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CHAPTER I 
 
 

BACKGROUND 
 
 

Introduction 
 

Humans consume many microorganisms each day, but most cannot successfully 

colonize the human stomach due to its highly acidic environment of pH 1-2.  An exception to 

this rule is an organism known as Helicobacter pylori, which has an extraordinary ability to 

colonize the human gastric mucosa.  This bacterium was first visualized in the late 19th 

century by European pathologists, but because it could not be isolated, it was ultimately 

forgotten for almost a century.  By 1979, pathologists were again recognizing these bacteria 

in gastric biopsy specimens; however, it was not until 1982 that the bacterium was first 

isolated (63), forever changing the view that the human stomach is an inhospitable acidic 

environment in which bacteria cannot grow.  In the Background section, the microbiology 

and epidemiology of H. pylori will briefly be discussed in addition to H. pylori-associated 

diseases.  Furthermore, our current understanding of a secreted virulence factor, VacA, will 

be discussed. 

 

Microbiological characteristics 

 The gram-negative bacterium H. pylori was named because of its spiral or helical 

shape (62).  Although usually spiral shaped, H. pylori can appear rod shaped or even coccoid 

shaped after extended in vitro culture or treatment with antibiotics (52).  Additionally, each 

organism has four to six unipolar sheathed flagella, which are essential for bacterial motility 

and allow movement through the mucus layer overlying gastric epithelial cells (21).  These 
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organisms grow in a microaerophilic, or reduced oxygen, environment, and have an 

additional need for CO2.  H. pylori is urease positive, allowing short-term survival in the 

acidic gastric lumen.  Furthermore, H. pylori is both catalase and oxidase positive, which are 

characteristics used to aid in its identification (52). 

 

Epidemiology and H. pylori-associated diseases 

 H. pylori is present in human stomachs throughout the world, but its prevalence 

varies greatly among countries.  Infection is strongly correlated with socioeconomic status, 

with prevalence ranging from 70-90% in developing countries, compared to 25-50% in 

developed countries.  Initial colonization occurs predominantly in childhood, and once 

acquired, the infection persists for the lifetime of the host, unless eradicated with 

antimicrobial therapy (21).  Although a definitive transmission pathway has yet to be 

defined, two commonly described routes of how H. pylori travels to the stomach of one 

person from that of another are fecal-oral transmission and oral-oral transmission.  It is well 

established that intrafamilial spread plays a major role in transmission (87). 

 Several diseases that are commonly associated with H. pylori colonization include 

duodenal and gastric ulcers, gastric cancer, and gastric MALT lymphoma (21).  Although all 

infected individuals develop gastritis, very few actually go on to develop more severe 

disease.  It is estimated that H. pylori-infected patients have a 10-20% risk of developing 

ulcer disease and a 1-2% risk of developing gastric cancer (52).  It is striking that such a 

small fraction of individuals carrying H. pylori develop illness.  The risk of development of 

disease is known to be dependent on three factors:  bacterial virulence, host genetic 

susceptibility, and environmental factors (2).  In 1994, H. pylori was classified as a type I, or 



 3

definite, carcinogen and gastric cancer is known as one of the leading causes of cancer-

related deaths worldwide (101). 

 

H. pylori colonization and virulence factors 

 H. pylori populations are extremely diverse because of point mutations, substitutions, 

and insertions and deletions in their genomes (5, 36).  Additionally, gastric colonization with 

more than one distinct strain of H. pylori is common, leading to both chromosomal 

rearrangements and recombination among strains (5, 42).  This extraordinary diversity has 

made it difficult to identify bacterial factors that are associated with disease; however, 

several putative virulence factors have been described.  Two very well characterized 

virulence factors of H. pylori are the cag pathogenicity island (cag PAI) and the vacuolating 

cytotoxin A (vacA) (8, 57).  H. pylori strains can be distinguished by the presence or absence 

of the cag PAI, a region of chromosomal DNA made up of approximately 30 genes (86).  

One gene, cagA, is used as a marker of the cag PAI.  Genes within the cag PAI encode 

proteins that assemble into a type IV secretion system, which can translocate the effector 

protein CagA into epithelial cells.  cagA+ strains are more commonly associated with severe 

gastritis, peptic ulcer disease, and gastric cancer compared to cagA- strains (86).   The 

vacuolating cytotoxin A is the focus of this thesis and will be discussed in more detail in the 

next section.  In brief, all H. pylori strains carry a vacA gene, but there is considerable 

variation in vacA gene sequences among different strains, and several allelic types are 

associated with an increased risk of disease (52).     

 In addition to the above factors that contribute to disease, several colonization factors 

have also been described.  These factors contribute to the mechanisms by which H. pylori 
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can survive and grow in the harsh environment of the stomach.  All strains of H. pylori 

express urease and flagella, two factors that are required for colonization and survival in the 

stomach (4).  Urease is an enzyme that breaks down urea to form ammonia and carbon 

dioxide, leading to an increase in pH, and ultimately buffering the acid microenvironment 

(71).  Flagella enable H. pylori to penetrate and colonize the gastric mucus layer (77).  A 

number of adhesins and outer membrane proteins are also expressed by H. pylori (2); 

however, their role in colonization has not yet been rigorously assessed in animal models. 

  

Vacuolating cytotoxin A structure and allelic variation 

 The vacA gene encodes for an approximately 140 kDa precursor protein, which 

undergoes proteolytic processing to yield a 33 amino acid amino-terminal signal sequence, 

an 88 kDa mature secreted toxin, a ~12 kDa secreted peptide, and an approximately 33 kDa 

carboxy-terminal domain that remains associated with the bacteria (6, 14, 76, 106).  The 

carboxy-terminal domain exhibits homology to the carboxy-terminal domain of IgA protease 

of Neisseria gonorrhoeae (95), a prototype autotransporter protein (39, 88).  In agreement 

with this, VacA is known to be secreted by a type Va, or autotransporter, mechanism, 

meaning that it directs its own transport across the bacterial outer membrane (26).  The 

amino-terminal signal sequence is cleaved during translocation across the inner membrane 

via the Sec pathway and the carboxy-terminal fragment inserts into the outer membrane, 

forming a β-barrel pore through which the passenger domain is exported.  It is not clear 

whether the mature VacA toxin is cleaved from the autotransporter domain by 

autoproteolysis or an unidentified protease, but no protease activity has been shown for 

VacA.  The 33 kDa autotransporter domain remains localized in the bacterial cell (26).  After 
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removal of the amino-terminal signal sequence and carboxy-terminal autotransporter domain, 

the mature 88 kDa VacA is secreted into the culture medium; however, much of the toxin 

may remain associated with the surface of the bacteria (41). 

 A functional vacA gene is present in all H. pylori strains, although there is 

considerable sequence heterogeneity within the gene (3, 14).  This heterogeneity is one of the 

factors that ultimately leads to variation in toxin activity observed in culture supernatants 

from different H. pylori strains.  There are several distinct families of vacA alleles, based on 

sequence analysis at the 5’ end of the gene (encoding the amino-terminal signal sequence; 

designated s1 and s2), the mid-region of the gene (designated m1 and m2), and an additional 

region of variation termed the intermediate (i) region (3, 91, 100, 116).  All combinations of 

the s and m regions have been described, although s2/m1 alleles are rare (55).  Among 

infected individuals, H. pylori strains harboring the m1 allele are more commonly associated 

with severe disease outcome than are strains with the m2 allele, including an increased risk 

for gastric carcinoma.  Likewise, H. pylori strains with an s1 allele are also likely to develop 

more severe clinical disease compared to strains with an s2 allele (25).  It has been found that 

VacA causes degeneration of the gastric mucosa and acute inflammation in mice when orally 

administered (106).  These human and mouse data highlight the relevance of this bacterial 

toxin in disease.  In vitro, type s2 VacA lacks vacuolating cytotoxicity (3, 54, 66), s1/m1 

toxins are associated with the highest levels of vacuolating activity in a broad range of cell 

types, and type s1/m2 forms produce detectable vacuolation in a more limited range of cell 

types (82, 111, 121). 
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VacA cellular effects 

 One of the first noted effects of VacA was its ability to induce large cytoplasmic 

vacuoles in cultured mammalian cells (57) (Figure I-1).  The vacuoles are able to take up the 

weak base neutral red, suggesting an acidic lumen, and thus the neutral red uptake assay has 

become a commonly used assay to quantitate vacuolating activity (13) (Figure I-1).  

Vacuolation is known to be dependent on the presence of weak bases, such as ammonium 

chloride, in the extracellular medium (15).  Several studies have shown that vacuoles induced 

by VacA are enriched with the markers Rab7, Lamp1, and Lgp110, each of which is typically 

associated with late endocytic and lysosomal compartments (58, 73, 83, 84).  This suggests 

that vacuolar membranes may be derived from compartments such as these.  Although 

vacuolation is a prominent effect of VacA in vitro, it is not commonly seen in vivo, and many 

other activities of this protein have subsequently been identified. 

 

 

Figure I-1.  VacA-induced vacuolation of HeLa cells.  The HeLa cell monolayer was 
left untreated (A) or treated with 5 µg/ml acid-activated VacA at 37ºC (B) in the presence 
of 5 mM ammonium chloride.  In A and B, cells were fixed, stained with crystal violet, 
and visualized by microscopy.  C.  HeLa cells were treated with acid-activated VacA in 
the presence of 5 mM ammonium chloride.  The cells were then stained with neutral red 
dye, washed, and visualized by microscopy.  (Figure adapted from (96); neutral red 
uptake figure obtained from Mark S. McClain, personal communication.) 
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 Other important cellular effects of VacA include depolarization of the membrane 

potential, alteration of mitochondrial membrane permeability, induction of autophagy, 

apoptosis, activation of mitogen-activated protein (MAP) kinases, inhibition of antigen 

presentation, and inhibition of T cell activation and proliferation (9, 18, 107).  The exact 

mechanism by which each of these processes occurs is not fully understood, but many 

cellular effects of VacA can be attributed to the ability of the toxin to insert into membranes 

and form anion-selective channels in the host cell membranes (discussed further below) (9).  

Additionally, VacA targets a variety of cell types, including gastric epithelial cells (27), T 

cells (33, 102), and mast cells (19, 103). 

 

VacA host-cell intoxication 

 Binding- The first step in intoxication of host cells is binding of the toxin to the cell 

surface.  On epithelial cells, at least five different putative receptors have been identified.  

These include the epidermal growth factor receptor (98), heparin sulfate (115), receptor 

protein tyrosine phosphatases α and β (RPTP α and β) (27, 128, 129), and the plasma 

membrane sphingolipid known as sphingomyelin (37).  VacA has also been found to localize 

to lipid raft domains on the surface of mammalian cells (34, 85, 96).  The most well-

characterized interaction is that of VacA and RPTPβ.  The interaction of VacA and RPTPβ 

has been shown to be important in VacA-induced vacuolation (81, 130), activation of 

signaling pathways (27), and VacA-induced gastric injury in a mouse model (27).  The 

binding of VacA to numerous cell-surface components has made it difficult to identify which 

interactions are the most relevant for VacA-induced cellular alterations.  Additionally, there 

are conflicting data as to whether the binding of VacA exhibits saturability or specificity (64, 
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70, 85, 92, 120, 121), two characteristics of a high-affinity ligand-receptor interaction.  If 

indeed VacA binding is not saturable and specific, this suggests that the toxin may be binding 

to multiple cell surface components or to an abundant, low-affinity receptor. 

 Ion channel formation- After binding of VacA to the cell surface, the toxin can insert 

into the plasma membrane to form membrane channels.  An important characteristic of these 

channels is that they are anion selective, leading to the diffusion of ions such as Cl-, HCO3
-, 

and other small molecules across the cell membrane (105, 109).  Whole-cell, patch clamp 

studies have shown that these anion-selective channels lead to a partial depolarization of the 

membrane potential (105).  It is not currently understood if the channel is formed from VacA 

monomers that have already inserted into the membrane and then assemble to form a pore, or 

if a membrane-bound pre-pore first forms and then inserts into the membrane.   

 There is a strong correlation between VacA channel formation and VacA-induced cell 

vacuolation.  Several groups found that VacA mutants that cannot form membrane channels 

also lack vacuolating activity (66, 69, 108, 118), and it has also been shown that chloride 

channel inhibitors inhibit cellular vacuolation (43, 105, 110).  Additionally, it was found that 

the amino-terminal hydrophobic region of VacA is long enough to span a membrane, and 

was experimentally shown to insert into membranes, suggesting it may form part of the 

VacA channel (65).  One model to explain the relationship between VacA channel activity 

and vacuolation proposes that VacA binds to the cell surface, is internalized, and then forms 

anion-selective channels in the membranes of late endocytic compartments (108).  Channel 

formation results in the influx of anions into endosomes, stimulating increased proton 

pumping by the vacuolar ATPase, and accumulation of protonated membrane-permeant weak 
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bases, such as ammonium chloride.  Osmotic swelling then results in vacuole formation 

(108). 

 Internalization- Following binding to the cell surface and insertion into the 

membrane, VacA can undergo internalization into cells via a process that has been termed 

pinocytosis.  The exact mechanism by which VacA is internalized is not fully understood; 

however, internalization is known to occur at 37ºC but not 4ºC, is inhibited by depleting cells 

of ATP (70), and is a clathrin-independent process (31, 32, 92).  This pinocytic process does 

not require tyrosine phosphorylation of cellular proteins and does not require RhoA, 

dynamin, or ADP-ribosylating factor 6 GTPase activities (31).  At an early time point, VacA 

accumulates in early endosomal compartments (also known as GEECs, GPI-anchored 

proteins-enriched early endosomal compartments) that lack transferrin, caveolin 1, and the 

EEA1 Rab5 effector, but do contain GPI-anchored proteins (31).  VacA can subsequently 

localize with other endosomal compartments including the large vacuoles that form in 

response to VacA, as well as the inner mitochondrial membrane (28, 93).  Lipid rafts are 

thought to play an important role in both VacA internalization and intracellular trafficking, 

but it is not understood how VacA undergoes trafficking to the various intracellular locations 

(51, 85, 92, 96). 

 Oligomerization- Individual VacA monomers (approximately 88 kDa in mass) are 

known to assemble into large oligomeric complexes with a mass of approximately 1,000 kDa 

(10).  Early deep-etch electron microscopy studies reveal that water-soluble VacA oligomers 

are flower-shaped structures composed of one or two rings, and each ring is composed of six 

to seven monomers (11, 53, 59) (Figure I-2).  These structures are approximately 30 nm in 

diameter, with a central ring that is approximately 15 nm in diameter (11).  When VacA is 
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exposed to an acidic or alkaline pH, the oligomers disassemble into monomers (11, 72, 128), 

and this is associated with an increase in VacA activity.  It is hypothesized that monomeric 

forms of VacA associate with the cell membrane, leading to oligomerization and subsequent 

channel formation in cell membranes (9, 112). 

 

 

 
Figure I-2.  VacA oligomeric structure.  These series of images show a 3D 
reconstruction of dodecameric wild-type VacA imaged by cryo-negative staining electron 
microscopy.  Each image shows a slight rotation of the oligomer.  These images reflect a 
model with a resolution of approximately 19 Å.  Reprinted from (23). 
 

 

 Several studies have shown a correlation between VacA oligomerization and VacA 

activity (35, 66, 118, 124, 132).  In one study by Willhite et al, FRET microscopy was used 

to demonstrate that full-length VacA proteins expressed in transiently transfected cells 

interact with one another (124).  This study was not able to evaluate the exact number of 

monomers that interact within the cell, but was able to determine that VacA can assemble 

into an intracellular complex comprising at least two or more monomers (124).  This same 

group also found that when intracellularly expressed, VacA with an inactivating single 

residue mutation in one monomer (VacA P9A) functionally complemented a second mutant 

form of a VacA monomer with an inactivating two residue mutation (VacA ∆346-347) (132).  

This again favors a model in which VacA assembles into a complex of two or more 

monomers to induce vacuolating activity.  Additional evidence correlating oligomerization 
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and VacA activity is provided by dominant-negative studies (35, 66, 118) which show that an 

inactive mutant toxin can inhibit the activity of wild-type VacA, presumably from the 

formation of mixed oligomeric complexes.  Further, the formation of these mixed oligomeric 

complexes, containing wild-type and mutant VacA, has been demonstrated experimentally 

(66). 

 

VacA structure and function 

 p33 and p55 VacA domains- The mature 88 kDa VacA toxin can be cleaved at a 

protease sensitive loop, located primarily between amino acids 311 and 312, into an amino- 

terminal 33 kDa (p33) and a carboxy-terminal 55 kDa (p55) protein (11, 30, 76, 106).  These 

fragments remain non-covalently associated, and are thought to represent two domains or 

subunits of VacA (59, 90, 106, 113).  Work from our lab has shown that an engineered VacA 

toxin with an enterokinase cleavage site introduced between p33 and p55, when treated with 

enterokinase, undergoes complete proteolysis into the p33 and p55 domains (113).  The 

vacuolating activity of enterokinase-treated VacA is indistinguishable from intact VacA.  

Additionally, enterokinase treated VacA and intact VacA elute in the same high molecular 

mass fractions.  Combined, these data indicates that, upon cleavage, the p33 and p55 

fragments remain associated and do not undergo any extensive adverse conformational 

changes (113). 

 Previous studies have identified distinct activities for the p33 and p55 VacA domains 

(Figure I-3).  Within the p33 domain, the hydrophobic region between amino acids 1 and 32 

plays an important role in the formation of anion-selective channels (65, 69, 118).  Amino 

acid sequences within both the p33 and p55 domains are important for oligomerization of the 
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toxin (35, 113, 114).  Neither the p33 nor the p55 domain alone is sufficient for vacuolating 

toxin activity when expressed in transiently transfected cells.  When expressed intracellularly 

in transiently transfected cells, the p33 domain along with the first 111 amino acids of the 

p55 domain is the minimal portion of VacA able to induce cell vacuolation (17, 132, 133).  

Amino acids within the carboxy-terminus of p55 are thought to play an important role in 

binding of VacA to cells (30, 82, 90, 119, 120).  Very little is known about specific regions 

within the p55 domain that are important for specific functional activities.   

In one recent study, random mutagenesis was used to introduce mutations into the 

vacA gene with the goal of identifying mutant proteins that lacked vacuolating activity (68).  

In this study, a plasmid expressing recombinant VacA was transformed into a mutator E. coli 

strain, and the mutated plasmids were then transformed into the E. coli expression strain 

ER2566.  Until this paper, most work had focused on introducing mutations into the 

chromosomal vacA gene within H. pylori, and most of the tested mutant proteins contained 

large deletions, which could drastically alter VacA structure.  Interestingly, of the mutations 

generated by random mutagenesis that were found to lack vacuolating activity, most mapped 

to the amino-terminal hydrophobic region of VacA, and no inactivating mutations were 

identified that mapped to the p55 domain of VacA, suggesting that mutation of individual 

residues within the p55 domain may not be sufficient to abolish VacA activity (68). 
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Figure I-3.  Functional regions of mature VacA.  Mature secreted VacA is comprised of 
two domains, designated p33 and p55.  An amino-terminal hydrophobic region between 
amino acids 1 and 32 (shown in red) plays an important role in the formation of anion-
selective channels.  Amino acids in the p33 domain (residues 49-57, shown in purple) are 
important for oligomerization of the toxin.  When expressed intracellularly in transiently 
transfected cells, the minimal portion of VacA able to induce cell vacuolation is amino acids 
1-422 (shown by the light blue line).  The crystal structure of the p55 domain has been solved 
from amino acids 355-811 (shown by the orange line). 
 

 

Previous work from our lab used yeast 2-hybrid analysis to more clearly understand 

the process by which VacA assembles into higher ordered structures (113).  Specifically, a 

study by Torres et al. investigated the role of p33 and p55 interactions in oligomer formation.  

The data showed that amino acids 28-196 within the p33 domain and amino acids 313-478 

within the p55 domain contribute to the p33-p55 interaction (113).  Using yeast two hybrid 

methods, this study was not able to detect p33-p33 or p55-p55 interactions; interestingly, 

another study analyzed the properties of a modified p55 fragment (containing all of p55 and 

27 amino acids of the p33 domain) secreted by H. pylori and found that p55 could form 

dimers, but not large oligomers (90).  Overall, the work by Torres et al began to characterize 

the interactions that mediate assembly of VacA into oligomers.  However, this study was not 

able to distinguish between intramolecular (interactions between p33 and p55 domains within 

an individual monomer) or intermolecular (interactions between p33 and p55 domains of 

different 88 kDa monomers) interactions.  This study led to another study from our lab in 
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which recombinantly expressed p33 and p55 were used to gain a better understanding of the 

functional properties of these two domains (112) (discussed in Chapter II). 

 p55 crystal structure- Until recently, no high resolution structural data have been 

available for VacA.  This changed when the crystal structure of the VacA p55 domain was 

determined at a resolution of 2.4 Å (29) (Figure I-4).  The crystal structure revealed that the 

p55 domain folds as a right-handed parallel β-helix.  Each coil of the parallel β-helix consists 

of three parallel β-strands connected by loops of different lengths.  Other features of the p55 

structure include a small globular domain near the carboxy-terminus that consists of mixed 

α/β secondary structure elements and the presence of a disulfide bond.  In VacA, this closely-

spaced pair of cysteines may be important for toxin secretion, as a mutation of either cysteine 

to serine results in decreased toxin secretion (56). 

 Analysis of sequence variation among the p55 domain of VacA proteins revealed that 

there are only two regions of the surface with high sequence conservation (29).  One region 

is located at the amino-terminus of p55, thought to play a role in oligomerization, and the 

other is located at the carboxy-terminus of the protein and is thought to be important for 

binding of the toxin to host cells.  The authors propose a model in which VacA 

oligomerization is mediated by contacts between p33 and the amino-terminus of p55 from a 

neighboring subunit (29).  The availability of the VacA p55 crystal structure was 

instrumental in my thesis project in the lab, allowing me to take a targeted approach to 

structure-function studies of the toxin. 
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Figure I-4.  Crystal structure of the VacA p55 domain.  The p55 domain folds as a β-
helix, composed of three parallel β sheets (shown in red) connected by loops of varying 
lengths (shown in yellow).  The carboxy-terminus consists of mixed α/β secondary 
structure elements (shown in green).  Reproduced from (29). 
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Research significance and goals 

 The VacA toxin produced by H. pylori exerts numerous effects on its host, not only 

targeting the gastric epithelial cell layer, but also targeting the immune system.  The 

biological significance of VacA has been highlighted in animal studies in which orally 

administered VacA causes degeneration of the gastric mucosa, acute inflammation, and 

gastric ulcer disease (60, 106).  One study has suggested that an isogenic vacA-negative H. 

pylori strain is not able to colonize mice as efficiently as the wild-type parental strain (94).  

