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CHAPTER I 

 

BACKGROUND AND SIGNIFICANCE 

 

Diabetes Mellitus 

Epidemiology 

Diabetes mellitus (DM) refers to a collection of disorders in glucose metabolism, 

all of which are characterized by abnormally high blood glucose levels, or hyperglycemia. 

It is estimated that 25.8 million Americans have some form of DM, and 7 million are 

undiagnosed. Type 2 DM is the most common form, occurring in about 90-95% of 

patients with DM, while type 1 DM accounts for 5%. Gestational DM, rare monogenic 

forms of DM, and DM secondary to other medical conditions account for the rest 

(Centers for Disease Control and Prevention, 2011). Long-term consequences of DM (in 

particular, consequences of hyperglycemia) include macrovascular complications, such as 

heart disease and stroke, and microvascular complications, including retinopathy, 

glomerulopathy, and neuropathy (Defronzo and Abdul-Ghani, 2011). The estimated total 

cost of DM in the United States was $174 billion in 2007 alone (Centers for Disease 

Control and Prevention, 2011). The incidence of both type 1 and type 2 DM are 

increasing, and the average age of newly diagnosed patients is decreasing, so developing 

optimal strategies for prevention and treatment are of utmost importance (Wentworth et 

al., 2009). 
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Pathophysiology 

There are many mechanisms involved in the pathogenesis of DM, but a key 

component is dysfunction of the pancreatic islets that results in a relative deficiency in 

insulin (Ashcroft and Rorsman, 2012). In type 1 DM, the autoimmune destruction of 

pancreatic β-cells leads to inadequate insulin production, and an inability to lower blood 

glucose levels (van Belle et al., 2011). In contrast, the hyperglycemia in type 2 DM 

results from β-cell dysfunction in the setting of insulin resistance, in which insulin 

signaling is disrupted in several target organs (Muoio and Newgard, 2008). In gestational 

DM, the onset of abnormalities in glucose metabolism occurs during pregnancy. 

Following parturition, gestational DM resolves, though patients have an increased risk of 

developing type 2 DM (Lain and Catalano, 2007). Several rare genetic mutations lead to 

other forms of diabetes, including mature onset diabetes of the young (MODY), which 

resembles type 2 DM clinically (Vaxillaire and Froguel, 2008), and neonatal DM, an 

early-onset disorder of insufficient insulin secretion (Aguilar-Bryan and Bryan, 2008).  

 

Islet transplantation as a therapeutic goal 

One promising therapeutic approach for type 1 DM is islet transplantation, in 

which the cellular source of insulin, the pancreatic β-cell, is replaced. First attempted as 

transplantation of minced sheep pancreata in the 19th century, islet transplantation has 

been refined over the past 30 years into a feasible treatment for DM (Robertson, 2004). In 

recent years, the success of clinical islet transplantation was improved by development of 

the Edmonton protocol, which utilized a glucocorticoid-free immunosuppressive regimen 

(Shapiro et al., 2000). Nevertheless, the majority of patients currently undergoing islet 
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transplantation still do not achieve long-term insulin independence, though many are 

cured of the recurrent dangerous hypoglycemic episodes they once experienced (Barton 

et al., 2012).  

Even with the demonstrated successes of islet transplantation, many obstacles 

must be overcome before it can become a widely used approach for diabetes treatment 

(Harlan et al., 2009; Khan and Harlan, 2009; McCall and James Shapiro, 2012). 

Typically, multiple donor pancreata are required to achieve a sufficient islet mass for 

transplantation into one recipient (Shapiro et al., 2000), in part because a large proportion 

of islets are lost in the first few days after transplantation (Biarnés et al., 2002; Eich et al., 

2007). Furthermore, the surviving islets do not function identically to endogenous islets, 

in part because of inadequate revascularization (Carlsson et al., 2001; Mattsson et al., 

2002) and reinnervation (Korsgren et al., 1996). Currently, islets are infused into the 

portal vein, which provides sufficient oxygen tension but also exposes the islets to 

potentially damaging elements in the blood (Korsgren et al., 2008). Finally, immunologic 

barriers remain, from dampening the autoimmune reaction of type 1 DM to preventing 

alloimmune rejection of the graft (Harlan et al., 2009; Khan and Harlan, 2009). The 

immunosuppressive agents used in the Edmonton protocol may themselves be 

detrimental to long-term islet survival and function (Chatenoud, 2008; Froud et al., 2006; 

Nir et al., 2007). To address these issues, the islet biology field is striving to generate new 

sources of β-cells (Efrat and Russ, 2012), to improve upon islet delivery by revising the 

transplantation site and devising islet encapsulation methods (Harlan et al., 2009; McCall 

and James Shapiro, 2012), and to enhance engraftment itself by improving islet 

revascularization (Brissova and Powers, 2008). 
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The Pancreas 

Anatomy and physiology 

The pancreas is a mixed glandular organ located in the retroperitoneal cavity 

(Figure 1). Anatomically, the pancreas is divided into three portions: the head, which is 

cradled by the duodenum; the body, which travels alongside the inferior portion of the 

stomach; and the tail, which attaches to the spleen (Suda et al., 2006). It has both 

exocrine and endocrine functions.  

The exocrine pancreas comprises about 95% of the total mass of the organ (Chen 

et al., 2011). It is composed of acinar cells, which produce a multitude of digestive 

enzymes such as pancreatic amylase, and ductal cells, which produce bicarbonate to 

neutralize stomach acid. Acinar cells line a highly branched system of ductules, which 

coalesce as the main pancreatic duct in the center of the pancreas. The main pancreatic 

duct joins the common bile duct within the head of the pancreas, and their combined 

secretions are released into the duodenum through the ampulla of Vater (Slack, 1995). 

Pancreatic exocrine secretion is extensively controlled by the autonomic nervous system 

and gut hormones (Konturek et al., 2003). Parasympathetic nerves integrate a variety of 

signals from the brain and digestive system to stimulate secretion of digestive enzymes 

during food consumption. In contrast, activation of the sympathetic nervous system 

inhibits pancreatic exocrine secretion by reducing pancreatic blood flow (Love et al., 

2007). 

The endocrine pancreas is composed of distinct islands of tissue, the islets of 

Langerhans, scattered throughout the pancreatic parenchyma (In't Veld and Marichal, 

2010). Pancreatic islets contain five types of hormone-secreting cells: glucagon- 
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Figure 1. Anatomy of the pancreas and pancreatic islets. The pancreas is a mixed
gland, containing an exocrine portion that secretes digestive fluid into the duodenum,
and an endocrine portion composed of dispersed pancreatic islets that secrete
hormones into the bloodstream. Adapted from Slack (1995). A schematic of the
cellular composition of the mouse pancreatic islet is highlighted.
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producing α-cells, insulin-producing β-cells, somatostatin-producing δ-cells, ghrelin-

producing ε-cells, and PP cells, which secrete pancreatic polypeptide (Pan and Wright, 

2011). In mice, β-cells comprise approximately 75% of the islet endocrine cells and 

occupy the islet core; the other four types of endocrine cells are located at the islet 

periphery. In contrast, human islets show more equal numbers of α-, β-, and δ-cells, 

which do not typically segregate into the typical β-cell core and non-β-cell mantle 

(Figure 2; Brissova et al., 2005; Cabrera et al., 2006). Instead, β-cells are much more 

likely to contact α-cells in human islets compared to mouse islets (Bosco et al., 2010). 

Finally, pancreatic islets are highly vascularized and richly innervated, and can be 

considered as miniature organs (Figures 3-4). 

The pancreatic islets play an essential role in whole-body glucose homeostasis. 

Islet endocrine cells integrate a variety of signals before rapidly secreting the appropriate 

peptide hormones into the bloodstream. These signals include glucose and other nutrients, 

hormones, neurotransmitters, and neuropeptides (Ahrén, 2000; Kim and Egan, 2008; 

Nolan and Prentki, 2008). β-cells synthesize and secrete insulin, which promotes the 

uptake and utilization of glucose by insulin-sensitive tissues, including the liver, skeletal 

muscle, and fat (Samuel and Shulman, 2012). In contrast, α-cells synthesize and secrete 

glucagon, which increases hepatic glucose production to raise blood glucose levels 

(Gromada et al., 2007). In the multiple forms of diabetes, the combination of insulin 

deficiency (absolute or relative) and glucagon excess result in poorly controlled glycemia 

(Unger and Cherrington, 2012). 
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insulin / glucagon / somatostatin

Figure 2. Pancreatic islet morphology varies between mouse and human. Top,
Representative mouse islet and representative human islet, immunolabeled for insulin
(green), glucagon (red), and somatostatin (blue). Bottom, “Optical sections of entire
mouse (n = 28) and human (n = 32) islets were 3D reconstructed and analyzed for
cellular composition. [Left] Mouse islets showed a high degree of homogeneity in
abundance of three examined islet cell types: β cells (ranging from 61% to 88%), α
cells (ranging from 9% to 31%), and δ cells (ranging from 1% to 13%). [Right] In
contrast, human islets had a quite heterogeneous composition: β cells (ranging from
28% to 75%), α cells (ranging from 10% to 65%), and δ cells (ranging from 1.2% to
22%). The composition of human islets was statistically different across all three
examined endocrine cell populations; P < 0.0001. Horizontal bar represents the mean
of the islet cell population.” From Brissova et al. (2005).

Mouse Islet Human Islet
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Figure 3. Pancreatic islets are highly vascularized and richly innervated. Top,
Drawing of arterial supply to the pancreatic islets (Wharton, 1932). Bottom,
Illustration of pancreatic islet innervation. Labels: c, capillary; p.i.g., peri-insular
ganglion (Honjin, 1956).
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Figure 4. Pancreatic islets are highly vascularized and richly innervated.
Representative islet from a 30 µm-thick mouse pancreatic cryosection, immuno-
labeled for insulin (blue), the endothelial cell marker PECAM1 (green), and the
neuron-specific tubulin marker TUJ1 (red). Scale bar is 100 µm and applies to all
panels.
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Development 

While several recent studies have examined human pancreas development (Sarkar 

et al., 2007; Jeon et al., 2009; Riedel et al., 2011; Gregg et al., 2012; reviewed in Pan and 

Wright, 2011), many of the mechanisms controlling pancreas development have been 

revealed by studies in model organisms. Therefore, the data summarized here will focus 

on research performed in mice.  

Pancreas development occurs with the progression of a complex cell specification 

pathway regulated by the sequential induction of transcription factors. Around embryonic 

day 8 (E8), expression of the transcription factor Pdx1 is initiated in the posterior foregut 

endoderm, which gives rise to the entire pancreatic epithelium, caudal stomach, rostral 

duodenum, and common bile duct. Around E9, the pre-pancreatic endoderm evaginates 

from the foregut to form the ventral and dorsal pancreatic buds (Guz et al., 1995; Offield 

et al., 1996). Activation of the transcription factor Ptf1a (around E9.5) is required for 

growth of the pancreatic buds; its expression is later restricted to exocrine cells (Krapp et 

al., 1998). Mature endocrine cells are derived from endocrine progenitor cells that 

express the transcription factor neurogenin 3 (Neurog3), following the induction of 

transcription factors such as Arx, Pax4, Pax6, Nkx2-2, Nkx6-1, and Neurod1 (Ackermann 

and Gannon, 2007). 

The subsequent growth and differentiation of the embryonic pancreas occurs in 

two stages, termed the primary and secondary transitions (Pictet et al., 1972; reviewed in 

Pan and Wright, 2011). During the primary transition, from E9.5 to E13.5, multipotent 

pancreatic progenitor cells proliferate and compartmentalize into trunk and tip cells that 

will later differentiate into ductal and acinar cells, respectively (Gittes, 2009; Pan and 
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Wright, 2011). At this time, the first hormone-expressing cells also appear, but these cells 

are thought to be a transient population not well represented in the final islet structures 

(Gu et al., 2002; Herrera, 2000). By E12.5, gut rotation has allowed the ventral and dorsal 

buds to fuse and form a continuous gland (Ackermann and Gannon, 2007). During the 

secondary transition, from E13.5 to E16.5, pancreatic progenitor cells undergo branching 

morphogenesis and differentiation. Committed NEUROG3+ endocrine cell precursors 

within the trunk epithelium are allocated into individual endocrine cell types and begin to 

delaminate from the epithelial cord (Pan and Wright, 2011). Beginning in the secondary 

transition, PDX1 expression is downregulated in non-endocrine pancreatic cells but 

upregulated in β-cells, which continue to express high levels of PDX1 in postnatal life 

(Guz et al., 1995). β-cell expression of PDX1 is required during embryogenesis and 

adulthood to regulate islet endocrine cell proportions, maintain β-cell proliferation, and 

preserve islet function (Jonsson et al., 1994; Offield et al., 1996; Brissova et al., 2002; 

Holland et al., 2002; Gannon et al., 2008). In late embryogenesis (E16.5 to E18.5), large 

clusters of endocrine cells continue to delaminate, but most remain close to the ductal 

epithelium (Gittes, 2009; Pan and Wright, 2011). 

Islet formation and maturation is still active neonatally and postnatally. At birth, 

long cords of highly proliferative endocrine cells are found at the core of the pancreas, 

near large blood vessels along the pancreatic duct. It is hypothesized that α-cells 

throughout this cord are distributed along sites of fission that form the individual islets 

found later in life (Miller et al., 2009). Distinct islets can be found within the first week 

after birth (Cai et al., 2012), a time when endocrine cell proliferation is high but starting 

to decline (Ackermann and Gannon, 2007). In normal mice, the formation of new islets 
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ceases around weaning (Jo et al., 2011). By adulthood, maintenance of the β-cell 

population is thought to occur primarily through replication (Dor et al., 2004; Georgia 

and Bhushan, 2004), which occurs very slowly (Ackermann and Gannon, 2007; Teta et 

al., 2005). 

 

Islet Vascularization 

Morphology and function of the islet vasculature 

Blood flow to the pancreas is provided by the superior and inferior 

pancreaticoduodenal arteries and multiple branches of the splenic artery (Wharton, 1932). 

These larger arteries branch into interlobular and intralobular arteries that penetrate the 

pancreatic parenchyma and reach all of the islets in parallel. Each islet is supplied by one 

or more arterioles, which branch into capillaries to form a glomerulus-like structure 

(Bonner-Weir and Orci, 1982). Blood perfuses the islets in one of two patterns, core-to-

mantle or side-to-side (Nyman et al., 2008), and is drained by either of the insulo-acinar 

or insulo-venous portal systems (Murakami et al., 1993). Venous blood containing islet 

products is carried to the liver by the portal vein, where islet hormones first act to 

modulate glucose homeostasis (Radziuk et al., 1993). 

The islet vasculature is highly specialized (Figure 5), and distinct from the 

vasculature of the exocrine pancreas (Henderson and Moss, 1985). The intraislet capillary 

plexus has a higher vessel density and contains vessels that are thicker and more tortuous 

than capillaries of the exocrine pancreas (Brissova et al., 2006; Vetterlein et al., 1987). 

Ultrastructurally, islets have a fenestrated endothelium, in which the endothelial cells 

contain multiple pores that increase vessel permeability (Bearer and Orci, 1985; Brissova  
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Figure 5. The pancreatic islet vasculature is highly specialized. Top left,
Representative islet from a mouse infused with a FITC-conjugated tomato lectin to
label the functional vasculature (green). Intraislet vessels (within dotted line) are
thicker, denser, and more tortuous than vessels of the exocrine pancreas (outside of
dotted line). Image courtesy of Marcela Brissova. Bottom left, Schematic of a cross-
section of an intraislet capillary, demonstrating an endothelial cell (EC) body with its
cellular processes and fenestrations, encircling the vascular lumen. A continuous
basement membrane (BM) is produced by endothelial cells. Adapted from Cleaver
and Melton (2003). Right, “Endothelial cell morphology in [mouse] pancreatic
islets. A. A thin endothelial cell (EC, surrounded by a [dotted] black line) embraces
the capillary lumen (see black line) and separates the blood from the pancreatic beta
cells (B). B. A higher magnification shows that the fenestrated endothelium along
with a thin BM separates the secretory granules (SG) from the blood. Crystalline
insulin granules are visible in the secretory granules of the pancreatic beta cell. The
fenestrae are cytoplasmic holes, in which a permeable diaphragm is located
(arrowheads). Black bars 1 µm.” From Nikolova and Lammert (2003).
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et al., 2006; Kamba et al., 2006; Lammert et al., 2003b). The cellular architecture of the 

islet allows for each of the polyhedral β-cells to have multiple faces that contact blood 

vessels (Bonner-Weir, 1991). This specialized relationship between islet endocrine cells 

and blood vessels allows for the rapid exchange of nutrients and hormones between the 

islet and bloodstream.  

While islets compose only 1-2% of the total pancreatic mass, they receive 6-20% 

of the total blood flow to the organ, and are therefore perfused by about five to ten times 

the amount of blood received by the exocrine pancreas (Lifson et al., 1980; Lifson et al., 

1985). Furthermore, the oxygen tension within pancreatic islets is higher than that of the 

exocrine pancreas (Carlsson et al., 1998). Islet blood flow is dynamically regulated, and 

highly correlated with islet function. For example, experimentally induced increases or 

decreases in blood glucose levels can increase or decrease blood flow, respectively, 

without changing blood flow in the exocrine pancreas (Jansson, 1984; Jansson and 

Hellerström, 1983; Nyman et al., 2010). Interestingly, islet blood flow is also increased in 

hyperinsulinemic obese rodents, mediated primarily by signals from the parasympathetic 

nervous system (Atef et al., 1992; Carlsson et al., 1996; Jansson and Hellerström, 1986). 

The precise structural mechanisms regulating islet blood flow remain unclear 

(Schaeffer et al., 2011). Capillaries within mouse islets are not directly associated with 

vascular smooth muscle cells (vSMCs), which are responsible for translating signals from 

the autonomic nervous system into changes in blood flow in resistance arteries 

(Storkebaum and Carmeliet, 2011). Instead, it has been proposed that intraislet 

endothelial cells may propagate signals to vSMCs located on arterioles just outside the 

islet (Jansson et al., 2010). Alternatively, islet blood flow could be regulated by intraislet 
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pericytes, which are contractile (Hamilton et al., 2010), and have been shown to regulate 

the diameter of capillaries in the central nervous system (Peppiatt et al., 2006). 

Nevertheless, the specific role of pericytes in islet function remains unclear (Richards et 

al., 2010). 

Understanding islet vascularization is important for islet transplantation, because 

it has been proposed that inadequate revascularization is one major limitation for the 

success of islet grafts. Compared to endogenous pancreatic islets, a reduction in both 

graft vessel density (Mattsson et al., 2002) and oxygen tension (Carlsson et al., 2001) was 

observed in islets transplanted into the kidney cortex, liver, and spleen. Because islet 

grafts are revascularized with cells from both the donor and recipient (Brissova et al., 

2004; Nyqvist et al., 2011), certain transplantation sites may provide advantages over 

others. For example, pancreatic islets transplanted into skeletal muscle show a vascular 

morphology and blood flow rate comparable to that of endogenous islets (Christoffersson 

et al., 2010), and intrapancreatic islet grafts also showed improved revascularization 

compared to grafts placed under the kidney capsule (Lau et al., 2009).  

 

Role of the vasculature in islet development and function 

The close relationship between islet endocrine and endothelial cells begins in 

early pancreas development. The dorsal and ventral pancreatic buds originate adjacent to 

the aorta and vitelline veins, respectively. The importance of endothelial cells in the 

induction of pancreas differentiation was first demonstrated in co-culture experiments, in 

which explants of the aortic endothelium were required for isolated foregut endoderm to 

initiate expression of Pdx1 and Ins2 (Lammert et al., 2001). Further studies expanded 
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upon this model by showing that aortal endothelial cells were responsible for specifically 

inducing the pancreatic transcription factor Ptf1a, which is required for outgrowth of the 

dorsal pancreatic bud. Additionally, endothelial cells were required for maintenance of 

Pdx1 expression and for induction of Ins2 and Gcg (encoding glucagon) in the early 

pancreas (Yoshitomi and Zaret, 2004). These data are supported by a clinical case report 

of an individual with aortic coarctation who also demonstrated agenesis of the dorsal 

pancreas (Kapa et al., 2007). 

The relationship between islet endocrine cells and endothelial cells continues 

throughout life (Figure 6). Islet endocrine cell clusters are vascularized and exposed to 

blood flow as early as E13.5, the beginning of the secondary transition of islet endocrine 

cell formation (Brissova et al., 2006; Shah et al., 2011). During the normal expansion of 

β-cell mass in the first week of postnatal life, β-cell proliferation coincides with 

endothelial cell proliferation and an expansion of the intraislet vasculature to reach its 

final vessel density (Johansson et al., 2006a). Similarly, proliferation of intraislet 

endothelial cells precedes the proliferation and mass expansion of β-cells that occurs 

during pregnancy (Johansson et al., 2006b). 

The delivery of oxygen and nutrients from the established vasculature is 

important for pancreatic development and growth, and endocrine differentiation (Fraker 

et al., 2009; Shah et al., 2011), but other bloodstream-derived molecules are also 

important. While dorsal pancreas agenesis was observed along with cardiac defects in 

N-cadherin-deficient mice (Esni et al., 2001), restoration of N-cadherin specifically in the 

heart rescued the cardiovascular defects and revealed that soluble factors from the 

bloodstream, including sphingosine-1-phosphate (S1P), promote pancreas bud formation 
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Figure 6. Model of islet vascularization during development. During
embryogenesis and postnatal life, the development of islet vasculature occurs
concomitantly with islet morphogenesis. As described in Brissova et al. (2006),
“critical components of this islet vascularization model include: 1) production of
angiogenic factors by early developing islet cells, 2) recruitment of endothelial cells
and their association with developing islet cell clusters, 3) establishment of blood
flow to small endocrine cell clusters before complete islet assembly, and 4)
coordinated assembly of islet cell types and the islet vascular structures in late
embryogenesis.” Figure is adapted from Brissova et al. (2006).
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(Edsbagge et al., 2005). Therefore, early tissue perfusion is crucial to supply oxygen, 

nutrients, and other signaling molecules for proper pancreas development. 

In addition to providing the structural basis for islet blood flow, murine intraislet 

endothelial cells are also responsible for synthesis of the islet basement membrane. 

Indeed, the dramatic reduction in intraislet endothelial cells following pancreas-wide 

inactivation of Vegfa in Pdx1-Cre;Vegfafl/fl mice results in a loss of islet basement 

membrane proteins, including laminin α4, laminin α5, collagen IV α1, collagen IV α2 

and fibronectin (Nikolova et al., 2006). In addition to the vascular basement membrane, 

human islets also contain a second basement membrane that is continuous with the islet 

capsule, a feature present in both mice and humans (Virtanen et al., 2008). While the 

precise role of the islet basement membrane in vivo is unresolved, multiple in vitro 

studies indicate that extracellular matrix (ECM) components exert positive effects on 

β-cell proliferation, survival, and insulin secretion (Stendahl et al., 2009). 

Endothelial cells also produce soluble factors that signal to islet endocrine cells. 

Experiments in which isolated islets are treated with medium previously conditioned with 

purified intraislet endothelial cells show that endothelial cells secrete factors that enhance 

glucose-stimulated insulin secretion and prevent insulin degradation in cultured islets. 

For example, isolated intraislet endothelial cells produce hepatocyte growth factor (HGF) 

to stimulate β-cell proliferation, but only in the presence of VEGF-A (Johansson et al., 

2006b). Using a similar experimental design, endothelial cell-derived laminin β1 was 

found to enhance insulin content and glucose-stimulated insulin secretion by isolated 

islets (Johansson et al., 2009). Finally, connective tissue growth factor (CTGF), a protein 

expressed by pancreatic ductal cells, endocrine cells, and endothelial cells, promotes islet 
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endocrine cell differentiation and proliferation during development (Crawford et al., 

2009). Genetic inactivation of Ctgf in any of these cell types impairs β-cell proliferation 

during embryogenesis, suggesting that this broad expression pattern is important for islet 

development. However, inactivation of Ctgf specifically in endothelial cells also 

decreases islet vascularization, so whether CTGF itself is the sole endothelial cell-derived 

signal responsible for enhancing β-cell proliferation remains to be determined (Guney et 

al., 2011).  

 

Molecular mechanisms directing islet vascularization 

To acquire their highly specialized vascular phenotype, islet endocrine cells 

produce several factors that target endothelial cells, including angiogenic factors from the 

vascular endothelial growth factor (VEGF), angiopoietin, and ephrin families, and basic 

fibroblast growth factor (Brissova et al., 2006). Normal islets also express angiostatic 

factors, including thrombospondin 1 (Olerud et al., 2008), which may counteract the 

abundant angiogenic factors within the islet but may also impair islet revascularization 

following transplantation. In particular, the potent angiogenic factor VEGF-A has been 

extensively studied as the major regulator of islet vascularization, revascularization, and 

function (see “Vascular Endothelial Growth Factor A,” below). 

The angiopoietin family has been less well studied in the islet. Angiopoietin 

family members provide important cues for guiding blood vessel maturation and 

maintenance. For example, angiopoietin 1 (ANGPT1) promotes the stabilization of blood 

vessels, while angiopoietin 2 (ANGPT2) antagonizes ANGPT1 signaling (Gale and 

Yancopoulos, 1999). In the pancreatic islet, angiopoietins expressed by endocrine cells 
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bind to their receptors TIE1 and TIE2, which are expressed by intraislet endothelial cells 

(Brissova et al., 2006). In contrast to VEGF-A, angiopoietins play a lesser role in normal 

islet formation and function, as demonstrated with genetic mouse models. β-cell-specific 

overexpression of angiopoietins does not affect islet endocrine cell morphology or 

function, because isolated islets display normal glucose-stimulated insulin secretion 

in vitro. However, prolonged overexpression of either ANGPT1 or ANGPT2 during islet 

development reduces endothelial cell permeability and leads to glucose intolerance, 

without inducing major changes in islet vessel density and size (Cai et al., 2012). In the 

converse experiment, genetic inactivation of Angpt1 after E13.5 does not affect islet 

vascularization or impair glucose tolerance (Cai, 2012). On the other hand, an experiment 

in which chick pancreata were transplanted into diabetic mice showed that disrupted 

angiopoietin signaling contributes to the formation of abnormal vessels during 

revascularization in the setting of hyperglycemia. In this model, hyperglycemia induced 

the specific overexpression of ANGPT2, thus impairing the proper revascularization of 

the graft (Calderari et al., 2012). Therefore, proper angiopoietin signaling may play a 

more significant role in islet adaptation to metabolic stress. 

Finally, thrombospondin 1 (THBS1), a glycoprotein with antiangiogenic 

properties, has important roles in islet vascularization and function. Mice with global 

genetic deletion of Thbs1 had hypervascularized and hyperplastic islets (Crawford et al., 

1998), but were surprisingly hypoinsulinemic (Olerud et al., 2011). Further in vitro 

studies showed that both insulin production and glucose-stimulated insulin secretion were 

reduced in THBS1-deficient islets, likely as a result of decreased THBS1-mediated 

activation of TGFβ1, a protein that exerts positive effects on β-cells (Olerud et al., 2011). 
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However, experimental reduction of THBS1 expression in islet grafts, either through 

genetic deletion or siRNA-mediated inhibition, allowed for improved graft 

revascularization and function (Olerud et al., 2008). 

 

Altered islet vascularization in mouse models of diabetes 

Because the intraislet vasculature is critical for normal islet development and 

function, islet vascularization has been evaluated in several rodent models of obesity and 

diabetes. In some models, disruption of the intraislet vasculature appears to be a key 

component in the development of islet functional abnormalities, while other models 

demonstrate a progressive disruption in the integrity of the vasculature with prolonged 

hyperglycemia. 

For example, the intraislet vasculature plays a critical role in the pathogenesis of 

islet dysfunction in the intrauterine growth-restricted (IUGR) rat model of diabetes. 

Following experimental ligation of the uterine artery, IUGR rat pups show early defects 

in insulin secretion, and hypovascularized islets that progressively lose β-cell mass. 

Interestingly, neonatal treatment of IUGR rats with exendin-4, an analog of the incretin 

hormone glucagon-like peptide 1, prevents the decline in β-cell mass (Stoffers et al., 

2003), in part by rescuing islet VEGF-A production and normalizing islet vascularization 

(Ham et al., 2009). Similarly, disruption of the intraislet vasculature may be an important 

component of autoimmune diabetes, because intraislet endothelial cells are reduced in the 

non-obese diabetic (NOD) mouse before the onset of insulitis, islet destruction, and 

diabetes (Akirav et al., 2011).  
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In contrast to IUGR rats and NOD mice, in which impairments in the intraislet 

vasculature contribute to islet dysfunction, two rodent models of obesity demonstrate a 

capability of the intraislet vasculature to adapt to increased islet demand, at least in the 

initial stages of pathogenesis. The ob/ob and db/db mouse models contain spontaneous 

mutations in the genes for leptin and the leptin receptor, respectively, which lead to 

hyperphagia, morbid obesity, and several metabolic abnormalities. The two models are 

divergent in that db/db mice spontaneously develop diabetes, while ob/ob mice remain 

hyperinsulinemic and only slightly hyperglycemic (Coleman, 1978; Robinson et al., 

2000). Surprisingly, the hyperplastic islets of both ob/ob and db/db mice have a 

decreased density of intraislet vessels (Nakamura et al., 1995; Dai et al., manuscript in 

preparation). However, these vessels are markedly dilated compared to islet vessels in 

controls, and, in ob/ob mice, demonstrate hyperperfusion by in vivo microscopy (Dai et 

al., manuscript in preparation). While the intraislet vessels in ob/ob mice remain 

structurally intact, and thus can cooperate with islet endocrine cells to maintain long-term 

normoglycemia, db/db islets eventually display pericapillary edema and fibrosis, 

suggesting that they may succumb to microangiopathy as a result of hyperglycemia 

(Nakamura et al., 1995). 

In addition to db/db mice, two rat models have also shown that intraislet 

endothelial cells are susceptible to hyperglycemia-induced damage, leading to further 

islet dysfunction. The Zucker diabetic fatty (ZDF) rat, which also contains a mutation in 

the leptin receptor, is another model of obesity and type 2 diabetes. Young, 

normoglycemic male ZDF rats showed an initial increase in islet endothelial cell area that 

decompensated with the onset of hyperglycemia. Treatment with the anti-diabetic drug 
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pioglitazone prevented the vascular damage, suggesting that hyperglycemia is detrimental 

to the islet vascular remodeling necessary to maintain islet function (Li et al., 2006). 

Similarly, the altered islet vasculature in non-obese diabetic Goto-Kakizaki rats 

resembles microangiopathy associated with the early onset of metabolic abnormalities 

(Homo-Delarche et al., 2006). In this model, impaired islet angiogenesis and decreased 

islet vascularization early in life is accompanied by hypoinsulinemia, 

hypercholesterolemia, and altered pancreas development (Giroix et al., 2011). 

 

Islet Innervation 

Morphology of islet innervation 

The pancreas receives neural input from the autonomic and enteric nervous 

systems, and sends information to the brain via sensory nerves (Ahrén et al., 2006; 

Lindsay et al., 2006; Sundler and Bottcher, 1991). Islet autonomic signals originate in a 

complex neural network within the lateral and ventromedial hypothalamus (Kiba, 2004). 

Preganglionic sympathetic nerves travel from the spinal cord to the celiac and superior 

mesenteric ganglia, where they synapse on postganglionic neurons that will enter the 

pancreas (Kiba, 2004). Preganglionic parasympathetic nerves travel within the vagus 

nerve and synapse in intrapancreatic ganglia, which contains cell bodies of intrinsic 

nerves that reach the exocrine and endocrine pancreas (Honjin, 1956; Ushiki and 

Watanabe, 1997). Additionally, the pancreas receives nerve fibers from the stomach and 

duodenal portions of the enteric nervous system, as shown by studies using in vivo 

retrograde tracing and in vitro co-culture of pancreas and gut explants (Kirchgessner and 

Gershon, 1990; Kirchgessner et al., 1992). Sensory nerves of the pancreas travel 
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alongside both pancreatic sympathetic and parasympathetic nerve pathways (Kiba, 2004). 

A schematic of pancreatic innervation is shown in Figure 7. 

Anatomically, extrinsic nerves enter the pancreas alongside the splenic artery and 

the superior and inferior pancreaticoduodenal arteries (Honjin, 1956; Richins, 1945), and 

both extrinsic and intrinsic nerves penetrate the pancreatic islet alongside capillaries 

(Ahrén, 2000; Sunami et al., 2001). Within the islet, unmyelinated nerve bundles give 

rise to free nerve endings that intermingle with islet endocrine cells (Honjin, 1956; Ushiki 

and Watanabe, 1997; Woods and Porte, 1974), without forming a true synapse 

(Kobayashi and Fujita, 1969; Serizawa et al., 1979). Additionally, some islets are closely 

associated with nerve cell bodies in a formation termed a neuroinsular complex (Persson-

Sjögren et al., 2001b; Serizawa et al., 1979). 

Islet endocrine cells share several properties with neurons, including similarities 

in gene and protein expression (Atouf et al., 1997; Scharfmann, 1997) and function 

(Arntfield and van der Kooy, 2011; Maechler and Wollheim, 1999; Ohta et al., 2011; 

Reetz et al., 1991). Pancreatic islets were termed “paraneurons” because of their neuron-

like secretory function (Fujita, 1989).  Furthermore, several neurotrophic factors also 

have positive effects on islet endocrine cells, including nerve growth factor (NGF; 

Scharfmann, 1997). Interestingly, several autoantigens present in patients with type 1 

diabetes are not specific to β-cells but are also expressed by neurons (Lieberman and 

DiLorenzo, 2003).  

The morphology of human islet innervation has only recently been explored 

(Rodriguez-Diaz et al., 2011a; Rodriguez-Diaz et al., 2011b). In contrast to the dense 

nerve plexus found within rodent islets, human islets display fewer nerve fibers 
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Figure 7. Pancreatic innervation. The pancreas receives parasympathetic
innervation from the vagus nerve, whose branches synapse on intrapancreatic ganglia
before innervating the pancreatic islets. Sympathetic neurons from the brain synapse
in paravertebral ganglia on splanchnic nerves that travel to the pancreatic
parenchyma. The pancreas also receives input from the enteric nervous system,
whose branches travel along splanchnic nerves. Afferent sensory nerve fibers travel
alongside efferent autonomic fibers.
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(Rodriguez-Diaz et al., 2011a), suggesting that signals from autonomic nerves may not 

act directly upon human islet endocrine cells, as in the case of rodent islets (reviewed in 

Ahrén, 2000 and Taborsky, 2011). Instead, autonomic nerves in human islets are in close 

contact with vascular smooth muscle cells. Therefore, it was proposed that the autonomic 

nervous system indirectly affects human islet function by altering blood flow (Rodriguez-

Diaz et al., 2011a). 

Pancreatic islets also have a characteristic peri-islet sheath of non-myelinating 

Schwann cells, the glial cells of the peripheral nervous system. Peri-islet Schwann cells 

(pScs) localize to the endocrine-exocrine border on the islet periphery in multiple species, 

including mice, rats, sand rats, dogs, and humans (Donev, 1984; Smith, 1975; Sunami et 

al., 2001; Winer et al., 2003). Unlike myelinating Schwann cells elsewhere in the 

peripheral nervous system, which insulate axons to improve nerve conductance, pScs 

only partly envelop nerve fibers of the islet (Sunami et al., 2001; Woods and Porte, 1974). 

Mature pScs can be identified with antibodies to glial fibrillary acidic protein (GFAP) 

and/or S100β (Winer et al., 2003). 

 

Role of innervation in islet development and function 

Input from the autonomic nervous system is critical for the fine-tuning of islet 

function. While glucose is the primary stimulus for insulin secretion, islet nerves release 

neurotransmitters that regulate hormone secretion (Matthews and Clark, 1987). 

Activation of the sympathetic nervous system leads to the release of norepinephrine from 

islet nerves, which acts to inhibit insulin secretion and promote glucagon secretion, 

thereby increasing blood glucose levels (Ahrén, 2000). In contrast, activation of the 
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parasympathetic nervous system leads to the release of acetylcholine from islet nerves, 

which stimulates hormone secretion from all islet endocrine cell types and increases islet 

blood flow (Ahrén, 2000; Jansson and Hellerström, 1986). Centrally, the autonomic 

nervous system controls the cephalic phase of insulin secretion, in which the anticipation 

of food triggers insulin release from β-cells before a detectable rise in postabsorptive 

blood glucose levels (Ahrén and Holst, 2001; Berthoud et al., 1980). Islet innervation 

also plays major roles in triggering inter-islet Ca++ oscillations to coordinate hormone 

secretion throughout the pancreas (Fendler et al., 2009), and defining islet responses to 

metabolic stresses, including hypoglycemia (Taborsky and Mundinger, 2012) and 

neuroglycopenia (Thorens, 2011).  

Sensory nerves of the pancreas are well known to mediate pain signals in 

pancreatitis and pancreatic cancer (Di Sebastiano et al., 1997; Lindsay et al., 2006), but 

also play an important role in islet physiology. In normal mice, islet sensory nerves 

expressing the capsaicin receptor TRPV1 dampen islet inflammation by releasing 

substance P and calcitonin gene-related peptide (CGRP) to reduce β-cell stress and 

protect against autoimmune attack. In contrast, NOD mice have a hypofunctional 

mutation in TRPV1, which reduces their ability to release protective neuropeptides into 

the islet microenvironment and increases their susceptibility to autoimmune diabetes 

(Razavi et al., 2006; Tsui et al., 2008b). In another study, destruction of sensory nerves 

by capsaicin treatment decreased the sensitivity of islets to the incretin hormone 

glucagon-like peptide 1 (GLP-1); these “sensory denervated” mice only showed 

augmented insulin secretion with a high dose of GLP-1 (Ahrén, 2004). Furthermore, mice 

lacking substance P show impaired glucose tolerance and insulin secretion, but improved 
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insulin sensitivity (Tsui et al., 2011). Because several models of sensory nerve 

inactivation also show improved insulin sensitivity (Koopmans et al., 1998; Moesgaard et 

al., 2005; Tsui et al., 2011), modulating the function of sensory nerves has been proposed 

as a potential therapeutic approach for both type 1 and type 2 diabetes (Suri and Szallasi, 

2008; Tsui et al., 2011; Tsui et al., 2007). 

