeting of GluA1R  (Dosemeci and Jaffe, 2010).  Thus, it will be important for 

future studies to directly identify downstream MSN proteins regulated by CaMKII. 

 

It is also possible that differences in the relative innervation of MSNs by 

cortical and thalamic inputs impacts the synaptic phenotypes.  Indeed, 

differences in release probability have been observed between the two inputs 

(Smeal et al., 2007; Ding et al., 2008; Ding et al., 2010).  Our measures of 

sEPSC and mEPSC frequency are likely comprised of both cortical and thalamic-

mediated glutamate release, yet our data do not rule out the possibility that 

inhibition of MSN CaMKII may have a greater influence on one of these 

excitatory synapses over the other.   
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CaMKII inhibition also leads to alterations in intrinsic excitability that may 

serve to broadly counteract the reduced s/mEPSC frequency.  Although we 

expected a decrease in sEPSP frequency in current clamp based on the sEPSC 

results, we observed significantly larger sEPSP amplitudes.  This is likely due to 

enhanced intrinsic excitability.  In CaMKII-inhibited neurons we observed more 

depolarized resting membrane potentials, increased membrane resistance, 

decreased rheobase current injection, and increased firing frequency.  

Autonomously active CaMKII has been shown to suppress neuronal excitability 

by increasing cell-surface expression of an A-type K+ channel, Kv4.2, via 

phosphorylation (Roeper et al., 1997; Park et al., 2002; Varga et al., 2004).  In 

addition, CaMKII inhibition in medial vestibular nucleus neurons increased 

intrinsic excitability via a reduction in BK-type calcium activated potassium 

currents (Nelson et al., 2005).  Changes in Kv4.2 or BK activity following CaMKII 

inhibition could account for the differences in firing that we observed in EAC3I 

cells.  However, modulation of Kir 2 channels may be responsible for the 

changes in input resistance and resting membrane potential (Cazorla et al., 

2012).  A recent study showed that acute CaMKII inhibition in cortical cultures 

leads to increased excitability, but also increased cell death (Ashpole et al., 

2012a).   We did not note increased cell death, nor did membrane properties hint 

at unhealthy EAC3I-expressing cells.  The differences in these studies may be 

attributed to the fact that MSNs are GABAergic cells bypassing potential 

excitotoxicity vulnerabilities seen with recurrent excitatory connections in the 

cortex.  Alternatively, cortical cultures – which are often more excitable - may 
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have a more difficult time regulating extracellular glutamate levels, something 

that is not as problematic in ex vivo slice preparations.       

The opposing regulation of excitatory transmission and excitability 

observed in these studies suggests that CaMKII may serve as a molecular 

fulcrum to counterbalance changes in enhanced excitatory input with decreases 

in excitatory output.  It is important to note in the present dataset we cannot rule 

out that possibility that one of these adaptations is compensatory to the other, 

rather than both being directly initiated by CaMKII inhibition.  Regardless, this 

likely has important implications for the modulation of basal ganglia circuitry 

underlying habit learning, addiction and neurodegenerative disease.  CaMKII 

plays a role in setting the number of functional synapses and therefore may 

provide a substrate for experience dependent plasticity in the striatum.  Dorsal 

striatal CaMKII may be crucial early in postnatal development as well as in 

adulthood entraining new motor repertoires and refining synaptic connections as 

those motor skills are refined into habits later in life.  With the inhibition of CaMKII 

leading to a decrease in the number of functional contacts, CaMKII may function 

in the dendritic and synaptic maturation processes, from nascent filopodia to 

mature dendritic spine (Jourdain et al., 2003; Lee et al., 2009), or alternatively be 

important in maintaining existing synaptic connections.  Further investigation will 

be needed to determine the precise role of CaMKII in striatal synaptic maturation.     
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CHAPTER IV 

 

MOSAIC GENETIC INHIBITION OF CAMKII IN DORSAL STRIATAL MEDIUM 
SPINY NEURONS AFFECTS STRIATAL-BASED BEHAVIORS 

 

Introduction 

CaMKII is highly expressed in the striatum, the main input nucleus of the 

basal ganglia, and it is known to interact and phosphorylate numerous 

downstream substrates playing an important role in synaptic plasticity and 

learning (Erondu and Kennedy, 1985; Lisman et al., 2002).  CaMKII abundance 

and localization places it in a position to control corticobasal ganglia circuits that 

play a role in voluntary movements and motivated behaviors.  While an important 

role of CaMKII  in hippocampal-mediated learning is well known (Lisman et al., 

2012), little is known of its role in striatal learning.  The dorsal striatum has been 

implicated in the formation of goal-directed and habit based learning as well as 

the formation of action sequences (Yin and Knowlton, 2006; Robbins et al., 

2008).  Additionally, this region is implicated in neurodegenerative diseases, like 

Huntington’s and Parkinson’s disease, as well as obsessive compulsive disorder, 

Tourette’s, dystonia and addiction.     

Striatal-dependent behaviors in mice can be studied using instrumental 

and non-instrumental learning paradigms.  Instrumental learning paradigms 

require an animal to perform an operant behavior, like pressing a lever for a food 

reward.  Differing operant schedules can promote differing types of behavioral 

learning.  A random ratio schedule, where an animal is rewarded on a 
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percentage of total lever presses, is known to promote goal-directed learning 

(Hilario and Costa, 2008).  Under certain conditions, like overtraining or using 

random interval schedules, habitual behavior develops.  Goal-directed learning is 

sensitive to changes in the value of the reinforcer, while habitual learning is 

insensitive to devaluation of the reinforcer (Yin et al., 2004, 2006).  This switch 

from flexible, goal-directed actions which involve the associative corticobasal 

ganglia network to a more rigid habitual action governed by the sensorimotor 

network is thought to involve synaptic plasticity at glutamatergic synapses in the 

dorsal striatum (Yin and Knowlton, 2006; Yin et al., 2009).   

Hippocampal CaMKII is known to be both necessary and sufficient for the 

induction of long-term potentiation (LTP) of glutamatergic transmission, a neural 

correlate of learning and memory.  Disruption or removal of CaMKII in the 

hippocampus disrupts spatial learning and working memory (Lisman et al., 2012).  

Differing forms of plasticity are thought to be involved in striatal-based learning; 

we hypothesized that CaMKII activity in medium spiny neurons of the striatum is 

necessary for motor learning, goal-directed and habitual behavior.  To test this 

hypothesis, we ran transgenic mice expressing a CaMKII-inhibitory peptide 

(EAC3I) only in medium spiny neurons in the striatum through numerous 

behavioral tasks.  We examined open field locomotor activity, motor learning on 

the rotarod, fixed ratio and random ratio responding for food reward in EAC3I 

transgenic mice and their transgene lacking littermates.  Additionally, we used 

devaluation and contingency degradation to determine if CaMKII plays a role in 

goal-directed or habit based learning.  If an action is habitual, then devaluation of 
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the reinforcer or breaking up the contingency between the action and the reward 

outcome by offering “free” rewards should have no effect on performance.  

Conversely, if the behavior is goal-directed then performance should be reduced 

following devaluation or contingency degradation.  We observed that inhibition of 

CaMKII did not disrupt rotarod motor learning or behavioral sensitization to 

cocaine, yet disrupted goal-directed behaviors and prevented the goal-directed to 

habit learning transition.                         

 

Results 

Effects of dorsal striatal CaMKII inhibition on locomotion in the novel open field 

Rodents placed into a novel environment will initially exhibit elevated 

locomotor activity as they explore their new surroundings which then decreases 

over time as they habituate to the environment (Wiedholz et al., 2008).  We 

examined both EAC3I mice and controls in a novel open field where locomotor 

activity was tracked over a sixty minute session.  While both groups habituated 

over the sixty minute period, EAC3I double transgenic mice showed reduced 

total locomotor activity compared to wildtype and EAC3I single transgene 

containing mice.  Similar results were observed when locomotor activity was 

separated into five minute bins [F(3,23)=7.282, p=0.0017; Figure 14A,14B].  

However, single tTA mouse locomotor activity was equivalent to double 

transgenic EAC3I mice, suggesting that inclusion of the tTA transgene leads to a 

hypolocomotor phenotype as reported previously (McKinney et al., 2008).  

Additionally, there were no statistical differences in time spent in the center of the 
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open field, a crude measure of overall anxiety, between EAC3I mice and controls 

[F(3,23)=2.121, p=0.13; Figure 14C] (Pogorelov et al., 2005).  

 

  

  

 

 

 

 

Mosaic inhibition of dorsal striatal CaMKII does not affect simple motor learning 

To examine simple motor learning often a rotarod test is used consisting 

of an accelerating rotating bar that mice must maintain their balance.  Mice 

performing in a rotarod task undergo rapid improvement in performance in early 

trials with more gradual improvements as performance stabilizes and the motor 

task is well learned.  During the early learning phase of this task the dorsal 

medial striatum is thought to be engaged, but later once the skill is automatized 

the dorsal lateral striatum predominates (Yin et al., 2009).   Previously, motor 

Figure 14.  EAC3I Mouse Locomotor Activity and Center Time in the Novel 
Open Field.  (A) Total distance traveled (cm) in the novel open field over 60 
minutes.  (B) Total distance traveled plotted in 5 minute bins over 60 minutes. (C) 
Amount of time spent in a 4X4 inch square in the center of the open field area.  
More time in the center is associated with reduced anxiety. ** = p<0.01, Error bars 
represent SEM.   
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learning on the accelerating rotarod was shown to be disrupted by striatal-

specific disruption of the GluN1 subunit of the NMDAR (Dang et al., 2006; 

Beutler et al., 2011).  CaMKII activation lies downstream of NMDAR activation, 

so we tested the hypothesis that inactivation of dorsal striatal CaMKII would 

disrupt motor learning on the accelerated rotarod.  EAC3I and controls were run 

on the accelerating rotarod for multiple trials to test for motor learning.  