Perhaps even more importantly, certain vacA genotypes have been correlated with more 

severe disease outcome in humans (3).  Since the discovery of VacA just over 20 years ago, 

numerous groups have tried to elucidate the mechanism of action of this toxin and its 

biological role.  Although great strides have been made in both of these areas, questions 

remain such as what functional roles the p33 and p55 domains may play, what specific 

regions of the toxin are important for oligomerization, and more recently, how the β-helical 

structure contributes to secretion.  Thus, the goals of this thesis were to undertake structure-

function studies of VacA to (i) characterize subdomains within the p55 domain that are 

important for oligomerization, and subsequently, host-cell alterations, and (ii) study the β-

helical portion of p55 to determine the role of individual coils in toxin function.  My work 

describing these areas of study, as well as an additional study, will be divided into three 

chapters as follows:  functional analysis of the p33 and p55 VacA domains in relation to their 

interaction with host cell membranes (Chapter II), determining a subdomain of p55 important 

for oligomerization (Chapter III), and analysis of the β-helical region of the VacA p55 

domain (Chapter IV).  In Chapter V, I will present unpublished work describing efforts to 

better understand VacA-host cell interactions. 
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Interaction of p33 and p55 VacA domains with host cell membranes 

 It is well-established that the mature 88 kDa VacA toxin can undergo partial 

proteolytic cleavage to yield two fragments known as p33 and p55.  Previous work has also 

suggested that these two fragments represent two domains of VacA, with amino acids near 

the amino-terminus of p33 being involved in anion channel formation and the p55 domain 

being involved in VacA binding to mammalian cells (9).  The goal of this study was to 

analyze functional properties of recombinantly expressed p33 and p55.  My contribution to 

this study was to analyze the interaction of the p33 and p55 domains with host cell 

membranes and their subsequent internalization. 

 

Determine subdomains of p55 important for oligomerization 

 Many of the cellular effects of VacA result from the formation of oligomeric 

complexes.  Work from our lab began characterizing the role of the p33 and p55 domains in 

the processes of VacA binding, internalization, and oligomerization (112, 113) and laid the 

foundation to identify functional domains within VacA that contribute to specific steps in the 

intoxication process.  The minimum portion of VacA required for cell vacuolation comprises 

a 422 amino acid protein, corresponding to the entire p33 domain and about 111 residues 

from the amino-terminus of the p55 domain (133).  This suggests that the amino-terminal 

portion of p55 may comprise a subdomain with a functional activity distinct from cell 

binding.  Thus, the goal of this study was to investigate properties of VacA that are conferred 

by the p55 amino-terminal subdomain.  Our data indicate that the assembly of functional 

oligomeric VacA complexes is dependent on specific sequences within this p55 amino-

terminal subdomain. 
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Study of the β-helical region of the VacA p55 domain 

 The recent determination of the crystal structure of the p55 domain of VacA revealed 

that it is a right-handed parallel β-helix (29).  In addition to VacA, the structures of two other 

autotransporter passenger domains (pertactin and hemoglobin protease) have been solved and 

each also folds as a β-helix (24, 80).  A recent study by Junker et al. found that more than 

97% of predicted autotransporter sequences were predicted to adopt a right-handed parallel 

β-helix structure (47).  Much remains unknown about the properties of β-helical proteins that 

are responsible for the unique properties of individual autotransporter passenger domains.  

Therefore, in this study, we set out to identify specific β-helical elements required for 

secretion and activity of VacA. 

 

Additional studies of VacA host-cell interactions 

 As discussed in the Background, VacA has numerous effects on epithelial cells.  

Upon first joining the lab, I undertook several small projects to further understand the role of 

VacA in MAP kinase signaling and apoptosis, and also tried to identify epithelial cell 

proteins that were up- or down-regulated as a result of VacA intoxication.  Further study of 

these topics may provide new insights into the actions of this multifunctional toxin and 

perhaps lead to a better understanding of the pathogenesis of H. pylori-associated diseases. 
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CHAPTER II 

 
 

FUNCTIONAL PROPERTIES OF THE p33 AND p55 DOMAINS OF THE 
HELICOBACTER PYLORI VACUOLATING CYTOTOXIN 

 
 

Introduction 

 The mature secreted 88 kDa vacuolating cytotoxin (VacA) from H. pylori can 

undergo partial proteolytic cleavage to yield two fragments that are 33 kDa (p33) and 55 kDa 

(p55) in mass.  These fragments are thought to represent two domains or subunits of VacA 

(11, 106, 113, 132).  Amino acid sequences within a hydrophobic region near the amino-

terminus of the p33 domain have been shown to play a role in the formation of anion-

selective membrane channels, and the p55 domain is important for VacA binding to 

mammalian cells (9).  However, detailed analysis of the functional roles of p33 and p55 had 

not been performed; therefore, the goal of this study was to investigate various functional 

properties of recombinantly expressed p33 and p55 VacA domains.   

 The results presented in this chapter were published in the Journal of Biological 

Chemistry; I was the second author on the paper.  In the remainder of the Introduction, I will 

summarize data generated by the co-authors.  In the Results section of this chapter, I will 

present the work that I did.   

 To begin studying functional properties of the p33 and p55 VacA fragments, each 

fragment was expressed as a recombinant protein, based on methods previously developed to 

express full-length VacA (67).  Western blot analysis showed that each protein was 

successfully expressed as a 33 kDa protein (p33) or a 55 kDa protein (p55) (112).  It has been 

shown that recombinantly expressed full-length 88 kDa VacA exhibits vacuolating activity 
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when added to mammalian cells (67).  To investigate if either the p33 or p55 proteins were 

capable of inducing vacuolation, the recombinant proteins were added to cells individually or 

in combination.  No detectable vacuolating activity was observed when E. coli extracts 

containing the p33 or p55 protein were added individually to HeLa cells.  In contrast, when 

extracts containing the p33 and p55 proteins were mixed and then added to HeLa cells, 

extensive cell vacuolation was detected (112).  These results indicate that the p33 and p55 

VacA domains can complement each other for vacuolating activity. 

 It was hypothesized that the ability of the p33 and p55 proteins to complement each 

other for vacuolating activity might require the formation of protein complexes comprising 

these two proteins.  Immunoprecipitation experiments were performed to test whether the 

p33 and p55 domains could physically interact.  p33/p55 interactions were detected, whereas 

p55/p55 and p33/p33 interactions were not detected (112), suggesting that recombinant p33 

and p55 proteins are capable of interacting in solution to form p33/p55 protein complexes.  

Additional immunoprecipitation experiments showed that the p33/p55 complex can 

potentially be composed of at least three independent subunits, consisting of one p55 and two 

p33 proteins (112). 

 Using purified 88 kDa VacA from H. pylori culture supernatant, immunoprecipitation 

methodology was used to investigate if recombinant p33 and p55 fragments could physically 

interact with wild-type VacA from H. pylori.  When the p33 and p55 domains were tested 

independently, neither p33 nor p55 interacted with full-length VacA; however, when a 

p33/p55 mixture was incubated with full-length VacA, both p33 and p55 interacted with the 

88 kDa VacA (112).  These data suggest that both p33 and p55 play a role in the process by 

which VacA assembles into oligomeric structures. 
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 In the next series of experiments, the capacity of the recombinant p33 and p55 

proteins to interact with mammalian cells was investigated.  The first approach used was 

western blotting.  When either p33 or p55 was added individually to HeLa cells, weak 

binding was detected.  When the p33 and p55 domains were mixed and then added to HeLa 

cells, the amount of p33 and p55 protein associated with cells was substantially increased 

compared with the amount detected when these proteins were tested individually (112).  In 

the remainder of this chapter, I will present the work that I did, specifically confocal 

microscopy data showing binding and internalization of the p33 and p55 domains. 

 

Methods 

Plasmid construction- VacA-expressing plasmids were constructed by cloning vacA 

sequences from H. pylori strain 60190 into pET-41b (Novagen), using procedures similar to 

those described previously (67).  A vacA sequence encoding the VacA p33 domain (amino 

acids 1-312 of the mature, secreted H. pylori VacA toxin) with a 6-His tag at the carboxy-

terminus (p33His) was PCR-amplified from the pMM592 plasmid (67) using primers 

BA9146 and OP6228.  The PCR product was digested with SpeI and SalI and ligated into 

XbaI- and SalI-digested pET-41b (conferring kanamycin resistance; Novagen).  We also 

generated a plasmid that encoded a VacA p33 domain with two tags (c-Myc and 6-His), each 

at the carboxy-terminus of the protein (p33Myc-His).  A vacA sequence encoding the p55 

domain (amino acids 312-821 of the mature, secreted H. pylori VacA toxin) with a c-Myc tag 

(p55Myc) at the amino-terminus was PCR-amplified from H. pylori VT330 genomic DNA 

using primers OP6229 (5’-CCCACTAGTAAGAGGAGACGCCATGGCAAACGCCGCA 

CAGG-3’) and AND515a (5’-CCCCGTCGACTTAAGCGTAGCTAGCGAAACGCG-3’). 
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Also, a vacA sequence encoding the p55 domain with a 6-His tag at the amino-terminus was 

generated using primers AND7265 (5’-CCCACTAGTAAGAGGAGACGCCATGCATCA 

CCATCACCATCACAAAAACGACAAACAAGAGAGC-3’) and AND515a.  PCR 

products were digested and cloned into pET41b as described above.  The use of these primers 

resulted in a modification of the ribosomal binding site of pET-41b, and encoded a 

methionine at the amino-terminus of each VacA protein.  The entire vacA fragment in each 

plasmid was analyzed by nucleotide sequence analysis in order to verify that no unintended 

mutations had been introduced. 

 

Expression of recombinant VacA proteins- VacA expression plasmids were transformed into 

the E. coli expression strain JM109 (DE3), and transformants were then inoculated into TB-

KAN and grown at 37°C overnight with shaking.  These cultures were diluted 1:100 into TB-

KAN, and incubated at 37°C until they reached an optical density (OD600) of 0.5.  Cultures 

were then induced with a final IPTG concentration of 0.5 mM and incubated at 25°C for 16-

18 hours (p55 proteins) or at 37oC for 2 hours (p33 proteins).  E. coli extracts containing 

soluble proteins were generated as described previously with minor modifications (67).  

Briefly, 50 ml of IPTG-induced cultures were pelleted, washed in 0.9% NaCl, and 

resuspended in a solution (1 ml) that contained 10 mM Tris (pH 7.5), 100 mM NaCl, 1 mM 

EDTA, protease inhibitors (Complete Mini; Roche), and 20,000 units of ReadyLyse 

lysozyme (Epicentre) per ml.  Bacterial cells were incubated on ice for 30 min with periodic 

mixing, after which a solution (3 ml) containing 50 mM Tris (pH 8.0), 2.67 mM MgCl2, and 

74 units of Omnicleave Nuclease (Epicentre) per ml was added.  Samples were then mixed 

briefly, subjected to four successive rounds of freezing (in a dry ice-methanol bath) and 
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thawing at 37°C, and then the insoluble debris was pelleted.  The E. coli soluble extracts 

containing the VacA proteins were collected and stored at -20°C until use. 

 

Analysis of VacA binding and internalization into mammalian cells- To analyze interactions 

of VacA with the surface of cells, E. coli soluble extracts containing recombinant VacA 

proteins were added to HeLa cells grown on cover glasses in 6 well plates for 1 hour at 4oC 

or 37oC.  VacA interactions with mammalian cells were then analyzed by indirect 

immunofluorescence (58, 96).  Briefly, cells were washed with tris-buffered saline (TBS; 10 

mM Tris, 150 mM NaCl, pH 7.5) and fixed with 3.7% formaldehyde.  Fixed cells were 

incubated with an anti-c-Myc antibody (1:500) or with an anti-VacA polyclonal antiserum 

that recognizes the p55 domain, for 1 hour at 25°C.  Cells were then washed and incubated 

with a Cy3-conjugated secondary antibody (1:500) for 1 hour at 25°C.  To analyze VacA 

internalization into host cells, E. coli soluble extracts containing single recombinant VacA 

proteins or mixtures of recombinant VacA proteins were incubated with HeLa cells for 1 

hour at 37oC.  Afterward, medium containing unbound proteins was removed and the cells 

were incubated in fresh tissue culture medium (without FBS or ammonium chloride) for 16 

hours at 37oC.  The cells were then washed with TBS, fixed with 3.7% formaldehyde, and 

permeabilized with 100% methanol for 30 minutes at -20o C (58).  Cells were incubated with 

the anti-VacA polyclonal antiserum or the anti-c-Myc antibody, followed by a Cy3-

conjugated secondary antibody.  After immunolabeling, cover glasses were washed with 

phosphate-buffered saline, mounted on slides with Aqua-Polymount (Polysciences, 

Warrington, PA), and viewed with a LSM 510 confocal laser scanning inverted microscope 

(Carl Zeiss). 
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Results 

 

Analysis of binding of p33 and p55 VacA domains to mammalian cells 

 As presented in the Introduction of this chapter, western blotting was used as a first 

approach to investigate p33 and p55 interactions with mammalian cells.  As a second 

approach, we used indirect immunofluorescence methodology.  As expected, full-length 88 

kDa c-Myc-tagged VacA purified from H. pylori bound to the surface of HeLa cells, and the 

binding could be detected with either an anti-c-Myc antibody or a polyclonal anti-VacA 

antiserum that recognizes the p55 domain (Figure II-1; panels 1 and 5) (30, 96).  In contrast, 

no immunoreactive signal on the surface of cells was detected with these antibodies 

following incubation of cells with negative control extracts (Figure II-1; pET, panels 2 and 

6).  When recombinant p33 and p55 domains were added individually to cells, binding of p33 

(either p33Myc-His or p33His) to the surface of cells was detectable (Figure II-1, panel 3 and 

data not shown), but binding of p55 was not detected (Figure II-1; panel 7).  We were able to 

detect binding of the p55 domain to the surface of cells by immunoblot methodology, but we 

were unable to detect interaction of the recombinant p55 protein with the surface of HeLa 

cells using immunofluorescence assays, despite testing two different forms of this protein 

(p55His or p55Myc) and multiple antibodies, including the anti-VacA polyclonal antiserum.  

We presume that the relevant epitopes are not accessible to the antibodies under the 

conditions of the immunofluorescence assay.  When the p33 and the p55 proteins were mixed 

and then added to HeLa cells, both proteins were detected on the surface of HeLa cells 

(Figure II-1, panels 4 and 8).  Thus, binding of p55 to the cell surface was detected by 

immunofluorescence assay if the p33 and p55 domains were added together to cells, but not 
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if p55 was added independently to cells.  Interestingly, the distribution of p33 on the surface 

of HeLa cells was punctate when p33 was added alone to cells, whereas it was continuous 

(non-punctate) when p33 was added to cells together with the p55 domain (Figure II-1; 

panels 3 and 4).  These data indicate that the interactions of p33 and p55 VacA domains with 

the surface of cells are substantially altered if both domains are present. 

 

 

 

 

Figure II-1.  Binding of p33 and p55 VacA domains to mammalian cells.  HeLa cells 
were intoxicated for 1 hour at 37ºC with acid-activated c-Myc-VacA (Myc-VacA; 5 
μg/ml) purified from H. pylori culture supernatant (panels 1 and 5), E. coli negative 
control extract without VacA proteins (pET; panels 2 and 6), E. coli soluble extracts 
containing p33Myc-His (panel 3), p55His (panel 7), or the p33Myc-His/p55His mixture 
(panels 4 and 8).  The capacity of the VacA proteins to interact with the cell membrane of 
host cells was assessed by indirect immunofluorescence (I.F.) using anti-c-Myc (panels 
1-4) and an anti-VacA polyclonal antibody that recognizes the p55 domain (panels 5-8). 
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Intracellular localization of the p33 and p55 VacA domains 

 We next investigated whether the p33 and p55 proteins were internalized into 

mammalian cells.  HeLa cells were intoxicated with either purified VacA from H. pylori, or 

E. coli soluble extracts containing the p33 domain, the p55 domain, or the p33/p55 mixture.  

Internalized VacA was visualized by indirect immunofluorescence analysis of permeabilized 

cells.  The 88 kDa VacA purified from H. pylori was internalized into HeLa cells (Figure II-

2, panel 1) as shown previously.  Little if any internalization of the p33 or p55 protein was 

detected when these proteins were added individually to cells (Figure II-2, panels 2 and 3).  

In contrast, when the p33 and the p55 proteins were mixed and then added to cells, both 

domains were internalized (Figure II-2, panels 4 and 5).  These data indicate that both the 

p33 and p55 VacA domains are required for toxin internalization into target cells. 
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Figure II-2.  Internalization of p33 and p55 VacA domains into mammalian cells.  
Wild-type acid-activated VacA purified from H. pylori culture supernatant (panel 1), or 
E. coli soluble extracts containing p33Myc-His (panel 2), p55His (panel 3), or the 
p33Myc-His/p55His mixture (panels 4 and 5) were added to HeLa cells for 1.5 hours at 
37ºC.  The cells were then incubated in fresh medium for an additional 16 hours at 37ºC.  
The ability of VacA to enter into cells was assessed by indirect immunofluorescence 
(I.F.) of permeabilized cells using an anti-VacA antibody to detect the p55 domain (5E4; 
panels 1, 3, and 5) and an anti-c-Myc antibody to detect the p33Myc-His protein (panels 
2 and 4). 
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Sequential addition of the p33 and p55 VacA domains 

To further investigate the role of p33 and p55 interactions with host cells and to 

establish which component is important for initial contact with the cell, we sequentially 

incubated HeLa cells with E. coli soluble extract containing p33 followed by extract 

containing p55 (p331, p552), or p55 followed by p33 (p551, p332).  We investigated the 

binding of sequentially added VacA domains to the surface of host cells, using indirect 

immunofluorescence methodology.  In these sequential addition experiments, both p33 and 

p55 domains could be detected on the cell surface, regardless of the order of addition (p551, 

p332 or p331, p552) (Figure II-3, panels 2 and 3).  In contrast, binding of p55 to cells was not 

detectable by immunofluorescence in experiments in which p55 was added independently 

(Figure II-1, panel 7).  When the p55 and p33 proteins were added sequentially to cells, both 

proteins localized on the cell surface in a punctate distribution, regardless of the order of 

addition (Figure II-3, panels 2 and 3).  In contrast, when cells were incubated with the 

p33/p55 mixture, both proteins localized in a continuous (non-punctate) pattern on the 

surface of HeLa cells (Figure II-3, panel 1). 

 We next tested the hypothesis that there might be differences in the internalization of 

VacA, depending on the order in which VacA domains are added to cells.  When the p55 

domain was added first to cells followed by the p33 domain (p551, p332), a condition that 

results in cell vacuolation, internalization of the p55 protein was detected (p551, p332; Figure 

II-4).  When the p33 protein was added first followed by the p55 protein (p331, p552), a 

condition that fails to cause cell vacuolation, neither p55 nor p33 was detected inside cells 

(p331, p552; Figure II-4).  Thus, in these sequential addition experiments, there are marked 
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differences in the internalization of VacA depending on the order in which VacA domains 

are added to cells. 

 

 

 

 

 

 

 
Figure II-3.  Sequential addition of p33 and p55 domains to HeLa cells-binding.  
HeLa cells were intoxicated for 1 hour at 37oC with E. coli soluble extract containing a 
p33/p55 mixture (column 1).  Alternatively, p33 was bound first followed by p55 (p331, 
p552; column 2), or p55 was bound first followed by p33 (p551, p332; column 3) as 
described above.  The capacity of the VacA proteins to interact with the cell membrane of 
host cells was assessed by indirect immunofluorescence using an anti-VacA polyclonal 
antibody to detect p55His (p55; top panels) and an anti-c-Myc antibody to detect the 
p33Myc-His protein (p33; bottom panels).     
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Figure II-4.  Sequential addition of p33 and p55 domains to HeLa cells-
internalization.  HeLa cells were incubated with acid-activated VacA purified from H. 
pylori or E. coli soluble extracts containing the indicated recombinant VacA proteins.  
Then the cells were incubated in fresh culture medium for an additional 16 hours at 37ºC.  
Entry of VacA into cells was analyzed by indirect immunofluorescence (I.F.) of 
permeabilized cells using an anti-VacA polyclonal antibody to detect the p55 VacA 
domain. 
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Discussion 

 The H. pylori VacA toxin produces a wide array of structural and functional 

alterations in intoxicated mammalian cells (9, 74).  An important goal is to identify 

functional domains of VacA that contribute to specific steps in the intoxication process.  

Previous studies have demonstrated that the mature secreted VacA toxin undergoes 

proteolytic degradation to yield two fragments (p33 and p55) (11, 106, 113),  but the relevant 

structural features of these two putative domains remain poorly characterized.  In the current 

study, we investigated various properties of recombinant p33 and p55 VacA domains. 