In addition to classical neurotransmitters, islet nerves also produce a variety of 

neuropeptides, including cocaine and amphetamine-regulated transcript (CART; Wierup 

and Sundler, 2006), gastrin releasing peptide (GRP; Ahrén, 2006), pituitary adenylate 

cyclase activating polypeptide (PACAP; Ahrén, 2008), vasoactive intestinal peptide 

(VIP; Winzell and Ahrén, 2007), galanin (Adeghate, 2002), and neuropeptide Y (NPY; 

Adeghate and Donáth, 1990; Imai et al., 2007). Typically, CART, GRP, PACAP, and 

VIP are expressed by parasympathetic nerves, galanin and NPY by sympathetic nerves, 

and CGRP and substance P by sensory nerves (Figure 8). The role of neuropeptides in 

islet biology is complex and incompletely understood (Ahrén et al., 2006; Sundler and 

Bottcher, 1991).  

The ability of islet endocrine cells to express neurotransmitters typically 

expressed by the nervous system is termed neuro-islet plasticity. For example, islets in 

diabetic rodents begin to express the neuropeptides VIP and CART (Ahrén et al., 2006). 

In human islets, in which cholinergic innervation is sparse, α-cells demonstrate the ability 

to secrete acetylcholine (Rodriguez-Diaz et al., 2011b). Furthermore, mouse β-cells have 

the capacity to synthesize serotonin, which acts both intracellularly as a post-translational 

protein modifier important in insulin secretion (Paulmann et al., 2009) and as a paracrine 

signal to increase β-cell proliferation and mass during pregnancy (Kim et al., 2010).  
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Figure 8. Schematic of islet nerve signals. Islet nerve endings penetrate the islet
core alongside afferent capillaries and release several classical neurotransmitters,
neuropeptides, and other signaling molecules into the islet microenvironment.
Abbreviations are ACh, acetylcholine; CCK, cholecystokinin; CGRP, calcitonin
gene-related peptide; GRP, gastrin releasing peptide; NA, noradrenaline; NO, nitric
oxide; NPY, neuropeptide Y; PACAP, pituitary adenylate cyclase-activating peptide;
SP, substance P; and VIP, vasoactive intestinal peptide. Adapted from Ahrén (2000).
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In addition to the broad synthesis of serotonin or acetylcholine by murine β- and 

human α-cells, respectively, some endocrine cells in mouse islets also express tyrosine 

hydroxylase (TH), the enzyme mediating the rate-limiting step of catecholamine 

biosynthesis (Coker et al., 1990; Iturriza and Thibault, 1993; Karlsson et al., 1997; 

Korsgren et al., 1992; Lindsay et al., 2006; Persson-Sjögren et al., 1998; Persson-Sjögren 

et al., 2002). These observations were confirmed by crossing a knock-in mouse in which 

Cre recombinase was inserted in the endogenous TH locus with the R26-lacZ reporter 

mouse; in this model, scattered islet cells expressed the β-galactosidase reporter 

(Lindeberg et al., 2004). Islet TH expression has several proposed roles: (1) a marker of 

endocrine precursor cells during early pancreas development (Alpert et al., 1988; 

Teitelman and Lee, 1987; Teitelman et al., 1993); (2) a marker of post-proliferative, 

senescent β-cells (Teitelman et al., 1988); or (3) an indicator of endogenous islet 

catecholamine synthesis (Cegrell, 1968; Borelli and Gagliardino, 2001; Borelli et al., 

2003). How TH expression is induced in selected cells is also unclear. One study found 

that vasoactive intestinal polypeptide enhanced the number of TH+ cells in cultured islets 

(Persson-Sjogren 2001), and another observed upregulation of TH in neuroblastoma cells 

treated with glial cell line derived neurotrophic factor (Xiao et al., 2002).  

Recent studies have also demonstrated a role for the nervous system in islet 

development. Pancreatic nerves and glia are derived from the neural crest, which gives 

rise to cells of the peripheral and enteric nervous system, melanocytes, and cells forming 

cartilage, smooth muscle, and bone (Sauka-Spengler and Bronner-Fraser, 2008). Neural 

crest-derived cells can be identified by expression of the transcription factor Wnt1 

(Echelard et al., 1994). Using Wnt1-Cre-mediated labeling of neural crest cells with 
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genetic reporters, neural crest-derived cells were first found within the pancreatic 

mesenchyme around E10 (Plank et al., 2011), and adjacent to the pancreatic epithelium at 

E12.5 (Nekrep et al., 2008). At this time, the onset of the secondary transition of pancreas 

development, cell bodies expressing sympathetic (VMAT2) and sensory (CGRP) nerve 

markers were first found. While CGRP+ fibers were observed in the pancreas at E15.5 

and found adjacent to islets at postnatal day 0 (P0), VMAT2+ fibers were not seen until 

P7, when they aligned with islets. In this study, GFAP+ glial cells were not detected until 

postnatal stages (Burris and Hebrok, 2007). However, the use of earlier markers of 

neurons (TUJ1) and glia (FABP7) demonstrated that these differentiated cell types could 

be found in contact with insulin+ cells as early as E15.5 (Figure 9; Plank et al., 2011). 

Two genetic mouse models of neural crest cell ablation showed that pancreatic 

neural crest derivatives are important in regulating β-cell mass in the developing pancreas. 

Late-stage embryos lacking the transcription factor Phox2b failed to develop pancreatic 

nerves and glia but displayed increased β-cell mass. The authors proposed that a non-cell-

autonomous inhibitory feedback loop exists between Phox2b-expressing neural crest cells 

and cells of the pancreatic epithelium, thus regulating the final populations of endocrine 

cells and neural crest derivatives in the pancreas (Nekrep et al., 2008). Similarly, neural 

crest cell ablation in Wnt1-Cre;Foxd3fl/- embryos also resulted in increased β-cell mass, 

but these β-cells also showed reduced expression of several markers of mature β-cells, 

including Pdx1 and Mafa (Plank et al., 2011). Along with data showing that islet 

endocrine cell morphology is qualitatively normal in mice lacking the transcription factor 

Sox10, which is required for neural crest cell differentiation in the gut (Lioubinski et al., 

2003), current evidence suggests that neural crest-derived cells in the embryonic pancreas 
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Figure 9. Islet nerves and Schwann cells are derived from the neural crest. In
control mouse embryos, nerves (labeled by TUJ1, red) and Schwann cells (labeled by
FABP7, blue) are found near PDX1+ islet cells (green) in late embryogenesis. In
contrast, nerves and Schwann cells are absent in pancreata from Wnt1-Cre;Foxd3fl/-

mutant mice, in which neural crest cells are genetically ablated. From Plank et al.
(2011).
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are not required for endocrine cell differentiation but instead are important in limiting β-

cell proliferation and promoting β-cell maturation. 

The nervous system also provides important signals for the regulation of β-cell 

mass in adult rodents. For example, ob/ob mice showed reduced β-cell proliferation two 

weeks after undergoing vagotomy, resulting in smaller islet volumes five months after the 

procedure (Edvell and Lindström, 1998). Similarly, Sprague-Dawley rats subjected to 

transection of the celiac branches of the vagus nerve show a 50% reduction in β-cell 

proliferation one week after surgery (Lausier et al., 2010). Finally, a neuronal relay from 

the liver, through the brain, to the pancreas can transmit the signal to increase β-cell mass 

in the setting of insulin resistance in the liver (Imai et al., 2008).  

Peri-islet Schwann cells (pScs) are a type of peripheral glia, which are important 

in supporting peripheral nerves (Bhatheja and Field, 2006). Because pScs are non-

myelinating, they may be most closely related to astrocytes of the central nervous system, 

which are also characterized by GFAP expression. One role of both astrocytes and 

Schwann cells is to respond to tissue damage (Pekny and Nilsson, 2005). Following 

nervous system injury, such as during hypoxia or following axotomy, astrocytes and 

Schwann cells hypertrophy, proliferate, and upregulate expression of GFAP in a process 

termed reactive gliosis (Buffo et al., 2008). Reactive gliosis allows tissue damage to be 

repaired in some cases (such as following peripheral nerve axotomy; Bhatheja and Field, 

2006), but produces a scar in other cases (such as following a penetrating brain injury), 

hindering the repair process (Pekny and Nilsson, 2005). 

The role of pScs in islet function is poorly understood. It has been proposed that 

pScs perhaps insulate electrical signals within the pancreatic islet, or may prevent 
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outward diffusion of neurotransmitters released into the islet core (Smith, 1975). 

Alternatively, they could provide a protective barrier for the endocrine cells, one that is 

disrupted in autoimmune diabetes (see “Altered islet innervation,” below). 

Peri-islet Schwann cells may also be important for islet endocrine cells, as glial 

cells are active participants in the neuroendocrine function of the hypothalamus (Garcia-

Segura and McCarthy, 2004). A transgenic mouse model with global overexpression of 

glial cell line derived neurotrophic factor (GDNF) in GFAP+ cells showed increased 

β-cell mass, enhanced glucose stimulated insulin secretion, and resistance to 

streptozotocin-induced islet damage. These changes are thought to be the result of a 

direct effect of GDNF on β-cells, which express the GDNF receptor GFRα1 (Mwangi et 

al., 2008). Further studies with this model showed that the increased β-cell mass 

originated during pancreas development, as transgenic mice had a doubling of 

NEUROG3+ endocrine progenitor cells and increased β-cell proliferation perinatally 

(Mwangi et al., 2010). Nevertheless, the specific role of pScs in islet function remains 

unknown. One aim of this Dissertation is to improve our understanding of pScs. 

 

Altered islet innervation in mouse models of diabetes 

Islet innervation is structurally altered in several prediabetic and diabetic animal 

models, although it is unclear whether changes in islet innervation are contributory to or 

caused by the metabolic effects of the disease. For example, islet autonomic 

hyperinnervation was noted in prediabetic high fat diet (HFD)-fed rats. Following two to 

eight weeks on a HFD, islets showed an increase in the number of fibers expressing 

vasoactive intestinal peptide and neuropeptide Y, before any increase in islet mass 
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(Ahrén et al., 1999). Islet hyperinnervation was also noted in diabetic db/db mice and 

Goto-Kakizaki rats, although these models concomitantly displayed metabolic 

abnormalities (Ahrén et al., 2006).  

In contrast, two models of autoimmune diabetes, the BioBreeder diabetic rat and 

the non-obese diabetic (NOD) mouse, showed reduced islet sympathetic innervation, as 

detected by expression of neuropeptide Y. This phenomenon was termed early 

sympathetic islet neuropathy (eSIN), because the change in innervation occurred early in 

the disease but resembled the peripheral nerve damage caused by long-term 

hyperglycemia in diabetic neuropathy. In these models, eSIN was correlated with the 

degree of infiltrating immune cells (insulitis) and the loss of the glucagon 

counterregulatory response to hypoglycemia (Mei et al., 2002; Mundinger et al., 2003; 

Taborsky et al., 2009). However, another group showed that while NOD islets lacked 

fibers expressing typical nerve markers, like PGP9.5 and acetylcholinesterase, they do 

contain fibers that express the neurotrophin receptors p75 and TrkA. From this data, the 

authors suggested that there is an active remodeling of islet innervation during the 

autoimmune process (Persson-Sjögren et al., 2005).  

In addition to morphological changes in islet innervation, changes in the β-cell 

response to signals from the nervous system can also lead to metabolic abnormalities. 

Recently, the impaired insulin granule docking and reduced glucose-stimulated insulin 

secretion observed in a congenic strain of the Goto-Kakizaki rat was linked to 

overexpression of the α2A-adrenergic receptor, which binds adrenaline released from 

sympathetic nerves to inhibit insulin secretion (Rosengren et al., 2010). This phenotype 

matched that of transgenic mice with β-cell-specific overexpression of the receptor, in 
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which administration of an α2-agonist induced more pronounced hyperglycemia and 

hypoinsulinemia compared to controls (Devedjian et al., 2000). Further examination of 

human subjects with impaired insulin secretion revealed a single-nucleotide 

polymorphism in the human gene for the α2A-adrenergic receptor that imparts an 

increased risk for type 2 DM (Rosengren et al., 2010). 

There is evidence that pScs are specifically targeted in the autoimmune 

destruction of islets in both non-obese diabetic (NOD) mice and humans with type 1 

diabetes. During the early stages of autoimmune diabetes in NOD mice, autoreactive 

T-lymphocytes localize to the islet periphery, adjacent to pScs. Additionally, the GFAP 

and S100 antigens expressed by pScs trigger proliferative responses in T-lymphocytes 

from both NOD mice and humans with newly diagnosed type 1 diabetes (Winer et al., 

2003). Further studies identified the target epitopes of GFAP that triggered T-cell 

responses, and showed that immunotherapy with one of these epitopes significantly 

delayed the development of type 1 diabetes in NOD mice (Tsui et al., 2008a). However, 

targeting of GFAP alone is not sufficient to induce autoimmune islet destruction, because 

diabetes does not develop in NOD-SCID mice receiving GFAP-specific T-lymphocytes 

alone (Winer et al., 2003). These data suggest that pScs are specifically targeted in 

autoimmune diabetes, and damage to the islet glial sheath may contribute to the 

pathogenesis of type 1 diabetes (Tsui et al., 2008b).  

Finally, studies in two different models of β-cell ablation have shown that pScs 

dynamically respond to changes in β-cell mass, though with differing outcomes. In islets 

injured by the glucose analog streptozotocin, β-cell mass initially declines, while pScs 

hypertrophy and show an increase in cellular extensions, characteristic of reactive gliosis. 
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As β-cell mass returns, pScs resume their normal morphology at the islet periphery 

(Figure 10; Teitelman et al., 1998). However, in another model of β-cell death 

(tamoxifen-treated RIP-cMycER mice), pScs were reported to initially decrease in 

number but return to their normal state as β-cells were repopulated (Burris and Hebrok, 

2007). Interestingly, pSC localization was unchanged in hyperglycemic ob/ob mice 

(Teitelman et al., 1998). These data suggest that pScs have context-dependent responses 

to islet damage; however, these responses remain to be defined. 

 

Molecular mechanisms directing pancreatic innervation 

Little is known about the mechanisms that determine pancreatic and islet 

innervation during development. The neural crest cells that form pancreatic nerves and 

glia originate in the foregut (Kirchgessner et al., 1992). The migration of neural crest 

cells from the foregut into the pancreas involves chemoattractant signaling from the 

guidance molecules netrin 1 and netrin 3, which are produced by the exocrine pancreas, 

to DCC receptors on the neural crest-derived cells. While DCC knockout mice show 

neural crest cell colonization of the gut, they lack pancreatic nerves (Jiang et al., 2003). 

Therefore, netrin-DCC signaling appears to be critical for the initial establishment of 

pancreatic innervation. 

A transgenic mouse model demonstrated that overexpression of nerve growth 

factor (NGF) by pancreatic β-cells induces islet hyperinnervation. Specifically, islets 

contained more sympathetic nerve fibers, which are very dependent on NGF signaling 

during early postnatal life and may have outcompeted other nerve fiber types for the 

excess NGF. While increased islet NGF expression was detected in late embryogenesis  
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Figure 10. Peri-islet Schwann cells undergo reactive gliosis following islet injury
with streptozotocin (STZ). “Histological sections of pancreas immunostained with
GFAP antiserum. (A) An adult mouse islet surrounded by a sheath of GFAP+ cells.
The islet also contains a polar ‘‘neuroinsular complex’’ (arrow), formed by neurons
and glial cells. Bar = 40 µm. (B) Pancreatic islet at 1 day post-[STZ]. Note increased
GFAP immunoreactivity in peri-islet cells. Cells in the center of the islet (asterisk)
are necrotic. Bar = 40 µm. (C) Pancreatic islet of 2 days post-[STZ] mice illustrates
the presence of GFAP-reactive Schwann cells. Bar = 20 µm. (D) Pancreatic islet at
30 days post-[STZ]. In some islets, peri-islet glial cells have decreased GFAP
immunoreactivity. Bar = 40 µm.” From Teitelman et al. (1998).
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and early postnatal life, the precise timing of islet hyperinnervation was not investigated 

(Edwards et al., 1989). A further study demonstrated expression of NGF in β-cells and 

intraislet endothelial cells throughout late embryonic and postnatal development, and 

proposed that the decrease in NGF secretion with age contributes to remodeling of islet 

sympathetic innervation (Cabrera-Vasquez et al., 2009). 

In another genetic mouse model, it was found that the GDNF family receptor 

GFRα2, which mediates development of parasympathetic neurons in the enteric nervous 

system through neurturin signaling, is also important for development of islet 

parasympathetic innervation. While GFRα2 knockout mice showed normal glucose 

tolerance, they had dramatically impaired secretion of islet hormones in response to 

neuroglucopenic stress (Rossi et al., 2005). 

More recently, the cell adhesion molecule 1 (CADM1) was implicated in nerve-

islet interactions. The simultaneous expression of CADM1 by both islet nerve fibers and 

endocrine cells suggested a potential mechanism for intercellular interactions between the 

two cell types. Further in vitro analyses showed that anti-CADM1 antibodies could block 

the attachment of cells from the αTC6 α-cell line to cultured neurites from superior 

cervical ganglia (Koma et al., 2008). A follow-up study demonstrated that this 

distribution of CADM1 (also called SynCAM) is present in the developing pancreas 

during late embryogenesis, when neural crest cell derivatives first become spatially 

aligned with α-cells (Shimada et al., 2012).  

Islet innervation is important in islet development and function, but knowledge on 

the mechanisms directing islet innervation is incomplete. Therefore, investigating the 

ability of other islet-derived neurotrophic factors to mediate islet innervation will 
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improve our understanding of islet physiology. This Dissertation will highlight the role of 

VEGF-A. 

 
Vascular Endothelial Growth Factor A (VEGF-A) 

Structure and signaling 

VEGF-A is the original member of the vascular endothelial growth factor family, 

which includes VEGF-B, VEGF-C, VEGF-D, and placental growth factor (Matsumoto 

and Claesson-Welsh, 2001). VEGF-A, originally termed vascular permeability factor 

(VPF), is the most potent angiogenic factor in the family (Nagy et al., 2007). In contrast, 

VEGF-C and VEGF-D are more important in promoting lymphangiogenesis, and 

VEGF-B and placental growth factor have more limited roles in normal vessel formation 

(Takahashi and Shibuya, 2005). All members of the VEGF family are expressed by 

mouse pancreatic islets (Inoue et al., 2002). 

The Vegfa mRNA transcript is alternately spliced to yield several isoforms. These 

isoforms differ in their receptor specificities and in their ability to bind the ECM, which 

limits their migration from the cell of origin (Cébe-Suarez et al., 2006; Takahashi and 

Shibuya, 2005). The mouse and human sequences of VEGF-A are highly homologous, 

with the latter demonstrating splice isoforms that differ only in the addition of a single 

amino acid (Tischer et al., 1991). VEGF-A164/5, which contains 164 amino acids in the 

mouse isoform and 165 in the human, is the most important for vascular development, 

and is sufficient to induce pathological angiogenesis (Nagy et al., 2007). Other common 

VEGF-A isoforms include VEGF-A120/1, and VEGF-A188/9 (Takahashi and Shibuya, 

2005). VEGF-A assembles as a homodimer that forms a cysteine knot motif (Matsumoto 

and Claesson-Welsh, 2001).  
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Signals from VEGF family members are transmitted through several cell surface 

receptors (Figure 11). The primary VEGF receptors (VEGFRs) are tyrosine kinases and 

include VEGFR1 (also known as FLT1), VEGFR2 (also known as KDR or FLK1), and 

VEGFR3 (also known as FLT4). Additionally, the nonkinase receptors neuropilin 1 

(NRP1) and neuropilin 2 (NRP2), which are also receptors for the semaphorin family of 

axon guidance molecules, are VEGFR coreceptors that bind specific VEGF family 

members, including VEGF-A164/5 (Cébe-Suarez et al., 2006). VEGF-A isoforms 

preferentially bind to VEGFR1, VEGFR2, NRP1, and NRP2 (Nagy et al., 2007).  

 

Role of VEGF-A in the cardiovascular system 

VEGF-A was first discovered as a critical signaling protein for endothelial cells, 

and its role in promoting normal and pathological angiogenesis throughout the body has 

been well studied (Bautch, 2012; Ferrara, 2004; Nagy et al., 2007). VEGF-Α-to-VEGFR2 

signaling in endothelial cells stimulates vasculogenesis and angiogenesis by inducing cell 

proliferation, migration, and survival; it also enhances vessel permeability. In contrast, 

VEGF-Α-to-VEGFR1 signaling in endothelial cells limits developmental angiogenesis 

but promotes pathological angiogenesis (Cébe-Suarez et al., 2006; Takahashi and 

Shibuya, 2005). 

Disruption of VEGF-A signaling has extremely deleterious effects during 

development. Two independently generated mouse models showed that global 

inactivation of a single Vegfa allele is embryonic lethal between E11 and E12, because of 

impaired angiogenesis that results in growth retardation and several developmental 

anomalies (Carmeliet et al., 1996; Ferrara et al., 1996). Inducible genetic inactivation of  
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Figure 11. Summary of the roles of VEGF family member receptors in the
vascular and nervous systems. Adapted from Cébe-Suarez et al. (2006).
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both Vegfa alleles in neonatal mice also impaired body growth and organ development, 

resulting in premature mortality (Gerber et al., 1999). Furthermore, global inactivation of 

both Kdr alleles (encoding VEGFR2) results in embryonic lethality between E8.5 and 

E9.5, because of impaired hematopoietic cell and endothelial cell differentiation and the 

inability to form organized blood vessels (Shalaby et al., 1995). Embryos lacking 

VEGFR1 do not develop past E8.5, showing endothelial cell differentiation but abnormal 

vessel development (Fong et al., 1995). However, when only the kinase portion of 

VEGFR1 is deleted, vascular development is normal, suggesting that the most important 

role for VEGFR1 is to antagonize VEGFR2 signaling (Koch and Claesson-Welsh, 2012). 

Finally, while genetic deletion of Nrp1 profoundly affects cardiovascular development 

(Kawasaki et al., 1999), mice lacking NRP2 are viable and show defects limited to 

lymphatic vessels and capillaries (Yuan et al., 2002). 

VEGF-A signaling also promotes endothelial cell survival and permeability in 

mature vessels (Betsholtz and Armulik, 2006). Using multiple methods to inhibit global 

VEGF signaling, including VEGFR tyrosine kinase inhibitors and soluble VEGF-A 

decoy receptors, it was unexpectedly found that several vascular beds in the adult mouse 

are dependent on VEGF, including vasculature of the pancreatic islets, thyroid, adrenal 

cortex, pituitary, and villi of the small intestine (Inai et al., 2004; Kamba et al., 2006). 

Vessels affected by VEGF inhibitors rapidly lost patency and showed endothelial cell 

apoptosis within one day of treatment. Over the next few weeks, pericytes migrated away 

from the endothelial cell-depleted vessels, leaving just the basement membrane (Baffert 

et al., 2006). These VEGF signaling inhibitors have served as effective antiangiogenic 

therapy for proliferative retinopathy and certain cancers (Carmeliet and Jain, 2011), but 
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not without side effects, including cardiovascular dysfunction and renal toxicity (Chen 

and Cleck, 2009).  

Role of VEGF-A in the nervous system 

In more recent years, it was discovered VEGF-A can also signal directly to 

several cell types in the central and peripheral nervous systems, including neurons, glia, 

and neural stem cells, through expression of the endothelial cell-shared receptors 

VEGFR2 and NRP1 (Storkebaum et al., 2004). For example, in an in vivo model of 

peripheral nerve injury, VEGF-Α pretreatment of acellular nerve grafts enhanced the 

inward migration of VEGFR2-expressing Schwann cells, in addition to stimulating 

angiogenesis (Sondell et al., 1999). Similarly, VEGF-Α-to-VEGFR2 signaling enhanced 

axonal outgrowth in cultured neurons (Sondell et al., 2000) and in commissural axons of 

the brain (Ruiz de Almodovar et al., 2011). VEGF-Α-to-NRP1 signaling may also be 

sufficient for some positive effects in neurons, as it is responsible for guiding the 

migration of cranial neural crest cells into branchial arch 2 (McLennan et al., 2010) and 

promoting the survival of migrating gonadotropin-releasing hormone neurons during 

development of the hypothalamus (Cariboni et al., 2011). The expression of VEGFR2 

and NRP1 in motor neurons of adult mice suggests that VEGF-Α is even important for 

homeostasis in mature nerves (Oosthuyse et al., 2001). In all, VEGF-A has been shown to 

stimulate neurite outgrowth, induce migration of Schwann cells and neural progenitor 

cells, promote neural cell survival, stimulate neurogenesis, and regulate synaptic 

plasticity (Ruiz de Almodovar et al., 2009; Storkebaum et al., 2004).  

VEGF-A also mediates synaptogenesis of nerve fibers innervating the vasculature 

(Storkebaum and Carmeliet, 2011). VEGF-A produced by vascular smooth muscle cells 
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signals through VEGFR2 to promote vascular sympathetic innervation during neonatal 

development and following experimental denervation of femoral arteries. In addition, 

VEGF-A antagonizes semaphorin 3A signaling in cocultured neurons, preventing growth 

cone collapse, and increases growth cone area through VEGFR1 signaling (Marko and 

Damon, 2008). However, a further study demonstrated that vessels that are sparsely 

innervated in vivo show higher levels of semaphorin 3A (a chemorepellant), but similar 

levels of VEGF-A, when compared to highly innervated vessels (Long et al., 2009). 

Finally, mice with genetic or pharmacologic inhibition of VEGF-A signaling show 

altered morphology of neuroeffector junctions in resistance arteries, leading to 

dysfunctional blood flow regulation (Storkebaum et al., 2010).  

 

Role of VEGF-A in islet development and function 

Islet endocrine cells express VEGF-A in greater quantities than exocrine cells of 

the pancreas (Brissova et al., 2006; Christofori et al., 1995), allowing for the 

specialization of the intraislet vasculature (Brissova et al., 2006; Henderson and Moss, 

1985). Specifically, normal mouse islets express the VEGF-A120 and VEGF-A164 

isoforms, and their expression is upregulated in insulinoma tumors (Christofori et al., 

1995). Intraislet capillaries demonstrate expression of the VEGFR1, VEGFR2 and NRP1 

receptors (Brissova et al., 2006; Christofori et al., 1995), while VEGFR2 is 

downregulated in exocrine capillaries and larger pancreatic vessels (Brissova et al., 2006). 

VEGF-A is the main angiogenic factor involved in recruiting endothelial cells 

during early pancreas development. Increased VEGF-A expression in transgenic Pdx1-

Vegfa164 mice enhanced pancreatic vascularization and resulted in a three-fold increase in 
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islet area (Lammert et al., 2001). In contrast, genetic inactivation of Vegfa in the newly 

formed pancreas of Pdx1-Cre;Vegfafl/fl mice results in dramatic hypovascularization and 

retarded growth of the gland (Lammert et al., 2003b; Pierreux et al., 2010). In this model, 

exocrine capillary density is slightly reduced, but intraislet capillary density is reduced by 

70%. Instead of the fenestrated endothelium present in normal islet capillaries, 

endothelial cells in VEGF-Α-deficient islets are thicker and show many caveolae 

(Lammert et al., 2003b). Pdx1-Cre;Vegfafl/fl mice also show severe glucose intolerance, 

partly from reduced β-cell proliferation and mass (Reinert and Brissova et al., manuscript 

in preparation), and partly from reduced insulin secretion, as shown by pancreatic 

perfusion in situ (Jabs et al., 2008). A summary of the findings in Pdx1-Cre;Vegfafl/fl 

mice is shown in Figure 12. 

Unlike the dramatic changes in the pancreas-wide VEGF-A inactivation model, 

genetic deletion of Vegfa in newly formed β-cells is less detrimental to islet development 

(Brissova et al., 2006; Inoue et al., 2002; Iwashita et al., 2007). Inactivation of β-cell-

derived VEGF-A results in about a 50% reduction in intraislet vessel density, but β-cell 

mass in RIP-Cre;Vegfafl/fl mice is unchanged (Brissova et al., 2006). While RIP-

Cre;Vegfafl/fl mice show impaired glucose tolerance and reduced insulin secretion in vivo, 

isolated islets demonstrated normal to enhanced insulin secretion, and increased 

expression of factors important in β-cell function, including Ins1, Pdx1, and genes 

encoding the secretory machinery (Brissova et al., 2006; Iwashita et al., 2007). Similar to 

the pancreas-wide knockout, intraislet capillaries in RIP-Cre;Vegfafl/fl mice lacked 

fenestrations and showed more caveolae (Brissova et al., 2006; Iwashita et al., 2007). 

Interestingly, HFD-fed RIP-Cre;Vegfafl/fl mice showed an increase in β-cell mass, 
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Figure 12. Pancreas-wide inactivation of VEGF-A during embryogenesis impairs 
development of the endocrine pancreas. Pdx1-Cre;Vegfafl/fl mice demonstrate reduced 
pancreatic vessel density as early as E14.5 (A) and reduced islet vascularity throughout life 
(data from adult mice shown in B-C). The hypovascularized pancreas of adult Pdx1-
Cre;Vegfafl/fl mice is hypoplastic (D), with reduced islet mass (E) and insulin content (F), 
in part due to reduced β-cell proliferation as measured by phospho-histone H3 (pH3) at 
postnatal day 1 (G) and BrdU incorporation in adults (H). Adult Pdx1-Cre;Vegfafl/fl mice 
display significantly impaired glucose tolerance (I). Data are from Reinert and Brissova et 
al. (manuscript in preparation).
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compared to both HFD-fed Vegfafl/fl mice and chow-fed controls (Toyofuku et al., 2009), 

indicating that the extensive vascularization of normal adult islets is not necessary for 

β-cell mass expansion in maturity. 

These genetic models of VEGF-A inactivation clearly demonstrated that VEGF-A 

plays a key role in islet vascularization. However, because the defects in islet formation 

were initiated early in development, the true role of endothelial cells in mature islet 

function could not be definitively determined. Therefore, the role of VEGF-A in mature 

islets was studied by administering VEGF inhibitors to adult mice. This approach 

dramatically reduced the number of angiogenic islets and reduced tumor burden in the 

RIP1-Tag2 mouse, a model of β-cell carcinoma (Inoue et al., 2002). In wild-type mice, 

inhibition of VEGF signaling decreased islet vascular density by half and reduced islet 

vessel permeability. Interestingly, these VEGF receptor inhibitor-treated mice also 

showed a significant improvement in glucose clearance following glucose tolerance tests, 

without alterations in insulin sensitivity (Kamba et al., 2006). Nevertheless, the broad 

actions of VEGF inhibitors following systemic administration still precluded a proper 

evaluation of the role of VEGF-A in mature islets, which is another subject of this 

Dissertation. 

In an attempt to improve islet transplantation outcomes, VEGF-A has been 

extensively studied in islet revascularization. Islet VEGF-A expression is required for the 

revascularization of transplanted islets, because grafts of RIP-Cre;Vegfafl/fl islets fail to 

attain the same vessel density as control grafts (Brissova et al., 2006). On the other hand, 

several studies have shown improved transplantation outcomes when graft VEGF-A 

expression is enhanced. In diabetic mice receiving mouse islets transduced with an 
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adenovirus containing cDNA for the human VEGF-A165 isoform, islet grafts showed 

increased endothelial cell area and enhanced insulin content and secretion, and were able 

to normalize the recipient’s blood glucose levels (Zhang et al., 2004). In a similar 

approach, islets from transgenic RIP-Vegfa mice transplanted under the kidney capsule of 

diabetic recipients showed increased vessel density and blood flow, and increased insulin 

content and β-cell proliferation over control grafts. Furthermore, recipients of RIP-Vegfa 

islet grafts were more likely to experience normalization of blood glucose (Lai et al., 

2005). Similarly, diabetic rats showed normalization of blood glucose following 

transplantation of a marginal mass of islets with transfected vascular endothelial cells 

expressing VEGF-A165, but not with a marginal mass of islets alone (Cheng et al., 2007). 

Finally, experiments using transplanted β-cell clusters previously transduced with a 

tetracycline-inducible VEGF-A164 sequence demonstrated that increased VEGF-A 

expression enhanced graft revascularization and function in the first few weeks after 

transplantation, but was unnecessary in vascularized grafts (Mathe et al., 2006).  

While the use of VEGF-A in improving revascularization of islet grafts seems 

promising, several mouse models of pancreas-specific or β-cell-specific overexpression 

of VEGF-A caution that disruption of normal expression of angiogenic factors may be 

detrimental to islet endocrine cells. Overexpression of VEGF-A in the developing 

pancreas of Pdx1-tTA;TetO-Vegfa mice impaired pancreas growth by restricting tip cell 

formation and blocking branching morphogenesis within the gland (Magenheim et al., 

2011). In a similar model, β-cell-specific overexpression of VEGF-A was induced in 

doxycycline (Dox)-treated RIP-rtTA;TetO-hVegfa mice. Islets that overexpressed 

VEGF-A throughout embryonic development were hypervascularized and displayed 
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dramatically impaired islet endocrine cell formation and clustering (Figure 13; Cai et al., 

2012). Excessive vascularization is not only harmful to developing islets, as Dox-induced 

overexpression of VEGF-A in islets of adult RIP-rtTA;TetO-hVegfa mice also leads to 

enhanced endothelial cell proliferation and mass at the expense of the β-cell population 

(Brissova et. al, manuscript in preparation). At any stage, Dox-treated RIP-rtTA;TetO-

hVegfa mice show an inverse relationship between β-cell and endothelial cell 

proliferation (Cai et al., 2012; Brissova et. al, manuscript in preparation). 

The work presented in this Dissertation aims to enhance our understanding of 

islet-derived VEGF-A and its roles in pancreatic islet vascularization and innervation. 

 

Commonalities in Blood Vessel and Nerve Development 

Structural alignment and functional coordination of blood vessels and nerves 

The common branching pattern of the cardiovascular and nervous systems was 

described centuries ago, as noted in sixteenth-century drawings by the anatomist Andreas 

Vesalius (Ruiz de Almodovar et al., 2009). More recently, the microscopic structural 

alignment of blood vessels and nerves has been documented for several tissues, including 

skin (Bates et al., 2003; Mukouyama et al., 2005; Mukouyama et al., 2002), skeletal 

muscle (Bearden and Segal, 2005; Correa and Segal, 2012), gut (Nagy et al., 2009; 

Stapor and Murfee, 2012), and brain (Stubbs et al., 2009). Importantly, the mechanisms 

underlying the development and maintenance of these relationships are beginning to be 

uncovered.  

The structural alignment of the vascular and nervous systems has physiologic 

implications, because the two structures are functionally interconnected. Blood vessels  
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Figure 13. β-cell-specific overexpression of VEGF-A increases islet
vascularization but disrupts islet formation. Top, “Pancreatic sections of Rip-rtTA
and Rip-rtTA;TetO-Vegfa mice at E16.5, P1 and P7 were labeled for insulin (blue),
PECAM-1 (green), and DBA ductal marker (red).” Bottom, endothelial cell
proliferation is increased while insulin+ (Ins) cell proliferation is decreased
following VEGF-A overexpression, as measured by labeling for the proliferation
marker Ki67. From Cai et al. (2012).
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and blood flow are intricately regulated by input from the nervous system. Throughout 

the body, sympathetic and sensorimotor nerves signal to vascular smooth muscle cells on 

arteries and veins to regulate blood flow through arterioles (Storkebaum and Carmeliet, 

2011). Therefore, the close alignment between nerves and arterioles of the diaphragm 

was also proposed to facilitate the enhancement of blood flow following the recruitment 

of muscle fibers in actively working skeletal muscle (Correa and Segal, 2012). 

Conversely, nerves require adequate blood supply for cell survival. Mice in which the 

hypoxia response element was genetically deleted from the Vegfa promoter showed 

decreased circulating VEGF-A levels and adult-onset motor neuron degeneration, partly 

from reduced vascular perfusion (Oosthuyse et al., 2001). 

 

Mutual guidance of blood vessels and nerves 

Multiple mechanisms are involved in the co-development and subsequent 

structural alignment of blood vessels and nerves (Carmeliet and Tessier-Lavigne, 2005). 

First, vessels and nerves can respond similarly to a particular signal derived from the 

target tissue. Alternatively, the cells that form blood vessels and nerves may release 

reciprocal guidance cues in a process termed “mutual guidance” (Figure 14). The 

formation of blood vessels and nerves within a particular tissue may occur 

simultaneously, or one set of structures may be established before directing the 

developmental organization of the other. Examples of how tissues utilize these 

mechanisms to coordinate their vessel and nerve patterning are described below.  

Blood vessels and nerves share several classes of signaling molecules, including 

angiogenic factors (VEGF-A and ephrins), neurotrophic factors (members of the NGF  
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Figure 14. Mechanisms promoting neurovascular congruence. Adapted from
Carmeliet (2003): “(a) Artemin is a vessel-derived neurotropic guidance signal for
sympathetic nerve axons; its expression in the vascular smooth muscle cells (SMCs),
from which it is secreted, gradually shifts distally and thereby guides the sympathetic
nerve fibre to the target organ. (b) Vascular endothelial growth factor (VEGF) is a
nerve-derived arteriotropic guidance signal for small arteries; its expression in, and
secretion from, Schwann cells attracts and induces arteries, but not veins, to track
alongside the nerve fibres.” Alternatively, blood vessels and nerves may be recruited
by identical tissue-derived factors during development.
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and GDNF families), and axon guidance molecules (netrins, semaphorins, and slits) 

(Carmeliet and Tessier-Lavigne, 2005; Gelfand et al., 2009; Quaegebeur et al., 2011; 

Segura et al., 2009). During development, blood vessels and nerves respond to a variety 

of these attractive and repulsive cues to properly supply vascular and nervous input to the 

target tissue. For example, large blood vessels and nerves both follow semaphorin 3A 

gradients in developing quail forelimb, without any interdependence between the two 

structures. In this model, experimental induction of hypovascularization or 

hypervascularization had no effect on nerve patterning (Bates et al., 2003).  