Surprisingly, both groups exhibited similar learning curves over the multiple trials, 

suggesting normal motor learning in the EAC3I mice [F(1,68) =0.7369; p=N.S.; 

Figure 15A].  This lack of an effect in behavior could be due to the mosaicism of 

expression of the CaMKII inhibitory peptide throughout the dorsal striatum with 

other non-expressing MSNs compensating for the loss of CaMKII.  Alternatively, 

striatal NMDARs may also have roles in rotarod motor learning outside of CaMKII 

signaling.  
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Behavioral sensitization by cocaine is normal in EAC3I mice  

Behavioral sensitization produced by cocaine is dependent on 

dopaminergic projections from the ventral tegmental area (VTA) to the nucleus 

accumbens (NAc) (Thomas et al., 2008; Schmidt and Pierce, 2010; Wolf and 

Ferrario, 2010).  Injection of a CaMKII inhibitor into the VTA enhances acute 

cocaine locomotor activity while reducing the expression of behavioral 

sensitization, indicating that inhibition of CaMKII affects both the acute and 

chronic locomotor effects of cocaine(Licata et al., 2004).  Expression of the 

CaMKII inhibitory peptide is considerably reduced in the nucleus accumbens of 

Figure 15.  Mosaic Dorsal Striatal CaMKII Inhibition Does Not Alter Rotarod 
Motor Learning or Behavioral Sensitization to Cocaine. (A) Latency to fall on 
the accelerating rotarod measured over eight trials on two days separated by a 
week in EAC3I mice versus combined controls.  (B) Cumulative distance traveled 
over 30 minutes following a 10mg/kg cocaine injection (i.p.) over five consecutive 
days followed by a challenge injection given two weeks after the fifth injection in 
EAC3I versus combined controls.  Note mice are habituated to the locomotor 
chambers for thirty minutes prior to injection of cocaine.  * P <0.05; ** P <0.01; *** 
P < 0.001; error bars represent s.e.m. 
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EAC3I mice.  As expected there was no difference in the degree of behavioral 

sensitization to repeated cocaine injections (10mg/kg, i.p.) in EAC3I versus 

control mice over five days, nor was there a difference in locomotor activity 

following a challenge dose of cocaine 14 days later [F(1,28) =1.161; p=N.S.; 

Figure 15B].   

 

EAC3I mice have deficits in random ratio-supported operant behavior 

We next tested the hypothesis that striatal CaMKII plays a role in goal-

directed learning.  We used escalating random ratio (RR) operant schedules that 

have been shown to be associated with goal-directed  learning (Packard and 

Knowlton, 2002; Yin and Knowlton, 2006; Wiltgen et al., 2007; Hilario and Costa, 

2008; Dias-Ferreira et al., 2009).  We trained EAC3I and control animals to lever 

press under fixed ratio responding (FR-1) for highly palatable food (25% Ensure).  

We initially trained them on FR-1 for six days where mice had access to both an 

active lever and an inactive lever.  There was no significant difference between 

EAC3I and control mice in active or inactive lever pressing during FR-1 training 

[active F(1,35) =2.506; p=N.S.; inactive F(1,35) =0.3947; p=N.S.; Figure 16A] 

suggesting that operant learning and activity levels are similar.    

Following six days of FR-1 training the mice were switched to escalating RR 

schedules where a lever press equated to a probability of reinforcement of the 

Ensure reward.  RR schedules have been shown previously to promote the 

acquisition of goal-directed behavior (Hilario et al., 2007).  Animals were trained 

for four days on a RR5 schedule of reinforcement (probability of reinforcement, 
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P=0.2), followed by four days on a RR10 schedule (probability of reinforcement, 

P=0.1), and then four more days on a RR20 schedule (probability of 

reinforcement, P=0.05).   With the  increasing work load over the increasing 

random ratio schedules the EAC3I mice showed increasing deficits in random 

ratio responding [RR-5, F(1,35) =19.27 p<0.0001; RR-10, F(1,35) =9.787 

p=0.0026; RR-20, F(1,35) =10.85 p=0.0016; Figure 16B].  These data together 

suggest that inhibition of dorsal striatal CaMKII leads to deficits in a model of 

goal-directed learning.  As an additional control for differences in reward 

sensitivity, we tested food conditioned place preference (CPP).  Following four 

days of conditioning 25% ensure on a designated paired side of the chamber 

twice a day, both EAC3I and control mice showed similar levels of CPP on a 

probe test [t(14) =1.108; p=N.S.; Figure 17].  This suggests that the rewarding 

properties of ensure was similar across genotypes. 

 

EAC3I mice show greater devaluation and contingency degradation 

 In order to investigate if lever pressing following a RR-20 schedule was 

goal-directed or habitual we performed a devaluation and contingency 

degradation tests.  The data were normalized to the last day of RR-20 

responding.  During the devaluation test, EAC3I mice responded significantly 

less during the devalued condition, when the outcome they pressed for during 

training was devalued by sensory-specific satiety (Ensure), than during the non-

devalued condition (chow) [F(1,33)=2.180; p<0.05; Figure 18A], suggesting 

greater goal-directed behavior.  Although it seems unlikely that the previous 
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results are were driven by differences in hedonics or value processing, we used 

a different task to determine if the EAC3I mice had impairments in performing 

actions based off the consequences of their behavior.  We performed 

contingency degradation where the delivery of reward was given non-contingent 

to lever pressing.  Under extinction conditions the EAC3I mice showed greater 

reduction in responding in the first session under contingency degradation 

suggesting greater goal-directed behavior [F(1,33)=3.636; p<0.05; Figure 18B].  

In all these data suggest that EAC3I mice are operating in a goal-directed 

manner after extended training, with CaMKII inhibition possibly disrupting the 

natural transition from goal-directed to habit based learning.       

 

 

 

 

 

 

     



132 

 

 

 

 

 

 

 

 

 

 

 

Figure 16.  EAC3I Mice have Deficits in Responding on a Random Ratio 
Schedule for Food.  (A) Number of active lever presses (left) and inactive 
lever presses (right) for EAC3I versus combined controls on a fixed ratio-1 
schedule for 25% Ensure over six, 30 minute sessions.  (B) Rate of lever 
presses per minute on a random ratio schedule (RR-5, RR-10, and RR-20; 
20%, 10%, 5% chance of reinforcement, respectively) over four daily, 30 
minute sessions. Note the enhanced deficit in EAC3I mice versus controls 
over increasing random ratio schedules.  * P <0.05; ** P <0.01; *** P < 0.001; 
error bars represent s.e.m.  Thank you to Chris Olsen and Erin Watt for data 
collection. 
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Figure 17.  EAC3I mice show normal conditioned reinforcing responses 
to food in a CPP paradigm.  (A) (left) Difference score between paired 
ensure side to non-paired side in EAC3I mice and combined controls. (middle) 
Time on food side pre and post CPP training in control mice. (right) Time on 
food side pre and post CPP training in EAC3I mice.  Thank you to Chris Olsen 
for data collection.       
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Figure 18.  EAC3I mice show greater devaluation and contingency 
degradation.  (A) Normalized lever presses to last RR-20 day in grouped 
controls (Wt and single transgenics) and EAC3I mice given 1 hour pre-
feeding with Ensure (devalued) or chow (valued, control).  Note greater 
devaluation in EAC3I group in the reinforcer specific Ensure group.  (B)  
Normalized lever presses to last RR-20 day in grouped controls (Wt and 
single transgenics) and EAC3I mice following extinction conditions with non-
contingent reward delivery.  Note greater contingency degradation in EAC3I 
mice on the first session.  *p<0.05, Error represents SEM.   

A B 
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Discussion 

The expression of behavioral sensitization is thought to be dependent on 

the nucleus accumbens (Thomas et al., 2008).  Since there was little to no 

expression of EAC3I in the nucleus accumbens, normal behavioral sensitization 

to repeated cocaine administration in the EAC3I mice is not unexpected.  While 

previous reports suggest that rotarod motor learning is dependent on the striatal 

expression of GluN1 subunits of the NMDAR (Dang et al., 2006), we did not 

encounter any deficits in motor learning on the rotarod in the EAC3I mice versus 

controls.  We hypothesize CaMKII inhibition in only a subpopulation of MSNs 

along with the simplicity of the motor task allows other non-inhibited MSNs to 

compensate and maintain normal motor learning.  Alternatively, this motor 

learning task may require signaling downstream of the NMDAR that does not rely 

on CaMKII. 

The everyday process of turning goal directed responses, requiring 

concentration and monitoring of the response, into an automatic habit is one way 

we balance the need for behavioral flexibility for efficiency of repeated motor 

scenarios.  It is known that the cortico-basal ganglia circuits underlie normal goal-

directed and habit based learning.  The associative cortical inputs to the dorsal 

medial striatum are implicated in the formation and execution of goal directed 

actions, while the dorsal lateral aspect of the striatum is necessary for the 

formation of habits (Balleine and Dickinson, 1998; Yin et al., 2005b; Yin and 

Knowlton, 2006).  Mosaic inhibition of CaMKII did not inhibit the acquisition of 

FR-1 responding for food and did not disrupt food CPP, suggesting that the 



136 

 

EAC3I mice had similar reward sensitivity to controls in these tasks.  However, 

following random ratio training, under a schedule that was previously shown to 

bias for goal-directed behavior (Hilario et al., 2007; Dias-Ferreira et al., 2009), 

EAC3I mice showed increasing deficits with increasing random ratio schedules.  

Additionally, the EAC3I mice showed greater devaluation and contingency 

degradation to the satiety-specific reinforcer suggesting the animals are 

responding in a goal-directed manner.  In controls we did not observed these 

differences suggesting that habit learning has been engaged.  Inhibition of MSN 

CaMKII may disrupt the natural goal-directed to habitual learning that takes place 

with extended skill training.  Disrupted synaptic transmission combined with 

enhanced excitability of MSNs could underlie some of the deficits seen in random 

ratio responding, possibly disrupting normal goal-directed behavior and 

preventing or facilitating the normal transition to habit based learning.  It begs the 

question why motor learning on the rotarod was intact, yet deficits in goal-

directed behaviors were witnessed.  Possibly goal-directed learning requires a 

larger local network of MSNs and inhibiting CaMKII in a minority of neurons 

prevents normal goal-directed actions from being established, while rotarod 

learning may be more diffusely stored requiring fewer neurons.  Additional study 

will be needed to better understand the role of CaMKII in habit learning.                  
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CHAPTER V 

 

THE ROLE OF THE GLUN2B SUBUNIT OF THE NMDAR IN STRIATAL 
GLUTAMATERGIC SYNAPTIC TRANSMISSION AND ITS ROLE IN 

STRIATAL-BASED BEHAVIOR 
 

Introduction 

The dorsal striatum is an area of the brain that underlies the formation of 

goal-directed actions as well as the formation of habits (Yin and Knowlton, 2006).  