 We demonstrate that VacA interactions with the surface of cells are altered in several 

ways when both p33 and p55 domains are present, compared to when only a single domain is 

present.  First, in comparison to individual p33 and p55 domains, a p33/p55 mixture binds 

more avidly to the cell surface. This increased binding is observed for both the p33 and p55 

domains.  Second, when p55 is added to cells in the absence of p33, the binding of p55 is 

detectable in immunoblot assays but not in immunofluorescence assays.  In contrast, if a 

mixture of p55 and p33 domains is added to cells, the binding of p55 is detectable in both 

assays.  This suggests that the conformation or orientation of the p55 domain on the surface 

of cells may be altered in the presence of the p33 domain.  Finally, when added individually 

to cells, the p33 domain localizes in a punctate distribution on the cell surface, but when 

added to cells along with p55, p33 localizes in a continuous (non-punctate) distribution on 

the cell surface.  Previous studies have reported the existence of multiple cell surface 

receptors for VacA secreted by H. pylori, and accordingly, it seems likely that recombinant 

p33/p55 complexes may bind to multiple different cell surface components. 
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 In the current study, we demonstrate that when added together, the p33 and p55 

proteins are both internalized by host cells, whereas internalization is not detectable when the 

p33 or p55 domains are added individually to host cells.  The failure of p55 to be internalized 

when added independently to cells is consistent with the results of a previous study, in which 

a mutant VacA protein consisting mainly of the p55 domain was secreted by H. pylori and 

bound to the surface of host cells but was not internalized (90).  One possible scenario is that 

binding of p33/p55 VacA complexes to a specific site on the cell surface (for example, a 

specific receptor and/or lipid rafts) promotes VacA oligomerization.  The p33/p55 oligomeric 

complex may then undergo a conformational change to permit membrane insertion of the p33 

domain, and that the complex can then be internalized into the cell.  The capacity of 

internalized p33/p55 complexes to induce cell vacuolation is consistent with results of a 

previous study, which showed that intracellular co-expression of p33 and p55 results in 

vacuolating cytotoxic activity (133). 

 Further insight into the functional roles of p33 and p55 domains comes from studies 

in which these domains are added sequentially to cells.  We demonstrate that binding of p55 

to the cell surface followed by addition of p33 (p551, p332) results in cell vacuolation.  This 

result can be explained by the formation of p55/p33 complexes on the surface of cells.  We 

speculate that the isolated p55 domain is able to bind specific cell-surface components that 

promote oligomerization, membrane insertion and internalization of VacA.  Thus, 

internalization of VacA into cells may be dependent on an interaction of the p55 domain with 

specific cell surface components.  Several previous studies have provided evidence indicating 

that amino acid sequences in the p55 domain of p88 VacA contribute to the process of VacA 

binding to cells (30, 90, 120, 121).  In the current study, binding of p33 to the cell surface 
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followed by addition of p55 (p331, p552) did not result in detectable cell vacuolation.  We 

speculate that p33 may not be able to bind certain relevant cell surface components that are 

required for VacA internalization.  Alternatively, sequential addition in this order (p331, 

p552) may not permit the formation of the p33/p55 complexes, or might prevent the 

formation of p33/p55 complexes in the proper conformation required for internalization. 

 Importantly, the work in this chapter indicates that both the p33 and p55 VacA 

domains are capable of interacting with the cell surface and the interaction is higher when the 

p33 and p55 domains are added together.  One way in which this finding could be further 

explored would be to investigate what cellular components each domain binds to, and if this 

changes if the domains are added individually or together.  Additionally, the data show that if 

p33 is added first, followed by the p55 domain, there is no internalization or vacuolating 

activity.  In this regard, investigation of what the p55 domain binds to may help to figure out 

what receptors are required for internalization.  This chapter also describes internalization of 

the p33 and p55 domains when the domains are mixed and added to cells together.  

Experiments could be done to learn where these domains localize within the cell. 

Overall, this study shows that VacA is unique from other pore-forming toxins, in that 

two independently expressed functional domains can reconstitute cytotoxic activity, 

suggesting that VacA may have unique structural properties.  This functional characterization 

laid the foundation for my future work in the lab, to not only more closely study the role of 

p55 in oligomerization, but also to study in more detail the functional characteristics of the 

p55 domain. 
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                                                 CHAPTER III 

 
 

A HELICOBACTER PYLORI VacA SUBDOMAIN REQUIRED FOR 
INTRACELLULAR TOXIN ACTIVITY AND ASSEMBLY OF FUNCTIONAL 

OLIGOMERIC COMPLEXES 
 

Introduction 

 Helicobacter pylori VacA is a secreted pore-forming toxin that is comprised of two 

domains, designated p33 and p55.  The p55 domain has an important role in binding of VacA 

to the cell surface.  About 111 residues at the amino-terminus of p55 (residues 312-422) are 

essential for the intracellular activity of VacA (133), which suggests that this region may 

constitute a subdomain with an activity distinct from cell binding.  The goal of the current 

study was to investigate properties of VacA that are conferred by the p55 amino-terminal 

subdomain.  Thus far, a two-amino-acid deletion mutation (Δ346-347) is the only small 

alteration within the p55 amino-terminal subdomain that is known to abrogate vacuolating 

toxin activity (132).  Efforts to identify additional small inactivating mutations in the p55 

domain using a random mutagenesis approach have not been successful (68).  A previous 

study reported that the VacA Δ346-347 mutant protein lacked vacuolating activity when 

expressed intracellularly, but the basis for this lack of activity has not yet been investigated 

(132).   

 To identify the ∆346-347 mutant protein, a series of six-amino-acid deletion 

mutations was introduced into a 110-amino-acid region (spanning residues 325-435) at the 

amino-terminal end of p55 (Steven R. Blanke, personal communication).  Plasmids encoding 

wild-type or mutant VacA proteins were transfected into HeLa cells and cell vacuolation was 

quantified by neutral red uptake.  These experiments revealed that vacuolating activity was 
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completely ablated by each of the six-amino-acid deletion mutations spanning residues 345-

365, 375-400, and 410-415 (Steven R. Blanke, unpublished data).  The region spanning 

residues 345-350 was then narrowed down, and it was published that the ∆346-347 mutant 

protein lacked vacuolating activity when transfected into host cells (133).   

 In the current study we sought to investigate the basis for inactivity of the Δ346-347 

mutant protein and to compare the properties of VacA Δ346-347 with those of wild-type 

VacA.  We report that the Δ346-347 mutant protein is proteolytically processed and secreted 

by H. pylori in a manner similar to wild-type VacA.  However, the Δ346-347 mutant protein 

does not cause membrane depolarization and is impaired in the ability to assemble into 

functional oligomeric VacA complexes.  These results provide evidence that assembly of 

VacA into functional oligomeric complexes is dependent on specific sequences, including 

amino acids 346 and 347, within the p55 amino-terminal subdomain. 

 

Methods 

H. pylori strains and purification of VacA from H. pylori broth culture supernatants- The 

vacA gene (Genbank accession number Q48245) from H. pylori 60190 (ATCC 49503) 

served as the parent DNA for construction of all mutants in this study.  Throughout this 

study, we used an amino acid numbering system in which residue 1 refers to alanine-1 of the 

secreted 88 kDa VacA protein, and the p55 domain corresponds to amino acids 312 to 821.  

The crystal structure of residues 355 to 811 (within the p55 domain) has recently been 

determined (29).  Wild-type H. pylori strain 60190 and strains that express a VacA Δ6-27 

mutant protein or a c-Myc-tagged VacA protein have been described previously (Table III-1) 

(66, 118).  An H. pylori strain expressing a Δ346-347 mutant protein was constructed as 
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described below.  H. pylori strains were grown in sulfite-free Brucella broth containing 

activated charcoal (38).  VacA Δ6-27 and VacA-c-Myc proteins were purified in an 

oligomeric form from culture supernatants of H. pylori, using gel filtration chromatography 

(11, 66, 118).  It was not possible to purify VacA Δ346-347 from H. pylori broth culture 

supernatants by using gel filtration.  Therefore, for all experiments designed to compare the 

activity and properties of wild-type VacA and VacA Δ346-347, these proteins were purified 

from H. pylori culture supernatants using Cellufine Sulfate Matrex beads (Chisso 

Corporation, Tokyo, Japan) (35), unless otherwise specified.  Proteins in H. pylori broth 

culture supernatants were precipitated with ammonium sulfate, the resuspended proteins 

were dialyzed in sodium phosphate buffer (20mM sodium phosphate, 100mM sodium 

chloride, pH 7), and the dialyzed samples were then incubated with Matrex beads at room 

temperature for 30 minutes.  VacA was eluted from the beads with sequentially increasing 

concentrations of NaCl.  As a negative control, culture supernatant from a vacA null mutant 

strain (60190 vacA::km) was processed in the same manner. 

 

Expression of VacA Δ346-347 in H. pylori- A Δ346-347 mutation (encoding a deletion of 

VacA amino acids 346 and 347) was introduced into the H. pylori chromosomal vacA gene 

by natural transformation and allelic exchange using a sacB-based counterselection approach, 

as described previously (66, 69, 118).  Sequence analysis of a PCR product was performed to 

confirm that the desired mutation had been introduced successfully into the chromosomal 

vacA gene. 
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Expression of Recombinant VacA Proteins in E. coli- pMM592 is a previously described 

plasmid that allows expression of an 88 kDa VacA protein in E. coli (Table III-1) (67).  

Plasmids for expression of VacA p33 and p55 fragments have been described previously 

(112); the encoded p33 proteins contain either a His6 tag at the carboxy-terminus of the 

protein (p33 His) or both c-Myc and His6 tags at the carboxy-terminus of the protein (p33 

Myc-His), and p55 contains a His6 tag at the amino-terminus of the protein (His p55).  To 

construct pMM592 Δ346-347 (pSI200), the vacA gene from pET20b-1-741 Δ(346-347)-GFP 

(132) was digested with EcoRI and KpnI and ligated into EcoRI- and KpnI-digested 

pMM592.  To introduce additional substitution and deletion mutations into the codons for 

amino acids 346 and 347, we performed inverse PCR, using appropriate primers and pSI200 

as template DNA (127).  The resulting PCR products were then ligated and transformed into 

E. coli DH5α.  To construct a plasmid encoding the p55 domain of VacA with a Δ346-347 

mutation, the corresponding region of vacA (encoding amino acids 312-821) was amplified 

using primers AND7265 (5’-CCCACTAGTAAGAGGAGACGCCATGCATCACCATCAC 

CATCACAAAAACGACAAACAAGAGAGC-3’) and AND515a (5’-CCCCGTCGACTTA 

AGCGTAGCTAGCGAAACGCG-3’) (112), which resulted in insertion of a His6 tag at the 

amino terminus.  The PCR product was digested with SpeI and SalI and ligated into XbaI- 

and SalI-digested pET41b (Novagen), to yield p55 Δ346-347 (pSI209).  In each case, the 

plasmids were analyzed by sequence analysis to confirm that the desired mutation was 

present and that no new mutations had been introduced. VacA expression plasmids were 

transformed into the E. coli expression strain ER2566 (New England Biolabs), which 

encodes an IPTG (isopropyl-β-D-thiogalactopyranoside)-inducible copy of the RNA 

polymerase gene from bacteriophage T7.  VacA-expressing E. coli strains were cultured in 
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Terrific Broth (Invitrogen) supplemented with 25 μg/ml kanamycin (TB-KAN) (67, 112), 

and extracts containing soluble proteins were generated as described previously (67, 68). 

   

Cell culture analysis of VacA proteins expressed in H. pylori or E. coli- HeLa and AZ-521 

cells were grown as described previously (112).  In all experiments, preparations of VacA 

purified from H. pylori culture supernatants were acid-activated by the addition of 100 mM 

hydrochloric acid, lowering the pH to 3, before VacA was added to cells (20, 70).  An 

equivalent volume of a corresponding preparation from a vacA null mutant (60190 vacA::km) 

was used as a negative control.  For experiments using multiple recombinant VacA proteins, 

the relative concentrations of recombinant VacA in different E. coli soluble extracts were 

assessed by immunoblotting, and the extracts were then normalized so that the relative 

concentrations of VacA in different preparations were approximately equivalent (112).  In 

comparison to wild-type VacA, none of the mutant proteins exhibited substantial differences 

in stability or susceptibility to proteolytic degradation.  Signals were generated by the 

enhanced chemiluminescence reaction (Amersham Biosciences) and detected using x-ray 

film.  Recombinant VacA proteins were added to cells as described previously (112).  After 

incubation, cell vacuolation was examined by inverted light microscopy and quantified by a 

neutral red uptake assay (13).  Neutral red uptake data are presented as A540 values (mean ± 

S.D.).  Levels of neutral red uptake produced by negative control samples were subtracted as 

background.   

To test for dominant-negative activity, wild-type VacA (purified by gel filtration) was 

acid-activated and then mixed with acid-activated preparations of VacA Δ346-347 (purified 

by Matrex affinity resin), VacA Δ6-27, or a mock sample from a vacA null mutant strain.  
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The mixtures were then neutralized by diluting with neutral pH medium before addition to 

HeLa cells (118).  The samples were incubated with cells for 1 hour at 37°C, removed, and 

fresh serum-free medium containing 5 mM ammonium chloride was added to cells for 5 

hours at 37°C.  Cell vacuolation was detected by inverted light microscopy and quantified by 

a neutral red uptake assay. 

   

Membrane Depolarization- Analysis of membrane potential was performed as described 

previously (69, 105) except that AZ-521 cells were detached with Accutase.  Purified acid-

activated VacA, or a mock preparation derived from an H. pylori vacA null mutant strain was 

added to the cells, and changes in the fluorescence were monitored. 

  

Blue Native Gel Electrophoresis- Blue native gel electrophoresis (126) was used to 

investigate the oligomeric state of VacA proteins.  In this technique, protein complexes are 

separated based on molecular size under non-denaturing conditions.  Purified wild-type 

VacA and VacA Δ346-347 proteins were desalted using Zeba Desalt Spin Columns (Pierce).  

Approximately 13 μg (5 μl) of each sample was mixed with 1 μl 1% dodecylmaltoside (a 

non-ionic detergent that is not expected to disrupt protein complexes), then mixed with 2.5 μl 

50% glycerol and 5% Coomassie blue G-250 dye stock suspension to give a detergent/dye 

ratio of 1.0g/g, and electrophoresed on a 4-13% polyacrylamide gel.  Lanes were cut out 

from the gel, boiled in SDS electrophoresis buffer for 10 minutes, and mounted on top of an 

8% SDS polyacrylamide gel for second dimension analysis.  After transfer to nitrocellulose, 

the samples were immunoblotted with an anti-VacA polyclonal serum (#958), followed by an 
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HRP-conjugated secondary antibody.  Signals were generated by the enhanced 

chemiluminescence reaction and detected using x-ray film. 

  

Modified SDS-PAGE methodology- The oligomeric state of VacA proteins was also assessed 

using a variant of the usual SDS-PAGE methodology.  VacA preparations were mixed with 

4% SDS lysis buffer (containing 1.5% Tris, 20% glycerol, 4% SDS, 10% 2-mercaptoethanol, 

and 0.002% Bromphenol Blue), resulting in a final SDS concentration of 2% in each sample.  

These samples were either boiled or not boiled, electrophoresed on an SDS-polyacrylamide 

gel (6% separating gel and 4% stacking gel), and analyzed by immunoblotting as described 

above. 

 

Immunoprecipitation of VacA proteins- Immunoprecipitations were performed as described 

previously, with minor modifications (66, 112).  Briefly, E. coli soluble extracts containing 

either c-Myc- or His6-tagged VacA fragments (112) were mixed for 1 hour at room 

temperature.  The mixtures tested included the combination of p33 Myc-His with either His 

p55 or His p55 Δ346-347.  Samples were normalized by immunoblotting with an antibody to 

the His6 epitope (anti-His, Santa Cruz Biotechnology).   After 1 hour, these samples were 

diluted in 1 ml PBS (pH 7) containing 0.05% Tween 20 and 2% ammonium sulfate.  Anti-c-

Myc monoclonal antibody (9E10) (3 μg) was added, and the mixture was incubated at 4°C 

for 2 hours.  Protein G-sepharose beads (Amersham Biosciences) were added to the VacA-

antibody mixture and incubated for 16-18 hours at 4°C.  The immunoprecipitated proteins 

were separated from the beads by boiling the beads in SDS-PAGE sample buffer and were 

analyzed by immunoblotting with an anti-His antibody followed by an HRP-conjugated 
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secondary antibody.  To analyze a potential interaction between p33 His, His p55 Δ346-347, 

and full-length 88kDa VacA, normalized E. coli extracts containing the former two proteins 

were mixed with acid-activated c-Myc-tagged VacA (Myc-VacA) purified from H. pylori 

culture supernatant (2 μg/ml) for 1 hour at 25°C, and the proteins were immunoprecipitated 

with an anti-c-Myc antibody as described above.  Immunoprecipitated proteins were 

analyzed by immunoblotting with anti-His and anti-c-Myc antibodies, followed by an HRP-

conjugated secondary antibody. 
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Table III-1.  H. pylori strains and plasmids 

H. pylori strain 
or plasmid 

 
Description  

 
Reference

H. pylori strains    
60190  ATCC 49503; Encodes wild-type s1/m1 VacA  (14) 
VT330 Encodes VacA with c-Myc epitope  (66) 
AV452 Encodes VacA Δ6-27 (118) 
SI433 Derived from H. pylori strain VM025, which 

contains a sacB-kan cassette within vacA; SI433 
encodes VacA Δ346-347 

(118) and 
this study 

60190 vacA::km vacA null mutant (14)  
Plasmids   

pMM592 Encodes wild-type VacA, amino acids 1-821  (67) 
pSI200 Derived from pMM592; encodes VacA Δ346-

347 
This study 

pSI201 Derived from pSI200; encodes VacA Δ346 This study 
pSI202 Derived from pSI200; encodes VacA Δ347 This study 
pSI203 Derived from pSI200; encodes VacA G347A This study 
pSI204 Derived from pSI200; encodes VacA G347R This study 
pSI205 Derived from pSI200; encodes VacA 

D346L/G347V 
This study 

pSI206 Derived from pSI200; encodes VacA 
D346E/G347V 

This study 

pSI207 Derived from pSI200; encodes VacA 
D346L/G347R 

This study 

pSI208 Derived from pSI200; encodes VacA 
D346R/G347R 

This study 

pSI209 Encodes VacA His p55 Δ346-347 This study 
pET41b VacA p55 Encodes VacA His p55  (112) 
pET41b VacA p33 MH Encodes VacA p33 Myc-His  (112) 
pET41b VacA p33 H Encodes VacA p33 His (112) 
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Results 
 
 
 

Secretion of VacA Δ346-347 by H. pylori and analysis of binding and vacuolating 
activity 

 
 To investigate properties of the VacA Δ346-347 protein, we introduced the Δ346-347 

mutation into the H. pylori chromosomal vacA gene by natural transformation and allelic 

exchange as described in Methods.  An 88 kDa VacA protein was detected in broth culture 

supernatant from the Δ346-347 mutant H. pylori strain, which indicated that the 140 kDa 

precursor protein (9) containing the Δ346-347 mutation underwent proteolytic processing 

and secretion, similar to wild-type VacA (Figure III-1).  We next investigated the interactions 

of wild-type VacA and VacA Δ346-347 with HeLa cells.  Flow cytometry analysis, 

performed as described previously (1), revealed that both wild-type VacA and VacA Δ346-

347 bound to HeLa cells in a dose-dependent manner (data not shown), thereby indicating 

that VacA Δ346-347 was not defective in binding to HeLa cells.  Saturable binding was not 

assessed in these binding experiments.  The capacity of VacA Δ346-347 to be proteolytically 

processed and secreted by H. pylori, as well its retention of cell-binding activity, suggested 

that this mutant protein was not grossly misfolded.  Notably, wild-type VacA caused cell 

vacuolation, whereas cell vacuolation was not observed when VacA Δ346-347 was added to 

HeLa cells (Figure III-2A).  Similarly, wild-type VacA caused extensive vacuolation of AZ-

521 gastric epithelial cells, whereas VacA Δ346-347 did not cause vacuolation of these cells 

(data not shown). 
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Figure III-1.  Secretion of VacA ∆346-347.  Wild-type (WT) H. pylori strain 60190, an 
isogenic mutant strain encoding a VacA Δ346-347 protein, and a vacA null mutant strain 
(60190 vacA::km)  were cultured in Brucella broth containing activated charcoal, and 
proteins in the broth culture supernatants were precipitated with a 50% saturated solution 
of ammonium sulfate.  Proteins were electrophoresed on a 10% SDS-polyacrylamide gel, 
transferred to a nitrocellulose membrane, and immunoblotted with polyclonal anti-VacA 
serum.  WT VacA and VacA Δ346-347 were each proteolytically processed to yield an 
88 kDa protein that was secreted by H. pylori into the broth culture supernatant. 
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Analysis of cellular depolarization 

 Addition of wild-type VacA to cells results in depolarization of the resting membrane 

potential, a phenomenon attributed to insertion of VacA into the plasma membrane to form 

anion-selective channels (96, 105).  In the next experiments, we compared the capacity of 

wild-type VacA and VacA Δ346-347 to cause depolarization of AZ-521 cells.  Consistent 

with previously published results, we found that addition of wild-type VacA to cells induced 

membrane depolarization (Figure III-2B), and a mock preparation derived from an H. pylori 

vacA null mutant strain did not induce depolarization.  When VacA Δ346-347 was added to 

AZ-521 cells, membrane depolarization was not detected (Figure III-2B).  Similar results 

were obtained using HeLa cells instead of AZ-521 cells (data not shown).  The failure of the 

VacA Δ346-347 mutant protein to depolarize AZ-521 cells suggests that this mutant toxin is 

defective in membrane channel formation. 
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Figure III-2.  Functional analysis of VacA ∆346-347 activity.  H. pylori strains 
expressing WT VacA or VacA Δ346-347, and a vacA null mutant strain (60190 
vacA::km) were grown in broth culture and VacA proteins were purified as described in 
Methods.  Concentrations of WT VacA and VacA Δ346-347 were normalized based on 
immunoblot assays, and the preparations were tested for vacuolating activity and 
membrane depolarization. (A) Analysis of vacuolating activity.  For VacA-containing 
samples, a dilution of 1:20 corresponds to a VacA concentration of approximately 15 
μg/ml.  An equivalent volume of sample from the vacA::km null mutant strain was tested 
as a control.  Acid-activated samples were added to the medium overlying HeLa cells and 
vacuolating activity was quantified using a neutral red uptake assay.  Results represent 
the mean ± S.D. from triplicate samples.  (B) Analysis of depolarization.  AZ-521 cells 
were loaded with oxonol VI (a probe used to monitor membrane potential).  After the 
addition of acid-activated VacA proteins (10 µg/ml) or a control preparation (vacA::km), 
changes in fluorescence were monitored.  WT VacA induced membrane depolarization, 
whereas VacA Δ346-347 and the control vacA::km preparation did not.  RFU, relative 
fluorescence units.  Results are representative of four experiments.  
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Oligomerization of VacA Δ346-347 

 VacA 88 kDa monomers produced by H. pylori are known to assemble into large 

water-soluble flower-shaped structures (11).  Assembly of VacA monomers into oligomeric 

structures is likely to be required for membrane channel formation and membrane 

depolarization.  To test whether VacA Δ346-347 formed oligomers similar to those formed 

by wild-type VacA, we initially used gel filtration followed by analysis of fractions by 

immunoblotting using anti-VacA serum.  Consistent with previous studies (11, 23), wild-type 

VacA was detected in fractions corresponding to a molecular mass of about 1000 kDa.  

