MODEL-DRIVEN ENGINEERING OF COMPONENT-BASED DISTRIBUTED,
REAL-TIME AND EMBEDDED SYSTEMS

By
Krishnakumar Balasubramanian
Dissertation
Submitted to the Faculty of the
Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY
in
Computer Science
December, 2007

Nashville, Tennessee

Approved:
Dr. Douglas C. Schmidt
Dr. Aniruddha Gokhale
Dr. Janos Sztipanovits
Dr. Gabor Karsai

Dr. Jeft Gray

To Amma and Appa for their patient support over the years

To Vidhya and Sarathy for all the encouragement

i1

ACKNOWLEDGMENTS

The past seven years have proven to be quite an eventful journey in a variety of ways.
I have had the wonderful opportunity to meet and make friends with a number of people
and visit a number of interesting places, all of which have left me enriched with the whole
experience. First of all, I would like to thank my advisor, Dr. Douglas C. Schmidt, for
providing me with an opportunity to work with him, initially with the Distributed Object
Computing (DOC) group at St.Louis and later in Nashville. Doug has been the single
biggest source of inspiration in my career as a graduate student, both in good and bad
times. Over the years, I have learned a lot from his words of wisdom on a wide variety
of topics, both academic and non-academic, and hope that it will continue in the future
as well. Next, I would like to thank Dr. Aniruddha S. Gokhale for the various fruitful
collaborations over the past four years. It has been a pleasure to work with Andy, who is
also a member of my dissertation committee. Dr. David Levine, Dr. Christopher D. Gill and
Dr. Ron K. Cytron served as my advisors and supported me during my stay in St. Louis; I
thank them for making my journey more enjoyable.

I would like to thank Dr. Janos Sztipanovits, Dr. Gabor Karsai and Dr. Jeff Gray for col-
laborations over the past four years and for agreeing to serve on my dissertation committee.
I am especially grateful for the time Jeff devoted to reviewing my proposal and would like
to thank him for his help. Over the years, my research has been supported by a variety of
agencies and companies. I would like to take this opportunity to thank the following peo-
ple: Sylvester Fernandez, Christopher Andrews and Theckla Louchios at Lockheed Martin
Co., Eagan, for agreeing to be beta-testers of PICML; Prakash Manghwani, Matt Gillen,
Praveen Sharma, Jianming Ye, Joe Loyall, Richard Schantz and George Heineman at BBN
Technologies, Boston, for providing us with the component-based UAV application used as
a case study in this dissertation; John Slaby, Steve Baker, Thomas Silveria and Paul Work

at Raytheon Co., Portsmouth, for being power users of PICML and also providing us with

il

the shipboard computing case study; Partick Lardieri, Gautam Thaker, Daniel Waddington
and Richard Buskens at Lockheed Martin Advanced Technology Laboratories, Cherry Hill,
for supporting the work that resulted in the creation of SIML and PAM.

My stay in the DOC group at WashU was very enjoyable due to the following past
and present members: Sharath Cholleti, Morgan Deters, Pradeep Gore, Frank Hunleth, Ya-
muna Krishnamurthy, Martin Linenweber, Ravipratap Madimsetti, Mike Plezbert. I would
like to thank Angelo Corsaro, Ossama Othman, Carlos O’Ryan, Irfan Pyarali and Nan-
bor Wang for answers to many questions over the years. After my move to Nashville, I have
greatly enjoyed the company of the following people: Aditya Agrawal, Hariharan Kan-
nan, Sachin Mujumdar, Sujata Mujumdar, Anantha Narayanan, Prakash Raghottamachar,
Pramila Rani.

I would like to thank Jeff Parsons for not holding back with his views on just about ev-
erything; discussions with Jeff have made many a dull day brighter. Balachandran Natara-
jan eased my transition from St. Louis to Nashville and remains a very good friend. Jai-
ganesh Balasubramanian, Arvind Krishna and Nishanth Shankaran, provided company for
many enjoyable hours spent honing our collective psycho-analysis skills, endless debates
and some fine dining. The past and present members of ISIS deserve special mention for
all the enjoyable break room discussions.

The amigos from Sapphire have always been there for me and I am very thankful for
their continued friendship. Last but not the least, I would like to thank my family: my
parents for their love and patience through many difficult years; my sister, Vidhya, and my
brother-in-law, Sarathy, for their encouragement and help when I needed both. But for my

family, this dissertation would have remained a dream.

v

TABLE OF CONTENTS

Page
DEDICATION e ii
ACKNOWLEDGMENTS e iii
LISTOFTABLES e e viii
LISTOFFIGURES o e ix
Chapter
L. INTRODUCTION e 1
I.1. Emerging Trends and Technologies 1
I.2. Overview of Component Middleware 3
3. Research Challenges 7
[.4. Research Approach 10
I.5. Research Contributions 11
[.6. Dissertation Organization 12
II. EVALUATION OF ALTERNATE APPROACHES 14
II.1. Composition of Component-based Systems 14
II.1.1. System Composition: Alternate Approaches 16
II.1.2. System Composition: Unresolved Challenges 20
I1.2. Optimization of Component-based Systems 23
I1.2.1. System Optimization: Alternate Approaches 24
I1.2.2. System Optimization: Unresolved Challenges 26
I1.3. Integration of Component-based Systems 29
II.3.1. System Integration: Alternate Approaches 29
II.3.2. System Integration: Unresolved Challenges 31
IL4. Summary 32
1. TECHNIQUES FOR COMPOSING COMPONENT-BASED SYSTEMS . 33
II.1. Overview of PICML 34
III.2. Composition using QoS-enabled Component Middleware - A
CaseStudy 36
III.2.1. Challenges in Composing the UAV Application 38
II1.2.2. Resolving UAV Composition Challenges with PICML . 41
IL3. Summary e 56
IV. TECHNIQUES FOR OPTIMIZING COMPONENT-BASED SYSTEMS . 57

IV.1. Challenges in Large-scale Component-based DRE systems 61

IV.1.1. Key Sources of Memory Footprint Overhead 61
IV.1.2. Key Sources of Latency Overhead 65
IV.2. Deployment-time Optimization Techniques 67
IV.2.1. Deployment-time Optimization Algorithms 68

IV.2.2. Design and Functionality of the Physical Assembly Map-
PET o 81
IV.3. Empirical Evaluation and Analysis 86
IV.3.1. Experimental Platforms 87
IV.3.2. Experimental Setup 90
IV.3.3. Empirical Footprint Results 91
IV.3.4. Empirical Latency Results 94
IV4., Summary 100
V. TECHNIQUES FOR INTEGRATING COMPONENT-BASED SYSTEMS 102
V.1. Functional Integration- ACaseStudy 107
V.1.1. Shipboard Enterprise Distributed System Architecture . 107
V.1.2. Functional Integration Challenges 109
V.2. DSML CompositionusingGME 116
V.3. Integrating Systems with SIML 120
V.3.1. The Design and Functionality of SIML 120
V.3.2. Resolving Functional Integration Challenges using SIML 123
V.3.3. EvaluatingSIML 129
V4. Summary 132
VL COMPARISON WITH RELATED RESEARCH 134
VI.1. Related Research: Composition Techniques 134
VI.2. Related Research: Optimization Techniques 136
VI.3. Related Research: Integration Techniques 139
VI4. Summary 143
VIL CONCLUDINGREMARKS o oo 144
VIL.1.Lessons Learned 144
VIL.1.1.Composition Techniques 145
VIIL.1.2.Optimization Techniques 146
VIIL.1.3.Integration Techniques 148
VIL.2.Summary of Research Contributions 150
VIL3.Future Research Directions 152

Appendix

A. Listof Publications 156
A.l. BookChapters 156
A.2. Refereed Journal Publications 156

Vi

A.3. Refereed Conference Publications
A.4. Refereed Workshop Publications

REFERENCES

vii

LIST OF TABLES

Table Page
I.1. Summary Of Research Contributions 12
IV.I. QoS Policy Configuration 95
V.1. Evaluating Functional Integration using SIML 130

viii

Figure

L.1.

1.2.

II.1.
I1.2.

I1.3.

III.1.
I1I.2.
I11.3.

111.4.

IV.1.
IV.2.
IV.3.
Iv4.
IV.S.
IV.6.
IV.7.
IV.8.

IV.O.

V.1.

V.2

LIST OF FIGURES

Page
Key Elements in the CORBA Component Model 4
Research Approach 10
Composition Dimensions L oL 15
Compositions of Systems from COTS Components 21
Composition Overhead in Component Assemblies 27
Emergency Response System components 39
Component Deployment Planning 52
Single Image Stream Assembly 54
UAV Application Assembly Scenario 55
Physical Assembly L Lo 58
Physical Assembly Mapper L. 84
Sample Operational String, 88
Basic Single Processor Scenario oL oL 89
Static and Dynamic Footprint 92
Total Footprint 93
Original Latency Measurements 96
Cross-pool/Lane Latency Measurements 97
Basic Single Processor Latency Measurements 99
Enterprise Distributed System Architecture 108
Functional Integration Challenges 110

X

V.3.

V4.

V5.

Domain-Specific Modeling Language Compositionin GME

Design of System Integration Modeling Language (SIML) Using Model
Composition Lo e e e

Generating a Web Service Gateway Using SIML

CHAPTER I

INTRODUCTION

I.1 Emerging Trends and Technologies

During the past two decades, advances in languages and platforms have raised the level
of software abstractions available to developers. For example, developers today typically
use expressive object-oriented languages such as C++ [130], Java [2], or C# [47], rather
than FORTRAN or C. Object-oriented (OO) programming languages simplified software
development by providing higher level abstractions and patterns. For example, OO lan-
guages provide support for associating data and related operations as well as decoupling
interfaces from the implementations. Thus well-written OO programs exhibit recurring
structures that promote abstraction, flexibility, modularity and elegance. Resting on the
foundations of the OO languages, reusable class libraries and application framework plat-
forms [115] were developed. This also led to the development of robust distributed object
computing middleware (DOC) which applied design patterns [17] (like Broker) to abstract
away low-level operating system and protocol-specific details of network programming.
This resulted in the development of distributed systems since the DOC middleware hid a
lot of the complexity associated with building such systems using previous generation mid-
dleware technologies. DOC middleware standards like CORBA [102] and Java RMI [133]
coupled with mature implementations like TAO [119] led to development of more robust
software and more powerful distributed systems. Although DOC middleware provided a
number of advantages over previous generation middleware, a number of significant limi-

tations remain. Some of the limitations with DOC middleware include:

* Inability to provide multiple alternate views per client. An object in DOC mid-
dleware like CORBA typically implements a single class interface, which may be

related by inheritance with other classes. In contrast, a component can implement

many interfaces, which need not be related by inheritance. A single component can

therefore appear to provide varying levels of functionality to its clients.

Inability of clients to navigate between interfaces of a server in a standardized
fashion. Components provide transparent “navigation” operations, i.e., moving be-
tween the different functional views of a component’s supported interfaces. Con-
versely, navigation in objects is limited to moving up or down an inheritance tree of
objects via downcasting or “narrow” operations. It is also not possible to provide dif-
ferent views of the same object since all clients are granted the same level of access

to the object’s interfaces and state.

Extensibility of the middleware limited to language (Java, C++) and/or plat-
form (COM, CORBA). Objects are units of instantiation, and encapsulate types,
contracts, and behavior [135] that model the physical entities of the problem domain
in which they are used. They are typically implemented in a particular language and
have some requirements on the layout that each inter-operating object must satisfy.
In contrast, a component need not be represented as a class, be implemented in a par-
ticular language, or share binary compatibility with other components (though it may
do so in practice). Components can therefore be viewed as providers of functionality
that can be replaced with equivalents components written in another language. This
extensibility is facilitated via the Extension Interface design pattern [118], which de-
fines a standard protocol for creating, composing, and evolving groups of interacting

components.

Accidental complexities in configuration of middleware, specification and en-
forcement of policy. Traditional DOC middleware provided very primitive mech-
anisms i.e., low-level mechanisms for configuration of the middleware as well as
specification of various policies. Since configuration and specification of policy was

done using imperative techniques, it was typically done in the same language as that

of the implementation. This led to the configuration of the middleware becoming

complex, tedious and error-prone.

* Ad hoc deployment mechanisms. Deployment of systems using traditional DOC
middleware is also done in an ad hoc fashion using custom scripts. The scripts were
usually targeted at deploying a single system, and hence had to be rewritten for every
new system, or in some cases for even different versions of the same system. The
development and maintenance of this ad hoc infrastructure for deployment was an
unnecessary burden on distributed, real-time and embedded (DRE) system develop-

€rs.

Thus, it is clear that system developers have to face significant challenges when build-
ing complex enterprise DRE systems using DOC middleware. One promising solution to
alleviate the complexities of traditional DOC middleware is component middleware tech-

nologies.

I.2 Overview of Component Middleware
Component middleware technologies like EJB [134], Microsoft .NET [81], and the
CORBA Component Model (CCM) [88] raised the level of abstraction by providing higher-
level entities like components and containers. Components encapsulate “business” logic,
and interact with other components via ports.
As shown in Figure 1.1, key elements and benefits of component middleware technolo-

gies like CCM include:

* Component, which is the basic building block used to encapsulate an element of
cohesive functionality. Components separate application logic from the underlying

middleware infrastructure.

* Component ports, which allow a component to expose multiple views to clients.

Container

ComponentServer

{ Events J {Security} QoS

[Transaction} [Persistence}
Exectors Common Services
(== [

|

|

|
}
|
|
|
|

Component

Operating System J
Executor

Component

DComponent @ Required Interface [) EventSource

ComponentHome O Provided Interface >) Event Sink

Figure I.1: Key Elements in the CORBA Component Model

Component ports provide the primary means for connecting components together to

form assemblies.

Component Assembly, which is an abstraction for composing components into
larger reusable entities. A component assembly typically includes a number of com-
ponents connected together in an application-specific fashion. Unlike the other enti-

ties described here, there is no run-time entity corresponding to a component assem-
bly.

* Component home, which is a factory that creates and manages components. A com-
ponent home provides flexibility in managing the lifecycle of components, including

various strategies for component creation.

* Container, which is a high-level execution environment that hosts components and
provides them with an abstraction of the underlying middleware. Containers provide
clear boundaries for Quality-of-Service (QoS) policy configuration and enforcement,
and are also the lowest unit at which policy is enforced; a container regulates shared

access to the middleware infrastructure by the components.

* Component context, which links each component with its execution context and en-
ables navigation between its different ports, as well as access to its connected neigh-
bors. Component context eliminates coupling between a component implementation
and its context, and hence, allows the reuse of a component in multiple execution

contexts.

* Component server, which aggregates multiple containers and the components hosted
in them in a single address space, e.g., an OS process. Component servers facilitate

management at the level of entire applications.

* Common Services, which provide common middleware services, such as transac-
tion, events, security and persistence. Common services implement the platform-
specific aspects of transaction, events, security and persistence and allow components

to utilize these services through the container.

Components interact with clients (including other components) via component ports.
Component ports implement the Extension Interface pattern [118], which allows a single
component to expose multiple views to clients. For example, CCM defines four different

kinds of ports:

* Facets, which are distinct named interfaces provided by the component. Facets en-
able a component to export a set of distinct—though often related—functional roles

to its clients.

* Receptacles, which are interfaces used to specify relationships between components.
Receptacles allow a component to accept references to other components and invoke
operations upon these references. They thus enable a component to use the function-

ality provided by facets of other components.

* Event sources and sinks, which define a standard interface for the Publisher/Subscriber
pattern [17]. Event sources/sinks are named connection points that send/receive spec-
ified types of events to/from one or more interested consumers/suppliers. These ports
also hide the details of establishing and configuring event channels [44] needed to

support the Publisher/Subscriber pattern.

 Attributes, which are named values exposed via accessor and mutator operations.
Attributes can be used to expose the properties of a component to tools, such as
application deployment wizards that interact with the component to extract these
properties and guide decisions made during installation of these components, based
on the values of these properties. Attributes typically maintain state about the com-
ponent and can be modified by clients to trigger an action based on the value of the

attributes.

Today’s reusable class libraries and application framework platforms minimize the need
to reinvent common and domain-specific middleware services, such as transactions, discov-
ery, fault tolerance, event notification, security, and distributed resource management. For
example, enterprise systems in many domains are increasingly developed using applica-
tions composed of distributed components running on feature-rich middleware frameworks.
In component middleware, components are designed to provide reusable capabilities to a

range of application domains, which are then composed into domain-specific assemblies for

application (re)use. The transition to component middleware is gaining momentum in the
realm of enterprise DRE systems because it helps address problems of inflexibility and rein-
vention of core capabilities associated with prior generations of monolithic, functionally-
designed, and stove-piped legacy applications. Legacy applications were developed with
the precise capabilities required for a specific set of requirements and operating conditions,
whereas components are designed to have a range of capabilities that enable their reuse in
other contexts. As shown in Figure 1.1, some key characteristics of component middleware

that help the development of complex enterprise distributed systems include:
 Support for transparent remote method invocations,
* Exposing multiple views of a single component,
* Language-independent component extensibility,

* High-level execution environments that provide layer(s) of reusable infrastructure
middleware services (such as naming and discovery, event and notification, security

and fault tolerance),

* Tools that enable application components to use the reusable middleware services in

different compositions.

I.3 Research Challenges

Although component middleware provide a number of advantages over previous tech-
nologies, several vexing problems remain. Some of the key challenges in developing, de-
ploying and configuring component-based large-scale enterprise DRE systems using com-

ponent middleware include:

1. Lack of high-level system composition tools. Although component middleware
provides many tools for developing individual components using general purpose

programming languages, there are few tools that exist for composing systems from

individual components. Thus, developers are still forced to deal with composition
using previous generation tools like IDEs. Such tools lack the ability to check archi-
tectural constraints of the system and hence these problems don’t show up until the
system is deployed, or worse, after the system has been deployed, i.e., at run-time.
Since it costs much more to fix problems later in the software development cycle,
lack of system composition tools is a big challenge to ensure successful adoption
of component middleware technologies. A key research challenge is therefore the
lack of system composition tools that focus on strategic architectural issues, such
as system-wide correctness and performance, and provide an integrated view of the

system.

2. Complexity of declarative platform API and notations. Over the years, complex-
ity of the platform API have evolved faster than the ability of general-purpose lan-
guages to mask this complexity. For example, popular middleware platforms, such as
EJB and .NET, contain thousands of classes and methods with many intricate depen-
dencies and subtle side effects that require considerable effort to program and tune
properly. Though these platforms expose declarative techniques for performing var-
ious system development and deployment tasks, the technologies chosen to express
these declarative techniques are often not user-friendly. For example, platforms like
.NET, EJB and CCM use XML [13] technologies as the notation for all metadata
related to specification of policy, configuration of middleware as well as deployment
of applications. Unlike traditional programming languages, XML syntax is very ver-
bose. Due to the repetitive nature of the XML syntax, manual editing of XML files
of even small sizes is very error-prone. A key research challenge is therefore the
complexity of declarative platform API and notations of the metadata prevalent in

the component middleware technologies.

3. Overhead due to high-level abstraction in large-scale systems. In any complex

system built using components, it is rare to find a single component that realizes a
complex functionality on its own, i.e., as a standalone component. We refer to in-
divisible, standalone components as monolithic components. Each monolithic com-
ponent normally performs a single specific functionality to allow reuse of its imple-
mentation across the whole system. Thus, a number of inter-connected components
are often composed together to create an assembly which realizes the complex func-
tionality. Each such composition of components into an assembly results in a small
and often unnoticeable overhead compared to implementing the functionality as a
single component. By applying the same principle to composing the entire system,
it is easy to get into a situation where a number of such small overheads add up to
become a significant portion of the total execution time, thereby causing reduced
QoS to clients. In worst cases, the application overhead can become so intolerable
that the system is no longer usable. Thus, a key research challenge is the composi-
tion overhead of the high-level component middleware technologies when applied to

large-scale systems.

. Complexity in integrating heterogeneous commercial-off-the-shelf (COTS) mid-
dleware technologies. With the emergence of commercial-off-the-shelf (COTS)
component middleware technologies, software system integrators are increasingly
faced with the task of integrating heterogeneous enterprise distributed systems built
using different COTS technologies. Although there are well-documented patterns
and techniques for system integration using various middleware technologies [49,
139], system integration is still largely a tedious and error-prone manual process. To
improve this process, component developers and system integrators must understand
key properties of the systems they are integrating, as well as the integration tech-

nologies they are applying. A key research challenge is to provide automated and

reusable tools that enable system integrators to overcome the difficulties due to het-
erogeneity at the protocol level, the data format level, the implementation language

level, and/or the deployment environment level.

I.4 Research Approach
To address the problems with the complexity of platforms and the inability of third-
generation languages to alleviate this complexity and express domain concepts, we propose
an approach that applies Model-Driven Engineering (MDE) technologies to the design,
development and deployment of component-based enterprise DRE systems. As shown in

Figure 1.2, our approach involves a combination of:

Component Package

Component
[elele)
OO
Component
Assembly
mponent
0O
(@)

Co Component
o [olele)
(@} o

Component
Assembly

Assembly

Component
Packager

Deployment
Component

Deployer

~Assembly
(5) Metadata Generation

DANCE
Framework

Assembly

10 R aL

Component Component
SEE KN BEE" | (2) Interaction
()D finiti
Component efinition
Assembly
C&mg):nce)n(' ' C&mg)mce)m
[a»]e) (a»]e)

Component
Assembler ¢

Component
Developer

Component

(Implememalion) (Implememation) (Implemematiun)
Resource Properties
Requirements

Figure 1.2: Research Approach

10

» System Composition Techniques, which includes a domain-specific modeling lan-
guage (PICML) and associated tools to allow component interface definition, compo-
nent interaction definition, multi-level composition of systems from individual com-
ponents and automatic generation of metadata from the models. This research pro-
vides system level composition tools that allows composing systems from individual

components. Chapter III describes the system composition tools in detail.

» System Optimization Techniques, which includes an optimization framework (PAM)
that uses the application context available in the models to optimize the execution and
footprint of applications built using components. The proposed research optimizes
away the composition overhead associated with component middleware technolo-
gies, by performing optimizations that were previously infeasible if operating at the

middleware level. Chapter IV describes the optimization technologies in detail.

» System Integration Techniques, which includes a domain-specific modeling lan-
guage based integration framework (SIML) that enables the functional integration
of heterogeneous middleware technologies like CCM and Web Services. This re-
search creates a domain-specific modeling language for integration by composing
multiple domain-specific modeling languages. Chapter V describes the integration

technologies in detail.

I.5 Research Contributions

Our research on MDE-based composition, optimization and integration techniques has
resulted in improved tool-support for component middleware. The key research contribu-

tions of our work on PICML, PAM and SIML are shown in Table I.1.

11

Table I.1: Summary Of Research Contributions

Category Benefits

1. Demonstrates novel techniques for hierarchical system-level composition of COTS compo-
nent middleware-based DRE systems using a MDE approach,

2. Provides a platform for expressing domain-specific constraints that are evaluated at design-
time, effectively reducing the number of errors that are discovered after system deployment,

System Composition Techniques 3. Improves developer productivity by automating key aspects of deployment of component-

(PICML) based systems including QoS configuration and automatic generation of syntactically valid
metadata,

4. Serves as the foundation for a variety of MDE-based optimization and integration tech-
niques.

1. Proposes a new class of optimization techniques, “deployment-time” optimizations,

2. Describes three “deployment-time” optimization techniques for reducing the overhead of
large-scale COTS component middleware-based systems,

3. Demonstrates the effectiveness of these techniques by implementing them in a MDE proto-

System Optimization Techniques type to effect significant reduction in footprint and latency of systems in two different DRE

(PAM) domains,

4. Proposed optimization techniques are automatic (i.e., do not require user intervention), non-
intrusive (i.e., do not require changes to existing systems or implementations) and preserve
standards compliance.

1. Proposes a novel approach to enable functional integration of heterogeneous COTS compo-
nent middleware technologies using (meta)model composition,

2. Demonstrates the effectiveness of the approach using a prototype composite system integra-
tion DSML, which is composed from DSMLs representing two different COTS middleware
technologies,

3. Improves productivity of the system integrator by automatically generating “all” of the in-
tegration glue code directly from the models,

4. Provides a foundation for integrating multiple component middleware technologies.

System Integration Techniques
(SIML)

1.6 Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter II describes the
research related to our work on composition, optimization and integration of component-
based DRE systems and points out the gaps in existing research; Chapter III describes
the PICML toolchain, our DSML-based approach to composition of component-based
systems and shows how the high-level abstraction provided by PICML resolves the chal-
lenges related to composition; Chapter IV first describes the sources of overhead in typical
component-based DRE systems and then describes our model-driven “deployment-time”
optimization techniques implemented using the Physical Assembly Mapper (PAM) and
evaluates the benefits of these techniques empirically; Chapter V describes the System In-
tegration Modeling Language (SIML) and shows how (meta)model composition can be

applied to integrate heterogeneous middleware technologies and automate key aspects of

12

functional integration by generating integration glue code automatically from the models;
Chapter VI compares our work on PICML, PAM and SIML with other approaches and
evaluates the benefits; and Chapter VII provides a summary of the research contributions,

presents concluding remarks and outlines future research work.

13

CHAPTER 11

EVALUATION OF ALTERNATE APPROACHES

This section summarizes alternate approaches to design, develop, compose, optimize
and integrate component-based DRE systems. Our goal in this chapter is to survey the
existing approaches. Detailed comparison of our work with the work described in this

section is in Chapter VI.

II.1 Composition of Component-based Systems
System composition refers to composing a system by inter-connecting different indi-
vidual components. Figure II.1 shows the different dimensions across which component

composition is defined. These include:

 Structural Dimension. Structural dimensions are related to the structural proper-
ties of composition of a system. Systems can be sub-divided into two categories

structurally:
1. Flat, where connections between the components in the system are at the same
level; all the components are defined at the same level, i.e., they are peers,

2. Hierarchical, where components are grouped together into assemblies which
may further be composed of sub-assemblies, and connections between compo-

nents exist at both levels.

* Temporal Dimension. Temporal dimension is related to the time at which the com-
position happens. Systems can be sub-divided into two categories in the temporal

dimension:

1. Static, where the components are combined together at build-time statically,

14

2. Dynamic, where the connections between components are orchestrated at de-

ployment time using declarative metadata by a deployment engine.

Component Assembly

omponent Assembly

Hierarchical

= @ D
EDLEDNEDLER
=) @)
(258)m(ess)| ((ess)m(ess)

.C)C)c) .ooo .ooo
(an]s] (an]s] (an]s]

Structural

<> Deployment Time

Flat <« Build Time

[olale}
oo

Component
(@] &) o
o

Comg))nem
[olele}
o

=

\ 4

Static Dynamic
Time

Figure I.1: Composition Dimensions

Component middleware promotes the development of libraries of pre-built and tested
individual components, which offer different levels of capabilities and performance to
clients. Although this paradigm increases the opportunities for systematic reuse, it can
also complicate software lifecycle processes. In particular, component middleware shifts
responsibility from software development engineers to other types of software engineers
(such as software configuration and deployment engineers) and systems engineers. Soft-
ware development engineers traditionally created entire applications in-house using top-
down design methods that could be evaluated throughout the lifecycle. In contrast, software
configuration/deployment engineers and system engineers must increasingly assemble en-
terprise, distributed systems by customizing and composing reusable components from
existing frameworks, rather than building them from scratch. Thus, it is clear that system

composition is becoming a critical part of enterprise DRE system development.

15

I1.1.1 System Composition: Alternate Approaches

Composition of component-based systems has been studied extensively in the research
community. Research on composition of component-based systems can be broadly cate-
gorized into four categories: (1) Component Development Environments, which deal with
graphical environments that allow definition and composition of components, (2) Compo-
nent Programming Techniques, which deal with improvements to programming languages
and new programming methodologies and techniques to support component composition,
(3) Functional Verification of Components, which deals with verification of components
and compositions for various properties like QoS, deadlocks, real-time behavior, and (4)
Declarative Notations to Express Design Intent, which deal with use of declarative nota-
tions for codifying various development, deployment, and configuration activities. These

four areas are discussed below:

1. Component Development Environments. Various component development envi-
ronments that provide a visual diagrammatic specification of complex models have
been proposed including Embedded Systems Modeling Language (ESML) [58] and
Ptolemy II [16]. WREN [73] is a component-based environment that emphasizes
building systems composed of components retrieved from common software dis-
tribution sites as opposed to being completely developed in-house. The work also
identifies some key requirements of component-based development environments in-
cluding support for modular design, self-description, presence of global namespaces,
support for application composition in addition to component development, support
for component configuration, support for multiple views and reuse through reference

to alleviate the maintenance problems.

2. Component Programming Techniques. A comprehensive collection of work re-
lated to Component-Based Software Engineering (CBSE) including (a) definition

of components, component-models and services, (b) business case for components,

16

product-line architectures, software architectures, standard-based component mod-
els and (c) legal implications of component-based software is presented in [46].
Research on composition techniques at the programming language level include the
work on Scala [99], extensions to languages to support collaboration-based designs
using mixin-layers in a static fashion [127] as well as in a dynamic fashion [105].
The topic of generating product-line architectures has been addressed in [8] with an
extension of this work to non-code artifacts in [9]. A seminal work on defining gen-
erative programming methodologies, tools and applications is [24]. Other work on
composition techniques include the work on variability management in the context
of product-line architectures in [79], which compares Feature-Oriented Program-
ming(FOP) [108] with Aspect-Oriented Programming(AOP) [61]. Recent efforts
[107] have also been focused on optimal strategies for composition of Web Services,
where a number of publicly available Web Services are composed together to satisfy
a high-level requirement. A summary of the existing techniques and requirements

for composition of Web Services is [83].

. Functional Verification of Components. Other approaches to assist composition of
component-based systems through functional verification including model-checking
are Cadena [45], Virginia Embedded Systems Toolkit (VEST) [129] and the Automatic

Integration of Reusable Embedded Systems (AIRES) [64].

. Declarative Notations to Express Design Intent. Declarative notations to express
design intent is a hot topic in the research community. Manifestations of the declar-
ative approach to configuration of the system starts from the operating system level

and goes all the way up to component-based system packaging.

Research on administration of personal computer systems [29] has focused on re-
placing the imperative updates to configuring and updating the operating system with

declarative techniques, which rely on a system model as a function that can be applied

17

to a collection of system parameters to produce a statically typed, fully configured

system instance. This research has been prototyped on Singularity OS [52].

On the other end of the spectrum is Pan [21], a high-level configuration language
for system administration of a large number of machines, ranging from large clusters
to desktops in large organizations. The approach taken to configuration is to store
configuration information in a database in two alternate forms: a high-level declar-
ative description (Pan) and a low-level XML-based notation. Automated tools are

provided which convert Pan to XML.

Declarative notations have also been applied to the task of instrumenting a live system
as implemented in DTrace [18]. DTrace is an online instrumentation facility which
uses a declarative high-level language to describe predicates and actions at a given
point of instrumentation. The DTrace mechanism has been integrated into the Solaris

Operating system.

Emerging standards like Web Services are based on Web Services Description Lan-
guage (WSDL) [19] to describe Web services starting with the messages that are
exchanged between the service provider and requester. The messages themselves
are described abstractly and then bound to a concrete network protocol and mes-
sage format. A message consists of a collection of typed data items. An exchange
of messages between the service provider and requester are described as an opera-
tion. WSDL uses XML Schema [11, 136] as the language for describing the service

descriptions.

xADL [25] is an infrastructure for development of software architecture description
languages (ADLs), which relies on using XML for description of the language itself.
It provides a base set of reusable and customizable architectural modeling constructs

and an XML-based modular extension mechanism. The primary goal of xADL is to

18

unify the plethora of ADL notations in prevalence, and to reduce the effort expended

in building tools to support ADLs.

Recent research on network protocol design [114] has resulted in a generic applica-
tion protocol kernel for connection-oriented, asynchronous interactions called BEEP.
Messages are usually textual (structured using XML). BEEP is itself not a protocol
for sending and receiving data directly. Rather, it allows definition of application
protocol in a declarative fashion on top of it, reusing several mechanisms such as:
asynchronous communications, transport layer security, peer authentication, chan-
nel multiplexing on the same connection, message framing, and channel bandwidth

management.

Another declarative RPC protocol that is becoming popular is the Simple Object Ac-
cess Protocol (SOAP) [141]. SOAP provides a simple and lightweight mechanism
for exchanging structured and typed information between peers in a decentralized,
distributed environment using XML. SOAP does not itself define any application se-
mantics such as a programming model or implementation specific semantics. Rather,
it defines a simple mechanism for expressing application semantics by providing a
modular packaging model and encoding mechanisms for encoding data within mod-
ules. This allows SOAP to be used in a large variety of systems ranging from mes-

saging systems to RPC.

The .NET framework employs a number of declarative mechanisms to build, config-
ure and deploy [112] systems. The use of declarative notations (built on top of XML)
is pervasive in the .NET architecture. XML is used to configure the run-time behavior
of not just shared libraries (assembly in .NET parlance) but also entire applications.
XML is also used to describe the configuration of security policies at various levels

of abstraction including application, machine or even enterprise.

Other standards-based component middleware including CCM [88] and EJB [134]

19

also define declarative mechanisms using XML for composition and assembly of
components and component packages, as well as for orchestrating deployment of

component systems [103].

Much emphasis of the related research has been on component programming models
and languages to allow construction of components, i.e., how to write better components,
and functional verification of individual components. Another issue with related research
is that a lot of tool-specific component technologies have been proposed, whereas there
is a need for component technology agnostic tools. However, with the standardization of
component programming models, and the availability of commercial-off-the-shelf (COTS)
components, focus needs to shift away from “programming-in-the-small” to “composing-
systems-in-the-large” and away from proprietary component models to standards-based
component models. Another area which has not been given enough attention is the de-
ployment of component-based systems and support for managing deployment artifacts.
Section II.1.2 describes the key unresolved challenges in composition of component-based

systems, which forms the basis for our research.

I1.1.2 System Composition: Unresolved Challenges

As shown in Figure I1.2, the challenges in building distributed systems are thus shifting
from focusing on the construction of individual components to composition of systems
from a large number of individual subcomponents, and ensuring correct configuration of the
subcomponents. Composition of systems from individual components needs to ensure that
the connections between components are compatible, as well as ensure that the deployment
descriptors for the composed systems are valid.

Unfortunately, problems associated with composing systems from components often
become manifest only during the integration phase. Problems discovered during integra-
tion are much more costly to fix than those discovered earlier in the lifecycle. A key

research challenge is thus exposing these types of issues (which often have dependencies

20

Component

Resource Properties
Requirements

Figure 1.2: Compositions of Systems from COTS Components

on components that are not available until late in development) earlier in the lifecycle, e.g.,
prior to the system integration phase. The following is a list of the unresolved challenges

with composition of systems from standards based components:

1. Lack of tool support for defining consistent component interactions. Existing in-
terface definition tools are primitive in the sense that the interfaces for different com-
ponents are specified separately, and getting the interface definitions right involves
tedious edit, compile, fix cycle. Also, while the individual interfaces themselves may
be strongly typed, the lack of component interconnection information in interface
definitions languages like CORBA Interface Definition Language (IDL) [88] and
WSDL [19] makes the task of composing systems more difficult. This is because in-
consistencies in the component interactions are not detected until either deployment-

time, or in some cases until run-time.