In some cases, the nervous system directs patterning of the vasculature (James 

and Mukouyama, 2011). In embryonic mouse limb skin, nerves induce remodeling of the 

primary capillary plexus into its final formation and stimulate differentiation of small 

arteries from that plexus; arterial vessels then serve as a source of NGF to maintain this 

relationship. Using mutant embryos, it was found that a lack of sensory nerves prevented 

arterial differentation. In contrast, a mutant with a disorganized nerve pattern showed 

differentiation of arteries that still demonstrated a close relationship with nerves 

(Mukouyama et al., 2002). A further analysis of this model showed that VEGF-A 

secretion by sensory nerves and their myelinating Schwann cells is responsible for nerve-

driven arterial differentiation in limb skin, through NRP1 signaling to endothelial cells. 

However, nerve-vessel alignment was still observed in mutants lacking VEGF-A 

expression in nerves, suggesting a VEGF-A-independent mechanism was responsible for 

this patterning (Mukouyama et al., 2005).  

Conversely, blood vessels provide signals to and a substrate for developing nerves. 

For example, genetic inactivation of the neurotropic factor artemin or its receptor GFRα3 
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disrupts axonal patterning throughout the sympathetic nervous system of mice. Because 

artemin is produced by vascular smooth muscle cells, these data demonstrate that the 

vasculature is an important intermediate in nerve pathfinding during development 

(Honma et al., 2002). A further study demonstrated that highly innervated arterial vessels 

express artemin to promote sympathetic nerve growth during vascular innervation, but 

only in the presence of NGF (Damon et al., 2007). Vascular-derived neurotrophin 3 may 

also guide sympathetic neurons during the development of vascular innervation 

(Kuruvilla et al., 2004), in addition to HGF, GDNF, and endothelin 3 (Storkebaum and 

Carmeliet, 2011). Finally, the vascular ECM may serve as a substrate for cells of the 

nervous system, because enteric neural crest cells expressing β1 integrin interact with 

ECM proteins to migrate along the intestinal vasculature during avian development. In 

that study, experimental disruption of the gut vasculature severely affected formation of 

the enteric nervous system, resulting in aganglionosis of the distal gut (Nagy et al., 2009). 

In all, these data demonstrate that a wide variety of signals and mechanisms are 

responsible for directing and coordinating the development of the vascular and nervous 

systems. 

 

Aims of Dissertation 

The primary goal of this Dissertation is to advance understanding of the roles of 

VEGF-A and endothelial cells in the pancreatic islet. Islet-derived VEGF-A is critical for 

directing islet vascularization during development, and reciprocal signaling between 

endocrine cells and endothelial cells is essential for islet formation and function (Brissova 

et al., 2006; Lammert et al., 2001; Lammert et al., 2003b; Yoshitomi and Zaret, 2004). 
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Furthermore, it has been proposed that intraislet endothelial cells provide important 

signals for islet endocrine cells throughout life (Olsson and Carlsson, 2006). However, 

several critical questions regarding the role of VEGF-A and endothelial cells in islet 

development and maintenance remain unanswered, including: (1) might VEGF-A also act 

as a neurotrophic signal for islet nerves? (2) alternatively, are endothelial cells important 

in directing islet innervation? and (3) what is the role of VEGF-A in maintaining the 

vascularization and function of mature islets? These questions will be addressed in the 

following Chapters. 

The mechanisms directing islet innervation are largely unknown, but VEGF-A, 

the main factor responsible in directing islet vascularization and a proven neurotrophic 

factor, is a prime candidate for study. Because mature islets are both highly vascularized 

and richly innervated, it was hypothesized that intraislet vessels and nerves either shared 

a common developmental mechanism to direct their patterning, such as VEGF-A, or were 

interdependent structures during islet development. These possibilities are considered in 

Chapter III. After establishing the temporal nature of the development of islet innervation, 

genetic mouse models of altered VEGF-A expression defined the role of the intraislet 

vasculature in determining islet innervation patterns.  

While much is known about the role of VEGF-A in directing pancreatic 

vascularization during development, the specific function of VEGF-A and endothelial 

cells in mature islets has not been directly studied. In vivo experiments using VEGF 

signaling inhibitors demonstrated a role for VEGF-A in maintaining endothelial cells of 

the intraislet vasculature, but these inhibitors had effects on diverse capillary beds 

throughout the body (Kamba et al., 2006). Chapter IV describes the development of a 
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model of tamoxifen-inducible inactivation of VEGF-A to define how endothelial cells 

affect the maintenance of islet morphology and function in adult mice. 

In the course of these experiments, several important experimental considerations 

for the use of genetic mouse models were discovered. First, it was unexpectedly found 

that two of the mouse models used in this Dissertation, which were reported to direct 

transgene expression to the pancreas (Gu et al., 2002; Zhang et al., 2005), actually 

demonstrated ectopic transgene expression in the brain. This work is described in Chapter 

IV. Additionally, the presence of long-term side effects in mice treated with tamoxifen 

drew concerns that there could be prolonged tamoxifen-induced recombination in 

transgenic mouse models. Prior work defined a 48-hour window of tamoxifen-induced 

recombination in mouse embryos (Hayashi and McMahon, 2002), but the precise timing 

of tamoxifen action in adult transgenic mice remained unknown. Therefore, Chapter V 

describes the development of a bioassay to define the temporal nature of tamoxifen-

inducible Cre-loxP recombination in vivo. Together, these experiments aimed to improve 

our understanding of the parameters controlling Cre-loxP recombination in vivo. 

Finally, the role of peri-islet Schwann cells is poorly understood (Tsui et al., 

2008b). Therefore, Chapter VI describes preliminary attempts to develop a model in 

which pancreatic Schwann cells are chemically ablated to study their role in islet 

formation and function. 

The materials and methods used in these studies are summarized in Chapter II. 

Finally, the significance of this work and future directions are presented in Chapter VII. 
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Mouse Models 

Animal studies were approved by the Institutional Animal Care and Use 

Committee at Vanderbilt University Medical Center, and were performed in accordance 

with the Guide for the Care and Use of Laboratory Animals of the National Institutes of 

Health. Animals were monitored by the Vanderbilt University Division of Animal Care. 

Animals were kept on a 12-hr light/12-hr dark schedule, and were allowed free access to 

standard chow and water, except where noted. 

Vegfatm2Gne (abbreviated Vegfafl/fl) mice on a C57BL/6J background were 

generously provided by Napoleone Ferrara of Genentech, and have been described 

previously (Gerber et al., 1999). In these mice, exon 3 of the endogenous Vegfa gene is 

flanked by loxP sites (“floxed”) so that Cre-mediated recombination prevents expression 

of functional VEGF-A protein.�

Tg(Pdx1-cre)89.1Dam (abbreviated Pdx1-Cre) mice were generously provided by 

Guoqiang Gu of Vanderbilt University, and have been previously described (Gu et al., 

2002). In these transgenic mice, expression of Cre recombinase is driven by a 5.5 kb 

region of the Pdx1 promoter, thus targeting the entire pancreatic epithelium, as well as 

portions of the stomach and duodenum. For a model of reduced pancreatic VEGF-A 

expression (abbreviated ↓VEGF-A, Chapter III), male hemizygous Pdx1-Cre mice were 

bred with female Vegfafl/fl mice, and their offspring were crossed to obtain litters of mice 

            58



homozygous for the Vegfa-loxP allele. In this model, Pdx1-Cre;Vegfafl/fl mice were 

compared to Vegfafl/fl littermate controls.	

For a model of inducible overexpression of VEGF-A in β-cells (abbreviated 

VEGF-A, Chapter III), Tg(Ins2-rtTA)2Efr mice (called RIP-rtTA mice in this 

Dissertation) were bred with TetO-hVegfa mice and treated with doxycycline as 

described below. RIP-rtTA mice were a generous gift from Shimon Efrat of Tel Aviv 

University, and have been described previously (Milo-Landesman et al., 2001). In this 

transgenic model, the tetracycline-responsive rtTA transactivator is expressed under 

control of the rat Ins2 promoter (RIP) and is thus targeted to pancreatic β-cells. In the 

presence of doxycycline, the rtTA protein undergoes a conformational change and binds 

the tetracycline operator (TetO) to induce expression of target genes (Bockamp et al., 

2002). TetO-hVegfa mice were generously provided by Peter Campochiaro of Johns 

Hopkins University, and have been described (Ohno-Matsui et al., 2002). In this model, 

expression of the human VEGF-A165 protein is induced in cells in which the doxycycline-

activated rtTA protein binds the TetO operator.	

Neural crest-derived cells were genetically labeled in the pancreas by breeding 

male hemizygous Tg(Wnt1-cre)11Rth (abbreviated Wnt1-Cre) mice with female 

Gt(ROSA)26Sortm1(EYFP)Cos (abbreviated R26-EYFP) reporter mice (Chapter III). Wnt1-

Cre mice were generously provided by Michelle Southard-Smith of Vanderbilt 

University, and have been previously described (Danielian et al., 1998). In these 

transgenic mice, expression of Cre recombinase is driven by the Wnt1 enhancer, thus 

targeting neural crest-derived cells beginning around E8.5. R26-EYFP reporter mice were 

obtained from The Jackson Laboratory (stock number 006148), and have been previously 
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described (Srinivas et al., 2001). In this model, the loxP-STOP-loxP-EYFP sequence is 

ubiquitously expressed from the ROSA26 (R26) locus. Cre-loxP recombination removes 

the stop sequence and leads to expression of EYFP, enhanced yellow fluorescent protein. 	

For a model of neural crest cell ablation (described in Chapter III), late-stage 

Wnt1-Cre;Foxd3fl/- embryos were generously provided by Trish Labosky of Vanderbilt 

University. FOXD3 is a transcriptional repressor required to maintain the neural crest cell 

population (Teng et al., 2008). In the absence of FOXD3, there is a widespread loss of 

neural crest-derived cells, including nerves and glia of the pancreas (Plank et al., 2011). 

Leptin-deficient Lepob mice (abbreviated ob/ob) on a C57BL/6J background were 

obtained from The Jackson Laboratory (stock number 000632), and were compared to 

wild-type C57BL/6J controls (abbreviated wt/wt; stock number 000664). 	

For a model of inducible gene inactivation in β-cells of adult mice, 

Tg(Pdx1-cre/ERT)1Mga (abbreviated Pdx1PB-CreERTm) mice on a mixed background were 

generously provided by Maureen Gannon and Chris Wright of Vanderbilt University. In 

this model, a β-cell-specific fragment of the Pdx1 enhancer (Gannon et al., 2001) drives 

expression of a Cre recombinase fused to a mutated estrogen receptor (Danielian et al., 

1998), resulting in expression of a tamoxifen-inducible Cre in the majority of β-cells and 

in a subset of non-β endocrine cells in adult mice (Zhang et al., 2005). To enable genetic 

deletion of Vegfa (Chapter IV), male hemizygous transgenic Pdx1PB-CreERTm mice were 

bred with female Vegfafl/fl mice, and their offspring were crossed to obtain litters of mice 

homozygous for the Vegfa-loxP allele. Adult Pdx1PB-CreERTm;Vegfafl/fl mice and Vegfafl/fl 

controls were treated with tamoxifen as described below. 
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Gt(ROSA)26Sortm1Sor (abbreviated R26-lacZ) reporter mice on a C57BL/6J 

background were obtained from The Jackson Laboratory (stock number 003474), and 

have been previously described (Soriano, 1999). In this model, the loxP-STOP-loxP-lacZ 

sequence is ubiquitously expressed from the ROSA26 (R26) locus. Cre-loxP 

recombination removes the stop sequence and leads to expression of lacZ, the gene 

encoding β-galactosidase. For the islet transplantation bioassay described in Chapter V, 

male hemizygous transgenic Pdx1PB-CreERTm mice were bred with female R26-lacZ mice.  

Tg(Ins2-cre)1Herr (abbreviated Ins2-Cre) mice were generously provided by Pedro 

Herrera of the University of Geneva, and have been previously described (Herrera, 2000). 

In this strain, expression of Cre recombinase is driven by a 0.6 kb fragment of the 

promoter for the Ins2 gene and is thus targeted to insulin-expressing pancreatic β-cells. 

Tg(Plp1-cre/ERT)3Pop (abbreviated Plp1-CreERT2) mice were obtained from The 

Jackson Laboratory (stock number 005975), and have been previously described 

(Doerflinger et al., 2003). In this strain, a tamoxifen-inducible Cre recombinase is 

expressed in cells in which transcription of the gene encoding proteolipid protein 1 is also 

active, including Schwann cell precursors, before they differentiate into myelinating and 

non-myelinating Schwann cells. 

Gt(ROSA)26Sortm1(HBEGF)Awai (abbreviated R26-DTR) mice on a C57BL/6J 

background were obtained from The Jackson Laboratory (stock number 007900), and 

have been previously described (Buch et al., 2005). In this model, the loxP-STOP-loxP-

DTR sequence is ubiquitously expressed from the ROSA26 (R26) locus. Cre-loxP 

recombination removes the stop sequence and leads to expression of the simian gene for 

heparin-binding EGF-like growth factor (HBEGF), also known as the diphtheria toxin 
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receptor (DTR). Cells expressing DTR can bind and internalize diphtheria toxin (DT) by 

receptor-mediated endocytosis; once in the cytoplasm, DT inactivates elongation factor 2 

to terminate protein synthesis and initiate cell death by apoptosis (Buch et al., 2005). 

Because the endogenous mouse HBEGF does not bind DT, administration of the toxin to 

R26-DTR mice will target only cells that express DTR following Cre-mediated 

recombination. To induce DTR expression in various cell types and test the ability of 

intrapancreatic DT injection to cause cell death (see Chapter VI), male Cre-positive mice 

were bred with female R26-DTR mice. 

A summary of the mouse strains used is provided in Table 1. For all 

developmental studies, noon of the date of the observed vaginal plug was considered to 

be 0.5 days post coitum (embryonic day [E] 0.5). Mice were considered adults at ten 

weeks of age. Before all terminal procedures and survival surgeries, mice were 

anesthetized with a solution of 90 mg/kg ketamine and 10 mg/kg xylazine (Henry Schein). 

Unless otherwise stated, age-matched littermate mice are shown as controls.  

 

DNA Extraction and Genotyping 

DNA was extracted from embryonic tails or postnatal tail biopsies using a Wizard 

Genomic DNA Purification Kit (Promega, catalog #A1120), according to the 

manufacturer’s protocol, with the addition of Proteinase K (Sigma-Aldrich, catalog 

#P4850). Extracted DNA was typically diluted 1:20 before PCR analysis. 

Alternatively, DNA was isolated from earpunch biopsies from weaned mice. 

Earpunch biopsies were boiled in a 100°C heat block for 20 minutes in 50 µl of a solution 

containing 25 mM NaOH and 0.2 mM EDTA, until tissue was mostly digested. After the  
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MGI Nomenclature Abbreviation Reference Genotyping Primers

Foxd3tm1Lby, Foxd3tm2Lby, 
Foxd3tm3Lby Foxd3fl/- Teng et al., 2008 See Reference

Tg(Ins2-cre)1Herr Ins2-Cre Herrera, 2000 5’- TGC CAC GAC CAA GTG ACA GC -3’ (forward)
5’- CCA GGT TAC GGA TAT AGT TCA TG -3’ (reverse)

Lepob ob/ob Coleman, 1978 5'- TGT CCA AGA TGG ACC AGA CTC -3'
5'- ACT GGT CTG AGG CAG GGA GCA -3'

Tg(Plp1-cre/ERT)3Pop Plp1-CreERT2 Doerflinger et al., 2003 5’- TGC CAC GAC CAA GTG ACA GC -3’ (forward)
5’- CCA GGT TAC GGA TAT AGT TCA TG -3’ (reverse)

Tg(Pdx1-cre)89.1Dam Pdx1-Cre Gu et al., 2002 5’- TGC CAC GAC CAA GTG ACA GC -3’ (forward)
5’- CCA GGT TAC GGA TAT AGT TCA TG -3’ (reverse)

Tg(Pdx1-cre/ERT)1Mga Pdx1PB-CreERTm Zhang et al., 2005 5’- TGC CAC GAC CAA GTG ACA GC -3’ (forward)
5’- CCA GGT TAC GGA TAT AGT TCA TG -3’ (reverse)

Gt(ROSA)26Sortm1(HBEGF)Awai R26-DTR Buch et al., 2005
5’- AAA GTC GCT CTG AGT TGT TAT -3’ (common forward)

5’- GGA GCG GGA GAA ATG GAT ATG -3’ (wild-type reverse)
5’- CAT CAA GGA AAC CCT GGA CTA CTG -3’ (mutant reverse)

Gt(ROSA)26Sortm1(EYFP)Cos R26-EYFP Srinivas et al., 2001
5'- GGA GCG GGA GAA ATG GAT ATG -3' (wild-type reverse)
5'- AAA GTC GCT CTG AGT TGT TAT -3’ (common forward)
5'- AAG ACC GCG AAG AGT TTG TC -3' (mutant reverse)

Gt(ROSA)26Sortm1Sor R26-lacZ Soriano, 1999
5’- AAA GTC GCT CTG AGT TGT TAT -3’ (common)

5’- GCG AAG AGT TTG TCC TCA ACC -3’ (mutant reverse)
5’- GGA GCG GGA GAA ATG GAT ATG -3’ (wild-type reverse)

Tg(Ins2-rtTA)2Efr RIP-rtTA Milo-Landesman et al., 2001 5’- GTG AAG TGG GTC CGC GTA CAG -3’
5’- GTA CTC GTC AAT TCC AAG GGC ATC G -3’

Unlisted TetO-hVegfa Ohno-Matsui et al., 2002 5'- TCG AGT AGG CGT GTA CGG -3'
5'- GCA GCA GCC CCC GCA TCG -3'

Vegfatm2Gne Vegfafl/fl Gerber et al., 1999 5'- CCT GGC CCT CAA GTA CAC CTT -3' (forward)
5'- TCC GTA CGA CGC ATT TCT AG -3' (reverse)

Tg(Wnt1-cre)11Rth Wnt1-Cre Danielian et al., 1998 5’- TGC CAC GAC CAA GTG ACA GC -3’ (forward)
5’- CCA GGT TAC GGA TAT AGT TCA TG -3’ (reverse)

Table 1. Mouse models.
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samples cooled to room temperature, 50 µl of 40 mM Tris HCl was added. Samples were 

briefly vortexed and centrifuged at 14000 RPM for 6 minutes. The sample supernatant 

was transferred to a clean tube and stored at -20°C. DNA obtained from earpunch 

biopsies was used undiluted in PCR reactions. 

PCR primers for genotyping were obtained from Integrated DNA Technologies. 

Upon receipt, primers were reconstituted in DNase-free water at a concentration of 

100 µM, diluted (typically 15 µl primer plus 85 µl water), and stored at -20°C until use. 

Primer sequences are shown in Table 1. Following preparation of the reaction mixtures 

described below, target DNA was amplified using the thermal cycler conditions shown in 

Table 2. PCR products were resolved on a 1% agarose gel in 1X TBE buffer containing 

100 ng/ml ethidium bromide, unless stated otherwise. 

PCR genotyping for the presence of Cre recombinase transgenes was performed 

using generic Cre primers to amplify a 675 bp DNA product (Le Marchand and Piston, 

2010). First, a 5X master mix containing 25 µl of each primer, 25 µl of PCR nucleotide 

mix (Promega, catalog #C1141), 400 µl of 10X PCR Buffer I with MgCl2 (Applied 

Biosystems), and 425 µl of DNase-free water was made and stored at -20°C for 

subsequent experiments. Each final reaction contained 4 µl of the 5X master mix, 0.06 µl 

of AmpliTaq DNA polymerase (Applied Biosystems, catalog #N8080171), 14.94 µl of 

DNase-free water, and 1 µl of genomic DNA. 

PCR genotyping was used to differentiate the wild-type Vegfa and Vegfa-loxP 

(floxed) alleles, using primers described (Gerber et al., 1999). Each reaction contained 

1 µl of combined forward and reverse primers, 1 µl of PCR nucleotide mix (Promega, 

catalog #C1141), 5 µl of PCR buffer without MgCl2 (Applied Biosystems), 4 µl of  
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25 mM MgCl2, 0.25 µl of AmpliTaq Gold DNA polymerase (Applied Biosystems, 

catalog #4311806), 36.5 µl of DNase-free water, and 1 µl of genomic DNA. A 148 bp 

band was amplified when the Vegfa-loxP allele was present, and a 40 bp PCR product 

was amplified in the presence of a wild-type Vegfa allele. PCR products were separated 

on a 2.5% agarose gel. 

PCR genotyping for the R26-EYFP allele was performed using the primers 

suggested by The Jackson Laboratory. A 320 bp amplification product was generated in 

the presence of the mutant allele, while the wild-type allele generated a 600 bp product. 

Each reaction contained 1 µl each of the three primers, 10 µl of 2X FailSafe PCR mix 

(Epicentre, catalog #FSP995E), 0.5 µl of FailSafe DNA polymerase (Epicentre, catalog 

#FSE51100), 5.5 µl of DNase-free water, and 1 µl genomic DNA. PCR products were 

separated on a 1.5% agarose gel. 

PCR genotyping for the R26-lacZ and R26-DTR alleles were performed with 

primers described (Soriano, 1999) or suggested (The Jackson Laboratory). Each reaction 

contained 5 µl of ReadyMix Taq PCR Reaction Mix (Sigma-Aldrich, catalog #P4600), 

1 µl each of the three respective primers, 1.5 µl of DNase-free water, and 1 µl of genomic 

DNA. The R26-lacZ allele produced a 250 bp amplification product, while the wild-type 

allele produced a 500 bp product (Soriano, 1999). The R26-DTR product was 242 bp, 

while the wild-type allele was 603 bp (The Jackson Laboratory). 

 

Doxycycline Preparation and Administration 

Doxycycline (Dox, Sigma-Aldrich, catalog #D9891) was dissolved in drinking 

water containing 1% Splenda (zero-calorie sucralose sweetener) for a final Dox 
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concentration of 2 mg/ml. Dox water was freshly prepared every other day and 

administered in light-protected containers. For developmental studies, Dox was 

administered from 5.5 days post coitum to ensure that embryos would be exposed to Dox 

as soon as the Ins2 gene became transcriptionally active. Adult (ten-week-old) mice were 

treated with Dox for one week. 

 

Tamoxifen Preparation and Administration 

Corn oil (Sigma-Aldrich, catalog #C8267) was sterilized using a Steriflip 

vacuum-assisted filter unit (Millipore, catalog #SCGP00525). Tamoxifen (Tm, Sigma-

Aldrich, catalog #T5648) was dissolved in filter-sterilized corn oil to make solutions of 

10 mg/ml or 20 mg/ml, which were subsequently protected from light. Tm solutions were 

freshly prepared the day prior to each injection and placed on a nutator to dissolve 

overnight at room temperature.  

Before treatment, excess fur was shaved from the backs of recipient mice under 

isoflurane anesthesia, to provide an accessible injection site that could be neatly sealed 

with tissue glue. Using a 23-gauge needle (Becton Dickinson & Co., catalog #305145), 

recipient mice were given subcutaneous injections of 1 mg Tm (100 µl volume), 8 mg 

Tm (400 µl volume), or corn oil vehicle every 48 hours, for a total of 3 doses over a 

5-day period. Injection sites were sealed with Vetbond tissue adhesive (3M, catalog 

#1469SB) to prevent oil leakage. Following Tm or vehicle administration, mice were 

housed individually to prevent cross-contamination (Brake et al., 2004). 
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Diphtheria Toxin Preparation and Intrapancreatic Administration 

Diphtheria toxin (DT, List Biological Laboratories, Inc., catalog #150) was 

hydrated in sterile 1X PBS at a concentration of 1000 ng/µl and stored in aliquots 

at -20°C. Immediately before use, DT was diluted in sterile 1X PBS at the indicated 

concentration and injected. 

Adult mice to be injected intrapancreatically with DT or saline vehicle were 

anesthetized with ketamine/xylazine. Once the mice were unresponsive to a toe pinch, the 

abdomen was shaved and sterilized with a dilute chlorhexidine solution (1 oz of 

2% chlorhexidine in 128 oz water, Henry Schein). A 1-cm midline incision was made in 

the abdomen, about 1 cm below the sternum. Intestinal loops were gently externalized 

until the duodenal portion of the pancreas was visualized within the peritoneal cavity. A 

31-gauge insulin syringe (Becton Dickinson & Co., catalog #305937) was used to 

administer DT or saline focally into the pancreas, until the tissue was visibly inflated. The 

intestinal loops were then manipulated to expose the splenic portion of the pancreas, 

which was also injected, and then the intestines were gently returned to the peritoneal 

cavity. The total volume injected into the pancreas was 50-100 µl. The abdominal muscle 

incision was sutured (5-0 vicryl sutures, Ethicon, catalog #J493G) and the skin opening 

was closed with 7 mm staples (Reflex Skin Closure System, Braintree Scientific, Inc., 

catalog #RF7 KIT). Mice were wrapped in sterile gauze and placed under a warm lamp 

until recovery from anesthesia. Mice were monitored for infection or pain each day 

following the surgery. Random (non-fasting) blood glucose values were recorded before 

the surgery and every day thereafter. Staples were removed two weeks after surgery. 
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Islet Isolation 

Islet isolation was performed in collaboration with Greg Poffenberger or 

Anastasia Coldren and Marcela Brissova of the Vanderbilt Islet Procurement and 

Analysis Core. Islets were isolated by collagenase P digestion, as described (Brissova et 

al., 2002; Brissova et al., 2004). Anesthetized mice were dissected to expose the pancreas, 

and the bile duct was visualized and ligated with sutures. Three milliliters of 0.6 mg/ml 

collagenase P (Roche Molecular Biochemicals) in Hank’s balanced salt solution (HBSS, 

Gibco) was infused directly into the pancreatic tissue by injection into the bile duct. Once 

inflated, the pancreatic tissue was dissected from the mouse and digested further in 6.7 ml 

of 0.6 mg/ml collagenase P in HBSS for eight minutes using a wrist-action shaker in a 

37°C water bath, followed by two minutes of manual shaking at room temperature. Seven 

to eight milliliters of ice-cold 10% fetal bovine serum (FBS) in HBSS was then added to 

inactivate the collagenase. To wash, the digested pancreata were centrifuged at 

1000 RPM for two minutes at 4°C, the supernatant was decanted, and 14-15 ml of 

10% FBS in HBSS was added. The previous step was repeated for a total of three washes 

before the pancreatic tissue pellet was resuspended in fresh 10% FBS in HBSS, plated in 

a Petri dish, and placed on ice. Islets were handpicked to nearly 100% purity under 

microscopic guidance, using sterile RNase-free pipette tips.  

 

RNA Extraction and Quantitative Real-Time RT-PCR 

For quantitative PCR analysis of islet gene expression, RNA was extracted using 

an Ambion RNAqueous kit (Life Technologies, catalog #AM1912) and trace 

contaminating DNA was removed with an Ambion TURBO DNA-free kit (Life 
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Technologies, catalog #AM1907), according to the manufacturer’s protocols. 

Immediately following islet isolation, 150-400 purified islets (from one to five mice) 

were washed three times in 10 mM PBS, centrifuging for one minute at 1000 RPM 

between each wash. Following the washes, 350-700 µl of lysis buffer (from the 

RNAqueous kit) was added to the islet pellet. Samples were vortexed vigorously and 

stored at -80°C until RNA extraction was to be completed. Following extraction, RNA 

quality and purity was assessed by the Vanderbilt Genome Sciences Resource using a 

Nanodrop ND-1000 spectrophotometer and an Agilent 2100 Bioanalyzer. Only RNA 

samples with a RIN score >7 were used for quantitative real-time RT-PCR.  

Purified RNA was reverse transcribed to cDNA using a High-Capacity cDNA 

Archive Kit with the addition of an RNase inhibitor (Applied Biosystems, catalog 

#4368814 and #N8080119), according to the manufacturer’s protocol. Quantitative PCR 

was performed using a TaqMan primer/probe approach, using the primer/probes shown in 

Table 3. Each reaction contained 10 µl of 2X TaqMan PCR Master Mix (Applied 

Biosystems, catalog #4304437), 1 µl of 20X primer/probe, and 9 µl of equivalent 

amounts of cDNA (5-10 ng per reaction). Quantitative PCR was performed with an iQ5 

Multicolor Real-Time PCR Detection System (Bio-Rad), with the following cycle 

conditions: 50°C for two minutes, 95°C for ten minutes, then 40 cycles of 95°C for 

15 seconds and 60°C for one minute. 

Data were analyzed using the ∆∆Ct method (Livak and Schmittgen, 2001), as 

calculated by the iQ5 system software. Expression of each gene was normalized to either 

Rn18s (encoding 18S ribosomal RNA) or Tbp (encoding TATA box binding protein) as 

reference genes (Dai et al., 2012). In Chapter III, the relative expression of Tbp- 
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Table 3. Primers for quantitative real-time RT-PCR.

Gene Symbol TaqMan Assay ID

Rn18s Hs99999901s1

Edn3 Mm00432986_m1

Gdnf Mm00599849_m1

Gfap Mm01253033_m1

Ins2 Mm00731595_gh

Kdr Mm00440099_m1

Mafa Mm00845209_s1

Ngf Mm00443039_m1

Pdx1 Mm00435565_m1

Pecam1 Mm01242584_m1

Tbp Mm00446973_m1

Vegfa (custom-made loxP modification) Mm00437306_m1

Vegfb Mm00442102_ml
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normalized genes in each sample from Pdx1-Cre;Vegfafl/fl mice was compared to each 

sample of age-matched Vegfafl/fl controls (n = 3–4 islet preparations per group), then 

averaged. The relative expression of Tbp-normalized genes in each sample from one-

week-Dox-treated RIP-rtTA;TetO-hVegfa mice was compared to each sample of the 

untreated RIP-rtTA;TetO-hVegfa controls (n = 4 islet preparations per group), and 

averaged. In Chapter IV, the relative expression of Rn18s-normalized genes in each 

sample from Tm-treated Pdx1PB-CreERTm;Vegfafl/fl mice was compared to each sample 

from Tm-treated Vegfafl/fl controls (n = 3 islet preparations per group). Occasional 

samples were omitted from further analysis after determining that their Rn18s Ct was 

greater than one cycle different than the other samples. Quantitative PCR experiments 

were performed according to the Minimum Information for Publication of Quantitative 

Real-Time PCR Experiments (MIQE) guidelines (Bustin et al., 2009).  

 

RNA Sequencing 

For RNA sequencing analysis, islets were harvested from two untreated RIP-

rtTA;TetO-hVegfa mice and two RIP-rtTA;TetO-hVegfa mice treated with Dox for one 

week. Purified islets were combined into one sample per genotype, and RNA was 

extracted and assessed for quality as described above. Samples were sent to the 

HudsonAlpha Institute for Biotechnology (Huntsville, Alabama) for RNA amplification 

and RNA sequencing. RNA amplification was performed on a 30 ng sample of total RNA 

using the NuGEN Ovation RNA amplification system optimized for RNA sequencing. 

Sequencing reactions were then performed with the Illumina HiSeq (v3 chemistry) using 

modified standard Illumina methods as described (Mortazavi et al., 2008). 
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Following RNA sequencing, data were analyzed using Avadis NGS software 

(Strand Scientific Intelligence) by Kristie Aamodt and Marcela Brissova. Genes 

previously described to be important in nerve growth and axonal guidance were identified 

through a literature search, and their expression levels (expressed as reads per kilobase 

per million, or RPKM) and relative fold changes are listed in Tables 6–8 of Chapter III. 

Genes with less than 20 reads were eliminated by an expression filter in Avadis, and are 

labeled as “low expression.” 

 

ELISA 

For quantification of islet VEGF-A production, aliquots of 70 size-matched, 

purified islets were cultured in an eight-well chamber slide (Nalge Nunc International, 

catalog #154534) in 480 µl RPMI-1640 medium containing 10% FBS and 11 µM glucose 

for 48 hours at 37ºC. Following incubation, the media supernatants were collected and 

assayed for VEGF-A by ELISA (R&D Systems, catalog #MMV00), according to the 

manufacturer’s protocol. 

 

Islet Perifusion 

Insulin secretion by aliquots of 30 size-matched islets (53 islet equivalents) from 

Tm-treated Vegfafl/fl and Pdx1PB-CreERTm;Vegfafl/fl mice was assessed using a dynamic 

cell perifusion system (modified from Wang et al., 1997). The base perifusion medium 

was freshly prepared on the day of the experiment by emptying the contents of a 1 g 

bottle of Dulbecco’s modified Eagle’s medium powder (DMEM, Sigma-Aldrich, catalog 

#D5030) into 1 L of deionized water and adding 3.2 g NaHCO3 (Sigma-Aldrich, catalog 
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#S6014), 0.58 g L-glutamine (Sigma-Aldrich, catalog #G8540), 0.11 g sodium pyruvate 

(Sigma-Aldrich, catalog #P2256), 1.11 g HEPES (Sigma-Aldrich, catalog #H7523), 1 g 

of RIA-grade BSA (Sigma-Aldrich, catalog #A7888), and 3 ml of 0.5% phenol red 

(Sigma-Aldrich, catalog #P0290). The medium was then vacuum-filtered (Millipore, 

catalog #SCGPU05RE) and de-gassed at 37°C for 30 minutes. To the base perifusion 

medium, D-glucose (Sigma-Aldrich, catalog #G8270) was added to a final concentration 

of 5.6 mM (to measure basal insulin secretion) or 16.7 mM (to measure glucose-

stimulated insulin secretion). To enhance glucose-stimulated insulin secretion, 100 µM 3-

isobutyl-1-methylxanthine (IBMX, Sigma-Aldrich, catalog #I5879), a phosphodiesterase 

inhibitor that increases intracellular cAMP, was added to a solution of 16.7 mM 

D-glucose.  

Following isolation, islets were placed in the perifusion chamber, submersed in a 

37°C water bath, and perifused with medium at a flow rate of 1 ml/min. Islets were first 

washed with 5.6 mM D-glucose in base perifusion medium for 30 minutes, discarding the 

effluent. Throughout the remainder of the experiment, one 3-ml effluent fraction was 

collected for every three minutes of perifusion. Islets were perifused with media 

containing 5.6 mM D-glucose for 30 minutes, 16.7 mM D-glucose for 9 minutes, 5.6 mM 

D-glucose for 21 minutes, 16.7 mM D-glucose plus IBMX for 9 minutes, then 5.6 mM 

D-glucose for 21 minutes. Each effluent fraction was assayed for insulin content by the 

Vanderbilt University Hormone Assay and Analytical Services Core, using a liquid-phase 

radioimmunoassay (Rat Insulin RIA Kit by Linco/Millipore, catalog #RI-13K). 
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Islet Transplantation 

Islet transplant experiments in R26-lacZ and Pdx1PB-CreERTm;R26-lacZ mice 

were performed with littermate donors and recipients, from 6 to 17 weeks of age, as 

described (Brissova et al., 2004). Recipient mice were treated with Tm or vehicle, with 

the last dose injected 48 hours, 1 week, 2 weeks, or 4 weeks before islet transplantation 

was performed. On the day of transplantation, islets were isolated from donor mice by 

collagenase P digestion and handpicked to nearly 100% purity. Islets were washed three 

times in sterile 10 mM PBS containing 1% serum (obtained from the donor mouse), and 

then loaded into P10 tubing (connected to a 1 ml syringe via a gel loading tip), in 

preparation for transplantation by Greg Poffenberger. Littermate recipient mice were 

anesthetized and prepared for surgery by shaving the flank, draping the surgical site, and 

sterilizing the flank skin with a dilute chlorhexidine solution. Once unresponsive to a toe 

pinch, the flank skin and underlying muscle layer were opened to expose the kidney. A 

23-gauge butterfly needle was used to gently separate the kidney capsule from the 

parenchyma, creating a channel through which the P10 tubing was inserted. Islets were 

carefully injected beneath the renal capsule, creating an easily identifiable mass of pale 

tissue. Following removal of the needle, a tiny drop of tissue glue was used to seal the 

site where the capsule was punctured, located ~0.5 cm away from the graft. The muscle 

layer was sutured, the skin opening was stapled, and the mice were allowed to recover 

from anesthesia wrapped in sterile gauze under a warm lamp. Mice were monitored for 

infection or pain each day following the surgery. Each graft contained 50 to 150 islets 

from a single littermate donor mouse. Graft-bearing kidneys were harvested two weeks 

after islet transplantation. 
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Glucose Tolerance Test (GTT) 

Mice were fasted overnight for 16 hours, and weighed at the start of the 

experiment, around 9 a.m. Tail veins were nicked to obtain a basal blood glucose 

measurement with a Contour glucometer (Bayer HealthCare LLC). Mice were given an 

intraperitoneal injection of 10% D-glucose in 10 mM PBS (sterilized using a 0.2 µm 

polyethersulfone syringe filter, Thermo Scientific/Nalgene, catalog #194-2520), using a 

27-gauge needle (Becton Dickinson & Co., catalog #305109), at a dose of 2 g/kg body 

weight. Blood glucose measurements were repeated 15, 30, 60, 90, and 120 minutes 

following the glucose injection. 