Its importance underlying normal, voluntary movements is underscored by 

neurodegenerative diseases such as Parkinson’s and Huntington’s disease, both 

of which disrupt synaptic transmission on MSNs and ultimately manifest 

behavioral deficits (Kreitzer and Malenka, 2008).  More recently, additional 

attention has been given to the dorsal striatum’s role in drug addiction, a 

maladaptive form of habit-based learning (Koob and Volkow, 2010).  The GluN2B 

subunit of the NMDAR has received a lot of attention, being implicated in learning 

and memory, pain perception, stroke, feeding behaviors and numerous human 

neurological disorders including alcoholism, anxiety disorders, schizophrenia, 

Parkinson’s disease, and Huntington’s disease (Yashiro and Philpot, 2008; Wu 

and Zhuo, 2009; Gardoni et al., 2010; Chen et al., 2011a; Lai et al., 2011; Qiu et 

al., 2011; Raymond et al., 2011; Wang et al., 2011).  The GluN2B subunit is 

highly expressed in the striatum (Chen and Reiner, 1996), yet its role in synaptic 

transmission, plasticity and behavior in this region is not well understood.      
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The NMDA receptor is a heteromeric ligand-gated ion channel that passes 

sodium, potassium and calcium as well as interacts with multiple intracellular 

proteins.  It is comprised of a combination of four subunits from seven known 

subunits including obligatory GluN1 subunits (formerly NR1, ζ1), and some 

combination of GluN2A-2D (formerly NR2A-2D or ε1-4), and/or GluN3A-3B 

(formerly NR3A-3B) (Yashiro and Philpot, 2008).  The predominant GluN2 

subunits in the striatum are the GluN2A and GluN2B subunits, which in turn 

dictate NMDAR-mediated EPSC kinetics as well as localization, binding partners, 

and intracellular signaling (Traynelis et al., 2010).  GluN2A and GluN2B subunits 

are incorporated into a di-heteromeric (GluN1/GluN2A or GluN1/GluN2B) or in a 

tri-heteromeric (GluN1/GluN2A/GluN2B), with around one-third of the subunits in 

the tri-heteromer form in the adult hippocampus - yielding unique functional 

properties (Al-Hallaq et al., 2007).  Levels of GluN2B are high in most forebrain 

regions in late embryonic development, but in the first weeks of postnatal 

development GluN2B subunits are progressively replaced with GluN2A subunits 

as the synapse matures (Sheng et al., 1994; Flint et al., 1997; Roberts and 

Ramoa, 1999).  This developmental switch from GluN2B to GluN2A is seen in 

the striatum (Monyer et al., 1994; Wenzel et al., 1997).  This GluN2B to GluN2A 

switch has been shown to alter the threshold for synaptic plasticity induction and 

has been shown to be bidirectionally regulated by activity and experience 

(Quinlan et al., 1999; Bellone and Nicoll, 2007).   

Studies using transgenic mice have lent some insight into the role GluN2B 

plays in synaptic plasticity.  Overexpression of GluN2B in the forebrain of 
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transgenic mice leads to enhanced activation of NMDAR receptors enhanced 

LTP to stimulation at both 10Hz and 100Hz.  Additionally, GluN2B 

overexpressing mice showed enhanced long term memory for novel objects , 

enhanced fear memory (contextual and cued), and enhanced spatial memory in 

the Morris water maze (Tang et al., 1999).  Alternatively, overexpression of 

GluN2B c-terminal tails actually show reductions in LTP magnitude and exhibit 

learning deficits, presumptively through disruption of the CaMKII-GluN2B 

complex (Zhou et al., 2007). 

While the role of GluN2B in synaptic plasticity in the hippocampus and 

cortex has been studied, the contribution of GluN2B to NMDAR-mediated 

synaptic plasticity and learning and memory remains a controversial field.  

Conflicting reports propose different roles for hippocampal GluN2B in LTP and 

LTD (Liu et al., 2004; Massey et al., 2004; Morishita et al., 2007).  Understanding 

the role of the GluN2B subunit has been clouded by nonselective inhibitors, 

complex pharmacology (Neyton and Paoletti, 2006; Paoletti and Neyton, 2007) 

and the fact that traditional GluN2B knock out animals die soon after birth 

(Kutsuwada et al., 1996),  To circumvent this issue and study the role of the 

GluN2B subunit in the adult striatum, an area that has received much less 

attention, we utilized a conditional GluN2BKO mouse line.  The current work 

explores excitatory glutamatergic transmission in the dorsal striatum in the 

conditional GluN2BKO animal, dendritic spine density, as well as the effects of 

GluN2B deletion on striatal-based behaviors.  Additionally, we explore the effects 
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of deletion of GluN2B at early postnatal versus adult time points to better 

understand the effects of GluN2B on synaptogenesis and adult striatal circuits.   

 

Results 

 

Mouse Model and Validation of GluN2B deletion 

We utilized a double transgenic mouse model where a fragment of the 

alpha CaMKII promoter drove expression of the tetracycline transactivator (tTA) 

and its expression product bound to the tetO promoter of CRE recombinase 

which would excise the floxed GluN2B gene (Wills et al., 2012) (Figure 19A).  

Overtly the mice did not exhibit gross morphological differences, yet the 

conditional GluN2B KO mice showed a strong trend for a decrease in weight [in 

grams, Controls 25.14 ± 0.76, GluN2BKO 22.65 ± 0.63; U(38)=111.5, p= 0.067; 

data not shown].  The alphaCaMKII promoter restricted the deletion of GluN2B to 

only the forebrain.  Western blot analysis of 1mm tissue punches isolated from 

the dorsal lateral striatum revealed the virtual absence of GluN2B protein 

[percent of control, 1 ± 0.02; t(9)=6.298, p< 0.0001; Figure 19B], similar to other 

results utilizing a similar mouse model (von Engelhardt et al., 2008).  

Furthermore, consistent with previous studies utilizing GluN2BKO mice to 

examine hippocampal excitatory transmission (von Engelhardt et al., 2008; 

Brigman et al., 2010; Wills et al., 2012), we observed a significant decrease in 

the decay time of evoked NMDAR-mediated EPSCs [in ms, Control 242.1±31, 

GluN2BKO 56.34±7; t(14)=8.093, p< 0.0001; Figure 19C]. 
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Figure 19.  Breeding Strategy and Verification of GluN2BKO.  (A) 
Schematic of breeding strategy for production of GluN2BKO mice. Mice are 
homozygous for the GluN2B (fl,fl) allele and heterozygous for either the 
CaMKIIα-tTA or tetO-CRE transgene.  (B) Western blot analysis of GluN2B, 
GluN1, and GluN2A protein levels from 1mm punches of the dorsal lateral 
striatum (shown above) in control (single transgene and wildtype littermates) 
and GluR2BKO mice.  Representative western blot of GluN2B protein levels 
shown in control (CT) and GluN2BKO (KO).  (right) Representative traces 
and quantification of decay time for NMDAR EPSCs from control and 
GluN2B KO mice. Scale bars 30ms, 0.1 (scaled to 1)  ***P<0.0001.  Error 
bars represent SEM. Thank you to Julie Healy for western data.     
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Basal Glutamatergic Synaptic Transmission in GluN2B KO Mice 

To better understand the impact of GluN2B deletion on glutamatergic 

synaptic transmission we probed the levels of other NMDAR subunits and 

associated proteins in the dorsal lateral striatum.  Similar to other GluN2BKO 

animals (Brigman et al., 2010; Badanich et al., 2011; Wills et al., 2012), GluN1 

levels were significantly reduced [percent of control, 23 ± 0.05; t(9)=9.307, p< 

0.0001; Figure 19B], while GluN2A showed only a trend for a decrease in protein 

levels [percent of control, 53 ± 0.11; t(9)=1.883, p=0.093; Figure 19B]. 

 Additionally, we took 1mm punches of M1 motor cortex, a region that 

sends excitatory glutamatergic afferents to the dorsal lateral striatum, in the 

same brain slice.  Similarly, in the motor cortex we saw a highly significant 

reduction in GluN2B [percent of control, 20 ± 0.09; t(10)=3.810, p< 0.0034; data 

not shown] as well as GluN1 [percent of control, 51 ± 0.134; t(10)=2.789, p< 

0.0191; data not shown].  GluN2A protein levels were not significantly reduced 

[percent of control, 84 ± 0.07; t(10)=1.058, p< 0.3148, data not shown].  

 Next we assessed basal glutamatergic synaptic transmission onto dorsal 

striatal medium spiny neurons in adult animals using whole-cell patch-clamp 

recordings.  AMPAR-mediated spontaneous excitatory postsynaptic current 

(sEPSCs) frequency was unchanged by GluN2B deletion [in Hz, Control 3.57 ± 

0.45, GluN2BKO 4.04 ± 0.43; t(28)=0.6824, p= 0.3401; Figure 20A], yet there 

was a significant increase in sEPSC amplitude [in pA, Control 12.86 ± 0.72, 

GluN2BKO 15.69 ± 075; t(28)=2.396, p=0.0235; Figure 20B].  Additionally, we 

looked at the paired-pulse ratio (PPR), a measure of presynaptic release 
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probability.  Over a range of interstimulus intervals there was no significant 

difference in the PPR [F (1,20)=0.132; p=0.7205; Figure 20E].  This suggests 

that GluN2B deletion leads to an increase in the postsynaptic function and/or 

number of AMPARs without altering the probability of release. 
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Figure 20.  Basal Glutamatergic Transmission in Adult GluN2BKO Following 
Early Postnatal Deletion of GluN2B. (A) Representative traces of sEPSC currents 
at -70mV from controls (black) and GluN2BKO (red). Scale bars 300ms, 10pA  (B) 
Quantification of sEPSC frequency and (C) sEPSC amplitude from controls and 
GluN2BKO. (D) (left) AMPAR/NMDAR ratio traces, AMPAR EPSC -70mV (black), 
dual AMPAR and NMDAR EPSC +40mV (red), AMPAR EPSC +40mV following 
100µM DL-APV, NMDAR EPSC digital subtraction (green). Scale bars 20ms, 30pA. 
(right) Quantification of AMPAR/NMDAR ratio in controls and GluN2BKO mice. (E) 
Paired pulse ratio (S2/S1) over 20ms-140ms interstimulus intervals (20ms ISI steps).  
(Above) Evoked AMPAR EPSCs elicited at differing ISI for control (black) or 
GluN2BKO (red) mice. Scale bars 5ms, 50pA. (F) (left) 50 evoked EPSCs at -70mV 
(downward, AMPAR-mediated) and at +40mV (upward, NMDAR at +50ms) for 
control (black) and GluN2BKO (red) to compute coefficient of variation (CV) 
NMDAR/AMPAR ratio. Scale bars 20ms, 40pA.  (right) Quantification of CV-
NMDAR/CV-APMAR ratio in controls (black) and GluN2BKO (red)   
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To determine if deletion of GluN2B subunit of the NMDAR altered the 

composition of AMPARs, we examined AMPAR-mediated current voltage 

relationships in dorsal lateral striatum.  In the presence of 0.1mM spermine in the 

patch pipette, to avoid dialysis of intracellular polyamines, the AMPAR-mediated 

current voltage relationships were not significantly altered [F (1,14)=0.1894; 

p=0.6706; Figure 21A, 21B].  Both plots were linear, suggesting that the 

AMPARs were GluR2 containing and the AMPAR subunit composition was not 

significantly different between GluN2B KO MSNs compared to controls. 