21

. Lack of an integrated system view. Traditional environments for component devel-
opment provide a split view of the system where there is a design view, e.g., Unified
Modeling Language (UML) [96] models of the system, and there is a “‘code-centric”
view, e.g., Microsoft Visual Studio, Eclipse [98]. Thus, there is a lack of an inte-

grated system view to help the system developers reason at the system-level.

. Lack of tool support for multi-level composition. System developers also need
tools that allow viewing the system at multiple levels of granularity (complexity).
Also, when one portion of a system changes, the change propagation is done in an

ad hoc fashion which is tedious and error-prone when done manually.

. Lack of context-aware policy specification mechanisms. Components of a system
might need to be configured with different parameters based on the usage context of
a component. However, existing integrated development environments (IDEs) lack
support for context-aware policy specifications which results in maintenance issues
when the number of components and the number of contexts in which a component

is used in a system grows.

. Lack of scalable composition techniques. Most graphical environments (e.g., Mi-
crosoft Visual Studio, Eclipse) and composition techniques are effective when the
number of components in a system number in the tens or hundreds. However, when
the number of components in a system is in the thousands, it is extremely unproduc-
tive to perform composition activities manually. Even if a tool environment provides
such a capability, it may not be customizable. Existing mechanisms to customize an
environment involve writing plugins, or addons [72], which assumes familiarity with

the tool environment itself and is an extra burden on system developers.

. Complexity of Declarative Notations. A key research challenge is the accidental

22

complexities of the declarative notations required to configure the component mid-
dleware. Although the move towards declarative notations is an advance over previ-
ous generation imperative techniques, the declarative techniques have chosen to use
tool-friendly technologies like XML as the medium for expression of design intent.
XML is non-intuitive and error-prone to write manually (with or without tool sup-
port). Any changes to a system requires modification to an XML document which is
a cumbersome process. Thus by choosing XML as the underlying notation for declar-
ative techniques, the problems associated with imperative system configuration have

just been shifted into a different space, i.e., configuration using XML.

. Lack of support for system evolution. Another research challenge is maintaining
and evolving the declarative metadata associated with a system. Any complex system
will undergo a number of changes (minor and major) as part of it’s evolution, and
hence it is critical that the declarative metadata also evolve with the system. Ad
hoc and naive approaches to management of metadata will result in problems during

deployment time, or even at run-time, both of which are costly to fix.

II.2 Optimization of Component-based Systems

Over the past five decades, software researchers and developers have been creating ab-

stractions that (1) help them to program in terms of their design intent rather than in terms

of the underlying computing environments (e.g., CPU, memory, and network devices) and

(2) shield them from the complexities of these environments. From the early days of com-

puting, these abstractions included both language and platform technologies. For exam-

ple, early programming languages, such as assembly and FORTRAN, shielded developers

from complexities of programming with machine code. Likewise, early operating system

platforms, such as OS/360 and UNIX, shielded developers from complexities of program-

ming directly to hardware. More recently, higher-level languages (such as C++, Java, and

23

C#) and platforms (such as component middleware) have further shielded application de-
velopers from the complexities of the hardware. Although existing languages and plat-
forms raised the level of abstraction, they can also incur additional overhead. For example,
common sources of overhead in component middleware include marshaling/de-marshaling
costs, data copying and memory management, static footprint overhead due to presence
of code paths to deal with every possible use case, dynamic footprint overhead due to re-
dundant run-time infrastructure helper objects, the endpoint/request de-multiplexing, and
context switching/synchronization overhead. Although some implementations of compo-
nent middleware try to minimize this overhead, there is a limit to the optimizations done by
the middleware developers. In particular, middleware developers can only apply optimiza-
tions that are applicable across all applications in a particular domain, which effectively

limits the number of valid optimizations performed by default.

I1.2.1 System Optimization: Alternate Approaches

Optimizing middleware to increase the performance of applications has long been a
goal of system researchers [20, 33, 36, 39, 76]. In this section we will explore a representa-
tive sample of the research that has been applied to optimizing middleware for component-
based systems. Optimization techniques to improve application performance can be cat-
egorized along two dimensions: (1) the layer at which the optimization is applied, e.g.,
whether the optimization is restricted to the middleware layer alone or spans multiple lay-
ers, including applications above the middleware, (2) the time at which such optimization
techniques are applied, i.e. design/development-time, run-time or deployment-time. Re-

search along the different dimensions of optimization can be summarized as follows:

1. Design/development-time approaches. Design-time approaches to component mid-

dleware optimization include static configuration of CIAO [131], context-specific

24

middleware specializations for product-line architectures [65], application of Aspect-
Oriented Programming (AOP) techniques to automatically derive subsets of middle-
ware based on use case requirements [50], and modification of applications to bypass
middleware layers using aspect-oriented extensions to CORBA Interface Definition
Language (IDL) [101]. In addition, middleware has been synthesized in a “just-in-
time” fashion by integrating source code analysis, and inferring features and synthe-

sizing implementations [151].

. Run-time approaches. Research on approaches to optimizing middleware at run-
time has focused on choosing optimal component implementations from a set of
available alternatives based on the current execution context [31], dynamic adap-
tation of desired behavior as described in QuO [153], domain-specific middleware
scheduling optimizations for DRE systems [42], using feedback control theory to af-
fect server resource allocation in Internet servers [152] as well as to perform real-time

scheduling in Real-time CORBA middleware [70].

Run-time approaches to application-specific optimizations have also focused on data
replication for edge services, i.e., replicating servers at geographically distributed
sites [41], optimizing web services utilizing reflective techniques encapsulated in
the request metadata [85], and improving algorithms for event ordering within com-
ponent middleware by making use of application context information available in

models [126].

Research on alternate component middleware like EJB have focused on automat-
ing the performance management [30] of applications by employing a performance
monitoring framework which works in collaboration with a performance anomaly

detection framework. By relying on redundant implementation of components, i.e.,

25

a component with the same functionality but optimized for different run-time envi-
ronments, implementations can be swapped for more optimal ones depending on the

anomalies detected.

3. Deployment-time approaches. Deployment-time optimization research includes
BluePencil [69], which is a framework for deployment-time optimization of web
services. BluePencil focuses on optimizing the client-server binding selection using
a set of rules stored in a policy repository and rewriting the application code to use

the optimized binding.

One common theme with the research on middleware optimization has been the use
of run-time reflection [10] to adapt the behavior of the middleware such that application
performance is optimized. Although this may be suitable for some system, not all enterprise
DRE systems can afford the luxury of run-time reflection in the critical path. Another
theme with the research on optimizations is the requirement for multiple implementations
to be provided to the middleware to choose from. This strategy is not entirely application
transparent, and imposes an extra burden on the system developers. Finally, one of the
important missing pieces in the optimization research is the lack of a high-level notation
to guide the optimization frameworks, i.e., there is no intermediate abstract syntax tree
(AST) of the application that is available to the middleware to use as a basis for performing

optimizations.

I1.2.2 System Optimization: Unresolved Challenges

One of the biggest factors in affecting system performance is not a single significant de-
crease (which are usually easy to identify quickly) but a slew of small decreases. It is hard
to notice this overhead creep into the system without a sophisticated Distributed Continuous
Quality Assurance [77] infrastructure, and considerable diligence on part of the develop-

ers, which does not scale up well to large-scale systems. Component middleware standards

26

do not advocate any standard optimizations since it is not possible to perform them in the
middleware without the knowledge of the application context, i.e., such optimizations are
not domain invariants. Tools that automatically optimize component assemblies (composi-
tions) are not prevalent. It is hard to both identify and optimize component implementations
manually, since the usage of components tends to span multiple hierarchies in any complex
system. Further, an optimization that is applicable in one context may not be applicable
in another context. Thus, it is not possible to perform these optimizations in isolation, but
rather one should perform them based on every unique use case. Finally, performing these

optimizations manually by hand becomes infeasible with system evolution.

M
Node Application T
[|

Sl
T

A

Remote Invocation
- =~ Collocated Invocation

Receptacle

Facet

D Component Assembly

Component Home

—— Creates
Event Source

U OoOA

Event Sink

Figure 11.3: Composition Overhead in Component Assemblies

The following is a list of unresolved challenges with respect to application-specific

optimizations when using standards-based component middleware:

1. Lack of application context. A significant problem with component middleware is

27

the number of missed optimization opportunities in the middleware due to lack of ap-
plication context information. For example, when component middleware generates
glue code to facilitate remote method invocations, it generates code with the assump-
tions that every component is remote, as shown in Figure I1.3. Often, however, all
components that make up a subsystem are deployed onto the same node or even in
the same process. Since the application composition information is not available dur-
ing glue code generation, the middleware generated glue code is often inefficient. A
key research challenge is therefore to eliminate the overhead of applying high-level
abstractions like component middleware automatically to ensure that the system still

meets the desired performance requirements.

. Overhead of platform mappings. Platform mappings for component middleware
(i.e., code required to hook up a component into the run-time), are typically defined
with the assumption that every component is (or can be) remote. However, in certain
cases, blind adherence to the platform mapping can result in significant overhead
for applications built using component middleware. For example, in Figure I1.3 it is
clear that the components that are internal to the assembly do not have any connection
with other components outside. However, a default implementation of the internal
components will generate a single factory object per component instance which is
responsible for creation of components. This is wasteful in terms of both static (for
each component type) and dynamic (for each component instance) footprint. A key

research challenge is to recognize such anomalies and optimize away the overhead.

. Issues due to QoS (mis-)configuration. Although component middleware technolo-
gies provide declarative methods to configure QoS, large-scale component systems
can observe sub-optimal performance due to QoS mis-configuration. This happens
not only due to incorrect QoS configuration at the individual component level, but

can also happen at the level of component assemblies due to duplicate QoS policies.

28

At the level of component assemblies, associating QoS policies with components in
an individual fashion can lead to increasing the number of effective QoS policies re-
quired to deploy a system. Since the number of unique QoS policies determines the
run-time resources like the number of containers created, this can result in increasing
the resource demands on the system. A key research challenge is to minimize the

number of run-time resources associated with QoS configuration.

I1.3 Integration of Component-based Systems

With the maturation of commercial-off-the-shelf (COTS) component middleware tech-
nologies, such as Enterprise Java Beans (EJB) [134], CORBA Component Model (CCM) [88],
and Microsoft .NET Framework [81], software developers are increasingly faced with the
task of integrating heterogeneous enterprise distributed systems built using different COTS
technologies, rather than just integrating proprietary software developed in-house. Al-
though there are well-documented patterns [49] and techniques [14] for integrating sys-
tems via various component middleware technologies, system integration is still largely a
tedious and error-prone manual process. To improve this process, component developers
and system integrators must understand key properties of the integration technologies they

are applying and the systems they are integrating.

I1.3.1 System Integration: Alternate Approaches

This section surveys the technologies that provide the context of our work on system
integration in the domain of enterprise distributed systems. We classify techniques and
tools in the integration space according to the role played by the technique/tool in system

integration as follows:

1. Integration evaluation tools like IBM’s WebSphere [54] enable system integra-
tors to specify the systems/technologies being integrated and evaluate the integra-

tion strategy and tools used to achieve integration; system execution modeling [128]

29

tools, such as CoWorker Utilization Test Suite (CUTS) [48], help developers con-
duct “what if” experiments to discover, measure, and rectify performance problems
early in the lifecycle (e.g., in the architecture and design phases), as opposed to the

integration phase.

. Integration design tools. Object Management Group (OMG)’s UML profile for En-
terprise Application Integration (EAI) [91] defines a Meta Object Facility (MOF) [93]

for collaboration and activity modeling.

. Integration patterns [139] provides guidance to system integrators in the form of
best patterns and practices, with examples using a particular vendor’s products. Com-
mon integration patterns, with an emphasis on system integration via asynchronous

messaging using different commercial products are catalogued in [49].

. Resource adapters are used during integration to transform data and services ex-
posed by service producers to a form amenable to service consumers. Examples
include data transformation (mapping from one schema to another), protocol trans-
formation (mapping from one network protocol to another), or interface adaptation
(which includes both data and protocol transformation). Existing standards (such
as the Java Messaging Specification [132] and J2EE Connector Architecture Spec-
ification [82]) and tools (such as IBM’s MQSeries [53]) provide the architectural

framework for performing resource adaptations.

. Integration frameworks. The semantic web and the Web Ontology Language (OWL) [22]
have focused on the composition of services from unambiguous, formal descriptions
of capabilities as exposed by services on the Web. Research on service composition
has focused largely on automation and dynamism [107], integration on large-scale
“system-of-systems,” such as the Grid [37]. Other work has focused on optimizing

service compositions such that they are “QoS-aware” [149]; in such “QoS-aware”

30

compositions, a service is composed from multiple other services taking into account

the QoS requirements of clients.

6. Integration quality analysis. Research on QoS issues associated with integration
has yielded languages and infrastructure for evaluating service-level agreements,
which are contracts between service providers and consumers that define the obliga-
tions of the parties involved and specify what measures to take if service assurances
are not satisfied. Examples include (1) the Web Service-Level Agreement language
(WSLA) [71] framework, (2) the WS-Agreement framework [100], and (3) Rule-

Based Service Level Agreement [106].

A common problem with the integration tools is that the system integrators are still re-
quired to do low-level integration activities like writing glue code, and configuring resource

adapters. There is a lack of automation in integration related activities.

I1.3.2 System Integration: Unresolved Challenges
Despite the benefits of component middleware, key challenges in functional integra-
tion of systems remain unresolved when integrating large-scale systems developed using

heterogeneous COTS middleware. These challenges include:

1. Integration Design, which involves choosing the right abstraction for integration.
Although integration evaluation tools help identify potential integration problems
and evaluate the overall integration strategy, they do not replace the actual task of in-
tegration itself since these tools use simulation-/emulation-based abstractions of the
actual systems. Integration patterns themselves do not directly provide tools for inte-
gration, but instead provide pattern-based guidance to apply existing tools to achieve
more effective integration. A key research challenge is to build tools that help system

integrators in integration design and allows them to make different trade-offs.

31

2. Interface Mapping, which reconciles the source and target datatypes. Existing in-
tegration design tools provide limited support for interface mapping by generating
stubs and skeletons, for facilitating interface mapping, and performing protocol map-
ping. A key research challenge is to provide automatic mapping of the interfaces

between different heterogeneous technologies.

3. Technology Mapping, which reconciles various low-level issues when integrating
heterogeneous COTS technologies. Existing standards for performing resource adap-
tations, however, approach the integration from a middleware and programming per-
spective, i.e., system integrators must still handcraft the glue code that invokes the
resource adapter frameworks to connect system components together. A key research
challenge is to enable automatic generation of the integration glue code thereby re-

lieving the system integrators to write more code to integrate existing systems.

II.4 Summary

This chapter provided a survey of work related to the research described in this disser-
tation. Chapter III describes in detail how the composition capabilities of PICML resolves
these limitations. Chapter IV describes the issues with optimization in component-based
systems in detail and explains how they are resolved. The lack of simplification and au-
tomation in resolving these challenges significantly hinders effective system integration.
Chapter V describes these challenges in greater detail and explains the approaches to re-

solve these challenges.

32

CHAPTER III

TECHNIQUES FOR COMPOSING COMPONENT-BASED SYSTEMS

The trend towards developing and reasoning about DRE systems via components pro-
vides many advantages compared with earlier forms of infrastructure software. For exam-
ple, components provide higher-level abstractions than operating systems, third-generation
programming languages, and earlier generations of middleware, such as distributed object
computing (DOC) middleware. In particular, component middleware, such as CCM, J2EE,
and .NET, supports multiple views per component, transparent navigation, greater extensi-
bility, and a higher-level execution environment based on containers, which alleviate many
limitations of prior middleware technologies. The additional capabilities of component-
based platforms, however, also introduce new complexities associated with composing and
deploying DRE systems using components, including (1) the need to design consistent
component interface definitions, (2) the need to specify valid interactions and connections
between components, (3) the need to generate valid component deployment descriptors, (4)
the need to ensure that requirements of components are met by target nodes where compo-
nents are deployed, and (5) the need to guarantee that changes to a system do not leave it
in an inconsistent state. The lack of simplification and automation in resolving the chal-
lenges outlined above can significantly hinder the effective transition to — and adoption of
— component middleware technology to develop DRE systems.

To address the needs of DRE system developers outlined above, we have developed
the Platform-Independent Component Modeling Language (PICML). PICML is an open-
source domain-specific modeling language (DSML) available for download at www . dre.
vanderbilt.edu/cosmic that enables developers of component-based DRE systems
to define application interfaces, QoS parameters, and system software building rules, as

well as generate valid XML descriptor files that enable automated system deployment.

33

www.dre.vanderbilt.edu/cosmic
www.dre.vanderbilt.edu/cosmic

PICML also provides capabilities to handle complex component engineering tasks, such as
multi-aspect visualization of components and the interactions of their subsystems, compo-
nent deployment planning, and hierarchical modeling of component assemblies.

PICML is designed to help bridge the gap between design-time verification and model-
checking tools (such as Cadena [45], VEST [129], and AIRES [64]) and the actual deployed
component implementations. PICML also provides higher-level abstractions for describing
DRE systems, using component models that provides a base for (1) integrating analysis
tools that reason about DRE systems and (2) platform-independent generation capabilities,
i.e., generation that can be targeted at multiple component middleware technologies, such

as CCM, J2EE, and ICE [150].

III.1 Overview of PICML

Model-Driven Engineering (MDE) [43] is a paradigm that focuses on using models in
most system development activities, i.e., models provide input and output at all stages of
system development until the final system itself is generated. A key capability supported
by the MDE paradigm is the definition and implementation of domain-specific modeling
languages (DSMLs), which can be viewed as a five-tuple [59] consisting of: (1) concrete
syntax (C), which defines the notation used to express domain entities, (2) abstract syntax
(A), which defines the concepts, relationships and integrity constraints available in the
language, (3) semantic domain (S), which defines the formalism used to map the semantics
of the models to a particular domain, (4) syntactic mapping (M¢c: A—C), which assigns
syntactic constructs (e.g., graphical and/or textual) to elements of the abstract syntax, and
(5) semantic mapping (Ms: A—S), which relates the syntactic concepts to those of the
semantic domain.

Crucial to the success of DSMLs is metamodeling and auto-generation. A metamodel
defines the elements of a DSML, which is tailored to a particular domain, such as the

domain of avionics mission computing or emergency response systems. Auto-generation

34

involves automatically synthesizing artifacts from models, thereby relieving DSML users
from the specifics of the artifacts themselves, including their format, syntax, or semantics.
Examples of such artifacts include (but are not limited to), code in some programming
language and/or descriptors, in formats such as XML, that can serve as input to other tools.

To support development of DRE systems using MDE, we have defined the Platform-
Independent Component Modeling Language (PICML) using the Generic Modeling Envi-
ronment (GME) [67]. GME is a meta-programmable modeling environment with a general-
purpose editing engine, separate view-controller GUI, and a configurable persistence en-
gine. Since GME is meta-programmable, the same environment used to define PICML
1s also used to build models, which are instances of the PICML metamodel. Sidebar 1

describes the features of GME that allow development of DSMLs.

At the core of PICML is a DSML (defined as a metamodel using GME) for describing
components, types of allowed interconnections between components, and types of com-
ponent metadata for deployment. The PICML metamodel defines ~115 different types of
basic elements, with 57 different types of associations between these elements, grouped
under 14 different folders. The PICML metamodel also uses the OMG’s Object Constraint
Language (OCL) [146] to define ~222 constraints that are enforced by GME’s constraint
manager during the design process.

Using GME tools, the PICML metamodel can be compiled into a modeling paradigm,
which defines a domain-specific modeling environment. From the PICML metamodel,
~20,000 lines of C++ code (which represents the modeling language elements as equiv-
alent C++ types) are generated. This generated code allows manipulation of modeling
elements, i.e., instances of the language types using C++, and forms the basis for writing
model interpreters, which traverse the model hierarchy to perform various kinds of genera-
tive actions, such as generating XML-based deployment plan descriptors. PICML currently
has ~8 interpreters using ~222 generated C++- classes and ~8,000 lines of hand-written

C—++ code that traverse models to generate the XML deployment descriptors (described in

35

Sidebar 1: Generic Modeling Environment

The Generic Modeling Environment (GME) is an open-source, visual, configurable
design environment for creating DSMLs and program synthesis environments, available
for download from escher.isis.vanderbilt.edu/downloads?tool=GME.
A unique feature of GME is that it is meta-programmable, which means that it can not
only build DSMLs, but also build models that conform to a DSML. In fact, the environ-
ment used to build DSMLs in GME is itself built using another DSML (also known as the
meta-metamodel) called “MetaGME,” which provides the following elements to define a
DSML.:

Project, which is the top-level container in a DSML,
Folders, which are used to group collections of similar elements together,

Atoms, which are the indivisible elements of a DSML, and used to represent the
leaf-level elements in a DSML,

Models, which are the compound objects in a DSML, and are used to contain differ-
ent types of elements like References, Sets, Atoms, and Connections (the elements
that are contained by a Model are known as parts),

Aspects, which are used to provide a different viewpoint of the same Model (every
part of a Model is associated with an Aspect),

Connections, which are used to represent relationships between the elements of
the domain,

References, which are used to refer to other elements in different portions of a
DSML hierarchy (unlike Connections, which can be used to connect elements
within a Model),

Sets, which are containers whose elements are defined within the same aspect and
have the same container as the owner.

I11.2

To motivate and explain the features in PICML, we use a running example of a represen-

Sidebar 2) needed to support the OMG D&C specification [90]. Each interpreter is written
as a DLL that is loaded at run-time into GME and executed to generate the XML descriptors

based on models developed by the component developers using PICML.

Composition using QoS-enabled Component Middleware - A Case Study

tative DRE system designed for emergency response situations (such as disaster recovery

36

escher.isis.vanderbilt.edu/downloads?tool=GME

efforts stemming from floods, earthquakes, hurricanes) and consists of a number of inter-
acting subsystems with a variety of DRE QoS requirements. Our focus in this chapter is on
the unmanned aerial vehicle (UAV) portion of this system, which is used to monitor terrain
for flood damage, spot survivors that need to be rescued, and assess the extent of damage.
The UAV transmits this imagery to various other emergency response units, including the
national guard, law enforcement agencies, health care systems, firefighting units, and utility
companies.

Developing and deploying emergency response systems is hard. For example, there
are multiple modes of operation for the UAVs, including aerial imaging, survivor tracking,
and damage assessment. Each of these modes is associated with a different set of QoS
requirements. For example, a key QoS criteria involves the latency requirements in send-
ing images from the flying UAVs to ground stations under varying bandwidth availability.
Similar QoS requirements manifest themselves in the traffic management, rescue missions,
and fire fighting operations.

In conjunction with colleagues at BBN Technologies and Washington University, we
have developed a prototype of the UAV portion of the emergency response system [121] de-
scribed above using the CCM and Real-time CORBA capabilities provided by Component-
Integrated ACE ORB(CIAO) [145]. CIAO extends our previous work on The ACE ORB
(TAO) [117] by providing more powerful component-based abstractions using the speci-
fication, validation, packaging, configuration, and deployment techniques defined by the
OMG CCM [88] and D&C [90] specifications. Moreover, CIAO integrates the CCM capa-
bilities outlined below with TAO’s Real-time CORBA [117] features, such as thread-pools,
lanes, and client-propagated and server-declared policies. In this section, we first briefly
explain the motivation for using CCM to develop the UAV portion of the emergency re-
sponse system. We then describe the challenges in developing this system using CCM, and
then show how we resolved these challenges by applying a MDE approach using PICML.

The CORBA Component Model (CCM) is an OMG specification that standardizes the

37

development of component-based applications in CORBA. Since CCM uses CORBA’s ob-
ject model as its underlying object model, developers are not tied to any particular language
or platform for their component implementations. The CIAO project is based on CCM
rather than other popular component models, such as EJB or .NET, since CORBA is the
only COTS middleware that has made a substantial progress in satisfying the QoS require-
ments of DRE applications. For instance, the OMG has adopted the following DRE-related

specifications in recent years:

e Minimum CORBA [94], which removes non-essential features from the full OMG
CORBA specification to reduce footprint so that CORBA can be used in memory-

constrained embedded system applications.

* Real-time CORBA [95], which includes features that allow applications to reserve

and manage network, CPU, and memory resources predictably end-to-end.

* CORBA Messaging [87], which exports additional QoS policies, such as asyn-
chronous invocations, timeouts, request priorities, and queuing disciplines, to DRE

applications.

* Fault-tolerant CORBA [92], which uses entity redundancy of objects to support

replication, fault detection, and failure recovery.

These QoS specification and enforcement capabilities are essential to support DRE appli-

cations.

I11.2.1 Challenges in Composing the UAV Application

The components in this UAV application are shown in Figure III.1 and the steps in-
volved in this effort are described below:
1. Identify the components in the system, and define their interfaces, which involves

defining component ports and attributes, using the CORBA 3.x IDL features provided by

38

))
[0 Stream 1 DY @ Receptacle
—
O Facet
Event Source
SystemResource L2 Control Center

Manager Displa; i
g > veam s > play)) Event Sink
DY C)Component

— 1D
Stream 4
~ ~

Local
Resource
Manager

Scale
Qosket

(‘ Cropping QoS
Predictor
(‘ Compression QoS
Predictor
(‘ Scaling QoS
Predictor

Figure I1l.1: Emergency Response System components

Compress
Qosket

Sender Receiver

Qosket

CCM. In the UAV example, each UAV is associated with a stream of images. Each image
stream is composed of Sender, Qosket, and Receiver components. Sender com-
ponents are responsible for collecting the images from each image sensor on the UAV. The
Sender passes the images to a series of Qosket [145] components that perform opera-
tions on the images to ensure that the QoS requirements are satisfied. Some Qosket compo-
nents include CompressQosket, ScaleQosket, CropQosket, PaceQosket,
and a DiffServQosket. The final Qosket then passes the images to a Receiver
component, which collects the images from the UAV and passes them on to a display in the
control room of the emergency response team.

Each Sender, Receiver, and the various Qosket components pass images via
CCM event source and sink ports. There are also manager components that define policies,

such as the relative importance of the different mission modes of each UAV. These policies

39

in turn modify existing resource allocations by the Qosket components. For example,
the global SystemResourceManager component monitors resource allocation across
all the UAVs that are operational at any moment, and is responsible for communicating
policy decisions from the control center to each UAV by triggering mode changes. The per-
stream LocalResourceManager component is responsible for instructing the Qosket
components to adapt their internal QoS requirements according to the mode in which the
UAV is currently operating.

2. Define interactions between components, which involves keeping track of the types
of each component’s ports and ensuring that components which must be interconnected
have matching ports defined. In the UAV example, this involves connecting the different
components that comprise a single stream in the correct order since some components (such
as DeCompressQosket) do the reverse of an operation performed by another component
(such as CompressQosket). The manager components need to be connected to receive
monitoring information about the existing QoS in each stream of image data.

3. Compose the UAV application by defining CCM deployment descriptors, which
involves selecting a set of component implementations from a library of available imple-
mentations, describing how to instantiate component instances using these component im-
plementations, and specifying connections between component instances. In the UAV ex-
ample, this first involves combining the different components that comprise a single stream
of images into a single assembly, represented by an XML descriptor. The complete UAV
application is then created by making copies of this file to represent each UAV in flight.

4. Deploy the UAV application onto its runtime platform, which involves ensuring that
the implementation artifacts and the associated deployment descriptors are available on
the actual target platform, and initiating the deployment process using the standard OMG
D&C [90] framework and tools. In the UAV example, this involves taking the hand-written
XML descriptors and deploying the application using these descriptors as input.

5. Refine the component-based UAV application, which involves making changes to

40

existing component interface definitions or adding new component types, as part of en-
hancing the initial UAV application prototype. In the UAV example, this involves adding
or removing a Qosket component in the pipeline for a single stream depending on results
from empirical evaluation of the system.

One of the challenges of using just component middleware is that errors often go unde-
tected until late in the development cycle. When these errors are eventually detected, more-
over, repairing them often involves backtracking to multiple prior life-cycle steps, which
impedes productivity and increases the level of effort. As a result, the advantages of transi-
tioning from DOC middleware to component middleware can be significantly obstructed,
without support from higher-level tools and techniques. These observations underscore
the importance of enhancing design-time support for DRE systems built using component

middleware, as well as the importance of automating the deployment of such systems.

I11.2.2 Resolving UAV Composition Challenges with PICML

As discussed in [144], the use of QoS-enabled component middleware to develop the
UAV application significantly improved upon an earlier DOC middleware prototype of
this application [111]. In the absence of model-driven development (MDE) tool support,
however, a number of significant challenges remain unresolved when using component
middleware. The remainder of this section describes five key challenges that arose when the
UAV application was developed using CCM and CIAO, and examines how key features of
PICML can be applied to address the limitations associated with developing QoS-enabled
component middleware-based DRE systems, such as the UAV application.

We use CCM and CIAO as the basis for our research because it is layered on top of
Real-Time CORBA, which provides significant capabilities for satisfying end-to-end QoS
requirements of DRE systems [117]. There is nothing inherent in PICML, however, that
limits it to CCM or CIAO. Likewise, the challenges described below are generic to com-

ponent middleware, and not deficiencies of CCM or CIAO. For example, both J2EE and

41

Microsoft .NET use XML to describe component assemblies, so the challenges we describe

apply to them, as well.

I11.2.2.1 Accidental Complexities in Component Interface Definition

IDL for CCM (i.e., CORBA 3.x IDL) defines extensions to the syntax and semantics of
CORBA 2.x IDL. Every developer of CCM-based applications must master the differences
between CORBA 2.x IDL and CORBA 3.x IDL. For example, while CORBA 2.x interfaces
can have multiple inheritance, CCM components can have only a single parent, so equiv-
alent units of composition (i.e., interfaces in CORBA 2.x and components in CCM) can
have subtle semantic differences. Moreover, any component interface that needs to be ac-
cessed by component-unaware CORBA clients should be defined as a supported interface
as opposed to a provided interface.

In any system that transitions from an object-based architecture to a component-based
architecture, there is a likelihood of simultaneous existence of simple CORBA objects and
more sophisticated CCM components. Design of component interfaces must therefore be
done with extra care. In the UAV application, for example, though the Qosket com-
ponents receive both allocation events from the resource managers and images from the
Sender and other Qosket components, they cannot inherit from base components im-
plementing each functionality. Similarly, the Receiver component interface needs to be
defined as a supported interface, rather than a provided interface.

Solution — Visual Component Interface Definition.
A set of component, interface, and other datatype definitions may be created in PICML

using either of the following approaches:

* Adding to existing definitions imported from IDL. In this approach, existing CORBA
software systems can be easily migrated to PICML using its IDL Importer, which
takes any number of CORBA IDL files as input, maps their contents to the appropri-

ate PICML model elements, and generates a single XML file that can be imported

42

into GME as a PICML model. This model can then be used as a starting point for

modeling assemblies and generating deployment descriptors.

* Creating IDL definitions from scratch. In this approach, PICML’s graphical mod-
eling environment provides support for designing the interfaces using an intuitive
“drag and drop” technique, making this process largely self-explanatory and inde-
pendent of platform-specific technical knowledge. Most of the grammatical details
are implicit in the visual language, e.g., when the model editor screen is showing the
“scope” of a definition, only icons representing legal members of that scope will be

available for dragging and dropping.

CORBA IDL can be generated from PICML, enabling generation of software artifacts
in languages having a CORBA IDL mapping. For each logically separate definition in
PICML, the generated IDL is also split into logical file-type units. PICML’s interpreter
will translate these units into actual IDL files with #include statements based on the
inter-dependencies of the units detected by the interpreter. PICML’s interpreter will also
detect requirements for the inclusion of canonical CORBA IDL files and generate them as
necessary.

Application to the UAV example scenario. By modeling the UAV components using
PICML, the problems associated with multiple inheritance, semantics of IDL are flagged
at design time. By providing a visual environment for defining the interfaces, PICML
resolves many problems described in Section II1.2.2.1 associated with definition of compo-
nent interfaces. In particular, by modeling the interface definitions, PICML alleviates the
need to model a subset of interfaces for analysis purposes, which has the added advantage
of preventing a skew between the models of interfaces used by analysis tools and the in-
terface used in implementations. It also removes the effort needed to ensure that the IDL

semantics are satisfied, resulting in a reduction in effort associated with interface definition.

43

I11.2.2.2 Defining Consistent Component Interactions

Even if a DRE system developer is well-versed in CORBA 3.x IDL, it is hard to keep
track of components and their types using plain IDL files, which are text-based and provide
no visual feedback, i.e., to allow visual comparison to identify differences between com-
ponents. Type checking with text-based files involves manual inspection, which is error-
prone and non-scalable. CCM defines the following valid interactions between the ports —
Facets, Receptacles, Event Sources and Event Sinks — of a component: Facet-Receptacle
interactions, and Event Source-Event Sink interactions. However, an IDL compiler will not
be able to catch mismatches in the port types of two components that need to be connected
together, since component connection information is not defined in IDL. This problem only
becomes worse as the number of component types in a DRE system increases. In our UAV
application for example, enhancing the UAV with new capabilities can increase the number
of component types and inter-component interactions. If a problem arises, developers of
DRE systems may need to revise the interface definitions until the types match, which is a
tedious and error-prone process.

Solution — Semantically Compatible Component Interaction Definition.

PICML defines the static semantics of a system using a constraint language and en-
forces these semantics early in the development cycle, i.e., at design-time. This type check-
ing can help identify system configuration errors similar to how a compiler catches syntac-
tic errors early in the programming cycle. Static semantics refer to the “well-formedness”
rules of the language. The well-formedness rules of a traditional compiler are nearly always
based on a language grammar defining valid syntax. By elevating the level of abstraction
via MDE techniques, however, the corresponding well-formedness rules of DSMLs like
PICML actually capture semantic information, such as constraints on composition of mod-
els, and constraints on allowed interactions.

There is a significant difference in the early detection of errors in the MDE paradigm

compared with traditional object-oriented or procedural development using a conventional

44

let facets = self.connectedFCOs (invoke) in
facets->forAll (i : ProvidedRequestPort |

let supertypes = i.refersTo() .oclAsType (gme: :Model).allParents(Set{}) in
(supertypes—->one (k: gme::FCO | k.name() = self.refersTo() .name())
or self.refersTo().name() = i.refersTo().name()))

Constraint Listing 1: A Receptacle should be connected to a matching Facet

programming language compiler. In PICML, OCL constraints are used to define the static
semantics of the modeling language, thereby disallowing syntactically invalid systems to be
built using PICML. For example, the constraint shown in Constraint Listing 1 is a PICML
constraint, which checks that the type of a receptacle matches either the corresponding
facet’s type, or that the receptacle is a super type of the facet type. This is a good example
of a constraint that ensures the type compatibility of components that are composed to form
an assembly.