When VacA Δ346-347 was analyzed in the same manner, only trace amounts of VacA Δ346-

347 were detected in these high molecular mass fractions (data not shown).  Trace amounts 

of VacA Δ346-347 were detected in a broad range of lower molecular mass fractions, 

without evidence of a well-defined peak.  The gel filtration elution properties of VacA Δ346-

347 are similar to those reported for a mutant VacA protein containing a deletion of the p33 

domain (90) and similar to several mutant VacA proteins containing large deletions within 

the p33 domain (118).  The gel filtration properties of VacA Δ346-347 differ markedly from 

those of several previously described inactive VacA proteins with mutations in the p33 

domain, which formed large oligomeric structures similar to wild-type VacA (68, 69, 118). 

 We next used gel electrophoresis methods to analyze the oligomeric state of VacA 

Δ346-347.  Efforts to detect wild-type VacA oligomers using native gel electrophoresis were 

unsuccessful, because VacA did not enter the gel.  Therefore, we analyzed the wild-type and 

mutant VacA proteins using blue native gel electrophoresis (BN-PAGE), as described in 

Methods.  Wild-type VacA was detected as a complex substantially larger than 775 kDa 

(Figure III-3A, top panel).  In this analysis, the molecular mass of VacA Δ346-347 was 
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substantially lower than that of wild-type VacA (Figure III-3A, bottom panel).  VacA Δ346-

347 appeared as a horizontal streak instead of a well-circumscribed spot, which suggested 

that this proteinaceous spot may be comprised of a heterogeneous mixture of oligomeric 

structures. 

As another approach to compare the oligomeric state of VacA Δ346-347 and wild-

type VacA, we used a modification of the SDS-PAGE procedure in which samples were 

suspended in loading buffer containing SDS, and then either boiled or not boiled prior to 

electrophoresis.  As expected, both wild-type VacA and VacA Δ346-347 yielded 88 kDa 

bands if the proteins were boiled prior to SDS-PAGE (Figure III-3B).  In the absence of 

boiling, wild-type VacA was detected as both a high molecular mass complex (>250 kDa) 

and an 88 kDa band (Figure III-3B).  When unboiled VacA Δ346-347 was analyzed in the 

same manner, the high molecular mass complex was not detected, but a smaller complex was 

detected (Figure III-3B).  This modified SDS-PAGE assay does not permit an accurate 

determination of the molecular mass of non-denatured proteins or protein complexes, based 

on comparison with molecular mass markers.  However, the results suggest that VacA Δ346-

347 can form a complex with a mass larger than that of the 88 kDa VacA monomer, but 

smaller than that of wild-type VacA oligomers.  Collectively, the gel filtration results, BN-

PAGE experiments, and modified SDS-PAGE results all suggest that VacA Δ346-347 and 

wild-type VacA differ in the ability to assemble into large oligomeric complexes.  In 

addition, it is possible that complexes formed by VacA Δ346-347 are less stable in the 

presence of detergent than are the complexes formed by wild-type VacA. 
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Figure III-3.  Analysis of oligomer formation by wild-type VacA and VacA Δ346-
347.  (A) BN-PAGE.  WT VacA (top panel) and VacA Δ346-347 (bottom panel) were 
purified and then analyzed by BN-PAGE, followed by immunoblotting using an anti-
VacA serum.  (B) Analysis by modified SDS-PAGE.  VacA was precipitated from H. 
pylori broth culture supernatants with ammonium sulfate and VacA protein 
concentrations were normalized based on immunoblot analysis.  Equivalent amounts of 
precipitated proteins were suspended in an SDS-containing buffer.  One set of 
preparations (lanes 1-3, left) was not boiled, and a duplicate set of preparations (lanes 4-
6, right) was boiled prior to SDS-PAGE.  Samples were run on a 6% SDS gel followed 
by immunoblotting with an anti-VacA serum.  The arrow indicates a large oligomeric 
VacA complex.   
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Interaction between p33 and p55 Δ346-347 

 When E. coli extracts containing VacA p33 and p55 fragments are mixed and added 

to HeLa cells, extensive cell vacuolation is seen, whereas when added to cells individually, 

the p33 and p55 proteins do not induce cell vacuolation (112).  To further investigate the 

effect of the Δ346-347 mutation on VacA activity and oligomerization, we expressed an 

isolated p55 VacA fragment containing the Δ346-347 mutation in E. coli.  As expected, a 

mixture of p33 plus wild-type p55 proteins induced vacuolation of HeLa cells (Figure III-

4A).  When a mixture of p33 plus p55 Δ346-347 was added to HeLa cells, vacuolation was 

not detected.  To determine whether p55 Δ346-347 could physically interact with p33, we 

performed immunoprecipitation experiments.  Different combinations of epitope-tagged 

recombinant proteins were mixed and immunoprecipitation was performed as described in 

Methods.  As shown in Figure III-4B, p33 and p55 Δ346-347 interacted in solution, similar 

to the interaction of p33 with wild-type p55.  The inclusion of two negative controls excluded 

non-specific interactions between p55 and the antibody or beads (Figure III-4B).  These data 

indicate that the Δ346-347 mutation does not abrogate interactions between the p33 and p55 

VacA domains. 

 

Interactions of p33 and p55 domains with full-length 88 kDa VacA 

 We have previously shown that a mixture of p33 and p55 VacA fragments can 

physically interact with wild-type full-length VacA (112, 114).  Therefore, we next 

investigated whether a mixture of p33 and p55 Δ346-347 could interact with 88 kDa VacA.  

For these experiments, we used a c-Myc-tagged 88 kDa VacA protein (Myc-VacA) purified 

from H. pylori culture supernatant and recombinantly expressed p33 and p55 Δ346-347.  
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After mixing Myc-VacA with p33 and p55 fragments, proteins were immunoprecipitated 

with an anti-c-Myc antibody.  As expected, when the wild-type p33-p55 mixture was 

incubated with 88 kDa Myc-VacA, all three proteins were immunoprecipitated (Figure III-

4C).  Similarly, when the p33-p55 Δ346-347 mixture was incubated with 88 kDa Myc-VacA, 

both fragments interacted with full-length VacA (Figure III-4C). 
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Figure III-4.  Analysis of recombinant p33, p55, and p55 Δ346-347 VacA domains.  
(A) Vacuolating toxin activity.  E. coli soluble extracts containing the indicated 
recombinant VacA proteins were normalized and added to HeLa cells as described in 
Methods.  Vacuolating activity was quantified using a neutral red uptake assay.  Results 
represent the mean ± S.D. from triplicate samples.  * p ≤ 0.05 as determined using 
ANOVA followed by Dunnett’s post hoc test as compared to p33 Myc-His combined 
with His p55.  (B) Interaction of p55 Δ346-347 with p33.  E. coli soluble extracts 
containing normalized concentrations of p33 Myc-His, His p55, or His p55 Δ346-347 
were mixed and proteins were immunoprecipitated (I.P.) with an anti-c-Myc antibody.  
Immunoprecipitated proteins were electrophoresed on a 10% SDS-polyacrylamide gel, 
transferred to a nitrocellulose membrane, and immunoblotted (I.B.) with an anti-His 
antibody.  (C) Interaction of p33-p55 Δ346-347 with 88 kDa VacA.  E. coli extracts 
containing normalized concentrations of p33 His, His p55, and His p55 Δ346-347 were 
mixed with acid-activated c-Myc-tagged 88 kDa VacA protein (Myc-VacA).  Proteins 
were immunoprecipitated with an anti-c-Myc antibody and then were immunoblotted 
with an anti-c-Myc antibody (top panel) or an anti-His antibody (bottom panel).  
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Inhibition of wild-type VacA cytotoxic activity by VacA Δ346-347 

 Certain inactive mutant forms of VacA can act as dominant negative inhibitors of 

wild-type VacA activity (35, 66, 114, 118).  Previous studies have suggested that the 

dominant-negative activity of mutant VacA proteins requires protein-protein interactions 

between wild-type VacA and the mutant proteins (35, 66, 114, 118).  The observation that 

VacA Δ346-347 can form mixed oligomeric complexes suggested that this mutant toxin 

might be capable of acting in a dominant negative manner.  Therefore, we next investigated 

whether VacA Δ346-347 could inhibit wild-type VacA activity.  As a control, we tested 

another mutant toxin (VacA Δ6-27) previously shown to act as a dominant negative inhibitor 

(35, 66, 114, 118).  Wild-type VacA and mutant toxins (VacA Δ346-347 or VacA Δ6-27) 

were mixed together and then the mixtures were added to HeLa cells.  As shown in Figure 

III-5, VacA Δ346-347 inhibited the cell-vacuolating activity of wild-type VacA, even when 

the concentration of VacA Δ346-347 was lower than that of wild-type VacA.  These results 

indicate that VacA Δ346-347 acts as a dominant-negative inhibitor of wild-type VacA 

activity. 
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Figure III-5.  Inhibition of wild-type VacA cytotoxic activity by VacA Δ346-347.  
Preparations of acid-activated wild-type VacA (WT; 15 µg/ml) were incubated with 15 
μg/ml acid-activated VacA Δ6-27, 8 μg/ml acid-activated VacA Δ346-347, or an 
equivalent volume of an acidified preparation from a vacA null mutant strain (vacA::km) 
as described in Methods, and the mixtures were then added to the medium overlying 
HeLa cells for 1 hour at 37°C.  Toxins were removed and fresh medium containing 5 mM 
ammonium chloride was added to HeLa cells for 5 hours at 37°C.  Vacuolating activity 
was quantified using a neutral red uptake assay.  Results represent the mean ± S.D. from 
triplicate samples.  * p ≤ 0.05 as determined using ANOVA followed by Dunnett’s post 
hoc test as compared to WT.   
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Mutational analysis of residues 346 and 347 

 To undertake a more detailed mutational analysis, we expressed VacA Δ346-347 

using a system that allows expression of a functional 88 kDa cytotoxic form of VacA in E. 

coli (67).  It has not been possible to purify well-defined dodecameric structures when VacA 

is expressed in E. coli (M. S. McClain and T. L. Cover, unpublished results), but this system 

nevertheless permits analysis of vacuolating toxic activity (67).  Soluble E. coli extracts 

containing VacA Δ346-347 or wild-type VacA were generated as described in Methods.  

Both recombinant proteins were successfully expressed based on immunoblotting analysis 

(data not shown).  As expected, when extracts containing wild-type VacA were added to 

cells, extensive cell vacuolation was detected.  In contrast, when E. coli extracts containing 

VacA Δ346-347 were added to HeLa cells, no vacuolation was detected (Figure III-6).  To 

further investigate the role of VacA amino acids 346 (aspartic acid) and 347 (glycine) in 

VacA activity, we introduced several additional mutations into these sites.  E. coli soluble 

extracts containing the mutant proteins were added to HeLa cells and vacuolating activity 

was measured by neutral red uptake.  A mutant protein containing a deletion of amino acid 

346 caused cell vacuolation similar to that caused by wild-type VacA (Figure III-6).  In 

contrast, when amino acid 347 was deleted, vacuolating activity was not detected (Figure III-

6).   

 The introduction of specific pairs of substitution mutations at position 346 and 347 

(D346L/G347R or D346R/G347R) abrogated VacA activity (Figure III-6).  In contrast, other 

pairs of substitution mutations at these positions (D346L/G347V or D346E/G347V) did not 

abrogate VacA activity.  Introduction of the G347R mutation alone (without any change at 

position 346) resulted in a partial loss of VacA activity.  Thus, the loss of activity resulting 
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from the Δ346-347 mutation was recapitulated by deletion of a single residue (amino acid 

347) or by specific pairs of substitution mutations. 

 

 

 

 

 

 

 

 

 
Figure III-6.  Mutational analysis of VacA residues 346 and 347.  Full-length WT 
VacA and a panel of VacA proteins containing mutations in residues 346 and/or 347 were 
expressed in E. coli.  E. coli soluble extracts containing the indicated recombinant 
proteins were normalized based on immunoblotting so that they contained equivalent 
concentrations of VacA, and were then added to the medium overlying HeLa cells.  
Vacuolating activity was quantified using a neutral red uptake assay.  Results represent 
the mean ± S.D. from triplicate samples.  * p ≤ 0.05 as determined using ANOVA 
followed by Dunnett’s post hoc test as compared to WT VacA.   
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Discussion 

In this study, we sought to elucidate properties of VacA that are conferred by an 

amino-terminal p55 subdomain that is required for vacuolating activity when VacA is 

intracellularly expressed in transiently transfected cells, but has not been found to be required 

for binding as have other regions of the p55 domain.  A recent analysis of the p55 VacA 

crystal structure (residues 355 to 811) showed that a substantial portion of the p55 domain 

comprises a beta-helical fold (29).  The crystal structure reveals that the amino-terminal 

portion of p55 is spatially separated from carboxy-terminal portions of p55, which is 

consistent with the concept of an amino-terminal subdomain.  The analysis in the current 

study focused on alterations in VacA that result from a small deletion mutation (Δ346-347, 

corresponding to the deletion of contiguous aspartic acid and glycine residues, respectively).  

High resolution structural data are not available for the portion of VacA comprising residues 

346 and 347 (29), but the presence of adjacent glycine and proline residues at positions 347 

and 348, respectively, suggests that this segment will represent part of a loop or turn.   

  As described in this study, VacA Δ346-347 lacked vacuolating activity when added 

to the surface of cells, and in contrast to wild-type VacA, VacA Δ346-347 did not cause cell 

depolarization.  The failure of this mutant toxin to induce cell depolarization suggests that it 

is unable to form membrane channels (69, 105).  Multiple biochemical analyses provided 

evidence that the Δ346-347 mutation disrupts or weakens intermolecular VacA interactions.  

Defective VacA intermolecular interactions could result in impaired assembly or impaired 

stability of oligomeric complexes required for membrane channel activity, or could result in 

an impaired ability of oligomers to undergo a conformational transition necessary for channel 

formation.   
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Thus far, very little is known about which amino acid sequences in VacA contribute 

to protein-protein interactions and oligomerization.  Prior to the current study, the smallest 

mutation known to disrupt VacA oligomerization was a deletion of residues 49-57, located 

within the p33 domain (35).  The current data indicate that residues 346-347 (located within 

the p55 domain) contribute to VacA oligomerization.  Thus, amino acid sequences in both 

the p33 domain and the p55 domain are required for assembly of VacA into large oligomeric 

structures.  This conclusion is consistent with a model for VacA oligomerization that is based 

on docking of the p55 crystal structure into a 19 angstrom cryo-EM map of a VacA 

dodecamer (29) (Figure III-7).   

The Δ346-347 mutation could potentially interfere with VacA oligomerization by 

disrupting p33-55 interactions. It is also theoretically possible that the Δ346-347 mutation 

may disrupt p55-p55 interactions; however, at present there is not convincing evidence 

indicating that p55-p55 interactions are required for VacA oligomer formation, and 

interactions between isolated p55 fragments have not been readily detectable by 

immunoprecipitation or yeast two-hybrid methods (112, 113).  Immunoprecipitation 

experiments indicated that p55 Δ346-347 can interact in solution with p33 (Figure III-4B), 

and a mixture of p33 plus p55 Δ346-347 can interact with full-length VacA (Figure III-4C).  

Thus, the Δ346-347 mutation does not completely abrogate p33-p55 interactions.  Our model 

predicts that the assembly of VacA proteins into large oligomeric structures requires multiple 

types of p33-p55 interactions, including interaction of a single p55 domain with p33 domains 

from one or two adjacent molecules (intermolecular interactions) as well as an interaction 

with p33 from the same molecule (intramolecular interaction) (Figure III-7).  These multiple 

types of p33-p55 interactions presumably are mediated by multiple different contact points 
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on the surface of p55 (FigureIII-7).  Based on this model, the Δ346-347 mutation could 

interfere with VacA oligomerization, despite failure of this mutation to completely abrogate 

p33-p55 interactions. 

An interesting property of VacA Δ346-347 is its ability to inhibit the activity of wild-

type toxin in a dominant-negative manner (Figure III-5).  Several dominant negative mutant 

forms of VacA have been described in previous studies (35, 66, 114, 118), and at least one of 

these mutants (VacA Δ6-27) is able to block membrane channel formation by wild-type 

VacA (118).  It has been hypothesized that the inhibitory activity of these mutants is 

dependent on their ability to physically interact with wild-type VacA, thereby forming mixed 

oligomeric complexes that are defective in functional activity (66, 118).  Similarly, the 

dominant negative phenotype of several Bacillus anthracis protective antigen mutants is also 

due to the formation of mixed oligomeric complexes containing wild-type and mutant 

proteins (97, 99).  In contrast to two previously described dominant negative mutant proteins 

(VacA Δ6-27 and VacA s2/m1) (66, 118), the mutant protein described in the current study 

(VacA Δ346-347) failed to assemble into large oligomeric structures.  Similarly, a recent 

study reported that another mutant protein, VacA Δ49-57, failed to cause cell vacuolation and 

did not form large oligomeric structures, but was able to inhibit the activity of wild-type 

VacA in a dominant-negative manner (35).  One possibility is that the mechanisms of 

dominant negative inhibition are different for one group of mutants (VacA Δ6-27 and VacA 

s2/m1) compared to the second group of mutants (VacA Δ346-347 and VacA Δ49-57).  

Alternatively, it is likely that the latter mutants, although defective in assembly into large 

oligomeric structures, are still able to physically interact with wild-type VacA.  Specifically, 

the VacA Δ346-347 protein has a defective oligomerization site within the p55 domain, but it 
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has an intact p33 domain.  As shown in Figure III-7, each subunit within a dodecamer makes 

contact with other subunits via multiple p33-p55 intermolecular interactions.  Based on this 

model, it is predicted that VacA Δ346-347 (via its p33 domain) would be able to interact with 

wild-type VacA.  We speculate that oligomers containing both wild-type and mutant 

components would be defective in the ability to undergo conformational changes required for 

channel formation, and therefore, would be defective in vacuolating activity. 

In summary, this study provides new insights into properties of VacA that are 

conferred by the p55 amino-terminal subdomain.  Ongoing structure-function studies of 

VacA should lead to a better understanding of how VacA forms membrane channels and 

causes alterations in human cells. 
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Figure III-7.  Model depicting how the ∆346-347 mutation interferes with 
oligomerization of VacA.  The model is based on docking the p55 crystal structure into a 
19-Å cryo-EM map of a VacA dodecamer (23, 29).  p55 subunits are outlined in green, 
and p33 subunits are outlined in blue.  Intramolecular p33-p55 interactions are depicted 
as red bars, and intermolecular p33-p55 interactions are depicted as yellow bars.  We 
predict that residues 346 to 347 are located at or near the sites of yellow bars, and thus a 
∆346-347 mutation would disrupt intermolecular p33-p55 interactions. 
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CHAPTER IV 
 
 

STRUCTURE-FUNCTION ANALYSIS OF A β-HELICAL REGION IN THE 
HELICOBACTER PYLORI VacA p55 DOMAIN 

  

Introduction 

 Numerous bacterial pathogens secrete virulence factors by a type V (autotransporter) 

pathway (16).  Crystallographic studies of three passenger domains secreted by a classical 

(type Va) autotransporter pathway revealed that each has a predominantly β-helical structure 

(24, 29, 80), and it is predicted that nearly all autotransporter passenger domains share a β-

helical fold (47).  Thus far, there has been relatively little progress in understanding the 

properties of β-helical proteins that facilitate protein secretion, and very little is known about 

the structural features that are responsible for the unique properties of individual 

autotransporter passenger domains. 

VacA is synthesized as a 140 kDa precursor protein, which undergoes proteolytic 

processing to yield a 33-amino acid signal sequence, a mature 88 kDa secreted protein, a ~12 

kDa secreted peptide, and a carboxy-terminal domain that remains associated with the 

bacteria (14, 95, 106).  The mature 88 kDa VacA passenger domain can be proteolytically 

processed into an amino-terminal 33 kDa (p33) fragment and a carboxy-terminal 55 kDa 

(p55) fragment (76), which are considered to represent two domains or subunits of VacA 

(106, 112, 113) (Figure IV-1A).  Recently the crystal structure of the p55 domain of a VacA 

protein was determined (29).  The most striking feature of this domain is the presence of a 

right-handed parallel β-helical structure, composed of coiled, parallel β-sheet structures 

(Figure IV-1B).  Each coil of the parallel β-helix consists of three parallel β-strands 

connected by loops of different lengths.  Other features of the p55 structure include a small 
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globular domain near the carboxy-terminus that consists of mixed α/β secondary structure 

elements and the presence of a disulfide bond.  The β-helical portion of the VacA p55 

domain of H. pylori strain 60190 consists of about 13 coils (Figure IV-1B) (29). 

In the current study, we tested the hypothesis that specific structural elements within 

the β-helical region of the p55 domain are essential for VacA secretion and vacuolating toxin 

activity.  To test this hypothesis, we generated H. pylori mutant strains expressing VacA 

proteins in which individual coils of the β-helix were deleted, and we then analyzed the 

secretion and activity of these mutant proteins. 