 

Hyperglycemic Clamp 

Hyperglycemic clamps were performed by the Vanderbilt Mouse Metabolic 

Phenotyping Center (MMPC), according to established protocols (Berglund et al., 2008; 

Niswender et al., 1997). Briefly, six-month-old Tm-treated male mice underwent surgery 

to implant catheters in the carotid arteries and jugular veins. One week later, mice were 

fasted for 6 hours before performing the clamp. The target blood glucose level was 

~200 mg/dl. With the time of glucose infusion being t = 0’, arterial blood samples were 

taken at t = -15’, -5’, 2’, 3’, 4’, 5’, 10’, 20’, 30’, 40’, 50’, 60’, 70’, 80’, and 90’. Arterial 

blood was assessed for blood glucose, serum insulin and C-peptide levels. The glucose 

infusion rate (GIR) was also recorded. 
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High Fat Diet 

Some Tm-treated female mice were also placed on a high-fat diet (HFD, with 

60% of kcals from fat; Bio-Serv), beginning one month after Tm treatment. Following 16 

weeks on the diet, body composition was assessed by nuclear magnetic resonance (NMR) 

spectroscopy using a Minispec mq 7.5MHz analyzer (Bruker Instruments) in the 

Vanderbilt MMPC. 

 

Pancreatic Insulin Content 

Pancreata were harvested from anesthetized mice before cervical dislocation. 

Dissected pancreata were rinsed in 10 mM PBS, blotted on filter paper, weighed, and 

placed in 2 ml acid alcohol (a solution of 1 ml of 10N HCl + 110 ml 95% ethanol) on ice. 

Pancreata were homogenized using a Polytron PT 10/35 homogenizer (Brinkmann 

Instruments), and an additional 3 ml acid alcohol was added to the homogenate. Tubes 

were placed on a rotator at 4ºC for 48 hours to extract insulin, then centrifuged at 

2500 rpm for 30 min. The supernatant was collected and stored at -20ºC. Insulin content 

was analyzed in diluted (1:1000) samples by the Vanderbilt University Hormone Assay 

and Analytical Services Core, using a liquid-phase radioimmunoassay (Rat Insulin RIA 

Kit by Linco/Millipore, catalog #RI-13K). 

 

Tissue Collection, Fixation, and Preparation 

Pancreata and graft-bearing kidneys were harvested from anesthetized mice 

before cervical dislocation. Tissues were further dissected and washed in ice-cold 10 mM 

phosphate-buffered saline (PBS) before fixation in a freshly made solution of 
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4% paraformaldehyde (Electron Microscopy Sciences, catalog #15710) in 0.1 M PBS 

(12.07 g dibasic Na2HPO4, 2.04 g monobasic KH2PO4, 8.0 g NaCl, and 2.0 g KCl in 

Milli-Q purified water). Tissues were fixed for 90 minutes (on ice) and washed 3–4 times 

in 0.1 M PBS over the next two hours (on ice). Fixed tissues were cryoprotected by 

immersion in 30% w/w sucrose overnight at 4°C.  

To collect embryos, the uterus of an anesthetized pregnant dam was removed and 

rinsed in 10 mM PBS. Embryos were dissected from the placenta and sacrificed by 

decapitation before the abdominal organs were carefully removed. The stomach, pancreas, 

spleen and duodenum were gently isolated from any other attached tissues using Dumont 

super fine #5SF forceps (Roboz, catalog #RS-4955). For cryosectioning, organs were 

fixed in freshly made 4% paraformaldehyde in 10 mM PBS for four hours, washed three 

times in 10 mM PBS (15 minutes each), and cryoprotected overnight at 4°C in 30% w/w 

sucrose in 10 mM PBS. For whole mount immunohistochemistry, organs were placed in 

cryogenic vials and fixed in 4:1 methanol:dimethyl sulfoxide (DMSO) overnight (on a 

rocker at 4°C), washed twice with 100% methanol (over one hour at 4°C), and stored in 

methanol at -20ºC until further use. Alternatively, some tissues for whole-mount 

immunohistochemistry were fixed in 4% paraformaldehyde overnight at 4°C, washed in 

10 mM PBS, and used within a few days of harvesting the tissue. 

For cryosectioning, cryoprotected tissues were blotted and mounted in Tissue-Tek 

cryomolds containing Tissue-Tek Optimal Cutting Temperature (OCT) compound (VWR 

Scientific Products, catalog #25608-916 and #25608-930). Prior to mounting, a scalpel 

was used to carefully cut graft-bearing kidneys in a transverse plane, adjacent to the islet 

graft, to obtain cross-sections of the graft atop the kidney parenchyma. Mounted tissues 
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were frozen at -80°C before cryosectioning. Five- to 30-µm sections were cut on a Leica 

CM1950 cryostat and affixed to Superfrost Plus Gold slides (Fisher Scientific, catalog 

#15-188-48). Slides were stored at -80°C until use. 

Dissected brains were fixed in freshly prepared 1% paraformaldehyde overnight 

at 4°C and cut in 2-mm coronal sections using a brain slicer before whole-mount X-gal 

enzymatic staining was performed.  

Reproductive organs dissected from Tm- and vehicle-treated mice were fixed in 

4% paraformaldehyde for 90 minutes and dehydrated in an ethanol series (35%, 50%, and 

70% for 30 minutes each). Subsequent paraffin embedding, preparation of 5-µm tissue 

sections, and hematoxylin and eosin staining were performed by the Vanderbilt 

Translational Pathology Shared Resource. Pathology expertise was contributed by Joyce 

E. Johnson of Vanderbilt University. 

 

X-Gal Enzymatic Staining 

X-gal enzymatic staining was used to detect β-galactosidase activity, as found in 

cells expressing the bacterial lacZ gene following Cre-mediated recombination, or in 

senescent cells. In preparation for staining, permeabilization solution and staining buffer 

were made as stock solutions and stored at room temperature for one to two months, 

protected from light. Permeabilization solution contained 2 mM MgCl2, 0.01% sodium 

deoxycholate, and 0.02% Nonidet P-40 in 10 mM PBS. Staining buffer contained 2 mM 

MgCl2, 5 mM potassium ferricyanide, and 5 mM potassium ferrocyanide in 100 mM Tris 

buffer. For typical X-gal staining, Tris buffer was prepared at pH 7.3. For detection of 

senescence-associated β-galactosidase activity, Tris buffer was prepared at pH 6.0 
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(Beattie 1994). Immediately before use, X-gal (5-bromo-4-chloro-indolyl-β-D-

galactopyranoside, Research Products International, catalog #B71800) was solubilized in 

dimethylformamide (DMFA) at a concentration of 1 mg X-gal per 20 µl DMFA and 

added to the staining buffer, for a final concentration of 1 mg/ml. Samples in X-gal 

staining solution were protected from light. 

Cryosections were subjected to X-gal enzymatic staining, as described (Brissova 

et al., 2004). Sections were thawed and post-fixed in freshly prepared 0.2% 

glutaraldehyde/1% paraformaldehyde in 10 mM PBS for 15 minutes at room temperature, 

then washed three times in 10 mM PBS (five minutes each). Permeabilization solution 

was applied for ten minutes at room temperature. Slides were placed in a humidified 

chamber and incubated in X-gal staining solution at 37°C, lasting from several hours to 

overnight, depending on when the reaction was complete. Slides were washed three times 

in 10 mM PBS (five minutes each) and mounted with Aqua-Poly/Mount (Polysciences, 

Inc., catalog #18606). 

Fixed brain slices (cut with an adult mouse brain slicer) were subjected to X-gal 

enzymatic staining in whole mount, as described (Wicksteed et al., 2010). Slices were 

placed in permeabilization solution for five hours at 4°C, then placed in a modified X-gal 

staining solution (2 mM MgCl2, 5 mM potassium ferricyanide, 5 mM potassium 

ferrocyanide, 1 mg/ml X-gal, 0.01% sodium deoxycholate, and 0.02% NP-40 in 10 mM 

PBS, pH 7.4) overnight at room temperature. Slices were then washed three times in 10 

mM PBS (20 minutes each), post-fixed in 4% paraformaldehyde for one hour, washed 

again three times in 10 mM PBS (20 minutes each), then placed into 70% ethanol. Slices 
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were photographed using an Olympus SZX12 dissecting microscope connected to a 

DP12 digital camera (Olympus America). 

 

Immunohistochemistry 

Five- to 10-µm cryosections were labeled by immunohistochemistry as described 

previously (Brissova et al., 2004), using the primary and secondary antibodies listed in 

Tables 4-5. Cryosections were thawed and allowed to air dry before being encircled with 

a Super PAP Pen HT hydrophobic marker (Research Products International, catalog 

#195505). Embryonic and perinatal tissue sections were post-fixed with 1% 

paraformaldehyde in 10 mM PBS for five to ten minutes. Sections were prepared for 

immunolabeling by washing three times in 10 mM PBS (five minutes each), 

permeabilizing in 0.2% Triton X-100 in 10 mM PBS (ten minutes each), washing again 

three times in 10 mM PBS (five minutes each), then blocking in 5% normal donkey 

serum in 10 mM PBS (60–90 minutes in a humidified chamber). Primary antibodies were 

diluted in 0.1% Triton X-100/1% bovine serum albumin (BSA) in 10 mM PBS and 

placed on the cryosections overnight at 4°C. Sections were washed three times in 0.1% 

Triton X-100 in 10 mM PBS (ten minutes each) before adding the secondary antibodies, 

diluted in 0.1% Triton X-100/1% BSA in 10 mM PBS, for one hour at room temperature. 

Sections were washed three times in 0.1% Triton X-100 in 10 mM PBS (15 minutes  

each) and washed again three times in 10 mM PBS (five minutes each). Slides were 

mounted with SlowFade Gold antifade reagent (Invitrogen, catalog #S36938) and sealed 

with fingernail polish before imaging. 
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Thick (30 µm) cryosections were immunolabeled using an extended protocol. Air-

dried cryosections were encircled with a PAP pen and hydrated in three washes of 

10 mM PBS (15 minutes each). Sections were then permeabilized in 0.3% Triton X-100 

in 10 mM PBS for three to four hours at room temperature before blocking with 5% 

normal donkey serum in 0.15% Triton X-100 in 10 mM PBS overnight at 4°C. Sections 

were washed twice in antibody incubation buffer (0.2% Triton X-100/1% BSA in 10 mM 

PBS) for 20 minutes each. Primary antibodies were diluted in antibody incubation buffer 

and placed on the cryosections overnight at 4°C. Sections were washed three times in 

0.2% Triton X-100 in 10 mM PBS (30 minutes each) before incubating in the appropriate 

secondary antibodies diluted in incubation buffer overnight at 4°C. Sections were washed 

three to four times in 0.2% Triton X-100 in 10 mM PBS (30 minutes each) before 

mounting in SlowFade and sealing the coverslip with nail polish. 

For whole-mount imaging, embryonic tissues in cryogenic vials were rocked at 

4ºC in each of the following steps. Before immunolabeling, methanol-fixed tissues were 

rehydrated (washed once in 50% methanol for 30 minutes and twice in 10 mM PBS for 

30 minutes each). Methanol- or paraformaldehyde-fixed tissues were then blocked and 

permeabilized in PBSBT (10 mM PBS with 2% BSA and 0.5% Triton X-100) in two 

washes over two hours. The primary and secondary antibodies used are listed in Table 4 

and Table 5. On consecutive days, tissues were incubated overnight with primary or 

secondary antibodies diluted in PBSBT. After each antibody step, tissues were rinsed and 

washed three to four times with PBSBT for one hour each. Before imaging, 

immunolabeled tissues were dehydrated (washed once each in 50% and 80% methanol 

for 30 minutes, and washed twice in 100% methanol over one hour), optically cleared in 
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a 1:2 solution of benzyl alcohol:benzyl benzoate (BABB; Sigma-Aldrich), and placed on 

a glass coverslip. 

 

Imaging 

Tissue images collected for morphometric analysis were obtained at 20X 

magnification using an Olympus BX41 epifluorescence microscope connected to a 

MicroFire camera (Olympus America) or a Leica DMI 6000 B inverted microscope 

(Leica Microsystems).  

Confocal imaging was performed through the Vanderbilt University Cell Imaging 

Shared Resource with a Zeiss LSM 510 META laser scanning microscope equipped with 

Argon/2, HeNe1 and HeNe2 lasers (Carl Zeiss Microimaging). Optical sections were 

obtained with a 20X Plan-Apochromat lens (numerical aperture of 0.75) and subjected to 

3D reconstruction with LSM software (Carl Zeiss Microimaging).  

Whole-slide scanning was performed through the Vanderbilt Islet Procurement 

and Analysis Core with a ScanScope CS or ScanScope FL (Aperio Technologies, Inc.). 

Images were obtained at 20X magnification and analyzed with ImageScope software 

(Aperio Technologies, Inc.). 

 Adobe Photoshop software (Adobe Systems Incorporated) was used to crop and 

adjust levels in images, for display purposes only. 

 

Transmission Electron Microscopy 

Transmission electron microscopy was performed on pancreata from Vegfafl/fl and 

Pdx1PB-CreERTm;Vegfafl/fl mice one month after Tm treatment, as described (Brissova et 
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al., 2006), with the assistance of the Vanderbilt University Cell Imaging Shared Resource. 

To initiate fixation, anesthetized mice were perfused intracardially with fixative (2% 

paraformaldehyde/2.5% glutaraldehyde in 0.1M sodium cacodylate/1% CaCl2, pH 7.4) 

by Masakazu Shiota. Dissected pancreata were minced in 0.1M sodium cacodylate/ 

1% CaCl2 and placed in fixative for 1 hr at room temperature. Samples were kept in 

fixative overnight at 4°C before being post-fixed with 1% osmium tetroxide, dehydrated 

in an ethanol series (25% ethanol for ten minutes, 50% ethanol for ten minutes, 70% 

ethanol for ten minutes, twice in 95% ethanol for ten minutes each, and three times in 

100% ethanol for five minutes each), and then embedded in Spurr resin. Five hundred 

nm-thick semi-thin sections were stained with toluidine blue and islets were identified by 

light microscopy. From those blocks, 60–70 nm ultrathin sections were placed on slot 

grids and stained with uranyl acetate and lead citrate. Islet endocrine cells and intraislet 

capillaries were visualized on a Phillips CM-12 Transmission Electron Microscope at an 

operating voltage of 80 KeV and images were captured with an AMT digital camera 

system. 

 

Morphometric Analysis 

Quantification of immunohistochemistry was performed on original, unadjusted 

images with MetaMorph software (Universal Imaging). Morphometric analysis was 

performed on at least 30 islets per mouse, with n ≥ 3 mice per group (except where noted).  

In Chapters III and IV, analyses of vessel density and size were performed by 

immunolabeling PECAM1+ endothelial cells. In adult pancreatic sections, regions of 

interest were drawn around the insulin+ area of individual islets, and intraislet capillaries 
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were thresholded for PECAM1+ cells. Vessel density and the area per vessel were 

calculated using integrated morphometry analysis (Brissova et al., 2006). To assess 

vascularization in whole mount-labeled Wnt1-Cre;Foxd3fl/- and Foxd3fl/- embryonic 

pancreata, images were thresholded to measure the number of PECAM1+ vessels and the 

area of PDX1+ pancreatic epithelial cells, and the ratio was calculated for pancreatic 

vessel density. Vessel density was measured in every other optical section from 

individual confocal z-stacks, totaling more than 30 slices analyzed per sample. 

In Chapter III, global islet innervation was quantified by calculating both the 

number and the length of TUJ1+ fibers within the insulin+ islet area, using integrated 

morphometric analysis. Changes in Schwann cell localization were quantified by 

thresholding the GFAP+ fiber area as a percentage of the insulin+ islet area. In the case 

of hypervascularized islets of mice, islets were defined as a continuous object of insulin+ 

β-cells and PECAM1+ endothelial cells, around which a region of interest was drawn. 

Islet parasympathetic innervation in ob/ob mice was quantified by calculating both the 

number of VAChT+ varicosities per insulin+ area and the VAChT+ area as a percentage 

of insulin+ islet area. To accurately represent innervation within islet centers, only islets 

with a cross-sectional diameter greater than 100 µm were included in the analysis.  

In Chapter IV, pancreatic β-cell area and islet β-cell area measurements were 

performed using an Aperio FL fluorescence-based slide scanner and ImageScope 

software (Aperio Technologies, Inc.). For pancreatic β-cell area, four pancreatic sections 

(at least 200 µm apart) were immunolabeled for insulin and the acinar tissue enzyme 

amylase, counterstained with the nuclear label DAPI, and scanned at 20X magnification. 

ImageScope software was used to calculate the insulin+ and amylase+ areas of each 
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cross-section, and the pancreatic β-cell area was defined as insulin+ area / (insulin+ area 

plus amylase+ area). For islet β-cell area, ImageScope software was used to measure 

insulin+ and glucagon+ areas of islets, and islet β-cell area was defined as insulin+ area / 

(insulin+ area plus glucagon+ area).   

In Chapter V, insulin+ and β-galactosidase+ (β-gal+) cells were counted manually 

with the aid of MetaMorph software. At least three cross-sections were counted for each 

islet graft (200-3000 total insulin+ cells counted per graft), and at least ten islet cross-

sections were counted per pancreas (300-500 insulin+ cells counted per mouse). The 

percentage of insulin+ β-cells expressing β-gal was calculated for each cross-section, and 

averaged for each graft or pancreas sample. Two to four tissue samples were obtained for 

each treatment group or time point.  

 

Statistical Analysis 

Statistics were performed with Prism software (GraphPad), using Student’s t-test 

to compare two groups, or one-way ANOVA to compare three or more groups. For the 

high fat diet study in Chapter IV, two-way ANOVA was used to assess the effects of diet, 

genotype, and their interaction. Data are summarized as mean  ±  standard error of the 

mean (SEM), and assigned statistical significance at P < 0.05.  
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CHAPTER III 

 

INVESTIGATING THE ROLE OF VEGF-A IN ISLET INNERVATION 

 

Introduction 

With the knowledge that peripheral nerves and blood vessels are closely aligned, 

in part by sharing potential guidance molecules such as VEGF-A, it was hypothesized 

that intraislet VEGF-A expression and/or its effects on islet vascularization were 

responsible for directing islet innervation (Figure 15). In this Chapter, the relationship 

between VEGF-A, vascularization, and innervation in the pancreatic islet was explored 

by addressing the following questions: (1) How are islet vascularization and innervation 

developmentally related? (2) Does VEGF-A and islet vascularization influence islet 

innervation? (3) Conversely, does islet innervation influence islet vascularization? and 

(4) Can VEGF-A signal directly to neural crest-derived neurons and glia in the islet? 

Using mouse models of increased or decreased VEGF-A expression within pancreatic 

islets, it was found that islet innervation follows islet vascularization during development, 

in both a temporal and spatial manner. However, intraislet VEGF-A expression indirectly 

affects neural crest-derived cells of the islet, because only endothelial cells of the islet 

express VEGF-A receptors during the postnatal maturation of islet innervation. These 

results show that islet vascularization and innervation are developmentally interconnected, 

and that islet-derived VEGF-A acts as a principal coordinator of islet morphology and 

function. 
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Figure 15. Potential model of the development of islet vascularization and
innervation. During embryogenesis and postnatal life, the development of islet
vasculature occurs concomitantly with islet morphogenesis. Additionally, neural
crest-derived cells enter the pancreas and differentiate into nerves and glia that
eventually innervate mature islets. However, the temporal nature of islet innervation
and the mechanisms governing this process remain unclear. This is the basis for the
studies described in Chapter III.
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Results 

Pancreatic islets are highly vascularized and richly innervated 

To investigate pancreatic innervation and explore its relationship with 

vascularization, immunofluorescence labeling was performed on pancreatic sections from 

adult mice, using markers for nerve fibers (neuronal class III β-tubulin, TUJ1), peri-islet 

Schwann cells (glial fibrillary acidic protein, GFAP), and endothelial cells (platelet 

endothelial cell adhesion molecule 1, PECAM1). As expected, pancreatic islets (labeled 

for insulin+ β-cells) displayed a dense capillary network of PECAM1+ endothelial cells 

(Figure 16A and C; Brissova et al., 2006; Lammert et al., 2003b; Murakami et al., 1993; 

Vetterlein et al., 1987). Similarly, islets were richly innervated, with many thin TUJ1+ 

fibers intermingled with insulin+ β-cells at the islet core (Figure 16A). A subset of these 

TUJ1+ fibers were aligned with PECAM1+ capillaries (Figure 16B, closed arrowheads), 

but many TUJ1+ fibers were not adjacent to endothelial cells, as assessed by confocal 

microscopy (Figure 16B, open arrowheads). Both capillaries and fine nerve fibers were 

more numerous within islets compared to the acinar tissue of the exocrine pancreas, 

though pancreatic ducts were also highly innervated (denoted by asterisks in Figures 16-

17). On some pancreatic cross-sections, large nerve bundles and/or nerve cell bodies were 

found adjacent to an islet, forming a neuroinsular complex (arrows in Figure 16A). In 

contrast to TUJ1+ nerve fibers, GFAP+ peri-islet Schwann cells of the pancreas were 

almost exclusively found at the border of the endocrine and exocrine pancreas, in many 

cases encircling the islets (Figure 16C). Occasionally, glial cell processes would extend 

into the insulin+ area of the islet, often alongside a capillary (Figure 16D). As with 

TUJ1+ nerve fibers, GFAP+ Schwann cells in the pancreas were much more likely  
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Figure 16. Pancreatic islets are highly vascularized and richly innervated. 
A-B. Representative wild-type adult pancreas immunolabeled for insulin (blue), 
endothelial cells (PECAM1, green), and nerve fibers (TUJ1, red/grayscale). 
C-D. Representative wild-type pancreas immunolabeled for insulin (blue), endothelial 
cells (PECAM1, green), and peri-islet Schwann cells (GFAP, red/grayscale). Scale bars in 
A and C are 100 μm, and scale bars in B and D (2x zoom of islets in A and C, 
respectively) are 50 μm. Arrow denotes a neuroinsular complex, * denotes a duct lumen, 
closed arrowheads denote closely aligned blood vessels and nerve fibers or Schwann 
cells, open arrowheads denote nerve fibers not aligned with blood vessels.
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Figure 17. Pancreatic islets are more vascularized and innervated than pancreatic 
acinar tissue. A-B. Representative wild-type adult pancreas immunolabeled for insulin 
(blue), endothelial cells (PECAM1, green), and nerve fibers (TUJ1; red/grayscale in A) 
or Schwann cells (GFAP; red/grayscale in B). Scale bars are 200 μm. * denotes a duct 
lumen. 
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to be associated with islets or ducts than with acinar cells (Figures 16C, 17B). Because 

capillaries, nerve fibers, and Schwann cells were highly concentrated in islets and often 

in close proximity with one another, the relationship between islet vascularization and 

innervation was investigated further. 

 

Islet VEGF-A expression influences both islet vascularization and innervation 

To determine if islet innervation was affected by changes in islet vascularization, 

islet innervation patterns were examined in mouse models with altered VEGF-A 

production. For a model of reduced pancreatic vascularization, Pdx1-Cre;Vegfafl/fl 

(abbreviated ↓VEGF-A) mice were used. In this model, VEGF-A is genetically 

inactivated throughout the pancreas during embryogenesis, resulting in a nearly 90% 

decrease in islet vascularization (Jabs et al., 2008; Lammert et al., 2003b; Reinert and 

Brissova et al., manuscript in preparation). To increase islet vascularization, a Tet-on 

inducible genetic mouse model, in which treatment with doxycycline (Dox) induces 

expression of VEGF-A in insulin+ β-cells, was used. Adult RIP-rtTA;TetO-hVegfa mice 

were treated with Dox for one week (abbreviated ↑VEGF-A), which led to a 100-fold 

increase in VEGF-A secretion from isolated islet clusters, a dramatic expansion of 

intraislet endothelial cells (a four-fold increase in the intraislet endothelial cell area), and 

a reduction in β-cell number (Brissova et al., manuscript in preparation). Compared to 

littermate controls (Figure 18A), islets in adult ↓VEGF-A mice showed reduced 

innervation (Figure 18B), as measured by a 52% reduction in the number of TUJ1+ nerve 

fibers present within the insulin+ area of the islet (Figure 18D), as well as a 50% 

reduction in the length of those fibers (Figure 18E). In contrast, hypervascularized islet  
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Figure 18. Islet innervation follows islet VEGF-A production and vascularization. 
A-C. Representative islets from adult Vegfafl/fl control (A), Pdx1-Cre;Vegfafl/fl 
(↓VEGF-A; B), and doxycycline-treated (for one week) RIP-rtTA;TetO-hVegfa 
(↑VEGF-A; C) mice, immunolabeled for insulin (blue), PECAM1 (green) and TUJ1 
(red/grayscale). Scale bars are 100 μm. D-E. Morphometric quantification of TUJ1+ fiber 
density (D) and fiber length (E). ***P < 0.001 vs. control group.
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clusters in ↑VEGF-A mice were highly innervated, though nerve fibers were found more 

closely associated with endothelial cells than with β-cells (Figure 18C). VEGF-A-

overexpressing islet clusters showed a 23% increase in the number of TUJ1+ nerve fibers 

(Figure 18D) and a 29% increase in fiber length (Figure 18E). A very similar innervation 

pattern was observed in islets from ↓VEGF-A and ↑VEGF-A mice labeled with 

antibodies to synapsin-1 and -2 (Figure 19). These data suggest that islet innervation 

closely follows islet vascularization and/or islet VEGF-A expression. 

 

The development of pancreatic innervation during embryogenesis  

does not require VEGF-A 

Next, several important stages in pancreas and islet development were evaluated 

to determine when VEGF-A plays an important role in islet innervation. Because 

differentiated neural crest-derived cells begin to associate with developing islets of the 

pancreatic epithelium after E15.5 (Burris and Hebrok, 2007; Nekrep et al., 2008; Plank et 

al., 2011), pancreatic innervation was evaluated beginning in late embryogenesis, when 

differentiated endocrine cells are beginning to cluster and delaminate from the ductal 

epithelium (Pan and Wright, 2011). At E16.5, the developing pancreas and islets were 

already well vascularized by PECAM1+ endothelial cells (Figure 20A’’; Brissova et al., 

2006; Reinert and Brissova et al., manuscript in preparation). Control pancreata were also 

well innervated at this stage, containing a network of TUJ1+ nerve fibers (Figure 20A’’’). 

Analysis using confocal microscopy revealed that developing islets (visualized by 

labeling for glucagon+ endocrine cells) were interconnected by the network, with nerve 

fibers traveling between clusters of endocrine cells (Figure 21). During embryogenesis,  
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Figure 19. Islet innervation follows islet VEGF-A production and vascularization. 
A-C. Representative islets from adult Vegfafl/fl control (A), Pdx1-Cre;Vegfafl/fl 
(↓VEGF-A; B), and doxycycline-treated (for one week) RIP-rtTA;TetO-hVegfa 
(↑VEGF-A; C) mice, immunolabeled for insulin (blue), PECAM1 (green) and 
synapsin-1, -2 (red/grayscale). Scale bars are 100 μm.
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Figure 20. VEGF-A is not required for, but enhances, pancreatic innervation during 
embryogenesis. Images are 3D reconstructions of confocal z-stacks (30 μm thick) of 
embryonic day 16.5 (E16.5) pancreata from untreated RIP-rtTA;TetO-hVegfa control (A), 
Pdx1-Cre;Vegfafl/fl (↓VEGF-A; B), and doxycycline-treated (from E5.5) RIP-rtTA; 
TetO-hVegfa (↑VEGF-A; C) mice. Pancreata were immunolabeled in whole mount with 
antibodies to PDX1 (blue), PECAM1 (green), and TUJ1 (red). Scale bars in A-C are
100 μm, and correspond to all panels below. 
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however, nerve fibers did not penetrate into the core of islets, but remained localized to 

the periphery of endocrine cell clusters. While pancreata from ↓VEGF-A mice showed a 

dramatic reduction in vascularization (Figure 20B; Reinert and Brissova et al., 

manuscript in preparation), VEGF-A was not required for the establishment of pancreatic 

innervation, because TUJ1+ nerve fibers were found throughout the pancreata of 

↓VEGF-A embryos (Figure 20B’’’). This pattern of pancreatic vascularization and 

innervation was also observed at E14.5, when endocrine cell differentiation is still very 

active, and at E18.5, when individual islets can be found (Figure 22). In contrast, E16.5 

pancreata from ↑VEGF-A mice (treated with Dox from E5.5) were dramatically 

hypervascularized and highly innervated (Figure 20C). 

 

Pancreatic vascularization is not altered by reduced innervation 

To determine if nerve fibers in the developing pancreas influence vascular 

patterning, Wnt1-Cre;Foxd3fl/- mice were used as a model of neural crest cell ablation 

(Plank et al., 2011; Teng et al., 2008). Because these mice die perinatally, pancreatic 

vascularization was evaluated in embryos at E16.5. As expected, the pancreatic 

epithelium in Wnt1-Cre;Foxd3fl/- embryos was depleted of TUJ1+ nerve fibers (Figure 

23B). In contrast, PECAM1+ endothelial cells formed a dense capillary network in Wnt1-

Cre;Foxd3fl/- embryos, unchanged from controls (Figure 23C). This indicates that the 

lack of neural crest-derived nerves and glia does not impair pancreatic vascularization. 
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Figure 22. VEGF-A is not required for pancreatic innervation during 
embryogenesis. A-D. Images are 3D reconstructions of confocal z-stacks (30 μm thick) 
of embryonic pancreata from Vegfafl/fl control (A, C) and Pdx1-Cre;Vegfafl/fl (↓VEGF-A; 
B, D) mice at embryonic day 14.5 (E14.5; A, B) and E18.5 (C, D). Pancreata were 
immunolabeled in whole mount with antibodies to PDX1 (blue), PECAM1 (green), and 
TUJ1 (red). Scale bars in A-D are 100 μm, and correspond to all panels below.
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Figure 23. Pancreatic vascularization is not altered by reduced innervation. 
A-B. Images are 3D reconstructions of confocal z-stacks (15 μm thick) of embryonic 
pancreata from Foxd3fl/- (A) and Wnt1-Cre;Foxd3fl/- (B) mice at embryonic day 16.5 
(E16.5), immunolabeled in whole mount with antibodies to PDX1 (blue), PECAM1 
(green), and TUJ1 (red). Scale bar in A is 50 μm, and corresponds to all other panels. 
C. Quantification of vessel density. 
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Islet innervation matures postnatally, and is dependent on VEGF-A 

Because nerve fibers in the embryonic pancreas remained localized to the 

periphery of developing endocrine clusters, islet innervation patterns were examined 

during postnatal islet development. At postnatal day 1 (P1) and P7, insulin+ cell clusters 

in control pancreata displayed a mature capillary network (Figure 24A, D), while islets in 

↓VEGF-A mice were depleted of capillaries (Figure 24B, E). In contrast to mature islets 

in adult mice, TUJ1+ fibers remained localized to the islet periphery in both control and 

↓VEGF-A pancreata at P1 and P7, and no differences in islet innervation were apparent 

between the two genotypes at these times (Figure 24A, B, D, E). In fact, islet innervation 

did not mature until weaning (P21), when TUJ1+ fibers penetrated the insulin+ islet core 

in control (Figure 25A) but not ↓VEGF-A (Figure 25B) pancreata. In contrast to the 

clusters of insulin+ β-cells in islets of control and ↓VEGF-A mice, β-cell-specific VEGF-

A overexpression during pancreas development profoundly affected islet formation (Cai 

et al., 2012). Islet clusters in ↑VEGF-A mice showed a dramatic increase in the number 

of PECAM1+ endothelial cells (Figures 24C, 24F, and 25C). Additionally, insulin+ β-

cells were no longer clustered in typical islet shapes, but instead were dispersed 

throughout the endothelial cell masses (Cai et al., 2012). However, at each time point, 

these clusters of endocrine and endothelial cells were highly innervated, containing a 

dense network of TUJ1+ nerve fibers (Figures 24C, 24F, and 25C). These data indicate 

that islet innervation matures postnatally and normal islet VEGF-A production is critical 

for this process. 
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Figure 24. Pancreatic islet innervation is not mature in early postnatal life. 
Representative islets from Vegfafl/fl control (A, D), Pdx1-Cre;Vegfafl/fl (↓VEGF-A; B, E), 
and doxycycline-treated (from E5.5) RIP-rtTA;TetO-hVegfa (↑VEGF-A; C, F) mice at 
postnatal day 1 (P1; A-C) and P7 (D-F), immunolabeled for insulin (blue), PECAM1 
(green) and TUJ1 (red/grayscale). Scale bars are 100 μm.
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Figure 25. Pancreatic islet innervation matures around weaning, and depends on 
VEGF-A expression. Representative islets from Vegfafl/fl control (A), Pdx1-Cre;Vegfafl/fl 
(↓VEGF-A; B), and doxycycline-treated (from E5.5) RIP-rtTA;TetO-hVegfa (↑VEGF-A; 
C) mice at weaning (postnatal day [P]21-P28), immunolabeled for insulin (blue), 
PECAM1 (green) and TUJ1 (red/grayscale). Scale bars are 100 μm.
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Both sympathetic and parasympathetic nerve fibers are affected  

by changes in VEGF-A expression 

To determine if the changes in islet innervation following altered VEGF-A 

expression affected all nerve fiber types in the islet, or only a specific subset of nerve 

fibers, pancreata from both ↓VEGF-A and ↑VEGF-A mice (and their respective controls) 

were labeled for markers of sympathetic, parasympathetic, and sensory nerve fibers. 

Because sensory nerve fibers were found to be very rare in islets of all experimental 

groups, the remainder of the analysis was focused on autonomic nerve fibers. 

To label sympathetic nerve fibers, an antibody to tyrosine hydroxylase (TH), the 

rate-limiting enzyme in catecholamine biosynthesis, was used. In control islets, TH 

labeled many nerve fibers, but also labeled a few insulin+ β-cells (Figure 26A). 

Surprisingly, VEGF-A-deficient islets showed a dramatic increase in the number of 

endocrine cells expressing TH (Figure 26B). The robust expression of TH in endocrine 

cells precluded the morphometric quantification of TH+ fibers in VEGF-A-deficient 

islets, but few TH+ fibers were observed. Unlike VEGF-A-deficient islets, islet clusters 

in ↑VEGF-A mice showed rare TH+ β-cells but had an abundance of TH+ fibers 

following induction of VEGF-A overexpression (Figure 26C). Because the expression of 

TH in β-cells has been suggested to be a marker of senescent cells (Teitelman et al., 

1998), X-gal staining was performed on pancreatic cryosections to evaluate for acid β-

galactosidase activity (Beattie et al., 1994). Islets from six-month-old ↓VEGF-A mice 

and Vegfafl/fl controls showed equal X-gal staining (Figure 27), though acinar tissue in 

↓VEGF-A mice showed much greater X-gal staining than acinar tissue in Vegfafl/fl 

controls (Figure 27, circles). 
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Figure 26. Islet VEGF-A production influences islet sympathetic innervation. 
Representative islets from adult Vegfafl/fl control (A), Pdx1-Cre;Vegfafl/fl (↓VEGF-A; B), 
and doxycycline-treated (for one week) RIP-rtTA;TetO-hVegfa (↑VEGF-A; C) mice, 
immunolabeled for insulin (blue), PECAM1 (green) and tyrosine hydroxylase (TH; 
red/grayscale). Scale bars are 100 μm. 

            107



Vegfafl/fl Pdx1-Cre;Vegfafl/fl
X-

ga
l

A
B

C

D
E

F

Fi
gu

re
27

.S
en

es
ce

nc
e-

as
so

ci
at

ed
β-

ga
la

ct
os

id
as

e
is

el
ev

at
ed

in
V

E
G

F-
Α

-d
ef

ic
ie

nt
pa

nc
re

at
a

bu
t

no
t

in
V

E
G

F-
Α

-d
ef

ic
ie

nt
is

le
ts

.
S

en
es

ce
nc

e-
as

so
ci

at
ed

β-
ga

la
ct

os
id

as
e

ex
pr

es
si

on
,

as
in

di
ca

te
d

by
ac

id
ic

X
-g

al
st

ai
ni

ng
,

is
no

t
in

cr
ea

se
d

in
Pd

x1
-

C
re

;V
eg

fa
fl/

fl
is

le
ts

(D
-F

)
co

m
pa

re
d

to
Ve

gf
afl/

fl
co

nt
ro

ls
(Α

-C
),

at
si

x
m

on
th

s
of

ag
e.

H
ow

ev
er

,
in

cr
ea

se
d

X
-g

al
st

ai
ni

ng
w

as
ob

se
rv

ed
in

th
e

ex
oc

ri
ne

pa
nc

re
as

in
Pd

x1
-C

re
;V

eg
fa

fl/
fl

m
ic

e
(d

ot
te

d
li

ne
s)

.S
ca

le
ba

r
in

A
is

25
0
μm

,a
nd

ap
pl

ie
s

to
al

lp
an

el
s.

            108



To determine when the increase in TH+ β-cells in VEGF-A-deficient islets is first 

evident, TH expression was examined at multiple stages of development in ↓VEGF-A 

mice. At E14.5, E17.5, and P1, few insulin+ β-cells were TH+ in control or ↓VEGF-A 

mice (Figure 28A-C, F-H). At P7, when few TUJ1+ or TH+ nerves were present within 

the islet core, TH+ β-cells were readily found in control islets (Figure 28D). Only a few 

TH+ β-cells remain in islets of control mice after weaning, when TUJ1+ fibers are 

consistently found within the islet core (Figure 28E). Interestingly, islets in ↓VEGF-A 

mice showed more TH+ β-cells at both P7 and P21 than littermate controls (Figure 28I, J). 

In contrast, while hypervascularized islet clusters from ↑VEGF-A mice (treated with Dox 

from E5.5) show many TH+ fibers at P7, almost no β-cells express TH (Figure 28K). 

Finally, an antibody to the vesicular acetylcholine transporter (VAChT) was used 

to mark cholinergic fibers of the parasympathetic nervous system. Islets from control 

mice showed many VAChT+ nerve fibers, and no evidence of VAChT labeling in 

endocrine cells (Figure 29A). Similar to the decrease in TH+ islet fibers in ↓VEGF-A 

mice, VEGF-A-deficient islets also showed fewer VAChT+ nerve fibers (Figure 29B). In 

contrast, the highly innervated islet clusters in ↑VEGF-A mice expressed numerous 

VAChT+ fibers (Figure 29C). In all, these data show that islet VEGF-A expression 

determines islet autonomic innervation patterns.  