Constraints in PICML are not necessarily restricted to type conformance. Constraint
Listing 2 is an existential constraint, i.e., it checks for the presence of an implementation
corresponding to each instance of a component used in an assembly. Each component
type may have different alternate implementations offering different QoS behavior, and
the correct implementation is chosen at deployment time. Section II1.2.2.4 describes this
process in greater detail. However, in order to select the correct component implementation
at deployment time, it is critical that each instance of a component be associated with an
implementation, and this constraint checks this invariant for every component instance in
the model.

Another example of a constraint in PICML is the ability to restrict the flow of infor-
mation in a particular direction, i.e., top-down or bottom-up. Attributes of components in
CCM can have default values assigned to them in the implementation. Depending on the
context, attributes of components can also have values propagated to them from outside.
This propagation is done using an “attribute mapping,” which is a mechanism to propa-

gate the value of an attribute of a higher-order element like an assembly, to one or more

45

let instances = self.modelParts (Component) in
let monolithicImpls = project.alllInstancesOf (MonolithicImplementation) in

instances->forAll (x : Component |

let myType = x.ComponentParentType () in

monolithicImpls—->exists (impl : MonolithicImplementation |
let interfaces = impl.connectedFCOs (Implements) in
interfaces—->size() = 1 and
interfaces—>exists (interface : Reference |
interface.refersTo () .name () = myType.name())))

Constraint Listing 2: Every Component should have a corresponding implementation

attributes of one of more components inside the assembly. Constraint Listing 3 restricts
this propagation of initial assignment to flow in a strictly top-down fashion, i.e., to give
a behavior that matches the behavior of turning a top-level knob affecting the low-level

knobs of a system.

let mappings = self.referenceParts (AttributeMapping) in
let children = self.modelParts (ComponentAssembly) in
mappings->forAll (x : AttributeMapping |
let delegates = x.connectedFCOs ("dstAttributeMappingDelegate",
AttributeMappingDelegate) in
delegates—->forAll (y : FCO |
let delParent : Model = y.parent() in
children->exists (z : ComponentAssembly |
delParent.name() = z.name())))

Constraint Listing 3: AttributeMappings can only be delegated from a high-level assembly
to sub-assemblies, and not vice-versa

By using GME’s constraint manager, PICML constraints can be (1) evaluated automat-
ically (triggered by a specified modeling event such as attempting a connection between
ports of two components) or on demand, (2) prioritized to control order of evaluation and
severity of violation, and/or (3) applied globally or to one or more individual model ele-
ments
Application to the UAV example scenario. In the context of our UAV application, the

components of a single stream can be modeled as a CCM assembly. PICML enables the

46

visual inspection of types of ports of components and the connection between compati-
ble ports, including flagging an error when attempting a connection between incompatible
ports. For example, PICML will flag attempts to connect incompatible LocalResourceManager
receptacles with the facets of the Qosket s in a stream in the UAV scenario. By constrain-
ing the direction of flow of information, PICML also ensures that the global policies that are
setby the SystemResourceManager are honored by the LocalResourceManagers
of the individual streams. PICML also differentiates types of connections using visual cues,
such as dotted lines and color, to quickly compare the structure of an assembly. By pro-
viding a visual environment coupled with rules defining valid constructs, PICML resolves
many problems described in Section I11.2.2.2 with ensuring consistent component interac-
tions. By enforcing the constraints during creation of component models and interconnec-
tions — and by disallowing connections to be made between incompatible ports — PICML

completely eliminates the manual effort required to perform these kinds of checks.

II1.2.2.3 Generating Valid Deployment Descriptors

Component developers must not only ensure type compatibility between interconnected
component types as part of an interface definition, but also ensure the same compatibility
between instances of these component types in the XML descriptor files needed for deploy-
ment. This problem is of a larger scale than the one above, since the number of component
instances typically dwarfs the number of component types in a large-scale DRE system.
Moreover, a CCM assembly file written using XML is not well-suited to manual editing.

In addition to learning IDL, DRE system developers must also learn XML to compose
component-based DRE systems. In our example UAV application, simply increasing the
number of UAVs increases the number of component instances and component intercon-
nections. The increase in component interconnections is typically not linear with respect
to the increase in number of component instances. Any errors in this step are likely to go

undetected until the deployment of the system at run-time.

47

Solution — Automatic Deployment Descriptor Generation

In addition to ensuring design-time integrity of systems built using OCL constraints,
PICML also generates the complete set of deployment descriptors that are needed as input
to the component deployment mechanisms. The descriptors generated by PICML conform
to the descriptors defined by the standard OMG D&C specification [90]. Sidebar 2 shows
an example of the types of descriptors that are generated by PICML, with a brief explana-

tion of the purpose of each type of descriptor.

Sidebar 2: Generating Deployment Metadata

PICML generates the following types of deployment descriptors based on the OMG D&C
specification:

* Component Interface Descriptor (.ccd) — Describes the interfaces — ports, at-
tributes of a single component.

* Implementation Artifact Descriptor (.iad) — Describes the implementation arti-
facts (DLLs, executables etc.) of a single component.

* Component Implementation Descriptor (.cid) — Describes a specific implemen-
tation of a component interface; also contains component inter-connection informa-
tion.

* Component Package Descriptor (.cpd) — Describes multiple alternative imple-
mentations (for different OSes) of a single component.

» Package Configuration Descriptor (.pcd) — Describes a component package
configured for a particular requirement.

e Component Deployment Plan (.cdp) — Plan which guides the run-time deploy-
ment.

* Component Domain Descriptor (.cdd) — Describes the deployment target e.g.,
nodes, networks on which the components are to be deployed.

Since the rules determining valid assemblies are encoded into PICML via its meta-
model, and enforced using constraints, PICML ensures that the generated XML describes

a syntactically valid system. Generation of XML is done in a programmatic fashion by

48

writing a Visitor class that uses the Visitor pattern [40] to traverse the elements of the
model and generate XML. The generated XML descriptors also ensure that the names as-
sociated with instances are unique, so that individual component instances can be identified
unambiguously at run-time.

Application to the UAV example scenario. In the context of the UAV application, the au-
tomated generation of deployment descriptors using PICML not only removes the burden
of knowing XML from DRE system developers, it also ensures that the generated files are
valid. XML is a linear text language; links and containment are hard to manage using plain
XML. PICML provides a visual means to deal with these complexities. Adding (or re-
moving) components is as easy as dragging and dropping (or deleting) an element, making
the necessary connections, and regenerating the descriptors, instead of hand-modifying the
existing XML files as would be done without such tool support. This automation resolves
many problems mentioned in Section I11.2.2.3, where the XML files were hand-written and
modified manually in case of errors with the initial attempts.

For example, it is trivial to make the ~100 connections in a graphical fashion using
PICML, as opposed to hand-writing the XML. All the connections between components
for the UAV application were made in a few hours, and the XML was then generated
instantaneously, i.e., at the click of a button. In contrast, it required several days to write
the same XML descriptors manually. PICML also has the added advantage of ensuring
that the generated XML files are syntactically valid, which is a task that is very tedious and

error-prone to perform manually.

I11.2.2.4 Associating Components with the Deployment Target

In component-based systems there is often a disconnect between software implemen-
tation related activities and the actual target system since (1) the software artifacts and the

physical system are developed independently and (2) there is no way to associate these

49

two entities using standard component middleware features. This disconnect typically re-
sults in failures at run-time due to the target environment lacking the capabilities to support
the deployed component’s requirements. These mismatches can also often be a source of
missed optimization opportunities since knowledge of the target platform can help (1) opti-
mize component implementations, (2) select appropriate component implementations to be
deployed and (3) customize the middleware for the appropriate target environment. In our
UAV application, components that reside on a single UAV can use collocation facilities pro-
vided by ORBs to eliminate unnecessary (de)marshaling. Without the ability to associate
components with targets, errors due to incompatible component connections and incorrect
XML descriptors are likely to show up only during actual deployment of the system.
Solution — Deployment Planning. In order to satisfy multiple QoS requirements, DRE
systems are often deployed in heterogeneous execution environments. To support such en-
vironments, component middleware strives to be largely independent of the specific target
environment in which application components will be deployed. The goal is to satisfy the
functional and systemic requirements of DRE systems by making appropriate deployment
decisions that account for key properties of the target environment, and retain flexibility by
not committing prematurely to physical resources.

To support these needs, PICML can be used to specify the target environment where
the DRE system will be deployed, which includes defining: (1) Nodes, where the indi-
vidual components and component packages are loaded and used to instantiate those com-
ponents, (2) Interconnects among nodes, to which inter-component software connections
are mapped, to allow the instantiated components to communicate, and (3) Bridges among
interconnects, where interconnects provide a direct connection between nodes and bridges
to provide routing capability between interconnects. Nodes, interconnects, and bridges
collectively represent the target environment.

Once the target environment is specified via PICML, allocation of component instances

onto nodes of the target environment can be performed. This activity is referred to as

50

component placement, where systemic requirements of the components are matched with
capabilities of the target environment and suitable allocation decisions are made. Allo-
cation can either be: (1) Static, where the domain experts know the functional and QoS
requirement of each of the components, as well as knowledge about the nodes of the tar-
get environment. In such a case, the job of the allocation is to create a deployment plan
comprising the component-node mapping specified by the domain expert, or (2) Dynamic,
where the domain expert specifies the constraints on allocation of resources at each node of
the target environment, and the job of the allocation is to choose a suitable component-node
mapping that meets both the functional and QoS requirement of each of the components,
as well as the constraints on the allocation of resources.

PICML currently provides facilities for specifying static allocation of components. In
order to compute the static deployment plan for the components and the component assem-

blies, PICML makes use of the following inputs specified in the model:

* Component Implementation Capabilities. Component middleware provide multi-
ple implementations with different QoS characteristics for the same component in-
terface. PICML provides mechanisms to annotate component implementations with

capabilities at the modeling level.

* Component Middleware Target Capabilities. DRE systems are deployed in het-
erogeneous target environments, each of them exposing various capabilities like pro-
cessing power and memory for the applications to be operated. PICML allows such
capabilities to be specified while modeling the target environment in which the com-

ponent middleware is going to be deployed.

* Component Implementation Selection Requirements. Different uses of the same
component might need to perform under differing QoS requirements. PICML allows
the system integrators to specify component implementation selection requirements

with each use of a component in an assembly.

51

As shown in Figure II1.2, domain experts can visually map the components with the re-
spective target nodes, as well as provide additional hints, such as whether the components
need to be process-collocated or host-collocated, provided two components are deployed

in the same target node. PICML generates a deployment plan which uses the component

COMPONENT REPOSITORY

é’.:O g.:D 8 Deployer
Configured Packages
(Qos Specs) @epe”de"'c'es sz::;zs Aw Exact

(Configurations J Deployment
Plan
> Planner
a I

Lay e
Desklop Printer plog computer

_—

Bridge 8
'LJ Target Environment
—x % Access Ates
Resources
Firewall j

Domain Admintrator

Figure 11.2: Component Deployment Planning

implementation capabilities, the target capabilities and the component implementation se-
lection requirements, and generates the mapping of components to nodes. This deployment
plan is then used by the CIAO run-time deployment engine to perform the actual deploy-
ment of components to nodes.

Application to the UAV example scenario. In the context of the UAV example, PICML
can be used to specify the mapping between the different Qosket components and the
target environment, i.e., the UAVs, in the path from each UAV to the Receiver compo-
nent at the control center. By modeling the target environment in the UAV example using
PICML, therefore, the problem with a disconnect between components and the deployment

target described in Section II1.2.2.4 can be resolved. In the case there are multiple possible

52

component-node mappings, PICML can be used to experiment with different combinations
since it generates descriptors automatically. PICML thus completely eliminates the man-
ual effort involved in creating the deployment plan when there is a need to test different

deployment scenarios.

I11.2.2.5 Automating Propagation of Changes Throughout a DRE System

Making changes to an existing component interface definition can be painful since it
may involve retracing all the steps of the initial development. It also does not allow any
automatic propagation of changes made in a base component type to other portions of the
existing infrastructure, such as the component instances defined in the descriptors. More-
over, it is hard to test parts of the system incrementally, since it requires hand-editing
of XML descriptors to remove or add components, thereby potentially introducing more
problems. The validity of such changes can be ascertained only during deployment, which
increases the time and effort required for the testing process. In our component-based UAV
application, for example, changes to the basic composition of a single image stream are
followed by laborious changes to each individual stream, impeding the benefits of reuse
commonly associated with component-based development.

Solution — Hierarchical Composition.

In a complex DRE system with thousands of components, visualization becomes an is-
sue because of the practical limitations of displays, and the limitations of human cognition.
Without some form of support for hierarchical composition, observing and understanding
system representations in a visual medium does not scale. To increase scalability, PICML
defines a hierarchy construct, which enables the abstraction of certain details of a system
into a hierarchical organization, such that developers can view their system at multiple
levels of detail depending upon their needs.

The support for hierarchical composition in PICML not only allows DRE system de-

velopers to visualize their systems, but also allows them to compose systems from a set

53

PICML - UAV - [Stream1 - /UAV/UAV/FourStreams/FourStreams/] EEX
T Fle Edt View Window Help B3

s i|d 2] LELET) V3 AREFEED ? MrorEu
R I Name [Stiean! [Componentéssembl Aspect|Packaging | Type: [Sticam Zoom: [1258% =
o — Aagregate | nhertance | leta |
& [FourStreams =]
7% UAV
® %130 Interface Defniions
X " 5[0 PredefinedTypes
<} " =@ UAV
ResourceAllocationEvt PolicyChangeEwt | incom outgo ---- ImageGenerationEvt = FourStreams
delegatesT delegatesTo Seurre image:: ! = FourStreams
elegatesTo ¥ "IN N
] delegatesTo 8 PublehConnect
] #z Bl SAM
(] CropQosket gy wp [l Streami
1 #or a Stream2
[CropQosket]
y # 1 el Stream3
rsende outgo - mir; - ey
% B
. el
L ke “incom oufgo & c2
f F < 5 | I H £ SingleStream
Sender e = S S curre image:”: H =) Stream
[Sender] invake i H wlr (4l CompressQosket
: LRM : H #1114l CompressionGosPredictor
| ; ScaleQosket H @ [CropQosket
H [LRM] i H wr {4l CroppingQosPredictor
. : invoke ! [ScaleQosket ghit H 1 [l DftServGlosket
qosLe - invoke : T
; angel

Invoke i
inyoke

i [incom outgp —
I__ H S *curre image:":
osLe: -

CompressionQosPredictor
[CompressionQosPredictor]

. q

r-—"—_ |—-———. 1 CompressQosket

joSLe -~ " . i incom outgo [CompressQosket]

L 51 CroppingQosPredictor i} 37 curre imagea}

[CroppingQosPredictor |
ScalingQosPredictor DiffServQosket
[ScalingQosPredictor | [DiffServQosket | -
< 5 < >
IREEdV EDIT |125% PICML 12:23 AM

Figure 111.3: Single Image Stream Assembly

of smaller subsystems. This feature supports unlimited levels of hierarchy (constrained
only by the physical memory of the system used to build models) and promotes the reuse
of component assemblies. PICML enables the development of repositories of predefined
components and subsystems.

The hierarchical composition capabilities provided by PICML are only a logical ab-
straction, i.e., deployment plans generated from PICML (described in II1.2.2.4) flatten out
the hierarchy to connect the two destination ports directly (which if not done will intro-
duce additional overhead in the communication paths between the two connected ports),
thereby ensuring that at run-time there is no extra overhead that can be attributed to this
abstraction. This feature extends the basic hierarchy feature in GME, which allows a user
to double-click to view the contents of container objects called “models.”

Application to the UAV example scenario. In the UAV example, the hierarchy abstraction

in PICML allows the composition of components into a single stream assembly as shown

54

PICHL - UAY - [FourStreams - /UAV/UAV/FourStreams/] EExX
g %

14 Fle Edt View Window Help

Ji|d B3 2] 4 VG @ EEAmEED ? [P0k fEu
R T Neme [FousStreams [Componentssembl Aspect|Packaging x| Base: [N/A Zoom [125% =
o Aggregate | Inhertance | Meta |
& | [uav =]
I._ o = % UAV
> e Egggu Image - PuPish % (3 Interface Definitions
< e | - (@ PredefinedTypes
@ eliverTo
defverlo =18 FourSireams
177 Stream1 = [l FourStreams
[==
cTdelivprro l___-—
. Poli ke
publish 1 Eg‘;gu Image publish < Rt
dpiiverTo
| . averTe Stream2 £ =0
o_:blue. ’g:gﬁ aile 2. Irﬁs;uﬂ outgo
* = Dbl 3
1 publish ublishCoonnecfor
delfveino " CompressionQosPredictor
SEM 3 Eggg“ ey eliverTo e
[SystemResourceManager | publish [MultiReceiver]
eliverTo
Stream3
c2 "
‘JeliverTo r
:Eg';gu Image publish
Stream4
& 5 < >

Ready EDIT [125% PICML [12:16 AM

Figure lll.4: UAV Application Assembly Scenario

in Figure II1.3, as well as the composition of multiple such assemblies into a top-level
scenario assembly as shown in Figure I11.4.

As a result, large portions of the UAV application system can be built using reusable
component assemblies. In turn, this increased reuse allows for automatic propagation of
changes made to a subsystem to all portions of the system where this subsystem is used,
resolving many problems mentioned in Section II1.2.2.5. PICML helps prevent mismatches
and removes duplication of subsystems.

Hierarchical assemblies in PICML also help reduce the effort involved in modeling of
component assemblies by a factor of n : 1, since n usages of a basic assembly can be re-
placed with n instances of the same assembly, as well as providing for automatic generation
of descriptors corresponding to the n instances. This technique was used to model a single
stream of image from a UAYV, and this single assembly was used to instantiate all the four

streams of data, as shown in Figure I11.4.

55

III.3 Summary

Although component middleware represents an advance over previous generations of
middleware technologies, its additional complexities threaten to negate many of its benefits
without proper tool support. To address this problem, we describe the capabilities of the
Platform-Independent Component Modeling Language (PICML) in this chapter. PICML
is a domain-specific modeling language (DSML) that simplifies and automates many ac-
tivities associated with developing and deploying component-based DRE systems. In par-
ticular, PICML provides a graphical DSML-based approach to define component interface
definitions, specify component interactions, generate deployment descriptors, define ele-
ments of the target environment, associate components with these elements, and compose
complex DRE systems from such basic systems in a hierarchical fashion.

To showcase how PICML helps resolve the complexities of QoS-enabled component
middleware, we applied it to model key aspects of an unmanned air vehicle (UAV) applica-
tion that is representative of emergency response systems. Using this application as a case
study, we showed how PICML can support design-time activities, such as specifying com-
ponent functionality, interactions with other components, and the assembly and packaging
of components, and deployment-time activities, such as specification of target environment,

and automatic deployment plan generation.

56

CHAPTER IV

TECHNIQUES FOR OPTIMIZING COMPONENT-BASED SYSTEMS

Component middleware technologies, such as the CORBA Component Model [89] and
Enterprise Java Beans [27], have raised the level of abstraction used to develop distributed,
real-time and embedded (DRE) systems, such as avionics mission computing [113] and
shipboard computing systems [66]. In addition to elevating the level of abstraction, the
component middleware also promotes the decomposition of monolithic systems into a
number of sub-systems i.e., collections of inter-connected components (called a compo-
nent assembly) which is composed of individual (indivisible) components (called mono-
lithic component). An assembly is a set of monolithic components inter-connected using
the ports of the components in a particular fashion.

Assemblies of components as defined by standard component middleware like CCM are
virtual, i.e., the individual components that form the assembly can be spread across multiple
machines of the target domain. Monolithic components of virtual assemblies are only
mapped onto the target nodes of the domain as part of the deployment process. In contrast
to a virtual assembly, a physical assembly is defined as the set of components created from
the monolithic components that are deployed onto a single process of a physical node, as
shown in Figure IV.1. A physical assembly is itself a full-fledged component, i.e., it has
a component interface as well as an implementation. The implementation of the physical
assembly, however, simply delegates to the original implementations of the monolithic
components from which the physical assembly is created.

Since component middleware allows developers to expose reusable functionality using
the Extension Interface design pattern [118], it can provide better reuse of components

across product lines [122]. Component middleware also decouples application logic from

57

T
@ @) o 0 O o O ®©@ © O
(o

D
° [°)

OcC e O C @
p ¢ ®*.o " ¢ p ¢ e ||l b
Node Application (Single Process) Node Application (Single Process)

=
% Physical Q

Assembly
Mapper (PAM)

Z N\

N ~
3 e
N N
(6) O e e o () o) o © o
o o og o
D D D D
e o e o
o D o D
Node Application (Single Process) Node Application (Single Process)

@ Required Interface D Event Source :] Component
O Provided Interface)) EventSink () Physical Assembly

Figure IV.1: Physical Assembly

QoS configuration in DRE systems. For example, traditional DRE system QoS provision-
ing concerns, such as managing OS resources like threads, thread priorities, socket con-
nections, multi-homed network interfaces and mutual exclusion, can be configured using
high-level entities called containers and application servers.

Component middleware technologies also help decouple the “design and development”
phases of DRE systems from the “deployment and management” phases. For example,
various techniques [6, 35, 104, 110] extract deployment and configuration information that
was previously coupled with the implementation into declarative metadata known as “de-

ployment descriptors.” As a result, DRE system deployment flexibility is increased because

58

it is easier to deploy the same version of a single component in a variety of deployment con-
texts by configuring the component in a context-dependent fashion.

Although component middleware provides the benefits described above, a number of
challenges may restrict its use for a large class of DRE systems with stringent footprint
and latency requirements. For example, while functional decomposition of DRE systems
into component assemblies and monolithic components helps promote reuse across entire
product lines, it can also increase the number of components in the system. These many
components, in turn, can significantly increase the memory footprint of component-based
DRE systems.

Component middleware technologies are also more complex in terms of configuration
and provisioning for the QoS requirements of DRE systems. Not only does the correct
functioning of DRE systems depend on correct configuration of component middleware
features, but misconfiguration of QoS can drastically reduce DRE system performance.
The presence of more components also increases complexity during QoS configuration and
deployment of DRE systems.

To address the challenges of large-scale component-based DRE systems described above,
we have developed model-driven optimization techniques that help reduce the overhead as-
sociated with DRE systems containing a large number of components. Our optimization
techniques focus on reducing the footprint overhead as well as the QoS mis-configurations
in component middleware by optimizing the assembly of components at deployment-time.
By combining together multiple components as well as QoS policies (using a technique
known as fusion), our optimizations reduces the number of components/QoS policies re-
quired to deploy a system.

The fusion of multiple components creates a physical assembly. A key enabler in the
creation of physical assemblies is the presence of (a) application structure information, i.e.,

connections between components, (b) application QoS configuration information, i.e. QoS

59

configuration associated with each component, and (c) application deployment informa-
tion, i.e., the mapping of components onto physical nodes (and processes within nodes).
Our optimization techniques obtain such information from the models of application built
using DSMLs.

Although models are not a pre-requisite for the creation of physical assemblies, it is
hard to both identify as well as optimize component implementations in the absence of a
well-defined description of the systems that can be processed by tools automatically. Per-
forming such optimizations of components is hard since the usage of any single component
tends to span across multiple compositional hierarchies, i.e., a single component could be
connected to different sets of components in different assemblies, in any complex system.

Since components tend to get reused across an entire product line, an optimization that
is applicable in one context may not be applicable in another context. Thus, it is not possible
to perform these optimizations in isolation, but rather one should perform them based on
the requirements of every unique deployment. Finally, performing these optimizations
manually by hand becomes infeasible due to the presence of a large number of components
as well as due to changes caused by system evolution. The novelty of our approach stems
from both identifying and applying these optimizations in an opportunistic and automatic
fashion from models of applications, thereby eliminating the difficulties associated with
applying these optimizations in a manual fashion.

We have applied these optimization techniques in a model-driven tool called the Physi-
cal Assembly Mapper (PAM) that optimizes component-based DRE systems. PAM is built
using the Generic Modeling Environment (GME) [67], a meta-programmable environment
for creating DSMLs. PAM utilizes both the connectivity information between components
modeled and the QoS policies to create physical assemblies.

By operating at the high-level abstraction of models, PAM allows optimizing virtual
assemblies across two dimensions—footprint and performance—and at multiple levels—

local (deployment plan-specific) and global (application-wide). A particular useful feature

60

of the PAM optimizer is that it operates at deployment-time. Changes are not required to

the functional decomposition or structure of component-based DRE systems.

IV.1 Challenges in Large-scale Component-based DRE systems

This section describes key features of component middleware programming models and
describes the cost of these features along two dimensions—memory footprint and invoca-
tion latency—for DRE systems. To make our discussion concrete, we use the CORBA
Component Model (CCM) as an example of component model for our discussion. The
sources of overhead, however, are generally applicable to any layered component middle-
ware, such as Enterprise Java Beans (EJB), Boeing’s PRiSM [124] and OpenCOM [23].

Although the features of CCM described in Section 1.2 provide a number of benefits
they can also consume excessive time/- resource overhead in large-scale DRE systems. In

particular, we describe key sources of memory footprint and latency overhead.

IV.1.1 Key Sources of Memory Footprint Overhead

The contribution to the memory footprint of a component DRE system can be classified
into two categories: static and dynamic. Increase in the static footprint results from code
generated to integrate the implementation of a component with the middleware run-time
environment; code generation is specific to each unique component type in the system.
Dynamic footprint increases are due to the creation of run-time infrastructural elements
like component homes and component context on a per-component basis. We discuss both
types of memory footprint overhead in this sub-section.
Static footprint. For every component type in a DRE system, the CCM platform mapping

requires generation of code for various infrastructure elements, including:

* Component context. A component context class is generated corresponding to each
component interface to allow each component to be reused in multiple execution

contexts.

61

* Component base interfaces. Each component interface derives from a number of
base interfaces, e.g. SessionComponent and EntityComponent in CCM,

which classify the category of a particular component.

* Component home. A component home is generated corresponding to each compo-
nent interface. Each component home provides not only factory operations that allow
customization of creating components but also provides finder operations that clients

use to locate a component managed by a component home.

» Navigation operations. Each component also contains a number of pre-defined nav-
igation operations. The navigation operations of a component interface allow clients
of a component to query and obtain references to the ports of a component in a stan-

dardized fashion.

In addition to the interfaces and operations describe above, each component implemen-
tation is typically split into multiple shared libraries. For example, component implementa-
tions are often split into three shared libraries: stub, servant, and executor. The stub library
contains the automatically generated client-side proxy code necessary for each component
type to connect to other component types, the servant contains automatically generated
code that registers a component with an Object Request Broker (ORB), and the executor
contains the business logic of a component written by application developers.

The drawbacks of designing DRE systems using multiple shared libraries are well-
known [32] including increased code size, increase in the number of dependencies between
shared libraries and number of relocations at load time, all of which result in increased
dynamic memory footprint. Developers are thus forced to make a choice with respect to
the granularity of the component functionality as well as the component implementations.
The design trade-off is between (1) a single monolithic shared library, which can increase
the footprint of components that only need to connect to it, compared to (2) a number of

shared libraries, which can increase the overall footprint and time taken to load the libraries

62

into memory. Section IV.2.1 describes how our optimization techniques defer the time that
this design trade-off has to be made to deployment-time rather than design/development-
time.

The overhead due to the static footprint increases with the number of component types.
This overhead, which can be as high as 45%, becomes apparent in the presence of a large
number of types or in resource constrained environments, which are common in DRE sys-
tems.

Dynamic Footprint. The code generated per component interface that allows components
to be hosted by the containers not only adds to the static footprint, it also creates a number
of auxiliary middleware infrastructural elements corresponding to each component instance

at runtime, including:

* Component home. Since a component home can manage only one type of compo-
nent, the CCM runtime infrastructure creates a separate component home instance
for every component type loaded into a system. This component home is then used
to create multiple component instances. Naive implementations could also create a
component home instance per component instance. CCM allows clients to create
components dynamically by obtaining a reference to its component home. In many
classes of DRE systems, these sophisticated features of component homes are seldom
used and impose additional time/space overhead corresponding to each component

instance created at run-time.

* Component context. The runtime infrastructure creates a component context cor-
responding to each component instance that is deployed. The component context
contributes to the increase in the dynamic footprint corresponding to the increase in

the number of component instances.

* Component servant. Each component instance must also be registered with the

underlying middleware infrastructure to communicate with other components. A

63

component servant is created at run-time corresponding to each instance of a com-
ponent and allows it to be registered with the middleware. Although inevitable, each
component servant created contributes to the increase in the dynamic footprint of the

system.

Each component instance consumes a certain amount of memory in the runtime en-
vironment. In the presence of a large number of components, it is imperative to reduce
the number of component instances/types to reduce the memory consumption of the sys-
tem as a whole. In order to reduce the dynamic memory footprint of the system due to
auxiliary middleware infrastructure elements, the designers are forced to make a decision
with respect to the number of components as well as the granularity of the components
during the creation of assemblies, i.e., design/development-time. It is non-trivial to keep
track of any redundant component instances during component assembly creation, since
each such component instance can be spread across multiple assemblies, i.e., sub-systems.
Forcing the designer to pay attention to issues like number of component instances created
and redundancy in component instances, during component assembly design distracts the
designer from the high-level issues like functionality of the assembly. The design trade-off
here is between (1) fine-grained decomposition of the system into a number of compo-
nent types/instances, which can increase memory footprint, compared to (2) monolithic
architectures that are strongly coupled, brittle, and discourage reuse, but which reduces
the memory consumption of the auxiliary middleware infrastructure elements (by creating
few of them). Section I'V.2.1 describes how the creation of physical assemblies reduces the
number of components in the system without requiring the use of monolithic architectures
at design/development-time.

Although static overhead of a component increases its lower limit of the memory re-
quirement, this type of overhead does not grow as the number of components increases on
a single node. Dynamic overhead, in contrast, increases linearly as the number of com-

ponents grows. In a large-scale scenario with thousands of components, reducing the

64

dynamic overhead is essential to reduce memory footprint requirements of an integrated
system. Section IV.2.1 describes how our optimization techniques reduce the total number

of components in the system.

IV.1.2 Key Sources of Latency Overhead

As shown in Figure 1.1, containers are central to the QoS policy configuration and en-
forcement in CCM. In particular, containers are responsible for configuring policies related
to middleware resources, such as threads/threadpools, thread priority assignment, mapping
priorities between different operating systems, and propagation of priorities between clients
and servers. In a typical CCM configuration, containers are homogeneous, i.e., containers
host components with similar QoS policies. The runtime infrastructure can create separate
containers for each type of QoS policy.

Invocations between components in the same container usually are collocated, i.e., they
do not traverse the local loopback and incur no (de)marshaling overhead. In the presence of
Real-time CORBA [95] features (such as priority propagation, threadpools and threadpools
with lanes), however, the ORB performs a series of checks including matching priority,
matching threadpools, matching lanes within a threadpool, to determine if the invocation
can be done in a collocated fashion. The difference in invocation latency between the case
when it is collocated and when it is done over the local loopback is order of magnitudes
slower [143].

Each container has exclusive access to middleware resources, such as threadpools, that
it manages. Components that are hosted on different containers will often not take advan-
tage of collocation optimizations done by the middleware, and hence will exhibit increased
invocation latencies.

Components in a DRE system typically go through schedulability analysis [1], veri-
fication [74], and various kinds of resource planning [26] before they are deployed. The

outcome of these tasks is usually a schedule and the assignment of priorities and other QoS

65

policies to the various components. A direct translation of the results of such analysis ac-
tivities into a middleware configuration will result in the creation of a multitude of QoS
policies.

For example, RT-CORBA defines QoS policies such as priorities assigned to each com-
ponent (PriorityModelPolicy, mapping of the CORBA priority to native OS priority (Pri-
orityMapping), total number of threads as well as the partitioning of threads with same pri-
orities (ThreadPoolPolicy) associated with each component, whether connections between
components are shared (PrivateConnectionPolicy), the granularity of shared connections
including the priority(-ies) associated with each such shared connection (PriorityBanded-
ConnectionPolicy), properties of the protocol used for communication between a source
component (ClientProtocolPolicy) and a destination component (ServerProtocolPolicy).
As aresult, as many containers will be created as there are unique QoS policies.

Even within a single QoS policy, there may be multiple instances of middleware re-
sources, such as thread pools. Such QoS configurations have the unfortunate effect that
despite careful schedulability analysis and resource allocation, components end up with
sub-optimal invocation latency. To reduce the negative effects due to QoS configuration,
the designer is forced to keep track of the number of QoS policies assigned to components
across multiple assemblies, and whether they need to be unique or could potentially be
combined during design/development time.

Keeping track of such issues distracts the designer from the more important issues of
the exact QoS configuration of each individual component. The trade-off here is between
(1) ease of QoS configuration, e.g., by assigning desired QoS policies to components based
on functional decomposition, i.e., a component assembly alone leading to sub-optimal per-
formance, compared to (2) increased complexity in analysis and QoS configuration due to
exposing platform-specific details into the high-level functional analysis, but with possibly
better performance.

It is important to note that extracting commonality among the different QoS policies and

66

allocating middleware resources in an optimal fashion at runtime can be expensive in terms
of the time taken to deploy an application and the memory required to manage the different
QoS policies that are in effect across all containers in a component server. In a large-scale,
component-based DRE system scenario, it is crucial to eliminate the invocation latency
overhead caused due to sub-optimal QoS policy configuration. Section IV.2.1 describes
how our optimization techniques help ensure optimal QoS configuration by merging QoS

policies.

IV.2 Deployment-time Optimization Techniques

As described in Section IV.1.1, a key source of footprint overhead is the number of
peripheral infrastructure elements, such as component home and component context, cre-
ated for each monolithic component. An approach that reduces the number of components
deployed should reduce the number of peripheral infrastructure elements, thereby reducing
the static and dynamic footprint of the component-based DRE systems. Several possible
techniques are available to reduce the number of components in a DRE system, with each
technique have its own trade-offs. These techniques can be categorized along the following

time spectrum, i.e., the time that such optimization techniques are applied:

* Design/development-time techniques. One of the easiest techniques is to design the
system to not use many components. Using this technique, the design of the system
is changed so that each component performs possibly more than one functionality,
and the goal is to reduce the number of components in the whole system. This ap-
proach, however, can significantly reduce component reuse, thereby limiting a key
benefit of component middleware. As a result, this approach is essentially equiva-
lent to traditional DRE system development architectures and lies at one end of the

optimization time spectrum.