 

Methods 

H. pylori strains and growth conditions.  H. pylori wild-type strain 60190 (ATCC 49503) 

was the parent strain used for construction of all mutants in this study.  H. pylori strains were 

grown on trypticase soy agar plates containing 5% sheep blood at 37°C in ambient air 

containing 5% CO2.  H. pylori liquid cultures were grown in sulfite-free Brucella broth 

containing 10% fetal bovine serum (BB-FBS).  Throughout this study, we used an amino 

acid numbering system in which residue 1 refers to alanine 1 of the secreted 88 kDa VacA 

protein, and the p55 domain corresponds to amino acids 312 to 821 (GenBank accession 

number Q48245). 

 

Introduction of deletion mutations into the chromosomal vacA gene of H. pylori.  To 

introduce in-frame internal deletion mutations into a plasmid encoding VacA, we performed 

inverse PCR using pMM592 (encoding wild-type VacA, amino acids 1 to 821) (67) as 

template DNA, 5’-phosphorylated primers, and Pfu Turbo polymerase (Stratagene). The 
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resulting PCR products were then ligated and transformed into E. coli DH5α.  Each plasmid 

was analyzed by DNA sequencing to verify that the desired deletion was present.  To 

introduce the mutations into the H. pylori chromosomal vacA gene (66, 69, 117), H. pylori 

strains containing a sacB-kanamycin cassette within vacA (VM025, VM018, or VM028) 

(118) were transformed with plasmids containing vacA deletion mutations.  Sucrose-resistant, 

kanamycin-sensitive transformants were selected by growth on Brucella broth plates 

supplemented with 10% FBS and 5.5% sucrose (118).  Full-length vacA sequences encoding 

the p33 domain and the p55 domain were PCR-amplified from mutant strains, and the 

nucleotide sequences of PCR products were analyzed to confirm that the desired mutation 

had been introduced successfully into the chromosomal vacA gene. 

 

Immunoblot analysis of VacA.  To detect VacA expression, proteins in individual samples 

were separated by SDS-polyacrylamide gel electrophoresis, transferred to nitrocellulose 

membrane, and immunoblotted using a polyclonal rabbit anti-VacA antibody (#958) raised 

against the secreted 88 kDa passenger domain (96), followed by horseradish peroxidase-

labeled rabbit IgG.  As a control, samples were immunoblotted with rabbit antiserum to 

HspB (a GroEL heat shock protein homolog) purified from H. pylori broth culture 

supernatant (7).  Signals were generated by the enhanced chemiluminescence reaction and 

detected using x-ray film. 

 

Concentration and normalization of VacA proteins.  H. pylori strains were grown in BB-FBS 

for 48 hours.  Broth culture supernatants were concentrated 30-fold by ultrafiltration with a 

30 kDa cutoff membrane.  Relative concentrations of VacA in different broth culture 
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supernatant preparations were determined by antigen-detection ELISA (118).  Broth culture 

supernatants were diluted in carbonate buffer (18mM Na2CO3, 34.8mM NaHCO3) and 

allowed to adhere to an ELISA plate overnight at room temperature.  After removal of 

unbound VacA proteins, wells were blocked with phosphate buffered saline (PBS) containing 

3% BSA and 0.05% Tween 20.  VacA was detected with rabbit anti-VacA antiserum (#958) 

and horseradish peroxidase-labeled rabbit IgG followed by TMB substrate (Pierce).  To 

permit normalization of VacA concentrations in different preparations, samples were diluted 

with culture supernatant from a vacA null mutant strain. 

 

Sonication of H. pylori.  H. pylori grown on blood agar plates were suspended in sonication 

buffer [20 mM Tris-acetate (pH 7.9), 50 mM potassium acetate, 5 mM Na2EDTA, 1 mM 

dithiothreitol (DTT), protease inhibitor cocktail] and sonicated on ice for three 10 second 

pulses.  The lysate was centrifuged at 15,000 rpm and the supernatant collected. 

   

Susceptibility of VacA to proteolysis by trypsin.  H. pylori grown on blood agar plates were 

suspended in phosphate buffered saline (PBS), and bacterial suspensions were treated with 

trypsin (0.05%) for 30 min at 37ºC.  After addition of a protease inhibitor cocktail, the 

bacteria were pelleted, and the pellet washed once with PBS containing protease inhibitor.  

The pellet was then suspended in SDS lysis buffer, boiled, and analyzed by immunoblot.  

Sonicated preparations of H. pylori were treated with trypsin and analyzed in the same 

manner. 
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Analysis of VacA reactivity with a monoclonal antibody.  Normalized concentrated culture 

supernatants were diluted in carbonate buffer and allowed to adhere to an ELISA plate 

overnight at room temperature.  After removal of unbound VacA proteins, wells were 

blocked with phosphate buffered saline (PBS) containing 3% BSA and 0.05% Tween 20.  

VacA was detected with mouse anti-VacA (5E4) (117) and horseradish peroxidase-labeled 

mouse IgG followed by TMB substrate (Pierce). 

 

Cell culture analysis of VacA proteins.  HeLa cells were grown as described previously 

(112).  AZ-521 cells, a human gastric adenocarcinoma cell line (Culture Collection of Health 

Science Research Resources Bank, Japan Health Sciences Foundation) and RK13 cells 

(ATCC CCL-37), a rabbit kidney cell line, were grown in minimal essential medium 

supplemented with 10% FBS and 1 mM non-essential amino acids.  For vacuolating assays, 

cells were seeded at 2 X 104 cells/well into 96-well plates 24 hours prior to each experiment.  

The VacA content of different samples was normalized as described above.  Serial dilutions 

of samples were added to serum-free tissue culture medium overlying cells (supplemented 

with 5 mM ammonium chloride) and incubated for 5-10 hours at 37ºC.  An equivalent 

volume of a corresponding preparation from a vacA null mutant was used as a negative 

control.  After incubation, cell vacuolation was examined by inverted light microscopy and 

quantified by a neutral red uptake assay (13).  Neutral red uptake data are presented as A540 

values (mean ± S.D.).  Background levels of neutral red uptake by cells treated with culture 

supernatant from a vacA null mutant were subtracted to yield net neutral red uptake values. 
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Analysis of binding of mutant VacA proteins.  To analyze interactions of VacA with the 

surface of cells, cells were seeded into 96-well plates 24 hours prior to each experiment so as 

to obtain sub-confluent cells.  The VacA content of different samples was normalized by 

western blot with an anti-VacA polyclonal antibody.  HeLa, RK13, and AZ-521 cells were 

incubated with the H. pylori culture supernatants containing VacA for 1 hour at 4ºC.  Cells 

were quickly washed three times with cold PBS, and then the cells were washed three 

additional times for 5 minutes each with cold PBS.  Cells were lysed directly in the wells of 

the 96-well plate by adding SDS-containing buffer.  The presence of VacA in these cell 

lysates was detected by immunoblotting. 

 

Results 

 

Expression and secretion of mutant VacA proteins by H. pylori 

 To test the hypothesis that specific β-helical elements within the VacA p55 domain 

are required for VacA secretion and activity, we introduced an ordered series of eight 

deletion mutations, each 20 to 28 amino acids in length, into a portion of the vacA gene that 

encodes the p55 domain.  These deletion mutations were designed so that each would result 

in the deletion of a single coil of the β-helix (Figure IV-1A; representative single coils are 

highlighted in Figure IV-1B).  By designing the deletion mutations in this manner, it was 

predicted that the mutant proteins would exhibit reductions in the length of the β-helical 

region but would exhibit minimal changes in protein folding in comparison to the wild-type 

protein.  All of the deletion mutations analyzed in this study are located outside of the VacA 

region (amino acids 1-422) previously found to be required for cell vacuolation when VacA 
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is expressed in transiently transfected cells (133).  Each of the mutations was introduced into 

the H. pylori chromosomal vacA gene by natural transformation and allelic exchange as 

described in Methods. 

 Each mutant H. pylori strain was tested by immunoblot analysis for the capacity to 

express VacA.  We first analyzed expression of the mutant strains grown on blood agar 

plates.  Each mutant strain expressed a VacA protein with a mass of ~85 kDa (corresponding 

to the VacA passenger domain), which indicated that in each case, the ~140 kDa VacA 

protoxin underwent proteolytic processing similar to wild-type VacA (data not shown).  We 

next analyzed expression and secretion of VacA when the bacteria were grown in broth 

culture.  Immunoblot analysis of the bacterial cell pellets indicated that, as expected, each of 

the mutants strains expressed an ~85 kDa protein (Figure IV-2A), but in comparison to wild-

type VacA, several of the mutant forms of VacA were expressed at lower levels (Figure IV-

2A and B).  Immunoblot analysis of the broth culture supernatants indicated that each of the 

mutant strains secreted or released an ~85 kDa VacA protein.  In comparison to secretion of 

VacA by the wild-type strain, several of the mutant VacA proteins were secreted at 

moderately reduced levels, and three mutant proteins (VacA Δ559-579, Δ580-607, and Δ608-

628) were nearly undetectable in culture supernatant (Figure IV-2C and D).  Analysis of the 

culture supernatants by ELISA yielded similar results (data not shown). 
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Figure IV-1.  Introduction of deletion mutations into the VacA p55 domain.  (A) 
Diagram of the full-length 88 kDa VacA protein secreted by H. pylori strain 60190 (14).  p33 
(amino acids 1 to 311) and p55 (amino acids 312-821) domains are shown.  Mutations 
encoding single coil deletions within the β-helix of the p55 domain were introduced into the 
H. pylori chromosomal vacA gene by natural transformation and allelic exchange as 
described in Methods.  The relative position of each single coil deletion is shown.  (B) 
Crystal structure of the p55 VacA domain of H. pylori strain 60190 (29).  The most amino- 
terminal deletion (amino acids 433-461) and the most carboxy-terminal deletion (amino acids 
608-628) are highlighted in red. 
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Figure IV-2.  Expression and secretion of wild-type and mutant VacA proteins.  H. 
pylori wild- type and mutant strains were grown in broth culture.  Broth cultures were 
normalized by optical density (OD 600nm) and then pellets (A) and unconcentrated broth 
culture supernatants (C) were analyzed by immunoblot assay using polyclonal anti-VacA 
serum #958.  Samples were also immunoblotted with a control antiserum against H. pylori 
heat shock protein (HspB).  The intensity of immunoreactive VacA bands was quantified by 
densitometry (panels B and D).  Wild-type VacA and each of the mutant proteins were 
expressed and proteolytically processed to yield ~85-88 kDa proteins that were secreted into 
the broth culture supernatant.  VM018 is an H. pylori strain with a vacA null mutation (118). 
Western blots are representative of three independent experiments; histograms are based on 
data from three independent experiments.  *, p<0.05 compared to wild-type VacA, as 
determined by Student’s t-test. 
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Susceptibility of VacA mutant proteins to proteolytic cleavage by trypsin 

 Previous studies have shown that the wild-type 88 kDa VacA passenger domain is 

secreted into the extracellular space and that 88 kDa proteins also remain localized on the 

surface of H. pylori (41).  To investigate whether the mutant VacA proteins were localized 

on the bacterial surface similar to wild-type VacA, the wild-type and mutant H. pylori strains 

were harvested from blood agar plates and treated with trypsin as described in Methods.  

Wild-type VacA and each of the ~85 kDa mutant proteins were cleaved by trypsin, resulting 

in several different patterns of proteolytic degradation products (Figure IV-3A).  Degradation 

of each of the ~85 kDa VacA mutant proteins by trypsin provided evidence that each mutant 

protein was localized on the surface of the bacteria (Figure IV-3A). 

 The observed variation in the proteolytic digest patterns (Figure IV-3A) could be 

attributable to differences in the orientation of VacA mutant proteins on the bacterial cell 

surface in relation to the outer membrane, or alternatively, VacA mutant proteins might differ 

in susceptibility to proteolytic cleavage.  To test the hypothesis that VacA mutant proteins 

varied in susceptibility to proteolytic cleavage, lysates of H. pylori strains were generated by 

sonication, and the solubilized proteins were treated with trypsin as described in Methods.  

Trypsin digestion of two of the mutant proteins (∆511-536 and ∆517-544) yielded proteolytic 

digest patterns that were identical to each other and similar to that of trypsin-digested wild-

type VacA (Figure IV-3B).  Trypsin digestion of two other mutant proteins (∆433-461 and 

∆484-504) yielded different digest patterns, but these mutant proteins were not completely 

degraded (Figure IV-3B).  Four mutant proteins (∆462-483, ∆559-579, ∆580-607, and ∆608-

628) were completely degraded by trypsin (Figure IV-3B).  In general, the four mutant 

proteins that exhibited relative resistance to trypsin digestion were secreted at relatively high 
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levels compared to mutant proteins that were completely degraded by trypsin (compare 

Figure IV-2 and Figure IV-3).  The observed differences among mutant VacA proteins in 

susceptibility to trypsin-mediated proteolysis suggested that there were differences in the 

folding of the individual mutant proteins.   

 To test whether the four mutant proteins exhibiting relative resistance to trypsin-

mediated proteolysis (i.e. VacA ∆433-461, ∆484-504, ∆511-536, and ∆517-544) shared 

common properties with wild-type VacA, we analyzed the reactivity of these proteins with an 

anti-VacA monoclonal antibody (5E4) that recognizes a conformational epitope (117).  Each 

of the four mutant VacA proteins was recognized by the 5E4 antibody (Figure IV-4), which 

provided additional evidence that these mutant proteins were folded in a manner similar to 

that of wild-type VacA. 
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Figure IV-3.  Susceptibility of VacA proteins to proteolytic cleavage by trypsin.  (A) 
Intact H. pylori strains expressing wild-type or mutant VacA proteins were suspended in PBS 
and incubated in the presence (+) or absence (-) of trypsin as described in Methods.  After 
centrifugation, bacterial pellets were analyzed by immunoblot analysis using polyclonal anti-
VacA serum #958.  A short immunoblot exposure is shown for analysis of the full-length 
VacA bands (85-88 kDa), whereas a longer exposure is shown for analysis of proteolytic 
digest products.  (B) H. pylori strains expressing wild-type or mutant VacA proteins were 
sonicated as described in Methods.  After centrifugation, the soluble portion was analyzed 
further.  The total protein concentration of each sample was approximately 7.5 μg/ml, as 
determined by A280 values (data not shown).  Samples were incubated in the presence (+) or 
absence (-) of trypsin and analyzed by immunoblot analysis using polyclonal anti-VacA 
serum #958. 
 

 

 

 



 74

 

 

 

 

 

 

Figure IV-4.  Reactivity of VacA mutant proteins with a monoclonal anti-VacA 
antibody.  H. pylori strains expressing wild-type or mutant VacA proteins were grown in 
broth culture and secreted VacA proteins were normalized as described in Methods.  Wells of 
ELISA plates were coated with broth culture supernatants, and reactivity of the proteins with 
an anti-VacA monoclonal antibody (5E4) that recognizes a conformational epitope was 
determined by ELISA.  Reactivity of a vacA null mutant was subtracted as background.  
Relative VacA concentrations are indicated.  Values represent the mean ± SD from triplicate 
samples. 
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Analysis of vacuolating activity of mutant VacA proteins 

 We next investigated whether the mutant VacA proteins retained vacuolating toxin 

activity.  We focused these studies on the four mutant proteins that were secreted at the 

highest levels and that exhibited evidence of protein folding similar to that of wild-type 

VacA (i.e. VacA ∆433-461, ∆484-504, ∆511-536, and ∆517-544).  Analysis of the 

vacuolating toxin activity of the remaining VacA mutant proteins was not possible due to 

prohibitively low concentrations of the secreted mutant proteins and inability to normalize 

the concentrations of these proteins.  H. pylori culture supernatants containing wild-type 

VacA and the four mutant proteins of interest were normalized by ELISA so that the VacA 

concentrations were similar, as described in Methods.  The mutant proteins were initially 

tested for their ability to induce vacuolation of HeLa cells.  Each of the mutant proteins 

(VacA ∆433-461, ∆484-504, ∆511-536, and ∆517-544) induced vacuolation of HeLa cells 

(Figure IV-5A), but one of the mutants, VacA ∆433-461, exhibited reduced vacuolating 

activity compared to wild-type VacA.  At the highest concentration of toxin added to cells, 

the reduction in activity observed for the VacA ∆433-461 mutant protein compared to wild-

type VacA was approximately 30%.  The same preparations of mutant proteins were then 

tested for their ability to induce vacuolation of AZ-521 cells (human gastric epithelial cells) 

and RK13 cells (rabbit kidney cells), two cells lines that have been used commonly for 

analysis of VacA activity (45, 82, 121).  VacA ∆484-504, ∆511-536, and ∆517-544 each 

caused vacuolation of RK13 and AZ-521 cells, but VacA ∆433-461 lacked detectable 

vacuolating activity for both RK13 and AZ-521 cells (Figure IV-5B and C).  Thus, in 

contrast to wild-type VacA and the other mutant VacA proteins tested in this analysis, VacA 
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∆433-461 caused reduced vacuolation of HeLa cells and did not cause detectable vacuolation 

of RK13 or AZ-521 cells. 

 

 

 

 

 



 77

 

Figure IV-5.  Vacuolating cytotoxic activity of mutant proteins.  H. pylori strains 
expressing wild- type or mutant VacA proteins were grown in broth culture and secreted 
VacA proteins were normalized as described in Methods.  Serial two-fold dilutions of VacA-
containing preparations were added to HeLa cells (A), RK13 cells (B), and AZ-521 cells (C).  
Vacuolating activity was measured by neutral red uptake.  Relative VacA concentrations are 
indicated.  Results represent the mean ± SD from triplicate samples, expressed as a percent of 
neutral red uptake induced by wild-type VacA.  *, p≤0.02 as determined by Student’s t-test 
compared to wild type VacA.  Similar results were observed in three independent 
experiments. 
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Analysis of binding of VacA ∆433-461 

 We hypothesized that the lack of vacuolating activity of VacA ∆433-461 on RK13 

and AZ-521 cells might be due the inability of the mutant to bind to these cell types.  

Therefore, we next investigated the binding of VacA ∆433-461 to HeLa , RK13, and AZ-521 

cells.  Because the other mutants tested for vacuolating activity were similar in activity to 

wild-type VacA, we focused the binding studies only on VacA ∆433-461.  H. pylori culture 

supernatants containing wild-type VacA and the mutant protein of interest were first 

normalized by western blot so that the VacA concentrations were similar.  VacA ∆433-461 

was able to bind to all three cell types at levels similar to wild-type VacA (Figure IV-6), 

suggesting that this mutant toxin does not exhibit a defect in binding.  Interestingly, the total 

level of binding of wild-type VacA and VacA ∆433-461 is reduced in AZ-521 cells 

compared to HeLa and RK13 cells (Figure IV-6).  When vacuolating assays were performed 

with the wild-type and mutant toxins, AZ-521 cells were more sensitive to the toxin (i.e. 

required more-diluted toxins and shorter incubation with the toxin) compared to HeLa cells.  

When AZ-521 cells were incubated with toxins for eight hours (the normal incubation time 

for toxin with HeLa cells before doing neutral red uptake), AZ-521 cells were rounded up 

and did not appear healthy compared to HeLa cells.  This increased sensitivity makes the 

observation of reduced total binding to AZ-521 cells interesting. 
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Figure IV-6.  Binding of VacA ∆433-461.  H. pylori strains expressing wild- type or mutant 
VacA proteins were grown in broth culture and secreted VacA proteins were normalized as 
described in Methods (input).  Normalized VacA-containing preparations were added to 
HeLa, RK13, and AZ-521 cells for 1 hour at 4ºC.  The capacity of VacA to interact with cell 
membranes was assessed by immunoblot analysis using an anti-VacA polyclonal antibody. 
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Discussion 

 In this study, we sought to identify regions of the p55 β-helix that are essential for 

VacA secretion and vacuolating toxin activity.  All of the VacA mutant proteins analyzed in 

this study were designed in a manner that resulted in the deletion of a single coil of the β-

helix, based on analysis of the crystal structure of the VacA p55 domain (29).  We predicted 

that all of the mutant VacA proteins would retain a β-helical structure, and that this 

mutagenesis approach would result in minimal disruptions in protein folding.  We found that 

several individual coils within the p55 domain could be deleted without substantially altering 

the capacity of the proteins to undergo proteolytic processing and secretion by H. pylori.  In 

contrast, we found that the deletion of other coils led to a marked defect in VacA secretion.  

In addition to the mutant VacA proteins shown in Figure IV-1, we also generated several H. 

pylori mutant strains expressing VacA proteins in which two coils (∆433-483) or four coils 

(∆433-529) of the β-helix were deleted.  These mutant strains expressed truncated VacA 

proteins of the expected size (approximately 82 and 77 kDa, respectively) at levels similar to 

wild-type VacA, but these mutant proteins were poorly secreted (data not shown).  These 

findings suggest that VacA proteins containing large deletions within the β-helical region of 

the p55 domain are poorly secreted.  Similarly, a previous study reported efforts to introduce 

large deletions into the region of the H. pylori chromosomal vacA gene that encodes the 

VacA p55 domain, but most of the resulting mutant proteins were neither expressed nor 

secreted by H. pylori (118). 

 In the current study, the three mutant VacA proteins that exhibited the most striking 

defects in secretion (∆559-579, ∆580-607, ∆608-628) each contained deletions that are 

localized near the carboxy-terminus of the β-helix.  A notable feature of these mutant 
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proteins was that in comparison to wild-type VacA, they exhibited increased susceptibility to 

trypsin proteolytic cleavage.  Interestingly, a study of Bordetella pertussis BrkA revealed that 

a β-helical region near the carboxy-terminus of the passenger domain is required for folding 

of this protein (79).  The authors proposed that this domain acts as an intramolecular 

chaperone to promote folding of the passenger domain concurrent with or following 

translocation through the outer membrane.  Similarly, studies of B. pertussis pertactin 

indicate that the carboxy terminal β-helical region of this protein exhibits enhanced stability 

and can fold as a stable core structure (46, 47).  We speculate that VacA amino acids 559-

628 have a similar functional role in promoting protein folding and secretion.  Collectively, 

our current studies of VacA, combined with previous studies of pertactin and BrkA, suggest 

that autotransporter passenger domains from a variety of bacterial species may be dependent 

on a carboxy-terminal β-helical region for protein folding and protein secretion. 