 

Peri-islet Schwann cells undergo reactive gliosis  

when islet VEGF-A expression is decreased 

In contrast to nerve fibers, Schwann cells showed a surprisingly similar dramatic 

change in morphology following both VEGF-A inactivation and overexpression. While  

            109



Control ↓ VEGF-A

↑ VEGF-A

E1
4.

5
E1

7.
5

P7
W

ea
ni

ng

G

K

F

insulin
TH

P1

B

C

A

D

E

H

I

J

fl/-

Figure 28. The proportion of β-cells expressing tyrosine hydroxylase is elevated in 
VEGF-A-deficient islets during postnatal development. A-J. Representative islets 
from Vegfafl/fl (A-E), Pdx1-Cre;Vegfafl/fl (↓VEGF-A; F-J), and doxycycline-treated (from 
E5.5) RIP-rtTA;TetO-hVegfa (↑VEGF-A; K) mice at embryonic day 14.5 (E14.5; A, F), 
E17.5 (B, G), postnatal day 1 (P1; C, H), P7 (D, I, K)  and weaning (E, J), 
immunolabeled for insulin (green) and TH (red). Scale bars are 100 μm. 
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Figure 29. Islet VEGF-A production influences islet parasympathetic innervation. 
Representative islets from adult Vegfafl/fl control (A), Pdx1-Cre;Vegfafl/fl (↓VEGF-A; B), 
and doxycycline-treated (for one week) RIP-rtTA;TetO-hVegfa (↑VEGF-A; C) mice, 
immunolabeled for insulin (blue), PECAM1 (green) and the vesicular acetylcholine 
transporter (VAChT; red/grayscale). Scale bars are 100 μm. 
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Schwann cells in control pancreata were located at the islet periphery (Figure 30A), 

GFAP+ Schwann cell processes were found mainly intercalated between insulin+ cells in 

islets of adult ↓VEGF-A mice (Figure 30B). By morphometry, this was measured as a 

three-fold increase in the GFAP+ fiber area within the insulin+ islet area (Figure 30D), 

which correlated with a 600% increase in Gfap mRNA expression in isolated islets from 

adult ↓VEGF-A mice (Figure 30E). Islet clusters in ↑VEGF-A mice showed a similar 

redistribution of GFAP+ Schwann cell processes into the islet core (Figure 30C), though 

many of the Schwann cell processes were broader in shape and displayed less intense 

GFAP immunofluorescence than GFAP+ fibers in control and ↓VEGF-A islets. Islet 

clusters in ↑VEGF-A mice showed a seven-fold increase in the islet area occupied by 

GFAP+ Schwann cells compared to controls (Figure 30D), but showed a 70% decrease in 

Gfap mRNA (Figure 30E). GFAP+ Schwann cells began to display the morphology seen 

in mature islets in ↓VEGF-A and ↑VEGF-A mice around weaning (Figure 31). While 

Schwann cells in ↑VEGF islets appear to simply alter their morphology in the changing 

islet microenvironment, the increased GFAP expression in Schwann cells of ↓VEGF 

islets is indicative of reactive gliosis, an adaptive response by glia of the nervous system 

in the setting of nerve injury. 

 

Islet neural crest-derived cells do not express VEGF-A receptors  

during the postnatal maturation of islet innervation 

To determine if VEGF-A signaling directly regulates islet innervation, nerves and 

Schwann cells were examined for expression of two VEGF-A receptors important in 

mediating its positive effects of cells of the nervous system, the VEGF receptor 2  
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Figure 30. Peri-islet Schwann cells demonstrate altered morphology following 
changes in VEGF-A expression and islet vascularization. A-C. Representative islets 
from adult Vegfafl/fl control (A), Pdx1-Cre;Vegfafl/fl (↓VEGF-A; B), and 
doxycycline-treated (for one week) RIP-rtTA;TetO-hVegfa (↑VEGF-A; C) mice, 
immunolabeled for insulin (blue), PECAM1 (green) and GFAP (red/grayscale). Scale 
bars are 100 μm. D. Morphometric quantification of GFAP+ fiber area in adult islets. 
E. Relative expression of Gfap mRNA in isolated islets. ***P < 0.001 vs. control group.
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Figure 31. Disrupted Schwann cell morphology following altered VEGF-A 
expression is present by weaning. A-C. Representative islets from Vegfafl/fl control (A), 
Pdx1-Cre;Vegfafl/fl (↓VEGF-A; B), and doxycycline-treated (from E5.5) 
RIP-rtTA;TetO-hVegfa (↑VEGF-A; C) mice at weaning (postnatal day [P]21-P28), 
immunolabeled for insulin (blue), PECAM1 (green) and GFAP (red/grayscale). Scale 
bars are 100 μm.
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(VEGFR2) and neuropilin 1 (NRP1). In this experiment, Wnt1-Cre;R26-EYFP mice, in 

which neural crest-derived cells are indelibly labeled with YFP (Plank et al., 2011), were 

used to co-label VEGF-A receptors with pancreatic nerves and Schwann cells. Both 

VEGFR2 and NRP1 displayed strong colocalization with PECAM1+ capillaries in 

control and hypervascularized islets (Figure 32). In contrast, coexpression of YFP+ 

neural crest cells with either VEGF-A receptor was not observed during the postnatal 

maturation of islet innervation (P7, weaning, and adult, Figures 33-34; P1, Figure 35B). 

However, a few YFP+ neural crest cells expressed NRP1, but not VEGFR2, at E16.5 

(Figure 35A and C, arrowheads). Therefore, VEGF-A does not appear to signal to 

intraislet nerves during the postnatal maturation of islet innervation. 

 

Gene expression changes following VEGF-A deficiency or overexpression 

To investigate the ability of intraislet endothelial cells to enhance islet innervation, 

RNA sequencing was performed on isolated islet clusters from ↑VEGF-A mice treated 

with Dox for one week (in which the majority of cells are endothelial cells; Brissova et 

al., manuscript in preparation) and untreated controls. Hypervascularized islet clusters 

showed upregulation of a few known neurotrophic factors, including nerve growth factor 

(NGF; Table 6), and upregulation of axon guidance factors (Table 7). Furthermore, 

several extracellular matrix (ECM) components showed changes in expression, indicative 

of ECM remodeling (Table 8). For example, VEGF-Α-overexpressing islet clusters 

showed a five-fold increase in the collagen IV isoforms α1 and α2, a six-fold increase in 

laminin-411 (α4, β1, and γ1 chains), and an 11-fold increase in fibronectin 1,  

            115



insulin / TUJ1 /
PECAM1

insulin / VEGFR2 /
PECAM1

insulin / NRP1 /
PECAM1

C
on

tr
ol

↑ 
VE

G
F-

A

A

A’

B

B’

C

C’

D

D’

E

E’

Figure 32. Intraislet capillaries express VEGF-A receptors. Representative islets 
from adult Vegfafl/fl (control) and doxycycline-treated (for one week) RIP-rtTA; 
TetO-hVegfa (↑VEGF-A) mice, immunolabeled for insulin (blue), PECAM1 (green), and 
TUJ1 (red; A), VEGFR2 (red; B, D) or neuropilin-1 (NRP1, red; C, E). Scale bar in A is 
100 μm and applies to all other panels.
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Figure 33. Islet neural crest-derived cells do not express the VEGF receptor 2 in 
postnatal life. Representative islets from Wnt1-Cre;R26R-EYFP mice at postnatal day 7 
(P7; Α), weaning (P21; B), and adult (C) stages labeled for insulin (blue), GFP (green), 
and VEGFR2 (red). Scale bars in A, B and C are 100 μm. Regions denoted by the dotted 
line in A’, B’, and C’ are shown in A’’, B’’ and C’’, respectively. Scale bars in A’’, B’’, 
and C’’ are 50 μm.
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Figure 34. Islet neural crest-derived cells do not express the VEGF receptor 
neuropilin 1 in postnatal life. Representative islets from Wnt1-Cre;R26R-EYFP mice at 
postnatal day 7 (P7; Α), weaning (P21; B), and adult (C) stages labeled for insulin (blue), 
GFP (green), and neuropilin 1 (NRP1; red). Scale bars in A, B and C are 100 μm. Regions 
denoted by the dotted line in A’, B’, and C’ are shown in A’’, B’’ and C’’, respectively. 
Scale bars in A’’, B’’, and C’’ are 50 μm.
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Figure 35. Some neural crest derived-cells express neuropilin-1, but not VEGFR2, 
during pancreas development. Representative islets from Wnt1-Cre;R26R-EYFP mice 
at embryonic day 16.5 (E16.5; Α, C) and postnatal day 1 (P1; B). Images are labeled for 
insulin (blue), GFP (green), and VEGFR2 (red in A-B) or neuropilin 1 (NRP1, red in C). 
Regions denoted by the dotted line in A’, B’, and C’ are shown in A’’, B’’ and C’’, 
respectively. Arrowheads in C denote fibers with colocalization of GFP and NRP1. Scale 
bars in A, B, and C are 100 μm. Scale bars in A’’, B’’, and C’’ are 50 μm.
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Gene Symbol Fold Change No Dox RPKM 1 wk Dox RPKM Gene Name
Artn - LO LO artemin
Bdnf 1.14 0.57 0.66 brain derived neurotrophic factor 
Bmp1 1.79 4.41 7.94 bone morphogenetic protein 1 
Bmp2 3.96 0.38 1.57 bone morphogenetic protein 2 
Bmp3 1.17 1.36 1.61 bone morphogenetic protein 3
Bmp4 1.04 2.72 2.86 bone morphogenetic protein 4
Bmp5 2.47 7.70 19.14 bone morphogenetic protein 5 
Bmp6 1.21 0.64 0.78 bone morphogenetic protein 6
Bmp7 1.16 0.27 0.32 bone morphogenetic protein 7
Bmp8 - LO LO bone morphogenetic protein 8
Bmp15 - LO LO bone morphogenetic protein 15
Bmpr1a -1.26 25.58 20.42 bone morphogenetic protein receptor, type 1A
Bmpr1b -1.18 1.87 1.59 bone morphogenetic protein receptor, type 1B

Bmpr2 2.14 49.68 107.26
bone morphogenic protein receptor, type II 

(serine/threonine kinase) 

Edn1 2.25 0.60 1.40 endothelin 1
Edn3 -2.30 4.38 1.91 endothelin 3 
Ednra 4.35 8.49 37.24 endothelin receptor type A
Ednrb 3.56 56.83 203.91 endothelin receptor type B 
Gdnf - LO LO glial cell line derived neurotrophic factor

Gfra1 -2.29 3.97 1.74
glial cell line derived neurotrophic factor

family receptor alpha 1 

Gfra2 2.32 4.50 10.54
glial cell line derived neurotrophic factor

family receptor alpha 2 

Gfra3 - LO LO
glial cell line derived neurotrophic factor

family receptor alpha 3

Hgf 1.07 1.29 1.38 hepatocyte growth factor
Igf1 5.00 4.25 21.45 insulin-like growth factor 1 
Igf1r -1.31 14.07 10.77 insulin-like growth factor I receptor 
Igf2 -1.57 6.60 4.23 insulin-like growth factor 2 
Igf2r 1.16 16.05 18.69 insulin-like growth factor 2 receptor
Ngf 3.96 3.74 15.09 nerve growth factor 

Ngfr 1.40 1.89 2.67
nerve growth factor receptor

(TNFR superfamily, member 16) 

Ntf3 - LO LO neurotrophin 3
Ntf5 - LO LO neurotrophin 5

Ntrk1 - LO LO
neurotrophic tyrosine kinase, receptor,

type 1 (TrkA)

Ntrk2 -2.97 17.52 5.94
neurotrophic tyrosine kinase, receptor,

type 2 

Ntrk3 2.46 0.09 0.24
neurotrophic tyrosine kinase, receptor,

type 3 
Pspn - LO LO persephin
Ret -3.00 11.54 3.86 ret proto-oncogene 

Table 6. Gene expression of neurotrophic factors and their receptors in isolated
islets after one week of VEGF-Α overexpression. LO, low expression; relative fold
changes were not calculated for genes with low expression (-).
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Table 7. Gene expression of axon guidance factors and their receptors in
isolated islets after one week of VEGF-Α overexpression. LO, low
expression; relative fold changes were not calculated for genes with low
expression (-).

Gene Symbol Fold Change No Dox RPKM 1 wk Dox RPKM Gene Name
Dcc - LO LO deleted in colorectal carcinoma

Efna1 4.38 1.20 5.41 ephrin A1 
Efna2 -1.22 1.10 0.91 ephrin A2
Efna3 - LO LO ephrin A3
Efna4 7.67 0.25 2.23 ephrin A4 
Efna5 -3.48 5.67 1.63 ephrin A5 
Efnb1 1.18 1.36 1.63 ephrin B1
Efnb2 3.17 22.04 70.45 ephrin B2 
Efnb3 1.03 1.29 1.34 ephrin B3
Epha1 -1.42 0.82 0.58 Eph receptor A1 
Epha2 4.09 1.72 7.12 Eph receptor A2
Epha3 2.08 1.15 2.42 Eph receptor A3 
Epha4 2.55 3.50 8.99 Eph receptor A4 
Epha5 -1.23 0.37 0.30 Eph receptor A5 
Epha7 -2.83 3.56 1.26 Eph receptor A7
Ephb1 5.27 0.69 3.72 Eph receptor B1 
Ephb2 -2.18 0.51 0.24 Eph receptor B2 
Ephb3 3.37 0.22 0.79 Eph receptor B3
Ephb4 2.74 3.59 9.92 Eph receptor B4
Fgf2 7.54 0.19 1.66 fibroblast growth factor 2 
Nrp1 2.24 31.39 70.75 neuropilin 1 
Nrp2 4.23 19.26 82.05 neuropilin 2
Ntn1 8.27 0.03 0.35 netrin 1 
Ntn3 -2.19 0.31 0.14 netrin 3
Ntn4 -1.03 6.07 5.95 netrin 4 
Ntng2 4.25 0.12 0.59 netrin G2
Plxna1 1.84 1.93 3.58 plexin A1
Plxna2 1.52 6.78 10.40 plexin A2
Plxna3 -2.63 1.29 0.49 plexin A3
Plxna4 2.04 2.13 4.37 plexin A4
Plxnb1 1.13 2.62 2.98 plexin B1 
Plxnb2 -1.14 12.76 11.30 plexin B2 
Plxnc1 2.16 0.32 0.72 plexin C1
Plxnd1 5.36 3.09 16.71 plexin D1 
Robo1 -1.89 7.01 3.73 roundabout homolog 1 (Drosophila)
Robo2 -3.82 16.15 4.26 roundabout homolog 2 (Drosophila) 
Robo3 2.31 0.16 0.39 roundabout homolog 3 (Drosophila) 
Robo4 3.15 7.38 23.46 roundabout homolog 4 (Drosophila) 

Sema3a - LO LO sema domain, immunoglobulin domain (Ig), short 
basic domain, secreted, (semaphorin) 3A

Sema3b 1.95 0.93 1.85 sema domain, immunoglobulin domain (Ig), short 
basic domain, secreted, (semaphorin) 3B

Sema3c 1.17 1.07 1.26 sema domain, immunoglobulin domain (Ig), short 
basic domain, secreted, (semaphorin) 3C

Sema3d 1.89 0.21 0.41 sema domain, immunoglobulin domain (Ig), short 
basic domain, secreted, (semaphorin) 3D 

Sema3e -1.49 0.91 0.61 sema domain, immunoglobulin domain (Ig), short 
basic domain, secreted, (semaphorin) 3E

Sema3g 1.57 4.53 7.18 sema domain, immunoglobulin domain (Ig), short 
basic domain, secreted, (semaphorin) 3G 
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Gene Symbol Fold Change No Dox RPKM 1 wk Dox RPKM Gene Name

Sema4a -1.56 0.69 0.44
sema domain, immunoglobulin domain (Ig), 

transmembrane domain (TM) and short cytoplasmic 
domain, (semaphorin) 4A

Sema4b 1.10 3.79 4.21
sema domain, immunoglobulin domain (Ig), 

transmembrane domain (TM) and short cytoplasmic 
domain, (semaphorin) 4B 

Sema4c 3.95 1.18 4.72
sema domain, immunoglobulin domain (Ig), 

transmembrane domain (TM) and short cytoplasmic 
domain, (semaphorin) 4C

Sema4d -1.57 4.07 2.61
sema domain, immunoglobulin domain (Ig), 

transmembrane domain (TM) and short cytoplasmic 
domain, (semaphorin) 4D

Sema4f -1.50 1.28 0.86 sema domain, immunoglobulin domain (Ig), TM 
domain, and short cytoplasmic domain

Sema4g 2.28 0.21 0.50
sema domain, immunoglobulin domain (Ig), 

transmembrane domain (TM) and short cytoplasmic 
domain, (semaphorin) 4G 

Sema5a 2.66 4.68 12.52
sema domain, seven thrombospondin repeats (type 1 

and type 1-like), transmembrane domain (TM) and 
short cytoplasmic domain, (semaphorin) 5A

Sema5b 3.92 0.24 0.97
sema domain, seven thrombospondin repeats (type 1 

and type 1-like), transmembrane domain (TM) and 
short cytoplasmic domain, (semaphorin) 5B 

Sema6a 2.55 2.83 7.27 sema domain, transmembrane domain (TM), and 
cytoplasmic domain, (semaphorin) 6A

Sema6b 2.13 1.91 4.12 sema domain, transmembrane domain (TM), and 
cytoplasmic domain, (semaphorin) 6B 

Sema6c - LO LO sema domain, transmembrane domain (TM), and 
cytoplasmic domain, (semaphorin) 6C

Sema6d 3.97 16.10 64.37 sema domain, transmembrane domain (TM), and 
cytoplasmic domain, (semaphorin) 6D 

Sema7a 2.32 5.00 11.73 sema domain, immunoglobulin domain (Ig), and GPI 
membrane anchor, (semaphorin) 7A

Slit1 - LO LO slit homolog 1
Slit2 1.46 1.38 2.03 slit homolog 2 (Drosophila) 
Slit3 2.33 4.94 11.58 slit homolog 3 (Drosophila) 

Tgfb1 4.34 5.96 26.15 transforming growth factor, beta 1 
Tgfb2 1.94 5.78 11.28 transforming growth factor, beta 2 
Tgfb3 3.47 4.85 16.98 transforming growth factor, beta 3 
Tgfbr1 -1.00 10.62 10.68 transforming growth factor, beta receptor I 
Tgfbr2 2.06 5.78 12.00 transforming growth factor, beta receptor II
Tgfbr3 -1.21 11.76 9.78 transforming growth factor, beta receptor III

Unc119b -1.19 2.47 2.09 unc-119 homolog B (C. elegans)
Unc13a -2.89 6.06 2.10 unc-13 homolog A (C. elegans) 
Unc13b -2.80 2.70 0.97 unc-13 homolog B (C. elegans) 
Unc45a 1.12 1.36 1.54 unc-45 homolog A (C. elegans) 
Unc45b 1.98 5.21 10.37 unc-45 homolog B (C. elegans) 
Unc50 -1.35 40.54 30.18 unc-50 homolog (C. elegans) 
Unc5a -1.36 1.88 1.39 unc-5 homolog A (C. elegans)
Unc5b 4.33 1.67 7.31 unc-5 homolog B (C. elegans) 
Unc5c -3.40 1.63 0.48 unc-5 homolog C (C. elegans) 
Unc79 -3.77 5.29 1.41 unc-79 homolog (C. elegans)
Unc80 -3.14 18.08 5.79 unc-80 homolog (C. elegans) 

Unc93b1 2.28 2.06 4.77 unc-93 homolog B1 (C. elegans)

Table 7, continued.
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Gene Symbol Fold Change No Dox RPKM 1 wk Dox RPKM Gene Name
Col10a1 15.70 0.13 2.36 collagen, type X, alpha 1 
Col11a1 6.89 0.09 0.67 collagen, type XI, alpha 1 
Col12a1 9.61 0.42 4.09 collagen, type XII, alpha 1 
Col13a1 2.40 3.40 8.23 collagen, type XIII, alpha 1 
Col14a1 1.65 6.86 11.42 collagen, type XIV, alpha 1 
Col15a1 4.43 15.34 68.43 collagen, type XV, alpha 1
Col16a1 2.38 0.20 0.49 collagen, type XVI, alpha 1 
Col18a1 10.37 0.46 4.94 collagen, type XVIII, alpha 1 
Col19a1 3.97 0.12 0.49 collagen, type XIX, alpha 1 [
Col1a1 3.55 35.00 124.95 collagen, type I, alpha 1 
Col1a2 3.83 15.31 59.00 collagen, type I, alpha 2 
Col25a1 1.13 0.24 0.27 collagen, type XXV, alpha 1 
Col27a1 1.52 2.16 3.32 collagen, type XXVII, alpha 1 
Col28a1 1.57 0.66 1.05 collagen, type XXVIII, alpha 1 
Col3a1 2.63 22.06 58.33 collagen, type III, alpha 1 
Col4a1 5.12 41.47 213.50 collagen, type IV, alpha 1
Col4a2 5.90 10.78 64.02 collagen, type IV, alpha 2 
Col4a3 1.73 3.06 5.32 collagen, type IV, alpha 3
Col4a4 2.08 0.59 1.24 collagen, type IV, alpha 4 
Col4a5 5.64 0.33 1.92 collagen, type IV, alpha 5 
Col5a1 3.66 1.73 6.41 collagen, type V, alpha 1 
Col5a2 4.83 0.94 4.60 collagen, type V, alpha 2 
Col5a3 7.55 0.66 5.05 collagen, type V, alpha 3 
Col6a1 2.81 5.95 16.88 collagen, type VI, alpha 1 
Col6a2 4.12 2.50 10.40 collagen, type VI, alpha 2 
Col6a3 4.91 1.91 9.46 collagen, type VI, alpha 3 
Col6a5 -3.28 0.44 0.13 collagen, type VI, alpha 5 
Col6a6 -1.97 3.00 1.53 collagen, type VI, alpha 6
Col8a1 4.70 10.59 50.09 collagen, type VIII, alpha 1 
Col9a2 -2.35 0.43 0.18 collagen, type IX, alpha 2 

Table 8. Gene expression of extracellular matrix proteins in isolated islets after
one week of VEGF-Α overexpression. LO, low expression; relative fold changes
were not calculated for genes with low expression (-).
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Gene Symbol Fold Change No Dox RPKM 1 wk Dox RPKM Gene Name
Fn1 11.39 2.25 25.91 fibronectin 1
Itga1 3.77 7.93 30.14 integrin alpha 1 
Itga10 3.24 0.06 0.24 integrin, alpha 10 
Itga11 2.40 0.28 0.70 integrin alpha 11
Itga2 2.79 0.81 2.31 integrin alpha 2 
Itga2b 4.02 0.06 0.29 integrin alpha 2b 
Itga3 1.22 2.84 3.51 integrin alpha 3 
Itga4 1.04 4.50 4.70 integrin alpha 4 
Itga5 9.73 0.43 4.32 integrin alpha 5 (fibronectin receptor alpha) 
Itga6 3.32 18.00 60.09 integrin alpha 6
Itga7 4.44 0.47 2.15 integrin alpha 7 
Itga8 3.09 1.15 3.60 integrin alpha 8 
Itga9 3.78 2.64 10.06 integrin alpha 9
Itgad -48.38 0.65 0.00 integrin, alpha D 
Itgae 2.91 0.16 0.50 integrin alpha E, epithelial-associated 
Itgal 2.86 0.45 1.31 integrin alpha L 

Itgam 2.24 1.57 3.55 integrin alpha M
Itgav -1.27 13.64 10.81 integrin alpha V 
Itgax 1.83 2.62 4.84 integrin alpha X 
Itgb1 2.20 110.44 244.48 integrin beta 1 (fibronectin receptor beta)
Itgb2 2.31 3.30 7.72 integrin beta 2 
Itgb3 6.27 9.08 57.40 integrin beta 3
Itgb4 2.07 0.30 0.63 integrin beta 4 
Itgb5 1.52 5.24 8.04 integrin beta 5 
Itgb6 1.79 0.26 0.48 integrin beta 6 
Itgb7 2.27 0.56 1.32 integrin beta 7
Itgb8 -1.90 2.77 1.46 integrin beta 8 
Itgbl1 1.10 5.24 5.82 integrin, beta-like 1 

Lama2 2.44 4.89 12.04 laminin, alpha 2 
Lama3 1.56 4.41 6.92 laminin, alpha 3 
Lama4 6.38 8.00 51.43 laminin, alpha 4 
Lama5 2.43 1.13 2.77 laminin, alpha 5 
Lamb1 6.98 5.94 41.78 laminin B1 
Lamb2 2.06 4.34 8.99 laminin, beta 2 
Lamc1 5.26 27.39 145.00 laminin, gamma 1 
Lamc2 -2.80 3.27 1.17 laminin, gamma 2 
Lamc3 7.38 0.03 0.32 laminin gamma 3 

Table 8, continued.
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all previously shown to be major components of the intraislet vascular basement 

membrane (Nikolova et al., 2006).  

To confirm that NGF expression was increased in intraislet endothelial cells 

following VEGF-Α overexpression, quantitative RT-PCR and immunohistochemistry 

was performed. Compared to untreated RIP-rtTA;TetO-hVegfa controls, β-cell-specific 

VEGF-A overexpression in ↑VEGF-A mice led to a three-fold increase in Ngf mRNA in 

isolated islet clusters (Figure 36B). In contrast, Ngf was unchanged in ↓VEGF-A islets, 

compared to Vegfafl/fl controls (Figure 36A). As expected, expression of the endothelial 

cell marker Kdr (encoding VEGFR2) was dramatically reduced in ↓VEGF-A islets, but 

expression of Pecam1 (encoding PECAM1) was elevated three-fold in ↑VEGF-A islet 

clusters (Figure 36A-B). In contrast, Ins2 (encoding insulin) expression was unchanged 

in ↓VEGF-A islets and significantly reduced in ↑VEGF-A islet clusters (Figure 36A-B). 

Immunohistochemistry showed that NGF expression did not localize to any particular 

cell type, but was broadly expressed throughout the islet in all groups (Figure 36C-E). 

These data suggest that the VEGF-Α-induced expansion of the intraislet endothelial cell 

population contributes to islet hyperinnervation through expression of NGF.  

 

β-cell hyperplasia may enhance islet innervation 

To determine if β-cell mass also influences the extent of islet innervation, the 

adult ob/ob mouse was used as a model of β-cell hyperplasia. Islets in adult ob/ob mice 

have a greater than three-fold increase in islet area compared to littermate wt/wt control 

mice, and an altered intraislet vasculature, including reduced vessel density but increased  
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Figure 36. Islet NGF expression is increased following VEGF-A overexpression. 
A. Relative gene expression of Ins2 (encoding insulin), Kdr (encoding VEGFR2), and 
Ngf (encoding NGF) in islets from Pdx1-Cre;Vegfafl/fl mice compared to Vegfafl/fl 
controls, evaluated by quantitative PCR. Values are 1.181 ± 0.144 for Ins2 (n = 4; P > 
0.05 vs. control), 0.020 ± 0.006 for Kdr (n = 4; ***P < 0.001 vs. control) and 1.285 ± 
0.494 for Ngf (n = 4; P > 0.05 vs. control). B. Relative gene expression of Ins2, Pecam1 
(encoding PECAM1), and Ngf in islets from doxycycline-treated (for one week) 
RIP-rtTA;TetO-hVegfa mice compared to untreated RIP-rtTA;TetO-hVegfa controls, 
evaluated by quantitative PCR. Values are 0.184 ± 0.005 for Ins2 (n = 4; ***P < 0.001 vs. 
control), 3.188 ± 0.058 for Pecam1 (n = 4; ***P < 0.001 vs. control) and 3.072 ± 0.341 
for Ngf (n = 4; **P = 0.0089 vs. control). C-E. Representative islets from adult control 
(C),Pdx1-Cre;Vegfafl/fl (↓VEGF-A; D), and doxycycline-treated (for one week) RIP-
rtTA;TetO-hVegfa (↑VEGF-A; E) mice, immunolabeled for insulin (blue), PECAM1 
(green) and proNGF (red/grayscale). Scale bar in C is 100 μm and applies to D-E.
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vessel diameter and increased blood flow (Dai et al., manuscript in preparation). Global 

islet innervation was slightly increased in hyperplastic ob/ob islets (Figure 37A-B), as 

quantified by the density of TUJ1+ nerve fibers (Figure 37C). In contrast, GFAP+ 

Schwann cells in ob/ob pancreata displayed a normal peri-islet morphology (Figure 38).  

Surprisingly, ob/ob islets displayed evidence of fiber-type specific changes in 

autonomic innervation. Islets in ob/ob mice showed dense parasympathetic innervation 

(Figure 39A-B), with an increased density of VAChT+ varicosities and increased 

VAChT+ area (Figure 39E-F). This observation was not solely a reflection of the 

increased number of large islets in ob/ob mice, as larger islets in wt/wt mice did not show 

a similar increase in VAChT+ nerve fibers (Figure 39C-D). In contrast to 

parasympathetic innervation, islet sympathetic innervation was unchanged, or perhaps 

even decreased, in ob/ob mice. Islets from ob/ob and wt/wt mice showed a comparable 

number of TH+ nerve fibers within the insulin+ islet core (Figure 39G-H). Similarly, 

both ob/ob and wt/wt showed a few TH+ β-cells per islet (Figure 39G-H, arrows). These 

data show that ob/ob islets have enhanced parasympathetic, but not sympathetic, 

innervation.  

In contrast to the ob/ob model, no changes in islet innervation were observed in 

either ↓VEGF-A mice or Vegfafl/fl controls in the late stages of pregnancy, another model 

of β-cell hyperplasia (Figure 40).  
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Figure 37. Islet innervation is enhanced in ob/ob mice. A-B. Representative islets 
immunolabeled for insulin (blue), PECAM1 (green), and TUJ1 (red/grayscale). 
C. Quantification of islet TUJ1+ nerve fiber density. *P < 0.05. Scale bars are 100 μm. 
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Figure 38. Peri-islet Schwann cells are unchanged in ob/ob mice. A-B. Representative 
islets immunolabeled for insulin (blue), PECAM1 (green), and GFAP (red/grayscale). 
Scale bars are 100 μm. 
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Figure 39. Islet parasympathetic, but not sympathetic, innervation is enhanced in 
ob/ob mice. Α-D. Representative islets immunolabeled for insulin (green) and the 
vesicular acetylcholine transporter (VAChT; red/grayscale). Arrows in C and D denote 
neuroinsular complexes. E. Quantification of islet VAChT+ varicosity density. 
F. Quantification of islet VAChT+ area. G-H. Representative islets immunolabeled for 
insulin (green) and tyrosine hydroxylase (TH; red/grayscale). Arrowheads denote TH+ 
β-cells. Scale bars are 100 μm. 
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Discussion 

Pancreatic islets are highly vascularized and richly innervated, two features that 

are essential for the fine regulation of blood glucose. The close physical relationship 

between islet nerves and blood vessels has been noted (Burris and Hebrok, 2007; 

Cabrera-Vasquez et al., 2009; Lindsay et al., 2006; Rodriguez-Diaz et al., 2011a; 

Shimada et al., 2012), but the molecular mechanisms involved in directing this 

relationship are incompletely defined. The data presented in this Chapter showed for the 

first time that (1) establishment of the intraislet vasculature by VEGF-A is critical for the 

postnatal maturation of islet innervation, and (2) intraislet endothelial cells provide 

important signals for nerves through expression of NGF. 

 

Islet innervation follows islet vascularization during development 

VEGF-A is critical in recruiting endothelial cells to the developing pancreas, 

allowing for endocrine cell clusters to become vascularized and exposed to blood flow as 

early as E13.5 (Brissova et al., 2006; Shah et al., 2011). In contrast, while the pancreas 

contains differentiated nerve fibers as early as E14.5, these fibers are only peripherally 

associated with clusters of developing endocrine cells until early postnatal life. Islet nerve 

fibers are not consistently found interspersed with β-cells of vascularized islets until the 

weaning stage, around three weeks after birth. The data presented in this Chapter support 

prior observations that islet innervation occurs late in islet maturation (Burris and Hebrok, 

2007; Cabrera-Vasquez et al., 2009), but also demonstrate that the VEGF-A-directed 

formation of the intraislet vasculature is crucial for the final development of islet 

innervation. Islet nerves serve a modulatory role in islet function, and this relatively late 
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maturation of islet innervation coincides with developmental changes in the life of the 

mouse, such as weaning (Aguayo-Mazzucato et al., 2006). In fact, β-cells do not show 

mature glucose-stimulated insulin secretion or normal glucose tolerance until several 

weeks after birth (Lavine et al., 1971). As β-cells in newborn rodents do not show adult 

β-cell gene expression (Aguayo-Mazzucato et al., 2011; Jermendy et al., 2011), it is 

possible that the maturation of islet innervation that occurs in early postnatal life plays a 

key role in final β-cell development. While a lack of neural crest-derived cells in the 

embryonic pancreas impairs endocrine cell development (Nekrep et al., 2008; Plank et al., 

2011), it will be interesting to explore the precise role of nerves and Schwann cells during 

the postnatal maturation of the pancreas, following the development of models that will 

allow us to address this issue. 

 

Intraislet vessels are crucial for islet nerve pathfinding during development 

While neurovascular alignment is a common theme among tissues, multiple 

mechanisms may be used to achieve this arrangement. These data show that the 

initialization of pancreatic innervation and the maturation of islet innervation occur by 

distinct processes that are differentially dependent on VEGF-A and vascularization. 

Neural crest-derived cells arrive in the embryonic pancreas and associate with islet 

clusters independent of VEGF-A signaling, in part recruited by pancreas-derived netrin 

signaling (Jiang et al., 2003). Later in development, differentiated nerves fail to penetrate 

the islet without an established, VEGF-Α-directed intraislet vascular plexus. This 

VEGF-A requirement appears to be indirect, because pancreatic neural crest-derived cells 
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did not express the VEGF-A receptors VEGFR2 or NRP1 in during the postnatal 

maturation of islet innervation. 

The requirement for vessels in the final maturation of islet innervation is similar 

to the avian enteric nervous system, in which the experimental disruption of gut 

endothelial cells prevented the migration of undifferentiated neural crest cells and 

impaired formation of the enteric nervous system (Nagy et al., 2009). In that study, it was 

found that signaling through β1 integrin, a receptor for ECM components, was crucial for 

the interaction between neural crest cells and endothelial cells. This interaction is likely 

paralleled in islet development, in which endothelial cells form the basement membrane 

(Nikolova et al., 2006). Data obtained from RNA sequencing of hypervascularized, 

hyperinnervated islets demonstrated an increase in several components of the ECM, 

including collagen IV α1, collagen IV α2, laminin-411, and fibronectin 1. In this way, 

islet innervation may require a mature intraislet vascular network to function as a scaffold 

for neurite penetration into the islet. 

Whether vessels themselves provide the predominant signals that recruit neurites 

during normal islet development remains unclear. The incomplete alignment of 

capillaries and nerve endings in adult islets suggests that β-cells also provide important 

signals to mediate the final development of islet innervation. Both endocrine and 

endothelial cells express NGF during development (Cabrera-Vasquez et al., 2009). In 

addition, β-cells are more efficient than non-β endocrine cells in promoting reinnervation 

of transplanted islet cell grafts (Myrsén et al., 1996). Here, two different models of β-cell 

hyperplasia were used to determine whether more β-cells enhanced islet innervation. 

During late-stage pregnancy, a short-term model of β-cell hyperplasia, no changes were 
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evident in innervation. However, islet innervation was enhanced in ob/ob mice, which 

display dramatic β-cell hyperplasia in the setting of long-term insulin resistance. 

Therefore, the ability of β-cells to signal to nerve endings appears to depend on specific 

circumstances.  

In contrast to the lack of expression of VEGF receptors in neural crest-derived 

cells of the postnatal islet, NRP1 expression was observed in some YFP+ neural crest-

derived cells at E16.5. While NRP1 interacts with VEGFR2 to mediate VEGF-A 

signaling in endothelial cells, NRP1 also interacts with plexin receptors that bind axonal 

guidance molecules in the semaphorin family (Gu et al., 2003; Schwarz et al., 2009). 

Because these NRP1+ neural crest-derived cells did not coexpress VEGFR2, it is possible 

that they are receiving guidance signals from semaphorins instead of VEGF-A; however, 

VEGF-Α-to-NRP1 signaling may help mediate neuron survival, as it does in the 

hypothalamus (Cariboni et al., 2011). The potential role of semaphorins in pancreas 

development remains to be determined. 

 

Intraislet vessels are neurotrophic in mature islets 

A variety of blood vessel-derived factors are implicated in signaling to nerves. 

During development, endothelial cells express BDNF and BMPs 2, 4, and 7, which 

mediate neuronal differentiation (Lammert et al., 2003a). Additionally, there are multiple 

factors involved in directing the autonomic innervation of vessels that may also be 

candidates for mediating neurite growth in islets, such as HGF, GDNF, artemin, 

neurotrophin 3, NGF, and endothelin 3 (Storkebaum and Carmeliet, 2011). 
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Here, β-cell-specific VEGF-A overexpression led to hypervascularization 

followed by hyperinnervation of pancreatic islets, both during development and 

following a one-week period in the mature animal. In a model of inducible angiogenesis 

in the rat mesentery, neurite growth slowly followed the pattern of new vessels, resulting 

in neurovascular alignment down to the capillary level, though the molecular mechanisms 

mediating this relationship remain unclear (Stapor and Murfee, 2012). However, an 

examination of factors involved in nerve regeneration in skin wounds found that 

microvascular endothelial cells were a source of NGF (Gibran et al., 2003). To better 

understand what factors might mediate the hyperinnervation following VEGF-A 

overexpression, RNA sequencing was performed on ↑VEGF-A islet clusters isolated 

after one week of VEGF-A induction, when endothelial cells form the most abundant 

islet cell population. Only a limited number of neurotrophic factors were upregulated. 