* Run-time techniques. Another way to reduce the total number of components is to

67

load monolithic components into memory when required and unload them when not
in use. Although this technique is viable for certain classes of systems, DRE systems
often cannot tolerate the jitter of dynamic loading. This approach is the opposite of

the static approach and lies at the other end of the optimization time spectrum.

* Deployment-time techniques. One benefit of component middleware is the clear
separation of the design and implementation phases from the deployment and con-
figuration phases. Treating deployment as a separate phase facilitates a class of op-
timizations that neither require modifications to the design of the system (static ap-
proach) nor come with the associated overhead of loading/unloading components at
runtime (dynamic), but instead are performed in accordance with the requirements

of a specific DRE system deployment.

The approach presented in this chapter uses deployment-time optimization techniques.
This section first describes the model-driven optimization techniques that help reduce the
time and overhead in large-scale component-based DRE systems. It then presents the struc-
ture and functionality of the Physical Assembly Mapper (PAM), which is a tool that auto-
mates deployment-time optimization techniques in the context of the CORBA Component

Model (CCM).

IV.2.1 Deployment-time Optimization Algorithms

The central theme of our component assembly optimizations is the notion of “fusion.”
By fusion, we refer to the merging of multiple elements into a semantically equivalent
element. One of the key differences between the various optimization techniques described
in this section, is the type of elements fused, the scope at which such fusion is performed,
as well as the rules governing which elements are fused.

The optimization technique described in Section IV.2.1.4 fuses multiple components

into a single physical assembly at the level of a single deployment plan; the technique

68

described in Section I'V.2.1.5 also fuses components into a single physical assembly but the
scope of such fusion spans an entire application; the technique described in Section IV.2.1.6

fuses multiple QoS policies into a single aggregate QoS policy.

IV.2.1.1 Assumptions and Challenges in Component/QoS Policy Fusion

A physical assembly is defined as the set of components created from the monolithic
components that are deployed onto a single process of a physical node. Our optimiza-
tion techniques creates one or more physical assemblies by fusing monolithic components
deployed into the same process on each node of the target domain. To ensure that our com-
ponent fusion technique for creating physical assemblies does not degenerate to the static
technique described in Section IV.2, our approach operates under the following assump-

tions:

1. Physical assembly creation should not require changes to the existing implementa-

tions of monolithic components.
2. Physical assembly creation should not impact existing clients of fused components.

At the core of the component fusion technique is the capability to merge multiple com-
ponents into a single physical assembly. As described in Section 1.2, components interact
with the external world using ports. Fusing multiple components into a single component
requires merging the ports of all the individual components. There are, however, the fol-
lowing challenges in fusing multiple components into a single physical assembly in a DRE

system:

1. Ports of a component are identified using their names. Each component interface
defines a namespace; each kind of port (e.g., facets, receptacles etc.) defines its own
unique namespace within a component. Port names are also used to locate the ser-
vices provided by each component and affect the middleware glue code generated

for each component. Since ports are the externally visible points of interaction, port

69

names of a component must be unique within the corresponding port kind names-
pace. Although this holds true for each individual component, it need not be true
when merging multiple components into a single component. Section IV.2.2.2 de-

scribes how we address this challenge in PAM.

. Each component relies on being supplied a component context. This context
is needed to connect the component with the services of other components that it
depends upon. If multiple components are fused together, each component in the
fused physical assembly must be provided with a context that is compatible with
each monolithic component’s context. Section IV.2.2.3 describes how we address

this challenge in PAM.

. Each component maintains its externally visible state through its component
attributes. When fusing multiple components together, it is necessary to ensure that
the states of the individual components are maintained separately. It is also necessary
to allow modification to such state from external clients. Section IV.2.2.2 describes

how we address this challenge in PAM.

. Each component must be identified uniquely. To obtain the services of a com-
ponent through its ports, external clients must be able to locate the component via
directory services, such as the CORBA Naming Service, LDAP servers, and Active
Directories. If multiple components are fused into a single component, the external
clients should still be able to lookup the individual components using their original

names. Section IV.2.2.2 describes how we address this challenge in PAM.

. Components can be associated with QoS policies. The QoS policies of different
components might be different and sometimes incompatible with each other. For ex-
ample, in the RT-CORBA programming model, the PriorityModel policy determines
the priority at which a component will execute as described in Section IV.1.2. The

two possible values for this policy: CLIENT_PROPAGATED and SERVER_DECLARED

70

are incompatible, and thus two components that have these policies cannot be fused
into one. Any fusion of multiple components should take into account the change
in execution semantics caused by the fusion, i.e., compatible QoS policies is a pre-
requisite to any fusion. Section IV.2.2.2 describes how we address this challenge in

PAM.

IV.2.1.2 Common Characteristics of Fusion Algorithms

Our fusion algorithms perform a series of checks to evaluate “mergeability,” i.e., whether
multiple elements such as components and QoS policies can be merged into a single ele-
ment. The property of mergeability of two elements is non-transitive. Every pair of ele-
ments must be examined to determine if they can be merged together.

If n is the number of candidate elements for each algorithm, e.g., set of components
deployed in a single process, set of QoS policies associated with components of a single
process, k is the number of elements that result from merging components together, then
the number of elements will be reduced by ”T_k Of the elements that can be merged into a
single element, our goal is to find the largest set of elements because the larger the number
of elements that we can merge, the greater the reduction in the number of elements. The
best case is when k = 1, i.e., the savings will be ”%1

Given an undirected graph G = (V, E), where V is the set of candidate elements, and E
is the set of edges such that if two elements are connected then they can be merged together,
the problem of finding the largest set of elements that can be merged together is equivalent
to the problem of finding a maximum clique in the undirected graph G. The maximum
clique determination problem is well-known to be NP-complete [56] and a survey of the
maximum clique problem appears in [12].

One can find a maximum clique by enumerating all the maximal cliques and choosing

the largest. An efficient algorithm for enumerating the maximal cliques is by Bron and

71

Kerbosch [15], which is Algorithm 457 in the ACM collection. The worst-case time com-
plexity for enumerating all maximal cliques has recently been proven [137] to be O(3"/3),
where n is the number of vertices in the graph. Our component fusion algorithm, therefore,
does not calculate maximum clique by enumerating all maximal cliques and choosing the
largest.

For our first implementation, we chose to trade-off the time savings from calculating
just maximal cliques (as opposed to a maximum clique) and using these to creating physical
assemblies, over the benefits of the footprint savings from creating physical assemblies out
of maximum cliques. We, therefore, use a variation of the algorithm by Bron and Kerbosch
due to Koch [63] to calculate the maximal cliques. This algorithm has the desirable prop-
erty that it enumerates the larger maximal cliques first. In our preliminary testing of the
algorithm with some representative DRE systems, as shown in Section V.3, we found that
the maximal cliques chosen by our current algorithm tend to also be maximum size cliques.
This, however, does not hold true for all systems. We intend to make the choice between

maximal and maximum clique as an option to our tool that implements the algorithms.

IV.2.1.3 Terminology

We now define some terms used in our algorithms: a node is the physical machine
on which one or more components are deployed. A domain is the target environment
composed of independent nodes and their inter-connections. A collocation group is defined
as the set of components that are deployed in a single process of a target node. Each
collocation group corresponds to a single OS process and is always associated with one
target node.

A deployment plan is a mapping of a configured system into a target domain; it includes
mapping of monolithic components to collocation groups, list of monolithic component im-
plementations, list of implementation artifacts corresponding to the component implemen-

tation, connectivity information between the different components as well as configuration

72

information such as QoS policies associated with component instances. A deployment
plan serves as the blueprint to be used by the middleware to deploy an application. The

algorithms use several auxiliary functions that are briefly described below:

» components(cg) Returns the set of components that belong to the collocation group

cg.
* types(I) Returns the set of types corresponding to the component instances in I.

* collocationgroups(P) Returns the set of collocation groups that are defined in the

deployment plan P.
* nodes(P) Returns the set of nodes that are defined in the deployment plan P.

* physicalassembly(C) Returns the physical assembly created by merging the compo-
nents in set C. The physical assembly returned is also a component, i.e., it has its

own interface definition, ports and QoS policies.

* maximalclique(G) Returns a maximal clique from G. This version returns the larger

maximal cliques first.
* gospolicies(c) Returns the set of QoS policies associated with component c.
* facets(c) Returns the set of facets defined in component c.
* receptacles(c) Returns the set of receptacles defined in component c.

* publishers(c) Returns the set of publishers, i.e., event sources defined in component

C.

* consumers(c) Returns the set of consumers, i.e., event sinks defined in component c.

73

IV.2.1.4 Local Component Fusion Algorithm

We developed two versions of the component fusion algorithm, both of which operate
under the assumption that all high-level deployment planning (e.g., resource allocation)
has been completed and the set of associations of components to nodes is finalized. The
two algorithms differ in the scope at which they are applied. Algorithm 1 is called Local
Component Fusion, where “local” refers to the fact that this version of the algorithm op-
erates at the level of a single deployment plan. Algorithm 6 is called Global Component
Fusion, where “global” refers to the fact that this algorithm operates at the level of an entire

application.

Algorithm 1: Local Component Fusion
Input: DeploymentPlan /P
Result: DeploymentPlan OP
begin
CollocationGroup cg;
Component c; set of Component /;
ComponentType 7; set of ComponentType T';
set of set of Component K;
foreach cg € collocationgroups(IP) do
I — {c| c € components(cg)}
T —{t|tetypes(I)}
K +— KU CreatePhysicalAssemblies (7', I)
end

OP — UpdateDeploymentPlan (/P,K)
end

Smaller DRE systems might use a single deployment plan to deploy the whole appli-
cation, whereas large-scale DRE systems are usually deployed using multiple deployment
plans. The local fusion algorithm initially collects the list of components that are deployed
onto the different collocation groups (possibly on multiple nodes) and creates physical as-
semblies from the set of components that are local to that deployment plan.

Algorithm 1 delegates much of its work to several auxiliary functions. Algorithm 2

creates physical assemblies by calculating the cliques in the set of components passed as

74

Algorithm 2: CreatePhysicalAssemblies (T, 1)
Input: set of ComponentType T
Input: set of Component /
Result: set of set of Component K
begin
while 7 £ 0 do
Component c; set of Component SC;

SC — UUi,jCI,VM,'GUhMjEUj type(ul> # [ype<uj)

AU = |U;j|
I1=1-SC
K +— KU EnumerateCliques (SC)
end

end

input. Algorithm 1 uses a domain-specific heuristic to construct the set of components
which are passed to Algorithm 3. Instead of creating a clique directly out of the all com-
ponent instances belonging to a collocation group, we create a set of component instances
that occur the same number of times. Thus, the heuristic will result in selecting components

that occur only once for the first call to Algorithm 3, components that occur twice.

Algorithm 3: EnumerateCliques(I)
Input: set of Component/QoSPolicy /
Result: set of set of Component/QoSPolicy K
begin
Graph G;
set of Component/QoSPolicy V,C; set of Edge E;
G=\V,E)|V={iel}
NE = {(u,v) | u,v € V,u # v A\ CanMerge(u,v) }
while V # 0 do
C «— maximalclique(G)

K—KuUC
V—V-C
end

end

As a result of our heuristic, either all instances of a single component type are merged

into one or more physical assemblies, or it is left alone. The algorithm never creates a

75

component type that appears both in some physical assembly and stand-alone. Without
this heuristic, the static footprint of the process will be significantly worse compared to the
original footprint. The reason for this overhead is because we will load both the original
implementation libraries of the component as well as the new physical assembly into the
same process; components which end up being stand alone, as well as part of a physical
assembly will contribute to the static footprint twice (or more if they are part of multiple
physical assemblies).

Algorithm 3 does not enumerate all the cliques in the graph passed as input to it. Instead
it calculates a maximal clique and immediately removes the vertices that are part of that
clique from the graph. This removal operation is safe since the vertices that are returned
cannot be part of a larger clique because the maximal clique algorithm we use returns the
larger cliques first. Thus, the set of vertices passed to the maximal clique algorithm keeps
shrinking. Each maximal clique (with more than one vertex) corresponds to a physical

assembly.

Algorithm 4: CanMerge(a, b)
Input: Component/QoSPolicy a
Input: Component/QoSPolicy b
Result: boolean
begin
set of Facet F,, F},; set of Receptacle R,,R);
set of Publisher P,, P,; set of Consumer C,,Cj;
set of QoSPolicy QoS,, QoSy;
QoS, < qospolicies(a); QoSp, < qospolicies(b);
F, — facets(a); Fy — facets(b);
R, « receptacles(a); Ry, < receptacles(b);
P, < publishers(a); P, < publishers(b);
C, < consumers(a); Cp < consumers(b);
if (F,NF,=0)\(R,NR,=0)\(P,NP, =0)
ANCaNCr=0)AN(P,NR,=0)A\(P,NR, =0)
A(QoS, >~ QoS},) then
return frue

else return false
end

76

In the description of Algorithm 3 (and others) we use a notation Component/QoSPolicy
to denote the fact that these algorithms are generic, i.e., the same algorithm is applicable
to both Component and QoSPolicy (described in Algorithm 7) elements. Algorithm 3 re-
lies on Algorithm 4 to decide if two components can be merged together into a physical
assembly. Algorithm 4 performs a series of checks (not all of which is shown) to decide if
two components can be merged together. As with Algorithm 3, Algorithm 4 is applicable
to both component and QoSPolicy elements (we show a separate function for QoSPolicy
in the interest of space). Algorithm 4 is essentially a predicate that will vary from one
component middleware domain to another. Each component middleware domain will have
a series of conditions that will determine if two components can be merged together. We

have shown a version (partial) that applies to CCM in Algorithm 4.

Algorithm 5: UpdateDeploymentPlan (IP, K)
Input: DeploymentPlan /P
Input: set of set of Component K
Result: DeploymentPlan OP
begin
CollocationGroup cg; set of CollocationGroup CG
Component c, i; set of Component /,C, O;
OP — nil
nodes(OP) «— nodes(IP)
collocationgroups(OP) < collocationgroups(IP)
foreach cg € collocationgroups(IP) do
foreach i € {c | c € components(cg)} do
if i€ {C|C €K} then
O < OU physicalassembly(C)

else O — OUi
end
components(cg) «— O
end
end

Algorithm 1 creates an updated deployment plan using Algorithm 5, which is primarily

responsible for replacing all references to components that are now merged into a physical

77

assembly with a reference to the physical assembly. It is also responsible (not shown in
the algorithm) for updating the “virtual” assembly such that all the connections (within the
“virtual” assembly) from/to components merged into a physical assembly are replaced with

connections from/to the physical assembly.

IV.2.1.5 Global Component Fusion Algorithm

The second version of the component fusion algorithm is called “Global Component
Fusion” and is shown in Algorithm 6. “Global” refers to the fact that this version of the
algorithm uses system-wide deployment information and is not constrained to a single de-
ployment plan. The benefits of applying the algorithm at the global scope is measured and

analyzed in Section IV.3.

Algorithm 6: Global Component Fusion
Input: set of DeploymentPlan /P
Result: DeploymentPlan OP
begin
Node n; set of Node N; DeploymentPlan p;
CollocationGroup cg;
set of CollocationGroup cgs;
set of set of Component K;
Component c; set of Component /;
ComponentType 7; set of ComponentType 7';
foreach p € IP do
N — {n|n € nodes(p)}
end
foreach n € N do
cgs — {cg | cg € collocationgroups(n)}
foreach cg € cgs do
I —{c|c € components(cg)}
T —{t|tetypes(l)}
K «— KU CreatePhysicalAssemblies (7', I)
end
end

foreach p € IP do
OP «— OPU UpdateDeploymentPlan (p, K)

end
end

78

The global fusion algorithm is similar to the local except that it operates across a set of
deployment plans. The global algorithm can find more opportunities for creating physical
assemblies. Global fusion is different from local fusion since it merges all deployment
plans of a DRE system, instead of updating the individual plans like the local algorithm.
The two versions of our component fusion algorithm are focused on reducing the footprint

of a component-based DRE system.

IV.2.1.6 QoS Policy Fusion Algorithm

In addition to the component fusion algorithms, we also designed a QoS policy fu-
sion algorithm that helps improve the performance of component-based DRE systems. As
described in Section IV.1.2, component-based DRE system performance can be degraded
significantly by sub-optimal configuration and assignment of QoS policies.

To remedy the ill-effects of mis-configurations, Algorithm 7, fuses multiple compatible
QoS policies into an aggregate QoS policy thereby reducing the number of different QoS
policies needed to configure the system. Algorithm 7 is similar to the Algorithm 1 in
the concepts employed to fuse the QoS policies. The problem of fusing multiple QoS
policies into a minimum number of QoS policies is equivalent to determining the maximum
clique on a graph. The main difference is in elements that form the clique, components in
Algorithm 1 as opposed to QoS policies here. The other difference is in the construction of
the graph itself, i.e., the set of predicates to evaluate to determine if two QoS policies are
compatible with each other will vary in a domain-specific fashion.

Algorithm 7 can be combined with Algorithm 1 or Algorithm 6. Conversely, it can be
used alone, in which case it only optimizes the performance by merging the QoS policies.
If the two algorithms are combined, Algorithm 4 takes into account compatibility of QoS
policies (shown as ~) among components when deciding whether two components can be
merged into a single physical assembly.

Algorithm 7 describes the QoS policy fusion technique. As with the component fusion

79

Algorithm 7: QoS Policy Fusion
Input: DeploymentPlan /P
begin
CollocationGroup cg;
Component c; set of Component /;
ComponentType ¢; set of ComponentType 7';
set of QoSPolicy Q; set of set of QoSPolicy K;
foreach cg € collocationgroups(IP) do
I — {c|c € components(cg)}
foreachi c/do
Q «— QUgqospolicies(i)
end
K +— KU EnumerateCliques (Q)
end
end

algorithm, it collects the set of components that are deployed into the same collocation
group. It then collects all the QoS policies that are associated with these components and
proceeds to enumerate the maximal cliques among these QoS policies.

A key difference between Algorithm 1 and Algorithm 7 is that when merging QoS
policies it is unnecessary to apply the heuristic of merging elements that appear the same
number of times. The set of constraints (namely increased footprint due to duplicate contri-
butions) that played a role in using that heuristic no longer apply to this case. QoS policies
that belong to the same clique are replaced with an aggregated QoS policy in the virtual
assembly in which these policies are members.

One key characteristic of the fusion algorithms described in this section is that they do
not require component developers to change the design or the structure of the DRE system.
All the algorithms use the deployment context information and perform optimizations that
are applicable for a specific deployment. Instead of forcing changes to the design that are
applicable to only one deployment context, the algorithms work in the other direction, i.e.,
by changing the optimizations depending on the constraints of a deployment scenario.

Although our approach works well for systems whose compositions are static, (i.e., the

80

system composition does not change after deployment) or semi-static (i.e., changes at run-
time are restricted to a set of fixed alternatives), it introduces some complications in case
of “highly dynamic” systems. By “highly dynamic,” we refer to the fact that both the deci-
sions of which component should be connected to which other components and the nodes
these components should be deployed to, are done at run-time. In this scenario, the require-
ments in our algorithm to calculate the physical assemblies (i.e., determination of maximal
cliques), to dynamically generate the implementations for the physical assemblies and to

compile them, may not be feasible in severely resource constrained run-time environments.

IV.2.2 Design and Functionality of the Physical Assembly Mapper

The algorithms described in Section IV.2.1 are sufficiently complicated that attempting
to perform them manually will not scale for large-scale DRE systems. We can effectively
rule out any manual attempt to perform these optimizations for large-scale DRE systems.
The automation of the algorithms using existing methodologies like writing ad hoc scripts
tools, results in a very brittle tool-chain. The main reason for the brittleness is that the
vocabulary used to describe information such as the interface definition files of the com-
ponents, the various deployment metadata like deployment plans, QoS configuration files
necessary to perform these optimizations are disparate.

For example, plain text is typically used for interface definition files, XML is used for
deployment descriptors and QoS configuration are usually platform-specific, i.e. usually a
mix of both proprietary plain text as well as XML. Writing software that deals with such
disparate sources of input is tedious and error-prone. There is a need for a higher-level
abstraction that allows dealing with these disparate sources of information in a unified
fashion. Model-Driven Engineering [116] is a promising approach to providing this much
sought after high-level abstraction.

Although models are not a pre-requisite for the creation of physical assemblies, it is

hard to both identify as well as optimize component implementations in the absence of

81

a well-defined description of the systems that can be processed by tools automatically.
Performing such optimization of components is challenging since the usage of any single
component tends to span across multiple compositional hierarchies, i.e., a single compo-
nent could be connected to different sets of components in different assemblies, in any
complex system.

Since components tend to get reused across an entire product line, an optimization that
is applicable in one context may not be applicable in another context. It is not possible
to perform these optimizations in isolation, but rather one should perform them based on
the requirements of every unique deployment. Finally, performing these optimizations
manually by hand becomes infeasible due to the presence of a large number of components

as well as due to changes caused by system evolution.

IV.2.2.1 Implementation of Fusion Algorithms in Physical Assembly Mapper

As described in Chapter 111, we developed Platform-Independent Component Modeling
Language (PICML) to enable developers of component-based DRE systems to define com-
ponent interfaces, inter-connect components, define QoS policies and also generate valid
deployment metadata that enable automated system deployment. Other aspects of our work
on model-driven tools include Component QoS Modeling Language (CQML) [60], which
models the QoS configuration options required to implement the QoS policies of the appli-
cation specified in PICML.

To demonstrate our optimization techniques, we developed a prototype optimizer called
Physical Assembly Mapper(PAM), which builds upon our previous work on both PICML
and CQML to implement the fusion algorithms described in Section IV.2.1. In particu-
lar, PICML enables functional composition of DRE systems from monolithic components
by connecting them together into a component assembly. These assemblies are virtual
in the sense that the components that make up such assemblies can be deployed across

many nodes of the target deployment domain. CQML complements and extends PICML

82

by enabling non-functional decomposition by allowing specification of QoS policies on
individual components. PAM automatically creates a physical assembly from the set of
virtual assemblies that define the application structure. PAM utilizes both the connectivity
information between components modeled as well as the QoS policies to create physical
assemblies.

PAM is implemented as a model interpreter, a DSML-specific tool written using C++
for use with GME. As described in Sidebar 1 of Chapter III, GME is a meta-programmable
environment for creating DSMLs. PAM also utilizes the Boost Graph Library [125] to
implement the maximal clique algorithm discussed in Section IV.2.1. Figure IV.2 presents
an overview of the optimization process performed by PAM. Optimization using PAM
consists of three phases: a model transformation phase described in Section IV.2.2.2, a glue
code generation phase described in Section 1V.2.2.3 and a configuration files generation
phase described in Section 1V.2.2.4. Along with each phase, we also describe how the

phase solves the challenges described in Section IV.2.1.1.

1vV.2.2.2 Model Transformation in PAM

The input to PAM is the input model that captures the application structure and the QoS
configuration options. The input model of the DRE system contains information about
the individual component interface definitions, their corresponding monolithic implemen-
tations, collections of components connected together in a system-specific fashion to form
virtual assemblies, associations of components with QoS configuration options.

PAM implements Algorithm 1, the local component fusion, Algorithm 6, the global
component fusion as well as Algorithm 7, the QoS policy fusion algorithm to rewrite the
input model into a functionally equivalent model. As part of this model transformation,
PAM creates physical assemblies including interface definitions for the physical assem-

blies. Since the algorithms perform a series of checks before deciding to merge components

83

(Y

() S

PICML/CQML
Model

Physical
Assembly |’
Mapper |’

Deployment Configuration
Plan Files

Required Interface

D Component

D Component Assembly

(O Provided Interface
Component Home D

Event Source

D Event Sink

Figure IV.2: Physical Assembly Mapper

together, the issues with ensuring unique port names described in challenge 1, as well as re-
solving incompatibility between QoS policies described in challenge 5 of Section IV.2.1.1
are non-existent when using PAM.

For each such physical assembly created, PAM replaces the original set of component
instances with an instance of the newly created physical assembly. This writing replaces
all the connections to/from the original components with connections to/from the physical
assembly. PAM also creates new attributes corresponding to each attribute of all the indi-

vidual components ensuring that there is no clash in the attribute names within the physical

84

assembly namespace. PAM solves the problem with maintaining the state of the individual
components separately described in challenge 3 of Section IV.2.1.1.

To facilitate the lookup of the original components by external clients using mecha-
nisms such as CORBA Naming Service, LDAP and Active Directory servers, PAM creates
configuration properties in the model associated with each physical assembly. These con-
figuration properties create multiple entries, one corresponding to each unique name used
by the original components in lookup services, and ensures that all these names point to the

physical assembly. PAM solves challenge 4 described in Section IV.2.1.1.

1V.2.2.3 Generation of Glue-code in PAM

Once the model has been rewritten into a functionally equivalent optimized model,
PAM utilizes a number of model interpreters to generate various artifacts related to the mid-
dleware glue code. This middleware glue code is necessary to use the physical assemblies
created in the model with the existing monolithic implementations of the components. The
glue code generated by PAM creates a composite context by inheriting from the individ-
ual contexts of the components that make up the physical assembly. This derived context
is compatible (due to inheritance) with each monolithic component’s context and can be
supplied to the individual component implementations at run-time by the container.

The glue code generated for the physical assemblies can be compiled and deployed with
the implementations of the other components in the system. PAM solves the challenge as-
sociated with providing a compatible context to the original component implementations
described in challenge 2 of Section IV.2.1.1. Since PAM performs the generation with-
out requiring modifications to individual component implementations, our original goal of
not imposing a burden on the component developer by requiring changes to the original

implementation is also achieved.

85

IV.2.2.4 Generation of Configuration Files in PAM

In addition to the middleware glue code, PAM also generates modified metadata such
as deployment plans and QoS policy configuration files. When Algorithm 1 is applied,
PAM generates deployment plans in which the components that have been merged to form
physical assemblies are replaced with the physical assemblies. All references to the original
components are also replaced with references to the physical assemblies. The replacement
of components (and their references) is done at the scope of a single deployment plan by
the implementation of Algorithm 1 in PAM.

When Algorithm 6 is applied, PAM generates a single deployment plan. Since the op-
timizations are applied at the scope of the entire application, PAM merges the different
deployment plans to create a single aggregate deployment plan. PAM then replaces the
original components merged together to form physical assemblies with the physical assem-
blies including the replacement of references as done for Algorithm 1.

When Algorithm 7 is applied (either stand-alone or in combination with Algorithm 1 or
Algorithm 6), PAM creates aggregate QoS policies which serve roles similar to the physical
assemblies. PAM replaces the original QoS policies associated with the components with
these new aggregate QoS policies in each assembly where such aggregate QoS policies
are created. The deployment plans generated refer to these aggregate QoS policies instead
of the original QoS policies. PAM can be thus viewed as a “deployment compiler” that
takes the application components, their QoS policies and their deployment information as
input, and produces as output a set of physical assemblies and aggregate QoS policies that
eliminate the overhead due to auxiliary middleware infrastructure elements or QoS mis-

configuration.

IV.3 Empirical Evaluation and Analysis
To evaluate the benefits of our fusion algorithms described in Section IV.2.1, we applied

PAM on several representative DRE applications: (1) an application from the shipboard

86

computing domain [66] and (2) Boeing’s Boldstroke Single Processor [122] scenario from
the avionics mission computing domain. This section describes the characteristics of the
two applications, explains the experiment testbed architecture, presents the experiments
to evaluate footprint improvement, followed by the experiments to evaluate the invocation
latency. Our experiments compare the time/space properties of applications developed us-
ing standard CCM configurations against the execution of these applications after applying

PAM to optimize the application.

IV.3.1 Experimental Platforms
IV.3.1.1 Shipboard Application

Our first application is from the domain of shipboard computing. A shipboard com-
puting environment is a metropolitan area network (MAN) of computational resources
and sensors that provides on-demand situational awareness and actuation capabilities for
human operators, and responds flexibly to unanticipated runtime conditions. To meet
such demands in a robust and timely manner, the shipboard computing environment uses
component-based services to bridge the gap between shipboard applications and the un-
derlying operating systems and middleware infrastructure to support multiple QoS require-
ments, such as survivability, predictability, security, and efficient resource utilization. We
use the shipboard computing application to evaluate the footprint benefits due to our com-
ponent fusion algorithms.

The shipboard computing environment that we used for our experiments was devel-
oped using the CIAO middleware [55]. This application consists of a number of com-
ponents grouped together into multiple operational strings. As shown in Figure IV.3, an
operational string is composed of a sequence of components connected together. Each op-
erational string contains a number of sensors (e.g., ed1_A, ed2_A shown on the far left)
and system monitors (e.g., sm1_A, sm2_A shown at the top) that publish data from the

physical devices as well as the overall system state to a series of planners. After analyz-

87

PICML - 3.

ied - [appstringA - /53.1.modified/appstring_Componentimplementations/appstringA/]

pect|] Base: [N7A

Zoom:[125% .

emits =&

emits "

emits ;™%

s

- fimeo
¢ timeo
@ msg_s
@ opu_t
& perio

b :timeo
timeo
& msg_s statu
¢ opu_t

& perio

- fimeo
timeo
& msg_s
@ cpu_t

& perio

smi1_A

[smA] em

emits =}

emits ;%

emits{ " P
statu’ =4 ¢

sm2_A
emits

N 1) K]

’ emits 7"

emits,

sm3_A
[smA]

statu :-|---

p2_A
[p2 A] ®

deliverTo

"HE\;/E o L

L. statu
1situa
& msg_s
@ cpu_t

efnits 7"
asses’ +f---

1 asses
&msg_s comma
wcpu_t

el\ms

2 comma
$msg_s comma
wcpu_t

del
ublish,

verTo @cpu_t

p1_A
[pLA]

co_A
[coA]

ec_A
[ec Al

deliverTo

‘comma

Soput termi

el_A
[eA]

—

SOMMa o

e2_A
[eA]

‘comma

opu t termi

e3_A
[eA]

Figure IV.3: Sample Operational String

ing the sensor data and the inputs from system monitors, the planners (e.g.,.p1_A, p2_A
shown in the center) perform control decisions using the effectors (e.g., el_A, e2_A
shown on the far right). Each operational string contains 15 components altogether, and
the application used in our experiments is made up of 10 such operational strings, for a
total of 150 components. Operational strings are at different importance levels. In case
of a resource contention, the higher importance operational strings receive priority when
accessing a resource.

The application itself is deployed using 10 different deployment plans across 5 differ-
ent physical nodes named bathleth, scimitar, rapier, cutlass, and saber. The assignment
of components to nodes was determined a priori using high-level resource planning algo-

rithms, and was available as input to our algorithms. Each node had a variable number of

components, ranging from 20 to as high as 80 components assigned to it.

88

get_data () get_data ()

AIRFRAME

r,ﬂ‘ >

data_avail data_avail

Figure IV.4: Basic Single Processor Scenario

IV.3.1.2 Boeing Basic Single Processor

The Basic Single Processor (BasicSP) scenario from the Boeing Bold Stroke com-
ponent avionics mission computing project, uses a push event and pull data publisher/-
subscriber communication paradigm [123] atop a QoS-enabled component middleware
platform. In conjunction with colleagues at The Boeing Company [124] and Washing-
ton University [144], we have developed a prototype of the BasicSP application described
above using the CCM and Real-time CORBA capabilities provided by CIAO [145]. We
use the BasicSP example to evaluate the invocation latency benefits due to our policy fu-
sion algorithms.

The BasicSP application comprises of four avionics mission computing components
that periodically send GPS position updates to a pilot and navigator cockpit displays. As
shown in Figure IV.4, a Timer component triggers a GPS navigation sensor component,
which in turn publishes position information to an Airframe component.

Upon receiving the data availability event, the Airframe component pulls data from the
GPS, and informs a Nav_Display component. The Nav_Display component then updates
the display by pulling position data from the Airframe component. The application requests
new inputs from the GPS component at a rate of 20 Hz, and updates the display outputs
with new aircraft position data at a rate of 20 Hz. The latency between the inputs to the
application and the output display should be less than a single 20 Hz frame.

For the BasicSP scenario to satisfy the QoS requirement of ensuring display refresh

rate of 20 Hz, it is necessary to examine the end-to-end critical path and configure the

89

components appropriately. In particular, the latency between the Airframe and Nav_Display

components should be minimized.

IV.3.2 Experimental Setup

We used ISISlab (www . dre.vanderbilt.edu/ISIS1lab) whichisan open testbed
for experimentation on distributed real-time and embedded (DRE) systems and distributed
continuous quality assurance. ISISlab has 56 dual-CPU blades with 2.8 GHz XEON:s, 1
GB memory, 40 GB disks, and 4 Network Interface Cards (NICs) per blade. It is assem-
bled as 4 blade centers with 14 blades per center with 6 Cisco 3750G switches consisting
of 24 10/100/1000 Mbps ports per switch. ISISlab uses the Emulab [147] software from
the University of Utah to support the installation of various versions of Linux, BSD UNIX,
Windows, and Solaris.

Our experiments used version 0.5.10 of CIAO running on Windows XP SP2 and Linux
with Ingo Molnar’s real-time pre-emption patches [84]. For the footprint experiments us-
ing the shipboard computing application described in Section IV.3.1.1, we used 5 blades
running Windows XP SP2. All the machines were connected on the same local network
and connected to each other using Gigabit ethernet.

We measured the footprint of the components in the deployed shipboard computing ap-
plication using Virtual Address Dump (VaDump)' distributed with the Windows Resource
Kit Tools [80]. VaDump is a command-line tool that creates a list containing information
about the memory usage of a specified process. VaDump examines the virtual address of a
running process. Depending on the options specified, the output of VaDump can include:
(1) each address, along with its size, state, protection, and type, (2) total committed mem-
ory for the image, the executable file, and each shared library, including system shared
libraries, and (3) total mapped committed, private committed, and reserved memory. We

used VaDump to measure both static (code and static data) and dynamic (heap memory)

'"VaDump is similar to the utility “pmap” that exists on Linux and UNIX, but provides more fine grained
detail, including the amount of stack and heap committed to a process.

90

www.dre.vanderbilt.edu/ISISlab

footprint of the components by taking a snapshot of the process that creates the container
hosting the components on each machine.

For the latency experiments using the Basic Single Processor application, we used
Linux kernel version 2.6.20-rt8 with real-time pre-emption patches. All processes host-
ing the components were run in the POSIX scheduling class, SCHED_FIFO, which enables
first-in-first-out scheduling semantics based on the priority of the process. In our experi-
ments, we measured the end-to-end invocation latency from the Timer component to the
Nav_Display component by repeating the invocations for 250,000 iterations. The Timer
component was configured to run at a fixed priority using the SERVER_DECLARED RT-
CORBA PriorityModel policy, whereas the rest of the components were configured with

the CLIENT_PROPAGATED policy.

IV.3.3 Empirical Footprint Results

Experiment design. To measure the footprint of the shipboard computing application,
we deployed the 10 operational strings across the 5 nodes using 10 deployment plans.
We allowed the application to execute for 5 minutes and measured the footprint of the
components by running VaDump on the process hosting the components on each node. We
refer to this run of the experiment as Original in the graphs shown below.