 

  

 

 

 

 

Figure 21.  Deletion of the GluN2B Subunit of the NMDAR Does Not 
Alter Striatal AMPAR Current Voltage Relationships. (A) Evoked AMPA-
mediated EPSCs for control (black) and GluN2BKO mice (red) isolated with 
100µM DL-APV and 25µM picrotoxin at holding potentials ranging from -
70mV to +40mV in 20mV steps. Scale bars 10ms, 100pA.  (B) Average 
normalized AMPAR-mediated current at holding potentials ranging from -
70mV to +40mV in 20mV steps in control (black) and GluN2BKO mice 
(red). Error bars represent SEM.    
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 We also examined the ratio of NMDAR-mediated to AMPAR-mediated 

evoked EPSC amplitude to compute an AMPAR/NMDAR ratio as an index of 

excitatory synaptic transmission.  We found that the AMPAR/NMDAR ratio was 

significantly enhanced using two differing methodologies [For +50ms method, 

Control 1.724 ± 0.17, GluN2BKO 5.169 ± 0.68; U(20)=8, p=0.0007; Figure 20D] 

[For digital subtraction method, Control 0.669 ± 0.11, GluN2BKO 1.747 ± 0.41; 

t(7)=3.463, p=0.0105].  These data are consistent with a previous study using a 

GluN2BKO mouse to study glutamatergic transmission in the hippocampus (von 

Engelhardt et al., 2008; Wills et al., 2012).  This increase in AMPAR/NMDAR 

ratio could be due to an increase in AMPAR number and/or function, or be due to 

a decrease in NMDAR number and/or function, or potentially a combination of 

the two.    

We also looked at the coefficient of variation (CV) of NMDAR- and 

AMPAR-mediated responses.  CV is inversely proportional to quantal content, 

the probability of release and number of synapses.  We observed a significant 

increase in the CVNMDAR/CVAMPAR ratio in the GluN2BKO group compared to 

controls [Control 0.8184 ± 0.11, GluN2BKO 1.3202 ± 0.18; t(14)=2.392, 

p=0.0313, Figure 20F].  This increase in CVNMDAR/CVAMPAR ratio was driven 

primarily by an increase in the NMDAR CV, suggesting a decrease in quantal 

content.  Quantal content, which is inversely proportional to the CV, is made up 

of the product of the probability of release and number of release sites.  We can 

assume that the decrease in quantal content is probably driven by a decrease in 
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the number of synapses given that PPR, a measure of release probability, was 

similar. 

 

Genetic deletion of the GluN2B subunit of the NMDAR leads to a decrease in 

dendritic spine density 

Given the increase in CVNMDA/CVAMPA ratio, we next assessed the role 

of GluN2B in the dorsal striatum on MSN dendritic spine density as a 

morphological correlate of synapse number.  Following golgi staining, observers 

blinded to genotype counted MSN dendritic spine density within a 10µm 

segment, 80-100µm from the cell soma beyond the primary dendrite branch 

point.  Dendritic spine density was significantly reduced in GluN2B KO animals 

compared to wildtype littermates [Segment means, Controls 10.96 ± 0.20, 

GluN2BKO 9.320 ± 0.23; t(54)=5.441, p<0.0001; Figure 22A] [Animal means, 

Controls 10.96 ± 0.39, GluN2BKO 9.489 ± 0.19; t(6)=3.368, p=0.0151].  

Combined with the increased NMDA CV data, these data suggest that deletion of 

GluN2B in the dorsal striatum may lead to a reduction in NMDAR-only synapse 

number.  
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Deletion of GluN2B in adulthood reduces sEPSC frequency 

To better understand the role of GluN2B in development, we delayed the 

deletion of the GluN2B by feeding pregnant dams and then GluN2BKO mice and 

their littermates doxycycline (200mg/kg) in their chow until P45.  We first 

confirmed that indeed GluN2B was deleted in these mice at P80, similar to 

previous recordings, by measuring the speeding of NMDAR-mediated delay 

kinetics [in seconds, Control 256.8 ± 14.53, GluN2BKO 58.31 ± 2.75; 

t(13)=10.93, p<0.0001; Figure 23D] and confirmed the loss of GluN2B by 

Figure 22.  Deletion of the GluN2B Subunit of the NMDAR Leads to a 
Reduction in Dendritic Spine Density.  (A) Average MSN Dendritic Spine 
Density (# of spines per 10µm), 80-100µ from the cell soma. ***P<0.0001. Error 
bars represent SEM.  Thanks to Bonnie Garcia for collection of the data.   
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western blot (Figure 23D, inset).  Following the removal of doxycycline we again 

assayed basal glutamatergic synaptic transmission in the mice at the same time 

point in adulthood as previous experiments.  We found that delayed deletion of 

GluN2B again led to an increase in both sEPSC amplitude [Control 12.52 ± 0.37, 

GluN2BKO 15.53 ± 0.81; t(12)=2.652, p=0.0211; Figure 23A,C] and the 

AMPAR/NMDAR ratio [Control 1.472 ± 0.22, GluN2BKO 7.967 ± 0.93; 

t(13)=8.175, p=0.0004; Figure 23E], as seen previously with GluN2B deletion 

earlier in development.  However, surprisingly we observed that the delayed 

deletion of GluN2B lead to a decrease in sEPSC frequency [Control 4.594 ± 

0.36, GluN2BKO 3.285 ± 0.18; t(12)=3.634, p=0.0034; Figure 23A,B].  This 

suggests that GluN2B plays an important role in adulthood maintaining sEPSC 

frequency, possibly via altering the number of synapses or the probability of 

release.  
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Figure 23.  Delayed Deletion of the GluN2B Subunit Effects on Glutamatergic 
Synaptic Transmission in Dorsal Striatal MSNs.  GluN2B deletion occurs at P45 
with the removal of doxycycline (200mg/kg) chow. (A) Traces of AMPA-mediated 
sEPSCs at -70mV in control (black) and GluN2BKO mice (red).  Scale bars 250ms, 
10pA.  (B) Average sEPSC frequency and (C) amplitude in controls (grey, hashed) 
and in GluN2BKO mice (red, hashed). (D) (left) Example averaged NMDAR EPSC 
traces for controls (black) and GluN2BKO (red).  Scale bars 30ms, 0.1 (scaled to 1) 
(right) Average NMDAR EPSC decay time (ms) in controls (grey, hashed) and 
GluN2BKO (red, hashed). (inset) Western blot for GluN2B in controls and 
GluN2BKO mice (KO) showing the complete loss of GluN2B in the striatum with 
doxycycline delayed GluN2B deletion.  PSD-95 and CaMKIIα are added as loading 
controls. (E) (left) AMPAR/NMDAR ratio averaged traces. Evoked AMPAR EPSC -
70mV (black), Dual AMPAR and NMDAR EPSC +40mV (red), AMPA EPSC post 
100µM DL-APV (blue), NMDAR EPSC digital subtraction (green). Scale bars 20ms, 
40pA. (right) Average AMPAR/NMDAR ratio (+50ms) in controls (grey) and in 
GluN2BKO mice (red).           
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Deletion of GluN2B subunit leads to a hyperlocomotive phenotype in the novel 

open field that can be rescued by inhibiting GluN2B later in development 

 We started to assess the effects of GluN2B deletion on behavior by 

observing locomotor activity in the novel open field in adult mice (16 weeks).  

Conditional GluN2B KO animals or wildtype littermates were placed in a novel 

open field for sixty minutes to track overall locomotor activity.  GluN2B KO mice 

exhibited similar locomotor activity in the first five minutes in the novel open field.  

However, at later time points the GluN2BKO mice showed significantly escalating 

locomotor behavior [F (1,48)=36.53; p<0.0001; Fig 24A], whereas controls 

locomotor behavior habituated to the environment as expected.  Yet there was 

no significant difference in center time, a crude measure of overall anxiety levels 

in GluN2BKO mice versus control [in seconds, Controls 325.3 ± 49, GluN2BKO 

270.6 ± 45; t(25)=0.7793, p=0.4431].  Surprisingly, this affect was rescued by 

feeding doxycycline to inhibit the deletion of GluN2B before P45 [F (1,12)=4.617; 

p=0.0572; Fig 24B].  The doxycycline food was removed at P45 allowing for the 

deletion of GluN2B to occur (Fig 24B, inset) and the animals were then examined 

at the same age as Fig 24A.  The rescue of locomotor activity by delaying the 

deletion of GluN2B suggests that GluN2B is crucial early in development for 

normal motor activity. 
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Genetic deletion of GluN2B partially disrupts motor performance on the rotarod 

 Previous work has shown that deletion of the obligatory GluN1 subunit of 

the NMDAR just from the striatum disrupted normal motor learning on the rotarod 

(Dang et al., 2006; Beutler et al., 2011).  Additionally,  transgenic mice where 

MSNs are ablated do not show any improvement over trials in an accelerating 

rotarod, showing the importance of the striatum in this task (Kishioka et al., 

2009).  To understand the effects of GluN2B subunit deletion on rotarod motor 

learning we ran mice on repeated trials (<5mins, 30 min ITI).  While both the 

Figure 24.  Effects of GluN2B deletion on Novel Open Field Locomotor 
Activity.  (A) Distance traveled (cm) in the novel open field for controls (single 
transgene, and wildtype littermates) (black) and early perinatal GluN2BKO 
animals averaged in 5 minute bins for 1 hour. (B) Distance traveled in the novel 
open field for controls (single transgene, and wildtype littermates) (black) and 
GluN2BKO animals (deleted at P45) averaged in 5 minute bins for 1 hour. (inset) 
Western blot for GluN2B in controls and GluN2BKO mice (KO) showing the 
complete loss of GluN2B in the striatum with doxycycline delayed GluN2B 
deletion.  PSD-95 and CaMKIIα are added as loading controls.  **P<0.01, 
***P<0.0001, Error bars represent SEM.    
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GluN2B KO mice and controls learned to perform better over repeated trials 

[Control 1 vs. 8, t(102)=8.862, p<0.0001; GluN2BKO 1 vs. 8, t(58)=4.051, 

p=0.0002], there was a trend for a decrease in performance in early trials and a 

significant reduction in performance in later trials in the GluN2B KO mice [F 

(1,80)=9.336; p=0.0031; Figure 25A].  These data suggest that GluN2B is not 

crucial for simple striatal motor learning, but may have some influence on overall 

motor performance.  Additionally, we looked at the effect on motor learning when 

delaying the deletion of GluN2B until after P45 by feeding doxycycline.  