 An additional finding in the current study is that several individual coils within the 

p55 domain can be deleted without adverse effects on vacuolating toxin activity.  VacA 

∆484-504, ∆511-536, and ∆517-544 mutant proteins each retained vacuolating activity 

similar to that of wild-type VacA.  The retention of vacuolating activity despite the deletion 

of entire coils of the β-helix correlates well with results from a previous study, which 

reported that inactivating point mutations within the portion of vacA encoding the p55 

domain could not be identified (68).  In the current study, one of the VacA mutant proteins 

(∆433-461) clearly exhibited a defect in vacuolating activity compared to wild-type VacA.  

The VacA ∆433-461 mutant retained the capacity to be secreted by H. pylori, which suggests 

that this protein was not substantially altered in folding.  Further evidence for intact folding 

of the VacA ∆433-461 mutant protein was provided by the demonstration that this mutant 
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protein is recognized by an anti-VacA monoclonal antibody (5E4) that reacts with a 

conformational epitope and the demonstration that this mutant protein exhibits resistance to 

trypsin proteolysis.  Further studies will need to be performed to determine the precise amino 

acids within this coil that contribute to vacuolating toxin activity. 

 In summary, these results reveal that within the VacA β-helix, there are regions of 

plasticity that tolerate alterations without detrimental effects on protein secretion or activity.  

We speculate that there are similar regions of plasticity within other autotransporter 

passenger domains.  The current data also provide evidence that a β-helical region near the 

carboxy-terminus of the VacA passenger domain is required for proper folding and secretion; 

this feature may be a general property of autotransporter passenger domains.  Finally, the 

current results suggest that VacA amino acids Ser433-Phe461 contribute to vacuolating toxin 

activity.  Further study of these topics may lead to a better understanding of the role of the β-

helical structure in secretion and activity of autotransporter passenger domains. 
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CHAPTER V 
 

 
ADDITIONAL STUDIES OF VACA HOST-CELL INTERACTIONS 

 
 

Introduction 
 

 Upon first joining the lab, I undertook several small pilot projects to investigate 

effects of VacA on epithelial cells.  The known cellular effects of VacA on epithelial cells 

include alteration of mitochondrial membrane permeability, apoptosis, activation of mitogen-

activated protein kinases (MAPK), and depolarization of the membrane potential (9); 

however, there are still unanswered questions in each of these areas.  In this chapter, I will 

present preliminary data from my projects studying MAPK activation, identification of 

VacA-induced changes in expression of epithelial cell proteins, apoptosis, intracellular 

localization, and studies of GFP-tagged VacA domains. 

 

Effects of H. pylori on phosphorylation and activation of MAPK pathways 

 Several studies have shown that VacA can directly induce vacuolation, mitochondrial 

damage, cytochrome c release, and apoptosis of epithelial cells (28, 48, 50, 57).  The 

mechanisms by which VacA exerts its cytotoxic effects have not been completely elucidated, 

but evidence suggests that the different effects may occur through different pathways.  

Because VacA is thought to cause cell death by mitochondrial damage, a study by Nakayama 

et al. hypothesized that VacA could also disrupt other signaling pathways; they therefore 

examined the effects of VacA on mitogen activated protein kinases (MAPK) (75).  The 

authors found that purified VacA activates two groups of MAPK, both p38 and Erk 1/2, in 

the AZ-521 gastric epithelial cell line.  By treating cells with an inhibitor of p38 kinase 
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activity, the authors found that vacuolation, decrease in mitochondrial membrane potential, 

and cytochrome c release still occurred, suggesting that these activities are not related to the 

p38 signaling pathway (75).   

 When I began the signaling project, one goal was to determine whether we could 

reproduce the finding by Nakayama et al. that purified VacA stimulated p38 and Erk 1/2 

phosphorylation.  Other questions that that we wanted to answer included: could the system 

be characterized in more detail with respect to dose response or kinetics, what is upstream 

and downstream of p38 and Erk 1/2 phosphorylation (for example specific receptors that 

VacA must bind to, other kinases, transcription factors), is this effect seen in cell types 

besides AZ-521, do VacA mutants produce the same effects, and what pathway leads to 

VacA-induced effects such as vacuolation and cytochrome c release.  Ultimately, studies 

such as these could lead to a better understanding of VacA’s mechanism of action. 

 Effect of purified VacA on activation of Erk 1/2 and p38- We first treated adherent 

AZ-521 cells with purified acid-activated VacA (10 µg/ml and 20µg/ml) or a control acid-

activated buffer not containing VacA for 10, 30, 60, and 120 minutes.  Prior to the addition 

of VacA, cells were serum starved overnight.  After incubation with the toxin, cells were 

lysed with a buffer containing 62.5 mM Tris (pH 6.8), 2% SDS, 10% glycerol, 50 mM DTT, 

0.1 % bromphenol blue, 10 mM NaF, 1mM Na3OV, and complete protease inhibitor cocktail 

(Pierce).  Samples were run on a 4-20% gradient gel, transferred to nitrocellulose, and 

immunoblotted with anti-phospho-p38, anti-phospho-Erk 1/2, or an antibody against total 

p38 and Erk 1/2, followed by a horseradish peroxidase (HRP)-conjugated secondary antibody 

and detected using X-ray film.  In contrast to the previous published study, we detected very 

little p38 or Erk 1/2 phosphorylation above background levels after addition of VacA.  We 
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observed a very small increase in Erk 1/2 phosphorylation at 10 and 30 minutes (Figure V-1).  

At 10 and 30 minutes, there was a 1.34-fold increase and 1.22-fold increase, respectively, in 

Erk 1/2 phosphorlyation when acid-activated VacA was added to cells compared to when 

acid-buffer without VacA was added to cells.  These experiments were performed at least 

twice and with two additional gastric epithelial cell lines, AGS and MKN-28, and HeLa cells 

with similar results (data not shown).  Our background levels of phosphorylation were 

always higher than previously reported, making it hard to see an increase in phosphorylation 

due to VacA.  Differences between the methodology of Nakayama et al and our methodology 

included a different VacA purification procedure and different lysis buffers.  These 

differences may have contributed to the lack of reproducibility between the two experiments.  

Several independent labs have been able to confirm p38 and Erk 1/2 phosphorylation in both 

gastric epithelial cells and T cells in response to purified VacA, indicating that the effect is 

real and would be an interesting area of future study to understand how activation of these 

proteins is involved in VacA-induced cellular alterations. 

 

 

Figure V-1.  Effect of purified VacA on Erk 1/2 and p38 phosphorylation.  AZ-521 cells 
were incubated with 10 µg/ml purified, acid-activated VacA or acid-buffer not containing 
VacA (Buffer) for the indicated times.  Control refers to cells that did not receive any 
treatment.  Cell lysates were prepared and analyzed by western blot using phospho-specific 
MAPK antibodies and antibodies that detect total levels of endogenous MAPK protein. 
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 Effect of the cag PAI on MAPK signaling pathways- Due to our inability to detect 

Erk 1/2 and p38 phosphorylation in response to purified VacA, we began studying the effects 

of adding intact H. pylori bacteria to epithelial cells.  For these studies, wild-type H. pylori 

strain 26695 and an isogenic cag PAI knockout mutant were added to HeLa, MKN-28, and 

AGS cells.  H. pylori was grown in broth culture for initial experiments; however, we later 

used H. pylori grown on blood agar plates and obtained similar results.  1x108 bacteria/ml 

were added to cells and incubated for 10 minutes, 1 hour, or 24 hours.  Cells were lysed as 

described above and immunoblots were performed.  As shown in Figure V-2, wild-type H. 

pylori caused more p38 phosphorylation than the cag PAI knockout mutant did when these 

strains were added to HeLa, MKN-28, and AGS cells for 1 hour.  In HeLa cells, wild-type H. 

pylori caused more Erk 1/2 phosphorylation than the Δcag PAI did; this was not apparent for 

MKN-28 or AGS cells.  Interestingly, the phosphorylation of Erk 1/2 and p38 was still above 

background levels when epithelial cells were incubated with the ∆cag PAI mutant strain.  

When H. pylori was added to cells, we also observed activation of c-fos and c-jun, two 

transcription factors that are located downstream of Erk 1/2 and p38, but this activation was 

not dependent on the cag PAI (Figure V-2).  Combined, these results suggest that at 1 hour, 

phosphorylation of p38 and Erk 1/2 is dependent on the cag PAI, but that there is also a Cag 

independent factor present that stimulates MAPK activation.  At 10 minutes and 24 hours, we 

observed bacteria-dependent phosphorylation, but this phosphorylation was not dependent on 

the cag PAI (data not shown). 
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Figure V-2.  Effect of the cag PAI on MAPK signaling.  HeLa, MKN-28, and AGS cells 
were incubated with wild-type H. pylori 26695 (WT) or an isogenic cag PAI knockout 
mutant (∆cag PAI) (1x108 bacteria/ml) for 1 hour.  Control refers to cells that did not receive 
any treatment.  Cell lysates were prepared and analyzed by western blot using anti-phospho 
antibodies (phospho-Erk1/2, phospho-p38, phospho-c-fos, or phospho-c-jun) and antibodies 
that detect total levels of endogenous MAP kinase protein (Erk 1/2 or p38). 
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 Effect of BabA and VacA on MAPK signaling pathways - Our results described 

above suggest that the cag PAI is not the only factor mediating p38 phosphorylation, so we 

were next interested in identifying other H. pylori factors that played a role in mediating 

MAPK phosphorylation.  We chose to study two H. pylori mutant strains:  one in which 

babA (an adhesin that binds to Lewis B) had been inactivated, and another in which vacA had 

been inactivated.  HeLa, AGS, and MKN-28 cells were incubated with either wild-type H. 

pylori strain J99 or an isogenic babA mutant for either 10 or 60 minutes as described above.  

Cells were lysed and immunoblots performed as described above.  At 60 minutes, we 

observed bacteria-dependent Erk 1/2, p38, c-jun, and c-fos phosphorylation, but this 

phosphorylation was not dependent on BabA (Figure V-3).  Similar results were obtained at 

the 10 minute time point (data not shown). 

 

 

Figure V-3.  Effect of BabA on MAPK signaling.  HeLa, AGS, and MKN-28 cells were 
incubated with wild-type H. pylori strain J99 (WT) or an isogenic babA mutant in which 
the gene was disrupted by insertion of a kanamycin cassette (babA::km) (1x108 
bacteria/ml) for 1 hour.  Control refers to cells that did not receive any treatment.  Cell 
lysates were prepared and analyzed by western blot using anti-phospho antibodies 
(phospho-Erk1/2, phospho-p38, c-fos, or c-jun) and antibodies that detect total levels of 
endogenous MAP kinase protein (Erk 1/2 or p38). 
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 When wild-type H. pylori strain 60190 (VM001) or an isogenic vacA mutant in which 

a kanamycin cassette was inserted (VM022) was incubated with AZ-521 cells, wild-type H. 

pylori caused more Erk 1/2 and p38 phosphorylation than the vacA mutant did.  This 

difference was observed at 10, 30, and 60 minutes (Figure V-4).  However, when this 

experiment was repeated with a different vacA mutant (A162, freezer stock number 141) in 

the same parent H. pylori strain (freezer stock number 398), there was little or no change in 

Erk 1/2 or p38 phosphorylation in response to the vacA mutant at 10, 30, 60, or 120 minutes 

(data not shown).  This discrepancy could be due to changes in the H. pylori strain over time 

during lab passaging.  Further studies would be required to determine which of the above 

results is the representative result. 

 

 

 
Figure V-4.  Effect of a H. pylori vacA mutant on phosphorylation of Erk 1/2 and p38.  
AZ-521 cells were incubated with wild-type H. pylori strain 60190 (WT) or an isogenic vacA 
mutant in which a kanamycin cassette was inserted (vacA::km) (1x108 bacteria/ml) for the 
indicated times.  Control refers to cells that did not receive any treatment.  Cell lysates were 
prepared and analyzed by western blot using anti-phospho antibodies (phospho-Erk1/2, 
phospho-p38) and antibodies that detect total levels of endogenous MAP kinase protein (Erk 
1/2, p38). 
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 Conclusions- Overall, we were unable to show an increase in p38 phosphorylation in 

response to purified VacA, but we detected a small increase in Erk 1/2 phosphorylation due 

to purified VacA at 10 and 30 minutes.  As mentioned above, several labs, including other 

people in the Cover lab, have been able to detect Erk 1/2 and p38 phosphorylation due to 

purified VacA.  Methods that I used were different than methods from other labs and also 

different from other people in the Cover lab (for example, in the Cover lab, different lysis 

buffers and transfer membranes were used).  This may have led to the difference in results.  

We did observe bacteria-dependent phosphorylation, a phenotype that is not completely 

dependent on cag PAI, BabA, or VacA, as p38 and Erk 1/2 were still phosphorylated in the 

absence of these factors. This highlights the complexity of these signaling pathways and 

indicates that there are multiple H. pylori factors that contribute to the observed effects of H. 

pylori on epithelial cells.  These results could be pursued further to understand H. pylori-

induced activation of Erk 1/2 and p38. 

 

Identification of changes in epithelial cell proteins in response to VacA intoxication 

 As has been discussed throughout this thesis, one of the most noted effects of VacA 

on epithelial cells is the formation of large cytoplasmic vacuoles.  Although the mechanism 

by which vacuoles form is becoming more clear, there are still questions regarding whether 

increased osmotic pressure explains the swelling of VacA-induced vacuoles or whether the 

process involves fusion of membrane-bound compartments.  We also know that VacA can 

induce cell death, but there is much that remains unknown about this process.  Using two-

dimensional difference gel electrophoresis (2D-DIGE), we compared VacA treated and 

untreated AZ-521 cells (a gastric epithelial cell line) with the goals of not only identifying 
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gastric epithelial cell proteins that were either up- or down-regulated as a result of VacA 

intoxication, but also potentially identifying VacA-induced post-translational modifications 

of proteins.  For example, we hypothesized that we would be able to detect proteins involved 

in VacA-induced cell death and cell vacuolation. 

 Our experimental design involved incubating AZ-521 cells with 10 µg/ml acid-

activated VacA plus 5 mM ammonium chloride for five or 20 hours (conditions that would 

result in cell vacuolation).  As a negative control we used cells treated with acidified buffer 

plus 5 mM ammonium chloride for five or 20 hours.  After incubation, the cells were lysed 

(7M urea, 2M thiourea, 4% CHAPS), the protein concentration determined, and the samples 

were then analyzed using 2D-DIGE methodology.  In brief, this methodology involves 

differentially labeling proteins from each sample (i.e. + VacA, -VacA) with two different 

cyanine fluorescent dyes (Cy3 and Cy5) prior to gel electrophoresis.  The samples are then 

mixed together, run on the same gel, and imaged individually using dye-specific 

excitation/emission spectra.  Because samples are run on a single gel and imaged 

individually, this eliminates gel-to-gel variation.  Software is then used to directly compare 

the Cy3- and Cy5-labeled samples.  Protein spots are excised and identified using MALDI-

TOF MS and tandem TOF/TOF MS/MS. 

 We performed the experiment in which VacA was incubated with cells for five hours 

two times; likewise, the 20 hour incubation experiments were also performed twice.  The first 

five hour experiment included three independent replicates and the second five hour 

experiment included five independent replicates.  Each 20 hour experiment included three 

independent replicates.  After both the five hour and 20 hour incubations, we saw the 

development of large vacuoles in the VacA-treated cells but not in the control cells.  At 20 
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hours, VacA-treated cells were starting to round up, with a few cells floating.  Mock-treated 

cells still looked healthy.  Up- and down-regulated gastric epithelial cell proteins that were 

identified are presented in Table V-1.  Several interesting proteins were identified within 

individual experiments (such as dynein intermediate chain 2, serine/threonine protein kinase 

PAK2, Grb2 adaptor protein, profilin), but unfortunately, this data was not very reproducible 

in separate experiments.  Differentially regulated proteins that were detected in the five hour 

and the 20 hour experiment included bovine apolipoprotein and human hnRNP (Table V-1).  

There were not any differentially regulated proteins that were reproduced between the two 5 

hour experiments.  Serine threonine PP2A was detected in both of the 20 hour experiments, 

as was bovine apolipoprotein; however, in the second 20 hour experiment the match was 

very weak for both proteins.  Although not mentioned in the table, bovine serum albumin 

was upregulated in both 20 hour experiments.  In all of our experiments, AZ-521 cells were 

grown in the presence of fetal bovine serum.  Even though the cells were washed before lysis 

for 2D-DIGE, serum proteins may have stuck to the cells, or were taken up by the cells, 

potentially explaining our detection of bovine proteins (bovine apolipoprotein and bovine 

serum albumin). 

 There are several reasons why we may have had problems identifying many 

differentially expressed proteins.  In general, disadvantages of 2D-electrophoresis include the 

inability to visualize low-copy number proteins in the presence of highly abundant gene 

products and the complexity of eukaryotic cell lysates can be difficult to resolve on a 2D gel 

(61).  Additionally, because Cy dyes label lysines, a protein with a high or low lysine content 

could be labeled more or less efficiently (61).  Specific to our experiments, VacA-induced 

vacuolation may not necessarily be associated with an up- or down-regulation of proteins.  
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Furthermore, an activation of proteins involved in cell death also may not be associated with 

a visible change in epithelial cell protein levels.   Our experiments were only run at a pH 

range of 4-7, so using a different pH range might be helpful in identifying other proteins.  

Additionally, although we looked at two time points, it could be that we did not examine a 

time point in which changes would be identified. 

 As mentioned above, there were several differentially regulated proteins that were of 

interest and could be followed up on.  Based on their protein descriptions, it is possible that 

these proteins could be involved in VacA-induced effects on gastric epithelial cells.  

Although changes in these particular protein levels were not seen in multiple 2D-DIGE 

experiments, other methods (such as western blots, RT-PCR) could be used to determine if 

the changes we observed were real.  If any of these changes were real, the role of these 

proteins could be examined in more detail by knocking down gene expression with siRNA. 

 

Table V-1.  Differentially expressed proteins detected by 2D-DIGE/MS analysis. 

Protein identified Accession 
# 

Fold 
change in 
response 
to VacAa 

p value Experiment 
in which 

change was 
detectedb 

Protein description 

5 hour time 
point 

     

Heat shock protein 
90 beta 
 
 
 

P08238 1.21 0.0069 A molecular chaperone; 
has ATPase activity; 
phosphorylated upon 
DNA damage 

Dynein inter-
mediate chain 2 
 
 

Q13409 1.40 0.05 A intermediate chains 
seem to help dynein 
bind to dynactin 

Serine/threonine 
protein kinase 
PAK 2 

Q13177 1.61 0.0083 A activated by Cdc42 and 
Rac;  plays a role in 
regulation of cell shape, 
motility, cell survival/ 
death 
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Heterogeneous 
ribonuclear 
proteins C1/C2 
(hnRNP)  
 

P07910 1.44 0.015 A binds pre-mRNA and 
nucleates the assembly 
of 40S hnRNP particles 

Nucleophosmin P06748 1.32 0.013 A involved in diverse 
cellular processes such 
as ribosome biogenesis, 
protein chaperoning, 
cell proliferation, and 
regulation of several 
tumor suppressors 
 

Phospoglycerate 
mutase 1 
 

P18669 -1.53 0.048 A interconversion of 3- 
and 2-phosphoglycerate 

Growth factor 
receptor-bound 
protein 2 (GRB2 
adaptor protein) 

P29354 -1.48 0.047 A associates with 
activated Tyr-
phosphorylated EGF 
receptors; may interact 
with RAS in the 
signaling pathway 
leading to DNA 
synthesis; likely 
represents a regulatory 
subunit of downstream 
signaling molecules 
 

Bovine 
apolipoprotein A-1 
precursor 
 
 

P15497 -1.30 0.0091 A plays a role in the 
reverse transport of 
cholesterol from tissues 
to the liver 

ATP synthase D 
chain, 
mitochondrial 

O75947 -1.72 0.035 A mitochondrial 
membrane ATP 
synthase produces ATP 
from ADP in the 
presence of a proton 
gradient across the 
membrane 
 

Eukaryotic 
translation 
initiation factor 5A 
(eIF-5A) 
 

P10159 -1.46 0.025 A exact role in protein 
biosynthesis is not 
known 

60S acidic ribo-
somal protein P2 
 
 

P05387 -1.47 0.014 A plays a role in the 
elongation step of 
protein synthesis 
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Profilin P35080 -1.38 0.035 A binds to actin and 
affects the structure of 
the cytoskeleton 
 

Galectin-1 P09382 -1.93 0.046 A may regulate apoptosis, 
cell proliferation and 
cell differentiation 
 

Elongation factor 
2, isoform 1 
 

P13639 down-
regulated 

0.0008 B promotes the GTP-
dependent translocation 
of the growing protein 
chain from the A-site to 
the P-site of the 
ribosome 
 

Elongation factor 
2, isoform 2+ 
 

P13639 1.29 not 
provided 

B see above (isoform 1) 

20 hour time 
point 

     

Serine/threonine 
PP2A 

P30153 1.25 
1.28 

0.035 
0.064 

C 
D 

contains two subunits, 
one of which associates 
with a variety of 
regulatory subunits 
 

Bovine 
apolipoprotein A-1 

P15497 2.18 
1.30 

0.0004 
0.035 

C 
D 

see description under 5 
hour timepoint 
 

Alpha-enolase 
 

P06733 -1.16 0.024 C roles in glycolysis, 
growth control, and 
hypoxia tolerance 
 

26S protease regu-
latory subunit 7 
 
 
  

P35998 -1.10 0.0033 C involved in the ATP-
dependent degradation 
of ubiquitinated 
proteins 
 

Heterogeneous 
ribonuclear 
proteins C1/C2 
 

P07910 -1.27 0.026 C see description under 5 
hour time point 

Cofilin-1 (very 
weak match) 

P23528 -2.09 0.046 D controls actin 
polymerization and 
depolymerization in a 
pH-sensitive manner 

a Fold change in response to VacA: Comparing VacA-treated cells with mock-treated cells, 
positive values represent protein up-regulation and negative values represent protein down- 
regulation  
b Experiment in which change was detected: A is 5 hour experiment #1, B is 5 hour 
experiment #2, C is 20 hour experiment #1, and D is 20 hour experiment #2. 
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Study of VacA and apoptosis 

 As has been discussed throughout this thesis, VacA is an important pathogenic 

product of H. pylori.  It is capable of causing numerous effects on target cells, one of which 

is apoptosis.  There is evidence that in the absence of other H. pylori factors, VacA induces 

epithelial cell apoptosis (12, 28, 50).  Other studies have also suggested that VacA has 

several effects on mitochondria including a decrease in mitochondrial membrane potential 

(48, 122), release of cytochrome c (28, 123), and a decrease in cellular ATP levels (48); these 

effects on mitochondria appear to be dependent on VacA channel activity.  This is supported 

by data showing that chemicals that block VacA channels also inhibit VacA-induced 

reduction of mitochondrial membrane potential and cytochrome c release (123).  Two 

independent labs found that VacA localizes to the mitochondria (28, 123); however, another 

lab was not able to reproduce this (131).  Although it is established that VacA plays a role in 

apoptosis of several cell types, some unanswered questions include: the mechanism of VacA-

induced apoptosis, the role of VacA-mediated apoptosis in H. pylori pathogenesis, how 

cellular intoxication can result in mitochondria membrane permeability, which proapoptotic 

proteins are involved in VacA-induced apoptosis, if the same regions of the toxin that are 

required for vacuolation are also required for apoptosis, if VacA does indeed localize to the 

mitochondria how does internalized VacA travel to that organelle, and how VacA crosses the 

outer mitochondrial membrane.  The preliminary studies in this section were undertaken to 

further investigate VacA’s role in inducing cell death. 