We used PAM (off-line) on the input model by invoking it to use the local component
fusion algorithm described in Section IV.2.1.4 and repeated the experiment using the 10 lo-
cally optimized deployment plans generated. We refer to this run of the experiment as Local
in the graphs shown below. Finally, we used PAM (also done off-line) on the input model
by invoking it to use the global component fusion algorithm described in Section IV.2.1.5
and repeated the experiment using the single global deployment plan generated. We refer
to this run of the experiment as Global in the graphs shown below.

Analysis of results — Static Footprint. Figure [V.5a compares the static footprint, which

includes the footprint contribution from code and the static data of the whole application

91

deployed across all the 5 nodes. We measure the footprint of the application as the sum
of the number of private and shareable pages (as opposed to shared) of the processes host-
ing the components using VaDump. The three runs of the experiment did not include the
contributions from the operating system and middleware shared libraries, since they were
unaffected by our optimizations.

As shown in Figure IV.5a, the original static footprint of the application was 4,478
pages and the application of the local component fusion algorithm reduced it to 3,110,
which is an improvement of 31%. Applying the global fusion algorithm reduced the static
footprint further to 2,324 pages, which is an improvement of 49%. The creation of physical
assemblies by the component fusion algorithms therefore significantly reduced the static

footprint of the application.

[Original [Original
[Local [Local
] Global I Global
4,500 — T 9,000 T
4,000 8,000
3,500 7,000
g, 3.000 g 6,000
) =
2 2500 2 5000
E 2,000 E 4,000
< S
2 1,500 2 3000
1,000 2,000
500 1,000
0 RN 0 : : R
(a) Total Static Footprint (b) Total Dynamic Footprint
[Z] Original] Original
[Local [Local
] Global 1 Global
2,500 T T 4,000 T T —
3,500 [Eopeeeee
2,000 [Fop e
3,000 [m s I
B 1,500 e S EETREE— & 2500 [rrr S I
g 7 E: 13 E:
g] P
2 B 2,000 [S IR
3 ¥ z Sl
B I S LS00 [SN
z Z Ee :
- . . Eilo| 1,000 |-+ paFUUSRR oy WUSER S T I I
500 = il S A e . E: N E: : :] E :
[H - - - . o - H [. 500 - : : ,,,,,,,
0 £ Z = = = = = c s [s 0 [. = s = e NN . [.
bathleth rapier scimitar cutlass saber bathleth rapier scimitar cutlass saber
(c) Node Specific Static Footprint (d) Node Specific Dynamic Footprint

Figure 1V.5: Static and Dynamic Footprint

92

Analysis of results — Dynamic Footprint. Figure IV.5b compares the dynamic footprint
of the application. The contributions here are primarily from the dynamic allocation of
memory by the application in the three runs. Unlike the static footprint measurements,
measuring the dynamic footprint of the application captures the heap usage of the whole
process, since VaDump does not provide the heap usage of individual shared libraries.
Since we could not precisely pinpoint the heap usage of individual shared libraries, our
dynamic footprint results are not as fine-grained as the static footprint results.

As shown in Figure IV.5b, the original dynamic footprint of the application was 8,231
pages. Application of the local fusion algorithm reduced it to 7,393 pages, which is an
improvement of 11%. Application of the global fusion algorithm reduced it to 4,713 pages,
which is an improvement of 43%. The reduction in dynamic memory stems primarily from
reducing the number of homes and component context created in the physical assemblies.
The increased reduction in the global compared to local is due to increased opportunities
for creating physical assemblies (i.e., the scope is across the entire application), as well as
the merging of multiple deployment plans into a single deployment plan, which reduces the

number of processes required to deploy the application.

[Z] Original
Local
[Z1 Global
14,000 T

12,000 [oo me e TIII|]

10,000

8,000

6,000

No. of Private pages

4,000

2,000

Figure 1V.6: Total Footprint

Figure IV.6 shows the combined footprint of the application. As shown in Figure V.6,

the combined footprint of the original application was 12,709 pages, the application of local

93

fusion algorithm reduced it to 10,503 pages, which is an improvement of 18%. The appli-
cation of the global fusion algorithm reduced it to 7037 pages, which is an improvement of
45%.

Figure IV.5c and Figure IV.5d provide the breakup of the total footprint across the
different nodes. The increased footprint in the case of node saber in the three runs is due to

the number of components deployed on that node.

IV.3.4 Empirical Latency Results

Experiment design. The purpose of this experiment was to demonstrate the benefits of
our QoS policy fusion algorithm. As described in Section IV.1.2, the effects of invocations
between components residing in different containers is orders-of-magnitude slower than
components that reside in the same container. Since each container is associated with a
unique QoS policy, our QoS policy fusion algorithm merges the QoS policies to reduce the
effective number of containers necessary for a given application.

In all the experiments involving latency, we show four subgraphs that plot (1) the mean
latency, which is a measure of the normal behavior, (2) the maximum latency, which is
a measure of the absolute worst-case behavior, (3) the standard deviation of the latency,
which is a measure of the jitter, and (4) the 99% latency, which is a measure of the statistical
worst-case behavior. All of these numbers are for components in the same address space,
i.e., the source and the target components/objects are in the same process.

Analysis of results — Vanilla CORBA objects. First, we show the difference in invocation
latency between two normal CORBA objects (not CCM components), when the source
and the target objects are configured with different QoS policies. These experiments were
conducted using TAO, our real-time QoS enabled implementation of CORBA (CIAO is
built on top of TAO). Figure IV.7 shows the difference in the latency when the source and
the target objects were configured with different QoS policies. Table IV.1 describes the 8

different policy set combinations used in this experiment.

94

Table IV.1: QoS Policy Configuration

Object POA ThreadPool PriorityModel
(Lane Priority) (Priority)
RP RootPOA n/a n/a

CP_1 1 yes CLIENT_PROPAGATED
SD 2 0 2 yes SERVER_DECLARED (0)
SD_ 21 2 yes SERVER_DECLARED (1)

NP_3 3 yes n/a
CP_4 0 4 yes(0) CLIENT_PROPAGATED
SD_ 5 0 5 yes(0) SERVER_DECLARED (0)
SD_5_1 5 yes(1) SERVER_DECLARED (1)

The source object in Figure IV.7 was configured with policy set SD_5_1lane_0. As
shown in Figure IV.7, when the target object is in a POA with a different QoS policy set
the latency is ~210us. When the target object is in a POA without a QoS policy (data set
1), the latency is ~9us. When the target object is in a POA with the same QoS policy (data
set 7) the latency is ~10us. An order-of-magnitude difference (210 vs. 10) in invocation
latency is exhibited by these results.

The large difference in Figure IV.7 is due to TAO not using the collocated invocation
path, i.e., the calls were going through the local loopback interface, when the source and
the target object policies were different. Our initial attempt to fix the problem involved
enhancing the TAO so it used the collocated invocation path even when the source and the
target objects have different QoS policies. We call this the “cross-pool/lane optimization”
because the invocations are collocated even when they cross over different thread pools
and/or thread pool with lanes.

Analysis of results — Cross-pool/lane optimizations. Figure IV.8 compares the invocation
latency before and after applying the cross-pool/lane optimizations. This figure shows
how the cross-pool/lane optimizations reduce invocation latencies across the board, i.e.,
irrespective of the policy of the target object to about ~50us. In the absence of the cross-
pool/lane optimizations, TAO treated objects which used different thread pools/thread-pool

with lanes as equivalent to a remote object even if they were collocated, i.e., were part of

95

250 T
200 O I R e S I B e R HE B S I I e
_ S i PR SR : P O e i
Zoasope S I S A I RO SEN EEEEEE s E) : I S
= : b S = : : T : T
g : : NS 2 A5 : 1] N N I
2 : N N 2 :] N : N
S 100 e = r [A I i o Il o B o] N N T : T
A : : Tl | : 2] Tl : :
: : T 10 : T T R S
50 e 8 I R I e N R S IR HR P : O P I S O IS B
0 — : MR NS N - — N 0 1 : :] NS N] NE
A — =) - - o =3 - o - o - - =) = -
~ D-‘ G‘ O‘ -9 1) u‘ o 3 ﬂ.‘l OI O‘ =% o :)‘)
© . z E 5 5 © & B z 5 5 5
4 d o - 4 d e
a [=) 5] [=) a a [=)) a a
17} 2] o Izl Iz 2 Iz o 7] 17}
Target Object Policy Target Object Policy
(a) Mean (b) Standard Deviation
600 —— 350
500 EL . B I e ER
250 f oo O I] I B O] S SRR s
_ 400 z : :
< S 200 s O R T R By e e e S f
g a0 g : :
5 R s 5 150 rr-ommemmes [- s [- al
200 N N 100 oo 1 : N N : i
100 o NN) N N 2l 50 fccee - E, 2 NN ol Sl i
o T 1 N N - :1 N o | : e : N |] N
& 2 2 “ S S — & Nl = i “ (] S I
£ £ £ g H g 5 ¢ ¢ £ g £ £
g o 4 a 4 q o 4 a 0l
a a o a a a a & a a
2] izl o izl 7] 2l Iz 1) 2] 7]
Target Object Policy Target Object Policy
(c) Maximum (d) 99%

Figure IV.7: Original Latency Measurements

the same address space. This was done to ensure that the requests on objects using different
thread pools were invoked with the correct set of priorities (which could be different for
different thread pools/thread pool with lanes) so that any conditions for priority inversion
are prevented [109].

We performed the cross-pool/lane optimizations with an eye on reducing the overhead
due to un-necessary (de-)marshaling as well the overhead due to going through the lo-
cal loopback network interface, for such objects that were deemed to be remote even if
they were collocated. The cross-pool/lane optimizations implement a novel inter-thread
pool/lane signaling protocol using pipes between threads thereby avoiding both (de-)marshaling
as well as data copying between user-space and kernel-space. The cross-pool/lane opti-
mizations thus, eliminates the overhead due to (de-)marshaling overhead and avoids going

through the local network stack as well, while ensuring that the requests are still handled

96

by threads corresponding to the thread-pool/lane with the correct priority. Although it is
better than the original implementation, the signaling protocol still causes a context switch
between threads. The context switch is responsible for the increase in invocation latency to

50us compared to the 10us for invocations between objects with same QoS policy sets.

[Original [Original
Cross—pool-lane [Cross—pool-lane
250 — T T T 30
: 3 : - : o oo
200 foeees S St [R] A B IR] » : :
_ :] : : : 20 R N R
B oasofe R e I R Y e B] B : :
g :] : : : 2 o5k b P e]
= - - o =] - N
2 : R : : :) : K
AT || SRR Sheeaof e e e 1 T = R R
3 :] : : : 3 :]
:] : : : : (U NS b : ;
g ot W R W rrrrrrrrrr] P . : :
0 i i M 1 - : s O O 0 =1 - - 1
& N b i S b 7 & N < < < I
~ o = o g o) = o, =)) 2 o
& ¢ £ E & £ o £ £ & 3
o4 o N o A
a a s a a a a) a a
@ 7 o 7] @ Z @ o @ @
Target Object Policy Target Object Policy
(a) Mean (b) Standard Deviation
] Original [Original
[Cross—pool-lane [Cross—pool-lane
350

600 = ‘

z HE] z] a8]
= : : : S] : :
2 300 [t N : | 2] : |
g : : : g bt g - :
G : : : &l] : :
Y IR 1 i I S R : N : — :] : :
IRERRE : 100 oo AnlE : :
W BRE z 50 oo : 1 ; z z
] : :] o =1 [] :]
i 7 “ b = i & N i 7] b = i
o = A o o o o i) o A o o B
& & Z E 5 5 o ES R E 5 5
Jd 4 W 3 4 d 4 - 3
a [=) 5] [a) a [=) [=) B a a
2] Izl o 7 7 Z] Izl o Z 7
Target Object Policy Target Object Policy
(c) Maximum (d) 99%

Figure 1V.8: Cross-pool/Lane Latency Measurements

Analysis of Results — QoS policy fusion and cross-pool/lane optimizations. Finally,
we show the application of our QoS policy fusion algorithm combined with the “cross-
pool/lane” optimizations to our Basic Single Processor scenario. As described in Sec-
tion IV.3.2, the original application has 4 components each with a separate QoS policy

configured. As described in Section IV.2.1.6, the QoS policy fusion algorithm merges

97

compatible QoS policies into aggregate QoS policies. By using the implementation of this
algorithm in PAM, we reduced the number of unique QoS policy sets in the application.

The reduction in QoS policy sets results in components that use the aggregate QoS
policies created to be placed in the same container. Since all components within the same
container share the middleware resources like thread-pools/thread-pool with lanes, the la-
tency of invocation between these components is reduced (as desired) to levels comparable
to the collocated case. To alleviate the increased latencies in case the QoS policy fusion
could not combine the QoS policies, we used a version of TAO that implemented our cross-
pool/lane optimizations. The combination of the application of the QoS policy fusion via
PAM and the cross-pool/lane optimizations in the middleware resulted in transforming all
calls that are made between components in the same process to either use collocated invo-
cation or use the cross-pool/lane invocation. Only when two components are in a different
processes (on the same machine) or on a different machine, the remote invocation path is
used.

Figure IV.9 compares the end-to-end invocation latency from the Timer component to
the Nav_Display component. Figure IV.9 shows that the cross-pool/lane optimizations done
at the middleware level reduces the invocation latency from about 1,509us to about 554ys,
which is a decrease of 64%. After applying the QoS policy fusion algorithm (denoted by
PAM in Figure IV.9), moreover, the latency reduced to 293us, which is a decrease of 81%.

The significant reduction is latency stems from reducing the number of unique QoS
policies, which in turn, reduces the number of different containers created, thereby result-
ing in multiple components being hosted within the same container. In particular, in the
case of the Basic Single Processor scenario, our optimizations resulted in the creation of
two containers as opposed to the 4 containers originally present. The primary factor that
determines the invocation latency between components is whether the local path is chosen
or if the remote path is chosen.

Our latency experiment results demonstrate the benefits of placing components into

98

[Z] Original
[Cross—pool-lane
] PAM

1,600 T

[Original
[J Cross—pool-lane
I PAM

1,400

1,200

1,000

800

Latency(us)
Latency(us)

600

400

200

[Original
[Cross—pool-lane
] PAM

6,000 T

(b) Standard Deviation

[Original
O Cross—pool-lane
] PAM

5000 B ——,—
4,000 [ormem T T D T

) e e R R R

Latency(us)
Latency(us)

2,000 [DD D ke

1,000

0

1,800 T

1,600
1,400
1,200
1,000
800
600
400

200

(c) Maximum

(d) 99%

Figure I1V.9: Basic Single Processor Latency Measurements

the same container (when the QoS policies are compatible) and the benefits of the cross-
pool/lane optimizations (when the QoS policies are incompatible), both on a per-hop basis
(shown in Figure IV.8) as well as across the end-to-end application invocation path (shown
in Figure IV.9. In general, we expect our results will apply for large-scale component-based
applications. The primary difference will be an increase in the absolute value of the latency
depending on the number of components in the end-to-end invocation chain. By fusing QoS
policies into aggregate QoS policies automatically using deployment information available

in the model, our algorithm can reduce the number of QoS policies required to deploy an

application contributing to significant performance benefits.

99

IV.4 Summary

Component middleware technologies like EJB and CCM allow developers to build sys-
tems that have a large number of components. The increase in the number of components
not only imposes increased demands on DRE system resources but also increases the com-
plexity of QoS configuration significantly. Without sophisticated tools and techniques for
managing the complexity of large-scale component-based DRE systems, the benefits of
using component middleware may be negated by the excessive resource demands and com-
plexity of QoS configuration. Thus, there is a need for optimization techniques in large-
scale component-based DRE systems to ensure that the productivity benefits of component
middleware are realized without compromising the overall requirements of the system.

Although optimizing component middleware to satisfy the requirements of applications
is not new, component middleware technologies offer some new avenues for optimization
of middleware. Unlike the traditional dichotomy of design/development-time vs. run-
time optimization of middleware, the presence of an explicit application “deployment” step
in component middleware, opens the possibilities for a new class of optimizations called
“deployment-time” optimizations.

In this chapter, we described a model-driven engineering (MDE) approach to perform-
ing “deployment-time” optimizations. Our approach includes a family of related optimiza-
tion techniques, all of which use the notion of “fusion” — combining multiple elements
into a single element — to reduce the number of elements without affecting the original
semantics. We described three algorithms — Local Component Fusion, Global Component
Fusion, QoS Policy Fusion — which differ not only in the type of elements they operate on
but also in the scope at which they operate.

We implemented the three algorithms in a prototype MDE tool called Physical Assem-
bly Mapper (PAM), which is an enhancement to Platform-Independent Component Model-
ing Language (PICML), a Domain-Specific Modeling Language (DSML) that supports

development of component-based DRE systems using the CORBA Component Model

100

(CCM). We conducted experiments on applying the techniques implemented in PAM on
a couple of representative DRE systems. Our results indicate that the “deployment-time”
optimization techniques in PAM provides 45% improvement in footprint and 81% improve-
ment in latency when compared to conventional component middleware technologies.
PAM, PICML, and CQML are open-source and available for download at www . dre.

vanderbilt.edu/cosmic.

101

www.dre.vanderbilt.edu/cosmic
www.dre.vanderbilt.edu/cosmic

CHAPTER V

TECHNIQUES FOR INTEGRATING COMPONENT-BASED SYSTEMS

With the maturation of commercial-off-the-shelf (COTS) component middleware tech-
nologies, such as Enterprise Java Beans (EJB) [134], CORBA Component Model (CCM) [88],
and Microsoft .NET Framework [81], software developers are increasingly faced with the
task of integrating heterogeneous enterprise distributed systems built using different COTS
technologies, rather than just integrating proprietary software developed in-house. Al-
though there are well-documented patterns [49] and techniques [14] for integrating sys-
tems via various component middleware technologies, system integration is still largely a
tedious and error-prone manual process. To improve this process, component developers
and system integrators must understand key properties of the integration technologies they
are applying and the systems' they are integrating.

There are multiple levels at which system integration is achieved [139], including:
Data integration, which integrates systems at the logical data layer, typically using some
form of data transfer/sharing. Example technologies that allow data integration include
commercial databases (such as IBM DB2, Oracle, and Microsoft SQL Server) and tools
(such as Microsoft BizTalk Mapper and IBM WebSphere Integration Developer) that pro-
vide database schema mapping between different databases.

Functional integration, which integrates systems at the logical business layer, typically
using distributed objects/components, service-oriented architectures, or messaging middle-
ware. Examples of technologies that allow functional integration include the Java Connec-
tor Architecture and Service-Oriented Integration adapters available in commercial prod-

ucts, such as IBM’s Websphere.

'In the remainder of this chapter “system” or “application” refers to an enterprise distributed system built
using component middleware like EJB, Microsoft .NET, or CCM.

102

Presentation integration, which allows access to an application’s functionality through
its user interface by simulating a user’s input and by reading data from the screen. This
“screen scraping” is usually done via programming languages like Perl that use regular
expressions to parse the screen output of legacy systems.

Portal integration, which creates a portal application that displays information retrieved
from multiple applications via a unified user interface, thereby allowing users to perform
required tasks. Examples of technologies that allow portal integration include Microsoft
ASP.NET and Java portlets combined with Java Server Pages (JSP), which provide tech-
nologies to build web-based portals for integrating information from a variety of sources.
Process integration, which defines a business process model that describes the individual
steps in a complex business function and coordinates the execution of long-running busi-
ness functions that span multiple disparate applications. Example technologies that sup-
port process integration include implementations of Business Process Execution Language
(BPEL) and its web services incarnation (WS-BPEL).

This chapter describes technologies that help simplify the functional integration of sys-
tems built using component middleware. This type of integration operates at the logical
business layer, typically using distributed objects/components, exposing service-oriented
architectures, or messaging middleware, and is responsible for delivering services to clients
with the desired quality of service (QoS). We focus on functional integration of systems in

this chapter since:

* Component middleware is typically used to implement the core business logic of a
system. In this context it is inappropriate to use portal integration since there may be
no direct user interaction and because component middleware usually resides in the
second tier of a typical three-tier enterprise architecture. In contrast, the entities that

make up a “portal,” e.g., portlets, belong in the first tier, i.e., front-end.

* Unlike legacy systems, component middleware technologies usually expose an API

to access functionality. Employing presentation integration to integrate systems built

103

using component middleware technologies is problematic. For example, techniques
used in typical presentation integration (such as parsing the output of a system to
enable integration) are ad hoc compared with using the well-defined APIs exposed

by component middleware technologies.

Updates to data at the business logic layer occur frequently during system execution.
Due to the cost of remote data access operations and the rate at which such operations
are generated by the business logic components in the second tier of a three-tier
enterprise architecture, it is infeasible to employ data integration to keep the data
consistent among the different systems. Data integration is usually appropriate for
the back-end (i.e., third tier) of a three-tier enterprise architecture, where the data is

long-lived and not transient.

The business logic of a system is often proprietary and organizations tightly con-
trol the interfaces exposed by the system. It is often unnecessary to employ process
integration, which usually applies to inter-organizational integration where loose-
coupling is paramount. Process integration is a superset of functional integration
and usually relies on functional integration within autonomous organizational bound-

aries.

Functional integration of systems is hard due to the variety of available component mid-

dleware technologies, such as EJB and CCM. These technologies differ in many ways, in-

cluding the protocol level, the data format level, the implementation language level, and/or

the deployment environment level. In general, however, component middleware technolo-

gies are a more effective technology base than the brittle proprietary infrastructure used in

legacy systems [122], which have historically been built in a vertical, stove-piped fashion.

Despite the benefits of component middleware, key challenges in functional integra-

tion of systems remain unresolved when integrating large-scale systems developed using

heterogeneous COTS middleware. These challenges include (1) integration design, which

104

involves choosing the right abstraction for integration, (2) interface mapping, which rec-
onciles different datatypes, (3) technology mapping, which reconciles various low-level is-
sues, (4) deployment mapping, which involves planning the deployment of heterogeneous
COTS middleware, and (5) portability incompatibilities between different implementations
of the same middleware technology. The lack of simplification and automation in resolving
these challenges today significantly hinders effective system integration.

A promising approach to address the functional integration challenges outlined above
is Model-Driven Engineering (MDE) [116], which involves the systematic use of models
as essential artifacts throughout the software lifecycle. At the core of MDE is the con-
cept of domain-specific modeling languages (DSMLs) [59], whose type systems formalize
the application structure, behavior, and requirements within particular domains. DSMLs
have been developed for a wide range of domains, including software defined radios [138],
avionics mission computing [58], warehouse management [28], and even the domain of
component middleware [148] itself.

Although DSMLs have been used to help software developers create homogeneous
systems [58, 129], enterprise distributed systems are rarely homogeneous. A single DSML
developed for a particular component middleware technology, such as EJB or CCM, may
not be applicable to model, analyze, and synthesize key concepts of web services. To
integrate heterogeneous systems successfully, system integrators need automated tools that
provide a unified view of the entire enterprise system, while also allowing fine-grained
control over specific subsystems and components.

Our approach to integrating heterogeneous systems is called (meta)model composi-
tion [68], where the term “(meta)model” conveys the fact that this technique can be applied

to both metamodels and models. At the heart of this technique is a method for

* Creating a new DSML (a composite DSML) from multiple existing DSMLs (com-

ponent DSMLs) by adding new elements or extending elements of existing DSMLs,

105

* Specifying new relationships between elements of the component DSMLs, e.g., re-
lationships that capture the semantics of the interaction between elements of the two

previously separate component DSMLs,

* Defining relationships between elements of the composite DSML and elements of
the component DSMLs, e.g., relationships that define containment of elements of

component DSMLs inside elements of composite DSMLs.

A key benefit of (meta)model composition is its ability to add new capabilities while
simultaneously leveraging prior investments in existing tool-chains, including domain con-
straints and generators of existing DSMLs. A combination of DSMLs and DSML compo-
sition technologies can help address the challenges associated with functional integration
of component middleware technologies, without incurring the drawbacks of conventional
approaches. Common drawbacks include (1) requiring expertise in all of the domains cor-
responding to each subsystem of the system being integrated, (2) writing more code in
third-generation programming languages to integrate systems, (3) the lack of scalability of
such an approach, and (4) the inflexibility in (re-)targeting integration code to more than
one underlying middleware technology during system evolution.

This chapter describes the design and application of the System Integration Model-
ing Language (SIML) [5]. SIML is our open-source DSML that enables functional inte-
gration of component-based systems via the (meta)model composition mechanisms pro-
vided by the Generic Modeling Environment (GME) [67], which is an open-source meta-
programmable modeling environment. The SIML composite DSML combines the follow-

ing two existing DSMLs:

* The CCM profile of the Platform-Independent Component Modeling Language (PICML) [3],

which supports the model-driven engineering of CCM-based systems,

* The Web Services Modeling Language (WSML), which supports model-driven engi-

neering of web services-based systems.

106

Since SIML is a composite DSML, it has complete access to the semantics of PICML
and WSML (sub-DSMLs), which simplifies and automates various tasks associated with

integrating systems built using CCM and web services.

V.1 Functional Integration - A Case Study

To motivate the need for MDE-based functional integration capabilities, this section
describes an enterprise distributed system case study from the domain of shipboard com-
puting environments [48], focusing on its functional integration challenges. The shipboard
computing environment that forms the basis for our case study was originally developed
using one component middleware technology: OMG CCM implemented using the CIAO
middleware [55]. It was later enhanced to integrate with components written using another
middleware technology: W3C web services implemented using Microsoft’s .NET web ser-

vices.

V.1.1 Shipboard Enterprise Distributed System Architecture

The enterprise distributed system in our case study consists of the components shown

in Figure V.1 and outlined below:

Gateway component, which provides the user interface and main point of entry into

the system for operators,

* Naming Service components, which are repositories that hold locations of services

available within the system,

 Identity Manager components, which are responsible for user authentication and

authorization,

* Business logic components, which are responsible for implementing business logic,
such as determining the route to be taken as part of ship navigation, tracking the work

allocation schedule for sailors,

107

Log Java Log

; Analyzer Analyzer
Naming
Service

L /
F Logging ‘4 ----- .%Logging
1 C#L
Gateway Business o9
—>[Logic HDatabaseJ Analyzer

Web Services

\

[LEiy J— Coordinator]

Manager

CORBA Component Model @
Web Service
Deployment
descriptors

CCM Deployment
descriptors

C) Web Service Client C) Web Service C) CCM Component

Figure V.1: Enterprise Distributed System Architecture

* Database components, which are responsible for database transactions,

* Coordinator components, which act as proxies for business logic components and

interact with clients,

* Logging components, which are responsible for collecting log messages sent by

other components,

* Log Analyzer components, which analyze logs collected by Logging components

and display results.

Clients that use these component services first connect to a Naming Service to ob-
tain the Gateway’s location. They then request services offered by the system, passing
their authentication/authorization credentials to a Gateway component, which initiates the
series of interactions shown in Figure V.1. The system provides differentiated services de-

pending on the credentials supplied by clients. Areas where services can be differentiated

108

between various clients include the maximum number of simultaneous connections, max-
imum amount of bandwidth allocated, and maximum number of requests processed in a
particular time period.

To track the performance of the system—and the QoS the system offers to different
clients—application developers originally wrote Log Analyzer components to obtain in-
formation by analyzing the logs. Based on changes in the COTS technology base and user
requirements, a decision was made to expose a web service API to Logging components so
that clients could also track the QoS provided by the system to their requests by accessing
information available in Logging components. Since the original system was written using
CCM, this change request introduced a new requirement to integrate systems that were not
designed to work together, i.e., CCM-based Logging components with the Web Service
clients.

The flow of control—and the number and functionality of the different participants—in
this case study is representative of enterprise distributed systems that require authentication
and authorization from clients, and provide differentiated services to clients, based on the
credentials offered by the client. In this chapter, we examine this system from an integration
perspective, i.e., how can this system, which initially had a homogeneous, stand-alone
design, be integrated with other middleware. Note that this chapter is not studying the
system from the perspective of system functionality or the QoS provided by the Business

Logic components.

V.1.2 Functional Integration Challenges

Functional integration of systems is challenging and involves activities that map be-
tween various levels of abstraction in the integration lifecycle, including design, implemen-
tation, and use of tools. We describe some of the key challenges associated with integrating

older component middleware technologies, such as CCM and EJB, with newer middleware

109

technologies, such as web services, and relate them to our experiences developing the ship-
board computing case study described in Section V.1.1. The following list of challenges is

by no means complete, i.e., we focus on challenges addressed by our approach.

<wsdl:service
name="CUTS.Benchmark_Data_Collector">

component Benchmark_Data_Collector <wsdl:port
name="CUTS.Benchmark_Data_Collector.controls"
provides Testing_Service testing_service; binding="tns:CUTS.Benchmark_Data_Collector._SE_
provides BDC_Control_Handle controls; |«g-- controls">
attribute long timeout; <soap:address location="http://localhost:8080/"
attribute string service; wsdl:required="false"/>
b </wsdl:port>

</wsdl:service>

Log Java Log
Analyzer Analyzer
(3 @
(Logging ----- Logging @

- C# Log
Gateway Business
—>[Logic HDatabase] Analyzer

t Web Services

Naming
Service

A

[h;iir:ggr]——b[Coordinator] TypeSpecific
IIOP & SOAP

CORBA Component Model

Web Service

Deployment
descriptors

CCM Deployment
descriptors

@ Web Service Client C) Web Service C) CCM Component

Figure V.2: Functional Integration Challenges

Challenge 1: Choosing an appropriate level of integration. As shown in Step 1 of Fig-
ure V.2, a key activity is to identify the correct level of abstraction at which functional
integration of systems should occur, which involves selecting elements from different tech-
nologies being integrated that can serve as conduits for exchanging information. Within the
different possible levels at which integration can be performed, the criteria for determining

the appropriate level of integration include:

110

* The number of normalizations (i.e., the conversion to/from the native types) required

to ensure communication between peer entities being integrated,

* The number (and hence the overhead) and the flexibility of deployment (e.g., in-
process vs. out-of-process) of run-time entities required to support functional inte-

gration,

* The number of required changes to the integration architecture corresponding to

changes in the peers being integrated, and

* Available choices of platform-specific infrastructure (e.g., operating systems, pro-

gramming languages) associated with performing integration at a particular level.

Attempting integration at the wrong level of abstraction can yield brittle integration
architectures. For instance, the portions of the system implementing the integration might
require frequent changes in response to changes in either the source or the target system
being integrated.

In our shipboard computing case study example, we need to integrate Logging com-
ponents so that web service clients can access their services. The programming model of
CCM prescribes component ports as the primary component interconnection mechanism.
Web Services also define ports as the primary interconnection mechanism between a web
service and its clients. During functional integration of CCM with web services, a map-
ping between CCM component ports and web services ports offers an appropriate level of
abstraction for integration. Although mapping CCM and web services ports is relatively
straightforward, determining the right level of abstraction to integrate arbitrary middle-
ware technologies can be much harder since a natural mapping between technologies may
not always exist. In general, it is hard for system integrators to decide the right level of

abstraction, and requires expertise in all the technologies being integrated.

111

Challenge 2: Reconciling differences in interface specifications. After the level of ab-
straction to perform functional integration is determined, it is necessary to map the inter-
faces exposed by elements of the different technologies as shown in Step 2 of Figure V.2.
COTS middleware technologies usually have an interface definition mechanism that is sep-
arate from the component/service implementation details, e.g., CCM uses the OMG Inter-
face Definition Language (IDL), whereas web services use W3C Web Services Definition
Language (WSDL). Older technologies (such as COBOL or C) may not offer as clear a
separation of interfaces from implementations, so the interface definition itself may be tan-
gled. Irrespective of the mechanism used to define interfaces, mapping interfaces between

any two technologies involves at least three tasks:

* Datatype mapping, which involves mapping a datatype (both pre-defined and com-

plex types) from source to target technology.

» Exception mapping, which involves mapping exceptions from source to target tech-
nology. Exceptions are defined separately from datatypes since the source or target
technologies may not support exceptions (e.g., Microsoft’s COM uses a HRESULT

to convey errors instead of using native C++ exceptions).

* Language mapping, which involves mapping datatypes between two technologies
while accounting for differences in languages at the same time. Functional integra-
tion is limited when attempting this mapping, which is often done via inter-process
communication at runtime to work around limitations in hosting these technologies

“In-process,” i.e., within the same process.

In our shipboard computing case study example, Logging components handle CORBA
datatypes, (which offer a limited subset of datatypes) whereas web service clients exchange
XML datatypes (which provide a virtually unlimited set of datatypes due to XML’s flexibil-
ity). Similarly, Logging components throw CORBA exceptions with specific minor/major

codes containing specific fault and retry semantics. In contrast, web service clients must

112

convert these exceptions to SOAP “faults,” which have a smaller set of exception codes and
associated fault semantics. Performing these mappings is non-trivial, requires expertise in
both the source and target technologies, and can incur scalability problems due to tedium
and error-proneness if not automated.

Challenge 3: Managing differences in implementation technologies. The interface map-
ping described above addresses the high-level details of how information is exchanged be-
tween different technologies being integrated. As shown in Step 3 of Figure V.2, however,
low-level technology details (such as networking, authentication, and authorization) are re-
sponsible for delivering such integration, i.e., make it possible for the actual exchange of
information between the different technologies being integrated. This adaptation involves

a technology mapping and includes the following activities:

* Protocol mapping, which reconciles the differences between the protocols used for
communication between the two technologies. For example, the Internet Inter-ORB
Protocol (IIOP) binary protocol is used for communication in CCM, whereas the

SOAP XML-based text protocol is used in web services.

* Discovery mapping, which allows bootstrapping and discovery of components/-
services between source and target technologies. For example, CCM uses the CORBA
Naming Service and CORBA Trading Service, whereas web services use Universal

Description Discovery and Integration (UDDI) to discover other web services.

* Quality of Service (QoS) mapping, which maps QoS mechanisms between source
and target technologies to ensure that service-level agreements are maintained. For
example, CCM uses the CORBA Notification Service to enable anonymous pub-
lish/subscribe communication between components, whereas Web Services use WS-
Notification and WS-Eventing to handle event-based communication between ser-

vices.

113

In our shipboard computing case study example, Logging components only understand
IIOP. Unfortunately, IIOP is not directly interoperable with the SOAP protocol understood
by web service clients. To communicate with Logging components, therefore, requests
must be converted from SOAP to IIOP and vice-versa.

There are also differences between how components and services are accessed. For
example, the Logging component is exposed to CCM clients as a CORBA Object Reference
registered with a Naming Service. In contrast, a web service client typically expects a
Uniform Resource Identifier (URI) registered with a UDDI service to indicate where it can
obtain a service. Converting from an Object Reference to a URI is non-trivial and the URI
must be synchronized if Logging components are redeployed to different hosts.