Surprisingly, delaying the deletion led to greater deficits in rotarod performance 

with significant reductions seen in early trials [F (1,41)=7.225; p<0.0001; Figure 

25B].  Comparing the first trial to the last trial as a measure of motor learning 

controls showed a significant increase in the latency to fall measure indicative of 

motor learning over time [in seconds, Controls Trial 1, 113.7 ± 8.7; Controls Trial 

8, 214.0 ± 10.7; t(64)=7.294; p<0.0001].  However, the GluN2BKO failed to show 

a significant increase in the latency to fall over measure over trials suggesting 

impaired motor learning [in seconds, GluN2BKO Trial 1, 78.50 ± 15.9; 

GluN2BKO Trial 8, 124.3 ± 25.9; t(64)=1.506; p=0.1495].  This suggests that 

early deletion of GluN2B is less detrimental than GluN2B deletion in adulthood in 

striatal motor learning, possibly allowing for early adaptation and compensation 

to the loss to the GluN2B subunit.  
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Figure 25.  Effects of deletion of GluN2B subunit of the NMDAR on 
simple motor learning.  (A) Averaged latency to fall (seconds) over eight 
trials on 2 days separated by a week in control (black) and early perinatal 
GluN2BKO mice (red).  (B) Averaged latency to fall (seconds) over eight 
trials on 2 days separated by a week in control (black) and GluN2BKO mice 
(deleted at P45) (red).  *P<0.05, **P<0.01, ***P<0.0001.  Error bars 
represent SEM.      
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Discussion 

These studies indicate a key role for the GluN2B subunit in striatal 

glutamatergic synaptic transmission as well as in striatal-based behaviors.  We 

observed that deletion of GluN2B in the striatum early in postnatal development 

leads to an increases in sEPSC amplitude, AMPAR/NMDAR ratio, and 

CVNMDAR/CVAMPAR ratio coupled with decreases in dendritic spine density.  

The increase in sEPSC amplitude along with the increase in AMPAR/NMDAR 

ratio suggests an increase in number and/or function of AMPARs.  The increased 

CVNMDAR/CVAMPAR ratio data combined with no change in the presynaptic 

release probability coupled and decreased dendritic spine density suggests a 

possible decrease in the number of NMDAR-only synapses or “silent” synapses.  

Behaviorally, GluN2B deletion early postnatally led to a hyperlocomotive 

phenotype and partial performance deficits on the rotarod, but did not disrupt 

motor learning. 

Postponing the deletion of striatal GluN2B until P45 led to a similar 

synaptic phenotype with a notable difference.   The delayed deletion decreased 

sEPSC frequency, suggesting a possible decrease in the number of synapses or 

the probability of release.  Behaviorally, postponed deletion of GluN2B rescued 

the hyperlocomotive phenotype, yet worsened the behavioral deficit on the 

rotarod as well as blunting motor learning.  These data suggest that the timing of 

the GluN2B subunit deletion is crucial in determining what electrophysiological 

and behavioral phenotype observed.   
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Disrupted Glutamatergic Synaptic Transmission in the GluN2BKO mice 

 We observed an almost complete (99%) reduction in GluN2B levels in the 

striatum as well as a significant reduction in the obligatory GluN1 subunit (77%) 

necessary for heteromeric assembly suggesting that the loss of GluN2B reduced 

the number of NMDARs in total.  Previous studies using GluN2B KOs suggest 

that total GluN1 mRNA levels were unaltered, but GluN1 protein levels were 

reduced suggesting a deficit in translation or degradation of the receptor 

(Brigman et al., 2010; Badanich et al., 2011).  Indeed, the loss of GluN2B may 

impart greater NMDAR instability and greater turnover (Huh and Wenthold, 

1999).   Many other synaptic proteins such as GluA1, CaMKIIalpha and 

CaMKIIbeta were unaltered suggesting a selective alteration in glutamate 

receptors.  This pattern was similar to previously reported with the loss of 

GluN2B in the CA1 region of the hippocampus (von Engelhardt et al., 2008; 

Brigman et al., 2010) as well as similar to what is seen in the striatum (Badanich 

et al., 2011).  Additionally, confirming the loss of GluN2B the decay kinetics of 

evoked NMDAR-mediated EPSCs was significantly substantially accelerated.   

We assume that all of the NMDAR remaining in the striatum are 

heteromers of GluN1/GluN2A.  GluN2A containing NMDARs are known to have 

faster deactivation kinetics than GluN2B containing receptors fitting our data 

(Traynelis et al., 2010).  Notably we did not observe any GluN2D-like long lasting 

decay kinetics, observed previously in striatal NMDAR subunit knockout animals 

(Logan et al., 2007).  Increased sEPSCs amplitude with early postnatal GluN2B 

deletion suggests an increased number and/or function of synaptic AMPARs.  
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While we did not see an increase in crude GluNA1 levels by western blot, this 

technique is a cruder measure of total AMPARs including extrasynaptic and 

internalized receptors and not an enriched synaptic fraction.  Increased, AMPAR-

mediated synaptic transmission fits with the idea that NMDAR activation in 

synaptogenesis suppresses AMPAR function (Hall et al., 2007).  Additionally, 

AMPAR current voltage relationships were linear and unchanged between the 

GluN2BKO animals and controls, suggesting that the AMPARs are GluA2-

containing and that GluN2B subunit deletion does not significantly alter AMPAR 

subunit composition.  The increase in the AMPAR/NMDAR ratio could come from 

an increase in AMPAR-mediated transmission or a decrease in the NMDAR-

mediated component or some combination of the two.  In this case the increase 

in sEPSC amplitude along with a loss in GluN1 levels would suggest that both 

are in play.  sEPSC frequency and the paired pulse ratio (PPR) were unchanged 

between controls and GluN2BKO animals suggesting that the number of 

synapses and the probability of release are unchanged, yet we observed a 

reduction in the dendritic spine density- a morphological correlate of synapse 

number.  This reduction in dendritic spine density was similar to what was 

observed in the in CA1 or CA3 region of the hippocampus in a GluN2B KO 

animal (Akashi et al., 2009; Brigman et al., 2010) and in cultured hippocampal 

neurons after GluN2B RNA interference (Kim et al., 2005).  However, this 

contrasts the finding in the hippocampus that GluN2B deletion increases 

functional synapse number (Gray et al., 2011).  Utilizing a coefficient of variation 

AMPAR/NMDAR ratio (CV-NMDAR/CV-AMPAR ratio) a measure of quantal 
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content reflecting changes in the number of synapses and/or the probability of 

release we found a significant increase in this ratio primarily driven by an 

increase in the NMDAR CV.  This suggests a decrease in the number of 

NMDAR-only containing synapses or silent synapses.  Thus this decrease in 

“silent” synapses may be reflected by fewer dendritic spines observed and would 

not be picked up in AMPAR-mediated sEPSC frequency measures. 

 Delaying the deletion of GluN2B until P45 lead to a similar phenotype 

consisting of accelerated NMDAR-mediated decay time, loss of GluN2B from the 

striatum, increased sEPSC amplitude, and increased AMPAR/NMDAR ratio.  

However, the postponed deletion of GluN2B until adulthood resulted in a 

significantly reduced sEPSC frequency.  This may suggest that deletion of 

GluN2B in adulthood may decrease the number of functional synapses or the 

probability of release at those excitatory synapses.  This suggests that GluN2B 

subunits may play some synaptic maintenance role, protecting the synapse from 

deletion. The lack of a decrease in sEPSC frequency early in development may 

suggest a deficit in synaptogenesis of potential silent synapses.       

 

Disrupted striatal-based behaviors in GluN2B KO mice 

 Alterations in synaptic transmission and dendritic spine number were 

associated with selective striatal-based behavior disruptions.  GluN2BKO 

animals showed a hyperlocomotive phenotype with an escalating locomotor 

response in the open field compared to within session habituation observed in 

wildtype littermates.  Previous reports using NMDA antagonists as well as 
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GluN2B-preferring antagonists such as Ro 25-6981 at higher doses produced 

hyperlocomotion (Chaperon et al., 2003; Kiselycznyk et al., 2011).  Additionally, 

genetic replacement of the GluN2B subunit with the GluN2A subunit results in a 

hyperlocomotive phenotype (Wang et al., 2011).  Also GluN2BKO animals 

showed elevated locomotor activity that did not habituate, but did not show 

escalation in locomotor activity like we observed (Badanich et al., 2011).  

However, in our case when we delayed the deletion of GluN2B until P45 the 

hyperlocomotive phenotype was rescued.  This suggests that early removal of 

GluN2B in development leads to this phenotype.  It is known that levels of 

GluN2B are high in early postnatal development and then start to decline as 

GluN2A levels rise (Monyer et al., 1994; Sheng et al., 1994).  The delayed 

removal of GluN2B may allow for proper synaptogenesis and synaptic 

maturation. 

When we examined striatal-based motor learning assayed on the 

accelerating rotarod we observed that deletion of GluN2B early in postnatal 

development lead to a modest decrease in performance especially in later trials, 

but it did not disrupt overall motor learning.  Surprisingly, postponing the deletion 

of GluN2B until P45 actually led to a more severe deficit in rotarod performance 

in GluN2BKO mice.  GluN2BKO mice did not show any significant motor learning 

over repeated trials compared to littermate controls, suggesting an important role 

for GluN2B in motor learning in the striatum.  The enhanced deficit seen when 

the deletion of GluN2B is postponed until adulthood, suggests that compensation 

may be able to prevent serious motor deficits early on, but disrupting a system 
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which has utilized GluN2B signaling previously may lead to more serious deficits.  

In contrast to these data, a study using GluN2A or GluN2B antagonists injected 

into the dorsal striatum suggested that while GluN2A was crucial for motor 

learning on the accelerating rotarod, GluN2B was not (Lemay-Clermont et al., 

2011).  This discrepancy may be accounted for by issues with selectivity with the 

GluN2A antagonist, NVP-AAM077 or the greater alliance on the loss of GluN1 

subunit also seen in our studies.  Rotarod learning, especially the late 

component, seems to involve an increase in NMDAR-mediated synaptic 

transmission and is associated with an upregulation of GluN1 (Yin et al., 2009; 

D'Amours et al., 2011).  Another study showed that disrupting the interaction 

between CaMKII and the GluN2B subunit, however did not disrupt rotarod or 

locomotor activity, suggesting that the actual loss of the GluN2B or GluN1 

receptor plays the crucial role (Halt et al., 2012). 