 The approach we used to study VacA-induced apoptosis was a flow cytometric assay 

using Annexin V and 7-AAD staining.  This assay is based on the principle that loss of 

plasma membrane is one of the earliest features of apoptosis and when a cell is undergoing 
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apoptosis, phospholipid phosphatidylserine (PS) is translocated from the inner to the outer 

leaflet of the plasma membrane.  Annexin V can then bind to cells with exposed PS.  

Because PS translocation can also be evident during necrosis, Annexin V is used in 

combination with the nucleic acid-binding dye 7-AAD, which can only penetrate the plasma 

membrane when membrane integrity is lost (later stages of apoptosis or necrosis).  Therefore, 

when analyzing flow cytometry results, three populations can potentially be detected:  viable 

cells (Annexin V and 7-AAD negative), cells undergoing early apoptosis (Annexin V 

positive, 7-AAD negative), and cells that have undergone late apoptosis or are already dead 

(Annexin V and 7-AAD positive).   

 In our first experiments, the gastric epithelial cell lines AGS and AZ-521 were 

incubated with 10 µg/ml acid-activated VacA plus 5 mM ammonium chloride, ammonium 

chloride plus acid, or acid alone for 12 or 24 hours.  Both of these adherent cell lines were 

removed from tissue culture plates by scraping using a rubber policeman, stained with 

Annexin V and 7-AAD, and analyzed by flow cytometry.  From these experiments, we 

concluded that scraping the cells was damaging the cell membrane, leading to high 

background (data not shown).  An experiment to determine the best way to remove adherent 

cells revealed that Accutase (Innovative Cell Technologies, Inc.), a detachment solution 

containing proteolytic and collagenolytic enzymes, caused the least amount of cell membrane 

damage (data not shown), and this product was therefore used in subsequent experiments. 

In our next experiments, AZ-521 cells were treated with 10 µg/ml acid-activated 

VacA plus ammonium chloride, non-activated VacA plus ammonium chloride, or ammonium 

chloride plus acid for 12, 24, 48, and 72 hours.  Acid-activated VacA induced cell death 

beginning at 24 hours.  At 48 and 72 hours, acid-activated and non-activated VacA induced 
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significantly more cell death than what was observed 24 hours (Figure V-5).  There was very 

little cell death observed when ammonium chloride plus acid was added to cells for 12, 24, 

and 48 hours; however, by 72 hours the amount of cell death induced by ammonium chloride 

plus acid had increased compared to the earlier time points.  At 72 hours, we began seeing a 

decrease in late apoptotic cells compared to what was observed at 12, 24, and 48 hours.  One 

reason for this could be that during preparation of the cells for flow cytometry, dead cells 

were not spun down during centrifugations and were subsequently lost.   

Various positive controls used by other groups to induce apoptosis (cisplatin, 

staurosporine) either did not induce cell death at all in our hands, or did not induce early 

apoptosis, only late apoptosis/necrosis.  Cisplatin has been used to induce early apoptosis at 

similar concentrations and time periods that we used, but we did not see an induction of early 

apoptosis.  Lack of good controls made results of VacA-induced cell death hard to interpret. 

Overall, our results are in agreement with published results that acid-activated VacA 

is inducing cell death.  Our result that non-activated VacA induced cell death does not agree 

with previously published results (12); however, the previous study used a different gastric 

epithelial cell line, which may explain the difference in results.  The fact that we showed that 

VacA is killing cells suggests that this project could be studied in more detail, perhaps by 

delineating the pathway leading to apoptosis and analyzing what proteins are involved in 

VacA-induced cell death.   
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Figure V-5.  VacA-induced cell death.  AZ-521 cells were treated with acid-activated VacA 
plus ammonium chloride, non-activated VacA plus ammonium chloride, or ammonium 
chloride plus acid for 12, 24, 48, and 72 hours.  In each case, the VacA concentration used 
was 10 µg/ml.  Positive controls included both H2O2 and cisplatin; cells alone were used as a 
negative control.  After treatment, cells were detached with Accutase, stained with Annexin 
V and 7-AAD, and analyzed by flow cytometry.  Viable, early apoptotic, and late 
apoptotic/necrotic cells are indicated on the graph.  Results represent the mean ± the SD from 
triplicate samples.    
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Cell fractionation studies 

 In order to exhibit cellular toxicity, VacA must bind to the plasma membrane of 

mammalian cells.  Upon binding to cell membrane components such as RPTP-α and –β (27, 

128, 129), and lipid raft microdomains (85, 96), VacA is subsequently internalized by cells 

(30, 70, 85, 92).  Internalized VacA is known to localize both to endosomal compartments 

and the mitochondria (28, 58, 93).  One study determined that VacA accumulates into GPI-

anchored protein-enriched early endosomal compartments (GEECs) within 10 minutes, is 

enriched in the early endosomes within 30 minutes, and is then transferred to late endosomes 

within 120 minutes (31).  Other than endosomal compartments and mitochondria, it is not 

well understood which, if any, other intracellular sites VacA interacts with, how VacA may 

get to these sites,  and specifically how VacA can traffic from the cell surface to the 

mitochondria.  We undertook some preliminary cell fractionation experiments with the goal 

of trying to identify intracellular sites with which VacA may be localizing.  Identifying 

where VacA localizes to within the cell could then lead to studies of VacA sorting and 

trafficking. 

 For our experiments, the gastric epithelial cell line AZ-521 was incubated with 10 

µg/ml acid-activated VacA plus 5 mM ammonium chloride for 12 hours at 37ºC.  As a 

negative control, we added an acidified buffer not containing VacA plus 5 mM ammonium 

chloride for the same amount of time.  Under these conditions, the cells in which VacA had 

been added were vacuolated, and no vacuolation was seen for the negative control.  The cells 

were harvested by scraping, centrifuged, and the cell pellet lysed with homogenization 

medium containing 0.25 M sucrose, 1 mM EDTA, and 10 mM HEPES, pH 7.4.  This 

suspension was subject to successive centrifugations at 3,000g, 16,000g, and 100,000g.  The 
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pellet from the 16,000g centrifugation was resuspended in a solution containing a final 

concentration of 17.5% iodixanol and centrifuged at 353,000g.  Fractions were obtained from 

the supernatant of the 353,000g spin by puncturing the bottom of the tube and dripping 

fractions out in 100 µl aliquots.  Fractions were analyzed by western blotting with antibodies 

against endoplasmic reticulum (anti-calnexin), early endosomes (anti-EEA-1), lysosomes 

(anti-LAMP-1), golgi (anti-golgi 58K), mitochondria (anti-cytochrome c oxidase), and an 

antibody to detect VacA (anti-958). 

 At the 12 hour time point, we observed markers for several cellular compartments 

localizing to different fractions (Figure V-6).  Endoplasmic reticulum and golgi were seen in 

a number of fractions, but with peaks near the top (approximately fractions 12 and 13) and 

bottom of the gradient (approximately fractions 4-6).  Cytochrome c was localized at the 

bottom of the gradient, mainly in fractions 4-6.  Early endosomes were localized in many 

fractions, but with a peak in fraction 3, and lysosomes were localized near the top of the 

gradient in fractions 16-19.  Upon probing these fractions for VacA, we found that VacA was 

in all fractions, with peaks in both top and bottom fractions (Figure V-6).  This data is in 

accordance with what has been observed before, suggesting that VacA localizes with 

lysosomes and mitochondria.  However, VacA may also be localizing to several other 

compartments.  We next tried an experiment in which acid-activated VacA was incubated 

with AZ-521 cells for only 1 and 4 hours at 37ºC to see if there was a different distribution of 

VacA at these earlier time points.  At both 1 and 4 hours, we also observed VacA in almost 

all fractions (data not shown).   

 As mentioned above, VacA can presumably traffic to early endosomes within 30 

minutes (31), so it may not be unreasonable to see VacA in so many fractions at our 1 hour 
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time point.  Our results that VacA is found in many fractions at 1, 4, and 12 hours are 

potentially interesting.  It would be interesting to follow up on these preliminary cell 

fractionation studies, first by repeating these experiments with more controls, and then 

perhaps using confocal microscopy to observe co-localization of VacA with markers for 

different cellular compartments.   One good control would be to incubate VacA with cells at 

4ºC for 1 hour to allow for binding, but not internalization.  These studies may help us to 

further understand if VacA is indeed localizing to so many different intracellular sites and 

may help to decipher what functions VacA may serve at these sites. 

 

 

 

 
Figure V-6.  VacA intracellular localization.  AZ-521 cells were treated with 10 µg/ml 
acid-activated VacA plus ammonium chloride for 12 hours.  After treatment, cells were lysed 
and fractionated as described in the text.  Fractions were analyzed by western blotting with 
antibodies against calnexin (endoplasmic reticulum), golgi, cytochrome c (mitochondria), 
EEA-1 (early endosomes), LAMP-1 (lysosomes), and anti-958 (VacA).  Fraction numbers 
are shown above the western blot (fractions 1-19), with fraction 1 being the bottom fraction 
and fraction 19 being the fraction at the top of the gradient. 
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Studies of GFP-tagged p33 and p55 VacA domains 

 Flow cytometry- During my rotation in the Cover laboratory, I constructed plasmids 

that would express a protein with an amino- or carboxy-terminal GFP tag (these plasmids 

could be used to clone in any protein of interest).  These plasmids were later used by others 

in the lab to clone a GFP tag at the carboxy-terminus of the VacA p33 domain and the 

amino-terminus of the p55 domain, making these constructs useful tools for fluorescence 

studies.  I used the p33- and p55-GFP-tagged proteins for a preliminary experiment to study 

binding of these toxins to cells using flow cytometry.  From work presented in Chapter II, we 

know from confocal microscopy and western blotting techniques that p33 and p55 each bind 

to cells at low levels when added to cells individually, but when mixed and added to cells, 

binding is greatly increased.  We wanted to know if these results could be recapitulated using 

the GFP-tagged proteins and flow cytometry.  A flow cytometric-based binding assay would 

be an alternative quantitative and high-throughput assay.  For preliminary flow cytometry 

studies of the GFP-tagged proteins, each domain was first recombinantly expressed (112).  

Each domain contained either a GFP tag or a His6 tag so that we could detect binding of each 

domain when added to cells individually or in combination.  E. coli soluble extracts 

containing recombinant VacA proteins were either added to cells individually, or mixtures of 

the recombinant proteins were incubated with HeLa cells for 1 hour at 37ºC.  For these 

experiments, HeLa cells were first detached from tissue culture plates; recombinantly 

expressed proteins were normalized and then mixed and added to HeLa cells in suspension.  

Recombinantly expressed proteins that were added to cells included p33GFP+p55His, 

p33His+p55GFP, p33GFP alone, p55GFP alone, p33His alone, and p55His alone.  After 

incubation, cells were washed with cold PBS, fixed with 2% paraformaldehyde, and analyzed 
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by flow cytometry (results shown in Figure V-7).  Our first conclusion from this experiment 

was that we are able to successfully detect binding of GFP-tagged proteins using flow 

cytometry (Figure V-7), potentially making this a useful tool for future studies.  As expected, 

there was little binding of p33 or p55 alone, but binding was increased when p33 and p55 

were mixed and added to cells (Figure V-7).  This result was seen regardless of whether the 

GFP tag was on p33 (p33GFP+p55His) or p55 (p33His+p55GFP).  A combination of 

p33GFP+p55GFP results in cell vacuolation when these fragments are recombinantly 

expressed, mixed, and added to cells (data not shown), suggesting that the GFP tag does not 

inactivate VacA.  Mixtures of p33GFP+p55His or p33His+p55GFP were not tested for 

vacuolation. 

 In future experiments, flow cytometry could be used to determine if inactive VacA 

mutants are defective in binding.  In an approach similar to the experiment described above, 

mutant p33 fragments could be mixed with wild-type p55-GFP, or mutant p55 fragments 

could be mixed with wild-type p33-GFP to determine residues that are important for binding 

of the toxin to host cells.  It would be expected that if there are residues important for 

binding, the mixture of mutant and wild-type protein will not yield as high binding as a 

mixture of wild-type p33 and wild-type p55. 
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Figure V-7.  Binding of p33 and p55 VacA domains detected by flow cytometry.  E. coli 
soluble extracts containing similar amounts of the indicated VacA proteins were added to 
HeLa cells for 1 hour at 37ºC.  The ability of the VacA fragments to interact with host cell 
membranes was assessed by flow cytometry.  Background fluorescence of cells alone was 
subtracted from each sample. 
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 Confocal microscopy- I also used the p33GFP-tagged protein and p55His6-tagged 

proteins for a preliminary experiment to study internalization of these proteins using confocal 

microscopy.  As described in Chapter II, confocal microscopy was successfully used to study 

binding and internalization of Myc-His-tagged and His-tagged p33 and p55 domains using 

indirect labeling methods.  By using GFP-tagged proteins, we wanted to study the 

localization of each domain within mammalian cells by direct detection of GFP fluorescence.   

 For preliminary microscopy studies of the GFP-tagged proteins, each domain was 

first recombinantly expressed using the same methods as for p33 and p55 without the GFP 

tag (112).  E. coli soluble extracts containing recombinant VacA proteins were either added 

to cells individually, or mixtures of the recombinant proteins were incubated with HeLa cells 

(grown on cover glasses) for 1 hour at 37ºC.  Recombinantly expressed proteins that were 

added to cells included p33GFPHis+p55His, p33GFPHis alone, and p55His alone.  After 1 

hour, unbound proteins were removed, the cell monolayer was washed, and fresh tissue 

culture medium was added to the cells for an additional 15 hours at 37ºC to allow for 

internalization.  The cells were then washed, fixed with 3.7% formaldehyde, and 

permeabilized with methanol for 25 minutes at -20ºC.  Cells were incubated with an anti-

VacA polyclonal antiserum followed by a Cy-3 conjugated secondary antibody.  In this way, 

we would be able to visualize the p55 domain with the VacA polyclonal antiserum, and the 

GFP tag would be used to visualize p33, allowing us to study the localization of each domain 

within cells.  Cover glasses were washed, mounted on slides, and analyzed by confocal 

microscopy.  For cells in which we were only visualizing GFP, cover glasses were mounted 

on slides after fixation with 3.7% formaldehyde.  After addition of p33GFPHis+p55His to 

cells, we observed very little co-localization of p33 and p55 (Figure V-8).  Using the anti-



 107

VacA antiserum, we were able to visualize p55 (top panels) and p33 was visualized using its 

GFP tag (middle panels).  The merged images (bottom panels) show visualization of p33GFP 

in green and p55His in red.   Controls for this experiment included a negative control in 

which HeLa cells that did not receive treatment were stained with the anti-VacA antibody (no 

staining observed), p55His added to cells alone and stained with the anti-VacA antibody (no 

staining observed), p33GFPHis added to cells alone (no internalization observed), and 

purified VacA added to cells and stained with the anti-VacA antibody (extensive 

internalization observed) (data not shown).  This experiment was repeated several times, and 

each time we detected very little co-localization of the p33 and p55 VacA domains.  We did 

not assess internalization of the combination of a p33 protein mixed with a GFP-tagged p55. 

 Although we did not pursue this observation further, this is a potentially exciting area 

for future studies.  It would be interesting to try to identify intracellular sites with which p33 

and p55 are localizing.  There is some evidence that when DNA encoding p33GFP is 

transfected into mammalian cells, it localizes with the mitochondria (28); however, using the 

transfection system, p55GFP was not found to localize to mitochondria (28).  Our system in 

which VacA is added to the outside of cells and allowed to internalize could be used to 

investigate trafficking and localization of p33 and p55.  Additional markers could be used to 

identify cellular compartments with which these domains are localizing.  GFP tags could be 

added to various p33 and p55 mutants that are already available in the lab to further study 

intracellular trafficking and localization.  
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Figure V-8.  Internalization of p33GFP and p55His into HeLa cells.  E. coli soluble 
extracts containing p33GFPHis or p55His were mixed and added to HeLa cells for 1 hour at 
37ºC.  Cells were then incubated in fresh medium for an additional 15 hours at 37ºC.  The 
ability of the p33/p55 mixture to enter cells was analyzed using indirect immunofluoresence 
(IF) of permeabilized cells using an anti-VacA antibody to detect the p55 domain (top 
panels) or GFP fluorescence to detect the p33 domain (center panels).  Merged images are 
shown in the bottom panels.  The top and bottom rows represent two different imaged cells. 
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CHAPTER VI 
 
 

CONCLUSIONS AND FUTURE DIRECTIONS 
 
 

Conclusions 

 One protein that H. pylori secretes that has been correlated with the development of 

gastroduodenal disease is known as the vacuolating cytotoxin, or VacA.  Over the years, we 

have begun to understand more about the toxin itself and steps leading to the intoxication 

process of host epithelial cells.  In a very basic sense, we know that in order to exert effects 

on host epithelial cells, VacA must first bind to one of several receptors on the cell surface, 

oligomerize, form anion-selective channels, and be internalized into host cells.  Even though 

we have learned a lot about VacA since its discovery approximately 20 years ago, there are 

still many unanswered questions.  Structure-function studies of VacA will help us to have a 

greater understanding of how VacA contributes to the pathogenesis of H. pylori, and might 

lead to better treatment and prevention of H. pylori-associated disease.  Thus, the main goal 

of my thesis project was to undertake a structure-function analysis of the p55 domain of 

VacA. 

 Chapter II of this thesis describes interaction of the p33 and p55 domains with host 

cells.  We show that p33 and p55 each can each bind to the cell surface, and that the 

interaction is higher when these domains are added to cells together.  When added 

individually, neither p33 nor p55 was detected inside cells; however, when these two 

domains are mixed and added to cells, both domains are internalized.  We also show that 

when sequentially added to cells, p55 must be added first, followed by p33, in order to result 

in internalization and vacuolating activity. 
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 Chapter III of this thesis describes the characterization of a p55 subdomain that plays 

a role in the formation of oligomeric structures.  This subdomain may contain a region of the 

toxin spanning residues 345-415, based on an analysis of six-amino-acid deletion mutations 

introduced at the amino-terminal end of p55.  Mutant proteins in which these amino acids 

were deleted lacked vacuolating activity when plasmids encoding these proteins were 

transfected into cells, suggesting this region may have an important functional activity.  Our 

data show that VacA ∆346-347 lacked vacuolating activity when added to the outside of 

cells, and did not cause membrane depolarization, suggesting that this mutant toxin cannot 

form membrane channels.  Biochemical approaches including gel filtration, BN-PAGE, and a 

modified SDS gel electrophoresis approach were used to probe the oligomeric state of VacA 

∆346-347.  Collectively, data from these various techniques showed that this mutant can 

form a complex larger than a monomer, but smaller than wild-type VacA oligomers.  Further 

analysis by immunoprecipitation demonstrated that not only could p55 ∆346-347 interact 

with wild-type p33, but a p33-p55 ∆346-347 mixture could interact with wild-type full-

length VacA.  Additionally, VacA ∆346-347 acts as a dominant-negative inhibitor of wild-

type VacA.  Our model predicts that even though the ∆346-347 mutation doesn’t completely 

abrogate p33-p55 interactions, it could interfere with VacA oligomerization via disruption of 

intermolecular interactions (as opposed to an intramolecular interaction). 

 Little is known about which amino acid sequences in VacA contribute to protein-

protein interactions and oligomerization.  We clearly demonstrate that the ∆346-347 mutation 

disrupts VacA oligomerization, making this the smallest mutation known to play a role in the 

formation of oligomeric structures.  Our study provides new insights into properties of VacA 

that are conferred by an amino-terminal region of p55 required for vacuolating activity, but 
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that is not known to be required for binding of the toxin.  Importantly, assembly of VacA 

monomers into oligomeric structures is likely to be required for membrane channel 

formation, and membrane channel formation is very important for many of the cellular 

effects of VacA.   

 In Chapter IV, we present data analyzing coils of the p55 β-helix and their role in 

secretion and vacuolating activity of the toxin.  Mutations were designed so that each would 

result in the deletion of a single coil of the β-helix.  We thus made the prediction that the 

length of the β-helix would change, but there would be very little change in protein folding 

compared to wild-type VacA.  Comparison of the deletion mutants with wild-type VacA 

demonstrated that several coils within the p55 domain could be deleted without substantially 

altering expression or secretion of the mutant proteins; however, deletion of coils near the 

carboxy-terminus drastically altered secretion and exhibited increased susceptibility to 

trypsin.  Additionally, several individual coils could be deleted within the β-helix and the 

mutant proteins still retain vacuolating activity.  Deletion of one specific coil, VacA ∆433-

461, resulted in reduction of vacuolating activity in HeLa cells, and no detectable activity in 

RK13 or AZ-521 cells, suggesting this region contributes to vacuolating activity.  Overall, 

the data demonstrate that there are regions of plasticity within the β-helix that can tolerate 

changes without substantially altering protein secretion or activity. 