Further quantitative RT-PCR analysis of isolated islets confirmed upregulation of NGF, a 

factor known to be important in islet physiology. One recent study showed that pro-NGF 

was expressed by islet endothelial cells to help direct sympathetic innervation during 

development (Cabrera-Vasquez et al., 2009). Additionally, overexpression of NGF by β-

cells led to sympathetic hyperinnervation of the islet (Edwards et al., 1989). These data 

suggest that intraislet endothelial cells are important in directing islet innervation through 

production of NGF. 

 

β-cells in hypoinnervated islets show neuro-islet plasticity 

The significance of tyrosine hydroxylase (TH) expression by β-cells remains 

unclear. The presence of occasional TH+ β-cells was documented in both the endogenous 
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pancreas (Iturriza and Thibault, 1993; Karlsson et al., 1997; Lindsay et al., 2006) and in 

transplanted islets (Korsgren et al., 1992; Persson-Sjögren et al., 1998; Persson-Sjögren 

et al., 2002; Persson-Sjögren et al., 2001a). TH expression in β-cells has been proposed to 

be a marker of endocrine precursor cells during early pancreas development (Alpert et al., 

1988; Teitelman and Lee, 1987; Teitelman et al., 1993), a marker of post-proliferative β-

cells on the path to senescence (Teitelman et al., 1988), or an indicator of synthesis of 

endogenous islet catecholamines (Borelli and Gagliardino, 2001; Borelli et al., 2003). 

These data do not support the hypothesis that TH+ β-cells are post-proliferative, because 

there was no increase in TH+ β-cells in islets in pregnant mice or in leptin-deficient ob/ob 

mice. It is possible that the dramatic increase in the number of TH+ β-cells in VEGF-A-

deficient pancreata marks an increased number of senescent cells in these islets, in 

agreement with the >50% reduction in β-cell proliferation observed in these mice at P1 

and adult stages (Reinert and Brissova et al., manuscript in preparation). However, no 

change was observed in senescence-associated β-galactosidase staining. The number of 

TH+ β-cells in ↓VEGF-A islets begins to increase postnatally, when islet innervation 

should be reaching its mature state. Thus, another possibility is that these hypoinnervated, 

hypovascularized islets detect a lack of neuronal input and some β-cells are taking on the 

role of catecholamine synthesis in compensation. Normal β-cells are known to express 

several neuronal markers, including glutamic acid decarboxylase (GAD) and several 

neurotrophin receptors (Atouf et al., 1997; Scharfmann, 1997), and have been proposed 

to function like neurons (Fujita and Kobayashi, 1979; reviewed in Arntfield and van der 

Kooy, 2011). Furthermore, human α-cells express VAChT and produce acetylcholine that 

functions as a paracrine signal to enhance islet hormone secretion (Rodriguez-Diaz et al., 
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2011b). Therefore, TH expression in endocrine cells may be an indicator of neuro-islet 

plasticity, similar to other rodent models of diabetes in which endocrine cells assume 

expression of neurotransmitters in attempt to normalize glucose homeostasis (Ahrén et al., 

2006). 

 

Peri-islet Schwann cells sense islet injury following a disruption in islet morphology 

The precise role of peri-islet Schwann cells (pScs) and the significance of their 

localization at the endocrine/exocrine interface of the pancreas are unknown. The 

redistribution of pScs to islet centers observed in VEGF-A-deficient islets most closely 

resembles the reactive gliosis observed in injured islets of mice treated with 

streptozotocin (STZ; Teitelman et al., 1998). In this model, the reactive glial cells 

expressed NGF and endocrine cells increased expression of the NGF receptor TrkA. 

Following the STZ injury, recovered islets with regenerated β-cells displayed a normal, 

peri-islet morphology of glial cells (Teitelman et al., 1998). These data suggested that 

pScs detect a disruption in islet morphology and/or function and may aid in the 

regeneration process. In contrast to the transient gliosis observed in the STZ model, 

VEGF-A-deficient islets demonstrate gliosis well into adulthood, suggesting that a 

persistent, as-yet undefined signal triggers a reaction in pScs that may serve to promote 

nerve regeneration. However, the fact that VEGF-deficient islets contained fewer nerves 

throughout life emphasizes the importance of the vascular scaffold for nerve penetration 

into islets. 
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Islet parasympathetic innervation is enhanced in the setting of insulin resistance 

The autonomic nervous system plays critical roles in regulating energy 

homeostasis (Lustig, 2003; Marino et al., 2011) and in determining blood vessel tone and 

blood pressure (Storkebaum and Carmeliet, 2011). The increased density of cholinergic 

nerves observed in ob/ob islets is consistent with multiple studies demonstrating the 

importance of the parasympathetic nervous system in mediating the increased insulin 

secretion and islet blood flow in obese mice and rats. For example, administration of the 

cholinergic signaling antagonist methylatropine induced a dramatic and sustained 

reduction in plasma insulin levels in ob/ob mice, compared to the slight, brief reduction 

in lean controls, suggesting that ob/ob mice have an enhanced cholinergic tone (Ahrén 

and Lundquist, 1982). Similarly, perifused pancreas from five-day-old preobese Zucker 

Diabetic Fatty (ZDF) rats, which are homozygous for a mutation in the leptin receptor, 

showed a greater enhancement in glucose-stimulated insulin secretion in the presence of 

ACh but not arginine (Atef et al., 1991). While parasympathetic innervation is a critical 

component of the hyperinsulinemia observed in these rodent models of obesity, 

parasympathetic nerves are also involved in increasing islet blood flow. Rats with either 

genetic (ZDF) or surgically induced (ventromedial hypothalamus lesioning) obesity show 

increased islet blood flow compared to their respective controls, and this effect is 

reversed by vagotomy (Atef et al., 1992). The parasympathetic nervous system is also 

important in relaying the message to selectively increase islet blood flow when the brain 

or gut detects hyperglycemia. When glucose is infused to increase blood glucose levels 

specifically in the brain (without inducing peripheral hyperglycemia), signals from the 

central nervous system are transmitted through the vagus nerves to enhance islet blood 
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flow (Jansson and Hellerström, 1986). Furthermore, rats previously exposed to a period 

of continuous hyperglycemia (via a 48-hour glucose infusion) demonstrate a prolonged 

heightened sensitivity to glucose, through enhanced insulin secretion and increased islet 

blood flow; this “memory” effect is also dependent on intact vagal signaling (Atef et al., 

1997). Additionally, glucose infusion directly into the duodenum triggers a vagal relay to 

induce insulin secretion and enhance islet blood flow (Carlsson et al., 1999). In all, these 

data indicate that parasympathetic innervation is enhanced in ob/ob islets to augment 

insulin secretion and promote increased blood flow (see model in Figure 41).  

 

Model of pancreatic islet development 

The data presented here support a model in which VEGF-A and its patterning of 

islet vascularization are critical for the final maturation of islet innervation (Figure 42). 

Endothelial cells are required for induction of the pancreatic buds starting at E8.5 

(Lammert et al., 2001), and neural crest-derived cells arrive in the pancreatic epithelium 

around E10.0 (Plank et al., 2011). By E13.5, VEGF-Α-expressing endocrine cells have 

recruited endothelial cells to form the early islet vascular plexus and provide blood flow 

(Brissova et al., 2006). Differentiated nerves and glia associate with developing islet 

clusters between E13.5 and E15.5 (Plank et al., 2011), independent of VEGF-A 

expression and islet vascularization, but remain localized to the islet periphery (Burris 

and Hebrok, 2007; Nekrep et al., 2008; Plank et al., 2011; Shimada et al., 2012). 

Postnatally, endocrine cell- and endothelial cell-derived factors (such as NGF) signal to 

nerve fibers to follow capillaries into the islet core. Islet innervation reaches its mature  
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Figure 41. Summary of changes in pancreatic islet vascularization and
innervation in the ob/ob mouse. Enhanced parasympathetic innervation contributes
to insulin hypersecretion, increased blood flow, and vasodilation in hyperplastic
islets of ob/ob mice. Model refers to data from Dai et al. (manuscript in preparation).
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during embryogenesis. Formation of this plexus is required for islet innervation to
fully develop, as VEGF-A-deficient islets are both hypovascularized and
hypoinnervated. In contrast, VEGF-A excess leads to islet hypervascularization and
hyperinnervation, in part through enhanced expression of nerve growth factor (NGF).
From Reinert et al. (manuscript submitted).
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state around the time of weaning, three weeks after birth, when nerve fibers and 

capillaries are intermingled with endocrine cells, and Schwann cells localize to the islet 

periphery. In the VEGF-A-deficient pancreas, the impaired recruitment of endothelial 

cells results in hypovascularized islets. While neural crest-derived cells do associate with 

developing endocrine cell clusters, nerve fibers fail to penetrate the islet core during 

postnatal development. Instead, Schwann cells, normally localized to the islet periphery, 

are redistributed to the islet core in a state that resembles reactive gliosis. In contrast, 

when VEGF-A expression by β-cells is increased, a dramatic expansion of endothelial 

cells leads to rapid islet hypervascularization. These highly vascularized islet clusters 

become densely innervated yet also show altered Schwann cell morphology. 

Several groups have noted differences in endocrine cell arrangements of human 

and mouse islets (Brissova et al., 2005; Cabrera et al., 2006; Steiner et al., 2010), but only 

recently has the morphology of human islet innervation been explored (Rodriguez-Diaz 

et al., 2011a). While human islets display fewer nerve fibers than mouse islets, those 

nerve fibers appear to be more closely associated with intraislet capillaries than with 

endocrine cells themselves. In fact, it was suggested that this arrangement allows islet 

neurotransmitters to signal first to arterial smooth muscle cells, thus allowing changes in 

blood flow to regulate islet function. Alternatively, islet neurotransmitters may be 

released into the bloodstream before they reach endocrine cells (Rodriguez-Diaz et al., 

2011a). Because the close physical relationship between the intraislet vascular and 

nervous systems is maintained in human islets, it is promising that the vascular-mediated 

nerve patterning observed in mouse islets is a mechanism conserved in humans. 
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In conclusion, these data show that capillaries and nerve fibers are intimately 

related within the pancreatic islet, and that islet innervation is highly dependent on islet 

vascularization. Although VEGF-A does not signal directly to islet neural elements, 

perturbations in islet VEGF-A expression induce dramatic changes in islet 

vascularization, which has a profound impact on the ingrowth of islet nerve fibers, the 

structural arrangement of peri-islet Schwann cells, and the expression of neuronal genes 

by endocrine cells. It is concluded that VEGF-A is a master coordinator of islet 

neurovascular development. 
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CHAPTER IV 

 

INVESTIGATING THE ROLE OF VEGF-A IN THE MAINTENANCE OF ISLET 

VASCULARIZATION 

 

Some data in this Chapter have been published (Figure 54; Wicksteed et al., 2010). 

 

Introduction 

Pancreatic islets are intimately connected to the vasculature, and disruption of this 

relationship has been hypothesized to contribute to diabetes (Lammert, 2008). 

Furthermore, it has been proposed that the decreased vessel density (Mattsson et al., 

2002) and oxygen tension (Carlsson et al., 2001; Carlsson et al., 2000) in islet grafts is a 

major reason for islet transplantation failure. Therefore, a basic understanding of the role 

of the intraislet vasculature in islet formation and function may lead to improved 

therapies for diabetes.  

In order to understand the mechanisms directing normal islet vascularization, 

much work has focused on the role of islet-derived angiogenic factors. When VEGF-A is 

inactivated either in the early pancreas or in newly formed β-cells, the intraislet capillary 

plexus fails to become fully established, resulting in substantial defects in insulin 

secretion in vivo, glucose intolerance, and, in the case of the pancreas-wide knockout, 

reduced β-cell proliferation and mass (Brissova et al., 2006; Lammert et al., 2003b; 

Reinert and Brissova et al., manuscript in preparation). Similarly, overexpression of 

VEGF-A in developing pancreata (Magenheim et al., 2011) or β-cells (Cai et al., 2012) is 
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detrimental to endocrine cell differentiation and islet formation. Therefore, VEGF-A 

expression must be precisely controlled in the developing pancreas for proper islet 

development and function. 

While existing genetic mouse models demonstrated a role for VEGF-A and 

endothelial cells in islet formation, the precise role of VEGF-A in mature islets is unclear 

(Figure 43). The prior approaches inactivated VEGF-A in embryogenesis, thus making it 

difficult to identify which phenotypes in adult mice were the result of developmental 

defects in hypovascularized islets and which reflected the role of VEGF-A and 

endothelial cells in mature islets. In an alternate approach, studies in which VEGF 

signaling inhibitors were administered to adult mice demonstrated the importance of 

VEGF-A in maintaining the density and permeability of the intraislet vasculature, but, 

surprisingly, showed that interrupting global VEGF-A signaling improved glucose 

tolerance (Kamba et al., 2006). However, the effects of VEGF inhibitors on the 

vasculature of multiple tissues again prevented a full understanding of the role of 

endothelial cells in established islets.  

Here, a tamoxifen-inducible Cre-loxP mouse model was used to genetically delete 

Vegfa in β-cells of adult mice and precisely define the role of VEGF-A and intraislet 

endothelial cells in the maintenance of islet morphology and function in maturity. It was 

found that mature pancreatic β-cells could tolerate a significant and prolonged reduction 

in intraislet capillary density and still maintain relatively normal function. By comparison, 

inactivation of VEGF-A in early pancreas development resulted in hypovascularized 

islets with a sustained reduction in β-cell proliferation and mass (Reinert and Brissova et 

al., manuscript in preparation). These data show that intraislet endothelial cells play a 
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that islet-derived VEGF-A and its effects on islet vascularization are crucial for β-
cell proliferation and islet development (Reinert and Brissova et al., manuscript in
preparation). However, it is unknown whether inactivation of VEGF-A specifically
in mature islets will have similar effects on islet vascularization and function. This is
the basis for the studies performed in Chapter IV.
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lesser role in maintaining mature islets than in directing islet development. 
 

Results 

Evaluating an inducible Cre-loxP model to inactivate Vegfa in β-cells of adult mice 

To reduce VEGF-A production in mature islets, a tamoxifen (Tm)-inducible Cre-

loxP mouse model was used. Vegfafl/fl mice were crossed with Pdx1PB-CreERTm mice, in 

which a Tm-inducible form of Cre recombinase is expressed in β-cells (and in a small 

subset of non-β endocrine cells) of the islet (Zhang et al., 2005). First, the Tm dose that 

effectively reduced VEGF-A expression with minimal toxicity was determined. While a 

3 x 8 mg Tm dose was required for widespread recombination of the R26-lacZ reporter 

allele in β-cells, and also induced effective recombination of the conditional Vegfa allele 

(Reinert et al., 2012), much lower Tm doses were able to inactivate VEGF-A production 

in β-cells of Pdx1PB-CreERTm;Vegfafl/fl mice. Adult mice were injected with three doses of 

2 mg, 1 mg, or 0.1 mg Tm, and sacrificed one week after the final Tm injection to assess 

islet VEGF-A production over 48 hours in culture. Control islets from vehicle-treated 

Pdx1PB-CreERTm;Vegfafl/fl mice and from Tm-treated Vegfafl/fl mice showed a similar 

amount of VEGF-A release into the culture media, as quantified by ELISA (Figure 44B). 

In contrast, Tm-treated Pdx1PB-CreERTm;Vegfafl/fl mice showed significantly reduced 

VEGF-A production, in a dose-dependent manner (Figure 44B). These studies were 

continued using the 3 x 1 mg Tm dose, which resulted in a 91.4% reduction in islet 

VEGF-A secretion in vitro.  

 The extent of islet VEGF-A inactivation was also assessed using 

immunohistochemistry. Compared to pancreatic acinar tissue, islet endocrine cells from 

adult vehicle-treated and Tm-treated Vegfafl/fl mice and from vehicle-treated  
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Figure 44. Tamoxifen-induced inactivation of VEGF-A in adult islets. A. Four 
month-old Vegfafl/fl and Pdx1PB-CreER;Vegfafl/fl mice were treated with three injections 
of tamoxifen (Tm) or corn oil vehicle (Veh) and evaluated for islet VEGF-A production, 
vascularization, and function. B. VEGF-A secretion from cultured islets was analyzed 
using an ELISA one week after treating mice with Tm or Veh. ***P < 0.001 vs. 
Tm-treated Vegfafl/fl islets and vs. vehicle-treated Pdx1PB-CreER;Vegfafl/fl islets; n = 3 per 
group. C-F. Islet VEGF-A expression was evaluated using immunohistochemistry three 
months after 3 x 1 mg Tm or Veh treatment. VEGF-A, red/grayscale; glucagon, blue. 
Scale bars are 50 μm.
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Pdx1PB-CreERTm;Vegfafl/fl mice express high levels of VEGF-A (Figure 44C-E). Reduced 

VEGF-A immunoreactivity was observed in β-cells from adult Pdx1PB-CreERTm;Vegfafl/fl 

mice both one and three months after Tm treatment, though VEGF-A was still expressed 

by α-cells at the islet periphery (Figure 44F and data not shown).  

 The timeline of experiments performed to evaluate islet morphology and function 

following VEGF-A inactivation is shown in Figure 44A. 

 

Inactivation of Vegfa in mature islets reduces islet vessel density,  

vessel size, and endothelial cell fenestrations 

To better understand the role of VEGF-A on the mature islet vasculature, the 

morphology and gene expression of intraislet capillaries were examined in Tm-treated 

Vegfafl/fl and Pdx1PB-CreERTm;Vegfafl/fl mice. Intraislet capillaries were labeled by 

immunohistochemistry using an antibody to the endothelial cell marker PECAM1 (Figure 

45A-D), and islet vessel density and size was evaluated using morphometric analysis. 

Three months after Tm-induced VEGF-A inactivation, the islet vessel density was 

reduced 53.4% in Tm-treated Pdx1PB-CreERTm;Vegfafl/fl mice, as compared to Tm-treated 

Vegfafl/fl mice and vehicle-treated controls (Figure 45E). Furthermore, islet vessel 

size/branching was also reduced 44.5% in Pdx1PB-CreERTm;Vegfafl/fl mice three months 

after Tm treatment, as measured by the area per islet vessel (Figure 45F). Similar changes 

in the intraislet vasculature were also observed one month following Tm treatment (data 

not shown). 

Next, expression of the angiogenic factors VEGF-A and VEGF-B and their 

receptor VEGFR2 was examined by quantitative RT-PCR. As expected, expression of  
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Figure 45. VEGF-A is required to maintain the intraislet vasculature in adult mice. 
A-D. Immunohistochemistry of Vegfafl/fl and Pdx1PB-CreER;Vegfafl/fl islets following 
tamoxifen (Tm) or vehicle (Veh) treatment. Insulin, green; PECAM1, red/grayscale. Scale 
bars are 50 μm. E-F. Islet vessel density (E) and area per islet vessel (F) three months after 
Tm treatment. The number of mice evaluated in each group is listed in the legend. 
*P < 0.05, ***P < 0.001. Similar vascular changes were also observed one month after 
Tm treatment. G. Relative gene expression of Vegfa, Vegfb, and Kdr (encoding the VEGF 
receptor 2) in isolated islets, measured by quantitative PCR. Values are 0.126 ± 0.0275 for 
Vegfa (n = 3; ***P < 0.0001 vs. control), 1.771 ± 0.349 for Vegfb (n = 3; P > 0.05 vs. 
control), and 0.241 ± 0.0323 for Kdr (n = 3; ***P = 0.0002 vs. control). 
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Vegfa mRNA was significantly reduced in Tm-treated Pdx1PB-CreERTm;Vegfafl/fl islets 

compared to Tm-treated Vegfafl/fl controls (Figure 45G). In contrast, expression of Vegfb 

was unchanged following VEGF-A inactivation (Figure 45G). Tm-treated Pdx1PB-

CreERTm;Vegfafl/fl islets also showed a reduction in mRNA expression of the gene for the 

VEGF receptor 2, Kdr, in agreement with the reduction in endothelial cells (Figure 45G). 

To evaluate whether reduced VEGF-A expression altered the permeability of 

intraislet capillaries, islets from Pdx1PB-CreERTm;Vegfafl/fl mice and Vegfafl/fl controls 

were examined by transmission electron microscopy, one month after Tm treatment. As 

expected, there were fewer capillaries in islets from Pdx1PB-CreERTm;Vegfafl/fl mice, and 

most capillaries were found at the islet periphery. As described previously (Brissova et al., 

2006; Lammert et al., 2003b), endothelial cell processes lining the lumen of capillaries in 

Tm-treated Vegfafl/fl controls were highly fenestrated (Figure 46A-B). Surprisingly, the 

capillaries in Tm-treated Pdx1PB-CreERTm;Vegfafl/fl mice displayed a wide range in the 

degree of fenestrated endothelium in capillary cross-sections. Fenestrations were readily 

found in capillaries of VEGF-A-deficient islets, though they were less prevalent than in 

Vegfafl/fl controls (Figure 46C-F). In contrast to previous models of VEGF-A inactivation 

in developing islets (Brissova et al., 2006; Lammert et al., 2003b), the presence of 

caveolae in intraislet capillaries of Pdx1PB-CreERTm;Vegfafl/fl mice was much more 

variable between individual capillaries, and, when present, was not as thick as in previous 

models. 
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Figure 46. Inactivation of VEGF-A in adult islets has variable effects on endothelial 
cell fenestrations. Transmission electron micrographs of intraislet capillaries in 
Tm-treated Vegfafl/fl (Α-B) and Pdx1PB-CreER;Vegfafl/fl (C-F) mice. Images were 
acquired at 15000x magnification. Scale bar in A is 100 nm, and applies to Β-F. 
L, capillary lumen; N, endothelial cell nucleus; open arrowheads denote fenestrations and 
closed arrowheads denote caveolae.
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Mature β-cells are maintained in VEGF-Α-deficient islets 

A variety of studies were performed to evaluate whether a reduction in intraislet 

endothelial cells in adult mice would affect islet morphology. Islets in Tm-treated 

Pdx1PB-CreERTm;Vegfafl/fl mice retained a normal arrangement of endocrine cells, with α-

cells and δ-cells located at the islet periphery (Figure 47A-B). Furthermore, there was no 

change in the proportion of β-cells to α-cells following islet VEGF-A inactivation (Figure 

47C). β-cells in Tm-treated Pdx1PB-CreERTm;Vegfafl/fl mice also displayed normal nuclear 

expression of the transcription factors MAFA and PDX1 (Figure 47D-E), and did not 

show changes in expression of Ins2, Mafa, or Pdx1 mRNA (Figure 47F). The total 

pancreatic insulin content was slightly increased in male Tm-treated Pdx1PB-

CreERTm;Vegfafl/fl mice (Figure 47G), but unchanged in was females (Figure 47H). 

However, both pancreatic β-cell area (Figure 47I) and total pancreatic weight (data not 

shown) were unchanged in Tm-treated Pdx1PB-CreERTm;Vegfafl/fl mice. The ultrastructure 

of β-cells also was unchanged in Tm-treated Pdx1PB-CreERTm;Vegfafl/fl mice, as evaluated 

by transmission electron microscopy. β-cells remained densely packed with insulin 

granules in Tm-treated Pdx1PB-CreERTm;Vegfafl/fl mice and Vegfafl/fl controls, and β-cell 

granules retained their characteristic halos following VEGF-A inactivation (Figure 48).  

 

Mice with hypovascularized islets have slightly impaired  

glucose tolerance but normal insulin secretion 

Whole-body glucose homeostasis was examined in Tm-treated mice to evaluate 

whether depletion of intraislet vessels affected islet function. Before Tm treatment, there 

was no difference in glucose tolerance between Pdx1PB-CreERTm;Vegfafl/fl mice and  
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Figure 47. VEGF-A inactivation in adult islets does not impair β-cell gene expression 
or mass. A-B. Immunohistochemistry of islets three months after tamoxifen (Tm) 
treatment. Insulin, green; glucagon, blue; somatostatin, red. Scale bar in A is 50 μm, and 
applies to B. C. Morphometric quantification of islet β-cell area. P > 0.05; n = 3 per 
group. D-E. Immunohistochemistry of islets three months after Tm treatment. Insulin, 
blue; MAFA, green; PDX1, red. Scale bar in D is 50 μm, and applies to E. F. Relative 
gene expression of Ins2, Pdx1, and Mafa in islets from Tm-treated mice, evaluated by 
quantitative PCR. Values are 1.464 ± 0.321 for Ins2, 2.311 ± 0.624 for Pdx1 and 1.502 ± 
0.402 for Mafa. For all genes, P > 0.05 vs. control; n = 3 per group. G. Pancreatic insulin 
content in male mice. **P = 0.0092; n = 11 for Tm-treated Vegfafl/fl mice and n = 5 for 
Tm-treated Pdx1PB-CreER;Vegfafl/fl mice. H. Pancreatic insulin content in female mice. 
P > 0.05; n = 2 for Tm-treated Vegfafl/fl mice and n = 3 for Tm-treated Pdx1PB-CreER;
Vegfafl/fl mice. I. Morphometric quantification of pancreatic β-cell area. P > 0.05; n = 3 
per group. 
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Vegfafl/fl controls (Figures 49A and 50A). However, Tm-treated Pdx1PB-CreERTm;Vegfafl/fl 

males showed impaired glucose tolerance both one month and three months after VEGF-

A inactivation (Figure 49B-C). This phenotype was less pronounced in female mice, and 

only manifested three months following VEGF-A inactivation (Figure 50B-C).  

Next, an in vitro perifusion assay was used to determine if VEGF-A inactivation 

affected insulin secretion independent of blood flow. Compared to Vegfafl/fl controls, 

islets from Pdx1PB-CreERTm;Vegfafl/fl mice did not show altered insulin secretion at basal 

(5.6 mM) glucose levels, or following stimulation with 16.7 mM glucose with or without 

the secretagogue IBMX (Figure 51). 

To determine if VEGF-A inactivation affected insulin secretion in vivo, 

hyperglycemic clamps were performed six weeks after Tm treatment to measure glucose-

stimulated insulin secretion. After a six-hour fast, Tm-treated Pdx1PB-CreERTm;Vegfafl/fl 

males showed fasting hyperglycemia compared to Tm-treated Vegfafl/fl controls (Figure 

52A), so the arterial blood glucose levels were slightly elevated in Pdx1PB-

CreERTm;Vegfafl/fl mice during the early part of the clamp. However, Pdx1PB-

CreERTm;Vegfafl/fl mice were clamped at the same blood glucose level as controls 

(~200 mg/dl) for the remainder of the experiment. Unexpectedly, Pdx1PB-

CreERTm;Vegfafl/fl mice required a lower glucose infusion rate (GIR) than Vegfafl/fl 

controls to maintain hyperglycemia (Figure 52B), suggestive of insulin resistance. Tm-

treated Pdx1PB-CreERTm;Vegfafl/fl mice had normal fasting arterial insulin values, but 

showed a slight elevation in fasting arterial C-peptide, a byproduct of insulin biosynthesis 

(Figure 52C-D). However, there was no statistically significant difference in arterial 

insulin values in Pdx1PB-CreERTm;Vegfafl/fl mice when compared to Vegfafl/fl controls.  
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Figure 49. Islet VEGF-A inactivation results in impaired glucose tolerance. Glucose 
tolerance testing was performed before tamoxifen (Tm) treatment (A), and one month (B) 
and three months (C) following Tm or vehicle (Veh) treatment. Male mice were fasted for 
16 hours before intraperitoneal injection of 2 mg/g glucose. Data were analyzed by 
one-way ANOVA of the area under the curve (AUC).
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Figure 50. Impaired glucose tolerance developed more slowly in Pdx1PB-CreER; 
Vegfafl/fl female mice. Glucose tolerance testing was performed before tamoxifen 
(Tm) treatment (A), and one month (B) and three months (C) following Tm or vehicle 
(Veh) treatment. Female mice were fasted for 16 hours before intraperitoneal injection 
of 2 mg/g glucose. Data were analyzed by one-way ANOVA of the area under the 
curve (AUC).
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Figure 51. Hypovascularization does not affect insulin secretion in vitro. Perifusion of 
islets isolated from Tm-treated mice. Area under the curve (AUC) values for the 16.7 mM 
glucose stimulus are 14.32 ± 3.433 ng/ml in Tm-treated Vegfafl/fl mice and 12.04 ± 2.963 
ng/ml in Tm-treated Pdx1PB-CreER;Vegfafl/fl mice. Area under the curve (AUC) values for 
the 16.7 mM glucose + IBMX stimulus are 56.86 ± 7.179 ng/ml in Tm-treated Vegfafl/fl 
mice and 54.88 ± 8.129 ng/ml in Tm-treated Pdx1PB-CreER;Vegfafl/fl mice.
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Similarly, arterial C-peptide levels in Tm-treated Pdx1PB-CreERTm;Vegfafl/fl mice were not 

different from Tm-treated Vegfafl/fl controls in response to increased arterial glucose 

(Figure 52D). 

 

Hypovascularization does not prevent a high-fat diet-induced  

increase in pancreatic insulin content 

To determine if reduced islet vascularization would impact the islet adaptation to 

insulin resistance, female Tm-treated Pdx1PB-CreERTm;Vegfafl/fl mice were placed on a 

high-fat diet (HFD) beginning one month following Tm treatment. Surprisingly, neither 

Pdx1PB-CreERTm;Vegfafl/fl mice nor Vegfafl/fl controls showed increased weight gain or 

impaired glucose tolerance on the HFD compared to chow-fed controls (Figure 53A and 

data not shown). Similarly, HFD-fed mice showed no changes in lean mass or fat mass 

after 16 weeks on the diet, compared to chow-fed controls (Figure 53B-C). However, 

HFD-fed Vegfafl/fl and Pdx1PB-CreERTm;Vegfafl/fl mice showed a similar increase in 

pancreatic insulin content over chow-fed controls (Figure 53D), suggesting that the 

normal islet vasculature is not required for β-cell adaptation to metabolic stress. 

 

Ectopic expression of Cre recombinase in the brain 

During the course of these experiments, it was discovered that Cre recombinase 

activity was ectopically present in the brain tissue of Pdx1-Cre  mice (Wicksteed et al., 

2010). The possibility that Cre was active in the brain tissue of Pdx1PB-CreERTm mice 

was investigated here, using the R26-lacZ reporter mouse strain so that β-galactosidase 

expression could serve as an indicator of Cre activity. Pdx1PB-CreERTm;R26-lacZ mice  
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Figure 53. VEGF-Α-deficient islets show enhanced insulin expression following a 
high fat diet, in the absence of changes in body weight, lean mass, or fat mass. Female 
mice were placed on a high fat diet (HFD) or chow diet for 16 weeks, beginning one month 
after Tm treatment (at 5 months of age). A. Body weight measurements of chow-fed and 
HFD-fed female Vegfafl/fl and Pdx1PB-CreER;Vegfafl/fl mice. Β-C. Body composition was 
assessed by NMR spectroscopy to determine lean mass (B) and fat mass (C) of Tm-treated 
mice, and analyzed by two-way ANOVA. P > 0.05 for diet, genotype, and interaction for 
both lean mass and fat mass; n = 3-6 per group. D. Pancreatic insulin content of HFD-fed 
and chow-fed Vegfafl/fl and Pdx1PB-CreER;Vegfafl/fl mice was assessed after 16 weeks and 
analyzed by two-way ANOVA. P = 0.0075 for diet, and P > 0.05 for genotype and 
interaction; n = 3 per group.
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were given either 3 x 1 mg Tm, 3 x 8 mg Tm, or vehicle and assessed for evidence of 

Cre-mediated recombination. 

The pancreas of mice treated with 3 x 8 mg Tm showed scattered islets positive 

for β-galactosidase, as detected by X-gal staining (Figure 54). The brains of Pdx1PB-

CreERTm;R26-lacZ mice showed dose-dependent evidence of ectopic recombination. 

Pdx1PB-CreERTm;R26-lacZ mice treated with 3 x 1 mg Tm demonstrated X-gal staining 

localized to the hypothalamus (Figure 54), similar to the ectopic expression observed in 

Pdx1-Cre;R26-lacZ mice (Wicksteed et al., 2010). However, Pdx1PB-CreERTm;R26-lacZ 

mice treated with 3 x 8 mg Tm showed punctate X-gal staining throughout the brain, but 

especially within the hypothalamus (Figure 54). As expected, Tm-treated R26-lacZ mice 

and untreated Pdx1PB-CreERTm;R26-lacZ mice showed no evidence of recombination in 

the pancreas or brain (Figure 55).  

To evaluate changes in VEGF-A signaling in the brains of Tm-treated Pdx1PB-

CreERTm;Vegfafl/fl mice, anesthetized mice were infused with a FITC-conjugated tomato 

lectin that labels the vasculature. No apparent differences were found in the vascular 

morphology of brain sections from Tm-treated Pdx1PB-CreERTm;Vegfafl/fl mice and 

Vegfafl/fl controls (Figure 56). Similarly, no differences were present in Pdx1-Cre;Vegfafl/fl 

mice compared to their controls (Figure 56). 

 

Discussion 

VEGF-A is important in islet vascularization, revascularization, and function. 

However, it was previously unknown whether the impaired function of VEGF-Α-

deficient islets in adult mice resulted solely from islet hypovascularization or were  

            164



HY

CTX

HY

CTX

Pdx1PB-CreERTm;R26-lacZ
3 x 8 mg Tm

Pdx1PB-CreERTm;R26-lacZ
3 x 1 mg Tm

ca
ud

al

rostral

HY

CTX

sagittal section coronal section

HY

CTX

Section:
face:

A B C D
a b c

Figure 54. Detection of ectopic Cre-mediated recombination in Pdx1PB-
CreERTm brains. Top panel, Schematic of mouse brain in sagittal view (from the
Allen Mouse Brain Atlas at http://www.brain-map.org/) with designated brain
slices (A-D) and coronal sectioning planes (a-c). Adult Pdx1PB-CreERTm;R26-lacZ
mice treated with 3 x 1 mg Tm (left panel) or 3 x 8 mg Tm (right panel) were
subjected to X-gal staining in whole mount. CTX, cortex; HY, hypothalamus.
From Wicksteed et al. (2010).
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all panels. CTX, cortex; HY, hypothalamus.
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manifestations of altered islet development. Surprisingly, even though the present Tm-

inducible model induced a substantial and prolonged reduction in VEGF-A production in 

β-cells of adult Tm-treated Pdx1PB-CreERTm;Vegfafl/fl mice, no changes were found in β-

cell gene expression or mass, and only slight changes were observed in glucose 

metabolism in vivo. These results show that VEGF-A and the intraislet vasculature play a 

much greater role in promoting islet growth during development (Lammert et al., 2003b; 

Reinert and Brissova et. al, manuscript in preparation) than in maintaining β-cells in 

mature islets (Figure 57). 

 

VEGF-A is required to maintain the vascularity of mature islets 

Islet vascularization and function in this model was investigated at least one 

month following VEGF-A inactivation, to focus on the long-term consequences of 

VEGF-A deficiency and also to avoid any side effects of Tm treatment (as will be 

described in Chapter V). However, it is likely that changes in the intraislet vasculature 

occurred rapidly following VEGF-A inactivation, because inhibitors of VEGF signaling 

have been shown to reverse endothelial cell fenestrations within 24 hours and induce 

capillary regression within one week of treatment (Inai et al., 2004; Kamba et al., 2006). 

Both short-term (7 days) and longer (21 days) treatment with a small molecule inhibitor 

of VEGF receptor tyrosine kinase activity showed about a 50% reduction in islet 

capillary density (Kamba et al., 2006), similar to the changes observed in Pdx1PB-

CreERTm;Vegfafl/fl mice from one to three months following Tm treatment. These data 

show that constitutive intraislet VEGF-A signaling is responsible for maintaining the 

high degree of islet vascularity and permeability. However, the remaining intraislet  
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vasculature is stable, likely maintained by VEGF-A derived from non-β-cells of the islet 

and/or other islet-derived angiogenic factors (Brissova et al., 2006). 

 

Normal islet vascularization is not required to maintain β-cell gene expression and mass 

Surprisingly, these data show that the high degree of vascularization found in 

islets within the pancreas of wild-type mice is not required for the maintenance of β-cell 

gene expression or mass. Tm-treated Pdx1PB-CreERTm;Vegfafl/fl mice showed no changes 

in expression of the β-cell genes Ins2, Pdx1, or Mafa, and no changes in β-cell area 

within the pancreas. β-cell proliferation was also examined three months following 

VEGF-A inactivation, but only rare Ki67+ β-cells were found in pancreata from either 

Tm-treated Vegfafl/fl or Pdx1PB-CreERTm;Vegfafl/fl mice (data not shown). This low basal 

proliferation rate is expected for 7-month-old mice (Teta et al., 2005), and suggests that if 

the intraislet vasculature were involved in maintaining β-cell proliferation in mature islets, 

only minimal changes in proliferation would be detectable in the current model. It is 

possible that Tm-treated Pdx1PB-CreERTm;Vegfafl/fl mice retain a certain threshold of 

endothelial cells required to maintain basal β-cell proliferation, a threshold not reached 

by islets in Pdx1-Cre;Vegfafl/fl mice, which show reduced β-cell proliferation (Reinert and 

Brissova et al., manuscript in preparation). No changes were observed in pancreatic β-cell 

area even three months following VEGF-A inactivation, so the halving of intraislet vessel 

density that occurred in this model did not impair β-cell proliferation or cause β-cell loss 

to a degree that would impair the maintenance of β-cell mass.  

These data also show that the normal intraislet vasculature is not required to 

maintain insulin biosynthesis in β-cells. In fact, pancreatic insulin content was slightly 
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increased in male Pdx1PB-CreERTm;Vegfafl/fl mice, perhaps in response to the insulin 

resistance uncovered by the hyperglycemic clamp experiment. Additionally, while HFD-

fed female Pdx1PB-CreERTm;Vegfafl/fl mice surprisingly did not gain any more weight than 

animals on the regular chow diet, or develop impaired glucose tolerance (data not shown), 

they did show an increase in pancreatic insulin content. This suggests that β-cells in 

hypovascularized islets can increase insulin production in response to increased demand. 