While the differing phenotype following the delayed deletion of GluN2B 

subunit may be linked to when the subunit is removed in development an 

alternate explanation may be that there are regional differences in the 

completeness of the forebrain wide KO.  This differential regional deletion has 

been observed previously in similar GluN2BKO mice (Badanich et al., 2011). 

 In conclusion, the current study describes a genetic approach to 

understanding the role of the GluN2B subunit in striatal synaptic transmission, 

dendritic spine density and behavior.  We found that the deletion of GluN2B early 

in postnatal development shortens NMDAR-mediated currents, leads to 

potentiated AMPA-mediated synaptic transmission and a decrease in the number 
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of dendritic spines on MSNs potentially via a loss in NMDA-only or “silent” 

synapses.  A delayed deletion of GluN2B receptors in adulthood leads to a 

similar phenotype, but with a reduction in the number of functional receptors or 

probability of release.  Behaviorally, early disruption of GluN2B leads to 

disruptions in locomotor activity, while adult deletion of GluN2B results in deficits 

in striatal motor learning.  These data emphasize the importance of the GluN2B 

subunit of the NMDAR in striatal synaptic transmission and behavior.  
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CHAPTER VI 

 

GENERAL DISCUSSION 

 

 The role of glutamatergic transmission in the dorsal striatum in health and 

its dysregulation in disease states is becoming increasingly recognized.  Long-

lasting alterations in glutamatergic transmission have been connected to the 

formation of motor repertoires and the organization of habitual behavior (Yin and 

Knowlton, 2006; Yin et al., 2009).  Moreover, alterations in glutamatergic 

transmission in the striatum have been seen in models of Parkinson’s disease, 

Huntington’s disease and addiction (Picconi et al., 2004b; Kreitzer and Malenka, 

2007; Milnerwood et al., 2010; Luscher and Malenka, 2011).  Disruptive or 

maladaptive synaptic plasticity in the striatum could in part underlie the motor 

abnormalities seen in neurodegenerative disease and underlie the habitual 

nature of compulsive drug seeking in addiction.  Importantly, molecules like 

CaMKII and the NMDAR are already tied to synaptic plasticity and learning and 

memory in the hippocampus.  However, little is known about the regulation of 

glutamatergic transmission and its role in behavioral output in the striatum.  

Utilizing electrophysiological approaches along with pharmacological, genetic, 

immunohistochemical and behavioral manipulations this thesis has begun to 

elucidate some of the roles of striatal CaMKII and the GluN2B subunit of the 

NMDAR in synaptic transmission, synaptic plasticity and ultimately behavior.  
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Role of Striatal CaMKII in Glutamatergic Transmission 

 The data presented in this document suggests that MSN CaMKII in the 

dorsal striatum plays a role in setting functional synapse number and intrinsic 

excitability, acting as rheostat to modulate the output of dorsal striatal MSNs 

(Figure 26).   We find that selective genetic inhibition of CaMKII in dorsal striatal 

MSNs leads to a robust reduction in s/mEPSC frequency without altering 

s/mEPSC amplitude.  Alterations in s/mEPSC frequency are canonically 

interpreted as a presynaptic change in either release probability or the number of 

functional synapses/release sites.  Experiments designed to test for alterations in 

release probability or the concentration of glutamate at the synapse, indicate that 

inhibition of postsynaptic MSN CaMKII did not alter these measures.  Thus in 

total these data suggest that striatal CaMKII inhibition decreases the number of 

excitatory functional synapses.  Reduced dendritic length and complexity in 

EAC3I mice may account for the reduction in the number of synapses without 

any significant changes in dendritic spine density.  Alternatively, there could be 

an increase in the number of silent synapses or silent synapse modules - 

synapses which contain NMDARs, but lack AMPARs.  This fits with the idea that 

CaMKII inhibition did not reduce dendritic spine density, suggesting that at least 

some of the observed postsynaptic dendritic spines in CaMKII inhibited cells are 

indeed silent.  In the hippocampus silent synapses are abundant in early 

development and silent synapses can be unsilenced in an activity-dependent, but 

CaMKII independent manner.  However, other studies using a constitutively 

active form of CaMKII suggests a direct role for CaMKII in the unsilencing of 
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synapses.  Additionally, CaMKII has been shown to be required for the formation 

of new synapses and/or morphological augmentation following hippocampal LTP 

induction. 

   

  

 

 

Figure 26.  CaMKII Rheostat:  Effects of CaMKII Inhibition on Glutamatergic 
Synaptic Transmission and Intrinsic Excitability in the Dorsal Lateral 
Striatum.  Active CaMKII (grey, control MSN) enhances synaptic transmission 
and decreases intrinsic excitability. Inhibition of CaMKII (green, EAC3I-
containing MSN) leads to a decrease in the number of synapses and an 
increase in intrinsic excitability. 
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Differing experimental approaches could be used to examine if inhibition 

of CaMKII leads to an increase in silent synapse number.  Traditionally, silent 

synapses have been observed using minimal stimulation techniques setting the 

stimulation intensity at a threshold where no AMPAR-mediated EPSCs are 

observed, but at positive potentials where NMDAR are activated, NMDAR-

mediated currents are observed (Isaac et al., 1995).  Normally the failure rate is 

then compared before and after some manipulation, like the induction of LTP.  

These experiments, while potentially interesting, have caveats.  They are 

dependent on the stimulation intensity and location of the microstimulator to 

remain the same as well as the health of the slice.  If the number of fibers 

recruited is altered slightly by changes in the stimulator location or slice then the 

number of synaptic failures can be altered dramatically.  Additionally, because 

CaMKII is inhibited genetically we do not have a pre versus post comparison to 

measure synaptic failure rates which is crucial for interpreting results from these 

experiments.  Another approach to determine the presence of silent synapses is 

the CV-NMDAR/ CV-AMPAR ratio.  This technique has been used with success 

in the ventral striatum to detect silent synapses following repeated cocaine 

administration (Huang et al., 2009; Brown et al., 2011).  Decreases in this ratio 

are associated with a silent synapse phenotype and we did observe decreases in 

this ratio when comparing CaMKII-inhibited MSNs versus non-inhibited MSNs.  

Yet the underlying effect was driven by an increase in the ratio in the non-

inhibited MSNs versus all controls, suggesting that non-inhibited MSN may 

compensate for the loss of CaMKII in neighboring MSNs.           
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CaMKII’s Role in MSN Morphology 

We did not observe any changes in dendritic spine density with CaMKII 

inhibition.  This suggests that CaMKII is potentially not necessary for the 

formation of new synapses, but instead may control the maturation of striatal 

synaptic connections.  Indeed, previous studies have shown the importance of 

phosphorylation CaMKII at the T286 site to promote dendritic spine growth, even 

with a mutation rendering the kinase catalytically dead (Pi et al., 2010b).  Yet the 

direction of synaptic strength alteration depends on the phosphorylation state of 

the CaMKII T305/306 site (Pi et al., 2010b).  Other studies in the hippocampus 

have shown that CaMKII inhibition can block the increase in dendritic spine size 

or Wnt7a-mediated spine growth (Matsuzaki et al., 2004; Okamoto et al., 2009; 

Ciani et al., 2011b).  Prior studies have shown that βCaMKII in cultured 

hippocampal neurons modulate dendritic length as well as synapse number (Fink 

et al., 2003).  While we did not encounter a change in spine density, we observed 

a significant decrease in dendritic length and complexity.  The decrease in 

dendritic length combined with unaltered spine density may account for the 

decrease in total synapse number we propose.  However, it is not clear whether 

distal synapses are even sampled under whole-cell voltage clamp due to cable 

filtering properties previously reported (Williams and Mitchell, 2008).  The 

aforementioned study examined layer 5 pyramidal neurons; we would expect that 

dendritic filtering would be even greater in MSNs with narrow dendrites and 

numerous spines.  The CaMKII-mediated decrease in dendritic length and 

complexity may suggest developmental maturation deficits.  An interesting 



167 

 

candidate includes BDNF signaling via TrkB receptors.  Mice lacking cortical 

BDNF show altered dendritic morphology including decreases in dendritic length 

(Baquet et al., 2004).  Additionally, signaling through the TrkB receptor has been 

shown to activate CaMKII (Hasbi et al., 2009; Minichiello, 2009).                   

 

Importance of MSN-specific Inhibition of CaMKII 

 It is important to consider the localization of CaMKII when interpreting 

these results.  CaMKII is highly expressed in MSNs (Erondu and Kennedy, 

1985), but is also expressed in pyramidal neurons that form the presynaptic 

terminal on MSN dendritic spines and shafts (Liu and Jones, 1996).  Additionally, 

CaMKII is expressed in dopamine neurons which densely innervate MSNs in the 

striatum, modulating glutamatergic drive (Fog et al., 2006).  CaMKII activation 

has been shown to modulate both pre and postsynaptic activity.  Presynaptically, 

CaMKII has been shown to modulate the trafficking of synaptic vesicles via 

phosphorylation of synapsin (Llinas et al., 1985; Stefani et al., 1997; Chi et al., 

2001), P/Q type calcium channels (Elgersma et al., 2002; Jiang et al., 2008), and 

voltage-gated sodium channels (Wagner et al., 2006).  Additionally, CaMKII has 

been shown to modulate catecholamine synthesis (Atkinson et al., 1987) and 

dopamine transporter function (Fog et al., 2006; Binda et al., 2008).  Thus, we 

have utilized a cell specific approach where CaMKII is selectively inhibited only in 

dorsal striatal MSNs, eliminating cofounding interpretations on the locus of 

CaMKII inhibition and observed effects. 
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Striatal CaMKII’s Regulation of Cortical and/or Thalamic Excitatory 

Transmission 

MSNs are innervated by both cortical and thalamic glutamatergic inputs 

and differences in the release probability have been observed between these two 

inputs.  Our measures of sEPSC and mEPSC frequency are likely comprised of 

both cortical and thalamic-mediated glutamate release.  Our data do not rule out 

the possibility that inhibition of CaMKII may have a greater influence on one of 

these excitatory inputs over the other.  Previous studies have separated cortical 

versus thalamic inputs with horizontal oblique slices maintaining both cortical and 

thalamic innervation and stimulating evoked EPSCs in layer 5 of the cortex or at 

the level of the reticular nucleus preserving some of the parafascicular-

centromedian thalamic pathway (Smeal et al., 2007; Ding et al., 2008).  