 It has been predicted that nearly all proteins secreted by type Va autotransporter 

pathways have a predominantly right-handed parallel β-helical fold (47).  In addition to the 

p55 domain of VacA, structures of two other autotransporter passenger domains have been 

solved and are found to fold as a β-helix: pertactin from B. pertussis and hemoglobin 

protease (Hbp) from E. coli (24, 80).  In recent years, labs studying pertactin, Hbp, and BrkA 
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(another protein from B. pertussis secreted by an autotransporter system whose structure has 

not been solved, but is predicted to fold as a β-helix) have focused their efforts on elucidating 

the mechanisms by which these proteins are folded and secreted by the bacterium.  

Approximately 90 residues at the carboxy-terminus of BrkA are important for folding of the 

BrkA passenger domain (79).  The equilibrium unfolding behavior of pertactin and Pet (a 

homologue of Hbp) reveals a stable core at their carboxy-terminus that might serve as a 

scaffold that would allow folding of the more amino-terminal portions of the passenger (47, 

89).  Thus, one common theme that is arising is the importance of the carboxy-terminal 

portion in folding of the passenger domains. 

 When I began my project in the lab, the functions of several regions of p33 had been 

identified.  We knew that residues 1-32 within the p33 domain were necessary for channel 

formation, and we knew that amino acids 1-422 (consisting of the entire p33 domain and 111 

amino acids of the p55 domain) were sufficient for intracellular activity.  In 2006, Telford et 

al found that amino acids 49-57 in the p33 domain are important for the formation of large 

oligomers (35).  Strikingly, very little was known about regions of the p55 domain important 

for specific functional activities.  Therefore, my project focused on a structure-function 

analysis of the VacA p55 domain (see Figure VI-1 for a summary of regions we found to be 

important for functional activities).  Our studies focused on the β-helical portion of the p55 

domain (and therefore did not include study of the carboxy-terminal globular domain from 

amino acids 736-811) outside of the region of VacA known to be important for intracellular 

toxin activity.  Our work revealed that amino acids 346 and 347 are important for 

oligomerization of VacA.  Additionally, we found that a single coil of the β-helix from amino 

acids 433-461 is important for vacuolating toxin activity.  Our work also showed that single 
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coils localized between amino acids 484-544 are dispensable; specifically, mutant proteins 

with deletion of these coils fold similarly to wild-type VacA, are secreted, and can induce 

vacuolating toxin activity when single coils within this region are deleted.  Finally, we show 

that deletion of single coils near the carboxy-terminus (amino acids 559-628) resulted in 

markedly decreased secretion and increased susceptibility to trypsin, suggesting that this 

region is important for proper folding and secretion of the toxin.  In summary, our work has 

contributed to a greater understanding of specific regions within the p55 domain that are 

important for specific functional activities. 

 

 

Figure VI-1.  Newly identified functional regions of the VacA p55 domain.  Prior to our 
work, the amino-terminus of p33 (shown in red) was found to be important in membrane 
channel formation, amino acids 49-57 (shown in purple within the p33 domain) were found 
to be important for oligomerization, and amino acids 1-422 (shown by the light blue line) 
were found to be important for intracellular activity.  Residues that are part of the crystal 
structure (amino acids 355-811) are shown by the orange line, and the black line 
demonstrates residues that are part of the globular domain of the p55 crystal structure (amino 
acids 736-811).  Our studies have revealed that amino acids 346 and 347 (shown in purple 
within the p55 domain) play an important role in oligomerization of VacA.  We also found 
that the single coil comprised of amino acids 433-461 (shown in yellow) is important for 
vacuolating activity.  Single coils between amino acids 484-544 (shown in green) are not 
required for efficient folding, secretion, or vacuolating activity.  Single coils at the carboxy-
terminus of the β-helical region are important for secretion and folding of the toxin (amino 
acids 559-628, shown by the blue box). 
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 Chapter V of this thesis describes preliminary data from several projects in which we 

studied MAPK activation, investigated changes in epithelial cell proteins, apoptosis, 

intracellular localization of VacA, and studies of GFP-tagged VacA domains.  Each of these 

projects further investigated effects of VacA on epithelial cells.  As described in detail in 

Chapter V, interesting data were generated from each of these projects.  Of particular 

interest, we found that p33 and p55 domains do not co-localize (Figure V-8) when mixed and 

allowed to internalize into mammalian cells, suggesting that the trafficking of these domains 

to different cell organelles could be investigated.  We know that within cells, VacA can 

localize to late endocytic compartments and mitochondria, but it is not known if both the p33 

and p55 domains are required for VacA targeting to particular organelles.  Much of the data 

that was obtained in Chapter V could be used for future projects in the lab to better 

understand the biological role of this multifunctional toxin.     

 

Future Directions 

  Our studies have expanded our knowledge of residues important for oligomerization 

of VacA and have begun to probe the role of the β-helical fold in VacA activity.  However, 

there are still numerous questions remaining.  A greater understanding of how the toxin can 

assemble into oligomers would lead to a better understanding of how VacA causes alterations 

in human cells.  It is still unclear if VacA binds to cells as a monomer, as an oligomer, or 

both, and which of these types of binding are most relevant for toxin activity.  In addition, it 

would be of interest to study further the roles of the p55 and p33 domains in VacA activity.  

Specifically, p33 and p55 have been shown to interact with each other; neither protein alone 
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has toxic activity, but a mixture of these proteins is cytotoxic, suggesting that p33 and p55 

interactions may be required for cytotoxicity.   

 There are several broad questions that remain unanswered in regards to the β-helix.  It 

is likely that since most passenger domains secreted by autotransporter pathways fold as a β-

helix, the β-helical structure might facilitate protein secretion; however, it is not known how 

this structure would facilitate protein secretion.  Additionally, it is not clear what structural 

features are responsible for the unique properties of these passenger domains secreted by 

autotransporter pathways.  And finally, the source of the energetic force utilized for efficient 

outer membrane secretion is not known.  To our knowledge, our study is unique in that single 

coils were deleted down the length of the β-helix rather than studying folding of the wild-

type protein or making large deletions at the carboxy-terminus of the protein.   

Some of the questions that would be interesting to follow up on are: 

• Our results show that amino acids 346 and 347 within the p55 domain are essential for 

assembly of VacA into functional oligomeric complexes.  Using the crystal structure of the 

VacA p55 domain, can we identify other regions of the toxin that are important for 

oligomerization?  Based on the crystal structure, one region hypothesized to be important 

for oligomerization is located near the amino-terminus of p55, composed of residues 355-

411.  This region is highly conserved among VacA sequences, suggesting it may be 

functionally significant.  Residues 345-415 were shown to be essential for vacuolating 

activity when a series of plasmids encoding these mutant VacA proteins (each mutant 

containing a six amino acid deletion) were transfected into cells (unpublished data 

discussed in Chapter III).  Because mutant proteins lacking amino acids 345-415 do not 

exhibit vacuolating activity, and we show that amino acids 346 and 347 are important for 
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oligomerization, it may be that the entire region from amino acids 345-415 is important for 

assembly of functional oligomeric complexes.  Amino acids 355-411 make up two full 

coils of the β-helix, with one coil being composed of residues 355-383 and the other of 

residues 384-411.  I have made mutations of each of these single coils in full-length VacA 

in both E. coli (for recombinant expression) and in H. pylori, but have not yet studied 

either mutant in any detail.  The 355-383 and 384-411 mutations could also be made in the 

p55 domain and mixed with wild-type p33.  These proteins could then be used for 

immunoprecipitation studies or yeast two-hybrid studies to investigate whether amino 

acids 355-411 are important for p33-p55 interactions.  Immunoprecipitation studies could 

also be performed with a mixture of wild-type p33, mutant p55, and wild-type full-length 

VacA.  Immunoprecipitation studies could therefore help us to identify amino acids 

important in protein-protein interactions. 

• Are there similar structural requirements for various VacA activities?  VacA is a 

multifunctional toxin, meaning that it can cause multiple cellular effects.  These activities 

have been highlighted throughout this thesis, but the mechanism underlying each activity 

has not been completely elucidated.  It is thought that some activities, such as vacuolation, 

mitochondrial membrane permeability, and autophagy, are dependent on the formation of 

anion-selective channels; however, other activities, such as activation of p38 and 

intracellular signaling in T cells, are thought to occur through a channel-independent 

mechanism (9, 107).  VacA ∆346-347 does not induce membrane depolarization or form 

large oligomers, making this a particularly interesting mutant to further study MAPK 

activation and inhibition of T cell activation.  Additionally, this mutant could be used to 

study channel-dependent activities to further test the hypothesis that mitochondrial 
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membrane permeability and autophagy are dependent on the formation of anion-selective 

channels.    

  A panel of single coil deletions has now been made from amino acids 433 to 628 

within the vacA gene of the H. pylori chromosome.  The availability of these mutants 

makes for a useful tool when probing regions of VacA that mediate specific functional 

activities.  These mutants can be used to investigate whether single coil deletion proteins 

differ from wild-type VacA in ability to cause alterations in signal transduction pathways, 

immune cells, and autophagy.  

• Can we gain further insight into how VacA contributes to H. pylori colonization of the 

mouse stomach using a VacA mutant defective in oligomerization?  Mouse adapted strains 

of H. pylori have been used in animal models to better understand the role of VacA in vivo.  

vacA-null strains of H. pylori are capable of colonizing the stomachs of mice, as well as 

gnotobiotic piglets and Mongolian gerbils (22, 78, 125).  However, a study by Salama et al 

demonstrated that when mice are co-infected with an H. pylori strain producing VacA and 

an isogenic vacA-null mutant, the vacA-null mutant did not colonize mice as efficiently as 

the wild-type H. pylori strain (94), suggesting that VacA may play a role in colonization.  

Very little work has been done to determine whether in vitro activities of VacA are also 

important in an animal model of infection.  Because VacA ∆346-347 is secreted, but does 

not form large oligomers and does not induce membrane depolarization, this mutant would 

be interesting to further investigate in a mouse model.  An important first step would be to 

investigate the ability of H. pylori strains containing either wild-type VacA or a vacA-null 

mutant alone and in combination to colonize mice.  Competition experiments could be then 

be performed in which wild-type mice are co-infected with an H. pylori strain that 
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produces wild-type VacA and a strain that produces the mutant VacA ∆346-347 protein, or 

co-infection experiments could be performed with an H. pylori strain that produces the 

VacA ∆346-347 mutant protein and a vacA-null mutant H. pylori strain.  For these 

experiments, an inserted antibiotic cassette would be used to distinguish colonization 

between the strains used for co-infection.  Mice would be sacrificed at different time points 

post-infection and stomach homogenates plated on antibiotic blood plates.  These 

experiments should help to determine if wild-type strains can out-compete the H. pylori 

strain producing mutant VacA ∆346-347 protein or if the H. pylori strain producing mutant 

VacA ∆346-347 protein can out-compete the vacA-null mutant H. pylori strain.  If the 

wild-type H. pylori strain colonizes better than the strain producing VacA ∆346-347, this 

would suggest channel formation and oligomerization may be important in colonization.  

In general, these experiments may expand our current knowledge of VacA’s role in 

colonization. 

 Experiments could also be performed to study disease progression.  In this regard, an 

H. pylori strain producing the VacA ∆346-347 mutant protein could be used to infect INS-

GAS mice.  These are hypergastrinemic mice, meaning they have an excessive secretion of 

gastrin.  Unlike other mice infected with H. pylori, these mice can develop gastric cancer.  

The INS-GAS mice, therefore, would be advantageous when analyzing the role of VacA in 

disease.  Overall, the animal studies described in this section would help us to understand 

what properties of VacA (such as oligomerization) may contribute to colonization and 

disease progression. 

• A single coil of the β-helix is made up of three β strands connected by loops; are these 

loops important for VacA activity?  In a recent study designed to locate epitopes of 
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pertactin that are recognized by human antibodies, loops of the pertactin β-helix were 

modified by site-directed and deletion mutagenesis (40).  This study found that 

modification of many of the loops resulted in a loss or decrease in binding of monoclonal 

antibodies (40).  In some cases, the modification of loops resulted in an increase in binding 

of monoclonal antibodies to mutant proteins compared to wild-type pertactin, suggesting 

exposure of some epitopes that would normally be masked by nearby loops (40).  This 

group did not specifically study effects on activity of the protein after modification of 

loops.  In a similar manner, loops of the VacA p55 β-helix could be modified in several 

ways to investigate the importance of the loops.  One loop usually tends to be longer than 

the other two loops that connect the three β strands in a single coil; amino acids in the 

longer loop could be deleted to shorten this loop.  Also, amino acids could be substituted 

(for similar or opposite charges) instead of deleted.  These various mutants could be used 

to investigate if the loops are important for VacA functional activities, or if they are more 

important for folding and/or secretion of the toxin.       

• Amino acids 433-461 appear to be important in vacuolating activity.  Can we narrow down 

this region to specifically determine which amino acids are important and why deletion of 

these amino acids leads to a reduction in vacuolating activity?  Narrowing down this 

stretch of 28 amino acids would help to map regions of the toxin that are important for 

vacuolation.  Performing random mutagenesis of the p55 domain did not result in the 

identification of any point mutations that resulted in loss of vacuolating activity (68), 

suggesting that it might be necessary to modify multiple amino acids to abrogate VacA 

activity.  Because we see a difference in vacuolating activity in different cell types, our 
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data also suggest that amino acids 433-461 may be important in cell specificity, 

highlighting the importance of this region. 

• Can we learn more about the structure of VacA by introducing the single coil deletions into 

the p55 domain of VacA and recombinantly expressing each?  When I introduced these 

mutations into full-length VacA, my preliminary data indicate that these mutants were not 

solubly expressed very well during recombinant expression in E. coli; however, these 

experiments were only performed once, and conditions were not optimized.  It might be 

possible to introduce these mutations into the p55 domain and obtain better soluble 

expression than I obtained with mutants in full-length VacA.  The p55 domain containing 

the mutations could be recombinantly expressed and mixed with wild-type p33 to study 

oligomerization and activity. 

• We have shown that several single coils can be deleted without substantially altering 

expression or secretion of mutant proteins; what would happen if single coils were inserted 

as opposed to deleted?  The exact reason as to why the β-helical structure facilitates protein 

secretion is not known.  It has been hypothesized that the right-handed parallel β-helices 

represent a single superfamily of folds that evolved from a common ancestor, most likely 

from duplication of coil sequences (44).  Two other autotransporter proteins that fold as β-

helices, pertactin and Hbp, contain 16 coils and 24 coils, respectively (24, 80), and the 

VacA p55 domain contains approximately 13 coils (29), highlighting that the length of β-

helical passenger domains is not constant.  The idea of adding a coil to the VacA p55 β-

helix is not far from what may happen in some VacA proteins, specifically m2 VacA.  m2 

VacA has a 23 amino acid insert, not present in m1 VacA, which is an imperfect repeat of 

the sequence located just upstream, and is approximately the length of a single coil.  VacA 
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mutants could be made in which coils were duplicated to further understand if specific 

contacts in the β-helix are required for efficient secretion and folding, and if these contacts 

are maintained or broken by coil duplication.  These studies could be extended by adding 

the mutant VacA to cells to ask if the addition of coils results in changes to binding and/or 

internalization of the toxin. 

• What is the role of the carboxy-terminal region of the passenger domain of VacA in 

folding and secretion?  Our data suggest that amino acids 559-628 are important for proper 

secretion and folding of VacA.  To further understand this region, we could follow an 

experimental design similar to DC Oliver et al, in which they were able to identify a 

conserved region of BrkA from B. pertussis that is necessary for folding of its passenger 

domain (79).  The goal of the following experiments would be to determine if the carboxy-

terminus of VacA promotes folding of VacA and would thus confer stability to the 

exported protein.  A properly folded passenger domain is expected to be stable in the 

presence of proteases, but a protein not able to fold properly is expected to be unstable and 

degrade during secretion due to the presence of proteases in the outer membrane.  Surface 

expression of full-length wild-type and mutant VacA would be compared using E. coli 

strains UT5600 and UT2300.  E. coli UT5600 is deficient in the outer membrane proteases 

OmpT and OmpP; E. coli UT2300 is the wild-type strain that contains both OmpT and 

OmpP.  OmpT and OmpP have intrinsic proteolytic activity and cleave proteins primarily 

between pairs of basic amino acids.  Secretion of VacA from these E. coli strains has not 

been performed before, so the possibility exists that VacA will not be translocated across 

the outer bacterial membrane; however, E. coli UT5600 and UT2300 have successfully 

been used to study secretion of autotransporters from several bacterial species including 
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Neisseria and Shigella (49, 104).  We would compare wild-type VacA with a mutant 

construct that is lacking amino acids 559-628 (lacking 3 single coils).  General steps to 

probe the importance of the carboxy-terminus include:   

1. express full-length, 140 kDa VacA to test whether VacA is surface-expressed 

in E. coli 

2. examine surface expression of a mutant VacA protein lacking amino acids 

559-628 in E. coli UT5600 and UT2300; if amino acids 559-628 are important 

for folding, the expectation is that surface expression would be detected in 

strain UT5600, but that in strain UT2300, the passenger would be susceptible 

to proteolysis and would not be detected on the surface 

3. in vivo trans complementation of VacA folding in which E. coli would be co-

transformed with plasmids expressing a mutant that expresses the VacA signal 

sequence, amino acids 559-628 of the passenger domain, and the translocation 

unit (the remainder of the passenger domain would be deleted) and a mutant 

that contains all of VacA except amino acids 559-628; in this set of 

experiments, if amino acids 559-628 are important for folding, the two 

mutants could act in trans to promote proper folding and the passenger 

domain be surface exposed 

4. if amino acids 559-628 are found to be important for folding in the above 

experiments, trypsin analysis of VacA expressed on the surface of E. coli 

strain UT5600 could be performed; this would include trypsin susceptibility 

experiments where the bacteria is exposed to low levels of trypsin over time to 

monitor stability of the passenger domain 



 123

• Does VacA have a carboxy-terminal ‘stable core’ that is important for secretion and 

folding in vivo?  Two other autotransporter proteins, pertactin and plasmid-encoded toxin 

(Pet, from E. coli), have been found to undergo three-state unfolding in which the protein 

unfolds via two transitions and takes on a partially folded state at intermediate 

concentrations of denaturant (47, 89).  In each case, the partially folded state consists of a 

protease-resistant core structure located at the carboxy-terminus of the β-helix.  It has been 

hypothesized that the stable core may be important for efficient secretion of autotransporter 

passenger domains, in that correct folding of the carboxy-terminal core structure could 

create a scaffold that would allow folding of the remaining β-helix, and would therefore 

provide the driving force for secretion (89).   

  To investigate the folding of VacA and to determine if the p55 domain of VacA 

contains a stable core similar to other autotransporter passenger domains, a series of several 

experiments could be performed similar to the above referenced studies (47, 89).  Both 

wild-type p55 and single-coil deletion mutants introduced into p55 could be used in these 

experiments.  In the first experiment, we could use tryptophan fluorescence emission to 

monitor the folding of the p55 domain.  The p55 VacA domain has three tryptophans (Trp) 

located throughout the sequence-one that is buried in the protein, and two that are partially 

surface exposed (Figure VI-2A).  Tryptophan has intrinsic fluorescence properties that are 

sensitive to the environment and change when a protein folds/unfolds.  Thus, Trp 

fluorescence can be used to monitor protein folding.  Changes in Trp fluorescence emission 

intensity as p55 is denatured in increasing concentrations of guanidine hydrochloride 

(GdnHCl) would be monitored.  The expectation is that as p55 is denatured, the 

fluorescence intensity will decrease (Figure VI-2B).  An unfolding curve could then be 
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generated by measuring fluorescence emission of VacA in various concentrations of 

GdnHCl.  If p55 unfolds similarly to pertactin and Pet, we would expect to see native VacA 

p55 (the plateau above transition 1), partially folded VacA p55, and denatured VacA p55 

(the plateau below transition 2) (Figure VI-2C).   

  There are two potential alternative approaches if following changes in tryptophan 

fluorescence does not work.  The first is that tyrosine residues, which also have intrinsic 

fluorescence, can be used to follow protein folding (the tyrosine residues in p55 are 

highlighted in Figure VI-1A).  The second alternative approach is to use a probe that binds 

specifically to protein hydrophobic surfaces (i.e. ANS or TNS).   

  If the above mentioned folding transitions (native, partially folded, and denatured) are 

observed for p55, proteolytic digestion with proteinase K would be used to show the 

location of ordered structure within the partially folded state.  Both native and partially 

folded p55 would be exposed to proteinase K over a series of time points and samples 

resolved by SDS-PAGE to reveal any remaining folded structure.  If a smaller fragment is 

detected over time after partially folded p55 is exposed to proteinase K, this would suggest 

retention of structure (i.e. “stable core”).  The smaller fragment would be eluted from the 

gel and analyzed by MALDI-TOF.  The sequence of this fragment (as determined by 

complete trypsin digestion) would be mapped onto the sequence of full-length p55.  

Mapping this fragment to full-length p55 would reveal where this stable core is located 

within p55.  The identification of a stable core at the carboxy-terminus might suggest that 

these rungs of the β-helix form a template for efficient formation of the native β-helix.   
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Figure VI-2.  Determining if the VacA p55 domain has a C-terminal stable core.  (A) 
VacA p55 domain crystal structure with tryptophan residues highlighted in red (residues 577, 
603, 772) and tyrosine residues highlighted in green.  (B) Hypothetical graph showing 
expected emission spectra from GdnHCl-induced unfolding of the p55 domain.  The red line 
represents native p55, and the blue and green lines are showing increased concentrations of 
GdnHCl and a reduction in folding.  (C) Hypothetical graph showing p55 steady-state 
fluorescence emission at various GdnHCl concentrations.  If the p55 domain exhibits three-
state unfolding behavior, two distinct transitions and a partially folded structure would be 
visible. 
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