In general, mapping of protocol, discovery, and QoS technology details not only re-

quires expertise in the source/target technologies, it also requires intimate knowledge of
the implementation details of these technologies. For example, developers familiar with
CCM may not understand the intricacies of IIOP, which is usually known to only a handful
of middleware technology developers, rather than application developers. This expertise
is needed because issues like QoS are so-called non-functional properties, which require
input from domain and platform experts, in addition to application developers.
Challenge 4: Managing deployment of subsystems. Component middleware technolo-
gies use declarative notations (such as XML descriptors, source-code attributes, and an-
notations) to capture various configuration options. Example metadata include EJB de-
ployment descriptors, .NET assembly manifests, and CCM deployment descriptors. This
metadata describes configuration options on interfaces and interconnections between these
interfaces, as well as implementation entities, such as shared libraries and executables.

As shown in Step 4 of Figure V.2, system integrators must track and configure meta-
data correctly during integration and deployment. In many cases, the correct functionality
of the integrated system depends on correct configuration of the metadata. Moreover, the

development-time default values for such metadata are often different from the values at

114

integration- and deployment-time. For instance, configuration of web servers that are ex-
posed to external clients are typically stricter, e.g., they impose various limits on resource
usage like connection timeouts, interfaces listened on, maximum number of simultaneous
connections from a single client to prevent denial-of-service attacks, compared to the ones
that developers use when creating web applications.

In our shipboard computing case study example, Logging components are associated

with CCM descriptors needed to configure their functionality, deployed using the CIAO
CCM deployment infrastructure, and run on a dedicated network testbed. If web service
clients need to access functionality exposed by Logging components, however, certain ser-
vices (such as a Web Server to host the service and a firewall) must be configured. This
coupling between the deployment information of Logging components and the services ex-
posed to Web Service clients means that changes to the Logging component necessitates
corresponding changes to Logging web service. Failure to keep these elements synchro-
nized can result in loss of service to clients of one or both technologies.
Challenge 5: Dealing with interoperability issues. Unless a middleware technology has
only one version implemented by one provider (which is unusual), there may be multiple
implementations from different providers. As shown in Step 5 of Figure V.2, differences
between these implementations will likely arise due to non-conformant extension to stan-
dards, different interpretations of the same (often vague) specification, or implementation
bugs. Regardless of the reasons for incompatibility, however, problems arise that often
manifest themselves only during system integration. Examples of such differences are
highlighted by efforts like the Web Services-Interoperability Basic Profile (WS-I) [7] stan-
dard, which is aimed at ensuring compatibility between web services implementations from
different vendors.

In our shipboard computing case study example, not only must Logging components
expose their services in WSDL format, they must also ensure that web service clients de-

veloped using different web services implementations (e.g., Microsoft .NET or Java) are

115

equally capably of accessing their services. Logging components therefore need to expose
their services using an interoperable subset of WSDL defined by WS-I, so clients are not
affected by incompatibilities, such as using SOAP RPC encoding.

Due to the five challenges described in this section, significant integration effort is spent
on configuration activities, such as modifying deployment descriptors and configuring web
servers to ensure that system runs correctly. Significant time is also spent on interoperabil-
ity activities, such as developing and configuring protocol adapters to link different systems
together. Depending on the number of technologies being integrated, this activity does not
scale up due to the number of adaptations required and the complexity of the adapter config-
uration. For example, it took several weeks to develop and configure the gateway (needed
to bridge the communication between CCM and web services) described in Section V.3.2.

In general, problems discovered at the integration stage often require implementation
changes, thereby necessitating interactions between developers and integrators. These in-
teractions are often inconvenient, and even infeasible (especially when using COTS prod-
ucts), and can significantly complicate integration efforts. The remainder of this chapter
shows how our GME-based (meta)model composition framework and associated tools help

address these challenges.

V.2 DSML Composition using GME
This section describes the (meta)model composition framework in the Generic Mod-
eling Environment (GME) [67]. DSMLs are defined by metamodels, hence, DSML com-
position is defined by (meta)model composition. The specification of how metamodels
should be composed (i.e., what concepts in the metamodels that are composed relate to
each other and how) can be specified via association relationships and additional compo-
sition operators, as described in [57]. GME provides the following operators that assist in

composition:

* The equivalence operator defines a full union between two metamodel components.

116

The two are no longer separate, but instead form a single concept. This union in-
cludes all attributes and associations, including generalization, specialization, and

containment, of each individual component.

» The interface inheritance operator does not support attribute inheritance, but does al-
low full association inheritance, with one exception: containment associations where
the parent functions as the container are not inherited. In other words, the child

inherits its parent’s external interface, but not its internal structure.

» The implementation inheritance operator makes the child inherit all of the parent’s
attributes, but only the containment associations where the parent functions as the
container. No other associations are inherited. In other words, the child inherits the
parent’s internal structure, but not its external interface. The union of interface and
implementation inheritance is the normal inheritance operator of the GME metamod-

eling language, and their intersection is null.

Together, these three operators allow for a semantically rich composition of metamod-
els.

A key property of a composite DSML is that it supports the open-closed principle [78],
which states that a class should be open for extension but closed with respect to its public
interface. In GME, elements of the sub-DSMLs are closed, i.e., their semantics cannot
be altered in the composite DSML. The composite DSML itself, however, is open, i.e., it
allows the definition of new interactions and the creation of new derived elements. All tools
that are built for each sub-DSML work without any modifications in the composite DSML
and all the models built in the sub-DSMLs are also usable in the composite DSML.

We use the following GME (meta)model composition features to support the SIML-
based integration of systems built using different middleware technologies, as described in

Section V.3.1:

1. Representation of independent concepts. To enable complete reuse of models and

117

tools of the sub-DSMLs, the composition must be done in such a way that all con-
cepts defined in the sub-DSMLs are preserved. Step 1 of Figure V.3 shows how
no elements from either sub-DSMLs should be merged together in the composite

DSML. GME’s composition operators [68] can be used to create new elements in

2 & 9))
>~ & o = S

System Integration Modeling
Language

@ (Sen/ice
PICML WSML ‘
SieD

i

1
Service
Port Binding

HttpsBinding

Figure V.3: Domain-Specific Modeling Language Composition in GME

the composite DSML, but the sub-DSMLs as a whole must remain untouched. As
a consequence, any model in a sub-DSML can be imported into the composite lan-
guage, and vice versa. All models in the composite language that are using concepts
from the sub-DSMLs can be imported back into the sub-DSML. Existing tools for
sub-DSMLs can be reused as well in the composite environment. This technique of
composing DSMLs is referred to as metamodel interfacing [34] since we create new

elements and relationships that provide the interface between the sub-DSMLs.

. Supporting (meta)model evolution. DSML composition enables reuse of previ-
ously defined (sub-)DSMLs. Just like code reuse in software development, (meta)model

reuse can benefit from the concept of libraries, which are read-only projects imported

118

to a host project. GME libraries ensure that if an existing (meta)model is used to
create a new composite (meta)model, any changes or upgrades to the original will
propagate to the places where they are used. Step 2 of Figure V.3 shows how if the
original (meta)model is imported as a library, GME provides seamless support to up-
date it when new versions become available (libraries are supported in any DSML

with GME, not just the metamodeling language).

Components in a host project can create references to—and derivations of—Ilibrary
components. The library import process creates a copy of the reused project, so
subsequent modifications to the original project are not updated automatically. To
update a library inside a host project, a user-initiated refresh operation is required.
To achieve unambiguous synchronization, elements inside a project have unique ids,
which ensures correct restoration of all relationships that are established among host

project components and the library elements.

. Partitioning (meta)model namespaces. When two or more (meta)models are com-
posed, name clashes may occur. To alleviate this problem, (meta)model libraries
(and hence the corresponding components DSMLs) can have their own namespaces
specified by (meta)modelers, as shown in Step 3 of Figure V.3. External software
components, such as code generators or model analysis tools that were developed for
the composite DSML, must use the fully qualified names. But tools that were devel-
oped for component DSMLs will still work because GME sets the context correctly

before invoking such a component.

. Handling constraints. The syntactic definitions of a metamodel in GME can be
augmented by static semantics specifications in the form of Object Constraint Lan-
guage (OCL) [146] constraint expressions. When metamodels are composed to-

gether, the predefined OCL expressions coming from a sub-DSML should not be

119

altered. GME’s Constraint Manager uses namespace specifications to avoid any pos-
sible ambiguities, and these expressions are evaluated by the Constraint Manager
with the correct types and priorities as defined by the sub-DSML, as shown in Step 4
of Figure V.3. The composite DSML can also define new OCL expressions to specify
the static semantics that augment the specifications originating in the metamodels of

the sub-DSML.s.

V.3 Integrating Systems with SIML

This section describes how we created and applied the System Integration Modeling
Language (SIML) to solve the challenges associated with functional integration of systems
in the context of the shipboard computing scenario described in Section V.1.1. SIML is our
open-source composite DSML that simplifies functional integration of component-based
systems built using heterogeneous middleware technologies. First, we describe how SIML
applies GME’s (meta)model composition features described in Section V.2 to compose
DSMLs built for CCM and web services. We then describe how the challenges described

in Section V.1.2 are resolved using features in SIML.

V.3.1 The Design and Functionality of SIML

Applying GME’s (meta)model composition features to SIML. To support integration of
systems built using different middleware technologies, SIML uses the GME (meta)model
composition features described in Section V.2 as shown in Figure V.4. SIML is thus a com-
posite DSML that allows integration of systems by composing multiple DSMLs, each rep-
resenting a different middleware technology. Each sub-DSML is responsible for managing
the metadata (creation, as well as generation) of the middleware technology it represents.
The composite DSML produced using SIML defines the semantics of the integration,

which might include reconciling differences between the diverse technologies, as well as

120

CCM Deployment
descriptors

@ CCM Models
CCM Deployment
& descriptors
CCM @

DSML ﬁ
System
Integration
DSML

Integration
Glue code

=

Web Service

Deployment
Web Service descriptors
Models

Web Service
Deployment Imported Entity
descriptors

Model
Composition

Web Services

DSML

Exported Entity

Figure V.4: Design of System Integration Modeling Language (SIML) Using Model
Composition

representing characteristics of various implementations. The result is a single compos-
ite DSML that retains all the characteristics of its sub-DSMLs, yet also unifies them by
defining new interactions between elements present in both DSMLs. System integrators
therefore have a single MDE environment that allows the creation and specification of el-
ements in each sub-DSML, as well as interconnecting them as if they were elements of a
single domain.

For example, SIML is designed to support composite DSMLs that could represent dif-
ferent resource adaptations required to connect an EJB component with a web service.
Likewise, it could be used to represent the differences between implementation of web

services in the Microsoft .NET framework or an implementation in IBM’s WebSphere.

121

The problems with functional integration of systems outlined in Section V.1.2 can be re-
solved by generating metadata directly from the composite DSML since the tools of the
sub-DSMLs work seamlessly in the composite.

Applying SIML to compose CCM and web services. Our initial use of SIML was to
help integrate CCM with web services in the context of the shipboard computing case
study described in Section V.1. The two sub-DSMLs we needed to integrate to support the

new requirements for this case study were:

* The Platform-Independent Component Modeling Language (PICML) [3], which
enables developers of CCM-based systems to define application interfaces, QoS pa-
rameters, and system software building rules described in Chapter III. PICML can

also generate valid XML descriptor files that enable automated system deployment.

* The Web Services Modeling Language (WSML), which supports key activities in
web service development, such as creating a model of a web services from existing
WSDL files, specifying details of a web service including defining new bindings, and

auto-generating artifacts required for web service deployment.

These two sub-DSMLs were developed independently for earlier projects. The case study
described in Section V.1.1 provided the motivation to integrate them together using GME’s
(meta)model composition framework.

Since SIML is a composite DSML, all valid elements and interactions from both PICML
and WSML are valid in SIML. It is possible to design both CCM components (and as-
semblies of components), as well as web services (and federations of web services) using
SIML, just as if either PICML or WSML were used independently. The whole is greater
than the sum of its parts, however, because SIML defines new interactions that allow con-
necting a CCM component (or assembly) with a web service and automates generation of

necessary gateways, which are capabilities that exist in neither PICML nor WSML.

122

V.3.2 Resolving Functional Integration Challenges using SIML

We now show how we applied SIML to resolve the functional integration challenges
discussed in Section V.1.2 in the context of our shipboard computing case study example
described in Section V.1.1. Although we focus on the current version of SIML that supports
integration of CCM and web services, its design is sufficiently general that it can be applied

to integrate other middleware technologies (such as EJB) without undue effort. Figure V.5

Language Files J Language Files

@ idl_to_picml.exe @ WSDLImporter.exe @

System Integration Modeling Language

Log Java Log
; Analyzer Analyzer
Naming
Service ‘ y @
Logging [« Logging
T C# L
Gateway I— Business 09
—>[Logic HDatabaseJ Analyzer

Web Services Modeling Language

e idl_to_wsdl.exe A .
Interface Definition >[Web Services Definition]

Y

[:] WSDLEXxporter.exe @
ey Coordinator @
Manager

Platform-Independent Component Modeling Language GatewayGenerator.exe

DeploymentPlan.exe 6
ccM TypeSpecific SOAP
Client Gateway Server
IIOP <& SOAP
Web Service
Deployment

CCM Deployment descriptors
descriptors

@ Web Service Client C) Web Service C) CCM Component
Figure V.5: Generating a Web Service Gateway Using SIML

shows how SIML resolves the following challenges to generate a gateway given an existing
CCM application:

Resolving challenge 1: Choosing an appropriate level of integration. As mentioned in
Section V.1.2, determining the correct level of integration requires expertise in all different

technologies being integrated. To allow interactions between CCM components and web

123

services, SIML defines interactions between ports of CCM components and ports exposed
by the web services. SIML also automates the generation of the glue code, so some choices
with respect to the level of integration (e.g., mapping of a CCM port to a web service
port) are pre-determined, while other decisions, (e.g., aggregation of more than one CCM
component into a single web service) are customizable.

SIML extends the list of valid interactions of both CCM components and web services,
which is an example of a composite DSML defining interactions that do not exist in its
sub-DSMLs. SIML can also partition a large system into hierarchies via the concept of
“modules,” which can be either CCM components (and assemblies of CCM components)
or web services.

In our shipboard computing case study example, a user of SIML needs to import the
IDL files describing the shipboard system, as show in step 1 of Figure V.5. Similarly,
WSDL files can also be imported into SIML, as shown in step 3 of Figure V.5. After the
interfaces of the systems have been imported, users can define the interactions between the
subsystems, i.e., the interaction between the CCM and Web Service logging capabilities
can be defined by connecting the ports of the CCM Logging Component to the ports of the
Logging web service.

The interactions between subsystems automate a number of activities that arise during
integration, including generation of resource adapters, such as the gateways shown in step
7 of Figure V.5 and described in the forthcoming resolution of Challenge 3. SIML provides
a middleware technology-specific integration framework that allows system integrators to
define the points of interaction in their system. SIML allows the system integration to be
done in a “declarative” fashion, i.e., the system integrators specify the points of integration
at a high-level using connections between model elements. Using this information, SIML

takes care of the translation of the integrator’s intent (policy) into the low-level mechanics

124

needed to achieve the integration. The approach taken by SIML, is different from an “im-
perative” approach to integration, where the system integrator needs to specify not only the
high-level integration design, but also the low-level details of the integration.

SIML’s architecture can be enhanced to support integration of other middleware tech-

nologies by extending the list of interactions defined by SIML to integrate new technolo-
gies. For example, SIML could be extended to support interactions between CCM and EJB
or between Web Services and EJB. Extending SIML to support EJB requires specification
of a DSML that describes the elements and interactions of EJB. Once the DSML for EJB is
specified, it can be imported into SIML as a library while also assigning a new namespace
to it. The creation of a new namespace prevents any clashes between the type systems, e.g.,
between a CCM component and EJB component. Interactions between elements of CCM
and EJB can then be defined in the composite DSML. From these new interactions, gener-
ative techniques (as explained in resolution to Challenge 3) can be applied to automate the
integration tasks.
Resolving challenge 2: Reconciling differences in interface specifications. To map in-
terfaces between CCM and web services, SIML provides a tool called IDL2WSDL that au-
tomatically converts any valid CORBA IDL file to a corresponding WSDL file. As part of
this conversion process, IDL2WSDL performs (1) datatype mapping, which maps CORBA
datatypes to WSDL datatypes and (2) exception mapping, which maps both CORBA excep-
tions to WSDL faults. IDL2WSDL relieves system integrators from handling the intricacies
of this mapping.

Figure V.5 shows how both IDL and WSDL can be imported into the DSML environ-
ment corresponding to CCM (PICML) and web services (WSML). This capability allows
integrators to define interactions between CCM components and web services as shown in
step 4 of Figure V.5. SIML also supports language mapping between ISO/ANSI C++ and
Microsoft C++/CLI, which is the .NET framework extension to C++.

In our example scenario, IDL2WSDL can automatically generate the WSDL files of

125

the Logging web service from the IDL files of the Logging Component as shown in step 2
of Figure V.5. The generated WSDL file can then be imported into SIML, and annotated
with information used during deployment. As shown in step 5 of Figure V.5, SIML can
also generate a WSDL file back from the model, so that WSDL stubs and skeletons can
be generated. SIML automates much of the tedious and error-prone details of mapping
IDL to WSDL, thereby allowing system integrators to focus on the business logic of the
application being integrated.

Resolving challenge 3: Managing differences in implementation technologies. The
rules defined in SIML allow definition of interaction at the modeling level. This feature,
however, is not useful if these definitions cannot be translated into runtime entities that
actually perform the interactions. SIML therefore generates resource adapters, which au-
tomatically bridge the differences between protocol formats by performing the necessary
conversions of one format into another, such as converting SOAP requests into IIOP re-
quests, and vice-versa.

A resource adapter in SIML is implemented as a gateway. A gateway sits between web
service clients and encapsulates access to the CCM component by exposing it as a web
service. SIML allows system integrators to define connections between ports of a CCM
component and a web service, as shown in step 4 of Figure V.5. These connections are then
used by a SIML model interpreter, which automatically determines the operation/method
signatures of operations/methods of the ports on either end of a connection, and uses this
information to generate a gateway automatically. As shown in step 7 of Figure V.5, the

generated gateway is composed of three entities:

1. A CCM client, which uses the stubs (client-side proxies) generated from the IDL
files and handles the communication with other CCM components using I[IOP as the

protocol,

2. A SOAP server, which uses the skeletons (server-side proxies) generated from the

126

WSDL files and handles the communication with web service clients using SOAP as

the protocol,

3. A IIOP-to-SOAP translator, which operates at the level of programming language
(as opposed to the on-wire-protocol level) handling the delegation of web service
requests to the CCM client component as well as dealing with the conversion of
replies from the CCM client into a web service reply to be sent back to the Web

Service clients.

The generated gateway encapsulates the resource adapter, which contains all the “glue
code” necessary to perform datatype mapping, exception mapping, and language map-
ping between CCM and web services. SIML’s gateway generator is configurable and can
currently generate web service gateways for two different implementation of web services:
gSOAP [140] and Microsoft ASP.NET. The generated gateway also performs the necessary
protocol mapping (i.e., between IIOP and SOAP) and discovery mapping (i.e., automati-
cally connecting to a Naming Service to obtain object references to CCM components).
Our initial implementation does not yet support QoS mapping, which is the focus of future
work, as described in Chapter VII.

In our shipboard computing case study example, SIML can automatically generate the
Logging web service gateway conforming to GSOAP and/or Microsoft ASP.NET, by run-
ning the SIML model interpreter as shown in step 7 of Figure V.5. Auto-generation of
gateways eliminates the tedious and error-prone programming effort that would have oth-
erwise been required to integrate CCM components with Web Services. In general, given a
pair of technologies to integrate, auto-generation of gateways eliminates the need for both
writing code required to perform the technology mapping, as well as the repetitive instan-
tiation of such code for each of the interfaces that need to be integrated. Auto-generation
also masks the details of the configuration of the technology-specific resource adapters

used in the integration.

127

Resolving challenge 4: Managing deployment of subsystems. After the necessary inte-
gration gateways have been generated, system integrators also need to deploy and configure
the application and the middleware using metadata, e.g., in the form of XML descriptors.
Since SIML is built using (meta)model composition it can automatically use the tools de-
veloped for the sub-DSMLs directly from within SIML. For instance, PICML can handle
deployment of CCM applications and WSML can handle deployment of web services.

In our shipboard computing case study example, SIML can be used to automatically
generate the necessary deployment descriptors for all CCM components, as well as the
Logging web service as shown in steps 5 and 6 of Figure V.5. SIML shields system in-
tegrators from low-level details of the formats of the different descriptors. It also shields
them from manually keeping track of the number of such descriptors required to deploy a
CCM component or a Web Service.

By encapsulating the required resource adapters inside a web service or CCM com-

ponent, SIML allows reuse of deployment techniques available for both CCM and web
services. System integrators need not deploy resource adapters separately. Although this
approach works for in-process resource adapters (such as those generated by SIML), out-
of-process resource adapters need support from a deployment descriptor generator. Since
SIML is a DSML itself, this support could be added to SIML so it can generate deployment
support for out-of-process resource adapters.
Resolving challenge 5. Dealing with interoperability issues. Since knowledge of the un-
derlying middleware technologies is built into SIML, it can compensate for certain types of
incompatibilities, such as differences in interface definition styles during design time. For
example, IDL2WSDL allows generation of WSDL that supports an interoperable subset
of WSDL as defined in the WS-I Basic Profile. System integrators are better prepared to
avoid incompatibilities that would have traditionally arisen during integration testing.

SIML can also define constraints on WSDL definition as prescribed by the WS-I Basic

128

Profile, so that violations can also be checked at modeling time. Similarly, gateway gen-
eration can automatically add workarounds for particular implementation quirks, such as
defining the correct set of values for XML namespaces of the interfaces defined in WSDL
files depending upon the (observed) behavior of the target middleware implementation.
System integrators are once again shielded from discovering these problems during final
integration testing. In our shipboard computing case study example, SIML can generate
a Logging web service gateway that either supports a WS-I subset or uses SOAP RPC
encoding.

SIML’s DSML composition-based approach to integrating systems relieves system inte-
grators from developing more code during integration. The automation of gateway genera-
tion allows integration of systems that have a large number of components since developers
need not write system specific integration code. In addition, SIML supports evolution of
the integrated system by incrementally adding more components or by targeting different

middleware implementations as future needs dictate.

V.3.3 Evaluating SIML

To evaluate the benefits of SIML, we first define a taxonomy for evaluating technolo-
gies that assist the functional integration of CCM and Web Services. We then use this
taxonomy to compare SIML with tools that are supplied by vendors for either technology,
referred to in Table V.1 as Native tools. Examples of native tools include the Microsoft
Visual Studio and the IBM Eclipse suite, which developers using middleware technologies
like .NET and EJB are likely to use. This table depicts the different mapping activities
described in Section V.3.2 that are typical in functional integration of middleware systems.
For each activity the table describes the level of support in SIML and whether the activity
is automated. It also describes the level of automation measured as the number of dis-
tinct steps performed by a system integrator. Table V.1 further decomposes the level of

automation into three broad categories: (1) design, which denotes that system integrators

129

0 I 0 I 0 0 SO SO Surddey Anmiqezadoroyuy
0 I 1 0 I I ON ON 1UIdOR[J Aemaren)
I 0 0 I 0 0 SOX SO uoneIsuan) 103drosa(g
Surddejq uowkojdog
0 ! I 0 I ! ON ON Surddey S0
0 I I I 0 0 SOX SOX Surddey 19100817
0 I I I 0 0 SOX SO Surddejy [000101g
Surddejy A3o10uyoqy,
0 I 1 I 0 0 SOX SOX Surddeyy oSenSue
0 I 1 I 0 0 SOX SO Surddepy uondeoxyg
0 I I I 0 0 SOX Sox Surddejy odA1e1Rq
Surddejy aoejI01U]
0 1 ! I 0 0 ON SR uS1sa(uoneidayuy
asn [oo], | uoneywwR[dwy | uISA(| 3 [00], | uonewIWR[dw | USISA(Q | (pIjewony | (pIjroddng LAY uoneI3dNU
S[0O], dAeN Suis() TINIS 3uis()

(sda)s JoUnSIp JO #) UOHBWOINY JO [A]

TS Buisn uoljeibajuj jeuonloung buenjeas : L°A ajqel

130

need to perform a design activity that might include domain analysis, requirement analysis,
etc., (2) implementation, which denotes that system integrators need to implement some
functionality usually by writing code, and (3) tool use, which denotes that a tool needs to
be used by the system integrators to perform that activity. This categorization assigns a
weight commensurate to the skills of the individual responsible for carrying out the task in
a particular organization.

Our taxonomy also assumes that design and implementation are orders of magnitude
more difficult/time-consuming than tool use. In Table V.1, multiple activities of the same
category are considered equal, since the magnitude difference will likely dwarf any small
number of steps of any particular category. Table V.1 uses 1 to indicate one or more,
i.e., 1...n steps, and O to indicate that the effort is automated. To estimate the amount of
effort required, we sum up each of the three columns (i.e., design, implementation, and
tool) and then multiply the result by the weight assigned to each category. For example,
a reasonable assignment of weight for these activities might be 10, 5 and 1, for each of
design, implementation and tool use. With this assignment, we can see that using SIML
requires 2 X 10+2 x 5+ 8 x 1 = 38 distinct steps to achieve functional integration. In
comparison, using just the native tools would resultin 8 X 10+9 x5+ 1 x 1 = 126 distinct
steps to achieve the same. It should be noted that the number of steps will get reduced
drastically as (and when) native tools add support for integration activities.

The numbers in Table V.1 are for each unique unit of work per unique pair of source
and target technologies, i.e., for a single datatype mapping, a single exception mapping,
a single protocol mapping. To calculate the total cost of integration, we must take into
account both the number of distinct types/exceptions/languages, and the number of unique
pairs of technologies being integrated.

Since SIML allows hierarchical composition of the integration infrastructure, the in-
tegration architecture scales along with the increase in the number of components. Al-

though the generative techniques applied to generate the gateways scale with the number

131

of components in the system, when the number of components increases to thousands of
components, the limitations of visual design tools tend to show up. To overcome the issues
with scalability of modeling techniques, we have applied techniques like aspect-oriented
weaving of domain-specific models [4] in prior efforts. Such techniques can be applied to
automate the modeling activities in SIML in the presence of large number of components,
since SIML itself is a domain-specific language for integration.

Table V.1 shows that SIML helps reduce the effort by reducing the design and/or im-
plementation activities associated with integration to ordinary tool usage activities. For
example, SIML effectively reduces the design and implementation effort required to per-
form the datatype, exception and language mapping, to a single step of tool use. This table
also shows that similar gains can be achieved for complex tasks, such as protocol mapping
(conversion between IIOP and SOAP in this case) and discovery mapping (conversion be-
tween CORBA Object References and Web Service URIs). Finally, the table reveals current
gaps in our toolchain, i.e., SIML does not perform QoS mapping or help with placement of

resource adapters (or gateways), which remains as future work.

V4 Summary

The development of enterprise distributed systems increasingly involves more integra-
tion of existing commercial-off-the-shelf (COTS) software and less in-house development
from scratch. As the capabilities of COTS component middleware technologies grow, the
complexity of integration of systems built upon such frameworks also grows. This chapter
showed how a model-driven engineering (MDE) approach to functional integration of sys-
tems built using component middleware technologies enhances conventional tedious, error-
prone, and non-scalable approaches to integration of enterprise distributed systems. In
particular, we showed how domain-specific modeling language(DSML)s and (meta)model
composition can help MDE tools address these limitations.

To demonstrate the viability of our approach, we enhanced support for composition

132

of DSMLs in the Generic Modeling Environment (GME). Using this new capability, we
developed the System Integration Modeling Language (SIML), which is a DSML com-
posed from two other DSMLs: the CORBA Component Model (CCM) profile of Platform-
Independent Component Modeling Language (PICML) and the Web Services Modeling
Language (WSML). We then demonstrated how composing DSMLs can solve functional
integration problems in an enterprise distributed system case study by reverse engineering
an existing CCM system and exposing it as web service(s) to web clients who use these
services. Finally, we evaluated the benefits of our approach by generating a Logging com-
ponent gateway from the model, which automates key steps needed to functionally integrate
CCM components with web services.

Instructions for downloading and building the open-source SIML and GME MDE tools

are available at www.dre.vanderbilt.edu/cosmic.

133

www.dre.vanderbilt.edu/cosmic

CHAPTER VI

COMPARISON WITH RELATED RESEARCH

Our research on MDE-based composition, optimization and integration techniques has
resulted in improved tool-support for component middleware. This chapter compares and

contrasts our work with respect to other alternate research approaches.

VI.1 Related Research: Composition Techniques

This section summarizes related efforts associated with developing DRE systems using
an MDE approach and compares these efforts with our work on PICML.
Cadena Cadena [45] is an integrated environment developed at Kansas State University
(KSU) for building and modeling component-based DRE systems, with the goal of ap-
plying static analysis, model-checking, and lightweight formal methods to enhance these
systems. Cadena also provides a component assembly framework for visualizing and de-
veloping components and their connections. Unlike PICML, however, Cadena does not
support activities such as component packaging and generating deployment descriptors,
component deployment planning, and hierarchical modeling of component assemblies.
VEST and AIRES The Virginia Embedded Systems Toolkit (VEST) [129] and the Auto-
matic Integration of Reusable Embedded Systems (AIRES) [64] are MDD analysis tools
that evaluate whether certain timing, memory, power, and cost constraints of real-time and
embedded applications are satisfied. Components are selected from pre-defined libraries,
annotations for desired real-time properties are added, the resulting code is mapped to a
hardware platform, and real-time and schedulability analysis is done. In contrast, PICML
allows component modelers to model the complete functionality of components and intra-

component interactions, and doesn’t rely on predefined libraries. PICML also allows DRE

134

system developers the flexibility in defining the target platform, and is not restricted to just
processors.

ESML The Embedded Systems Modeling Language (ESML) [58] was developed at the In-
stitute for Software Integrated Systems (ISIS) to provide a visual metamodeling language
based on GME that captures multiple views of embedded systems, allowing a diagrammatic
specification of complex models. The modeling building blocks include software com-
ponents, component interactions, hardware configurations, and scheduling policies. The
user-created models can be fed to analysis tools (such as Cadena and AIRES) to perform
schedulability and event analysis. Using these analyses, design decisions such as compo-
nent allocations to the target execution platform are performed. Unlike PICML, ESML is
platform-specific since it is heavily tailored to the Boeing Boldstroke PRiSm QoS-enabled
component model [113, 124]. ESML also does not support nested assemblies and the al-
location of components are tied to processor boards, which is a proprietary feature of the
Boldstroke component model. ESML was the inspiration, however, for a number of fea-
tures in PICML.

Ptolemy II Ptolemy II [16] is a tool-suite from the University of California Berkeley
(UCB) that supports heterogeneous modeling, simulation, and design of concurrent sys-
tems using an actor-oriented design. Actors are similar to components, but their interac-
tions are controlled by the semantics of models of computation, such as discrete systems.
The set of available actors is limited to the domains that are natively defined in Ptolemy.
Using an actor specialization framework, code is generated for embedded systems. In con-
trast, PICML does not define a particular model of computation. Also, since PICML is
based on the metamodeling framework of GME, it can be customized to support a broader
range of domains than those supported by Ptolemy II. Finally, PICML targets component
middleware for DRE systems and can be used with any middleware technology, as well as
any programming language, whereas Ptolemy Il is based on Java, with preliminary support

for C.

135

V1.2 Related Research: Optimization Techniques

In this section, we compare our deployment-time optimizations to other component

middleware optimization techniques. As described in Section I1.2.1, optimization tech-
niques to improve application performance can be categorized along two dimensions: (1)
the layer at which the optimization is applied, e.g., whether the optimization is restricted
to the middleware layer alone or spans multiple layers, including applications above the
middleware, (2) the time at which such optimization techniques are applied, i.e., design/-
development-time, run-time or deployment-time. Our research in PAM falls into the appli-
cation layer and is done at deployment-time.
Design/development-time approaches. Design-time approaches to component middle-
ware optimization include eliminating the dynamic loading of component implementation
shared libraries and establishing connections between components done at run-time, as
described in static configuration of CIAO [131]. Our PAM approach is different since it
uses models of applications to modify the structure of the assembly by creating physical
assemblies, i.e., new components, at deployment time. Our approach is not restricted to op-
timizing just the inter-connections between components. Moreover, the static configuration
approach can be applied in combination to our deployment-time optimizations.

Another approach to optimizing the middleware at design/development-time employs
context-specific middleware specializations for product-line architectures [65], which ex-
ploits “invariant properties”— application, middleware and platform-level properties that
remain fixed during system execution — to reduce the overhead caused by excessive gen-
erality in middleware frameworks. Researchers have also employed Aspect-Oriented Pro-
gramming (AOP) techniques to automatically derive subsets of middleware based on use-
case requirements [50] and modify applications to bypass middleware layers using aspect-
oriented extensions to CORBA Interface Definition Language (IDL) [101].

In addition, middleware has been synthesized in a “just-in-time” fashion by integrating

source code analysis, and inferring features and synthesizing implementations [151]. The

136

key difference between our approach in PAM and the various context-specific specializa-
tions and AOP-based techniques is that the optimizations performed by PAM do not require
any input from the application developer, i.e., the application developer need not design his
application tuned for a specific deployment scenario. Our approach in PAM is, however,
complementary to these approaches, since not all optimizations done via modification of
application advocated by these approaches are possible to perform at deployment-time us-
ing PAM.

Run-time approaches. Research on approaches to optimizing middleware at run-time has
focused on choosing optimal component implementations from a set of available alterna-
tives based on the current execution context [31]. QuO [153] is a dynamic QoS framework
that allows dynamic adaptation of desired behavior specified in contracts, selected using
proxy objects called delegates with inputs from run-time monitoring of resources by system
condition objects. QuO has been integrated into component middleware technologies, such
as CIAO/CCM [121].

Other aspects of run-time optimization of middleware include domain-specific mid-
dleware scheduling optimizations for DRE systems [42], using feedback control theory
to affect server resource allocation in Internet servers [152] as well as to perform real-
time scheduling in Real-time CORBA middleware [70]. Our work in PAM is targeted at
optimizing the middleware resources required to host composition of components in the
presence of a large number of components, whereas the main focus of these efforts is to
either build the middleware to satisfy certain performance guarantees, or effect adaptations
via the middleware depending upon changing conditions at run-time. Our work in PAM is
complementary to these approaches to application optimization.

Run-time approaches to application-specific optimizations have focused on data repli-
cation for edge services, i.e., replicating servers at geographically distributed sites [41].