Alternatively, the expression of channelrhodopsin-2 in motor cortex or in thalamic 

nuclei projecting to the dorsal striatum would be a more selective way to 

separate these two inputs (Osakada et al., 2011).  The use of modified rabies 

viruses carrying channelrhodopsin-2 which in a retrograde manner infects 

projecting brain areas will help delineate the role of these separate pathways.  In 

both cases the measured EPSC is evoked by electrical stimulation or blue light, 

respectively.  However, our main phenotype in CaMKII inhibited MSNs is a 

reduction in spontaneous or miniature EPSC frequency which involves 

spontaneous release of synaptic vesicles.  One experimental approach to select 

a pathway and record spontaneous release-like events involves swapping aCSF 

calcium for strontium.  Strontium, a divalent cation like calcium, promotes 
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asynchronous release of synaptic vesicles, by lingering strontium levels in the 

presynaptic terminal.  In strontium aCSF individual pathways could be electrically 

or optogenetically stimulated.  Following the initial large evoked EPSC miniature 

like release events occurring due to asynchronous release can be analyzed.  

However, only the amplitude measure of these events is of interest because the 

frequency of these events is altered by strontium.  Thus this makes the 

separation of cortical and thalamic spontaneous or miniature EPSC frequency 

difficult. 

 

CaMKII Inhibition in Direct and Indirect Pathway MSNs 

 There are two canonical MSN output pathways in the dorsal striatum.  The 

direct pathway MSNs are labeled by D1R expression and projections to the 

substania nigra pars reticulata.  The indirect pathway MSNs are labeled with D2R 

expression and projections to the globus pallidus.  These two pathways are 

thought to oppose one another with the direct pathway promoting movement and 

the indirect pathway inhibiting movement (Bateup et al., 2010; Kravitz et al., 

2010).  Using BAC transgenic mice to label direct and indirect pathways notable 

differences in basal synaptic transmission, plasticity and excitability have been 

observed (Kreitzer and Malenka, 2007, 2008; Grueter et al., 2010; Andre et al., 

2011).  The EAC3I CaMKII inhibitory peptide was expressed in both direct and 

indirect pathway neurons evidenced by the presence of EGFP axon terminals 

seen in the substantial nigra pars reticulata and globus pallidus, respectively.  

However, we do not know if there is a bias in the percentage of EAC3I containing 
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MSNs in direct or indirect pathway.  We did not observe a bimodal distribution in 

our sEPSC frequency data, suggesting a global loss of functional synaptic 

connections in both pathways.  It will be interesting to look at the effects of 

CaMKII inhibition in either direct or indirect pathway neurons.  Retrograde 

microspheres deposited in target regions or breeding the EAC3I to mCherry 

expressing BAC transgenics will allow for identification of these two pathways.   

Some evidence for distinct CaMKII signaling effects on direct or indirect 

pathway MSNs has already been observed.  CaMKII is known to interact with the 

M4R, a GPCR linked to Gi/o signaling which is enriched in direct pathway MSNs 

(Yasuda et al., 1993; Hersch et al., 1994).  The phosphorylation of M4R by 

CaMKII can potentiate M4R signaling and controls the behavioral sensitivity to 

dopamine (Guo et al., 2010).  I might hypothesize that inhibition of MSN CaMKII 

may alter M4R function or signaling in direct pathway MSNs.     

It is difficult to predict how the decrease in numbers of excitatory synapses 

potentially on direct and indirect pathway MSNs would alter striatal output.  

Decreased excitatory drive to MSNs should decrease the release of GABA in the 

globus pallidus and substantia nigra.  Yet we observed increased intrinsic 

excitability possibly countering these effects potentially as compensation to the 

loss in synapse number.  Also interesting is the high level of expression of the 

CaMKII inhibitor in MSN presynaptic axon terminals in the SNR and GP.  The 

presynaptic effects of CaMKII inhibition on MSN GABA release have not yet 

been studied.            

 



171 

 

Other Modes of CaMKII Inhibition 

 Utilizing the EAC3I mouse was a selective and cell-specific approach to 

inhibit CaMKII.  However, doxycycline mediated delay of transgene expression 

contained some caveats.  First as reported previously, silencing the transgene 

from birth and expressing the transgene later in adulthood led to significantly 

reduced levels of EAC3I expression compared to leaving the transgene on from 

birth (Bejar et al., 2002).  This fact made it difficult to interpret whether the 

expression levels or time course of CaMKII inhibition led to the observed 

phenotype.   Additionally, there was a lag time of 2-3 weeks for maximal 

expression or complete inhibition of EAC3I transgene expression when starting 

or stopping the doxycycline diet, clouding the temporal control of transgene 

expression (Bejar et al., 2002).  Other options for inhibiting CaMKII that have had 

previous success include viral expression of EAC3I in adult tissue (Zou and 

Cline, 1999; Li et al., 2010; Swaminathan et al., 2011), infusion of CaMKII 

inhibitory peptides via a patch pipette (Otmakhov et al., 1997; Shiells and Falk, 

2000; Sergeant et al., 2005), or the CaMKII T286A knock in mouse (Giese et al., 

1998; Ohno et al., 2006; Kimura et al., 2008; Sametsky et al., 2009).  Viral 

expression or patch pipette inclusion of CaMKII inhibitors may avoid issues with 

compensation seen with prolonged CaMKII inhibition in genetic models and may 

yield differing results (Bejar et al., 2002).       
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Potential Downstream Substrates of Striatal CaMKII 

There are numerous downstream substrates of CaMKII that could play a 

role in our observed decreased sEPSC frequency phenotype.  One potential 

downstream substrate of CaMKII is the GluA1 subunit of the AMPAR.  CaMKII 

regulates the trafficking of synaptic GluA1 incorporation in the hippocampus (Lee 

et al., 2000; Esteban et al., 2003).  The decreased sEPSC frequency phenotype 

in the EAC3I mice is mimicked in the GluA1KO mice suggesting a common 

mechanism.  Moreover, CaMKIIα mRNA and protein levels are reduced in GluA1 

KO animals (Zaitseva et al., 2003; Zhou et al., 2009).  Another potential 

candidate is SAPAP3; a striatally enriched scaffolding protein, which can be 

phosphorylated by CaMKII.  Intriguingly, SAPAP3 KO mice exhibit a similar 

electrophysiological phenotype as our EAC3I mice (Chen et al., 2011b; Wan et 

al., 2011).  With tens to hundreds of potential CaMKII target substrates at the 

synapse from receptors like the GluN2B subunit of the NMDA receptor 

(Omkumar et al., 1996), to scaffolding molecules like SAP90/97, PSD-95 and 

Homer 1b (Yoshimura et al., 2000; Yoshimura et al., 2002), as well as vanilloid 

receptors (Jung et al., 2004) it will be interesting to see which molecules underlie 

our observed effects.  Further study is needed to identify other downstream MSN 

proteins regulated by CaMKII. 
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Potential Effects of CaMKII on Inhibitory Synaptic Transmission in the 

Striatum 

While we have extensively isolated our studies to excitatory transmission 

in the dorsal striatum the potential effects of CaMKII inhibition on GABAergic 

transmission in the striatum remain unexplored.  MSNs receive local inhibitory 

connections from other neighboring MSNs as well as GABAergic interneuron 

innervation.  Indeed, while little is known of CaMKII’s role in inhibitory 

transmission a recent study has suggested the active CaMKII can phosphorylate 

GABAARs and enhance inhibitory synaptic transmission in the hippocampus 

(Houston et al., 2009).  Thus, it will be of interest to determine if our observed 

effects are specific to excitatory transmission or generalize to inhibitory 

transmission as well.     

 

MSN CaMKII Modulation of Intrinsic Excitability 

We have observed that inhibition of CaMKII in dorsal striatal MSNs leads 

to an increase in intrinsic excitability.  CaMKII-inhibited MSNs have more 

depolarized resting membrane potentials, increased membrane resistance, 

decreased rheobase current injection, and increased firing frequency.  This fits 

with data in the hippocampus where an autonomously active form of CaMKII has 

been shown to suppress neuronal excitability by increasing cell-surface 

expression of A-type K+ channel, Kv 4.2, via phosphorylation (Varga et al., 

2004).  CaMKII inhibition in medial vestibular nucleus neurons increased intrinsic 

excitability via a reduction in BK-type calcium activated potassium currents 
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(Nelson et al., 2005).  While both of these channels are expressed in the striatum 

and may modulate firing frequency additional mechanisms are likely responsible 

for change input resistance and resting membrane potential (Schwanstecher and 

Panten, 1994; Varga et al., 2000; Martin et al., 2004; Vacher et al., 2006).  One 

potential candidate underlying these excitability changes are the Kir2.1/2.3 

channels which are highly expressed in the striatum and when downregulated 

show a similar phenotype to the EAC3I increased excitability (Cazorla et al., 

2012).  The increase MSN intrinsic excitability we see in the EAC3I mice would 

drive greater release of GABA in both the globus pallidus and in the substantia 

nigra pars reticulata.  We did not note a bimodal distribution in the excitability 

data suggesting that the CaMKII-mediated increase in excitability occurs in both 

direct and indirect pathway MSNs.  It would be interesting to examine the effect 

of enhanced MSN excitability on downstream basal ganglia nuclei.  With the 

robust expression of CaMKII inhibitory peptide in the presynaptic terminals in 

these regions it would be interesting to look for potential circuit wide changes and 

the effects of presynaptic inhibition of MSN CaMKII.                                

 

Protracted CaMKII Inhibition: Regulation or Compensation 

Opposing regulation of excitatory transmission and excitability suggests 

that CaMKII serves as a molecular fulcrum counterbalancing decreases in 

synaptic transmission with increases in excitatory output (Figure 26).  CaMKII 

would act as a check on runaway plasticity by compensating for alterations in 

synaptic transmission or excitability.  It will be important to determine if 
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alterations in extrinsic excitability are compensations for the decreased excitatory 

drive or vice versa.  We know that the CaMKII-mediated decrease in sEPSC 

frequency is seen as early as 3 weeks, so it will be of great interest to see if the 

increase in excitability is seen early in development.  Plotting the time course of 

the development of this effect will offer a better understanding of when these 

changes occur and if one precedes the other.    