This is in agreement with a report that RIP-Cre;Vegfafl/fl mice showed an increase in β-

cell mass following a HFD (Toyofuku et al., 2009). In contrast to these data, a study in 

rats showed that an expansion of endothelial cells precedes the β-cell proliferation that 

occurs in late pregnancy, and that endothelial cell-derived HGF may be involved in 

stimulating β-cell proliferation (Johansson et al., 2006b). Therefore, the role of 

endothelial cells in β-cell expansion may be context-dependent. 

The specialized intraislet vasculature is thought to be critical for maintaining a 

high oxygen tension within the metabolically active endocrine pancreas (Carlsson et al., 

1998). It has been proposed that the decreased vessel density (Mattsson et al., 2002) and 

oxygen tension (Carlsson et al., 1998; Carlsson et al., 2000; Carlsson et al., 2001) in islet 

grafts is a major reason for islet transplantation failure. The data presented here suggest 

that mature islets are able to tolerate a two-fold reduction in vessel density and still 

maintain normal gene expression and insulin production, with only slight defects in islet 

function. That β-cells can adapt to the lower oxygen tension likely observed in this 

hypovascularized state may not be surprising, because it was recently found that a reserve 

pool of pancreatic islets are regularly exposed to low oxygenation. These metabolically 

dormant islets are recruited into action through increased blood perfusion only when 
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necessary, such as following an experimental partial pancreatectomy (Olsson and 

Carlsson, 2011). Therefore, the inability of islet grafts to achieve the highly vascularized 

state observed in islets within the pancreas may not necessarily be the biggest obstacle for 

islet transplantation to achieve long-term success.  

 

Islet hypovascularization slightly impairs islet function in vivo,  

but has no effect on insulin secretion in vitro 

The main defect observed in Pdx1PB-CreERTm;Vegfafl/fl mice was slightly impaired 

glucose tolerance following VEGF-A inactivation. This suggests that there is either a 

delay in the glucose stimulus reaching the β-cells, or a delay in insulin release into the 

bloodstream. Because β-cells secrete insulin mainly into the interstitium and not directly 

into capillaries (Takahashi et al., 2002), it is likely that the insulin produced in Tm-

treated Pdx1PB-CreERTm;Vegfafl/fl mice simply has a longer path to traverse before finding 

the bloodstream. Indeed, perifusion of islets from Tm-treated Pdx1PB-CreERTm;Vegfafl/fl 

mice showed no changes in glucose-stimulated insulin secretion in vitro, while the 

hyperglycemic clamp data showed that PdxPB-CreERTm;Vegfafl/fl mice had a slight, but 

not statistically significant, reduction in glucose-stimulated insulin secretion in vivo. 

While any potential defect in early insulin secretion may be masked by the increased 

blood glucose concentrations during the early phase of the clamp, PdxPB-

CreERTm;Vegfafl/fl mice were able to match insulin secretion of the control mice at the end 

of the clamp, when glucose levels were similar. These data suggest that VEGF-A 

inactivation is less detrimental to mature islets compared to developing islets. 
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By comparison, adult RIP-Cre;Vegfafl/fl mice, in which VEGF-A production by β-

cells was reduced in embryogenesis, had more severe glucose intolerance and reduced 

insulin secretion (Brissova et al., 2006). Adult RIP-Cre;Vegfafl/fl mice display a similar 

reduction in intraislet vessel density as Tm-treated PdxPB-CreERTm;Vegfafl/fl mice, and 

also show normal β-cell mass. However, RIP-Cre;Vegfafl/fl mice also show dramatic 

changes in intraislet capillary ultrastructure, displaying few fenestrations and increased 

caveolae (Brissova et al., 2006), similar to intraislet capillaries in mice treated with 

VEGF signaling inhibitors (Kamba et al., 2006). In contrast, PdxPB-CreERTm;Vegfafl/fl 

mice unexpectedly display a mix in capillary ultrastructure, with the preservation of 

many fenestrations. It is possible that non-β endocrine cells are able to compensate for 

the lack of VEGF-A production by β-cells in Pdx1PB-CreERTm;Vegfafl/fl mice, and that 

this increased capillary permeability may account for the relatively mild glucose 

intolerance seen in this model. In all, these data suggest that the VEGF-Α-mediated 

maintenance of islet vascular density and permeability is important for the fine-tuning of 

islet function in vivo, but these parameters are not necessarily required for basic β-cell 

function.  

The metabolic data presented here contrasts with data from mice treated with a 

VEGF receptor inhibitor, in which fasting blood glucose and glucose tolerance was 

improved (Kamba et al., 2006). Although the inhibitor led to a similar reduction in 

pancreatic islet vascular density as in the Tm-inducible model, it also affected the 

vasculature of multiple other tissues, including the thyroid, pituitary, and adrenal glands, 

so the precise mechanism leading to improved glucose homeostasis remains unexplained. 

A similar observation was made in a clinical study in which patients with type 2 diabetes 
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experienced a reduction in blood glucose levels following treatment with VEGF receptor 

inhibitors for renal cancer, though again the mechanism remains unclear (Billemont et al., 

2008). Some data suggest that inhibition of VEGF signaling in the liver improves hepatic 

insulin sensitivity through a HIF-2α mechanism, and that liver activation of HIF-2α 

corrects hyperglycemia in db/db mice (Wei, 2011). 

One unexplained finding from the clamp study performed in Tm-treated PdxPB-

CreERTm;Vegfafl/fl mice is the decreased glucose infusion rate required to maintain 

hyperglycemia, which indicates insulin resistance. The insulin resistance is not a result of 

Tm treatment itself, because control Vegfafl/fl mice were also treated with Tm before the 

hyperglycemic clamp experiment. Because islet-derived VEGF-A is not thought to 

influence cells outside the islet, as indicated by the sharp demarcation in vascular 

phenotypes of the endocrine versus exocrine pancreas (Henderson and Moss, 1985), it is 

unclear how inactivation of VEGF-A solely within β-cells would directly lead to insulin 

resistance. Since this conditional VEGF-A allele is highly sensitive to Cre-mediated 

recombination, only requiring low Tm doses to induce recombination, it is possible that 

even low levels of aberrant Cre expression in other tissues could induce sufficient 

recombination to affect tissue function. Therefore, one possible explanation is that 

VEGF-A is inactivated in the hypothalamus following Tm treatment, because PdxPB-

CreERTm mice were shown to have ectopic Cre-mediated recombination in the brain. No 

changes were observed in the vascularization of brain sections in either Tm-treated 

PdxPB-CreERTm;Vegfafl/fl or Pdx1-Cre;Vegfafl/fl mice. However, this may not be a 

sufficiently sensitive indicator of VEGF-A signaling, because few changes were observed 

in the vasculature of brains in mice treated with VEGF signaling inhibitors (Kamba et al., 
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2006). It is possible that VEGF-A inactivation disrupts other aspects in brain function, 

because VEGF-A can signal directly to adult neurons to mediate their survival 

(Mackenzie and Ruhrberg, 2012). Alternatively, there may be ectopic inactivation of 

VEGF-A in insulin-dependent tissues, though the potential impact of VEGF-A 

inactivation on the vascularization and function of these tissues is less clear. Inhibition of 

VEGF-A signaling reduces fenestrations of the liver endothelium (Tam et al., 2006), and 

liver endothelial cells provide important mitogenic signals to hepatocytes, including HGF 

(LeCouter et al., 2003). But again, inhibition of VEGF signaling in the liver may improve 

hepatic insulin sensitivity (Wei, 2011). It is also unclear whether VEGF-A inactivation in 

mature skeletal muscle would affect insulin sensitivity, because this vascular bed may 

(Tang et al., 2004) or may not (Kamba et al., 2006) be dependent on VEGF-A signaling. 

Finally, VEGF-A inactivation has variable effects in adipose tissue (Sun et al., 2012). 

Thus, the etiology of the insulin resistance in our model is not certain and warrants 

further study.  

In conclusion, although VEGF-A is a critical factor for the proper development of 

islet vascularization and function, VEGF-A and the intraislet vasculature plays a less 

critical role in mature pancreatic islets. While VEGF-A is required for maintaining the 

specialized vasculature observed in normal adult islets, mature β-cells can adapt to and 

survive even long-term reductions in islet vascularity. Importantly, these data suggest that 

achieving the highly vascularized state of pancreatic islets may not be necessary for the 

long-term success of transplanted mature islets. 
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CHAPTER V 

 

ESTIMATING THE TIMELINE OF TAMOXIFEN-INDUCED CRE 

RECOMBINATION USING AN ISLET TRANSPLANTATION BIOASSAY 

 

While developing the model of inducible islet VEGF-A inactivation described in 

Chapter IV, long-term side effects were noted in mice treated with tamoxifen (Tm). 

These initial studies drew concerns about the design and interpretation of some prior 

studies using Tm-inducible model systems. Experiments performed to address these 

concerns are described below, following a brief introduction to current issues in the use 

of Tm-inducible model systems. Data and text within this chapter have been published 

(Reinert et al., 2012). 

 

Introduction 

The advent of Tm-inducible Cre recombinases has greatly improved the ability to 

temporally control Cre-loxP recombination in vivo, and has been particularly useful for 

investigating properties of mature tissues in the adult mouse. Over the past decade, Tm-

inducible gene recombination has been used to examine organ maintenance and function 

through a variety of approaches, including cell lineage tracing (Badea et al., 2003; 

Bonaguidi et al., 2011; Burns et al., 2007; Dorrell et al., 2011; Hsieh et al., 2007; 

Ninkovic et al., 2007; Pellegrinet et al., 2011; Rawlins et al., 2009; Rock et al., 2009; 

Sangiorgi and Capecchi, 2008; Scholten et al., 2010; Zhu et al., 2011), inducible gene 

expression (Johansson et al., 2007; Mao et al., 2006; Pelengaris et al., 2002; Remedi et al., 
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2009; Youssef et al., 2010), and gene inactivation (Lepper et al., 2009; Porat et al., 2011; 

Salpeter et al., 2011; Yang et al., 2010).  

Several studies have described the importance of various parameters in Cre-loxP 

recombination, such as expression of Cre recombinase (Buelow and Scharenberg, 2008; 

Metzger and Chambon, 2001) and the accessibility of loxP sites (Guo et al., 2002; Long 

and Rossi, 2009). For inducible Cre-loxP recombination, one critical parameter that is 

often poorly described is verification that the Tm dose used is appropriate for the 

experiment, not only for maximizing the spatial extent of recombination in the target 

tissue but also by limiting the temporal extent of recombination. Specifically, knowing 

the timeline of Tm-induced Cre-loxP recombination is critical for “pulse-chase” lineage 

tracing experiments, because a pulse that unknowingly extends into the chase period will 

continue to label newly generated cells, and lead to the interpretation that all labeled cells 

are derived from the cell population that existed during the expected pulse period. For 

example, the current limited knowledge of the Tm pulse period in adult mice may be one 

factor contributing to the discrepancies observed in recent lineage tracing studies of the 

pancreas. 

In the pancreatic islet biology field, investigators are striving to understand the 

normal development and maintenance of insulin-producing β-cells and attempting to find 

sources for creating and regenerating β-cells, with the ultimate goal of treating diabetes. 

The use of Tm-inducible mouse models for cell lineage tracing has played a key role in 

advancing our understanding of pancreas biology, although some conflicting results have 

yet to be resolved. In an adaptation of classic pulse-chase experiments, Dor and 

colleagues were the first to use a Tm-inducible Cre driver strain to label mature 
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pancreatic β-cells in adult mice (Dor et al., 2004). After determining that the proportion 

of labeled β-cells did not change over time, they concluded that pre-existing β-cells were 

the source of β-cell replenishment in adult mice, and that there was no significant 

contribution of (unlabeled) stem cells to the β-cell population. This finding was also 

supported by studies using Tm-inducible systems to demonstrate that all mature β-cells 

possess a certain replication capacity (Brennand et al., 2007; Nir et al., 2007; Salpeter et 

al., 2010). In contrast, several other groups have used the same pulse-chase approach and 

concluded that β-cells can originate from non-β-cell sources, after observing changes in 

the proportion of labeled β-cells following post-injury regeneration or during pregnancy, 

when β-cell mass increases (Abouna et al., 2010; Liu et al., 2010a; Nakamura et al., 

2011). Further complicating our concept of β-cell turnover, one group reported isolating 

multipotent, stem-like cells from pancreatic islets, and, using the same lineage tracing 

methods as Dor et al. (2004), identified insulin+ cells as the source (Smukler et al., 2011). 

An alternative lineage tracing approach is to label a given cell type and determine 

whether or not it has the capacity to mature or transdifferentiate into another cell type. 

Using this more direct method of tracking cells, β-cells have been reported to originate 

from pancreatic ductal cells (Inada et al., 2008) and glucagon-producing α-cells (Thorel 

et al., 2010) in the injured mature pancreas, suggesting that transdifferentiation may 

occur under specific circumstances. However, the mechanisms involved in this process 

still require further examination, because several studies have failed to find evidence of 

β-cell transdifferentiation from acinar cells (Blaine et al., 2010; Desai et al., 2007; 

Kopinke and Murtaugh, 2010; Sangiorgi and Capecchi, 2009; Strobel et al., 2007a) or 
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ductal cells (Furuyama et al., 2011; Kopinke et al., 2011; Kopp et al., 2011b; Solar et al., 

2009) in the adult pancreas.  

While the Tm-inducible genetic models used in these studies have proven to be 

useful in addressing complex biological questions regarding pancreas development and 

maintenance, the conflicting results are sometimes difficult to reconcile. The fact that 

various Cre driver mice and reporter strains were used makes it inherently more difficult 

to compare different studies, because each model system differs in the specificity of Cre 

expression and the efficiency of target gene induction (Kopp et al., 2011a; Kushner et al., 

2010; Murtaugh, 2011). A recent report that described Tm-independent activity of Cre 

recombinase in the commonly used β-cell-targeted RIP-CreERTm mouse found that the 

extent of the “leakiness” varied, depending on the target gene (Liu et al., 2010b). 

Moreover, a wide range of Tm doses and administration methods have been reported, 

even for studies using similar Cre driver and reporter mice. In fact, one review questioned 

whether different Tm doses could account for the conflicting outcomes in two very 

similar models of pancreatic ductal cell lineage tracing (Kopp et al., 2011a). The need to 

draw such comparisons between experiments emphasizes the necessity for a full 

understanding of the parameters controlling recombination in each model system.  

While understanding the temporal limits of CreER activity is crucial for the 

design and interpretation of lineage tracing experiments, the kinetics of Tm activity have 

been studied almost exclusively in embryonic tissues (Hayashi and McMahon, 2002; 

Nakamura et al., 2006). Using immunohistochemistry, it was found that Cre localized to 

the nucleus of embryonic cells 24 hours after administration of Tm to a pregnant dam, but 

returned to the cytoplasm 48 hours after treatment (Hayashi and McMahon, 2002). 
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Further studies showed that the extent of recombination events was dramatically different 

in embryos depending on the developmental stage at which Tm treatment was performed, 

because of the embryo’s rapidly changing gene expression profile. These results 

suggested that Tm-induced recombination events in the embryo are restricted to a short 

time frame after drug administration to the dam (Danielian et al., 1998; Gu et al., 2002; 

Nakamura et al., 2006). Since most tissues in the adult animal do not show frequent, 

dramatic changes in gene expression or cell turnover, it is not possible to extrapolate the 

duration of active recombination following Tm administration in embryonic studies to 

that in adult mice.  

In this study, the kinetics of Tm-induced Cre-loxP recombination in pancreatic β-

cells was defined in adult mice. Because the precise level of circulating Tm necessary for 

inducing recombination in vivo is unknown, pancreatic islet transplantation was used as a 

bioassay to directly measure recombination at a given time following Tm administration. 

It was found that significant recombination of reporter alleles can occur for weeks after 

Tm treatment, and that the length of time that a Tm pulse induces recombination is dose-

dependent. Furthermore, Tm-treated male mice experienced side effects that have not 

been reported in recent literature. These data have considerable implications for the 

design and interpretation of studies utilizing Tm-inducible systems in adult mice. 
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Results 

High doses of tamoxifen induce prolonged nuclear localization  

of Cre recombinase in mature β-cells 

To estimate the duration of Tm-induced Cre-mediated recombination in adult 

mice, nuclear localization of Cre recombinase was evaluated in islet β-cells on pancreatic 

sections collected from transgenic Pdx1PB-CreERTm;Vegfafl/fl mice at different time points 

following the administration of 3 x 8 mg Tm. Surprisingly, Cre was found in the β-cell 

nucleus and cytoplasm in Pdx1PB-CreERTm;Vegfafl/fl pancreas collected either one week or 

one month after the final Tm dose (Figure 58D-I). In contrast, vehicle-treated Pdx1PB-

CreERTm;Vegfafl/fl mice displayed strict cytoplasmic localization of Cre in β-cells, as 

demonstrated by colocalization with insulin (Figure 58A-C). Likewise, β-cells from 

Pdx1PB-CreERTm;Vegfafl/fl mice sacrificed three months after the final Tm treatment 

demonstrated cytoplasmic but not nuclear Cre localization (Figure 58J-L). 

 

High doses of tamoxifen induce a prolonged period  

of Cre-loxP recombination in adult mice 

To better understand how long a given Tm dose is able to induce Cre-mediated 

recombination in vivo, a system was developed to evaluate recombination that occurs at 

any given time following Tm treatment. It was reasoned that measuring the serum Tm 

concentration in this model would likely be unhelpful, because the precise level of 

circulating Tm necessary for inducing recombination is unknown. Therefore, a bioassay 

was designed using pancreatic islet transplantation to assess recombination in Tm-naïve 

islet β-cells transplanted into Tm-treated mice. In this model, islets containing a Tm- 
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Figure 58. Tamoxifen-induced Cre subcellular localization is time-dependent. 
Representative islets from adult Pdx1PB-CreERTm;Vegfafl/fl mice given 8 mg tamoxifen 
(Tm, D-L) or corn oil vehicle (A-C) in three subcutaneous injections. Pancreata were 
harvested 1 week (D-F), 1 month (G-I), or 3 months (J-L) following the last injection 
and labeled with antibodies against insulin (green; A, D, G, J) and Cre recombinase 
(red; B, E, H, K). Merged images are shown in C, F, I, L. Scale bar in A is 50 μm, and 
applies to panels B-L.
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inducible Cre reporter (from Pdx1PB-CreERTm;R26-lacZ mice) were transplanted beneath 

the renal capsule of mice treated with different doses of Tm prior to islet transplantation 

(Figure 59A, 60A). In this way, the relevant endpoint, recombination, served as the 

metric. 

The first dose evaluated was 3 x 8 mg Tm, a dose similar to that used in other 

studies for lineage tracing of β-cells in adult mice (Abouna et al., 2010; Brennand et al., 

2007; Dor et al., 2004; Liu et al., 2010a; Nakamura et al., 2011; Nir et al., 2007; Smukler 

et al., 2011; Thorel et al., 2010). As expected, islets in Tm-treated R26-lacZ mice did not 

express β-gal, as visualized by immunohistochemistry (Figure 59B). In Pdx1PB-

CreERTm;R26-lacZ mice given 3 x 8 mg Tm, 80.1 ± 8.2% of β-cells in pancreatic islets 

expressed β-gal (Figure 59C). To evaluate this dose in the transplant model, recipient 

mice were given three subcutaneous injections of Tm or vehicle before receiving a 

pancreatic islet transplant from Tm-naïve Pdx1PB-CreERTm;R26-lacZ donor mice. Islet 

grafts were placed 48 hours, 1 week, 2 weeks, or 4 weeks following the final Tm 

injection (Figure 59A). Significant recombination was observed in Pdx1PB-CreERTm;R26-

lacZ islet grafts in mice given 3 x 8 mg Tm for weeks after the final Tm dose. When 

quantified, 77.9 ± 0.4% of β-cells expressed β-gal when transplanted 48 hours after the 

final Tm injection (Figure 59F), 46.2 ± 5.0% were β-gal+ 1 week after injection (Figure 

59G), and 26.3 ± 7.0% expressed β-gal 2 weeks after injection (Figure 59H). 

Recombination was also noted in grafts placed 4 weeks after the final Tm injection, with 

1.9 ± 0.9% of β-cells positive for β-gal (Figure 59I). In contrast, islet cells from R26-lacZ 

mice transplanted into Tm-treated mice did not express β-gal (Figure 59D). Similarly, 

most Pdx1PB-CreERTm;R26-lacZ islet cells transplanted into vehicle-treated mice did not  
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Figure 59. Higher dose tamoxifen induces recombination for weeks following 
administration. A. Islets from untreated Pdx1PB-CreERTm;R26-lacZ (Cre+) mice or 
R26-lacZ (Cre-) controls were transplanted into mice given three subcutaneous 
injections of 8 mg tamoxifen (Tm) or vehicle at the indicated times following the last 
injection. B-C. Representative islets from Cre- (B) and Cre+ (C) mice treated with 3 x 8 
mg Tm, labeled with antibodies to insulin (green) and β-galactosidase (β-gal, red). Scale 
bar in B is 50 μm and applies to panel C. D-I. Islet graft cryosections were labeled with 
antibodies to insulin (green) and β-gal (red). Scale bar in D is 50 μm, and applies to 
panels E-I. J-O. β-gal activity was evaluated in islet grafts by X-gal staining. Scale bar 
in J is 100 μm, and applies to panels K-O.

            184



show signs of recombination (Figure 59E), although a few β-gal+ β-cells were found in 

one of the grafts (0.6 ± 0.6%). These results were confirmed by X-gal staining (Figure 

59J-O).  

 

Lower doses of tamoxifen show a shorter period of Cre-loxP recombination in adult mice 

Next, the islet transplantation bioassay was used to test the duration of 

recombination following 3 x 1 mg Tm (Figure 60A), a dose that induced effective 

recombination in Pdx1PB-CreERTm;Vegfafl/fl mice (see Figure 44 in Chapter IV). 

Compared to mice receiving 3 x 8 mg Tm, treatment with 3 x 1 mg Tm induced less 

recombination in pancreatic islets of Pdx1PB-CreERTm;R26-lacZ mice (29.8 ± 4.1% of 

β-cells expressed β-gal, Figure 60B). Likewise, less, but notable, recombination was 

observed in Pdx1PB-CreERTm;R26-lacZ grafts placed in mice receiving 3 x 1 mg Tm: 

4.9 ± 1.7% of β-cells expressed β-gal 48 hours after Tm (Figure 60E), and 4.5 ± 1.9% of 

β-cells were β-gal+ 1 week after Tm (Figure 60F). No β-gal+ β-cells were noted in 

control grafts (Figure 60C-D). These results were also confirmed by X-gal staining of the 

islet grafts (Figure 60G-J).  

 

The duration of tamoxifen-induced gene recombination is dose-dependent 

A summary of Tm-induced recombination in Pdx1PB-CreERTm;R26-lacZ 

pancreatic islets and islet grafts is shown in Figure 61. Recombination of β-cells in both 

endogenous pancreatic islets (Figure 61A) and in islet grafts (Figure 61B) is dose-

dependent. At either dose, recombination in the transplanted islet cells was lower than 

recombination in pancreatic islets. However, all groups of Pdx1PB-CreERTm;R26-lacZ  
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Figure 60. Lower dose tamoxifen induces recombination up to one week following 
administration. A. Islets from untreated Pdx1PB-CreERTm;R26-lacZ (Cre+) mice or 
R26-lacZ (Cre-) controls were transplanted into mice given three subcutaneous 
injections of 1 mg tamoxifen (Tm) or vehicle at the indicated times following the last 
injection. B. Representative islet from a Cre+ mouse treated with 3 x 1 mg Tm, labeled 
with antibodies to insulin (green) and β-galactosidase (β-gal, red). Scale bar is 50 μm. 
C-F. Islet graft cryosections were labeled with antibodies to insulin (green) and β-gal 
(red). Scale bar in C is 50 μm, and applies to panels D-F. G-J. β-gal activity was 
evaluated in islet grafts by X-gal staining. Scale bar in G is 100 μm, and applies to panels 
H-J.
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Figure 61. The duration of tamoxifen-induced gene recombination is dose-
dependent. The percentage of insulin+ β-cells expressing β-gal in islets from pancreas 
sections (A) and from transplanted islet grafts (B) is shown. Each data point represents the 
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tamoxifen. C. Amount of recombination observed in islet grafts from mice given either 
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islets transplanted into Tm-treated mice showed recombination rates higher than vehicle-

treated controls, independent of Tm dose or time of transplantation. While recombination 

in Pdx1PB-CreERTm;R26-lacZ islet grafts from mice receiving 3 x 1 mg Tm was relatively 

low at both the 48-hour and 1-week post-treatment time points, compared to islets in the 

pancreas of mice receiving 3 x 1 mg Tm, the recombination seen in Pdx1PB-

CreERTm;R26-lacZ islet grafts from mice receiving 3 x 8 mg Tm was substantial for 

2 weeks following Tm administration (Figure 61B). Importantly, Pdx1PB-CreERTm;R26-

lacZ islet grafts from mice treated with 3 x 8 mg Tm showed recombination at a rate 

higher than controls even 4 weeks after treatment (Figure 61B). The estimated kinetics of 

Tm-induced recombination in this model system are plotted in Figure 61C. 

 

Side effects of tamoxifen treatment in adult mice 

At both doses, Tm-treated mice experienced major side effects that have not been 

mentioned in recent publications. The corn oil vehicle itself was incompletely absorbed 

in some mice, as indicated by subcutaneous masses found in the area of injection in both 

vehicle-treated and Tm-treated mice (Figure 62A). Upon dissection, these masses 

contained pockets of transparent oil, with no signs of inflammation or infection. Oil 

pockets were especially prevalent in female mice, and lasted for weeks or months after 

Tm administration. Additionally, male mice treated with Tm, but not corn oil vehicle 

alone, experienced dramatic scrotal enlargement (Figure 62B). This enlargement was first 

observed one week after Tm administration and lasted for at least three months (the last 

observed time point). All of the Tm-treated male mice described in this Dissertation 

developed this abnormality to some degree. While higher Tm doses did cause more  
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Figure 62. Anatomic changes following tamoxifen treatment. A. Some mice given 
subcutaneous injections of corn oil vehicle with or without tamoxifen (Tm) had 
subcutaneous accumulation of oil (white arrows) weeks and months following the last 
oil injection. B. Tm-treated male mice demonstrated scrotal enlargement (black arrows) 
as early as one week after treatment and lasting for months. Tm-treated mice shown 
were given 3 x 8 mg Tm, but similar results were observed in mice given 3 x 1 mg Tm.
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dramatic anatomic changes, variability was seen between mice given identical doses. 

Some mice were more bothered by the scrotal changes, and developed self-inflicted 

wounds. Upon dissection, no changes were observed in the size of male reproductive 

organs or perigonadal fat pads. However, the fat appeared to envelop the testes more 

loosely in Tm-treated mice, and in some cases, loops of intestine were found to extend 

into the scrotum, indicating herniation. Histological examination of the male reproductive 

tract revealed no changes in reproductive organs, such as testis and epididymis, following 

Tm treatment (Figure 63A-B). Instead, Tm-treated males showed patches of edematous 

reactive fat containing spindle cells (Figure 63D). One mouse with extensive self-

inflicted wounds showed chronic inflammation and fat necrosis within the preputial gland, 

located in the subcutaneous tissue adjacent to the penis (Figure 63F). 

 

Discussion 

Tm-inducible Cre-loxP systems are being used in broad areas of research and are 

providing important biologic insights in tissue development, maintenance, and function. 

However, our understanding of the parameters involved in recombination is incomplete. 

One unresolved issue regarding Cre-loxP recombination in adult mice is the length of 

time that Tm induces recombination. In this study, an in vivo bioassay using pancreatic 

islet transplantation was developed to directly measure recombination at specific times 

following Tm administration, thereby quantifying the biologic and pharmacologic half-

life of Tm. It was found that: (1) administration of high Tm doses leads to extended 

CreER nuclear localization; (2) Tm administration induces reporter gene recombination 

for several days or weeks after Tm treatment is completed, depending on the original  
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Figure 63. Histologic changes following tamoxifen treatment. A-F. H&E-stained 
sections of tissue from the scrota of control (A, C, E) and Tm-treated (B, D, F) male 
mice. A-B. Seminiferous tubules of the testes. Scale bar in B is 200 μm, and applies 
to panel A. C-D. Scrotal fat in a control mouse (C), compared to the reactive fat 
observed in a Tm-treated mouse (D). Scale bar in D is 200 μm, and applies to panel 
C. E-F. One Tm-treated mouse showed chronic inflammation and fat necrosis within 
the preputial gland (F); control gland, E. Scale bar in F is 400 μm, and applies to 
panel E. 
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dose administered; and (3) Tm treatment induces side effects that may have physiologic 

consequences in Tm-inducible models. 

Multiple factors are involved in obtaining specific and effective Cre-loxP 

recombination in vivo, including (but not limited to) the promoter or enhancer driving 

expression of Cre recombinase, the accessibility of loxP sites in the target gene, and, for 

inducible systems, the Tm dose used (Buelow and Scharenberg, 2008; Feil et al., 1996; 

Hayashi and McMahon, 2002; Liu et al., 2010b). First, the chosen promoter or enhancer 

in a Cre driver mouse ideally targets Cre expression to specific cell types; in reality, 

transgenic mice do not express Cre in 100% of the targeted cells, and some transgenes 

show aberrant expression of Cre in untargeted cell types (Song et al., 2010; Wicksteed et 

al., 2010). Second, the accessibility of target loxP alleles to Cre recombinase can also 

impact recombination efficiency. For example, recombination of the Z/AP and Z/EG 

reporters is less efficient than recombination of reporter alleles from the ROSA26 locus 

(Badea et al., 2009; Long and Rossi, 2009), and studies with these reporters may not 

necessarily reflect recombination of other target alleles (Liu et al., 2010b). Third, in 

addition to the wide range of Tm doses reported in the literature, there are a variety of Tm 

administration methods, from the use of Tm or its active metabolite 4-hydroxytamoxifen, 

to the drug preparation (oil suspensions vs. implanted pellets), and the route of 

administration (subcutaneous vs. intraperitoneal vs. oral). Finally, the data obtained using 

this bioassay demonstrate that the duration of Tm activity is another important variable to 

consider for Tm-inducible systems. In all, this wide range in model systems and 

methodology makes it difficult to compare different studies, and may contribute to the 

conflicting results reported in the pancreatic β-cell literature. 
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This bioassay was developed to directly assess the length of time that a given dose 

of Tm can induce Cre-loxP recombination in vivo. Early studies on Tm-induced Cre-loxP 

recombination utilized the rapid turnover of keratinocytes in epidermis to show that 

induction of reporter gene expression was limited to a few days after administration of 

relatively low doses of Tm (Brocard et al., 1997; Metzger and Chambon, 2001). Reporter 

gene-expressing keratinocytes that originated in the basal epidermal layer were found to 

have migrated out within one week of stopping Tm treatment, leaving unlabeled, newly 

generated cells below. Additionally, subcellular localization of Cre recombinase was 

correlated with Tm administration, as Cre was found in the keratinocyte nucleus in mice 

currently undergoing Tm treatment, but was localized to the cytoplasm three days after 

the final Tm dose. 

In contrast to the doses used in those early experiments to evaluate the timeline of 

Tm activity in skin (Brocard et al., 1997; Metzger and Chambon, 2001), which were 

similar to the low dose used in this bioassay, many recent studies have used much higher 

Tm doses to achieve maximal recombination of reporter alleles in target tissues 

(Bonaguidi et al., 2011; Dorrell et al., 2011; Pellegrinet et al., 2011; Rawlins et al., 2009; 

Rock et al., 2009; Scholten et al., 2010). The rationale for using a higher Tm dose in 

studies utilizing Tm-inducible models in the pancreas (Abouna et al., 2010; Brennand et 

al., 2007; Dor et al., 2004; Liu et al., 2010a; Nakamura et al., 2011; Nir et al., 2007; 

Smukler et al., 2011; Thorel et al., 2010) include: (1) the transgenic mice commonly used 

to target pancreatic β-cells (RIP-CreERTm (Dor et al., 2004) and Pdx1PB-CreERTm (Zhang 

et al., 2005) were generated using the CreERTm sequence (Danielian et al., 1998), which 

has been shown to be less sensitive to Tm than the CreERT2 sequence (Indra et al., 1999); 
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and (2) recombination efficiency is influenced by the accessibility of target loxP alleles to 

Cre recombinase (Liu et al., 2010b). The Z/AP reporter mouse has been frequently used 

to label pancreatic β-cells, and recombination of the Z/AP and Z/EG reporter alleles is 

less efficient than recombination of reporter alleles in the ROSA26 locus (Long and Rossi, 

2009). Although using the Tm dose that allows for maximal recombination is desirable, 

these data show that high doses of Tm can induce a prolonged period of Tm-induced Cre 

activity and unwanted side effects. Therefore, determining the optimal Tm dose for 

efficacy and safety will be particularly important in characterizing new model systems, 

including the recently described MIP-CreER mouse that targets β-cells (Wicksteed et al., 

2010). 

The subcellular localization of Cre recombinase was examined to estimate the 

time frame of potential recombination following Tm treatment. The fact that Cre was 

detected in nuclei of β-cells in the pancreas up to five weeks following the final Tm dose 

suggested that administration of Tm to adult mice induces a period of recombination that 

is much longer than the 12- to 48-hour window originally described in Tm-treated 

embryos (Gu et al., 2002; Hayashi and McMahon, 2002; Nakamura et al., 2006). Indeed, 

significant Tm-induced recombination was observed up to four weeks following drug 

administration, though perhaps to a lower extent than the number of β-cells showing 

nuclear localization of Cre might suggest. There are several possible reasons for this 

discrepancy in Cre subcellular localization and target gene recombination. Cre 

localization was analyzed in endogenous β-cells in the pancreas of transgenic mice, while 

the islet grafts had been transplanted under the kidney capsule of recipient mice. There 

may be differences in Tm availability at these two sites, because the pancreas was found 
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to have unexpectedly high concentrations of Tm compared to other tissues (Furr and 

Jordan, 1984; Lien et al., 1991). Additionally, the low blood flow experienced by newly 

transplanted islets may reduce the amount of Tm circulating to the β-cells, because 

revascularization of islet grafts takes several days to weeks to occur (Brissova et al., 

2004). For these reasons, this islet graft model may in fact underestimate the amount of 

recombination that may occur in endogenous β-cells of Tm-treated mice. Alternatively, 

there may not be a direct correlation between Cre localization and recombination of 

target alleles; however, this is difficult to assess, because the amount of nuclear Cre 

required for inducing recombination is dependent on the sensitivity of the targeted floxed 

allele (Liu et al., 2010b; Long and Rossi, 2009), and may not necessarily be detected by 

immunohistochemistry. Importantly, these data show that evaluating Cre subcellular 

localization alone is not sufficient to estimate active recombination in a given cell. 

 Here, Tm was administered subcutaneously, as other groups have reported 

without noting side effects (Kopp et al., 2011b; Nir et al., 2007; Strobel et al., 2007b). 

While unexpected, the oil pockets observed are consistent with a report that described 

incomplete absorption of oil vehicles after an attempt to administer hormones 

subcutaneously to rodents (Deanesly and Parkes, 1933). In that study, the investigators 

collected the subcutaneous oil that remained days or weeks after injection and found that 

it still contained biologically active estrins. This observation raises the possibility that Tm 

itself is slowly and/or incompletely absorbed following subcutaneous injection, which 

could lead to the prolonged biologic activity observed in this study, and potentially to 

variability in Tm dosing between mice. Alternative Tm administration methods, such as 

implanted or food-based pellets, will prevent side effects associated with the oil vehicle. 
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However, the length of Tm action must still be determined for each of these treatment 

protocols.  

The side effects observed in Tm-treated male mice were also surprising, because 

there has been little discussion of adverse events following Tm administration to adult 

transgenic mice (Anastassiadis et al., 2010; Guo et al., 2002; Hall et al., 2011; 

Vasioukhin et al., 1999). The pathologic changes in the scrota of Tm-treated mice appear 

to be limited to fat (and in one case, the preputial gland), and not to male reproductive 

organs. Instead, the scrotal swelling in Tm-treated mice closely resembles the scrotal 

hernias observed in male mice treated with estrogenic compounds, which were associated 

with hypertrophy of inguinal and scrotal skeletal muscle (Burrows, 1934; Gardner, 1936; 

Hazary and Gardner, 1960). Because Tm has mainly estrogenic actions in mice (Furr and 

Jordan, 1984), the hernias may be an indication that Tm treatment is promoting 

feminization of male mice. This is potentially concerning for investigators using these 

models for studies on metabolic diseases like diabetes. It is well known that wild-type 

male and female mice show differences in glucose tolerance (Bonnevie-Nielsen, 1982; 

Lavine et al., 1971), and some recent studies have reported that male mice are more 

susceptible to developing glucose intolerance following Cre-loxP-mediated inactivation 

of critical β-cell genes such as Foxm1 and Neurog3 (Wang et al., 2009; Zhang et al., 

2006). Thus, it is important not only to include Tm-treated control groups to evaluate the 

drug’s physiologic effects on the mice, but also to limit the Tm dose in order to minimize 

these effects. 

In summary, this bioassay demonstrated that β-cells of adult mice can experience 

a prolonged period of Tm-induced nuclear localization of Cre recombinase, accompanied 
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by significant levels of Cre-loxP recombination for days and weeks after Tm treatment. 