Significant performance improvements in the latency and availability has been achieved

137

by relaxing the consistency of data that is replicated at the edge servers using application-
specific semantics. Other research on optimizing web services has focused on utilizing
reflective techniques encapsulated in the request metadata [85] for dynamic negotiation of
best communication mechanisms between any requester and provider of a service. Other
research [126] on dynamic optimization approaches include improving algorithms for event
ordering within component middleware by making use of application context information
available in models.

The approaches outlined above optimize the middleware/on-the-wire protocol using
knowledge of the computations performed by the application. Our work in PAM makes
use of the application deployment information on each node of the target domain and is
focused on optimizing the execution of the components at each end-system as opposed to
optimizing the on-the-wire protocol.

Deployment-time approaches. Deployment-time optimizations research includes BluePen-
cil [69], which is a framework for deployment-time optimization of web services. BluePen-
cil focuses on optimizing the client-server binding selection using a set of rules stored in
a policy repository and rewriting the application code to use the optimized binding. Al-
though conceptually similar, our work in PAM differs from BluePencil because it uses
models of application structure and application deployment to serve as the basis for the
optimization infrastructure. In contrast, BluePencil uses approaches like configuration dis-
covery that extract deployment information from configuration files present in individual
component packages. By operating at the level of individual client-server combinations,
the kind of global optimizations performed by PAM are non-trivial to perform in BluePen-
cil. Another key difference is that PAM focuses on optimizing multiple dimensions, e.g.,
footprint as well as performance, whereas BluePencil only uses optimized binding to affect
performance. BluePencil relies on modification of the application source code (to rewrite
the application code), while PAM is non-intrusive and does not require application source

code modifications.

138

Finally, our approach of fusing multiple component into a single physical assembly
shared among the components is similar to how web servers like Apache support creation
of multiple virtual hosts [38] in a single instance of a web server. The resource savings
obtained from running multiple virtual hosts on a single instance of a web server, are repli-
cated by the resource savings obtained as a result of hosting multiple component imple-
mentations in a single physical assembly in our approach using PAM. Our optimizations
in PAM, focus on increasing the scalability of applications built using components in a

manner similar to the scalability benefits of virtual hosts.

VI.3 Related Research: Integration Techniques

This section surveys the technologies that provide the context of our work on system

integration in the domain of enterprise distributed systems. We classify techniques and
tools in the integration space according to the role played by the technique/tool in system
integration.
Integration evaluation tools enable system integrators to specify the systems/technologies
being integrated and evaluate the integration strategy and tools used to achieve integration.
For example, IBM’s WebSphere [54] supports modeling of integration activities and runs
simulations of the data that is exchanged between the different participants to help predict
the effects of the integration. System execution modeling [128] tools, such as CUTS [48],
help developers conduct “what if” experiments to discover, measure, and rectify perfor-
mance problems early in the lifecycle (e.g., in the architecture and design phases), as op-
posed to the integration phase.

Although these tools help identify potential integration problems and evaluate the over-
all integration strategy, they do not replace the actual task of integration itself since these
tools use simulation-/emulation-based abstractions of the actual systems. SIML'’s role is

complementary to existing integration evaluation tools. In particular, after the integration

139

evaluation has been done using integration evaluation tools, SIML can be applied to de-
sign the integration and generate various artifacts required for integration, as discussed in
Section V.3.1.

Integration design tools. OMG’s UML profile for Enterprise Application Integration (EAI) [91]
defines a Meta Object Facility (MOF) [93] for collaboration and activity modeling. MOF
provides facilities for modeling the integration architecture, focusing on connectivity, com-
position and behavior. The EAI UML profile also defines a MOF-based standardized data
format intended for use by different systems to exchange data during integration. Data ex-
change is achieved by defining an EAI application metamodel that handles interfaces and
metamodels for programming languages (such as C, C++, PL/I, and COBOL) to aid the
automation of transformation.

Although standardizing on MOF is a step in the right direction, in practice there are var-
ious problems, such as the lack of widespread support for MOF by various tools, and the
differences between versions of XML Metadata Interchange (XMI) [97] support in tools.
Existing integration design tools provide limited support for interface mapping by generat-
ing stubs and skeletons. Moreover, key activities like discovery mapping, and deployment
mapping must still be programmed manually by system integrators. The primary difference
between SIML and integration design tools is that SIML not only allows such integration
design, but it also automates the generation of key integration artifacts, such as gateways.
Gateways encapsulate the different adaptations required to bridge the differences in the
underlying low-level mechanisms of heterogeneous middleware technologies like network
protocols and service discovery, reducing the amount of effort required to develop and
deploy the systems, as discussed in Section V.3.2.

Integration patterns TrowBridge et al. [139] provides guidance to system integrators in
the form of best patterns and practices, with examples using a particular vendor’s products.
Hohpe [49] catalogs common integration patterns, with an emphasis on system integration

via asynchronous messaging using different commercial products. These efforts do not

140

directly provide tools for integration, but instead provide pattern-based guidance to apply
existing tools to achieve more effective integration. A future goal of SIML is to add support
for modeling integration patterns so that users can design integration architectures using
patterns. We also plan to enhance SIML’s generative capabilities to incorporate integration
pattern guidelines in gateway generation, as discussed in Section V.3.2.

Resource adapters are used during integration to transform data and services exposed by
service producers to a form amenable to service consumers. Examples include data trans-
formation (mapping from one schema to another), protocol transformation (mapping from
one network protocol to another), or interface adaptation (which includes both data and
protocol transformation). The goal of resource adapters is to provide integrated, reusable
solutions to common transformation problems encountered in integrating systems built us-
ing different middleware technologies.

Existing standards (such as the Java Messaging Specification [132] and J2EE Con-
nector Architecture Specification [82]) and tools (such as IBM’s MQSeries [53]), however,
approach the integration from a middleware and programming perspective, i.e., system inte-
grators must still handcraft the “glue” code that invokes the resource adapter frameworks to
connect system components together. In contrast, SIML uses syntactic information present
in the DSMLs to automate the required mapping/adaptation by generating the necessary
“glue” code, as discussed in Section V.3.2. Moreover, SIML relies on user input only for
tool use, as opposed to requiring writing code in a programming language to configure the
resource adapters.

Integration frameworks. The semantic web and the Web Ontology Language (OWL) [22]
have focused on the composition of services from unambiguous, formal descriptions of
capabilities as exposed by services on the Web. Research on service composition has fo-
cused largely on automation and dynamism [107], integration on large-scale “‘system-of-
systems,” such as the GRID [37]. Other work has focused on optimizing service composi-

tions such that they are “QoS-aware” [149]; in such “QoS-aware” compositions, a service

141

i1s composed from multiple other services taking into account the QoS requirements of
clients. Since these automated composition techniques rely on unambiguous, formal rep-
resentations of capabilities, system integrators must make their legacy systems available
as web services. Likewise, system integrators need to provide formal mappings of system
capabilities to integrate, which may not always be feasible.

SIML’s approach to (meta)model composition, however, is not restricted to a single

domain, though the semantics are bound at design time, as discussed in Section V.3.1.
Although both approaches rely on metadata, SIML uses metadata to enhance the genera-
tive capabilities during integration. Automated composition techniques, in contrast, focus
on extraction of semantic knowledge from metadata, which is then used as the basis for
producing compositions that satisfy user requirements.
Integration quality analysis. As the integration process evolves, it is necessary to validate
whether the results are satisfactory from functional and QoS perspectives. Research on QoS
issues associated with integration has yielded languages and infrastructure for evaluating
service-level agreements, which are contracts between service providers and consumers
that define the obligations of the parties involved and specify what measures to take if ser-
vice assurances are not satisfied. Examples include (1) the Web Service-Level Agreement
language (WSLA) [71] framework, which defines an architecture to define service-level
agreements using an XML Schema, and provides an infrastructure to monitor the con-
formance of the running system to the desired service-level agreement, (2) [100], which
allows monitoring user-specific service level agreements within the WS-Agreement frame-
work, and (3) Rule-Based Service Level Agreement [106], which is a formal multi-layer
approach to describing and monitoring service level agreements. Other efforts have focused
on defining processes for distributed continuous quality assurance [142] of integrated sys-
tems to identify the impact on performance during system evolution. Information from
these analysis tools should be incorporated into future integration activities.

Although quality analysis tools can provide input to design-time integration activities,

142

they do not support automated feedback loops. In particular, they do not provide mech-
anisms to modify the integration design based on results of quality analysis. SIML, in
contrast, is designed to model service-level agreements to allow their evaluation before

and/or after integration, as discussed in Section V.3.1.

VL4 Summary

In this chapter we provided a comparison of our work with other approaches in the re-
search community, and showed how our research on MDE-based techniques for component-
based development provide capabilities in composition, optimization and integration tool-
chain. Our research on PICML, SIML and PAM provides novel contributions to address
deficiencies in the tool-chain in certain areas while complementing existing research in

others.

143

CHAPTER VII

CONCLUDING REMARKS

Component middleware is an emerging paradigm whose success is crucial to realizing
the vision of Software Factories [43]. There are, however, significant gaps in the component
middleware development, optimization and integration toolchain, which if left unresolved
have the potential to negate the benefits of using component middleware. This disserta-
tion applied Model-Driven Engineering (MDE) techniques to various facets of component-
based DRE system development. Chapter III applied MDE techniques to create the Platform-
Independent Component Modeling Language (PICML), a Domain-Specific Modeling Lan-
guage (DSML) to design, develop and deploy component-based DRE systems; Chapter IV
presented a new class of optimization techniques, “deployment-time” optimizations, to
optimize the overhead in component middleware technologies, and demonstrated the effi-
cacy of the techniques in the Physical Assembly Mapper(PAM), an extension to PICML;
Chapter V presented a novel approach to functional integration of component-based DRE
systems by applying (meta)model composition to create, the System Integration Modeling
Language (SIML), a composite DSML for integration created out of PICML and Web Ser-
vices Modeling Language (WSML); and Chapter VI compared our work on PICML, PAM
and SIML with other research in the design, development, deployment and integration of

component-based systems.

VII.1 Lessons Learned

We now summarize the lessons learned from our work on MDE-based composition,

optimization and integration techniques for component-based DRE systems.

144

VIL.1.1 Composition Techniques

The following is a summary of lessons learned from our work developing and applying

PICML to compose component-based DRE systems:

1. Component and platform modeling improves DRE systems reasoning The re-
sults of applying PICML to build a variety of DRE systems in diverse DRE system
domains including avionics mission computing, unmanned-air vehicle surveillance
and shipboard computing by users, underscore the importance of the level of com-
prehension brought about by the high-level of abstraction in PICML relative to con-
ventional component middleware approaches. In particular, PICML’s DSML-based
approach provides DRE system developers with a system-level view and brings focus
to system-level design decisions in addition to low-level issues at the granularity of

individual components.

2. Early detection of errors improves productivity significantly Most of the errors
that PICML eliminates at design- and deployment-time are discovered only at run-
time with conventional component development techniques, due to a combination of
complexities in development of components, coupled with out-of-band specification
(using XML) of component interconnections. This finding underscores the impor-
tance of PICML’s MDE approach, which helps increase the effectiveness of applying

QoS-enabled component middleware technologies to the DRE systems domain.

3. Addressing ad hoc approaches of configuration PICML alleviates key complex-
ities in understanding the impact of middleware configurations on application QoS
and brings rigor [60] to otherwise ad hoc processes used by developers to configure

and deploy component middleware for DRE systems.

145

VIL.1.2 Optimization Techniques

The following is a summary of lessons learned from our work developing and applying

PAM to optimize component-based DRE systems at deployment-time:

1. Deployment phase should be treated with equal importance. The benefits pro-
vided by component middleware significantly alter the lifecycle of DRE system de-
velopment with system deployment achieving importance similar to design, develop-
ment and analysis/verification. The presence of a separate, well-defined deployment
phase in DRE system development allows deferring key system decisions to an inter-
mediate stage between the traditional design/development-time vs. run-time. By us-
ing information available at deployment-time (not available at design/development-
time and information that is too late to be useful at run-time), the deployment phase
opens up possibilities for system optimizations impossible in previous generations.
In addition to system optimizations, deferring key system decisions until deployment-
time in turn increases reuse by de-coupling deployment-time variability from com-

ponent functionality.

2. Application-specific optimizations are critical to building large-scale systems.
Although general-purpose optimizations serve to improve the performance of all
systems, application-specific optimizations have the potential for going one-step be-
yond. Our approach illustrated the performance and footprint benefits of performing
deployment-time optimizations in an application-specific fashion. An alternative ap-
proach is to perform these optimizations at run-time. For example, the middleware
could try to dynamically place components with similar QoS policies into the same
container instead of our deployment-time application-specific approach. Dynamic
placement of components would necessitate the middleware to keep state identifying
the different QoS policies in effect, track changes to the QoS policies and to medi-

ate access to QoS policy changes. Such an approach, however, will quickly become

146

infeasible in large-scale components due to the excessive state the middleware needs

to maintain to track the QoS policy relationships.

By performing the optimizations in an application-specific fashion, we can obtain
the benefits of such placement without the overhead of maintaining state. Large-
scale systems thus start exhibiting an interesting inversion of the traditional process:
instead of the application conforming to the characteristics of the middleware, the

middleware needs to conform to the characteristics of the application.

. Optimizations should be performed across layers in any layered architecture.
Apart from reducing the latency, our results indicate that irrespective of the num-
ber and kind of optimizations performed at the middleware layer, the middleware
is ultimately restricted to the context information available to it. By using higher-
level abstractions like the MDE approach used in PICML, we can perform a class
of optimizations that are not possible at the middleware layer alone. By effectively
combining the deployment information with the QoS policy information, our QoS
policy fusion algorithm can optimize the configuration of DRE systems without af-
fecting the component application logic. Our results show that any optimizations
performed on a system with a layered architecture can significantly benefit from
propagation of context information freely across the different layers. In addition
to the propagation of deployment to the middleware, there is a need to be able to
propagate information from levels both above the application deployment (i.e., ap-
plication functionality) and below the middleware (i.e., operating system and system
hardware). Our approach currently only unifies two of these layers and needs to be

extended to encompass all layers in a DRE system.

. MDE has the potential to serve as the unifying foundation for building DRE sys-
tems. In order to be able to separate the different phases of DRE system lifecycle,

but also achieve the benefits gained from propagating information from one phase to

147

another, it is necessary to create a pipeline for DRE system development. Just like
a pipeline in a micro-processor relies on a common instruction set and allows pro-
cessing instructions by splitting each instruction into a number of different stages,
models and model-driven engineering can provide the basis for building a DRE sys-
tem development pipeline. By using models as the carriers of information across
the different stages of such a DRE system development pipeline, we can realize the
goals of exposing information across the different stages, thereby leading to creation

of optimized DRE systems.

VIL.1.3 Integration Techniques

The following is a summary of lessons learned from our work developing and applying
the SIML (meta)model composition MDE tool-chain to integrate heterogeneous middle-

ware technologies:

1. Integration tools are becoming as essential as design tools. SIML is designed to
bridge the gap between existing component technologies (in which the majority of
software systems are built) and integration middleware (which facilitate the integra-
tion of such systems). SIML elevates the activity of integration to the same level as
system design by providing MDE tools that support integration design of enterprise

distributed systems built with heterogeneous middleware technologies.

2. Representation and evaluation of service-level agreements is a crucial aspect of
integration. Since SIML is a DSML, it can potentially be used as the infrastructure
to define constraints on the integration process itself, thereby allowing evaluation of

service-level agreements prior to the actual integration. For example, the MDE-based

148

approach used in SIML allows extensions to support associating service-level agree-
ments (SLAs) on sub-systems being integrated, and evaluate such SLAs at design-
time itself. The integration can be evaluated from the perspective of “quality-of-
integration,” in addition to evaluation for feasibility of integration from a functional

perspective.

. Automating key portions of the integration process is critical to building large-
scale distributed systems. Compared with conventional approaches, SIML’s MDE
approach to system integration automates key aspects of system integration, includ-
ing gateway “glue code” generation, metadata management, and design-time support
for expressing unique domain and/or implementation assumptions. It supports seam-
less migration of existing investment in models and allows incremental integration of
new systems. SIML also helps integrate applications based on middleware technolo-

gies other than CCM and web services.

. Standards-based inter-operability of design-time tools is key to realizing the
benefits of such tools. Although our implementation of SIML is done using GME
as the underlying modeling environment, our MDE approach is general-purpose and
can be applied to tool-chains other than GME. For example, by adding support for
import/export for XML Metadata Interchange (XMI) [97], models developed using
tools such as IBM’s Rational Software Architect, Objecteering UML and MagicDraw
UML, could be imported into SIML, which can then be used to perform the key inte-
gration activities. Application developers and integrators can seamlessly realize the

benefits of system development and integration using SIML’s MDE-based approach.

. QoS integration is a complex problem, and requires additional R&D advances.
Though SIML helped map functional aspects of a system from a source technology

to a target technology, the non-functional, QoS-related aspects of a system should

149

also map seamlessly. For example, technologies like the Real-time CORBA Com-
ponent Model (RT-CCM) [142] support many QoS-related features (such as thread
pools, lanes, priority banded connections, and standard static/dynamic scheduling
services) that allow system developers to configure the middleware to build systems
with desired QoS features. When systems based on RT-CCM are integrated with
other technologies, it is critical to automatically map the QoS-related features used
by an application in the source technology to the set of QoS features available in
the target technology. For example, a number of specifications have been released
for web services that target QoS features, such as reliable messaging, security, and
notification. The focus of our future efforts in functional integration of systems will
involve extending SIML to map QoS features automatically from one technology to
another using DSMLs, such that the integration is automated in all aspects — both

functional and non-functional.

6. Integration design tools should become a part of the end-to-end software de-
velopment cycle. Ultimately, there is a need for integration design tools that help
with functional integration, as well as other forms of integration, including data,
presentation, and process integration. These design tools themselves require integra-
tion into the software development lifecycle to to provide an “application integration
platform,” similar to how software testing tools (such as JUnit [75] and NUnit [51])
have gained widespread acceptance and have become an integral part of the software

development lifecycle.

VIL.2 Summary of Research Contributions

In summary, this dissertation has made the following contributions to the study of tech-
niques to improve the design/development, optimization and integration of component-

based DRE systems:

150

* Composition Techniques. Our research resulted in the creation of a domain-specific
modeling language, PICML, that provides a platform for expressing domain-specific
constraints of COTS middleware technologies. PICML brings rigor to the other-
wise unorganized and complex process of composing systems using standards-based
component middleware like CCM. In particular, PICML provides a graphical DSML-
based approach to define component interface definitions, specify component inter-
actions, generate deployment descriptors, define elements of the target environment,
associate components with these elements, and compose complex DRE systems from
basic systems in a hierarchical fashion. PICML served (and continues to serve) as
the foundation for a variety of MDE-based optimization and integration techniques,

and other related research efforts.

* Optimization Techniques. Our research resulted in the creation of a new class of op-
timization techniques, “deployment-time” optimization techniques (with three vari-
ants), for reducing the overhead in large-scale COTS component middleware tech-
nologies. Our approach includes a family of related optimization techniques, all of
which use the notion of “fusion” — combining multiple elements into a single ele-
ment — to reduce the number of elements without affecting the original semantics.
We described three algorithms — Local Component Fusion, Global Component Fu-
sion, QoS Policy Fusion — which differ not only in the type of elements they operate
on but also in the scope at which they operate. We demonstrated the effectiveness
of our techniques by implementing them in PAM which resulted in a reduction of
latency of about 81% and a reduction in the footprint of about 45%. The novelty
of our techniques are that they are automatic (i.e., do not require user intervention,)
non-intrusive (i.e., do not require changes to existing systems or implementations)

and are standards compliant.

* Integration Techniques. Our research contributes a novel application of (meta)model

151

composition to perform functional integration of COTS component middleware tech-
nologies. We demonstrated the effectiveness of our techniques, by composing PICML
and Web Services Modeling Language (WSML), two domain-specific modeling lan-
guages, to create the System Integration Modeling Language (SIML), which provides
increased automation of functional integration by automatically generating “all” of
the integration glue code directly from the models. We demonstrated the generality
and benefits of our approach in SIML by targeting integration glue code generation
for two different implementations of Web Services, gSOAP and Microsoft .NET Web

Services.

The central theme of this dissertation has been the application of model-driven engi-
neering (MDE) tools and techniques to solve a variety of design/development, optimiza-
tion, integration and deployment problems with standards-based COTS middleware. We
demonstrated the benefits and implications of such a MDE-based approach in the context

of the CORBA Component Model.

VII.3 Future Research Directions

This section presents some future research directions based on our experience in ap-
plying MDE to compose, optimize and integrate component-based DRE systems. Our

thoughts on new directions can be summarized as follows:

* Incremental composition/validation environments. One of the key capabilities
of our composition technique in PICML is that the domain semantics are captured
via constraints. Developers of DRE systems can check the system for violations
at design-time as opposed to deployment-time or run-time. Although the design-
time validation is beneficial, currently there is no feedback/guidance provided to
the user as he/she progressively creates a large system. In order to enable compo-
sition/validation in an incremental fashion, designers of domain-specific modeling

languages need to define a notion of “model validity” at any given instant of time.

152

Using these descriptions, tool environments like GME need to support enforcing the
validity in an incremental fashion. Ensuring validity in an incremental fashion is
hard due to the fact that a change to one element in a model could cascade a series
of checks, which in turn could cascade more checks, and so on indefinitely. Depend-
ing on the scale of the system, and the number of constraints needed to be checked
to ensure validity, this could prove to be computationally expensive. In addition to
checking in an incremental fashion, the tool environment should also provide visual
design cues about the severity of violations and what is needed to fix the violation.
In order to provide design cues to fix violations, the tool environment needs to per-
form a “design-space exploration” [86]. Enabling composition of component-based
systems with incremental validation and design cues is a hard problem and requires

further research.

Integrating design-time models with components at runtime. Our current ap-
proach to performing checks at design-time ensures that the DRE systems are valid
at design-time. Although this approach works well for static DRE systems, a new
class of dynamic DRE systems [62, 120] alter the composition of the systems at
run-time in an adaptive fashion. In order to ensure that such systems generated dy-
namically satisfy the domain constraints, our current DSML-based approach needs
to be extended such that we can create models that are accessible at run-time. There
are a number of challenges when it comes to synchronizing the design-time state of a
system with its current run-time state, including granularity of synchronization, fre-
quency of synchronization, whether such synchronization can be done fast enough
to be tolerable and both useful as well as complications due to the distributed nature
of DRE systems. Further research on closing the loop between the design-time state
of the system and the current dynamic state of the system is crucial to ensuring that
the benefits of the DSMLs are not restricted to design-time, minimizing the utility of

DSMLs for a whole class of dynamic DRE systems.

153

» “Just-in-time” physical assembly generation. Our current approach of optimiz-
ing component assemblies using “deployment-time” techniques as implemented in
PAM works well for systems with static/semi-static composition. By “semi-static,”
we refer to systems which exhibit certain adaptations at run-time, but the set of such
adaptations are defined apriori. For a certain class of systems, however, the PAM
approach is not feasible since the mapping of components to nodes as well as the
connectivity between components keeps changing dynamically. Unlike our current
implementation in PAM, our “deployment-time” techniques need to be applied at
run-time. Applying the fusion algorithms at run-time on systems that rely on a tra-
ditional source-code compilation model imposes its own challenges including avail-
ability of an environment to create an implementation through compilation. For cer-
tain other systems which are based on a virtual machine like Java and C#, however, it
is an attractive option since composition of physical assemblies can be done dynami-
cally. Further research is necessary to ensure that the creation of physical assemblies
at run-time in a dynamic fashion is faster than the time between adaptations to the

system.

* Integration-time QoS decomposition. Our approach in SIML to functional inte-
gration in an automated fashion is a first step towards integration, especially in DRE
systems. As described in Section VII.1.3, ensuring QoS from the integrated system is
crucial to ensuring overall success of the integration. There are two challenges with
ensuring QoS in the integrated system: (1) Mapping QoS between entities imple-
mented using heterogeneous COTS middleware but are connected together, (2) Map-
ping the system-level QoS requirements into a sub-system specific to QoS, where
each sub-system could be implemented using different COTS middleware technolo-
gies. Mapping QoS between entities requires a semantic mapping of the elements of
QoS configuration between the different COTS middleware technologies integrated.

This is a non-trivial process because there could be incompatibilities between the

154

same type of QoS as implemented by the two technologies; or worse one technology
could just be incapable of providing that type of QoS. Similarly, decomposing QoS
into sub-system specific QoS is non-trivial as it could have implications on the mod-
ularity of the system. Further research is needed to ensure that the desired QoS is

implemented by the integrated system as a whole.

155

APPENDIX A

LIST OF PUBLICATIONS

Research on PICML, PAM and SIML has lead to the following journal, conference and

workshop publications.

A.1 Book Chapters

1. Douglas C. Schmidt, Krishnakumar Balasubramanian, Arvind S. Krishna, Emre Turkay,
and Aniruddha Gokhale. Model-driven Development of Component-based Distributed
Real-time and Embedded Systems. Model Driven Development for Distributed Real-
time and Embedded Systems, edited by Sebastien Gerard, Joel Champea, and Jean-

Philippe Babau, Hermes, 2005

2. Krishnakumar Balasubramanian, Douglas C. Schmidt, Zoltan Molnar, and Akos
Ledeczi. System Integration via Model Composition. Designing Software-Intensive
Systems: Methods and Principles, Edited by Dr. Pierre F. Tiako, Published by Idea

Group, 2007

A.2 Refereed Journal Publications
1. Aniruddha Gokhale, Krishnakumar Balasubramanian, Jaiganesh Balasubramanian,
Arvind Krishna, and George T. Edwards, Gan Deng, Emre Turkay, Jeff Parsons,
and Douglas C. Schmidt. Model Driven Middleware: A New Paradigm for Deploy-
ing and Provisioning Distributed Real-time and Embedded Applications. Science

of Computer Programming: Special Issue on Model Driven Architecture, Edited by

Mehmet Aksit, 2007

156

. Krishnakumar Balasubramanian, Jaiganesh Balasubramanian, Jeff Parsons, Anirud-
dha Gokhale, and Douglas C. Schmidt. A Platform-Independent Component Model-
ing Language for Distributed Real-time and Embedded Systems. Elsevier Journal of

Computer and System Sciences, Volume 73, Number 2, pp. 171-185, March 2007

. Krishnakumar Balasubramanian, Aniruddha Gokhale, Gabor Karsai, Janos Sztipano-
vits, Sandeep Neema. Developing Applications Using Model-Driven Design Envi-

ronments. I[EEE Computer, vol. 39, no. 2, pp. 3340, Feb., 2006

. Krishnakumar Balasubramanian, Aniruddha Gokhale, Yuehua Lin, Jing Zhang, and
Jeff Gray. Weaving Deployment Aspects into Domain-Specific Models. Interna-
tional Journal on Software Engineering and Knowledge Engineering, vol. 16., no.

3, pp- 403-424, June 2006

. Krishnakumar Balasubramanian, Arvind S. Krishna, Emre Turkay, Jaiganesh Bala-
subramanian, Jeff Parsons, Aniruddha Gokhale, and Douglas C. Schmidt. Applying
Model-Driven Development to Distributed Real-time and Embedded Avionics Sys-
tems. [International Journal of Embedded Systems: Special issue on Design and

Verification of Real-Time Embedded Software, vol. 2, no. 3/4, pp.142-155, 2006

A.3 Refereed Conference Publications

. Amogh Kavimandan, Krishnakumar Balasubramanian, Nishanth Shankaran, Anirud-
dha Gokhale, and Douglas C. Schmidt. QUICKER: A Model-driven QoS Mapping
Tool. Proceedings of the 10th IEEE International Symposium on Object/Component/-
Service-oriented Real-time Distributed Computing, pp. 62-70, 2007, Santorini Is-

land, Greece.

. Krishnakumar Balasubramanian, Douglas C. Schmidt, Zoltan Molnar, and Akos
Ledeczi. Component-based System Integration via (Meta)Model Composition. Pro-

ceedings of the 14th Annual IEEE International Conference and Workshop on the

157

Engineering of Computer Based Systems (ECBS), pp. 93-102, 2007, Tucson, Ari-

Zzona

. Krishnakumar Balasubramanian, Jaiganesh Balasubramanian, Jeff Parsons, Anirud-
dha Gokhale, and Douglas C. Schmidt. A Platform-Independent Component Model-
ing Language for Distributed Real-time and Embedded Systems. Proceedings of the
11th IEEE Real-Time and Embedded Technology and Applications Symposium, pp.
190-199, 2005, San Francisco, CA

A.4 Refereed Workshop Publications

. Krishnakumar Balasubramanian, Douglas C. Schmidt. Ultra-Large Scale System
Integration via Model Composition. Companion to the 21st ACM SIGPLAN confer-
ence on Object-oriented programming systems, languages, and applications, Port-

land, OR USA October 2006

. Krishnakumar Balasubramanian, Douglas C. Schmidt, Nanbor Wang, Christopher D.
Gill. Towards Composable Distributed Real-time and Embedded Software. Proceed-
ings of the 8th IEEE Work- shop on Object-oriented Real-time Dependable Systems
(WORDS), pp. 226-233, 2003, Guadalajara, Mexico,

158

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi.
TIMES: A Tool for Schedulability Analysis and Code Generation of Real-Time Sys-
tems. In Kim Guldstrand Larsen and Peter Niebert, editors, Formal Modeling and
Analysis of Timed Systems: First International Workshop, FORMATS 2003, Mar-
seille, France, September 6-7, 2003. Revised Papers, volume 2791 of Lecture Notes
in Computer Science, pages 60—72. Springer, 2003. ISBN 3-540-21671-5.

Ken Arnold, James Gosling, and David Holmes. The Java Programming Language.
Addison-Wesley, Boston, third edition, 2000.

Krishnakumar Balasubramanian, Jaiganesh Balasubramanian, Jeff Parsons, Anirud-
dha Gokhale, and Douglas C. Schmidt. A platform-independent component mod-
eling language for distributed real-time and embedded systems. In RTAS ’05: Pro-
ceedings of the 11th IEEE Real Time on Embedded Technology and Applications
Symposium, pages 190-199, Los Alamitos, CA, USA, 2005. IEEE Computer Soci-
ety. ISBN 0-7695-2302-1. doi: http://dx.doi.org/10.1109/RTAS.2005.4.

Krishnakumar Balasubramanian, Aniruddha S. Gokhale, Yuehua Lin, Jing Zhang,
and Jeff Gray. Weaving deployment aspects into domain-specific models. Inter-
national Journal of Software Engineering and Knowledge Engineering, 16(3):403—
424, 2006.

Krishnakumar Balasubramanian, Douglas C. Schmidt, Zoltan Molnar, and Akos
Ledeczi. Component-based system integration via (meta)model composition. In
ECBS ’07: Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems, pages 93—102, Wash-
ington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2772-8. doi:
http://dx.doi.org/10.1109/ECBS.2007.24.

Dusan Bélek and Frantisek Plasil. Software connectors and their role in component
deployment. In Proceedings of the IFIP TC6 / WG6.1 Third International Working
Conference on New Developments in Distributed Applications and Interoperable
Systems, pages 69—-84, Deventer, The Netherlands, The Netherlands, 2001. Kluwer,
B.V. ISBN 0-7923-7481-9.

Keith Ballinger, David Ehnebuske, Christopher Ferris, Martin Gudgin,
Canyang Kevin Liu, Mark Nottingham, and Prasad Yendluri. WS-I Basic
Profile. www.ws-1i.org/Profiles/BasicProfile—1.1.html, April
2006.

Don Batory, Roberto Lopez-Herrejon, and Jean-Phillipe Martin. = Generating

Product-Lines of Product-Families. In Proceedings of the Automated Software En-
gineering Conference, 2002.

159

www.ws-i.org/Profiles/BasicProfile-1.1.html

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-wise refine-
ment. [EEE Transactions on Software Engineering, 30(6):355-371, 2004. ISSN
0098-5589. doi: http://doi.ieeecomputersociety.org/10.1109/TSE.2004.23.

N. Bencomo, G. Blair, G. Coulson, P. Grace, and A. Rashid. Reflection and aspects
meet again: runtime reflective mechanisms for dynamic aspects. In AOMD ’05:
Proceedings of the 1st workshop on Aspect oriented middleware development, New
York, NY, USA, 2005. ACM Press. ISBN 1-59593-265-8. doi: http://doi.acm.org/
10.1145/1101560.1101567.

Paul V. Biron and Ashok Malhotra et al. XML Schema Part 2: Datatypes. W3C
Recommendation, 2001. URL www.w3.0org/TR/xmlschema-2/.

Immanuel M. Bomze, Marco Budinich, Panos M. Pardalos, and Marcello Pelillo.
The maximum clique problem. In Ding-Zhu Du and Panos M. Pardalos, editors,
Handbook of Combinatorial Optimization, volume 4, pages 1-74. Kluwer Academic
Publishers Group, 1999.

T. Bray, J. Paoli, and C. M. Sperberg-McQueen (Eds). Extensible Markup Language
(XML) 1.0 (2nd Edition). W3C Recommendation, 2000. URL citeseer.n7.
nec.com/bray0Oextensible.html.

Chris Britton and Peter Bye. IT Architectures and Middleware: Strategies for Build-
ing Large, Integrated Systems. Addison-Wesley Professional, Boston, MA, USA,
May 2004.

Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected
graph. Communications of ACM, 16(9):575-577, 1973. 1ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/362342.362367.

J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A Framework for
Simulating and Prototyping Heterogeneous Systems. International Journal of Com-
puter Simulation, Special Issue on Simulation Software Development Component
Development Strategies, 4, April 1994,

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture—A System of Patterns. Wiley & Sons,
New York, 1996.

Bryan Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic instrumen-
tation of production systems. In Proceedings of the General Track: 2004 USENIX
Annual Technical Conference, pages 15-28, June 2004.

Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.
Web Services Description Language (WSDL) 1.1. www.w3.org/TR/wsdl,
March 2001.

160

www.w3.org/TR/xmlschema-2/
citeseer.nj.nec.com/bray00extensible.html
citeseer.nj.nec.com/bray00extensible.html
www.w3.org/TR/wsdl

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Michael Clarke, Gordon S. Blair, Geoff Coulson, and Nikos Parlavantzas. An effi-
cient component model for the construction of adaptive middleware. In Middleware
2001: Proceedings of the IFIP/ACM International Conference on Distributed Sys-
tems Platforms, pages 160—178. Springer-Verlag, 2001. ISBN 3-540-42800-3.

Lionel Cons and Piotr Poznanski. Pan: A high-level configuration language. In LISA
'02: Proceedings of the 16th USENIX conference on System administration, pages
83-98, Berkeley, CA, USA, 2002. USENIX Association.

World Wide Web Consortium. Web Ontology Language. www.w3.0rg/2004/
OWL/, Feb 2004.

G. Coulson, G.S. Blair, M. Clarke, and N. Parlavantzas. The design of a configurable
and reconfigurable middleware platform. Distributed Computing, 15(2):109-126,
2002.

Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, Reading, Massachusetts, 2000.

Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. An infrastructure
for the rapid development of xml-based architecture description languages. In /ICSE
'02: Proceedings of the 24th International Conference on Software Engineering,
pages 266-276, New York, NY, USA, 2002. ACM Press. ISBN 1-58113-472-X.
doi: http://doi.acm.org/10.1145/581339.581374.

Dionisio de Niz and Raj Rajkumar. Partitioning Bin-Packing Algorithms for Dis-
tributed Real-time Systems. International Journal of Embedded Systems, 2005.

Linda DeMichiel and Michael Keith. Enterprise Java Beans 3.0 Specifica-
tion: Simplified API. jcp.org/aboutJava/communityprocess/final/
jsr220/index.html, May 2006.

Gan Deng, Tao Lu, Emre Turkay, Aniruddha Gokhale, Douglas C. Schmidt, and
Andrey Nechypurenko. Model Driven Development of Inventory Tracking System.
In Proceedings of the OOPSLA 2003 Workshop on Domain-Specific Modeling Lan-
guages, Anaheim, CA, October 2003. ACM, ACM Press.

John DeTreville. Making system configuration more declarative. In HOTOS 05:
Proceedings of the 10th conference on Hot Topics in Operating Systems, pages 11—
11, Berkeley, CA, USA, 2005. USENIX Association.

Ada Diaconescu and John Murphy. Automating the performance management of
component-based enterprise systems through the use of redundancy. In ASE ’05:
Proceedings of the 20th IEEE/ACM international Conference on Automated soft-
ware engineering, pages 44-53, New York, NY, USA, 2005. ACM Press. ISBN
1-59593-993-4. doi: http://doi.acm.org/10.1145/1101908.1101918.

161

www.w3.org/2004/OWL/
www.w3.org/2004/OWL/
jcp.org/aboutJava/communityprocess/final/jsr220/index.html
jcp.org/aboutJava/communityprocess/final/jsr220/index.html

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Ada Diaconescu, Adrian Mos, and John Murphy. Automatic performance man-
agement in component based software systems. In ICAC ’04: Proceedings of the
First International Conference on Autonomic Computing (ICAC’04), pages 214—
221, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2114-2.

Ulrich Drepper. How to write shared libraries. http://people.redhat.com/
drepper/dsohowto.pdf, Nov 2002.

Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and Gary Lindstrom. Flick: a
flexible, optimizing idl compiler. In PLDI ’97: Proceedings of the ACM SIGPLAN
1997 conference on Programming language design and implementation, pages 44—
56, New York, NY, USA, 1997. ACM Press. ISBN 0-89791-907-6. doi: http://doi.
acm.org/10.1145/258915.258921.

Matthew Emerson and Janos Sztipanovits. Techniques for Metamodel Composition.
In The 6th OOPSLA Workshop on Domain-Specific Modeling, OOPSLA 2006, pages
123-139, Portland, OR, Oct 2006. ACM, ACM Press.

Areski Flissi and Philippe Merle. A generic deployment framework for grid comput-
ing and distributed applications. In Robert Meersman and Zahir Tari, editors, On the
Move to Meaningful Internet Systems 2006: CooplS, DOA, GADA, and ODBASE,
OTM Confederated International Conferences. Proceedings, Part II, volume 4276
of Lecture Notes in Computer Science, pages 1402-1411. Springer, 2006. ISBN
3-540-48274-1.

Bryan Ford, Mike Hibler, and Jay Lepreau. Using annotated interface definitions
to optimize rpc. In SOSP ’95: Proceedings of the fifteenth ACM symposium on
Operating systems principles, page 232, New York, NY, USA, 1995. ACM Press.
ISBN 0-89791-715-4. doi: http://doi.acm.org/10.1145/224056.225833.

Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. Grid Services for
Distributed System Integration. Computer, 35(6):37-46, 2002. ISSN 0018-9162.
doi: dx.doi.org/10.1109/MC.2002.1009167.

Apache Software Foundation. Apache virtual host documentation. http://
httpd.apache.org/docs/2.2/vhosts/, 2006.

G. Muller and R. Marlet and E.-N. Volanschi and C. Consel and C. Pu and A. Goel.
Fast, Optimized Sun RPC Using Automatic Program Specialization. In ICDCS ’98:
Proceedings of the The 18th International Conference on Distributed Computing
Systems, page 240, Washington, DC, USA, 1998. IEEE Computer Society. ISBN
0-8186-8292-2.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA,
1995.

162

http://people.redhat.com/drepper/dsohowto.pdf
http://people.redhat.com/drepper/dsohowto.pdf
http://httpd.apache.org/docs/2.2/vhosts/
http://httpd.apache.org/docs/2.2/vhosts/

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Lei Gao, Mike Dahlin, Amol Nayate, Jiandan Zheng, and Arun Iyengar. Application
specific data replication for edge services. In WWW ’03: Proceedings of the 12th
international conference on World Wide Web, pages 449—460, New York, NY, USA,
2003. ACM Press. ISBN 1-58113-680-3. doi: http://doi.acm.org/10.1145/775152.
775217.

Christopher D. Gill, Ron Cytron, and Douglas C. Schmidt. Middleware Schedul-
ing Optimization Techniques for Distributed Real-time and Embedded Systems. In

Proceedings of the 7" Workshop on Object-oriented Real-time Dependable Systems,
San Diego, CA, January 2002. IEEE.

Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software Factories:

Assembling Applications with Patterns, Models, Frameworks, and Tools. John Wiley
& Sons, New York, 2004.

Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt. The Design and
Performance of a Real-time CORBA Event Service. In Proceedings of OOPSLA
'97, pages 184-199, Atlanta, GA, October 1997. ACM.

John Hatcliff, William Deng, Matthew Dwyer, Georg Jung, and Venkatesh Prasad.
Cadena: An Integrated Development, Analysis, and Verification Environment for
Component-based Systems. In Proceedings of the 25th International Conference on
Software Engineering, Portland, OR, May 2003.

George T. Heineman and Bill T. Councill. Component-Based Software Engineering:
Putting the Pieces Together. Addison-Wesley, Reading, Massachusetts, 2001.

Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. C# Programming Language,
The (2nd Edition) (Microsoft .NET Development Series). Addison-Wesley Profes-
sional, 2006. ISBN 0321334434.

James H. Hill, John Slaby, Steve Baker, and Douglas C. Schmidt. Applying System
Execution Modeling Tools to Evaluate Enterprise Distributed Real-time and Embed-
ded System QoS. In Proceedings of the 12th International Conference on Embed-
ded and Real-Time Computing Systems and Applications, Sydney, Australia, August
2006.

Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing, Build-
ing, and Deploying Messaging Solutions. Addison-Wesley Professional, Boston,
MA, USA, October 2003.

Frank Hunleth and Ron K. Cytron. Footprint and Feature Management Using
Aspect-oriented Programming Techniques. In Proceedings of the Joint Conference
on Languages, Compilers and Tools for Embedded Systems (LCTES 02), pages 38—
45. ACM Press, 2002. ISBN 1-58113-527-0. doi: doi.acm.org/10.1145/513829.
513838.

163

[51] Andy Hunt and Dave Thomas. Pragmatic Unit Testing in C# with NUnit. The
Pragmatic Programmers, Raleigh, NC, USA, 2004. ISBN 0974514020.

[52] Galen Hunt, James Larus, Martin Abadi, Mark Aiken, Paul Barham, Manuel Fihn-
drich, Chris Hawblitzel, Orion Hodson, Steven Levi, Nick Murphy, Bjarne Steens-
gaard, David Tarditi, Ted Wobber, and Brian Zill. An overview of the singularity
project. Technical report, Microsoft Research, 2005.

[53] IBM. MQSeries Family. www—-4.ibm.com/software/ts/mgseries/,
1999.

[54] IBM. WebSphere. www.ibm.com/software/infol/websphere/index.
jsp, 2001.

[55] Institute for Software Integrated Systems. Component-Integrated ACE ORB
(CIAO). www.dre.vanderbilt.edu/CIAQO/, Vanderbilt University.

[56] R.M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, pages 85—-103. Plenum
Press, New York, NY, 1972.

[57] G. Karsai, M. Maroti, A. Ledeczi, J. Gray, and J. Sztipanovits. Composition and
cloning in modeling and meta-modeling. IEEE Transactions on Control Systems
Technology, 12(2):263-278, 2004.

[58] Gabor Karsai, Sandeep Neema, Ben Abbott, and David Sharp. A Modeling Lan-
guage and Its Supporting Tools for Avionics Systems. In Proceedings of 21st Digital
Avionics Systems Conf., Los Alamitos, CA, August 2002. IEEE Computer Society.

[59] Gabor Karsai, Janos Sztipanovits, Akos Ledeczi, and Ted Bapty. Model-Integrated
Development of Embedded Software. Proceedings of the IEEE, 91(1):145-164,
January 2003.

[60] Amogh Kavimandan, Krishnakumar Balasubramanian, Nishanth Shankaran,
Aniruddha Gokhale, and Douglas C. Schmidt. Quicker: A model-driven qos map-
ping tool for qos-enabled component middleware. In ISORC ’07: Proceedings of the
10th IEEE International Symposium on Object and Component-Oriented Real-Time
Distributed Computing, pages 62—70, Washington, DC, USA, 2007. IEEE Computer
Society. ISBN 0-7695-2765-5. doi: http://dx.doi.org/10.1109/ISORC.2007.50.

[61] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In
Proceedings of the 11th European Conference on Object-Oriented Programming,
pages 220-242, June 1997.

164

www-4.ibm.com/software/ts/mqseries/
www.ibm.com/software/info1/websphere/index.jsp
www.ibm.com/software/info1/websphere/index.jsp

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

John S. Kinnebrew, Ankit Gupta, Nishanth Shankaran, Gautam Biswas, and Dou-
glas C. Schmidt. Decision-Theoretic Planner with Dynamic Component Recon-
figuration for Distributed Real-time Applications. In The 8th International Sympo-
sium on Autonomous Decentralized Systems (ISADS 2007), Sedona, Arizona, March
2007.

Ina Koch. Enumerating all connected maximal common subgraphs in two graphs.
Theoretical Computer Science, 250(1-2):1-30, 2001. ISSN 0304-3975. doi: http:
//dx.doi.org/10.1016/S0304-3975(00)00286-3.

Sharath Kodase, Shige Wang, Zonghua Gu, and Kang G. Shin. Improving Scalability
of Task Allocation and Scheduling in Large Distributed Real-time Systems using
Shared Buffers. In Proceedings of the 9th Real-time/Embedded Technology and
Applications Symposium (RTAS 2003), Washington, DC, May 2003. IEEE.

Arvind Krishna, Aniruddha Gokhale, Douglas C. Schmidt, John Hatcliff, and
Venkatesh Ranganath. Context-Specific Middleware Specialization Techniques for
Optimizing Software Product-line Architectures. In Proceedings of EuroSys 2006,
Leuven, Belgium, April 2006. ACM.

Patrick Lardieri, Jaiganesh Balasubramanian, Douglas C. Schmidt, Gautam Thaker,
Aniruddha Gokhale, and Tom Damiano. A Multi-layered Resource Management
Framework for Dynamic Resource Management in Enterprise DRE Systems. Jour-

nal of Systems and Software: Special Issue on Dynamic Resource Management in
Distributed Real-time Systems, 80(7):984-996, July 2007.

Akos Ledeczi, Arpad Bakay, Miklos Maroti, Peter Volgysei, Greg Nordstrom,
Jonathan Sprinkle, and Gabor Karsai. Composing Domain-Specific Design Envi-
ronments. IEEE Computer, pages 44-51, November 2001.

Akos Lédeczi, Greg Nordstrom, Gabor Karsai, Peter Volgyesi, and Miklos Maroti.
On Metamodel Composition. In Proceedings of the 2001 IEEE International Con-
ference on Control Applications (CCA), pages 756760, Mexico City, Mexico, 2001.
IEEE.

SanglJeong Lee, Kang-Won Lee, Kyung Dong Ryu, Jong-Deok Choi, and Dinesh
Verma. Ise01-4: Deployment time performance optimization of internet services.
Global Telecommunications Conference, 2006. GLOBECOM’06. IEEE, pages 1-6,
Nov 2006.

Chenyang Lu, John A. Stankovic, Sang H. Son, and Gang Tao. Feedback control
real-time scheduling: Framework, modeling, and algorithms. Real-Time Syst., 23
(1-2):85-126, 2002. ISSN 0922-6443.

Heiko Ludwig, Alexander Keller, Asit Dan, Richard P. King, and Richard
Franck. Web Service Level Agreement Language Specification. researchweb.

165

researchweb.watson.ibm.com/wsla/documents.html
researchweb.watson.ibm.com/wsla/documents.html

watson.ibm.com/wsla/documents.html, January 2003.

[72] Chris Liier. Evaluating the eclipse platform as a composition environment. In 3rd In-
ternational Workshop on Adoption-Centric Software Engineering ACSE 2003, ICSE
'03: Proceedings of the 25th International Conference on Software Engineering,
pages 789-790. IEEE Computer Society, 2003.

[73] Chris Liier and David S. Rosenblum. Wren—an environment for component-based
development. In ESEC / SIGSOFT FSE, pages 207-217, 2001.

[74] Gabor Madl, Sherif Abdelwahed, and Gabor Karsai. Automatic Verification of
Component-Based Real-time CORBA Applications. In The 25th IEEE Real-time
Systems Symposium (RTSS 04), Lisbon, Portugal, December 2004.

[75] Vincent Massol and Ted Husted. JUnit in Action. Manning Publications Co., Green-
wich, CT, USA, 2003. ISBN 1930110995.

[76] Dylan McNamee, Jonathan Walpole, Calton Pu, Crispin Cowan, Charles Krasic,
Ashvin Goel, Perry Wagle, Charles Consel, Gilles Muller, and Renauld Marlet.
Specialization tools and techniques for systematic optimization of system soft-
ware. ACM Trans. Comput. Syst., 19(2):217-251, 2001. ISSN 0734-2071. doi:
http://doi.acm.org/10.1145/377769.377778.

[77] Atif Memon, Adam Porter, Cemal Yilmaz, Adithya Nagarajan, Douglas C. Schmidt,
and Bala Natarajan. Skoll: Distributed Continuous Quality Assurance. In Pro-
ceedings of the 26th IEEE/ACM International Conference on Software Engineering,
Edinburgh, Scotland, May 2004. IEEE/ACM.

[78] Bertrand Meyer. Applying Design By Contract. Computer (IEEE), 25(10):40-51,
October 1992.

[79] Mira Mezinia and Klaus Ostermann. Variability Management with Feature-oriented
Programming and Aspects. SIGSOFT Softw. Eng. Notes, 29(6):127-136, 2004.
ISSN 0163-5948. doi: http://doi.acm.org/10.1145/1041685.1029915.

[80] Microsoft. Virtual address dump. http://support.microsoft.com/kb/
927229, December 2006.

[81] Microsoft Corporation. Microsoft .NET Development. msdn.microsoft.com/
net/, 2002.

[82] Sun Microsystems. J2EE Connector Architecture Specification. java.sun.com/
j2ee/connector/, November 2003.

[83] Nikola Milanovic and Miroslaw Malek. Current solutions for web service com-
position. [EEE Internet Computing, 8(6):51-59, 2004. ISSN 1089-7801. doi:
http://dx.doi.org/10.1109/MIC.2004.58.

166

researchweb.watson.ibm.com/wsla/documents.html
researchweb.watson.ibm.com/wsla/documents.html
http://support.microsoft.com/kb/927229
http://support.microsoft.com/kb/927229
msdn.microsoft.com/net/
msdn.microsoft.com/net/
java.sun.com/j2ee/connector/
java.sun.com/j2ee/connector/

[84] Ingo Molnar. Linux with real-time pre-emption patches. http://people.
redhat.com/mingo/realtime-preempt/, Sep 2006.

[85] Nirmal K. Mukhi, Ravi Konuru, and Francisco Curbera. Cooperative middleware
specialization for service oriented architectures. In WWW Alt. '04: Proceedings
of the 13th international World Wide Web conference on Alternate track papers &
posters, pages 206-215, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-
912-8. doi: http://doi.acm.org/10.1145/1013367.1013401.

[86] Sandeep Neema, Janos Sztipanovits, Gabor Karsai, and Ken Butts. Constraint-Based
Design-Space Exploration and Model Synthesis. In Rajeev Alur and Insup Lee, ed-
itors, Embedded Software, Third International Conference, volume 2855 of Lecture
Notes in Computer Science, pages 290-305. Springer, 2003. ISBN 3-540-20223-4.

[87] Object Management Group. CORBA Messaging Specification. Object Management
Group, OMG Document orbos/98-05-05 edition, May 1998.

[88] CORBA Components. Object Management Group, OMG Document formal/2002-
06-65 edition, June 2002.

[89] CORBA Components v4.0. Object Management Group, OMG Document
formal/2006-04-01 edition, April 2006.

[90] Deployment and Configuration Adopted Submission. Object Management Group,
OMG Document mars/03-05-08 edition, July 2003.

[91] UML Profile for Enterprise Application Integration (EAI). Object Management
Group, omg document formal/04-03-26 edition, March 2004.

[92] Object Management Group. Fault Tolerant CORBA, Chapter 23, CORBA v3.0.3.
Object Management Group, OMG Document formal/04-03-10 edition, March 2004.

[93] MetaObject Facility (MOF) 2.0 Core Specification. Object Management Group,
OMG Document ptc/03-10-04 edition, October 2003.

[94] Minimum CORBA - Joint Revised Submission. Object Management Group, OMG
Document orbos/98-08-04 edition, August 1998.

[95] Object Management Group. Real-time CORBA Specification. Object Management
Group, 1.2 edition, January 2005.

[96] Unified Modeling Language (UML) v1.4. Object Management Group, OMG Docu-
ment formal/2001-09-67 edition, September 2001.

[97]1 MOF 2.0/XMI Mapping Specification, v2.1. Object Management Group, OMG Doc-
ument formal/05-09-01 edition, September 2005.

167

http://people.redhat.com/mingo/realtime-preempt/
http://people.redhat.com/mingo/realtime-preempt/

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

Object Technology International, Inc. Eclipse Platform Technical Overview: White
Paper. Object Technology International, Inc., Updated for 2.1, Original publication
July 2001 edition, February 2003.

Martin Odersky and Matthias Zenger. Scalable component abstractions. SIG-
PLAN Not., 40(10):41-57, 2005. ISSN 0362-1340. doi: http://doi.acm.org/10.1145/
1103845.1094815.

Nicole Oldham, Kunal Verma, Amit Sheth, and Farshad Hakimpour. Semantic ws-
agreement partner selection. In WWW ’06: Proceedings of the 15th international
conference on World Wide Web, pages 697-706, New York, NY, USA, 2006. ACM
Press. ISBN 1-59593-323-9. doi: http://doi.acm.org/10.1145/1135777.1135879.

Omer Erdem Demir, Prémkumar Dévanbu, Eric Wohlstadter, and Stefan Tai. An
aspect-oriented approach to bypassing middleware layers. In AOSD ’07: Proceed-
ings of the 6th international conference on Aspect-oriented software development,
pages 25-35, New York, NY, USA, 2007. ACM Press. ISBN 1-59593-615-7. doi:
http://doi.acm.org/10.1145/1218563.1218567.

OMG. The Common Object Request Broker: Arch. and Specification. OMG, 2002.

Deployment and Configuration Adopted Submission. OMG, Document ptc/03-07-08
edition, July 2003.

Deployment and Configuration of Component-based Distributed Applications, v4.0.
OMG, Document formal/2006-04-02 edition, April 2006.

Klaus Ostermann. Dynamically composable collaborations with delegation layers.
In ECOOP ’02: Proceedings of the 16th European Conference on Object-Oriented
Programming, pages 89-110, London, UK, 2002. Springer-Verlag. ISBN 3-540-
43759-2.

Adrian Paschke, Jens Dietrich, and Karsten Kuhla. A logic based sla management
framework. In Lalana Kagal, Tim Finin, and James Hendler, editors, ISWC ’05: Pro-
ceedings of the Semantic Web and Policy Workshop, 4th International Semantic Web
Conference, pages 68—83, Baltimore, MD, USA, November 2005. UMBC eBiquity
Research Group.

Shankar R. Ponnekanti and Armando Fox. SWORD: A Developer Toolkit for Web
Service Composition. In WWW ’02: Proceedings of the World Wide Web Confer-
ence: Alternate Track on Tools and Languages for Web Development, New York,
NY, USA, jan 2002. ACM Press.

Christian Prehofer. Feature-oriented programming: A fresh look at objects. In
Mehmet Aksit and Satoshi Matsuoka, editors, ECOOP’97—Object-Oriented Pro-
gramming, 11th European Conference, volume 1241, pages 419443, Jyviskyl4,

168

Finland, 9-13 1997. Springer. ISBN ISBN 3-540-63089-9. URL citeseer.nj.
nec.com/195556.html.

[109] Irfan Pyarali, Douglas C. Schmidt, and Ron Cytron. Achieving End-to-End Pre-
dictability of the TAO Real-time CORBA ORB. In 8" IEEE Real-time Technology
and Applications Symposium, San Jose, September 2002. IEEE.

[110] Vivien Quéma, Roland Balter, Luc Bellissard, David Féliot, André Freyssinet,
and Serge Lacourte. Asynchronous, hierarchical, and scalable deployment of
component-based applications. In Component Deployment, Second International
Working Conference, CD 2004, Edinburgh, UK, May 20-21, 2004, Proceedings,
volume 3083 of Lecture Notes in Computer Science, pages 50—64. Springer, 2004.
ISBN 3-540-22059-3.

[111] R. Schantz and J. Loyall and D. Schmidt and C. Rodrigues and Y. Krishnamurthy
and [. Pyarali. Flexible and Adaptive QoS Control for Distributed Real-time and
Embedded Middleware. In Proc. of the IFIP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware 2003), Rio de Janeiro, Brazil, 2003.

[112] Jeffrey Richter. Applied Microsoft .NET Framework Programming. Microsoft Press,
Redmond, WA, USA, 2002. ISBN 0735614229.

[113] Wendy Roll. Towards Model-Based and CCM-Based Applications for Real-time
Systems. In Proceedings of the International Symposium on Object-Oriented Real-
time Distributed Computing (ISORC). IEEE/IFIP, May 2003.

[114] Marshal Rose. The Blocks Extensible Exchange Protocol (BEEP) Core. IETF Net-
work Working Group Request for Comments, RFC 3080, pages 1-58, March 2001.

[115] Douglas C. Schmidt. The ADAPTIVE Communication Environment (ACE).
www.cs.wustl.edu/~schmidt/ACE.html, 1997.

[116] Douglas C. Schmidt. Model-Driven Engineering. [EEE Computer, 39(2):25-31,
2006.

[117] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee. The Design and Per-
formance of Real-time Object Request Brokers. Computer Communications, 21(4):
294-324, April 1998.

[118] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture: Patterns for Concurrent and Networked Objects,
Volume 2. Wiley & Sons, New York, 2000.

[119] Douglas C. Schmidt, Bala Natarajan, Aniruddha Gokhale, Nanbor Wang, and
Christopher Gill. TAO: A Pattern-Oriented Object Request Broker for Distributed
Real-time and Embedded Systems. IEEE Distributed Systems Online, 3(2), February

169

citeseer.nj.nec.com/195556.html
citeseer.nj.nec.com/195556.html

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

2002.

Nishanth Shankaran, Douglas C. Schmidt, Yingming Chen, Xenofon Koutsoukous,
and Chenyang Lu. The Design and Performance of Configurable Component Mid-
dleware for End-to-End Adaptation of Distributed Real-time Embedded Systems.
In Proc. of the 10th IEEE International Symposium on Object/Component/Service-
oriented Real-time Distributed Computing (ISORC 2007), Santorini Island, Greece,
May 2007.

Praveen Sharma, Joseph Loyall, George Heineman, Richard Schantz, Richard
Shapiro, and Gary Duzan. Component-Based Dynamic QoS Adaptations in Dis-
tributed Real-time and Embedded Systems. In Proc. of the Intl. Symp. on Dist.
Objects and Applications (DOA’04), Agia Napa, Cyprus, October 2004.

David C. Sharp. Reducing Avionics Software Cost Through Component Based Prod-
uct Line Development. In Patrick Donohoe, editor, Software Product Lines: Expe-
rience and Research Directions, volume 576 of The Springer International Series
in Engineering and Computer Science, New York, NY, USA, Aug 2000. Springer-
Verlag.

David C. Sharp. Avionics Product Line Software Architecture Flow Policies. In
Proceedings of the 18th IEEE/AIAA Digital Avionics Systems Conference (DASC),
October 1999.

David C. Sharp and Wendy C. Roll. Model-Based Integration of Reusable
Component-Based Avionics System. In Proc. of the Workshop on Model-Driven
Embedded Systems in RTAS 2003, May 2003.

Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library:
User Guide and Reference Manual. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002. ISBN 0-201-72914-8.

Gurdip Singh and Sanghamitra Das. Customizing event ordering middleware
for component-based systems. In ISORC ’05: Proceedings of the Eighth IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC’05), pages 359-362, Washington, DC, USA, 2005. IEEE Computer Society.
ISBN 0-7695-2356-0. doi: http://dx.doi.org/10.1109/ISORC.2005.23.

Yannis Smaragdakis and Don Batory. Mixin layers: an object-oriented implementa-
tion technique for refinements and collaboration-based designs. ACM Trans. Softw.
Eng. Methodol., 11(2):215-255, 2002. ISSN 1049-331X. doi: http://doi.acm.org/
10.1145/505145.505148.

Connie Smith and Lloyd Williams. Performance Solutions: A Practical Guide to

Creating Responsive, Scalable. Addison-Wesley Professional, Boston, MA, USA,
September 2001.

170

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

John A. Stankovic, Ruiqing Zhu, Ram Poornalingam, Chenyang Lu, Zhendong Yu,
Marty Humphrey, and Brian Ellis. Vest: An aspect-based composition tool for real-
time systems. In RTAS ’03: Proceedings of the The 9th IEEE Real-Time and Em-
bedded Technology and Applications Symposium, page 58, Washington, DC, USA,
2003. IEEE Computer Society. ISBN 0-7695-1956-3.

Bjarne Stroustrup. The C++ Programming Language, Special Edition. Addison-
Wesley, Boston, 2000.

Venkita Subramonian, Liang-Jui Shen, Christopher Gill, and Nanbor Wang. The
design and performance of configurable component middleware for distributed real-
time and embedded systems. In RTSS '04: Proceedings of the 25th IEEE In-
ternational Real-Time Systems Symposium (RTSS’04), pages 252-261, Washing-
ton, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2247-5. doi: http:
//dx.doi.org/10.1109/REAL.2004.53.

SUN. Java Messaging Service Specification. java.sun.com/products/
jms/, 2002.

SUN. Java Remote Method Invocation (RMI) Specification. java.sun.com/
products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.html,
2002.

Sun Microsystems. Enterprise JavaBeans Specification.

java.sun.com/products/ejb/docs.html, August 2001.

Clemens Szyperski. Component Software — Beyond Object-Oriented Programming.
Addison-Wesley, Reading, Massachusetts, 1998.

Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn et al.
XML Schema Part 1: Structures. W3C Recommendation, 2001. URL www.w3.
org/TR/xmlschema-1/.

Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The worst-case time complex-
ity for generating all maximal cliques and computational experiments. Theoretical
Computer Science, 363(1):28-42, 2006.

Bruce Trask, Dominick Paniscotti, Angel Roman, and Vikram Bhanot. Using model-
driven engineering to complement software product line engineering in developing
software defined radio components and applications. In OOPSLA *06: Companion
to the 21st ACM SIGPLAN conference on Object-oriented programming systems,
languages, and applications, pages 846-853, New York, NY, USA, 2006. ACM
Press. ISBN 1-59593-491-X. doi: http://doi.acm.org/10.1145/1176617.1176733.

David TrowBridge, Ulrich Roxburgh, Gregor Hohpe, Dragos Manolescu, and E. G.
Nadhan. Integration Patterns. msdn.microsoft.com/library/default.

171

java.sun.com/products/jms/
java.sun.com/products/jms/
java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.html
java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.html
www.w3.org/TR/xmlschema-1/
www.w3.org/TR/xmlschema-1/
msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/intpatt.asp
msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/intpatt.asp

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

asp?url=/library/en—-us/dnpa tml/intpatt.asp, June .
p?url=/1lib v/ /dnpag/html/intp P, J 2004

Robert van Engelen and Kyle Gallivan. The gSOAP Toolkit for Web Services
and Peer-to-Peer Computing Networks. In CCGRID ’02: Proceedings of the 2nd
IEEE/ACM International Symposium on Cluster Computing and the Grid, pages
128-135, Los Alamitos, CA, USA, 2002. IEEE Computer Society. ISBN 0-
7695-1582-7. URL csdl.computer.org/comp/proceedings/ccgrid/
2002/1582/00/15820128abs.htm.

W3C. Simple Object Access Protocol (SOAP) 1.1. www.w3c.org/TR/SOAP,
May 2000.

Nanbor Wang and Christopher Gill. Improving real-time system configuration via a
gos-aware corba component model. In HICSS '04: Proceedings of the Proceedings
of the 37th Annual Hawaii International Conference on System Sciences (HICSS 04)
- Track 9, page 90273.2, Washington, DC, USA, 2004. IEEE Computer Society.
ISBN 0-7695-2056-1.

Nanbor Wang, Douglas C. Schmidt, Kirthika Parameswaran, and Michael Kircher.
Applying Reflective Middleware Techniques to Optimize a QoS-enabled CORBA
Component Model Implementation. In 24th Computer Software and Applications
Conference, Taipei, Taiwan, October 2000. IEEE.

Nanbor Wang, Christopher Gill, Douglas C. Schmidt, and Venkita Subramonian.
Configuring Real-time Aspects in Component Middleware. In Proc. of the Interna-
tional Symposium on Distributed Objects and Applications (DOA’04), volume 3291,
pages 1520-1537, Agia Napa, Cyprus, October 2004. Springer-Verlag.

Nanbor Wang, Douglas C. Schmidt, Aniruddha Gokhale, Craig Rodrigues, Bal-
achandran Natarajan, Joseph P. Loyall, Richard E. Schantz, and Christopher D. Gill.
QoS-enabled Middleware. In Qusay Mahmoud, editor, Middleware for Communi-
cations, pages 131-162. Wiley and Sons, New York, 2004.

Jos Warmer and Anneke Kleppe. The Object Constraint Language: Getting Your
Models Ready for MDA. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2003. ISBN 0321179366.

Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac
Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated experi-
mental environment for distributed systems and networks. In Proc. of the Fifth Sym-
posium on Operating Systems Design and Implementation, pages 255-270, Boston,
MA, December 2002. USENIX Association.

Jules White, Douglas Schmidt, and Aniruddha Gokhale. Simplifying Autonomic

Enterprise Java Bean Applications via Model-driven Development: a Case Study.
In MODELS 2006: 8th International Conference on Model Driven Engineering

172

msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/intpatt.asp
msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/intpatt.asp
csdl.computer.org/comp/proceedings/ccgrid/2002/1582/00/15820128abs.htm
csdl.computer.org/comp/proceedings/ccgrid/2002/1582/00/15820128abs.htm
www.w3c.org/TR/SOAP

[149]

[150]

[151]

[152]

[153]

Languages and Systems, Montego Bay, Jamacia, October 2005. IEEE/ACM, ACM
Press.

Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Dumas, Jayant
Kalagnanam, and Henry Chang. QoS-Aware Middleware for Web Services Com-
position. [EEE Trans. Softw. Eng., 30(5):311-327, 2004. ISSN 0098-5589. doi:
dx.doi.org/10.1109/TSE.2004.11.

Inc ZeroC. The Internet Communications Engine’™. www.zeroc.com/ice.
html, 2003.
Charles Zhang, Dapeng Gao, and Hans-Arno Jacobsen. Towards just-in-time mid-

dleware architectures. In AOSD ’05: Proceedings of the 4th international confer-
ence on Aspect-oriented software development, pages 63—74, New York, NY, USA,
2005. ACM Press. ISBN 1-59593-042-6. doi: http://doi.acm.org/10.1145/1052898.
1052904.

Ronghua Zhang, Chenyang Lu, Tarek F. Abdelzaher, and John A. Stankovic. Con-
trolware: A middleware architecture for feedback control of software performance.
In ICDCS °02: Proceedings of the 22 nd International Conference on Distributed
Computing Systems (ICDCS’02), page 301, Washington, DC, USA, 2002. IEEE
Computer Society. ISBN 0-7695-1585-1.

John A. Zinky, David E. Bakken, and Richard Schantz. Architectural Support for
Quality of Service for CORBA Objects. Theory and Practice of Object Systems, 3
(1):1-20, 1997.

173

www.zeroc.com/ice.html
www.zeroc.com/ice.html

	Dedication
	Acknowledgments
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Emerging Trends and Technologies
	Overview of Component Middleware
	Research Challenges
	Research Approach
	Research Contributions
	Dissertation Organization

	Evaluation of Alternate Approaches
	Composition of Component-based Systems
	System Composition: Alternate Approaches
	System Composition: Unresolved Challenges

	Optimization of Component-based Systems
	System Optimization: Alternate Approaches
	System Optimization: Unresolved Challenges

	Integration of Component-based Systems
	System Integration: Alternate Approaches
	System Integration: Unresolved Challenges

	Summary

	Techniques for Composing Component-based Systems
	Overview of PICML
	Composition using QoS-enabled Component Middleware - A Case Study
	Challenges in Composing the UAV Application
	Resolving UAV Composition Challenges with PICML

	Summary

	Techniques for Optimizing Component-based Systems
	Challenges in Large-scale Component-based DRE systems
	Key Sources of Memory Footprint Overhead
	Key Sources of Latency Overhead

	Deployment-time Optimization Techniques
	Deployment-time Optimization Algorithms
	Design and Functionality of the Physical Assembly Mapper

	Empirical Evaluation and Analysis
	Experimental Platforms
	Experimental Setup
	Empirical Footprint Results
	Empirical Latency Results

	Summary

	Techniques for Integrating Component-based Systems
	Functional Integration - A Case Study
	Shipboard Enterprise Distributed System Architecture
	Functional Integration Challenges

	DSML Composition using GME
	Integrating Systems with SIML
	The Design and Functionality of SIML
	Resolving Functional Integration Challenges using SIML
	Evaluating SIML

	Summary

	Comparison with Related Research
	Related Research: Composition Techniques
	Related Research: Optimization Techniques
	Related Research: Integration Techniques
	Summary

	CONCLUDING REMARKS
	Lessons Learned
	Composition Techniques
	Optimization Techniques
	Integration Techniques

	Summary of Research Contributions
	Future Research Directions

	List of Publications
	Book Chapters
	Refereed Journal Publications
	Refereed Conference Publications
	Refereed Workshop Publications

	REFERENCES