 

Effects of Early Postnatal GluN2B Deletion in Excitatory Synaptic 

Transmission in MSNs 

We observed an increase in sEPSC amplitude in GluN2B KO animals 

compared to controls with no change in sEPSC frequency.  These AMPAR-

mediate sEPSCs data suggests an increase in postsynaptic AMPAR number 

and/or function.  While at first seemingly contradictory, the loss of GluN1 in the 

CA1 region of the hippocampus late embryonically actually increases AMPAR-

EPSCs and enhances the number of functional synapses (Grooms et al., 2006; 

Ultanir et al., 2007; Adesnik et al., 2008).  This process is through to involve a 

homeostatic-like mechanism (Lu et al., 2011a).  These data suggest that 

NMDARs actually oppose AMPAR trafficking to the synapse.  Further postnatal 

deletion of GluN1, or both GluN2A and GluN2B leads to an increase in AMPAR-

EPSCs (Gray et al., 2011).  The AMPAR-mediated potentiation seen after the 

deletion of GluN1 requires the GluA2 subunit (Lu et al., 2011a).  In agreement 

with these findings we saw no alteration in AMPAR EPSC current-voltage 

relationships, a measure of GluA2 content of AMPARs.  This suggests the 
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AMPARs at the synapse in the GluN2B KO animals are GluA2-containing.  In all, 

it seems that the loss of GluN2B or the indirect loss of GluN1 seen in these 

GluN2B Kos leads to an increase in GluA2-containing AMPAR number and/or 

function.  Like previous reports with GluN2B deletion in the hippocampus (Gray 

et al., 2011), we did not see any alteration in PPR, suggesting the probability of 

release at these synapse is unaltered.  These findings are seen despite the 

major loss of GluN2B we observed in the cortex, a major excitatory input to 

MSNs.   

The deletion of GluN2B in the hippocampus leads to increased mEPSC 

frequency with no change in mEPSC amplitude, while the deletion of GluN2A 

leads to the opposite an increase in amplitude, but no change in frequency.  

Deletion of both subunits leads to an increase in frequency and amplitude. (Gray 

et al., 2011).  We find that GluN2B deletion in MSNs in our mice leads to the 

opposite phenotype.  This is in line with the deletion of GluN2B in dissociated 

cortical cultures where increases in mEPSC amplitude were observed (Hall et al., 

2007).   This may suggest that GluN2B regulation of AMPA-mediated synaptic 

transmission is different in the striatum than the hippocampus.   Yet this early 

deletion of GluN2B contrasts to the removal in the adult hippocampus where no 

alterations in sEPSC frequency or amplitude are observed (von Engelhardt et al., 

2008). It would be interesting to look at MSN mEPSC frequency and amplitude in 

GluN2A KO mice.                 

 While we did not see a decrease in sEPSC frequency or observe changes 

in PPR, we did observe a significant reduction in dendritic spine density in 
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GluN2B KO MSNs.  These observations fit with numerous other reports that the 

deletion of GluN2B reduces spine density (Akashi et al., 2009; Espinosa et al., 

2009; Gambrill and Barria, 2011).  The deletion of GluN1 does not affect dendritic 

spine density, suggesting that the loss of GluN2B is underlying this 

morphological change (Adesnik et al., 2008).  The loss of spines in the GluN2B 

KO MSNs may be due to an premature expression of GluN2A receptors 

(Gambrill and Barria, 2011).  The divergence in morphology data and sEPSC 

frequency data suggest that the loss of spines is presumably from a loss of silent 

synapses or synapses that lack AMPARs.  The increase in AMPAR/NMDAR data 

fits with the increase in sEPSC amplitude or a decrease in the NMDAR-mediated 

component.  The loss of silent synapses would remove NMDAR-only containing 

receptors.  The increase in CV-NMDAR/ CV-AMPAR ratio data we observed 

suggests that indeed the number of silent synapses is reduced in GluN2B KO 

MSNs.                 

 

Effects of Adult GluN2B Deletion on Glutamatergic Transmission in Striatal 

MSNs 

 We took advantage of the tet-OFF genetic system to delay the removal of 

GluN2B (after P45) to look at developmental and adult roles of this subunit.  We 

found that while sEPSC amplitude and AMPAR/NMDAR ratios were increased 

like in the early deletion condition, but sEPSC frequency was significantly 

reduced.  This would suggest a decrease in the probability of release or the 

number of synapses.  We would like to look at PPR and dendritic spine density at 
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this time point to further understand the mechanisms underlying the decrease in 

sEPSC frequency.  These data differ from the deletion of GluN2B in the 

hippocampus which did not alter mEPSC frequency or amplitude.  However, 

knock down of GluN2B is associated with a decrease in mEPSC frequency 

(Gambrill and Barria, 2011).  This suggests that deletion of GluN2B in striatum in 

early adolescence versus adulthood has different effects on basal glutamatergic 

transmission.   

 

Effects of GluN2B Deletion on Behavior 

  Alterations in synaptic transmission and dendritic spine number were 

associated with selective striatal-based behavior disruptions.  GluN2BKO 

animals showed a hyperlocomotive phenotype with an escalating locomotor 

response to the open field compared to within session habituation observed in 

wildtype littermates.  Previous reports using NMDA antagonists as well as 

GluN2B-preferring antagonists such as Ro 25-6981 at higher doses produced 

hyperlocomotion (Chaperon et al., 2003; Kiselycznyk et al., 2011).  Additionally, 

in mice in which the GluN2B subunit was genetically replaced by the GluN2A 

subunit exhibited a hyperlocomotive phenotype (Wang et al., 2011).  However, in 

our case when we delayed the deletion of GluN2B until P45 the hyperlocomotive 

phenotype was rescued.  This suggests that early removal of GluN2B in 

development leads to this phenotype.  The loss of GluN2B in adulthood does not 

significantly alter locomotor activity.  It is known that levels of GluN2B are high in 

early postnatal development and then start to decline as GluN2A levels rise 
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(Monyer et al., 1994; Sheng et al., 1994).  Additionally, the ability to induce 

plasticity varies with age and experience (Kirkwood et al., 1996; Quinlan et al., 

1999; Yashiro and Philpot, 2008).  In the first postnatal week, a time 

corresponding to the progressive enrichment of GluN2A subunits at the synapse, 

the efficacy of LTP induction is reduced at thalamocortical synapses (Crair and 

Malenka, 1995; Isaac et al., 1997; Lu et al., 2001).  Interestingly experience 

dependent exchange of GluN2B for GluN2A subunits in the visual cortex 

(Quinlan et al., 1999) correlates with an elevated LTP induction threshold 

(Kirkwood et al., 1996).  Together these data suggest that experience driven 

insertion of GluN2A increases the threshold for LTP induction.  Many of our early 

GluN2B deletion effects could be driven by the unchecked GluN2A expression 

earlier than normal in development.  The delayed removal of GluN2B may allow 

for proper synaptogenesis and synaptic maturation allowing for a rescue of 

locomotor behavior.    

 We observed that deletion of GluN2B early in postnatal development lead 

to a decrease in performance on the accelerating rotarod, especially in later 

trials, but it did not disrupt overall motor learning.  Surprisingly, postponing the 

deletion of GluN2B until P45 led to a more severe deficit in rotarod performance 

in GluN2BKO mice.  GluN2BKO mice did not show any significant motor learning 

over repeated trials compared to littermate controls, suggesting an important role 

for GluN2B in motor learning in the striatum.  The enhanced deficit seen when 

the deletion of GluN2B is postponed until adulthood, suggests that compensation 

prevents serious motor deficits after early deletion, but disrupting a system which 
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has utilized GluN2B signaling previously may lead to more serious deficits.  In 

contrast to these data, a study using GluN2A or GluN2B antagonists injected into 

the dorsal striatum suggested that while GluN2A was crucial for motor learning 

on the accelerating rotarod, GluN2B was not (Lemay-Clermont et al., 2011).  This 

discrepancy may be accounted for by issues with selectivity with the GluN2A 

antagonist, NVP-AAM077 or the greater reliance on the loss of GluN1 subunit 

also seen in our studies.  Rotarod learning, especially the late component, seems 

to involve an increase in NMDAR-mediated synaptic transmission and is 

associated with an upregulation of GluN1 (Yin et al., 2009; D'Amours et al., 

2011). Another study showed that disrupting the interaction between CaMKII and 

the GluN2B subunit did not disrupt rotarod or locomotor activity, suggesting that 

the actual loss of the GluN2B or GluN1 receptor plays the crucial role (Halt et al., 

2012).     

In summary, I have shown that both CaMKII and GluN2B are important for 

modulating glutamatergic synaptic transmission in the striatum and striatal-based 

behaviors.  Importantly, CaMKII can bind the GluN2B subunit of the NMDAR and 

this binding is necessary for LTP and memory formation (Barria and Malinow, 

2005; Zhou et al., 2007; Foster et al., 2010).  Conversely, GluN2A subunit does 

not interact strongly with CaMKII making the GluN2B/CaMKII an important 

complex for plasticity and learning and memory (Strack et al., 2000).  These 

molecules/complexes are good candidates in development for the regulation of 

synaptogenesis, synaptic maturation, and synaptic dynamics.  Indeed the 
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expression of GluN2A acts as a synapse stabilizer where the expression of 

GluN2B is associated with dynamic synapses (Gambrill and Barria, 2011). 

  

Implications for Striatal CaMKII and GluN2B subunit in Parkinson’s 

Disease and Addiction 

Previous studies have linked striatal CaMKII and GluN2B to Parkinson’s 

disease and addiction models.  The active form of CaMKII is elevated following 

dopamine depletion (Picconi et al., 2004b; Brown et al., 2005) and striatal 

CaMKII inhibition rescues deficits in synaptic plasticity and motor behavior found 

in models of Parkinson’s disease (Picconi et al., 2004b).  Striatal CaMKII is 

essential for the motivational effects of reward cues on goal-directed behaviors 

(Wiltgen et al., 2007), as well as curbing D1R-mediated cocaine hyperlocomotion 

(Stein and Hell, 2010), and modulating excitability following chronic cocaine 

administration (Kourrich et al., 2012).  Additionally, both acute and chronic 

amphetamine administration can modulate CaMKII levels in the striatum (Choe 

and Wang, 2002; Greenstein et al., 2007).  GluN2B levels are decreased in 

animal models of Parkinson’s disease (Oh et al., 1999; Dunah et al., 2000; 

Hallett et al., 2005) and antagonists of the GluN2B-containing receptor have 

shown antiparkinsonian actions in both rodents and monkeys (Nash et al., 2000; 

Steece-Collier et al., 2000; Nash et al., 2004).  Various lines of evidence have 

shown that drug-induced craving is accompanied by a significant upregulation of 

GluN2B subunit expression (Ma et al., 2006; Ghasemzadeh et al., 2009; 

Schumann and Yaka, 2009) and blocking GluN2B-containing NMDAR receptors 



182 

 

in the striatum can inhibit drug craving and reinstatement (Ma et al., 2006; Ma et 

al., 2007).  In all, these studies suggest that CaMKII or GluN2B inhibitors may 

represent potential useful approaches to treat Parkinson’s disease 

symptomology and potentially disrupt or reset the maladaptive alterations in 

glutamatergic transmission seen in addiction.             
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