These findings have important implications for the design and interpretation of 

experiments utilizing Tm-inducible systems. While a prolonged period of recombination 

is not necessarily undesirable in studies in which Tm is used to inactivate target genes, it 

is a critical parameter in lineage tracing experiments that rely on the induction of a 

reporter gene during a defined “pulse” period. Because many variables may affect Tm-

induced recombination in a given model, the doses and timeline described here cannot be 

applied as strict guidelines for all Tm-inducible systems. Importantly, these data caution 

against the use of high Tm doses with the expectation that the effects of Tm are 

innocuous and short-lived. It is recommended that investigators carefully define the Tm 

dose and duration of action in each model system. 
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CHAPTER VI 

 

GENERATING A MODEL OF INDUCIBLE KILLING OF PANCREATIC 

SCHWANN CELLS 

 

Introduction 

Peri-islet Schwann cells (pScs) have been described in multiple morphological 

studies (Donev, 1984; Smith, 1975; Sunami et al., 2001), and have been shown to be 

targeted by the immune system in humans with type 1 diabetes and in the non-obese 

diabetic (NOD) mouse (Tsui et al., 2008a; Winer et al., 2003), but their role in islet 

physiology remains unknown. The goal of the studies presented in this Chapter was to 

develop a cell ablation approach that would test the hypothesis that pScs are required for 

normal islet function in vivo. 

In the past, in vivo cell ablation and inactivation techniques have generally 

involved the administration of a drug with relative specificity for the targeted cell type. 

For example, the glucose analogs alloxan and streptozotocin have been used to destroy β-

cells in mice to induce hyperglycemia or to study β-cell regeneration. While these drugs 

have a relative specificity for the GLUT2 glucose transporter on β-cells, renal and hepatic 

toxicity are associated with treatment (Lenzen, 2008). In studies examining the role of 

glial cells in the nervous system, fluorocitrate and L-aminoadipic acid are used as 

gliotoxins to affect cell metabolism and function(Baudoux and Parker, 2008; Paulsen et 

al., 1987). 
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The advent of transgenic mouse technology has greatly advanced our ability to 

develop models of targeted cell ablation. In the RIP-cMycER mouse, the rat insulin 

promoter (RIP) drives β-cell-specific expression of a fusion protein composed of the 

proto-oncogene c-Myc and a mutated estrogen receptor. When tamoxifen is administered, 

nuclear translocation of c-Myc leads to cell death (Pelengaris et al., 2002). Similarly, the 

PANIC-ATTAC mouse displays apoptosis of β-cells following chemically induced 

activation of caspase 8 (Wang et al., 2008). 

A similar approach is to target expression of the human diphtheria toxin receptor 

(DTR) to specific mouse tissues. Because the mouse equivalent of this receptor does not 

bind DT, DT protein can be administered to the mouse to induce a cell-specific inhibition 

of protein synthesis and subsequent cell death without any detectable side effects in non-

targeted tissues. As an example, male RIP-DTR mice, in which most β-cells express DTR, 

will experience hyperglycemia and almost complete β-cell loss following treatment with 

DT (Thorel et al., 2010). To increase the utility of this approach, R26-DTR mice were 

generated to allow for the ubiquitous expression of loxP-STOP-loxP-DTR from the 

ROSA26 locus (Buch et al., 2005). Following Cre-mediated recombination and removal 

of the STOP sequence, DTR is expressed in the target cell type. 

In this Chapter, the DT-DTR approach was used to target pScs or neural crest-

derived cells using Plp1-CreERT2;R26-DTR or Wnt1-Cre;R26-DTR mice, respectively 

(Figure 64). Because these two mouse models demonstrate Cre expression in cells 

outside of the pancreas, and would likely experience widespread cell death following 

global administration of DT, a surgical method was developed to administer DT 

specifically to the pancreas of adult mice. 
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Figure 64. Proposed model for inducible ablation of peri-islet Schwann cells
in Plp1-Cre;R26-DTR mice.

Inhibition of 
protein synthesis 

and cell death 5

diphtheria
toxin

nucleus

cytoplasm

tamoxifen

CreER

2 DTRROSA26

3

STOP
loxP

DTR

Cre

CreER

Plp1 ER
1

ROSA26

4

DTRextracellular space

            200



Results 

Validation of intrapancreatic injection of diphtheria toxin 

First, the Ins2-Cre;R26-DTR mouse model was used to test the concept of 

intrapancreatic (IPa) injection of DT, as intraperitoneal (IP) injection of DT in this model 

induces hyperglycemia, a marker of β-cell death. Other controls for this experiment 

included R26-DTR mice given an IPa injection of DT and Ins2-Cre;R26-DTR mice that 

underwent a sham operation with IPa administration of saline.  

IPa injections were administered to both the duodenal and splenic portions of the 

pancreas, as described in Chapter II. Following IPa injection of DT or saline, a focal 

pocket of clear fluid could be observed within the pancreatic tissue (Figure 65, arrows). 

On occasion, limited bleeding would occur during the procedure, but overall the 

procedure was well tolerated by the mice. 

In the first round of experiments, mice were given 25 ng of DT, but none of the 

mice experienced hyperglycemia after one week. When the DT dose was increased to 

50 ng, both IPa and IP administration led to hyperglycemia in Ins2-Cre;R26-DTR mice 

but not R26-DTR controls. However, blood glucose levels had normalized in these mice 

ten days after the surgery. 

Next, the dose was increased to 1 µg, with the reasoning that excessive doses 

would not be harmful in this experimental model. With this dose, DT-injected Ins2-

Cre;R26-DTR mice showed rapid, dramatic hyperglycemia (>600 mg/dl, the upper limit 

of the glucometer measurement; Figure 66A-B). Both IP and IPa injection of 1 µg DT 

induced a similar degree of hyperglycemia in Ins2-Cre;R26-DTR mice after only a few 

days. However, in both males and females, the hyperglycemia peaked a few days later in  
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Figure 66. Intrapancreatic administration of diphtheria toxin destroys β-cells in
Ins-Cre;R26-DTR mice. Α-B. Nonfasting blood glucose values following
intrapancreatic (IPa) or intraperitoneal (IP) administration of saline (Sal) or
diphtheria toxin (DT) to male (A) and female (B) Ins-Cre;R26-DTR (+) mice and
R26-DTR controls (-). Time points on the X-axis represent measurements taken on
separate days. Measurement 1 was taken 4 days before surgery. Measurement 2 was
taken on the day of surgery. All remaining values were obtained daily following
surgery. Pancreata were harvested after the last reading. C-D. Immunohistochemistry
of islet morphology following IPa administration of saline (C) or DT (D). Insulin,
green; glucagon, red. Scale bar in D is 50 µm, and applies to panel C.
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mice given IPa DT, perhaps reflecting slower diffusion of DT from the IPa injection. In 

contrast, IPa saline-treated Ins2-Cre;R26-DTR mice and IPa DT-treated R26-DTR mice 

remained normoglycemic throughout the experiment (Figure 66A-B). 

To confirm that the hyperglycemia observed in DT-treated Ins2-Cre;R26-DTR 

mice was the result of β-cell loss, pancreatic cryosections were immunolabeled for 

insulin and glucagon. In contrast to the normal islet morphology observed in Ins2-

Cre;R26-DTR mice given IPa injections of saline (Figure 66C), very few β-cells were 

found in Ins2-Cre;R26-DTR mice given IPa DT (Figure 66D). These data indicated that 

IPa injection is an effective method of DT administration. 

 

Attempt to generate an inducible model to target pancreatic Schwann cells 

In an attempt to induce expression of the DT receptor in pancreatic Schwann cells, 

Plp1-CreERT2 mice were used, because GFAP-Cre mice were noted to have surprisingly 

poor expression of Cre recombinase in nonmyelinating Schwann cells of the peripheral 

nervous system (Zhuo et al., 2001). Therefore, hemizygous Plp1-CreERT2 mice were 

crossed with the R26-lacZ reporter strain to evaluate Cre expression in peri-islet Schwann 

cells. Young Plp1-CreERT2;R26-lacZ mice were treated with 3 x 2 mg Tm, a dose 

comparable to that used by those who designed the transgenic line (Doerflinger et al., 

2003), to induce nuclear localization of Cre and recombination of the reporter allele. 

However, no evidence of β-galactosidase expression or X-gal staining was observed (data 

not shown). Therefore, this Cre line was not usable for the desired studies. 
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Using a neural crest-specific model to test intrapancreatic injection of diphtheria toxin 

Because the proposed Plp1-CreERT2 model did not immediately show promising 

results, an alternative approach was pursued using IPa DT injection in Wnt1-Cre;R26-

DTR mice, in which Cre-mediated recombination would induce expression of DTR in 

peri-islet Schwann cells. However, because Wnt1-Cre mice have broad Cre-mediated 

recombination in neural crest-derived cells (Jiang et al., 2000), this approach would also 

target several cell types in the body, including nerves and Schwann cells throughout the 

peripheral nervous system. Therefore, it was used as a proof-of-principle experiment to 

test whether IPa administration of DT would result in targeted cell death confined to the 

pancreas.  

In the first round of experiments, 500 ng DT was administered IPa to Wnt1-

Cre;R26-DTR mice and R26-DTR controls. Surprisingly, IPa-injected Wnt1-Cre;R26-

DTR mice were found dead four days after the surgery, after showing a successful initial 

recovery from the procedure. Because that dose of DT was suspected to be toxic, a lesser 

dose of 50 ng DT was tested next. Following IPa DT, one Wnt1-Cre;R26-DTR mouse 

demonstrated transient hyperglycemia with a 10% weight loss, and another mouse 

showed a 22% weight loss six days post surgery. Upon dissection, the second mouse 

showed a small, very pink pancreas and large, potentially dilated colon. However, no 

changes were observed in global pancreatic innervation using immunohistochemistry 

(data not shown). 

Next, an intermediate dose of 250 ng was used, but the IPa DT-treated mouse 

experienced seizures three days after surgery, accompanied by a decreased random blood 

            205



glucose level (~90 mg/dl). Finally, a 100 ng dose was found to induce hypoglycemia in 

one mouse two days after surgery, but also resulted in death one day later.  

To evaluate the ability of 100 ng DT to kill neural crest-derived cells in the 

pancreas, IPa-injected mice were sacrificed at the onset of hypoglycemia, three days after 

surgery. Before dissection, IPa DT-treated Wnt1-Cre;R26-DTR mice demonstrated 

reduced movement within the cage and opacification of the eyes. Upon dissection, the 

intestines of DT-treated Wnt1-Cre;R26-DTR mice were dusky, distended, and firm, 

compared to the pink, soft intestines of saline-treated controls. All other abdominal 

organs appeared normal. To evaluate the efficacy of DT-induced death of neural crest-

derived cells in the pancreas, immunohistochemistry was performed on pancreatic 

sections from these mice. In DT-treated Wnt1-Cre;R26-DTR mice, TUJ1+ nerves and 

GFAP+ Schwann cells were still present in the pancreas (Figure 67A, C, D, F), though 

some areas were only sparsely innervated. Interestingly, TH+ nerve fibers were 

noticeably reduced in the pancreas of DT-treated Wnt1-Cre;R26-DTR  mice, while DT-

treated R26-DTR controls showed TH+ fibers throughout the pancreas (Figure 67B, E). 

 

Discussion 

The goal of the experiments described in this Chapter was to develop a method in 

which the role of peri-islet Schwann cells could be targeted for study in vivo, by 

administering diphtheria toxin (DT) to transgenic mice. Because there is no known way 

to specifically target peri-islet Schwann cells, an intrapancreatic (IPa) injection model 

was first developed and validated by inducing hyperglycemia in Ins2-Cre;R26-DTR mice. 

Then, IPa injection of DT was evaluated for its ability to kill neural elements in the 
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pancreas of Wnt1-Cre;R26-DTR mice; however, a dose that would target pancreatic 

nerves and glia without disrupting the extrapancreatic nervous system was not found.  

Although IPa DT in Ins2-Cre;R26-DTR mice resulted in hyperglycemia, it was 

impossible to determine whether or not the injected DT reached the bloodstream by 

escaping the pancreas. Indeed, it appears that extrapancreatic effects of DT, i.e., 

decreased gut motility, killed Wnt1-Cre;R26-DTR mice. This phenotype is similar to that 

observed in a study on the enteric nervous system, which showed that small intestine 

motility was inhibited following treatment with the gliotoxin fluorocitrate (Nasser et al., 

2006).  

While IPa DT appeared to damage the enteric nervous system of Wnt1-Cre;R26-

DTR mice, it did not completely destroy pancreatic nerves and glia. This is somewhat 

surprising; since Wnt1-Cre;R26-EYFP mice were used to genetically label these cells, it 

was expected that neural crest-derived glia in Wnt1-Cre;R26-DTR mice would express 

the DT receptor and succumb to cell death resulting from an inhibition in protein 

synthesis. However, it is possible that pancreatic innervation was affected, and that cell 

death would have occurred if the mice had survived longer. The TUJ1 and GFAP 

markers label structural elements in the cell, while TH labels an enzyme that presumably 

has a more rapid turnover. Therefore, decreased TH expression in Wnt1-Cre;R26-DTR 

mice could be a sign of inhibited protein synthesis that precedes cell death. 

Because peri-islet Schwann cells could not be specifically targeted in the current 

experimental design, a mouse model that would more specifically target glial cells in the 

pancreas is needed. The feasibility of the approach using Plp1-CreERT2 mice was not 

completely explored after the DT leakiness was revealed in the Wnt1-Cre;R26-DTR 
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model. It is possible that the Plp1-CreERT2 model requires higher Tm doses or Tm 

administration earlier in life to induce CreER translocation and subsequent recombination. 

However, this model will still show extrapancreatic expression of DTR+ cells, so side 

effects would likely still be observed, even with IPa DT administration. 

Intrapancreatic administration of DT was itself well tolerated by the mice, and no 

side effects were observed in injected control animals. An alternative approach would be 

IPa adminstration of the gliotoxin fluorocitrate (Nasser et al., 2006), although its effect on 

islet endocrine cells is unknown. Alternatively, mice could be infected with an 

adenovirus encoding DT protein itself under the control of a Schwann cell-specific 

promoter, such as Gfap. Intrapancreatic administration of adenovirus has been used to 

reprogram pancreatic acinar cells into β-cells (Zhou et al., 2008), so this may currently be 

the most promising approach to target peri-islet Schwann cells. 
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CHAPTER VII 

 

CONCLUSION 

 

Significance 

The overall goal of this Dissertation was to advance understanding of the 

interrelationship between islet vascularization, innervation, and function. Specifically, 

VEGF-A was identified as a major factor coordinating these elements within the 

pancreatic islet. The roles of VEGF-A in pancreatic islet development and maturity are 

shown in Figure 68, and summarized below. 

VEGF-A is the main factor involved in recruiting endothelial cells during early 

pancreas development (Brissova et al., 2006; Lammert et al., 2003b; Pierreux et al., 

2010). Islet endocrine cell clusters produce angiogenic factors to become vascularized 

and exposed to blood flow as early as E13.5, the beginning of mature islet formation 

(Brissova et al., 2006). While neural crest-derived cells, which include nerves and 

Schwann cells, are present in the pancreas at this time, they begin to interact with 

endocrine cells of developing islets slightly later, between E13.5 and E15.5 (Plank et al., 

2011). However, neural crest-derived cells remain localized to the periphery of 

developing islets until the postnatal period. In fact, nerve fibers are not consistently found 

within the islet core until the weaning stage, around three weeks after birth. 

The studies described in Chapter III now define a novel role for VEGF-A and the 

intraislet vasculature in directing islet innervation. Before these studies, very little was 

known about the mechanisms directing nerve growth to the pancreas and islets. Here, the  
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use of multiple genetic mouse models revealed the requirement for VEGF-A in the 

formation of islet innervation. VEGF-A is not a direct signal to islet nerves, which do not 

express the VEGF-A receptors VEGFR2 or NRP1. Instead, VEGF-A is required for 

patterning of the intraislet vasculature during embryogenesis, and this established 

capillary network is required for nerve fibers to penetrate the islet core during postnatal 

islet development. In contrast, experimental induction of hypervascularization by 

VEGF-A overexpression, either in developing or mature islets, resulted in islet 

hyperinnervation. Using this model, it was found that endothelial cell-derived factors 

such as NGF and ECM proteins are likely important signals for neurite growth into the 

islet. Therefore, the coordinated development of islet vascularization, innervation, and 

function is dependent on a complex series of interactions between endocrine, endothelial, 

and neural cells of the pancreatic islet. 

Normal pancreatic VEGF-A expression is critical for the recruitment of 

endothelial cells and the subsequent stimulation of endocrine cell proliferation during 

islet development. In addition, VEGF-A was also thought to be key in maintaining the 

function of mature islets, in part through recruiting endothelial cells that provided 

important signals for β-cells (Eberhard and Lammert, 2009; Olsson and Carlsson, 2006). 

However, the data presented in Chapter IV showed that intraislet endothelial cells were 

not as important as once thought. While VEGF-A is required to maintain the high 

vascular density and fenestrated endothelium of the islet, β-cells demonstrated resilience 

when faced with a long-term reduction in the intraislet vasculature. In fact, 

hypovascularized islets maintained β-cell gene expression, β-cell mass, and insulin 

secretion in vitro. These data suggest that while developing β-cells depend on signals that 

            212



endothelial cells provide, mature β-cells require less of this interaction for survival and 

function. 

In addition to advancing knowledge of the role of VEGF-A and intraislet 

endothelial cells in pancreatic islet biology, the studies performed in this Dissertation 

have provided helpful insight into the use of transgenic mouse models, which has broad 

implications for biomedical research. Mouse models using Cre-loxP recombination are 

increasingly common in studies of tissue maintenance and organ function, particularly in 

the pancreas (Kawaguchi et al., 2011). The studies in Chapters IV and V highlighted 

experimental challenges that must be considered in the use of popular transgenic mouse 

models. Chapter IV described the surprising discovery that two widely used pancreas-

targeted mouse models used in this Dissertation showed ectopic expression of a Cre 

recombinase transgene in the brain, a caveat that was revealed to be present in multiple 

current transgenic mouse strains targeting Cre to the pancreas (Wicksteed et al., 2010). 

Because some of these models have been used for years, the likely ectopic recombination 

of target genes has been overlooked in several studies, which may have led to erroneous 

interpretations of data. These findings will influence how investigators plan future studies 

using gene inactivation approaches within the pancreas. 

Furthermore, the data presented indicate that tamoxifen action has a much longer 

duration than previously thought. Chapter V discussed the development of a bioassay 

using pancreatic islet transplantation to directly measure Cre-loxP recombination at 

specific times following tamoxifen treatment. Surprisingly, it was found that commonly 

used doses of tamoxifen could induce Cre-loxP recombination for weeks after the last 

tamoxifen dose. This is dramatically different from the 48 hour-long period of 
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recombination reported for embryos of tamoxifen-treated dams (Hayashi and McMahon, 

2002). This work has considerable implications for all research using tamoxifen-

inducible model systems, and particularly for studies using tamoxifen treatment to induce 

labeling of cells for “pulse-chase” lineage tracing. Because interpretations drawn from 

such studies are highly dependent on the assumption of a well-defined pulse period, this 

work provides critical information to investigators designing and interpreting lineage 

tracing experiments. In all, these results demonstrate important experimental caveats and 

challenges that must be considered when designing future experiments and when drawing 

conclusions from such experimental models. 

 

Future Directions 

The data presented in this Dissertation expand our knowledge on islet 

vascularization and islet innervation, two key factors in islet function. Here, some 

thoughts on intriguing future directions of this work are presented. 

Following the inducible overexpression of VEGF-A in islets of adult mice, it was 

found that expansion of the intraislet endothelial cell population led to enhanced 

expression of NGF and several endothelial cell-derived proteins that compose the islet 

basement membrane, resulting in islet hyperinnervation. A pressing issue arising from 

these studies is the identification of specific endothelial cell-derived factors that control 

nerve pathfinding during postnatal development. Both endocrine and endothelial cells in 

the islet express proNGF during development (Cabrera-Vasquez et al., 2009). Therefore, 

it is likely that signals from both cell types stimulate ingrowth of nerve fibers into the 

islet, but these fibers require the prior formation of the intraislet capillary plexus and its 
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basement membrane by endothelial cells. Confirmation of the role of endocrine cell-

derived and endothelial cell-derived NGF in this process would require the generation of 

a mouse model of conditional NGF inactivation. Because a myriad of basement 

membrane proteins could be important in mediating neurite migration into islets, a more 

straightforward approach would be to specifically inactivate extracellular membrane 

receptors in the neural crest before evaluation of islet innervation. For example, β1 

integrin is important for migration of neural crest cells during gut development in both 

chicks and mice (Breau et al., 2009; Nagy et al., 2009), and would be a key candidate for 

this experiment. 

One of the most surprising results of these studies was that hypovascularized 

islets, which were unable to recruit nerves during development, showed a dramatic 

increase in the number of islet endocrine cells expressing tyrosine hydroxylase (TH), the 

rate-limiting enzyme in catecholamine biosynthesis. Data on the potential of islet 

endocrine cells to synthesize and secrete catecholamines have been conflicting (Cegrell, 

1968; Lundquist et al., 1989; Teitelman and Lee, 1987), though more recent studies 

suggest that islets do have endogenous TH enzymatic activity (Borelli and Gagliardino, 

2001; Borelli et al., 2003). Recent data also suggest that islets have the ability to convert 

L-DOPA (the product of TH) into dopamine, which is released from β-cells as an 

autocrine signal to regulate hormone secretion (Ustione and Piston, 2012). Therefore, a 

more detailed investigation of islet expression of other proteins in the catecholamine 

biosynthetic and secretory pathways would elucidate whether TH expression is 

selectively upregulated in cells that are truly producing catecholamines. It would also be 
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interesting to examine whether islets enriched with TH+ endocrine cells show increased 

catecholamine synthesis and/or secretion, and if this affects hormone secretion. 

It was previously suggested that TH+ islet cells represented a population of post-

proliferative, senescent endocrine cells (Teitelman et al., 1988). However, the data 

presented in Chapter III do not support this hypothesis. Hypovascularized islets show a 

dramatic reduction in β-cell proliferation throughout life (Reinert and Brissova et al., 

manuscript in preparation), but do not demonstrate increased senescence-associated 

β-galactosidase staining. Furthermore, an increased number of TH+ endocrine cells was 

not observed in models of increased β-cell proliferation, as previously reported 

(Teitelman et al., 1988). The reasons for this discrepancy remain unclear, so a further 

investigation into the significance of TH+ endocrine cells is needed.  

Other studies documented TH expression in early islet cells before and during the 

primary transition of pancreas development (Alpert et al., 1988; Teitelman and Lee, 

1987). From these data, the authors suggested that TH expression marked endocrine 

precursor cells, though it is now known that those early endocrine cells do not compose a 

major portion of the mature endocrine pancreas (Gu et al., 2002; Herrera, 2000). TH 

expression is present in some endocrine cells throughout normal development, as shown 

in Chapter III and in those prior reports. The significant technological advances in genetic 

mouse models since these early studies were performed would allow for more precise 

ways to evaluate TH+ endocrine cells and determine their role in islet function. For 

example, lineage tracing could now be accomplished using a mouse model that combines 

a tamoxifen-inducible Cre driven by the TH promoter (Rotolo et al., 2008) with a reporter 

strain. Additionally, the role of TH in islet endocrine cells could be studied by genetic 
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inactivation of TH using an islet cell- or β-cell-targeted Cre mouse crossed with a THfl/fl 

mouse (Hnasko et al., 2006; Tokuoka et al., 2011). Because of the ectopic expression of 

Cre in the brains of several islet-targeted Cre models, a genetic inactivation experiment 

would likely require a model with proven islet-specific expression, such as the 

MIP-CreER mouse (Wicksteed et al., 2010). 

Both VEGF-A deficiency and VEGF-A overexpression disrupted the typical 

morphology and localization of peri-islet Schwann cells (pScs). Following VEGF-A 

inactivation, pScs in hypovascularized, hypoinnervated islets demonstrated reactive 

gliosis, with upregulation of GFAP expression, while pScs in VEGF-Α-overexpressing, 

hypervascularized islets transformed into more broadly shaped cells. These data suggest 

that pScs are dynamic players within the islet microenvironment, and may become 

activated under certain circumstances, such as following hypoinnervation (Chapter III) or 

β-cell injury (Teitelman et al., 1998). However, the role of either normal pScs or reactive 

Schwann cells with the islets remains unknown. While genetic and chemical methods to 

specifically target pScs in vivo remain unavailable, the studies performed in Chapter VI, 

in which pScs were targeted for ablation by diphtheria toxin administration in vivo, could 

be continued in vitro to gain even an initial understanding of how pScs may function in 

islet physiology. It is unknown whether pScs may influence islet hormone secretion or 

endocrine cell proliferation. To address this, isolated islets with or without diphtheria 

toxin-mediated ablation of pScs could be studied in an in vitro perifusion system to test 

hormone secretion. Alternatively, the potential supportive role of pScs in islet function 

could be tested with the addition of purified pScs to cultured islets. One group has 

demonstrated the ability to isolate and culture pScs in order to define epitopes that may 
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be targeted by the immune system of NOD mice prior to autoimmune islet destruction 

(Tsui et al., 2008a). Furthermore, GFAP-GFP transgenic mice, which express GFP in 

glia, would allow for purification of pre-labeled pScs. This technique may enable 

sufficient numbers of pScs to be obtained for co-culture and co-transplant studies to 

investigate their capacity to promote β-cell proliferation, survival, and function. 

There is great interest in improving our understanding of islet vascularization with 

an ultimate goal of enhancing islet revascularization during transplantation (summarized 

in Brissova and Powers, 2008). Because intraislet endothelial cells are important in 

directing islet innervation during development, they are likely necessary for islet graft 

reinnervation as well. In that case, optimizing islet revascularization would have the 

added benefit of promoting islet reinnervation. Supporting this concept, there is some 

evidence that the combination of VEGF and NGF added to islet grafts transplanted within 

the pancreas may enhance their functional reinnervation over the addition of NGF alone 

(Stagner et al., 2008). To test whether endothelial cells enhance reinnervation of islet 

grafts, transplantation of RIP-rtTA;TetO-hVegfa islets could be performed, followed by 

administration of Dox to the recipient to induce graft hypervascularization. It is 

hypothesized that the increased endothelial cell population will enhance reinnervation, as 

in the pancreas. However, because expansion of endothelial cells in this model is quite 

robust and leads to reduced β-cell mass, reinnervation would need to be studied with a 

lower level of VEGF-A expression. 

As with all studies using model organisms, it is important to consider how 

faithfully mechanisms will be replicated in humans. While a close relationship between 

intraislet vessels and nerve fibers has been noted in adult humans (Rodriguez-Diaz et al., 
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2011a), the relationship between the two structures has only been briefly explored in 

human development (Gregg et al., 2012). A detailed analysis of islet innervation during 

human pancreas and islet development is currently being undertaken by the Powers 

laboratory. 

Two major questions regarding the role of islet vascularization in islet function 

deserve further attention: (1) do islets have strict temporal requirements for endothelial 

cells? and (2) do islets require a certain threshold of endothelial cells to maintain β-cell 

proliferation and function? Pancreas-wide inactivation of VEGF-A leads to a 70% 

reduction in intraislet vessel density and a lifelong reduction in β-cell proliferation 

(Reinert and Brissova et al., manuscript in preparation). In contrast, the tamoxifen-

induced knockdown of VEGF-A in adult mice reduced islet vascular density by half, 

which had no apparent effect on β-cell mass maintenance in adult mice. It is possible that 

the amount of intraislet endothelial cells that persisted in the latter model was sufficient 

to maintain signaling to islet cells. In this case, the use of additional methods to further 

reduce the intraislet vasculature, such as inducible inactivation of other angiogenic or 

angiostatic genes, may reveal a threshold of endothelial cells required for the 

maintenance of endocrine cell proliferation and gene expression in mature islets. 

Alternatively, while endocrine cells in adult mice may no longer require endothelial cells, 

the potential role of intraislet endothelial cells in young mice remains unknown. 

Therefore, inactivation of VEGF-A in early postnatal life would help define a temporal 

requirement for VEGF-A in establishment of the intraislet vasculature and maintenance 

of normal β-cell gene expression, proliferation, and mass. 
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The tamoxifen-inducible model of VEGF-A inactivation presented in Chapter IV 

was used to address the question of whether the normal intraislet vasculature was 

required to maintain glucose tolerance in adult mice. However, this model demonstrated 

the surprising finding of insulin resistance, as determined by a hyperglycemic clamp 

study. As discussed in Chapter IV, the etiology of insulin resistance in this model remains 

unknown. While it is possible that the ectopic expression of Cre in the hypothalamus, and 

subsequent inactivation of VEGF-A in that tissue, could account for this phenotype, a 

more detailed analysis of the insulin-sensitive tissues is required to investigate other sites 

of ectopic recombination. Intriguingly, recent evidence has demonstrated a unique state 

of insulin resistance in lean subjects with well-controlled type 1 DM. In contrast to 

whole-body insulin resistance present in individuals with type 2 DM, insulin resistance in 

these subjects was specific to the liver and skeletal muscle, and not associated with 

classic predictors like obesity and hyperlipidemia (Bergman et al., 2012). Similar to 

insulin resistant patients with type 1 DM, mice with islet-targeted VEGF-A inactivation 

have some disruption in islet function, but do not have the obesity typical of type 2 DM 

models. Therefore, further analyses are needed to identify the source(s) of insulin 

resistance in the tamoxifen-inducible model, to determine if the phenotype aligns with the 

pattern of insulin resistance in type 1 or type 2 DM. It would also be helpful to carefully 

evaluate glucose metabolism in male mice at earlier time points following islet VEGF-A 

inactivation, to determine precisely when insulin resistance may arise. Additionally, 

clamp studies could be performed on female mice, which showed resistance to 

developing glucose intolerance, even in the setting of a high fat diet. 
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APPENDIX 

 

STRAIN-DEPENDENT DIFFERENCES IN ISLET INNERVATION 

 

Introduction 

As described in Chapter III, VEGF-A and its role in the formation of the intraislet 

vasculature during development is crucial for the maturation of islet innervation. The data 

presented in this Appendix describe a preliminary attempt to evaluate islet innervation 

following the inducible inactivation of VEGF-A in mature islets of adult tamoxifen (Tm)-

treated Pdx1PB-CreERTm;Vegfafl/fl mice. Because the mixed background of Pdx1PB-

CreERTm;Vegfafl/fl mice was thought to result in the altered baseline islet innervation 

observed in this model, islet innervation was also described in four mouse strains. 

 

Results 

Evaluation of islet innervation following VEGF-A inactivation in mature islets 

To investigate whether inducible inactivation of VEGF-A in mature islets would 

alter islet innervation, adult Pdx1PB-CreERTm;Vegfafl/fl mice were treated with 3 x 1 mg 

Tm and islet morphology was evaluated by immunohistochemistry one to three months 

later. 

First, the expression of TUJ1+ nerve fibers was examined in VEGF-Α-deficient 

islets in Tm-treated Pdx1PB-CreERTm;Vegfafl/fl mice. There appeared to be fewer TUJ1+ 

nerves in VEGF-Α-deficient islets compared to controls (Figure A1). However, the 

density of intraislet nerves was reduced in these Vegfafl/fl controls (on a mixed  
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Figure A1. Islet nerve fiber density is reduced following tamoxifen-induced
VEGF-A inactivation. Representative islets immunolabeled for insulin (blue),
PECAM1 (green), and TUJ1 (red/grayscale). Islets shown were from mice sacrificed
one month following Tm or Veh treatment. Scale bar in A is 100 µm and applies to
all other panels.
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background), as compared to the Vegfafl/fl mice (on a C57BL/6J background) described in 

Chapter III. 

The expression of GFAP and TH was also examined in VEGF-Α-deficient islets 

in Tm-treated Pdx1PB-CreERTm;Vegfafl/fl mice. Surprisingly, these VEGF-Α-deficient 

islets did not display gliosis of GFAP+ Schwann cells (Figure A2). Similarly, the 

proportion of TH+ β-cells did not appear to be changed in islet from Tm-treated Pdx1PB-

CreERTm;Vegfafl/fl mice (Figure A3). 

 

Evaluation of strain-dependent differences in islet innervation 

To address whether there may be strain differences in islet innervation, four eight-

week-old mice (two males and two females) of each of four mouse strains were obtained 

from The Jackson Laboratory: C57BL/6J (stock number 000664), DBA/1J (stock number 

000670), FVB/NJ (stock number 001800), and 129S1/SvImJ (stock number 002448). 

These strains were chosen because they were previously evaluated for differences in 

whole-body glucose metabolism (Berglund et al., 2008). Pancreata were collected from 

these mice at ten weeks of age for analysis by immunohistochemistry. 

Strain-dependent differences were observed in islet innervation, as islets in 

C57BL/6J mice showed a dense network of intraislet TUJ1+ fibers (Figure A4A), while 

islets in 129S1/SvImJ mice appeared to be more sparsely innervated (Figure A4D). Islets 

in DBA/1J and FVB/NJ mice showed an intermediate density of TUJ1+ nerve fibers 

(Figure A4B-C). In contrast, all four strains of mice showed a similar peri-islet 

arrangement of GFAP+ Schwann cells, with few GFAP+ fibers penetrating the islet core 

(Figure A5).  
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Figure A2. Peri-islet Schwann cells do not show gliosis following tamoxifen-
induced VEGF-A inactivation. Representative islets immunolabeled for insulin
(blue), PECAM1 (green), and GFAP (red/grayscale). Islets shown were from mice
sacrificed one month following Tm or Veh treatment. Scale bar in A is 100 µm and
applies to all other panels.
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Figure A3. Islet sympathetic innervation is unchanged following tamoxifen-
induced VEGF-A inactivation. Representative islets immunolabeled for insulin
(blue), PECAM1 (green), and tyrosine hydroxylase (TH, red/grayscale). Islets shown
were from mice sacrificed three months following Tm treatment. Scale bar in A is
100 µm and applies to all other panels.
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 Strain-dependent differences in the proportion of TH+ islet cells were also 

observed. Islets in C57BL/6J mice had few TH+ β-cells (Figure A6A), while more TH+ 

cells were present in the other strains (Figure A6B-G). In particular, islets in DBA/1J and 

129S1/SvImJ mice showed many TH+ cell bodies (Figure A6B, D, E, G). Most of these 

TH+ cells were β-cells, but some TH+ cells lacked insulin expression. It is likely that 

these TH+/insulin- cells were non-β endocrine cells, because they were similar in size 

and shape to the TH+ β-cells. The proportion of TH+ cells did not change with islet size; 

both smaller (Figure A6A-D) and larger (Figure A6E-G) islets showed a similar density 

of intraislet TH+ cells.  

 

Discussion 

 These studies were initiated to determine if VEGF-A and the islet vasculature 

provided important signals to nerves in the mature islet, as VEGF-A is important in 

maintaining autonomic nerves in peripheral resistance arteries (Storkebaum et al., 2010). 

Because neural crest-derived cells in adult islets did not demonstrate expression of the 

VEGF-A receptors VEGFR2 or NRP1 (see Chapter III), it is unlikely that VEGF-A plays 

a direct role in maintaining islet innervation. However, it is possible that islet nerves 

require the oxygen tension that the dense intraislet vasculature provides. As an example, 

mice unable to produce VEGF-A in response to hypoxia show a motor neurodegeneration 

phenotype similar to amyotrophic lateral sclerosis (Oosthuyse et al., 2001). 

 Using immunohistochemistry, it was found that inactivation of VEGF-A in adult 

islets resulted in a decrease in the density of intraislet TUJ1+ nerves, compared to 

controls. However, the fact that controls in this line also showed an obvious decrease in  
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islet innervation compared to control mice in the Pdx1-Cre;Vegfafl/fl and RIP-rtTA;TetO-

hVegfa models made the results difficult to interpret. The possibility that a different 

genetic background accounted for this discrepancy was then considered. 

The mice used in this Dissertation were all on mixed backgrounds. Vegfafl/fl mice 

were generated using 129Sv embryonic stem cells injected into C57BL/6J blastocysts, 

and the offspring were bred into a C57BL/6J background (Gerber et al., 1999). Pdx1PB-

CreERTm mice were generated by pronuclear injection of the transgene construct into 

B6D2 embryos (an F1 hybrid between C57BL/6J and DBA/2J strains; Zhang et al., 2005). 

Pdx1-Cre transgenic mice were generated on a hybrid B6CBAF1 strain (Gu et al., 2002). 

RIP-rtTA transgenic mice were generated by pronuclear injection of B6CBA embryos (an 

F2 hybrid between C57BL/6J and CBA strains), and the offspring were bred into a 

C57BL/6J background for three generations (Milo-Landesman et al., 2001). TetO-hVegfa 

mice were generated in an undescribed strain, but founders were bred with C57BL/6J 

mice (Ohno-Matsui et al., 2002).  

In the studies performed in this Dissertation, experimental mice from each colony 

were compared with age-matched littermate controls to minimize genetic variation within 

a line. The data presented here suggest that comparing mice with substantial background 

differences would be difficult, because the controls may have different phenotypes. Mice 

from the Pdx1-Cre;Vegfafl/fl and RIP-rtTA;TetO-hVegfa lines, whose controls 

demonstrated similar levels of islet innervation, all had black coats, agreeing with their 

predominant C57BL/6J genetic background. In contrast, almost all of the Pdx1PB-

CreERTm;Vegfafl/fl mice used in the studies described in Chapter IV had agouti coats, 

suggesting that their genetic makeup had a considerable contribution from a strain other 
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than C57BL/6J. While strain differences may be responsible for the discrepancy in basal 

islet innervation between these mouse lines, the mechanisms underlying these phenotypes 

remain to be determined. 

Strain differences in islet innervation have not been previously investigated. 

These four strains were chosen because they were shown to have several differences in 

whole-body glucose metabolism, including dramatically dissimilar glucose-stimulated 

insulin secretion in vivo and varied secretion of counterregulatory hormones in response 

to hypoglycemia (Berglund et al., 2008). It was found that the strains do differ in the 

density of intraislet TUJ1+ nerve fibers and in the number of TH+ endocrine cells, but 

that GFAP+ Schwann cells consistently have a peri-islet morphology. Whether these 

differences in islet innervation are directly responsible for strain-dependent differences in 

islet function and glucose metabolism remains to be explored.  
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